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Abstract

Currently available dynamic simulation packages are mainly suitable for the continuous sim�

ulation of large industrial processing systems� In practice� however� few processes can be

considered to operate in a completely continuous manner because discrete changes a�ect

most operations to a greater or lesser extent� Even in a conventional �continuous� process�

start�up and shut�down operations� or the application of digital controllers will result in

discrete changes superimposed on the predominantly continuous behaviour� Similarly� batch

and semi�continuous processes always experience frequent discrete control actions in order

to maintain operation in a dynamic� often cyclic� mode� Simulation of systems with these

discrete components requires a more sophisticated tool � one that can perform simulations

of a combined discrete�continuous nature�

This thesis considers the issues involved in the development of a general�purpose software

package for the modelling and simulation of combined discrete�continuous processing sys�

tems of arbitrary complexity� The key requirements for such a package are analysed� and

a new simulation language based on three distinct categories of entities� models� tasks and

processes� is introduced� Model entities describe the continuous physico�chemical mecha�

nisms governing the time dependent behaviour of unit operations� including any discrete

changes resulting from these mechanisms� while task entities describe the external control

actions or disturbances imposed on a system� A process entity represents a complete dy�

namic simulation experiment� and is formed by the application of tasks to instances of model

entities�

This language is used as the basis for a new dynamic simulation package� gPROMS 	general

PROcess Modelling System
� The implementation of a prototype of this package is de�

scribed� including details of the novel software architecture required for the simulation of

these systems� The usefulness of this new approach� and the ability of gPROMS to address

these issues� are then demonstrated through a set of detailed simulation examples generated

by the prototype�
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Chapter �

Introduction

The ability to predict and analyse the time dependent behaviour of industrial pro�

cessing plant is indispensable to the engineering of such systems� This thesis is concerned

with one of the tools that may be employed for this purpose� dynamic simulation� The

prediction is obtained from the numerical solution of a mathematical model of the system

under a given set of experimental conditions� In particular� this thesis examines the dynamic

simulation of processes that experience signi
cant discrete changes superimposed on their

predominantly continuous behaviour�

Dynamic simulation is crucial to the analysis of any process that is operated in

a dynamic mode� A process operated in the periodic or batch modes is obviously a good

example where dynamics dominate process behaviour� However� it is also important to

recognise that even a process that is conventionally considered to be �continuous� rarely

operates at the notional steady�state� Perris 	����
 lists commissioning and start�up�shut�

down� process maintenance� feed stock and�or product campaign changes� and load�demand

following as some of the many situations in which the dynamic performance of this latter

category of process is of overriding concern�

Potential applications of dynamic simulation throughout the entire lifetime of a pro�

cess have been advocated for many years� In addition to the traditional o��line application

to the selection and design of regulatory control systems� Perkins 	����
 points out that the

identi
cation of designs that may lead to dynamic instability� the prediction of potentially

hazardous situations as a consequence of upsets in the operation of the process� and the se�

lection of optimal operating procedures to move a process between operating points should

all be considered equally worthwhile� Dynamic simulation can also aid in the synthesis and

validation of safe and economical operating procedures in a broader sense� On�line appli�

cations include model predictive control� and process monitoring� estimation and prediction

	Perkins and Barton� ����
�

The safe and environmentally friendly operation of all aspects of industrial pro�
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cessing plant is becoming increasingly important as the pressures of legislation and public

opinion on industry continue to intensify� The contribution that dynamic models make in

ensuring this is already signi
cant� and can only increase in prominence as operating com�

panies are forced to work within tighter constraints� A related issue is that of training�

Ferney 	����
 observes that there is little point in investing in a safety programme without

also providing adequate training for the operators who will implement it� The necessity of

accurate dynamic modelling of process behaviour as the basis for computer based operator

training activities is well established 	see� for example� Kassianides 	����

� Mani et al�

	����
 describe a recent experience in which the general�purpose dynamic simulation pack�

age GEPURSTM 	Shinohara� ����
 was employed to build a training simulator for an entire

fertiliser complex�

Despite the potential bene
ts� and sometimes necessity� of the application of dy�

namic simulation technology in the process industry� academic authors remain dissatis
ed

with the extent to which this technology is employed throughout the industry 	Perkins�

����� Marquardt� ����
� These authors cite two reasons for reluctance on the part of their

industrial colleagues�

� Questions are still raised about the bene
ts 	if any
 accruing from the use of dynamic

simulation technology�

� The inadequacies of currently available packages still makes dynamic simulation a very

costly activity that can only be justi
ed in special cases�

The former argument� however� is becoming outdated in light of the recent upsurge of indus�

trial interest in dynamic simulation as a consequence of intensifying competition in worldwide

markets and increasingly restrictive safety and environmental legislation in the developed

world� While discussing the latter argument� Perkins and Barton 	����
 point out that the

large investment required to build a dynamic model can be justi
ed if it becomes a knowl�

edge base on which activities throughout the entire lifetime of a process� from preliminary

design to decommissioning� can be based� The recent experience with the THORP nuclear

fuel reprocessing plant 	Evans and Wylie� ����
 is a modest example of the application of

this philosophy� a dynamic model was originally built in order to facilitate the early testing

of the control system software and thereby signi
cantly reduce the time and cost of com�
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missioning� However� the recognition of the value of employing the same model as a tool

for operator training and dynamic experimentation extended its useful life way beyond the

commissioning phase�

This thesis attempts to make a contribution towards addressing some of the in�

adequacies of currently available dynamic simulation packages� The reusability of process

models will be a theme that is returned to repeatedly�

��� Continuous Process Simulation Packages

In order to address some of the inadequacies of existing dynamic simulation pack�

ages� it is 
rst worthwhile to examine the range of techniques currently available� Marquardt

	����
 has recently presented a thorough review of this 
eld� so the reader is directed to this

for an exhaustive list of the software packages available� Here� we will concentrate on a brief

review of the features of the various classes of package�

Engineers have been building dynamic models of entire industrial processes ever

since digital computers 
rst became widely available� The earliest approach was based on

the development of one�o� programs coded in a procedural programming language such as

FORTRAN� This medium o�ers the engineer immense �exibility� but is also extremely labour

intensive� and requires a high level of expertise in numerical methods and programming in

addition to the engineering knowledge required to pose models� Although the emergence of

high quality codes implementing many standard numerical algorithms has alleviated these

problems to a certain extent� this approach still remains a rather costly alternative� Never�

theless� it is important to recognise that the use of one�o� programs is still probably the most

common approach to the dynamic simulation of industrial processes� For example� although

the developers of the dynamic model for THORP 	Evans and Wylie� ����
 recognised the

potential of more advanced techniques� they found that a specially developed program was

the only alternative to o�er su�cient �exibility�

In light of the expertise required by� and cost associated with� the above approach�

the use of software packages speci
cally designed for the activity of dynamic simulation has

had almost as long a history� Such packages are considered to improve productivity because�

to a greater or lesser extent� they free the engineer to concentrate on the correct formulation
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of the process model� as opposed to the numerical algorithms and coding required to achieve

a solution�

The general�purpose continuous simulation languages originating from the CSSL

standard 	Strauss� ����
� such as ACSL 	Mitchell and Gauthier� ����
 and CSMP 	Speckhart

and Green� ����
� therefore seem to o�er an attractive alternative� These packages have

been available for many years and have reached a high level of sophistication� providing the

engineer with a convenient and ready to use environment in which he or she can pose process

models in either a block or equation�oriented manner� However� a major criticism of this

appealing approach is that the modelling methodology and numerical techniques employed

by these packages are most suitable for systems that can be modelled with relatively small

numbers of explicit ordinary di�erential equations� and that they become impracticable when

applied to the large numbers of mixed ordinary di�erential and algebraic equations typically

required to model industrial processing systems� This argument has been used by Perkins

	����
� amongst others� to justify the development of continuous process simulation packages

speci
cally tailored to the demands of the process industry� Nevertheless� as Marquardt

	����
 points out� any such continuous process simulation package must provide much more

advanced numerical techniques and domain speci
c support than merely a library of precoded

process models in order to be a viable alternative to CSSL�type languages�

Signi
cant advances in numerical methods and computer hardware during the last

ten years have brought about the development of several continuous process simulation

packages� These packages are mainly suitable for the continuous simulation of industrial

processes� although discrete changes in the process inputs and in the process model are

tolerated to a limited extent� Leaving aside arguments concerning how the mathematical

model is actually solved� for the purposes of this thesis it is worthwhile to examine how the

engineer may employ these packages to pose a process model�

All continuous process simulation packages enable the process model to be posed

in a similar manner to that of the majority of steady�state �owsheeting packages � through

the connection of a series of library unit operation models in a process �owsheet� Interactive

graphics and menus are sometimes also provided to support this activity� Some packages

are based on extensions of the modular approach to steady�state process analysis� such as

Dynamic FLOWPACK II 	Aylott et al�� ����
 and GEPURSTM 	Shinohara� ����
� However�
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most employ the equation�oriented approach� Examples include Diva 	Holl et al�� ����
�

Dynamic QUASILIN 	Smith and Morton� ����
� MASSBAL � 	Shewchuk and Morton� ����
�

and DYNSIM 	Gani et al�� ����
�

In addition to providing the above facilities for unit based �owsheet modelling� some

equation�oriented packages allow the engineer to pose additional unit operation models in

terms of high�level equation�based symbolic languages� This category includes packages such

as DPS 	Wood et al�� ����
 and SpeedUp 	Perkins and Sargent� ����
�

The latter approach provides the engineer with greater �exibility when constructing

the dynamic model of an entire process� This degree of �exibility is desirable because the

construction of a �complete� library of standard dynamic unit operation models is extremely

di�cult� the level of detail often required of dynamic models has the consequence that each

modelling exercise will usually demand its share of non�standard models� For example� ves�

sels with di�erent geometry or internal structure� employed for the same unit operation and

described by identical steady�state models� will quite frequently have signi
cantly dissimilar

dynamic models�

The author therefore believes that the demands of potential industrial users of dy�

namic simulation can only be satisfactorily addressed by those packages that provide the

engineer with the facility to add new unit operation models as required� In order to bene
t

from the improvements in productivity that dynamic simulation packages o�er over proce�

dural programming languages� the mechanisms that support the development of these new

models should ideally require the engineer to provide only declarative information concerning

the physical behaviour of the system under investigation�

Of course� this requirement places very stringent demands on the numerical meth�

ods employed to solve the simulation problem� Signi
cant progress in the development of

these methods has been achieved in recent years� They are therefore in an advanced and

relatively satisfactory state� For example� current industrial practice with the SpeedUp pack�

age 	Prosys� ����
 involves the regular solution of dynamic simulation problems involving

tens of thousands of simultaneous equations� However� it is also important to recognise that

this is still a very active 
eld of research� and further developments are required to improve

the reliability of solution methods 	see� for example� recent work concerning the solution of

problems where a process is far from its notional operating point 	Jarvis and Pantelides�
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����

�

In spite of these developments� one of the remaining reasons why dynamic simula�

tion is not receiving the broad application it deserves is that the engineer is still unable to

pose an important class of problems in a satisfactory manner� This de
ciency is considered

in more detail in the next section�

��� Combined Discrete�Continuous Process Simulation

As already stated� the continuous process simulation packages were developed to

address the solution of large dynamic process models of a continuous nature� However� few

processes can be considered to operate in an entirely continuous manner� The majority

of �continuous� processes also experience signi
cant discrete changes superimposed on their

predominantly continuous behaviour� Such discrete changes typically arise from the appli�

cation of digital regulatory control� plant equipment failure� or as a consequence of planned

operational changes� such as start�up and shut�down� feed stock and�or product campaign

changes� process maintenance etc� Moreover� the situations in which these discrete compo�

nents a�ect the overall process behaviour usually correspond to those in which it is most

worthwhile to perform dynamic simulation in the 
rst place��

The existing continuous process simulation packages provide very limited capabili�

ties for the description of dynamic simulations in which discrete changes signi
cantly a�ect

the overall behaviour� This was� for example� one of the major reasons why the developers

of the dynamic model for THORP 	Evans and Wylie� ����
 did not 
nd SpeedUp 	Prosys�

����
 su�ciently �exible� Engineers therefore still have to resort to the use of procedural

programming languages in order to be able to pose the very class of problems for which

dynamic simulation can most easily be justi
ed� In light of this� it is perhaps not surprising

that dynamic simulation is widely held to be a costly and time consuming activity�

This thesis argues that� in many cases� an engineer involved in the analysis of the

dynamic behaviour of a continuous process wishes to pose combined discrete�continuous

simulation problems as opposed to purely continuous simulation problems� In order to meet

this demand� and to improve productivity� it is necessary to consider the development of

�For example� from a safety or environmental point of view�
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a general�purpose combined discrete�continuous process simulation package that will also

encompass the capabilities of existing continuous process simulation packages�

Developments in the world economy have prompted renewed interest in the batch

and semi�continuous modes of process operation amongst producers in the developed world

	Parakrama� ����
� This trend has in part been caused by the increased competition from

producers in the developing nations experienced in many bulk chemical markets� As a

consequence� attention has shifted towards the production of relatively small quantities of

high added value products in multipurpose�multiproduct batch plant� However� even in

these markets it will become increasingly di�cult to compete on the basis of patenting

new products alone 	Sawyer� ����
� simulation of batch processes to improve e�ciency is

becoming vital in the battle to remain competitive�

Batch and semi�continuous processes are always operated in an essentially dynamic

manner� Dynamic simulation is therefore essential for the detailed prediction of their be�

haviour� Furthermore� this category of process always experiences frequent discrete control

actions in order to maintain operation in this dynamic� often cyclic� mode� The combined

discrete�continuous nature of these systems has been recognised for many years 	Fruit et al��

����
� and this has been re�ected in the design of special purpose dynamic simulation pack�

ages for batch processes such as BATCHES 	Joglekar and Reklaitis� ����
 and UNIBATCH

	Czulek� ����
�

In his recent review� Marquardt 	����
 argues that future dynamic simulation

packages should support the numerical analysis of arbitrarily operated processes within a

uni
ed framework� Bearing in mind that the above discussion has emphasised the com�

bined discrete�continuous nature of most complex industrial processing systems� regardless

of their nominal mode of operation� it follows that this new generation of dynamic simu�

lation packages should be combined discrete�continuous simulation packages� This thesis

therefore considers the issues involved in the development of a general�purpose combined

discrete�continuous process simulation package suitable for the analysis of the entire range

of process operations� from purely continuous to batch� In doing so� two main objectives are

perceived�

�� To develop a sound formal basis for the description of combined discrete�continuous

process simulation problems� and to articulate this in the form of a simulation language�
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�� To demonstrate that a practical implementation of such a modelling package is feasible�

��� General�purpose Combined Discrete�Continuous Simulation

Languages

Before embarking on the task outlined at the end of the previous section� it is

necessary to review the e�orts of the system simulation community with regard to combined

discrete�continuous systems� Their observations will at least provide useful insights for the

development of the formal basis proposed above�

System simulation concerns itself with the prediction of the time dependent be�

haviour of real systems via the numerical solution of a mathematical model of these systems�

Traditionally� systems have been classi
ed as either discrete event or continuous�

� In order to obtain information concerning the detailed interactions of entities� the

dynamic behaviour of a �discrete event� system is abstracted to a series of events at

speci
c points in time� The state of the system is only allowed to change discretely

at these points in time � between events the system remains unchanged from the

last event� Events can interact and trigger new events� so the dynamic behaviour is

determined by the time order in which the events occur� and their interaction with

each other�

� The dynamic behaviour of a �continuous� system is abstracted to the point at which it

can be represented by the smooth� continuous change of a series of state variables� This

allows such a system to be represented mathematically as a set of di�erential equa�

tions� with time and possibly one or more spatial dimensions as independent variables�

The simulation can therefore be posed as a initial value problem� the equations are

integrated from an initial condition until the desired termination condition is satis
ed�

The set of equations remains unchanged throughout the simulation� and all variables

and their time derivatives follow a continuous trajectory in time�

The simulation of systems that belong to either of these categories has a considerable history

dating back to the ����s� each �school of thought� engendering several generations of general�
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purpose simulation languages� Kreutzer 	����
 gives a detailed account of this history and

a list of the languages available�

Obviously� neither classi
cation is suitable for the detailed analysis of systems where

both continuous and discrete changes take place and interact to a signi
cant extent during

part or all of the period under investigation� The assumptions made in either case� in order

to simplify the solution of the simulation problem� preclude the analysis of such systems�

Moreover� it appears that� for many years� the direct analysis of this class of system was not

considered to be worthwhile by the simulation community � the behaviour of such systems

was usually abstracted until it conformed to one of the categories above�

Fahrland 	����
 was the 
rst author to advocate the development of �combined

discrete event and continuous� simulation languages in order to handle those systems that

exhibit both characteristics concurrently� This new class of simulation language was justi
ed

from a representational point of view� it would enable an engineer to model a physical system

in its most natural form� whether continuous� discrete� or combined� and hence allow a more

exact representation with fewer approximations� In addition to this argument� Cellier 	����a


was later to advocate combined simulation languages from the point of view of the e�cient

and accurate solution of the continuous model�

In his original paper� Fahrland 	����
 identi
es the fundamentals of combined dis�

crete�continuous systems� and describes how this class of problem may be solved as a se�

quence of initial value problems involving a continuous model� interspersed by events at which

a discrete model become instantaneously active� The foundations were also laid for the rep�

resentational methodology employed by all subsequent combined simulation languages� to

the author�s knowledge�

This methodology requires a combined system to be decomposed into a continuous

subsystem and a discrete subsystem� The two subsystems are then allowed to interact as

equals during the course of a simulation experiment� The continuous subsystem can interact

with the discrete subsystem in either of the following fashions�

� The discrete subsystem makes reference to the values of the variables describing the

continuous subsystem at some discrete point in time�
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� The reactivation of the discrete subsystem at some point in time 	an event
 is triggered

by a condition becoming satis
ed as a consequence of the continuous change of the

relevant subsystem 	subsequently termed state events
�

Similarly� the discrete subsystem can interact with the continuous subsystem in the following

fashions�

� The discrete subsystem can instantaneously change the values of one or more of the

input variables of the continuous subsystem�

� The discrete subsystem can instantaneously change the values of one or more of the

state 	or di�erential
 variables of the continuous subsystem�

� The discrete subsystem can cause an instantaneous and arbitrary structural modi
ca�

tion of the continuous subsystem�

In fact� the 
rst form of interaction of the discrete subsystem with the continuous subsystem

can be considered to be a special case of the third form� if the relationships that determine

the values of the input variables are included in the continuous subsystem as additional equa�

tions 	see section ���
� Although this latter form of interaction could encompass arbitrary

changes to the number and functional form of the equations describing the behaviour of the

continuous subsystem� Fahrland considered this capability too esoteric�� Instead� he concen�

trated on systems that exhibit a �population�change� feature� Here� continuous behaviour of


xed dimensionality is nested within the description of a discrete entity� and is duplicated

each time an instance of the discrete entity is created during a simulation experiment� A

frequently quoted example of this category of system is a steel soaking pit in which individual

steel ingots are created at random intervals� with randomly distributed initial temperatures�

Following their creation� the ingots enter a furnace� within which they are heated contin�

uously at di�erent rates� according to the di�erence between their individual temperatures

and the bulk temperature of the furnace�

In closing� Fahrland brie�y observes that a more frequently occurring class of com�

bined system is composed of a 
xed dimension continuous subsystem which acts as the

�And di�cult to implement�
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facilities for some form of large scale processing sequence� In this case� the discrete subsys�

tem would presumably model the control actions or disturbances imposed on this facility�

However� this class of combined system does not seem to have been considered thoroughly

in any of the subsequent literature� although it is of primary interest to process engineers�

The simulation language GSL 	Golden and Schoe�er� ����
 was created on the

basis of Fahrland�s proposals� This language enables a system to be described in terms of a

series of discrete and continuous blocks� and set the mould for most subsequent languages�

During a simulation experiment� instances of either type of block are dynamically created�

and then co�exist and interact with one another� By the time of Oren�s 	����
 review� at

least eighteen software packages for combined discrete�continuous system simulation could

be identi
ed� although some confusion seemed to exist with simulation languages designed

for hybrid digital�analogue computers�

In a later review� Cellier 	����b
 observed that most of the more complex systems

traditionally considered to be �continuous� were in fact combined systems� as we have already

observed for industrial processing systems in the previous section� He therefore concluded

that combined simulation should have a much bigger impact on the continuous simulation

community than on the discrete event simulation community� However� Cellier also observed

that most combined simulation languages of the day had been developed as extensions of

existing discrete event simulation languages� mainly because the complex language structures

employed by this class of simulation language were more suitable for extension in order to

encompass combined problems� As a consequence� he argued that the continuous simulation

capabilities of these languages were not adequate for many applications� Languages based on

Simula 	Birtwistle et al�� ����
 such as CADSIM 	Sim� ����
 and DISCO 	Helsgaun� ����
�

and the FORTRAN subroutine libraries descended from GASP II 	Pritsker and Kiviat� ����
�

GASP IV 	Pritsker and Hurst� ����
� SLAM II 	Pritsker� ����
� and SIMAN 	Pegden� ����
�

can all be considered to su�er from this de
ciency�

In order to address these de
ciencies� a second generation of combined discrete�continuous

simulation languages that attempt to add continuous simulation capabilities comparable to

those of the languages descended from the CSSL standard has emerged in more recent years�

These might be considered to be the 
rst truly combined simulation software packages 	Cel�

lier� ����
� and include COSY 	Cellier and Bongulielmi� ����
� SYSMOD 	Smart and Baker�
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����
� and COSMOS 	Kettenis� ����
�

It seems� however� that a simulation language suitable for the description of com�

bined discrete�continuous process simulation problems does not exist at present� In sum�

mary� there are two major arguments to justify this statement�

� Very little attention has been paid to the class of combined systems of primary in�

terest to the process engineer� namely those that are composed of a 
xed dimension

continuous subsystem which has actions imposed on it by the discrete subsystem�

� Even the most advanced combined simulation languages only o�er continuous mod�

elling and simulation capabilities comparable to those of the CSSL�type languages�

They are therefore unsuitable for exactly the same reasons that make CSSL�type lan�

guages unsuitable for continuous process applications 	Perkins� ����
�

The following section is concerned with a detailed analysis of the mathematical character�

istics of the combined discrete�continuous process simulation problem� This discussion will

further emphasise the unsuitability of CSSL�type languages for the description of this class

of problem�

��� A Mathematical Formulation of the Combined Process Sim�

ulation Problem

It is important to recognise that many diverse modelling formalisms have been

proposed for the representation of the physical behaviour of the real world� each of which

has been developed to address the particular requirements of an application domain� The

suitability of a modelling formalism is not� however� solely dictated by the characteristics of

the system under investigation� but also by the questions that the modeller wishes to pose

about the behaviour of this system� A non�exhaustive list of the modelling formalisms that

have been proposed for the dynamic behaviour of physical systems includes�

� Di�erential�algebraic and partial di�erential�algebraic equations�

� Ordinary di�erential and partial di�erential equations�

� Di�erence equations�
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� The various world views of discrete simulation 	Kreutzer� ����
�

� Petri nets 	Petri� ����
�

The utility of modelling environments in which a wide range of modelling formalisms can

co�exist harmoniously has been advocated for several years 	Oren and Ziegler� ����
�

The physico�chemical mechanisms that govern the time dependent behaviour of

industrial processing systems are predominantly continuous� Therefore� the combined dis�

crete�continuous simulation of such systems requires a modelling formalism that is compat�

ible with the fundamental characteristics of this continuous behaviour� Modelling of these

physico�chemical mechanisms from 
rst principles typically yields large� sparse� and sti�

nonlinear equation sets of mixed type� A process that can be entirely described in terms of

lumped parameters will give rise to a model composed of a mixed set of ordinary di�erential

and algebraic equations 	see� for example� Pantelides et al� 	����

�

A process that also contains variables distributed in one or more spatial dimensions

will give rise to a model composed of a mixed set of partial di�erential� ordinary di�erential�

and algebraic equations 	Heydweiller et al�� ����
� Particulate system modelling by means of

population balances� or terms that must be integrated over one or more spatial dimensions�

may also add integral terms to the above set of equations 	Marquardt� ����
� However� meth�

ods for the direct solution of these equations when there are one or more spatial independent

variables in addition to time are still in their infancy 	see� for example� Pipilis 	����

�

This latter class of problems will not therefore be considered further here� A more common

practice at present involves the manual reduction of the set of partial di�erential�algebraic

equations to a set of di�erential�algebraic equations through an appropriate discretisation of

the spatial independent variables 	the method of lines
�

A natural modelling formalism for the continuous time dependent behaviour of

industrial processing systems is therefore expressed mathematically as a set of nonlinear

equations of the form�

F	z� �z�u� t
 � � 	���


u � u	t
 	���


where z� �z � �s� u � �l� F � �s � �s � �l � � �� �s� z is the set of unknown system

variables with time� t� as the independent variable� and �z � dz�dt� u is the set of known
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system inputs�

Equations of the above form can be classi
ed according to their index� which may be

de
ned as the smallest non�negative integer I such that equation ��� and its 
rst I derivatives

with respect to time uniquely de
ne �z as a function of z� u 	and its time derivatives
� and

t 	Brenan et al�� ����
� For the purposes of this thesis� we will concentrate on a limited

category of the above equations that occur frequently in the modelling of industrial processing

systems� namely�

f	x� �x�y�u� t
 � � 	���


u � u	t
 	���


where x� �x � �n� y � �m� u � �l� and f � �n � �n ��m � �l �� �� �n�m� such that�

Rank
h
f �x fy

i
� n �m 	���


everywhere�

This� together with the assumption that a solution to the set of equations ��� does

exist� is a su�cient� but not necessary� condition for these equations to have an index equal

to or less than unity� x are usually referred to as the di�erential variables� whereas y are

referred as the algebraic variables� It should be noted that well�posed purely di�erential

	m � �
 and purely algebraic 	n � �
 equation sets fall into this category�

Combined discrete�continuous simulation of industrial processing systems requires

the solution of a sequence of initial value problems� described by equations of the above form�

interspersed by instantaneous events that may cause some form of discrete change to the

initial value problem currently being solved� The describing equations and initial condition

of the 
rst initial value problem are determined by an individual simulation description�

The describing equations and initial condition of the succeeding initial value problems will

be determined from a combination of the 
nal state of the preceding initial value problem

and the consequences of the corresponding event	s
�

The following sections consider various aspects of this mathematical problem in

more detail�
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����� The Initial Condition

Before simulation can commence� consistent initial values for the variables x� �x�

and y at the initial time t� are required� A necessary condition for a set of initial values

fx	t�
� �x	t�
�y	t�
g to be consistent is that they satisfy the equations ��� at t�� In the most

general case this is not a su�cient condition for consistency� because the initial values may

also be constrained by additional equations which are derived from di�erentiation of the

original set of equations with respect to time 	Pantelides� ����a
�

However� for the limited category of equations that satisfy the constraint shown in

equation ���� the above is also a su�cient condition� In this case� the equations ��� represent

a set of n � m equations in the set of �n � m unknowns fx	t�
� �x	t�
�y	t�
g� In order

to determine consistent initial values for these unknowns� an initial condition composed of

n additional speci
cations is therefore required� For a set of explicit ordinary di�erential

equations of the form�

�x � f	x� t
 	���


the term �initial condition� normally refers to a set of values for the variables x at t�� For a

system of di�erential�algebraic equations of the form shown in equation ��� a more general

approach is both possible and desirable� For example� it may be necessary to specify the

initial state of the system in terms of values for the algebraic variables and�or the time

derivatives of the di�erential variables��

Conventional continuous process simulation packages such as SpeedUp 	Pantelides�

����b
 provide a �exible facility for the speci
cation of this initial condition� they allow for

the speci
cation of initial values for any subset of n variables in the set fx� �x�yg� subject

to the nonsingularity of the equations ��� in the remaining variables� The equations ��� can

then� in principle� be solved for these remaining variables to yield consistent initial values

for all the unknowns�

However� the initial condition can be expressed in even more general terms by

nonlinear equations of the form�

r	x	t�
� �x	t�
�y	t�
�u	t�
� t�
 � � 	���


�After all� the speci�cation of steady�state� �x�t�	 
 �� is probably the most frequently encountered initial
condition�



��

where r � �n � �n � �m � �l � � �� �n� Providing the set of equations resulting from ���

and ��� represents a mathematically well�posed problem� consistent initial values for all the

unknowns can be determined� in principle� from the simultaneous solution of these equations

by a general�purpose nonlinear equation solver� From a practical point of view� we expect

the following condition to hold for the set of values fx	t�
� �x	t�
�y	t�
g�

Rank

�
� fx f �x fy

rx r �x ry

�
� � �n �m 	���


����� Solution of the Initial Value Problems

A combined discrete�continuous simulation is advanced by the solution of a se�

quence of initial value problems� Strategies for the numerical solution of these initial value

problems fall broadly into the categories 	Marquardt� ����
�

� Direct integration � the simultaneous solution of all the modelling equations with a

single algorithm�

� Modular integration � the solution of a suitably partitioned system by means of di�er�

ent algorithms applied to each subsystem�

Although in principle a modelling package for combined discrete�continuous simulation

should be designed to be independent of such solution strategies� much of the work in this

thesis is based on the contention that a simulation description should only contain declara�

tive information concerning the physical behaviour of the system under investigation� If this

is the only information that can be made available when a model is submitted to a numerical

solver� it is unlikely that the problem speci
c improvements in e�ciency advocated by the

proponents of modular strategies can be realised given the current state of numerical tech�

niques� Therefore� for the purposes of this thesis the bene
ts of a direct strategy� in terms

of easily quanti
able accuracy and guaranteed numerical stability� far outweigh those of a

modular strategy�

It is worthwhile to mention brie�y the methods currently available for the direct

integration of equation ���� Two relatively mature approaches to the solution of these equa�

tions have emerged� The 
rst approach involves the use of a numerical di�erential�algebraic
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equation solver which accepts problems in the form shown in equation ��� directly� The

only requirement is a routine to calculate the residuals of these equations given values for

all the arguments� The majority of codes are based on Gear�s 	����
 multi�step Backward

Di�erentiation Formulae 	BDF
 method� including� for example� DASSL 	Petzold� ����
 and

DASOLV 	Jarvis and Pantelides� ����
�

Currently available numerical di�erential�algebraic equation solvers are suitable for

the solution of equations that satisfy constraint ���� However� it is important to recognise

that most encounter problems in controlling the error of integration if the index of the

equations exceeds unity 	see� for example� Gritsis et al� 	����

� A conceptual algorithm

that can solve any problem of index exceeding unity directly has been published recently

	Chung and Westerberg� ����
� Alternatively� the index of the equations can be reduced to

unity by di�erentiation with respect to time 	see� for example� Bachmann et al� 	����

 and

then solved with one of the codes described above�

The second approach involves the solution of the di�erential�algebraic equation set

��� by a numerical ordinary di�erential equation solver� This can be done in the most general

manner by transformation of equation ��� into the form�

f	x�v�y�u� t
 � � 	���


�x � v 	����


through the introduction of a set of velocity variables� v � �n� to replace all occurrences of

the time derivatives of the di�erential variables in the original set of equations 	Westerberg

and Benjamin� ����
� The numerical ordinary di�erential equation solver is applied to

equation ����� and consequently requires a routine to solve the equations ��� for v and the

algebraic variables y� given values for the di�erential variables x� This approach is therefore

only suitable for the index one di�erential�algebraic equations that satisfy constraint ����

����	 Events

The termination of each initial value problem in the sequence described above is

marked by the occurrence of an event� An event takes place instantaneously with respect to

the independent variable time� and will have the consequence� for example� of some form of
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discrete change to the functional form of the describing equations ���� or the scheduling of

new event	s
 to occur at some future time�

Two types of event can occur during a combined discrete�continuous simulation�

distinguished by the manner in which the time of occurrence is determined�

� Time events � the exact time of occurrence of these events is known in advance� so

solution of the initial value problems can proceed to these events in time order� They

may be either exogenous� if the time of occurrence is known a priori� or endogenous� if

the time of occurrence is computed as a consequence of the occurrence of a previous

event during the simulation�

� State events � the time of occurrence of these events is not known in advance because

it is dependent on the system ful
lling certain conditions 	called state conditions
� An

initial value problem must instead be advanced speculatively to the point in time at

which the state condition becomes satis
ed�

The nature of state events dictates that state conditions should ideally be monitored continu�

ously throughout the solution of an initial value problem� However� the numerical integration

algorithms employed for the solution of these initial value problems advance time in a step�

wise fashion� As a consequence� the system status is only calculated at discrete values of

the independent variable time� State events can therefore only practically be detected at

the earliest discrete point in time that the system status indicates that a state condition has

become satis
ed�

Subsequent action can take several forms� The simplest approach is to assume

that the state event merely occurs at the point in time that it was 
rst detected� Although

e�cient� this approach will introduce a timing error that� depending on the size of the current

integration step� may seriously a�ect the results of any subsequent initial value problems�

A second approach relies on the step size control mechanism of the integration

algorithm to locate the exact time of occurrence of a state event� In this case� the conse�

quences of a state event are implemented whenever the system status indicates that a state

condition is satis
ed� even if this occurs in the middle of an iterative calculation such as the

�corrector� iteration of an implicit integration algorithm� Sophisticated numerical integra�

tion algorithms� such as those based on BDF approximations� assume a certain degree of
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continuity in the solution trajectories� so if a state event causes a discrete change to the set

of equations in mid�step� either the corrector iteration will fail� or an arti
cially large error

estimate will ensue� In either case� this will cause the step size control mechanism to cut the

step repeatedly until a much smaller step length enables the discontinuity to be negotiated�

Use of the step size control mechanism to locate events in this manner often requires many

failed steps as the step size is progressively reduced� and may even result in failure of the

simulation at the discontinuity� In addition to these ine�ciencies� this approach can� in

certain situations� lead to incorrect solution trajectories 	Cellier� ����a
�

An alternative approach adopted in most modern simulation packages 	for exam�

ple� BATCHES 	Joglekar and Reklaitis� ����
 and SpeedUp 	Pantelides� ����b

 therefore

requires that the describing equations of any initial value problem remain unchanged or

�locked� until the exact time of occurrence of a state event has been located� Numerical

integration of this initial value problem is advanced in a stepwise fashion until� at the end

of a successful time step� a state condition indicates that a state event has occurred at some

point during the previous step� The exact time of occurrence is then located by one of the

methods described below� the consequences of the state event are implemented� and the new

initial value problem is started from that point�

The most frequently reported approach to the location of the exact time of occur�

rence of state events relies on the notion of a discontinuity function 	Hay et al�� ����� Cellier�

����a� Preston and Berzins� ����
� This is a continuous scalar function that crosses zero

at the state event� Integration of the current initial value problem proceeds until one or

more discontinuity functions change sign� at which point it is known that one or more state

events have occurred during the previous step� The actions then taken depend on whether

the integration algorithm employed provides accurate interpolation of variable values within

a step�

� If an accurate interpolation is not possible� the values of the discontinuity function at

the beginning and the end of the step can be utilised to derive a new estimate for the

state event time� An integration step is then taken from the previous time point to this

estimated event time� With the normal step�size control mechanism of the integration

algorithm disabled� the integration step length can thus be adjusted iteratively until

the solution �marches up� to the state event�
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� If accurate interpolation of variables values is possible� the zero crossing of the dis�

continuity function� and thus the exact time of occurrence of the state event� can be

located merely by interpolation of the discontinuity function over the previous time

step� No further integration steps are required for this purpose�

It follows from the above discussion that the location of state events can be considerably

more computationally expensive when an accurate interpolation is not available�

A discontinuity function may be employed to represent any state condition ex�

pressed in the form of a relational expression between the system variables 	a relational

expression can be rearranged to a zero crossing by simple subtraction of the real expressions

on either side of the relational operators �� ���� �� or	 	Cellier� ����a

� A general�purpose

combined discrete�continuous simulation package should� however� allow state conditions to

be expressed in the most general terms possible� In particular� it will be desirable to ex�

press state conditions as general logical expressions involving multiple relational expressions

linked by the AND�OR�NOT operators� In this case� a boolean discontinuity function must be

utilised to locate the exact time of occurrence of state events in a slightly di�erent manner�

� If an accurate interpolation is not available� the boolean discontinuity function restricts

the iterative step adjustment algorithm to that of bisection�

� If an accurate interpolation is available� the exact time at which the boolean disconti�

nuity function changes value can only be located through a bisection iteration on this

function� Interpolation of the system variables over the previous step may be employed

to determine the value of this function at any intermediate point in time� This iteration

will therefore be inexpensive�

In both cases� therefore� the time of occurrence of the state event can only be located to a

certain state event tolerance� The new initial value problem must always be started from the

upper estimate of this event time in order to ensure that the system has entered the new

domain� Moreover� particular care must be taken with the use of the relational operators �

and 
� when a boolean discontinuity function is employed�
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����� Discrete Changes to the Continuous Mathematical Model

One of the consequences of the events that delimit the sequence of initial value

problems characterising a combined discrete�continuous simulation is a discrete change to

the mathematical model of the continuous time dependent behaviour of the system� In the

most general terms� this means that a completely new initial value problem is posed at the

event time t� At time t�� immediately before the event� the continuous behaviour of the

system is described by the equations ��� and ���� whereas at time t�� immediately after the

event� the continuous behaviour of the system is described by the new equations�

f �	x�� �x��y��u�� t
 � � 	����


u� � u�	t
 	����


where x�� �x� � �n�

� y� � �m�

� u� � �l�� and f � �n�

� �n�

� �m�

� �l� � � �� �n��m�

�

It is therefore possible for both the number of variables in the various categories and the

functional form of the describing equations to change in a completely general manner� From

a practical point of view� however� this new set of equations must also satisfy constraint ����

����
 Reinitialisation

Another potential consequence of an event at time t is that consistent values for the

variables x�� �x�� and y� at time t� must be determined before the new initial value problem

can be solved� This will always be necessary after a discrete change to the continuous

mathematical model at time t� Moreover� even if an event leaves the continuous mathematical

model unchanged� it may still be necessary to recalculate consistent values for the variables�

This is the case when impulses are employed to model phenomena that take place on a much

smaller time scale than that of primary interest 	see� for example� Mattsson 	����

�

The reinitialisation calculation required to determine a consistent set of values

fx�	t�
� �x�	t�
�y�	t�
g is similar to the initialisation calculation required at the beginning of

a simulation� However� the values to be determined in the former case may also depend on

the values of the variables immediately before the discontinuity� The initial condition can

therefore be expressed as a set of nonlinear equations�

r�	x�	t�
� �x�	t�
�y�	t�
�u�	t�
�x	t�
� �x	t�
�y	t�
�u	t�
� t�
 � � 	����




��

where r� � �n
�

��n
�

��m
�

��l
�

��n ��n ��m ��l �� �� �n
�

and fx	t�
� �x	t�
�y	t�
g

are the 	known
 set of values of the describing variables at the end of the preceding initial

value problem�

��	 Thesis Outline

In the chapters that follow� we will consider the development of a general�purpose

combined discrete�continuous process simulation package based on the mathematical formu�

lation described above� The next three chapters are concerned with a formal basis for the

description of this class of problems� and the articulation of this in the form of a simulation

language�

Chapter � concentrates on the description of the underlying physical behaviour of

processing systems� A review of recent work in this area is included� which emphasises the

important issues of managing model complexity and promoting model reusability� Although

this physical behaviour is predominantly continuous� discrete changes are also common�

A general formalism for the description of this combined discrete�continuous behaviour is

therefore considered�

In chapter �� the modelling of the external actions imposed on a processing system

by its environment is considered� An examination of the fundamental characteristics of

most industrial processing systems is intended to yield a more convenient formalism for the

interaction of these discrete actions with the predominantly continuous physical behaviour�

The issues of complexity management and reusability are raised again� Chapter � then brings

together these two disparate categories of information to form the description of individual

dynamic simulation experiments�

By this point� the 
rst main objective of the thesis will have been addressed� Chap�

ter � therefore contains an overview of the current implementation of a new modelling package

based on the simulation language introduced in the preceding chapters� The special demands

of combined discrete�continuous process simulation� particularly in the form of arbitrary

structural modi
cation of the continuous model� and the need for interactive responses from

the modelling package are examined in detail�

Chapter � employs this prototype modelling package to demonstrate the usefulness
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and necessity of combined discrete�continuous process simulation through a series of detailed

examples covering the entire range of process operations�

The thesis concludes in chapter � with a discussion of the contribution made� and

suggestions for future research�
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Chapter �

Combined Discrete�Continuous Modelling � Model Entities

Detailed dynamic simulation requires a mathematical model that describes the time

dependent behaviour of the system under investigation� As already discussed in chapter ��

models of the physico�chemical mechanisms that characterise the continuous time dependent

behaviour of most industrial processes can be expressed naturally in terms of di�erential�

algebraic equations 	DAEs
 or partial di�erential�algebraic equations 	PDAEs
� The solution

of these equations determines the time trajectories of the variables describing the system�

from which the dynamic behaviour of such systems can predicted�

This chapter is concerned with the development of a high level declarative language

for the description of systems modelled by DAEs� This language will enable the speci
cation

of the continuous aspects of a combined discrete�continuous simulation description� Ideally�

the language should enable an engineer to declare the describing equations of a system in a

manner that is completely decoupled from the details of the individual activities for which

the model may subsequently be employed� and the procedural knowledge required to solve

the equations� Within the scope of this thesis� the language is not intended to facilitate the

de
nition of mathematical models other than those based on DAEs� or to include rigorous

model documentation 	Stephanopoulos et al�� ����a
� although scope for the addition of

both these features exists�

The major problem encountered during the development of a continuous model for

a processing system is the size and complexity of such systems� The proposed modelling

language must provide structures for the management of this complexity that correspond

to the engineer�s perception of the structure of processing systems� These structures must

also encourage the development of models that are both correct and reusable� Although

correctness is the prime objective of any modelling exercise� reusability is also an issue

of great importance� A model that is reusable can be repeatedly used for many di�erent

purposes� thus making the best use of the original e�ort required for model development�

The chapter begins with a review of recent work concerned with the development
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of the large continuous models required for industrial processing systems� This leads into

a discussion of combined discrete�continuous models� and the conclusion that the existing

view of continuous models must be extended to include certain discrete elements�

Drawing on these ideas� the elements of the proposed language that enable the

description of primitive models are introduced� Finally� language structures for managing

model complexity and model reuse are presented�

��� Continuous Modelling of Industrial Processes

It is practically impossible for an engineer to grasp simultaneously all the knowledge

required to develop the model of a large system� To manage this complexity� the engineer

must analyse the structure of the system in order to divide it into a set of connected com�

ponents� The details of each component may then be considered as a problem in its own

right� independently of the details of the complete problem� This methodology is re�ected

in the universally accepted representation of process plant as a �owsheet of interconnected

unit operations�

Many of the components of complex systems appear repeatedly within the same

structure� For example� pumps and valves may appear many times in the �owsheet of a

complex process� In order to avoid repeated modelling of these identical components� all

the languages reviewed here support some form of model type 	or class
 concept� A model

type declares the behaviour of a set of components with similar characteristics� When a

component is actually required to form part of a larger structure� an instance of the model

type is created and inserted in the structure�

One of the earliest continuous simulation languages designed to support the struc�

tural decomposition methodology is DYMOLA 	Elmquist� ����
� The behaviour of a DY�

MOLA model may be declared in terms of the continuous connection of a set of submodels�

This is directly analogous to the decomposition of a complex system into interconnected

components� The decomposition is taken to its logical conclusion by allowing any submodel

also to be declared in terms of the continuous connection of submodels� enabling hierarchies

of arbitrary depth to evolve� Elmquist terms this hierarchical submodel decomposition�

The descriptive power of DYMOLA is augmented further by the ability to declare
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relationships between submodels to represent the connection mechanisms� such as pipes or

electrical wires� that occur in physical systems� The engineer building a complex model

from existing components through the use of these connection mechanisms is thereby freed

to concentrate on the structure of the system under consideration�

Hierarchical submodel decomposition also promotes reuse of models� Many of the

components of complex systems� such as pumps� capacitors� or even complex structures

such as distillation columns� are common to a wide range of systems� The models of these

components are therefore suitable for storage in libraries of components for later reuse� When

constructing a model of a new system� many submodels may be reused from these libraries�

DYMOLA was designed to be a completely declarative language� Unlike languages

descended from the CSSL standard 	Strauss� ����
� the DAEs describing the time depen�

dent behaviour of models do not have to be declared in assignment form� In order to solve

equations declared in this manner� Elmquist proposed analytical rearrangement of the equa�

tions to assignment form during compilation of the simulation description� However� the

DAEs that are required to model the continuous time dependent behaviour of most process

industry applications cannot always be rearranged into this form� This has led to interest in

simultaneous methods for the solution of DAEs amongst the process engineering community�

An early example of a declarative language speci
cally designed for the continuous

modelling of chemical processes is the SpeedUp input language 	Perkins and Sargent� �����

Prosys� ����
�

The representation of process plant as �owsheets is a natural application for Elmquist�s

hierarchical submodel decomposition� which is supported to a limited extent by SpeedUp�

Using the input language� primitive MODELs may be connected together to form MACROs

that represent complex augmented unit operations such as distillation columns� BothMODELs

and MACROs may then be connected together to form the top level of the model hierarchy�

the FLOWSHEET� This hierarchy is� however� limited to three levels because it is impos�

sible to de
ne MACROs in terms of the interconnection of other MACROs� Moreover� the

FLOWSHEET is unique to a particular simulation� preventing reuse of this top level of the

hierarchy�

SpeedUp provides two connection mechanisms� STREAMs represent the �ow of

material and energy in the pipes between unit operations� while CONNECTIONs represent
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the electrical or pneumatic information signals associated with the control system of any

process�

In recent years� the increasing awareness of ideas popularised by the object�oriented

programming paradigm has prompted the development of a new generation of continuous

modelling languages� Those languages designed for process engineering applications will be

reviewed here�

The common feature of all these new languages is the enhancement of the model

type 	or class
 concept through model inheritance� Inheritance enables the declaration of

a new model type in terms of the extension or restriction of a previously declared type�

Thus� inheritance is another mechanism by which model reusability and consistency can be

encouraged� Reusability is promoted because existing models may now be easily extended

for new applications� and consistency is guaranteed because common information need only

be declared and validated once�

OMOLA 	Andersson� ����� Andersson� ����� Mattsson and Andersson� ����


builds on the hierarchical submodel decomposition of DYMOLA with the introduction of

an object�oriented modelling framework� An important feature is the ability to use inheri�

tance in the declaration of both model types and complex connection mechanisms�

Although model reuse through model parameterisation is a feature of all the lan�

guages reviewed here� the design of OMOLA pays particular attention to this issue� The

use of parameters extends the model type concept by enabling a model type to describe the

behaviour of a wide range of similar� albeit not identical� components� The values assigned

to the parameters of an individual model instance then customise it to its application�

Finally� OMOLA introduces the representation of model behaviour as a number

of di�erent mathematical realisations 	such as DAEs� transfer functions� and state space

descriptions
� rather than a single realisation�

The application of the concepts embodied in OMOLA has been demonstrated

through the development of the continuous model of a complete chemical process 	Nils�

son� ����a� Nilsson� ����b
� This application has also highlighted some shortcomings of

OMOLA� particularly in the representation of the regular structures� such as distillation

tray sections� common to many unit operations�

ASCEND 	Piela� ����� Piela et al�� ����
 is a language for the declaration of con�
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tinuous mathematical models� particularly models of chemical processes� A complex model

type is constructed from primitive types using a range of language operators� The model

eventually developed should represent a well�posed mathematical problem that can then

be submitted for solution to a suitable numerical method� Both hierarchical submodel de�

composition and model inheritance are supported by the language operators� However� the

authors note that it is not strictly necessary� or even suitable� for a modelling language to

adopt the entire object�oriented paradigm�

The most interesting features of the ASCEND language are three of the operators

introduced for complex model type development�

� The IS REFINED TO operator is employed to re
ne an attribute to a new type that is

developed by inheritance from its original type� For example� it is possible to re
ne

the generic tray attributes of a distillation column model to sieve plate or bubble cap

tray models for the purposes of a particular simulation�

� Attributes that are associated using the ARE ALIKE operator adopt the most re
ned of

their types� Used in conjunction with the IS REFINED TO operator� it can propagate

type changes through entire structures� In the distillation column example above� it

is only necessary to apply the IS REFINED TO operator to a single tray in order to

re
ne all the trays in the column� provided these are all associated by the ARE ALIKE

operator�

� Attributes associated using the ARE THE SAME operator are merged into a single

attribute of the most re
ned type� This attribute can be referenced by any of the

identi
ers of the original attributes that were merged� The operator is used� for ex�

ample� to form the continuous connections between submodels� which has the e�ect

of reducing the total number of variables and equations present in a system model by

eliminating the equality constraints sometimes used for this purpose�

MODEL�LA 	Stephanopoulos et al�� ����a� Stephanopoulos et al�� ����b
 is pre�

sented as a language suitable for the description of models to be used for the entire range

of process engineering activities� The language is fully object�oriented and hierarchical sub�

model decomposition is represented in 
ve levels of abstraction� plant� plant�section� aug�

mented unit� unit and sub�unit� The language has been integrated with the DESIGN�KIT
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package 	Stephanopoulos et al�� ����
� an object�oriented environment for computer�aided

process engineering�

An important feature of MODEL�LA that distinguishes it from the other languages

reviewed in this section is the manner in which models of individual unit operations are de�

clared� All the other languages require a basic unit operation model to be declared in terms

of mathematical relationships between system variables� In contrast� MODEL�LA only re�

quires a declaration of the relationships required 	such as mass or energy balances
 and a

set of assumptions concerning physical and chemical phenomena� The model executive can

then automatically generate the correct mathematical relationships from this information�

This approach has many advantages� including rigorous model documentation and consis�

tency checking� and greater support for the inexperienced modeller� but may ultimately

be restricted by the scope of the knowledge base from which equations are automatically

generated� Currently� researchers are attempting to combined the advantages of high level

model description with the �exibility of access to individual equations 	Hutton et al�� �����

V�azquez�Rom�an� ����
�

In addition� MODEL�LA introduces a framework for multifaceted modelling� This

recognises the need to consider a process model at several di�erent levels of abstraction during

the evolution of a design� A multifaceted model consists of an arbitrary number of facets

that exchange and share information concerning the physical object under consideration�

The facet used for a particular activity is determined by the level of abstraction required�

The remainder of this chapter is concerned with the development of a high level

modelling language for the declaration of the continuous aspects of a combined discrete�continuous

simulation� The design of this language incorporates many of the ideas introduced above�

However� the language is deliberately focussed on the description of dynamic simulations

and does not address many other important modelling issues raised by these workers�

��� Combined Discrete�Continuous Modelling

Before the design of the modelling language can be detailed� the special modelling

requirements of combined discrete�continuous systems must be identi
ed and addressed�

A consideration of these issues leads to a natural extension of the traditional concept of a
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continuous model to that of a combined discrete�continuous model� a continuous model that

contains certain discrete components�

A combined simulation progresses through periods of continuous simulation� char�

acterised by the solution of the describing equations� interspersed by instantaneous events�

which may result in some form of discrete change� A detailed characterisation of these dis�

crete changes was given in section ���� It is proposed that the discrete changes a processing

system may experience can be split naturally into two distinct categories�

� Those that are a result of the physico�chemical mechanisms that characterise the con�

tinuous time dependent behaviour of a system and thus occur independently of any

direct external intervention or interference with the system� Examples include the

transitions from laminar to turbulent to choked �ow in a pipe� phase changes� and �ow

	or not
 over a weir� These changes are termed physico�chemical discontinuities�

� Those that result directly from the interaction of a system with its environment� such

as external disturbances and control actions� Examples include the opening or closing

of manual valves� switching a control loop from manual to automatic control� or the

action of a discrete controller at the end of each sampling interval� These changes will

be dealt with in detail in the next chapter�

Discrete changes that result from physico�chemical mechanisms are most naturally declared�

together with the describing equations� within the system model� In this manner� all the

knowledge concerning the physical behaviour of a system can be encapsulated in a single

entity� In order to include these physico�chemical discontinuities� the concept of a combined

discrete�continuous model is introduced� A consideration of the nature of these discontinu�

ities and the mechanisms by which they occur will lead to a formalism for these combined

models�

An examination of the nature of physico�chemical discontinuities leads to the con�

clusion that they can be modelled by dynamic changes to the describing equations of a

system 	see section ���
� For example� the transition from laminar to turbulent �ow in a

pipe involves a discrete change in the relationship between the Fanning friction factor and

the Reynolds number� Similarly� when the liquid level in a vessel rises above a weir� the �ow

over the weir is related to the liquid level above the weir� whereas before it was zero� At a
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phase change� not only does the functional form of the modelling equations change� but it is

also possible that the number of variables� and therefore equations� required to describe the

system changes�

A continuous model is composed of a set of variables that describe the dynamic

behaviour of a system� and a set of equations that relate these variables� At any given point in

time these two sets characterise the current state� of the model� Many models have a unique

state� the composition of the sets of variables and equations associated with them remains

unchanged 	although� of course� the values of the variables will change with time
� On the

other hand� models that include physico�chemical discontinuities must be declared in terms

of several states� each characterised by a di�erent set� and possibly number� of describing

equations� For example� the model of a �ash drum will be declared in terms of at least

three states corresponding to the presence of both vapour and liquid phases� liquid phase

only� and vapour phase only� During a simulation the active state of a model determines

the equations that describe the system at that point in time� Events during simulation may

result in changes in the active state of a model� and the attendant changes to the describing

equations�

In the process engineering community� the occurrence and explicit declaration of

physico�chemical discontinuities in modelling equations was 
rst discussed in the context

of steady�state simulation 	Westerberg and Benjamin� ����
� In this case� the steady�state

solution procedure must search for the correct model state as the calculation proceeds� This

has been represented formally by the CASE structured statement of ASCEND 	Piela� ����
�

where a series of globally applied logical conditions are combined in a truth table to determine

the active state� The occurrence of physical discontinuities during a dynamic simulation is

also re�ected in the design of several existing continuous process simulation packages� For

example� the IF equation of SpeedUp 	Pantelides� ����b
 de
nes two system states linked

by a logical condition� While the condition is true� the 
rst state will be active� but if

the condition becomes false� the second state will become active� Multiple states may be

accommodated by nesting these IF equations�

It should be recognised� however� that neither formalism provides a su�ciently

�This should not be confused with the dynamic state of the system� i�e� the values of the di�erential
variables x�t	 in equation 
���
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general representation of the mechanisms that result in dynamic transitions between model

states� This will be illustrated by three simple examples� In 
gure ��� models containing

physico�chemical discontinuities are represented as digraphs� with nodes denoting model

states and arcs signifying instantaneous transitions between these states�

1. Tank with a weir

2. Vessel fitted with a bursting disc

3. Vessel fitted with a safety relief valve

Closed Open

Press > Set_Press

Press < Reseat_Press

Intact Burst

Press > Burst_Press

FlowNo_Flow

Level > Weir_Height

NOT Level > Weir_Height

Figure ���� Examples of Models Containing Physico�Chemical Discontinuities

The 
rst example is that of a vessel containing an over�ow weir� The model can

be declared in terms of two states� corresponding to whether or not �uid �ows over the

weir� A transition from the No Flow to the Flow state occurs when the liquid level rises
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above the weir� and a transition from the Flow to No Flow state occurs when the liquid level

drops below the weir� This is termed a reversible discontinuity because the condition for

one state transition is the negation of the condition for the other� Consequently� the two

state transitions can be characterised by a single logical condition� a fact that is re�ected

by the IF equation of SpeedUp and its counterparts� This is also the limitation of these

representations� they are only suitable for declaration of reversible discontinuities�

The second example is that of a vessel 
tted with a bursting disc� The bursting

disc can either be intact� with no gas �ow from the vessel� or burst� with gas venting from

the disc to a �are stack� The model of the vessel is thus declared in terms of these two

states with only one possible transition between them occurring when the pressure in the

vessel rises above the set pressure and the disc shatters� The disc can never return to the

intact state once it has shattered� the plant must be shut down and the disc replaced� This

is termed an irreversible discontinuity and clearly demonstrates the limitations of the IF

equation representation� which would incorrectly return the disc to the intact state as soon

as the pressure dropped below the set pressure�

The 
nal example is that of a vessel 
tted with a safety relief valve� This valve

can be either open or closed� which again corresponds to two model states� A transition

from the closed to the open state occurs when the pressure in the vessel rises above the

set pressure� and a transition from the open to the closed state occurs when the pressure

falls below a 	lower
 reseat pressure� This is termed an asymmetric discontinuity because�

although there are possible transitions in both directions� the transition conditions that must

be satis
ed are not directly related� Other examples of systems that contain asymmetric

discontinuities include a thermostat� and the mechanism employed to periodically �ush public

urinals� Again� the IF equation representation cannot be employed to declare asymmetric

discontinuities in a natural manner�

A formalism that does give a su�ciently generalised representation of these dis�

continuities was 
rst proposed by the system simulation community 	Pearce� ����
� and has

been implemented in the general�purpose combined simulation languages COSY 	Cellier and

Bongulielmi� ����
� SYSMOD 	Smart and Baker� ����
� and COSMOS 	Kettenis� ����
� As

stated earlier� the model of a system is declared in terms of a 
nite number of distinct states�

one of which will be active at any point in time� In general� each state S is characterised by�
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� a set of equations� f �

� a set of variables� x� �x� y and u�

� a 	possibly empty
 set of transitions to other states�

and a transition is characterised by�

� an initial state� SI �

� a terminal state� ST �

� a logical condition� l	xI � �xI �yI �uI� t
� expressed in terms of the variables in the initial

state SI �

� a set of relationships allowing the determination of consistent initial values for the

variables in ST from the 
nal values of the variables in SI �

If we assume that the set of variables is the same for all states� and that the di�erential

variables x are continuous across all transitions� consistent initial values for state ST can be

determined automatically from the mapping�

xT 	t�
 � xI	t�
 	���


where t� is the earliest time at which l	xI � �xI �yI �uI� t�
 becomes true�

Each model that uses this formalism is equivalent to a deterministic 
nite au�

tomaton 	Hopcroft and Ullman� ����
� albeit one whose states can be immensely complex�

according to the nature of the describing equations� A system containing an irreversible

discontinuity includes at least one state with an empty transition set�

From a practical point of view� many of the describing equations of a system will

remain unchanged regardless of the state the system is in� In order to avoid duplication

of these equations in the declaration of each state� a model should be able to contain an

invariant set of equations� Also� the variant equations of a model can often be divided

into a series of smaller groups each characterised by an independent 
nite automaton� For

example� the model of a vessel 
tted with both a safety relief valve and a bursting disc would

be declared in terms of the invariant balance equations and two 
nite automata� determining

the �ow from the relief valve and the bursting disc respectively�
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The formalism for a combined discrete�continuous model is thus complete� Such a

model will consist of variant and invariant sets of equations� either of which may be empty�

The variant set of equations are described in terms of one or more �nite automata� Each


nite automaton is characterised by one or more states� At any point in time� the describing

equations of a model are the union of the equations of the active states of the 
nite automata

and the invariant equations� This de
nition is also recursive� each state of a 
nite automaton

can be declared with variant and invariant parts� Figure ��� demonstrates how a combined

model can be represented diagrammatically as a digraph�

State 2 State 3

State 4 State 5

State 1

State 6 State 7

Invariant
Equations

Figure ���� Digraph Representation of a Combined Discrete�Continuous Model

This formalism will be used in the next section as a basis for the development of

syntactic structures for the declaration of combined discrete�continuous models�
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��� Primitive Model Entities

This section is concerned with the development of language structures for the dec�

laration of primitive model entities� As will be seen later in this chapter� these can form the

basis for the construction of higher level model entities�

A model entity captures all the knowledge regarding the physical behaviour of a

system� including the equations that determine the continuous time dependent behaviour

and any physico�chemical discontinuities that may change the functional form of these equa�

tions� Once a model entity has been declared� the information it contains may be used by

instantiating it in the description of an individual activity�

The review at the beginning of this chapter has already pointed out that high level

declarative languages for the description of continuous models� such as that employed by

SpeedUp 	Perkins and Sargent� ����
� have now been established for several years� and that

recent developments� such as the ASCEND system 	Piela et al�� ����
� have introduced

new concepts 
rst popularised by the object�oriented programming paradigm� The language

structures described here are based on these existing packages� although a number of impor�

tant features� related to combined discrete�continuous simulation in particular� have been

introduced� and others have been signi
cantly enhanced�

A model entity is a complex data type that encapsulates a declaration of the fol�

lowing information regarding the structure and physical behaviour of a system�

� A set of variables that describe the time dependent behaviour of the system�

� A set of relationships between these variables� in the form of DAEs� that determine the

time dependent behaviour of the system� including any physico�chemical discontinuities

that may cause discrete changes to their functional form�

� A set of time invariant parameters that characterise the system and promote reuse of

the model entity�

� A set of complex terminals 	streams
 that represent the model�s interface with its

environment� These terminals may subsequently be used in the construction of more

complex structures involving the model entity as a component�
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Each item of information� such as a variable� is termed an attribute of the model entity�

An attribute must have a unique identi
er associated with it� by which the attribute may

be referenced� for example� in expressions� An exception to this rule is made in the case of

equation attributes� for which the identi
er is only optional� The set of attributes encompass

the information declared within a model entity�

Regular structures that provide an aggregated description of a number of related

items of information are a feature of most programming and modelling languages� and can

be used to model conveniently many physical quantities or phenomena that occur frequently

in processing systems� Examples include�

� A variable attribute that represents the component �owrates in a multi�component

process stream�

� A parameter attribute that represents the stoichiometric coe�cients of a chemical

reaction�

� A terminal attribute that represents the inlet streams of a unit operation that mixes

an arbitrary number of process streams�

In re�ection of this� all the attributes of a model entity may be declared as a regular structure�

or array� of a base type� Attribute arrays may have an arbitrary number of dimensions��

although a particular implementation may impose a practical upper limit on the number of

dimensions� The total number of scalar quantities� or elements� represented by an attribute

array is determined from the product of the number of elements in each dimension of that

array� The number of elements in each dimension is declared in terms of a scalar integer

expression involving integer constants and�or any previously declared integer parameters of

the model entity in question 	e�g� Flow�In AS ARRAY���NoStream��� OF REAL
��

References to array attributes may be made in several di�erent fashions� For exam�

ple� a reference to an entire array is made through use of the attribute identi
er alone� and

a reference to an individual element of an array is made by an explicit index to the element

�It is important here to distinguish between the dimensions of an array or regular structure� and the
fundamental physical dimensions of a quantity� such as mass or length�

�In all language examples given in this thesis� upper case is employed to denote standard keywords�
whereas user�selected identi�ers are shown in mixed case�
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in question� This index is determined from a list of scalar integer expressions enclosed by

brackets following the attribute identi
er 	e�g� Flow�In�	�NoStream
��
� Each expression

in this list represents an index into one dimension of the array� Individual elements of a

dimension are indexed from one to the number of elements in that dimension�

A reference to a subset of the elements in one or more dimensions of an array is

termed a reference to a slice of that array� The elements that are included within a slice is

again determined by a list of references into each dimension of the array in question enclosed

by brackets� A subset of the elements in a particular dimension is denoted by two scalar

integer expressions separated by a colon� representing the lower and upper bounds of the

reference into that dimension respectively 	e�g� Flow�In�	�����NoStream�
� The value of

the upper bound must be greater than or equal to that of the lower bound� and both values

must lie with the lower and upper indices of the dimension itself� A reference to an entire

dimension is made by leaving a blank� so a list of blanks enclosed in brackets and separated

by commas is identical to the use of an attribute identi
er alone� A reference to an individual

element is again made by a single scalar integer expression 	e�g� Flow�In�	�����
�

The declaration of a model entity begins with the keyword MODEL followed by a

unique identi
er by which it may be referred to globally� The remainder of the declaration

is split into a series of optional sections in order to gather all the attributes belonging to

a particular category in one place and thus aid model documentation� The following text

details how each category of attribute is declared�

��	�� Parameter Attributes

The merits of parameter attributes that extend the notion of a model type to de�

scribe a broad range of similar� although not identical� components have already been dis�

cussed� Parameter attributes are distinguished from variable attributes by a characterisation

as time invariant quantities that are not� under any circumstances� determined from the re�

sults of a calculation� Quantities such as the number of elements in an array dimension�

Arrhenius coe�cients� and stoichiometric coe�cients are therefore suitable parameter at�

tributes� Otherwise� the degree of �exibility� particularly from the point of view of regular

structures� allowed in the declaration of parameter attributes is identical to that of variable

attributes�
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The categorisation of certain real quantities as parameter attributes as opposed

to variable attributes is obviously rather tenuous� Designating a quantity as a parameter

attribute has the advantage of reducing the total number of variables in the system� but there

is the disadvantage that this quantity may never be treated as an unknown to be calculated

in any future use of the model� Consider� for example� the time invariant quantities that

characterise the size and geometry of a vessel� From the point of view of dynamic simulation�

these quantities can always be designated as parameter attributes� although from the point

of view of steady�state design calculations performed with the same model� these quantities

may be considered unknowns under certain circumstances�

The PARAMETER section is employed for the declaration of the parameter at�

tributes of a model entity� All parameter attributes are declared as instances of a parameter

type� Parameter declarations may optionally include the assignment of default values� which

may be speci
ed in terms of expressions involving previously declared parameters� The

current language de
nition o�ers the following parameter types�

� Real� integer or logical values�

� Real� integer of logical expressions that are passed in symbolic form�

� Model type parameters� which are explained in section ������

The di�erence between value and expression parameters is rather subtle� In fact� whenever

a model entity is instantiated� an expression of the appropriate type may be assigned to both

categories of parameters� The actual di�erence lies in the fact that value parameters are

replaced by the value of the expression at the time of instantiation of the model entity and

remain constant thereafter� On the other hand� an expression parameter is replaced symbol�

ically by the expression itself� in a manner somewhat similar to parameter transmission by

name in Simula procedures 	Birtwistle et al�� ����
� Figure ��� demonstrates how this range

of parameter types may facilitate the parameterisation of a reactor model according to the

reaction	s
 taking place�

Clearly� before an instance of a model entity can actually be used in a simulation�

all of its parameters must be assigned appropriate values�� As we shall see later� this can

�Unless they have been given default values
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MODEL Reactor

PARAMETER
NoComp AS INTEGER
NoReactions AS INTEGER DEFAULT �
Stoich AS ARRAY�NoReactions�NoComp� OF INTEGER
K�� Activation�Energy AS ARRAY�NoReactions� OF REAL
Reaction�Rate AS ARRAY�NoReactions� OF REAL�EXPRESSION
G AS REAL

Figure ���� Example PARAMETER section

be done in higher�level models 	see section �����
 or in process entities describing entire

simulations 	see section ���
� However� a model is also capable of 
xing the values of some

of its own parameters�

The SET section enables any of the parameter attributes declared in the PARAME�

TER section to be assigned 
xed values that may not be rede
ned on instantiation of a model

entity� These values may be determined from expressions of the appropriate type involving

other parameters� although circular value assignments will be automatically detected and

rejected� For example� the declaration�

SET

G �� 
��� �

e�ectively renders the parameter attribute G a constant with a 
xed value in all instances of

the above model�

��	�� Variable Attributes

Variable attributes represent the quantities describing the time dependent behaviour

of a system� such as the temperature or the material holdup of a vessel� It is advantageous to

group these quantities according to variable types that de
ne such properties as the range of

physically meaningful values� the fundamental physical dimensionality� and the units� The

declaration of variables types is discussed in appendix A�
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The VARIABLE section contains a declaration of all the variables that describe the

time dependent behaviour of the system represented by the model entity� Variable attributes

must be declared as instances of already declared variable types� An example VARIABLE

section is shown in 
gure ����

VARIABLE
Flow�In� Flow�Out AS ARRAY�NoComp� OF Flowrate
HoldUp AS ARRAY�NoComp� OF Moles
Vessel�Temperature AS Temperature

Figure ���� Example VARIABLE section

��	�	 Stream Attributes

Streams attributes are subsets� not necessarily disjoint� of the variables describing

the time dependent behaviour of a system� They represent a system�s interface with its

environment� and are useful in specifying the complex connection mechanisms that exist

between di�erent components of a physical system 	see section ���
� or for displaying and

manipulating simulation results�

The STREAM section is used to declare stream attributes� which must be declared

as instances of already declared stream types 	see appendix A
� This declaration also includes

a speci
cation of the subset of variable attributes that is to be included in the stream� The

number and types of the variable attributes in a stream must normally match directly those

in the stream type declaration� This type conformance is relaxed for variable attributes that

have been declared as AnyType in the stream type declaration 	see appendix A
� An example

of a STREAM section is shown in 
gure ����

STREAM
Inlet � Flow�In� Temp�In� Press�In� Enth�In AS MainStream
Outlet � Flow�Out� Temp�Out� Press�Out� Enth�Out AS MainStream

Figure ���� Example STREAM section
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It should be noted that no assumptions concerning the dimensionality of the variable

attributes included in a stream are made in a stream type declaration 	see appendix A
�

Therefore� a slice or an entire array of variable attributes may appear in any 
eld of a stream

attribute� provided the base type of the array matches the variable type of the corresponding


eld in the stream type� For instance� the following is a valid stream declaration�

STREAM
Inlet � Flow�In���NoComp	���Temp�In�Press�In�Enth�In AS MainStream

Stream attributes may themselves be declared as arrays of the basic stream types� For in�

stance� a mixer involving several inlet streams could have a corresponding stream declaration

of the form�

STREAM
Inlet � Flow�In� Press�In AS ARRAY �NoStream� OF MainStream

Each variable attribute in a k�dimensional stream must have at least k dimensions� and each

of its �rst k dimensions must have exactly the same number of elements as the corresponding

dimension of the stream� For instance� a possible declaration of the variables in the above

example would be�

VARIABLE
Flow�In AS ARRAY �NoStream�NoComp� OF Flowrate
Press�In AS ARRAY �NoStream� OF Pressure

This rule allows a natural identi
cation of the variable attributes to be associated with each

element of the stream array�

��	�� Equation Attributes

The EQUATION section contains the declaration of the equation attributes of a

model entity� These form part of the set of DAEs that determine the time trajectories of

the variables already declared in the VARIABLE section� In general� this set of equations

will be under�determined with respect to these variables� but will include the declaration of

any physico�chemical discontinuities that may result in dynamic changes to their functional

form�
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EQUATION

MassBalance AS 
Holdup � Flow�In 	 Flow�Out � Total�Reaction�Rate 


EnergyBalance AS 
U�Holdup � Enth�In 	 Enth�Out � Total�Reaction�Heat 


Figure ���� Example EQUATION section

A simple equation attribute is declared using a high level symbolic language in

terms of an equality constraint between two real expressions� These real expressions may be

written in terms of the following primitive operands�

� Real or integer constants�

� References to real or integer value or expression parameter attributes�

� References to variable attributes��

� References to the built�in system variables representing time�

� Built�in functions�

These operands may be related by the real operators ���� �� � and  	raising to a power


common to most programming and modelling languages� The raising to a power operator

has the highest precedence� followed by the division and multiplication operators� and the

addition and subtraction operators have the lowest precedence� Brackets may be employed

in order to alter these precedence rules for certain operations� All equation attributes can

optionally be associated with a unique identi
er� These identi
ers are required for some

of the more sophisticated manipulations of the continuous model allowed during dynamic

simulation 	see chapter �
� In addition� they are often useful for diagnostic purposes� Figure

��� demonstrates how mass and energy balance equations might be declared in a particular

model�

Arrays of equation attributes are not declared explicitly� but are implied by their

declaration in terms of expressions involving references to arrays or slices of variable and�or

�The symbol � preceding a variable attribute identi�er indicates the derivative with respect to time of
the latter�
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parameter attributes� The dimensionality� of a unary expression is the same as that of its

operand� For binary expressions� three cases are distinguished�

� If both operands are scalar� then the expression is scalar�

� If only one operand is scalar� then the expression adopts the dimensionality of the

other operand�	

� If neither operand is scalar� then both operands must be of the same dimensionality�

which is also adopted by the expression itself�


A simple equation is declared as two real expressions separated by an equality operator

	denoted by ��� or �IS�
� The dimensionality of the equation itself is obtained by applying

the rules for binary expressions to the equality operator�

Expressions may include built�in functions as operands� A function performs a

mathematical operation on its arguments that would be di�cult or even impossible to declare

using the language operators� At present� there are two categories of built�in function�

� Vector functions take a single argument and return a set of values with dimensionality

equal to that of the argument�

� Scalar functions take an arbitrary number of arguments of arbitrary dimensionality

and return a scalar value�

All function arguments may themselves be expressions of the appropriate type� Table ���

contains a summary of the vector functions currently included in the language de
nition�

Similarly� table ��� contains a summary of scalar functions� The implementation enables this

set of built�in functions to be extended easily as needs arise�

If any of the arguments of a scalar function are references to an array or a slice�

the operation is applied to the entire array or slice� For example� if an array is passed as an

�The dimensionality of any entity is de�ned as the number of dimensions and the number of elements in
each dimension�

�Each element of this expression is obtained by the binary operation between the scalar operand and the
corresponding element of the other operand�

	Each element of the resulting expression is obtained by the binary operation between the corresponding
elements of the two operands�
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Identi
er Function
ABS The absolute value of the argument
SGN The sign of the argument
SQRT The square root of the argument
ERROR The error function of the argument
SIN The sine of an argument in radians
COS The cosine of an argument in radians
TAN The tangent of an argument in radians
ASIN The arcsine in radians of the argument
ACOS The arccosine in radians of the argument
ATAN The arctangent in radians of the argument
SINH The hyperbolic sine of the argument
COSH The hyperbolic cosines of the argument
TANH The hyperbolic tangent of the argument
EXP The exponential of the argument
LOG The natural logarithm of the argument
LOG�� The logarithm to base �� of the argument
INT Truncate real argument towards negative in
nity

Table ���� Table of Built�in Vector Functions

Identi
er Function
SIGMA The sum of the arguments
PRODUCT The product of the arguments
MIN The smallest argument
MAX The largest argument

Table ���� Table of Built�in Scalar Functions

argument to the function SIGMA� a scalar value equal to the sum of all the elements of that

array will be returned 	e�g� Total�Flow�Out � SIGMA�Flow�Out��
� All function identi
ers

may be used in the declaration of model attributes� thereby locally overriding the built�in

function de
nitions�

��	�
 Structured Equations

Some or all of the equation attributes of a model entity may also be structured

equations which de
ne complex operations on the equality constraints declared in simple
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equations� These operations include the dynamic changes to the describing equations that

occur as a result of physico�chemical discontinuities� Below� we introduce the structured

equations currently included in the language de
nition�

��	�
�� The FOR Equation

As described in section ������ the language already allows the implied declaration

of arrays of equation attributes� Situations do exist� however� in which these rules are not

su�cient� e�g� in de
ning matrix�vector multiplications�

One solution to this problem is to introduce a special language operator for each

non�scalar operation a user might conceivably want to perform� However� this approach

cannot guarantee completeness and has the disadvantage of signi
cantly increasing the size

of the basic language de
nition� Alternatively� a syntactic structure for the expression of

complex array notation in an explicit manner can be introduced� It is this second approach

that is adopted by the introduction of the FOR structured equation� This equation de
nes

the repeated expansion of a list of equations for a sequence of values assigned to a special

integer counter variable� Two examples of how complex array manipulations may be ex�

pressed through this structured equation are illustrated in 
gures ��� and ���� Note that

text following a � symbol is always treated as commentary�

Figure ��� demonstrates how a FOR equation may be used in a unit operation that

is parameterised by its number of inlet streams� In particular� the FOR equation is necessary

for summing the input streams on a component�by�component basis� Note that the desired

e�ect could not be obtained simply through SIGMA�Flow�In� because this would sum the

�owrates of all components of all streams together� returning a scalar!

Figure ��� illustrates one possible model for an isothermal liquid phase tubular

reactor� The partial di�erential equation that normally describes the mass balance of such

a system has been reduced to a set of ordinary di�erential equations with respect to time by

a backward 
nite di�erence approximation based on a 
xed spatial discretisation� The FOR

equation is particularly necessary in this example in order to express the reaction term of

the mass balance� Note that explicitly and implicitly declared array equations can be mixed

freely� For instance� the last equation in 
gure ��� could also be written as�

FOR J �� 	 TO NoSlice DO
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MODEL Multi�Mix

PARAMETER
NoComp AS INTEGER
NoStream AS INTEGER

VARIABLE
Flow�In AS ARRAY�NoStream�NoComp� OF Molar�Flowrate
Flow�Out AS ARRAY�NoComp� OF Molar�Flowrate
Press�In AS ARRAY�NoStream� OF Pressure
Press�Out AS Pressure

STREAM
Inlets � Flow�In� Press�In AS ARRAY�NoStream� OF Mixer�Stream
Outlet � Flow�Out� Press�Out AS Mixer�Stream

EQUATION

� Static mass balance
FOR I �� � TO NoComp DO

Flow�Out�I� � SIGMA�Flow�In���NoStream�I�� 

END � for

� Outlet pressure drops to minimum of the inlet pressures
Press�Out � MIN�Press�In� 


END � Multi�Mix

Figure ���� Model that Statically Mixes an Arbitrary Number of Streams

�Conc��J� � 
 Velocity��Conc��J� 
 Conc��J
����Dl

� Stoich�Rate�Const�Conc���J��Conc�	�J� �

END � for

Here� the expansion over the various components is implied in the declaration of the simple

equation�

In general� the declaration of a FOR equation begins with�

FOR Identi
er �� �exp� TO �exp� STEP �exp� DO

The increment is defaulted to unity if not speci
ed�
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MODEL Tubular�Reactor

PARAMETER
NoComp� NoSlice AS INTEGER
Length� Area� Rate�Const� Dl AS REAL
Stoich AS ARRAY�NoComp� OF INTEGER

VARIABLE
Flow�In� Flow�Out AS Vol�Flowrate
Velocity AS Velocity
Conc�In AS ARRAY�NoComp� OF Molar�Conc
Conc AS ARRAY�NoComp�NoSlice� OF Molar�Conc

STREAM
Inlet � Flow�In� Conc�In AS Reactor�Stream
Outlet � Flow�Out� Conc��NoSlice� AS Reactor�Stream

SET
Dl �� Length�NoSlice 


EQUATION

� Reaction in dilute solution
Flow�In � Flow�Out 


� Fluid velocity
Velocity�Area � Flow�In 


� Inlet node

Conc���� � 	 Velocity��Conc���� 	 Conc�In��Dl � Convection term

� Stoich�Rate�Const�Conc������Conc����� 
 � Reaction term

� Interior nodes
FOR I �� � TO NoComp DO
FOR J �� � TO NoSlice DO


Conc�I�J� � 	 Velocity��Conc�I�J� 	 Conc�I�J	����Dl
� Stoich�I��Rate�Const�Conc���J��Conc���J� 


END � for
END � for

END � Tubular�Reactor

Figure ���� Model of a Tubular Reactor
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It must be possible to distinguish the identi
er of the special counter variable from

any attribute identi
ers of the model entity in question� and this identi
er may only be

referenced by equations enclosed by the FOR structure� The list of equations may involve

any combination of simple and structured equations� enabling nesting to arbitrary depth�

although the identi
ers of any counter variables introduced must be distinguishable from

those of any enclosing FOR equations� The number of times a FOR equation is expanded is

determined from the starting value� upper limit and the optional positive increment for the

counter variable� These values are declared immediately after the counter variable and may

be expressed as integer expressions not involving the counter variable itself� The expansion

of a FOR structure proceeds according to algorithm ����

Algorithm ��� Expand FOR Equation

�� Assign the starting value to the counter variable�

�� While the counter variable does not exceed the upper limit do

�a	 Expand the enclosed equation list for the current value of the counter variable�

�b	 Increment the counter value by the increment speci
ed �default �	�

end

end

��	�
�� The CASE Equation

As already discussed in section ���� a combined discrete�continuous model consists

of a set of invariant and variant equations� the variant equations being described in terms

of one or more 
nite automata� The CASE structured equation is one of two syntactic

structures that enable the declaration of physico�chemical discontinuities in terms of a 
nite

automaton�

The states of the 
nite automaton represented by a CASE equation are enumerated

by a special model attribute known as a selector variable� All selector attributes must be
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declared in the SELECTOR section of a model entity in terms of a list of symbolic identi
ers

that enumerate these states� A default initial value for the selector attribute may also be

included in this declaration and several selector attributes may share the same enumeration�

A CASE equation is declared in terms of a set of two or more clauses� each corre�

sponding to one state of the 
nite automaton� The selector variable associated with each

CASE equation provides the enumeration of these states� and stores the active state of that

particular automaton at any point in time� Each selector variable may therefore only appear

in one CASE equation�

Each of these clauses is declared in terms of a list of equations and an optional list

of switch statements de
ning transitions from this state to other states of the CASE equation�

Again� in order to allow the recursive declaration of each state of a 
nite automaton� this

list of equations may include any combination of simple and structured equations�

The switch statements associated with a clause correspond to the set of possible

transitions from that state� Each switch statement is declared in terms of the logical ex�

pression that must be satis
ed in order for a transition to occur� and the new state which

becomes active as a result of the transition� Of course� this new state must belong to the

set of states of the automaton concerned� Switch statements are evaluated in the order in

which they are declared� so if two or more transition conditions are satis
ed simultaneously�

the new active state will be determined from the 
rst switch statement to be evaluated� If

a clause contains no switch statements� it is impossible to leave that particular clause once

it is entered�

Figure ��� demonstrates how a CASE equation can be used in the declaration of

the model for a vessel 
tted with a bursting disc� This example also demonstrates that

the speci
cation of the initially active state of a system is necessary� the user must specify

whether or not a disc has been installed in the vessel� In this case the initial state of the 
nite

automaton can be inferred from a default value� although this default could be overridden

by an individual simulation description�

��	�
�	 The IF Equation

Reversible discontinuities are by far the most commonly encountered physico�chemical

discontinuity in industrial processing systems� As has already been noted� the state tran�
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MODEL Vessel�With�Bursting�Disc

PARAMETER
Vessel�Volume� R AS REAL
Burst�Pressure� Disc�Const AS REAL

VARIABLE
Flow�In� Flow�Out� Relief�Flow AS Molar�Flowrate
Holdup AS Moles
Temp AS Temperature
Press AS Pressure

STREAM
Inlet � Flow�In� Press AS MainStream
Outlet � Flow�Out� Press AS MainStream
Relief � Relief�Flow� Press AS MainStream

SELECTOR
Disc�Flag AS �Intact�Burst� DEFAULT Intact

SET
R �� ����� 


EQUATION

� Mass balance

Holdup � Flow�In 	 Flow�Out 	 Relief�Flow 


� Equation of state 	 perfect gas
Press�Vessel�Volume � Holdup�R�Temp 


� Relief flow from bursting disc 	 assume choked flow
CASE Disc�Flag OF
WHEN Burst � Relief�Flow � Disc�Const�Press�SQRT�Temp� 

WHEN Intact � Relief�Flow � � 


SWITCH TO Burst IF Press �� Burst�Pressure 

END � case

END � Vessel�With�Bursting�Disc

Figure ���� Model of a Vessel Fitted with a Bursting Disc



��

sitions associated with this type of discontinuity can be characterised by a single logical

condition� Although reversible discontinuities can be declared using a CASE equation� the IF

structured equation is speci
cally introduced as a convenient shorthand� involving a single

logical condition� for the declaration of this common form of discontinuity� CASE and IF

structured equations are known collectively as conditional equations�

IF structured equations are almost identical to the similar structures supported by

many other modelling languages� The declaration consists of a logical expression and two

clauses� each characterised by a list of structured and�or simple equations� The active clause

may change dynamically during a simulation and is determined from the value of this logical

expression at any point in time� If the expression is true� the equations declared in the 
rst

clause are included in the system model� otherwise the equations of the second clause are

included� The use of an IF structured equation in the declaration of a model for a vessel

containing an over�ow weir is demonstrated in 
gure �����

The logical expression associated with an IF equation may contain references to non�

scalar quantities� Obviously� this results in an array of scalar logical expressions representing

the expansion of the expression for each element of these non�scalar quantities� An array of

logical expressions may only be used in situations where the number of equality constraints

in each clause of the IF equation exactly matches the number of scalar logical expressions

in the array� Each equality constraint can then be assigned its own scalar logical expression

that determines any dynamic changes independently of any change to the other equality

constraints declared in the same IF equation� Figure ���� demonstrates the application of

this rule to the model of a vessel containing over�ow pipes at several di�erent levels�

A similar rule is applied to CASE equations declared in terms of an array of selector

variables� Here� each element of the selector array determines the active state of one equality

constraint and an array of switch statements determines the independent state transitions�

It is worth noting that� unlike CASE equations� the clause of an IF equation that

is initially active cannot be speci
ed explicitly� Instead� it is determined automatically by

the initialisation calculation� which ensures that the consistent initial values obtained 	see

section �����
 satisfy both the logical condition and the equations in this clause� However� the

solution of nonlinear systems involving such conditional equations is far from trivial 	see� for

example� Zaher and Westerberg 	����

� Furthermore� in some cases there may exist valid
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MODEL Vessel�With�Weir

PARAMETER
Area� Weir�Length� Weir�Height AS REAL

VARIABLE
Flow�In� Flow�Out AS Molar�Flowrate
Total�Holdup AS Moles
Liquid�Level AS Length
Bulk�Density AS Liquid�Density

STREAM
Inlet � Flow�In AS MainStream
Outlet � Flow�Out AS MainStream

EQUATION

� Mass balance

Total�Holdup � Flow�In 	 Flow�Out 


Liquid�Level�Area�Bulk�Density � Total�Holdup 


� Francis formula for flow over a weir
IF Liquid�Level � Weir�Height THEN

Flow�Out � Bulk�Density������Weir�Length�
ABS�Liquid�Level 	 Weir�Height����� 


ELSE
Flow�Out � � 


END � if

END � Vessel�With�Weir

Figure ����� Model of a Vessel Containing an Over�ow Weir

solutions in either clause of an IF equation� the solution found will depend on the initial

guesses and the numerical method employed� In view of these factors� it may sometimes be

preferable to use a CASE equation� provided the initial state of the system is known a priori�

��	�
�� The UNDEFINED Construct and Conditional Equations

In certain circumstances it is possible for a system to enter a domain in which a

subset of the describing variables have no physical meaning and therefore become unde
ned�

For example� if a �ash drum moves dynamically into a domain in which only a liquid phase
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MODEL Overflow�Tank

PARAMETER
NoPipes AS INTEGER
Area AS REAL
Pipe�Height� Valve�Const AS ARRAY�NoPipes� OF REAL

VARIABLE
Liquid�Volume AS Volume
Liquid�Level AS Length
Flow�In AS Vol�Flowrate
Flow�Out AS ARRAY�NoPipes� OF Vol�Flowrate

EQUATION


Liquid�Volume � Flow�In 	 SIGMA�Flow�Out� 


Liquid�Level�Area � Liquid�Volume 


IF Liquid�Level �� Pipe�Height THEN
Flow�Out � Valve�Const�ABS�Liquid�Level 	 Pipe�Height����� 


ELSE
Flow�Out � � 


END � if

END � Overflow�Tank

Figure ����� Model of a Vessel Containing a Series of Over�ow Pipes

is present� then the variables relating to the component mole fractions of the vapour phase

are no longer necessary for the description of the system� These unde
ned variables can be

dropped from the continuous model because they are irrelevant to the rest of the system

while it remains in this domain� As a consequence of this� a number of describing equations

equal to the number of unde
ned variables can also be dropped from the continuous model�

Despite the fact that the set of variables required to describe a given system can

vary dynamically� from a syntactic point of view it is more convenient to de
ne a continuous

model in terms of the maximal set of such variables� It is then necessary to introduce a

mechanism for dropping one or more variables from this maximal set� This is provided by

the UNDEFINED construct� For example�

UNDEFINED�y� �
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declares all vapour mole fractions y to be unde
ned�

The UNDEFINED construct has the status of an equation� and can therefore appear

anywhere in the EQUATION section� in a fashion identical to that of a simple equation� If the

boundaries of a domain in which a subset of variables becomes unde
ned can be expressed

in terms of logical conditions� the UNDEFINED construct may be used in conjunction with a

conditional equation to declare explicitly which variables and equations become irrelevant�

For example�

IF Total�Holdup � � THEN

x�Total�Holdup � Component�Holdup �

ELSE

UNDEFINED�x� �

END � if

de
nes the mole fractions x in a vessel in terms of the component and total holdup� Clearly

x is unde
ned if the vessel is empty� Any graphical or textual results produced from a

simulation should indicate clearly the periods during which a system variable is unde
ned�

It should be noted that the introduction of the UNDEFINED construct allows us to

demand that the number of equations be the same in all clauses of a conditional equation�

This facilitates semantic checks against incorrect model de
nitions without restricting the

generality of the language�

Of course� beyond purely syntactic and notational considerations� the use of UNDE�

FINED constructs raises fundamental questions regarding the de
nition of what constitutes

a solution of a DAE set� Furthermore� if a variable declared as �unde
ned� occurs in other

equations� other system variables may also become unde
ned implicitly� Some mathematical

and numerical issues relating to such partially determinable DAE sets have recently been

examined by Jarvis and Pantelides 	����
�

��	�� External Equation Declaration

The equation de
nition language described above is quite general� In spite of this�

situations may arise in which it is desirable to allow alternative mechanisms for declaring

relationships between the variable attributes of a model entity� This is particularly true in
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process engineering applications where it is often necessary to exploit the large investments

already made in existing code�

SpeedUp 	Prosys� ����
 provides one such mechanism through procedures� These

introduce equations of the form�

z� g	w
 � � 	���


where w and z are mutually exclusive subsets of the set of model variables and are known as

the procedure input and output variables respectively� The values returned by the function

g	w
 are calculated by user supplied code� The number of equality constraints represented by

these equations will be equal to the number of members of z� The Speedup implementation

places certain restrictions on the use of procedures� but in general a reference to a procedure

should be able to appear anywhere that a simple equation may appear� In particular� it is

important that procedure references may appear in the clauses of a conditional equation�

Procedures are frequently employed to improve the solution robustness of prob�

lems involving subsets of equations that may cause numerical di�culties� in particular those

equations arising from the prediction of the physical properties of multi�component systems�

Procedures o�er the advantage of solving these equations with specially tailored methods

that exploit the physical or mathematical properties of the system under consideration� In

addition� a signi
cant reduction in the overall dimensionality of the problem to be solved

can be achieved in circumstances in which many intermediate variables can remain internal

to the procedure� For example� the equation that determines the bubble point of a multi�

component mixture at a given pressure can be solved e�ciently with a Newton�Raphson

iteration scheme� If this equation is encapsulated in a procedure� the e�ciency of this itera�

tion scheme can be exploited� and the variables that represent the equilibrium vapour�liquid

distribution coe�cients of each component at the bubble point can remain internal to the

procedure�

A further application of procedures is for the insertion of a common set of equations

in many di�erent model entities� In this case� the equations encapsulated by a procedure

represent abstract relationships between a set of input variables and a set of output variables�

which are related to actual variable attributes when the procedure is inserted in a particular

model entity� If� for example� plant measurements have yielded an empirical correlation

between the enthalpy� temperature� and composition of the material present� this relationship



��

may be encapsulated by a procedure� and then inserted in every model of the unit operations

that make up the process�

Traditionally� procedures have also been applied to the description of equations

that could not be expressed in the syntax of the modelling language in question� In many

cases� however� the use of procedures in this role can impair the solution e�ciency of a

simulation and can even lead to incorrect results� In SpeedUp� for example� procedures may

be applied to the description of physico�chemical discontinuities� particularly those that

cannot be described in terms of a reversible mechanism� As a consequence� the events that

lead to physico�chemical discontinuities become hidden from the simulation executive� and

the step size control mechanism of the integration algorithm must be relied on to locate

the exact time of occurrence of the event 	see section �����
� It is hoped that the use of

procedures for this purpose will disappear as the descriptive power of modelling languages

increases with� for example� the introduction of CASE equations�

For identical reasons� hidden events should not form part of procedures that are

used in a more legitimate role� For example� the equation determining the enthalpy of a

�uid stream is discontinuous at both the bubble and dew temperatures of the mixture� a

fact that is best declared explicitly in the modelling language itself�

In summary� there appear to be at least three legitimate roles for procedures or

externally declared equations�

� Exploitation of tailored solution algorithms and existing investments in model code�

� Decomposition of the problem through removal of internal variables from the global

iteration�

� Insertion of abstract relationships in multiple model entities�

It may be desirable to separate these roles through the introduction of three categories of

externally de
ned equations 	EDEs
� The 
rst category would be employed to declare a

set of equations� and any internal variables� in terms of the high level symbolic language

outlined in the preceding sections� These equations and variables would then be inserted

symbolically in the overall system model wherever a reference to the EDE appears� thereby

enabling the insertion of abstract relationships in multiple model entities�
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The second category of EDE would be declared in an identical fashion� except that

the equations and variables would not be inserted in the overall system model� Instead� the

equations would be solved for their output variables each time a value for the function g	w
 is

required by the global iteration� This category of EDE would therefore facilitate the removal

of internal variables from the global iteration� and the insertion of abstract relationships in

multiple model entities�

The 
nal category of EDE would be identical to the procedures of SpeedUp� rep�

resenting an interface to an external subroutine written in a general purpose programming

language such as FORTRAN� thereby ful
lling any or all of the roles outlined above� Further

consideration of these issues is� however� beyond the scope of this thesis�

��� Hierarchical Submodel Decomposition

The advantages of hierarchical submodel decomposition during the development of

the large continuous models required for industrial processes have already been discussed�

An example of the application of this methodology can be drawn from the development of a

model for the hypothetical process shown in 
gure ����� At the top level of the hierarchy� the

�owsheet can be decomposed into three interconnected component models representing the

pretreatment� reaction and separation sections of the process respectively� After this initial

decomposition� the development of models for each of these sections can be considered in

isolation� The separation section may� for example� consist of a train of three distillation

columns� which would be modelled by the connection of three column models in the desired

con
guration� At the next level in the hierarchy� the model of one of the distillation columns

also consists of the connection of several di�erent components in a �owsheet� but here some

of the component models� such as the reboiler or condenser� are primitive models and some�

such as the tray sections� can be further decomposed into a series of primitive tray models

connected in a regular structure� The net result is a model for a complex process that has

been completely constructed� through the use of a number of intermediate hierarchical levels�

from the interconnection of many primitive models�

The use of several intermediate hierarchical levels has at least two additional bene�


ts� as each level of the hierarchy is developed� the component models required at that stage
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Figure ����� Hierarchical Submodel Decomposition



��

can be validated individually before insertion in the overall structure� and when the model is

complete� a suitable hierarchical decomposition will enable the user to perform studies that

focus on a subsection of the overall process merely by selecting a model at the appropriate

point in this hierarchy�

This section is concerned with the language structures that support the hierarchical

decomposition of models�

����� Unit Attributes

The hierarchical decomposition of a system requires that the behaviour of any

model at a hierarchical level above that of primitive models must be declared� at least

partially� in terms of a set of component submodels� Language structures that support this

decomposition can therefore distinguish between the complex models whose behaviour is

described in terms of a set of component submodels on one hand� and the primitive models

whose behaviour is entirely described by a set of equations on the other� This approach

has been adopted by the developers of OMOLA 	Andersson� ����
 and in the MACROs of

SpeedUp 	Prosys� ����
� Alternatively� all models can be considered to be equal� in that

their behaviour can be described by equations� submodels or any mixture of the two� This

approach has most notably been adopted by the developers of ASCEND 	Piela� ����
 and

has at least two advantages� Firstly� because a model can be declared in terms of any

combination of submodels and equations� it is possible to introduce new equations at any

level in the hierarchy� The bene
ts of this can be seen in several examples throughout the

text� Secondly� the language itself becomes considerably less cluttered by avoiding the need

for separate language structures to distinguish between primitive and complex models� This

second approach is therefore adopted by the addition of the optional UNIT section to a model

entity declaration�

The UNIT section contains a declaration of the set of submodels that partially

describe the behaviour of the model entity in question� All these unit attributes must be

instances of a previously declared model entity� The fact that the behaviour of any model

entity may be declared in terms of a set of submodels enables a hierarchical decomposition

to extend to an arbitrary number of intermediate levels and� because no distinction between

complex or primitive models is made� each of these intermediate levels may include the
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UNIT
Valve AS Control�Valve
Flow�Controller AS PI�Controller
Flow�Sensor AS Orifice�Plate
Pump AS Centrifugal�Pump

Figure ����� Example UNIT section

declaration of other model attributes 	such as equations and variables
� Figure ���� shows

the UNIT section from a model entity representing an analogue �ow control loop�

Systems containing regular structures of components occur frequently in process�

ing systems� particularly in those unit operations comprised of a series of identical stages�

The example used at the beginning of this section demonstrates that the tray sections of

a distillation column are in fact regular structures of tray components� and similar struc�

tures appear in many other unit operations� such as countercurrent liquid�liquid extractors�

multiple e�ect evaporators� or plate and 
n heat exchangers� These regular structures are

modelled by the declaration of arrays of unit attributes in exactly the same manner as any

other attribute array would be declared�

Regular structures of component models have also been proposed as the means

by which model approximation decomposition can be implemented 	Nilsson� ����a
� This

methodology approximates a distributed parameter system� that is usually modelled by a set

of partial di�erential equations� as a series of well mixed slices in series� Alternative methods

for the modelling of such systems include reduction of the partial di�erential equations to a

set of ordinary di�erential equations through use of a suitable 
nite di�erence approximation

based on a 
xed spatial discretisation� as demonstrated in 
gure ���� or direct solution of the

partial di�erential equations with a suitable general�purpose PDAE solver 	Pipilis� ����
�

As the performance of general�purpose solvers improves� this latter approach will probably

prove to be the most accurate and e�cient�

The remaining information concerning the composite system represented by a model

entity containing a UNIT section can be declared in the usual manner� For example�

� Integer parameter attributes may be used in the de
nition of the dimensionality of
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unit attribute arrays�

� Variable attributes may de
ne new quantities that only exist at the hierarchical level

represented by the composite model�

� Stream attributes may de
ne the interface of this composite system to its environment�

� Equation attributes may relate new variable attributes to the variable attributes of the

submodels� or de
ne the connection mechanisms between submodels�

A pathname mechanism provides the means by which the attributes of submodels can be

referenced by higher hierarchical levels� The pathname to a particular attribute consists

of a list of unit attribute references separated by full stops terminated by a reference to

the attribute in question� The members of this list de
ne the path through the hierarchy

from the level at which the reference is made down to the level of the attribute itself� This

mechanism therefore gives a model global access to all the attributes of the hierarchical levels

extending beneath it�

In contrast� some modelling languages enforce strict modularisation on component

models� For example� an OMOLA model is declared in terms of a set of clearly de
ned

interfaces or terminals� and an internal description� A higher hierarchical level may only

access the information contained within these terminals� and is denied access to the remainder

of the information declared within submodels� Strict modularisation is a principle that has

been adopted from modern programming languages� such as Modula�� or Ada� where it

has been demonstrated as a valuable aid to software development� The bene
ts it brings

to modelling languages� however� are rather less tangible� From the speci
c point of view

of a combined discrete�continuous modelling language� strict modularisation would deny

the control actions imposed on a continuous model access to much of the system model�

and thereby signi
cantly limit the scope of these control actions�� Furthermore� requiring a

comprehensive set of interfaces to anticipate all future uses for a model entity at the time of

its declaration is� in our opinion� a severe restriction on the model developer�


The advantages of giving control actions global access to the underlying continuous model are discussed
at length in the next chapter�
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WITHIN Separation�Section�Column�C�Top�Section DO
FOR I �� � TO NoTrays DO
WITHIN Stage�I� DO

Q � UA��Ambient�Temp 	 Temp� 

END � within

END � for
END � within

Figure ����� Example WITHIN equation

����� The WITHIN Structured Equation

As the number of intermediate hierarchical levels increases� so does the length of the

pathnames required to reference attributes at the bottom of the hierarchy� Writing equations

in terms of these attributes becomes increasingly tedious� especially if a large part of the

pathname is common to many of the attributes referenced by an equation� The WITHIN

structured equation helps to relieve some of this burden�

A WITHIN equation de
nes a scope for the list of equations it encloses� This scope

is a reference to one of the submodels in the hierarchy that extends beneath the model

in which the equation appears� A pathname can be used to refer to a submodel several

hierarchical levels down� All attribute references that appear in the enclosed equations will


rst be interpreted as if they were attributes of this scope� relieving the burden of pre
xing

all the references with a pathname to this scope� If no interpretation for a reference exists

within this scope� it will then be interpreted in the usual manner� An example of a WITHIN

equation declared at the top of level of the hierarchy illustrated in 
gure ���� is shown in


gure ����� where Ambient�Temp is a variable attribute declared at this top level of the

hierarchy�

As the list of equations may be comprised of any combination of simple and struc�

tured equations� it is possible to nest WITHIN equations� In this case� the search for an

interpretation of an attribute reference will start at the innermost scope and progress out�

wards through all the other enclosing scopes until an interpretation is found� An error occurs

if this search fails� and no interpretation exists in the model in which the reference is actually

made�
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PARAMETER
Top�NoTrays� Bottom�NoTrays AS INTEGER

UNIT
Top�Section� Bottom�Section AS Linked�Trays

SET
Top�Section�NoTrays �� Top�NoTrays 

Bottom�Section�NoTrays �� Bottom�NoTrays 


Figure ����� Example of Parameter Propagation

����	 Parameter Value Propagation

As the hierarchical decomposition of a system evolves� it becomes increasingly im�

portant to be able to propagate values to parameter attributes of submodels from higher

hierarchical levels� For example� in the distillation column model outlined at the beginning

of this section� it may be necessary to propagate values to the integer parameters of the

linked tray submodels that determine the number of trays in the top and bottom sections

respectively� These values may be known a priori� or may be parameter attributes of the

column model itself� thus parameterising the column model by the number of trays in each

section� Obviously� values may only be propagated to parameter attributes that have not

already been assigned 
xed values�

Parameter values can be propagated through a hierarchy of models by means of

two mechanisms� The 
rst mechanism is merely the explicit assignment of values to the

parameters of submodels� in the SET section of a model entity at a higher hierarchical

level� In order to make this feasible� the language de
nition requires the UNIT section to

be declared before the SET section� Through the pathname mechanism described above�

the parameters assigned values may be any number of hierarchical levels beneath that of

the SET section� However� if the parameters concerned have already been assigned 
xed

values at an intermediate hierarchical level� including that of the model entity in which they

were originally declared� the assignment will be rejected� The excerpts from the model of

a distillation column shown in 
gure ���� demonstrate how the assignment of values to the

parameters that determine the number of trays in each section would be accomplished�
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If� on instantiation of the model of a complete system� it is found that a parameter

of a submodel has not been explicitly assigned a 
xed value from any source� the hierarchical

levels extending above this submodel will be searched for a compatible parameter attribute�

A compatible parameter is de
ned as having the same identi
er� same type� and identical

dimensionality to that of the original parameter� If such a compatible parameter is found�

the original submodel parameter will be assigned the same value as that assigned to the

compatible parameter� It is important to recognise that a submodel parameter adopts the

value of the �rst compatible parameter that is found as the search progresses upwards through

the model hierarchy� This is the preferred mechanism by which the number of components

that exist in a multicomponent system can be propagated through an entire hierarchy 	merely

by the assignment of a value at the top level of this hierarchy
�

If a value for a parameter cannot be found through either mechanism� and no

default value is given� an error has occurred�

����� Formal De�nition of Model Entity

It is now possible to de
ne formally� in a recursive manner� the information declared

within a model entity�

� The set of unit attributes associated with a model entity are those unit attributes

declared in the UNIT section�

� The set of parameter attributes of a model entity is the union of the sets of parame�

ter attributes associated with the unit attributes and the set of parameter attributes

declared in its own PARAMETER section�

� The set of variable attributes of a model entity is the union of the sets of variable

attributes associated with the unit attributes and the set of variable attributes declared

in its own VARIABLE section�

� The set of stream attributes of a model entity is the union of the sets of stream

attributes associated with the unit attributes and the set of stream attributes declared

in its own STREAM section�
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� The set of selector attributes of a model entity is the union of the sets of selector

attributes associated with the unit attributes and the set of selector attributes declared

in its own SELECTOR section�

� The set of equation attributes of a model entity is the union of the sets of equation

attributes associated with the unit attributes and the set of equation attributes declared

in its own EQUATION section�

����
 Continuous Connections

Stream attributes� and their equivalents in other modelling languages� model the

complex continuous connection mechanisms that exist between the components of a physical

system� A continuous connection between two submodels is set up by declaring a relation�

ship between stream attributes of the two submodels� The simulation executive can then

automatically generate the same relationship between all the 
elds of the two stream at�

tributes and thereby free the engineer to concentrate on the structure of the system under

consideration�

The most frequently encountered relationship between two stream attributes is that

of an equality constraint� As a result� a series of equality constraints between each 
eld of the

two streams is automatically generated� It is also possible for more complex relationships to

exist between stream attributes� For example� Kirchho��s law requires the sum of all currents

at any node in an electrical circuit to be zero� which would be most naturally modelled by

summing the 
elds representing current of two or more streams to zero 	Elmquist� ����
�

The developers of ASCEND have attempted to exploit the frequent occurrence

of equality constraints between stream attributes by the application of the ARE THE SAME

operator� Stream attributes that are related by this operator are actually merged into a single

attribute that can be referenced by either identi
er� automatically eliminating the equality

constraints that would otherwise be required and in the process signi
cantly reducing the

size of the overall system model�

An important feature of combined simulation is the ability to alter dynamically

the topology of a system� either by replacing one connection with another or by replacing

a continuous connection with an equivalent number of equations� This� however� requires
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the �exibility a�orded by the implementation of connections as equality constraints that can

simply be added to or dropped from the overall system model as the need arises� Over�

all� we believe that this requirement negates any potential bene
ts from the use of the

ARE THE SAME operator�

The advantages of both approaches can be realised if variable merging is performed

at a lower level than that proposed by the developers of ASCEND� In order to allow the

topology of a system to be altered dynamically� all continuous connections are represented

as equality constraints in the overall system model� However� when this system model is

submitted to the solution routines 	e�g� during a period of continuous simulation between

events
� the solution routines themselves can a priori eliminate all equality constraints from

the model actually solved� thereby ensuring that the smallest possible model is always solved�

For the reasons outlined above� it is most natural to consider relationships between

stream attributes as members of the set of describing equations of a system� These relation�

ships are therefore declared in the EQUATION section of a model entity� where they may also

appear within structured equations� Conditional equations may then be used to de
ne dy�

namic changes to the topology of a system� The only relationship between stream attributes

allowed by the current language implementation is that of an equality constraint� but an

extension to allow generalised equations involving stream attributes would in principle be

straightforward�

An equality constraint between two stream attributes requires the stream attributes

to be compatible� Stream attributes are compatible with each other if they are of the same

stream type and� for each 
eld� the dimensionality of the variables matched is identical�

In the case of complex models involving several submodels� some or all of the

model�s interface with its environment will correspond exactly to some of the interfaces of its

components� For example� in a distillation column model� the feed to the column corresponds

to feed of the feed tray submodel� and the top and bottom product streams correspond to the

product streams of the condenser and reboiler submodels respectively� This is one situation

in which the two stream attributes should be merged into a single instance that can be

referenced by two di�erent pathnames� The stream attributes of a model may therefore be

merged with the stream attributes of its submodels within the STREAM section�

Figure ���� demonstrates how the model of a distillation column might be declared�
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In particular� it demonstrates the advantages of allowing other model attributes to be de�

clared in the same model as unit attributes and the use of stream merging to de
ne the

interfaces to composite systems� The model of a tray section is itself declared in terms of

the connection of a series of submodels� as is shown in 
gure ����� Here� the model is pa�

rameterised by the number of trays in the section� and uses an array of unit attributes to

represent the regular tray structure�

��	 Hierarchical Model Development Through Inheritance

Inheritance� a concept 
rst popularised by the object�oriented programming lan�

guages� is an aid to model development that particularly enhances a model�s reusability�

Through inheritance� a new type may be declared as an extension or restriction of one or

more previously declared types� An inheritance hierarchy evolves as new types are declared

that inherit characteristics from already de
ned types�

Inheritance is introduced brie�y here because in later chapters it will be demon�

strated that language structures employed to model the control actions applied to a process

can take considerable advantage of model entities developed through use of an inheritance

hierarchy� Before this discussion can begin� it is necessary to introduce some terms relating

to inheritance�

� A type that inherits directly or indirectly 	via intermediate hierarchical levels
� from

type X is said to be a descendant of type X� A type is always considered to be a

descendant of itself�

� If type Y is a descendant of type X� type X is said to be an ancestor of type Y� If type

Y inherits directly from type X� then type X is a parent of type Y�

An inheritance hierarchy can be represented diagrammatically by a tree� where the nodes

signify types and the arcs signify the relationship inherits from� An arc from one node to

another indicates that the latter node is a parent of the former�

In the context of model development� only the facilities to extend or amend 	selec�

tive inheritance
 a previously de
ned type are required� A model that is directly descended

from another model contains all the information associated with the parent� plus any new
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MODEL Distillation�Column

PARAMETER
No�Trays� Feed�Position AS INTEGER

UNIT
Condenser AS Total�Condenser
Top�Section� Bottom�Section AS Linked�Trays
Feed AS Feed�Tray
Reboiler AS Partial�Reboiler

VARIABLE
Net�Energy�Requirement AS Energy�Flow

STREAM
Feed�Stream IS Feed�Feed�Stream
Top�Product IS Condenser�Liquid�Product
Bottom�Product IS Reboiler�Liquid�Product

SET
Top�Section�NoTrays �� NoTrays 	 Feed�Position 

Bottom�Section�NoTrays �� Feed�Position 	 � 


EQUATION

� Define the net energy requirement for the column
Net�Energy�Requirement � Reboiler�Heat�Load � Condenser�Heat�Load 


� Continuous connections
Condenser�Reflux IS Top�Section�Liquid�In 

Condenser�Vapour�Feed IS Top�Section�Vapour�Out 

Top�Section�Vapour�In IS Feed�Vapour�Out 

Top�Section�Liquid�Out IS Feed�Liquid�In 

Feed�Vapour�In IS Bottom�Section�Vapour�Out 

Feed�Liquid�Out IS Bottom�section�Liquid�In 

Bottom�Section�Vapour�In IS Reboiler�Vapour�Out 

Bottom�Section�Liquid�Out IS Reboiler�Liquid�Feed 


END � Distillation�Column

Figure ����� Model of a Distillation Column
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MODEL Linked�Trays

PARAMETER
NoTrays AS INTEGER

UNIT
Stage AS ARRAY�NoTrays� OF Tray

STREAM
Liquid�In IS Stage�NoTrays��Liquid�In
Vapour�Out IS Stage�NoTrays��Vapour�Out
Liquid�Out IS Stage����Liquid�Out
Vapour�In IS Stage����Vapour�In

EQUATION

� Continuous connections
FOR I �� � TO NoTrays 	 � DO

Stage�I��Vapour�Out IS Stage�I����Vapour�In 

Stage�I��Liquid�In IS Stage�I����Liquid�Out 


END � for

END � Linked�Trays

Figure ����� Model of a Tray Section

information declared within the model itself� Models may therefore be developed in a hier�

archical manner through a series of intermediate stages of increasing complexity�

Inheritance is also a powerful tool for avoiding the repetition of common information

during model development� Careful development of an inheritance hierarchy will ensure

that information common to several models need only be speci
ed once� In addition� if this

common information is declared correctly in the 
rst place� the possibility of errors occurring

during the repeated speci
cation of the same information is eliminated�

The present language de
nition only caters for the development of model types

through inheritance� although� as several workers have recently demonstrated 	Piela� �����

Andersson� ����
� it is equally applicable to the development of both variable and stream

types 	see appendix A
�
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��
�� Single Inheritance

The basic form of inheritance� single inheritance� requires that any type has at most

one parent� although a type may have any number of direct descendants� Even with single

inheritance� it is possible to declare complex hierarchies of model types� Single inheritance

is implemented by the keyword INHERITS� and the identi
er of the parent model entity�

immediately following the declaration of the unique identi
er of the new model entity� For

instance� MODEL Mixer INHERITS Tank�

The root model of an inheritance hierarchy will often only be used to declare a few

attributes that are common to all models in the particular hierarchy� In fact� such a root

model may not contain su�cient information for it to be used in any useful calculations

and will therefore only ever be used as a template for building other models� Any number

of models can then be declared that inherit the information contained within this root and

augment it with additional information� This additional information will distinguish models

at the same hierarchical level from each other� Further levels of the hierarchy will evolve as

these new models and their descendants are used as parents themselves� Note that a model

type contains no information concerning its descendants� so it remains unaltered by changes

to the inheritance hierarchy that extends beneath it�

An example is shown in 
gure ����� where a series of models for operations per�

formed in a well mixed vessel are developed through an inheritance hierarchy� The root

model is used to declare information common to all mixed tanks� such as geometric parame�

ters and many of the describing variables� Its direct descendants then add more information

to this� in particular the balance equations that characterise the operation in question� creat�

ing models that could actually be used for simulation� Finally� a third level of the hierarchy

is shown where the model of a continuous stirred tank reactor is specialised by the kinetic

mechanisms of the reactions� When a simulation is actually performed� the user can select

an appropriate model of the operation under consideration from this hierarchy�

��
�� Polymorphism

Polymorphism permits the full exploitation of the advantages of model develop�

ment in inheritance hierarchies� In chapter � we will demonstrate that polymorphism� in
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Figure ����� Inheritance Hierarchy
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conjunction with inheritance hierarchies� can greatly enhance the reusability of the language

structures employed to model the control actions applied to a process� Here� the basic

concept is introduced and its application to model parameterisation is illustrated�

Returning again to the model of a distillation column� the need to parameterise

tray sections by the submodel that describes the behaviour of individual trays has recently

been stressed 	Nilsson� ����a
� The e�ect of changing the type of tray in a column 	e�g� to

use bubble caps as opposed to a sieve plate
 can then be studied easily� Furthermore� the

development of special models for columns containing di�erent tray types in each section 	a

situation that occurs relatively frequently
 becomes unnecessary because the basic column

model� with appropriate parameter assignments� may be used instead�

This degree of �exibility can be achieved by declaring a parameter which determines

the tray submodel used by a particular instance of the distillation column� Such a parameter

must be set to an entire model entity rather than merely a numeric value or an algebraic

expression 	cf� section �����
� There must� however� be some restrictions on the model entities

that can be assigned to this parameter� the model of a heat exchanger would clearly not be

suitable in the example above� whereas the model of a sieve plate would� An inheritance

hierarchy of tray models can be employed to achieve this restriction� The polymorphic

parameter will be associated with a base type that is also the root model of the tray model

hierarchy� and type checking will ensure that only members of this hierarchy are assigned to

the parameter�

A polymorphic entity is one that has the ability to take several forms� In the

object�oriented programming languages� this term has been applied to variables that may

refer to instances of several di�erent types during the execution of a program� Obviously�

there must be some restrictions on the range of types that are compatible with a polymorphic

entity� otherwise the advantages of a strongly typed environment are lost� Inheritance is used

to constrain this range of types� a polymorphic entity is only compatible with instances of

descendants of its base type� A polymorphic entity is always compatible with instances of its

base type because a type is always considered to be a descendant of itself� As a consequence�

an entity is no longer tied to values of a single type� but may be assigned values of a range

of similar types� The development of these similar types in inheritance hierarchies ensures

that they are suitable for the application of identical operations�
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As has already been mentioned� model entities may be declared in terms of model

type parameter attributes� These special parameter attributes are polymorphic entities� so

their declaration includes the speci
cation of a base type� They may be used to specify the

type of any unit attributes of the model entity in question� This e�ectively defers a decision

on the nature of the submodel actually included until a value is assigned to the parameter

upon instantiation of the model entity� although the base type de
nes a broad class of models

that are suitable� Note that this value is in fact a model entity type itself� and any attempt

to assign a value that is not a descendant of the base type of the parameter would be rejected

immediately�

Figure ���� demonstrates how a model type parameter attribute may be used to

create a model for a tray section that is parameterised by the type of tray present in the

section� The base type of this parameter is Generic Tray� the root model of an inheritance

hierarchy for tray models�

The only attributes of submodels� whose type is determined by a parameter� that

may be referenced by higher hierarchical levels are those declared in the base type of the

parameter� In this example� the liquid and vapour streams entering and leaving a tray must

have been declared in the model entity Generic�Tray in order for references to them to be

made in the STREAM and EQUATION sections�

The IS REFINED TO operator of ASCEND can be used to perform a similar role

to that of model type parameters because it enables attributes declared in terms of generic

models to be re
ned for a speci
c application� Both mechanisms are similar in that they

require the model developer to anticipate future re
nement� but parameterisation removes

the need for the declaration of a new model each time a di�erent re
nement is required and

helps to prevent inappropriate use of a model by demanding assignment of a parameter value

upon each instantiation� Obviously� the IS REFINED TO operator still has a very powerful

role to perform in selective inheritance� as will be seen later�

��
�	 Multiple Inheritance

Multiple inheritance allows a type to be the direct descendant of two or more other

types� A type with more than one parent inherits the union of the information declared in

its set of parents� An inheritance hierarchy that tolerates multiple inheritance becomes a
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MODEL Linked�Trays

PARAMETER
NoTrays AS INTEGER
Tray�Type AS MODEL Generic�Tray DEFAULT Sieve�Tray

UNIT
Stage AS ARRAY�NoTrays� OF Tray�Type

STREAM
Liquid�In IS Stage�NoTrays��Liquid�In
Vapour�Out IS Stage�NoTrays��Vapour�Out
Liquid�Out IS Stage����Liquid�Out
Vapour�In IS Stage����Vapour�In

EQUATION

� Continuous connections
FOR I �� � TO NoTrays 	 � DO

Stage�I��Vapour�Out IS Stage�I����Vapour�In 

Stage�I��Liquid�In IS Stage�I����Liquid�Out 


END � for

END � Linked�Trays

Figure ����� Tray Section Parameterised by the Trays Present

general acyclic digraph as opposed to a tree�

An example frequently employed to illustrate the need for multiple inheritance

in a process engineering context is that of a model for a reactor vessel� where one parent

de
nes the detailed information concerning the geometry and behaviour of the vessel while

the other parent de
nes the details of the reaction kinetics� Alternatively� the model could

be described in terms of a machine 	geometry and behaviour
 and media 	reaction kinetics

and other physical properties
 decomposition 	Nilsson� ����a
� An obvious inconvenience

associated with this second approach is the need to pre
x all references to the attributes

of the machine and media submodels with the appropriate pathname� However� due to the

lack of other convincing examples to demonstrate the need for multiple inheritance� Nilsson

states that it is unnecessary to include multiple inheritance when the machine�media model

is su�cient�



��

There is even greater scope for the exploitation of a multiple inheritance hierarchy

by polymorphism than there is in a single inheritance hierarchy� because it becomes possible

to apply operations to a type that are compatible with any of its parents� or even any

of the ancestors of these parents� In the reactor example above� it would be possible to

apply operations compatible with the model that describes the geometry of the vessel and

operations compatible with the model that describes the reaction kinetics�

If a type is allowed to have more than one parent� problems with identi
er clashes

may occur� For example� if a model receives an attribute with the same identi
er from

two of its ancestors� how can the two attributes be distinguished from each other for future

reference" The problem of identi
er clashes has been considered in detail by researchers de�

veloping object�oriented programming languages 	see� for example� 	Meyer� ����

� including

the situations in which repeated inheritance occurs 	where an inheritance hierarchy results

in a type inheriting more than once from the same type
� In the context of a modelling

language� it is proposed that all identi
er clashes result in the model declaration being re�

jected� unless the attributes whose identi
ers clash are identical in every respect� in which

case the two attributes are merged� This is compatible with polymorphism because a model

will always contain a superset of the information declared in its ancestors�

Although it was originally intended to explore the application of multiple inheri�

tance in detail� time constraints have prevented this� Multiple inheritance will not therefore

be discussed any further in this thesis� and has not been included in the current implemen�

tation of the modelling language�

��
�� Selective Inheritance

In many situations it may be necessary for a type to inherit most of the attributes of

its parent or parents� but to also exclude certain attributes� An attribute may be excluded in

order for it to be rede
ned by the descendant� or if it is not required by the descendant type�

This is termed selective inheritance because it enables a type to inherit only the information it

requires from its parent type	s
� With selective inheritance� truly evolutionary development

of models becomes possible� For example� at the beginning of a simulation exercise� only a

small amount of information concerning the system being modelled will be known� so only

simple models may be declared� As knowledge of the system increases� new models may
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developed that inherit the information in the early models and add to it� but also reject

some of the simpli
cations made in those models�

If the balance equations of a system are included in the early stages of the develop�

ment of an inheritance hierarchy� it becomes extremely important for descendant models to

be able to add or drop terms from them� Although perhaps a rather unsatisfactory solution�

selective inheritance� combined with the association of an identi
er with the equations� en�

ables them to be rejected by descendants and replaced by equations containing the correct

terms�

In practice� selective inheritance in its purest form poses severe problems� especially

for the safe exploitation of polymorphism� because a model is no longer guaranteed to contain

a superset of the information contained in its ancestors� Both OMOLA and ASCEND

	through the IS REFINED TO operator
 tolerate a limited form of selective inheritance by

allowing an attribute to have its type rede
ned to that of a descendant of the original type�

This approach guarantees that a model will always contain a superset of the information

contained in its ancestors� and is thus compatible with polymorphism�

Again� time constraints have prevented a thorough consideration of the issues as�

sociated with selective inheritance�

��
 Summary

Increasing awareness of the object�oriented programming paradigm has led to recent

experiments with object�oriented model de
nition languages� some of which were reviewed

at the beginning of this chapter� Object�oriented principles state that data 	or declarative

knowledge
 should be declared with the routines 	or procedural knowledge
 that operate

on that data in a single entity known as a class� However� we argue that model entities

should only contain declarative knowledge concerning the physical behaviour of a system�

Procedural knowledge is only required when an instance of a model entity is used for a par�

ticular activity� such as dynamic simulation� and is speci
c to that activity� The declarative

knowledge encapsulated by a model entity should therefore only be matched with proce�

dural knowledge in the description of an individual activity� This enables the information

declared within a model entity to be reused for a wide range of activities� including both
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steady�state and dynamic simulation� optimisation� and parameter estimation 	see chapter

�
� As a consequence� model entities are considered to be complex type declarations� not

class declarations�

Drawing on the contributions of several existing modelling languages� a powerful

language for the declaration of primitive model entities was introduced� In particular� this

new language o�ers a more general representation of the physico�chemical discontinuities

that occur frequently in physical systems� and extensive support for the complex regular

structures that are also a common feature of such systems�

The development of model entities for large� complex systems via the hierarchical

combination of a series of submodels was then considered� The key feature of the lan�

guage structures thus developed is the uniform treatment of model entities regardless of

their position in this hierarchy� This will have important consequences for the uniformity

of the language structures employed to model the control actions applied to a processing

system 	see chapter �
� Moreover� the advantages� from the point of view of combined

discrete�continuous simulation� of the uniform treatment of equations and the continuous

connections 	streams
 between submodels were stressed�

Finally� hierarchical model development through inheritance was brie�y discussed�

with particular reference to the notion of polymorphism� which will be exploited extensively

in the chapters that follow�
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Chapter �

External Actions Imposed on a System � Task Entities

In the preceding chapter� it was argued that the discrete changes that a processing

system may experience fall naturally into one of two categories� From this categorisation the

two fundamental structures of the simulation language have evolved� The 
rst of these� the

model entities described at length in the previous chapter� are used to describe the physico�

chemical mechanisms governing the continuous time dependent behaviour of unit operations�

including any discontinuities arising from these mechanisms� This chapter introduces the

second of these fundamental structures� the task entities� that are used to describe the

control actions and disturbances imposed on a processing system by its environment�

It may be worth noting at this point that the distinction between categories of

discrete change is primarily intended as an aid to the model builder� In some practical

situations� it may not be entirely clear 	or important
 whether a discrete change occurs

within the physical system being modelled� or as the result of an external action� In such

situations� the model builder is free to choose the description which is more appropriate to

his or her needs� Consider for instance the case of a pressure�relief valve that the control

system opens whenever the pressure in a vessel exceeds a certain critical value� If one is

particularly interested in the precise behaviour of the control system 	e�g� the e�ects of the

nonzero sampling time on the safety of the system
� then one could consider the opening of

the valve as one of the control actions imposed on the vessel model� On the other hand� if

these details are not important� the valve behaviour could be described by an appropriate

physico�chemical discontinuity within the continuous model�

It is also important to recognise that the control actions or disturbances a processing

system may experience are again combined discrete�continuous in nature� Some� such as the

action of a discrete controller or the opening and closing of manual valves� are purely discrete�

whereas others� such as a disturbance that is ramped between two steady values� have both

discrete 	initiation and termination
 and continuous 	ramping
 characteristics� In the case of

an analogue controller� the continuous aspects of the control action are normally considered
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to form part of the continuous model of a system� but the discrete actions that place the

control loop under manual or automatic control are considered to be imposed on the system

by its environment�

A simulation language suitable for the description of processing systems must pro�

vide a formalism for the interaction of control actions or disturbances 	represented by task

entities
 with the processing equipment 	represented by the combined model
 that corre�

sponds closely to the engineer�s perception of the system behaviour� In addition� suitable

mechanisms for the detailed description of the complex operations taking place must be

provided� The following section includes a critical review of the formalisms provided for this

interaction by existing simulation languages� and proposes a novel approach that forms the

basis of the design of this aspect of the simulation language�

��� Formalisms for the Interaction of External Actions with a

Processing System

The search for a suitable formalism for this interaction begins with an examination

of the facilities o�ered by continuous process simulation packages� taking SpeedUp 	Prosys�

����
 as an example�

Although originally developed as a continuous simulation package� Speedup does

allow discrete changes to be imposed on the continuous model during a simulation in or�

der to model perturbations from its previous state� Discrete changes and the events that

trigger them are declared in the OPERATION section of the SpeedUp language with an

IF�THEN�ENDIF structure that only allows the de
nition of exogenous time events 	see sec�

tion �����
 relating to changes in the system inputs� The description of simple sequences of

external actions is possible with this methodology� but its limitations soon become apparent

if the description of a complex sequence of operations such as a start�up procedure or a batch

recipe is attempted�

The External Data Interface 	EDI
 of SpeedUp 	Prosys� ����
 enables external

programs� such as a supervisory control system 	Cott� ����
 or a computer based operator

training system 	Kassianides� ����
� also to impose instantaneous changes to the system�s

inputs� Through the EDI� an external program may be used to drive a SpeedUp simulation
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through a fairly complex sequence of operations�

Overall� current continuous process simulation packages provide a very poor rep�

resentation for the external actions applied to a processing system� the key disadvantages

being�

� Only discrete changes to the inputs are tolerated�

� The built�in formalism for the interaction of a system with its environment is not

suitable for the description of complex sequences of operations�

� Therefore� in practice� these operations can only be coded in an external program

which must then be interfaced to the simulation package�

On the other hand� workers interested in developing simulation packages for batch processing

systems have recognised the need for combined discrete�continuous simulation for many years

	Fruit et al�� ����
� so a study of one of these systems� BATCHES 	Joglekar and Reklaitis�

����� Clark and Kuriyan� ����
� may yield useful insights�

The key representational issue in the development of models for batch production

facilities is the �exible� multiproduct�multipurpose nature of such systems� In a multiproduct

plant� di�erent products requiring the same sequence of operations share the same equipment

at di�erent times� whereas in a multipurpose plant several products with di�erent production

routes are produced simultaneously� Representations for batch systems are therefore usually

based on batches of the various products moving through the plant� a material�oriented

approach as opposed to the equipment�oriented 	or unit operation based
 approach taken by

continuous process simulation packages�

A BATCHES simulation description is based on the set of products produced by

a facility� The manufacture of a product requires a series of operations� each performed

in a di�erent item of process equipment� Each product therefore has a network of tasks�

associated with it that describes this series of operations� A task describes an operation

carried out in its entirety in one item of equipment� so the simulation of continuous processes�

or periodic processes such as pressure swing adsorption� could be considered to be simulations

that only require a single task in order to describe them fully�

�These should not be confused with the task entities �introduced later in this section	 that are the main
subject of this chapter�
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An operation performed on a product� carried out in its entirety in a single item

of process equipment� normally requires a sequence of elementary processing steps� For

example� a batch reaction operation may consist of the following elementary steps�

�� Charge the reactor with the various reactants�

�� Preheat the reactor to the operating temperature�

�� Add catalyst�

�� Wait until the desired conversion has been achieved�


� Allow the reactor to cool to a temperature suitable for discharge�

�� Discharge the reaction mixture into a downstream vessel�

�� Clean the vessel in anticipation of future operations�

Elementary processing steps are represented by the fundamental building blocks of a BATCHES

simulation� the subtasks� Each subtask is characterised by the set of DAEs that determine

the continuous time dependent behaviour of the operation in question for the duration of the

elementary step� A library of subtasks representing elementary processing steps occurring

frequently in batch systems is made available to the user�

The model of a complete task is built by specifying the order of execution of a

series of library subtasks� A task therefore de
nes a sequence of initial value problems�

each problem is characterised by a di�erent set of equations 	provided by the subtask in

question
� and the initial condition for one problem is determined automatically from the


nal condition of the preceding problem� A Product Processing Sequence then co�ordinates

the entire simulation by initiating production of batches of the various products� terminating

when the required number of batches or amount of material has been processed�

The decomposition of a simulation description into products� and then a network of

tasks provides a powerful representation for many batch processing systems� Here� however�

it is argued that the description of tasks in terms of the execution of a series of subtasks�

each characterised by a unique set of describing equations� also has considerable drawbacks�

especially for a simulation package designed for the entire range of process operations� from

purely continuous to batch�
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The use of a di�erent continuous model for each subtask has one obvious advantage�

the number of equations required to describe the entire process at any point in time is kept to

the absolute minimum� For example� during the preheating and cooling phases of the reaction

operation described above� it may be possible to drop the component balance equations and

only solve the energy balance equation� In the simulation of small batch plant 	Joglekar and

Reklaitis� ����
� the use of the subtask representation resulted in the dimensionality of the

simulation problem �uctuating dynamically between � and �� equations�

The disadvantage of the subtask approach lies in the fact that a continuous model

must be posed separately for each elementary step involved in an operation� This can be

tedious even for small models in which the bulk of the describing equations are common to

all steps� and becomes impracticable as the number of equations required increases� both

from the point of view of the sheer programming e�ort required� and in terms of ensuring

correctness of the models� For example� it would be impracticable to re�pose the model of

a continuous process each time an external action is performed during a complex start�up

schedule� especially as each external action would usually a�ect only a small part of the

overall system�

A subtask describes a period of continuous simulation terminated by some form of

discrete change to the continuous model� Usually these discrete changes will only a�ect a

subset of the describing equations� and in many cases all that will distinguish one elementary

processing step from another is the forcing functions� It would therefore seem more natural

to pose one continuous model for an entire operation� and then provide a means for the

discrete manipulation of this continuous model or its forcing functions at the end of each

elementary processing step�

This conclusion is fundamental to the design of the simulation language and pro�

vides the justi
cation for the development of a novel formalism for the interaction of external

actions with a processing system� According to this new approach� an operation performed

in its entirety in a single item of process equipment� is considered to be described by a sin�

gle combined discrete�continuous model entity over the entire time horizon of the operation�

The simulation description is then completed by a schedule of tasks representing the external

actions applied to the system during the particular operation� execution of this schedule will

�An item of process equipment here could be a single batch unit or an entire continuous plant
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drive the continuous model through the desired elementary steps�

The new approach is also introduced in an attempt to emulate the manner in which

processes are operated in reality� A schedule of tasks mirrors the action of an operator or con�

trol system on a process� To accommodate the diverse needs of many di�erent applications�

it has global access to the underlying continuous model and modi
es this model according

to the desired objectives� During the simulation of a start�up procedure� for example� the

schedule of tasks will manipulate the continuous model� just as operators will manipulate

the plant itself by opening valves or placing control loops under automatic control�

The above representation can be contrasted to that employed by conventional com�

bined discrete�continuous simulation languages 	for example� SYSMOD 	Smart and Baker�

����

� where the simulation of an operation performed in its entirety in a single item of

process equipment would be described in terms of continuous and discrete blocks� The con�

tinuous block contains a declaration of the continuous describing equations that characterise

the operation� analogous to a model entity� and the discrete block contains a declaration

of all possible time or state events that may occur during the simulation� Associated with

each event is a sequence of operations that are executed instantaneously upon occurrence of

the event� These operations may include discrete manipulations of the describing equations

declared in the continuous block� or the scheduling of a time event at some future time� Con�

trol of the simulation is passed back and forth between the continuous and discrete blocks

as a result of the occurrence of events and the termination of the actions associated with

events�

However� the conditions that result in state events must be included in the decla�

ration of the continuous block� Consequently� the declaration of the continuous model of a

system becomes intimately entwined with the control actions imposed during a particular

simulation� This has severe and adverse consequences regarding model reusability� as it is

usually impossible to predict all the future external actions that may be applied to a system

at the time its model is declared� This thesis argues that the set of control actions applied to

a system is procedural knowledge speci
c to one or more dynamic simulations� which should

remain decoupled from the declarative information encapsulated by the continuous model�

On the other hand� a formalism involving a schedule of tasks that drives a model

entity through the desired simulation greatly enhances the possibilities for reuse of the model
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entity� because it is not tied to the external actions imposed during an individual simulation�

A combined discrete�continuous model entity is a declaration of truth concerning the physical

behaviour of a system which is decoupled from any external actions applied to that system

during a particular operation� The set of schedules that may then be applied to an individual

model entity is potentially in
nite�

The remaining sections of this chapter deal with the development of language struc�

tures for the description of the external actions imposed on a system during a particular op�

eration� This discussion begins with a description of the elementary tasks� These represent

the fundamental discrete manipulations that a schedule of tasks may impose on the underly�

ing continuous model� thereby providing the interface between the processing system and the

external actions it experiences� Next� the ordering and execution of these elementary tasks

in the time domain using a schedule is detailed� Finally� the issues involved in managing

the complexity of external actions� and creating tasks that may be reused for many di�erent

simulations are considered�

��� Elementary Tasks

Elementary tasks de
ne the fundamental discrete manipulations that a schedule

may impose on the underlying continuous model� They are a formalism of the mathematical

requirements outlined in section ���� providing language primitives that enable the conse�

quences of simple external actions to be modelled�

At the most fundamental level� the external actions imposed on a processing sys�

tem during a particular operation can be modelled in terms of discrete changes to some

aspect of the continuous model of that system� Mathematically� there are� in fact� only two

such aspects of a continuous model� the set of variables that describe the time dependent

behaviour of the system� and the set of equations that determine this behaviour�

A discrete change to the set of equations takes the form of the instantaneous disposal

of a subset of these equations and replacement with new equations� similar to the e�ect of a

physico�chemical discontinuity� In order for an equation to be replaced� it must be possible

to identify it uniquely� For convenience� each equation is considered to belong to one of three

categories�
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� The model or general equations� expressing general relationships between the system

variables� These will include all the equations declared explicitly within the EQUATION

section of model entities� and must be associated with an identi
er on declaration in

order to be uniquely identi
ed during a simulation�

� The connectivity equations� established by stream connections between submodels� At

present� these always take the form of equality constraints between variables on each

side of the connection and again must be associated with an identi
er on declaration

in order to be uniquely identi
ed during a simulation�

� The input equations or forcing functions� de
ned as the assignment of a function de�

pendent on time alone to a single system variable� thus rendering the latter an input

variable for the period of simulation in which the forcing function is included in the

continuous model� Input equations are uniquely identi
ed by the system variable to

which the forcing function is assigned�

For the purposes of this thesis� it is assumed that the set of variables remains unchanged

for the duration of an operation performed in its entirety in a single item of process equip�

ment� The total number of equations must therefore remain constant� although the number

of equations in each of the above categories may vary� In spite of this restriction� the UNDE�

FINED construct of section ������� does enable the speci
cation of periods in which certain

members of the set of variables become unde
ned� thereby reducing the number of equations

that actually have to be solved during these periods�

Discrete changes to the set of equations� arising from either external actions or

physico�chemical discontinuities� will usually lead to discontinuities in the values of a subset

of the system variables or their time derivatives� In order to determine consistent values

for these variables immediately following such discrete changes� it is normally assumed that

the values of the variables whose time derivatives appear explicitly in the new set of equa�

tions 	the di�erential variables
 are continuous across the discontinuity� but that their time

derivatives and the values of the remaining algebraic variables may be discontinuous�

Nevertheless� there are also certain external actions that can be modelled as Dirac

delta functions which may cause a discontinuous change in the values of one or more dif�

ferential variables� We therefore need mechanisms for de
ning such discrete changes 	see
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section �����
�

Changes to the set of input equations could equally be regarded as discrete changes

to the values of input variables� but their e�ect is more similar to changes to the set of equa�

tions� Moreover� considering the input equations as interchangeable with other equations

enables the number of input variables to vary during the course of a simulation�

	���� The RESET task

The RESET task is the 
rst of two elementary tasks that causes an instantaneous

change to the describing equations of a system� it de
nes the replacement of one or more

input equations with an equal number of new input equations involving the same set of

variables� Execution of a RESET task at some point during a simulation thus results in

an instantaneous change to the forcing functions assigned to one or more of the current

input variables� This is the simplest form of discrete manipulation a continuous model may

experience during a simulation� and is� in fact� the only manipulation allowed by continuous

process simulation packages such as SpeedUp�

The introduction of a special language primitive for the declaration of this limited

form of discrete manipulation is justi
ed by the fact that it is by far the most commonly

encountered manipulation experienced by processing systems� Furthermore� the language

structures required to express this special case can be considerably simpli
ed� Step changes

to an input� and the initiation or termination of the ramping of an input are both examples

of external actions that are modelled by this form of manipulation�

A special syntactical form is used for the declaration of input equations� This

consists of a reference to the input variable on the left hand side separated� by the assignment

operator� from a real expression on the right hand side that must not involve references to any

of the system variables� A distinction is made between the assignment operator 	��
 and the

equality operators 	� or IS
 used in general and connectivity equations� in order to emphasise

the role of input equations in assigning a function of time alone to an input variable� In fact�

because input equations de
ne a unique value for the input variables concerned at any point

in the time domain� it is not necessary to solve them simultaneously with the remaining

system equations� At any point in time� the input equations can be used to determine the

values of the input variables� which can then be considered to be 
xed during the iterative
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solution of the remaining describing equations for the values of the remaining variables�

The declaration of a RESET task merely consists of a list of the new input equations

to be inserted in the continuous model� The set of input equations to be dropped from the

continuous model need not be speci
ed explicitly since it can be determined automatically

from the input variables that appear on the left hand side of the new set of equations�

Obviously� this list of input equations may only involve those variables that are already

considered to be input variables at the time of execution� and� in order to avoid an ambiguity

concerning which equation is actually inserted in the continuous model� each input variable

may only appear once� FOR and WITHIN structures� similar to those that exist for general

equations� are provided to aid in the declaration of these new equations�

Figure ��� demonstrates two applications in which a RESET task is employed to

manipulate dynamically the continuous model of a system� In the 
rst example� a RESET

task is used to model the opening of a manual valve by a process operator� The continuous

model of the valve contains a variable representing the position of the valve stem and an

equation that� according to the position of the stem and the inherent characteristic of the

valve� relates the �owrate through the valve to the pressure drop across it� The stem position

variable is considered to be an input variable� so its value is determined by an input equa�

tion� The RESET task shown reaches into the continuous model and directly manipulates

the equation that determines this value� just as an operator would walk into a plant and

manipulate the valve� The action is considered to occur in such a small time interval relative

to the length of the overall simulation� that it can modelled as an instantaneous change� If

the action in fact took an appreciable length of time to perform� it could be modelled by

two RESET tasks separated by a time interval�

The second example demonstrates how the action of a digital controller at the end

of its sampling interval might be modelled� Here� the expression on the right hand side is

evaluated at the time of execution of the RESET task� The value obtained is used to update

the position of the control valve stem discretely according to a proportional�integral control

law� The movement of the valve stem is again considered to be both instantaneous and

correct� If this were not the case� the control signal to the valve could be considered to

be an input variable instead� and the stem position determined from a di�erential equation

involving this signal included in the control valve model�
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� Open a manual valve instantaneously
RESET
Valve�Position �� ��� 


END

� Action of a digital controller at the end of its sampling interval
RESET
Valve�Position �� Bias � Gain��Error � Integral�Error�Reset�Time� 


END

Figure ���� Two applications of the RESET task

RESET tasks may also be used to alter the value of selector variables 	see section

�������
� Manipulation of a selector variable by a RESET task forces the continuous model

to change state as a result of an external external action as opposed to a physico�chemical

mechanism� Applications include the modelling of the replacement of a shattered bursting

disc by an operator� a transition that would not normally be described as a physico�chemical

mechanism� and the switching on or o� of a pump described by the model entity shown in


gure ����

Here� the model entity has two states designated by the selector variable Status

and corresponding to whether or not the pump is switched on� When the pump is switched

on� the pump characteristic relates the pressure rise across the pump to the �owrate of

material through the pump� and when it is switched o�� the pressure rise is set to zero 	or

even a negative value� e�g� a pressure drop� related again to the �owrate
� No transitions link

these states under normal operating conditions�� Whether the pump is initially switched on

or o� forms part of the initial condition of any simulation� and external actions during the

simulation� modelled by RESET tasks 	see 
gure ���
� can cause dynamic changes to this

status�

Of course� the use of external actions to alter a model�s state must have physically

meaningful consequences� An attempt� for example� to change the state of a �ash vessel from

supercooled liquid to two phase while the contents of the vessel remain below the bubble

point would most probably lead to failure of the simulation�

�Of course� a series of trip conditions that result in a transition from the On state to the Off state could
easily be included in the model� if necessary�
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MODEL Pump

VARIABLE
Flow�In� Flow�Out AS Flowrate
Press�In� Press�Out AS Pressure
Press�Rise AS Positive

SELECTOR
Status AS �On�Off�

EQUATION

Flow�In � Flow�Out 


Press�Out � Press�In � Press�Rise 


CASE Status OF
WHEN On � Flow�Out � f�Press�Rise� 

WHEN Off � Press�Rise � � 


END � case

END � Pump

Figure ���� Model of a Pump

� Turn the pump on�
RESET
Pump�Status �� Pump�On 


END

Figure ���� Manipulation of selector variables by a RESET task

	���� The REPLACE task

The REPLACE task takes one or more describing equations of a system and replaces

them with an equal number of new equations� The type of the equations discarded and the

type of the new equations inserted in the system model are irrelevant� all equations being

considered equally interchangeable for the purposes of this operation� It is therefore possible

to replace an input equation involving one variable with a new input equation involving

another variable� or to replace a general equation with an input equation and vice versa� A
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� Close the control loop
REPLACE
Control�Valve�Position

WITH
Automatic AS Control�Valve�Position � Control�Valve�Signal �

END

� Open the control loop
REPLACE
Automatic

WITH
Control�Valve�Position �� ��� �

END

Figure ���� Applications of the REPLACE task

REPLACE task also provides the means to change the topology of a plant dynamically� by

allowing a connectivity equation to be replaced by another connectivity equation� or even

an equation belonging to either of the other categories� A RESET task is therefore just a

special form of the REPLACE task that can only replace an input equation with a new input

equation involving the same variable�

It must� of course� be possible to identify an equation uniquely in order to replace

it� As already stated� input equations can be identi�ed by the associated input variable�

whereas connectivity equations and general equations must be associated with an identi�er

when declared in a model entity 	see section 
����� in order to be replaced� If any of the

new equations inserted in a continuous model by a REPLACE task are to be manipulated in

this manner at some future point in time� their declaration must also be accompanied by an

identi�er�

An example of the application of a REPLACE is shown in �gure ���� where a control

valve is switched from manual to automatic analogue control� This is achieved by replacing

an input equation involving the stem position with a general equation relating the control

signal to the valve to the stem position� The new equation is associated with an identi�er�

so that the second REPLACE task shown in �gure ��� may later be employed to switch the

control valve back to manual control�

At any point in time during a simulation� the set of variables describing a system
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will be split into three categories 	see equation �����

� The input variables� already described earlier� the values of which are determined

uniquely from the input equations�

� The di�erential variables� the time derivatives of which appear in the describing equa�

tions�

� The algebraic variables� being the remaining variables whose time derivatives do not

appear explicitly in the describing equations�

The presence of REPLACE tasks in a schedule may result in the status of variables changing

dynamically during a simulation� For example� execution of a REPLACE task that replaces

an input equation with a general equation will result in the status of the variable concerned

changing dynamically from input to algebraic or di
erential� depending on the way it appears

in the new equation� It is therefore possible for the number of di
erential variables describing

a system to vary during a simulation� For example� if all the equations involving the time

derivative of a particular variable are dropped from the continuous model� the number of

di
erential variables will be reduced by one� Similarly� it is possible for a physico�chemical

discontinuity to vary the number of di
erential variables describing a system�

Changing the number of di
erential variables in this manner only poses problems

when the number of di
erential variables increases� Each time a discrete change to the

describing equations of a system occurs during a simulation� a new initial value problem is

posed� This new problem starts from the point in time denoted by the event that triggered

the change� and requires an initial condition in order to determine consistent initial values

for all the system variables� The �nal values of the di
erential variables in the preceding

initial value problem normally provide this initial condition� If� however� new di
erential

variables are introduced as a consequence of the discrete change� initial values must also be

found for these variables� At present� it is assumed that the values of these variables can

also be carried over from the preceding problem��

The new initial value problem resulting from a dynamic change to the describing

equations must represent a well�posed dynamic simulation problem in its own right� As

�If this is not true� a REINITIAL task �see section ������ can be used to specify the correct value for the
new di�erential variable�
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already discussed in section ���� additional limitations may also be imposed by the numerical

algorithms employed for the solution of the describing equations� in particular those imposed

by the problems associated with the solution of DAEs of index exceeding unity 	Pantelides

et al�� ������ It is� after all� very easy to increase dynamically the index of the describing

equations with a REPLACE task� the addition of an input equation constraining the value of

a di
erential variable being the simplest example�

A further interesting application of the REPLACE task is to the automatic calcu�

lation of the steady�state bias of an analogue controller� In order to determine this bias� a

steady�state calculation is performed in which the controller error is constrained to zero by

an input equation� and the bias is considered to be a calculated 	algebraic� variable� The

value for the controller bias determined by this calculation corresponds to the correct steady�

state bias for the controller� Before dynamic simulation begins� execution of the REPLACE

task in �gure ��� can automatically replace the input equation involving the controller error

with an input equation constraining the controller bias to its current value� The controller

error� now an algebraic variable� is then free to �uctuate as disturbances are introduced and

the controller attempts corrective action�

� Set the controller bias
REPLACE
Controller�Error

WITH
Controller�Bias �� OLD	Controller�Bias
 �

END

Figure ���� Automatic calculation of controller bias using a REPLACE task

The above example also illustrates the use of the special built�in function OLD� This

is used when it is desirable to be able to express the new equations inserted in the continuous

model in terms of the values of the variables immediately before the discontinuity� When

an expression involving this function is inserted in the continuous model� the function is

symbolically replaced by a real constant corresponding to the value of its argument evaluated

at that point in time�

OLD is a vector function� It may also appear in RESET and REINITIAL tasks
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	section ��
���� and can be used to include the current time as a constant in any expression�

It has no meaning within model entities� where no well�de�ned values for the variables

exist before simulation commences� As a consequence� for example� replacing two input

equations simultaneously in the same RESET task becomes subtly di
erent from replacing

each equation individually using two RESET tasks executed in a sequence� This is because

the reinitialisation calculation following the execution of the �rst RESET task in the sequence

may alter the values of variables that appear in OLD functions on the right hand side of the

second RESET task�

It is interesting to note that� although the model described in the example of

�gure ��� results in a perfectly legitimate steady�state calculation� any attempt at dynamic

simulation without releasing the constraint on the controller error could encounter problems�

This is because the input equation concerned e
ectively constrains the controlled variable to

its set point� forcing the simulation to determine the trajectory of the manipulated variable

that would achieve this �perfect� control� a typical example of a problem of index exceeding

unity� Only by releasing this constraint with a REPLACE task� thereby reducing the index

to unity� is it possible to perform a simulation with existing numerical codes� This suggests

that any analysis of the describing equations of a system to determine their index should be

postponed until an attempt at integration is made� and that this analysis should be repeated

before each attempt at integration following a manipulation of the describing equations�

����� The REINITIAL task

Whenever a discrete change occurs to the continuous model of a system� one of the

key concerns is the precise de�nition of the condition of the system immediately following the

discontinuity � this� together with the modelling equations� normally determines a unique

trajectory for the system variables until the next discrete change� In continuous simulation

packages such as SpeedUp� the usual assumption is that the values of the di
erential vari�

ables remain unaltered across any discontinuity� which� for most cases� is su�cient to de�ne

uniquely the system condition thereafter�

However� such assumptions preclude situations in which it may be desirable to

de�ne instantaneous changes to the values of di
erential variables� For example� when an

analogue control loop involving integral action is switched to automatic control� the integral
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of the controller error is normally initialised to zero in order to eliminate any reset windup

that may have occurred while the loop was under manual control� a situation that is most

easily modelled by instantaneously changing the value of the variable representing this in�

tegral 	a di
erential variable� to zero� Moreover� the characterisation �instantaneous� may

simply denote changes that occur on a much smaller time�scale than the rest of the simula�

tion� the details of which are not considered to be important� Examples could include the

�instantaneous� dumping of solid reactant or catalyst into a batch reactor by an operator� or

the very rapid heating of the reactor contents�

The REINITIAL task is introduced in order to accommodate this type of discrete

change� Its declaration consists of a list of the di
erential variables that are to be con�

sidered discontinuous� and the relationships that will replace the corresponding continuity

assumptions in determining the consistent initial values for system variables immediately

following the discontinuity� The speci�ed relationships are nonlinear equations that may

involve any system variable� including the values of system variables immediately before the

discontinuity� The OLD function introduced in the previous section may be used for the

purpose of specifying the latter� Thus� overall� the REINITIAL task represents a complete

implementation of the general types of discrete change envisaged in section ������

Two examples of the application of the REINITIAL task are shown in �gure ����

The �rst example demonstrates how such a task can be used to model the initialisation of an

analogue controller� Execution of the task will result in a reinitialisation calculation in which

the usual assumption concerning the continuity of the variable representing the integral of

the controller error is replaced by an equation that constrains its new initial value to zero�

The second example demonstrates how the equation that determines the new initial value

of a di
erential variable does not necessarily have to involve the di
erential variable itself�

Here� a step change in the temperature of the vessel 	an algebraic variable� implies a step

change in the internal energy holdup�

The number of equations speci�ed in a REINITIAL task must match the number

of discontinuous di
erential variables� These equations are declared in the same manner

as equations declared in model entities� including all structured equations except the CASE

equation� Use of the latter would be meaningless because a CASE equation must remain

locked in a single clause during a reinitialisation calculation�
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� Initialise the integral error of an analogue controller
REINITIAL
PI�Controller�Integral�Error

WITH
PI�Controller�Integral�Error � � �

END

� Flash heating of the contents of a vessel
REINITIAL
Batch�Reactor�U�Holdup

WITH
Batch�Reactor�Temp � OLD	Batch�Reactor�Temp
 � �� �

END

Figure ���� Applications of the REINITIAL task

The equations declared in a REINITIAL task only serve to de�ne consistent initial

values for the system variables immediately following the discontinuity� and are not included

in the continuous model thereafter� Execution of a REINITIAL task is immediately followed

by a reinitialisation calculation� This calculation determines consistent initial values for all

system variables from the simultaneous solution of the current set of describing equations�

the set of continuity assumptions for all di
erential variables not listed in the REINITIAL task�

and the set of equations declared in the REINITIAL task� The latter two sets of equations

are then dropped from the continuous model and numerical integration of the current set of

describing equations proceeds as before�

����� The MESSAGE task

It is desirable that a simulation executive based on an implementation of the pro�

posed simulation language be able to provide a report on the progress of a simulation� Ex�

amples of the information that could be derived automatically from a simulation description

for inclusion in this report include�

� The time of occurrence of physico�chemical discontinuities� including the logical con�

dition that led to the discontinuity� new and old values for selector variables� and even

details of the new equations inserted in the continuous model�
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� The time of occurrence of time and state events� including the logical condition trig�

gering them�

� Details of the execution of elementary tasks� including the model manipulations per�

formed by these tasks�

This information is often as important as that contained within the time trajectories of the

describing variables� providing a means by which the discrete component of a combined dis�

crete�continuous simulation may be recorded and analysed� In many situations� however�

the user may wish to include more detailed information concerning the progress of the oper�

ation under investigation in this report� For example� it may be desirable to send messages

concerning the completion of certain elementary processing steps� the outcome of decisions

programmed into the schedule� or even warnings and alarms�

The MESSAGE task is introduced in order to include customised messages on the

status of a system in the simulation report� Execution of such a task occurs instantaneously�

and will result in the message declared within the task being inserted in the simulation

report� At present� only messages composed of a prede�ned string of characters enclosed

within quotes may be issued� e�g� MESSAGE �Tank Full��

��� Schedules of Tasks

While elementary tasks are used to model the individual discrete actions applied

to a processing system during a particular operation� a schedule provides a means by which

the order and time of execution of these individual actions may be declared� The execution

of this schedule drives the underlying model entity through a simulation of the operation

under consideration�

In many situations several di
erent agents may act on a processing system simul�

taneously� For example� if the start�up of a plant is to be conducted by a team of operators�

each operator will move through the plant relatively independently in order to perform the

allocated control actions� although the team will probably periodically communicate in order

to synchronise and co�ordinate their actions� Furthermore� in certain situations� it is most

natural to model digital controllers as agents that act on a system concurrently with each
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other and with any other external actions experienced by the system� whereas in others the

complete computer control system can be modelled as a single agent that acts on a sys�

tem concurrently with any disturbances� The schedule must therefore re�ect the concurrent

nature of the real world through appropriate language structures�

If a schedule is a means by which the order of execution of the external actions

applied to a processing system can be declared� it may be argued that the language struc�

tures required to support this will probably be very similar to the control structures used

by general�purpose programming languages to specify the order of execution of a series of

statements by a computer� This conclusion is re�ected in the design of many simulation lan�

guages� in which the consequences of an event are essentially declared using a programming

language� and in special�purpose languages for the computer control of sequential process

operations 	Rosenof and Ghosh� ������

Unfortunately� most conventional programming languages require all statements

to be executed in a sequence� although with more modern programming languages� such as

Modula�
 	Wirth� ������ it is possible to emulate concurrency through the use of coroutines�

Attempts by developers of simulation languages to overcome the problems of representing

essentially concurrent systems in a sequential environment have resulted in the various world

views of discrete event simulation 	Kreutzer� ������ Probably the best solution to this

problem is provided by the process interaction world view� typi�ed by the SIMULATION

class of Simula 	Birtwistle et al�� ������ a general�purpose programming language designed

with discrete event simulation speci�cally in mind�

Extensions of the SIMULATION class of Simula have formed the basis of several

combined discrete�continuous simulation languages� including DISCO 	Helsgaun� ����� and

CADSIM 	Sim� ������ Although both these languages are extensions of a discrete event

simulation language to include limited continuous simulation capabilities� the process in�

teraction world view inherited from Simula provides a powerful formalism for the inherent

concurrency of the real world� According to this world view� a system is modelled by a web

of concurrent entities that periodically interact with each other� The life cycle of each entity

is declared using a Simula class containing details of the sequence of actions undertaken by

the entity during its life cycle� which may include creation or termination of other entities�

The simulation is initiated and co�ordinated by a main program� or master procedure� that
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creates and terminates entities as required� On a sequential computer� the execution of all

entities currently active in the simulation takes places in a quasi�parallel fashion� only one

entity is actually executed at any point in time� but control is passed from entity to en�

tity in order emulate concurrency� The simulation terminates when execution of the master

procedure is complete� and all active entities have completed their life cycles�

The advent of parallel processing� in particular the MIMD 	Multiple Instruction

Multiple Data� computers� and the subsequent development of the so�called parallel pro�

gramming languages� such as OCCAM 	INMOS� ������ has provided an alternative method�

ology for the description of concurrent systems� The ability of parallel machines to execute

commands and manipulate data concurrently has prompted the developers of these parallel

programming languages to provide structures that enable a programmer to express explicitly

which tasks are to be executed concurrently�

The above discussion has highlighted the fact that there are at least two means by

which the inherent concurrency of a system may be expressed�

� The concurrency can be declared explicitly through language structures similar to those

of the parallel programming languages�

� The concurrency can be implied by adoption of the process interaction world view of

discrete event simulation�

Experience suggests that there is a role for both methodologies in the description of the

external actions experienced by a processing system� The nature of a system� or the features

of the particular study being conducted� will usually dictate which approach is adopted�

although in certain situations a combination of both approaches could be the most appro�

priate� Consider� for example� a process in which several digital controllers are employed in

order to maintain the plant at a nominal steady�state� One simulation study may attempt

to assess the performance of these digital controllers in response to a series of disturbances�

In this case� because the study focuses on the performance of the controllers� the schedule

would be comprised of an explicit declaration of the execution of these controllers in parallel

with any disturbances� However� in another situation it may be necessary to use simulation

in order to validate the feasibility of a proposed start�up procedure� The start�up procedure

will consist of a sequence of actions to be undertaken by the operator in order to achieve
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the steady�state operating point� At several points in this sequence� the operator will be re�

quired to place digital control loops under automatic control� The process interaction world

view is much more convenient in this situation � the act of closing the control loop would

result in the activation of a separate digital controller entity� The operation of the latter in

parallel with the remaining sequence of actions would be implied� without the need for an

explicit declaration� In e
ect� once the controller is spawned by the main schedule� it forms

an independent entity and the main schedule has no further responsibilities for� or direct

knowledge of� its actions�

Language structures for the explicit declaration of concurrency in a schedule will

be introduced in this section� We will return to the process interaction world view at the end

of this chapter and demonstrate that the two approaches are in fact equivalent� although it

must be recognised that there are circumstances in which one approach is more convenient

notationally than the other�

����� The Basic Control Structures � Sequential and Concurrent Execution

A schedule may be used to de�ne explicitly the execution of a series of tasks in

either a sequential or concurrent fashion� or any combination of the two� The de�nitions of

sequential and concurrent execution are strict�

� Sequential execution � Execution begins with the �rst task and will only proceed

to the next task when execution of the preceding task has terminated� Execution of

the sequential structure is complete when execution of the last task has terminated�

� Concurrent execution � Execution of all tasks begins simultaneously and then pro�

ceeds concurrently� Execution of the concurrent structure is only complete when all

tasks have terminated�

A schedule is written in a similar manner to a programming language� The order in which

the tasks declared therein are executed is determined by control structures� The sequen�

tial control structure consists of a list of tasks between the keywords SEQUENCE and END�

whereas the concurrent control structure consists of a list of tasks between the keywords

PARALLEL and END� An entire control structure is itself a task� so nesting of control struc�

tures can be used to describe complex schedules in a simple and elegant manner� In fact� an
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SCHEDULE
SEQUENCE
CONTINUE FOR ����
RESET Manual�Valve�Position �� ��� � END
CONTINUE FOR 
��

RESET Manual�Valve�Position �� ��� � END
CONTINUE FOR 
��

END � sequence

Figure ���� Simple Sequence of External Actions

entire schedule is de�ned by the execution of a single task� although this task will usually

be a control structure that de�nes the order of execution of a set of other simpler tasks�

Figure ��� demonstrates how the sequential control structure may be utilised to

model a simple sequence of external actions applied to a processing system� The CONTINUE

task� which speci�es the duration of periods of continuous change between discrete actions�

will be discussed in section ������

The provision of suitable mechanisms to re�ect the concurrent nature of the real

world will potentially result in the concurrent execution of two or more tasks that are able

to manipulate the same underlying continuous model� If two or more elementary tasks are

executed simultaneously with respect to the simulation clock� it is possible that concurrent

manipulation of the same aspect of this model will be attempted� A physical analogy to this

is an attempt by two operators to open the same manual valve simultaneously� As the conse�

quences of such actions are ambiguous� the simulation language excludes them semantically�

For example� in order for the simultaneous execution of two RESET tasks to be accepted� the

sets of input equations manipulated by these tasks must be mutually exclusive� Similarly� the

sets of di
erential variables manipulated by REINITIAL tasks executed simultaneously must

be mutually exclusive� This discussion also highlights the di
erence between concurrent and

sequential execution of the same list of elementary tasks� even though the simulation clock

is not advanced in either case� The execution of the tasks in a sequence will result in a

reinitialisation calculation immediately following the execution of each task� each task being

able to manipulate the same aspects of the continuous model if it so wishes� On the other

hand� the concurrent execution of the tasks will result in a single reinitialisation calculation
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following implementation of all the manipulations de�ned by the tasks� and will reject any

attempts to manipulate the same aspect of the model more than once�

The two control structures described above provide an excellent basis for the explicit

description of the order in which tasks are to be executed during a simulation� However� as

with programming languages� other control structures must also be introduced to describe

more complex situations� The following sections introduce some of these features�

����� Conditional Execution of Tasks

In many circumstances the correct external actions to apply to a system cannot

be fully determined a priori� and must therefore be established from decisions that can only

be made during the progress of the operation in question� Consider� for example� a batch

operation involving a series of elementary processing steps applied to a batch of material�

after which a decision is made as to whether the batch is acceptable� should receive further

processing� or should be discarded� This decision depends on the quality of the batch� so the

result can only be established after the preceding processing steps have been completed�

Conditional control structures are introduced to enable selection between alterna�

tive external actions based on decisions involving the current status of the system under

investigation� As with all other control structures� conditional control structures are consid�

ered to be tasks� and may be nested in an arbitrary manner�

The conditional control structure proposed is identical to that o
ered by most

modern programming languages� The basic form of the IF control structure permits a choice

between the execution of two alternative tasks to be based on the value of a logical expression�

This logical expression may include relationships involving describing variables� and will only

be evaluated at the point in simulation time that the control structure is encountered� The

ELSE clause de�ning the alternative task may be omitted� In this situation� the control

structure will de�ne a single task that is only to be executed if a certain condition is satis�ed�

An example of the application of the IF control structure is shown in �gure ����

where it used to clip a digital control signal sent to a control valve�

There is a subtle di
erence between the interpretation of the conditional control

structures used to co�ordinate the execution of tasks on one hand� and the conditional

equations that are used to declare physico�chemical discontinuities on the other 	see sections
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SCHEDULE
IF Control�Signal � ��� THEN
RESET Control�Valve�Position �� ��� � END

ELSE
IF Control�Signal � ��� THEN
RESET Control�Valve�Position �� ��� � END

ELSE
RESET Control�Valve�Position �� OLD	Control�Signal
 � END

END � if
END � if

Figure ���� Example IF Control Structure


�����
 and 
�������� Conditional control structures are procedural in an identical sense to their

counterparts in general�purpose programming languages� the control structure is encountered

during execution of the schedule and results in a branch of control� after which it has no

further e
ect on the simulation unless it is encountered again as a result of normal execution�

In contrast� conditional equations represent declarative knowledge concerning the physical

nature of the system under investigation that holds throughout the period in which the

equations concerned form part of the continuous model of the system�

����� Iterated Execution of Tasks

Many processing systems are characterised by the repetitive nature of the external

actions required to achieve the desired mode of operation� For example� periodic processes�

such as pressure swing adsorption� are usually brought to and maintained at a �cyclic steady�

state� by a sequence of external actions that is applied repeatedly� Moreover� the action of a

digital control system on a process can be considered to consist of a regular cycle of continuous

operation followed by sampling and discrete actions� The iterative control structures are

therefore introduced in order to de�ne the repeated execution of a task� In some cases it

may be possible to determine the number of times an operation is to be repeated either a

priori or� at least� just before the �rst execution of the operation� whereas in other cases this

is not feasible and the operation is repeated while a logical condition holds true�

The WHILE control structure de�nes the repeated execution of the task that it
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SCHEDULE
WHILE Time � ���� DO
SEQUENCE

CONTINUE FOR 

RESET
Control�Valve�Position �� OLD	Control�Signal
 �

END � reset
END � sequence

END � while

Figure ���� Example WHILE Control Structure

encloses as long as an associated logical expression remains true� When the control structure

is encountered� this logical expression is evaluated� If it is found to be true� the enclosed

task is executed� The expression is then evaluated again� and if the expression is still true�

the enclosed task is executed once more� This process continues until the expression is no

longer true� at which point execution of the WHILE structure is considered to be complete�

It is important to recognise that the logical expression is only evaluated before the �rst and

each subsequent attempt to execute the enclosed task� If� therefore� the logical expression is

initially false� execution of the control structure will terminate instantaneously� Otherwise�

the control structure will only terminate if the logical expression evaluates as false at the

beginning of an iteration�

The WHILE control structure shown in �gure ��� demonstrates the regular cycle of

continuous operation followed by discrete action exhibited by a digital controller�

����� Local Task Variables

The preceding sections have shown how the execution of tasks within a schedule

may be co�ordinated by control structures� As with any programming language� there is

often a need for auxiliary variables that facilitate this co�ordination� These special variables

are local to the task� they only exist for the duration of the task�s life cycle and are only

accessible from within it�

Local task variables may be of an integer� real� or logical type� Integer variables

are obviously necessary for the implementation of the FOR control structure� Real variables
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can be used to accumulate quantities� such as the total material produced by a series of

batches� or as an intermediate variable in a calculation� such as the controller error in �gure

���� Logical variables may be used to store information concerning the status of the system

for subsequent use in logical expressions� An example of the declaration of such variables is�

VARIABLE

Error� Integral�Error� Control�Signal AS REAL

Assignment statements are the only means by which the values of these local vari�

ables can be altered during a simulation� These statements may appear anywhere in a

schedule� are executed instantaneously with respect to the simulation clock� and result in

the assignment of a new value to the variable which is derived from the evaluation of an

expression of a type compatible with that of the variable� This expression may contain ref�

erences to the continuous variables of the underlying model� which are evaluated at the time

of execution� just as elementary tasks may include references to local task variables that are

also evaluated at the time of execution� For example�

Error �� ��	 
 Temp�Sensor���Measurement �

Execution of an assignment statement obviously has no e
ect on the underlying continuous

model� and is not therefore immediately followed by a reinitialisation calculation� Simulta�

neous attempts to alter the value of the same local variable are rejected�

Extensions to the range of types available� such as arrays of the basic types or LIFO

and FIFO queues� may also prove useful but have not been considered in this thesis�

����� The CONTINUE task

The execution of all the elementary tasks described so far takes place instanta�

neously with respect to the simulation clock� The �nal vital component is therefore a mech�

anism by which the duration of periods of continuous change between discrete actions can

be speci�ed� The CONTINUE task is introduced in order to achieve this objective�

Execution of a CONTINUE task suspends execution of the control structure within

which it appears� and in doing so schedules the event that will result in resumption of this

execution� In order for execution to resume� the simulation clock must be advanced to this
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event by integration of the underlying continuous model� The CONTINUE task merely has

the e
ect of scheduling an external action at some future point in time� and does not in itself

manipulate the continuous model�

The CONTINUE task comes in two forms� distinguished by the nature of the event

scheduled� The �rst form schedules a time event and has already appeared in several exam�

ples�

CONTINUE FOR �real expression�

Execution of the control structure concerned will resume after a speci�ed period of time

has elapsed� The time period is established from the evaluation of the real expression on

execution of the task� if the result turns out to be non�positive� execution of the control

structure will resume immediately� The real expression may involve any real quantities that

the schedule has access to�

The second form schedules a state event�

CONTINUE UNTIL �logical expression�

Execution of the control structure concerned will only resume when the logical expression

becomes true� This logical expression may again involve any quantities that the schedule

has access to�

The two forms described above may also be combined in a single CONTINUE task

through the use of the OR and AND operators� The OR operator will result in suspension

of execution until either the state or time event� whichever occurs �rst� whereas the AND

operator will suspend execution at least until the time event� after which the state event

will determine when the schedule is resumed� The OR operator is particularly useful for

debugging a simulation description� by providing a upper time limit on a state event that

might otherwise never be satis�ed� For instance� the task�

CONTINUE FOR �		 OR UNTIL Reactor�Conversion 
 	��

ensures that simulation is advanced for at most ��� time units even if the reactor conversion

never reaches the required value�
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����� Task Entities

We are now in a position to formalise the notion of a task entity� which describes

a complex set of external actions applied over a �nite period of time� All task entities are

user�de�ned� encapsulating a complete schedule and a set of local variables� The life cycle

of an instance of a task entity is determined through execution of this schedule�

Task entities are declared in a similar manner to the model entities that were the

subject of chapter 
� the keyword TASK followed by a unique identi�er by which it may

be referred to globally� The remainder of the declaration is split into a series of sections

in order to gather the information belonging to a particular category in one place� The

VARIABLE section is employed to declare local variables� and the SCHEDULE section de�nes

the schedule which determines the life cycle of the task entity�

Figure ���� demonstrates a task entity that models the action of a simple digital

controller� Three local control variables are employed to calculate the controller error� a

discrete approximation to the integral of this error� and the actual control signal respectively�

The life cycle of the task entity involves the execution of two other tasks in sequence� an

assignment statement that initialises the integral of the controller error� and another sequence

representing the action of the controller� which is executed repeatedly until the termination

condition is satis�ed 	in this case� when one thousand seconds have passed on the simulation

clock�� Execution of the iterated sequence is suspended by a CONTINUE task for the duration

of the sampling interval 	� seconds�� after which the controller error is calculated� This

value is then used as an intermediate variable in the calculation of the integral error 	an

accumulated quantity� and the control action� The latter is then implemented by a RESET

task� although IF control structures are employed to clip the signal if necessary�

��� Reuse of Tasks

The task entity shown in �gure ���� is extremely speci�c� being suitable only for

the description of one particular digital controller in the context of an individual simulation�

It is tied to a unique sensor and valve pair 	Temp�Sensor�� and Valve��	��� the sampling

interval and tuning parameters are expressed as constant values� and the task must always

terminate after one thousand seconds have elapsed� If it were necessary to alter any of this
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TASK Digital�PI�Control

VARIABLE
Error� Integral�Error� Control�Signal AS REAL

SCHEDULE
SEQUENCE
Integral�Error �� � �
WHILE Time � ���� DO
SEQUENCE

CONTINUE FOR 
��
Error �� �
� � Temp�Sensor�
�Measurement �
Integral�Error �� Integral�Error � Error�
�� �
Control�Signal �� ��
 � ����	Error � Integral�Error���
 �
IF Control�Signal � ��� THEN
RESET Valve�����Position �� ��� � END

ELSE
IF Control�Signal � ��� THEN
RESET Valve�����Position �� ��� � END

ELSE
RESET Valve�����Position �� OLD	Control�Signal
 � END

END � if
END � if

END � sequence
END � while

END � sequence

END � Digital�PI�Control

Figure ����� Task to Model a Digital Proportional�Integral Control Law

information� a new task entity would have to be developed� This is clearly unsatisfactory�

The example illustrates the importance of developing task entities in a manner

that will maximise their potential for reuse in future simulations� Tasks developed in this

manner become candidates for storage in a library of task entities� similar to the libraries of

continuous models described in the chapter 
� Reuse of tasks from such a library can then

considerably reduce the time required for the development of new simulation descriptions�

as part� or all� of the description will already exist as reusable components� This� of course�

requires that task entities can be declared independently of the details of an individual

simulation�

Parameterisation� in conjunction with inheritance� is already used to enhance the
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reusability of continuous models� Similarly� the key to the development of reusable tasks

is to allow a task entity declaration to be expressed in terms of a series of parameters�

through which instances of the task can be tailored to individual applications� The role of

inheritance in enhancing task reusability is less clear� because this will involve augmentation

of the task�s life cycle� The notion of inheritance was probably �rst introduced by the class

pre�xes of Simula 	Birtwistle et al�� ������ where the execution of a class begins with the

life cycle 	if any� of its parent class� and then proceeds with its own life cycle� However�

process engineering applications for this facility are not immediately obvious� Nevertheless�

it will be seen in section ����
 that polymorphic task parameters permit exploitation of the

development of continuous models in inheritance hierarchies�

����� Task Parameters

Task entities may be declared in terms a wide range of parameters in order to

enhance their potential for reuse� Useful applications of task parameters include�

� Numerical or logical constants are vital in most applications� such as the speci�cation

of controller constants� or the size and duration of a batch�

� Numerical or logical expressions for symbolic insertion in the task can also prove in�

valuable� in particular for adapting decisions made during execution 	e�g� termination

conditions��

� Equations can be speci�ed for symbolic insertion in the continuous model by a RE�

PLACE task�

� The continuous model	s� on which the task operates� This is probably the most impor�

tant application of all� through which a task can be designed to operate on any instance

of a particular model entity independently of the details of an individual simulation�

The parameters of a task are distinguished by type� the latter determining the purposes to

which the parameter may be applied within the body of the task� The range of parameter

types that a task entity may require is thus far wider than those allowed by subroutines of

general�purpose programming languages�
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� Parameters of the REAL� INTEGER� and LOGICAL types assume a constant or ex�

pression of the appropriate type� References to these parameters are interpreted as

constant values�

� Parameters of the REAL EXPRESSION� INTEGER EXPRESSION� and LOGICAL EXP�

RESSION types assume an expression of the appropriate type� References are inter�

preted as though they have been symbolically replaced by this expression�

� Parameters of the EQUATION type assume an equation� References are interpreted as

though they have been symbolically replaced by this equation�

� Parameters of the MODEL type assume an instance of the appropriate model entity�

References are interpreted as references to this instance�

Note again the subtle di
erence between value parameters on the one hand� and expression

parameters on the other 	cf� section 
������ Although both may be assigned an expression

of the appropriate type� value parameters are interpreted as a constant value obtained by

evaluation of this expression at the time of creation of the task instance� whereas expression

parameters are interpreted as expressions� the value of which can change during the life cycle

of the task�

The declaration of each parameter includes an identi�er by which it may be referred

to within the schedule of the task� An instance of a task entity is only fully de�ned if all its

parameters are assigned values of the correct type�

The task shown in �gure ���� demonstrates how careful parameterisation can fa�

cilitate the development of a reusable task implementation of the digital controller� The

parameters of the task include real constants that determine the various tuning parameters

and the sampling interval� a logical expression that determines the termination of control�

and model type parameters that determine the sensor and the manipulated control valve�

Note that the MODEL type parameters are used to access variable attributes of the under�

lying continuous model� thereby establishing the task entity�s independence of a particular

sensor and valve combination�
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����� Polymorphism

This section demonstrates how the notion of polymorphism introduced in section


���
 can be used to enhance signi�cantly the potential for reuse of a task entity� In partic�

ular� all model type parameters of task entities are polymorphic� In this case� polymorphic

parameters may be assigned an instance of any descendant of its base type�

The use of polymorphism enables the declaration of task entities that may operate

on a broad range of similar continuous models provided they have some basic features in

common 	as opposed to being restricted to instances of a single type�� whilst still ensuring the

task is applied to a suitable model� Careful development of continuous models in inheritance

hierarchies will ensure that many operations will only require a single task� where otherwise

a task would have to be developed for the same operation applied to each member of the

hierarchy� This will� of course� only apply to operations that can be described in terms of

the attributes of the base type�

The task entity shown in �gure ���
 is designed to model the opening of a valve

under manual control� The only parameter of this task is the continuous model� of type

Generic�Valve� to which the operation is applied� The model entity Generic�Valve is the

root model of an inheritance hierarchy of valve models that encapsulates a declaration of

all the universal features of valves� including a variable that represents the position of the

stem� Operations that open and close a valve can be described completely in terms of this

variable� so an Open�Valve task that operates on this continuous model can be developed�

The inheritance hierarchy that evolves from this root can then be used to declare the details

of the entire range of valves encountered in processing systems� However� it is not necessary

to develop a task to open each new member of this hierarchy � the task Open�Valve will

su�ce�

��� Hierarchical Subtask Decomposition

The language structures that have been introduced up until this point are� in prin�

ciple� adequate for the description of the external actions applied to a processing system�

although in practice the task entities required would become more di�cult to develop and

validate as the complexity of the external actions increases�
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Chapter 
 discussed at length the need for mechanisms for managing the potential

complexity of the continuous model of a processing system� Combined discrete�continuous

simulation faces the additional problem of dealing with the potential complexity of the

external actions imposed on these models� For all but the most trivial simulations� the

complexity of the external actions applied to a system may increase just as rapidly as that

of the underlying continuous model�

The management of complexity in the continuous model of a system through decom�

position into a series of connected components provides a useful insight into the management

of task complexity� A complex operation on an item of process equipment can usually be

decomposed in terms of lower level operations involving the structural components of this

equipment� Here� however� the decomposition is procedural as opposed to structural� the

role of the more complex operation is to de�ne the ordering in the time domain of the lower

level operations� rather than the structural connections of components� Each of the lower

level operations may in turn be decomposed in terms of other operations� the decomposition

continuing until all operations can be described in terms of the manipulations of the under�

lying continuous model made possible by elementary tasks� Decomposition in this manner

defeats complexity through restriction of the scope of the problem considered at any point

to a manageable level�

So� hierarchies are again the most natural manner in which to manage the decla�

ration of complex external actions� This also o
ers the advantage that� with the continuous

model already decomposed in terms of a hierarchy� the external action hierarchy can be

designed to correspond closely to the model hierarchy� and in so doing� exploit the structure

of the system under consideration� Consider� for example� a complex operation such as the

start�up procedure applied to a distillation column 	in itself a system of signi�cant com�

plexity�� This operation can be decomposed into a series of simpler operations ordered in

the time domain� some of which involve manipulation of the column�s reboiler or condenser

submodels� These operations may then in turn be decomposed in terms of a series of oper�

ations that involve manipulation of the components of these submodels� such as valves and

pumps� Moreover� tasks that operate on the submodels of a system can often be developed

and tested on the submodel concerned in isolation� before insertion in a larger structure�

The construction of task hierarchies is facilitated through the introduction of the
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notion of a parameterised task entity 	see section ������� In order that a hierarchical de�

composition can extend to an arbitrary number of intermediate levels� any schedule may be

de�ned in terms of the execution of instances of other task entities� An operation performed

in its entirety in a single item of process equipment can� as a result� be declared in terms

of a single hierarchy� and recursion is even possible� although there do not seem to be any

immediately obvious applications of this to processing systems�

The task shown in �gure ���� demonstrates a task whose life cycle is hierarchically

decomposed in terms of the execution of two instances of the digital controller task shown

in �gure ����� The example also demonstrates how the parameters of a task are assigned

values�

The introduction of concurrency implies that several instances of the same task

entity may operate simultaneously on di
erent submodels of the overall system� It also

follows that the periods in which two tasks operate on the same submodel could overlap�

At present� it is considered too restrictive to disallow this situation� and that the rules

concerning the simultaneous manipulation of aspects of the continuous model 	see section

������ are su�cient to avoid ambiguities�

Task hierarchies enable a user to develop a simulation description in either a top�

down or bottom�up fashion� Employing the top�down approach� the user constructs a simula�

tion problem by abstracting the operations taking place� and then considering each individual

operation in more and more detail as the hierarchy evolves� The bottom�up approach takes

the opposite view� a simulation description is constructed by the repeated combination of

component tasks to form more complex tasks� until a task representing the desired simula�

tion has been constructed� The advantage of the latter approach is that in most situations

many of the component tasks required will already exist� so the modelling activity primarily

involves the combination of existing tasks� In practice� no engineer is likely to work entirely

with one approach� a top�down decomposition is usually the best way of initially analysing

a system� just as useful component tasks should not be ignored if they are readily available�
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��� Explicit Concurrency Versus Process Interaction

In section ��� it was observed that the inherent concurrency of the external actions

imposed on a processing system may be expressed in either an explicit or implicit fashion� It

follows that� in principle� the appearance of an instance of a task entity in one of the control

structures described above can be interpreted in two di
erent manners�

� The appearance of the task entity results in the execution of its complete life cycle�

and control is only returned to the enclosing control structure on termination of this

life cycle�

� The appearance of the task entity merely results in activation of the task entity� whose

life cycle is then executed in a quasi�parallel fashion with all other active tasks� and

control returns to the enclosing control structure immediately�

It is therefore necessary for the user to specify the manner in which the appearance of a

task entity in a control structure is to be interpreted� The most common interpretation is

execution in the explicit manner� so this is implied by employing the identi�er of the task

alone� as demonstrated in �gure ����� Execution in the implicit manner� thereby merely

activating an instance of the task entity� can be speci�ed by the keyword ACTIVATE preceding

the identi�er of the task� If the execution of a task occurs instantaneously with respect to

the simulation clock� then either interpretation will have exactly the same consequences�

Therefore� only the user�de�ned task entities described above� that encapsulate potentially

complex life cycles� may be executed in the implicit manner�

As already stated� the two approaches to the expression of concurrency are in fact

equivalent� This can be demonstrated by the task shown in �gure ���� which employs

implicit concurrency to achieve exactly the same simulation description as that given by the

task shown in �gure �����

The normal conditions under which execution of a task will terminate are deter�

mined by the various rules outlined above� Under certain circumstances� however� it may be

necessary for events elsewhere in the simulation to trigger the premature termination of a

task� Consider again the example of a process in which several digital controllers are applied

in order to maintain the plant at a nominal steady�state� For the purposes of this discussion�
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it is considered necessary to use simulation in order to validate the feasibility of a proposed

shut�down procedure� This procedure will consist of a sequence of actions to be undertaken

by the operator with the intention of taking the process safely from steady�state to a cold

and empty state� and at several points in this sequence� digital control loops will be opened

to manual control� If these control loops are modelled as self�contained tasks executed in a

quasi�parallel fashion with the rest of the simulation� actions within the shut�down sequence

must be able to terminate their life cycles prematurely�

The TERMINATE task is introduced in order to allow one task to cause the termi�

nation of another task operating in parallel with the former� Execution of a TERMINATE

task results in the immediate termination of one or more of the tasks being executed con�

currently with it� regardless of the normal life cycle of these tasks� In order to apply this

operation� a task instance must be associated with an optional identi�er by which it may be

distinguished from other active instances of the same task�

The application of the TERMINATE task to the simulation of the shut�down pro�

cedure described above is shown in �gure �����

��� Summary

The second category of discrete changes that a processing system may experience�

i�e� external actions imposed on the processing system� were considered in this chapter� A

critical review of the facilities o
ered by existing simulation packages led to the proposal

of a novel formalism based on a schedule of tasks that drives the underlying continuous

model of a system through the desired simulation� This formalism is based on the conjecture

that any external action can be modelled by some form of incremental manipulation of the

underlying continuous model� The fundamental mathematical manipulations were identi�ed�

and language structures to implement them were introduced�

The problem of ordering the execution of these fundamental manipulations in the

time domain using a schedule was then considered� with particular reference to the inherent

concurrency of the real world� A series of control structures� similar to those of general�

purpose programming languages� were proposed to express this ordering and concurrency�

This ultimately led to the introduction of the task entity� which encapsulates a complex set
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of external actions applied over a �nite period of time�

The importance of developing generic task entities that may be employed to de�

scribe a broad range of similar� albeit not identical� operations was then highlighted� This

was facilitated by the introduction of task parameterisation� in particular polymorphic model

type parameters which enable the same task to be applied to a broad range of similar con�

tinuous models� Finally� the management of the potential complexity in the external actions

applied to complex processing system was addressed by hierarchical subtask decomposition�
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TASK Digital�PI�Control

PARAMETER
Set�Point� Reset�Time� Gain� Bias AS REAL
Sampling�Interval AS REAL
Termination�Condition AS LOGICAL�EXPRESSION
Sensor AS MODEL Generic�Sensor
Valve AS MODEL Generic�Valve

VARIABLE
Error� Integral�Error� Control�Signal AS REAL

SCHEDULE
SEQUENCE
Integral�Error �� � �
WHILE NOT Termination�Condition DO
SEQUENCE

CONTINUE FOR Sampling�Interval
Error �� Set�Point � Sensor�Measurement �
Integral�Error �� Integral�Error � Error�Sampling�Interval �
Control�Signal �� Bias � Gain�	Error � Integral�Error�Reset�Time
 �
IF Control�Signal � ��� THEN
RESET Valve�Position �� ��� � END

ELSE
IF Control�Signal � � THEN

RESET Valve�Position �� ��� � END
ELSE

RESET Valve�Position �� OLD	Control�Signal
 � END
END � if

END � if
END � sequence

END � while
END � sequence

END � Digital�PI�Control

Figure ����� Reusable Task to Model a Digital Proportional�Integral Control Law
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TASK Open�Valve

PARAMETER
Valve AS MODEL Generic�Valve

SCHEDULE
RESET
Valve�Position �� ��� �

END

END � Open�Valve

Figure ���
� Task to Open a Valve
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TASK Effluent�Control�System

PARAMETER
Plant AS MODEL Effluent�Plant
Termination�Condition AS LOGICAL�EXPRESSION

SCHEDULE
WITHIN Plant DO
PARALLEL

Digital�PI�Control	Sensor IS pH�Meter�
Valve IS Alkali�Valve�
Termination�Condition IS Termination�Condition�
Set�Point IS ����
Gain IS ������
Bias IS ����
Reset�Time IS ����
Sampling�Interval IS ���
 �

Digital�PI�Control	Sensor IS Level�Sensor�
Valve IS Exit�Valve�
Termination�Condition IS Termination�Condition�
Set�Point IS 
���
Gain IS ����
Bias IS ��
�
Reset�Time IS ����
Sampling�Interval IS ����
 �

END � parallel
END � within

END � Effluent�Control�System

Figure ����� Hierarchical Subtask Decomposition
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TASK Effluent�Control�System

PARAMETER
���

SCHEDULE
WITHIN Plant DO
SEQUENCE

ACTIVATE Digital�PI�Control	���
 �
ACTIVATE Digital�PI�Control	���
 �

END � sequence
END � within

END � Effluent�Control�System

Figure ����� Implied Concurrency

TASK Shut�Down�Procedure

SCHEDULE
SEQUENCE
� activate the digital control system at steady�state
ACTIVATE Controller� � Digital�PI�Control	���
 �
ACTIVATE Controller� � Digital�PI�Control	���
 �
� shut�down
��� sequence of actions
TERMINATE Controller�
��� more actions
TERMINATE Controller�
��� final actions

END � sequence
END � within

END � Shut�Down�Procedure

Figure ����� Example Employing the TERMINATE Task
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Chapter �

Combined Discrete�Continuous Simulation � Process Entities

This chapter is concerned with the description of one of the activities for which a

combined discrete�continuous model may be employed � that of dynamic simulation� The

previous two chapters have described how both the continuous time dependent behaviour of

a system� and the aspects of a dynamic simulation description relating to the external actions

imposed on this system� may be encapsulated within model and task entities respectively� It

is now necessary to detail how the information declared in these disparate entities may be

brought together to form the description of an individual dynamic simulation experiment�

The chapter begins with a discussion concerning the distinction between the contin�

uous model of a system and the activities in which this model may subsequently be employed�

The discussion lays the foundation of a formalisation for the activity of dynamic simulation

in the form of the process entity�

The remainder of this chapter deals brie�y with issues associated with the reuse

of simulation experiments and introduces a multiple simulation experiment management

facility�

��	 The Distinction Between a Model and an Activity

One of the major concerns of the previous two chapters has been the provision

of language structures that facilitate the declaration of the continuous model of a system

in a manner that is completely decoupled from the details of the individual activities for

which the model may subsequently be employed� As already discussed� this promotes reuse

of the exclusively declarative knowledge concerning the physical behaviour of a system in a

wide range of activities� This disengagement also enables the design of language structures

for describing an individual activity in a fashion that provides a clear and unambiguous

speci�cation of its functional elements�

It is now possible to consider the activities for which these models may be employed�
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A model developed according to a particular formalism may in fact be used for several

di
erent activities� and several di
erent modelling formalisms may be used for the same

activity� For example� models developed according to any one of the formalisms listed at

the beginning of section ��� are routinely utilised for dynamic simulation� although each

formalism will yield di
erent information concerning the dynamic behaviour of a system�

One of the advantages of a modelling formalism based on DAEs or PDAEs is the wide range

of activities in which the resulting models may be usefully employed� A non�exhaustive list

of such activities relating to process engineering includes�

� Simulation� both steady�state and dynamic�

� Optimisation� both steady�state and dynamic�

� Parameter estimation� both steady�state and dynamic�

However� the subject of this thesis is dynamic simulation� so other activities will not be

considered further�

By analogy to experimentation in the real world� the notion of an experiment can

be introduced to denote an individual application of an activity to a model 	Oren and

Ziegler� ������ Each experiment will consist of three elements� the object investigated by

the experiment 	in the form of a model developed according to a speci�ed formalism�� the

experimental frame� and the data generated by execution of the experiment� The experi�

mental frame denotes the circumstances under which the system is to be investigated� and

therefore encapsulates the procedural information required to apply an individual activity

to a model� In order to clarify the declaration of this information� an experimental frame

can be broken down into a series of functional elements�

The functional elements required by the activity of dynamic simulation will be

discussed in the next section� However� many of these are not unique to the activity of

dynamic simulation� so the language structures developed for them may also be employed

in the declaration of experimental frames for other activities� thereby promoting the overall

consistency of the modelling environment�

Each experimental frame is a description of a unique set of experimental conditions�

A numerous� if not in�nite� number of experimental frames may be developed for the same
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model� However� it is important to recognise that the reverse is also true� it is conceiv�

able that the same experimental frame could be applied to several di
erent models� There

will obviously have to be tight constraints on this latter mapping� with provisions for the

automatic determination of the applicability of a model to a particular experimental frame�

��
 Process Entities

A process entity encapsulates the dynamic simulation of a period of operation of one

or more items of process equipment described by an appropriate continuous model and driven

by a particular set of external actions� and is therefore a formalisation of the requirement for

a dynamic simulation experimental frame outlined above� Application of a process entity to

a continuous model will result in a complete dynamic simulation experiment�

The declaration of a process entity begins with the keyword PROCESS followed by

a unique identi�er by which it may be referred to globally� The remainder of the declaration

is partitioned into sections� each containing information pertaining to one of the functional

elements required by the activity of dynamic simulation� These are described below�

����� The Combined Discrete	Continuous Model

The �rst item of information required is a declaration of the process equipment

under investigation and the combined discrete�continuous model entity that will determine

its continuous time dependent behaviour during the simulation experiment in question� A

UNIT section is employed to declare this information in the form of one of more instances

of previously declared model entities� The set of variable attributes associated with these

model instances will completely describe the time dependent behaviour of the system� and

the set of equation attributes will partially determine it� Execution of the enclosing process

entity will result in instantiation of the continuous model thus declared� followed by a dy�

namic simulation experiment involving this copy� Note that alterations to this copy of the

continuous model as a consequence of events during simulation has no e
ect whatsoever on

the static model and process entities�

The declaration of a process entity also includes a SET section� within which param�

eter attributes of these model entities may be assigned values explicitly� provided they have
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not already been assigned a value from some other source� For a simulation description to

be valid� all parameter attributes must have received a value through one of the mechanisms

outlined in section 
���� by this point�

An excerpt from a process entity demonstrating the declaration of these two sections

is shown in �gure ���� The example involves the simulation of a well mixed vessel with two

inlet streams and one outlet stream� and will be used throughout the discussion of process

entities� The UNIT section is employed to create an instance of the continuous model of the

vessel� and the SET section is employed to assign values to the parameter attributes that

determine the number of components present and the cross�sectional area of the vessel�

PROCESS Simulate�Tank

UNIT
Tank��� AS Tank

SET
WITHIN Tank��� DO
NoComp �� � �
Area �� ��� �

END � within

���

Figure ���� Example UNIT and SET sections

The appearance of a UNIT section in the declaration of a process entity may at

�rst appear to be a contradiction of the arguments above advocating the disengagement of

an experimental frame from the model it is applied to� In fact� we will demonstrate later

how the UNIT section can be employed to declare a broad range of models to which the

experimental frame is applicable�

����� Additional Equations

The set of describing equations derived from the model instances declared in the

UNIT section is typically underdetermined with respect to the set of variables derived in

the same manner� For the experiment to be fully de�ned� additional relations between the
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variables must be introduced to make the set square�

The EQUATION section permits the speci�cation of additional general equations

to be combined with those derived from the UNIT section to form a complete description

of the continuous time dependent behaviour of the system under investigation� Any of the

structured equations introduced in chapter 
 may be employed in the declaration of these

relationships� and connectivity equations may de�ne stream connections between components

of the overall system model� Figure ��
 demonstrates how this section is employed to declare

the equation that will determine the total �owrate from the vessel described above� This

�owrate would normally be determined by downstream units such as pumps and valves� but

must be declared here when the vessel is considered in isolation�

EQUATION
WITHIN Tank��� DO
Total�Flow�Out � ��
�SGN	Press�Out � Press�Atm
�

ABS	Press�Out � Press�Atm
���
 �
END � within

Figure ��
� Example EQUATION section

However� by far the most common type of equation introduced in a process entity

is that of input equations 	cf� equation ����� The ASSIGN section is used to designate a

subset of the variables as �inputs� and to set them to constant values or functions of time�

In order to emphasise the special form of these speci�cations� input equations are declared

with the assignment operator described in section ��
��� FOR and WITHIN structures are

also provided to aid declaration when necessary� The ASSIGN section shown in �gure ���

illustrates the declaration of the inlet �owrates and the atmospheric pressure as the initial

set of input variables for the simulation of the well�mixed vessel� Note the use of the � � � � �

notation as a shorthand for assigning values to vectors�

����� Initial Values for SELECTOR Variables

During a simulation� the active clause of a CASE equation 	see section 
�����
� will

determine which set of equations is inserted in the overall continuous model at any particular
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ASSIGN
WITHIN Tank��� DO
Flow�In�� �� � 
��� � �
Flow�In�� �� � ���
 � �
Press�Atm �� ����� �

END � within

Figure ���� Example ASSIGN section

point in time� A speci�cation of which clause is active at the beginning of a simulation forms

part of the initial condition of that simulation� This information is deduced from the initial

value of the selector variable concerned which� unless a default value is speci�ed� must be

supplied explicitly�

All selector variables not already assigned a default value must therefore be supplied

with an initial value in the SELECTOR section of a process entity� For instance�

SELECTOR

Plant�Tank�	��Disc�Status �� Intact �

With the input equations and assignments of initial values to selector variables� the

initial continuous model is now complete� At this point the set of describing equations must

be fully determined with respect to the system variables� and in addition must represent

a well�posed dynamic simulation problem� Of course� both the set of input variables and

their speci�cations may be changed during the simulation as a consequence of the execution

of RESET and�or REPLACE tasks 	see sections ��
�� and ��
�
�� Similarly� the values of

selector variables may change as a result of physico�chemical discontinuities or the execution

of RESET tasks�

����� The Initial Condition

The description of any dynamic simulation experiment must include a speci�cation

of the initial condition of the system under investigation� As already discussed in section ����

the initial condition of a continuous simulation based on a system of DAEs is determined
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in the most general terms possible by the simultaneous solution of the describing equations

and a number of additional equality constraints�

The INITIAL section is employed to declare this functional element of a dynamic

simulation experimental frame� which is expressed in terms of the requisite number of ad�

ditional nonlinear equations� This can be contrasted to the facilities o
ered by existing

continuous process simulation packages� where the initial condition can only be expressed

in terms of the assignment of initial values to a subset of the system variables or their time

derivatives 	cf� section �������

The excerpt from the description of the simulation of the well�mixed vessel shown in

�gure ��� demonstrates the declaration of an initial condition� The �rst equation illustrates

the conventional assignment of a value to a system variable� whereas the second equation

demonstrates the use of a more general equation�

INITIAL
WITHIN Tank��� DO
X	�
 � � �
SIGMA	Flow�In�� � Flow�In��
 � Total�Flow�Out �

END � within

Figure ���� Example INITIAL section

The initial condition that is most frequently employed for the simulation of pro�

cessing systems is the assumption of steady�state� which can be expressed by the requisite

number of equations constraining the time derivatives of di
erential variables to zero� Al�

ternatively� the keyword STEADY STATE may be utilised as a convenient shorthand� In this

case� no further speci�cations are required�

INITIAL

STEADY�STATE

is su�cient�
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����� External Actions

The task entities introduced in chapter � provide the means by which the external

actions imposed on processing system can be modelled without impairing the reusability of

the underlying continuous model� They are therefore only employed by those activities� such

as dynamic simulation� that may involve external actions� The language structures described

in chapter � recognise the potential complexity of the information declared in this functional

element� and the fact that it may be desirable to reuse much of it in other experiments�

The SCHEDULE section of a process entity facilitates the declaration of the schedule

of task entities in terms of a time ordered set of discrete manipulations to the underlying

continuous model� A continuous model and the external actions applied to it are therefore

only brought together in the description of an experimental frame� Execution of this schedule

will drive the process entity� and hence the underlying continuous model� through its life

cycle� Execution of the process entity will terminate when execution of this schedule is

complete�

It is now possible to show in �gure ��� the declaration of the entire process entity

that describes the simulation of the well�mixed vessel� The SCHEDULE section in this exam�

ple only involves one simple action� but the schedule of tasks that appears in such a section

may be composed of any combination of elementary tasks and reusable task entities 	see

section ������� In particular� all previously de�ned task entities are made available globally

and can be used in any process entity�

All the functional elements of a dynamic simulation experimental frame outlined

above are obviously necessary to form a complete experimental description� The remain�

ing text relates to useful optional functional elements that are not absolutely vital to the

description of an experiment�

����� Initial Guesses

The initialisation calculation performed at the beginning of any continuous simu�

lation� in order to determine consistent initial values for all the system variables� is achieved

through the numerical solution of a system of nonlinear equations 	see section ������� This

calculation requires an initial guess for the values of all the variables concerned� The PRE�
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PROCESS Simulate�Tank

UNIT
Tank��� AS Tank

SET
WITHIN Tank��� DO
NoComp �� � �
Area �� ��� �

END � within

EQUATION
WITHIN Tank��� DO

Total�Flow�Out � ��
��SGN	Press�Out � Press�Atm
�
ABS	Press�Out � Press�Atm
���
 �

END � within

INPUT
WITHIN Tank��� DO

Flow�In�� �� � 
��� � �
Flow�In�� �� � ���
 � �
Press�Atm �� ����� �

END � within

INITIAL
WITHIN Tank��� DO

X	�
 � � �
SIGMA	Flow�In�� � Flow�In��
 � Total�Flow�Out �

END � within

SCHEDULE
SEQUENCE
CONTINUE FOR ����
RESET
Flow�In��	�
 �� 
� �

END � reset
CONTINUE UNTIL ABS	�HoldUp	�

 � �E��

END � sequence

END � Simulate�Tank

Figure ���� A Complete Process Entity



���

SET section enables the default initial guesses associated with variable type declarations to

be overridden by values more appropriate to the calculation in question�

The assignment operator� complemented by FOR and WITHIN structures� is also

employed in this section� The upper and lower bounds on the value of this variable may also

be altered at the same time� Any initial guess must� of course� lie within these bounds� Initial

guesses and bounds on the time derivatives of di
erential variables may also be speci�ed in

this manner�� Figure ��� demonstrates a PRESET section�

PRESET
WITHIN Tank��� DO
X	�
 �� ��� �
X	�
 �� ��� �
Press�Out �� ����� � ����� � ��� �

END � within

Figure ���� Example PRESET section

����
 Storage of Simulation Results

Modern modelling environments regard interpretation of the data gathered during

an experiment to be the role of the environment in which activities are performed 	see� for

example� the ASCEND environment 	Piela� ������� as opposed to the language structures

employed to describe individual activities� After all� in many situations the interpretations

desired will in part be determined by the results of the experiment itself� The environment

must� therefore� provide a variety of tools that enable the data collected from an experiment

to be manipulated and displayed in an interactive manner� Moreover� provisions must be

made for the storage of selected data from an experiment for later reference� This data

must be accompanied by a record of the model and experimental frame pair from which

it was generated� The interactive tools described above may then retrieve this data for

manipulation and display at a later date� This approach� however� assumes that it is more

�By default� the initial guess assumed for a time derivative is zero� and upper and lower bounds are set
to the machine limits�
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e�cient to collect the maximum amount of data during the course of an experiment�� rather

than repeat the experiment in order to collect data that were not previously observed�

The data observed and recorded during a simulation experiment will always include

the time trajectories of all or some of the system variables� Other data that should� by

default� be recorded as a simulation progresses will include the state transitions of discrete

variables� such as selector and local task variables� and any dynamic changes to the describing

equations�

However� the resources available for the storage of data will always to a certain

extent be limited� Although this problem can be partially alleviated by careful exploitation

of modern techniques for data compression� situations will always arise in which facilities

for explicitly restricting the data observed and recorded during a particular experiment will

become invaluable� This observation is particularly relevant for circumstances in which only

a few key unit operations� in an overall system model involving thousands of quantities�

are actually of interest from the point of view of the post�simulation analysis� An optional

REPORT section could therefore be introduced that enables a speci�cation of the data to be

observed and recorded during a simulation� If no REPORT section is included� all relevant

information will be recorded for future reference�

��� Reuse of Process Entities

The process entity� as presented so far� is a limited implementation of the concept

of an experimental frame� as introduced at the beginning of this chapter� because there is no

potential for reuse of the frame in several experiments of a similar nature� In particular� all

aspects of the simulation� such as the form of the input functions� the initial conditions etc��

are entirely �xed�

Parameterisation of process entities� just as with the task entities of chapter ��

is the key to the development of reusable experimental frames� A process entity declared

in terms of a suitable set of parameters no longer represents a single dynamic simulation

experiment� but a framework for a wide range of potential experiments� All the parameter

types introduced in section ����� can be useful in the declaration of reusable process entities�

�Which may result in the collection of large amounts of uninteresting data
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Figure ��� demonstrates how the process entity that encapsulates the description of

the simulation experiment involving the well mixed vessel may be altered to describe a broad

range of experiments with varying values for the cross�sectional area of the vessel and the

constant that determines the total �owrate from the vessel� Execution of this parameterised

process entity must obviously be accompanied by the assignment of suitable values to all its

parameters�

PROCESS Simulate�Tank

PARAMETER
Cross�Sectional�Area� Flow�Constant AS REAL

UNIT
Tank��� AS Tank

SET
WITHIN Tank��� DO
NoComp �� � �
Area �� Cross�Sectional�Area �

END � within

EQUATION
WITHIN Tank��� DO

Total�Flow�Out � Flow�Constant�SGN	Press�Out � Press�Atm
�
ABS	Press�Out � Press�Atm
���
 �

END � within

���

END � Simulate�Tank

Figure ���� A Reusable Process Entity

The discussion at the beginning of this chapter also suggested that there may be

some potential for limited disengagement of an experimental frame from the model to which

it is actually applied for an individual experiment� provided tight constraints on the possible

mappings were maintained� In fact� the notion of polymorphic MODEL type parameters

may again be exploited for this purpose� The MODEL type parameters of a process may

be employed to specify the type of any unit attributes of that process� e
ectively deferring

a decision concerning the model to which the process is actually applied until execution
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of an individual experiment� The polymorphic nature of these parameters will ensure the

suitability of the models eventually used�

��� Hierarchical Subprocess Decomposition

It has already been observed that a process entity may encapsulate any dynamic

simulation experiment that might be performed by a conventional continuous simulation

package such as SpeedUp 	Prosys� ������ In many situations� however� it is also desirable to

be able to initiate and co�ordinate automatically multiple simulation experiments� This mul�

tiple case management facility would enable routine experiments to be set up and executed

to completion without the need for intervention from the user� One particularly good appli�

cation is to Monte�Carlo type experiments� where the same simulation is performed many

times� with randomly distributed initial conditions and�or parameters� in order to gather

statistics regarding the system performance and reliability� Moreover� this facility need not

just be available for dynamic simulation experiments� If process entities are introduced to

encapsulate� for example� optimisation or parameter estimation activities� di
erent activities

may be combined to form a larger experiment in which the results from one activity are used

as the basis for another�

The need for a multiple case management facility highlights the fact that� in the

most general terms� the progress of an experiment may in fact be dictated by the execution of

multiple primitive experimental frames� In direct analogy with task entities� this additional

complexity can be accommodated by establishing a procedural decomposition based on the

control structures introduced in chapter �� The process entities that appear in a hierarchy

thus created will fall into two categories�

� The primitive process entities that encapsulate the description of single activity such

as dynamic simulation or optimisation�

� The composite process entities� the life cycles of which are determined by the execution

of a schedule of other process entities�

A process entity therefore becomes a description of an experimental frame that

may involve a single activity� or a complex hierarchy of interacting activities� Moreover� a
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suitable hierarchical decomposition will again enable components to be developed and tested

in isolation before insertion in a larger structure� However� such considerations are beyond

the scope of this thesis�

��� Summary

The importance of maintaining a distinction between the continuous model of a

system and any of the activities in which it may subsequently be employed was explored

with particular reference to a model formalism based on DAEs or PDAEs� This argument

was used to justify the introduction of the concept of an experiment� denoting the individual

application of an activity to a model� An experiment is composed of a model� an experimental

frame� and the data generated by the experiment� A consideration of the functional elements

of a dynamic simulation experimental frame then led to a formalisation in the form of the

process entity�

It was then observed that certain experiments may actually require the execution

of several interacting activities� which identi�ed the need for a multiple case management

facility based on the procedural decomposition and parameterisation of process entities� A

primitive process entity encapsulates the description of an activity such as dynamic simu�

lation or optimisation� whereas a composite process entity is decomposed in terms of the

execution of other process entities�



���

Chapter �

Implementation

The simulation language introduced in the previous three chapters provides a gen�

eral framework for the description of combined discrete�continuous simulation experiments

involving industrial processing systems of arbitrary complexity� This chapter is concerned

with the implementation of a prototype process modelling package based on this language�

known as gPROMS 	general PROcess Modelling System��

Implementation of the prototype serves two purposes� In the �rst instance� it

provides a means by which the ideas embodied in the simulation language can be tested and

re�ned� Many of the features introduced in the preceding chapters have been reconsidered

or revised as a direct consequence of the evolving implementation� Secondly� a working

prototype can be used to demonstrate the usefulness of general�purpose tools for combined

discrete�continuous systems through a series of detailed simulation examples that would

otherwise be di�cult or even impossible to construct 	see chapter ���

The chapter provides an overview of the current implementation detailing the issues

that had to be addressed and the decisions made� It is not intended to act as a detailed

documentation of the code� which would probably occupy a volume as large as the entire

thesis� A discussion concerning the philosophy and assumptions on which the implementation

is based begins the chapter� This leads to the presentation of a software architecture based on

three major components� the translator� which checks and converts the information declared

in an input �le into an internal representation� the process manager� which employs this

representation to form� modify� and solve individual experiments� and the environment� from

which the user controls and co�ordinates the various actions performed during a session� The

implementation of each of these components is then considered in more detail in the sections

that follow� The chapter concludes with a summary of the versions of the software available�
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��	 Implementation Philosophy and Assumptions

First� it is enlightening to consider brie�y the motivations that have led to the

software architecture traditionally adopted by continuous modelling packages that employ a

simulation language�

����� Intermediate Code Generation

Packages such as ACSL 	Mitchell and Gauthier� ����� or SpeedUp 	Prosys� �����

can be classi�ed as intermediate code generators� They typically utilise a language processor

to translate input �les written in the simulation language into an internal representation�

from which is generated some form of intermediate code� often in the form of a series of

subroutines written in the programming language FORTRAN� This code must then be com�

piled and linked with a library of simulation subroutines to form an executable module

which� when executed� will perform the desired simulation experiment� Alternatively� some

language processors compile the input �le directly into machine code that is again linked

with utility object code and then executed�

This architecture evolved at a time when large mainframe computers were the only

machines that o
ered the computational and memory resources required to perform simu�

lation experiments of any size� Dynamic simulation was therefore not considered to be an

activity that could be conducted interactively� and most packages were designed to make

the best use of limited� shared resources accessed in a batch mode� The advent of engineer�

ing workstations and personal computers has� however� changed this situation dramatically�

These new machines make computational power and memory resources previously only asso�

ciated with mainframe computers exclusively available to individual users� As a consequence�

dynamic simulation involving several hundred or even thousand simultaneous equations is

now considered to be an activity that can be conducted interactively� Moreover� as the com�

putational power and memory o
ered by this class of machines continues to grow each year�

the size of problems that can be dealt with in an interactive manner can only increase�

Simulation packages have attempted to keep pace with this trend� but those based

on the architecture described above have been at a signi�cant disadvantage� SpeedUp� for

example� is now an interactive package available on a wide range of engineering workstations�
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but the cycle of translation� code generation� compilation� linking of object code� and then

execution proves to be a very time consuming barrier to a truly interactive environment�

This is particularly frustrating in the case of problems involving a relatively small number of

equations� where it often takes considerably longer to generate an executable module from

an input �le than it does to execute the entire simulation experiment�

As a consequence� the developers of more modern continuous modelling packages

such as OMOLA 	Andersson� ���
� and ASCEND 	Piela� ����� have attempted to reduce

the time taken between the successful translation of a problem description and execution of

the actual simulation experiment� In OMOLA this has been achieved by a new architecture

based on translation of the problem description followed by instantiation of the continuous

model in memory� This copy is then employed to generate intermediate simulation code

that is interpreted directly by a simulation algorithm� The advantage of this approach lies

in the complete elimination of the compilation and linking steps from the cycle� but has the

disadvantage of being more memory intensive and slightly less computationally e�cient than

object code�

����� A Software Architecture for Combined Simulation

Combined discrete�continuous simulation places even greater demands on software

architecture that cannot in general be addressed by either of the approaches outlined above�

The simulation language described in the previous chapters provides facilities for the discrete

manipulation of the underlying continuous model of a system as a result of either physico�

chemical discontinuities or externally imposed control actions� As a consequence� the set of

equations that determines the continuous time dependent behaviour of the system� and the

status of the variables that describe this behaviour� is likely to change frequently�

Although it is possible� in principle� to analyse a priori all the physico�chemical

discontinuities declared in a continuous model and thereby generate code that will manipulate

the set of active equations accordingly as a simulation progresses� it is clearly impossible in

general to analyse the manipulations implemented by a schedule of tasks in a similar manner�

This conclusion� allied with the special requirements of combined simulation outlined above�

is used to justify a software architecture for the prototype modelling package somewhat

similar to that proposed for di
erent reasons by the developers of the ASCEND system
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	Piela� ������

As in the case of OMOLA� this architecture is based on a translation phase followed

by instantiation of the continuous model in memory� However� no intermediate simulation

code is generated� The simulation algorithm instead employs the instance of the continuous

model created in memory to determine the dynamic behaviour of the system under inves�

tigation� As a consequence� all the symbolic information relating to the continuous time

dependent behaviour of the system is readily accessible for the entire duration of the exper�

iment� The signi�cant improvements in the reporting and diagnosis of problems or errors

during simulation facilitated by this approach was alone su�cient to convince the developers

of the ASCEND system to adopt it�

From the point of view of combined discrete�continuous simulation� however� this

approach appears to be absolutely essential� It enables the schedule of tasks� execution

of which is also co�ordinated by the simulation algorithm� to manipulate the copy of the

continuous model directly as the simulation progresses� and therefore satis�es all the special

requirements of combined discrete�continuous simulation outlined above� Moreover� the

time taken between a successful problem translation and execution of the actual simulation

experiment is further reduced by the complete elimination of the code generation phase� This

is particularly important in the case of a simulation experiment involving multiple process

entities 	see section ����� where the simulation executive would otherwise have to halt all

simulation calculations and enter a code generation phase each time a new process entity was

activated� considerably slowing the execution of the overall experiment as a consequence�

Holding a copy of the continuous model in memory for the entire period in which it

is employed by a simulation experiment is obviously more memory intensive than either of

the two other approaches described above� In light of the dramatic and continuing increase

in the availability and decrease in the cost of computer memory in recent years� this is

not� however� considered to be a signi�cant obstacle� For example� experiments with the

prototype modelling package have demonstrated that a problem involving ten thousand

equations can comfortably �t into sixteen megabytes of computer memory 	even without

any particular e
orts to promote e�cient use of memory�� Further advantages of holding a

copy of the continuous model in memory during a simulation experiment are discussed in

section ����
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����� Improving Translation Speeds

Another disadvantage of SpeedUp in particular is the relatively long time taken to

translate an input �le into the internal representation employed by the simulation package�

This is in part attributable to the fact that this representation is stored on �le in a data

base� considerably increasing the time required to access each item of information� The im�

plementation of the prototype modelling package has demonstrated that dramatic increases

in translation speeds can be achieved through storage of this representation in the form of

symbol tables held entirely in memory�� Careful data structure design ensures that this rep�

resentation occupies a relatively small quantity of memory in comparison to that occupied

by the copies of continuous models actually employed by simulation experiments� However�

if an input �le contains references to entities that have already been translated and archived

in libraries� these must also be imported into the symbol tables before or during application

of the translator�

����� The Prototype Modelling Package

It is now possible to describe the functions of the three major components of the

prototype modelling package� the environment� the translator� and the process manager�

Simulation experiments are instigated and interpreted by the user from the environment�

However� before a simulation experiment can be performed� it is necessary to build the

symbol tables that hold the internal representation of the simulation description� This can

be achieved by creating an input �le in the simulation language described in the preceding

chapters� and then submitting the �le to the translator� which checks the �le for syntactic

and semantic correctness� Successful translation will result in the creation of symbol table

entries for all the entities declared in the input �le� More information may be imported from

libraries of archived entities� or via translation of additional input �les�

The �nal component� the process manager� is employed to form� modify� and solve

the mathematical description of individual dynamic simulation experiments� A process entity

is submitted to the process manager by issuing the command EXECUTE to the environment

	see section ����� Execution of an individual process entity by the process manager will

�This is also the approach adopted by many modern programming language compilers�
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result in the creation of a copy of the continuous model it encapsulates in memory� followed

by application of the accompanying schedule of tasks by the simulation algorithm� On

termination of the process entity� the copy of the continuous model will be destroyed and the

memory recovered� Simulation experiments involving multiple process entities will obviously

require the dynamic creation and destruction of several continuous models�

The implementation of the prototype modelling package is obviously a task of

considerable magnitude� and certain features of the simulation language have had to be

omitted due to time constraints� There are� however� modern software development tools

that� if used correctly� can signi�cantly reduce the e
ort required� Two tools have been

found to be particularly useful� The �rst is an automated compiler construction tool which

greatly reduced the time required for the development and modi�cation of the translator� and

promoted the strict modularity of its various structural components� Secondly� there is the

contribution of the programming language Modula�
 	Wirth� ������ employed to code the

modelling package� Modula�
 is a modern programming language speci�cally designed to

support large software projects involving teams of programmers through the decomposition

of programs into a series of modules that can only communicate through strict interfaces�

Strict modularisation in this manner has proved to be an invaluable discipline� and will

greatly improve the future maintainability of the code� It has also been possible to design

the code with as few prespeci�ed limits as possible� through the exploitation of dynamic

data structures� the only limit on the size of problem that can be solved by the prototype is

e
ectively the amount of computer memory available to a particular user�

��
 The Translator

The translator is intended to take an input �le containing part or all of a problem

description coded in the simulation language� check that it is both syntactically and seman�

tically correct� and then store the information thus declared in an internal representation for

later use by the process manager 	see section �����

The structure of the translator is similar to that of a single pass language translator�

or compiler 	Fischer and LeBlanc� ������ employed to convert input �les written in a high

level general�purpose programming language into machine code that can be interpreted by a
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SEMANTIC
ROUTINES
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Symbol TablesInput Files

Tok
en

s Actions

Character stream

Figure ���� The Structure of the Translator

computer� The three structural components are� the scanner� the parser� and the semantic

routines� each of which is covered in more detail in the sections that follow� This structure

is illustrated in �gure ����

As with most modern compilers� the translator is syntax�directed� That is� the

translation is driven by the syntactic structure of the source code� as recognised by the

parser� However� the translator di
ers from a compiler in the sense that the purpose of

the entire activity is to build the data structures that hold the internal representation of a

problem description� rather than to generate machine code�

����� The Scanner

The scanner is the simplest component of the translator� It reads the input �le

character by character� and aggregates these characters into tokens 	e�g� identi�ers� liter�

als� keywords� delimiters� which are then passed to the parser on request� The tokens that

currently make up the language de�nition are summarised at the beginning of appendix B�
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The implementation employs a standard algorithm based on deterministic �nite automata

	Fischer and LeBlanc� ����� and is designed to make the addition of new tokens straightfor�

ward� The processing of keywords is managed by a separate module� which is again designed

to expedite the addition of new keywords�

����� The Parser

The entire translator is driven by the parser� which checks the structure of the

input �le against the formal de�nition of the simulation language grammar� The parser calls

the scanner whenever a new token is required� and the appropriate semantic routine when

an action is required by the language de�nition�

In order to facilitate the rapid prototyping of the language translator� a modi�cation

of the parser generator Yacc 	Johnson� ����� was chosen to generate the parsing routines

automatically� This decision was justi�ed by the fact that Yacc is a well understood and

widely available tool� particularly on systems running the UNIX operating system and its

variants� In addition� the version actually employed 	McLoughlin� ����� has the option to

produce parser routines coded in the programming languages Modula�
 or Pascal 	instead

of the more usual C��

The input to Yacc takes the form of a �le containing a formal declaration of the

context�free grammar that the required parser routines will accept� This declaration� which is

composed of a list of tokens and the production rules that de�ne the grammar� including calls

to semantic routines as required� is given in a special Yacc input language� The Yacc input

�le for the current implementation of the simulation language is given in appendix B� The

input �le is translated and checked by Yacc� which will then attempt to generate a LALR	��

parser 	Fischer and LeBlanc� ����� for the grammar� Output consists of a set of parser

routines coded in the target programming language and a �le containing the parse tables�

The parser routines implement a shift�reduce parsing algorithm� manage the semantic stack�

and call semantic routines as required� The parse tables are employed by the shift�reduce

algorithm to determine the syntactic correctness of an input �le written in the simulation

language�

Yacc is therefore a very powerful tool for rapidly prototyping a language translator�

Changes to the syntax of the simulation language merely involve modi�cation of the Yacc
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input �le� followed by automatic generation of new parser routines and tables� It is important

to recognise that the semantic routines are completely decoupled from this process� and can

therefore be developed independently of changes to the language syntax�

����� The Semantic Routines

The purpose of the semantic routines is to check the semantic correctness 	or mean�

ing� of the information declared in an input �le� and then to generate the data structures

that will store this information in a form that facilitates the subsequent construction of the

mathematical description of an individual simulation experiment� Adoption of Yacc has the

consequence that coding of the semantic routines represents most of the e
ort required in the

implementation of the translator� The semantic rules of the simulation language have been

covered in detail as the various features were introduced� so this section will only be con�

cerned with the intermediate data structures employed to store the internal representation

of a problem description� in the form of a series of symbol tables�

������� The Symbol Tables

Each category of entity included in the language de�nition 	model entities� task

entities� process entities� variable types� and stream types� is stored in its own individual

symbol table� This has the consequence that the same identi�er may be used by entities

belonging to di
erent categories� AVL balanced binary trees 	Wirth� ����� ordered by the

identi�er of the entity in question have been chosen to store these symbol tables� because

they combine rapid search speed with low memory overhead� A generic module 	King� �����

is employed to implement the AVL balanced binary trees�

Those entities 	e�g� models� that possess attributes 	e�g� parameters� variables etc��

also have individual symbol tables in which these attributes are ordered by their identi�er� A

hash table with collision resolution by chaining 	Fischer and LeBlanc� ����� has been chosen

for the implementation of these symbol tables because very rapid access is required during

translation and instantiation of a continuous model� The number of attributes declared in

such entities will typically be less than �fty�� so the memory overhead associated with these

�Otherwise it is likely that the facilities that gPROMS provides for hierarchical decomposition are not
being exploited properly	
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hash tables can be kept small�

������� The String Space Array

The string space 	Fischer and LeBlanc� ����� is a character array into which all

identi�ers that appear in a problem description are packed� This is the most e�cient way to

store a large number of identi�ers of varying length� An upper limit of eighty is set on the

number of characters that can make up an identi�er�

In order to ensure that the memory occupied by the string space is minimised� the

string space is allocated dynamically as required in segments of equal length� A reference

to an identi�er stored in the string space requires three quantities� a pointer to the segment

in which the identi�er is stored� an index to the beginning of the identi�er in this segment�

and the length of the identi�er�

����� Errors During Translation

An input �le is echoed to the terminal as it is translated� If lexical or semantic

errors are encountered� an error message is constructed by the routine that detected the

error� This message is then issued at the end of the line of input in which the error occurred�

but is also stored for inclusion in a error summary issued at the end of translation� At

present facilities for syntax error recovery are primitive� translation terminates immediately

on detection of a syntax error� Yacc does provide more sophisticated syntax error recovery

features� but it was felt that it was not entirely justi�ed to exploit them while the language

syntax was still evolving rapidly�

��� The Process Manager

The process manager� as its name suggests� manages the execution of process en�

tities� The current version of the implementation only supports experiments involving the

execution of a single process entity� so most of this section is devoted to a discussion of

this function� The issues relating to the execution of multiple process entities during an

experiment are considered brie�y in section ������

The execution of a process entity involves the following four phases�
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�� Instantiation in memory of both the continuous model and the schedule encapsulated

by the process�


� Initialisation of the continuous model�

�� Application of the schedule to the continuous model by the simulation algorithm in

order to advance the simulation clock from the initial condition to the termination

condition�

�� Recovery of the memory occupied by the continuous model and the schedule�

The novel implementation that has been dictated by the special requirements of combined

discrete�continuous simulation also leads to a trade�o
 between the time taken to prepare

an experiment for execution and the time it takes to execute the experiment� This is best

illustrated by a comparison with the SpeedUp 	Prosys� ����� continuous process simulation

package�

As already discussed� preparation for a simulation experiment employing SpeedUp

e
ectively involves the automatic generation of several FORTRAN subroutines� which must

then be compiled and linked before the experiment can be executed� The two most impor�

tant subroutines will determine the residuals of the describing equations and their partial

derivatives with respect to the system variables� This approach leads to a time consuming

code preparation phase� but does normally ensure the most e�cient execution of the exper�

iment� because advanced FORTRAN compilers can be relied upon to generate very e�cient

machine code for residual and derivative evaluations�

In contrast� the prototype modelling package creates an image of the continuous

model in memory which is then employed by the simulation algorithm to determine the

residuals and partial derivatives of the describing equations� The expressions that determine

these values are stored in a binary tree data structure� Whenever the value of an expression

is requested� a subroutine traverses the corresponding binary tree recursively in order to

calculate the value� This has the consequence that each residual and Jacobian evaluation

will always take slightly longer than those performed by the equivalent subroutines generated

by SpeedUp� although the additional integer operations required to traverse the binary trees

will be relatively cheap in comparison to the �oating point operations required to evaluate

the expressions in either format� Hence the trade�o
 between preparation and execution of
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an experiment�

On the other hand� there are signi�cant additional bene�ts to be gained from

having a copy of the continuous model held in memory for the duration of an experiment�

The �rst of these is the fact that more accurate structural information concerning the current

set of describing equations can be passed to the solution routines� For example� whenever

dynamic changes to the set of describing equations occur� the pattern of non�zero elements

in the Jacobian is also likely to change� In SpeedUp this problem is evaded by identifying a

priori the superset of the variables appearing in all the clauses of an IF equation� and then

creating non�zero entries for all these variables in the Jacobian� In contrast� if the continuous

model is available for analysis for the entire duration of an experiment� the exact pattern of

non�zero elements in the Jacobian can be updated each time a change to the set of describing

equations occurs�

Secondly� exceptions� such as division�by�zero errors� can be trapped by the sub�

routine that evaluates an expression� rather than relying on any exception handling facilities

provided by the operating system� This has two advantages� In the �rst instance� the

response of the expression evaluation subroutine can be standardised across all machine

implementations of the software� whereas the availability� form� and responses of standard

exception handlers are all highly machine and operating system dependent� Secondly� tran�

sient exceptions that may occur during an iterative calculation that actually has a valid

solution can be trapped and recovered from� avoiding unnecessary failure of the simulation�

Finally� it is envisaged that the availability of detailed symbolic information relating

to the continuous time dependent behaviour of a system throughout a simulation may also be

exploited to improve the e�ciency and robustness of the solution of the describing equations�

e�g� by implementing automatic scaling of equations etc�

Despite the advantages outlined above� situations can arise in which it is desirable

to generate intermediate code with which an experiment may be executed 	Holl et al�� ������

rather than relying on the modelling package� This requirement has been addressed in the

current implementation by a special environment command that results in instantiation

of the continuous model encapsulated by a process entity� followed by the generation of

FORTRAN code that may then be used to perform the desired simulation� However� only

a limited subset of the features of the simulation language may be utilised by experiments
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coded in this manner� corresponding closely to those o
ered by a conventional continuous

process simulation package such as SpeedUp�

����� Instantiation of the Continuous Model

Instantiation of the continuous model e
ectively involves generation of the data

structures which the simulation algorithm employs in order to determine the continuous

time dependent behaviour of the system under investigation� In addition� the introduction

of extensive model parameterisation dictates that a small number of semantic checks on a

problem description must be postponed until this point� For example� because expressions

involving integer parameters may be utilised to specify the number of elements in attribute

arrays� certain checks to determine the dimensional correctness of expressions can only be

done during model instantiation� This� however� has not proved to cause problems in practice

because model instantiation takes place much more rapidly than the traditional cycle of code

generation and compilation�

The data structures� known collectively as the active arrays� all take the form of

packed arrays in order to facilitate rapid access during residual and Jacobian evaluations�

They are allocated dynamically as required in segments of equal length� thereby ensuring

that the amount of memory available is the only limit on problem size� The following active

arrays are required�

� The Active Parameter Array 	APA� stores all the parameter attributes included in the

problem description�

� The Active Variable Array 	AVA� stores all the variable attributes included in the

problem description� Each entry stores information such as the current value of the

variable� the current status of the variable� and the individual bounds on the value�

� The Active Equation Array 	AEA� stores the set of equations that currently determines

the continuous time dependent behaviour of the system� in the form of the expressions

that determine their residuals� The entry for a conditional equation includes a structure

that stores all the equations that could potentially be inserted in the system model�

and an indication of which equation is currently active�
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� The Active Selector Array 	ASA� stores the set of selector attributes included in the

problem description and the set of transitions associated with each clause of any corre�

sponding CASE equation� The values of these entries are employed to determine which

clause of a CASE equation is inserted in the system model at a given point in time�

This information is stored separately from the equations in which the selectors are

used� because the same scalar selector attribute can determine the status of an array

of CASE equations�

� The Active Logical Condition Array 	ALCA� stores the set of logical conditions as�

sociated with the IF equations currently included in the system model� Again� these

expressions are stored separately from the equations in which they are used� because

the same scalar logical condition can determine the active clause of an array of IF

equations�

� The Active Scope Array 	AScA� holds an entry for each submodel included in the

overall system model� Associated with each entry is an AVL balanced binary tree

holding all the attributes that make up the submodel� An attribute entry includes a

speci�cation of its dimensionality and an indication of where it may be found� If� for

example� an attribute is a variable� this indication will take the form of a reference into

the AVA� whereas in the case of a unit attribute� it will take the form of a reference

to another entry in the AScA� The AScA is primarily employed to locate attributes

rapidly by their pathname�

Whenever an equation is inserted in the AEA� it is analysed in order to determine

the set of variables that occur in it� This occurrence 	or incidence� information is then

stored in yet another active array� Each expression stored in the AEA� including those

corresponding to the various clauses of a conditional equation� is therefore accompanied by a

reference to its occurrence information� Whenever the set of equations currently included in

the continuous model changes� the information concerning the pattern of non�zero elements

in the Jacobian passed to the solution algorithms can be rapidly updated from this structure�

After generation of its incidence information� each equation is di
erentiated analyt�

ically in order to generate expressions for its partial derivatives with respect to the variables

occurring in it� Analytical di
erentiation is performed according to algorithms discussed
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by Pantelides 	����c�� These exploit the frequent occurrence of subexpressions that are

common to both the original equation and its partial derivatives� in order to save both mem�

ory and computations� These partial derivative expressions are stored with the occurrence

information� hence the data structure is known as the Active Jacobian Array 	AJA��

����� The Simulation Algorithm

The current implementation of the simulation algorithm applies the schedule of

tasks encapsulated by a single process entity to the copy of the continuous model created

by the instantiation algorithm� As a consequence� the simulation clock is advanced from the

initial condition to the termination condition of the process entity�

The procedural nature of this schedule dictates that it must be interpreted directly

by the simulation algorithm as the experiment proceeds� It should be noted that it is

impossible in general to determine in advance if any particular discrete manipulation will

be valid at its time of execution� For example� whether the set of variables designated

as being discontinuous by a REINITIAL task 	see section ��
��� are currently di
erential

variables or whether the resulting initial condition is both consistent and su�cient can

often only be determined on execution of the task� Similarly� whether an equation to be

discarded by a REPLACE or RESET task currently forms part of the continuous model can

only be determined on execution� and even if this operation is successful� the corresponding

occurrence information and analytical Jacobian elements must then be generated� followed

by reanalysis of the dynamic simulation problem in order to determine if it is still well�posed�

Moreover� as in the case of model instantiation� a small number of semantic checks including

dimensional correctness of expressions must be postponed until this point�

Algorithm ��� co�ordinates the application of a schedule to a continuous model�

Following the system initialisation� execution of the schedule 	step 
� is instigated� and will

continue until execution is complete or all active control structures have been suspended by

the execution� for example� of CONTINUE tasks 	see section ������� Note that the simulation

clock is not advanced by the execution of the schedule� but entries in the agendas of pending

events will be created�

An agenda of pending events must be maintained throughout a combined dis�

crete�continuous simulation in order to determine when suspended portions of the schedule
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Algorithm ��� Simulation

�� Initialise the continuous model �see section �������

�� Execute the schedule

	� Process any events currently active

�� While events are pending and no error has occurred do

�a� Advance the simulation clock to the next event

�b� Process any events currently active

end

end

are to be resumed or discrete changes occur to the underlying continuous model� Time

and state events are located in di
erent manners� so they are stored on separate agendas�

Furthermore� the state conditions that lead to physico�chemical discontinuities are stored in

the active arrays 	see section ������ instead of the state event agenda� They are therefore

distinguished as equation discontinuities from those state events scheduled by CONTINUE

UNTIL tasks�

If the initial execution of the schedule 	step 
� has created active entries in these

agendas� the associated events must now be processed� At any point in time� active events

are processed 	steps � and �b� according to algorithm ��
� The processing of any event

causes the immediate resumption of execution of the control structure that was originally

suspended by scheduling of the event� The execution of control structures proceeds according

to the rules outlined in chapter �� If a CONTINUE task is executed as a consequence of the

resumption of a control structure� this control structure is immediately suspended� and a

new entry is added to the appropriate pending event agenda� In particular� CONTINUE

FOR tasks create entries on the time event agenda� whereas CONTINUE UNTIL tasks create

entries on the state event agenda�

On the other hand� if one of the elementary tasks of section ��
 	e�g� RESET or
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Algorithm ��� Process Current Events

�� Process any active events on the state event agenda

�� Process any active events on the time event agenda

	� While reinitialisation calculation requested or dummy events pending do

�a� If reinitialisation calculation has been requested then

i� Reinitialise the continuous model

end

�b� If dummy events are pending then

i� Process the dummy event agenda

end

end

end

REPLACE� is executed� the speci�ed discrete manipulations of the continuous model must be

implemented according to the conditions prevailing at time t�� corresponding to the point

in time immediately preceding the event�

As noted in section ������ a complication arises from the possibility of several dis�

crete manipulations of the underlying continuous model occurring simultaneously at time t�

In this case� the reinitialisation calculation to determine the conditions prevailing at time

t
� immediately following the event must be postponed until all active events at time t have

been processed� Moreover� the continued execution of the enclosing control structure must

be suspended until this reinitialisation calculation has been completed� Execution of an ele�

mentary task therefore also involves the issuing of a request for a reinitialisation calculation�

and the scheduling of resumption of execution of the enclosing control structure in the form

of a dummy event� This approach has the computational additional bene�t that at most one

reinitialisation calculation is performed as a consequence of one or more events occurring at
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time t�

When all currently active state and time events have been processed� algorithm ��


enters a loop 	step �� that will be executed repeatedly until no reinitialisation calculation is

currently requested and no dummy events are pending� Processing of the agenda of dummy

events may lead to requests for another reinitialisation calculation and�or the creation of a

new agenda of dummy events� so this loop may pass through several cycles of reinitialisation

followed by processing of dummy events before control can return to the simulation algorithm�

Consider� for example� a sequential control structure involving a series of elementary tasks�

Execution of the �rst task will issue a request for a reinitialisation calculation and schedule

resumption of the sequence in the form of a dummy event� The algorithm will then enter the

above loop� reinitialise the continuous model and then resume the control structure� which

will lead to the execution of the next elementary task� This cycle will continue� without

the simulation clock being advanced� until execution of the control structure is complete� or

a time or state event is scheduled by the sequence as a consequence of the execution of a

CONTINUE task�

Once all initially active events have been processed� algorithm ��� enters its main

loop 	step ��� which iterates until all the agendas of pending events become empty� The main

loop merely entails repeatedly advancing the simulation clock to the time of the next event	s�

followed by processing of these event	s�� Advancing the simulation clock between events

corresponds to the solution of an initial value problem involving the current set of describing

equations from an initial point� dictated by the conditions prevailing immediately following

the previous event� until the time of occurrence of the next event� This is accomplished by

algorithm ����

The nature of state events 	see section ���� dictates that their time of occurrence

cannot be determined a priori� the solution must be advanced until the occurrence of one or

more state events during the previous time step is detected� The algorithm must then locate

the exact time of occurrence of the event within this step 	see section ������� Algorithm

��� ensures that the current set of the describing equations is altered only after successful

location of an event�

The discussion of algorithms for the location of state events in section ����� high�

lighted the fact that the time of occurrence of a state event can never be located exactly�
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Algorithm ��� Advance to Next Event

�� Gather occurrence information for the current set of describing equations

�� Initialise the DAE solver

	� While no event now do

�a� Take a time step to desired accuracy �an upper bound on the length of this step is

also provided by the next time event if one exists�

�b� If state event or equation discontinuity has occurred during the last step then

i� Locate the earliest event to within the state event tolerance through bisection on

the interpolant of the solution over the previous step

ii� Advance the simulation clock to the upper estimate of the time of occurrence of

the state event

iii� Mark any active state events

else

i� Advance the simulation clock to the end of the time step

end

�c� If equation discontinuity now then

i� Report the equation discontinuity

ii� Update the values of any selector variables that experience a transition as a result

of the equation discontinuity

iii� Issue request for a reinitialisation calculation

end

end

end
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Instead� it can be determined only within a short period of time known as the state event

tolerance� It is therefore possible for several state events to occur within this short period of

time and to be treated as e
ectively simultaneous by the simulation algorithm� Moreover�

it is conceivable that more than one state event may occur at exactly the same time � if�

for example� two separate state events share the same logical condition� In any case� once

the earliest event time has been located� all active state events must immediately be marked

for future processing� This is a necessary safeguard against the possibility of the discrete

manipulations caused by one event a
ecting the logical condition of another event occurring

at the same time�

The implementation of algorithm ��� requires three routines from a general�purpose

DAE solver�

� A routine that will initialise the DAE solution routines at the beginning of each initial

value problem�

� A routine that will take a time step to the desired accuracy� or to the next time event�

whichever occurs earlier�

� A routine that will interpolate the polynomial approximation to the solution over the

previous step�

The current implementation employs the corresponding routines from the general�purpose

DAE solver DASOLV 	Jarvis and Pantelides� ���
�� although in principle any DAE solver

that provides these three basic routines could be used� DASOLV pays particular attention

to problems that may become partially determined during solution and the integration of

systems with very fast transients 	Jarvis and Pantelides� ������ but is currently restricted

to equations of index not exceeding unity�

The occurrence of an equation discontinuity leads to a request for a reinitialisation

calculation and the return of control to the main simulation algorithm�� At present� initial�

isation and reinitialisation calculations suitable for the restricted class of index one DAEs

described in section ��� are performed using the nonlinear algebraic equation solver SPARSE

�This calculation� however� will not be performed until the consequences of any other simultaneous events
have been implemented�
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	Pantelides� ����c�� All logical conditions relating to IF equations 	see section 
������� are

checked at the beginning of each Newton step� and the current set of describing equations

and the corresponding occurrence information are updated if necessary� On the other hand�

the equations inserted in the system model by CASE equations are determined by the value

of the corresponding selector variable� and can therefore only change immediately before the

initiation of a reinitialisation calculation as a consequence of an equation discontinuity or

execution of a RESET task�

����� A Multiple Process Manager

A discussion in section ��� described a multiple case management facility� in which

the progress of an experiment could be dictated by the execution of multiple process entities�

The implementation of this feature will require the simulation algorithm described above to

be applied simultaneously to all the currently active process entities� The data structures

employed by this algorithm to determine the continuous time dependent behaviour of a

system have been designed with this eventual requirement in mind� in this situation� each

active process entity will have its own unique set of active arrays 	see section �������

��� The Environment

The environment is intended to provide facilities for the user to build and edit prob�

lem descriptions� submit experiments for execution� and interpret the results of experiments�

It is now possible to describe how a typical session in this environment might progress�

The session will begin with a speci�cation of the model entities to be used during the

session� Some of these may be imported from libraries of previously declared and validated

model entities� the de�nition of others may have to be created in the simulation language

and translated� The user will then proceed to import or declare a set of task entities that

operate on these model entities� As a consequence� the need for more model entities may be

identi�ed and dealt with�

At this point it becomes possible to declare or import one or more process entities

that describe simulation experimental frames involving some or all of the model and task

entities introduced so far� Once one of these process entities has been translated� and found
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to be to valid� an entire simulation experiment may be performed simply by issuing the

command EXECUTE to the environment� accompanied by a speci�cation of the process

entity which describes the desired simulation� Control will return to the environment as

soon as this experiment is complete� at which point the results can be analysed� or another

cycle of declaration and experiment may commence�

In many situations� correct exploitation of the hierarchical decomposition mecha�

nisms provided will dictate that simulation experiments performed near the beginning of a

session or at an early stage in a project will merely involve the validation of components

of the overall system under consideration� As the session progresses� and as more validated

components become available� the scope of the problem considered by each experiment can

broaden� until the intended experiment� involving the complete system� can be performed

with a high probability of success� Moreover� by the end of the session a series of experi�

mental frames involving components of this system will also be available for future use� The

termination of a session should always be preceded by the archiving of all useful entities

developed therein�

Although the design of such an environment is a subject of considerable importance

	Stephanopoulos et al�� ����� Bar and Zeitz� ����� Westerberg et al�� ������ this thesis has

concentrated on the fundamental characteristics of combined discrete�continuous simulation

as opposed to the user interface� so the current implementation of the environment only sup�

ports rudimentary features� In particular� the entire problem description 	including model�

task� and process entities� must be prepared a priori in the form of an input �le� An example

of such as input �le is shown in appendix C�

A session is commenced by typing the command �gPROMS�� This enters the user

into a simple command line interpreter� from which commands to direct the progress of the

session may be issued� The following set of commands is currently available�

� SELECT � submits a speci�ed input �le to the translator�

� DIRECTORY � provides a list of the input �les currently available to the user�

� EDIT � enables a speci�ed input �le to edited or created� On exit� the input �le is

automatically submitted to the translator�

� LIST � provides a list of all the process entities currently available for execution�
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� EXECUTE � submits a speci�ed process entity to the process manager for execution�

Control will return to the environment on termination of the experiment�

� CODE � submits a speci�ed process entity for code generation� This leads to the

generation of a set of FORTRAN subroutines for residual and derivative evaluations�

These may be exported for use by other software packages but are not otherwise used

by gPROMS�

� PLOT � enters a graph plotting environment which may be employed to display time

trajectories of the describing variables generated by an experiment�

� QUIT � exits the environment�

��� Summary

The implementation of a prototype modelling package� gPROMS� based on the

simulation language introduced in earlier chapters has been discussed� The special require�

ments of combined discrete�continuous simulation dictate a software architecture involving

the creation of a copy of the continuous model in memory� which is then employed by the

simulation algorithm to determine the dynamic behaviour of the system under investigation�

The main advantage of this approach lies in the ability to manipulate this copy of the con�

tinuous model directly for the entire duration of a simulation� but a signi�cant reduction

in the time required to prepare a simulation experiment for execution can also be achieved�

The implementation of the two major components of the modelling package� the translator

and the process manager� are considered in detail�

The current version of the prototype has been implemented in SUN Modula�


Release 
��� on engineering workstations running the variant of the UNIX operating system

SunOS Version ������ Earlier versions of the prototype have also been successfully ported

to personal computers running the DOS and OS�
 operating systems� although the DOS

version is severely limited by the memory restrictions imposed by the operating system�

The development of standard utility library routines for the modelling package that are

then interfaced to the library routines provided with an individual Modula�
 compiler have

ensured that the code can potentially be ported to a wide range of platforms�
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In section ��� it was claimed that signi�cant improvements in the speed of problem

translation and subsequent problem preparation could be achieved with the software archi�

tecture adopted by gPROMS� Typical translation speeds are illustrated by the evaporator

pilot plant example described in section ��
��� The corresponding input �le 	see appendix

C� is composed of �
�
 lines of input� contains the declaration of twelve model entities� eight

task entities and a single process entity� Its translation on a SUN IPX workstation with

��Mb of memory takes approximately ��� seconds� Moreover� this time is more than halved

if the input �le is not echoed to the terminal during translation�

Model instantiation speeds are illustrated by the tubular reactor model shown in

�gure 
��� Although translation time for this example is trivial� increasing the number

of spatial mesh points enables the creation of a model containing an arbitrary number of

equations� For example� a model composed of ���� equations takes approximately �
��

seconds to instantiate��

The above �gures are quite typical of gPROMS� performance� It can be seen that

today�s engineering workstations enable complex dynamic simulation problems involving

several thousand equations to be posed interactively�

�This includes the generation of analytical partial derivatives for all the equations�
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Chapter �

Combined Discrete�Continuous Simulation Examples

The introduction to this thesis argued that combined discrete�continuous simula�

tion is a potentially powerful tool for the analysis of process dynamics� particularly for those

systems that experience signi�cant discrete changes superimposed on their predominantly

continuous behaviour� It also identi�ed the lack of suitable representational methodologies

as a major outstanding obstacle to the development of a general�purpose simulation package

for this category of systems� In chapters 
 to �� these shortcomings where addressed through

the introduction of a new simulation language to encompass the description of this class

of problems� and chapter � detailed the implementation of a prototype modelling package

based on this language�

This chapter presents a collection of detailed simulation examples designed to il�

lustrate potential applications of combined discrete�continuous simulation� These examples

also demonstrate the descriptive capabilities of the simulation language described in earlier

chapters when applied to this class of problems� All the simulation results presented here

were generated using the current implementation of the prototype modelling package�

The chapter begins with a series of brief examples involving physico�chemical dis�

continuities� These illustrate how simulations with signi�cant discrete characteristics can

arise merely as a consequence of the physical mechanisms that determine the underlying

continuous behaviour of any processing system� Each of the remaining examples focuses on

a complete processing system� and is categorised according to the mode in which the process

is operated� This demonstrates the application of combined discrete�continuous simulation

to the entire range of process operations� from processes that are normally considered to be

�continuous�� through processes operated in a periodic or semi�continuous manner� to batch

processes� In all these examples� discrete changes arising from physico�chemical mechanisms

occur in addition to the discrete changes caused by the control actions applied to maintain

the desired mode of operation�
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��	 Physico�chemical Discontinuities

The facility to include discrete changes to the describing equations that occur as a

result of physico�chemical mechanisms is vital to all but the simplest of modelling exercises

involving processing systems� The �rst three examples presented here� concerning a weir� a

bursting disc� and a safety relief valve respectively� all concentrate on how an individual

feature of a larger system might be modelled as a physico�chemical discontinuity� The

arguments put forward in chapter 
 to establish the necessity of a general formalism based

on �nite automata are further reinforced by the results of these simulations�

In the �nal example� the more complex model of a �ash drum is considered� This

example is primarily intended to demonstrate the application of a �nite automaton to a

system which can move dynamically through more than two states�

����� Vessel Containing an Over�ow Weir

The �rst example� regarding a vessel containing an over�ow weir that regulates the

�ow of liquid from it� has already been introduced in chapter 
� and one possible model is

shown in �gure 
���� During normal operation� this device will maintain a relatively constant

holdup of material in the vessel� but if� for any reason� the level of liquid in the vessel drops

to the height of the weir� or below it� �ow from the vessel will cease until this level rises

above that of the weir again� A reversible discontinuity� implemented by an IF equation� is

the most convenient way to model this phenomenon�

The results of a simulation employing this model are shown in �gure ���� The vessel

is considered to be initially empty� with no material �owing into it� After a short period

material begins to �ow into the vessel� and� as a consequence� the liquid level eventually rises

to that of the weir 	one metre�� at which point material begins to �ow over the weir� The

liquid level continues to rise until the �ow over the weir exactly balances that of the �ow

into the vessel� The �ow of material to the vessel is then stopped� and the liquid level drops

to that of the weir�

As already stated� this example is merely an illustration of how an individual feature

of a larger system might be modelled� This representation of a weir could just as easily be

applied within the model of a distillation column tray� If instances of this tray model are
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Figure ���� Simulation of a Vessel Containing an Over�ow Weir
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then inserted as components of a distillation column model that is employed for start�up

or shut�down studies� the model of the overall system would be composed of many �nite

automata� corresponding to the behaviour of the weir on each tray of the column�

����� Vessel Fitted with a Bursting Disc

In certain safety critical situations� pressure vessels are �tted with a protective

device known as a bursting disc� This is a disc of a material such as graphite� sealing a

vent outlet of the vessel� which provides a form of �one�o
� protection for the vessel� if the

pressure in the vessel rises to a critical value� the disc shatters and the contents of the vessel

are exhausted through the vent� The disc must then be replaced before the vessel can be

pressurised again� The physical mechanism that results in the disc shattering is irreversible�

so a model for this phenomenon must be implemented through use of a CASE equation� One

possible model for this device� shown in �gure 
��� has already been discussed in chapter 
�

The model shown in �gure 
�� assumes that the inlet and normal outlet �owrates

of gas are determined by equations declared in upstream and downstream units respectively�

For the purposes of the simulation presented in �gure ��
� the outlet valve has been closed

and the �owrate into the vessel is considered to be an input variable� After an initial period

of �ve seconds in which the vessel is held at atmospheric pressure� gas is introduced at a

constant �owrate� and the pressure in the vessel rises to the set pressure of the disc� At this

point� the disc shatters and the pressure in the vessel drops until the relief �owrate balances

the inlet �owrate� Note that� unlike an IF equation� the CASE equation employed here does

not return the vessel to the intact state as soon as the condition that triggered the original

transition is negated�

The model employed in this example makes the assumption that the relief �ow

is always choked� For more accuracy� the equation that determines the choked �owrate

could be replaced by an IF equation that determines the correct �ow�pressure relationship

by comparing the downstream pressure with the critical pressure� thereby exploiting the

recursive de�nition for a �nite automaton given in chapter 
�
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Figure ��
� Simulation of a Vessel Fitted with a Bursting Disc
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����� Vessel Fitted with a Safety Relief Valve

One of the devices most frequently used to protect pressure vessels against defor�

mation as a result of excessive pressure is the safety relief valve� As already discussed in

chapter 
� the mechanism that causes one of these valves to open and close is usually asym�

metric� and must therefore be modelled by a CASE equation� The model employed in this

example is almost identical to that of the vessel �tted with a bursting disc� so �gure ��� only

demonstrates the CASE equation that determines the relief �owrate�

In �gure ���� the vessel again experiences a initial period in which the pressure is

maintained at atmospheric pressure� after which gas is introduced at a constant �owrate and

the pressure rises to the set pressure of the relief valve� At this point� the relief valve opens

and the pressure in the vessel begins to drop� In this example� however� when the pressure

drops to the reseat pressure the valve closes and the pressure in the vessel begins to rise

again� The system will continue to repeat this cycle until some form of external intervention

occurs�

It is sometimes considered necessary to install both a safety relief valve and a

bursting disc in order to protect a vessel� The bursting disc provides protection in the event

of the safety relief valve being unable to supply the relief �ow required� A model of this

system would be composed of a set of invariant equations that remain valid regardless of the

state the system is in 	see section 
�
� and two independent �nite automata that determine

the relief �ows through the safety relief valve and bursting disc respectively�

����� Equilibrium Flash Drum

The �nal example that concentrates on physico�chemical discontinuities in isolation

involves the equilibrium �ash drum shown in �gure ���� A liquid stream at high pressure

passes through a valve at the inlet to the �ash drum� which results in the sudden irreversible

and isenthalpic expansion of the stream� If the drum pressure is lower than the bubble point

pressure of the feed� some of the liquid will vapourise� Vapour escapes through a valve at

the top of the drum� and liquid is drawn o
 through a valve at the bottom of the drum� For

the purposes of this simulation� it is assumed that the vessel is �tted with devices similar to

a stream trap that will only allow liquid to �ow through the lower valve� and likewise will
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SELECTOR
Valve�State AS 	Closed�Open
 DEFAULT Closed

EQUATION

� Relief flow from safety valve � assume choked flow
CASE Valve�State OF
WHEN Closed � Relief�Flow � � �

SWITCH TO Open IF Press � Set�Pressure �
WHEN Open � Relief�Flow � Valve�Const�Press�SQRT	Temp
 �

SWITCH TO Closed IF Press � Reseat�Pressure �
END � case

Figure ���� Extracts from the Model of a Vessel Fitted with a Safety Relief Valve
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Figure ���� Simulation of a Vessel Fitted with a Safety Relief Valve
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Figure ���� Flowsheet Involving Equilibrium Flash Drum

only allow vapour to escape from the upper valve� Heat may be supplied to or removed from

the vessel via a coil�

This example is of interest because the model of the vessel is again composed of an

invariant set of equations� and a �nite automaton that determines the equations speci�c to

each phase regime� The automaton involves at least three states� corresponding to whether

the vessel contains both liquid and vapour phases� subcooled liquid� or superheated vapour�

Only the simple case of a single liquid phase is considered here� but if two liquid phases

were to form in addition to a vapour phase� the number of states would have to be increased

accordingly�

In order to develop a relatively simple model of the continuous time dependent

behaviour of the �ash drum� the following assumptions concerning the conditions prevailing

inside the vessel are made�

� Apart from heat supplied or removed via the coil� the vessel is operated under adiabatic

conditions�
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� The contents of each phase are perfectly mixed at all times�

� The rate at which both thermal and phase equilibrium are reached is much faster than

the rate at which changes in the bulk properties of the contents occur� The vessel can

therefore be considered to be at thermal and phase equilibrium at all times�

As a consequence of these assumptions� the control volume employed to derive the balance

equations can encompass the entire vessel� as opposed to each individual phase� The minimal

set of properties required to determine the state of the system� combined with a speci�cation

of the volume of the vessel 	a time invariant parameter�� are the total molar holdups for each

component and the total internal energy holdup�

When both a liquid and a vapour phase are present in the vessel at equilibrium� a set

of di
erential equations de�ning the component and energy balances� and a set of auxiliary

algebraic equations including constitutive relationships 	Ponton and Gawthrop� ������ phase

equilibrium relationships� and the volume constraint� will form an adequate dynamic model�

If� however� only a single phase is present in the vessel� a number of auxiliary algebraic

quantities� including the component mole fractions of the phase not present� are no longer

necessary for the description of the system� and the number of auxiliary algebraic equations

required drops signi�cantly� For the purposes of this simulation� the model is declared in

terms of the maximal set of describing variables� as required by the two phase regime� and

while the system is in a single phase regime� the UNDEFINED construct 	see section 
�������

is employed to eliminate the unnecessary variables� The modelling equations derived in this

manner are included in appendix D�

In addition� the volume constraint creates problems for the numerical algorithms

employed for the solution of the describing equations� If the vessel is full of subcooled 	e
ec�

tively incompressible� liquid� this constraint de�nes a relationship between the component

holdups� as opposed to determining the pressure of the contents� A change in the mathe�

matical properties of the describing equations� the index of which increases from one to two�

therefore occurs as the system moves dynamically from the two phase regime into the liquid

regime� This will precipitate the immediate failure of the simulation as a consequence of

the limitations imposed by the solution routines employed by the current implementation of

the modelling package� One way of posing a model that can move dynamically through all
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Figure ���� Finite Automaton for Flash Vessel

three phase regimes is to reduce the index of the describing equations in the liquid regime

by di
erentiation of this volume constraint with respect to time� If the liquid phase is con�

sidered to be an ideal mixture and the temperature dependence of its density is neglected�

this di
erentiation� accompanied by algebraic manipulation� yields an algebraic relationship

de�ning equality between the volumetric �ow into the vessel and the volumetric �ow from

the vessel� For the model employed in this example� the volume constraint is added to the

set of variant equations and is replaced by its di
erentiated form whenever the system enters

the liquid regime�

At any point in time� the variant set of equations inserted in the system model is

determined by the active state of the �nite automaton illustrated in �gure ���� It now only

remains necessary to de�ne the possible transitions between these states� and the logical

conditions that must be satis�ed in order to trigger them� As can be seen from �gure ����

four transitions are possible� but at no time is it possible to move from the vapour regime to

the liquid regime without �rst passing through the two phase regime� The logical conditions

that trigger a transition from a single phase regime to the two phase regime are intuitively

obvious� when the temperature of a subcooled liquid rises to its bubble temperature� two

phases will appear� and when the temperature of a superheated vapour falls to its dew



���

temperature� two phases will also appear� The logical conditions that trigger a transition

from the two phase regime to a single phase regime are not� however� as obvious� because

there are� in both cases� two equivalent conditions�

� To move from the two phase regime to the liquid regime� the vapour holdup in the

vessel must drop to zero� or equivalently the temperature must drop to the bubble

temperature of the contents�

� To move from the two phase regime to the vapour regime� the liquid holdup in the vessel

must drop to zero� or equivalently the temperature must rise to the dew temperature

of the contents�

If the dew and bubble temperature conditions are employed� the �nite automaton can be im�

plemented by two nested IF equations� because of the symmetry of the transition conditions�

On the other hand� if the holdup conditions are employed� a CASE equation is required to

implement the resultant asymmetric discontinuities� There are� however� strong arguments

advocating the adoption of the holdup conditions� In the �rst instance� if the model is used

for a single component �uid�� the dew and bubble temperatures of the �uid become indistin�

guishable� and therefore the holdup conditions must be used to determine transitions from

the two phase regime� Secondly� experimentation with the model has demonstrated that�

although the two forms of a condition are physically equivalent for multicomponent mix�

tures� the numerical nature of the equation solution will not always guarantee that they will

be satis�ed simultaneously� In certain circumstances� a period of �uttering between phase

regimes will occur as a consequence of slight numerical inaccuracies in the bubble or dew

temperatures that lead to the triggering of a temperature condition before the corresponding

holdup reaches zero� This �uttering will continue until integration has advanced su�ciently

for the holdup to approach zero� but is eliminated when the holdup conditions are employed�

Two dynamic simulation experiments involving the model described above are pre�

sented here� employing simple assumptions in order to determine the physical properties of

the �uids �owing through the vessel� The disturbances introduced in both cases are rather

arti�cial� but they are su�cient to demonstrate the model moving dynamically through all

�This can be implemented merely by setting the integer parameter that determines the number of com

ponents in the model to one�
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Figure ���� Simulation of Multicomponent Flash Drum

three states� The time trajectories from a simulation involving a feed stream containing

an equimolar mixture of benzene and toluene are shown in �gure ���� Table ��� contains a

summary of the events occurring during the simulation�

From steady�state� a step increase in the heat input to the vessel is introduced

that eventually drives the model into the vapour phase regime� The heat input is then

decreased su�ciently to drive the model from the vapour regime� through the two phase

regime� and into the liquid regime� Finally� the heat input is returned to its original value�

and the vessel approaches a steady�state in the two phase regime� This simulation therefore

demonstrates all four of the possible transitions described in the previous section� The time

trajectories from a similar simulation involving a feed stream containing pure benzene is

shown in �gure ����
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Time 	s� Event
� Initial condition in the two�phase regime�
�� Step increase in the heat input introduced�
��� Vessel enters the vapour regime�
��� Step decrease in the heat input introduced�
��� Vessel re�enters the two phase regime�
��� Vessel enters the liquid regime�
��� Heat input returned to original value�
��� Vessel re�enters the two phase regime�

Table ���� Table of Events During Simulation of Multicomponent Flash Drum
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��
 �Continuous
 Processes

It is particularly important to emphasise the role of combined discrete�continuous

simulation in the analysis of systems or processes that are normally considered to be �contin�

uous�� because therein lies one of the biggest weaknesses of the existing continuous process

simulation packages� In any application of dynamic simulation where external actions or

environmental in�uences can take a continuous process far from its nominal steady�state op�

erating point 	such as safety and environmental studies� operating procedure validation� or

computer based operator training� it is important to be able to describe the control actions

and disturbances that drive the process into the abnormal state� or return it to the nominal

operating point� Moreover� the complexity of the continuous models required for the accu�

rate simulation of these large deviations is often much higher than that of many continuous

models in use today� which� by and large� have only been designed for the simulation of small

perturbations around a nominal steady�state�

On the other hand� the simulation language described in earlier chapters has been

speci�cally designed with these requirements in mind� Hopefully� it will ease considerably

the development of many simulations of continuous processes that are at present consid�

ered problematic� Also� it should render feasible simulations that were hitherto considered

infeasible or impracticable within the context of a general�purpose package�

Two applications of combined discrete�continuous simulation to �continuous� pro�

cesses are presented here� The �rst example� involving a model of the evaporator pilot plant

at Imperial College� demonstrates the description of the complex sequential operations that

are often applied to continuous processes in order to switch between operating points� or

to accomplish start�up and shut�down� Furthermore� the obstacles encountered during the

development of a continuous model to encompass the large deviations experienced by the

process are a graphic illustration of the increased model complexity required by this class of

problems�

The second example concentrates on an e�uent tank in which a digital control

strategy is employed to regulate the pH of the discharge stream� and is primarily intended

to demonstrate how the primitive elements of the simulation language may be enlisted for

the simple and elegant expression of digital control laws� The conventional approach to the
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description of digital control laws in conjunction with continuous process simulation packages

has either involved a language extension speci�c to digital control� or external code inserted

in the continuous model 	e
ectively introducing the hidden events of section 
������

����� Evaporator Pilot Plant

The continuous process considered in this example is the evaporator section of

the evaporator�crystalliser pilot plant installed in the Chemical Engineering Department at

Imperial College� The pilot plant is employed extensively for both undergraduate teaching

and research� so a dynamic model has many potential applications�

The pilot plant� a schematic of which is shown in �gure ���� is a single e
ect forced

circulation evaporator employed to concentrate an aqueous solution of potassium nitrate�

A weak solution 	�� wt�� is fed to the evaporator loop� which operates at atmospheric

pressure and between ���oC and ���oC� The product 	approximately ��� wt�� is collected

in a receiver tank� whilst the vapour is condensed and subcooled� During normal operation�

solution enters the shell of the forced circulation heat exchanger 	the calandria� and is

heated by a tubeside steam stream as it rises vertically� The solution subsequently rises up

through a vertical tube and over�ows into the splitter� where the vapour is separated from

the concentrated solution� Some of this solution is directed into the product tank� whereas

the remainder leaves from the bottom of the splitter� mixes with the dilute feed� and is then

pumped back into the calandria�

Earlier attempts at modelling this process with the SpeedUp dynamic simulation

package 	Bernal� ����� Rozo� ����� encountered considerable di�culties as a direct result of

the limitations imposed by the aforementioned package� The inability to introduce new equa�

tions at intermediate hierarchical levels� and to express asymmetric physico�chemical discon�

tinuities� meant that the relationships that determined the direction and magnitude of mate�

rial �ows in the process e
ectively destroyed the modular nature of the model� Moreover� the

simulation of sequential operations applied to the process could only be accomplished by an

external software package that manipulated the continuous model via SpeedUp�s External

Data Interface 	Prosys� ������ Nevertheless� a simpli�ed version of this original model has

been used to build a computer based operator training system for the process 	Kassianides�

������
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One object of this exercise is to demonstrate how the simulation language described

in earlier chapters may be employed to express the direction and magnitude of material �ows

in the process in terms of relatively realistic �ow�pressure relationships� thereby enabling

development of the continuous model of each unit operation in a manner that preserves its

modularity� As a consequence� separate task entities may be developed to describe operations

involving each of these individual units� such as a task that switches on an instance of the

pump model entity� Furthermore� instances of the individual unit operation models may

be combined in a �owsheet to form a continuous model of the complete process� and the

task entities developed to act on the components of this overall model may be combined

to describe any sequential operation applied to the process� More details of the continuous

models are given by Smith 	������

As an illustration of the increased complexity required in continuous models em�

ployed for the simulation of large deviations from steady�state� even in such a relatively

simple system as an evaporator� the model of the calandria will be described in detail� Al�

though at steady�state the calandria will always be full of liquid� during certain operations

such as start�up or shut�down� the liquid level will rise and fall through the vessel� This

phenomenon may be modelled by a physico�chemical discontinuity with two states corre�

sponding to whether or not the calandria is completely full of liquid� While the liquid level

remains below the vessel height� it may rise and fall freely� and no liquid �ows upwards into

the tube� However� when the level reaches the vessel height� it becomes constrained to that

value� and any excess liquid �ows upwards into the tube�

This discontinuity is� in fact� asymmetric� As already stated� a transition to the

�full� state occurs when the liquid level reaches the vessel height� The return transition�

however� may not be determined from the negation of the condition based on the liquid

level� because the equations that characterise the �full� state require this level to remain

equal to the vessel height at all times� This transition will actually occur only when the

level in the tube above drops to zero� which is equivalent to the pressure at the top of the

calandria dropping to atmospheric pressure� Hence the asymmetry�

Moreover� as in the �ash drum example� the liquid height constraint causes the in�

dex of the describing equations to increase dynamically from one to two as the system enters

the �full� state� The describing equations in the �full� state must therefore be reformulated to
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CASE Calandria�State OF
WHEN Not�Full � OverFlow�Flow � � �

SWITCH TO Full IF Liquid�Height �� Height�Liquid�Max �
WHEN Full � OverFlow�Flow � Gain�	Liquid�Height � Height�Liquid�Max
 �

SWITCH TO Not�Full IF Press�Top �� Press�Atm �
END � case

Figure ����� Extract from the Model of the Calandria

reduce the index to one� This can be achieved rigorously by di
erentiating the height con�

straint with respect to time� thereby obtaining an explicit expression for the outlet �owrate�

Alternatively� an approximate solution may be obtained by relaxing the height constraint to

one that tightly controls the liquid level through suitable adjustment of the �owrate upwards

into the tube 	e�g� by using a proportional controller with high gain��

The latter solution was adopted in this example 	see �gure ������ Note that adop�

tion of this controller equation has no consequences whatsoever regarding the asymmetric

nature of the discontinuity� In the �full� state� the controller equation will allow the liquid

level in the calandria to rise slightly if the level in the tube above is rising� and to drop

slightly if the level in this tube is dropping� However� a transition to the �not full� state can

only occur if the level in the tube above drops to zero� thus reducing the pressure at the top

of the calandria to atmospheric�

Further physico�chemical discontinuities similar to the above are required to model

other large deviations from steady�state within the calandria 	e�g� the contents of this vessel

may� independently� be boiling or not�� and in most of the other major unit operations of

the process�

A further complication arises from the need to determine the intensive properties

	in this case temperature and solute concentration� of process streams in which the �ow

direction is dependent on the conditions prevailing in the plant� The intensive properties

of such a stream are determined from the bulk properties of the unit that is currently

upstream with respect to the direction of �ow� If this direction reverses� so does the unit

that determines these properties� This problem is resolved by eliminating the equations that

determine the intensive properties of reversible streams from the models of individual unit
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operations� and using conditional equations at the hierarchical level at which the stream

connection is declared to determine these intensive properties from the current direction of

�ow in the stream in question� A simple model demonstrating this approach is shown in

�gure �����

MODEL Reversible�Flow

UNIT
First�Tank� Second�Tank AS Tank

EQUATION

� Stream connection
First�Tank�Outlet IS Second�Tank�Inlet �

� Conditional equation that determines the intensive properties of the
� stream�
IF First�Tank�Total�Outlet�Flow �� � THEN
WITHIN First�Tank DO
Outlet�Conc � Bulk�Conc �
Outlet�Temp � Bulk�Temp �

END � within
ELSE
WITHIN Second�Tank DO
Inlet�Conc � Bulk�Conc �
Inlet�Temp � Bulk�Temp �

END � within
END � if

END � Reversible�Flow

Figure ����� Determination of the Intensive Properties of a Reversible Stream

Having described the continuous models of the unit operations in a modular manner�

it is possible to develop a series of task entities that describe typical operations involving

these units� This study� for example� requires task entities to open and close a valve� to start

and stop a pump� and to switch an analogue controller from manual to automatic control

and vice versa� The task entity that starts a pump� for instance� may then be applied to

any of the three instances of the pump model entity that appear in the evaporator process

shown in �gure ����

It is now possible to construct a simulation of an operation involving the entire
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process� The operation considered is typical of an experiment performed by undergraduate

students in the course of an afternoon� in which the plant is started from a cold and empty

state� run for a short period� and then shut�down� As part of this exercise� the students are

required to propose safe start�up and shut�down procedures� A situation can therefore be

envisaged in which the students use a simulation of their proposed procedures� constructed

from the general�purpose tasks described above� for the purposes of validating them before

application to the process itself 	Macchietto et al�� ������ One possible start�up procedure

for the process involves the following sequence of elementary steps�

�� Start the feed pump and close the feed 
ow control loop�

�� Wait until all units in the recycle loop are full of liquid and solution begins to over
ow into

the product tank�

	� Start the product pump�

�� Start the recycle pump and close the recycle 
ow control loop�

�� Start the 
ow of steam to the calandria�

�� Wait until the temperature in the splitter reaches 

oC�

�� Start the 
ow of cooling water to the condenser�

A task entity that drives the continuous model of the pilot plant through this procedure is

shown in �gure ���
� Note that a model of the condenser was not included in this example�

so no operations on it appear in the schedule� Similarly� a possible shut�down procedure

involves�

�� Stop the 
ow of steam to the calandria�

�� Stop the product pump�

	� Continue to feed cold� dilute solution to the plant until the calandria has cooled to ��oC�

�� Shut o� the feed and recycle pumps� and open the 
ow control loops�

�� Stop the 
ow of cooling water to the condenser�

A task entity that drives the continuous model of the pilot plant through this procedure

is shown in �gure ����� All that remains is to declare a process entity 	excerpts from
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TASK Start�Up�Pilot�Plant

PARAMETER
Plant AS MODEL Complete�Plant�Flowsheet

SCHEDULE
SEQUENCE
PARALLEL

Start�Pump	Pump IS Plant�Feed�Control�Pump
 �
Close�Loop	Controller IS Plant�Feed�Control�Controller
 �

END
CONTINUE UNTIL Plant�Splitter�Product�Flow � �E��
Start�Pump	Pump IS Plant�Product�Pump
 �
CONTINUE FOR ��
PARALLEL

Start�Pump	Pump IS Plant�Recycle�Control�Pump
 �
Close�Loop	Controller IS Plant�Recycle�Control�Controller
 �

END
CONTINUE FOR ��
Open�Valve	Valve IS Plant�Steam�Valve
 �
CONTINUE UNTIL Plant�Splitter�Temp�Bulk � ����

END
END � Start�Up�Pilot�Plant

Figure ���
� Task Describing Start�Up Procedure for the Evaporator Pilot Plant

TASK Shut�Down�Pilot�Plant

PARAMETER
Plant AS MODEL Complete�Plant�Flowsheet

SCHEDULE
SEQUENCE
Close�Valve	Valve IS Plant�Steam�Valve
 �
CONTINUE FOR ��
Stop�Pump	Pump IS Plant�Product�Pump
 �
CONTINUE UNTIL Plant�Calandria�Temp�Bulk � ����
PARALLEL

Stop�Pump	Pump IS Plant�Feed�Control�Pump
 �
Stop�Pump	Pump IS Plant�Recycle�Control�Pump
 �
Open�Loop	Controller IS Plant�Recycle�Control�Controller
 �
Open�Loop	Controller IS Plant�Feed�Control�Controller
 �

END
END

END � Shut�Down�Pilot�Plant

Figure ����� Task Describing Shut�Down Procedure for the Evaporator Pilot Plant
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PROCESS A�Pilot�Plant�Simulation

���

SCHEDULE
SEQUENCE
CONTINUE FOR ���
� Apply the start�up procedure
Start�Up�Pilot�Plant	Plant IS Pilot�Plant
 �
� Run the plant for a while
CONTINUE FOR 
���
� Apply the shut�down procedure
Shut�Down�Pilot�Plant	Plant IS Pilot�Plant
 �
� Let the plant drain
CONTINUE UNTIL Time � �����

END
END

Figure ����� Process Entity Describing Simulation Involving the Evaporator Pilot Plant

which are shown in �gure ����� which combines these two tasks to drive the continuous

model through a simulation of the entire afternoon�s activities� The description of a complex

operation involving the entire pilot plant has therefore been constructed from the hierarchical

combination of a set of simple operations involving individual items of process equipment�

The entire gPROMS input �le for this problem is included in appendix C�

During the afternoon� the proposed start�up procedure is applied� the process is

then run for a while� and �nally the shut�down procedure is applied� Table ��
 contains a

summary of the signi�cant events during this period� and trajectories of some of the key

process variables are shown in �gures ���� to ����� It is interesting to note that steady�state

is not reached within the ���� seconds allowed between the end of the start�up procedure

and the beginning of the shut�down procedure� In fact� because it takes approximately nine

hours to achieve� it is not possible to reach steady�state within a single afternoon� The liquid

level and concentration trajectories correspond closely to those of the real process 	Bernal�

������ but improvement of the heat transfer relationships employed in the unit operation

models would lead to more accurate temperature transients 	Smith� ������
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Time 	s� Event
��� Feed pump is started and feed control loop closed
��� Calandria becomes full and the tube starts to �ll
���� Splitter widens from a pipe to a vessel
��
� Splitter starts to over�ow into product tank

Product pump starts
���� Recycle pump starts and recycle control loop closed
���� Steam is introduced into the calandria
���� Splitter temperature reaches ��oC

Start�up procedure completed
���� Boiling occurs in the calandria
����� Steam ceases to �ow to the calandria

Boiling ceases in the calandria
����� Product pump switched o

����� Calandria temperature drops to ��oC

Feed and recycle pumps switched o

Feed and recycle �ow control loops opened
Shut�down procedure completed
Solution begins to drain back into the feed tank

����� Tube becomes empty and the calandria starts to drain

���� Liquid levels in splitter� feed tank and calandria equalise

Table ��
� Table of Signi�cant Events During Operation of Evaporator Pilot Plant
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Figure ����� Liquid Levels in the Evaporator Pilot Plant
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Figure ����� Bulk Solute Concentrations in the Evaporator Pilot Plant
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Figure ����� Bulk Temperatures in the Evaporator Pilot Plant
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Figure ����� E�uent Tank Schematic

����� pH Control of an E�uent Tank

The �rst stage of a typical e�uent treatment process is considered� in which the

pH of a stream containing a solution of strong acid must be increased by the addition of a

strong alkali before it is sent for further processing� The �owsheet shown in �gure ���� is

employed to achieve this objective� The pH of the discharge stream is regulated by adjusting

the �ow of alkali to the e�uent tank� and the liquid level in the vessel is maintained by

adjusting the discharge �owrate� A dynamic model of this process is potentially useful� for

example� when determining if environmental standards are violated as a result of a range

of process disturbances� However� this example is mainly concerned with a demonstration

of the ability to express digital control laws using the primitive elements of the simulation

language�

Because only disturbances around a steady�state are being considered� less detail

in the continuous model of this process is required than in the previous example� Imperfect

mixing in the e�uent tank is modelled by a region of perfect mixing followed by a pure time
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delay� and the pH meter model takes into account the time delays and lags that characterise

pH measurement� Full details are given by Smith 	������

Again� having declared a continuous model for each unit operation� it is possible

to develop task entities that describe typical operations involving these units� In this case�

the task entity already shown in �gure ���� is employed to model the action of a digital

proportional integral control law� Note that this task is designed to take a measurement

from an instance of a sensor model� and then update the stem position of an instance of

a control valve model according to the control law� Through the wide range of parameter

types introduced in chapter �� it is possible to encapsulate a fairly general digital control law

in a single task entity and then reuse this task in many di
erent applications�

The schedule shown in �gure ���� describes the disturbances and control actions

that the e�uent tank experiences during the simulation presented here� The digital con�

trollers are modelled as tasks that operate concurrently with any disturbances for the du�

ration of the simulation� Both digital controllers are represented by instances of the user

de�ned task shown in �gure ����� although each operates on a unique sensor and valve com�

bination� From an initial condition in which the system is at steady�state� a step increase

in the volumetric �ow of acid to the tank is introduced after ��� seconds� When the sys�

tem approaches steady�state again 
��� seconds later� this disturbance is reversed� Variable

trajectories resulting from this particular simulation are shown in �gure ��
�� Although the

pH controller can cope with the original disturbance� it is unable to deal satisfactorily with

reversal of the disturbance� The valve stem position trajectory shown in �gure ��
� focusses

on the control system�s attempts to recover from the reversal of the original disturbance� It

is interesting to note that relatively small variations in the stem position 	on a scale � to ��

are causing such wide �uctuations in pH�

Improved performance could be achieved through more sophisticated control schemes�

involving for example measurement transformation and�or feed forward control� Indeed� us�

ing the features of the simulation language described in earlier chapters it should be possible

to develop schedules that automate the application of tuning algorithms to the control system

of an entire process� regardless of whether this control system is analogue or digital�
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SCHEDULE
PARALLEL

SEQUENCE
CONTINUE FOR �
�
RESET Plant�Tank�Vol�Flow�Acid �� ����� � END
CONTINUE FOR ����
RESET Plant�Tank�Vol�Flow�Acid �� ����
 � END

END
Effluent�Control�System	Plant IS Effluent�Plant�

Termination�Condition IS Time � ���� 
 �
END

Figure ����� Schedule Describing Simulation of E�uent Tank

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000
          

Time (s)  

2

3

4

5

6

7

8

9

10

11

PLANT.PH_METER.PH     PLANT.TANK.VOLUME     

gPROMS DYNAMIC SIMULATION

Figure ��
�� pH and Volume Trajectories for the E�uent Tank



���

240 245 250 255 260 265 270 275 280 285 290 295 300

*101          
Time (s)  

0.6

0.65

0.7

0.75

0.8

0.85

PLANT.ALKALI_VALVE.POSITION     

gPROMS DYNAMIC SIMULATION

Figure ��
�� Stem Position Trajectory for the Alkali Valve



���

��� Periodic Processes

For a variety of reasons� an increasing number of unit operations� or even entire

processes� are operated in a periodic 	cyclic� manner� Examples include pressure and temper�

ature swing adsorption� some modern e�uent treatment processes� and multiple bed reactors

in which the catalyst is periodically reactivated� The common feature of all these processes

is the cyclic� and hence dynamic� nature of their operation� To assess the performance of

these systems� the notion of �cyclic steady�state� is introduced to indicate a point at which

the trajectories of the process variables become virtually indistinguishable from one cycle

to the next� Dynamic simulation is an invaluable tool for the analysis of processes in this

category� such as pressure swing adsorption 	Ward� ������

Periodic processes are by their nature combined discrete�continuous systems� On

the one hand� the underlying continuous model is often as complex as those required for

continuous processes� in many cases involving variables distributed in one or more spatial

dimensions� and on the other� frequent control actions of considerable complexity are imposed

in order to maintain the cyclic mode of operation�

Existing simulation tools for the analysis of periodic or cyclic processes have typi�

cally been developed with a particular technology in mind 	e�g� ADSIM�SU 	Prosys� �����

for industrial adsorption processes�� Although� in theory� the simulation packages speci��

cally developed for batch and semi�continuous processes� BATCHES 	Joglekar and Reklaitis�

����� and UNIBATCH 	Czulek� ������ could also accommodate models of cyclic processes�

in practice development of the detailed continuous models required would be di�cult� On

the other hand� the simulation language described in the preceding chapters is ideally suited

to the modelling of periodic unit operations� Furthermore� such cyclic operations will often

form part of a larger process that is operated predominantly in either the continuous or

batch modes� A general�purpose combined simulation package� with its hierarchical model

building capabilities� would greatly facilitate the analysis of the interactions of these cyclic

unit operations with the rest of the process�
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����� Pressure Swing Adsorption

The separation of gaseous components through selective adsorption on a solid phase

is a well established technology� In recent years� renewed attention has been paid to the pres�

sure swing adsorption 	PSA� process� which employs a change in partial pressure� or pressure

swing� to modify the quantity of gas adsorbed� and thereby achieve separation� This interest

has been encouraged by increased understanding of the fundamental phenomena involved

on the one hand� and the very tangible bene�ts accruing from the low energy consumption

of the process on the other� Moreover� new demands on gas separation technology have

promoted interest in the ability of PSA processes to handle low concentration feed stocks�

or to produce high purity products�

In order to achieve separation� the sorbent columns that constitute a PSA process

are repeatedly cycled between high and low pressures� This cyclic mode of operation makes

PSA an ideal example for demonstrating the application of the prototype modelling package

to periodic processes� The simulation presented here is based on a model reported in the

literature that was utilised to establish the feasibility of employing PSA for simultaneous

SO��NOx
removal and SO� recovery from �ue gas 	Kikkinides and Yang� ������ The ease

and speed with which this model was implemented within the framework of the prototype

simulation package is a good illustration of the bene�ts that can be achieved through the

use of general�purpose tools for combined discrete�continuous simulation�

The PSA process considered for �ue gas desulphurisation employs the Skarstrom

two column� four step con�guration 	Skarstrom� ������ During a cycle� each column will

pass through the following four elementary steps�

I� Repressurisation with feed�

II� Production with feed at high pressure�

III� Countercurrent blowdown�

IV� Countercurrent purge with product at low pressure�

Figure ��

 illustrates how the two columns interact during a cycle� Initially� column A is at

low pressure� and column B is at high pressure� The streams leaving the top of both columns

are then shut o
 while column A is pressurised with feed� and column B is depressurised
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� Skarstrom Two Column� Four Step Con�guration

countercurrently� When column A has reached the required pressure� it begins to purify feed

at high pressure while a small fraction of the product is diverted� via a pressure reduction

valve� to column B for countercurrent purge at low pressure� The third step commences

when column A has become saturated with the adsorbed components and SO� begins to

�break through� into the product stream� The streams leaving the top of both columns are

again shut o
 and column A is depressurised countercurrently while column B is pressurised�

Finally� during the fourth step a small fraction of the product from column B is used to

purge countercurrently the adsorbed components from column A� At the end of this step�

the sequence of operations is repeated� The original study was employed to determine if

SO� enrichment in the e�uent streams from this cycle was su�cient for elemental sulphur

recovery by the Claus process�

The following assumptions 	Kikkinides and Yang� ����� were made in order to

develop a model for the continuous time dependent behaviour of the adsorption columns�

� The thermal e
ects of adsorption and desorption are small� and isothermal operation
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can be assumed�

� The pressure drop in the bed is negligible� hence the pressure is uniform throughout

the bed�

� Radial variations in velocity and concentration are negligible�

� Axial dispersion is negligible�

� The gas behaviour can be described by the perfect gas equation of state�

Table ��� contains a summary of the notation used in the equations that follow� Assuming

that the Nth component is an inert �nitrogen� that is not adsorbed to any signi	cant extent�

the total mass balance can be written as


�

P

dP

dt
�
�u

�z
�
�BRT

P

N��X
i��

�qi
�t

� � ���
�

Similarly� the mass balance equations for each species can be written in terms of component

mole fractions as


�
�yi
�t

�
�yi
P

dP

dt
�
��uyi�

�z
�
�BRT

P

�qi
�t

� � �i � 
 � � �N � 
 �����

NX
i��

yi � 
 �����

Experiments on the sorbent considered in this study indicated that the equilibrium model�

which assumes that the gaseous phase is in equilibrium with the adsorbed phase at all times�

was justi	ed� Hence� the concentration of each component in the solid phase is always equal

to the equilibrium value� which is given by the loading ratio correlation �LRC�


qi � q�i �
qsiBiP

��ni

i


 �
N��X
j��

BjP
��nj

j

�i � 
 � � �N � 
 �����

where Pj � yjP

The set of describing equations ��
 to ��� therefore involves the following set of unknowns


yi�z� t� �i � 
 � � �N

qi�z� t� �i � 
 � � �N � 


u�z� t�



��


Bi Langmuir constant for component i� Pa���n

L Length of the bed� m
N Number of components in feed stream
ni Exponent for component i in LRC
P Bed pressure� Pa
PL Low pressure for cycle� Pa
PH High pressure for cycle� Pa
Pi Partial pressure of component i� Pa
qi Moles adsorbed per gramme of solid� mol�g
q�i Equilibrium moles adsorbed per gram of solid� mol�g
qsi Saturated amount adsorbed� mol�g
R Universal gas constant� Jmol��K��

T Ambient temperature� K
t Time� s
u Super	cial axial velocity� m�s
uf Feed velocity� m�s
upurge Purge velocity� m�s
yi Mole fraction of component i in gaseous phase
yf�i Mole fraction of component i in feed
yp�i Mole fraction of component i in purge
z Axial position in bed� m
� Void fraction of bed
�B Density of the bed� kg�m�

Table ���
 Nomenclature for Model of Adsorption Column

where the temperature of the bed T is a given constant� and P �t� is determined from a spec�

i	cation on dP�dt� In addition� appropriate boundary conditions for u and yi are required�

Clearly� the di�erential variables� yi�z� t� and qi�z� t� �i � 
 � � �N � 
� cannot be

assigned arbitrary initial values since they must also satisfy equation ���� It is therefore

preferable to di�erentiate equation ��� with respect to time and use the resulting relationship

to eliminate �qi��t from equations ��
 and ���� A full derivation of this di�erentiated form

is given by Smith �
��
��

Alternatively� the mass balance relations can be reformulated in terms of a control

volume encompassing the two phases in equilibrium �Ponton and Gawthrop� 
��
�� thereby

eliminating the variables �qi��t from the model� Unfortunately� the speci	cation of the bed

pressure� combined with the assumption of negligible pressure drop in the bed� still increases
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the index of the resulting set of equations to two� and di�erentiation with respect to time

in order to eliminate this problem re�introduces the variables �qi��t� However� replacement

of the assumption of negligible pressure drop by a relationship such as the modi	ed Sabri�

Ergun equation �Ergun� 
����� relating the axial velocity at any point in the bed to the

axial pressure drop� would result in a model of index one without consistent initialisation

problems�

In order to employ the current implementation of the prototype modelling package

to solve the equations detailed above� the partial di�erential equations that determine the

column mass balances must be reduced to a set of ordinary di�erential equations with respect

to time� This is accomplished� as in the original study� through a backward 	nite di�erence

approximation based on a 	xed spatial discretisation� although� considering the hyperbolic

nature of the partial di�erential equations� an alternative approach such as the method of

characteristics might prove to be more appropriate� A further complication arises from the

reversals in �ow direction that occur as each cycle progresses� While a column is undergoing

steps I and II� gas will �ow upwards through the column� whereas for steps III and IV this

direction is reversed� and gas �ows downwards through the column� To maintain stability�

variant equations are utilised to ensure that the 	nite di�erence approximation is always

backwards with respect to the direction of �ow�

The simulation presented here is a recreation of the base case of the original study�

The initial condition considers both beds to be initially clean� e�ectively only containing

pure nitrogen


at t � � and � � z � L� yi � 
��� �i � 
 � � �N � 


at t � � and � � z � L� P � PL Column A

at t � � and � � z � L� P � PH Column B

The operation of the overall process is determined by the boundary conditions for each step�

Note that the two columns are always two steps out of phase with each other� column B

will e�ectively be at the beginning of step III when column A is at the beginning of step I�

Considering an individual column� the boundary conditions for step I� pressurisation with



���

feed� will be


at z � �� yi � yf�i �i � 
 � � �N � 


at z � L� u � �

dP
dt

� �
�
�� 
�����

similarly� during step II� high pressure adsorption


at z � �� yi � yf�i �i � 
 � � �N � 


at z � �� u � uf
dP
dt

� �

and step III� countercurrent blowdown


at z � L� yi � yp�i �i � 
 � � �N � 


at z � L� u � �
dP
dt

� �
�
�� 
�����

Note that during step IV� countercurrent purge� the composition of the gas entering the

column is equal to the composition of the product from the other column


at z � L� yi � yp�i �i � 
 � � �N � 


at z � L� u � upurge
dP
dt

� �

It is important to recognise that the spatial position of the boundary conditions depends on

the current step of column operation� This e�ectively means that� at the end of each step�

input equations involving a subset of the system variables may have to be replaced by an

equal number of new input equations involving a di�erent subset of the describing variables�

The REPLACE task can therefore be usefully employed to implement the dynamic changes

to boundary conditions�

The description of the control action sequence that drives the two columns through

a complete cycle is� in fact� extremely simple using the simulation language described in

earlier chapters� REPLACE tasks are employed to implement the changes to the boundary

conditions for both columns that occur at the end of each step� and CONTINUE FOR tasks

are employed to declare the �	xed� duration of each step� during which integration of the

continuous model of overall process is advanced� A nine minute cycle was used� with the

following distribution
 steps I and III� ��� minutes� steps II and IV� ��� minutes�
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In order to simulate more than one cycle� the sequence of control actions that model

a complete cycle are merely enclosed within a WHILE control structure� The conditions that

determine the number of cycles �iterations� will be speci	c to an individual simulation�

Termination could� for example� be determined from a criterion that measures the approach

to cyclic steady�state� or� if a 	xed number of cycles are of interest� a local integer variable

incremented at the end of each cycle could be used as a counter� This former criterion is

usually based on the variation of time averaged quantities from one cycle to the next� for

example the time averaged mole fraction of a component in the product stream


yi �

Z tIII

tII
u�L� t�yi�L� t�dt
Z tIII

tII
u�L� t�dt

�����

where tII indicates the start of step II� and tIII indicates the start of step III� The integrals can

be evaluated through simple di�erential equations� although their values should be initialised

to zero by a REINITIAL task at the start of step II of each cycle� At the end of step II� the

average mole fractions yi can be evaluated and stored in local variables �see section �������

The simulation of four cycles under the base case conditions are shown in 	gures ����

and ����� As noted in the original study �Kikkinides and Yang� 
��
�� cyclic steady�state is

reached after about four cycles� The trajectories clearly demonstrate the wide variation in

gaseous phase compositions from one step to the next as a consequence of the control actions

imposed�

The continuous model of this process could be made more sophisticated through

the introduction of a �owsheet involving on�o� valves that determine the direction and

magnitude of �ows in the process from the pressure drop across the valve and the valve stem

position� This would have the consequence of further simplifying the schedule that describes

a complete cycle� all dynamic changes to the boundary conditions could be implemented by

reusable tasks that simply open and close these valves� In any case� this example is a very

good demonstration of the powerful discrete manipulations elemental tasks may impose on

the underlying continuous model� Moreover� the insertion of the PSA process in a model of

the overall power generation process actually producing the �ue gas would be a relatively

easy task� Such a composite model could� for example� be employed to develop or validate

modi	cations to the PSA operating procedure that would cope with upsets in an upstream
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Figure ����
 SO� Mole Fractions in the Gaseous Phase for Several Axial Positions
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process�

��� Batch and Semi�Continuous Processes

The dynamic� often cyclic� mode in which batch and semi�continuous processes are

operated dictates that dynamic simulation is the only practical and e�ective tool for the

detailed analysis of this category of processes� As such� it complements analytically based

preliminary design and production scheduling methodologies for batch and semi�continuous

processes �Reklaitis� 
��
�� It can be employed� on the one hand� to validate the results pro�

duced by the simpli	ed representations that must of necessity be utilised by these analytical

methods� and� on the other� as the only recourse in circumstances in which the approxi�

mations adopted by available analytical techniques cannot be justi	ed� Furthermore� the

�exible� multiproduct or multipurpose nature of this mode of operation places special de�

mands on any dynamic simulation tool�

A typical batch plant is composed of an inventory of process equipment connected

together in a manner that promotes �exibility in the production routes employed� The

equipment inventory may include storage vessels� reaction vessels� various separation unit

operations� equipment to enable material transfers� and even packaging equipment� In ad�

dition� each item of equipment may be employed for several di�erent operations during a

production campaign� For example� a vessel 	tted with a steam jacket and a mixing im�

peller may be utilised� at di�erent points in time� for storage� blending� pre�heating� or even

conversion of raw materials by reaction�

In general� batches of material enter the plant intermittently and are transferred

from one item of equipment to another according to a prespeci	ed production schedule�

The features of this schedule usually dictate that only a subset of the total inventory of

equipment is actually active at any point in time� Moreover� during an active phase� an item

of equipment will be isolated from the rest of the plant� except when material is transferred

to and from it through one of the built�in connections� Overall� this gives rise to the sporadic

interaction of equipment that is otherwise operated independently�

The selection of the material�oriented approach discussed in chapter � by the de�

velopers of simulation packages for batch and semi�continuous processes� such as BATCHES
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�Joglekar and Reklaitis� 
���� or UNIBATCH �Czulek� 
����� has been motivated by a

combination of this intended role for dynamic simulation� and the characteristics of batch

processes described above� This decision is especially justi	ed in light of the realisation that

the material�oriented approach is also that adopted by most batch plant design and schedul�

ing methodologies� and the fact that the continuous models required for this type of study

are relatively simple� particularly from the point of view of material transfers� in comparison

to those routinely employed for the simulation of continuous processes� Moreover� if a sim�

ulation model concentrates on the batches of material moving through a plant� and regards

processing equipment merely as a resource that is intermittently brought on and o� line�

dynamic changes to the process topology and the set of active equipment can be exploited

to minimise the dimensionality of the continuous model solved at any point in time�

There are� however� many applications of dynamic simulation to batch and semi�

continuous processes for which the equipment�oriented approach normally adopted for the

simulation of continuous processes is probably more appropriate� These applications are

typically those where a much more sophisticated continuous model of the process is required

than those employed for the validation of production schedules� and include many also ad�

vocated for continuous processes� For example


� Regulatory control system design and model based control�

� Computer based operator training�

� Safety and environmental studies�

� Detailed operating procedure synthesis and validation�

� Post commissioning experimentation�

Dynamic simulation is also an extremely important detailed design tool for complex batch

unit operations such as batch distillation columns� where steady�state process analysis tech�

niques obviously provide few insights�

Furthermore� an equipment�oriented approach is particularly suitable for applica�

tions in which the integrity of individual batches is not preserved throughout the process

�e�g� where mixing or splitting of batches is allowed�� and also those in which the same plant

is composed of both batch and continuous sections�
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Adoption of this latter approach dictates that the inventory of equipment in a batch

process� and all the interconnecting piping and ancillary equipment� be modelled as a single

�owsheet� in a manner identical to that of a continuous process� A schedule of task entities

may then be applied to this continuous model of the overall process in order to emulate

the control actions required by the batch mode of operation� Very detailed modelling of

the batch process� particularly of the piping and ancillary equipment employed to achieve

material transfers� is thereby possible� However� if a signi	cant proportion of the process

equipment and piping is inactive at any point in time� but is included in the continuous

model as a consequence of this latter approach� the computational burden associated with

the solution of the simulation model could be increased unnecessarily� On the other hand�

if� for example� heat loss to the surroundings or side reactions signi	cantly alter the state of

any material left in an item of equipment during an inactive phase� it becomes unjusti	able

to drop this item of equipment from the overall continuous model anyway�

This section is devoted to the demonstration of how the equipment�oriented ap�

proach to the modelling of batch and semi�continuous processes may be implemented by the

simulation language presented in the preceding chapters�

����� Batch Reactor

The hypothetical batch plant shown in 	gure ���� is considered� The �owsheet

consists of a batch reactor� upstream storage tanks for the reactants and a cleaning �uid�

and downstream stream storage tanks for the product and the waste produced by each

cleaning cycle�

The well�stirred batch reactor is employed to undertake the following consecutive

homogeneous liquid phase reactions


A �B �� C

C �B �� D

The desired product is component C� and the reactor must be operated in a manner that

maximises its yield� Moreover� high temperatures favour the undesired reaction� so the

operating policy must balance cycle length against achievable yield�
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Figure ����
 Hypothetical Batch Plant

A purely batch operation scheme is infeasible due to the highly exothermic nature of

both reactions� Even mixing equal quantities of reactants A and B at ambient temperature

would lead to the rapid release of large quantities of heat� A semi�continuous mode of

operation is therefore necessary� As components A and C compete for reactant B� but only

the reaction of A is desirable� component A must be provided in excess and component B

supplied in a manner that limits the rate of reaction� Two possible modes of operation are

described in more detail below�

������� Controlled Cooling Load

In this mode of operation� a constant �owrate of B is supplied to the reactor�

and the cooling load is adjusted by a PI�controller in order to maintain a constant reactor

temperature� A single cycle of operation will be composed of the following sequence of

elementary processing steps


�� Charge the reactor with A�
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�� Set �ow of B to a small constant value�

�� Wait until the vessel temperature has risen to the set point�

�� Increase the �ow of B and close the temperature control loop�

�� Wait until the yield of C has reached a maximum�

	� Stop the �ow of B�


� Open the temperature control loop�

�� Wait until the temperature has dropped to ��oC�

�� Empty the reactor to the product storage tank�

The time trajectories of the overall fractional yield� the conversion� and the selectivity re�

sulting from a simulation of this cycle are shown in 	gure �����
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Figure ����
 Yield� Conversion� and Selectivity for Controlled Cooling Load
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������� Discrete Charges of Feed

An interesting mode of operation arises when the feed is added in a series of 	nite

charges� This is the simplest mode because no regulatory temperature control is required�

When a charge of B is supplied to the vessel� the concentration of B rises� leading to increased

reaction rates and a temperature rise� The next charge is added when the temperature has

dropped to a prede	ned value� A single cycle of operation will be composed of the following

sequence of elementary processing steps


�� Charge the reactor with A�

�� Set �ow of B to a small constant value�

�� Wait until the vessel temperature has risen to the set point�

�� Turn on the cooling water and supply a charge of B�

�� Wait until the temperature has dropped to ��oC�

	� Supply a charge of B�


� Repeat the previous two steps until the desired conversion has been achieved�

�� Wait until the temperature has dropped to ��oC�

�� Empty the reactor to the product storage tank�

The time trajectories of the overall fractional yield� the conversion� and the selectivity re�

sulting from a simulation of this cycle are shown in 	gure �����

������� Cyclic Operation of the Entire Plant

Finally� it is possible to build a model of the entire �owsheet shown in ���� in order

to simulate several cycles of operation� In this case� it is assumed that a cleaning operation

is necessary after each batch� After being emptied� the reactor is 	lled with cleaning �uid�

When the concentration of the product compound has dropped below a speci	ed value� the

supply is stopped and the resulting �uid is pumped to the waste tank�

All the external actions required to model the reaction cycle and the cleaning can

be expressed as a schedule of tasks which is then applied to the �owsheet� The trajectories of
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Figure ����
 Yield� Conversion� and Selectivity for Discrete Charges of Feed

the molar holdups in the batch reactor over three cycles are shown in 	gure ����� Component

� is the cleaning �uid�

This model could be augmented by the addition of some form of downstream sep�

aration unit that periodically recycles unreacted reactants back to the upstream storage

vessels� It is intended to use an existing gPROMS model of a batch distillation column for

this purpose �Jourda� 
�����
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Chapter �

Conclusions and Recommendations

��� Conclusions

For a variety of reasons� currently available general�purpose software packages for

the dynamic simulation of industrial processing systems are still not meeting many of the

demands of potential industrial users� The fact that the engineer is still unable to pose

an important class of problems in a cost�e�ective manner is an important contributor to

this de	ciency� It is our opinion that much of this di�culty has arisen from the failure to

recognise that the analysis of the time dependent behaviour of the majority of industrial pro�

cessing systems requires the solution of a combined discrete�continuous simulation problem

as opposed to the continuous simulation problem solved by most of the above packages�

As recently argued by Marquardt �
��
�� future general�purpose simulation pack�

ages should support the analysis of arbitrarily operated processes in a uni	ed framework�

On the basis of the above discussion we believe that this new generation of packages should

support combined discrete�continuous process simulation� The design and implementation

of this new type of simulation package was therefore considered� with particular emphasis

on the representational methodologies required to facilitate the speci	cation of this class of

problem�

No other process modelling package designed to encompass such a broad range of

problems has yet been reported� However� the approach described in this thesis can be

compared with that of the more modern general�purpose combined simulation languages�

such as SYSMOD �Smart and Baker� 
����� and combined simulation packages speci	cally

designed for the analysis of batch processes� such as BATCHES �Joglekar and Reklaitis�


�����

The viewpoint conventionally adopted by the general�purpose combined simulation

languages requires a system to be decomposed into a continuous and a discrete subsystem

which are then allowed to interact as equals during the course of a simulation experiment�
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Most industrial processing systems� however� belong to a special class of combined system

that is composed of a 	xed dimension continuous subsystem involved in the production of

some material� The fundamental physical behaviour of this plant is frequently subject to

discrete changes� It therefore seems more natural to decompose a processing system into the

underlying combined discrete�continuous physical behaviour of the plant� and the external

actions imposed on it by its environment under a particular set of circumstances�

In light of this alternative decomposition� it follows that the underlying physical

behaviour should be considered to be subordinate to the external actions� as opposed to

being equal� The external actions can then drive the plant through the desired changes by

direct manipulation of its characteristics�

The material�oriented approach adopted by simulation packages such as BATCHES

has also been compared at length with the equipment�oriented approach described above� In

conclusion� it is argued that the latter approach is much more suitable for a package designed

to encompass the entire range of processing system operation� However� it is also important

to recognise that the material�oriented approach is probably more convenient for a limited

class of applications to batch processes�

The facilities provided to describe the underlying physical behaviour of a process�

ing system incorporate much of recent work reported in the literature� particularly relating

to model complexity and model reuse� and enhance it further in certain cases� These en�

hancements are summarised at the end of chapter �� Furthermore� the recognition that the

initial condition of a set of DAEs can be expressed in the most general terms possible by the

requisite number of nonlinear equations places even greater �exibility in the hands of the

engineer�

The recognition that the external actions can be modelled in terms of discrete

manipulations of the underlying continuous model has led to the development of a set of

general�purpose primitives that provide considerable �exibility in the scope of these manip�

ulations� albeit to a continuous model of 	xed dimensionality� To the author�s knowledge�

facilities with such �exibility do not exist in any other simulation language� Moreover� this

feature promotes the reusability of the continuous model through the elimination of any

requirement to anticipate the external actions that may be imposed on it�

Furthermore� recent work relating to model complexity and model reuse has been
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complemented with e�ective mechanisms for managing the complexity and promoting the

reuse of the declarations of external actions�

In addition� it has been demonstrated that a practical implementation of these ideas

in the form of a prototype process modelling package is possible� This experience illustrates�

on the one hand� the distinctive software architecture required by such a package� and on

the other� the relative ease with which such a system may be developed within the scope of a

single Ph�D project if an automated compiler construction tool and a modern programming

language are employed�

Finally� it has been possible to employ this prototype to demonstrate the usefulness

and necessity of the application of combined discrete�continuous simulation to the entire

range of processing system operation� from purely continuous to batch�

The tangible product of the research work is therefore the 	rst general�purpose com�

bined discrete�continuous process simulation package suitable for application to the entire

range of processing system operation�

��� Recommendations for Future Research

A key concept in gPROMS is that of the process entity combining a continuous

model entity with a set of task entities describing external actions� Currently� each gPROMS

simulation can involve only a single process entity� The idea of multiple interacting process

entities as a useful extension has been touched upon in section ��� but requires further

consideration and eventual implementation�

The complexity of any activity involving dynamic simulation makes the design of

a more sophisticated user interface for the gPROMS package an issue of key importance�

Recently� important contributions have been made by Stephanopoulos et al� �
����� Bar

and Zeitz �
����� and Westerberg et al� �
��
�� Attention should be focused on three

aspects of this interface


� Graphical and textual problem construction tools to aid the correct formulation of

process models through an understanding of the fundamental structuring concepts

of the simulation language� and the exploitation of recent work relating to model

speci	cation based on physical mechanisms �see� for example� Stephanopoulos et al�
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���a� and V�azquez�Rom�an �
������

� Diagnostic and reporting tools that exploit the wealth of symbolic and structural in�

formation made available as a consequence of holding in memory detailed information

concerning the continuous time dependent behaviour of a system throughout a simu�

lation experiment �Piela� 
�����

� Tools for multiple problem management that facilitate exploitation of the hierarchical

mechanisms employed to build simulation models�

A number of issues of both theoretical and practical interest can be identi	ed as potential

areas for longer term research� These are discussed brie�y in the following text�

����� Modelling of Distributed Parameter Systems

In chapter 
� it was observed that a processing system that contains variables

distributed in one or more spatial dimensions gives rise to a mathematical model composed

of a mixed set of partial di�erential� ordinary di�erential and algebraic equations� or even

a mixed set of partial integro�di�erential and algebraic equations� Within the context of

currently available process modelling systems� this class of problems can only be handled by

a 	xed manual discretisation of the distributed variables and equations �see� for example�

section ����
��

An extension of the modelling language to encompass the declaration of both dis�

tributed and lumped parameter variables and equations within the same model entity would

therefore seem to be extremely desirable� This would free the engineer to concentrate on the

correct formulation of the process model� rather than becoming concerned with the spatial

approximations required by the particular numerical method employed to solve the resulting

set of equations� However� the user may still be required to provide some guidance as to the

most appropriate numerical method�s� for a particular distributed parameter system�

Two further issues of considerable interest can be immediately identi	ed
 the spec�

i	cation of boundary and initial conditions in a completely general manner� and the use of

discrete changes to the functional form of distributed equations and their boundary con�

ditions in order to model phenomena such as physico�chemical discontinuities and control

actions�
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����� Dynamic Alteration to the Static Characteristics of Model Entities

Oren and Ziegler �
���� have partitioned the structure of a dynamic model into

static and dynamic characteristics� The static characteristics of the model entities as pre�

sented in chapter � include


� The component models that make up the overall model�

� The time invariant parameters�

� The set of variables which describe the time dependent behaviour of the system�

The dynamic characteristics refer to the relationships between static characteristics that

determine the time dependent behaviour of the system� in this case the DAEs �or PDAEs��

Combined discrete�continuous simulation requires the ability to vary these charac�

teristics with time� Language structures that facilitate the declaration of variation in the

equation attributes of a model entity have already been discussed at length in chapters �

and ��

It is� however� also possible to perceive the need for language structures that facil�

itate variation of the static characteristics of a model entity as well� A limited form of this

has already implemented by the UNDEFINED construct �see section ��������� which essen�

tially enables a subset of variables� and a corresponding number of equations� to be dropped

from the overall system model during certain well de	ned periods� Furthermore� during the

simulation of a batch process� the ability to alter the static characteristics of a model entity

could ensure that only active items of process equipment are included in the continuous

model of a system at any given point in time� a schedule of tasks could dynamically activate

and deactivate component models of the overall system model as items of process equipment

were brought on and o� line�

����� Multipurpose Equipment

An industrial processing plant is essentially composed of an inventory of process

equipment which may be engaged in the production of one or more materials� Continuous

process simulation packages have conventionally merged an item of process equipment and

the model that describes its continuous time dependent behaviour into a single entity� This
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view is consistent with the observation that the operations for which an item of equipment

may be employed will not vary to a signi	cant extent during the lifetime of a continuous plant�

It is� however� inconsistent with the requirements of many combined discrete�continuous

simulations� where the model employed to describe the continuous time dependent behaviour

of an item of equipment may to a certain degree depend on the operation for which it is

currently being utilised� For instance� in the context of multipurpose batch processes� an

individual item of equipment may be employed for a broad range of operations during the

progress of a production campaign� each of which might be described by a di�erent continuous

model� Moreover� recent work �Stephanopoulos et al�� 
���b� has pointed out that there is

not even a unique mapping between a model and an item of equipment in a continuous

process� because the model employed will usually evolve and expand as a design project

progresses�

In recognition of this� it is argued that a certain class of problems will require an

additional functional element in order to complete the simulation description � the inventory

of equipment entities available� This inventory would represent a time invariant resource

with which simulations of process operations may be performed� Obviously� an equipment

entity will keep track of whether it is active or inactive� and will prevent any attempts to

employ it for two di�erent operations at the same time� An attempt to activate an already

active equipment entity can either be interpreted as an abnormal termination condition� or

a condition under which activation is delayed until the desired equipment entity becomes

available� In this latter case� priorities could be established for situations in which operations

compete for the same equipment entity�

This discussion also raises the issue of the suitability of an item of equipment for

a particular operation� For example� the vessel 	tted with a steam jacket and impeller de�

scribed in section ��� may be suitable for all the operations listed there� but is patently

unsuitable for a batch distillation operation� A model entity will dictate the continuous

time dependent behaviour of an equipment entity during a particular operation� so some

constraints on the range of model entities that may describe an operation should be imposed

by the physical nature of the equipment� The careful development of model entities in inher�

itance hierarchies could again be exploited to establish these constraints� The declaration of

any equipment entity would be accompanied by a speci	cation of a template model entity�
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which dictates the broad class of model entities that may describe the operations in which

the equipment is employed� Any operation applied to a equipment entity must then be

described by a descendant of this template model�

A template model will usually be similar to the root model of an inheritance hier�

archy �if it is not in fact one�
 it may not contain su�cient information for it to be actually

used for simulation� but will be used to describe the basic characteristics of the continuous

behaviour of the operations it is possible perform within the equipment entity� The declara�

tion of an equipment entity could also include the assignment of numerical values to any of

the parameter attributes of the template model� which would then be automatically passed

to any operation that employs the equipment entity� These values would typically relate

to physical characteristics of the vessel concerned� such as size or geometry� and will take

precedence over values from any other source�

Finally� one side e�ect of the same item of equipment being used by a number of

successive operations interspersed by periods of inactivity� is that the 	nal state of each

operation may be associated with the equipment entity and automatically transferred as the

initial condition for the subsequent operation� This� for example� would enable the 	nal

molar holdup of material from a batch reaction operation to become the initial condition for

the next operation performed in the same vessel� even if the two operations were separated

by a signi	cant period of inactivity� When two consecutive operations use di�erent model

entities to describe the behaviour of the same item of equipment� the information transferred

would correspond to that declared in the closest common ancestor by inheritance of the two

model entities�

����� Broadening the Range of Activities

A discussion in chapter � has already emphasised the broad range of activities for

which a model formalism based on DAEs or PDAEs can be employed� The introduction

of process entities to encapsulate the description of these additional activities is an obvious

area of interest�

The extension of the modelling environment to encompass optimisation problems

of both a steady�state and a dynamic nature is extremely interesting� An optimisation

problem would be posed in terms of an objective function and constraints� rather than the
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fully determined set of constraints� initial condition� and quasi�explicit sequence of discrete

changes required for dynamic simulation� A modelling language with which dynamic op�

timisation problems can be posed is considered particularly interesting � the concept of a

schedule could� for example� be exploited to describe point constraints� Moreover� drastic

changes to the static characteristics of a model may be required for mixed integer nonlinear

optimisation�
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Appendix A

The DECLARE Block

Basic variable and stream types are declared within a DECLARE block and are made

available globally to all model entity declarations� This is quite similar to the DECLARE

section of SpeedUp �Prosys� 
��
�� More than one DECLARE block may exist� the only

restriction being that a basic type must be declared before it can be employed by a model

entity declaration� DECLARE blocks containing declarations of commonly used types are

suitable for storage in a library� which can then be imported and reused in new applications�

It may be desirable to include a DECLARE block within the declaration of a model

entity� The basic types declared here would override or specialise the globally declared types�

but would only be made available to the model entity concerned� A proper consideration of

this issue lies beyond the scope of this document�

A DECLARE block is divided into a series of optional sections� outlined below� Each

section contains declarations of basic types in a particular category�

��� The TYPE Section

Within the TYPE section a list of variable types may be declared� These are the

basic types for the variables that describe the time dependent behaviour of a system� and

are all re	nements of the simple real type� A variable type declaration includes the following

information


� An identi	er by which the type may be referred to globally�

� A default real value for instances of the type� This value will be used as the initial guess

for any iterative calculation involving instances of the type� unless it is overridden by

individual instances or a better guess is available from a previous calculation�

� Upper and lower bounds on the value of instances of the type� Any calculation involving

instances of the type must give results that lie within these bounds� These bounds
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DECLARE

TYPE
Flowrate � ��� � � � �E� UNIT � �Kmol	s�
Temperature � 
���� � � � ���� UNIT � �K�

STREAM
MainStream IS Flowrate
 Temperature
 Pressure
 Enthalpy�Flow

END

Figure A�

 Simple DECLARE block�

ensure that the results of a calculation are physically meaningful� they can also be

used to select the desired solution in situations where multiple solutions to a problem

exist� Again� these bounds may be overridden by individual instances of the type�

� An optional units declaration� Whenever instances of the type are reported� the values

will be accompanied by these units�

An example is the declaration of variable types for �owrate and temperature quantities

shown in 	gure A�
� The variable type concept should be extended to include a declaration

of the dimensionality of the quantities represented by instances of the type �in terms of

the fundamental physical dimensions mass� length� time� temperature� charge� and moles��

With this information� it is possible to automatically check the dimensional consistency of

equations during the translation of a problem description �Piela� 
�����

��� The STREAM Section

Stream types provide a template for the stream attributes of a model entity� A

stream type is essentially a record with a series of variable type 	elds� so a stream type

declaration includes the following information


� An identi	er by which the type may be referred to globally�

� A list of variable types for the 	elds of the stream type� An instance of the stream

type will contain a subset of the system variables with the listed types�
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Note that� unlike for example SpeedUp �Prosys� 
��
�� a stream type declaration

contains no information concerning the component mixtures transferred by the stream� A

list of stream types may be declared within a STREAM section� The stream type declaration

shown in 	gure A�
 might be used to represent a process stream�

The language de	nition includes one built�in variable type referred to by the iden�

ti	er AnyType� The type conformance normally required for the subset of the variable at�

tributes contained within a stream attribute is relaxed for 	elds of this type� which may

therefore contain a variable attribute of any type� This relaxation is typically useful in sit�

uations where a stream attribute represents a measurement or control signal which must be

matched with di�erent physical quantities in di�erent instances of a model�
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Appendix B

Yacc Input File for the Current Implementation of gPROMS

�token Identifier � ILITERAL 
 RLITERAL � STRLITERAL �
�token ��� � ��� � ��� � ��� � �	� �
�token ��� �� ��� �� ��� �
 ��� �� ��� ��
�token ���� �� ��� �� �
� �� ��� �� ��� ��
�token ��� 
� ���� 
� ���� 

 ���� 
� ��� 
�
�token � � 
�
�token AND 
� ARRAY 
� AS 
�
�token ASSIGN 
� CASE �� CONNECTION ��
�token CONTINUE �
 DECLARE �� DEFAULT ��
�token DIV �� DO �� ELSE ��
�token END �� EQUATION �� FALSE ��
�token FOR �� GLOBAL�TIME �
 IF ��
�token INHERITS �� INITIAL �� INPUT ��
�token INTEGER �� IS �� LOGICAL ��
�token MOD �� MODEL �� NOT �

�token OF �� OLD �� OR ��
�token PARALLEL �� PARAMETER �� PRESET ��
�token PROCESS �� REAL �� REINITIAL ��
�token REPLACE �
 RESET �� SCHEDULE ��
�token SELECTOR �� SEQUENCE �� SET ��
�token STEADY�STATE �� STEP �� STREAM ��
�token SWITCH �� TASK �
 THEN ��
�token TIME �� TO �� TRUE ��
�token TYPE �� UNIT �� UNTIL ��
�token VARIABLE �� WHEN �� WHILE �

�token WITH �� WITHIN ��
��
	� GRAMMAR DEFINITION �	

Simulation � Block
! Simulation Block
�

	� DEFINITION OF A BLOCK �	

Block � DeclareBlock
! ModelBlock
! TaskBlock
! ProcessBlock
�

	� SYNTAX FOR A DECLARE BLOCK �	
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DeclareBlock � DECLARE VarTypeSection StrmTypeSection END �

	� SYNTAX FOR VARIABLE TYPE DECLARATIONS �	

VarTypeSection � TYPE VarTypeDec
! VarTypeSection VarTypeDec
�

VarTypeDec � Identifier ��� Real ��� Real ��� Real OptionalUnits
" AddVarType���
��
��
��
��� # �

OptionalUnits � UNIT ��� Units " AssignSemanticRecord���
��� #
! Empty
�

Units � STRLITERAL
! Identifier
�

	� SYNTAX FOR STREAM TYPE DECLARATIONS �	

StrmTypeSection � STREAM StrmTypeList
! Empty
�

StrmTypeList � StreamTypeDec
! StrmTypeList StreamTypeDec
�

StreamTypeDec � Identifier IS IdentifierList " AddStreamType���
��� # �

	� SYNTAX FOR A MODEL TYPE DECLARATION �	

ModelBlock � MODEL Identifier " CreateModel��
� # Parent
ParameterSection UnitSection VariableSection
StreamSection SelectorSection SetSection
EquationSection END
" TerminateModel���
���� #

�

Parent � INHERITS Identifier " SetParent��
� #
! Empty
�

	� PARAMETER SECTION �	

ParameterSection � PARAMETER ParameterList
!
�
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ParameterList � ParameterDec
! ParameterList ParameterDec
�

ParameterDec � IdentifierList AS ParameterType
" ProcessEntity���
��� # �

ParameterType � BasicParameter
! ARRAY ��� ExpList ��� OF BasicParameter
" CreateArray���
��
��� #

�

BasicParameter � BasicType DEFAULT SetValues
" CreatePmtr���
Default
��
��� #

! BasicType
" CreatePmtr���
NotAssigned
��
��� #

�

BasicType � REAL
! INTEGER
! LOGICAL
�

	� UNIT SECTION �	

UnitSection � UNIT UnitList
! Empty
�

UnitList � UnitDec
! UnitList UnitDec
�

UnitDec � IdentifierList AS UnitType " ProcessEntity���
��� # �

UnitType � BasicUnit
! ARRAY ��� ExpList ��� OF BasicUnit
" CreateArray���
��
��� #

�

BasicUnit � Identifier " CreateUnit���
��� # �

	� SET SECTION �	

SetSection � SET " BeginParaSetSection # SetList
" AssignSemanticRecord���
��� #

! Empty
�

SetList � SetDec " StartAssignList���
��� #
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! SetList SetDec " NextAssignment���
�

��� #
�

SetDec � PathName ���� SetValues ��� " Assignment���
��
��� #
�

	� VARIABLE SECTION �	

VariableSection � VARIABLE VariableList
! Empty
�

VariableList � VariableDec
! VariableList VariableDec
�

VariableDec � IdentifierList AS VariableType " ProcessEntity���
��� # �

VariableType � BasicVariable
! ARRAY ��� ExpList ��� OF BasicVariable
" CreateArray���
��
��� #

�

BasicVariable � Identifier " CreateVar���
��� # �

	� STREAM SECTION �	

StreamSection � STREAM StreamList
! Empty
�

StreamList � StreamDec
! StreamList StreamDec
�

StreamDec � Identifier IS PathName " ProcessStreamMerge���
��� #
! Identifier ��� PathNameList AS StreamType
" ProcessStream���
��
��� #

�

StreamType � BasicStream
! ARRAY ��� ExpList ��� OF BasicStream
" CreateArray���
��
��� #

�

BasicStream � Identifier " CreateStream���
��� #
! CONNECTION " CreateConnection���� #
�

	� SELECTOR SECTION �	



���

SelectorSection � SELECTOR SelectorList
! Empty
�

SelectorList � SelectorDec
! SelectorList SelectorDec
�

SelectorDec � IdentifierList AS SelectorType " ProcessEntity���
��� # �

SelectorType � BasicSelector
! ARRAY ��� ExpList ��� OF BasicSelector
" CreateArray���
��
��� #

�

BasicSelector � ��� IdentifierList ��� " CreateSelector��

FALSE
��
��� #
! ��� IdentifierList ��� DEFAULT Identifier
" CreateSelector��

TRUE
��
��� #

�

	� EQUATION SECTION �	

EquationSection � EQUATION EquationList " AssignSemanticRecord���
�
� #
! Empty
�

	� SYNTAX FOR A TASK TYPE DECLARATION �	

TaskBlock � TASK Identifier " CreateTask��
� # TaskParaSection
ScheduleSection END " TerminateTask���� # �

	� PARAMETER SECTION �	

TaskParaSection � PARAMETER TaskParaList
! Empty
�

TaskParaList � TaskParameter
! TaskParaList TaskParameter
�

TaskParameter � IdentifierList AS TaskParamType
" ProcessEntity���
��� #

�

TaskParamType � MODEL Identifier " CreateUnit��

��� # �

	� SCHEDULE SECTION �	

ScheduleSection � SCHEDULE Schedule " AssignSemanticRecord���
�
� # �



��


	� SYNTAX FOR A PROCESS TYPE DECLARATION �	

ProcessBlock � PROCESS Identifier " CreateProcess��
� #
ParameterSection IntUnit SetSection
EquationSection AssignSection PresetSection
IntSelector IntInitial IntSchedule END
" TerminateProcess���
��
��
��
���
��
� #

�

	� INT UNIT SECTION �	
IntUnit � UNIT UnitList �

	� ASSIGN SECTION �	

AssignSection � ASSIGN " BeginSetSection # AssignWithList
" AssignSemanticRecord���
��� #

! Empty
�

	� PRESET SECTION �	

PresetSection � PRESET PresetWithList " AssignSemanticRecord���
�
� #
! Empty
�

PresetWithList � PresetWithin " StartAssignList���
��� #
! PresetWithList PresetWithin " NextAssignment���
�

��� #
�

PresetList � Preset " StartAssignList���
��� #
! PresetList Preset " NextAssignment���
�

��� #
�

Preset � Name ���� Real ��� " PresetVariable���
��
��
��
��� #
! Name ���� OptReal ��� OptReal ��� OptReal ���
" PresetVariable���
��
��
��
��� #

! FOR Identifier ���� SimpleExp TO SimpleExp OptStep DO
" InsertCounter��
� # PresetList END
" ForAssignment��

��
��
��
���
��� #

! PresetWithin
�

PresetWithin � WITHIN PathName " PushPathName��

��� # DO PresetList END
" WithinAssignment���
��
��� #

�

OptReal � Real
! Empty
�
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	� SELECTOR SECTION �	

IntSelector � SELECTOR " BeginSelectorSection # AssignmentList
" AssignSemanticRecord���
��� #

! Empty
�

	� INITIAL SECTION �	

IntInitial � INITIAL EquationList " StoreInitials��
� #
! INITIAL STEADY�STATE " SteadyState #
! Empty
�

	� SCHEDULE SECTION �	

IntSchedule � ScheduleSection
! Empty
�

	� UTILITY SYNTAX CONSTRUCTS �	

	� A LIST OF IDENTIFIERS �	

IdentifierList � Identifier " StartIdList�FALSE
��
��
��� #
! IdentifierList �
� Identifier
" NextId���
FALSE
��
��
��� #

�

	� A LIST OF PATHNAMES �	

PathNameList � PathName " StartPathNameList���
��� #
! PathNameList �
� PathName " NextPathName���
��
��� #
�

	� A LIST OF EQUATIONS �	

EquationList � Equation " StartEqtnList���
��� #
! EquationList Equation " NextEqtn���
�

��� #
�

Equation � SimpleEquation ��� " SimpleEquation���
��� #
! WithinEquation
! ForEquation
! IfEquation
! CaseEquation
�

	� STRUCTURED EQUATIONS �	



���

WithinEquation � WITHIN PathName " PushPathName��

��� # DO
EquationList END
" WithinEquation���
��
��� #

�

ForEquation � FOR Identifier ���� SimpleExp TO SimpleExp OptStep DO
" InsertCounter��
� # EquationList END
" ForEquation��

��
��
��
���
��� #

�

OptStep � STEP SimpleExp " AssignSemanticRecord���
�
� #
! Empty
�

IfEquation � IF Expression THEN EquationList ELSE EquationList END
" IfEquation��

��
��
��� #

�

CaseEquation � CASE PathName OF CaseList END
" CaseEquation��

��
��� #

�

CaseList � CaseClause " StartClauseList���
��� #
! CaseList CaseClause " NextClause���
�

��� #
�

CaseClause � WHEN PathName ��� EquationList OptSwitchList
" CaseClause��

��
��
��� #

�

OptSwitchList � SwitchList
! Empty
�

SwitchList � Switch " StartEqtnList���
��� #
! SwitchList Switch " NextEqtn���
�

��� #
�

Switch � SWITCH TO PathName IF Expression ���
" SwitchEquation���
��
��� # �

	� A SIMPLE EQUATION �	

SimpleEquation � SimpleExp Equality SimpleExp
" StartExpList�Single
��
��
�
� �
NextExp��

Single
��
��
��� #

! SimpleEquation Equality SimpleExp
" NextExp���
Single
��
��
��� #

�

	� A LIST OF ASSIGNMENTS �	
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AssignWithList � AssignWithin " StartAssignList���
��� #
! AssignWithList AssignWithin " NextAssignment���
�

��� #
�

AssignmentList � AssignEntity " StartAssignList���
��� #
! AssignmentList AssignEntity " NextAssignment���
�

��� #
�

AssignEntity � PathName ���� SetValues ��� " Assignment���
��
��� #
! AssignWithin
! AssignFor
�

AssignWithin � WITHIN PathName " PushPathName��

��� # DO
AssignmentList END
" WithinAssignment���
��
��� #

�

AssignFor � FOR Identifier ���� SimpleExp TO SimpleExp OptStep DO
" InsertCounter��
� # AssignmentList END
" ForAssignment��

��
��
��
���
��� #

�

	� A SCHEDULE OF TASKS �	

ScheduleList � Schedule " StartScheduleList���
��� #
! ScheduleList Schedule " NextSchedule���
�

��� #
�

Schedule � TaskInstance
! SequenceTask
! ParallelTask
! WhileTask
! IfTask
! ContinueTask
! ResetTask
! ReinitialTask
! ReplaceTask
�

TaskInstance � Identifier ��� ParaAssignList ��� ���
" TaskInstance���
��
��� #

! Identifier ���
" TaskInstance���
�

��� #

�

SequenceTask � SEQUENCE ScheduleList END " SequenceTask��

��� # �

ParallelTask � PARALLEL ScheduleList END " ParallelTask��

��� # �



���

WhileTask � WHILE Expression DO Schedule END
" WhileDoTask��

��
��� #

�

IfTask � IF Expression THEN Schedule END
" IfThenTask��

��
��
��� #

! IF Expression THEN Schedule ELSE Schedule END
" IfThenTask��

��
��
��� #

�

ContinueTask � CONTINUE FOR SimpleExp " ContinueFor���
��� #
! CONTINUE UNTIL Expression " ContinueUntil���
��� #
! CONTINUE FOR SimpleExp LogicalOp UNTIL Expression
" ContinueLogical���
��
��
��� #

�

ResetTask � RESET " BeginResetTask # AssignmentList END
" ResetTask���
��� # �

ReinitialTask � REINITIAL PathNameList WITH " OLDOkay # EquationList END
" ReinitialTask��

��
��� # �

ReplaceTask � REPLACE PathNameList WITH " BeginResetTask #
AssignmentList END " ReplaceTask��

��
��� #

�

	� LISTS OF PARAMETER VALUE ASSIGNMENTS �	

ParaAssignList � Identifier IS SetValues
" StartIdList�FALSE
��
��
��� #

! ParaAssignList �
� Identifier IS SetValues
" NextId���
FALSE
��
��
��� #

�

	� LISTS OF EXPRESSIONS �	

SetValues � ��� ExpList � � " AssignSemanticRecord���
�
� #
! Expression " StartExpList�Single
��
��
��� #
�

ExpList � Expression
" StartExpList�Single
��
��
��� #

! Empty
" StartExpList�Blank
��
��
��� #

! SimpleExp ��� SimpleExp
" StartExpList�Bounds
��
��
��� #

! ExpList �
� Expression
" NextExp���
Single
��
��
��� #

! ExpList �
� Empty
" NextExp���
Blank
��
��
��� #

! ExpList �
� SimpleExp ��� SimpleExp
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" NextExp���
Bounds
��
��
��� #
�

	� AN EXPRESSION �	

Expression � Relation
! Expression LogicalOp Relation " Reduce��

��
��
��� #
�

Relation � SimpleExp
! Relation RelationOp SimpleExp " Reduce��

��
��
��� #
�

SimpleExp � UnaryTerm
! SimpleExp AddOp Term " Reduce��

��
��
��� #
�

UnaryTerm � UnaryOp Term " EvalUnary���
�

��� #
! Term
�

Term � Factor
! Term MultOp Factor " Reduce��

��
��
��� #
�

Factor � Primary Power Primary " Reduce��

��
��
��� #
! NOT Primary " EvalUnary���
�

��� #
! Primary
�

Primary � ILITERAL " PushIntConst���
��� #
! RLITERAL " PushRealConst���
��� #
! Logical " PushLogConst���
��� #
! TIME " PushTime���� #
! GLOBAL�TIME " PushGlobalTime���� #
! Name " PushVariable���
��� #
! ��� Expression ��� " AssignSemanticRecord���
�
� #
! OLD ��� Expression ��� " PushOld���
��� #
�

	� A PATHNAME �	

Name � PathName
! ��� Identifier IdSuffix " StartIdList�TRUE
�

��
��� #
! PathName ��� ��� Identifier IdSuffix
" NextId���
TRUE
��
��
��� #

�

PathName � Identifier IdSuffix
" StartIdList�FALSE
��
�

��� #

! PathName ��� Identifier IdSuffix
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" NextId���
FALSE
��
��
��� #
�

IdSuffix � ��� ExpList ��� " AssignSemanticRecord���
�
� #
! Empty
�

	� REAL
 INTEGER OR BOOLEAN VALUES �	

Real � RealValue
! UnaryOp RealValue " ProcessReal���
�

��� #
�

Logical � TRUE
! FALSE
�

RealValue � RLITERAL
! ILITERAL
�

	� OPERATOR DEFINITIONS �	

LogicalOp � AND " PushRator���
��� #
! OR " PushRator���
��� #
�

RelationOp � ��� " PushRator���
��� #
! ���� " PushRator���
��� #
! ��� " PushRator���
��� #
! ���� " PushRator���
��� #
! ��� " PushRator���
��� #
! ���� " PushRator���
��� #
�

AddOp � ��� " PushRator���
��� #
! ��� " PushRator���
��� #
�

MultOp � ��� " PushRator���
��� #
! �	� " PushRator���
��� #
! DIV " PushRator���
��� #
! MOD " PushRator���
��� #
�

Power � ��� " PushRator���
��� # �

UnaryOp � ���
! ���
�



���

Equality � ���
! IS
�

	� THE EMPTY SET �	

Empty � " ���Form �� Empty # �



���

Appendix C

gPROMS Input File for the Evaporator Pilot Plant

$
$������������������������������������������������������������������
$
$ Model to simulate the Evaporator Pilot Plant at Imperial College
$
$������������������������������������������������������������������
$

DECLARE

TYPE
Concentration � ����� � ��E�� � ����� UNIT � �kg	kg�
Mass�Rate � ��� � ��E� � �E� UNIT � �kg	sec�
Temperature � 
� � � � 
�� UNIT � �degC�
Length � ��� � ��E�� � ��� UNIT � �m�
Enthalpy � ��� � � � ���� UNIT � �kJ	kg�
Volume � � � ��E�� � �� UNIT � �m��
Pressure � ����� � ��� � �� UNIT � �kg	cm
�
Enthalpy�Flow � 
�� � ��E� � �E� UNIT � �kJ	sec�
Area � ��� � � � ��� UNIT � �m
�
Mass�Holdup � �
E� � ��E�� � ��E� UNIT � �kg�
Int�Energy � ��� � ��E� � ��E� UNIT � �kJ�
Density � ���� � � � 
��� UNIT � �kg	m��
Fraction � ��� � � � ������
Positive � ��� � ��E�� � �E�
NoType � ��� � ��E� � �E�

STREAM
Mainstream�CT IS Mass�Rate
 Concentration
 Temperature
Mainstream IS Mass�Rate
 Concentration
 Temperature
 Pressure
Reflux�CT IS Mass�Rate
 Mass�Rate
 Concentration
 Temperature
Reflux IS Mass�Rate
 Mass�Rate
 Concentration
 Temperature


Pressure
Vapour IS Mass�Rate
 Temperature
Utility IS Mass�Rate
 Pressure

END

$
$�������������������������������������������������������������������
$
$ Model of a flow meter
$



���

$�������������������������������������������������������������������
$

MODEL Flow�Meter

VARIABLE
Flow AS Mass�Rate
Concentration AS Concentration
Temperature AS Temperature
Pressure AS Pressure
X�
 X
 AS Pressure

STREAM
Inlet � Flow
 Concentration


Temperature
 Pressure AS Mainstream
Output � Flow
 Concentration


Temperature
 Pressure AS Mainstream
Signal � Flow AS CONNECTION

END $ Flow�Meter

$
$��������������������������������������������������������������������
$
$ Model of a control valve
$
$��������������������������������������������������������������������
$

MODEL Control�Valve

VARIABLE
Position AS Fraction
Flow AS Mass�Rate
Concentration AS Concentration
Press�In
 Press�Out AS Pressure
Temperature AS Temperature
Delta�P
 Valve�Constant
 Control�Action AS Notype

STREAM
Inlet � Flow
 Concentration


Temperature
 Press�In AS Mainstream
Output � Flow
 Concentration


Temperature
 Press�Out AS Mainstream
Action � Control�Action AS CONNECTION

EQUATION

$ Clip signal from controller
IF Control�Action � � THEN

Position � � �



��


ELSE
IF Control�Action � � THEN
Position � � �

ELSE
Position � Control�Action �

END
END $if

$ Flowrate 	 Delta P relationship
Flow � Position�Valve�Constant�SGN�Delta�P��SQRT�ABS�Delta�P�� �

$ Delta�P definition
Delta�P � Press�In � Press�Out �

END $ Control�Valve

$
$��������������������������������������������������������������������
$
$ Model of a proportional controller
$
$��������������������������������������������������������������������
$

MODEL Proportional�Integral�Controller

VARIABLE
Setpoint
 Measured�Variable
 Gain AS Notype
Integral�Error
 Error
 Reset�Time AS Notype
Control�Action
 Bias
 Steady�Bias AS Notype

STREAM
Action � Control�Action AS CONNECTION
Reading � Measured�Variable AS CONNECTION

EQUATION

$ Control�Action
Control�Action � Bias � Gain��Error � Integral�Error	Reset�Time� �

$ Integral Error definition
�Integral�Error � Error �

$ Error definition
Error � Setpoint � Measured�Variable �

END $ Proportional�Integral�Controller

$
$��������������������������������������������������������������������
$
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$ Model of a pump
$
$��������������������������������������������������������������������
$

MODEL Pump

VARIABLE
Pump�Status AS Fraction
Flow AS Mass�Rate
Press�In
 Press�Out AS Pressure
Delta�P AS Positive
Temperature AS Temperature
Concentration AS Concentration
Parameter��
 Parameter�
 AS NoType

STREAM
Inlet � Flow
 Concentration


Temperature
 Press�In AS Mainstream
Output � Flow
 Concentration


Temperature
 Press�Out AS Mainstream

EQUATION

$ Pump Characteristic
IF Pump�Status � ��� THEN

Flow � Parameter�� � Parameter�
�Delta�P�� �
ELSE
Delta�P � ��� �

END

$ Delta P definition
Delta�P � Press�Out � Press�In �

END $ Pump

$
$�������������������������������������������������������������������
$
$ Model of a flow control loop
$
$�������������������������������������������������������������������
$

MODEL Flow�Control

UNIT
Valve AS Control�Valve
Controller AS Proportional�Integral�Controller
Pump AS Pump
Sensor AS Flow�Meter



���

STREAM
Inlet IS Pump�Inlet
Output IS Sensor�Output

EQUATION
Pump�Output IS Valve�Inlet �
Valve�Output IS Sensor�Inlet �
Sensor�Signal IS Controller�Reading �
Controller�Action IS Valve�Action �

END $ Flow�Control

$
$��������������������������������������������������������������������
$
$ Model to simulate a feed tank
$
$��������������������������������������������������������������������
$

MODEL Tank�Feed

PARAMETER
Press�Atm AS REAL

VARIABLE
Flow�Bottom
 Flow�Refill AS Mass�Rate
Conc�Bulk
 Conc�Refill
 Conc�Bottom AS Concentration
Enth�Bulk
 Enth�Refill
 Enth�Bottom AS Enthalpy
Temp�Bulk
 Temp�Refill
 Temp�Bottom AS Temperature
Area AS Area
Liquid�Height AS Length
Heat�Loss AS Enthalpy�Flow
Holdup
 Total�Holdup AS Mass�Holdup
Total�U�Holdup AS Int�Energy
Density AS Density
Press AS Pressure

STREAM
$ Inlet streams
Inlet�Refill � Flow�Refill


Conc�Refill
 Temp�Refill AS Mainstream�CT
Bottom � Flow�Bottom


Conc�Bottom
 Temp�Bottom
 Press AS Mainstream

EQUATION

$ Hydrostatic pressure
Press � Press�Atm � �����Density�Liquid�Height	�E� �



���

$ Material Balances
�Total�Holdup � Flow�Refill � Flow�Bottom �
�Holdup � Flow�Refill�Conc�Refill � Flow�Bottom�Conc�Bottom �

$ Conc Bulk definition
Conc�Bulk�Total�Holdup � Holdup �

$ Total�Holdup 	 Height relationship
Total�Holdup � Area�Liquid�Height�Density �

$ Energy Balance
�Total�U�Holdup � Flow�Refill�Enth�Refill

� Flow�Bottom�Enth�Bottom � Heat�Loss �

$ Total U Holdup definition
Total�U�Holdup � Total�Holdup�Enth�Bulk � $ pv term %%%%%%%%%

$ PHYSICAL PROPERTIES

$ Specific enthalpies
Enth�Bulk � ����� � ������Temp�Bulk

� ������ � ��
��Temp�Bulk��Conc�Bulk �
Enth�Bottom � ����� � ������Temp�Bottom

� ������ � ��
��Temp�Bottom��Conc�Bottom �
Enth�Refill � ����� � ������Temp�Refill

� ������ � ��
��Temp�Refill��Conc�Refill �

$ Density
Density � ������ � ������Temp�Bulk � ��������Temp�Bulk�
��Conc�Bulk

� ������� � ��������Temp�Bulk � ���������Temp�Bulk�
 �

END

$
$�������������������������������������������������������������������
$
$ Model to simulate the product tank � with built in level control
$
$�������������������������������������������������������������������
$

MODEL Tank�Product

VARIABLE
Flow�In
 Flow�Out AS Mass�Rate
Temp�In
 Temp�Bulk
 Temp�Ambient AS Temperature
Enth�In
 Enth�Bulk AS Enthalpy
Conc�In
 Conc�Bulk AS Concentration
Area
 HT�Area AS Area
Height�Tank
 Setpoint AS Length
Heat�Loss AS Enthalpy�Flow



���

Density AS Density
Cv
 Pump�Product
 HT�Coeff AS Notype
Holdup
 Total�Holdup AS Mass�Holdup
Total�U�Holdup AS Int�Energy
Position
 Action
 Gain
 Error
 Bias AS Notype

STREAM
$ Inlet stream
Inlet � Flow�In
 Conc�In
 Temp�In AS Mainstream�CT
$ Output stream
Output � Flow�Out
 Conc�Bulk
 Temp�Bulk AS Mainstream�CT

EQUATION

$ Material Balances
�Total�Holdup � Flow�In � Flow�Out �
�Holdup � Flow�In�Conc�In � Flow�Out�Conc�Bulk �

$ Conc bulk definition
Holdup � Conc�Bulk�Total�Holdup �

$ Total Holdup 	 Level relationship
Total�Holdup � Density�Height�Tank�Area �

$ Flow Out control
IF Pump�Product �� ��� THEN
Flow�Out � Cv�Position �

ELSE
Flow�Out � ��� �

END $ if

$ Energy Balance
�Total�U�Holdup � Flow�In�Enth�In �

Flow�Out�Enth�Bulk � Heat�Loss �

$ Total U Holdup definition
Total�U�Holdup � Total�Holdup�Enth�Bulk �

$ Heat Transfer coefficient
HT�Coeff � �������ABS�Temp�Bulk � Temp�Ambient� � ����� �

$ Heat loss
Heat�Loss � HT�Coeff�HT�Area��Temp�Bulk � Temp�Ambient�	���� �

$ Define error
Error � Height�Tank � Setpoint �

$ Calculate control action
Action � Bias � Gain�Error �

$ Limit maximum control action
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IF Action �� � THEN
Position � ��� �

ELSE
IF Action �� ��� THEN
Position � Action �

ELSE
Position � ��� �

END $ if
END $ if

$ PHYSICAL PROPERTIES

$ Specific enthalpies
Enth�In � ����� � ������Temp�In

� ������ � ��
��Temp�In��Conc�In �
Enth�Bulk � ����� � ������Temp�Bulk

� ������ � ��
��Temp�Bulk��Conc�Bulk �

$ Density
Density � ������� � ��������Temp�Bulk � ���������Temp�Bulk�
 �

������ � ������Temp�Bulk � ��������Temp�Bulk�
��Conc�Bulk �

END

$
$����������������������������������������������������������������
$
$ Model to simulate the calandria
$
$����������������������������������������������������������������
$

MODEL Calandria�D

PARAMETER
Press�Atm AS REAL

VARIABLE
OverFlow�Flow

Flow�Steam
 Flow�Below
 Flow�Vapour AS Mass�Rate
Liquid�Volume AS Volume
Liquid�Height
 Height�Liquid�Max AS Length
Total�Holdup
 Solute�Holdup AS Mass�Holdup
Feed�Density

Bulk�Density
 OverFlow�Density AS Density
Press�Top
 Press�Below AS Pressure
Temp�Bulk
 Temp�Below
 Temp�OverFlow AS Temperature
Conc�Bulk
 Conc�Below
 Conc�OverFlow AS Concentration
Enth�Below
 Enth�Bulk
 Enth�OverFlow AS Enthalpy
Total�U�Holdup AS Int�Energy
UA AS NoType
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Delta�T
 Temp�Steam
 Temp�Boil AS Temperature
Enth�Vapour AS Enthalpy
Heat
 Heat�Loss AS Enthalpy�Flow
Temp�Ambient AS Temperature
HT�Coeff AS Notype
HT�Area AS Area

STREAM
Below � Flow�Below
 Conc�Below


Temp�Below
 Press�Below AS Mainstream
OverFlow � OverFlow�Flow


Conc�OverFlow

Temp�OverFlow
 Press�Top AS MainStream

Vapour � Flow�Vapour AS CONNECTION

SELECTOR
Flow�Flag AS �Full
Not�Full�

EQUATION

$ Total Mass Balance
�Total�Holdup � Flow�Below � Flow�Vapour � OverFlow�Flow �

$ Solute balance
�Solute�Holdup � Flow�Below�Conc�Below

� OverFlow�Flow�Conc�OverFlow �

$ Energy balance
�Total�U�Holdup � Flow�Below�Enth�Below

� OverFlow�Flow�Enth�OverFlow
� Flow�Vapour�Enth�Vapour
� Heat � Heat�Loss �

$ Total�Holdup 	 Volume relationship
Total�Holdup � Liquid�Volume�Bulk�Density �

$ Volume 	 Height relationship
Liquid�Volume � Liquid�Height������E�� �

$ Hydrostatic pressre head
Press�Below � Press�Top � Bulk�Density�Liquid�Height�����	�E� �

$ Determine overflow out the top� To avoid a problem of high index

$ a controller with a very high gain is put on the overflow�
CASE Flow�Flag OF
WHEN Not�Full � OverFlow�Flow � � �

SWITCH TO Full
IF Liquid�Height � Height�Liquid�Max �

WHEN Full � OverFlow�Flow �
�E���Liquid�Height � Height�Liquid�Max� �

SWITCH TO Not�Full
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IF Press�Top �� Press�Atm �
END $ case

$ Vapour flow� Controller to avoid a problem of high index�
IF Temp�Bulk � Temp�Boil THEN
Flow�Vapour � �E���Temp�Bulk � Temp�Boil� �

ELSE
Flow�Vapour � ��� �

END

$ Heat Transfer coefficient
HT�Coeff � �������ABS�Temp�Bulk � Temp�Ambient� � ����� �

$ Heat loss
Heat�Loss � HT�Coeff�HT�Area��Temp�Bulk � Temp�Ambient�	���� �

$ Boiling point temperature
Temp�Boil � 
�����Conc�Bulk � ������ �

$ Bulk concentration and bulk temperature definitions
IF Total�Holdup � � THEN

Solute�Holdup � Conc�Bulk�Total�Holdup �
Total�U�Holdup � Total�Holdup�Enth�Bulk �

ELSE
Conc�Bulk � ��� �
Temp�Bulk � Temp�Ambient �

END

$ Delta T definition
Delta�T � ABS�Temp�Steam � �Temp�Bulk � Temp�Below�	
��� �

$ UA coeff definition
IF Delta�T � �� THEN
UA � ���
�� � ������Delta�T �

ELSE
IF Delta�T �� 
��� THEN
UA � ��� �

ELSE
IF Delta�T �� 

��� THEN

UA � ���
� � ������Delta�T �
ELSE

UA � ��
 �
END $ if

END $ if
END $ if

$ Heat from steam conditional equations
IF Flow�Steam �� � THEN
Heat � ��� �

ELSE
IF �Temp�Steam �� Temp�Bulk� OR �Total�Holdup �� �� THEN
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Heat � ��� �
ELSE
Heat � UA�Delta�T �

END $ if
END $ if

$ PHYSICAL PROPERTIES

$ Densities
Feed�Density �

������ � ������Temp�Below � ��������Temp�Below�
��Conc�Below
� ������� � ��������Temp�Below � ���������Temp�Below�
 �

Bulk�Density �
������ � ������Temp�Bulk � ��������Temp�Bulk�
��Conc�Bulk

� ������� � ��������Temp�Bulk � ���������Temp�Bulk�
 �
OverFlow�Density � ������� � Conc�OverFlow������� �

������Temp�OverFlow � ��������Temp�OverFlow�
�
� ��������Temp�OverFlow � ���������Temp�OverFlow�
 �

$ Specific Enthalpies
Enth�Bulk � ����� � ������Temp�Bulk

� ������ � ��
��Temp�Bulk��Conc�Bulk �
Enth�Below � ����� � ������Temp�Below

� ������ � ��
��Temp�Below��Conc�Below �
Enth�Vapour � 
�����Temp�Bulk � 
����� �
Enth�OverFlow � ����� � ������Temp�OverFlow

� ������ � ��
��Temp�OverFlow��Conc�OverFlow �

END

$
$����������������������������������������������������������������
$
$ Model of a vertical tube
$
$����������������������������������������������������������������
$

MODEL Vertical�Tube

PARAMETER
Press�Atm AS REAL

VARIABLE
Feed�Flow
 Flow�Vapour
OverFlow�Flow AS Mass�Rate
Liquid�Volume AS Volume
Liquid�Height AS Length
Total�Holdup
 Solute�Holdup AS Mass�Holdup
Feed�Density
 Bulk�Density AS Density
Press�Bottom AS Pressure
Temp�Feed
 Temp�Bulk AS Temperature
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Conc�Feed
 Conc�Bulk AS Concentration
Enth�Feed
 Enth�Bulk AS Enthalpy
Total�U�Holdup AS Int�Energy
Heat�Loss AS Enthalpy�Flow
HT�Coeff AS NoType
HT�Area AS Area
Temp�Ambient AS Temperature
Height�Liquid�Max AS Length

STREAM
Feed � Feed�Flow
 Conc�Feed


Temp�Feed
 Press�Bottom AS MainStream
Vapour�In � Flow�Vapour AS CONNECTION
OverFlow � OverFlow�Flow
 Flow�Vapour


Conc�Bulk
 Temp�Bulk AS Reflux�CT

EQUATION

$ Overall Mass Balance
�Total�Holdup � Feed�Flow � OverFlow�Flow �

$ Total Holdup 	 Volume relationship
Total�Holdup � Liquid�Volume�Bulk�Density �

$ Volume 	 Height relationship
Liquid�Volume � Liquid�Height�
��
�E�� �

$ Hydrostatic pressure head
Press�Bottom � Press�Atm � Bulk�Density�Liquid�Height�����	�E� �

IF Liquid�Height � Height�Liquid�Max THEN
OverFlow�Flow � �E���Liquid�Height � Height�Liquid�Max� �

ELSE
OverFlow�Flow � � �

END

$ Solute balance
�Solute�Holdup � Feed�Flow�Conc�Feed � OverFlow�Flow�Conc�Bulk �

$ Energy Balance
�Total�U�Holdup � Feed�Flow�Enth�Feed �

OverFlow�Flow�Enth�Bulk � Heat�Loss �

$ Bulk concentration and bulk temperature definitions
IF Total�Holdup � � THEN

Solute�Holdup � Conc�Bulk�Total�Holdup �
Total�U�Holdup � Total�Holdup�Enth�Bulk �

ELSE
Conc�Bulk � ��� �
Temp�Bulk � Temp�Ambient �

END



��


$ Heat Transfer coefficient
HT�Coeff � �������ABS�Temp�Bulk � Temp�Ambient� � ����� �

$ Heat loss
Heat�Loss � HT�Coeff�HT�Area��Temp�Bulk � Temp�Ambient�	���� �

$ PHYSICAL PROPERTIES

$ Densities
Feed�Density �

������ � ������Temp�Feed � ��������Temp�Feed�
��Conc�Feed
� ������� � ��������Temp�Feed � ���������Temp�Feed�
 �

Bulk�Density �
������ � ������Temp�Bulk � ��������Temp�Bulk�
��Conc�Bulk

� ������� � ��������Temp�Bulk � ���������Temp�Bulk�
 �

$ Specific Enthalpies
Enth�Bulk � ����� � ������Temp�Bulk

� ������ � ��
��Temp�Bulk��Conc�Bulk �
Enth�Feed � ����� � ������Temp�Feed

� ������ � ��
��Temp�Feed��Conc�Feed �

END

$
$����������������������������������������������������������������
$
$ Model of a splitter
$
$����������������������������������������������������������������
$

MODEL Split

PARAMETER
Press�Atm AS REAL
Pipe�Height AS REAL

VARIABLE
Flow�Vapour

Flow�Tube
 Flow�Junct
 Product�Flow AS Mass�Rate
Liquid�Volume AS Volume
Liquid�Height
 Height�Liquid�Max AS Length
Total�Holdup
 Solute�Holdup AS Mass�Holdup
Feed�Density
 Density�Tube
 Bulk�Density AS Density
Press�Bottom AS Pressure
Temp�Junct
 Temp�Bulk
 Temp�Tube AS Temperature
Conc�Junct
 Conc�Bulk
 Conc�Tube AS Concentration
Enth�Junct
 Enth�Bulk
 Enth�Tube AS Enthalpy
Total�U�Holdup AS Int�Energy
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Heat�Loss AS Enthalpy�Flow
HT�Coeff AS Notype
HT�Area AS Area
Temp�Ambient AS Temperature

STREAM
$ Inlet streams
Inlet�Tube � Flow�Tube
 Flow�Vapour


Conc�Tube
 Temp�Tube AS Reflux�CT
$ Output streams
Output�Product � Product�Flow


Conc�Bulk
 Temp�Bulk AS MainStream�CT
Output�Vapour � Flow�Vapour
 Temp�Bulk AS Vapour
Junction � Flow�Junct
 Conc�Junct


Temp�Junct
 Press�Bottom AS Mainstream

SET
Pipe�Height �� ��� �

EQUATION

$ Overall Mass Balance
�Total�Holdup � Flow�Tube � Flow�Junct � Product�Flow �

$ Total Holdup 	 Volume relationship
Total�Holdup � Liquid�Volume�Bulk�Density �

$ Liquid�Height 	 Volume relationship
IF Liquid�Height � Pipe�Height THEN
Liquid�Volume � ���������Pipe�Height �

���
����Liquid�Height � Pipe�Height� �
ELSE
Liquid�Volume � ���������Liquid�Height �

END $ if

$ Hydrostatic pressure head
Press�Bottom � Press�Atm � Bulk�Density�Liquid�Height�����	�E� �

IF Liquid�Height �� Height�Liquid�Max THEN
Product�Flow � �E���Liquid�Height � Height�Liquid�Max� �

ELSE
Product�Flow � � �

END

$ Solute balance
�Solute�Holdup � Flow�Junct�Conc�Junct

� Flow�Tube�Conc�Tube
� Conc�Bulk�Product�Flow �

$ Energy Balance
�Total�U�Holdup � Flow�Junct�Enth�Junct � Flow�Tube�Enth�Tube
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� Enth�Bulk�Product�Flow � Heat�Loss �

$ Bulk concentration and bulk temperature definitions
IF Total�Holdup � � THEN

Solute�Holdup � Conc�Bulk�Total�Holdup �
Total�U�Holdup � Total�Holdup�Enth�Bulk �

ELSE
Conc�Bulk � ��� �
Temp�Bulk � Temp�Ambient �

END

$ Heat Transfer coefficient
HT�Coeff � �������ABS�Temp�Bulk � Temp�Ambient� � ����� �

$ Heat loss
Heat�Loss � HT�Coeff�HT�Area��Temp�Bulk � Temp�Ambient�	���� �

$ PHYSICAL PROPERTIES

$ Densities
Feed�Density �

������ � ������Temp�Junct � ��������Temp�Junct�
��Conc�Junct
� ������� � ��������Temp�Junct � ���������Temp�Junct�
 �

Bulk�Density �
������ � ������Temp�Bulk � ��������Temp�Bulk�
��Conc�Bulk

� ������� � ��������Temp�Bulk � ���������Temp�Bulk�
 �
Density�Tube �

������ � ������Temp�Tube � ��������Temp�Tube�
��Conc�Tube
� ������� � ��������Temp�Tube � ���������Temp�Tube�
 �

$ Specific Enthalpies
Enth�Bulk � ����� � ������Temp�Bulk

� ������ � ��
��Temp�Bulk��Conc�Bulk �
Enth�Tube � ����� � ������Temp�Tube

� ������ � ��
��Temp�Tube��Conc�Tube �
Enth�Junct � ����� � ������Temp�Junct

� ������ � ��
��Temp�Junct��Conc�Junct �

END

$
$�������������������������������������������������������������������
$
$ Model of the mixing junction
$
$�������������������������������������������������������������������
$

MODEL Mixer

VARIABLE
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Flow�Feed
 Flow�Cala AS Mass�Rate
Flow�Split AS Mass�Rate
Flow�Recycle�Set
 Flow�Feed�Set AS Mass�Rate
Temp�Bulk
 Temp�Ambient AS Temperature
Temp�Cala
 Temp�Split
 Temp�Feed AS Temperature
Enth�Bulk
 Enth�Feed
 Enth�Split
 Enth�Cala AS Enthalpy
Conc�Bulk
 Conc�Feed
 Conc�Cala
 Conc�Split AS Concentration
Press�Cala
 Press�Split
 Press�Mixer
 Press�CM AS Pressure
Feed�Pump
 Recycle�Pump
 Manual�Valve AS Notype
Density�Feed
 Density�Bulk
 Density�Cala AS Density
Density�Split AS Density
Total�Holdup
 Solute�Holdup AS Mass�Holdup
Total�U�Holdup AS Int�Energy
Heat�Loss AS Enthalpy�Flow
HT�Coeff AS Notype
HT�Area AS Area
Volume AS Volume

STREAM
$ Inlet streams
Feed � Flow�Feed
 Conc�Feed


Temp�Feed
 Press�Mixer AS Mainstream
Caland � Flow�Cala
 Conc�Cala


Temp�Cala
 Press�Cala AS Mainstream
Split � Flow�Split
 Conc�Split


Temp�Split
 Press�Split AS Mainstream

EQUATION

$ Solute mass balance
�Solute�Holdup � Flow�Feed�Conc�Feed � Flow�Cala�Conc�Cala

� Flow�Split�Conc�Split �

$ Total Mass Balance
Total�Holdup � Density�Bulk�Volume �

$ Conc Bulk definition
Conc�Bulk�Total�Holdup � Solute�Holdup �

$ Energy Balance
�Total�U�Holdup � Flow�Feed�Enth�Feed � Flow�Cala�Enth�Cala

� Flow�Split�Enth�Split �

$ Total U Holdup definition
Total�U�Holdup � Total�Holdup�Enth�Bulk �

$ Overall volume flow balance
Flow�Feed	Density�Feed �

Flow�Cala	Density�Cala � Flow�Split	Density�Split �

$ Flow 	 Pressure relationships &&&
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Press�mixer � Press�CM � Press�Split �

$ Press CM definition
Press�CM � Press�Cala � ����Density�Cala�����	�E� �

$ Heat Transfer coefficient
HT�Coeff � �������ABS�Temp�Bulk � Temp�Ambient� � ����� �

$ Heat loss
Heat�Loss � HT�Coeff�HT�Area��Temp�Bulk � Temp�Ambient�	���� �

$ PHYSICAL PROPERTIES � later to be replaced by procedures

$ Specific enthalpies
Enth�Feed � ����� � ������Temp�Feed

� ������ � ��
��Temp�Feed��Conc�Feed �
Enth�Split � ����� � ������Temp�Split

� ������ � ��
��Temp�Split��Conc�Split �
Enth�Cala � ����� � ������Temp�Cala

� ������ � ��
��Temp�Cala��Conc�Cala �
Enth�Bulk � ����� � ������Temp�Bulk

� ������ � ��
��Temp�Bulk��Conc�Bulk �

$ Density
Density�Feed �

������ � ������Temp�Feed � ��������Temp�Feed�
��Conc�Feed
� ������� � ��������Temp�Feed � ���������Temp�Feed�
 �

Density�Split �
������� � ��������Temp�Split � ���������Temp�Split�

� ������ � ������Temp�Split � ��������Temp�Split�
��Conc�Split �

Density�Cala �
������ � ������Temp�Cala � ��������Temp�Cala�
��Conc�Cala

� ������� � ��������Temp�Cala � ���������Temp�Cala�
 �
Density�Bulk �

������ � ������Temp�Bulk � ��������Temp�Bulk�
��Conc�Bulk
� ������� � ��������Temp�Bulk � ���������Temp�Bulk�
 �

END

$
$�������������������������������������������������������������������
$
$ Model of the entire plant
$
$�������������������������������������������������������������������
$

MODEL Complete�Plant�Flowsheet

PARAMETER
Press�Atm AS REAL
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UNIT
Tube AS Vertical�Tube
Feed�Tank AS Tank�Feed
Product�Tank AS Tank�Product
Junction AS Mixer
Calandria AS Calandria�D
Splitter AS Split
Feed�Control
 Recycle�Control AS Flow�Control

SELECTOR
Cala�Junct�Flag
 Cala�Tube�Flag

Split�Junct�Flag
 Feed�Junct�Flag AS �Positive
 Negative�

SET
Press�Atm �� �����
� �

EQUATION

$ Intensive properties for Calandria overflow�
CASE Cala�Junct�Flag OF

WHEN Positive � WITHIN Junction DO
Conc�Cala � Conc�Bulk �
Temp�Cala � Temp�Bulk �

END $ within
SWITCH TO Negative
IF Junction�Flow�Cala �� ��E�� �

WHEN Negative � WITHIN Calandria DO
Conc�Below � Conc�Bulk �
Temp�Below � Temp�Bulk �

END $ within
SWITCH TO Positive
IF Junction�Flow�Cala �� �E�� �

END $ case

CASE Cala�Tube�Flag OF
WHEN Positive � WITHIN Calandria DO

Conc�OverFlow � Conc�Bulk �
Temp�OverFlow � Temp�Bulk �

END $ within
SWITCH TO Negative
IF Calandria�OverFlow�Flow �� ��E�� �

WHEN Negative � WITHIN Tube DO
Conc�Feed � Conc�Bulk �
Temp�Feed � Temp�Bulk �

END $ within
SWITCH TO Positive
IF Calandria�OverFlow�Flow �� �E�� �

END $ case

CASE Split�Junct�Flag OF
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WHEN Positive � WITHIN Junction DO
Conc�Split � Conc�Bulk �
Temp�Split � Temp�Bulk �

END $ within
SWITCH TO Negative
IF Junction�Flow�Split �� ��E�� �

WHEN Negative � WITHIN Splitter DO
Conc�Junct � Conc�Bulk �
Temp�Junct � Temp�Bulk �

END $ within
SWITCH TO Positive
IF Junction�Flow�Split �� �E�� �

END $ case

CASE Feed�Junct�Flag OF
WHEN Positive � WITHIN Feed�Tank DO

Conc�Bottom � Conc�Bulk �
Temp�Bottom � Temp�Bulk �

END $ within
SWITCH TO Negative
IF Junction�Flow�Feed �� ��E�� �

WHEN Negative � WITHIN Junction DO
Conc�Feed � Conc�Bulk �
Temp�Feed � Temp�Bulk �

END $ within
SWITCH TO Positive
IF Junction�Flow�Feed �� �E�� �

END $ case

$ Streams
Feed�Tank�Bottom IS Feed�Control�Inlet �
Feed�Control�Output IS Junction�Feed �
Junction�Caland IS Recycle�Control�Inlet �
Recycle�Control�Output IS Calandria�Below �
Tube�Feed IS Calandria�Overflow �
Tube�Vapour�In IS Calandria�Vapour �
Splitter�Inlet�Tube IS Tube�OverFlow �
Splitter�Junction IS Junction�Split �
Product�Tank�Inlet IS Splitter�Output�Product �

END

$
$��������������������������������������������������������������������
$
$ Task to start a pump
$
$��������������������������������������������������������������������
$

TASK Start�Pump
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PARAMETER
Pump AS MODEL Pump

SCHEDULE
RESET Pump�Pump�Status �� ��� � END

END $ Start�Pump

$
$��������������������������������������������������������������������
$
$ Task to stop a pump
$
$��������������������������������������������������������������������
$

TASK Stop�Pump

PARAMETER
Pump AS MODEL Pump

SCHEDULE
RESET Pump�Pump�Status �� ��� � END

END $ Stop�Pump

$
$��������������������������������������������������������������������
$
$ Task to close a control loop
$
$��������������������������������������������������������������������
$

TASK Close�Loop

PARAMETER
Controller AS MODEL Proportional�Integral�Controller

SCHEDULE
PARALLEL
$ closes control loop
REPLACE
Controller�Control�Action

WITH
Controller�Bias �� Controller�Steady�Bias �

END
$ reinitializes integral error
REINITIAL
Controller�Integral�Error

WITH
Controller�Integral�Error � ��� �



���

END
END

END $ Close�Loop

$
$��������������������������������������������������������������������
$
$ Task to open a control loop
$
$��������������������������������������������������������������������
$

TASK Open�Loop

PARAMETER
Controller AS MODEL Proportional�Integral�Controller

SCHEDULE
REPLACE
Controller�Bias

WITH
Controller�Control�Action �� ��� �

END
END $ Open�Loop

$
$��������������������������������������������������������������������
$
$ Task to start�up the complete plant
$
$��������������������������������������������������������������������
$

TASK Start�Up�Pilot�Plant

PARAMETER
Plant AS MODEL Complete�Plant�Flowsheet

SCHEDULE
SEQUENCE
PARALLEL
Start�Pump�Pump IS Plant�Feed�Control�Pump� �
Close�Loop�Controller IS Plant�Feed�Control�Controller� �

END
CONTINUE UNTIL Plant�Splitter�Liquid�Height �

Plant�Splitter�Height�Liquid�Max
RESET Plant�Product�Tank�Pump�Product �� ��� � END
CONTINUE FOR 
�
PARALLEL
Start�Pump�Pump IS Plant�Recycle�Control�Pump� �
Close�Loop�Controller IS Plant�Recycle�Control�Controller� �
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END
CONTINUE FOR 
�
RESET Plant�Calandria�Flow�Steam �� ��� � END
CONTINUE UNTIL Plant�Splitter�Temp�Bulk � ����

END
END $ Start�Up�Pilot�Plant

$
$��������������������������������������������������������������������
$
$ Task to shut�down the complete plant
$
$��������������������������������������������������������������������
$

TASK Shut�Down�Pilot�Plant

PARAMETER
Plant AS MODEL Complete�Plant�Flowsheet

SCHEDULE
SEQUENCE
RESET Plant�Calandria�Flow�Steam �� ��� � END
CONTINUE FOR 
�
RESET Plant�Product�Tank�Pump�Product �� ��� � END
CONTINUE UNTIL Plant�Calandria�Temp�Bulk � ����
PARALLEL
Stop�Pump�Pump IS Plant�Feed�Control�Pump� �
Stop�Pump�Pump IS Plant�Recycle�Control�Pump� �
Open�Loop�Controller IS Plant�Recycle�Control�Controller� �
Open�Loop�Controller IS Plant�Feed�Control�Controller� �

END
END

END $ Shut�Down�Pilot�Plant

$
$��������������������������������������������������������������������
$
$ Process to test the model of the complete plant
$
$��������������������������������������������������������������������
$

PROCESS Whole�Plant�Model�Test

UNIT
Plant AS Complete�Plant�Flowsheet

ASSIGN
WITHIN Plant DO
WITHIN Feed�Tank DO



��


Flow�Refill �� ��� �
Conc�Refill �� ���� �
Temp�Refill �� 
��� �
Heat�Loss �� ��� �
Area �� ������ �

END $ Feed�Tank
WITHIN Junction DO

Volume �� ����� �
Temp�Ambient �� 
��� �
HT�Area �� ����� �
Recycle�Pump �� ��� �
Manual�Valve �� ��� �
Feed�Pump �� ��� �
Flow�Recycle�Set �� 
�� �
Flow�Feed�Set �� ���
 �

END $ Junction
WITHIN Product�Tank DO

Area �� ����� �
Setpoint �� ���� �
Cv �� ���� �
Temp�Ambient �� 
��� �
HT�Area �� ���� �
Pump�Product �� ��� �
Bias �� ��� �
Gain �� ��� �

END $ Product�Tank
WITHIN Calandria DO

Height�Liquid�Max �� ���
 �
Temp�Ambient �� 
��� �
HT�Area �� ����
 �
Flow�Steam �� ��� �
Temp�Steam �� �
��� �

END $ Calandria
WITHIN Splitter DO

Height�Liquid�Max �� ��� �
Temp�Ambient �� 
��� �
HT�Area �� ���
 �

END $ Splitter
WITHIN Tube DO

Height�Liquid�Max �� 
��� �
Temp�Ambient �� 
��� �
HT�Area �� ���� �

END $ Tube
WITHIN Feed�Control DO

WITHIN Controller DO
Gain �� ���� �
Reset�Time �� � �
Setpoint �� ���
 �
Control�Action �� ��� �
Steady�Bias �� ��
� �

END $ Controller
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WITHIN Pump DO
Pump�Status �� ��� �
Parameter�� �� �����E�� �
Parameter�
 �� ����E�� �

END $ Pump
WITHIN Valve DO
Valve�Constant �� ���� �

END $ Valve
END $ Feed
WITHIN Recycle�Control DO

WITHIN Controller DO
Gain �� ��� �
Reset�Time �� ���� �
Setpoint �� 
�� �
Control�Action �� ��� �
Steady�Bias �� ��� �

END $ Controller
WITHIN Pump DO
Pump�Status �� ��� �
Parameter�� �� �
����E�� �
Parameter�
 �� ����E�� �

END $ Pump
WITHIN Valve DO
Valve�Constant �� ���� �

END $ Valve
END $ Recycle

END $ Plant

PRESET
WITHIN Plant DO
WITHIN Feed�Tank DO

Enth�Bulk �� ������ �
Enth�Refill �� ������ �
Density �� ������� �

END $ Feed Tank
WITHIN Junction DO

Flow�Cala �� ��� �
Flow�Split �� ��� �
Density�Bulk �� ������ �
Enth�Bulk �� ������ �
Enth�Feed �� ������ �
Enth�Split �� ������ �
Enth�Cala �� ������ �

END $ Junction
WITHIN Calandria DO

Flow�Vapour �� ��� �
OverFlow�Flow �� ��� �
Delta�T �� ��� �

END $ Calandria
WITHIN Tube DO

Solute�Holdup �� ��� �



���

Total�Holdup �� ��� �
Total�U�Holdup �� ��� �
Conc�Bulk �� ��� �

END $ Tube
END $ Within

SELECTOR
WITHIN Plant DO
WITHIN Calandria DO

Flow�Flag �� Not�Full �
END
Split�Junct�Flag �� Positive �
Cala�Junct�Flag �� Positive �
Cala�Tube�Flag �� Positive �
Feed�Junct�Flag �� Positive �

END

INITIAL
WITHIN Plant DO
WITHIN Calandria DO

Temp�Bulk � 
��� �
Conc�Bulk � ����� �
Liquid�Height � ��� �

END $ Calandria
WITHIN Feed�Tank DO

Temp�Bulk � 
��� �
Conc�Bulk � ����� �
Liquid�Height � ��� �

END $ Feed�Tank
WITHIN Splitter DO

Temp�Bulk � 
��� �
Conc�Bulk � ����� �
Liquid�Height � ��� �

END $ Splitter
WITHIN Tube DO

Solute�Holdup � ��� �
Total�Holdup � ��� �
Total�U�Holdup � ��� �

END $ Tube
WITHIN Product�Tank DO

Temp�Bulk � 
��� �
Conc�Bulk � ����� �
Height�Tank � ���� �

END $ Product�Tank
WITHIN Junction DO

Temp�Bulk � 
��� �
Conc�Bulk � ����� �

END $ Junction
WITHIN Feed�Control�Controller DO

Integral�Error � ��� �
END $ Feed�Control�Controller
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WITHIN Recycle�Control�Controller DO
Integral�Error � ��� �

END $ Recycle�Control�Controller
END $ Within

SCHEDULE
SEQUENCE
CONTINUE FOR ���
$ Apply the start�up procedure
Start�Up�Pilot�Plant�Plant IS Plant� �
$ Run the plant for a while
CONTINUE FOR ����
$ Apply the shut�down procedure
Shut�Down�Pilot�Plant�Plant IS Plant� �
$ Let the plant drain
CONTINUE UNTIL Time � 
����

END
END



���

Appendix D

Modelling Equations for the Equilibrium Flash Drum

A dynamic model for continuous time dependent behaviour of an equilibrium �ash

drum� according to the assumptions described in chapter �� is detailed here� At any point in

time� the model may be in one of three states� corresponding to whether the vessel contains

both liquid and vapour phases� subcooled liquid� or superheated vapour� Table D�
 details

the notation employed�

The invariant equations will be dealt with 	rst� The total component mass balances

yield the following di�erential equations


d	i
dt

� Fi � V xi � Lyi �i � 
 � � �N �D�
�

Similarly� a total energy balance yields the di�erential equation


dU

dt
� Hin � V hv � Lhl �Q �D���

And� the fact that the volume of the contents of the vessel must equal the volume of the

vessel yields


V �
	v
�v

�
	l
�l

�D���

With this constraint� the minimal set of extensive properties �	i� U�� completely de	ne the

state of the system� All other quantities can therefore be derived from these properties via

the auxiliary algebraic relationships


	i � 	vyi � 	lxi �i � 
 � � �N �D���

U � 	vuv � 	lul �D���

hv � uv �
P

�v
�D���

hl � ul �
P

�l
�D���

hv � ��yi� T� P � �D���
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Fi Molar feed of component i
Hin Enthalpy �ow of feed stream
hl Molar enthalpy of liquid phase
hv Molar enthalpy of vapour phase
L Total molar �ow of liquid from vessel
ki Vapour�liquid distribution co�e�cient for component i
N Number of components in feed stream
P Pressure
Pl Downstream pressure for liquid stream
Pv Downstream pressure for vapour stream
Q Total heat �ow to the vessel
T Temperature
t Time
U Total internal energy holdup
ul Molar internal energy of liquid phase
uv Molar internal energy of vapour phase
V Total molar �ow of vapour from vessel
V Volume of vessel �time invariant�
xi Mole fraction of component i in the liquid phase
yi Mole fraction of component i in the vapour phase
�l Molar density of liquid phase
�v Molar density of vapour phase
	i Molar holdup of component i
	l Total molar holdup in liquid phase
	v Total molar holdup in vapour phase
��� � �� Generic function of its arguments

Table D�

 Nomenclature for Model of Equilibrium Flash Drum

hl � ��xi� T� P � �D���

�v � ��yi� T� P � �D�
��

�l � ��xi� T � �D�

�

ki � ��xi� yi� T� P � �i � 
 � � �N �D�
��

The total liquid and vapour �ows from the vessel can be determined from �ow�pressure

relationships� which could be declared in downstream units such as valves or pumps as

opposed to the �ash drum itself


V � ��P� Pl� 	L� �D�
��



���

L � ��P� Pv� 	L� �D�
��

Conditional equations may be employed in these relationships to model devices that prevent

the wrong phase �owing in a particular stream�

It is important to recognise that� provided correct values are assigned to the liquid

and vapour phase mole fractions� xi and yi� all the above equations remain well behaved in

all three phase regimes� although some ine�ciency is introduced when the physical properties

of a phase not present are evaluated��

Finally� the variant equations speci	c to each phase regime must be speci	ed� In

the two�phase regime we have


yi � kixi �i � 
 � � �N �D�
��

NX
i��

yi �
NX
i��

xi � 
 �D�
��

In the liquid regime we have


	v � � �D�
��

NX
i��

xi � 
 �D�
��

and yi are unde	ned� This can be declared explicitly through use of the UNDEFINED con�

struct �see section �������� or yi can be arbitrarily set equal to xi� In the vapour regime we

have


	l � � �D�
��

NX
i��

yi � 
 �D����

and xi are unde	ned or arbitrarily set equal to yi� The set of variant equations can therefore

be expressed with the CASE equation shown in 	gure D�
� Of course� extra equations to

de	ne the bubble and dew temperatures that appear in the logical expressions must also be

introduced�

�Alternatively� the equations that determine the physical properties of each phase could be added to the

set of variant equations�



���

CASE Phase OF
WHEN Liquid � Vapour�Holdup � � �

SIGMA�X� � � �
UNDEFINED�Y� �
SWITCH TO Two�Phase IF Temp � Bub�Temp �

WHEN Two�Phase � Y � K�Value�X �
SIGMA�X� � � �
SIGMA�Y� � � �
SWITCH TO Liquid IF Vapour�Holdup �� � �
SWITCH TO Vapour IF Liquid�Holdup �� � �

WHEN Vapour � Liquid�Holdup � � �
SIGMA�Y� � � �
UNDEFINED�X� �
SWITCH TO Two�Phase IF Temp � Dew�Temp �

END $ case

Figure D�

 Extract from the Model of the Flash Drum
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