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Abstract

In this thesis, a Benders decomposition algorithm is desigmel implemented to solve
both deterministic and stochastic pooling problems to a@laptimality. Convergence of
the algorithm to a global optimum is proved and then it is iempénted both in GAMS and
C++ to get the best performance. A series of example probleensadved, both with the
proposed Benders decomposition algorithm and commer@sahylable global optimiza-
tion software to determine the validity and the performaotéhe proposed algorithm.
Moreover, a two stage stochastic pooling problem is fortegldo model the optimal ca-
pacity expansion problem in pooling networks and the pregadgorithm is applied to
this problem to obtain global optimum. A number of examptekastic pooling problems
are solved, both with the proposed Benders decompositiaritign and commercially
available global optimization software to determine thikviyy and the performance of the
proposed algorithm applied to stochastic problems.
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Chapter 1

Introduction

1.1 Pooling Problems

The pooling problem is a planning problem that arises in dileg materials to produce
products; an example might be the blending of petroleum tarrabhgas. Pooling occurs
whenever streams are mixed together, often in a storage @aadkthe resulting mixture is
distributed to several locations. Pooling and blendinga@f materials and stored products
is an important step in the synthesis of end products havifeyeht quality specifications.
Products possessing different attribute qualities aredin a series of pools in such a way
that the attribute qualities of the blended products of the gools must satisfy given re-
qguirements. Pooling also occurs in distillation and otlegragation processes. The mathe-
matics of the pooling problem applies to such processedeiddpplications. In a pooling
problem, each material has a set of attributes with assat@alities, such as percentage
of sulfur or carbon dioxide percentage. Pool qualities afendd by a flow-weighted aver-
age of the source qualities and product qualities are diypitkefined by a flow-weighted
average of the pool qualities. Product qualities are caimsd to lie in specified ranges.

The pooling problem is to maximize the total profit, subjediow and quality constraints.

The pooling problem is a bilinear optimization problem hesmthe output stream qual-
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ities, which are unknown, depend on the flowrates, whichss ainknown, and on the
guality of the input streams. Because of the bilinear terims,process of pooling intro-
duces nonlinearities and nonconvexities into optimizatimdels leading to the possibility
of several locally optimal solutions some of which may becpilmmal. Naturally, it takes
more effort to solve a problem to guaranteed global optiy#tian it takes to find a locally
optimal solution and one must often weigh the benefits agdieosts. However, it is ap-
parent that global optimization of the pooling and blengingcess could lead to substantial

savings in cost, resulting in higher profits as in the cas@@petroleum industry.

Numerical algorithms for solving pooling problems havdinied sensitivity and feasi-
bility analysis and local optimization techniques. HowebWecause of the benefits of solv-
ing pooling problems to guaranteed global optimality aslared above, more recently
deterministic global optimization algorithms (which useaBch-and-Bound, Benders De-
composition (BD) or Generalized Benders Decomposition (GBiY,) have also been
proposed. However, the application of global optimizatgorithms to the pooling prob-
lem continues to be a challenge because of the slow convagpeed of the proposed
algorithms. Since the nonconvexities and nonlinearities pooling problem come from
the bilinear terms, a BD or GBD based algorithm looks as a priagigpproach in order
to find the global optimal solution of the problem. Moreow#ecomposition algorithms
are often regarded as better candidates to solve stochdstistructure development prob-
lems in the natural gas value chains, which is the ultimajeabive of this project. How-
ever, as explained in the later sections of this thesis| oot in the literature, in order
to solve pooling problems to global optimality with GBD algbms (in the literature, a
BD algorithm has not yet been proposed for the solution ofipggbroblems), only one
of the variables appearing in the bilinear terms was takeheasomplicating variable (de-
tailed information about BD and GBD algorithms is provideddhapter 4 and with this
approach even for relatively simple pooling problems, trepsed GBD algorithms con-

verge to suboptimal solutions, even non-KKT points, andeftee does not guarantee a
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global optimum.

1.2 Importance of Pooling Problems in the Natural Gas

Value Chain

Natural gas is a vital component of the world’s supply of ggesnd its importance has
been increasing as a fossil fuel in recent years becausdfefetit factors. First of all,
unlike other fossil fuels, natural gas is a relatively cléa@l since it emits low levels of
potentially harmful byproducts such as sulphur parti@datarbon dioxide and nitrogen
oxides, as it burns. In addition, from the geographical pectve, natural gas is more
uniformly distributed than oil. Moreover, since it is ralely easy, cheap and clean to
convert it into hydrogen, natural gas is considered to beobtiee most important elements
in the transition to a hydrogen economy.

Raw natural gas typically consists primarily of methane 4¥; the shortest and lightest
hydrocarbon molecule. It also contains varying amountseaivier gaseous hydrocarbons
(ethane (GHg), propane (GHg), butane (GH1g), etc.), acid gases (carbon dioxide (§0
hydrogen sulfide (bS), etc.), nitrogen (B, helium (He) and water vapor. All of those
gases except methane are called the impurities and the ranahgas must be purified
to meet the quality standards specified by the contractuakagents between production
companies and major pipeline transmission and distribwdmnpanies. Those quality stan-
dards vary from pipeline to pipeline and are usually a fuorcof a pipeline systems design
and the markets that it serves. In general, the standards\spleat the natural gas be
within a specific range of heating value (For example, in timited States, it should be
about 1,035 + 5% Btu per cubic foot of gas at 1 atmosphere and-BMbé delivered at
or above a specified hydrocarbon dew point temperature;deedi particulate solids and
liquid water to prevent erosion, corrosion or other damagine¢ pipeline; be dehydrated

of water vapor sufficiently to prevent the formation of metbahydrates within the gas
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processing plant or pipeline; contain no more than traceusutsoof components such as

hydrogen sulfide, carbon dioxide, nitrogen, and water vy

If natural gas is transported in the form of liquefied natgas (LNG), during LNG
production, the liquefaction process involves condensati natural gas into liquid form
by cooling it to approximately =163 °C (-260 °F). The natugas fed into the LNG plant
has to be treated to remove water, hydrogen sulfide, carlooidéi and other components
that will freeze under the low temperatures needed for geo@ be destructive to the

liquefaction facility.

Moreover, with the advent of sustained higher natural gaepiand declining reserves,
and as technology and geological knowledge advances |isa-tanconventional” natural
gas sources are coming to market. Although, there are mdfeyetit sources of “uncon-
ventional” natural gas today, one common characteristallag the higher concentration
of acid gases compared to “conventional” natural gas ssuideerefore, as technology ad-
vances, large amounts of off-spec natural gas becomesllaihat does not meet pipeline
quality without some sort of adjustment. This off-spec gas to be processed to meet the

requirements before being pumped into pipelines.

Hence, to transport natural gas from fields to consumers pyreans or to make “un-
conventional’ natural gas available to consumers, it isiiregl to reduce the concentration
of undesired molecules. Two methods exist to achieve thag gairification and blending.
The process of purification of natural gas to pipeline gadityuavels is quite complex,
highly capital-intensive and usually involves four mairogesses to remove the various
impurities: oil and condensate removal, water removalassn of natural gas liquids,
sulfur and carbon dioxide removal. These processes becareecomplex and therefore
more expensive, as the concentration of the impuritieseas®s in the natural gas being
purified and increases the cost of the natural gas for consuwigle reducing the prof-
its of the production companies. Detailed information dlmuification processes can be

found in Guo and Ghambalor (2005) [17].
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Blending of natural gas from different fields or wells withfdiient different concentra-
tions of hydrocarbons, carbon dioxide, hydrogen sulfiderattdgen is a cheaper method.
However, it does not always guarantee achievement of thieedesoncentration levels.
But, blending can be utilized to reduce the concentrationsnoesired molecules before
purification processes in order to reduce the cost of thdipation. The opportunity for
blending different sources of natural gas comes into theigespecially when the natural
gas production infrastructure is being developed. When nellswr fields are being de-
veloped, itis possible to construct the pipeline systenh siat the gas from different wells
are mixed together to satisfy the requirements for diffecpralities. However to develop
the pipeline system optimally, a stochastic version of thelipg problem where the qual-
ity parameters in the wells are not known exactly has to beesol Although advancing
technology provides the necessary tools to predict the@agot of natural gas in different
fields during the exploration stage, the impurities in theeired gas are still uncertain before
drilling the well. Thus, stochastic programming princgpleave to be used to achieve an
optimum solution to the infrastructure development probléds mentioned, in this study,
one of the important reasons to develop a BD algorithm to sobaing problems is the
adaptability of decomposition algorithms to stochastiogpamming. More information

about the stochastic pooling problem is giverCinapter 5of this thesis.

1.3 Benders Decomposition for the Global Solution of Pool-

ing Problems

As explained infSection 4.1BD and GBD algorithms are proposed to solve multi-variable
nonlinear programs and take at least one of the variablesasimg in bilinear terms as
fixed to solve the problem. In the literature, in order to sghooling problems to global
optimality with GBD, only one of the variables appearing ia thlinear terms was taken as

the complicating variable. With this approach, even foatieély simple pooling problems,
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the GBD algorithm tends to generate suboptimal points and doeguarantee to attain a
global optimum. For instance, Floudas & Aggarwal (1990)] [ude the GBD algorithm to
solve pooling problems by fixing the pool quality variableste complicating variables
and decompose the original pooling problem into a primablenm and a relaxed master
problem. But, their strategy is only successful for Haverlyboling problem (which is a
very simple problem) and in general, it offers no guaranbeglobal optimality. This GBD
algorithm may converge to a local minimum, a local maximungwen a non-KKT point.
In this study, both of the variables appearing in bilineami® are treated as the com-
plicating variables and by doing so the problem can be foated such that the Benders
Decomposition algorithm can be used instead of GeneraBasdlers Decomposition and
hence satisfaction of the Property P becomes unnecessryradike Floudas & Aggarwal
(1990) [11], convergence is guaranteed and can be proveantlgifrom Benders (1962)
[5]. Fixing both variables in the bilinear terms providesreear program in the first stage
of the algorithm and smaller (and hence easier to solve)dali second stage problems. For
comparison of the proposed algorithm with a well known arspeeted global solver, The
Branch And Reduce Optimization Navigator (BARON) is sele¢#&]. BARON is a com-
putational software developed by Nikolaos Sahinidis andhifdawarmalani for solving
nonconvex optimization problems to global optimality. &wyrcontinuous, purely integer,
and mixed-integer nonlinear problems can be solved with sbitware. BARON com-
bines constraint propagation, interval analysis, rangen@n) reduction and duality with
enhanced Branch-and-Bound (B+B) concepts to solve optimizatioblems globally. In
general, BARON is a nonconvex optimization solver usinggeareduction methods in-
tegrated into the B+B algorithm with advanced relaxatioriegues [39]. In this study,
in order to check global optimality and validity of the apach, various example pooling
problems are solved with both the proposed BD algorithm an®BN. In addition, the
solution times of the BD algorithm and BARON are compared talgthe overall perfor-

mance of BD for pooling problems.
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Chapter 2

Problem Definition

In general, the pooling problem can be stated in a generalasdgllows: given several
streams with different qualities, what quantities of eaalstrbe mixed in intermediate
pools in such a way that the quality and quantity requiresiehall demands are satisfied.
A pooling network consists of several source nodes, poalsesal-product nodes. Each
source node has a unique quantity of available supply aniityjaamponents. Sources are
linked to pools and each pool represents a blend from vagousce nodes and the quality
component of a pool is a function of the levels of in-flows freaurces and their qualities.
Pools are linked to product nodes and each pool’s total im{8cequal to its total out-flow
(mass balance). The quality component of a product nodeasaaiunction of the levels of
in-flows from sources and pools and their qualities. Prododes are subject to specific
demand and quality requirements. In practice, becausegrtsence of a large number of
supply nodes, pools, qualities and end-products, poolimglpms are more complicated
than expected. Usually, each stream into a pool can have thaneone quality compo-
nent. The pooling problem then becomes a problem with meltpmponent qualities and
every end product has to be in the range of expected quaktyifsgations for each of the
guality components. The existence of multiple pools, potsland qualities creates hun-

dreds of bilinear terms even for a relatively small problerd therefore a large number of
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suboptimal local minima can also exist, hence the need ftotzagoptimization approach

increases.

Figure 2-1 shows a general pooling problem witsourcesp pools,r end-products
and| quality parameters. In this representatiofs the index for sourceg,is the index
for pools, k is the index for products ang is the index for qualities. In additiorf; is
the variable for the total flow from th& source into pooj: Qjw is the variable for thevh
quality component of pogl andxj is the variable for the total flow from thé pool to

productk. Also parameters in this representation are listed in Taldle

11‘11

s
Zypeerdyy
Tagtrdngar - tngy
L]
[ -
wtpr r 9,5,
TR it S
z-"f""’zfj

A

Tnpptnpp” *pp,

Sources Pools Products

Figure 2-1: Graphical representation of a general poolnogplem.
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Parameter Definition

Cij cost of the flow from thé™" source into pooj

dk unit price of produck

I total number of component qualities

N;j set of sources entering pgol
p total number of pools
r total number of end-products
SN demand requirement for product
Ziow wiquality requirement for produdt
Aijw wi quality component of the flow from tH& source into pooj

Table 2.1: Parameters of the pooling problem and correspgmtfinitions

Then, a mathematical representation of the general poplioigiem that is represented

in Figure 2-1 becomes:

HIPPLUEPLIY
i€
r .
quszk— Aijw fij =0, i=1...,p w=1,..1I (2.3)
k= ieN;
p
ZXjk—S,(go, k=1, ..r (2.4)
=1
p p
quwxjk—zsz Xjk <0, k=1..r;w=1 .1 (2.5)
j=1 =1
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fy < fij < fiy, I=1..n; J=1..p

qIJ_WquWSqLJJW7 J:177p’ W:177|

L U ; :
Xiic < Xjk < Xk, j=1..,p; k=1,....r

In this formulation, the objective function represents tlifference between the cost
of the flow from the source nodes and the returns from sellgeind-products. (2.2)
represents the mass balances for each pool. (2.3) exprbsEsesass balance for each
quality component. (2.4) ensures that the flows to each eodipt node do not exceed
the demands. (2.5) enforces that the quality requiremeatsadisfied at each end-product
node. More information about the formulation can be foundinlet et. al. (2004) [3].

In addition, in the literature there are some widely knowd aalved pooling problem
formulations which are just special cases of this genegalesentation. These problems
are solved in numerous papers about the pooling problem ancehtheir global optimal
solutions are known and there are different global optitieraalgorithms, which have
already been proven to converge, available for them, whaahe used for comparison with
the BD algorithm. Thus, these problems can be used as exatoglheck the validity and
performance of the proposed BD algorithm. The pooling prmbleas first investigated by
Haverly (1978-1979) [19, 20]. Therefore, Haverly’s pogliproblem is one of these widely
known pooling problems and it consists of only 3 source nptesol and 2 demand nodes
as shown in Figure 2-2. Figure clearly represents that tleed streams are availablé
f, and f3), with the costs of $6, $16 and $10 (per unit) respectivelger€ are also two
output streams with the prices of $9 and $15 (per unit) respebe

In Haverly’s pooling problem, there is a single pool whicke®es supplies from two

different sources which have different sulfur qualitiesthid supply is not connected to
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<3% $6

X1
> <2.59
Blend A jOSOA) $9

X31

<1.5% $15

<2% $10 Xa

Figure 2-2: Haverly’s pooling problem

the pool but is directly feeding the two end-product noddse Guality parameters for the
streams going into the pool are 3% for the first source nodefdt%he second and 2%
for the third node. The blending of flows from the pool and frdme third supply node
produces products 1 and 2, which are subjected to sulfulitgualuirements of 2.5%
and 1.5% respectively. The maximum demands for productsdl2aare 100 and 200

respectively. Then the mathematical formulation of Hay¥egbooling problem is:

I]:nxll’(} 6f11+ 16f21 4+ 1010 — 9 (X114 Xo1) — 15(Xa2+ X22) (2.6)
s.it. fii+fo1—X11—X%12=0 (2.7)
flo—Xp1—%2=0 (2.8)

q(X11+X12) —3f11— f21=0 (2.9)

gx11+ X1 —2.5(X11+X21) <0 (2.10)
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Ox12+ 2X02 — 1.5 (X12 + X22) <0 (2.11)

X11+ X271 < 100

X12+ X202 < 200

whereq is the sulfur quality of the pool outpuj, are the quantities of supplies,; and
X12 are the magnitude of flows from pool to end-products:@ndndx,, are the magnitude
of flows from the third source node to end-products. Simdahe general formulation, the
objective function represents the difference between tis¢ af the flow from the source
nodes and the returns from selling the end-products. (2x@)(2.8) represent the mass
balance. (2.9) represents the sulfur mass balance. (20tl0(2all) expresses the quality
restrictions on the products; (2.12) and (2.13) ensurettie@flows to each end-product
node do not exceed the demands. GAMS implementation of H&/pooling problem is
provided inAppendix A

As it can be realized, although the objective function is#n the bilinear termsin (2.9),
(2.10) and (2.11) introduce nonconvexities in the probleri¢h are enough to make this
problem nonconvex) causing multiple local optima. Therefdocal nonlinear program-
ming (NLP) solution algorithms (well known examples are SNOMINOS, CONOPT,
etc.) may provide suboptimal solutions which are usuallyuseful in any practical sense
and hence it is necessary to explore global optimizationrtegies in pooling problems.

In this study, also Adhya’s [1] and Foulds’ [12] pooling pleims are solved to test
the BD algorithm. Since they are just special versions of theegal formulation, it is
not necessary to give explicit formulations for those peotd, just the numbers of pools,
sources, qualities and end-products should be enough tugecan explicit formulation

by using the general problem formulation. For Adhya’s peobl the number of pools
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is 7; the number of sources is 8, the number of qualities isdlthe number of end-
products is 4; in Foulds’ problem, the number of pools is & nlamber of sources is 14,
the number of qualities is 1 and the number of end-produ@shore information for both
of these example problems including quality specs, demeaquimrements, cost coefficients

and GAMS implementations are givenAppendix A

2.1 The p-, g- and pg-Formulations

The formulation of the pooling problem given above was firsigpsed by Haverly (1978)
[19] and referred to as the p-formulation. A distinct, butieglent formulation is proposed
by Ben-Tal et al. (1994) [6] which is called the g-formulatioBen-Tal et al. (1994) [6]
derives the g-formulation of the pooling problem by introohg new variables;satisfying
the relationshipfij =tij SK_; Xk

It can be easily shown that the p- and g-formulations arevatgnt. However, the main
advantage of the g-formulation is that, in many applicagjaghe number of extreme points
of the simplex containing the variablég is much smaller than the number of extreme
points of the hypercubej,. This advantage is exploited algorithmically by Ben-Tallet a

(1994) [6]. Figure 2-3 shows the g-formulation of the Haysrpooling problem.

<3% $6

t X1+ 1 X2 <2.5% %9

<100

Xo
> <1 R
Blend B ;;050A $15

<2% $10 X329

<1% $16

Figure 2-3: The g-formulation of the Haverly’s pooling plein
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Tawarmalani & Sahinidis (2002) [45] constructs the pg-fakation by adding the fol-

lowing constraint to the g-formulation:

I
Ztijxjkzxjka J zlaap, kzl,,r (212)
i=

Figure 2-4 illustrates the pg-formulation of the Haverlgoling problem. As can be
realized from this example, the newly added constraintseatendant and don’t change the
feasible region. However, the main point of interest in thefgrmulation is the tightness
of the convex relaxations relative to the other two formolad. Tawarmalani&Sahinidis
(2002) [45] prove that the pg-formulation provides muctntéy convex relaxations com-

pared to the p- and g-formulations.

<3% $6

1 X4+ 4y X

<2.5% $9
<100

X
thy Xq+ by X 2 <1.59
2%t X o g Blend B ;;050/0 $15
f5 Convexification Const.:
2% $10 X352 Xq = tyq Xq+ 11 Xy

Xp = tyq Xt Tp1 X5

Figure 2-4: The pg-formulation of the Haverly’s pooling ptem

Tawarmalani & Sahinidis (2002) [45] claim that for all exaepooling problems, the
pg-formulation decreases solution times drastically andt®n times of example pooling
problems (solved with BARON) presented in [45] to prove thtistement. However, in
[45] the chart provided for comparison of three formulasian terms of solution times
does feature solutions from different references and tberavith different processors and
hence the validity of their claims can be questioned. Tlmeegfit is decided to model

three example pooling problems (Haverly’s [18], Fould2][and Adhya’s [1]) with all
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| Problem | p- | g- | po- |
Haverly | 0.02| 0.016| 0.01
Foulds | 1.89| 1.46 | 1.25
Adhya | 9.27| 7.71 | 6.12

Table 2.2: Solution times for the p-,g- and pg- formulationexample problems (in sec-
onds).

three different formulations, and these three examplelpnad are solved in GAMS 22.5
[13] with BARON 7.8 [42] used as the global optimization salvWhen comparisons are
done with a computer having Intel 3.20 GHz Xeon processsulteshow that the solution
times do not differ immensely as presented in Table 2.2. Blitls¢ pg-formulation has
the lowest solution times, hence the pg-formulation isuead in this study to formulate

the pooling problems to be solved.
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Chapter 3

Literature Review

3.1 Deterministic Pooling Problem

Various optimization procedures for the pooling problemehbeen proposed in the liter-
ature. These solution procedures can be classified basdaibrtonvergence to either a
local or a global optimum. The first algorithm for the poolipgblem was suggested by
Haverly (1978-1979) [19, 20]. Haverly’s approach was basethe idea of using recursion
to solve the pooling problem. A recursive approach guessesalue of the pool qualities.
These values for the pool qualities converts the poolindplera into a linear program in
the flow variables. The actual values of the pool qualitiestb@n be calculated from the
values of the flow variables that are obtained by solving itheak program. The process
continues until the actual values of the qualities are withirange of tolerance from the
guessed values. The main drawback in using any form of rieursethod for the pooling
problem is that often the algorithm does not converge toatisol, and when it converges,
it converges only to a local minimum, a local maximum, or exgn-KKT point. In addi-
tion, as the number of pools and end-products increasagsree methods tend to become

more unstable, resulting in computational difficulties.

Successive Linear Programming (SLP) approaches whicle saalinear problems as
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a sequence of linear programs are also widely used. Las@®)131] proposes an al-
gorithm based on SLP technique. These approaches also doa@intee global optimal

solutions and may converge to even a non-KKT point .

As in the case of GBD, decomposition methods are based on ges\attion that a dif-
ficult problem can be converted to an easier problem by fixalges of certain variables.
In the case of the pooling problem, for example, fixing thelgpa@lity variables converts
it into a linear program. By using this approach, Floudas & &geal (1990) [11] sug-
gest an algorithm based on fixing the pool quality variabketha complicating variables
and decomposing the original pooling problem into a printabfem and a relaxed master
problem and iterating between these problems based on thea@@ithm until the termi-
nation conditions are satisfied. Although their decompmsistrategy is successful for the
problems suggested by Haverly, in general it offers no quiaesfor global optimality. This
GBD algorithm may converge to a local minimum, a local maximomeven a non-KKT
point. Visweswaran & Floudas (1996) [50] propose a GOP dlgworfor solving the pool-
ing problem. The algorithm was proven to terminate finitelshva global optimum. Using
this algorithm, the authors were able to solve three casdéseoHaverly problem. It is
also reported that a single pool, five-product problem, w#bh stream having two quality
components is solved to global optimality using this altjon. Large-scale pooling prob-
lems, generated randomly, having up to 5 pools, 5 products 38 qualities, were solved

by Androulakis et al. (1996) [2] using a different implematndn of the GOP algorithm.

Branch-and-bound (B+B) methods for pooling and blending @noisl have been sug-
gested by different authors. These methods usually différe relaxations used to provide
valid lower bounds to the global optimum. Foulds et al. (1992] use a procedure which
involves replacing the bilinear terms in the pooling prablby their McCormick (1983)
[35] concave and convex envelopes. The nonlinear poolioglem can be relaxed to a
linear programming problem, the solution of which provideswer bound on the global

optimal solution. The B+B procedure proceeds by partitigriire feasible set and relaxing
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on each partition. It is quite obvious that by replacing ehitinear term by its concave
or convex envelope introduces a relaxation, but this rélenxaalso tends to zero as the
partitions get finer and the algorithm converges to the dloptimal solution. Using this
approach, Foulds et al. (1992) [12] were able to solve siqghdity problems, with the
largest problem having 8 pools and 14 products. The conssraihich provide the convex
and concave envelopes of the problem at a specific node of tBdre are not in general
valid for other nodes of the tree. Thus, the convex and caneavelopes have to be gener-
ated at each node of the B+B tree. However, the McCormick reétaxeequires four linear
constraints to provide the envelopes for each bilinear iarthe problem. Hence, as the
number of pools, products, or component qualities incrgasesize of the linear program

to be solved at each node of the B+B tree also increases.

Ben-Tal et al. (1994) [6] propose another lower-boundingcedure based on La-
grangian relaxation of another formulation of the poolinglgem (explained in the pre-
vious chapter as the g-formulation). In this paper, a B+B r@ilgm which partitions the
feasible set of the pooling problem is provided and it is shtvat this approach can reduce
the duality gap between a nonconvex problem and its duaérlitits also proven that for
partially convex problems such as the pooling problem, undeain regularity conditions,

this approach can reduce the duality gap between the primaahee dual to zero.

Adhya et al. (1999) [1] use yet another formulation of thelpmpproblem (explained
in the previous chapter as the pg-formulation). The autlpooside a new Lagrangian
relaxation approach for developing lower bounds for the Ba-Bdlve the pooling problem
and it is proven that the Lagrangian relaxation approachiges tighter lower bounds than
the standard linear-programming relaxations used in glopamization algorithms and

hence guarantees faster convergence speeds.
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3.2 Infrastructure Development and the Stochastic Pool-

ing Problem

For the infrastructure development problem, most of therdiiure is on oil production
planning and unfortunately there is only small amount efiture dealing specifically with
natural gas production planning, but usually modeling asldt®n strategies for oil and
gas infrastructure development problems are very simiance, no distinction is made
between the oil and gas production planning literature,thaditerature for oil production

planning is also included to this review.

Most of the available literature for planning of oil and gaddiinfrastructures uses a de-
terministic approach without considering how uncertatffgcts the overall system (lyer,
Grossmann, Vasantharajan & Cullick (1998) [22]; Van den lee& Grossmann (2000)
[47]; Van den Heever & Grossmann (2001) [48]; Barnes, Linke@k#ssis (2002) [4]; Lin
& Floudas (2003) [32]; Ortiz-Gomez, Rico-Ramirez & Hernandkrstro (2002) [37]). For
arecent review of the existing literature on determinigpproaches for these problems, re-
fer to Van den Heever & Grossmann (2001) [48]. Recently, thesebeen some work that
considers uncertainty in the infrastructure developmeoblem. Jonsbraten (1998) [24]
presents an MILP model for optimizing the investment and-aj@n decisions for an oil-
field under uncertainty in oil prices. The author uses thegRssive Hedging Algorithm
to solve the problem. Jonsbraten (1998ii) [25] presentsrgnlicit enumeration algorithm
for the sequencing of oil wells under uncertainty in oil mes. The decision models for
both these papers include investment and operationalidiesi®r one field only. Jornsten
(1992) [27] uses Lagrangian relaxation of constraints teesa stochastic program for the
sequencing of gas fields under uncertainty in future demandé® author assumes that
production profiles and capacities of platforms have alydaskn fixed. Haugen (1996)
[18] proposes a single parameter representation for waingrtin the size of reserves and

incorporates it into a Stochastic Dynamic Programming rhfmtescheduling of petroleum
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fields. This work also assumes that the only decisions thed tebe made are regarding
the scheduling of fields. Meister, Clark, and Shah (1996) [86kent a model to derive
exploration and production strategies for one field undeeuainty in reserves and future
oil price. The model is analyzed using stochastic controhméques. Lund (2000) [33]
presents a stochastic dynamic programming model for etratuthe value of flexibility in
offshore development projects under uncertainty in futuk@rices and in the reserves of
one field. Jonsbraten (1998iii) [26] discusses an intarggiroblem dealing with planning
of oil field development. A situation is considered where surface lease owners with
access to the same oil reservoir bargain their shares oliptiod. The author assumes
a mixed-integer optimization model and uses game theoryeilg there has also been
some work using real options based approaches (Dias, 2Qdb{®lanning of oil and gas

field developments under uncertainty.

Based on the dependence of the stochastic process on thedgclonsbraten (2001)
[27] and Goel & Grossmann (2004) [15] classify uncertaimtyplanning problems into
two categories: project exogenous uncertainty and prejedbgenous uncertainty. Prob-
lems where the stochastic process is independent of thegbmbgcisions are said to have
project exogenous uncertainty. For these problems, theasicetree is fixed and does not
depend on the decisions. Hence the most relevant chasdicterf this kind of stochastic
programming model is that its formulation assumes a givenago tree. The uncertainty
in gas prices in a planning problem similar to the one desdribere is an example of
project exogenous uncertainty. For recent reviews on nsaai@ll solution techniques for
stochastic programs with project exogenous uncertaihdgse refer to Kall and Wallace
(1994) [29] and Birge and Louveaux (1997) [7]. Problems whkeeproject decisions in-
fluence the stochastic process are said to possess progEgiesrous uncertainty. A gas
production planning problem with uncertainty in gas resensg included in this category.
This is because the uncertainty in gas reserves of a fielcs@ved only if, and when,

exploration or investment is done at the field. If no actiotalen, the uncertainty in the
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field does not resolve at all. For problems with project emshmys uncertainty, the sce-
nario trees are decision-dependent. This leads to difiesuih defining the model because,
traditionally, the stochastic programming literature heleed on the assumption of given
scenario trees. Hence, there is very little literature idgalith problems having process
endogenous uncertainty. An intensive literature searokiiges only four papers (Pflug,
(1990) [38]; Jonsbraten, Wets & Woodruff, (1998) [24]; Joragen, (1998ii) [25]; Goel &

Grossmann, (2004) [15]) which deal with project endogenmeertainty.

A Literature review clearly shows that none of the literatabout the infrastructure
development problem considers the concentrations of tperites in the natural gas pro-
duced as a source of uncertainty, but as mentioned in theffiegiter, because of the con-
tractual agreements, regulations and the pipeline remeints, the production company has
to adjust the composition of the gas within some limits td ebnd the composition of
gas is unknown when infrastructure is being developed. &odbas from different fields,
while the infrastructure is being developed, the pipelipgteam has to be constructed to
allow the gas from different wells to be mixed to satisfy teguirements. Therefore, to
develop the value chain optimally, a stochastic versiorhefgooling problem where the
quality parameters in the wells are unknown has to be solvéérefore, gas quality un-
certainty in the infrastructure development problem iested in this study as the first step
to construct and solve a realistic model of the whole infradtire development problem

with more realistic or less assumptions than the literatunté now.

Another important assumption in the literature is that fifieot of the contractual frame-
work is not considered. However, in most fields natural gasotabe produced unless a
contractual demand exists and in addition the rules giveroiriracts and also in govern-
mental regulations need to be taken into account to readiatie model of the system. In
addition, there are other important assumptions: no expams capacity of a platform is
considered; in most of the references production rate deesslinearly in time; flow mod-

els and reservoir models are assumed as linear and moretanppeffects of contractual
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framework are neglected.
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Chapter 4

BD Algorithm for Deterministic Pooling

Problem

4.1 Introduction of Benders Decomposition Algorithm

The Benders Decomposition algorithm was originally propldsgBenders in 1962 [5] for

nonlinear, nonconvex mixed variables programming problefithe form:

max c'x+ f(y) (4.1)
st. Ax+F(y)<O0 (4.2)

xe X cR™yeU cCRY

wherey is a vector of complicating variables, since the problenvebtan be solved
more easily whely is fixed constant. In other words, for fixgd this problem separates
into a number of smaller problems each having only subsetasfvariable or the problem

assumes a special structure, such as a linear program asadagh of the pooling problem
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or the problem is converted into a convex program. In theses;eby fixingy, a simpler
primal problem can be solved and a relaxed master problemlved to generate valid
lower bounds and the algorithm converges to the global aptirby iterating between these
problems. In practice, the BD algorithm decomposes probtemtivo smaller problems:
primal problem (linear program) and relaxed master prolfleanlinear program in bilinear
problems). The primal problem is used to find the upper bolWRD)); the relaxed master
problem is used to find the lower bound (LBD). When LBDBD, algorithm terminates.
On the other hand, the Generalized Benders Decompositionthlg is first proposed
by Geoffrion (1972) [14] and also based on Benders Deconipnosibut it is proposed to

solve more general form of nonconvex nonlinear programbefarm:

max f(xy) (4.3)

)

st g(xy) <0 (4.4)

XxeXCR™yecUCRY

wherey is a vector of complicating variables, again, in the senagtitlis much easier to
solve inxwheny are held fixed. However, the problem to be solved has to gatigfoperty
called "Property P”, unlike Benders Decomposition. Basycdhe problem to be solved
has to be formulated such that for evéry> 0, (whereAs are the Lagrange multipliers),
the infimum off (x,y) + A Tg(x,y)) overX can be taken essentially independently,o§o
that the constraints in the relaxed master problem can ensat explicitly with little or
no more effort than is required to evaluate it at a singleevaliy.

As it is known, bilinear terms are formed by the multiplicetiof two variables of the
problem and these bilinear terms introduce nonconvexitigse problem. If the noncon-

vexities in the problem are only introduced by the bilineants, as in the case of pooling
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problems, it is possible to treat the whole bilinear terma asmplicating variable in the
BD algorithm as opposed to fixing only one of the variables Iméar terms as the com-
plicating variable. Fixing the bilinear terms yields cargtparameters. Then, the general
formulation of the pooling problem can be written (congiglie to the notation given in

Chapter 3 as:

max c'f+d'y (4.5)
7y

st Af4+F(y)<0 (4.6)

feFCRMyeUCRY

wherec is the cost vector is the price vectorf is the input flow vector ang is the
vector for the bilinear terms which is equalddx (q is the vector of quality variables and
x is the vector for flow from the pools to demands as explaingchapter 3.

Therefore, the BD algorithm can be applied to pooling prolslemd is guaranteed to
converge to the global optimum (as proved in the next sectidren both of the bilinear
terms are taken as the complicating variables. Obviouslthe BD implementation, the
primal problem becomes a linear program which is obviouslyex and the relaxed mas-
ter problem is a nonconvex NLP where a global solver such aR@X can be used to
obtain global optimal solutions. Using these global optis@utions to iterate, it is pos-
sible to generate valid cuts that converge. Hence, thisoagpris expected to converge to
the global optimum of the pooling problem with Benders Decosifion reliably.

Then, for instance, in Haverly’s pooling problem, the priprablem can be formulated

as:

min - 6f11+16fz1+10f1,—9 (x’11+x21) ~15 (x’12+x22) 4.7)
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st. fi1+for1— Xlll — X/12 =0 (4.8)

flo—Xo1—%2=0 (4.9)

q <X/11ﬂL X/12> —3f11—f1=0 (4.10)
O Xy1+Xo1 — 2.5 (x’ll + x21) <0 (4.11)
O Xyp+ 2% — 1.5 (x’12+ x22> <0 (4.12)

whereq, x;; andx;, are constant parameters which are assigned as the fixedicompl
cated variables. Therefore, bilinearities in the primallgem disappear and it becomes
a linear program and therefore, it is convex. However, thexesl master problem is still
a bilinear program and it is obviously a nonconvex NLP. Herstdl the relaxed master
problem has to be solved with a global solver such as BARON.tBatpotential benefit of
utilizing BD algorithm might be to solve number of smaller plems (the relaxed master
problems) with the B+B procedure (such as BARON) instead bfirsgp one huge prob-
lem with the B+B. B+B based algorithms are exponential-timewtlgms. In other words,
as the problem size increases, solution times of B+B algostincreases exponentially.
Therefore, instead of solving a problem with large numberasiables, solving number of

problems with small number of variables can be quicker imgeof the solution times.

As mentioned, the primal problem becomes a linear prograshganeral formulation

of the primal problem becomes:
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Gii fi d X; 4.13
pa 1I€% ijhij — Z kzl jk ( )

i€
i r !
jw z Xik — > Aijwfij =0, j=1..,p; w=1,...lI (4.15)
k=1 ieN;
p !/
zXJk—SKSO k: 1,...,r (416)
=1
p !/ /! p !/
quWXjk_ZkWZ Xjkgo7 k:].,...,r; W:].,...,I (417)
j=1 =1
fls < fij < £ i=1,....n; j=1,..,p

Whereq’jw, x'jk are the fixed parameters. And as it is seen, also in a geneshh@o
problem formulation, the primal problem is a linear progrand therefore, it is convex.

In addition, the relaxed master problem can be formulated as

R:
min n (4.18)
s.t. n>inf(F+ATg) (4.19)
HTGi <0 (4.20)

whereA is the vector of Lagrange multiplierg is the vector of multipliers for the

feasibility problem,F is the objective function ang; are the constraint functions, which
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means:

p r p
F = cij fij — dk Xijk (4.21)
]Zlie%j kZl JZ]_
r .
01 = % fij—> Xk, T=1L...p (4.22)
ieN; =1
r
gzijWijk— Aijw fij, i=1..,p, w=1,..,l (4.23)
k=1 ieN;
p
O3 = ZXjk—SKSO k=1,..r (4.24)
=1
p P,
04 = quwxjk—ZkWijkgo, k=1..r, w=1..1 (4.25)
=1 =1

Then, the proposed BD algorithm for pooling problems is pnes#in Algorithm 1
and also flowchart of the algorithm is provided in Figure 4As Figure 4-1 represents,
basically, The primal problem provides the upper bounde/dllBD) whereas the relaxed
master problem provides the lower bound value (LBD) and whgb:UBD, algorithm
terminates.

By using this algorithm, different pooling problems from titerature are solved and
validity and speed of this approach is tested versus algostwhich guarantees global
optimal solution such as BARON. However, before testingalgerithm, the first step is to

prove its convergence to global optimum.

4.2 Proof of Convergence

To prove the convergence of the proposed algorithm, thestigtis to show that the pooling

problem formulation satisfies the form given by Benders (196
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Algorithm 1 Benders decomposition algorithm for global solution of pagbroblems
{I NITIALIZATION }

i (iteration) := 1,UBD := INF, LBD :=-INF, p:=0,r := 0;

Select an initial configuration for the variablegi) = g (i) andx(i) = X (i)

{STEP1: LP PRIMAL PROBLEM}

Solve Problem (P) witlg (i) = g (i) andx(i) = x (i),

{ FEASIBLE PRIMAL}

if Problem (P) withg(i) = q (i) andx(i) = X (i) is feasible then,

Let the solution bef* (i), letp = p+1 andA = AP. (5\ is the corresponding duality multi-
plier.)

if z' (i) <UBDthen, (where (i) is obj. value of the LP Primal Problem at iteratio)
{RECORD BETTER SOLUTION

UBD:=z"(i),x :=x (i), f = f*(i),q":=q (i). end if

{I NFEASIBLE PRIMAL}

if Problem (P) withq(i) = q (i) andx(i) = x (i) is infeasible then; = r+1 andfi = u".
end if

{STEP2: NLP RELAXED MASTER PROBLEM}

if p=0 then, solve the feasibility version of the NLP Master Prafle

else solve

. H T .
st Zinf(h(f.0+ (A1) ai(f,x,Q), ¥ =1,....p

<uj)Tgi(f7X,q) <0,Vj=1,.,r

whereh(f,x)is the objective function angi( f,x,q) are the constraints.

Let the solution bg™P (i) andx™P(i), thenq (i +1) = g™P(i) andx (i +1) = x™P(i). end
if

if n* > LBDthen,

{RECORD BETTER SOLUTION

LBD :=n*(i). end if

if LBD > UBD then, SoP.

else, i:=i+1, Go tosTEP1. end if

{END OF ALGORITHM}
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Figure 4-1: Flowchart of the proposed BD algorithm

n

X'= X4, 9" = qq

max c'x+ f(y) (4.26)
st. Ax+F(y)<0 (4.27)

xe X cR™yeU cCRY
Then, the convergence can be directly proved from Bende&2{19 he pooling prob-

lem in Chapter 2can be reformulated as:

max c'f+d'x (4.28)
X

]

st. Af+F(x,q) <0 (4.29)
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feFCR"xeXCcR™®,geQc R

The crucial point in satisfying Benders (1962) [5] formutatiand hence proving con-
vergence is when the complicating variables are fixed, thaltiag formulation has to be a
linear program. Since in the proposed algorithm bo#ndq (bilinear terms) are fixed as

complicating variables. The resulting formulation in theopng problem is:

max c'f+B (4.30)

X‘,

st. Af+C<0 (4.31)
fcF CcR™

whereB = d"x, C = F(x,q) andx andd are fixed parameters. It is obvious that the re-
sulting formulation is a linear program and hence it can behkaled that proof of conver-
gence for the proposed BD algorithm can be derived direaipfthe proof of convergence
of Benders original algorithm.

Benders (1962) [5] states that the problem given in the for(d @8) and (4.29) can be

written in the equivalent form by introducing a scalar vhakeafo:

max{ fo|fo—c'f —d"x < 0, Af+F(x,q) <0, x>0} (4.32)

In other words,(fT), f_,i,d) is an optimum solution of problem if and only i =
¢’ f +dTyand(f,x q) is an optimum solution of the problem.

Theorem 3.1 (Partitioning Theorem for mixed-variablesBehders (1962) [5] proves
that (a)(f_,i,d) is an optimum solution of problem denoted by (4.29) and ({if3thd only
if (fo, f,X @) is an optimum solution of (4.33). In addition, this theorenows that (b) if
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(f,%,) is an optimum solution of (4.32), arfd = ¢ f +-dTythen(fo,X, q) is an optimum

solution of (4.32) and is an optimum solution of the linear programming problem:

max{c' f|Af < —F(x,q), x>0} (4.33)

Also, the same theorem proves that (c{f%,i,d) is an optimum solution of (4.32),
then (4.33) is feasible and the optimum value of the objediinction in this problem is
equal tofy — F(x,q). If f is an optimum solution of (4.33), the(n‘_,i,d) is an optimum
solution of the original problem.

(a), (b) and (c) of the Partitioning Theorem for mixed valésbshow that a two stage
algorithm fixingx and q as complicating variables converges to the global optimiuen t

mixed variable problem in the form of (4.28) and (4.29).

4.3 Implementation

After convergence is proved, the next step is to implemenatgorithm. The GAMS lan-
guage is powerful enough for reasonably complex algorithikence, at first GAMS is
chosen to implement the proposed BD algorithm. GAMS Versidh 213] is used as the
implementation language and as mentioned before both BAR®@kKsion 7.8) [42] and
the BD algorithm is implemented as the global solvers for tteamgle pooling problems.
However, because of the reasons explained in the next sethie algorithm is reimple-
mented in C++ with first using a custom B+B solver to solve thaxedl master problem
in the BD implementation, then using a callable BARON C++ ligrand the results are

compared with BARON alone as the global solver of the pogtirapblem.

4.3.1 GAMS Implementation

In GAMS, both problem specific formulations and the geneyathiulation are implemented

in order to check if there is a problem with the general fomtioh. Fortunately, the imple-
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mentation of the general problem shown is not different ftbeproblem specific imple-
mentations. In this project, Haverly’s pooling problem aisb Adhya’s [1] and Foulds’

[12] pooling problems are solved to test the proposed BD dlyar

The GAMS implementation of the BD algorithm is providedAppendix Ain addi-
tion to the GAMS implementations of the example problem faliations. It is quite well
known that the optimal objective value of Haverly’s poolipgpblem -400. This value is
also confirmed by the BARON implementation and the proposedorithm gives the
same objective value as the solution. In addition, the BD ém@ntation is tested with
several different starting points and it is observed thagibtested starting points, it con-
verges to the global optimal solution (only the number afitens changes, hence solution
times also change slightly). Hence, it can be stated thatBfh algorithm is working for

Haverly’s pooling problem without any problem and convergea global optimum.

The algorithm is also tested with Fould’s [12] pooling preol with 8 pools, 14 sources,
1 quality and 6 end-products. BARON converges to -52 as thienapobjective value and
also the proposed BD algorithm gives the same optimal obgethlue. Again, the BD
implementation is tested with several different startimgnps for Fould et al.’s pooling
problem and it is observed that for all tested starting @iittconverges to the global

optimal solution.

Another test problem is Adhya’s [1] pooling problem with 7gt& 8 sources, 4 qualities
and 4 end-products. BARON converges to -1185 as the optipjettive value and also the
proposed BD algorithm gives the same optimal objective valgain, the BD implemen-
tation is tested with several different starting pointsAoihya et al.’s pooling problem and

it is observed that for all tested starting points, it cogesrto the global optimal solution.

In addition, 4 example pooling problems (which were credigdhe author) are also
solved. More information for both of these example problentduding quality specs,
demand requirements, cost coefficients and GAMS implertientaare given ilAppendix

A. Example 1 has 14 pools, 18 sources, 1 quality and 9 end-pi@duhe BD solver
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| Problem | BARON | BD |
Haverly -400 -400
Foulds -52 -52
Adhya -1185 | -1185
Example 1| -894 -894
Example 2| -1225 | -1225
Example 3| -726 -726
Example 4| -2745 | -2745

Table 4.1: Optimal objective values in GAMS

gives the optimal objective value as -894 which is the sani*0N. Example 2 has 14
pools, 18 sources, 6 qualities and 9 end-products. The BRisobnverges to the same
optimal objective value as BARON. Example 3 and Example 4sis solved with both BD
and BARON. Example 3 has 16 sources, 10 pools, 6 end-prodndt& qualities whereas
Example 4 has 16 sources, 10 pools, 6 end-products and 8iggiand in all examples
the proposed BD algorithm and BARON converge to same optifojaictive value for all

tested starting points regardless of the size of the problem
The optimal objective values for all of the example problemesshown in Table 4.1.

It can be concluded that, the proposed BD algorithm worksowitlany problem and
converges to the global optimal solution for all testedtstgrpoints regardless of the size
of the problem. An important point to mention is that when ealcsolver (e.g. SNOPT,
MINOS, CONOPT, etc.) is used to solve the relaxed master prolih the BD implemen-
tation; if the pooling problem to be solved has only one quafariable, the BD algorithm
with local solver for the relaxed master problem convergethé global optimum. How-
ever, if the problem has more than one quality variablesptbposed BD implementation
does not converge to global optimal solution when the loodles is used (converges to
suboptimal points) and also the solution value returnechbyalgorithm changes dramat-
ically with different starting point values. In other wordsgorithm converges to local
optimal values. The possible reason is that when a locaés@wsed, invalid cuts are gen-

erated from a local solution and as a result the algorithns e converge to the global
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| Problem | BARON | BD |
Haverly 0.01 0.03
Foulds 1.25 3.61
Adhya 6.12 |17.13
Examplel] 4.27 |21.46
Example 2| 21.43 | 85.52
Example 3] 2.08 8.41
Example 4) 36.36 | 181.6

Table 4.2: Solution times in GAMS (in seconds)

optimal solution.

We can also compare the solution times of the proposed BD mmaiéation and BARON
Version 7.8 as shown in Table 4.2. It is necessary to noteithabth the BARON and the
BD implementation, all example problems are solved with aater having an Intel 3.20

GHz Xeon processor.

Table 4.2 shows that the solution times of the BARON impletagon are lower than
the ones of the BD solver. In general, solution times in BARQ#! three to four times
lower than the solution times in the BD algorithm and for thelgems having more than
one quality variables, the difference between solutioretimof BARON and the BD is
more than the problems having only one quality variable.s lblbvious that, when the
number of quality variables increase, the number of biliteans also increases, and Table
4.2 clearly shows that as the number of bilinear terms isggaolution times for both
implementations increase, but also the difference betweértion times of the BARON
and the BD solvers also increases. The reason of this prolsi¢ine iextra bilinear terms,
and therefore extra nonconvexities, introduced by theityuedriables. As discussed in
Chapter 2 in pooling problems, the sole source of bilinearities esitiass balance equation
for each quality variable and therefore as the number ofiyuadriables increase, the total
number of mass balance equations also increases and a#t éheesotal number of bilinear

terms rises.

One may think that since the number of bilinear terms in ttubl@m affects the solu-
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tion times of the proposed BD solver drastically, this praggbBD algorithm can be useful
to solve problems with smaller number of bilinear terms sagthe gas network problems.
The gas network problems are a special kind of pooling problehere pools can be mod-
eled as mixers and splitters. Modeling pools as mixers alhitiesp gives the opportunity

to write mass balances for each quality separately.

For mixers, mass balances can be written as the sum of eacrefjandless of the qual-
ity variables, therefore mass balance equations for mo@reot include any bilinear terms.
In other words, for a selected quality, mass balance canittemwas the output volume flow
rate equals to the sums of input volume flow rates and it iseliequation. However, for
splitters, writing mass balances separately still inteatubilinear terms. However, now
since bilinear terms are only coming from the splitterseastof all of the pools, the num-
ber of bilinear terms reduces and therefore the compleXitii@problem reduces greatly.
Thus, one can expect lower solution times from the BD solvgamnetwork problems. In
order to test the performance of the proposed BD algorithmgasanetwork problem, an
example problem shown in Figure 4-2 is studied. As showneiture this problem has
10 pools, 8 sources, 3 qualities and 4 end-products. Ddtdéénition of this problem is
provided inAppendix BThe example gas network problem is formulated both as aanktw
with mixers and splitters and as a classical pooling proldtamaomparison purposes. Both
formulations are solved with both BARON and the BD solver. Rssonfirm that both of

the algorithms (BARON and the BD) converge to the global optim

The solution times of both the BD and BARON implementationhsven in Table
4.3 for the gas network example. This problem is also solvigd avcomputer having an
Intel 3.20 GHz Xeon processor. As shown in Table 4.3, BARONI $tdl lower solution
times than the BD algorithm even in a problem with less numbbdilimear terms than a
comparable pooling problem. However, as expected therdiffee between solution times
of BARON and the BD decreases as the number of bilinear tercredse in the problem

with the mixer-splitter formulation.
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Figure 4-2: The gas network example

| Formulation | BARON | BD |

Gas Network| 11.28 | 38.63
Pooling 13.72 | 42.91

Table 4.3: Solution times for the gas network problem (iroseis)

It can be seen from Table 4.3, solution times with BARON argelothan the ones
with the proposed BD solver in both formulations. Howevernmaportant point to mention
is the decrease in the solution times of the BD algorithm witb different formulations
which confirms the expectations. This example clearly shinatsthe performance of the
BD algorithm depends on the number of bilinear terms. In otthends, as it is realized
in Table 4.2, as the number of bilinear terms increases impthblem, the solution time
difference between BARON and the BD algorithm increasesalee as the problem com-
plexity increases the number of iterations required by theddlyer to converge to the
global optimal point increases.

However, when the output and log files of the problems solug8AMS are inspected,
another important problem affecting the performance of Bibeimplementation is ob-
served. Since in the BD implementation, to iterate betweemptimal and master problem,

there is a loop and in every iteration for both primal and miagtoblem GAMS executes
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compilation and problem generation phases, in other wamdsyery iteration GAMS ex-
ecutes 2 compilations and 2 problem generations, and cenirsidthat the BD algorithm
iterates around 5-6 times to solve an average pooling pmgbiéncurs a total 10 to 12 com-
pilations and problem generations. In addition, in eactaiten we should call BARON
to solve the relaxed master problem globally, these cadls ehuse executions of compi-
lations and problem generations in GAMS. Moreover, whemilm@aber of bilinear terms
increase, the number of iterations of the BD algoritm alsa@eases and as a result the
number of compilations, problem generations and the nuimfd@ARON calls to solve the
relaxed master problem in each iteration increases. HawB®RON does both compila-
tion and problem generation only once in GAMS. This fact ogrlan the huge differences
in terms of the solution times between BARON and the BD alparitvhen the number of
quality variables increase. Therefore, it is obvious thatgroposed BD algorithm which
uses BARON at each iteration cannot compete against BAROINersense of solution
times. However, CPU times of the BD can still be consideredectoBARON's solution
times and it is quite reasonable to assume that by prevethgngxecutions of compilations
and problem generations in each iteration (i.e. changiagdrtplementation such that the
problem generation and compilation occurs only once in #griming of the execution)
plus with some tweak in the code, it is possible to get lowdutsm times from the BD

algorithm.

4.3.2 C++ Implementation

Since, GAMS executes compilation and problem generatieadh iteration and there is no
way to prevent these executions in GAMS; it is decided to pgegment the BD algorithm
by using C++. The algorithm is implemented in Linux and G++$i@n 4.2) is used as the
compiler. As LP solver for the primal problem a subroutinatttalls CPLEX 10.2 [21] as
the LP solver is used. However, the main issue is to write soou$+B solver that can

handle the relaxed master problems. In GAMS, BARON is usesblee bilinear relaxed
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master problems, in C++ to solve them, there are two methodsisdo implement a B+B
code and the other one is to use the callable BARON librarg BB solver implemented
is based on a B+B algorithm developed and implemented by Cimaluge in the Process

Systems Engineering Laboratory (PSEL) before.

However, BARON is a mature, commercially available and aded software. There-
fore, a simple B+B code for the relaxed master problem carmopete with it even if the
problem generation and compilation repetitions are onhitiehere are two advantages of
BARON against a simple B+B algorithm. First one is the rangan{din) reduction and
the second one is the tighter convex relaxations. Sinceeregduction has been presented
as the major feature of the branch and reduce algorithmpeigved having more direct

effect in terms of solution times, therefore at first rangduiion is applied.

Basically, range reduction is the process of eliminatingaregjfrom the feasible space
such that the removal does not affect the convergence ofgbeatam to a global optimum.
Various techniques for range reduction have been propaséuki literature (Mangasar-
ian & McLiden (1985) [34], Thakur (1990) [46], Lamar (1993(], Savelsbergh (1994)
[43], Ryoo & Sahinidis (1996) [39], Shectman & Sahinidis (89§44] and Zamora &
Grossmann (1999) [51]), but in this study, in order to be aseko BARON'’s methods as
possible, a range reduction algorithm proposed in Tawam&l Sahinidis (2002) [45] is

used.

Table 4.4 shows the effect of the implementation of the raedeaction. Although the
range reduction reduces the solution times almost half eoimgto simple B+B algorithm,
it is still slower than BARON which shows that BARON has moreapons to reduce the
solution times and as mentioned one of them is the implertientaf tighter convex relax-
ation techniques. The next step would be to implement thedigelaxation techniques in
the literature to the BD algorithm but then it is decided to B&&RON library instead for

convenience and to get quicker results.

In order to use all the advantages of BARON, a callable BARDMty is obtained and
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| Problem | BARON [ BD with B+B | BD with B+B (+Ran. Red.) |

Haverly 0.01 0.04 0.018
Foulds 1.25 4.12 2.38
Adhya 6.12 19.03 10.25
Example 1| 4.27 9.67 5.81
Example 2| 21.43 78.11 44.51
Example 3| 2.08 5.29 3.13
Example 4| 36.36 135.21 82.06

Table 4.4: Solution times in C++ with and without Range Redunctio seconds)

| Problem | BARON | BD with B+B (+Ran. Red.) | BD with BARON lib. |

Haverly 0.01 0.018 0.01
Foulds 1.25 2.38 1.42
Adhya 6.12 10.25 7.63
Example 1| 4.27 5.81 4.96
Example 2| 21.43 4451 33.42
Example 3| 2.08 3.13 2.37
Example 4| 36.36 82.06 58.57

Table 4.5: Solution times in C++ (in seconds)

implemented to the C++ code. The main advantages of usingAROBI library besides
having all weapons of BARON are convenience and quickerempintation and it still
does not have the problem generation and compilation prolieGAMS. The solution
times and the related discussion of the BD with BARON librargalve the relaxed master

problem are given in the next section.

4.3.3 Results

The GAMS implementation shows that convergence is achjdwaace in the C++ imple-
mentation, only the solution times are taken into discussBolution times of the example
problems in the C++ implementation with both the custom B+Becfwiith range reduc-
tion) and BARON library is given in Table 4.5 with solutiomtés of BARON itself. Again
a computer with Intel 3.20 GHz Xeon processor is used.

Table 4.5 illustrates that BARON still gives better solatiomes than the BD with both
the custom B+B code (with range reduction) and BARON librdiyis proves that BARON
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is a very powerful software to solve bilinear problems anenely using all the strategies
available, it is almost impossible to get better solutiomes with the BD algorithm. How-
ever, as mentioned in the first chapter, decomposition difgos traditionally work more
efficiently than the B+B based algorithms in stochastic progning and the goal of this
study is to model the infrastructure development probletetims of gas quality variables
and therefore the results in deterministic pooling proldeare not that important at this
stage. The real objective of this stage is to develop andameht a working BD algorithm
in order to use it to solve stochastic pooling problems. Téesons behind the author’s
expectations about the better efficiency of the BD in stoeh@asbgramming are explained

in the next chapter.
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Chapter 5

Application to the Stochastic Pooling

Problem

5.1 Infrastructure Development Problems in Natural Gas

Value Chain

The prime objective is to solve long-term infrastructurgelepment problems in the nat-
ural gas production industry considering all possible uiataties and to develop new op-
timization methods, decision support tools for the infnastiure development problem.
Other research objectives are to develop methodology falyais of robustness, flexi-

bility and risk in long-term infrastructure investmentsgas production and to study how
operational flexibility should be incorporated in long teimaestments and infrastructure
analysis. In addition, it is necessary to demonstrate titbadelogy for analysis in impor-

tant industrial cases.

The complexity of the problem requires to develop new methaxgly and mathematical

models for the design, development and operation of infresire in natural gas produc-
tion under uncertainty and the main subsystems involveldamtodel will be the gas field,

the surface processing facilities, the transportatiofifi@s and the markets.
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The optimization model thus generated will be a large-soptemization problem that
will involve a large number of nonconvex functions. Therefanost probably this prob-
lem will be unsolvable by commercial solvers. Thus, bett#utson methods should be
explored to solve this problem to global optimality. Hentés possible that some theoret-

ical work will be required in optimization theory in the pess of solving this problem.

Possible uncertainties in long-term infrastructure degpelent problems in natural gas
production are production profiles and the amount of gasturakgas fields; gas quality in
terms of heating value, NGL content, LPG content,yCahtent etc. and the demands and
prices for the products of the gas value chain. Some impoojaerational characteristics
of natural gas production networks such as blending andnmppbssibilities, contractual
constraints, multiple routing and pipeline options andspuge constraints should also be

considered and incorporated into the production plannimglpm.

Then, it can be stated that there are three major researdlerdes that should be
addressed in the long-term infrastructure developmerilenao. uncertainty and decision
flexibility; reaching global optimality of the overall sysh and combining economical

modeling with the production planning problem.

Uncertainty and decision flexibility is probably the mosifidult challenge in a long
term production planning problem. Strategic decision supmodels for investment anal-
ysis need to capture the long term uncertainty and in addii®able to value short term
operational flexibility since the operational charactessof initial investments, capacity
expansion and new investments will affect the decisionsiathee future investments and

capacity expansions.

Another important challenge is to reach optimality for thvemll system. The timing
of investments, the inherent flexibility in technology otes and capacity decisions as
well as the location of the infrastructure are examples ofgiens that should be analyzed
in a framework considering the overall system rather thaacallsubproblem to avoid

suboptimization.
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The third research challenge is to incorporate economicaleiing into the production
planning problem. In order to be able to capture both manke¢d production and opera-
tion, it is necessary to include the operational decisi@tsmf the infrastructure including
using markets to resolve bottlenecks of the infrastrucamedynamic market driven oper-
ation of the infrastructure. In addition, to capture therapienal flexibility and limitations
of the system, it may be necessary to include detailed mad¢he technology.

In order to construct a mathematical model having all th@ertes of the value chain;
it is necessary to incorporate nonlinear flow and reservouers, gas quality in the fields,
the contractual framework and LNG/LPG production modets the infrastructure devel-
opment problem with all possible uncertainties. Then, phablem becomes a large-scale
global optimization problem with stochasticity in it.

The first step chosen to start modeling the real value chaio fermulate a simple
model for the production planning problem for a relativetgadl field and integrate the
gas quality problem to this infrastructure developmenbjam, since there are well known
algorithms to solve large pooling problems and then theipleseext step is to solve this
problem at a larger-scale. Then, additional operatioriakrand uncertainties can be added

to this model in each step.

5.2 Introduction to Stochastic Programming

Stochastic programming is a framework for modeling optatian problems that involve
uncertainty. Whereas deterministic optimization probleams formulated with known
parameters, real world problems almost invariably inclsdene unknown parameters.
Stochastic programming models take advantage of the fattpttobability distributions
governing the data are known or can be estimated. The gaafiisd some policy that is
feasible for all the possible data instances and maximiesxpectation of some function

of the decisions and the random variables. More generalth snodels are formulated,
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solved analytically or numerically, and analyzed in oraeptovide useful information to

a decision-maker.

The most widely applied and studied stochastic programmiogels are two-stage
linear programs. Here the decision maker takes some actithe ifirst stage, after which a
random event occurs affecting the outcome of the first-sti@gesion. A recourse decision
can then be made in the second stage that compensates faapjfdcts that might have
been experienced as a result of the first-stage decision.optal policy from such a
model is a single first-stage policy and a collection of reseulecisions (a decision rule)
defining which second-stage action should be taken in resgptmneach random outcome

[29].

Solution approaches to stochastic programming modelsrasendby the type of prob-
ability distributions governing the random parameters. ofnmon approach to handling
uncertainty is to define a small number of scenarios to reptabe future. In this case
it is possible to compute a solution to the stochastic prognang problem by solving
a deterministic equivalent linear program. These problamastypically very large-scale
problems, and so, much research effort has been devotedetogag decomposition al-
gorithms that exploit the problem structure, which decoseplarge problems into smaller

more tractable components [7].

An alternative solution methodology replaces the randorabes by a finite random
sample and solves the resulting deterministic mathematrogramming problem. This is
often called an external sampling method. External sargptiethods typically take one
sample before applying a mathematical programming mett#odumber of algorithmic
procedures have been developed to take repeated sampileg the course of the algo-
rithm. This is often called the internal sampling method.widger, both internal and ex-
ternal sampling methods are still immature, computatigredpensive and can only solve
relatively smaller problems [7]. Therefore, decompositigorithms are preferred to solve

large stochastic programs.
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The basic idea behind decomposition algorithms is to decsmpomplex algorithms
into smaller parts and try to use the fact that solving mampter programs may be quicker
than solving one large program. These algorithms are afeeespecially when the sub-
problems are easy to solve. Basically, decomposition dlgos works as shown in Figure
5-1. Each node in the figure represents a subproblem andgbethin solves each sub-
problem separately and the solutions of parent nodes gepted as; in the figure and
there is only one parent node in two-stage stochastic pnegjrare passed to child nodes
and the solutions of child nodes (represente@gasin the figure and there is only one stage
of child nodes in two-stage stochastic programs) are passgarent nodes and both solu-
tions are updated until they converge. One important poiméntion is that the solution
of child nodes have to be functions of the solutions of panexles since decisions in the
previous stage always determine the outcome of the probigheifollowing stage. How-
ever, in most of the stochastic problem formulations, tHet&ms of parent nodes are also
functions of the solutions of child nodes (For instancepséestage operational variables
effecting the planning problem in the first stage in infrasture development problems.).
Detailed information about the formulation of two-stagecsiastic programs and solution

techniques can be found in Birge & Louveaux (1994) [7] and RalWallace (1994) [29].

5.3 Importance of Stochastic Pooling Problems in Natural

Gas Infrastructure Development

Natural gas exploration and production is a highly capitégnsive industry. Facilities re-
quired for offshore exploration and production often remiai operation over the entire
life-span of the project, typically 10-30 years and heneedperational use of infrastruc-
ture and the requirements for its design change over timerefbre, decisions regarding
investment in these facilities affect the profitability dktentire project. Given the large

potential profits and high investments in each project,ghgrsignificant interest in de-
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Figure 5-1: Basic illustration of decomposition algorithmstochastic programming

veloping optimization models for planning in the naturas gxploration and production
industry. A major challenge lies in the fact that decisioakers in this industry have to
deal with a great deal of uncertainty. One of the most impdaurces of uncertainty is the
quality of reserves. The existence of oil or gas at a sitedeated by seismic surveys and
preliminary exploration tests. However, the actual amadmatural gas in these reserves,
and the efficacy of extracting these remain largely unaettatil after the investments have
been made. Both these factors directly affect the profitghuli the project and hence it
is important to consider the impact of these uncertaintiberwformulating the decision

policy.

The opportunity for blending different sources of naturas gomes into the picture
especially when the natural gas upstream infrastructubeiisg developed. When new
wells or fields are being developed, it is possible to corsthe pipeline system such that
the gas from different wells are mixed together to satisgy tbquirements for different

gualities. However to construct the pipeline system optyna stochastic version of the
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pooling problem where the quality parameters in the weksnat known exactly has to be
solved. Although advancing technology provides necessarg to predict the content of
the natural gas in different fields during the exploratiayst the content of the natural gas
is still uncertain before drilling the well. Thus, stochagirogramming principles has to

be used to achieve an optimum solution in the infrastrualexelopment problem.

5.4 Formulation of the Stochastic Pooling Problem

The problem to be considered as the stochastic poolinggmold to determine a minimum

cost capacity expansion plan for the pooling network whiagketa demand and quality
requirements and maximizes the operational profits for #taral gas production. Cost in

this problem consists of two components: the initial cditest of building the pools and

the pipeline network, and the operational costs of the dh&rstem to meet the demands of
customers. Income comes from the sale of the natural gashwieets the requirements,
to customers. Because of the uncertainty in the quality bbesaof sources (the actual
impurity levels of natural gas in the reserves are uncertéime amount of gas in sources,
prices and costs; these variables must be defined in termobélplistic measures and
therefore this problem is a stochastic program.

The stochastic pooling problem naturally decomposes imtostages: determining the
optimal investments in pooling capacity and necessarylipgpeetwork, and determin-
ing the operating conditions to meet the customer requingsnerl he first stage is called
the planning problem and the second stage is called thergpplioblem. This natural
decomposition can be exploited by decomposition algosthiising decomposition, the
stochastic pooling problem can be divided into smaller |gnois, a master problem and a
set of recourse subproblems. The master problem, whichsicéise is a mixed-integer lin-
ear program (MILP), is used to generate trial solutions lier@aptimal capacity expansion

plan. The subproblems are used to determine the maximum ppafiation and meeting
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the requirements. Basically, subproblems are deterngngstoling problems (as formu-
lated inChapter 2 which are solved to maximize the profit after the optimal lpapnet-
work is decided by the first stage capacity expansion problEme planning problem has
originated from the long-term analysis of the electricrgnismission and distribution with
price uncertainty. Basically, the planning problem is to mdkcisions about what to con-
struct, where to construct and how many (much) to constitieé. pooling problem forms
the second stage. After the planning problem is solved dirgtestage and the number of
pools and connections to and from them (into the sources atgpeduct nodes) are de-
cided by the solution of the planning problem; the poolinggdem is solved as the second

stage and profit is maximized.

The stochastic pooling problem can be solved iterativelydcomposition algorithms,
by alternately solving the master problem and the subpneblentil an optimum is found.
In this way, the complex nonlinear program for stochasticlipg problem is reduced to
iterative solution of a MILP and a set of bilinear programsickhreminds exactly the
methodology of the proposed BD algorithm to find global optimuTherefore, the BD

algorithm can directly be used to solve stochastic poolidplems.

One of the most important issues in the stochastic versitimegfooling problem is that
in the literature, proof of convergence for two-stage sé@tic programs is only provided
for problems with a convex second stage. Unfortunatelypti@ing problem is a noncon-
vex problem and hence the proofs from the literature canaadplied directly to prove
the convergence of the stochastic pooling problem. HowéveBD algorithm guarantees
to converge to global optimum in deterministic pooling gevb and therefore, itis applied
to the stochastic version without any proof of convergeice,as a future work global

convergence for the BD algorithm in stochastic pooling peabhas to be proved.

As explained, the first stage planning problem, which is abRlis to solve the optimal

capacity expansion plan and can be represented mathehyadsfollows:

66



=]

p

p p r Ns
min 3 Ujbj+ Zl Xijaij + Z z YikSik + z praPR (U, X,Y) (5.1)
R =1 i=1j=1 =

s.t. Yjik—Uj; <0, i=1..p (5.2)
Xij —U; <0, i=1...p (5.3)

Uj, Xij, Yk € {0,1}

In this representation, the problem consista eburcesp pools,r end-products ands
stands for the number of possible scenarios, whes¢he index for sources,is the index
for pools,k is the index for products artdlis the index for the scenarios. Moreove, is
the binary variable to indicate if the popis included in the network or not (1 if the pool
is constructed and active, O if not constructex);is the binary variable to indicate if the
pipeline from sourceto poolj is included in the network or not (1 if the pipe is constructed
and active, 0 if not constructedyjx is the binary variable to indicate if the pipeline from
pool j to end-produck is included in the network or not (1 if the pipe is construcae
active, 0 if not constructed)PR, represents the operational cost function of the pooling
network in scenarid (i.e. PR, is the objective function of the second stage problem for
the scenario numbeér.) and pry, is the corresponding probability of the scenahidi.e.
pry represents the probability of scenahdo happen.). In addition, parameters in this

representation are listed in Table 5.1.
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Parameter Definition
bj the investment cost of the popl
ajj the investment cost of the pipeline from the sourt®the poolj
Sik the investment cost of the pipeline from the ppta the end-produdt
PR, operational cost function of the pooling network in scenéri
n total number of sources
p total number of pools
r total number of end-products
Ns total number of possible scenarios
Pry probability of the scenarib

Table 5.1: Parameters and corresponding definitions fdiirdtestage problem

As mentioned, the first stage problem determines the opimaastments in a pooling
network that satisfies the given requirements and in the enadltical formulation of this
problem, the objective function represents the total cbsth@ investments including the
cost of constructing new pools and installing pipelinesrirsources to pools and from
pools to demands. (5.2) and (5.3) ensure that if the pasinot active (i.e.U; = 0),
the pipelines that connect the pgoto sources and demands cannot be active. As the
planning problem formulation clearly shows, operatiorwats, profits and flow constraints
are not included. In other words, the planning problem igy dafmulated to minimize
the investment costs by considering the operational cdstseegooling network. On the
other hand, the second stage problem determines the ompaedting conditions to meet
the customer requirements. Formulation of the pooling l@rmbin the second stage is
basically same as the formulation in the deterministic cd$e second stage problem is
a general pooling problem with sourcesp pools,r products and quality parameters.

In this representation, is the index for sourceg,is the index for poolsk is the index
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for products andv is the index for qualities. In additiorf;j is the variable for the total
flow from theith source into poo]; gjw Is the variable for thev quality component of
poolj andxix is the variable for the total flow from th& pool to produck. Again,U; is
the binary variable to indicate if the popis included in the network or not (1 if the pool
is constructed and active, 0 if not constructex]);is the binary variable to indicate if the
pipeline from sourceto poolj is included in the network or not (1 if the pipe is constructed
and active, 0 if not constructedyj is the binary variable to indicate if the pipeline from
pool j to end-produck is included in the network or not (1 if the pipe is constructeu
active, 0 if not constructed)Aijw is thew™ quality component of the flow from thi

source into pogj. Also, necessary parameters in this representation &ee iis Table 5.2.

Parameter Definition
Cij cost of the flow from thé™ source into pooj
dk unit price of produck

I total number of component qualities

n total number of sources
p total number of pools
r total number of end-products
S demand requirement for product
Ziw wihquality requirement for produdt
)‘i?w wh quality component of the flow from tti# source into pooj in scenarich

Table 5.2: Parameters and corresponding definitions fose¢bend stage problem

Then, for the scenario numbhky the mathematical representation of the second stage

pooling problem becomes:
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fhxn,gh

P n r p
PR,(U,X,Y) = min szﬁm—zwzn&L (5.4)
j=1i= K=1 =1

n r
s.t. inj it — S Yiixly =0, ji=1,..p (5.5)
i= K=1
h < h < h h :
qu ZijXjk— Z\AIJWX”f” =0, |]=1...p, w= 1,...,' (56)
K=1 i=
p
anﬁ—&gq k=1,..,r (5.7)
=1
® h h 0 h
jZlquijXjk _ZkWJZ]_ijXjk <0, k=1,...,r; w=1 .1 (5.8)
X f < £ <X Y, i=1..n; j=1,..,p
dh < dhw < o, ji=1,....p; w=1,..,l
Vi < X < Yok, j=1..p k=1,...r

In this formulation, the objective function represents tliféerence between the cost
of the flow from the source nodes and the returns from sellv@gend-products. (5.5)
represents the mass balances for each active pool. (5.63s3g3 the mass balance for
each quality component. (5.7) ensures that the flows to eadtpeduct node do not
exceed the demands. (5.8) enforces that the quality regaits are satisfied at each end-
product node. Moreover, binary variables indicating wkethe pipelines are active or not
(namely,X;; andYjx) are added as multipliers to the lower and upper bounds ofidiae

variables (into the pools and from the pools respectivelyrder to to set flow variables to
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zero in pipelines that do not exist.

In the stochastic pooling problem formulation, it is po$sito set any combination of
the network parameters as the uncertain parameters (entandierequirements for prod-
ucts, quality requirement for product, prices, costs odiguparameters at sources) after
excluding the known parameters which are provided or meashefore formulating the
problem. Actually, in reality, all of the parameters in theopng problem are uncertain
and hence this problem is a very difficult stochastic progr&towever, for convenience
and better understanding of the performance of the propBBealgorithm, in all example
problems of this study, only the quality parameters of the fimm the sources into the
pools are taken as uncertain parameters and the remainiageters are held constant for
all possible scenarios as explained in the next sectios.dlsio important to mention here
the fact that the second stage problem in the stochastiengopitoblem formulation is a

bilinear and hence nonconvex problem which makes this prolslarder to solve.

5.5 Implementation of the BD Algorithm in Stochastic Pool-

ing Problems

With a finite number of scenarios, two-stage stochasticnarog can be modeled as large
linear or nonlinear programming problems. This formulatis called the deterministic
equivalent. Strictly speaking a deterministic equivalsrany mathematical program that
can be used to compute the optimal first-stage decision,ese till exist for continuous
probability distributions as well, when one can represkatdecond-stage in some closed
form [29]. After formulating both stages, the stochastiolptg problem is reformulated to
a single stage (i.e. deterministic equivalent) by usingbtiec conversion techniques which
are discussed in Birge & Louveaux (1994) [7] and Kall & Wallg@®94) [29] and the
resulting problem becomes a mixed-integer nonlinear progiMINLP). Since the second

stage optimization variables (namefy,q andx) are not functions of uncertain parameters
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(A in the example problems of this study) in the stochasticipggbrogram formulation,
it is not necessary to introduce new second stage variabi@sgdreformulation [7] and
therefore, the reformulation of the two stage stochastaipg problem as a single stage
MINLP (deterministic equivalent) can be written simply definitions of the variables and

parameters in this formulation are given in the previousisel

p n op p T Ns P n r p
min Ujbj + Xij aj+ ijSjk+ prh( XijC-h- £ dllg ijth)
U XY, 1.xq jzl i; j; jzl k; h; j; i; o k; j; J
(5.9)
s.t. Yjk—U; <0, i=1..p (5.10)
Xj—U;<0, j=1,..p (5.11)
A h < h
Xij i — ) Yxiy =0, j=1..p; h=1..ng (5.12)
i; ! k; :

r n
q*j‘wkz ijx?k_zl)‘i?wm fl =0, j=1,...p; w=1..1; h=1..ns (5.13)
—1 i=

p
Zijx*;k—skgo, k=1,..,r; h=1,...ns (5.14)
=1
p p
Zq?Wijx?k—szZijx*j‘kgo, k=1,..rw=1.,; h=1,.,ns (5.15)
=1 j=1



Uj, Xij, Yk € {0,1}

dhy < dhw < dis j=1,..pw=1...1
ijijkng‘ngjk%jJ, j=1..,p; k=1,....r

It is necessary to note here that the equations (5.12), 58.34) and (5.15) have to
be repeated for every scenario. In other words, for eachasicethere are 4 constraints
from the second stage problem. Therefore, the number oiaititerms increases with the
number of scenarios as well as the number of quality varsainleeach problem. Hence,
the number of scenarios directly affects the solution timfethe problem and as the total

number of possible scenarios increase, the problem bedoander to solve.

As the next step, the proposed BD algorithm is used to solvenpbeastochastic pool-
ing problems to verify the convergence of the algorithm amatheck its performance.
Although the essential methodology is same, the BD algorfthmatochastic pooling prob-
lems has to be slightly different than the one to solve detastic pooling problems. In
deterministic pooling problems, the BD algorithm decompggs®blem into two smaller
problems: primal problem (linear program) and relaxed eragtoblem (nonlinear pro-
gram in bilinear problems) and as in the deterministic cals in the stochastic pooling
problems the BD algorithm decomposes the problem into smaiteblems for easy and
quick solution process. However, in stochastic case, tasrawo sets of decisions that
are made in consecutive stages and this structure nattoaitg a mixed-integer first stage

problem and a set of smaller bilinear second stage probladhsiace this natural structure
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of decomposition is different than the deterministic cake, proposed BD algorithm to
solve stochastic pooling problems has some changes frometieeministic version. The
main difference between the stochastic and the deternginistsions is the process of
the formation of cuts in each iteration. In the determigistrsion of the BD algorithm,

the additional cuts are generated for the bilinear relaxasten problem in each iteration;
however, in the stochastic version, the additional cutsgamerated not for the bilinear

subproblems but for the MILP first stage problem.

Before explaining the BD algorithm for stochastic poolingldems in detail, first of
all, in order to be consistent with the stochastic progranghiterature, the first stage
optimal planning problem is called the master problem amdstircond stage optimal op-
erational problems are called the subproblems. The BD dlgorio solve the stochastic
version of this problem can be formulated as follows: A tgpiteration starts with the
master problem without the additional cost coming from thigpsoblems (last summation
in 5.1). In other words, in the intial master problem, onlgtfstage decision variables are
considered and the effect of the second stage variableg tiirsh stage is neglected. The
binary vectors from solution of the master probladi (X", Y*) are fixed as the first stage
decision variables and subproblems for all scenarios dvedavith these fixed decision
vectors. The objective function value of the master problgth U*, X" andY” plus the
summation of the objective functions of each subproblenasiits probability (as explained
in the problem formulation, a probability value is assigtedach scenario (subproblem).)
updates the upper bound (UBD) value, if it is lower than theiptes UBD. Then additional
cuts are formed in the master problem by using the solutibtiseosubproblems and the
master problem are solved again with these additional @ims.new solution of the master
problem provides new binary vectors (i.8.", X" andY" are updated after master prob-
lem is solved with additional cuts.). The objective funotialue of this updated master
problem updates the lower bound (LBD) value, if it is higharttthe previous LBD. Then

the algorithm iterates and all of the subproblems are sagaih with these new first stage
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decision values and a new UBD (if necessary), plus additiomtz! for the master problem
are determined. The algorithm iterates until the lower lnbvadue becomes higher than the
upper bound value. In other words, the solutions of the sallipms are used to find the
upper bound (UBD); the solution of the relaxed master prokbkemsed to find the lower
bound (LBD). When LBD>UBD, algorithm terminates. A detailed description of the BD

algorithm for stochastic pooling problems is provided ig@édithm 2.

A crucial point to note is that the subproblems in stochgstialing problems are sim-
ply deterministic pooling problems (which are bilinearIplems) since all binary first stage
decision variables are already fixed. Therefore, it is neargg0 use a global solver to solve
the subproblems and since the proposed BD algorithm for tlhico of the deterministic
pooling problems is shown to converge to global optimumsitised to solve the sub-
problems in the stochastic pooling problems. In other woishe implementation, the
proposed BD algorithm calls itself to solve the subproblearslery scenario. The rea-
son behind using the BD algorithm is the size of the stochasiiting problems. Even the
largest deterministic pooling problem example solved is $kudy can be accepted as small
compared to the stochastic pooling problems since the astichones have large number
of scenarios and each scenario itself is a large poolingl@nmoland the BD algorithm has
advantages over any B+B based global optimization algorithtarge problems since it
decomposes very large problems into a number of smalleg manageable problems in-
stead of solving it as a whole. Hence, the BD algorithm progdse the deterministic
pooling problems is used as the solver for subproblems gmvides both a background
for developing the BD algorithm for stochastic pooling perbk and a tool to solve the

subproblems in the stochastic version of the BD algorithm.

Another important change in the implementation of the sastib version of the algo-
rithm is the MILP solver since the LP solver (CPLEX [21]) in tB® implementation can
also be used as MILP solver with appropriate parameters ithportant to note that to

solve the subproblems, the BD implementation in C++ with tHi&lbke BARON library
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for the relaxed master problem is used as the BD solver in tehastic implementation

of the BD algorithm since it provides the best performancéédeterministic case.

To validate that the proposed algorithm works for stoclkeastioling problems, 4 exam-
ple pooling problems (which were created by the author) alreed. Example 1 has 1 pool,
3 sources, 2 end-products; Example 2 has 2 pools, 5 souressl-Broducts; Example 3
has 8 sources, 4 pools, 5 end-products whereas Example 2tsmidces, 10 pools and
8 end-products. In all examples, only the quality paranses¢isource nodes are assumed
as uncertain variables for convenience and all problemsaved with one, two and three
quality variables. More information for both of these exdenproblems including qual-
ity specs, demand requirements and cost coefficients ag@ ghMAppendix C Again, for
comparison purposes BARON Version 7.8 [42] is used as ther astiver. To solve the ex-
ample problems with BARON, their deterministic equivalérmulations are used, since
BARON is not based on a decomposition algorithm. But, histdly, B+B solvers are not
very successful in solving stochastic programs, henceexpected that the proposed BD
algorithm may provide better results in stochastic poopingpblem.

One of the principal practical difficulties with stochagtimgramming is that the num-
ber of possible scenarios is often large, leading to a largeber of subproblems. A
number of remedies have been proposed, including the ussnddbm sampling to gener-
ate only a representative set of scenarios. However, lélisblution of large stochastic
problems is extremely difficult. Thus, easy examples wittitied number of scenarios and
uncertain parameters are selected in this study, sinceitie goal is to show the proposed

BD algorithm is suitable for stochastic pooling problems.

5.6 Results

All 4 examples are solved with 1, 2 and 3 uncertain qualityaldes. The solution times

are given in Table 5.3, 5.4 and 5.5 for 1, 2 and 3 uncertainityuadriables respectively.
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Algorithm 2 Benders decomposition algorithm for stochastic poolind[@ms
{I NITIALIZATION }

i (iteration) := 1, UBD := INF, LBD := -INF; C := Total Number of Scenarios;
{STEP1: INITIAL MILP MASTER PROBLEM}

Solve Master Problem

min b'U+a'X+s'Y
U.X.Y

st BU+AX+SY<O0

Let the solution b&J” (i), X" (i), Y" (i)

{STEP2: NLP SUBPROBLEMS}

for h=1toC

Solve Subproblerh (obj. function isPR,(U™ (i), X" (i),Y") (i))

Let the solution bef,, (i), g, (i) andx;, (i) Let the objective function bBF, (i)
end for

if bTU™ (i) +a"X" (i) +sTY" (i) + $5_; prnPF, (i) <UBD then,

{RECORD BETTER SOLUTION

UBD :=b'U" (i) +a™" (i) +s"Y" (i) + 35_, praPF; (i). end if (pr(h) is the probability
of the scenaridn)

{STEP3: MILP MASTER PROBLEM} Solve Master Problem

min b'U+a'X+s'Y+6
U, X,y
st BU+AX+SY<O

C
8>S pryPR,
2,

Let the solution b&J (i), X (i), Y (i), thenU™ (i) = U (i), X" (i) = X (i), Y (i) = Y (i)
emphifb™U” (i) +a"™X" (i) +s'Y" (i) + 6" (i) > LBD then,

{RECORD BETTER SOLUTION

LBD:=bTU" (i) +alX" (i) +sTY" (i) + 6" (i). end if

if LBD > UBD then, Sor.

else, i:=i+1,Go toSTEP2. end if

{END OF ALGORITHM}
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| Problem | BD | BARON |
Example 1| 7 1
Example 2| 17 4
Example 3| 23 11
Example 4| 36 20

Table 5.3: Solution times of stochastic pooling problemghvane quality variable (in
minutes)

| Problem | BD [ BARON |

Example 1 20 4

Example 2 55 13
Example 3| 66 30
Example 4| No. Sol. INF

Table 5.4: Solution times of stochastic pooling problemthwviivo quality variables (in
minutes)

All solutions are done in a computer with Intel 3.20 GHz Xeoogessor.

The results clearly show that BARON provides better sotutimes than the BD al-
gorithm. However, as the problems get complicated and nuwib@riables increases the
difference between the BD and BARON in terms of solution tidesreases. This looks
promising since the real planning problems that we areested in are much larger than
these examples. But, another observation is as problemsgglicated, the BD algorithm
gives no solution especially for more than one quality caBspecially Example 4 with 12
sources, 10 pools and 8 end-products is a very complex proaie as shown in the Ta-
bles with more than one quality cases both algorithms steuggsolve Example 4. There
are tighter bounding techniques available for stochasbiggams, two most important of

all are Edmundson-Madansky Bounds and Jensen Bounds. Tlas&tges could help to

| Problem | BD [ BARON |

Example 1| 58 10
Example 2| 92 25
Example 3| 152 78
Example 4| No. Sol. INF

Table 5.5: Solution times of stochastic pooling problemtghihree quality variables (in
minutes)
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reduce the solution times and solve larger problems withBibealgorithm, but, both of
them proved to provide tighter relaxations only for convechkastic programs. Therefore,
in the next phase of the project, development of tightexatlans for nonconvex stochas-
tic programs will be the objective. Author believes that aataposition algorithm with
tighter bounds and an optimized code has still a better éhimsolve stochastic problems
than a B+B algorithm.

Moreover, since all of these examples are not real casesraated by the author as
examples, it becomes difficult to create feasible exam@éleproblems get complicated.
Complex examples such as Example 4 has many parameters tquséeddn order to
get a feasible problem and no one can guarantee the corssahéhese parameters and
the feasibility of the problem. Infeasibilities occur dugithe analysis process and one
cannot determine whether these infeasibilities are residlincorrect parameters given by
the author or the formulation itself. Therefore, it is caldio look for the methods to
generate feasible problems before proceeding furthethetbounding techniques. Hence,
as explained in the next chapter, the next step in this stuliipevto develop techniques to

generate feasible problems automatically.
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Chapter 6

Conclusion

The prime objective of this project is to solve the long tenfrastructure development
problem in the natural gas production industry with considemost of the possible un-
certainties and to develop new optimization methods, @ecsupport tools for the infras-
tructure development problem. In addition, it is necestsademonstrate the methodology
for analysis in important industrial cases. The complegityhe problem requires to de-
velop new methodology and mathematical model for the desigmelopment and opera-
tion of infrastructure in natural gas production under utaiaty and the main subsystems
involved in the model will be the gas field, the surface precesfacilities, the transporta-

tion facilities and the markets.

This is a very difficult goal to achieve when considering thguirement of huge math-
ematical models to be as close as possible to reality. Towexet is decided to start from
relatively smaller problems by assuming most of the vaeslare known parameters and
try to deal with only one aspect of the whole value chain. Beeanf the reasons explained
above, the first stage in this project is chosen to be the pigrmproblem only considering
the pooling and blending of the natural gas from differentfievith uncertain quality vari-
ables. To solve even this relatively small model a new BD dtligwr has to be proposed

because of the nonconvexity of the pooling problem.
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In conclusion, it can be stated that for the pooling problethe proposed BD algo-
rithm which assumes the bilinear terms as complicatingatées as a whole, is proven
to converge to global optimal solution for all tested stagtpoints regardless of the size
of the problem. The BD algorithm is shown to be working for aldeple pooling prob-
lems without any problem and converges to a global optimumlliexamples. But, the
results illustrate that BARON gives better solution timkart the BD implemented both
in GAMS and in C++ with both custom B+B code (with range reduttiand BARON
library. However, decomposition algorithms work bettesritthe B+B based algorithms
in stochastic programming and the goal of this study is toehttk infrastructure devel-
opment problem in terms of gas quality variables and theeetfte results in deterministic

pooling problems are not that important for this study.

The main goal of this study is to develop and implement a wayl8D algorithm in
order to use it to solve stochastic pooling problems. Theegtthe proposed BD algorithm
is used to solve simple planning problem examples in ordehézk the convergence and
compare the solution times with BARON. The results cleahigvg that both BARON and
the BD algorithm converges to same global optimum in most efgfoblems (in couple
of complicated problems the BD algorithm cannot converg@weéier, BARON provides
better solution times than the BD algorithm. However, as tteblems get complicated
and number of variables increases the difference betweeBIhand BARON in terms of
solution times decreases. This looks promising since thkeplanning problems that we

are interested in are much larger than these examples.

This projectis still in progress and will continue as a PhBjgct and as the future work,
the next step will be, as mentioned, to look for the possibdf tighter relaxations for non-
convex stochastic programs and methods to generate fegsdidlems before proceeding
further into the bounding techniques. After having an effitly working BD algorithm
for stochastic pooling problem, the long term objectiveoidiive a more realistic model

of the infrastructure development problem by adding moatuiees to the basic stochastic
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pooling problem step by step and develop the BD algorithm santhandle these large

scale stochastic programs.
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Appendix A

Example Pooling Problems

To validate the algorithm and check its performance, 7 exarppoling problems are
solved with both the proposed BD algorithm and BARON [42]. 3hefse example prob-
lems are taken directly from the literature (Haverly’s, Adls and Fould’s pooling prob-
lems), the remaining 4 problems are created by the authdraokathe performance of the
algorithm in more complex pooling problems. In this chaptetailed information is pre-
sented about these example problems including qualitysspletnand requirements, cost
coefficients and GAMS implementations. Since Haverly'slipgpproblem is formulated

in detail inChapter 2 this chapter excludes it and contains remaining 6 prohlems

A.1 Adhya’s Pooling Problem

One of the example problems used is taken from Adhya et. 8@9)1[1]. In this problem,
the number of pools is 7, the number of sources is 8, the nuofleralities is 4 and the
number of end-products is 4. Necessary parameters (qpaligmeters, costs, prices and
demand requirements) to construct this problem is giveralnlés A.1, A.2, A.3, A.4 and

A.5. GAMS implementation of Adhya’s problem is also prouids the end of this Chapter.
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| Source quality parameters |

Sources

Qualities

1

2

3

4

0.5

1.9

1.3

1

1.4

1.8

1.7

1.6

1.2

1.9

1.4

1.4

15

1.2

1.7

1.3

1.6

1.8

1.6

2

1.2

11

1.4

2

N OO~ W NP

15

15

15

15

1.4

1.6

1.2

3

| Source costs |

Sources| Costs
1 15
2 7
3 4
4 5
5 6
6 3
7 5
8 7

Table A.1: Quality parameters in source nodes for Adhyadblem

Table A.2: Cost parameters in source nodes for Adhya’s pnoble

| Demand quality requirements |

Products Quialities
1 2 3 4
1 2 12222511
2 3 (14| 25|06
3 15| 1|29 |19
4 2| 307505

Table A.3: Quality requirements in demand nodes for Adhgaiblem

| Demand flow requirements|

Products Max. flow
1 30
2 25
3 75
4 50
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Table A.4: Flow requirements in demand nodes for Adhya'jem




|

Prices

|

Products | Prices
1 16
2 15
3 10
4 25

Table A.5: Prices in demand nodes for Adhya’s problem

| Source quality parameters

Sources Qualities
1 1
2 11
3 1.2
4 1.3
5 1.1
6 1.2
7 1.3
8 14
9 1.2
10 1.3
11 1.4
12 15
13 1.6
14 1.3

Table A.6: Quality parameters in source nodes for Fouldshigm

A.2 Foulds’ Pooling Problem

Another example problem is taken from Foulds et. al. (1992].[ In Foulds’ problem,

the number of pools is 8; the number of sources is 14, the nuoflzpialities is 1 and the

number of end-products is 6. Necessary parameters (qpaligmeters, costs, prices and

demand requirements) to construct this problem is giveralniés A.6, A.7, A.8, A.9 and

A.10. GAMS implementation of this problem is also providédhe end of this Chapter.
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| Source costs |

Sources| Costs
1 20
2 19
3 18
4 17
5 19
6 18
7 17
8 16
9 18

10 17
11 16
12 15
13 17
14 16

Table A.7: Cost parameters in

source nodes for Foulds’ pnoble

| Demand quality requirements |

Products

Quialities

1

1.05

1.1

1.15

1.2

1.25

OO~ WN

1.3

Table A.8: Quality requirements i

n demand nodes for Foyddsblem

| Demand flow

requirements]|

Products

Max. flow

1

30

29

28

27

26

OO WN

25

Table A.9: Flow requirements in

demand nodes for Fouldsbjam

88




| Prices |

Products | Prices
1 20
2 19.5
3 19
4 18.5
5 18
6 17.5

Table A.10: Prices in demand nodes for Foulds’ problem

A.3 Examplel

The first example problem (Example 1) has 14 pools, 18 soufcesiality and 9 end-
products. Necessary parameters (quality parameterss, quetes and demand require-
ments) to construct this problem is given in Tables A.11,2A.A.13, A.14 and A.15.

GAMS implementation of this problem is also provided at thd ef this Chapter.

A.4 Example 2

The second example problem (Example 2) has 14 pools, 18ex@qualities and 9 end-
products. Necessary parameters (quality parameterss, qustes and demand require-
ments) to construct this problem is given in Tables A.16,7A.A.18, A.19 and A.20.

GAMS implementation of this problem is also provided at thd ef this Chapter.

A5 Example 3

The third example problem (Example 3) has 16 sources, 10spéoénd-products and
1 quality variable. Necessary parameters (quality parareetosts, prices and demand
requirements) to construct this problem is given in Table8lAA.22, A.23, A.24 and

A.25. GAMS implementation of this problem is also providédhe end of this Chapter.
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| Source quality parameters|

Sources Qualities
1 1.8
2 2
3 2.2
4 1.3
5 1.4
6 1
7 1.6
8 0.8
9 3
10 3.2
11 3.4
12 3.5
13 2.6
14 1.8
15 2.7
16 15
17 2.6
18 1.9

Table A.11: Quality parameters in source nodes for Example 1

A.6 Example 4

The fourth example problem (Example 4) Example 4 has 16 ssurtO pools, 6 end-
products and 8 qualities. Necessary parameters (qualignpgters, costs, prices and de-
mand requirements) to construct this problem is given ineah.26, A.27, A.28, A.29 and

A.30. GAMS implementation of this problem is also providédhe end of this Chapter.
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| Source costs |

Sources| Costs
1 10
2 5
3 6
4 8
5 13
6 25
7 16
8 18
9 35
10 5
11 20
12 15
13 11
14 24
15 20
16 25
17 10
18 14

Table A.12: Cost parameters in source nodes for Example 1

] Demand quality requirements
Products Quialities
1 3
2.1
1.5
1.2
2.6
2.5
1
1.75
3.2

OO NO|UPRWN

Table A.13: Quality requirements in demand nodes for Exantpl
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] Demand flow

requirements|

Products

Max. flow

1

75

85

80

50

130

120

100

90

OO NOO|U PR WN

95

Table A.14: Flow requirements in demand nodes for Example 1

| Prices |

Products

Prices

1

30

15

25

40

30

35

22

10

OO N U PRWN

15

Table A.15: Prices in demand nodes for Example 1
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| Source quality parameters |

Sources Qualities

112 |3| 4|5 |6
1 1.8/29|15 3 08|14
2 221483846 |27|36
3 2| 5] 3124 4| 2
4 15/32(27(25|1.7|0.9
5 36[28|06| 2 |31 2
6 32141|14/28|08|4.38
7 4 | 5115354221
8 45(16|22|38|1.2| 3
9 08/19|13| 4 |[13|16
10 14/08(1.7(26|3.7|19
11 2211914 1 34| 5
12 15| 1 [37,43]3.7/08
13 26(28|16(24|36| 2
14 121311428 1 |26
15 19/15/32,08|1.8|35
16 24|18 5 | 4 |22 3
17 35/25/18[36| 5 | 4.6
18 44126112 3 |42] 4

Table A.16: Quality parameters in source nodes for Example 2
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| Source costs |

Sources| Costs
1 10
2 5
3 6
4 8
5 13
6 25
7 16
8 18
9 35
10 5
11 20
12 15
13 11
14 24
15 20
16 25
17 10
18 14

Table A.17: Cost parameters in source nodes for Example 2

| Demand quality requirements |
Products Qualities

1 2 3 4 5 6
35/29(09|32(18|24
42| 4 138|26|17| 3
25148(3.1[4.4|3.7| 26
0811237424618
26| 2 |24 4 3 |22
35| 4 1/38/08| 4
4 51221909 3
15/08|3.2/38|4.5| 3.8
2613914514208 2.2

OO N| OO AW DN -

Table A.18: Quality requirements in demand nodes for Exar@pl
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] Demand flow

requirements|

Products

Max. flow

1

75

85

80

50

130

120

100

90

OO NOO|U PR WN

95

Table A.19: Flow requirements in demand nodes for Example 2

| Prices |

Products

Prices

1

30

15

25

40

30

35

22

10

OO N U PRWN

15

Table A.20: Prices in demand nodes for Example 2
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| Source quality parameters

Sources Qualities
1 3
2 4
3 4.2
4 3.3
5 1
6 2.2
7 2.6
8 3.8
9 4
10 5
11 5.2
12 0.8
13 1.6
14 1
15 1.9
16 3.5

Table A.21: Quality parameters in source nodes for Example 3

| Source costs |

Sources| Costs
1 30
2 40
3 45
4 38
5 18
6 30
7 32
8 45
9 55
10 50
11 20
12 19
13 20
14 28
15 30
16 45

Table A.22: Cost parameters in source nodes for Example 3
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] Demand quality requirements

Products Qualities
1 3
2 2.5
3 4.5
4 5
5 3.6
6 4

Table A.23: Quality requirements in demand nodes for Exarpl

| Demand flow requirements|

Products Max. flow
1 50
2 20
3 25
4 40
5 30
6 60

Table A.24: Flow requirements in demand nodes for Example 3

| Prices |
Products | Prices
1 80
90
25
30
40
75

OO~ WN

Table A.25: Prices in demand nodes for Example 3
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| Source quality parameters |

Sources Qualities

11234 |5|6|7]|8
1 4 |45 5 ]131/08(14|28|4.1
2 32138 1| 4 |22/46| 3 |16
3 25/56(26(29| 4 | 5| 2|1
4 3.2|52|47| 2 |15] 4 |[08]| 5
5 3118|022 |35 3 (42|19
6 38| 4 | 6 [28|45(58|34|4.6
7 4 |52/45|35| 2 | 2 |28| 1
8 45(26|52[138/6.2[23|05(15
9 48(08|03| 4 |19/06|09| 4
10 1 (31 2 |26/07| 1|5 |12
11 28| 1 |44 1 (54|51 4 | 1
12 1514114715337 1 18|06
13 06| 3 |58/14/36(02| 2 |25
14 16/38/09(38| 1|06 3|5
15 394542 4 |18|55(1.2|4.6
16 44/48|52|129|42|45]15]|3.1

Table A.26: Quality parameters in source nodes for Example 4

| Source costs |

Sources| Costs
1 30
2 40
3 45
4 38
5 18
6 30
7 32
8 45
9 55
10 50
11 20
12 19
13 20
14 28
15 30
16 45

Table A.27: Cost parameters in source nodes for Example 4
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| Demand quality requirements

Products Qualities

112 |34 |5|6|7]|8
1 36| 5 (28|34|26(44| 4 | 3
2 4 465826 6 | 5| 5 |25
3 55/4.8|34|45|/35|3.6|28|3.6
4 28|52|39|15| 4 |48|18|4.6
5 36/21|28| 4| 3 |42 1| 2
6 4 104 1 3/108(46/05|15

Table A.28: Quality requirements in demand nodes for Exampl

| Demand flow requirements|

Products Max. flow
1 50
2 20
3 25
4 40
5 30
6 60

Table A.29: Flow requirements in demand nodes for Example 4

|

Prices |

Products

Prices

1

80

90

25

30

40

OO B WN

75

Table A.30: Prices in demand nodes for Example 4
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GAMS Implementation of Adhya’s Pooling Problem

$ontext
Gams Model of Adhya’s Pooling Problem
Author: Emre Armagan
Date: June, 2007

$offtext

$eolcom #

# Set Declarations
set comp /1%8/;
set pro /1%4/;
set qual /1%4/;
set pool /1%7/;

# components related parameters
table compparams(comp,*)

1 2 3
75 15
75
75
75
75
75
75
75

0 ~NO Ok WN -
O O O O O O O o
~N OTw o 0N

b

parameters cl(comp), cu(comp), cprice(comp);
cl(comp) = compparams(comp,’1’);

cu(comp) = compparams(comp,’2’);
cprice(comp) = compparams(comp,’3’);

table cqual(comp,qual)
1 2 3

e =)
B OO O N O
el
D O = 0N © 0 ©
e el T T
N OV b OO N DN W
=
W OaONDN WO~ D

0 ~NO Ok WN -
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# pool related parameters
parameters psize(pool);
psize(pool) = 75;

# product related parameters
table prodparams(pro,*)

1 2 3
1 0 30 16
2 0 256 25
3 0 75 10
4 0 50 25 ;

parameters prl(pro), pru(pro), pprice(pro);
prl(pro) = prodparams(pro,’1’);

pru(pro) = prodparams(pro,’2’);

pprice(pro) = prodparams(pro,’3’);

parameter pqlbd(pro, qual);
pglbd(pro, qual) = 0;

table pqubd(pro, qual)

1 2 3 4
1 2 22225 1.1
2 3 1.4 2.5 0.6
3 1.5 1 2.9 1.9
4 2 3 0.75 0.5;

# network related parameters
table ubq(comp, pool)
1 2 3

00 ~N O Ol b WN -
O O O O O O -
O OOk, K»r K» OO
= = =2, O O O OO
B OO O OO K b
O OO P, P O, OO
_ = O O, OO Fkr O
OO r Pk OFr = O-XN

parameter ubz(comp, pro);
ubz (comp, pro) = 0;

$include pool.gms
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GAMS Implementation of Foulds’ Pooling Problem

$ontext
Gams Model of Foulds’ Pooling Problem
Author: Emre Armagan
Date: June, 2007

$offtext

$eolcom #

# Set Declarations
set comp /1%14/;
set pro /1%6/;
set qual /1x1/;
set pool /1%8/;

# components related parameters
table compparams(comp,*)

1 2 3
1 0 50 20
2 0 50 19
3 0 50 18
4 0 50 17
5 0 50 19
6 0 50 18
7 0 50 17
8 0 50 16
9 0 50 18
10 0 50 17
11 0 50 16
12 0 50 15
13 0 50 17
14 0 50 16 ;

parameters cl(comp), cu(comp), cprice(comp);
cl(comp) = compparams(comp,’1’);

cu(comp) = compparams(comp,’2’);
cprice(comp) = compparams(comp,’3’);

table cqual(comp,qual)
1

1 1

1.1

102



3 1.2
4 1.3
5 1.4
6 1.2
7 1.3
8 1.4
9 1.2
10 1.3
11 1.4
12 1.5
13 1.6
14 1.3 ;

# pool related parameters
parameters psize(pool);
psize(pool) = 75;

# product related parameters
table prodparams(pro,*)

1 2 3
1 0 30 20
2 0 29 19.5
3 0 28 19
4 0 27 18.5
5 0 26 18
6 0 25 17.5 ;

parameters prl(pro), pru(pro), pprice(pro);
prl(pro) = prodparams(pro,’1’);

pru(pro) = prodparams(pro,’2’);

pprice(pro) = prodparams(pro,’3’);

parameter pqlbd(pro, qual);
pqlbd(pro, qual) = 0;

table pqubd(pro, qual)
1

1.05

1.1

1.15

1.2

1.25

1.3 ;

O O W N -

103



# network related parameters
table ubq(comp, pool)

1

0O N O O WN -
B, P, O O O O O

2

O OO Fr OO+ O

3

H O, O, O O -

B O O Fr ORFr KB OB

parameter ubz(comp, pro);

ubz (comp, pro) = 0;

$include pool.gms

O, O, P, OO OO

OO P O O, OO
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GAMS Implementation of Example 1

$ontext
Gams Model of Example 1 Pooling Problem
Author: Emre Armagan
Date: July, 2007

$offtext

$eolcom #

# Set Declarations
set comp /1%18/;
set pro /1%9/;
set qual /1x1/;
set pool /1%14/;

# components related parameters
table compparams(comp,*)

1 2 3
1 0 200 10
2 0 200 5
3 0 200 6
4 0 200 8
5 0 200 13
6 0 200 25
7 0 200 16
8 0 200 18
9 0 200 35
10 0 200 5
11 0 200 20
12 0 200 15
13 0 200 11
14 0 200 24
15 0 200 20
16 0 200 25
17 0 200 10
18 0 200 14 ;

parameters cl(comp), cu(comp), cprice(comp);
cl(comp) = compparams(comp,’1’);

cu(comp) = compparams(comp,’2’);
cprice(comp) = compparams(comp,’3’);
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table cqual(comp,qual)
1
1.

T
= O © 0 NO Ok WN =
O [

[
w N

[N
a1

[N
D

I
~
© O 01 N0 O 01T N WO B WNN

[y
N
= N R, NEDNWWW

(I
[09)

# pool related parameters
parameters psize(pool);
psize(pool) = 75;

# product related parameters
table prodparams(pro,*)

1 2 3
1 0 75 30
2 0 85 15
3 0 80 25
4 0 50 40
5 0 130 30
6 0 120 35
7 0 100 22
8 0 90 10
9 0 95 15 ;

parameters prl(pro), pru(pro), pprice(pro);
prl(pro) = prodparams(pro,’1’);

pru(pro) = prodparams(pro,’2’);

pprice(pro) = prodparams(pro,’3’);

parameter pglbd(pro, qual);
pqlbd(pro, qual) = 0;

106



table pqubd(pro, qual)

— M — IO AN O I
AN~ - N N

— AN M I 0 O~

1.75

3.2 ;

# network related parameters

table ubq(comp, pool)

10

2 3

1

10
11

12
13
14
15
16
17
18

12 13 14

11
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10
11
12
13
14
15
16
17
18

T e e NeNeolNeoNe)
O O O O O O O O o o
O O O OO OO - K~ =
OCORPr RLPr R EB R OOO

parameter ubz(comp, pro);
ubz (comp, pro) = 0;

$include pool.gms
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GAMS Implementation of Example 2

$ontext
Gams Model of Example 2 Pooling Problem
Author: Emre Armagan
Date: July, 2007

$offtext

$eolcom #

# Set Declarations
set comp /1%18/;
set pro /1%9/;
set qual /1%6/;
set pool /1%14/;

# components related parameters
table compparams(comp,*)

1 2 3
1 0 200 10
2 0 200 5
3 0 200 6
4 0 200 8
5 0 200 13
6 0 200 25
7 0 200 16
8 0 200 18
9 0 200 35
10 0 200 5
11 0 200 20
12 0 200 15
13 0 200 11
14 0 200 24
15 0 200 20
16 0 200 25
17 0 200 10
18 0 200 14 ;

parameters cl(comp), cu(comp), cprice(comp);
cl(comp) = compparams(comp,’1’);

cu(comp) = compparams(comp,’2’);
cprice(comp) = compparams(comp,’3’);
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table cqual(comp,qual)

1 2 3 4 5 6
1 1.8 2.9 1.5 3 0.8 1.4
2 2.2 4.8 .8 4.6 2.7 3.6
3 2 5 3 2.4 4 2
4 1.5 3.2 2.7 2.5 1.7 0.9
5 3.6 2.8 0.6 2 3.1 2
6 3.2 4.1 1.4 2.8 0.8 4.8
7 4 5 1.5 3.5 4.2 2.1
8 45 1.6 2.2 3.8 1.2 3
9 0.8 1.9 1.3 4 1.3 1.6
10 1.4 0.8 1.7 2.6 3.7 1.9
11 2.2 1.9 1.4 1 3.4 5
12 1.5 1 3.7 4.3 3.7 0.8
13 2.6 2.8 1.6 2.4 3.6 2
14 1.2 3.1 1.4 2.8 1 2.6
15 1.9 1.5 3.2 0.8 1.8 3.5
16 2.4 1.8 5 3.8 1.2 3
17 3.5 2.5 1.8 3.6 5 4.6
18 4.4 2.6 1.2 3 4.2 4

# pool related parameters
parameters psize(pool);
psize(pool) = 75;

# product related parameters
table prodparams(pro,*)

1 2 3
1 0 75 30
2 0 85 15
3 0 80 25
4 0 50 40
5 0 130 30
6 0 120 35
7 0 100 22
8 0 90 10
9 0 95 15 ;

parameters prl(pro), pru(pro), pprice(pro);
prl(pro) = prodparams(pro,’1’);

pru(pro) = prodparams(pro,’2’);

pprice(pro) = prodparams(pro,’3’);

parameter pglbd(pro, qual);
pqlbd(pro, qual) = 0;
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table pqubd(pro, qual)

1.8 2.4

1.7

3.5 2.9 0.9 3.2

4.2

1

4 3.8 2.6

4.4 3.7 2.6

2.5 4.8 3.1
0.8
2.6
3.5

3
4

1.8
2.2

1.2 3.7 4.2 4.6

2.4

3.8 0.8
1.9 0.9

1

5 2.2
1.5 0.8 3.2 3.8 4.5 3.8

2.6 3.9 45 4.2 0.8 2.2 ;

3

8
9

3

# network related parameters

table ubq(comp, pool)

10

2 3

1

10
11

12
13
14
15
16
17
18

12 13 14

11
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10
11
12
13
14
15
16
17
18
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parameter ubz(comp, pro);
ubz (comp, pro) = 0;

$include pool.gms
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GAMS Implementation of Example 3

$ontext
Gams Model of Example 3 Pooling Problem
Author: Emre Armagan
Date: July, 2007

$offtext

$eolcom #

# Set Declarations
set comp /1%16/;
set pro /1%6/;
set qual /1x1/;
set pool /1%10/;

# components related parameters
table compparams(comp,*)

1 2 3
1 0 100 30
2 0 100 40
3 0 100 45
4 0 100 38
5 0 100 18
6 0 100 30
7 0 100 32
8 0 100 45
9 0 100 55
10 0 100 50
11 0 100 20
12 0 100 19
13 0 100 20
14 0 100 28
15 0 100 30
16 0 100 45 ;

parameters cl(comp), cu(comp), cprice(comp);
cl(comp) = compparams(comp,’1’);

cu(comp) = compparams(comp,’2’);
cprice(comp) = compparams (comp,’3’);

table cqual(comp,qual)
1
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1 3
2 4
3 4.2
4 3.3
5 1
6 2.2
7 2.6
8 3.8
9 4
10 5
11 5.2
12 0.8
13 1.6
14 1
15 1.9
16 3.5 ;

# pool related parameters
parameters psize(pool);
psize(pool) = 75;

# product related parameters
table prodparams(pro,*)

1 2 3
1 0 560 80
2 0 20 90
3 0 256 25
4 0 40 30
5 0 30 40
6 0 60 75 ;

parameters prl(pro), pru(pro), pprice(pro);
prl(pro) = prodparams(pro,’1’);

pru(pro) = prodparams(pro,’2’);

pprice(pro) = prodparams(pro,’3’);

parameter pqlbd(pro, qual);
pglbd(pro, qual) = 0;

table pqubd(pro, qual)
1

W N -
DN
o1 01 01 W
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10

# network related parameters
2 3

table ubq(comp, pool)
1

10
11

12
13
14
15
16

~\
o
S
N
o, O
g
o |
9]
N~ ~
N O
Q N
| o
[} -
o Q.
L g
© O
m 9]
'
4 N
© Qo
QB

$include pool.gms
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GAMS Implementation of Example 4

$ontext
Gams Model of Example 4 Pooling Problem
Author: Emre Armagan
Date: July, 2007

$offtext

$eolcom #

# Set Declarations
set comp /1%16/;
set pro /1%6/;
set qual /1%8/;
set pool /1%10/;

# components related parameters
table compparams(comp,*)

1 2 3
1 0 100 30
2 0 100 40
3 0 100 45
4 0 100 38
5 0 100 18
6 0 100 30
7 0 100 32
8 0 100 45
9 0 100 55
10 0 100 50
11 0 100 20
12 0 100 19
13 0 100 20
14 0 100 28
15 0 100 30
16 0 100 45 ;

parameters cl(comp), cu(comp), cprice(comp);
cl(comp) = compparams(comp,’1’);

cu(comp) = compparams(comp,’2’);
cprice(comp) = compparams (comp,’3’);

table cqual(comp,qual)
1 2 3 4 5 6 7
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1.4 2.8 4.1

0.8

3.1

5
1

2.5 5.6 2.6 2.9
3.2 5.2 4.7

4.5
3.2 3.8

1.6

3

4 2.2 4.6

2
3
4
5

0.8
3 4.2

1

2

2
6 2.8 4.5 5.8 3.4 4.6

1.9

1.8 0.2 3.5

3
3.8

2.8

2

4.5 2.6 5.2 3.8 6.2 2.3 0.5

4 5.2 4.5 3.5
4.8 0.8 0.3

7
8
9
10
11

.5
4
.2

1

1.9 0.6 0.9

4

1

2 2.6 0.7
4.4

3.1

1 5.4 5.1

2.8

1.8 0.6

1

1.4 3.6 0.2

4.7 5.3 3.7

3 5.8

1.5 4.1

0.6

12
13
14
15
16

2.5

2

0.6

1
1.8 5.5

1.6 3.8 0.9 3.8

3.9 4.5 4.2

1.2 4.6
1.5 3.1 ;

4

3

4.4 4.8 5.2 2.9 4.2 4.5

# pool related parameters
parameters psize(pool);

psize(pool) = 75;

# product related parameters

table prodparams(pro,*)

3
80

2
50
20
25
40

1

90
25
30
40

30

75

60

parameters prl(pro), pru(pro), pprice(pro);

prl(pro)

prodparams (pro,’1’);

prodparams (pro,’2’);

pru(pro)

prodparams (pro,’3’);

pprice(pro)

parameter pqlbd(pro, qual);

pqlbd(pro, qual)

table pqubd(pro, qual)

2 3

1
3.6

4

5 2.8 3.4 2.6 4.4

2.5

6

4 4.6 5.8 2.6
5.5 4.8 3.4 4.5 3.5 3.6 2.8 3.6

2
3
4

.5 4 4.8 1.8 4.6

1

2.8 5.2 3.9
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4 4.2

2.8

3.6 2.1

5

1.5 ;

3 0.8 4.6 0.5

0.4

# network related parameters

table ubq(comp, pool)

10

10
11

12
13
14
15
16

parameter ubz(comp, pro);

ubz (comp, pro)

$include pool.gms
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Appendix B

Gas Network Example

Gas network problems are a special kind of pooling probletmsre/pools can be modeled
as mixers and splitters. Modeling pools as mixers and sgitgives the opportunity to

write mass balances for each quality separately.

For mixers, for a selected quality, mass balance can beewrés the output volume
flow rate equals to the sums of input volume flow rates and itlisear equation. In other
words, for the mixer shown in Figure B-1 (a), for a selectedityanass balance can be
written asfsz = f; + fo> wheref; are flow variables and it is a linear equation. However, for
splitters, writing mass balances separately still inteetubilinear terms. In other words,
for the splitter shown in Figure B-1 (b), for a selected gyahtass balance can be written
asqif3 = qofi + (1—qg2) f2 where f; are flow variablesp; are quality variables and and
obviously, this equation is a bilinear equation. But, nowcsiilinear terms are only
coming from the splitters instead of all of the pools, the bemof bilinear terms reduces

and therefore the complexity of the problem reduces greatly

In order to test the performance of the proposed BD algorithagas network problem,
an example problem shown in Figure B-2 is studied. As showherfigure this problem
has 10 pools, 8 sources, 3 qualities and 4 end-products. shi@geparameters (quality

parameters, costs, prices and demand requirements) touainis problem is given in
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Mixer f

(a) .

f —{Splitter

(b) 2

Figure B-1: Representation of a mixer (a) and splitter (b)

Tables B.1, B.2, B.3, B.4 and B.5. GAMS implementation of this pgobis also provided

at the end of this Chapter.
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Figure B-2: The gas network example
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| Source quality parameters|

Sources Qualities

1] 2 3
1 25(29| 0.8
2 2.4 1.8 2
3 11| 3 2.4
4 15| 2 1.8
5 1.8/ 19| 0.6
6 09|14 24
7 1.2/15| 35
8 24119 1

Table B.1: Quality parameters in source nodes for the gasonktxample

| Source costs |

Sources| Costs
1 15

10

20

5

10

15

25

8 20

N Ol BWN

Table B.2: Cost parameters in source nodes for the gas netwanhkpde

| Demand quality requirements |

Products Quialities
1 2 3
1 2 |2 3
2 3 115 2
3 15| 3 15
4 2 |25 0.75

Table B.3: Quality requirements in demand nodes for the gaganke example

| Demand flow requirements|

Products Max. flow
1 50
2 100
3 75
4 80

Table B.4: Flow requirements in demand nodes for the gas metsyx@mple
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| Prices |

Products | Prices
1 30
2 45
3 10
4 25

Table B.5: Prices in demand nodes for the gas network example
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GAMS Implementation of Gas Network Example

$ontext
Gams Model of Gas network example
Author: Emre Armagan
Date: July, 2007
$offtext
$TITLE Natural Gas Network Optimization Model
SETS
NodeSet "Superset for Nodes"
ArcSet "Superset for Arcs"
Junctions(NodeSet) "Set of junctions where production should be set to zero"
Wells(NodeSet) "Set of Wells"
Splitters(NodeSet) "Set of Splitter"
SplitOut(Splitters, ArcSet)
* Mixers(NodeSet) "Set of Mixer"
Demands "Set of demand"
dNodes (NodeSet) "Demand Nodes"
ddN(Demands, NodeSet) "correlation set between the demands and node"
Components "Set of all components"
Spec(components) "components on which specification is forced"

ArcOrigin(ArcSet, NodeSet) "Arc origin to Node mapping"
ArcEnd (ArcSet, NodeSet) "Arc end to Node mapping";

PARAMETERS

fA(ArcSet) "friction factor constant for arcs"
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A(Wells) "Reservoir flow equation constants"
B(Wells) "Reservoir flow equation constants"
C(Wells) "Reservoir flow equation constants"
F(Wells) "Reservoir flow equation constants"
E(Wells) "sqrt(B)"
Pres(Wells) "Reservoir Pressure"

* IMPERIAL UNITS
fAi(ArcSet) "friction factor constant for arcs"
Ai(Wells) "Reservoir flow equation constants"
Bi(Wells) "Reservoir flow equation constants"
Ci(Wells) "Reservoir flow equation constants"
Fi(Wells) "Reservoir flow equation constants"

D(Demands) "Demands"
Pdemand (Demands) "Requested Pressure at a demand"

MW(Components) "Molecular Weight of components"
yspec(Demands, spec) "Specification compositions on a component set
(Mole fraction)";

SCALARS
Ti "Duration in days for a time interval"
rho "Density at standard temperature and pressure"
convfactorP "Pressure conversion factor"
convfactorV "Volumetric flow rate conversion factor"
convfactorl "Intermediate factors"
convfactor2 "Intermediate factors"
convfactor3 "Intermediate factors"
convfactor4 "Intermediate factors"
PdropScalefactorl "Scale factor for Arc pressure drop"
PdropScalefactor2 "Scale factor for Well pressure drop"
MoleScalefactor "Flow scale factor";

*P AR A M ETE R F I L E

$include gasplan-parameters

$ontext
Variable and Parameter Naming Conventions
fe = field exit (Gas collection Network exit, this is raw gas with liquids in)
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ce = compressor exit

1 = liquids

g = gases

sr = sour field
sw = sweet field
b = blending

fp= final field production
i = component flows
ds = desulfurization facility in sour field

dh = dehydration by adsorption in the sweet field
C = compression
st = storage
in = in
out = out
cf = component flows
$offtext
VARIABLES
* Objective value
z

* (Quantities at Each Node
Mpcf (NodeSet, Components) "Component flow at each node"

* Quantities at Arcs
PAin(ArcSet) "Pressure at the origin of an edge (equal to the node before it)
PAout (ArcSet) "Pressure at end of the arc (x10 bar)"

MA(ArcSet) "Cumulative Flow in Arc (1076 kg)"
MAcf (ArcSet, Components) "Cumulative Component Flow in Arc (1076 kg)"
QA(ArcSet) "Volumetric flow in Arc in cu.m/day"

* Quantities at Wells
Pfbhp(Wells) "Flowing Bottom Hole Pressure for well"
Pfthp(Wells) "Flowing Tubing Head Pressure for well"
Qp(Wells) "Volumetric flow rates at the wells"

* Spliting Ratio
alpha(Splitters) "Split Fraction"

* Demand variables

Fmolar (Demands, Components) "Component molar flow rate at demands"
FTmolar (Demands) "Total molar flow rate";

x (Demands, Components) "Molar Composition at demands";

*
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EQUATIONS

ArcPressureFlowRelation(ArcSet)
ArcMassVolumeRelation(ArcSet)
TotalArcFlow(ArcSet)

PositiveFlowConstraint (ArcSet)

NodeArcMassBalance(NodeSet, Components)

ArcPressureRelationsN9A
ArcPressureRelationsN9B
ArcPressureRelationsN9C

ArcPressureRelationsN10A
ArcPressureRelationsN10B
ArcPressureRelationsN10C

ArcPressureRelationsN11A
ArcPressureRelationsN11B
ArcPressureRelationsN11C

ArcPressureRelationsN12A
ArcPressureRelationsN12B
ArcPressureRelationsN12C

ArcPressureRelationsN13A
ArcPressureRelationsN13B
ArcPressureRelationsN13C

ArcPressureRelationsN14A

ArcPressureRelationsN15A
ArcPressureRelationsN15B
ArcPressureRelationsN15C

ArcPressureRelationsN16A
ArcPressureRelationsN16B
ArcPressureRelationsN16C
ArcPressureRelationsN16D
ArcPressureRelationsN16E
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ArcPressureRelationsN17A

ArcPressureRelationsN18A
ArcPressureRelationsN18B
ArcPressureRelationsN18C

ArcPressureRelationsN19A
ArcPressureRelationsN19B

JunctionNodes (Junctions, Components)

SplitterConstraintN9 (Components)
SplitterConstraintN10(Components)
SplitterConstraintN11(Components)
SplitterConstraintN15(Components)
SplitterConstraintN16 (Components)

BottomHolePressure(Wells)
TubingHeadPressure (Wells)
BHResRelation(Wells)

BHPTHPRelationl (Wells)
BHPTHPRelation2(Wells)

TubingHeadFlowConditionN1
TubingHeadFlowConditionN2
TubingHeadFlowConditionN3
TubingHeadFlowConditionN4
TubingHeadFlowConditionN5
TubingHeadFlowConditionN6
TubingHeadFlowConditionN7
TubingHeadFlowConditionN8

WellComponentFlows(Wells, Components)

DemandPressureConstraintN20
DemandPressureConstraintN21
DemandPressureConstraintN22
DemandPressureConstraintN23
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DemandConstraint (Demands)
DemandMolarFlows (Demands, Components)
DemandMolarSpecification(Demands, Spec)

*  DemandMolarComposition(Demands, Components)
DemandTotalMoleFlow(Demands)
Objective;

ArcPressureFlowRelation(ArcSet).. fA(ArcSet)*QA(ArcSet)*QA(ArcSet)
- PAin(ArcSet)*PAin(ArcSet) + PAout(ArcSet)*PAout (ArcSet) =E= 0;
ArcMassVolumeRelation(ArcSet).. MA(ArcSet) - QA(ArcSet)*rho*Ti =E= 0;

TotalArcFlow(ArcSet) .. MA(ArcSet) - SUM(Components, MAcf(Arcset, Components)) =E=

PositiveFlowConstraint (ArcSet).. PAout(ArcSet) - PAin(ArcSet) =L= 0;

* RELATIONSHIP BETWEEN NODE and ARC VARIABLES

NodeArcMassBalance (NodeSet, Components). .
SUM(ArcSet$ArcOrigin(ArcSet, NodeSet), MAcf(ArcSet, Components))
- SUM(ArcSet$ArcEnd (ArcSet, NodeSet), MAcf(ArcSet, Components))
- Mpcf (NodeSet, Components) =E= 0;

NodeArcMassBalance (NodeSet) ..
SUM(ArcSet, IN(NodeSet, ArcSet)x*MAcf (ArcSet))
=E= Mpcf (NodeSet, Components) ;

ArcPressureRelationsN9A.. PAin(’A9’) - PAout(’A1’) =L= 0;
ArcPressureRelationsN9B.. PAin(’A10’) - PAout(’Al1’) =L= 0;
ArcPressureRelationsN9C.. PAin(’A9’) - PAin(’A10’) =E= 0;

PAout (’A5?) =L=
PAout (°A5°) =L= 0;
PAin(’A12°) =E= 0;

ArcPressureRelationsN10A.. PAin(’A11°)
ArcPressureRelationsN10B.. PAin(’A12°)
ArcPressureRelationsN10C.. PAin(’A11°)

|
=
o

ArcPressureRelationsN11A.. PAin(’A13°)

PAout (’A6°) =L= 0;
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ArcPressureRelationsN11B..
ArcPressureRelationsN11C..

ArcPressureRelationsN12A..
ArcPressureRelationsN12B..
ArcPressureRelationsN12C. .

ArcPressureRelationsN13A..
ArcPressureRelationsN13B..
ArcPressureRelationsN13C..

ArcPressureRelationsN14A. .

ArcPressureRelationsN15A. .
ArcPressureRelationsN15B..
ArcPressureRelationsN15C. .

ArcPressureRelationsN16A. .
ArcPressureRelationsN16B. .
ArcPressureRelationsN16C. .
ArcPressureRelationsN16D. .
ArcPressureRelationsN16E. .

ArcPressureRelationsN17A..
ArcPressureRelationsN18A..
ArcPressureRelationsN18B. .

ArcPressureRelationsN18C. .

ArcPressureRelationsN19A..
ArcPressureRelationsN19B..

* JUNCTION NODES

PAin(’A14°)
PAin(’A13°)

PAin(’A15°)
PAin(’A15°)
PAin(’A15°)

PAin(’A16°)
PAin(’A16°)
PAin(’A16°)

PAin(’A17°)

PAin(’A18°)
PAin(’A19°)
PAin(’A18°)

PAin(’A20°)
PAin(’A21°)
PAin(’A20°)
PAin(’A21°)
PAin(’A20°)

PAin(’A22°)
PAin(’A23°)
PAin(’A23°)
PAin(’A23°)

PAin(’A24°)
PAin(’A24°)

JunctionNodes(Junctions, Components)..

* SPLITTER CONSTRAINTS

SplitterConstraintN9(Components) . .

MAcf(’A9’, Components - alpha(’N9’)*MAcf(’Al’,Components) =E= 0;
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PAout (’A67)
PAin(’A147)

PAout(’A10?)
PAout (’A2°)
PAout (’A3?)

PAout (’A47’)
PAout(’A11?)
PAout(’A13?)

PAout(’A14°)

PAout(’A167)
PAout(’A167)
PAin(’A19°)

PAout (°A157?)
PAout (°A157?)
PAout (°A18?)
PAout (°A187)
PAin(’A217)

PAout (’A20°)
PAout (’A217)
PAout (°A177)
PAout (A7)

PAout(’A19?)
PAout (°A8”)

=L= 0;
=E= 0;

=L= O;

L= 0;

== 0 ;
== 0 ;
=[=0 ;

=L= 0;

== 0 ;
== 0 ;

=L=0
=L= 0;
=L=0

0

=E= 0;

=L= o;

=L= 0;
=L= 0;
=L= 0;

=L= O;

Mpcf (Junctions, Components) =E= 0;



SplitterConstraintN10(Components) . .
MAcf(’A11’, Components) - alpha(’N10’)*MAcf(’A5’,Components) =E= 0;

SplitterConstraintN11(Components) . .
MAcf (’A13’, Components) - alpha(’N11’)*MAcf(’A6’,Components) =E= 0;

SplitterConstraintN15(Components) . .
MAcf (’A18’, Components) - alpha(’N15°)*MAcf(’A16°’,Components) =E= 0;

SplitterConstraintN16 (Components) . .
MAcf (’A20°, Components) - alpha(’N16’)*(MAcf(’A15°,Components)
+ MAcf(’A18’,Components)) =E= 0;

* Well Constraints
BottomHolePressure (Wells) ..

Pres(Wells)*Pres(Wells) - Pfbhp(Wells)*Pfbhp(Wells)
- A(Wells)*Qp(Wells) - F(Wells)*Qp(Wells)*Qp(Wells) =E= 0;

TubingHeadPressure (Wells). .
B(Wells)*Pfthp(Wells)*Pfthp(Wells) - Pfbhp(Wells)*Pfbhp(Wells)
- C(Wells)*Qp(Wells)*Qp(Wells) =E= 0;

BHResRelation(Wells) .. Pfbhp(Wells)-Pres(Wells) =L= 0;

BHPTHPRelationl(Wells).. Pfthp(Wells)-Pfbhp(Wells) =L= O;
BHPTHPRelation2(Wells).. Pfbhp(Wells) - E(Wells)*Pfthp(Wells) =L= 0;

TubingHeadFlowConditionN1. . PAin(’A1’) - Pfthp(’°N1’) =L= 0 5
TubingHeadFlowConditionN2..  PAin(’A2’) - Pfthp(’°N2’)=L= 0 ;
TubingHeadFlowConditionN3..  PAin(’A3’) - Pfthp(’°N3’)=L= 0 ;
TubingHeadFlowConditionN4.. PAin(’A4’) - Pfthp(’°N4’) =L=0 ;
TubingHeadFlowConditionN5..  PAin(’A5’) - Pfthp(°N5’)=L= 0 ;
TubingHeadFlowConditionN6. . PAin(’A6’) - Pfthp(’°N6’)=L= 0 ;
TubingHeadFlowConditionN7. . PAin(’A7’) - Pfthp(°N7°) =L= 0 ;
TubingHeadFlowConditionN8..  PAin(’A8’) - Pfthp(’°N8’)=L= 0 ;

WellComponentFlows (Wells, Components)..
Mpcf (Wells, Components) - y(Wells,Components)*rho*Ti*Qp(Wells) =E= 0;
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DemandConstraint (Demands) . .
Ti*rho*D(Demands) + SUM(Components, SUM(dNodes$ddN(Demands, dNodes),
Mpcf (dNodes, Components))) =L= 0;

DemandPressureConstraintN20.. Pdemand(’d1’) - PAout(’A9’) =L= 0;
DemandPressureConstraintN21.. Pdemand(’d2’) - PAout(’A22’) =L= 0;
DemandPressureConstraintN22.. Pdemand(’d3’) - PAout(’A23’) =L= 0;
DemandPressureConstraintN23.. Pdemand(’d4’) - PAout(’A24°’) =L= 0;

DemandMolarFlows(Demands, Components)..
Fmolar (Demands, Components) + (SUM(dNodes$ddN(Demands, dNodes),
Mpcf (dNodes, Components))*MoleScalefactor)/MW(Components) =E= 0;

DemandMolarComposition(Demands, Components) ..
x (Demands, Components)*FTmolar(Demands) =E= Fmolar (Demands, Components);

DemandMolarSpecification(Demands, Spec)..
Fmolar (Demands, Spec) - yspec(Demands, Spec)*FTmolar(Demands) =L= 0;

DemandTotalMoleFlow(Demands) . .
FTmolar (Demands) - SUM(Components, Fmolar(Demands, Components)) =E= 0;

Objective.. SUM((Components, dNodes), Mpcf(dNodes, Components)) - z =E= 0;

MODEL GasProductionPlanning /all/;

$include gasplan-bounds

*$include local-solution

OPTION NLP=BARON;

OPTION Limrow = 20;

OPTION Limcol = 20;

OPTION sysout=on;
GasProductionPlanning.optfile = 0;

SOLVE GasProductionPlanning USING NLP MINIMIZING z;

xfile levels /local-solution.gms/;
*$include write-levels
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Appendix C

The Stochastic Pooling Problem

To validate that the proposed algorithm works for stockgstioling problems, 4 example
pooling problems (which were created by the author) aressblin all examples, problems
are solved with 1,2 and 3 different quality variables andragdial test of the algorithm,
only the quality parameters at source nodes are assumede@dain variables for conve-
nient analysis of the results. For convenience, only 7 ptesscenarios are selected and in
all of the example problems same scenarios are used. Mar@oesery possible scenario,
all 3 source quality parameters are considered as having galores for simplicity. In other
words, possible scenarios in all of the examples are detedhas the following: Scenario
1 has 1 as the value of all 3 quality parameters at sourcestigtiprobability of 0.1; in
Scenario 2, the value of the quality parameters at source$ iand the probability is 0.1;
Scenario 3 has 2 as the value of the quality parameters vatprttbability of 0.2; Scenario
4 has 2.5 as the value of the quality parameters and its pitipad 0.2; in Scenario 5
the value of the quality parameters is 3 and its probabiit.R5; Scenario 6 has 4 as the
value of the quality parameters with the probability of Q.8@6d Scenario 7 has 5 as the
value of all 3 quality parameters at sources and its proiasl0.1. Table C.1 presents the
guality parameters in the sources in all scenarios and tbgjrective probability values in

detail. This probability distribution is taken as same fthiBaqualities and parameters are
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] Probabilities of Scenarios \

Scenarios| Probabilities | Source Qualities
1] 2 3
1 0.1 1 1 1
2 0.1 15/15| 15
3 0.2 2 | 2 2
4 0.2 25|25| 25
5 0.25 3|3 3
6 0.05 4 4 4
7 0.1 5|5 5

Table C.1: Source quality parameters in scenarios and tpectage probability values

| Investment costs of pools

Pools Costs
1 200

Table C.2: First stage investment costs of pools for StochBgsample 1

used for all of them. When less than 3 quality variables is uedremaining ones are ne-
glected (i.e. when 1 quality variable is considered, thepesters for the second and third
are neglected; when 2 quality variables are consideredpdn@meters for the third one
are neglected.). More information for both of these exanmptgblems including quality
specs, demand requirements, cost coefficients is giverlowiog sections. In addition,
GAMS implementation of the BD algorithm for stochastic prams is given in the end of

this chapter.

C.1 Stochastic Example 1

Example 1 has 1 pool, 3 sources, 2 end-products. Necessameters to construct this

problem is given in Tables C.2, C.3, C.4, C.5, C.6, C.7 and C.8.
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| Investment costs of pipes

Sources Pools
1
1 100
2 50
3 100

Table C.3: First stage investment costs of pipelines (ssurcpools) for Stochastic Exam-
ple 1

| Investment costs of pipes
Pools| End-products
1 2

1 150 100

Table C.4: First stage investment costs of pipelines (pa@otketnands) for Stochastic Ex-
ample 1

| Source costs |

Sources| Costs
1 15
2 10
3 20

Table C.5: Second stage cost parameters in source nodes&haStic Example 1

| Demand quality requirements |

Products Quialities
1|2 3

1 3|1 2

2 4|2 4

Table C.6: Second stage quality requirements in demand riod8sochastic Example 1

| Demand flow requirements|
Products Max. flow
1 100
2 100

Table C.7: Second stage flow requirements in demand nodesdchastic Example 1

| Prices |
Products | Prices
1 40
2 50

Table C.8: Second stage prices in demand nodes for StocExsinple 1

135



] Investment costs of pools{

Pools Costs
1 400
2 400

Table C.9: First stage investment costs of pools for StochBgample 2

| Investment costs of pipes

Sources Pools
1 2
1 100 25
2 50 150
3 100 200
4 150 50
5 100 100

Table C.10: First stage investment costs of pipelines (&suie pools) for Stochastic Ex-
ample 2

C.2 Stochastic Example 2

Example 2 has 2 pools, 5 sources, 3 end-products. Necesmay@ters to construct this

problem is given in Tables C.9, C.10, C.11, C.12, C.13, C.14 and C.15.

| Investment costs of pipes
Pools| End-products
1 2 3
1 100| 100| 200
2 50 | 30 75

Table C.11: First stage investment costs of pipelines (ptmoldemands) for Stochastic
Example 2
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| Source costs |

Sources| Costs
1 10
2 25
3 30
4 40
5 40

Table C.12: Second stage cost parameters in source nodas¢baStic Example 2

| Demand quality requirements |

Products Quialities
1| 2 3
1 15| 1 25
2 3 128 3.5
3 17| 2.6 1.9

Table C.13: Second stage quality requirements in demandsriod&tochastic Example 2

| Demand flow requirements|

Products Max. flow
1 50
2 200
3 80

Table C.14: Second stage flow requirements in demand nod&sdonastic Example 2

|

Prices

|

Products

Prices

1

20

2

60

3

40
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] Investment costs of pools{

Pools Costs
1 100
2 200
3 300
4 400

Table C.16: First stage investment costs of pools for StaichBgample 3

| Investment costs of pipes |
Sources Pools

1 2 3 4

100| 25 | 150| 75
50 | 150| 50 | 25
100| 200| 100 | 100
150| 50 | 200| 75
100| 100| 30 | 60
100| 200| 50 | 125
150 50 | 70 | 175
100| 100| 75 | 100

QO N OO | W NP

Table C.17: First stage investment costs of pipelines (&suie pools) for Stochastic Ex-
ample 3

C.3 Stochastic Example 3

Example 3 has 8 sources, 4 pools, 5 end-products. Necessany@ters to construct this

problem is given in Tables C.16, C.17, C.18, C.19, C.20, C.21 and C.22

| Investment costs of pipes |

Pools End-products

1 2 3 4 5
100| 100| 200| 50 | 75
50 | 30 | 75 | 100 200
100| 100| 200| 50 | 80
50 | 30 | 75 | 200 150

BAIWNPE

Table C.18: First stage investment costs of pipelines (ptmoldemands) for Stochastic
Example 3
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| Source costs |
Sources| Costs
1 30
10
10
35
50
25
30
20

ONOO OB WN

Table C.19: Second stage cost parameters in source nodas¢biaStic Example 3

| Demand quality requirements |

Products Qualities
1] 2 3
1 2 112 2.5
2 3 ]2 2
3 15|24 1.9
4 3] 3 3.5
5 18| 4 3.8

Table C.20: Second stage quality requirements in demandsriod&tochastic Example 3

| Demand flow requirements|

Products Max. flow
1 200
2 200
3 100
4 200
5 100

Table C.21: Second stage flow requirements in demand nod&sdonastic Example 3

| Prices |
Products | Prices
1 30
2 10
3 50
4 75
5 40

Table C.22: Second stage prices in demand nodes for StacExstmple 3
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] Investment costs of pools{

Pools Costs
500
400
300
200
300
400
400
100
100
50

Bl oo Nlo| o & w[ N e

Table C.23: First stage investment costs of pools for StachBgample 4

C.4 Stochastic Example 4

Example 4 has 12 sources, 10 pools and 8 end-products. NMegessameters to construct

this problem is given in Tables C.23, C.24, C.25, C.26, C.27, C.28aR9.
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| Investment costs of pipes |
Sources Pools

1 2 3 4 5 6 7 8 9 10
100| 25 | 150| 75 | 100| 125| 250 | 175| 100 | 50
50 | 150| 50 | 125|150 200| 50 | 30 | 5O | 75
100| 200| 100 | 100| 100| 100 | 150| 125| 40 | 25
150| 50 | 200| 75 | 60 | 40 | 240| 175| 160 | 275
100| 100| 30 | 60 | 120| 150| 50 | 100| 200 | 50
100| 200| 50 | 125| 150| 60 | 250| 50 | 150| 40
150 50 | 70 | 175| 100| 80 | 100| 30 | 100| 175
100| 100| 75 | 100| 50 | 75 | 50 | 25 | 30 | 200
100| 100| 30 | 60 | 75 | 50 | 30 | 150| 50 | 60
100| 200| 50 | 125| 30 | 200| 25 | 50 | 200 | 180
150| 50 | 70 | 175] 50 | 250 | 100| 100| 250 | 50
100| 100| 75 | 100| 125| 125| 140 | 175 | 100 | 225

PR
RIEBl© o ~jo|a & w| N -

Table C.24: First stage investment costs of pipelines (&suie pools) for Stochastic Ex-
ample 4

| Investment costs of pipes |

Pools End-products

1 2 3 4 5 6 7 8
1 |100|100|{200| 50 | 75 | 100|150 175
2 50| 30 | 75 | 100|200| 50 | 60 | 80
3 |[100|100|200| 50 | 80 | 100| 100| 50
4 50 | 30 | 75 | 200| 150| 220 | 150| 80
5 |100|100|200| 50 | 75 | 120| 80 | 125
6 50 | 30 | 75 | 100|200| 70 | 60 | 140
7 |100|100|200| 50 | 80 | 100| 75 | 210
8 50 | 30 | 75 | 200| 150 130| 150 225
9 |100|100|200| 50 | 80 | 180| 50 | 60
10 | 50 | 30 | 75 | 200| 150| 230| 250| 50

Table C.25: First stage investment costs of pipelines (ptoldemands) for Stochastic
Example 4

141



| Source costs |

Sources| Costs
1 10
2 15
3 20
4 30
5 25
6 10
7 40
8 20
9 20

10 25
11 10
12 20

Table C.26: Second stage cost parameters in source nodasd¢biaStic Example 4

| Demand quality requirements |

Products Qualities

1] 2 3
1 1|15 2
2 2 | 3 1
3 1525 2
4 2 | 3 1.5
5 1.8/ 0.9 4
6 2 125 3
7 4 | 3 3
8 2 112 3

Table C.27: Second stage quality requirements in demandrod8tochastic Example 4

| Demand flow requirements|
Products Max. flow
1 100
90
80
100
110
120
140
150

ONOO OB WN

Table C.28: Second stage flow requirements in demand nod&sddnastic Example 4
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| Prices |
Products | Prices
1 30
40
50
60
20
30
15
20

NGB WN

Table C.29: Second stage prices in demand nodes for StacExstmple 4
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GAMS Implementation of the BD Algorithm for Stochastic Pooling

Problems

$ontext
BD Algorithm for Stochastic Pooling Problems
Simple Seven Scenario Problem (Example 1)
Author: Emre Armagan
Date: April, 2008

$offtext

$TITLE Stochastic Pooling Problem Example

# Set Declarations
set comp /1%3/;
set pro /1%2/;
set qual /1x%1/;
set pool /1x1/;
set sce /1x7/;

# investment related parameters
parameters investpool(pool) ;

investpool(pool) = 200 ;

table investpipel(comp, pool)

1
1 100
50

3 100 ;

table investpipe2(pool, pro)
1 2
1 150 100 ;

# source related parameters
table compparams(comp,*)

1 2 3
1 0 200 15
0 200 10
3 0 200 20 ;

parameters cl(comp), cu(comp), cprice(comp);
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cl(comp) = compparams(comp,’1’);
cu(comp) = compparams(comp,’2’);
cprice(comp) = compparams (comp,’3’);

# pool related parameters
parameters psize(pool);
psize(pool) = 200;

# product related parameters
table prodparams(pro,*)

1 2 3
1 0 100 40
2 0 100 50 ;

parameters prl(pro), pru(pro), pprice(pro);
prl(pro) = prodparams(pro,’1’);

pru(pro) = prodparams(pro,’2’);

pprice(pro) = prodparams(pro,’3’);

parameter pqlbd(pro, qual);
pqlbd(pro, qual) = O;

table pqubd(pro, qual)

1
1 3
2 4

# scenario related parameters
table Scel(comp,qual)
1
1 1
1
1

table Sce2(comp,qual)

1

oo o1 -

1.
1.
1.5 ;
table Sce3(comp,qual)
1

1 2
2
2 ;
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table Sce4(comp,qual)

N NN
o o O -

2

table Sceb(comp,qual)

1
3
3
3

2

table Sce6(comp,qual)

1
4
4
4

b

table Sce7(comp,qual)

1
5
5
5 ;
cquall(comp,qual)
cqual2(comp,qual)
cqual3(comp,qual)
cqual4(comp,qual)
cqual5(comp,qual)

cqual6(comp,qual)
cqual7(comp,qual)

= Scel(comp,qual) ;
= Sce2(comp,qual) ;
= Sce3(comp,qual) ;
= Sce4(comp,qual) ;
= Sceb(comp,qual) ;
= Sce6(comp,qual) ;
= Sce7(comp,qual) ;

# probability distribution
parameters prob(sce);

prob(’1’) = 0.1 ;

prob(’2’) = 0.1 ;
prob(’3’) = 0.2 ;
prob(’4’) = 0.2 ;
prob(’5’) = 0.25 ;
prob(’6’) = 0.05 ;
prob(’7’) = 0.1 ;

b

3

# network related parameters
table ubq(comp, pool)
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table uby(pool, pro)
1 2 3
1 100 100 100 ;

parameter ubz(comp, pro);
ubz(comp, pro) = 0;

iter ’max Benders iterations’ /iterl*iter100/
dyniter(iter) ’dynamic subset’ ;

free variables

zmaster ’objective variable of master problem’
theta ’extra term in master obj’ ;
equations
masterobj ’master objective function’
constrl(pool) >constraint 1’
constr2(pool) >constraint 2’
optcut (dyniter) ’Benders optimality cuts’ ;
parameter
cutconst(iter) >constants in optimality cuts’

cutcoeff (iter,j) ’coefficients in optimality cuts’;

masterobj. .

zmaster =e=  sum(pool, investpool(pool)*buildpool(pool))

+ sum((comp, pool),investpipel(comp, pool)*buildpipel(comp, pool))
+ sum((pool, pro),investpipe2(pool, pro)*buildpipe2(pool, pro))

+ theta ;

constrl(pool)..  buildpipel(comp, pool) - buildpool(pool) =e= 0 ;
constr2(pool)..  buildpipe2(pool, pro) - buildpool(pool) =e= 0 ;
optcut (dyniter) .. theta =g= cutconst(dyniter) +

sum(pool, cutcoeff (dyniter,pool)*();
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model masterproblem /masterobj, constrl, constr2, optcut/;

free variables

zsub ’objective variable of sub problem’
equations obj ’subproblem objective function’

clower (comp) ’lower bound component availability’
cupper (comp) ’upper bound component availability’
plower (pro) ’minimum product production’
pupper (pro) ’maximum product demand’
pqlower (pro,qual) ’minimum product quality requirement’
pqupper (pro,qual) ’maximum product quality’
fraction(pool) >fractions sum to one’ ;

obj.. zsub =e= sum(pro, sum(pool$(uby(pool,pro) > 0),
sum (comp$ (ubq(comp, pool) > 0),
cprice(comp)*y(pool,pro)*q(comp,pool)))
- pprice(pro) *sum(pool$ (uby(pool,pro) > 0),
y(pool, pro))
+ sum(comp$ (ubz (comp,pro)>0),
(cprice(comp)-pprice(pro))*z(comp, pro)));

clower (comp) .. sum(pool$(ubqg(comp,pool)>0),
sum (pro$ (uby (pool,pro)>0),
q(comp,pool) *y(pool, pro)))
+ sum(pro$ (ubz(comp,pro)>0), z(comp, pro))
=g= cl(comp) ;

cupper (comp) .. sum(pool$(ubqg(comp,pool)>0),
sum (pro$ (uby (pool, pro)>0),
q(comp,pool) *y(pool, pro)))
+ sum(pro$ (ubz(comp,pro)>0), z(comp, pro))
=1= cu(comp) ;

plower (pro) .. sum(pool$(uby(pool,pro)>0), y(pool,pro))
+ sum(comp$ (ubz(comp, pro)>0), z(comp, pro))
=g= prl(pro);

pupper (pro) .. sum(pool$ (uby(pool,pro)>0), y(pool,pro))

+ sum(comp$ (ubz (comp, pro)>0), z(comp, pro))
=1= pru(pro);
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pqlower (pro, qual).. sum(pool$(uby(pool,pro)>0),
sum (comp$ (ubqg (comp,pool)>0),
cqual (comp, qual)*q(comp,pool)*y(pool,pro)))
+ sum(comp$ (ubz(comp, pro)>0),
cqual (comp, qual)*z(comp, pro)) =g=
sum(pool$ (uby(pool,pro)>0),
pqlbd(pro, qual)*y(pool,pro))
+ sum(comp$ (ubz(comp, pro)>0),
pqlbd(pro, qual)*z(comp, pro));

pqupper (pro, qual).. sum(pool$(uby(pool,pro)>0),
sum (comp$ (ubqg (comp,po0l)>0),
cqual (comp, qual)*q(comp,pool)*y(pool,pro)))
+ sum(comp$ (ubz(comp, pro)>0),
cqual (comp, qual)*z(comp, pro)) =1=
sum(pool$ (uby (pool,pro)>0),
pqubd(pro, qual)*y(pool,pro))
+ sum(comp$ (ubz(comp, pro)>0),
pqubd (pro, qual)*z(comp, pro));

fraction(pool).. sum(comp$ (ubq(comp,pool)>0), q(comp, pool)) =e= 1;

model subproblem
/obj, clower, cupper, plower, pupper, pqlower, pqupper, fraction/;

option milp=cplex;
option nlp=baron;
option limrow = O;
option limcol = O;
subproblem.solprint = 2;
masterproblem.solprint = 2;
subproblem.solvelink = 2;
masterproblem.solvelink

o~
N

* step 1: solve master without cuts
*

dyniter (iter) = NO;
cutconst(iter) = O;
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cutcoeff(iter,pool) = 0;

theta.fx = 0;

solve masterproblem minimizing zmaster using milp;
display zmaster.l;

*

* repair bounds

*
theta.lo = -INF;
theta.up = INF;

scalar lowerbound /-INF/;
scalar upperbound /INF/;
parameter objsub(sce);
scalar objmaster;
objmaster = zmaster.l;
scalar iteration;
scalar done /0/;
loop(iter$(not done),
iteration = ord(iter);

*

* solve subproblems
*
dyniter(iter) = yes;
loop(sce,
demnd (pool) = demand(pool,sce);
solve subproblem minimizing zsub using nlp;
objsub(sce) = zsub.l;
cutconst(iter) = cutconst(iter)-prob(sce)*(-plower.m(pro)-
clower.m(comp) -cupper.m(comp) -pupper .m(pro) -pqlower .m(pro, qual)
-pqupper .m(pro, qual));
cutcoeff (iter,pool) = cutcoeff(iter,pool)-prob(sce)*(-plower.m(pro)-
clower.m(comp) -cupper .m(comp) -pupper .m(pro) -pqlower.m(pro, qual)-
pqupper .m(pro, qual));
)
upperbound =
min(upperbound, objmaster + sum(sce, prob(sce)*objsub(sce)));
*
* convergence test

*
display lowerbound,upperbound;
if ( (upperbound-lowerbound) < 0.001*(1+abs(lowerbound)),
display "Converged";
done = 1;
else
*
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* solve masterproblem
*
solve masterproblem minimizing zmaster using milp;
lowerbound = zmaster.l;
objmaster = zmaster.l-theta.l;
)3
)3
abort$(not done) "Too many iterations";
display bd.log;
display zmaster, zsub;
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