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Abstract

Polygeneration is a concept where multiple energy products are generated in a sin-
gle plant by tightly integrating multiple processes into one system. Compared to
conventional single-product systems, polygeneration systems have many economic
advantages, such as potentially high profitability and high viability when exposed to
market fluctuations.

The optimal design of an energy polygeneration system that converts coal and
biomass to electricity, liquid fuels (naphtha and diesel) and chemical products (methanol)
with carbon dioxide (CO2) capture under different economic scenarios is investigated.
In this system, syngas is produced by gasification of coal and/or biomass; purified by
a cleaning process to remove particles, mercury, sulfur and CO2; and then split to
different downstream sections such as the gas turbine, FT process and the methanol
process. In this thesis, the optimal design with the highest net present value (NPV)
is determined by optimizing equipment capacities, stream flow rates and stream split
fractions.

The case study results for static polygeneration systems reveal that the optimal
design of polygeneration systems is strongly influenced by economic conditions such
as feedstock prices, product prices, and potential emissions penalties for CO2. Over
the range of economic scenarios considered, it can be optimal to produce a mixture
of electricity, liquid fuels, and methanol; only one each; or mixtures in-between. The
optimal biomass/coal feed ratio significantly increases when the carbon tax increases
or the biomass price decreases. An economic analysis of the optimal static polygen-
eration designs yielded a slightly higher NPV than comparable single-product plants.

The flexible operation is then considered for the energy polygeneration system. In
real applications, product prices can fluctuate significantly seasonally or even daily.
The profitability of the polygeneration system can potentially be increased if some
operational flexibility is introduced, such as adjusting the product mix in response
to changing market prices. The major challenge of this flexible design is the deter-
mination of the optimal trade-off between flexibility and capital cost because higher
flexibility typically implies both higher product revenues and larger equipment sizes.
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A two-stage optimization formulation for is used for the optimal design and oper-
ation of flexible energy polygeneration systems, which simultaneously optimizes de-
sign decision variables (e.g., equipment sizes) and operational decision variables (e.g.,
production rate schedules) in several different market scenarios to achieve the best
expected economic performance. Case study results for flexible polygeneration sys-
tems show that for most of market scenarios, flexible polygeneration systems achieved
higher expected NPVs than static polygeneration systems. Furthermore, even higher
expected NPVs could be obtained with increases in flexibility.

The flexible polygeneration optimization problem is a potentially large-scale non-
convex mixed-integer nonlinear program (MINLP) and cannot be solved to global
optimality by state-of-the-art global optimization solvers, such as BARON, within a
reasonable time. The nonconvex generalized Benders decomposition (NGBD) method
can exploit the special structure of this mathematical programming problem and en-
able faster solution. In this method, the nonconvex MINLP is relaxed into a convex
lower bounding problem which can be further reformulated into a relaxed master
problem according to the principles of projection, dualization and relaxation. The
relaxed master problem yields an nondecreasing sequence of lower bounds for the orig-
inal problem. And an nonincreasing sequence of upper bounds is obtained by solving
primal problems, which are generated by fixing the integer variables in the original
problem. A global optimal objective is obtained when the lower and upper bounds
coincide. The decomposition algorithm guarantees to find an ε-optimal solution in a
finite number of iterations.

In this thesis, several enhanced decomposition methods with improved relaxed
master problems are developed, including enhanced NGBD with primal dual infor-
mation (NGBD-D), piecewise convex relaxation (NGBD-PCR) and lift-and-project
cuts (NGBD-LAP). In NGBD-D, additional dual information is introduced into the
relaxed master problem by solving the relaxed dual of primal problem. The so-
obtained primal dual cuts can significantly improve the convergence rate of the algo-
rithm. In NGBD-PCR, the piecewise McCormick relaxation technique is integrated
into the NGBD algorithm to reduce the gap between the original problem and its
convex relaxation. The domains of variables in bilinear functions can be uniformly
partitioned before solution or dynamically partitioned in the algorithm by using the
intermediate solution information. In NGBD-LAP, lift-and-project cuts are employed
for solving the piecewise lower bounding problem. In all three enhanced decompo-
sition algorithms, there is a trade-off between tighter relaxations and more solution
times for subproblems.

The computational advantages of the enhanced decomposition methods are demon-
strated via case studies on the flexible polygeneration problems. The computational
results show that, while NGBD can solve problems that are intractable for a state-of-
the-art global optimization solver (BARON), the enhanced NGBD algorithms help to
reduce the solution time by up to an order of magnitude compared to NGBD. And en-
hanced NGBD algorithms solved the large-scale nonconvex MINLPs to ε-optimality
in practical times (e.g., a problem with 70 binary variables and 44136 continuous
variables was solved within 19 hours).
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Chapter 1

Introduction

1.1 Energy Polygeneration Processes

1.1.1 Clean Coal Conversion Processes

Energy and the environment are two crucial issues for the world’s sustainable devel-

opment. The global energy demand is expected to grow by one-third from 2010 to

2035 due to the increase of population and the economic growth [37]. Fossil fuels,

with advantages of low cost, large scale and high stability, will still contribute over

80% of total energy supply in the next several decades [108].

At present the global economy is heavily dependent on the supply of crude oil,

which is limited and potentially unstable. Proven oil reserves are projected to be

depleted in about 46 years globally and in fewer than 20 years in most countries [2],

based on the current production rates with no additional oil discoveries. In addition,

the geographical concentration of oil reserves is a great disadvantage for the energy

security of oil-importing countries. By contrast, coal is an abundant and relatively

cheap fuel, whose price is typically $1-2 per million Btu, compared to $6-12 per million

Btu for natural gas and oil [20]. Coal resources are also widely distributed around

the world, including some large energy consuming countries such as United States,

China and India [2, 20]. Hence coal will be an alternative to crude oil in the new

century, used for power generation, synthetic liquid fuels and chemicals. The Energy
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Information Administration (EIA) projects that coal will account for about 20% of

primary energy usage in the United States up to the year 2035 [52].

However, a significant problem that may obstruct wide utillization of coal is air

pollution from coal conversion processes. Coal-fired plants generate large amounts of

particulates, sulphur oxides and nitrogen oxides. Coal is also the largest contributor to

global carbon dioxide (CO2) emissions for energy use (41%) [20]. More concerns about

global warming, which is partially caused by increasing CO2 levels in the atmosphere,

have led to efforts to reduce CO2 emissions all over the world. CO2 capture and

sequestration technologies must be applied to coal conversion processes in the future

greenhouse gas constrained world [54]. And, coal conversion processes with higher

efficiency should be utilized to achieve lower CO2 emissions for the same amount of

energy produced.

Several coal-based conversion processes with high energy efficiency and low CO2

emissions, such as Integrated Gasification Combined Cycle (IGCC) and Coal-to-

Liquids (CTL) processes with carbon capture and sequestration (CCS), are being

developed at present [108, 182, 173, 174, 8], serving as potential supplements for

current oil-based processes.

Figure 1-1 shows the flowsheet of a typical IGCC process with CCS [182]. In

the IGCC process, coal is converted to synthesis gas (or syngas), which primarily

contains carbon monoxide (CO), hydrogen (H2), CO2 and water, by gasification.

High-temperature oxygen-blown entrained-flow gasifiers are selected to achieve high

conversion of coal and low methane content in the syngas. Coal can be slurry-fed (with

water) or dry-fed (with nitrogen or CO2) depending on the gasification technology. An

air separation unit (ASU) is installed to produce pure oxygen for gasification. After

gasification, syngas is cooled and passes through the scrubber to remove particulate,

ammonia and chlorine species. Then syngas is sent to a water gas shift (WGS) reactor

converting CO and water to CO2 and H2. The sulfur species (which is primarily

hydrogen sulfide (H2S)) and CO2 in the syngas are removed in the absorption unit,

in which chemical solvents (amine) or physical solvents (Selexol, Rectisol, Purisol,

etc.) are used. Physical solvents are currently more economically affordable for large-
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scale CO2 capture. In recent years, several advanced separation processes, including

adsorption and membrane technologies, have been developed for highly efficient CO2

removal, which can be possibly incorporated into the IGCC process in the future.

The clean H2-rich syngas with very low sulfur content and low CO2 content is sent

to the power generation unit (the gas turbine or fuel cell) to produce electricity. The

captured H2S is converted to elemental sulfur in the sulfur recovery unit (e.g., the

Claus process), and the captured CO2 is compressed and sent to some geological

storage sites. All high-quality heat generated in the process is recovered in steam

cycles and used for additional electricity generation by steam turbines. Note that it

is optional to install the CO2 capture units (including WGS reactors and the acid

gas absorption unit) in the IGCC process, depending on the economics and policy.

For example, the IGCC plant without CCS is suggested to be built first, and when

carbon capture becomes profitable, CO2 capture units can be then installed.

Cost and Performance Comparison of Fossil Energy Power Plants  
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Exhibit 3-32  Case 2 Process Flow Diagram, GEE IGCC with CO2 Capture 
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Figure 1-1: The flowsheet of an example IGCC process with CCS. [182]

The IGCC power plant achieves high energy conversion efficiency (up to 45%
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(HHV) for the plant without CCS), which is much higher than most of currently

operated pulverized coal (PC) fired power plants (33-37%, HHV) [108]. The environ-

mental benefit of the IGCC process is also significant. In the IGCC process, most

of the air pollutants, including particulates, mercury, sulfur and nitrogen species,

can be removed before combustion at relatively high concentrations. On the other

hand, these pollutants have to be removed from much more diluted flue gas in PC

plants. Therefore, pollutant control will be a easier task for IGCC plants compared

to conventional PC plants [108]. A similar situation is encountered for the control

of CO2 emissions. The implementation of pre-combustion carbon capture in IGCC

plants will correspond to 5-8% of energy efficiency loss, while post-combustion carbon

capture in PC plants will cause about 12% of energy efficiency loss [182].

The CTL process contains some similar unit operations as those in the IGCC

process, including gasification, air separation, WGS reaction, acid gas removal, sulfur

recovery and electricity generation. Figure 1-2 shows the flowsheet of a typical CTL

process [174]. Coal is first converted to raw syngas by gasification, and syngas is

then cleaned and upgraded by scrubber, WGS reactors and acid gas absorption units

(e.g., Selexol or Rectisol units). The clean syngas that is ideal for liquid fuels and

chemicals production should possess a H2/CO mole ratio equal to 2, be free of sulfur

species, and have low concentrations of all other species, especially CO2 and water.

In order to protect the catalyst for liquids production, very low sulfur content in

the syngas is required. The clean syngas can be synthesized to liquid products by

two different pathways: the methanol process and the Fischer-Tropsch (FT) process.

In the methanol process, clean syngas is converted to methanol by the methanol

synthesis reaction, followed by a separation unit removing unreacted syngas, water

and higher alcohols from the methanol product. Unreacted syngas is recycled back to

the reactor or sent to the gas turbine to produce electricity. The methanol product can

be directly sold to the market or further upgraded to other products, such as dimethyl

ether (DME), gasoline (by the MTG process) or olefines (by the MTO process). In the

FT process, clean syngas is converted to hydrocarbons with a wide range of carbon

numbers by the FT synthesis reaction. The composition of the FT product is highly
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dependent on the catalyst and operating conditions (e.g., temperature and pressure).

A complicated separation system is required to obtain qualified products. Typically,

five different streams are produced from the separation system: light ends (including

unreacted syngas and hydrocarbons with small carbon numbers), naphtha, diesel,

wax and water. Naphtha and diesel can be directly sold or further upgraded. Wax is

usually converted to naphtha and diesel by catalytic cracking or hydrocracking. Light

ends are sent to the gas turbine to produce electricity, or converted back to syngas

by steam reforming or partial oxidization for the FT reaction.
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Figure 3-2  Concept 1 - Process Block Flow Diagram 
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Figure 1-2: The flowsheet of an example CTL process. [174]

The liquid fuels produced by the CTL process are considered as alternatives to

current petroleum-derived fuels, especially for those oil-importing countries. The FT

products have nearly no sulfur and very low content of aromatics, which can be sold

as high-quality fuels or blended with high-sulfur fuels. The economic performance of

the CTL process has been studied, and it is indicated that the CTL plant will be

profitable if the crude oil price stays above $37 per barrel [173]. The CTL process

with CCS will not generate more CO2 emissions than the oil refinery process. It is
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estimated that CTL-derived diesel will result in 5-12% less life cycle CO2 emissions

than the average petroleum-derived diesel [167]. At present, several small-scale CTL

demonstration plants are being built worldwide.

1.1.2 Biomass Conversion Processes

Biomass is a promising energy source with its abundant reserves and renewable sup-

plies, low air pollution and very low lifecycle CO2 emissions [81]. The EIA predicts

that biomass will lead to the growth of renewable electricity generation and biofuel

will lead to the growth of the liquid fuel supply in the next 25 years [52].

Biomass-derived transportation fuels are produced via several approaches, includ-

ing fermentation, gasification and pyrolysis. At present, fermentation is the only

commercialized biofuel production technology. Compared to the other two ways,

fermentation has advantages of lower capital cost and flexible operation. However,

feedstocks for the fermentation approach are quite limited so far, e.g., only grains

and sugar can be used as feedstock based on the current technology. Development of

grain-based biofuel will eventually threaten global food supply. In contrast to fermen-

tation, the gasification approach is able to utilize a wide range of non-grain biomass

feedstocks, including wood, grass and crop residues. Combined with the FT pro-

cess, the gasification approach produces liquid fuels (naphtha and diesel) that can be

directly used by vehicles and is compatible with the current infrastructure. Biomass-

to-liquids (BTL) processes (via gasification) are therefore of increasing interest to the

energy industry.

The BTL process has a similar structure to the CTL process, and both of them

include the gasifier, scrubber, sulfur removal unit, FT system, gas turbine and steam

turbine. Since biomass is a carbon neutral feedstock, CO2 sequestration is not needed

for the BTL process. The air-blown circulating fluidized bed (CFB) gasifier, which

is operated at relatively low temperature and low pressure, is usually selected for

biomass gasification. CFB gasifiers suffer from incomplete conversion of feedstock

and formation of certain amounts of hydrocarbons. Larger hydrocarbons generated

in the CFB gasifier, including BTX (benzene, toluene and xylene) and tars, must be
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removed before the FT process. Several methods are available for tar removal, e.g.,

thermal cracking, catalytic cracking and scrubbing. A typical BTL process flowsheet

with three tar removal alternatives is shown in Figure 1-3 [82]. In order to achieve

higher conversions, oxygen-blown entrained-flow gasifiers are also considered for the

BTL process, with some additional feedstock pre-treatment steps such as drying and

torrefaction before gasification.

temperature by advanced scrubbing with an oil based medium [12]. The tar is subsequently
stripped from the oil and reburned in the gasifier. At atmospheric pressures, BTX are only par-
tially removed, from about 6 bar BTX are fully removed. The gas enters the scrubber at about
400

v
C, which allows high temperature heat exchange before the scrubber.

When the tars and BTX are removed, the other impurities are removed by standard wet gas
cleaning technologies or advanced dry gas cleaning technologies. Maximal acceptable contami-
nant concentrations for the cobalt FT catalyst are summarised in Table 1, together with the
effectiveness of two gas-cleaning methods.

In dry gas cleaning, residual contaminations are removed by chemical absorbents at elevated
temperature. In the FT situation, hot gas cleaning has little energy advantages as the FT reactor
operates at 200–250

v
C, especially when preceding additional compression is required (efficient

compression requires a cold inlet gas). However, dry gas cleaning may have lower operational
costs than wet gas cleaning [16].

Early compression reduces the size of gas cleaning equipment, however, sulphur and chloride
compounds condense when compressed and they may corrode the compressor. Therefore, inter-
mediate compression to 6 bar takes place after bulk removal and 60 bar compression just before
the guard bed.

The syngas can contain a considerable amount of methane and other light hydrocarbons, rep-
resenting a significant part of the heating value of the gas. Reforming to convert these com-
pounds to CO and H2 is optional, driven by steam addition over a nickel catalyst. Autothermal
reforming is applied in the present study. Compared with steam reforming, it is of simpler

Fig. 2. Three gas cleaning trains applied in this study. Top: tar cracking and conventional wet gas cleaning; middle:
tar scrubbing and conventional wet gas cleaning; and bottom: Tar cracking and dry gas cleaning.

1747C.N. Hamelinck et al. / Energy 29 (2004) 1743–1771

Figure 1-3: The flowsheet of an example BTL process with three tar removal alter-
natives. [82]

1.1.3 Energy Polygeneration Processes

The aforementioned coal and biomass conversion processes have advantages of high

energy efficiency, low toxic pollutants and low CO2 emissions. However, several prob-

lems are encountered before these processes become applicable. One major drawback

of IGCC, CTL and BTL is the high capital cost per unit of product. For example,

the capital cost for an IGCC plant with CCS can be as high as $2390/kW based on

an estimation in 2007 [182]. With the increase of construction material prices and

more understanding of technical difficulties, the estimated capital cost for IGCC and

CTL will be even higher in the future. Another drawback of these processes is that
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a fixed production rate must be maintained due to rigorous operational requirements

for the gasifier. These single-product processes cannot easily adapt to the fluctuation

of product market prices, especially liquid fuels prices, and their profitability can-

not be guaranteed under all economic conditions. The availability of feedstocks for

the BTL process might also be a problem. Biomass is usually harvested in certain

seasons, while the gasifier requires continuous operation during the whole year. The

BTL plant will suffer from either shortages of feedstock during some times or high

feedstock storage costs. High capital costs, uncertainties in the product market and

the feedstock supply result in high investment risks for potential application of these

single-product processes.

Energy polygeneration could be a plausible way to address the above issues. Poly-

generation, or cogeneration, is a concept in which multiple products are generated in

a single plant from multiple feedstocks by tightly integrating multiple processes into

one system. Polygeneration is attractive for the above advanced energy conversion

processes. Note that IGCC, CTL and BTL processes share some common unit oper-

ations, including gasification, scrubbing, acid gas removal and power generation. It is

possible to design an energy polygeneration process by integrating IGCC, CTL and

BTL processes together, which uses coal and biomass as feedstocks and co-produces

electricity, liquid fuels, chemicals, hydrogen and heat in one plant.

Compared to single-product energy processes, energy polygeneration processes

have many economical and environmental advantages. With polygeneration, the

capital cost and production cost per unit of product will be possibly reduced since

some equipment included in the IGCC, CTL and BTL can be shared in one pro-

cess [183, 118, 119]. For example, in a polygeneration plant co-producing DME and

electricity, the production cost of DME will be $6-6.5/GJ, which is comparable with

conventional fuel prices [118, 51]. Moreover, in a polygeneration process, economic

risks can be reduced by diversification of product portfolios, and potentially higher

profits can be achieved compared to the single-product plants by optimization of the

portfolios. Higher energy efficiency may also be attained in polygeneration processes

due to the tight heat integration of the system [118], e.g., heat generated in exother-
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mic reactors in the FT or methanol synthesis process can be recovered by steam

generation systems for additional power production.

Polygeneration is a promising process that facilitates the usage of biomass. In

polygeneration processes, biomass and coal can be co-gasified in high-temperature

entrained-flow gasifiers with high conversions, and the biomass pre-treatment becomes

unnecessary. A stable supply of biomass is not required in polygeneration because

coal can be used as feedstock for gasifiers when biomass is unavailable. Liquid fuels

produced by co-gasification of biomass and coal with CCS will lead to much lower life

cycle CO2 emissions than petroleum-based fuels. Biomass and coal polygeneration

processes with CCS will even have negative process CO2 emissions, which can be sold

as carbon credits or compensate for CO2 emissions from other processes.

Design and operation of energy polygeneration processes is a challenging task,

in which knowledge and information in different disciplines such as chemical engi-

neering, mechanical engineering, thermal engineering, biochemical engineering and

electrical engineering are needed. Because of the high system complexity, engineer-

ing experience and experimental methods, which are frequently used for traditional

process design, are not enough for the design of polygeneration processes. Hence,

advanced simulation and optimization technologies need to be developed and applied

to the optimal design and operation of energy polygeneration systems. Mathematical

programming is an effective method for this purpose. By formulating design and op-

erational problems as typical optimization problems, such as nonlinear programming

(NLP) problems or mixed-integer nonlinear programming (MINLP) problems, the

mass and energy integration of the whole process is systematically studied, and all

design and operational variables are optimized to achieve best economic performance

or lowest pollutant emissions. Global optimization algorithms can be applied in order

to ensure global optimal solutions for these problems.

In this thesis, a polygeneration system co-producing electricity, liquid fuels (naph-

tha and diesel) and chemicals (methanol) from coal and biomass as feedstock is in-

vestigated. The detailed process is described in Chapter 2. The optimal design and

operation of (static) polygeneration systems under different economic and policy sce-

31



narios is studied. Optimal product portfolios are obtained under different product

price scenarios. The influence of different carbon tax policies on the optimal produc-

tion strategy, such as the implementation of CCS or biomass usage, is also explored.

The case study results are presented in Chapter 3.

1.1.4 Flexible Energy Polygeneration Processes

Conventional energy and industrial processes attempt to maintain operations at their

maximum capacities during the whole operational period, which are called static

processes. Static processes are relatively easy to operate and control, and most of

equipment are most efficient when operated at their design capacity. However, static

processes may not be economically optimal. In reality, market prices and demands

fluctuate frequently. For example, prices of liquid fuels (i.e., gasoline and diesel) vary

seasonally; power prices fluctuate during the course of the day due to the difficulty of

storage, and both are affected by unpredictable human behavior. Static plants may

suffer from high inventory levels or lack of stock under some unpredictable market

conditions, resulting in significant profit loss. More significant problems are encoun-

tered for static power plants, such as coal-fired power plants, nuclear power plants

and even IGCC power plants (due to the inflexible operation of the gasifier). Power

prices and demands at peak times can be several times higher than those at off-peak

times, and power demands can be extremely high under some bad weather conditions

such as high temperatures. High dependence on static power plants will lead to se-

rious power shortages at some peak times and significant energy wastage in off-peak

times.

The concept of a flexible polygeneration process, which allows variable product

mixes during the project lifetime according to market prices and demands, is therefore

proposed. A flexible polygeneration plant alters the production rates of individual

products in response to changing market conditions by oversizing equipment. In

other words, the flexible plant focuses on power generation during peak times when

the power price and demand is high, and is switched to liquids production during off-

peak times when the power price and demand drop significantly. Liquids can be stored
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for a short time and then sold to the market. The flexible polygeneration process

redirects production from unstorable energy (electricity) to storable energy (liquid

fuels) during off-peak times, and significantly increases the total feedstock utilization.

In order to obtain higher profits and prevent high product inventory, the production

pattern of flexible polygeneration plants also changes monthly or seasonally according

to market conditions. Flexible polygeneration processes try to focus on producing the

most profitable product at different times under the capacity constraints, hence they

can adapt the product mix to market fluctuations and have the potential to achieve

better economic performance than static processes.

However, the overall profitability of flexible polygeneration processes cannot be

easily justified. Greater operational flexibility allows larger production rates for the

most profitable product in the corresponding time period, and increases the total

product revenue. Meanwhile, greater operational flexibility requires larger equipment

sizes and increases the capital investment. Inappropriate oversizing of equipment

may cause significant “capacity wastage” and reduction in returns on capital. The

major challenge in the design of flexible polygeneration systems is determination of

the optimal trade-off between operational flexibility and capital cost. It means that

the long-term design problem and the short-term operational problems must be solved

simultaneously, while they are often considered to be separate problems in most of

current system design studies [50].

The joint design and operational problem can be addressed by advanced mathe-

matical programming technologies. A stochastic/multiperiod optimization formula-

tion, which simultaneously optimizes design decision variables and operational deci-

sion variables to obtain the maximum overall or expected net profit over the whole

project lifetime, is a suitable modeling framework for this problem. It is expected

to be a large-scale optimization problem with high computational complexity, and

cutting-edge modeling methods and global optimization algorithms need to be devel-

oped to solve it efficiently. In this thesis, the optimal product portfolios, equipment

capacity usages and CO2 emissions of flexible energy polygeneration systems under

different market conditions are studied. The detailed case study results are discussed
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in Chapter 4.

1.1.5 Literature Review

Much progress has been made on the design and operation of coal/biomass-based poly-

generation systems using simulation technologies. Mantripragada and Rubin [123]

developed a comprehensive techno-economic assessment model of a CTL plant and

a polygeneration plant co-producing liquid fuels and power that is capable of incor-

porating CCS, and investigated its capability of mitigating CO2 emissions compared

to conventional coal-fired power plants. Wang et al. [179] simulated a co-production

system including a FT synthesis reactor and a gas turbine in Aspen Plus and GS soft-

ware, in which over 50% energy conversion efficiency and only 6-7 years of payback

time were achieved. Hamelinck et al. [82] analyzed the technical and economic per-

formance of a biomass conversion system that produced liquid fuels and electricity in

Aspen Plus, in which the influence of device parameters on investment costs, FT effi-

ciency, electricity efficiency, and resulting FT diesel costs were evaluated. Starfelt et

al. [162] evaluated the performance of a polygeneration system that integrated a lig-

nocellulosic wood-to-ethanol process and an existing combined heat and power (CHP)

plant, and showed that the integrated polygeneration system reached a total efficiency

of 50% and the total biomass consumption was reduced by 13.9% when producing the

same amounts of products as in the single-product systems. Yu et al. [187] investi-

gated the performance of polygeneration processes converting coal to liquid fuels and

electricity with CCS, in which the thermal efficiency and CO2 emissions were studied.

Li et al. [109] proposed a polygeneration system utilizing natural gas and biomass as

feedstocks and co-producing methanol and electricity, in which feedstock input was

reduced by at least 9% compared to individual systems with the same output illus-

trated by Aspen Plus simulation results. Lin et al. [116] performed a techno-economic

analysis for coal-based polygeneration systems co-producing methanol and electricity

with and without CO2 recovery, and showed that the polygeneration technology could

effectively reduce the cost penalty for CO2 recovery. Adams and Barton [9, 10] stud-

ied polygeneration systems converting coal and natural gas to electricity, methanol,
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gasoline and diesel, and compared different natural gas reforming strategies for the

best energy efficiency and profitability. Ng and Sadhukhan [140, 141] analyzed energy

efficiency and production costs for bio-oil integrated gasification and methanol syn-

thesis (BOIG-MeOH) systems and bio-oil integrated gasification and Fischer-Tropsch

(BOIG-FT) systems. Gassner et al. [64, 63, 62] built a thermo-economic model for

the polygeneration process that co-produces synthetic natural gas (SNG), electricity

and heat from waste biomass, and studied the most profitable system configurations

under different energy price scenarios and scales. Li et al. [115] performed an ex-

ergoeconomic analysis for a dual-gas (syngas from coal gasification and coke oven

gas) sourced polygeneration process co-producing methanol, DME and dimethyl car-

bonate (DMC), and studied the exergy loss and the production cost in the process.

Some other studies for coal- and/or biomass-based polygeneration systems can be

found in Refs [149, 99, 186, 86, 61, 185, 142]. These studies provide potential feasible

polygeneration system designs for real applications and demonstrate that polygener-

ation processes exhibit better economic performance and lower CO2 emissions than

conventional energy production processes. However, no systematic optimization for

process design and operation variables was done in these studies.

Optimal design and operation of coal/biomass-based polygeneration systems based

on mathematical programming has been investigated in several papers. Liu et al. [118]

constructed a mixed-integer linear programming (MILP) model in GAMS for a coal

polygeneration system co-producing methanol and power, in which the net present

value (NPV) was maximized by optimizing different combinations of feedstocks and

technologies. This demonstrated that polygeneration processes with fixed electric-

ity and methanol yields have advantages over methanol synthesis processes in a vast

range of methanol/power price ratios. Following this work, Liu et al. [119, 121, 120]

developed a series of MINLP models in GAMS for coal-based polygeneration systems

co-producing methanol and power, in which combinations of technologies together

with design and operational variables were optimized to obtain the best annual profit

or NPV. Compared to the original work [118], more process details were added into

the model in [119], a multi-objective optimization approach was applied in [121] and
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process uncertainties were considered in [120]. Baliban et al. [27, 28, 29, 30] studied

a hybrid coal, biomass and natural gas to liquids (CBGTL) process that produced

transportation fuels (gasoline, diesel and kerosene). A MINLP model was formulated

for the optimal process synthesis with simultaneous heat, power and water integration.

Optimal designs under different feedstocks, plant capacities and process superstruc-

tures were investigated. The case study results showed that the break-even oil prices

for liquid fuels production were $61.36/bbl for the small capacity, $60.45/bbl for the

medium capacity, and $55.43/bbl for the large capacity. So far, systematic studies of

optimal design and operation of polygeneration systems under different market and

policy scenarios have not been made.

The concept of flexible designs has been studied for some power generation sys-

tems. For example, Yunt et al. [189] developed a two-stage optimization formulation

for the optimal design of a fuel cell system for varying power demands. This formu-

lation incorporates a design stage and an operational stage, optimizing the design

decision variables (such as equipment sizes) and the operational decision variables

(such as temperatures and flow rates) for all potential power demands simultaneously.

The authors pointed out that an optimal design based on a nominal power demand

would perform poorly or even become infeasible for some peak power demands, and

they also demonstrated that a flexible design determined by the two-stage formulation

achieved higher fuel energy densities than other designs.

Flexible polygeneration systems have been studied in several papers. Meerman et

al. [132, 130, 131] investigated technical possibilities and performances of a flexible

polygeneration system, called integrated gasification polygeneration (IG-PG), by As-

pen Plus simulations. This polygeneration system uses oil residues, coal and biomass

as feedstocks, and co-produces H2, electricity, FT-liquids, methanol and urea. The

flexible system produced electricity during peak hours, while was switched to chemical

productions during off-peak hours. The authors studied the influence of feedstock on

the performance of the system, including CO2 emissions and energy efficiency. The

possible ranges for equipment load under flexible operations were also studied, e.g.,

the operation of the FT section was restricted to 60-100% load to prevent that the
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gas turbine load is below 40%. No optimization on the system design and operation

was done in these works. Liu et al. [121] studied the optimal design of a coal polygen-

eration system co-producing power and methanol with multiple operation periods. In

this study, the feedstock and product prices were assumed to increase from period to

period due to inflation. The optimal design and operation schedule in three periods

(with several years in one period) were determined by a two-stage formulation. How-

ever, seasonal variations of market prices and daily fluctuations of power prices, which

are critical in flexible polygeneration systems, were not considered in this study.

Design and operational optimization work has also been done in some other en-

ergy conversion systems. Liszka and Ziebik [117] developed a design optimization

model for a metal production system consisting of a Corex unit (one of technolo-

gies for cokeless hot metal production), a combined cycle power plant and an ASU,

and optimized the NPVs for different price scenarios in the coal, iron and electricity

markets. Karuppiah et al. [98] minimized the energy requirement of a corn-based

bioethanol plant through the use of heat integration and mathematical programming

techniques, and the results showed that the steam consumption required could be

reduced by more than 40% compared to the initial basic design. Martin and Gross-

mann [127, 128, 129] investigated the optimal design of several biofuel production

processes, including a FT-diesel production process using switchgrass via gasification

[127], a bioethanol production process using switchgrass via hydrolysis [128] and a

biodiesel production process using waste cooking oil and algae oil via catalytic re-

actions [129]. In these studies, the optimal technology alternatives and operational

conditions were obtained by solving MINLP models. The results indicated that low

production costs and low energy and water consumptions could be achieved in these

processes. Much work has also been done on optimal design and operation of CHP

systems, co-producing electricity, heat and chilled water, to achieve minimum annual

costs, energy costs or CO2 emissions [21, 15, 44, 42, 155, 144, 83, 180, 146, 50].
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1.2 Stochastic/Multiperiod Optimization Problems

1.2.1 Problem Formulation & Applications

Stochastic/multiperiod optimization problems are often formulated using the follow-

ing two-stage framework [35, 93]:

max
y

f (1)(y) +
s∑

h=1

OccuhMh(y,Parh)

s.t. g(1)(y) ≤ 0

h(1)(y) = 0

Mh(y,Parh) ≡ max
xh

f (2)(y,xh,Parh)

s.t. g(2)(y,xh,Parh) ≤ 0

h(2)(y,xh,Parh) = 0

xh ∈ Xh


∀h ∈ Nh

y ∈ Y

(1.1)

where y are design decision variables, xh are operational decision variables in scenario

h; Y are bounds on the design decision variables, Xh are bounds on the operational

decision variables in scenario h; g(1) and h(1) are design inequality and equality con-

straints, respectively, such as equipment cost calculations; g(2) and h(2) are operational

inequality and equality constraints, respectively, such as mass and energy balances,

reactor feedstock specifications and emission regulations; f (1) is the part of the ob-

jective function that is only dependent on design decision variables, e.g, a function

of capital costs; f (2) is the part of the objective function that is dependent on both

design and operational variables, e.g., a function related to product revenues, feed-

stock costs and operational costs; Occuh is the probability or fraction of occurrence

of scenario h over the plant lifetime; Parh are the economic parameters in scenario

h; Nh ≡ {1, . . . , s} is the set of scenarios over the plant lifetime. Mh is the optimal

solution of the hth second-stage (or operational-stage) program. The size of the whole
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problem depends on the number of scenarios s. When s is large, the problem can be

a large-scale MINLP problem even if the second-stage problem Mh is small.

The program (1.1) can be simplified to an equivalent single-level program, as

shown in Eq (1.2):

max
y,x1,...,xs

f (1)(y) +
s∑

h=1

Occuhf
(2)(y,xh,Parh)

s.t. g(1)(y) ≤ 0

h(1)(y) = 0

g(2)(y,xh,Parh) ≤ 0

h(2)(y,xh,Parh) = 0

xh ∈ Xh

∀h ∈ Nh

y ∈ Y.

(1.2)

Program (1.2) is much easier to solve than program (1.1) in practice, and thus

is widely used for stochastic/multiperiod problems. However, the solution sets of

(1.1) and (1.2) are only guaranteed to be identical for their global optimal solutions

[189]. Hence, a global optimization solver must be applied to problem (1.2) in order

to obtain the global solution of the two-stage program (1.1).

Stochastic and multiperiod programming problems have the same two-stage struc-

ture. However, there are several subtle differences between the two problems. In

multiperiod programs, all scenarios will occur during the plant lifetime with a known

frequency of occurrence and the overall profit during the plant lifetime is optimized.

In stochastic programs, the scenarios are random events and only one with estimated

probability of occurrence will occur during the plant lifetime. The stochastic program

is intended to optimize the expected value of the profit whose actual value is unknown

before the plant begins to operate.

Stochastic/multiperiod pooling problems are a class of optimization problems,

in which the only nonlinear functions are bilinear functions. They are widely used

for optimization of chemical systems when blending and separation processes are
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involved and stream compositions need to be tracked in the whole system. Stochas-

tic/multiperiod pooling problems are potentially large-scale nonconvex MINLP prob-

lems, where the nonconvexity originates from the bilinear functions.

Besides flexible energy polygeneration optimization problems, two-stage stochas-

tic/multiperiod programming formulations are also applied to a wide range of other

engineering design and optimization problems. For example, the two-stage multi-

period formulation is used for the design and planing of power generation systems

[189, 122], petroleum production and supply systems [138, 175, 139], utility systems

[87, 88, 6, 159], water supply systems [165], supply chain networks [38, 46, 184, 94],

batch manufacturing facilities [125, 177, 26, 137, 176], production and distribution

of multiproduct systems [89] and oil spill response [192]; and the two-stage stochas-

tic formulation is extensively applied to optimization problems with the presence

of uncertainty, such as oil & gas production [161, 110, 72, 91, 103, 166], refinery

planning [148, 104, 105, 18, 107], power generation [73, 172, 90, 143, 43, 40], heat in-

tegration [147, 65], water management [85, 22, 17, 71, 96], coal polygeneration [120],

reactor design [126], real-time optimization (RTO) [191] and supply chain networks

[156, 80, 75, 78, 92, 79, 16, 45].

1.2.2 Global Optimization Algorithms & Literature Review

Global optimization algorithms guarantee the global optimal solutions for nonconvex

MINLP problems. For simplicity, the following discussion is only based on the min-

imization problems, and it could be easily modified for the maximization problems.

In global optimization algorithms, a sequence of lower and upper bounds on the op-

timal objective value is generated. At each iteration, the lower bound is obtained

by solving a relaxation of the original problem, and the upper bound is obtained

by solving a restriction of the original problem. The lower and upper bounds will

converge to the global optimal solution (within the specified tolerance) after a finite

number of iterations. Several global optimization algorithms have been developed

so far, including branch-and-bound, outer approximation (OA), generalized Benders

decomposition (GBD) and Lagrangian decomposition [113, 76].
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In branch-and-bound algorithms, the domain of the problem is partitioned at each

iteration. The lower bounds are generated by solving relaxations (typically convex

relaxations) of the problem on each of the subdomains, and the upper bounds are

generated by solving restrictions or obtaining local optima or feasible solutions of the

problem on each of the subdomains. A large number of subdomains may be fathomed

by comparing the upper and lower bounds. For example, when the local optima

or feasible solutions of the problem are used for upper bounds, subdomains whose

lower bounds are higher than or equal to the lowest upper bound can be fathomed.

The branch-and-reduce algorithm is a typical branch-and-bound algorithm, which

applies range reduction techniques [152, 154, 169, 168, 170]. The αBB algorithm is

another type of branch-and-bound algorithm for general twice-differentiable functions

[19, 14, 12, 13]. The computational times of branch-and-bound algorithms might

increase exponentially with the problem size in the worst case. Therefore it will

be quite challenging for branch-and-bound algorithms to handle large-scale MINLP

problems, including stochastic/multiperiod optimization problems.

In OA algorithms, the original problem is reformulated to a master problem by

projection and outer linearization, which potentially contains a large number of con-

straints. The relaxed master problem is then generated by selecting a finite subset of

the constraints in the master problem, and its solution provides a lower bound on the

optimal objective. A restriction of the original problem, called the primal problem,

is solved to give an upper bound on the optimal objective. By iteratively solving

primal problems and relaxed master problems, a sequence of nonincreasing upper

bounds and nondecreasing lower bounds are generated. The global optimal solution

is obtained when the upper bound and lower bound coincide. Note that although

the primal problem may possibly be decomposed into subproblems with smaller sizes,

the relaxed master problem still needs to solved in the space of all variables. The

development for OA algorithms can be found in Ref [57, 178, 59, 176]. The origi-

nal OA is designed for problems with only convex nonlinear functions. Kesavan et

al. [100, 101] developed a new OA algorithm that extends the application of OA to

problems with nonconvex functions. OA cannot fully exploit the special structure of
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two-stage stochastic/multiperiod problems (e.g., the size of the relaxed master prob-

lem depends on the number of scenarios) and it is usually not practical for problems

with a large number of scenarios.

GBD is the extension of Benders decomposition (BD) [32] (which is also called the

L-shaped method for stochastic linear programs [160, 34, 36]) to nonlinear problems,

which was originally developed by Geoffrion [68]. In GBD algorithms, a master prob-

lem is generated by projection and dualization of the original problem, and it contains

an infinite number of constraints. GBD algorithms have almost the same procedure

as OA algorithms. Primal problems and relaxed master problems are solved for upper

and lower bounds. The relaxed master problem in GBD only contains a subset of

the variables, which are typically complicating variables (or first-stage variables in

two-stage problems), and its size could be much smaller than that in OA. GBD is

quite suitable for the two-stage stochastic/multiperiod programming problems since

GBD can fully exploit the special mathematical structure of those problems. When

applied to two-stage programs, primal problems in GBD are constructed by fixing the

first-stage variables, which then naturally decomposed into a series of subproblems

that only contain the variables of one scenario. The relaxed master problems only

include first-stage variables, and their sizes are independent of the number of sce-

narios. Therefore, the computational time for GBD is expected to increase linearly

with the number of scenarios. The original version of GBD can only solve prob-

lems with convex nonlinear functions. Recently, Li et al. [113, 114] developed a new

version of the GBD algorithm, called nonconvex generalized Benders decomposition

(NGBD), for problems with nonconvex functions. NGBD has been successfully ap-

plied to several large-scale stochastic programming problems, including the Haverly

pooling problem, pump network configuration and natural gas production network

design [110, 112, 113, 114].

Lagrangian decomposition is another important algorithm for MINLP problems

[77, 134], which is also widely used for two-stage stochastic programs [151]. In La-

grangian decomposition algorithms, the original problem is reformulated by duplicat-

ing the first-stage variables and adding additional equality constraints (or linking con-
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straints) to link these variables. The dual of this reformulated problem, or Lagrangian

relaxation of the original problem, is generated by dualizing the linking constraints

into the objective function. The Lagrangian relaxation can be naturally decomposed

into a series of much smaller subproblems for each scenario. The Lagrangian decom-

position is usually used in a branch-and-bound framework to guarantee convergence

to a global optimal solution when applied to nonconvex MINLP problems [97, 102].

Note that within the branch-and-bound framework for the Lagrangian decomposi-

tion, branching needs to be performed in the full variable space whose size depends

on the number of scenarios. Hence, Lagrangian decomposition may not practically

solve problems with a large number of scenarios.

Compared to other global optimization algorithms, NGBD is the most suitable

one for the flexible polygeneration optimization problems. In this thesis, NGBD is

further developed to enhance its performance and applied to case studies of flexible

polygeneration design and operation. Discussions will be found in Chapter 5, 6 and

7.
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Chapter 2

Process Description of Energy

Polygeneration Systems

2.1 Overview

In this thesis, a polygeneration system co-producing power, liquid fuels (naphtha and

diesel) and chemicals (methanol) from coal and biomass as feedstock is investigated

[48, 47]. A simplified process flowsheet of the polygeneration system is shown in Figure

2-1. Coal and biomass are first converted to synthesis gas (syngas) in the gasifier.

Then, the sulfur species, CO2, and other pollutants in the syngas are removed in

the syngas cleaning and upgrading process. Finally, the syngas is split to different

downstream energy product processes such as the Fischer-Tropsch synthesis process,

the methanol synthesis process and the gas turbine. All usable heat generated in

the process is recovered in the heat recovery steam generator (HRSG) for additional

power generation using steam turbines.

The whole system comprises six subsystems: air separation unit (ASU) and gasi-

fier, syngas cleaning and upgrading process, Fischer-Tropsch (FT) synthesis process,

methanol (MeOH) synthesis process, gas turbine (GT), and heat recovery steam gen-

erator (HRSG) and steam turbine. The detailed process flowsheet is shown in Figure

2-2, where each subsystem is placed in the same position as in Figure 2-1. IGCC and

CTL process designs in NETL reports [182, 173, 174] are selected as references for
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the polygeneration system design.

Figure 2-1: Simplified process flowsheet of the polygeneration system.

2.2 ASU and Gasifier

In the air separation unit, O2 with over 95 mol % purity and a N2 stream are produced

by a cryogenic distillation process. Most of the O2 is compressed and fed into the

gasifier, and the rest is sent to the Claus plant in the syngas cleaning process and the

auto-thermal reforming reactor in the Fischer-Tropsch synthesis process. Part of the

N2 is used as diluent in the gas turbine combustor to prevent excessive temperatures

in the gas turbine generator and to reduce nitrogen oxide emissions.

A slurry-feed, oxygen-blown, entrained-flow gasifier is selected, where the coal

(and biomass) and water are fed. High temperature, high pressure syngas is produced.

Based on the current designs of entrained-flow gasifiers, biomass cannot totally replace

coal as the carbon source and the biomass/coal mass ratio cannot exceed an upper
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limit. The raw syngas produced consists mostly of H2 and CO with smaller amounts of

water vapor and CO2 and small amounts of H2S, COS and other impurities. Coal ash

is melted and flows out of the gasifier as slag, which can be used to produce building

materials. Hot syngas from the gasifier passes a radiant cooler and a convective cooler

to recover high temperature heat and middle temperature heat, and then is sent to

the syngas cleaning process.

2.3 Syngas Cleaning and Upgrading Process

The syngas cleaning process removes impurities in the raw syngas (including partic-

ulates, chlorides, sulfides, mercury and CO2) and adjusts the H2 to CO mole ratio in

the clean syngas to appropriate levels for downstream processes.

Raw syngas first passes a scrubber to remove particulates and chlorides, and then

enters a COS hydrolysis reactor, where almost all COS is converted to CO2 and H2S

by the following reaction:

COS + H2O 
 CO2 + H2S (2.1)

The syngas exiting the COS hydrolysis reactor is cooled and passes through a

carbon bed to remove over 95% of mercury. Then, cool syngas enters a Selexol unit,

where almost all H2S is removed. The H2S rich stream is sent to the Claus plant,

where H2S is converted to elemental sulfur, a product of the polygeneration process,

via the following reaction:

H2S +
1

2
O2 
 H2O + S (2.2)

The syngas exiting the Selexol unit is almost free of H2S and other pollutants. The

clean syngas is reheated and split into three branches: the left branch for production

of syngas with H2/CO mole ratio of 2 for Fischer-Tropsch synthesis and methanol

synthesis processes, the middle branch for generation of H2 rich gas for the gas tur-

bine, and the right branch for electricity production with the gas turbine. In the

polygeneration system design, the split fractions of syngas to these three branches
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can be adjusted to change the production rates of power and liquids (naphtha, diesel

and methanol) and decide whether carbon capture and sequestration (CCS) is imple-

mented in the power generation section.

The left and middle branches have similar structure. Clean syngas first passes

through three-stage water gas shift (WGS) reactors in series, which include two high-

temperature reactors and one low-temperature reactor, to convert part of the CO by

the following exothermic reaction:

CO + H2O 
 CO2 + H2 (2.3)

The heat generated can be recovered for power generation. The H2/CO mole ratios

in the syngas after the WGS reactors are different in the two branches. In the left

branch, the H2/CO mole ratio is strictly equal to 2; while in the middle branch, the

H2/CO mole ratio has flexible values much higher than 2. Syngas is then cooled and

enters another Selexol unit to remove most of the CO2. Part of the CO2 from the

Selexol unit is compressed and sequestered, and rest is emitted. In the left branch,

syngas after the Selexol unit passes through a Zinc oxide (ZnO) bed to remove trace

amount of remaining H2S, and a small portion of the CO2 lean syngas is sent to a

pressure-swing adsorption (PSA) unit to separate H2 for the Fischer-Tropsch process.

Syngas is then reheated and sent to different downstream processes.

2.4 Fischer-Tropsch Synthesis Process

Sulfur-free syngas with a H2:CO molar ratio of 2:1 from the left branch of the syngas

cleaning and upgrading process passes through a turbine (or expander) to decrease

the pressure and is fed to the Fischer-Tropsch (FT) synthesis reactor, where a cobalt-

based catalyst is used and syngas is converted into linear paraffinic hydrocarbons

with carbon numbers from 1 to 70 by the following reaction:

nCO + (2n+ 1)H2 
 CnH2n+2 + nH2O (2.4)
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The FT reaction is highly exothermic; hence a large amount of steam can be pro-

duced for power generation. The products of FT synthesis are separated into several

streams in the hydrocarbon separation unit: light ends (including unreacted syngas,

C1-C4 hydrocarbons), naphtha (C5-C10 hydrocarbons), diesel (C11-C22 hydrocarbons),

wax (above C22 hydrocarbons), and water. Naphtha and diesel are products of this

polygeneration system, and can be further upgraded in existing refinery processes.

Wax is sent to a hydrocracking reactor, converted to light hydrocarbons, naphtha

and diesel, and recycled back to the hydrocarbon separation unit. Light ends gas is

compressed after the separation unit. Part of the light ends are sent to the gas turbine,

and the rest is sent to an autothermal reforming reactor, where light hydrocarbons

are converted back to syngas by the following reactions:

CO +
1

2
O2 → CO2 (2.5)

H2 +
1

2
O2 → H2O (2.6)

CnH2n+2 +
3n+ 1

2
O2 → nCO2 + (n+ 1)H2O (2.7)

CnH2n+2 + nH2O 
 nCO + (2n+ 1)H2 (2.8)

Part of the syngas produced by the reforming reactor is recycled to the FT syn-

thesis reactor, and the rest is sent back to the syngas cleaning process to remove

CO2.

2.5 Methanol Synthesis Process

Sulfur free syngas with a H2:CO molar ratio of 2:1 from the left branch of the syngas

cleaning and upgrading process is fed to the methanol (MeOH) synthesis reactor,

where a copper-based catalyst is used and syngas is converted into methanol by the

following reaction:

CO + 2H2 
 CH3OH (2.9)
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The MeOH reaction is highly exothermic; hence a large amount of steam can

be produced for power generation. The products of the MeOH synthesis reactor

are separated into several streams in the methanol separation unit: unreacted syn-

gas, methanol with purity of 99.8% and higher alcohols that are byproducts of the

methanol synthesis reaction. High purity methanol is one of the products of the

polygeneration system. Part of the unreacted syngas and higher alcohols are sent to

the gas turbine as fuel. The rest of the syngas is recycled to the methanol synthesis

reactor.

2.6 Gas Turbine

Clean syngas from the middle and right branches of the syngas cleaning and upgrading

process passes through several expanders to reduce the pressure to the maximum

operating pressure of the gas turbine, generating some additional power. This is mixed

with the tail gas of the PSA unit, light ends from FT synthesis, unreacted syngas

and higher alcohols from MeOH synthesis, compressed air, nitrogen from the ASU,

and steam to form the feedstock of the gas turbine combustor. High temperature

and high pressure flue gas produced from the combustor drives the gas turbine to

generate a large amount of power. The exhaust gas exiting the gas turbine with high

temperature passes through the HRSG where additional heat is recovered for power

generation. The flue gas exiting the HRSG is discharged through the plant stack.

2.7 HRSG and Steam Turbine

Heat generated in units such as the gasifier, WGS reactors, FT reactor, MeOH reactor,

Claus plant and gas turbine is recovered in the heat recovery steam generator (HRSG).

Part of the heat recovered is supplied to heat-consuming units such as the hydrocarbon

separation unit and the methanol separation unit. The rest of the heat is used in the

steam turbines to produce additional power.
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Figure 2-2: Detailed process flowsheet of the polygeneration system.
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Chapter 3

Optimal Design and Operation of

Static Energy Polygeneration

Systems

3.1 Mathematical Model

3.1.1 Overview

This work focuses on the influence of different economic and policy conditions on

the optimal design and operation of polygeneration systems [48]. The objective is

to maximize the economic performance of the whole plant while satisfying all design

and operational constraints. Material and energy balances describe the entire sys-

tem. To both keep the problem tractable for current global optimization solvers and

maintain the accuracy of the model, reduced models are used to represent all unit

operations using parameters estimated from detailed Aspen Plus simulation models,

the literature, or industrial experience.

The key decision variables are shown in Figure 2-2 and explained in Table 3.1.

mgas
fd,dry, which is limited by the gasifier capacity, determines both the feedstock con-

sumption rates and production rates of the whole plant. Rb/f determines the biomass

usage level. Sliq, Sele and Sme determine the flows of syngas to the different down-
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stream processes and hence the production distribution. Rwgs1 and Rwgs2 determine

the optimal CO conversions in the WGS reactors. High CO conversions in the WGS

reactors (or deep shifts) achieve low CO2 emissions, but result in high steam con-

sumption which reduces the energy efficiency of the whole system. Hence the CO

conversions need to be optimized based on the product prices and carbon emission

tax. Sseq determines the CO2 sequestration ratio, which represents a tradeoff: high

CO2 sequestration ratios imply low CO2 emissions but high power consumptions.

Satr and Sfts determine the recycle ratios in the FT process, and Smes determines the

recycle ratio in the MeOH process.

Table 3.1: Key decision variables in the model

Decision Variables Description

mgas
fd,dry Mass flow rate of the dry feedstock fed into the gasifier

Rb/f Dry mass fraction of biomass in the gasifier feedstock
Sliq Split fraction of the clean syngas to the liquid fuel produc-

tion (or the left) branch in the syngas cleaning and upgrading
process

Sele Split fraction of the clean syngas to the power generation with
CCS (or the middle) branch in the syngas cleaning and up-
dating process

Rwgs1 Conversion of CO in Water Gas Shift Reactor 1
Rwgs2 Conversion of CO in Water Gas Shift Reactor 2
Sseq Split fraction of the CO2 stream to sequestration
Sme Split fraction of the clean syngas with H2/CO mole ratio of 2

to the methanol synthesis process
Satr Split fraction of the light ends exiting the hydrocarbon sepa-

ration unit to the autothermal reforming reactor
Sfts Split fraction of the syngas exiting the autothermal reforming

reactor to the Fischer-Tropsch synthesis reactor
Smes Split fraction of the unreacted syngas exiting the methanol

separation unit to the methanol synthesis reactor

Most parameters in the reduced models of unit operations are estimated from

an Aspen Plus simulation model of the polygeneration process [9]. In the Aspen

Plus model, RStoic models (reactor models with specified conversions) and RPlug
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models (rigorous plug flow reactor models with detailed kinetics) models are selected

for reactors, RadFrac models (rigorous 2 or 3-phase distillation models) are used for

distillation columns, and compressor/turbine models with isentropic efficiencies are

employed for compressors and turbines.

The mathematical models in this study include the following sub-models: mass

balances in each unit operation, energy balances, enthalpy calculations, capital cost

calculations, production rates, CO2 emission rates, and economic analyses. Detailed

equations are listed in Appendix A. Assumptions and some key equations in each

sub-model will be discussed here.

3.1.2 Mass Balance

Air Separation Unit

In the air separation unit, air is separated into O2 and N2 rich streams. Only three

major species, N2, O2 and Ar, are included in mass balance calculations. The split

fraction of O2 in air to the O2 rich stream is 0.94 [182, 9].

Gasifier

Gasification is the most important unit operation in the polygeneration process. Com-

plex chemical kinetics models, transport models and thermodynamics models are re-

quired to represent the entire gasification process accurately. For the highest amount

of accuracy, solving these models needs extremely high computational effort and hence

they cannot be incorporated into the optimal design model.

In this model, the operating temperature and pressure are fixed as parameters.

Six elements (C, H, O, N, S and Cl) in the feedstock are converted to eleven species

(CO, H2, CO2, H2O, CH4, N2, Ar, H2S, COS, NH3 and HCl) in the raw syngas.

Conversions of all elements are assumed constant under such operating conditions,

e.g., the conversion of C is 0.98 and conversions of all other elements are assumed to

be 1 [182, 9].

In this study, Illinois #6 coal is used and straw is selected as the biomass. The
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mass fractions of water in Illinois #6 coal and straw are 0.1112 and 0.082, repectively

[182, 171]. Their dry mass compositions are listed in Table 3.2 [182, 171].

Table 3.2: Dry mass compositions of feedstocks

Mass Fractions of Elements Illinois #6 Coal Straw

C 0.7172 0.476
H 0.0506 0.058
O 0.0775 0.4012
N 0.0141 0.005
S 0.0282 0.0008
Cl 0.0033 0.001

The mole composition of raw syngas from the gasifier is assumed to be unchanged

under a given feedstock portfolio. Hence the molar flow rates of all species in the raw

syngas can be easily related to the molar flow rates of some key species. Due to the

design limitations of current gasifiers, the mass fraction of biomass in the feedstock

Rb/f cannot exceed an upper limit Rb/f,max (typically 30%) [167]. In this model, the

molar compositions of raw syngas from pure coal and the coal/biomass mixture with

the biomass mass fraction of 30% are obtained from the Aspen simulation results

[9, 136]. The gasification of coal and biomass is assumed to take place independently,

hence the molar composition of the raw syngas from the feedstock with any biomass

mass fraction between 0 and 30% is a linear combination of the above two given molar

compositions.

Scrubber

Species with high solubility in water (HC1 and NH3) are assumed to be totally re-

moved in the scrubber, while the absorption of other species is neglected.

COS Hydrolysis Reactor

In industry, high COS conversion (typically over 99.5% [182]) can be achieved in the

hydrolysis reactors. The COS is thus assumed to be totally converted in this model.
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Selexol Units

In this model, the operating temperature and pressure are fixed as parameters for

all Selexol units, though feedstock compositions may change in different designs. For

simplicity, the H2S or CO2 split fraction is assumed to be constant in all cases. This

is an adequate approximation when the feedstock compositions do not vary in a wide

range, which is true for this study.

The Selexol unit for H2S removal is assumed to only separate H2S and CO2 from

the syngas, and absorption of N2 and Ar are neglected. The split fraction of H2S to

the clean syngas is 6×10−6 [9]. The H2S rich stream from the Selexol unit is assumed

to have a fixed composition under a wide range of operating conditions. The mole

fraction of H2S in the H2S rich stream is 0.48, and the remaining species is CO2 [9].

Similarly, the Selexol unit for CO2 removal is assumed to only separate CO2 from

the syngas, and absorption of N2 and Ar are neglected. There is only trace amount

of H2S in the feedstock; hence the absorption of H2S is also not considered. The split

fraction of CO2 to the clean syngas is 0.031 [9]. CO2 stream produced is assumed to

be pure CO2.

Claus Plant

The conversion of H2S in the Claus reaction is assumed to remain unchanged in all

cases, which is 0.975 [182, 9], and O2 is totally consumed.

Water Gas Shift Reactors

The product molar flow rates of the WGS reaction is constrained by the following

nonlinear correlation:

Fwgs
pd,H2

Fwgs
pd,CO2

+ AwgsFwgs
pd,COF

wgs
pd,H2O = 0 (3.1)

where Fwgs
pd,CO, Fwgs

pd,H2O, Fwgs
pd,CO2

and Fwgs
pd,H2

are molar flow rates of CO, H2O, CO2 and

H2 in the product stream of the three-stage WGS reactor respectively; Awgs is equal

to 42.77, which is a factor regressed from simulation results of the detailed WGS
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reactor model [7]. The CO conversions (overall conversions of the three-stage WGS

reactors) predicted by this model and the detailed model differ less than 5%.

The H2/CO mole ratio in the product of WGS Reactor 1 is required to be 2, and

there is no product requirement for WGS Reactor 2.

Pressure-swing Adsorption Unit

In the PSA, only H2 is adsorbed by assumption, thus pure H2 stream is produced.

The H2 recovery is constant in this model because the operating conditions of PSA

are specified for all cases. The split fraction of H2 to the H2 stream is 0.9 [163].

Fischer-Tropsch Synthesis Reactor

In the FT reactor, over 100 species of hydrocarbons with carbon numbers from 1 to 70

are synthesized. It is too complicated to model the FT reaction by representing each

hydrocarbon species individually. Instead, the following lumped model is employed:

CO + H2 
 light products + naphtha + dieselwax + oxygenates + H2O (3.2)

Light products, which are hydrocarbons with carbon numbers between 1 and 4, are

modeled as individual species including CH4, C2H4, C2H6, C3H6, C3H8, C4H8 and

C4H10. Naphtha, diesel and wax are lumped species. Each lumped species is simply

represented by the middle species in that lump, e.g., C6H14 and C8H18 represent

naphtha, C16H34 represents diesel, and C33H68 represents wax. CO2 is assumed to be

the only oxygenate product.

Due to the lack of detailed FT reactor kinetics, a fixed conversion and product

distribution are estimated from the advice and industrial experience of BP engineers.

The conversion of CO is 0.65, and the carbon selectivity of C6H14, C8H18 and C16H34

are 0.08, 0.11 and 0.22, respectively. The detailed parameters are available in Ap-

pendix A.

There is a feedstock specification for the FT synthesis reactor: the CO2 mole

fraction in the feedstock cannot exceed an upper limit, typically 0.05, based on the
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industrial experience of BP engineers.

Hydrocarbon Separation Unit

All species except C6H14 are assumed to be sharply split in the hydrocarbon separation

unit: all light ends including C1-C4 hydrocarbons, CO, H2, N2, Ar and CO2 enter the

light ends stream, all C8H18 enters the naphtha stream, all C16H34 enters the diesel

stream, all C33H68 enters the wax stream, and all H2O enters the water stream. Most

of the C6H14 enters the naphtha stream while the remaining portion enters the light

ends stream. A fixed split fraction of C6H14 to the naphtha stream, which is 0.986,

is assumed [9].

Hydrocracking Reactor

In real applications, thousands of species and millions of reactions are involved in

the hydrocracking reaction, which is impossible to be accurately modeled based on

current technology. In this model, the hydrocracking reaction is simply represented

by:

wax + H2 → naphtha + diesel (3.3)

Or

C33H68 + xH2 → yC8H18 + zC16H34 (3.4)

The conversion of wax is 0.3333. The values of y and z are 0.4344 and 1.8453,

respectively. They are estimated based on industrial experience of BP engineers.

Auto-thermal Reforming Reactor

In the autothermal reforming (ATR) reactor, part of the CO, H2 and hydrocarbons

need to be oxidized to provide the heat for the endothermic steam reforming reactions.

For simplicity, the ATR is modeled as two separate reactions in series: the combustion

reactions (2.5) (2.7) happen first, then the steam reforming reactions (2.8) take place.

The conversion of species in the combustion reaction, which is assumed to be equal for

all species, is a decision variable. The conversions of species in the steam reforming
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reactions are fixed, e.g., the conversion of CH4 is 0.96 [190]. The detailed parameters

are available in Appendix A.

Methanol Synthesis Reactor

In the methanol synthesis (MeOH) reactor, methanol (CH3OH) and a small portion

of higher alcohols are produced from syngas. The water gas shift reaction is neglected

here due to the very low water content in the feedstock. Higher alcohols in this model

are represented by ethanol (C2H5OH). Hence, two reactions take place in the MeOH

reactor. The main reaction is:

CO + 2H2 
 CH3OH (3.5)

The side reaction is:

CO + 2H2 

1

2
C2H5OH +

1

2
H2O (3.6)

Due to the lack of detailed MeOH reactor models, the total conversion of CO in

the two reactions is assumed to be fixed at 0.33 for simplicity [106]. The selectivity

of CO to the main reaction is fixed to be 0.99, which is estimated from the industrial

experience of BP engineers, because the operating temperature and pressure are fixed

in this model.

The CO2 mole fraction in the feedstock of MeOH reactor is constrained by an

upper limit, which is typically 0.1, based on the industrial experience of BP engineers.

Methanol Separation Unit

All species except CH3OH are assumed to be sharply split in the methanol separation

unit: all light ends including CO, H2, N2, Ar, CO2 and CH4 enter the unreacted syngas

stream, and all H2O and C2H5OH enters the higher alcohols stream. Most of the

CH3OH enters the methanol stream while the remaining portion enters the unreacted

syngas stream and the higher alcohols stream. Fixed split ratios of CH3OH among

above three streams are assumed: the split fractions of CH3OH to the unreacted

syngas stream and the methanol stream are 0.031 and 0.959 respectively [9].
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Gas Turbine

In the gas turbine combustor, all combustible species are assumed to be totally con-

sumed. Excess oxygen must be fed into the gas turbine combustor to ensure full

combustion of the fuel. The excess ratio of O2 is specified as 0.647, which is the

typical value in real applications [182, 9].

The sulfur emission regulation is applied here. The ratio of the sulfur mass flow

rate in the flue gas to the sulfur mass flow rate in the feedstock of the entire process

cannot exceed 0.001 [182].

Gas Coolers and Heaters

In the gas coolers without water output and gas heaters, which are single input and

single output unit operations, the mass balance is trivial.

In the gas coolers with water output, the mole fraction of water in the output

stream is assumed to be fixed as 0.032 because the operating temperature and pressure

are specified [9].

Other Unit Operations

The mass balances for compressors, turbines, mixers and splitters are available in

Appendix A.

3.1.3 Energy Balance

All streams are assumed to be ideal mixtures; hence their enthalpy can be calculated

as the weighted sum of the enthalpies of pure species.

Only heat generated above 220◦C, which can be utilized in the steam turbine,

is included in the energy balance calculation for the HRSG. Gas coolers with water

output have exit temperatures much lower than 220◦C, hence their heat is only used

to preheat the streams before gas heaters and is not considered for power generation.

All reactors except the gas turbine combustor are operated under isothermal con-

ditions. The gas turbine combustor is assumed to be an adiabatic reactor, and its
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product temperature cannot exceed 1200◦C [182, 9].

The heat and power consumptions of the separation units are assumed to be

proportional to the total molar flow rate of the feedstock stream or the product

stream. Their heat or power consumption coefficients are estimated from the Aspen

Plus model [9], and are available in Appendix A.

Similarly, the power consumption rates in compressors and power generation rates

in turbines except the gas turbine and steam turbines are assumed to be proportional

to the total molar flow rate of their input streams. The total molar flow rates of their

input streams in the base case and their power consumption or generation rates in the

correspond base case are estimated from the Aspen Plus model [9], and are available

in Appendix A.

In the gas turbine reduced model, the isentropic efficiency and the mechanical

efficiency are assumed to be 0.899 and 0.985, respectively [182]. The power generated

in the steam turbines is divided into two parts: power generated from high quality

heat and low quality heat, whose energy conversion efficiencies are different. High

quality heat only includes the heat generated at relatively high temperatures, such

as the heat from the gasifier radiant cooler, the gasifier convective cooler and the

gas turbine flue gas cooler. Low quality heat comprises all other heat generated in

the process with temperatures above 220◦C, such as the heat from water gas shift

reactors, the Fischer-Tropsch synthesis reactor and the methanol synthesis reactor.

Power conversion efficiencies from the high quality heat and low quality heat in the

steam turbine are 0.4407 and 0.1542, respectively, based on rigorous steam cycle

simulations within Aspen Plus [9, 39].

3.1.4 Enthalpy Calculation

The molar enthalpy of each species is expressed as the polynomial function of tem-

perature, which is available in Appendix A.
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3.1.5 Production Rates and Feedstock Consumption Rates

The feedstock requirement and production rate in this polygeneration plant are as-

sumed to be much smaller than the market supply and demand, respectively. Hence,

feedstock consumption rates and production rates are not constrained here, and the

market prices will not be influenced by this plant. The detailed feedstock consumption

rates and production rates are provided in Appendix A.

3.1.6 Capital Costs

Capital costs of equipment are calculated by the following power law scaling up rela-

tionship:

C l = C l
b

(
F l

F l
b

)sfl

(3.7)

where C l is the capital cost of equipment l, F l is the total mass (or molar) flow rate

of the input streams of equipment l. F l
b is the total mass (or molar) flow rate of the

input streams of equipment l in the base case, C l
b is the capital cost of equipment l

in the corresponding base case, and sf l is the sizing factor of equipment l, which are

all specified parameters estimated from [182, 173, 174, 106, 31, 163, 158, 9] and are

available in Appendix A.

The upper bound on the total dry mass flow rate of the gasifier feedstock is set

to be 1042 tonne/hr or 7.815 Mt/yr (Mt = million tonnes) [9].

3.1.7 Economic Analysis

The total annual cost is:

Cost = Costfed + Costcar
tax + Costcar

ccs + Costope (3.8)

where Cost is the total annual cost, Costfed is the cost of purchasing the feedstock,

Costcar
tax is the carbon emissions tax, Costcar

ccs is the cost of carbon sequestration and

Costope is the operational cost.
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The carbon tax is given by:

Costcar
tax = P car

tax Emisnet (3.9)

where Emisnet is the annual net CO2 emissions; P car
tax is the carbon tax per tonne of

CO2 emitted, which is a specified parameter. CO2 emissions are calculated by:

Emisgro = MWCO2

[
F sg

fl,CO2
+ (1− Sseq)F se2

car

]
top (3.10)

Emisnet = Emisgro −
MWCO2

MWC

(1− wbio,H2O)wbio,C m
gas
bio top (3.11)

where Emisgro is the annual gross CO2 emissions. If the carbon tax policy also taxes

the carbon in the liquid fuels (since they will ultimately be burned in their final use),

the annual net CO2 emissions are given by:

Emisnet =Emisgro −
MWCO2

MWC

(1− wbio,H2O)wbio,C m
gas
bio top

+ MWCO2

(
6F hs

nap,C6H14
+ 8F hs

nap,C8H18
+ 16F hs

dis

)
top

(3.12)

where F sg
fl,CO2

is the molar flow rate of CO2 in the gas turbine flue gas, F se2
car is the

molar flow rate of CO2 stream exiting Selexol Unit 2, F hs
nap,C6H14

and F hs
nap,C8H18

are the

molar flow rates of C6H14 and C8H18 in the naphtha stream exiting the hydrocarbon

separation unit respectively, F hs
dis is the molar flow rate of diesel stream exiting the

hydrocarbon separation unit, mgas
bio is the mass flow rate of biomass fed into the gasifier,

and Sseq is the split fraction of CO2 stream to sequestration. wbio,H2O is the mass

fraction of water in the wet biomass, and wbio,C is the mass fraction of C in the dry

biomass, which are available in Table 3.2. top is the annual operation time, which is

7500 hr/yr in this study [173, 174].

The detailed economic analyses are available in Appendix A. The market prices

and carbon tax will be discussed later. The cost of carbon sequestration is $10/tonne

CO2 based on the industrial experience of BP engineers.

The net present value (NPV), which is the objective function of this model, is
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given by:

NPV = −Cap + Pronet
1

r

(
1− 1

(1 + r)tlf

)
+
Rtax Cap

tdp

1

r

(
1− 1

(1 + r)tdp

)
(3.13)

where Cap is the capital investment of the plant, Pronet is the annual net profit. Rtax

is the tax rate (including both federal and state taxes), r is the annual discount rate,

tlf is the life time of the project, and tdp is the depreciation time of the project, which

are specified parameters. In this study, Rtax = 40% [173, 174], r = 0.12 [173, 174],

tlf = 30 yr [173, 174], and tdp = 10 yr [158].

3.1.8 Model Summary

The objective is to maximize the NPV subject to design and operational constraints

including mass and energy balances, production and feedstock consumption rates,

capital costs relationships, and the economic analyses. The decision variables include

the molar (or mass) flow rates of streams, split fractions, heat (and power) consump-

tion (and generation) rates, equipment capital costs, etc. The model is formulated

in GAMS 22.8 [41]. It is a nonconvex NLP model, including 659 variables and 652

constraints. Of the constraints, there are 6 inequality constraints and 646 equality

constraints, of which 119 are nonlinear. The nonconvexity in the model mainly origi-

nates from bilinear terms in mass balances and power law capital costs relationships.

The model is solved to global optimality by BARON 8.1 [153, 154] with SNOPT [70]

as the local NLP solver and CPLEX [1] as the LP solver. A cluster with 32 Intel

2.8 GHz processes was used to study many cases in parallel. The CPU times of case

studies varied between 180 s to 10800 s.

3.2 Case Study Results

In this part, the optimal design of a coal/biomass polygeneration system co-producing

electricity, naphtha, diesel and methanol will be discussed and compared using dif-

ferent product prices and carbon taxes. In each case study, two economic parameters
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will be varied, and all other parameters will remain the same. All market prices and

NPVs are expressed in 2007 dollars. All projects are assumed to operate between the

years of 2015 and 2045; hence the market prices are the projected prices for 2030,

which is assumed to be the average price during the above operating period.

3.2.1 Detailed Results of Two Sample Case Studies

In this section, the detailed optimization results of two sample case studies are pre-

sented. Case 1 only includes power generation, while Case 2 focuses on the liquid

fuels (naphtha and diesel) and methanol production. The economic parameters used

in the two case studies are listed in Table 3.3.

Table 3.3: Economic parameters in Case 1 and Case 2

Parameters Case 1 Case 2 Unit

Coal Price 40 40 $/tonne
Biomass Price 60 60 $/tonne
Water Price 0.75 0.75 $/tonne
Power Price 135 60 $/MWh

Naphtha Price 600 1350 $/tonne
Diesel Price 630 1417.5 $/tonne

Methanol Price 270 607.5 $/tonne
Sulfur Price 100 100 $/tonne
CCS Cost 10 10 $/tonne CO2

Carbon Tax 20 20 $/tonne CO2

The feedstock consumption rates and production rates in two cases are shown in

Table 3.4.

The optimal results of key decision variables in two cases are listed in Table 3.5.

From Table 3.5, it can be seen that all syngas enters the right (power generation

without CCS) branch in the syngas cleaning and updating process in Case 1, while all

syngas enters the left (liquid production) branch in the syngas cleaning and updating

process and most of the clean syngas with H2/CO mole ratio of 2 enters the methanol

synthesis process in Case 2. Since power generation with CCS is not implemented,
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Table 3.4: Feedstock consumption rates and production rates in Case 1 and Case 2

Case 1 Case 2
tonne/hr Mt/yr tonne/hr Mt/yr

Feedstock
Coal 1172.367 8.793 1172.367 8.793

Biomass 0 0 0 0
Water 360.466 2.703 196.54 1.474

Product
Power 3944.218∗ 29.582∗∗ 90.26∗ 0.677∗∗

Naphtha 0 0 14.833 0.111
Diesel 0 0 39.049 0.293

Methanol 0 0 712.421 5.343
Sulfur 29.384 0.22 29.384 0.22

CO2 sequestrated 0 0 1427.717 10.708

* : the unit is MW (MW = mega watt).
** : the unit is TWh (TWh = tera watt hour).

CO conversion in WGS Reactor 2 is not used in both cases.

The optimal product distributions of the two cases are shown in Table 3.6. The

product distribution is expressed as the output fraction of each product, which is

calculated by the following equation:

Fraction of product i =
Energy content in product i

Total energy content
(3.14)

where energy contents in the liquid fuels and methanol are represented by their lower

heating values (LHVs), and energy content in the power is the net power exported to

the grid rather than the gross power. The total energy content can be expressed as:

Total energy content = Net power generation + Naphtha LHV + Diesel LHV

+ Methanol LHV

(3.15)

and the fraction of liquid fuels is the sum of the fractions of naphtha and diesel.
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Table 3.5: Optimal results of key decision variables in Case 1 and Case 2 ∗

Decision Variables Case 1 Case 2 Unit

mgas
fd,dry 1042 1042 tonne/hr

Rb/f 0 0
Sliq 0 1
Sele 0 0
Rwgs1 n/a 0.394
Rwgs2 n/a n/a
Sseq n/a 1
Sme n/a 0.78
Satr n/a 1
Sfts n/a 0
Smes n/a 0.975

* : some results are not applicable (n/a) because the corresponding
unit operations are absent in the optimal design.

Table 3.6: Optimal product distributions in Case 1 and Case 2

Product Distribution (%) Case 1 Case 2

Power 100 1.71
Naphtha 0 3.73

Diesel 0 9.67
Liquid Fuels 0 13.40

Methanol 0 84.89

The net present values in Case 1 and Case 2 are $10.561 billion and $10.878 billion,

respectively, and the annual CO2 emissions in Case 1 and Case 2 are 20.128 Mt/yr

and 0.828 Mt/yr, respectively.

3.2.2 Power Price vs. Naphtha Price

In this section, the trade-off between power generation and liquids (naphtha, diesel

and methanol) production will be discussed. For simplicity, diesel and methanol

prices are assumed to be proportional to the naphtha price. The power price is varied
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from $30/MWh to $165/MWh, and the naphtha price is varied from $300/tonne to

$1650/tonne. They are assumed to be independent of each other. The economic

parameters are listed in Table 3.7.

Table 3.7: Economic parameters in case studies under different power prices and
naphtha prices

Parameter Value Unit

Coal Price 40 $/tonne
Biomass Price 60 $/tonne
Water Price 0.75 $/tonne
Power Price Varied $/MWh

Naphtha Price Varied $/tonne
Diesel Price 1.05 × Naphtha Price $/tonne

Methanol Price 0.45 × Naphtha Price $/tonne
Sulfur Price 100 $/tonne
CCS Cost 10 $/tonne CO2

Carbon Tax 20 $/tonne CO2

The optimal product distributions under different power and naphtha prices are

shown in Figure 3-1. The product distributions in Case 1 and Case 2 are also marked

in Figure 3-1.

From Figure 3-1, it is obvious that power generation is favored at higher power

price and lower naphtha price and liquids production is favored at higher naphtha

price and lower power price. There is a net output of electricity in every case even

when the liquid production dominates the polygeneration process because the com-

bustion of the FT and MeOH off gases plus the heat recovered from the HRSG

produces more power than needed in the plant for compressing and pumping. The

optimal product portfolio changes in a non-smooth way, which implies that the op-

timal design will always be either a pure power plant or a liquid plant with small

amount of net power output in our case studies. Co-production of power and liquid

in comparable fractions is only optimal under some high power prices and high naph-

tha prices. The major reason is that it will lead to a much higher capital investment

to co-build the power generation and liquid production facilities on comparable scales,
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and it always reduces the net profit when the product prices are not high enough.

The boundary line between power generation and liquid production regions is near

the line of the following price relationship: naphtha price ($/tonne) = 10 × power

price ($/MWh). Hence, the decision of producing power or liquid strongly depends

on the ratio of naphtha price to power price. If this ratio is above 10, liquids, which

can be liquid fuels, methanol or their mix, are preferred products for the higher NPV,

and power is generated mostly for internal use with small amounts of output. If this

ratio is below 10, power is the preferred product, and the polygeneration plant is

reduced to an IGCC plant without any liquids production. Co-production between

liquid fuels (naphtha and diesel) and methanol will be discussed later.

The net present values under different power and naphtha prices (shown in Figure

3-2) also clearly shows the non-smooth transition between different optimal product

portfolios. In the power generation region (left part), the NPVs are not influenced

by the naphtha prices because no liquids are produced there. The opposite holds in

the liquid production region.

The annual CO2 emissions are shown in Figure 3-3 (based on the dry feedstock

consumption rate of 7.815 Mt/yr). High CO2 emissions in the power generation region

imply that carbon capture and sequestration (CCS) is not profitable to implement

in IGCC under the given market prices and carbon emission policy. In the liquid

production region, CO2 is captured in all price scenarios to produce the syngas sat-

isfying the feedstock specifications of the Fischer-Tropsch or methanol reactor, but

CO2 is only sequestered for power prices lower than $100/MWh. At higher power

prices, it becomes economical to pay the carbon tax and forgo CCS to reduce the

power consumption in the CO2 compressor, increasing the output power to the grid.

3.2.3 Naphtha Price vs. Methanol Price

In this section, the trade-off between liquid fuels (naphtha and diesel) production and

methanol production will be discussed. The diesel price is assumed to be proportional

to the naphtha price, which is assumed to be independent of the methanol price. The

naphtha price is varied from $300/tonne to $1650/tonne, and the methanol price is
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varied from $160/tonne to $700/tonne. The power price is set to be low at $40/MWh,

which is a typical off-peak price, to minimize the influence of power generation. The

economic parameters are listed in Table 3.8.

Table 3.8: Economic parameters in case studies under different naphtha prices and
methanol prices

Parameter Value Unit

Coal Price 40 $/tonne
Biomass Price 60 $/tonne
Water Price 0.75 $/tonne
Power Price 40 $/MWh

Naphtha Price Varied $/tonne
Diesel Price 1.05 × Naphtha Price $/tonne

Methanol Price Varied $/tonne
Sulfur Price 100 $/tonne
CCS Cost 10 $/tonne CO2

Carbon Tax 20 $/tonne CO2

The optimal product distributions under different naphtha prices and methanol

prices are shown in Figure 3-4. In all price scenarios, power is generated by combus-

tion of off- gas from liquid fuels or methanol production and most of it is consumed in

the process. It is clear that the liquid fuels (naphtha + diesel) are favorable products

under the high naphtha prices and low methanol prices, and methanol production is

favored under high methanol prices and low naphtha prices. The transition between

different optimal product portfolios here is also non-smooth: the optimal polygener-

ation design is either a liquid fuel plant or a methanol plant in most price scenarios.

The boundary line between the region favoring liquid fuels and the region favoring

methanol is close to the straight line with the following relationship: naphtha price

($/tonne) = 2.6 × methanol price ($/tonne). Hence, the production choice between

liquid fuels and methanol is strongly dependent on the ratio of naphtha price to

methanol price. Liquid fuel production is more favorable than the methanol produc-

tion if this ratio is well above than 2.6, and it becomes less favorable than methanol

production if this ratio drops much lower than 2.6. It is only profitable to co-build
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the Fischer-Tropsch synthesis system and the methanol synthesis system in one plant

and co-produce liquid fuels and methanol in comparable fractions in several cases

when the naphtha price and methanol price are both high and near the boundary

line. High capital investment is the major factor that prohibits the co-production

of liquid fuels and methanol under low liquid fuel and methanol prices. However,

this obstacle is overcome under high product prices. Co-production of different liquid

products is not only a way to increase the total profit but also a strategy to reduce

significantly the risk caused by fluctuations in liquid product market prices.

The optimal net present values are shown in Figure 3-5, which also implies the

non-smooth transition between the liquid fuels production region and the methanol

production region. In each region, the optimal NPVs are not influenced by the price

of the other product.

The CO2 emissions under different price scenarios are shown in Figure 3-6 (based

on the dry feedstock consumption rate of 7.815 Mt/yr). CCS is economic under the

moderate carbon tax and low power price; hence CO2 emissions are quite low in all

cases. Almost all of the CO2 emitted comes from the gas turbine flue gas, which is

the combustion product of the light ends in the Fischer-Tropsch process or unreacted

syngas in the methanol synthesis process.

3.2.4 Biomass Price vs. Carbon Tax

In this section, carbon taxes and biomass prices that promote biomass usage and

reduce CO2 emissions in the power generation are investigated. A high power price

(a typical peak-time price) and relatively low liquid fuels and methanol prices are

selected to create a scenario in which pure power generation is optimal. Biomass

prices are varied from $10/tonne to $100/tonne, and carbon taxes are varied from

$0/tonne CO2 to $135/tonne CO2. The economic parameters are listed in Table 3.9.

The optimal results show that electricity corresponds to 100% of total energy

output in all scenarios.

The gross CO2 emission and net CO2 emission are shown in Figure 3-7 and 3-8.

The gross CO2 emission is the total amount of CO2 emitted by the polygeneration
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Table 3.9: Economic parameters in case studies under different biomass prices and
carbon taxes

Parameter Value Unit

Coal Price 40 $/tonne
Biomass Price Varied $/tonne
Water Price 0.75 $/tonne
Power Price 120 $/MWh

Naphtha Price 600 $/tonne
Diesel Price 630 $/tonne

Methanol Price 270 $/tonne
Sulfur Price 100 $/tonne
CCS Cost 10 $/tonne CO2

Carbon Tax Varied $/tonne CO2

process. The net CO2 emission is the amount of CO2 emitted only generated by

coal, which equals gross CO2 emission minus the CO2 originating from biomass. This

assumes that biomass will be credited as a “net-zero emissions” fuel, as recent policy

debates have supported. The optimal CO2 emissions, which reflect the optimal CO2

reduction strategies, are highly dependent on the carbon tax rate. At low carbon taxes

($30/tonne CO2 or lower), carbon capture and sequestration (CCS) equipment is not

installed and all de-sulfured syngas is directly sent to the gas turbine, which results

in high CO2 emissions. When carbon taxes are higher than $30/tonne CO2, CO2

emissions significantly drop because all de-sulfured syngas enters the power generation

from the CCS branch. CO2 emissions are reduced by increasing the CO conversion

of the water gas shift reactor at the expense of losing more high-temperature steam

used for steam turbines. Gross CO2 emissions cannot drop to zero due to the limit of

the CO2 removal efficiency in the Selexol unit. Further reduction of CO2 emissions

can be achieved by blending some biomass into the feedstock. This is confirmed by

the optimal results. At extremely high carbon tax, net CO2 emissions become zero

due to the biomass usage although the corresponding gross CO2 emissions are still

non-zero.

The optimal biomass/feedstock ratios under different biomass prices and carbon
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taxes are shown in Figure 3-9. Biomass will only be used in the power generation

under very high carbon taxes, such as carbon taxes higher than $75/tonne CO2.

Biomass usage is also strongly dependent on the biomass price. At the same carbon

tax, more biomass is preferred under lower biomass prices. Since biomass produces

less syngas than coal for the same mass input rate, biomass is not profitable without

high carbon taxes even when the biomass price is quite low. However, using biomass

in the feedstock (Rb/f > 0) is a cheap way to realize deep reduction of CO2 emissions,

which is even cheaper than deep shifts in WGS Reactor 2 (high values for Rwgs2) for

the purpose of generating CO2 for pre-combustion capture. When the CO conversion

in WGS Reactor 2 reached 90%, it was more profitable to use biomass than to try a

higher CO conversion in WGS Reactor 2. In this study, credits from negative CO2

emissions are not considered and the objective of biomass usage is just to bring the

CO2 emissions to zero. More biomass may be incentivized if the carbon policy were

to allow the sale of surplus carbon credits.

Comparing Figures 3-8 and 3-9, one concludes that the carbon tax is the most im-

portant driving force to decrease the CO2 emissions and increase the biomass content

in the feedstock. With the increase of carbon tax, CCS will first be implemented to

achieve substantial reduction of CO2 emissions. When CO2 emissions are low, CCS

plus biomass is an effective way to further reduce net CO2 emissions to zero.

The optimal net present values are shown in Figure 3-10. The cost of reducing

CO2 emissions significantly decreases the NPV. A given project will generally lose

nearly half its NPV if the carbon tax increases from $0/tonne CO2 to $75/tonne

CO2. However, when the carbon tax is high enough, the NPV only slightly drops

with further increases of carbon tax because CCS is already implemented and CO2

emissions are very low. In this study, the power price is set high enough to ensure

positive NPV under all price scenarios. In real cases, allowances may be needed for

CCS and biomass usage when the power price is low.

The influence of biomass prices and carbon taxes on CO2 emissions and biomass

usage is similar in liquid fuels and methanol production. Compared to power genera-

tion, CCS will be implemented under lower carbon taxes ($20/tonne CO2) in liquids
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production, and less biomass will be used in the feedstock since the CO2 emissions

from liquids production are much lower than from power production.

3.2.5 Carbon Tax without Fuel vs. Carbon Tax with Fuel

The CO2 emissions charged for carbon taxes in the previous sections only include

the CO2 emitted by the process. However, the liquid fuels (naphtha and diesel)

produced will lead to additional CO2 emissions in downstream processes such as

transportation and heating, which may also be subject to carbon taxes under different

policies. In this section, two different carbon tax cases are compared: carbon tax

only for process CO2 emissions and carbon tax for total CO2 emissions (process CO2

emissions plus downstream CO2 emissions from liquid fuels). Methanol produced in

the polygeneration plant will be used as a chemical which will not emit additional

CO2 in downstream processes; hence it will not be subject to carbon taxes in either

case. Carbon taxes are set to be varied from $0/tonne CO2 to $50/tonne CO2. The

economic parameters are listed in Table 3.10.

Table 3.10: Economic parameters in case studies under different carbon tax policies

Parameter Value Unit

Coal Price 40 $/tonne
Biomass Price 60 $/tonne
Water Price 0.75 $/tonne
Power Price 70 $/MWh

Naphtha Price 1000 $/tonne
Diesel Price 1050 $/tonne

Methanol Price 400 $/tonne
Sulfur Price 100 $/tonne
CCS Cost 10 $/tonne CO2

Carbon Tax Varied $/tonne CO2

The optimal production distributions under two different carbon tax cases are

shown in Figures 3-11 and 3-12. The production strategies are highly dependent on

the carbon tax case. For these market conditions, liquid fuels are favored under all
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of the carbon taxes when only process CO2 emission is charged for carbon taxes. If

downstream CO2 emissions are also included in the carbon tax, the favorable products

will switch from liquid fuels to methanol with increasing carbon tax. The transition

point is between $20/tonne CO2 and $30/tonne CO2. Hence, the optimal product

portfolio can be very different under middle or high carbon tax if a different carbon

tax policy is implemented, even when all the market prices are the same.

The optimal net present values are shown in Figure 3-13. Varying the carbon

tax policy from charging process CO2 emissions to total CO2 emissions causes a

considerable loss of net present value. However, the new product portfolio has greatly

mitigated such profit loss.

The process CO2 emissions and total CO2 emissions are shown in Figures 3-14

and 3-15. Although process CO2 emissions from the two product portfolios are nearly

the same, their total CO2 emissions differ much under middle and high carbon taxes.

The polygeneration strategy under the new carbon tax policy achieves much lower

total CO2 emission by replacing liquid fuels production with methanol production.

However, this does not imply that other technologies (such as refining) would produce

less liquid fuels.

3.2.6 Polygeneration System vs. Single-product System

In this section, the profitability of a polygeneration plant and different single-product

plants (power plant with CCS, power plant w/o CCS, liquid fuels plant and methanol

plant) are compared. Product distributions can be varied in the polygeneration plant

and must be fixed in single-product plants. In power plants, liquid fuels and methanol

production rates are both zero. In liquid fuels plants or methanol plants, only the

minimum amount of electricity is exported to the grid. In this study, the power price

is fixed to be $75/MWh. The naphtha price is varied here, and diesel and methanol

prices are assumed to be proportional to the naphtha price. The economic parameters

are listed in Table 3.11.

Under different price scenarios, different optimal designs are obtained for polygen-

eration systems, but the designs for each single-product system are almost the same.
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Table 3.11: Economic parameters in case studies comparing the polygeneration and
single-product systems

Parameter Value Unit

Coal Price 40 $/tonne
Biomass Price 60 $/tonne
Water Price 0.75 $/tonne
Power Price 75 $/MWh

Naphtha Price Varied $/tonne
Diesel Price 1.05 × Naphtha Price $/tonne

Methanol Price 0.45 × Naphtha Price $/tonne
Sulfur Price 100 $/tonne
CCS Cost 10 $/tonne CO2

Carbon Tax 20 $/tonne CO2

The optimal product distributions for the polygeneration system are shown in Figure

3-16.

The net present values of the polygeneration plant with the optimal design and

all single-product plants are shown in Figure 3-17. The polygeneration plant never

has lower NPVs than a single-product plant in all price scenarios. Under some price

scenarios, the NPVs of the polygeneration plant can be much higher than some kinds

of single-product plants. This fact demonstrates the advantage of polygeneration sys-

tem in the economic performance. The NPVs of the polygeneration plant, liquid fuels

plant and methanol plant are more clearly shown in Figure 3-18, in which the differ-

ences between NPVs of each plant and NPVs of the liquid fuels plant are presented.

However, it is also indicated that the optimal design of a static polygeneration system

is always close to or equal to a single-product system, hence the economical benefit

of static polygeneration is not significant.
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Figure 3-1: Product distributions in case studies under different power prices and
naphtha prices. (The axes are rotated to provide a favorable view.) [Grey circle :
Case 1, White circle : Case 2.]
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Figure 3-2: Net present values in case studies under different power prices and naphtha
prices.
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Figure 3-3: Annual CO2 emission in case studies under different power prices and
naphtha prices.
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Figure 3-4: Product distributions in case studies under different naphtha prices and
methanol prices. (The axes are rotated to provide a favorable view.)
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Figure 3-5: Net present values in case studies under different naphtha prices and
methanol prices.
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Figure 3-6: Annual CO2 emission in case studies under different naphtha prices and
methanol prices.
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Figure 3-7: Annual gross CO2 emission in case studies under different biomass prices
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Figure 3-8: Annual net CO2 emission in case studies under different biomass prices
and carbon taxes.
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Figure 3-9: Biomass usage in case studies under different biomass prices and carbon
taxes.
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Figure 3-10: Net present values in case studies under different biomass prices and
carbon taxes.

 

 

 

E
 

 

 

 

L  

 

 

 

 
M

0

20

40

60

80

100

0 10 20 30 40 50

Pr
od

uc
t F

ra
ct

io
n 

(%
)

Carbon Tax ($/tonne CO2)

Figure 3-11: Product distributions in case studies under carbon taxes for process CO2

emissions. [ � : electricity, © : liquid fuels, × : methanol ]
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Figure 3-12: Product distributions in case studies under carbon taxes for total CO2

emissions. [ � : electricity, © : liquid fuels, × : methanol ]
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Figure 3-13: Net present values in case studies under two carbon tax cases. [ �
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Figure 3-14: Annual process CO2 emissions in case studies under two carbon tax
cases. [ � : carbon tax w/o fuel, © : carbon tax w/ fuel ]
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Figure 3-15: Annual total CO2 emissions in case studies under two carbon tax cases.
[ � : carbon tax w/o fuel, © : carbon tax w/ fuel ]
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Figure 3-16: Product distributions in the polygeneration systems with the optimal
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product systems. [ : polygeneration plant, : power plant w/ CCS,
: power plant w/o CCS, : liquid fuels plant, : methanol plant ]

86



0

0.2

0.4

0.6

0.8

1

700 900 1100 1300 1500 1700

∆ 
N

PV
 ($

bi
lli

on
)

Naphtha Price ($/tonne)

Figure 3-18: Net present values of the polygeneration systems and several single-
product systems (enlarged view). [ : polygeneration plant, : liquid fuels
plant, : methanol plant ]

87



88



Chapter 4

Optimal Design and Operation of

Flexible Energy Polygeneration

Systems

4.1 Mathematical Model

4.1.1 Overview

The two-stage formulation (as shown in Eq (1.1) and (1.2)) is applied in this study

[47]. The market prices of all products are assumed to vary daily and seasonally.

A collection of scenarios, which will occur with a certain frequency over the plant

lifetime, are assumed to represent these price fluctuations. Product prices are fixed

within each scenario, but can change between scenarios. The objective of this formu-

lation is to maximize the overall economic performance of the plant while satisfying

all design constraints and operating constraints in all scenarios. The key design deci-

sion variables are equipment capacities, and the key operational decision variables are

listed in Table 4.1 and shown in Figure 2-2, which are similar to those in the static

polygeneration model in Chapter 3. The values of operational decision variables vary

between different scenarios.

For simplicity, the feedstock (including coal and biomass) compositions are as-
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Table 4.1: Key operational decision variables in the model

Operational Variables Description

mgas
fd,dry Mass flow rate of the dry feedstock fed into the gasifier

Rb/f Dry mass fraction of biomass in the gasifier feedstock
Sliq Split fraction of the clean syngas to the liquid fuel produc-

tion (or the left) branch in the syngas cleaning and upgrading
process

Sele Split fraction of the clean syngas to the power generation with
CCS (or the middle) branch in the syngas cleaning and up-
dating process

Rwgs1 Conversion of CO in Water Gas Shift Reactor 1
Rwgs2 Conversion of CO in Water Gas Shift Reactor 2
Sseq Split fraction of the CO2 stream to sequestration
Sme Split fraction of the clean syngas with H2/CO mole ratio of 2

to the methanol synthesis process
Satr Split fraction of the light ends exiting the hydrocarbon sepa-

ration unit to the autothermal reforming reactor
Sfts Split fraction of the syngas exiting the autothermal reforming

reactor to the Fischer-Tropsch synthesis reactor
Smes Split fraction of the unreacted syngas exiting the methanol

separation unit to the methanol synthesis reactor

sumed to be fixed in all scenarios. Operations are considered to be at steady state

at all times, and the transition times between different operational conditions are

neglected in this model. A constant conversion or efficiency is assumed for all equip-

ment during the whole project life time, which is considered as the best case analysis.

In real applications, the performance of equipment may drop when operated below

its design capacity. Introducing those equipment performance correlations (which are

typically highly nonlinear equations) into the operational constraints will be a topic

of future work after more advanced optimization algorithms are developed.

The mathematical model here is similar to the static polygeneration model in

Chapter 3, and details are provided in Appendix B. Some key differences will be

discussed here.
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4.1.2 Capital Costs

The capital costs are calculated by the following power law scale-up relationship:

C l = C l
b

(
F̄ l

F̄ l
b

)sfl

(4.1)

where C l is the capital cost of equipment l, and F̄ l is the mass (or molar) capacity

of equipment l, which are the design decision variables in this model. Eq (4.1) is the

only constraint on design decision variables. F̄ l
b is the mass (or molar) capacity of

equipment l in the base case (which is equal to F l
b in Chapter 3), C l

b is the capital

cost of equipment l in the corresponding base case, and sf l is the sizing factor of

equipment l, which are the same specified parameters as in Chapter 3, based on other

studies [182, 173, 174, 106, 31, 163, 158, 9]. They are available in Appendix B.

The mass (or molar) capacity of equipment l is calculated by

F l
h ≤ F̄ l , ∀h ∈ Nh (4.2)

and

F l
h ≥ Camin F̄

l , ∀h ∈ Nh (4.3)

where F l
h is the total mass (or molar) flow rate of the input stream of equipment l in

scenario h. Camin is the lower limit of the flow-rate/capacity ratio, which is a specified

parameter representing the operational flexibility. Eq (4.2) represents the constraint

that the input flow rates in all scenarios cannot exceed the equipment capacity, while

Eq (4.3) represents the constraint that the input flow rates also cannot drop below a

minimum fraction of the equipment capacity in order to maintain stable, continuous

operation. The flow rate F l
h is forced to be 0 when equipment l is not built (F̄ l = 0).

The upper bound of the dry mass capacity of the gasifier is set to be 1042 tonne/hr

or 7.815 Mt/yr on the basis of industrial experience of BP engineers [9].
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4.1.3 Economic Analysis

The total annual variable cost is

Cost = Costfed + Costcar
tax + Costcar

ccs + Costope (4.4)

where Cost is the total annual variable cost, Costfed is the purchase cost of the feed-

stock, Costcar
tax is the carbon emissions tax, Costcar

ccs is the cost of carbon sequestration,

and Costope is the operational cost, including the cost of labor and utilities.

The feedstock cost is given by

Costfed =
∑
h

Occuh

(∑
q

P f
q m

f
q,h

)
top , ∀q ∈ Feed, ∀h ∈ Nh (4.5)

where mf
q,h is the consumption rate of feedstock q in scenario h. P f

q is the average

market price of feedstock q, and top is the annual operating time, which are specified

parameters. Feed is the set of feedstocks. top is equal to 7500 hr/yr in this study

[173, 174].

The carbon tax is given by

Costcar
tax = P car

tax Emisnet (4.6)

where Emisnet is the annual net CO2 emissions; P car
tax is the carbon tax per tonne of

CO2 emitted, which is a specified parameter. CO2 emissions are calculated by

Emisgro = MWCO2

∑
h

Occuh
[
F sg

fl,CO2,h
+ (1− Sseq,h)F

se2
car,h

]
top , ∀h ∈ Nh (4.7)

Emisnet = Emisgro −
MWCO2

MWC

(1− wbio,H2O)wbio,C

∑
h

Occuh m
gas
bio,h top , ∀h ∈ Nh

(4.8)

where Emisgro is the annual gross CO2 emissions, F sg
fl,CO2,h

is the molar flow rate of

CO2 exiting the gas turbine flue gas in scenario h, F se2
car,h is the molar flow rate of the

CO2 stream exiting Selexol Unit 2 in scenario h, mgas
bio,h is the mass flow rate of biomass
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fed into the gasifier in scenario h, and Sseq,h is the split fraction of CO2 stream to

sequestration in scenario h (see Figure 2-2); wbio,H2O is the mass fraction of water in

the wet biomass, and wbio,C is the mass fraction of C in the dry biomass, which are

available in Chapter 3. Note that with this carbon policy, CO2 emissions are reduced

by the amount of carbon in the biomass, since it is a carbon neutral energy source.

In this work, we also consider cases in which the carbon emissions policy taxes the

carbon in the liquid fuels in addition to the CO2 emissions from the plant itself. In

this case, the annual net CO2 emissions are given by

Emisnet =Emisgro −
MWCO2

MWC

(1− wbio,H2O)wbio,C

∑
h

Occuh m
gas
bio,h top

+ MWCO2

∑
h

Occuh
(
6F hs

nap,C6H14,h
+ 8F hs

nap,C8H18,h
+ 16F hs

dis,h

)
top , ∀h ∈ Nh

(4.9)

where F hs
nap,C6H14,h

and F hs
nap,C8H18,h

are the molar flow rates of C6H14 and C8H18 in the

naphtha stream exiting the hydrocarbon separation unit in scenario h, respectively,

and F hs
dis,h is the molar flow rate of the diesel stream exiting the hydrocarbon separation

unit in scenario h.

The revenue is given by

Reve =
∑
h

Occuh

(∑
q

P p
q,h m

p
q,h

)
top , ∀q ∈ Prod, ∀h ∈ Nh (4.10)

where mp
q,h is the production rate of product q in scenario h. P p

q,h is the market price

of product q in scenario h, which are specified parameters. Prod is the set of products.

The detailed economic analyses are available in the Appendix B. The tax rate

(including both federal and state taxes) is 40% [173, 174], and the cost of carbon

sequestration is $10/tonne CO2 based on the Encyclopedia of Energy [84] and the

advice and industrial experience of BP engineers.

The net present value (NPV), which is the objective function of this model, is
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denoted by

NPV = −Cap + Pronet
1

r

(
1− 1

(1 + r)tlf

)
+
RtaxCap

tdp

1

r

(
1− 1

(1 + r)tdp

)
(4.11)

where Cap is the capital investment of the plant (which is the fixed cost), Pronet is the

annual net profit. Rtax is the tax rate (including both federal and state taxes), r is

the annual discount rate, tlf is the life time of the project, and tdp is the depreciation

time of the project, which are specified parameters. In this study, r = 0.12 [173, 174],

tlf = 30 yr [173, 174], and tdp = 10 yr [158].

In order to be better fit to the two-stage framework in Eq (1.1), the objective

function is rewritten as

NPV = Cap

[
−1 +

Rtax

tdp

1

r

(
1− 1

(1 + r)tdp

)]
+
∑
h

Occuh Pronet,h
1

r

(
1− 1

(1 + r)tlf

)
(4.12)

where Pronet,h is the net profit in scenario h.

4.1.4 Model Summary

The objective is to maximize the NPV subject to design and operational constraints

including mass and energy balances in all scenarios, enthalpy calculations, production

and feedstock consumption rates, capital cost relationships, and economic analyses.

The decision variables include the operational decision variables such as molar (or

mass) flow rates of streams, split fractions, heat/power consumption (or generation)

rates in all scenarios, and design decision variables such as equipment capacities.

The model is formulated in GAMS 22.8 [41]. It is a large-scale nonconvex NLP

model, including 4988 variables and 5237 constraints. Of the variables, there are 55

design decision variables and 4933 operational decision variables. Of the constraints,

there are 376 inequality constraints and 4861 equality constraints, of which 742 are

nonlinear. The nonconvexity in the model mainly originates from bilinear terms in

mass balances and power law capital cost relationships. The model was solved using

BARON 8.1 [169] with SNOPT [70] as the NLP solver and CPLEX [1] as the LP
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solver. A cluster with 32 Intel 2.8 GHz processors was used to study many cases in

parallel, where each case was solved on a single CPU. The CPU times for solving

individual case studies varied between 24 hr to 96 hr.

4.2 Case Study Results

4.2.1 Case Study Problems

In this part, the optimal product portfolios and net present values of both flexible

and static plants are studied for different economic cases, including different oil prices

and carbon taxes. The average prices of all products during the plant lifetime are

assumed to correlate to the oil price (in different degrees). The CO2 emissions are

also investigated for all economic cases, especially for different carbon taxes.

In this study, eight scenarios are considered, which are the peak time and off-peak

time in four seasons, respectively. The peak time is defined to be 7 am − 11 pm on

working days, and the off-peak time is the rest of the time in the year, including 11

pm − 7 am on weekdays, and the whole day on weekends and holidays. The fractions

of occurrence of all scenarios over the life time of the plant are shown in Table 4.2.

Table 4.2: Fractions of occurrence of all scenarios

Scenario Occurrence

Spring Peak 12.01 %
Spring Off-peak 13.21 %
Summer Peak 11.82 %

Summer Off-peak 13.39 %
Fall Peak 11.32 %

Fall Off-peak 13.61 %
Winter Peak 11.19 %

Winter Off-peak 13.46 %

All product prices vary seasonally, and the power price also differs greatly between

peak and off-peak. In this study, the degree of fluctuation of all product prices in

different scenarios are represented by scale factors for prices in these scenarios. The
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scale factors for product prices are defined as

ScFq,h =
P p
q,h

P p
q
, ∀h ∈ Nh (4.13)

where ScFq,h is the scale factor for the price of product q in scenario h, P p
q,h is the

price of product q in scenario h, and P p
q is the average price of product q during the

whole plant life time. The scale factors for the power price, the naphtha price, the

diesel price and the methanol price are estimated from historical market data [3, 5, 4],

and their values are shown in Figure 4-1. In each case study, the product prices in all

scenarios are obtained by multiplying the price scale factors by the average product

price selected for that market case study.
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Figure 4-1: Scale factors for product prices in different scenarios.

The plant is assumed to operate for 30 years beginning in 2016. The average

feedstock prices and product prices during the plant lifetime are assumed to be equal

to those predicted for the year 2030. The average prices (except those of water and

sulfur) are assumed to correlate to the oil price, and their values for the high, middle

and low oil price are listed in Table 4.3. These average prices are estimated by

multiplying estimated average 2007 wholesale prices from historical data [3, 5, 4] by

growth factors (i.e., the ratios of projected product prices in 2030 to those in 2007)
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predicted by EIA Energy Outlook [53]. The values of carbon taxes for the high,

middle and low carbon tax are listed in Table 4.4.

Table 4.3: The average prices for different oil prices

Price Low Oil Price Middle Oil Price High Oil Price

Coal 36.6 39.5 41.4 $/tonne
Biomass 54.9 59.2 62.1 $/tonne
Water 0.8 0.8 0.8 $/tonne
Power 67.3 98.9 125.8 $/MWh

Naphtha 530.7 1012.8 1427.1 $/tonne
Diesel 562.2 1035.5 1485.1 $/tonne

Methanol 263.1 449.8 586.3 $/tonne
Sulfur 100.0 100.0 100.0 $/tonne

Table 4.4: The values of different carbon taxes ($/tonne of CO2)

Price Low Carbon Tax Middle Carbon Tax High Carbon Tax

Carbon Tax 10 20 50

For each oil price and carbon tax case study, three different designs for polygen-

eration systems are compared: the static design with fixed operation at all times or

0% operational flexibility (Camin = 100%), the “realistic” flexible design with 50%

operational flexibility (in which equipment capacity usage varies between 50% and

100%, or Camin = 50%) and the ideal flexible design with 100% operational flexibility

(in which equipment capacity usage varies between 0 and 100%, or Camin = 0%). In

total, 27 combinations are considered (all possible combinations of oil prices, carbon

taxes and operational flexibility).

4.2.2 Optimization Results of a Sample Case Study

The detailed results of the polygeneration system design with 0%, 50% and 100%

operational flexibility for the middle oil price and the middle carbon tax case are
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presented in this section. The optimal values of key decision variables (as shown in

Table 4.1) in all scenarios are listed in Table 4.5.

The feedstock consumption rates and production rates of the three different de-

signs for all scenarios are listed in Table 4.6 and 4.7. For simplicity, only the operation

in the year 2030 (with multiple scenarios), which is the average year in the lifetime

of the plant, is studied. The optimal operation is assumed to be repeated in all

years during the plant lifetime. Hence, the annual feedstock consumption rates and

production rates remain the same from year to year.

Tables 4.5 and 4.6 show that production rates in the flexible polygeneration sys-

tems are adjusted in different scenarios by varying values of key decision variables

(including split fractions and WGS conversions), and their variations are limited by

the operational flexibility.

The product distribution is expressed as the output fraction of each product,

which is calculated by the following equation:

Fraction of product i =
Energy content in product i

Total energy content
(4.14)

where energy contents in the liquid fuels and methanol are represented by their lower

heating values (LHVs), and energy content in the power is the net power exported to

the grid rather than the gross power. The fraction of liquid fuels is the sum of the

fractions of naphtha and diesel. The total energy content can be expressed as

Total energy content = Net power generation + Naphtha LHV + Diesel LHV

+ Methanol LHV

(4.15)

The optimal product distributions will be discussed in the following sections. The

annual optimal product distributions, the annual CO2 emissions and the annual net

profit remain the same from year to year.
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4.2.3 Operations in Flexible Polygeneration Systems

Optimal product distributions for all 50% and 100% operational flexibility cases are

shown in Figures 4-2 and 4-3, respectively. In general, product distributions are influ-

enced the most by the product market prices. The difference of product distributions

between peak and off-peak in each season is significant in most cases. In our stud-

ies, the power price is assumed to fluctuate drastically between peak and off-peak,

while the liquids (naphtha, diesel and methanol) prices are assumed to vary consid-

erably less by comparison from season to season. At peak times, power prices are

usually higher than liquids prices; hence power generation dominates the polygen-

eration process. At off-peak times, power prices drop below the liquids prices, and

liquids become the favorable products. On the contrary, the differences in product

distributions between different seasons are small in most cases, implying that the

seasonal fluctuations of all product prices are not significant enough to influence the

production plans.

The oil price, to which the average product prices are correlated, and the car-

bon tax are important influences on the product distributions. In our studies, the

methanol price is higher than liquid fuels (naphtha and diesel) prices for the low

oil price, and lower than the liquid fuels prices for the high oil price. Hence, it is

favorable to co-produce power and methanol for the low oil price, while power and

liquid fuels for the high oil price. The production plan for the middle oil price, where

the methanol price and the liquid fuels prices are very close to each other, is more

complex and depends on the operational flexibility, as shown in Figure 4-2 (B) (E)

(H) and Figure 4-3 (B) (E) (H). The influence of the carbon tax on the production

is not as significant as the oil price. However, for the high carbon tax, power is not

a favorable product because either the carbon tax must be paid, or, carbon capture

and sequestration (CCS) must be implemented. Both are costly and the result is less

profitable than liquids production. Note that this carbon policy does not tax the

carbon in the liquid fuels.

The product distributions here are quite different from those for the static poly-
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generation systems (as shown in Chapter 3), where co-production of power and liquids

(naphtha, diesel and/or methanol) in comparable amounts is rarely optimal due to

the high capital cost of the co-installation of power generation and liquids production

equipment. In the flexible polygeneration systems, however, this high capital cost

can be justified by the extra profit obtained from the optimal production plans in

different scenarios. For example, the extra profit of power generation at peak times,

when power prices are much higher than their average prices, is higher than the ad-

ditional capital cost of the co-installed gas turbine and steam turbines in most cases.

Similarly, the extra profit of liquids productions at off-peak times not only recovers

the capital cost of the Fischer-Tropsch (FT) system or methanol (MeOH) system

but also improves the net present value (NPV) of the whole plant. Co-production

of liquid fuels and methanol is still rarely optimal in flexible polygeneration designs

because the liquid prices in all scenarios are not far from their average prices and not

enough extra profit can be gained from such co-production to recover the extremely

high capital cost of the co-installation of a FT system and a MeOH system.

Like the product distributions, the equipment load also varies in different scenar-

ios. It is represented by the equipment capacity usage, which is defined as

U l
cap,h =

F l
in,h

F̄ l
× 100% , ∀h ∈ Nh (4.16)

where U l
cap,h is the percentage usage of the capacity of equipment l in scenario h, F l

in,h

is the total molar (or mass) flow rate of the input stream of equipment l in scenario

h, and F̄ l is the molar (or mass) capacity of equipment l.

The equipment capacity usages for the middle carbon tax and 50% operational

flexibility case and the middle carbon tax and 100% operational flexibility case are

shown in Figures 4-4 and 4-5, respectively. From Figures 4-2 and 4-4, all equipment

(except compressors and equipment that are not built) are operated between the

half and full capacity in all scenarios for 50% operational flexibility, resulting in a

limited variation in product distributions. From Figures 4-3 and 4-5, some equipment

are allowed to be fully operated in some scenarios and totally shut down in other
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scenarios for 100% operational flexibility, leading to totally different production plans

in different scenarios. For example, for the low oil price, the polygeneration plant with

100% operational flexibility operates optimally as a pure power plant during the peak

times and a methanol plant with a small amount of power output during the off-peak

times (as shown in Figure 4-5 (A)). In real applications, the gas turbine can start up

or shut down quickly without much difficulty, while the equipment in the chemical

processes usually needs to be operated above a minimum capacity (typically 50% of

the full capacity) at all times since its start-up is difficult and lengthy. Hence, the

polygeneration plant with 50% operational flexibility can be potentially realized in

industry, while the plant with 100% operational flexibility is currently only an ideal

construct. However, the results for 100% operational flexibility provide the maximum

potential economic benefit from all flexible designs and operations considered. The

operational flexibility can potentially be increased by the development of advanced

control and operational technologies in the future. From Figures 4-4 and 4-5, it can

be seen that the fluctuation of the capacity usage of the steam turbine (and its steam

generation system) is much smaller than other equipment because the amount of

steam generated by the power generation process is not very different from that by

the liquid production process. This result mitigates the operational difficulties in the

potential real application of flexible polygeneration plants.

CO2 emissions for the middle oil price and 50% operational flexibility case and the

middle oil price and 100% operational flexibility case are shown in Figures 4-6 and

4-7, respectively (based on the dry feedstock consumption rate of 1042 tonne/hr). In

most cases, the process CO2 emissions at peak times are higher than those at off-

peak times. There are two reasons: first, power generation (without CCS) is usually

favored at peak times, emitting essentially all carbon from the feedstock into the

atmosphere, while at off-peak times a large portion of the carbon enters the liquid

fuels or methanol; second, the CCS for the CO2 produced in the liquids production

process is turned off at peak times (with high power prices) to produce more power

to export to the grid and it is turned on at off-peak times (with low power prices) to

pay less carbon tax. However, total CO2 emissions, which are equal to process CO2
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emissions plus the downstream CO2 emissions from the liquid fuels may be the same

between peak times and off-peak times in some cases (such as for the low carbon

tax, the middle oil price and 50% operational flexibility case, as shown in Figure 4-6

(A)). With an increase in the carbon tax, CO2 emissions are significantly decreased

because it becomes more economical to implement CCS instead of paying the carbon

tax or to switch from power generation without CCS to liquids production.

4.2.4 Comparison of Static Designs and Flexible Designs

The annual product distributions for all 0%, 50% and 100% operational flexibility

cases are shown in Figure 4-8. In static polygeneration designs, the fraction of one

product is much higher than other products in most cases, as discussed in Chapter

3. In flexible polygeneration designs, the product distributions become much more

uniform, implying that one product cannot dominate the portfolio in all scenarios

in most cases. The influence of the oil price and the carbon tax on the product

distributions is similar for all three designs.

The annual CO2 emissions for all 0%, 50% and 100% operational flexibility cases

are shown in Figure 4-9 (based on the dry feedstock consumption rate of 7.815

Mt/yr). Flexible polygeneration systems produce higher or lower CO2 emissions than

static ones, depending on the product distributions. If the fraction of liquid fuels or

methanol increases in the product portfolio, CO2 emissions will be reduced; if the

fraction of power increases and no CCS is implemented, CO2 emissions will increase.

CO2 emissions in all three designs are significantly reduced with an increase in the

carbon tax.

The economic performance of polygeneration systems for all 0%, 50% and 100%

operational flexibility cases are compared in Figures 4-10 − 4-13. The total capital

investments for the three kinds of polygeneration systems in all cases are shown in

Figure 4-10, their annual net profits are shown in Figure 4-11, and their net present

values are shown in Figure 4-12. Higher capital investments are needed for flexible

plants than the corresponding static plants because all equipment must be oversized

to realize operational flexibility. However, flexible systems also achieve higher annual
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net profits than static systems through their more flexible production strategies. Con-

sidering these two factors, flexible systems obtain better overall economic benefits,

such as higher net present values (NPV) as shown in Figure 4-12. A higher NPV can

be achieved if more operational flexibility is realized. The percentage increases of the

NPV in flexible polygeneration systems compared to those in static ones are shown

in Figure 4-13. For the low oil price and the middle carbon tax case, the flexible

plant with 100% operational flexibility can yield as high as 63% more NPV than the

static plant. Hence, the more expensive, high flexibility plants provide greater re-

turns. However, at these very large scales, the initial capital investment required may

be prohibitive, such that a less-flexible (and less profitable) design may be desirable.

Higher NPVs are realized for polygeneration plants with different operational

flexibilities for higher oil prices or lower carbon taxes. For higher oil prices and

higher carbon taxes, the gains in the NPV achieved by increasing the flexibility is

less significant, since the NPVs of all polygeneration plants are very high for the high

oil price cases (as shown in Figure 4-12 (C)). For the high carbon tax case, liquids

production is preferred to power production for all operational flexibilities, resulting

in smaller variations of production plans among different scenarios (as shown in Figure

4-8 (C)).

103



Table 4.5: Optimal values of key decision variables in the sample case study ∗

Decision Variables
Operational Flexibility
0% 50% 100%

mgas
fd,dry

∗

All Seasons, Peak & Off-peak 1042 1042 1042
Rb/f

All Seasons, Peak & Off-peak 0 0 0
Sliq

Spring, Summer & Fall, Peak 1 0.481 0
Winter Peak 1 0.483 0
All Seasons, Off-peak 1 0.991 1

Sele

All Seasons, Peak & Off-peak 0 0 0
Rwgs1

Spring, Summer & Fall, Peak 0.398 0.381 n/a ∗∗

Winter Peak 0.398 0.387 n/a
All Seasons, Off-peak 0.398 0.415 0.415

Rwgs2

All Seasons, Peak & Off-peak n/a n/a n/a
Sseq

Spring & Fall, Peak 1 1 n/a
Summer & Winter, Peak 1 0 n/a
All Seasons, Off-peak 1 1 1

Sme

All Seasons, Peak 0.822 0 n/a
All Seasons, Off-Peak 0.822 0 1

Satr

Spring, Summer & Fall, Peak 1 0.358 n/a
Winter Peak 1 0.348 n/a
All Seasons, Off-peak 1 0.257 n/a

Sfts

Spring, Summer & Fall, Peak 0 0 n/a
Winter Peak 0 0.170 n/a
All Seasons, Off-peak 0 1 n/a

Smes

All Seasons, Peak 0.957 n/a n/a
All Seasons, Off-Peak 0.957 n/a 0.971

* : All decision variables are unitless except mgas
fd,dry, which is tonne/hr.

** : Some results are not applicable (n/a) because the corresponding
equipment are absent in the optimal design.
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Table 4.6: Feedstock consumption rates and production rates for the sample case
study in all scenarios ∗

Operational Flexibility
0% 50% 100%

Feedstock
Coal

All Seasons, Peak & Off-peak 1172 1172 1172
Biomass

All Seasons, Peak & Off-peak 0 0 0
Water

Spring, Summer & Fall, Peak 350 617 197
Winter Peak 350 619 197
All Seasons, Off-peak 350 517 412

Product
Power ∗

Spring & Fall, Peak 208 2676 3944
Summer & Winter, Peak 208 2728 3944
All Seasons, Off-peak 208 1312 71

Naphtha
All Seasons, Peak 12 34 0 ∗∗

All Seasons, Off-Peak 12 68 0 ∗∗

Diesel
All Seasons, Peak 31 90 0 ∗∗

All Seasons, Off-Peak 31 178 0 ∗∗

Methanol
All Seasons, Peak 713 0 ∗∗ 0
All, Seasons, Off-Peak 713 0 ∗∗ 831

Sulfur
All Season, Peak & Off-peak 29 29 29

CO2 Sequestered
Spring & Fall, Peak 1424 695 0
Summer & Winter, Peak 1424 0 0
All Seasons, Off-peak 1424 1390 1403

* : The unit of all quantities is tonne/hr, except power, which is MW.
** : Some production rates are zero because the corresponding equipment
are absent in the optimal design.

105



Table 4.7: Annual feedstock consumption rates and production rates for the sample
case study ∗

0% Flexibility 50% Flexibility 100% Flexibility

Feedstock
Coal 8.79 8.79 8.79
Biomass 0 0 0
Water 2.62 4.23 2.34
Product
Power ∗ 1.56 14.67 13.99
Naphtha 0.09 0.39 0 ∗∗

Diesel 0.23 1.03 0 ∗∗

Methanol 5.35 0 ∗∗ 3.35
Sulfur 0.22 0.22 0.22
CO2 sequestered 10.68 6.81 5.64

* : The unit of all quantities is Mt/yr, except power which is TWh/yr.
** : Some production rates are zero because the corresponding equipment
are absent in the optimal design.
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Figure 4-2: Product distributions for the 50% operational flexibility case (%). [P =
peak, OP = off-peak.]

107



(A) (B) (C)

(D) (E) (F)

(G) (H) (I)
        

Electricity Liquid Fuels Methanol

0

20

40

60

80

100

P OP P OP P OP P OP
Spring Summer Fall Winter

Low carbon tax, Low oil price

0

20

40

60

80

100

P OP P OP P OP P OP

Spring Summer Fall Winter

Low carbon tax, Middle oil price

0

20

40

60

80

100

P OP P OP P OP P OP

Spring Summer Fall Winter

Low carbon tax, High oil price

0

20

40

60

80

100

P OP P OP P OP P OP

Spring Summer Fall Winter

Middle carbon tax, Low oil price

0

20

40

60

80

100

P OP P OP P OP P OP

Spring Summer Fall Winter

Middle carbon tax, Middle oil price

0

20

40

60

80

100

P OP P OP P OP P OP

Middle carbon tax, High oil price

Spring Summer Fall Winter

0

20

40

60

80

100

P OP P OP P OP P OP

High carbon tax, Low oil price

Spring Summer Fall Winter

0

20

40

60

80

100

P OP P OP P OP P OP

High carbon tax, Middle oil price

Spring Summer Fall Winter

0

20

40

60

80

100

P OP P OP P OP P OP

High carbon tax, High oil price

Spring Summer Fall Winter

Figure 4-3: Product distributions for the 100% operational flexibility case (%). [P =
peak, OP = off-peak.]
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Figure 4-4: Equipment capacity usages for the middle carbon tax and 50% operational
flexibility case (%). [P = peak, OP = off-peak.]
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Figure 4-5: Equipment capacity usages for the middle carbon tax and 100% opera-
tional flexibility case (%). [P = peak, OP = off-peak.]
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Figure 4-6: CO2 emission rates for the middle oil price and 50% operational flexibility
case (tonne/hr). [P = peak, OP = off-peak; Process Only = carbon taxes only apply
to CO2 emissions in the process, Plus Liquid Fuels = carbon taxes apply to both the
CO2 emissions from the process, and to the carbon in the fuels which will eventually
be combusted.]
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Figure 4-7: CO2 emission rates for the middle oil price and 100% operational flexibility
case (tonne/hr). [P = peak, OP = off-peak; Process Only = carbon taxes only apply
to CO2 emissions in the process, Plus Liquid Fuels = carbon taxes apply to both the
CO2 emissions from the process, and to the carbon in the fuels which will eventually
be combusted.]
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Figure 4-8: Annual product distributions for three different operational flexibilities
(%).
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Figure 4-9: Annual CO2 emissions for three different operational flexibilities (Mt/yr).
[Process Only = carbon taxes only apply to CO2 emissions in the process, Plus Liquid
Fuels = carbon taxes apply to both the CO2 emissions from the process, and to the
carbon in the fuels which will eventually be combusted.]
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Figure 4-10: Capital investments in all cases ($billion).
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Figure 4-11: Annual net profits in all cases ($billion/yr).
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Figure 4-12: Net present values in all cases ($billion).
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Figure 4-13: Increase of NPV in flexible polygeneration systems compared to the
corresponding static polygeneration systems (%).
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Chapter 5

Nonconvex Generalized Benders

Decomposition Algorithm

5.1 Motivation

The optimal design and operation of flexible polygeneration systems, which is formu-

lated as a multi-period optimization problem (as shown in Chapter 4), is a potentially

large-scale nonconvex mixed-integer nonlinear programming (MINLP) problem with

high computational burden. In Chapter 4, the state-of-the-art global optimization

solver, BARON, was employed to obtain the global optimum for the polygeneration

optimization problem. However, BARON required a considerable amount of CPU

time to solve the problem, and the solution time increases exponentially with the

number of scenarios. Therefore, more efficient algorithms need to be developed to

solve this multi-period optimization problem for larger numbers of scenarios.

A decomposition algorithm recently developed for the stochastic pooling problem

[110, 112, 113, 114] is attractive for this large-scale multi-period optimization problem

because it can fully exploit the decomposable structure of the problem. By apply-

ing the decomposition algorithm, the solution time of the multi-period optimization

problem is expected to increase linearly with the number of scenarios, and the global

optimization of large-scale flexible polygeneration design problems can be achieved in

reasonable times.
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5.2 Overview

The decomposition method is an extension of Benders decomposition [32] and is de-

veloped based on the framework of concepts presented by Geoffrion for the design of

large-scale mathematical programming techniques [68, 66, 67]. This framework in-

cludes two groups of concepts: problem manipulations and solution strategies. Prob-

lem manipulations, including convexification, projection, and dualization, are devices

for restating a given problem in an alternative form more amenable to solution. The

result is often what is referred to as a master problem. Solution strategies, including

relaxation and restriction, reduce the master problem to a related sequence of simpler

subproblems.

In this thesis, the stochastic/multiperiod pooling problem with the following form

is studied:

min
y,x1,...,xs,

q1,...,qs,u1,...,us

cT
1 y +

s∑
h=1

(
cT

2,hxh + cT
3,hqh + cT

4,huh
)

s.t. uh,l,t = xh,lqh,t, ∀(l, t) ∈ Ω, ∀h ∈ {1, . . . , s},

A1,hy + A2,hxh + A3,hqh + A4,huh ≤ bh, ∀h ∈ {1, . . . , s},

(xh, qh, uh) ∈ Πh, ∀h ∈ {1, . . . , s}, y ∈ Y,

(P)

where

Πh = {(xh, qh, uh) ∈ Rnx × Rnq × Rnu : Ã2,hxh + Ã3,hqh + Ã4,huh ≤ b̃h,

xL
h ≤ xh ≤ xU

h , q
L
h ≤ qh ≤ qU

h },

Y = {y ∈ {0, 1}ny : By ≤ a}.

The index h ∈ {1, . . . , s} indicates the different scenarios for uncertainty realizations

or time periods; y represents complicating variables, which are binary variables in

this study; xh, qh and uh are non-complicating variables in scenario h, which are

continuous. The set Πh is a nonempty, compact and convex polyhedron. Note that

the classical pooling problem formulations, including p-, q- and pq-formulations [168],
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can all be written in the form of Problem (P).

Remark 1. Problem (P) has finite optimal objective values or is infeasible because

the set Πh is compact.

In the decomposition method, Problem (P) is reformulated into a lower bounding

problem by convexification and underestimation of the bilinear functions. The lower

bounding problem is potentially a large-scale MILP, which can be transformed into

an equivalent master problem by the principle of projection and dualization [68].

The master problem contains an infinite number of constraints and is usually

difficult to solve directly. Instead it is solved through solving a sequence of Primal

Bounding Problems (PBP), Feasibility Problems (FP), and Relaxed Master

Problems (RMP), which are much easier to solve.

The Primal Bounding Problem is constructed by restricting the integer vari-

ables to specific values in the lower bounding problem, whose solution yields a valid

upper bound on the optimal objective value of the lower bounding problem (and

hence the master problem). When the primal bounding problem is infeasible for

an integer realization, a corresponding Feasibility Problem is solved, which yields

valid information for the algorithm to proceed. Both the primal bounding problems

and the feasibility problems are potentially large-scale LPs, but they can be further

decomposed into LP subproblems for each scenario with much smaller sizes.

The Relaxed Master Problem is constructed by relaxing the master problem

with a finite subset of the constraints (or cuts). Canonical integer cuts are also added

into the problem so that no integer realizations will be visited twice by the algorithm.

The solution of the relaxed master problem yields a valid lower bound on the optimal

objective value of the master problem augmented with the integer cuts. The relaxed

master problem is a MILP whose size is independent of the number of scenarios.

On the other hand, a restriction of Problem (P), which is called the Primal

Problem (PP), is constructed by restricting the integer variables to specific values

in Problem (P), whose optimal objective value yields an upper bound of that of

Problem (P). The primal problem is potentially a large-scale nonconvex NLP, but

it can be further decomposed into NLP subproblems for each scenario with much
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smaller sizes.

The details of the aforementioned subproblems are given in the next section.

5.3 Subproblems in the Decomposition Method

5.3.1 Primal Bounding Problem

The primal bounding problem (PBP) is generated by fixing the integer variables in the

lower bounding problem to y(k), which is the integer realization at the kth iteration.

Problem (PBP) can be naturally decomposed into subproblems (PBPh) for the s

scenarios:

objPBPh

(
y(k)
)

= min
xh,qh,uh

cT
2,hxh + cT

3,hqh + cT
4,huh

s.t. A1,hy
(k) + A2,hxh + A3,hqh + A4,huh ≤ bh,

(xh, qh, uh) ∈ Π̂h,

(PBPh)

where

Π̂h = {(xh, qh, uh) ∈ Πh : uh,l,t ≥ xL
h,lqh,t + xh,lq

L
h,t − xL

h,lq
L
h,t,

uh,l,t ≥ xU
h,lqh,t + xh,lq

U
h,t − xU

h,lq
U
h,t,

uh,l,t ≤ xU
h,lqh,t + xh,lq

L
h,t − xU

h,lq
L
h,t,

uh,l,t ≤ xL
h,lqh,t + xh,lq

U
h,t − xL

h,lq
U
h,t,

∀(l, t) ∈ Ω }.

objPBPh

(
y(k)
)

is the optimal objective value of Problem (PBPh) for y = y(k), h =

1, . . . , s. The objectives of Problem (PBP) and (PBPh) satisfy the following relation-

ship:

objPBP

(
y(k)
)

= cT
1 y

(k) +
s∑

h=1

objPBPh

(
y(k)
)
. (5.1)

where objPBP

(
y(k)
)

is the optimal objective value of Problem (PBP) for y = y(k).
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5.3.2 Feasibility Problem

If Problem (PBP) is infeasible, the corresponding feasibility problem (FP) is solved.

Problem (FP) can be naturally decomposed into subproblems (FPh) for the s scenar-

ios:

min
xh,qh,uh,zh

m∑
i=1

zh,i

s.t. A1,hy
(k) + A2,hxh + A3,hqh + A4,huh − bh ≤ zh,

(xh, qh, uh) ∈ Π̂h, zh = (zh,1, . . . , zh,m) ∈ Z,

(FPh)

where Z = {z ∈ Rm : z ≥ 0}, and each nonnegative variable zh,i measures the

violation of the corresponding constraint, h = 1, . . . , s.

5.3.3 Relaxed Master Problem

After solving the primal bounding subproblems or feasibility subproblems for k integer

realizations, a relaxed master problem (RMPk) is solved to generate a new integer

realization:

min
y,η

η

s.t. η ≥ α(j)y + β(j), ∀j ∈ T k,

γ(i)y + θ(i) ≤ 0, ∀i ∈ Sk,∑
l∈{l:y(t)

l =1}

yl −
∑

l∈{l:y(t)
l =0}

yl ≤ |{l : y(t) = 1}| − 1, ∀t ∈ T k ∪ Sk,

y ∈ Y, η ∈ R,

(RMPk)
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where

α(j) =cT
1 +

s∑
h=1

(
λ

(j)
h

)T

A1,h,

β(j) =
s∑

h=1

[
cT

2,hx
(j)
h + cT

3,hq
(j)
h + cT

4,hu
(j)
h

]
+

s∑
h=1

[(
λ

(j)
h

)T (
A2,hx

(j)
h + A3,hq

(j)
h + A4,hu

(j)
h − bh

)]
,

γ(i) =
s∑

h=1

(
µ

(i)
h

)T

A1,h,

θ(i) =
s∑

h=1

[(
µ

(i)
h

)T (
A2,hx

(i)
h + A3,hq

(i)
h + A4,hu

(i)
h − bh

)]
,

and the index sets are

T k = {j ∈ {1, . . . , k} : Problem PBP
(
y(j)
)

is feasible},

Sk = {i ∈ {1, . . . , k} : Problem PBP
(
y(i)
)

is infeasible}.

λ
(j)
h denotes the Lagrange multipliers of Problem (PBPh) when y = y(j) (∀j ∈ T k),

and µ
(i)
h denotes the Lagrange multipliers of Problem (FPh) when y = y(i) (∀i ∈ Sk).(

x
(j)
h , q

(j)
h , u

(j)
h

)
is a minimum of Problem (PBPh) (∀h ∈ {1, . . . , s}) when y = y(j),

and
(
x

(i)
h , q

(i)
h , u

(i)
h

)
is a minimum of Problem (FPh) (∀h ∈ {1, . . . , s}) when y = y(i).

The last group of constraints represent a set of canonical integer cuts that prevent

the previously examined integer realizations from becoming a solution [25]. In this

work, these integer cuts are called “Balas cuts”.

When no feasible integer realization for Problem (PBP) has been found (i.e. T k =

∅), an alternative problem (RMFPk), which yields a feasible solution for Problem
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(RMPk), is solved to allow the algorithm to proceed:

min
y

ny∑
l=1

yl

s.t. γ(i)y + θ(i) ≤ 0, ∀i ∈ Sk,∑
l∈{l:y(t)

l =1}

yl −
∑

l∈{l:y(t)
l =0}

yl ≤ |{l : y(t) = 1}| − 1, ∀t ∈ Sk,

y ∈ Y.

(RMPFk)

5.3.4 Primal Problem

The primal problem (PP) is generated by fixing the integer variables in the original

Problem (P) to y(k), which is the integer realization at the kth iteration. Problem

(PP) can be naturally decomposed into subproblems (PPh) for the s scenarios:

objPPh

(
y(k)
)

= min
xh,qh,uh

cT
2,hxh + cT

3,hqh + cT
4,huh

s.t. uh,l,t = xh,lqh,t, ∀(l, t) ∈ Ω,

A1,hy
(k) + A2,hxh + A3,hqh + A4,huh ≤ bh,

(xh, qh, uh) ∈ Πh,

(PPh)

where objPPh

(
y(k)
)

is the optimal objective value of Problem (PPh) for y = y(k), h =

1, . . . , s. The objectives of Problem (PP) and (PPh) satisfy the following relationship:

objPP

(
y(k)
)

= cT
1 y

(k) +
s∑

h=1

objPPh

(
y(k)
)
. (5.2)

where objPP

(
y(k)
)

is the optimal objective value of Problem (PP) for y = y(k).

Remark 2. According to Ref [113], the solution of Problem (PPh) can be accelerated

with the inclusion of additional cuts.
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5.4 Decomposition Algorithm

The decomposition algorithm is described as below [113]:

Initialize:

1. Iteration counters k = 0, l = 1, and the index sets T 0 = ∅ , S0 = ∅ , U0 = ∅.

2. Upper bound on the problem UBD = +∞, upper bound on the lower bound-

ing problem UBDPB = +∞, lower bound on the lower bounding problem

LBD = −∞.

3. Set tolerances εh and ε such that
∑s

h=1 εh ≤ ε.

4. Integer realization y(1) is given.

repeat

if k = 0 or (Problem (RMPk) is feasible and LBD < UBDPB and LBD <

UBD− ε) then

repeat

Set k = k + 1

1. Solve the decomposed primal bounding problem (PBPh(y
(k))) for each

scenario h = 1, ..., s sequentially. If Problem (PBPh(y
(k))) is feasible

for all the scenarios with Lagrange multipliers λ
(k)
h , add optimality

cuts to the relaxed master problem (RMPk) according to λ
(k)
1 , ..., λ

(k)
s ,

set T k = T k−1 ∪ {k}. If objPBP(y(k)) < UBDPB, update UBDPB =

objPBP(y(k)), y∗ = y(k), k∗ = k.

2. If Problem (PBPh(y
(k))) is infeasible for one scenario, stop solving it

for the remaining scenarios and set Sk = Sk−1 ∪ {k}. Then, solve the

decomposed feasibility problem (FPh(y
(k))) for h = 1, ..., s and obtain

the corresponding Lagrange multipliers µ
(k)
h . Add feasibility cuts to

Problem (RMPk) according to these multipliers.

3. If T k = ∅, solve the feasibility problem (RMFPk); otherwise, solve

Problem (RMPk). In the latter case, if Problem (RMPk) is feasible,
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set LBD to its optimal objective value. In both cases, set y(k+1) to the

y value at the solution of either problem.

until LBD ≥ UBDPB or (Problem (RMPk) or (RMFPk) is infeasible).

end if

if UBDPB < UBD− ε then

1. Solve the decomposed primal problem (PPh(y
∗)) to εh-optimality for

each scenario h = 1, ..., s sequentially. Set U l = U l−1 ∪ {k∗}. If Prob-

lem (PPh(y
∗)) is feasible with optimum (x∗h, q

∗
h, u

∗
h) for all the scenarios

and objPP(y∗) < UBD, update UBD = objPP(y∗) and set y∗p = y∗,

(x∗p,h, q
∗
p,h, u

∗
p,h) = (x∗h, q

∗
h, u

∗
h) for h = 1, . . . , s.

2. If T k \ U l = ∅, set UBDPB = +∞.

3. If T k\U l 6= ∅, pick i ∈ T k\U l such that objPBP(y(i)) = minj∈Tk\U l{objPBP(y(j))}.

Update UBDPB = objPBP(y(i)), y∗ = y(i), k∗ = i. Set l = l + 1.

end if

until UBDPB ≥ UBD − ε and ((Problem (RMPk) or (RMFPk) is infeasible) or

LBD ≥ UBD− ε).

An ε-global optimum of the original problem (P) is given by

(y∗p, x
∗
p,1, ..., x

∗
p,s, q

∗
p,1, ..., q

∗
p,s, u

∗
p,1, ..., u

∗
p,s)

or (P) is infeasible.

The algorithm flowchart is shown in Figure 5-1 [110]. Note that the nested loops

are designed to minimize the number of primal problems solved [100, 113].

The proof of the finite convergence of the decomposition algorithm can be found

in Ref [113].

5.5 Conclusions

The decomposition algorithm is expected to be an efficiency algorithm for stochastic/multi-

period optimization problems, and can potentially reduce significant amounts of com-
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Figure 5-1: Flowchart for the decomposition algorithm.

putational times for large-scale problems compared to state-of-the-art global opti-

mization solvers (as shown in case study results in Chapter 7). However, this method

can suffer from a slow convergence rate for highly nonconvex problems, such as the

polygeneration optimization problem, due to a large relaxation gap. In Chapter 6, the

decomposition algorithm will be enhanced by several methods for faster convergence.
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Chapter 6

Enhanced Nonconvex Generalized

Benders Decomposition

Algorithms

6.1 Overview of Enhancement Technologies

In NGBD, the lower bounding problem serves as a surrogate for Problem (P) for

the purpose of valid decomposition, and the tightness of the convex relaxation (i.e.,

the closeness of the lower bounding problem to Problem (P)) determines the quality

of the information generated through the decomposition. Therefore, the tighter the

relaxation is, the faster the NGBD may converge. However, NGBD does not reduce

the relaxation gap during the solution procedure because it does not branch on the

variables in the full search space, so it may have to visit most or even all of the binary

variable realizations when the relaxation gap is large. Therefore, NGBD may suffer

from a slow convergence rate for highly nonconvex problems, including the polygen-

eration optimization problem. Several enhancement technologies can be incorporated

into NGBD for tighter relaxation and faster convergence.

One enhancement technology is the incorporation of dual information of the primal

problem into the relaxed master problem [49]. It has been demonstrated that the
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Lagrangian relaxations of some nonconvex functions could be tighter than their convex

relaxations [97, 102]. The enhanced NGBD with primal dual information will be

discussed in Section 6.2.

Another enhancement technology is using piecewise McCormick relaxation in the

lower bounding problem (and also Problem (PBP)) [111]. Recently, it has been rec-

ognized in the process systems engineering literature that piecewise linear relaxation

enables much tighter relaxations of bilinear programs and can expedite global opti-

mization significantly in the branch-and-bound framework [95, 133, 181, 74] (while

the notion of piecewise linear relaxation dates back to the 1980s [150]). The enhanced

NGBD with piecewise relaxation will be discussed in Section 6.3, and the enhanced

NGBD with both primal dual information and piecewise relaxation will be discussed

in Section 6.4.

The third enhancement technology is applying lift-and-project cuts to the lower

bounding problem (and Problem (PBP)), instead of directly using piecewise relax-

ations. The lift-and-project cutting plain method has been successfully developed

for the fast solution of MILPs [24, 164]. By using lift-and-project cuts, piecewise

relaxation problems with a large number of pieces may be solved efficiently, and the

relaxation gap between the original problem and the lower bounding problem can be

potentially eliminated when the number of pieces is sufficiently large. The enhanced

NGBD with lift-and-project cuts will be discussed in Section 6.5.

Some new subproblems will be added into the NGBD algorithm after applying

enhancement technologies, and they will be introduced in each of the following sec-

tions.
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6.2 Enhanced Decomposition Algorithm with Pri-

mal Dual Cuts

6.2.1 New Subproblems

Relaxed Dual of Primal Problem

Primal dual information can be obtained by solving the dual of Problem (PP), which

is a quite difficult problem since it is a bilevel program. Instead, a restriction of

the dual of Problem (PP) (called Problem (DPP)), which is generated by fixing the

multipliers in the dual of Problem (PP) to some specified values, is solved here. The

optimal value of Problem (DPP) is a lower bound of that of the dual of Problem

(PP). Problem (DPP) can be naturally decomposed into subproblems (DPPh) for the

s scenarios:

min
xh,qh,uh

cT
2,hxh + cT

3,hqh + cT
4,huh +(

κ
(k)
h

) (
A1,hy

(k) + A2,hxh + A3,hqh + A4,huh − bh
)

s.t. uh,l,t = xh,lqh,t, ∀(l, t) ∈ Ω,

(xh, qh, uh) ∈ Πh,

(DPPh)

where κ
(k)
h can be either λ

(k)
h , which denotes Karush-Kuhn-Tucker (KKT) multipli-

ers of Problem (PBPh) when y = y(k), or λ̆
(k)
h , which denotes KKT multipliers of

Problem (PPh) when y = y(k). Problem (DPPh) is solved for both values of the

KKT multipliers in this work to obtain additional dual information from the primal

problem.

Remark 3. Problem (DPPh) is always feasible and its optimal objective value is finite

because the set Πh is compact. By weak duality [33], it provides a lower bound on

Problem (PPh).

Remark 4. Problem (DPPh) is nonconvex, hence global optimization solvers, such

as BARON, need to be used here to obtain ε-optimal solutions. As discussed later,

solving Problem (DPPh) is the most time-consuming step in the whole algorithm.
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To reduce the overall solution time, Problem (DPPh) is only solved for those integer

realizations for which Problem (PP) is feasible and updates the current upper bound

(UBD).

Enhanced Relaxed Master Problem with Primal Dual Cuts

The optimal solutions of Problem (DPPh) together with the KKT multipliers of

Problem (PBPh) and (PPh) provide additional cuts for the relaxed master problem

(RMPk) to obtain tighter lower bounds for Problem (P). The updated relaxed master

problem, which is called the enhanced relaxed master problem with primal dual cuts

(DERMPk), is as follows:

min
y,η

η

s.t. η ≥ α̃(r)y + β̃(r), ∀r ∈ V k,

η ≥ ᾰ(r)y + β̆(r), ∀r ∈ V k,

η ≥ α(j)y + β(j), ∀j ∈ T k\V k,

γ(i)y + θ(i) ≤ 0, ∀i ∈ Sk,∑
l∈{l:y(t)

l =1}

yl −
∑

l∈{l:y(t)
l =0}

yl ≤ |{l : y(t) = 1}| − 1, ∀t ∈ T k ∪ Sk,

y ∈ Y, η ∈ R,

(DERMPk)
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where

α̃(r) = cT
1 +

s∑
h=1

(
λ

(r)
h

)T

A1,h,

β̃(r) =
s∑

h=1

[
cT

2,hx̃
(r)
h + cT

3,hq̃
(r)
h + cT

4,hũ
(r)
h

]
+

s∑
h=1

[(
λ

(r)
h

)T (
A2,hx̃

(r)
h + A3,hq̃

(r)
h + A4,hũ

(r)
h − bh

)]
,

ᾰ(r) = cT
1 +

s∑
h=1

(
λ̆

(r)
h

)T

A1,h,

β̆(r) =
s∑

h=1

[
cT

2,hx̆
(r)
h + cT

3,hq̆
(r)
h + cT

4,hŭ
(r)
h

]
+

s∑
h=1

[(
λ̆

(r)
h

)T (
A2,hx̆

(r)
h + A3,hq̆

(r)
h + A4,hŭ

(r)
h − bh

)]
,

V k = {r ∈ {1, . . . , k} : Problem PP
(
y(r)
)

is feasible and updates UBD} ⊂ T k.(
x̃

(r)
h , q̃

(r)
h , ũ

(r)
h

)
is a minimum of Problem (DPPh) with the KKT multipliers of Prob-

lem (PBPh) (∀h ∈ {1, . . . , s}) when y = y(r) and
(
x̆

(r)
h , q̆

(r)
h , ŭ

(r)
h

)
is a minimum of

Problem (DPPh) with the KKT multipliers of Problem (PPh) (∀h ∈ {1, . . . , s}) when

y = y(r). The first two sets of constraints are called primal dual cuts since they are

constructed according to the dual information of the primal problem.

Enhanced Relaxed Master Problem with Primal Dual Multicuts

The relaxed master problem (DERMPk) can be further enhanced by replacing each

single primal dual cut with s cuts for the s scenarios, following the multicut strategy

in Ref [36]. The new primal dual cuts are called primal dual multicuts in this work.

The enhanced relaxed master problem with primal dual multicuts (MDERMPk) is

constructed as follows (in which the optimality and feasibility cuts are also replaced
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by multicuts):

min
y,η

η1,...,ηs

η

s.t. η ≥ cT
1 y +

s∑
h=1

ηh,

ηh ≥ α̃
(r)
h y + β̃

(r)
h , ∀h ∈ {1, . . . , s}, ∀r ∈ V k,

ηh ≥ ᾰ
(r)
h y + β̆

(r)
h , ∀h ∈ {1, . . . , s}, ∀r ∈ V k,

ηh ≥ α
(j)
h y + β

(j)
h , ∀h ∈ {1, . . . , s}, ∀j ∈ T k\V k,

γ
(i)
h y + θ

(i)
h ≤ 0, ∀h ∈ {1, . . . , s}, ∀i ∈ Sk,∑

l∈{l:y(t)
l =1}

yl −
∑

l∈{l:y(t)
l =0}

yl ≤ |{l : y(t) = 1}| − 1, ∀t ∈ T k ∪ Sk,

y ∈ Y, η ∈ R,

(MDERMPk)

where

α̃
(r)
h =

(
λ

(r)
h

)T

A1,h,

β̃
(r)
h = cT

2,hx̃
(r)
h + cT

3,hq̃
(r)
h + cT

4,hũ
(r)
h +(

λ
(r)
h

)T (
A2,hx̃

(r)
h + A3,hq̃

(r)
h + A4,hũ

(r)
h − bh

)
,

ᾰ
(r)
h =

(
λ̆

(r)
h

)T

A1,h,

β̆
(r)
h = cT

2,hx̆
(r)
h + cT

3,hq̆
(r)
h + cT

4,hŭ
(r)
h +(

λ̆
(r)
h

)T (
A2,hx̆

(r)
h + A3,hq̆

(r)
h + A4,hŭ

(r)
h − bh

)
,

α
(j)
h =

(
λ

(j)
h

)T

A1,h,

β
(j)
h = cT

2,hx
(j)
h + cT

3,hq
(j)
h + cT

4,hu
(j)
h +(

λ
(j)
h

)T (
A2,hx

(j)
h + A3,hq

(j)
h + A4,hu

(j)
h − bh

)
,

γ
(i)
h =

(
µ

(i)
h

)T

A1,h,

θ
(i)
h =

(
µ

(i)
h

)T (
A2,hx

(i)
h + A3,hq

(i)
h + A4,hu

(i)
h − bh

)
.
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Remark 5. After incorporation of multicuts, the number of continuous variables in

Problem (MDERMPk) depends on the number of scenarios linearly while the number

of binary variables, which dominates the solution time of MILPs, remains the same;

on the other hand, the number of iterations (and hence the number of Problems (PPh)

and (DPPh) to be solved) may be significantly reduced, as will be shown by the case

study results.

6.2.2 Theoretical Properties

Remark 6. According to the separability in the integer and continuous variables,

Problem (DERMPk) is equivalent to the following problem:

min
y,η

η

s.t. η ≥ FP(y, λ
(r)
1 , . . . , λ(r)

s ), ∀r ∈ V k,

η ≥ FP(y, λ̆
(r)
1 , . . . , λ̆(r)

s ), ∀r ∈ V k,

η ≥ F (y, λ
(j)
1 , . . . , λ(j)

s ), ∀j ∈ T k\V k,

G(y, µ
(i)
1 , . . . , µ

(i)
s ) ≤ 0, ∀i ∈ Sk,∑

l∈{l:y(t)
l =1}

yl −
∑

l∈{l:y(t)
l =0}

yl ≤ |{l : y(t) = 1}| − 1, ∀t ∈ T k ∪ Sk,

y ∈ Y, η ∈ R,

(DERMP1k)
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where

FP(y, λ
(r)
1 , . . . , λ(r)

s ) = inf
(xh,qh,uh)∈Π̃h,
∀h∈{1,...,s}

cT
1 y +

s∑
h=1

(
cT

2,hxh + cT
3,hqh + cT

4,huh

+(λ
(r)
h )T (A1,hy + A2,hxh + A3,hqh + A4,huh − bh)

)
,

FP(y, λ̆
(r)
1 , . . . , λ̆(r)

s ) = inf
(xh,qh,uh)∈Π̃h,
∀h∈{1,...,s}

cT
1 y +

s∑
h=1

(
cT

2,hxh + cT
3,hqh + cT

4,huh

+(λ̆
(r)
h )T (A1,hy + A2,hxh + A3,hqh + A4,huh − bh)

)
,

F (y, λ
(j)
1 , . . . , λ(j)

s ) = inf
(xh,qh,uh)∈Π̂h,
∀h∈{1,...,s}

cT
1 y +

s∑
h=1

(
cT

2,hxh + cT
3,hqh + cT

4,huh

+(λ
(j)
h )T (A1,hy + A2,hxh + A3,hqh + A4,huh − bh)

)
,

G(y, µ
(i)
1 , . . . , µ

(i)
s ) = inf

(xh,qh,uh)∈Π̂h,
∀h∈{1,...,s}

s∑
h=1

(µ
(i)
h )T (A1,hy + A2,hxh + A3,hqh + A4,huh − bh) ,

and the set

Π̃h = {(xh, qh, uh) ∈ Πh : uh,l,t = xh,lqh,t, ∀(l, t) ∈ Ω }.

Proposition 1. Any y that is feasible for Problem (P) augmented with the Balas

cuts is also feasible for Problem (DERMPk), and the optimal objective of Problem

(DERMPk) is a lower bound of that of Problem (P) augmented with the Balas cuts.

Proof. According to the equivalency of Problems (DERMPk) and (DERMP1k), the

following property is proved: any y that is feasible for Problem (P) augmented with

the Balas cuts is also feasible for Problem (DERMP1k), and the optimal objective of

Problem (DERMP1k) is a lower bound of that of Problem (P) augmented with the

Balas cuts.
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Define

objPP(y) = min
(xh,qh,uh)∈Π̃h,
∀h∈{1,...,s}

cT
1 y +

s∑
h=1

(
cT

2,hxh + cT
3,hqh + cT

4,huh
)

s.t. A1,hy + A2,hxh + A3,hqh + A4,huh ≤ bh, ∀h ∈ {1, . . . , s}.

From weak duality,

FP(y, λ
(r)
1 , . . . , λ(r)

s ) ≤ objPP(y), ∀r ∈ V k, ∀y ∈ Y, (6.1)

FP(y, λ̆
(r)
1 , . . . , λ̆(r)

s ) ≤ objPP(y), ∀r ∈ V k, ∀y ∈ Y. (6.2)

For all ŷ that is feasible for Problem (P) augmented with the Balas cuts, pick

η̂ = objPP(ŷ), then

η̂ ≥ FP(ŷ, λ
(r)
1 , . . . , λ(r)

s ), (6.3)

and

η̂ ≥ FP(ŷ, λ̆
(r)
1 , . . . , λ̆(r)

s ). (6.4)

Define

objPBP(y) = min
(xh,qh,uh)∈Π̂h,
∀h∈{1,...,s}

cT
1 y +

s∑
h=1

(
cT

2,hxh + cT
3,hqh + cT

4,huh
)

s.t. A1,hy + A2,hxh + A3,hqh + A4,huh ≤ bh, ∀h ∈ {1, . . . , s}.

Due to their definitions, set Π̂h is a convex relaxation of the set Π̃h, hence

Π̃h ⊂ Π̂h, ∀h ∈ {1, . . . , s}, (6.5)

then

objPP(y) ≥ objPBP(y), ∀y ∈ Y. (6.6)

From strong duality for linear programs [33],

F (y, λ
(j)
1 , . . . , λ(j)

s ) = objPBP(y), ∀j ∈ T k\V k, ∀y ∈ Y. (6.7)
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So

η̂ ≥ F (ŷ, λ
(j)
1 , . . . , λ(j)

s ) (6.8)

holds from Equations (6.6) and (6.7).

According to the definition of Problem (RMPk), for all ŷ that is feasible for Prob-

lem (P) augmented with the Balas cuts is also feasible for Problem (RMPk) [113].

So

G(ŷ, µ
(i)
1 , . . . , µ

(i)
s ) ≤ 0 (6.9)

holds.

Equations (6.3), (6.4), (6.8) and (6.9) imply that (ŷ, η̂) is feasible for Problem

(DERMP1k), and

objDERMP1k ≤ η̂ = objPP(ŷ), ∀ŷ ∈ Φ, (6.10)

where objDERMP1k is the optimal objective value of Problem (DERMP1k), and the set

Φ ≡ {y ∈ Y : A1,hy + A2,hxh + A3,hqh + A4,huh ≤ bh for some (xh, qh, uh) ∈ Π̃h}

Hence,

objDERMP1k ≤ min
ŷ∈Φ

objPP(ŷ) = objP, (6.11)

where objP is the optimal objective of Problem (P).

Proposition 2. Problem (DERMPk) is a tighter (or equal) underestimate of Problem

(P) augmented with the Balas cuts compared to Problem (RMPk).

Proof. Problem (RMPk) can be equivalently reformulated into the following problem
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[113]:

min
y,η

η

s.t. η ≥ F (y, λ
(j)
1 , . . . , λ(j)

s ), ∀j ∈ T k,

G(y, µ
(i)
1 , . . . , µ

(i)
s ) ≤ 0, ∀i ∈ Sk,∑

l∈{l:y(t)
l =1}

yl −
∑

l∈{l:y(t)
l =0}

yl ≤ |{l : y(t) = 1}| − 1, ∀t ∈ T k ∪ Sk,

y ∈ Y, η ∈ R,

(RMP1k)

According to the equivalency of Problems (RMPk) and (RMP1k) and the equiv-

alency of Problems (DERMPk) and (DERMP1k), the following property is proved:

problem (DERMP1k) is a tighter (or equal) underestimate of Problem (P) augmented

with the Balas cuts compared to Problem (RMP1k).

For all (ŷ, η̂) feasible for Problem (DERMP1k),

η̂ ≥ F (ŷ, λ
(j)
1 , . . . , λ(j)

s ), ∀j ∈ T k\V k, (6.12)

G(ŷ, µ
(i)
1 , . . . , µ

(i)
s ) ≤ 0, ∀i ∈ Sk, (6.13)

and

η̂ ≥ FP(ŷ, λ
(r)
1 , . . . , λ(r)

s ), ∀r ∈ V k, (6.14)

Based on Equation (6.5), the following relationship holds:

FP(y, λ
(r)
1 , . . . , λ(r)

s ) ≥ F (y, λ
(r)
1 , . . . , λ(r)

s ), ∀r ∈ V k, ∀y ∈ Y. (6.15)

So η̂ ≥ F (ŷ, λ
(r)
1 , . . . , λ

(r)
s ) (∀r ∈ V k). Hence (ŷ, η̂) is also feasible for problem

(RMP1k).

Therefore, Problem (DERMP1k) is a tighter (or equal) underestimate of Problem

(P) augmented with the Balas cuts compared to Problem (RMP1k).

Remark 7. According to the separability in the integer and continuous variables,
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Problem (MDERMPk) is equivalent to the following problem:

min
y,η

η1,...,ηs

η

s.t.η ≥ cT
1 y +

s∑
h=1

ηh,

ηh ≥ FP,h(y, λ
(r)
h ), ∀h ∈ {1, . . . , s}, ∀r ∈ V k,

ηh ≥ FP,h(y, λ̆
(r)
h ), ∀h ∈ {1, . . . , s}, ∀r ∈ V k,

ηh ≥ Fh(y, λ
(j)
h ), ∀h ∈ {1, . . . , s}, ∀j ∈ T k\V k,

Gh(y, µ
(i)
h ) ≤ 0, ∀h ∈ {1, . . . , s}, ∀i ∈ Sk,∑

l∈{l:y(t)
l =1}

yl −
∑

l∈{l:y(t)
l =0}

yl ≤ |{l : y(t) = 1}| − 1, ∀t ∈ T k ∪ Sk,

y ∈ Y, η ∈ R,

(MDERMP1k)

where

FP,h(y, λ
(r)
h ) = inf

(xh,qh,uh)∈Π̃h

cT
2,hxh + cT

3,hqh + cT
4,huh

+
(
λ

(r)
h

)T

(A1,hy + A2,hxh + A3,hqh + A4,huh − bh) ,

FP,h(y, λ̆
(r)
h ) = inf

(xh,qh,uh)∈Π̃h

cT
2,hxh + cT

3,hqh + cT
4,huh

+
(
λ̆

(r)
h

)T

(A1,hy + A2,hxh + A3,hqh + A4,huh − bh) ,

Fh(y, λ
(j)
h ) = inf

(xh,qh,uh)∈Π̂h

cT
2,hxh + cT

3,hqh + cT
4,huh

+
(
λ

(j)
h

)T

(A1,hy + A2,hxh + A3,hqh + A4,huh − bh) ,

Gh(y, µ
(i)
h ) = inf

(xh,qh,uh)∈Π̂h

(
µ

(i)
h

)T

(A1,hy + A2,hxh + A3,hqh + A4,huh − bh) .

Proposition 3. Any y that is feasible for Problem (P) augmented with the Balas

cuts is also feasible for Problem (MDERMPk), and the optimal objective of Problem

(MDERMPk) is a lower bound of that of the original problem (P) augmented with the

Balas cuts.
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Proof. According to the idea in Ref [68], Problem (P) can be equivalently transformed

into the following form by projection from the space of both continuous and integer

variables to the space of only the integer variables:

min
y

cT
1 y +

s∑
h=1

vh(y)

s.t. vh(y) = min
xh,qh,uh

cT
2,hxh + cT

3,hqh + cT
4,huh

s.t. A1,hy + A2,hxh + A3,hqh + A4,huh ≤ bh,

(xh, qh, uh) ∈ Π̃h,

 ∀h ∈ {1, . . . , s}

y ∈ Φ.

(P1)

According to the equivalency of Problems (P) and (P1) and the equivalency of

Problems (MDERMPk) and (MDERMP1k), the following property is proved: any y

that is feasible for Problem (P1) augmented with the Balas cuts is also feasible for

Problem (MDERMP1k), and the optimal objective of Problem (MDERMP1k) is a

lower bound of that of Problem (P1) augmented with the Balas cuts.

Based on weak duality,

FP,h(y, λ
(r)
h ) ≤ vh(y), ∀h ∈ {1, . . . , s}, ∀r ∈ V k, ∀y ∈ Φ, (6.16)

FP,h(y, λ̆
(r)
h ) ≤ vh(y), ∀h ∈ {1, . . . , s}, ∀r ∈ V k, ∀y ∈ Φ. (6.17)

For all ŷ feasible for Problem (P1) augmented with the Balas cuts, pick η̂h = vh(ŷ)

and η̂ = cT
1 ŷ +

∑s
h=1 η̂h, then

η̂h ≥ FP,h(ŷ, λ
(r)
h ), ∀h ∈ {1, . . . , s}, (6.18)

η̂h ≥ FP,h(ŷ, λ̆
(r)
h ), ∀h ∈ {1, . . . , s}, (6.19)

and

η̂ ≥ cT
1 ŷ +

s∑
h=1

η̂h. (6.20)
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Define

vR
h (y) = min

(xh,qh,uh)∈Π̂h

cT
2,hxh + cT

3,hqh + cT
4,huh

s.t. A1,hy + A2,hxh + A3,hqh + A4,huh ≤ bh,

Based on Equation (6.5),

vh(y) ≥ vR
h (y), ∀y ∈ Φ. (6.21)

According to strong duality for linear programs,

Fh(y, λ
(j)
h ) = vR

h (y), ∀h ∈ {1, . . . , s}, ∀j ∈ T k\V k, ∀y ∈ Y. (6.22)

Hence

η̂h ≥ Fh(ŷ, λ
(j)
h ), ∀h ∈ {1, . . . , s}, (6.23)

from Equations (6.21) and (6.22).

In addition, ŷ ∈ Φ implies ∃(xh, qh, uh) ∈ Π̃h ⊂ Π̂h (Equation (6.5)) such that

A1,hŷ + A2,hxh + A3,hqh + A4,huh − bh ≤ 0, ∀h ∈ {1, . . . , s}. (6.24)

As Lagrange multipliers

µ
(i)
h ≥ 0, ∀h ∈ {1, . . . , s}, ∀i ∈ Sk. (6.25)

So

Gh(ŷ, µ
(i)
h ) ≤ 0, ∀h ∈ {1, . . . , s}. (6.26)

Equations (6.18), (6.19), (6.23) and (6.26) imply (ŷ, η̂, η̂1, . . . , η̂s) is feasible for

Problem (MDERMP1k), and

objMDERMP1k ≤ η̂ = cT
1 ŷ +

s∑
h=1

η̂h = cT
1 ŷ +

s∑
h=1

vh(ŷ), ∀ŷ ∈ Φ, (6.27)
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where objMDERMP1k is the optimal objective value of Problem (MDERMP1k). Hence,

objMDERMP1k ≤ min
ŷ∈Φ

cT
1 ŷ +

s∑
h=1

vh(ŷ) = objP1, (6.28)

where objP1 is the optimal objective value of Problem (P1).

Proposition 4. Problem (MDERMPk) is a tighter (or equal) underestimate of Prob-

lem (P) augmented with the Balas cuts compared to Problem (DERMPk).

Proof. For all (ŷ, η̂, η̂1, . . . , η̂s) feasible for Problem (MDERMPk),

η̂ ≥ cT
1 ŷ +

s∑
h=1

η̂h, (6.29)

η̂h ≥ α̃
(r)
h ŷ + β̃

(r)
h , ∀h ∈ {1, . . . , s}, ∀r ∈ V k, (6.30)

η̂h ≥ ᾰ
(r)
h ŷ + β̆

(r)
h , ∀h ∈ {1, . . . , s}, ∀r ∈ V k, (6.31)

η̂h ≥ α
(j)
h ŷ + β

(j)
h , ∀h ∈ {1, . . . , s}, ∀j ∈ T k\V k, (6.32)

γ
(i)
h ŷ + θ

(i)
h ≤ 0, ∀h ∈ {1, . . . , s}, ∀i ∈ Sk. (6.33)

Sum Equation (6.30) over all the scenarios, then

η̂ ≥ α̃(r)ŷ + β̃(r), ∀r ∈ V k. (6.34)

Similarly, Equations (6.31), (6.32) and (6.33) imply

η̂ ≥ ᾰ(r)ŷ + β̆(r), ∀r ∈ V k, (6.35)

η̂ ≥ α(j)ŷ + β(j), ∀j ∈ T k\V k, (6.36)

γ(i)ŷ + θ(i) ≤ 0, ∀i ∈ Sk. (6.37)

Hence (ŷ, η̂) is also feasible for Problem (DERMPk).

Therefore, Problem (MDERMPk) is a tighter (or equal) underestimate of Problem

(P) augmented with the Balas cuts compared to Problem (DERMPk).

139



6.2.3 Enhanced Decomposition Algorithm with Primal Dual

Cuts

Either the enhanced relaxed master problem with primal dual cuts (DERMPk) or with

primal dual multicuts (MDERMPk) can be employed in the enhanced decomposition

algorithm. The following algorithm is stated with Problem (DERMPk) [49]:

Initialize:

1. Iteration counters k = 0, l = 1, and the index sets T 0 = ∅ , S0 = ∅ , U0 = ∅,

V 0 = ∅.

2. Upper bound on the problem UBD = +∞, upper bound on the lower bound-

ing problem UBDPB = +∞, lower bound on the lower bounding problem

LBD = −∞.

3. Set tolerances εh and ε such that
∑s

h=1 εh ≤ ε.

4. Integer realization y(1) is given.

repeat

if k = 0 or (Problem (DERMPk) is feasible and LBD < UBDPB and LBD <

UBD− ε) then

repeat

Set k = k + 1

1. Solve the decomposed primal bounding problem (PBPh(y
(k))) for each

scenario h = 1, ..., s sequentially. If Problem (PBPh(y
(k))) is feasible

for all the scenarios with Lagrange multipliers λ
(k)
h , add optimality

cuts to the enhanced relaxed master problem (DERMPk) according to

λ
(k)
1 , ..., λ

(k)
s , set T k = T k−1 ∪ {k}. If objPBP(y(k)) < UBDPB, update

UBDPB = objPBP(y(k)), y∗ = y(k), k∗ = k.

2. If Problem (PBPh(y
(k))) is infeasible for one scenario, stop solving it

for the remaining scenarios and set Sk = Sk−1 ∪ {k}. Then, solve the

decomposed feasibility problem (FPh(y
(k))) for h = 1, ..., s and obtain
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the corresponding Lagrange multipliers µ
(k)
h . Add feasibility cuts to

Problem (DERMPk) according to these multipliers.

3. If T k = ∅, solve the feasibility problem (RMFPk); otherwise, solve

Problem (DERMPk). In the latter case, if Problem (DERMPk) is

feasible, set LBD to its optimal objective value. In both cases, set

y(k+1) to the y value at the solution of either problem.

until LBD ≥ UBDPB or (Problem (DERMPk) or (RMFPk) is infeasible).

end if

if UBDPB < UBD− ε then

1. Solve the decomposed primal problem (PPh(y
∗)) to εh-optimality for

each scenario h = 1, ..., s sequentially. Set U l = U l−1 ∪ {k∗}. If Problem

(PPh(y
∗)) is feasible with optimum (x∗h, q

∗
h, u

∗
h) for all the scenarios and

objPP(y∗) < UBD, obtain the corresponding KKT multipliers λ̆
(k∗)
h , up-

date UBD = objPP(y∗) and set y∗p = y∗, (x∗p,h, q
∗
p,h, u

∗
p,h) = (x∗h, q

∗
h, u

∗
h) for

h = 1, . . . , s, set V k = V k−1 ∪ {k∗}.

2. If k∗ ∈ V k, solve the decomposed relaxed dual of primal problem

(DPPh(y
∗)) to εh-optimality for each scenario h = 1, ..., s sequentially

with KKT multipliers λ
(k∗)
h and λ̆

(k∗)
h . Add primal dual cuts to Problem

(DERMPk) according to these multipliers and the optimal solutions of

Problem (DPPh(y
∗)).

3. If T k \ U l = ∅, set UBDPB = +∞.

4. If T k\U l 6= ∅, pick i ∈ T k\U l such that objPBP(y(i)) = minj∈Tk\U l{objPBP(y(j))}.

Update UBDPB = objPBP(y(i)), y∗ = y(i), k∗ = i. Set l = l + 1.

end if

until UBDPB ≥ UBD− ε and ((Problem (DERMPk) or (RMFPk) is infeasible) or

LBD ≥ UBD− ε).

An ε-global optimum of the original problem (P) is given by

(y∗p, x
∗
p,1, ..., x

∗
p,s, q

∗
p,1, ..., q

∗
p,s, u

∗
p,1, ..., u

∗
p,s)
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or (P) is infeasible.

If the multicut enhanced relaxed master problem (MDERMPk) is applied, replace

Problem (DERMPk) in the aforementioned algorithm by Problem (MDERMPk).

The algorithm flowchart is shown in Figure 6-1 [49], in which differences between

the enhanced decomposition algorithm and the original decomposition algorithm are

highlighted in grey. Compared to the flowchart of the original decomposition algo-

rithm, two new steps, “Solve DPP?” and “Relaxed Dual of Primal Problem”, are

added in this flowchart, and the step “Relaxed Master Problem” is replaced by “En-

hanced Relaxed Master Problem”.

Update LBD 

Initialization End 

PBP Feasible? 

LBD ≥ 

UBDPB? 

No 

Yes 

Feasibility Cut Optimality 

Cut 
Enhanced Relaxed 

Master Problem 

(MILP) 
New Integer 

Realization 

Yes 

Yes 

No No 

UBD, UBDPB, 

LBD 
Global solution or 

infeasibility indication 

Primal  

Subproblems 

(Nonconvex NLP) 

UBDPB ≥ 

UBD? 

Feasibility 

Subproblems (LP) 

Primal Bounding 

Subproblems (LP) 

Update 

UBDPB 

Solve DPP? 

Update UBD, 

UBDPB 

Relaxed Dual of 

Primal Problem  

(Nonconvex NLP) 

No 

Yes 

Primal Dual Cut 

for ERMP 

or MERMP 

Steps same to ones in 

the original 

decomposition method 

Steps different from 

ones in the original 

decomposition method 

Figure 6-1: Flowchart for the enhanced decomposition algorithm with primal dual
cuts.

Theorem 1. If all the subproblems can be solved to ε-optimality in a finite number of

steps, then the enhanced NGBD algorithm terminates in a finite number of steps with

an ε-optimal solution of Problem (P) or an indication that Problem (P) is infeasible.

Proof. The solution procedure in the enhanced NGBD is the same as that in NGBD

except that the enhanced NGBD solves a finite number of additional subproblems
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and it solves a different relaxed master problem. Since all these subproblems can be

solved finitely, and the new relaxed master problem still prevents visiting the same

integer realization twice, the convergence property holds for the enhanced NGBD as

well according to the proof of NGBD convergence in Li et al [113, 114].

6.3 Enhanced Decomposition Algorithm with Piece-

wise Convex Relaxation

6.3.1 Piecewise Relaxation for Bilinear Functions

For the bilinear function z = xy, with known upper and lower bounds on x and y,

say, xL, xU, yL, yU, the McCormick relaxation can be written as:

zr ≥ xUy + xyU − xUyU,

zr ≥ xLy + xyL − xLyL,

zr ≤ xUy + xyL − xUyL,

zr ≤ xLy + xyU − xLyU,

xL ≤ x ≤ xU,

yL ≤ y ≤ yU

(6.38)

where zr denotes the value of the relaxed bilinear function. Define the relaxation gap

of a function over
[
xL, xU

]
×
[
yL, yU

]
to be the maximum difference of the function

and its relaxation over this domain, then the relaxation gap of the bilinear function

diminishes to zero as either
∣∣xU − xL

∣∣ or
∣∣yU − yL

∣∣ approaches zero, because according

143



to Eq (6.38) (and z = xy):

zr − z ≥ xUy + xyU − xUyU − xy =
(
xU − x

) (
y − yU

)
≥
(
xU − xL

) (
yL − yU

)
,

zr − z ≥ xLy + xyL − xUyL − xy =
(
xL − x

) (
y − yL

)
≥
(
xL − xU

) (
yU − yL

)
,

zr − z ≤ xUy + xyL − xUyL − xy =
(
xU − x

) (
y − yL

)
≤
(
xU − xL

) (
yU − yL

)
,

zr − z ≤ xLy + xyU − xLyU − xy =
(
xL − x

) (
y − yU

)
≤
(
xL − xU

) (
yL − yU

)
,

(6.39)

so

sup
xL≤x≤xU, yL≤y≤yU

|zr − z| ≤
∣∣xU − xL

∣∣ ∣∣yU − yL
∣∣ (6.40)

Therefore, the relaxation gap can be decreased by partitioning the x domain,[
xL, xU

]
into M subdomains, i.e., picking M + 1 points x1 < x2 < · · · < xM+1 such

that x1 = xL, xM+1 = xU and performing McCormick relaxation on each individual

subdomain. Furthermore, each subdomain is assigned a binary variable δm to deter-

mine if the McCormick relaxation on this subdomain is used or not, and
∑M

m=1 δm = 1

is enforced. Thus the McCormick relaxation of the bilinear function can be upgraded

into:

zr =
M∑
m=1

zr
m, x =

M∑
m=1

xm, y =
M∑
m=1

ym,

zr
m ≥ xm+1ym + xmy

U − xm+1yUδm,

zr
m ≥ xmym + xmy

L − xmyLδm,

zr
m ≤ xm+1ym + xmy

L − xm+1yLδm,

zr
m ≤ xmym + xmy

U − xmyUδm,

δmx
m ≤ xm ≤ δmx

m+1,

δmy
L ≤ ym ≤ δmy

U,

M∑
m=1

δm = 1,

m = 1, . . . ,M

(6.41)
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Proposition 5. If zr is feasible for the constraints in Eq (6.41), then it is feasible

for the constraints in Eq (6.38) as well.

Proof. For any ẑr that is feasible for the constraints in Eq (6.41), say, corresponding

to the McCormick relaxation on the ith subdomain, there exist δ̂i, x̂i and ŷi such that

δ̂i = 1, ẑr = ẑr
i , x

L ≤ xi ≤ x̂i ≤ xi+1 ≤ xU, yL ≤ ŷi ≤ yU and

ẑr = ẑr
i

≥ xi+1ŷi + x̂iy
U − xi+1yU

= xi+1
(
ŷi − yU

)
+ x̂iy

U

≥ xU
(
ŷi − yU

)
+ x̂iy

U
(
noticing xi+1 ≤ xU, ŷi ≤ yU

)
(6.42)

Therefore, ẑr, x̂i and ŷi satisfy the first constraint of relaxation Eq (6.38). Sim-

ilarly, ẑr, x̂i and ŷi also satisfy the second to the fourth constraint of relaxation Eq

(6.38). Therefore, ẑr is also feasible for the constraints in Eq (6.38).

The piecewise McCormick relaxation Eq (6.41) characterizes a disjunctive poly-

hedral set that contains the value of the bilinear function over its domain, and its

continuous relaxation leads to the convex hull of the disjunctive set [23]. So this for-

mulation is favorable for mixed-integer programming. Let nB be the total number of

bilinear functions and nPB denotes the total number of variables whose domains need

to be partitioned for the bilinear functions, then upgrading relaxation Eq (6.38) into

Eq (6.41) incurs MnPB additional binary variables, 3(M −1)nB continuous variables,

and (8K − 1)nB linear constraints provided all the partitioned domains are divided

into M pieces. Note that only the domain of one variable in each bilinear function

needs to be partitioned, according to Eq (6.40).

6.3.2 New Subproblems

Piecewise Primal Bounding Problem (PBP-PCR)

The piecewise primal bounding problem (PBP-PCR) is generated by fixing the integer

variables in the piecewise lower bounding problem to y(k), which is the integer real-
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ization at the kth iteration. In Problem (PBP-PCR), the domain of qh is selected to

be partitioned into M (uniform) subdomains. Problem (PBP-PCR) can be naturally

decomposed into subproblems (PBP-PCRh) for the s scenarios:

objPBP−PCRh

(
y(k)
)

= min
xh,qh,uh,δh,
x̄h,q̄h,ūh

cT
2,hxh + cT

3,hqh + cT
4,huh

s.t. A1,hy
(k) + A2,hxh + A3,hqh + A4,huh ≤ bh,

(xh, qh, uh, δh, x̄h, q̄h, ūh) ∈ Π̄h

(PBP-PCRh)

where

Π̄h ={(xh, qh, uh) ∈ Πh, δh ∈ {0, 1}Mnq , (x̄h, q̄h, ūh) ∈ RMnx × RMnq × RMnu :

M∑
m=1

δh,m = 1,

uh,l,t =
M∑
m=1

ūh,l,t,m, ∀(l, t) ∈ Ω,

xh,l =
M∑
m=1

x̄h,l,m, ∀l ∈ {1, . . . , nx},

qh,t =
M∑
m=1

q̄h,t,m, ∀t ∈ {1, . . . , nq},

ūh,l,t,m ≥ xL
h,l q̄h,t,m + x̄h,l,m qmh,t − xL

h,lq
m
h,tδh,m,

ūh,l,t,m ≥ xU
h,l q̄h,t,m + x̄h,l,m qm+1

h,t − x
U
h,lq

m+1
h,t δh,m,

ūh,l,t,m ≤ xU
h,l q̄h,t,m + x̄h,l,m qmh,t − xU

h,lq
m
h,tδh,m,

ūh,l,t,m ≤ xL
h,l q̄h,t,m + x̄h,l,m qm+1

h,t − x
L
h,lq

m+1
h,t δh,m,

∀(l, t) ∈ Ω, ∀m ∈ {1, . . . ,M},

δh,mx
L
h ≤ x̄h,m ≤ δh,mx

U
h , δh,mq

m
h ≤ q̄h,m ≤ δh,mq

m+1
h , ∀m ∈ {1, . . . ,M},

qL
h = q1

h ≤ q2
h ≤ . . . ≤ qMh ≤ qM+1

h = qU
h }

objPBP−PCRh

(
y(k)
)

is the optimal objective value of Problem (PBP-PCRh) for y =

y(k), h = 1, . . . , s. The objectives of Problem (PBP-PCR) and (PBP-PCRh) satisfy
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the following relationship:

objPBP−PCR

(
y(k)
)

= cT
1 y

(k) +
s∑

h=1

objPBP−PCRh

(
y(k)
)

(6.43)

where objPBP−PCR

(
y(k)
)

is the optimal objective value of Problem (PBP-PCR) for

y = y(k).

With the piecewise convex relaxation, Problem (PBP-PCRh) is a tighter relaxation

of Problem (PPh) compared to Problem (PBPh), so

objPPh

(
y(k)
)
≥ objPBP−PCRh

(
y(k)
)
≥ objPBPh

(
y(k)
)

(6.44)

Summing Eq (6.44) over h = 1, . . . , s yields

objPP

(
y(k)
)
≥ objPBP−PCR

(
y(k)
)
≥ objPBP

(
y(k)
)

(6.45)

Therefore, Problem (PBP-PCRh) leads to a better estimate of the optimal objective

value of Problem P for y = y(k) compared to Problem (PBPh).

Relaxed Dual of PBP-PCR

Problem (PBP-PCR) is a nonconvex problem, and hence its solution cannot be di-

rectly used for optimality cuts in the enhanced relaxed master problem. Instead,

a relaxed dual of Problem (PBP-PCR), called Problem (DPBP-PCR), is solved to

construct optimality cuts. Problem (DPBP-PCR) can be naturally decomposed into

subproblems (DPBP-PCRh) for the s scenarios:

objDPBP−PCRh

(
y(k), λ̄

(k)
h

)
= min

xh,qh,uh,δh,
x̄h,q̄h,ūh

cT
2,hxh + cT

3,hqh + cT
4,huh

+
(
λ̄

(k)
h

)T (
A1,hy

(k) + A2,hxh + A3,hqh + A4,huh − bh
)

s.t. (xh, qh, uh, δh, x̄h, q̄h, ūh) ∈ Π̄h

(DPBP-PCRh)
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where λ̄
(k)
h denotes the KKT multipliers obtained at the solution of Problem (PBP-

PCRh) when y = y(k). objDPBP−PCRh

(
y(k), λ̄

(k)
h

)
is the optimal objective value of

Problem (DPBP-PCRh) for y = y(k), h = 1, . . . , s. The objectives of Problem (DPBP-

PCR) and (DPBP-PCRh) satisfy the following relationship:

objDPBP−PCR

(
y(k), λ̄(k)

)
= cT

1 y
(k) +

s∑
h=1

objDPBP−PCRh

(
y(k), λ̄

(k)
h

)
(6.46)

where objPBP−PCR

(
y(k), λ̄(k)

)
is the optimal objective value of Problem (DPBP-PCR)

for y = y(k), λ̄(k) =
(
λ̄

(k)
1 , . . . , λ̄

(k)
s

)
.

Enhanced Relaxed Master problem with Piecewise Relaxation

The optimal solutions of Problem (DPBP-PCRh) together with the KKT multipliers

of Problem (PBP-PCRh) construct enhanced optimality cuts for the relaxed master

problem. The enhanced relaxed master problem with piecewise convex relaxation,

called Problem (PERMPk), is as follows:

min
y,η

η

s.t. η ≥ ᾱ(j)y + β̄(j), ∀j ∈ T̄ k,

η ≥ α(j)y + β(j), ∀j ∈ T k,

γ(i)y + θ(i) ≤ 0, ∀i ∈ Sk,∑
l∈{l:y(t)

l =1}

yl −
∑

l∈{l:y(t)
l =0}

yl ≤ |{l : y(t) = 1}| − 1, ∀t ∈ T k ∪ Sk,

y ∈ Y, η ∈ R,

(PERMPk)
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where

ᾱ(j) = cT
1 +

s∑
h=1

(
λ̄

(j)
h

)T

A1,h,

β̄(j) =
s∑

h=1

[
cT

2,hx̄
(j)
h + cT

3,hq̄
(j)
h + cT

4,hū
(j)
h

]
+

s∑
h=1

[(
λ̄

(j)
h

)T (
A2,hx̄

(j)
h + A3,hq̄

(j)
h + A4,hū

(j)
h − bh

)]
,

T̄ k = {j ∈ {1, . . . , k} : Problem PBP-PCR
(
y(k)
)

is feasible}.(
x̄

(j)
h , q̄

(j)
h , ū

(j)
h

)
is a minimum of Problem (DPBP-PCRh) with the KKT multipliers

of Problem (PBP-PCRh) (∀h ∈ {1, . . . , s}) when y = y(j). Note that T̄ k ⊂ T k due

to the tighter relaxation. The first set of constraints are called enhanced optimality

cuts with piecewise convex relaxation.

If T k = ∅, Problem (PERMPk) is unbounded, so the feasibility relaxed master

Problem (RMFPk) introduced in Chapter 5 is solved instead. In principle, the fea-

sibility subproblem (FPh) can also be upgraded with piecewise convex relaxations

to generate additional valid feasibility cuts for the relaxed master problem, but our

computational experience indicates that these cuts do not significantly accelerate the

convergence, which may be because the Balas cuts in the problem (which prevent

visiting an integer realization twice) are already strong enough. So these feasibility

cuts are not addressed in this study.

6.3.3 Theoretical Properties

Proposition 6. Compared to Problem (RMPk), Problem (PERMPk) is a tighter (or

equal) relaxation of Problem (P) when Problem (P) is augmented with the Balas cuts.

Proof. Considering that Problem (PERMPk) differs from Problem (RMPk) only with

the first group of optimality cuts, it is obvious that Problem (PERMPk) is a tighter

relaxation if it is a valid relaxation of Problem (P). It is proved in Ref [113] that

Problem (RMPk) is a relaxation of Problem (P) when Problem (P) is augmented with

149



the Balas cuts excluding the previously examined integer realizations, so it remains

to prove

objPP (y) ≥ ᾱ(j)y + β̄(j), ∀j ∈ T̄ k, ∀y ∈ W (6.47)

W = {ŷ ∈ Y : Problem P is feasible for y = ŷ}

For all j ∈ T̄ k and h ∈ {1, . . . , s},

ᾱ(j)y + β̄(j) = cT
1 y +

s∑
h=1

 inf
(xh,qh,uh,δh,
x̄h,q̄h,ūh)∈Π̄h

cT
2,hxh + cT

3,hqh + cT
4,huh

+
(
λ̄

(j)
h

)T (
A1,hy

(j) + A2,hxh + A3,hqh + A4,huh − bh
)]

+
s∑

h=1

(
λ̄

(j)
h

)T

A1,h

(
y − y(j)

)
= cT

1 y +
s∑

h=1

 inf
(xh,qh,uh,δh,
x̄h,q̄h,ūh)∈Π̄h

cT
2,hxh + cT

3,hqh + cT
4,huh

+
(
λ̄

(j)
h

)T

(A1,hy + A2,hxh + A3,hqh + A4,huh − bh)
]

= cT
1 y + objDPBP−PCRh

(
y, λ̄

(j)
h

)
= objDPBP−PCR

(
y, λ̄(j)

)

(6.48)

where λ̄(j) =
(
λ̄

(j)
1 , . . . , λ̄

(j)
s

)
.

Eq (6.45) implies

objPP (y) ≥ objPBP−PCR (y) , ∀y ∈ W (6.49)

Due to weak duality, for all y ∈ W ,

objPBP−PCR (y) ≥ sup
λ̄≥0

objDPBP−PCR

(
y, λ̄
)

≥ objDPBP−PCR

(
y, λ̄(j)

) (6.50)

Eqs (6.48), (6.49) and (6.50) imply Eq (6.47).
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6.3.4 Enhanced Decomposition Algorithm with Piecewise Re-

laxation

The enhanced decomposition algorithm with piecewise convex relaxation is stated as

below [111]:

Initialize:

1. Iteration counters k = 0, l = 1, and the index sets T 0 = ∅ , T̄ 0 = ∅ , S0 = ∅ ,

U0 = ∅.

2. Upper bound on the problem UBD = +∞, upper bound on the lower bound-

ing problem UBDPB = +∞, lower bound on the lower bounding problem

LBD = −∞.

3. Set tolerances εh and ε such that
∑s

h=1 εh ≤ ε.

4. Integer realization y(1) is given.

repeat

if k = 0 or (Problem (PERMPk) is feasible and LBD < UBDPB and LBD <

UBD− ε) then

repeat

Set k = k + 1

1. Solve the decomposed primal bounding problem (PBPh(y
(k))) for each

scenario h = 1, ..., s sequentially. If Problem (PBPh(y
(k))) is feasible

for all the scenarios with Lagrange multipliers λ
(k)
h , add optimality

cuts to the enhanced relaxed master problem (PERMPk) according to

λ
(k)
1 , ..., λ

(k)
s , set T k = T k−1 ∪ {k}.

2. If Problem (PBPh(y
(k))) is feasible for all the scenarios, solve subprob-

lem (PBP-PCRh(y
(k))) for each scenario h = 1, ..., s sequentially. If

Problem (PBP-PCRh(y
(k))) is feasible with KKT multipliers λ̄

(k)
h for all

the scenarios, set T̄ k = T̄ k−1∪{k}. In this case, if objPBP−PCR(y(k)) <

UBDPB, update UBDPB = objPBP−PCR(y(k)), y∗ = y(k), k∗ = k, solve
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subproblem (DPBP-PCRh(y
(k))) with λ̄

(k)
h for each scenario h = 1, ..., s

sequentially, add optimality cuts to Problem (PERMPk).

3. If Problem (PBPh(y
(k))) is infeasible for one scenario, stop solving

it for the remaining scenarios and set Sk = Sk−1 ∪ {k}. Then, solve

the decomposed feasibility subproblem (FPh(y
(k))) for h = 1, ..., s and

obtain the corresponding Lagrange multipliers µ
(k)
h . Add feasibility

cuts to Problem (PERMPk) according to these multipliers.

4. If T k = ∅, solve the feasibility problem (RMFPk); otherwise, solve

Problem (PERMPk). In the latter case, if Problem (PERMPk) is

feasible, set LBD to its optimal objective value. In both cases, set

y(k+1) to the y value at the solution of either problem.

until LBD ≥ UBDPB or (Problem (PERMPk) or (RMFPk) is infeasible).

end if

if UBDPB < UBD− ε then

1. Solve the decomposed primal subproblem (PPh(y
∗)) to εh-optimality

for each scenario h = 1, ..., s sequentially. Set U l = U l−1 ∪ {k∗}. If

Problem (PPh(y
∗)) is feasible with optimum (x∗h, q

∗
h, u

∗
h) for all the sce-

narios and objPP(y∗) < UBD, update UBD = objPP(y∗) and set y∗p = y∗,

(x∗p,h, q
∗
p,h, u

∗
p,h) = (x∗h, q

∗
h, u

∗
h) for h = 1, . . . , s.

2. If T̄ k \ U l = ∅, set UBDPB = +∞.

3. If T̄ k\U l 6= ∅, pick i ∈ T̄ k\U l such that objPBP−PCR(y(i)) = minj∈T̄k\U l{objPBP−PCR(y(j))}.

Update UBDPB = objPBP−PCR(y(i)), y∗ = y(i), k∗ = i. Set l = l + 1.

end if

until UBDPB ≥ UBD− ε and ((Problem (PERMPk) or (RMFPk) is infeasible) or

LBD ≥ UBD− ε).

An ε-global optimum of the original problem (P) is given by

(y∗p, x
∗
p,1, ..., x

∗
p,s, q

∗
p,1, ..., q

∗
p,s, u

∗
p,1, ..., u

∗
p,s)
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or (P) is infeasible.

The algorithm flowchart is shown in Figure 6-2 [111], in which differences between

the enhanced decomposition algorithm and the original decomposition algorithm are

highlighted in grey. Compared to the flowchart of the original decomposition algo-

rithm, two new steps, “PBP-PCR (MILP)” and “DPBP-PCR (MILP)”, are added

in this flowchart, and the step “Relaxed Master Problem” is replaced by “Enhanced

Relaxed Master Problem”. Another important change (which is not shown in the

figure) is that the selection of the integer realization y(k) for constructing primal sub-

problems (PPh) is based on objPBP−PCR(y(k)) instead of objPBP(y(k)). According to

Eq (6.45), the new selection criterion is more likely to locate a global optimum earlier.
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Figure 6-2: Flowchart for the enhanced decomposition algorithm with piecewise con-
vex relaxation.

The convergence property for the enhanced NGBD holds according to Theorem

1.
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6.3.5 Adaptive Piecewise Convex Relaxation & New Sub-

problems

Adaptive Subdomain Partition Strategy

There are several drawbacks of the aforementioned fixed subdomain partition strat-

egy:

First, the number of subdomains needs to be pre-determined. From our computa-

tional experience, the performance of the enhanced NGBD strongly depends on the

number of subdomains for partition variables, e.g., a larger number of subdomains

will reduce total iteration numbers but increase the solution times for the piecewise

primal bounding problems (as shown in Chapter 7). Hence, the optimal number of

subdomains cannot be easily determined before solution.

Second, the points dividing subdomains need to be pre-determined and are usually

uniformly distributed for convenience. A uniform partition may not be an optimal

way for the fast solution of piecewise enhanced NGBD. In order to obtain tighter

relaxation, more subdomains need to be partitioned in the region close to the global

optimal solution, and fewer subdomains can be assigned in other regions. It is quite

difficult to know this nonuniform partition pattern before solution.

Third, the numbers of subdomains for all partition variables are equal. Obviously,

some variables need more subdomains than others, depending on the mathematical

structure of the problem.

A heuristic that automatically partitions the domain of each variable by using

information from subproblems solved by the algorithm, called the adaptive parti-

tion strategy, is proposed to address above issues. In this strategy, all variables are

initially unpartitioned, and the algorithm starts as per the original NGBD. After

Problem (PP) is solved and is feasible, the solution of Problem (PP) is then com-

pared with the end points of subdomains for all partitioned variables. If the solution

of Problem (PP) is different from (or outside the neighbourhood of) all end points

of subdomains for some partition variable, a new subdomain is introduced, and the

solution becomes the point dividing the new subdomain. The new subdomains are
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then used for Problem (PBP-PCR) in the next iteration. The number of subdomains

will increase iteratively, hence some maximum number of subdomains or some min-

imum radius for neighbourhoods must be enforced to prevent an unlimited increase

of subdomains.

Under the adaptive partition strategy, no choice for the partition needs to be pre-

selected before solution, and the appropriate number of subdomains for each variable

will be determined by the feedback from the algorithm. More reasonable distributions

of subdomains are also expected because more primal problems will be solved near

the global optimal solution and more subdomains will be then partitioned there. The

adaptive piecewise convex relaxation avoids possible bad subdomain partitions caused

by human factors, and ensures fast convergence (as will be shown in Chapter 7).

Problems (PBP-PCR) and (DPBP-PCR) are modified to incorporate the adaptive

partition strategy, as shown in the following sections.

Adaptive Piecewise Primal Bounding Problem (PBP-PCR-A)

The adaptive piecewise primal bounding problem, called Problem (PBP-PCR-A), is

modified from Problem (PBP-PCR). Problem (PBP-PCR-A) can be naturally de-

composed into subproblems (PBP-PCR-Ah) for the s scenarios:

objPBP−PCR−Ah

(
y(k)
)

= min
xh,qh,uh,δh,
x̄h,q̄h,ūh

cT
2,hxh + cT

3,hqh + cT
4,huh

s.t. A1,hy
(k) + A2,hxh + A3,hqh + A4,huh ≤ bh,

(xh, qh, uh, δh, x̄h, q̄h, ūh) ∈ Π̄adp
h

(PBP-PCR-Ah)
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where

Π̄adp
h ={(xh, qh, uh) ∈ Πh, δh ∈ {0, 1}nqnδ,h,max , (x̄h, q̄h, ūh) ∈ Rnxnδ,h,max × Rnqnδ,h,max × Rnunδ,h,max :

nδ,h,t∑
m=1

δh,t,m = 1, ∀t ∈ {1, . . . , nq}, ∀m ∈ {1, . . . , nδ,h,t},

δh,t,m = 0, ∀t ∈ {1, . . . , nq}, ∀m ∈ {nδ,h,t + 1, . . . , nδ,h,max},

uh,l,t =

nδ,h,t∑
m=1

ūh,l,t,m, ∀(l, t) ∈ Ω,

xh,l =

nδ,h,t∑
m=1

x̄h,l,m, ∀(l, t) ∈ Ω,

qh,t =

nδ,h,t∑
m=1

q̄h,t,m, ∀t ∈ {1, . . . , nq},

ūh,l,t,m ≥ xL
h,l q̄h,t,m + x̄h,l,m qmh,t − xL

h,lq
m
h,tδh,t,m,

ūh,l,t,m ≥ xU
h,l q̄h,t,m + x̄h,l,m qm+1

h,t − x
U
h,lq

m+1
h,t δh,t,m,

ūh,l,t,m ≤ xU
h,l q̄h,t,m + x̄h,l,m qmh,t − xU

h,lq
m
h,tδh,t,m,

ūh,l,t,m ≤ xL
h,l q̄h,t,m + x̄h,l,m qm+1

h,t − x
L
h,lq

m+1
h,t δh,t,m,

∀(l, t) ∈ Ω, ∀m ∈ {1, . . . , nδ,h,t},

δh,t,mx
L
h ≤ x̄h,t,m ≤ δh,t,mx

U
h , δh,t,mq

m
h,t ≤ q̄h,t,m ≤ δh,t,mq

m+1
h,t ,

∀t ∈ {1, . . . , nq}, ∀m ∈ {1, . . . , nδ,h,t},

qL
h = q1

h ≤ q2
h ≤ . . . ≤ q

nδ,h,t
h ≤ q

nδ,h,t+1

h = qU
h , ∀t ∈ {1, . . . , nq}

ūh,l,t,m = 0, x̄h,l,m = 0, q̄h,t,m = 0,

∀(l, t) ∈ Ω, ∀m ∈ {nδ,h,t + 1, . . . , nδ,h,max} }

nδ,h,max is the maximum number of pieces in scenario h, which is initially determined.

nδ,h,t is the number of pieces for the tth partitioned variable qh,t in scenario h, which

increases as more primal problems are solved. qmh,t (m = 2, . . . , nδ,h,t) are the points

dividing pieces for qh,t, which are provided by the solution of the primal problem.

objPBP−PCR−Ah

(
y(k)
)

is the optimal objective value of Problem (PBP-PCR-Ah) for

y = y(k), h = 1, . . . , s. The objectives of Problem (PBP-PCR-A) and (PBP-PCR-Ah)
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satisfy the following relationship:

objPBP−PCR−A

(
y(k)
)

= cT
1 y

(k) +
s∑

h=1

objPBP−PCR−Ah

(
y(k)
)

(6.51)

where objPBP−PCR−A

(
y(k)
)

is the optimal objective value of Problem (PBP-PCR-A)

for y = y(k).

Relaxed Dual of PBP-PCR-A

The relaxed dual of Problem (PBP-PCR-A), called Problem (DPBP-PCR-A), is mod-

ified from Problem (DPBP-PCR). Problem (DPBP-PCR-A) can be naturally decom-

posed into subproblems (DPBP-PCR-Ah) for the s scenarios:

objDPBP−PCR−Ah

(
y(k), λ̄

(k)
h

)
= min

xh,qh,uh,δh,
x̄h,q̄h,ūh

cT
2,hxh + cT

3,hqh + cT
4,huh

+
(
λ̄

(k)
h

)T (
A1,hy

(k) + A2,hxh + A3,hqh + A4,huh − bh
)

s.t. (xh, qh, uh, δh, x̄h, q̄h, ūh) ∈ Π̄adp
h

(DPBP-PCR-Ah)

where λ̄
(k)
h denotes the KKT multipliers obtained at the solution of Problem (PBP-

PCR-Ah) when y = y(k). objDPBP−PCR−Ah

(
y(k), λ̄

(k)
h

)
is the optimal objective value

of Problem (DPBP-PCR-Ah) for y = y(k), h = 1, . . . , s. The objectives of Problem

(DPBP-PCR-A) and (DPBP-PCR-Ah) satisfy the following relationship:

objDPBP−PCR−A

(
y(k), λ̄(k)

)
= cT

1 y
(k) +

s∑
h=1

objDPBP−PCR−Ah

(
y(k), λ̄

(k)
h

)
(6.52)

where objPBP−PCR−A

(
y(k), λ̄(k)

)
is the optimal objective value of Problem (DPBP-

PCR-A) for y = y(k), λ̄(k) =
(
λ̄

(k)
1 , . . . , λ̄

(k)
s

)
.
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6.3.6 Enhanced Decomposition Algorithm with Adaptive Piece-

wise Relaxation

The enhanced decomposition algorithm with adaptive piecewise convex relaxation is

stated as below:

Initialize:

1. Iteration counters k = 0, l = 1, and the index sets T 0 = ∅ , T̄ 0 = ∅ , S0 = ∅ ,

U0 = ∅.

2. Upper bound on the problem UBD = +∞, upper bound on the lower bound-

ing problem UBDPB = +∞, lower bound on the lower bounding problem

LBD = −∞.

3. The number of pieces nδ,h = 1 for each scenario h = 1, . . . , s. The maximum

number of pieces nδ,h,max is given for each scenario h = 1, . . . , s.

4. Set tolerances εh and ε such that
∑s

h=1 εh ≤ ε.

5. Integer realization y(1) is given.

repeat

if k = 0 or (Problem (PERMPk) is feasible and LBD < UBDPB and LBD <

UBD− ε) then

repeat

Set k = k + 1

1. Solve the decomposed primal bounding problem (PBPh(y
(k))) for each

scenario h = 1, ..., s sequentially. If Problem (PBPh(y
(k))) is feasible

for all the scenarios with Lagrange multipliers λ
(k)
h , add optimality

cuts to the enhanced relaxed master problem (PERMPk) according to

λ
(k)
1 , ..., λ

(k)
s , set T k = T k−1 ∪ {k}.

2. If Problem (PBPh(y
(k))) is feasible for all the scenarios, solve sub-

problem (PBP-PCR-Ah(y
(k))) for each scenario h = 1, ..., s sequen-
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tially. If Problem (PBP-PCR-Ah(y
(k))) is feasible with KKT multi-

pliers λ̄
(k)
h for all the scenarios, set T̄ k = T̄ k−1 ∪ {k}. In this case, if

objPBP−PCR−A(y(k)) < UBDPB, update UBDPB = objPBP−PCR−A(y(k)),

y∗ = y(k), k∗ = k, solve subproblem (DPBP-PCR-Ah(y
(k))) with λ̄

(k)
h

for each scenario h = 1, ..., s sequentially, add optimality cuts to Prob-

lem (PERMPk).

3. If Problem (PBPh(y
(k))) is infeasible for one scenario, stop solving

it for the remaining scenarios and set Sk = Sk−1 ∪ {k}. Then, solve

the decomposed feasibility subproblem (FPh(y
(k))) for h = 1, ..., s and

obtain the corresponding Lagrange multipliers µ
(k)
h . Add feasibility

cuts to Problem (PERMPk) according to these multipliers.

4. If T k = ∅, solve the feasibility problem (RMFPk); otherwise, solve

Problem (PERMPk). In the latter case, if Problem (PERMPk) is

feasible, set LBD to its optimal objective value. In both cases, set

y(k+1) to the y value at the solution of either problem.

until LBD ≥ UBDPB or (Problem (PERMPk) or (RMFPk) is infeasible).

end if

if UBDPB < UBD− ε then

1. Solve the decomposed primal subproblem (PPh(y
∗)) to εh-optimality

for each scenario h = 1, ..., s sequentially. Set U l = U l−1 ∪ {k∗}. If

Problem (PPh(y
∗)) is feasible with optimum (x∗h, q

∗
h, u

∗
h) for all the sce-

narios and objPP(y∗) < UBD, update UBD = objPP(y∗) and set y∗p = y∗,

(x∗p,h, q
∗
p,h, u

∗
p,h) = (x∗h, q

∗
h, u

∗
h) for h = 1, . . . , s.

2. If Problem (PPh(y
∗)) is feasible for all scenarios, for each scenario h =

1, . . . , s and t = 1, . . . , nq, if nδ,h,t ≤ nδ,h,max and qmh,t < q∗h,t < qm+1
h,t for

some m ∈ {1, . . . , nδ,h,t}, set nδ,h,t = nδ,h,t + 1, set qj+1
h,t = qjh,t for each

j = m+ 1, . . . , nδ,h,t, and set qm+1
h,t = q∗h,t.

3. If T̄ k \ U l = ∅, set UBDPB = +∞.
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4. If T̄ k \ U l 6= ∅, pick i ∈ T̄ k \ U l such that objPBP−PCR−A(y(i)) =

minj∈T̄k\U l{objPBP−PCR−A(y(j))}. Update UBDPB = objPBP−PCR−A(y(i)),

y∗ = y(i), k∗ = i. Set l = l + 1.

end if

until UBDPB ≥ UBD− ε and ((Problem (PERMPk) or (RMFPk) is infeasible) or

LBD ≥ UBD− ε).

An ε-global optimum of the original problem (P) is given by

(y∗p, x
∗
p,1, ..., x

∗
p,s, q

∗
p,1, ..., q

∗
p,s, u

∗
p,1, ..., u

∗
p,s)

or (P) is infeasible.

The algorithm flowchart is shown in Figure 6-3, in which differences between the

enhanced decomposition algorithm and the original decomposition algorithm are high-

lighted in grey. Compared to the flowchart of the original decomposition algorithm,

three new steps, “PBP-PCR (MILP)”, “DPBP-PCR (MILP)” and “Update pieces

for PBP-PCR and DPBP-PCR”, are added in this flowchart, and the step “Relaxed

Master Problem” is replaced by “Enhanced Relaxed Master Problem”. The selection

of the integer realization y(k) for constructing primal subproblems (PPh) is based on

objPBP−PCR−A(y(k)) here.

The convergence property for the enhanced NGBD holds according to Theorem

1.
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Figure 6-3: Flowchart for the enhanced decomposition algorithm with adaptive piece-
wise convex relaxation.

6.4 Enhanced Decomposition Algorithm with Pri-

mal Dual Cuts and Piecewise Convex Relax-

ation

6.4.1 New Subproblems

Enhanced Relaxed Master problem with Primal Dual Cuts and Piecewise

Relaxation

The performance of decomposition algorithm can be further enhanced by incorporat-

ing both primal dual cuts and piecewise convex relaxations. The enhanced relaxed
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master problem with both technologies, called the Problem (DPERMPk), is as follows:

min
y,η

η

s.t. η ≥ α̃(r)y + β̃(r), ∀r ∈ V k,

η ≥ ᾰ(r)y + β̆(r), ∀r ∈ V k,

η ≥ ᾱ(j)y + β̄(j), ∀j ∈ T̄ k,

η ≥ α(j)y + β(j), ∀j ∈ T k,

γ(i)y + θ(i) ≤ 0, ∀i ∈ Sk,∑
l∈{l:y(t)

l =1}

yl −
∑

l∈{l:y(t)
l =0}

yl ≤ |{l : y(t) = 1}| − 1, ∀t ∈ T k ∪ Sk,

y ∈ Y, η ∈ R,

(DPERMPk)

The first two groups of constraints are primal dual cuts, and the third group of

constraints are piecewise enhanced optimality cuts.

Remark 8. Compared to Problem (RMPk), Problem (DPERMPk) is a tighter (or

equal) relaxation of Problem (P) when Problem (P) is augmented with the Balas

cuts according to Propositions 2 and 6.

6.4.2 Enhanced Decomposition Algorithm with Primal Dual

Cuts and Piecewise Relaxation

The enhanced decomposition algorithm with primal dual cuts and piecewise convex

relaxation is stated as below:

Initialize:

1. Iteration counters k = 0, l = 1, and the index sets T 0 = ∅ , T̄ 0 = ∅ , S0 = ∅ ,

U0 = ∅, V 0 = ∅.

2. Upper bound on the problem UBD = +∞, upper bound on the lower bound-

ing problem UBDPB = +∞, lower bound on the lower bounding problem
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LBD = −∞.

3. Set tolerances εh and ε such that
∑s

h=1 εh ≤ ε.

4. Integer realization y(1) is given.

repeat

if k = 0 or (Problem (DPERMPk) is feasible and LBD < UBDPB and LBD <

UBD− ε) then

repeat

Set k = k + 1

1. Solve the decomposed primal bounding problem (PBPh(y
(k))) for each

scenario h = 1, ..., s sequentially. If Problem (PBPh(y
(k))) is feasible

for all the scenarios with Lagrange multipliers λ
(k)
h , add optimality

cuts to the enhanced relaxed master problem (DPERMPk) according

to λ
(k)
1 , ..., λ

(k)
s , set T k = T k−1 ∪ {k}.

2. If Problem (PBPh(y
(k))) is feasible for all the scenarios, solve subprob-

lem (PBP-PCRh(y
(k))) for each scenario h = 1, ..., s sequentially. If

Problem (PBP-PCRh(y
(k))) is feasible with KKT multipliers λ̄

(k)
h for all

the scenarios, set T̄ k = T̄ k−1∪{k}. In this case, if objPBP−PCR(y(k)) <

UBDPB, update UBDPB = objPBP−PCR(y(k)), y∗ = y(k), k∗ = k, solve

subproblem (DPBP-PCRh(y
(k))) with λ̄

(k)
h for each scenario h = 1, ..., s

sequentially, add optimality cuts to Problem (DPERMPk).

3. If Problem (PBPh(y
(k))) is infeasible for one scenario, stop solving

it for the remaining scenarios and set Sk = Sk−1 ∪ {k}. Then, solve

the decomposed feasibility subproblem (FPh(y
(k))) for h = 1, ..., s and

obtain the corresponding Lagrange multipliers µ
(k)
h . Add feasibility

cuts to Problem (DPERMPk) according to these multipliers.

4. If T k = ∅, solve the feasibility problem (RMFPk); otherwise, solve

Problem (DPERMPk). In the latter case, if Problem (DPERMPk) is
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feasible, set LBD to its optimal objective value. In both cases, set

y(k+1) to the y value at the solution of either problem.

until LBD ≥ UBDPB or (Problem (DPERMPk) or (RMFPk) is infeasible).

end if

if UBDPB < UBD− ε then

1. Solve the decomposed primal subproblem (PPh(y
∗)) to εh-optimality for

each scenario h = 1, ..., s sequentially. Set U l = U l−1 ∪ {k∗}. If Problem

(PPh(y
∗)) is feasible with optimum (x∗h, q

∗
h, u

∗
h) for all the scenarios and

objPP(y∗) < UBD, obtain the corresponding KKT multipliers λ̆
(k∗)
h , up-

date UBD = objPP(y∗) and set y∗p = y∗, (x∗p,h, q
∗
p,h, u

∗
p,h) = (x∗h, q

∗
h, u

∗
h) for

h = 1, . . . , s, set V k = V k−1 ∪ {k∗}.

2. If k∗ ∈ V k, solve the decomposed relaxed dual of primal problem

(DPPh(y
∗)) to εh-optimality for each scenario h = 1, ..., s sequentially

with KKT multipliers λ
(k∗)
h and λ̆

(k∗)
h . Add primal dual cuts to Problem

(DPERMPk) according to these multipliers and the optimal solutions of

Problem (DPPh(y
∗)).

2. If T̄ k \ U l = ∅, set UBDPB = +∞.

3. If T̄ k\U l 6= ∅, pick i ∈ T̄ k\U l such that objPBP−PCR(y(i)) = minj∈T̄k\U l{objPBP−PCR(y(j))}.

Update UBDPB = objPBP−PCR(y(i)), y∗ = y(i), k∗ = i. Set l = l + 1.

end if

until UBDPB ≥ UBD− ε and ((Problem (DPERMPk) or (RMFPk) is infeasible)

or LBD ≥ UBD− ε).

An ε-global optimum of the original problem (P) is given by

(y∗p, x
∗
p,1, ..., x

∗
p,s, q

∗
p,1, ..., q

∗
p,s, u

∗
p,1, ..., u

∗
p,s)

or (P) is infeasible.

If the adaptive piecewise convex relaxation is applied, replace Problems (PBP-

PCRh) and (DPBP-PCRh) in the aforementioned algorithm by Problems (PBP-PCR-
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Ah) and (DPBP-PCR-Ah), and update the pieces for Problems (PBP-PCR-Ah) and

(DPBP-PCR-Ah) after solution of Problem (PP).

The flowcharts for the enhanced decomposition algorithm with primal dual cuts

and piecewise convex relaxation are shown in Figures 6-4 and 6-5, in which differ-

ences between the enhanced decomposition algorithm and the original decomposition

algorithm are highlighted in grey.
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Figure 6-4: Flowchart for the enhanced decomposition algorithm with primal dual
cuts and piecewise convex relaxation.

The convergence property for the enhanced NGBD holds according to Theorem

1.
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Figure 6-5: Flowchart for the enhanced decomposition algorithm with primal dual
cuts and adaptive piecewise convex relaxation.

6.5 Enhanced Decomposition Algorithm with Lift-

and-Project Cuts

6.5.1 Lift-and-Project Cuts for MILPs

Balas et al. [24] developed a cutting plane algorithm for mixed-integer programs,

in which lift-and-project cuts were generated to strengthen the LP relaxation. This

algorithm solves MILPs without branching on integer variables, instead, it iteratively

solves a series of LPs, including LP relaxations with lift-and-project cuts and LPs

generation corresponding cuts.
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A MILP with the following general form is studied:

min
x

cTx

s.t. Ax ≥ b

xj ∈ {0, 1}, j ∈ {1, . . . , p}

xL
j ≤ xj ≤ xU

j , j /∈ {1, . . . , p}

(MIP)

where the first p components of x (x1, . . . , xp) are binary variables, and the remaining

components of x are continuous variables. xL and xU are the lower and upper bounds

for the continuous variables, respectively.

To solve Problem (MIP) by the cutting plane algorithm, Problem (MIP) is first

relaxed to a LP problem as below:

min
x

cTx

s.t. Ax ≥ b

0 ≤ xj ≤ 1, j ∈ {1, . . . , p}

xL
j ≤ xj ≤ xU

j , j /∈ {1, . . . , p}

(RMIP)

For the ease of discussion, the formulation of Problem (RMIP) is simplified as:

min
x

cTx

s.t. Ãx ≥ b̃

(RMIP’)

Let x̂ be the solution of Problem (RMIP) (or (RMIP’)). For any j ∈ {1, . . . , p} ∩
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{j : 0 < x̂j < 1} (or a subset of these j), solve the following cut generation problem:

min
α,β,u,v,u0,v0

αTx̂− β

s.t. α− ÃTu− u0ej ≥ 0

α− ÃTv − v0ej ≥ 0

β = b̃u

β = b̃v + v0

u ≥ 0, v ≥ 0

n∑
i=1

|αi| ≤ 1

(CGPj)

where ej is the unit vector with the jth element equal to 1.

Then the cut αTx ≥ β, called the lift-and-project cut, is added to the constraints

in Problem (RMIP).

The dual of Problem (CGPj) is formulated as below:

min
γ1,γ2,γ3,γ4,γ5

γ5

s.t. Ãγ1 ≥ −b̃γ3

Ãγ2 ≥ −b̃γ4

− eT
j γ1 ≤ 0

eT
j γ1 ≤ 0

− eT
j γ2 − γ4 ≤ 0

eT
j γ2 + γ4 ≤ 0

γ1 + γ2 − 1γ5 ≤ x̂

− γ1 − γ2 − 1γ5 ≤ −x̂

γ3 + γ4 ≤ −1

− γ3 − γ4 ≤ 1

γ1, γ2, γ5 ≥ 0

(DCGPj)
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The last four groups of constraints in Problem (DCGPj) are listed as below:

γ1 + γ2 − 1γ5 ≤ x̂ (6.53)

− γ1 − γ2 − 1γ5 ≤ −x̂ (6.54)

γ3 + γ4 ≤ −1 (6.55)

− γ3 − γ4 ≤ 1 (6.56)

The Lagrange multipliers of Constraints (6.53), (6.54), (6.55) and (6.56) are recorded

as λα+ , λα− , λβ+ and λβ− , respectively. α and β are calculated as:

α = λα+ − λα− (6.57)

β = λβ+ − λβ− (6.58)

Due to strong duality for LPs [33], Problem (DCGPj) and (CGPj) have the same

optimal objective. Note that Problem (DCGPj) is usually easier to be formulated

from Problem (RMIP) compared to Problem (CGPj), hence is selected for generating

lift-and-project cuts in this work.

There are several strategies for adding lift-and-project cuts. For example, Problem

(DCGPj) can be solved for all xj that violate integrality or just one xj with the

maximum violation to integer values, depending on the strength of lift-and-project

cuts and the solution time for Problem (DCGPj). In this work, lift-and-project cuts

for all xj are added in order to obtain tighter relaxation.

The cutting plane algorithm is stated as below:

Step 1: Solve Problem (RMIP). If xj ∈ {0, 1} for j = 1, . . . , p, STOP.

Step 2: For all xj /∈ {0, 1} (j = 1, . . . , p) (or xj with the maximum integral

violation), generate a lift-and-project cut αTx ≥ β for each xj by solving Problem

(DCGPj).

Step 3: Add the cuts αTx ≥ β for all xj to the constraints of Problem (RMIP).

Go to Step 1.
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Theorem 2. The aforementioned cutting plane algorithm finds an optimal solution

to Problem (MIP) in finitely many iterations.

Proof. See Ref [24].

Remark 9. Lift-and-project cuts generated by the aforementioned cutting plane algo-

rithm will not cut off any point in the convex hull of the feasible region for Problem

(MIP) [24].

6.5.2 New Subproblems

Primal Bounding Problem with Lift-and-Project Cuts

In the enhanced NGBD with lift-and-project cuts, the enhanced primal bounding

problem is still based on the piecewise convex relaxation. However, it is formulated

as a LP augmented with lift-and-project cuts here, instead of a MILP in Section

6.3,. The new primal bounding problem is called Problem (PBP-LAP), and it can be

naturally decomposed into subproblems (PBP-LAPh) for the s scenarios:

objPBP−LAPh

(
y(k)
)

= min
xh,qh,uh,δh,
x̄h,q̄h,ūh

cT
2,hxh + cT

3,hqh + cT
4,huh

s.t. A1,hy
(k) + A2,hxh + A3,hqh + A4,huh ≤ bh,(

αr1,h
)T
y(k) +

(
αr2,h

)T
xh +

(
αr3,h

)T
qh +

(
αr4,h

)T
uh

+
(
αr5,h

)T
δh +

(
αr6,h

)T
x̄h +

(
αr7,h

)T
q̄h +

(
αr8,h

)T
ūh

≥ βrh, ∀r ∈ {1, . . . , nl,h},

(xh, qh, uh, δh, x̄h, q̄h, ūh) ∈ Π̄lap
h

(PBP-LAPh)
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where

Π̄lap
h ={(xh, qh, uh) ∈ Πh, δh ∈ [0, 1]Mnq , (x̄h, q̄h, ūh) ∈ RMnx × RMnq × RMnu :

M∑
m=1

δh,m = 1,

uh,l,t =
M∑
m=1

ūh,l,t,m, ∀(l, t) ∈ Ω,

xh,l =
M∑
m=1

x̄h,l,m, ∀l ∈ {1, . . . , nx},

qh,t =
M∑
m=1

q̄h,t,m, ∀t ∈ {1, . . . , nq},

ūh,l,t,m ≥ xL
h,l q̄h,t,m + x̄h,l,m qmh,t − xL

h,lq
m
h,tδh,m,

ūh,l,t,m ≥ xU
h,l q̄h,t,m + x̄h,l,m qm+1

h,t − x
U
h,lq

m+1
h,t δh,m,

ūh,l,t,m ≤ xU
h,l q̄h,t,m + x̄h,l,m qmh,t − xU

h,lq
m
h,tδh,m,

ūh,l,t,m ≤ xL
h,l q̄h,t,m + x̄h,l,m qm+1

h,t − x
L
h,lq

m+1
h,t δh,m,

∀(l, t) ∈ Ω, ∀m ∈ {1, . . . ,M},

δh,mx
L
h ≤ x̄h,m ≤ δh,mx

U
h , δh,mq

m
h ≤ q̄h,m ≤ δh,mq

m+1
h , ∀m ∈ {1, . . . ,M},

qL
h = q1

h ≤ q2
h ≤ . . . ≤ qMh ≤ qM+1

h = qU
h }

δh is the relaxed binary variable representing the choice of pieces for qh in scenario h.

The second group of constraints in Problem (PBP-LAPh) are lift-and-project cuts,

and nl,h is the number of lift-and-project cuts in scenario h. By adding lift-and-project

cuts, the values of relaxed binary variables δh will approach integers (0 or 1). The

cut parameters αh and βh are obtained in cut generation problems, which will be

discussed later.

objPBP−LAPh

(
y(k)
)

is the optimal objective value of Problem (PBP-LAPh) for

y = y(k), h = 1, . . . , s. The objectives of Problem (PBP-LAP) and (PBP-LAPh)

satisfy the following relationship:

objPBP−LAP

(
y(k)
)

= cT
1 y

(k) +
s∑

h=1

objPBP−LAPh

(
y(k)
)

(6.59)
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where objPBP−LAP

(
y(k)
)

is the optimal objective value of Problem (PBP-LAP) for

y = y(k).

Remark 10. Note that Problem (PBP-LAPh) is a LP, which is convex. The optimal

solution of Problem (PBP-LAPh) can directly construct optimality cuts for the en-

hanced relaxed master problem, and no relaxed dual of Problem (PBP-LAPh) needs

to be solved.

Cut Generation Problem

After solving Problem (PBP-LAPh), the integrality of relaxed binary variables δh is

checked. If the value of one variable δh,m (m = 1, . . . ,M) does not satisfy integrality,

the corresponding cut generation problem (CGP) is solved. A new lift-and-project

cut is then generated and added into Problem (PBP-LAPh). The cut generation
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problem for δh,m in scenario h at the kth iteration is expressed as below:

min
γx1,h,γ

q
1,h,γ

u
1,h,γ

δ
1,h,

γx̄1,h,γ
q̄
1,h,γ

ū
1,h,γ

y
1,h,

γx2,h,γ
q
2,h,γ

u
2,h,γ

δ
2,h,

γx̄2,h,γ
q̄
2,h,γ

ū
2,h,γ

y
2,h,

γ3,h,γ4,h,γ5,h

γ5,h

s.t. A1,hγ
y
1,h + A2,hγ

x
1,h + A3,hγ

q
1,h + A4,hγ

u
1,h ≤ −bhγ3,h,(

αr1,h
)T
γy1,h +

(
αr2,h

)T
γx1,h +

(
αr3,h

)T
γq1,h +

(
αr4,h

)T
γu1,h +

(
αr5,h

)T
γδ1,h+(

αr6,h
)T
γx̄1,h +

(
αr7,h

)T
γ q̄1,h +

(
αr8,h

)T
γū1,h ≥ −βrhγ3,h, ∀r ∈ {1, . . . , nl,h},

A1,hγ
y
2,h + A2,hγ

x
2,h + A3,hγ

q
2,h + A4,hγ

u
2,h ≤ −bhγ4,h,(

αr1,h
)T
γy2,h +

(
αr2,h

)T
γx2,h +

(
αr3,h

)T
γq2,h +

(
αr4,h

)T
γu2,h +

(
αr5,h

)T
γδ2,h+(

αr6,h
)T
γx̄2,h +

(
αr7,h

)T
γ q̄2,h +

(
αr8,h

)T
γū2,h ≥ −βrhγ4,h, ∀r ∈ {1, . . . , nl,h},

− eT
mγ

δ
1,h ≤ 0, eT

mγ
δ
1,h ≤ 0, −eT

mγ
δ
2,h − γ4,h ≤ 0, eT

mγ
δ
2,h + γ4,h ≤ 0,

γy1,h + γy2,h − 1γ5,h ≤ y(k), γx1,h + γx2,h − 1γ5,h ≤ x
(k)
h , γq1,h + γq2,h − 1γ5,h ≤ q

(k)
h ,

γu1,h + γu2,h − 1γ5,h ≤ u
(k)
h , γδ1,h + γδ2,h − 1γ5,h ≤ δ

(k)
h , γx̄1,h + γx̄2,h − 1γ5,h ≤ x̄

(k)
h ,

γ q̄1,h + γ q̄2,h − 1γ5,h ≤ q̄
(k)
h , γū1,h + γū2,h − 1γ5,h ≤ ū

(k)
h ,

− γy1,h − γ
y
2,h − 1γ5,h ≤ −y(k), −γx1,h − γx2,h − 1γ5,h ≤ −x(k)

h ,

− γq1,h − γ
q
2,h − 1γ5,h ≤ −q(k)

h , −γu1,h − γu2,h − 1γ5,h ≤ −u(k)
h ,

− γδ1,h − γδ2,h − 1γ5,h ≤ −δ(k)
h , −γx̄1,h − γx̄2,h − 1γ5,h ≤ −x̄(k)

h ,

− γ q̄1,h − γ
q̄
2,h − 1γ5,h ≤ −q̄(k)

h , −γū1,h − γū2,h − 1γ5,h ≤ −ū(k)
h ,

γ3,h + γ4,h ≤ −1, −γ3,h − γ4,h ≤ 1,

(γx1,h, γ
q
1,h, γ

u
1,h, γ

δ
1,h, γ

x̄
1,h, γ

q̄
1,h, γ

ū
1,h, γ

y
1,h, γ3,h) ∈ ¯̄Π1

h,

(γx2,h, γ
q
2,h, γ

u
2,h, γ

δ
2,h, γ

x̄
2,h, γ

q̄
2,h, γ

ū
2,h, γ

y
2,h, γ4,h) ∈ ¯̄Π2

h,

γ5,h ∈ R, γ5,h ≥ 0

(CGPh,m)
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where

¯̄Π1
h ={(γx1,h, γ

q
1,h, γ

u
1,h, γ

δ
1,h, γ

x̄
1,h, γ

q̄
1,h, γ

ū
1,h, γ

y
1,h, γ3,h)

∈ Rnx × Rnq × Rnu × RMnq × RMnx × RMnq × RMnu × Rny × R :

Ã2,hγ
x
1,h + Ã3,hγ

q
1,h + Ã4,hγ

u
1,h ≤ −b̃hγ3,h,

M∑
m=1

γδ1,h,m = −γ3,h,

γu1,h,l,t =
M∑
m=1

γū1,h,l,t,m, ∀(l, t) ∈ Ω,

γx1,h,l =
M∑
m=1

γx̄1,h,l,m, ∀l ∈ {1, . . . , nx},

γq1,h,t =
M∑
m=1

γ q̄1,h,t,m, ∀t ∈ {1, . . . , nq},

γū1,h,l,t,m ≥ xL
h,lγ

q̄
1,h,t,m + γx̄1,h,l,mq

m
h,t − xL

h,lq
m
h,tγ

δ
1,h,m,

γū1,h,l,t,m ≥ xU
h,lγ

q̄
1,h,t,m + γx̄1,h,l,mq

m+1
h,t − x

U
h,lq

m+1
h,t γδ1,h,m,

γū1,h,l,t,m ≤ xU
h,lγ

q̄
1,h,t,m + γx̄1,h,l,mq

m
h,t − xU

h,lq
m
h,tγ

δ
1,h,m,

γū1,h,l,t,m ≤ xL
h,lγ

q̄
1,h,t,m + γx̄1,h,l,mq

m+1
h,t − x

L
h,lq

m+1
h,t γδ1,h,m,

∀(l, t) ∈ Ω, ∀m ∈ {1, . . . ,M},

Bγy1,h ≤ −aγ3,h,

− xL
hγ3,h ≤ γx1,h ≤ −xU

h γ3,h, −qL
hγ3,h ≤ γq1,h ≤ −q

U
h γ3,h,

− xL
hγ

δ
1,h,m ≤ γx̄1,h,m ≤ −xU

h γ
δ
1,h,m, −qmh γδ1,h,m ≤ γ q̄1,h,m ≤ −q

m+1
h γδ1,h,m, ∀m ∈ {1, . . . ,M},

− yLγ3,h ≤ γy1,h ≤ −y
Uγ3,h,

γx1,h ≥ 0, γq1,h ≥ 0, γu1,h ≥ 0, γδ1,h ≥ 0, γx̄1,h ≥ 0, γ q̄1,h ≥ 0, γū1,h ≥ 0, γy1,h ≥ 0 }
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and

¯̄Π2
h ={(γx2,h, γ

q
2,h, γ

u
2,h, γ

δ
2,h, γ

x̄
2,h, γ

q̄
2,h, γ

ū
2,h, γ

y
2,h, γ4,h)

∈ Rnx × Rnq × Rnu × RMnq × RMnx × RMnq × RMnu × Rny × R :

Ã2,hγ
x
2,h + Ã3,hγ

q
2,h + Ã4,hγ

u
2,h ≤ −b̃hγ4,h,

M∑
m=1

γδ2,h,m = −γ4,h,

γu2,h,l,t =
M∑
m=1

γū2,h,l,t,m, ∀(l, t) ∈ Ω,

γx2,h,l =
M∑
m=1

γx̄2,h,l,m, ∀l ∈ {1, . . . , nx},

γq2,h,t =
M∑
m=1

γ q̄2,h,t,m, ∀t ∈ {1, . . . , nq},

γū2,h,l,t,m ≥ xL
h,lγ

q̄
2,h,t,m + γx̄2,h,l,mq

m
h,t − xL

h,lq
m
h,tγ

δ
2,h,m,

γū2,h,l,t,m ≥ xU
h,lγ

q̄
2,h,t,m + γx̄2,h,l,mq

m+1
h,t − x

U
h,lq

m+1
h,t γδ2,h,m,

γū2,h,l,t,m ≤ xU
h,lγ

q̄
2,h,t,m + γx̄2,h,l,mq

m
h,t − xU

h,lq
m
h,tγ

δ
2,h,m,

γū2,h,l,t,m ≤ xL
h,lγ

q̄
2,h,t,m + γx̄2,h,l,mq

m+1
h,t − x

L
h,lq

m+1
h,t γδ2,h,m,

∀(l, t) ∈ Ω, ∀m ∈ {1, . . . ,M},

Bγy2,h ≤ −aγ4,h,

− xL
hγ4,h ≤ γx2,h ≤ −xU

h γ4,h, −qL
hγ4,h ≤ γq2,h ≤ −q

U
h γ4,h,

− xL
hγ

δ
2,h,m ≤ γx̄2,h,m ≤ −xU

h γ
δ
2,h,m, −qmh γδ2,h,m ≤ γ q̄2,h,m ≤ −q

m+1
h γδ2,h,m, ∀m ∈ {1, . . . ,M},

− yLγ4,h ≤ γy2,h ≤ −y
Uγ4,h,

γx2,h ≥ 0, γq2,h ≥ 0, γu2,h ≥ 0, γδ2,h ≥ 0, γx̄2,h ≥ 0, γ q̄2,h ≥ 0, γū2,h ≥ 0, γy2,h ≥ 0 }

em is the unit vector with the mth element equal to 1. x
(k)
h , q

(k)
h , u

(k)
h , δ

(k)
h , x̄

(k)
h , q̄

(k)
h

and ū
(k)
h are the solutions of Problem (PBP-LAPh) at the kth iteration.
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The last 18 groups of constraints in Problem (CGPh,m) are listed as below:

γy1,h + γy2,h − 1γ5,h ≤ y(k) (6.60)

γx1,h + γx2,h − 1γ5,h ≤ x
(k)
h (6.61)

γq1,h + γq2,h − 1γ5,h ≤ q
(k)
h (6.62)

γu1,h + γu2,h − 1γ5,h ≤ u
(k)
h (6.63)

γδ1,h + γδ2,h − 1γ5,h ≤ δ
(k)
h (6.64)

γx̄1,h + γx̄2,h − 1γ5,h ≤ x̄
(k)
h (6.65)

γ q̄1,h + γ q̄2,h − 1γ5,h ≤ q̄
(k)
h (6.66)

γū1,h + γū2,h − 1γ5,h ≤ ū
(k)
h (6.67)

−γy1,h − γ
y
2,h − 1γ5,h ≤ −y(k) (6.68)

−γx1,h − γx2,h − 1γ5,h ≤ −x(k)
h (6.69)

−γq1,h − γ
q
2,h − 1γ5,h ≤ −q(k)

h (6.70)

−γu1,h − γu2,h − 1γ5,h ≤ −u(k)
h (6.71)

−γδ1,h − γδ2,h − 1γ5,h ≤ −δ(k)
h (6.72)

−γx̄1,h − γx̄2,h − 1γ5,h ≤ −x̄(k)
h (6.73)

−γ q̄1,h − γ
q̄
2,h − 1γ5,h ≤ −q̄(k)

h (6.74)

−γū1,h − γū2,h − 1γ5,h ≤ −ū(k)
h (6.75)

γ3,h + γ4,h ≤ −1 (6.76)

−γ3,h − γ4,h ≤ 1 (6.77)

The Lagrange multipliers of Eq (6.60), (6.61), (6.62), (6.63), (6.64), (6.65), (6.66)

and (6.67) are recorded as λα+,1,h, λα+,2,h, λα+,3,h, λα+,4,h, λα+,5,h, λα+,6,h, λα+,7,h

and λα+,8,h, respectively; the Lagrange multipliers of Eq (6.68), (6.69), (6.70), (6.71),

(6.72), (6.73), (6.74) and (6.75) are recorded as λα−,1,h, λα−,2,h, λα−,3,h, λα−,4,h, λα−,5,h,

λα−,6,h, λα−,7,h and λα−,8,h, respectively; and the Lagrange multipliers of Eq (6.76) and

(6.77) are recorded as λβ+,h and λβ−,h, respectively. Then parameters for the new lift-
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and-project cut to be added into Problem (PBP-LAPh) are calculated as below:

αi,h = λα+,i,h − λα−,i,h , i = 1, . . . , 8 (6.78)

βh = λβ+,h − λβ−,h (6.79)

Enhanced Relaxed Master problem with Lift-and-Project Cuts

The optimal solutions and Lagrange multipliers of Problem (PBP-LAPh) construct

enhanced optimality cuts for the relaxed master problem. The enhanced relaxed

master problem with lift-and-project, called Problem (LERMPk), is as follows:

min
y,η

η

s.t. η ≥ ¯̄α(j)y + ¯̄β(j), ∀j ∈ ¯̄T k,

η ≥ α(j)y + β(j), ∀j ∈ T k,

γ(i)y + θ(i) ≤ 0, ∀i ∈ Sk,∑
l∈{l:y(t)

l =1}

yl −
∑

l∈{l:y(t)
l =0}

yl ≤ |{l : y(t) = 1}| − 1, ∀t ∈ T k ∪ Sk,

y ∈ Y, η ∈ R,

(LERMPk)

where

¯̄α(j) = cT
1 +

s∑
h=1

(
¯̄λ

(j)
h

)T

A1,h,

¯̄β(j) =
s∑

h=1

[
cT

2,h
¯̄x

(j)
h + cT

3,h
¯̄q

(j)
h + cT

4,h
¯̄u

(j)
h

]
+

s∑
h=1

[(
¯̄λ

(j)
h

)T (
A2,h ¯̄x

(j)
h + A3,h ¯̄q

(j)
h + A4,h ¯̄u

(j)
h − bh

)]
,

¯̄T k = {j ∈ {1, . . . , k} : Problem PBP-LAP
(
y(k)
)

is feasible}.

¯̄λ
(j)
h denotes the Lagrange multipliers of Problem (PBP-LAPh) (∀h ∈ {1, . . . , s})

when y = y(j) (∀j ∈ ¯̄T k).
(

¯̄x
(j)
h , ¯̄q

(j)
h , ¯̄u

(j)
h

)
is a minimum of Problem (PBP-LAPh)

177



(∀h ∈ {1, . . . , s}) when y = y(j). Note that ¯̄T k ⊂ T k due to the tighter relaxation.

The first set of constraints are called enhanced optimality cuts with lift-and-project

cuts.

If T k = ∅, the feasibility relaxed master Problem (RMFPk) introduced in Chapter

5 is solved instead. The enhanced feasibility cuts with lift-and-project cuts are not

considered here.

6.5.3 Theoretical Properties

Proposition 7. Compared to Problem (RMPk), Problem (LERMPk) is a tighter (or

equal) relaxation of Problem (P) when Problem (P) is augmented with the Balas cuts.

Proof. Considering that Problem (LERMPk) differs from Problem (RMPk) only with

the first group of optimality cuts, it is obvious that Problem (LERMPk) is a tighter

relaxation if it is a valid relaxation of Problem (P). It is proved in Ref [113] that

Problem (RMPk) is a relaxation of Problem (P) when Problem (P) is augmented with

the Balas cuts excluding the previously examined integer realizations, so it remains

to prove

objPP (y) ≥ ¯̄α(j)y + ¯̄β(j), ∀j ∈ ¯̄T k, ∀y ∈ W (6.80)

W = {ŷ ∈ Y : Problem P is feasible for y = ŷ}
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For all j ∈ ¯̄T k and h ∈ {1, . . . , s}, due to strong duality for linear programs:

¯̄α(j)y + ¯̄β(j) = cT
1 y +

s∑
h=1

 inf
(xh,qh,uh,δh,

x̄h,q̄h,ūh)∈Π̄lap
h

cT
2,hxh + cT

3,hqh + cT
4,huh

+
(

¯̄λ
(j)
h

)T (
A1,hy

(j) + A2,hxh + A3,hqh + A4,huh − bh
)]

+
s∑

h=1

(
¯̄λ

(j)
h

)T

A1,h

(
y − y(j)

)

= cT
1 y +

s∑
h=1

 inf
(xh,qh,uh,δh,

x̄h,q̄h,ūh)∈Π̄lap
h

cT
2,hxh + cT

3,hqh + cT
4,huh

+
(

¯̄λ
(j)
h

)T

(A1,hy + A2,hxh + A3,hqh + A4,huh − bh)
]

= cT
1 y + objPBP−LAPh

(y)

= objPBP−LAP (y)

(6.81)

Since Problem (PBP-LAP) is a relaxation of Problem (PP),

objPP (y) ≥ objPBP−LAP (y) , ∀y ∈ W (6.82)

Eqs (6.81) and (6.82) imply Eq (6.80).

6.5.4 Enhanced Decomposition Algorithm with Lift-and-Project

Cuts

The enhanced decomposition algorithm with lift-and-project cuts is stated as below:

Initialize:

1. Iteration counters k = 0, l = 1, and the index sets T 0 = ∅ , ¯̄T 0 = ∅ , S0 = ∅ ,

U0 = ∅.

2. Upper bound on the problem UBD = +∞, upper bound on the lower bound-

ing problem UBDPB = +∞, lower bound on the lower bounding problem

LBD = −∞.
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3. The number of lift-and-project cuts nl,h = 0 for each scenario h = 1, . . . , s.

4. Set tolerances εh and ε such that
∑s

h=1 εh ≤ ε.

5. Integer realization y(1) is given.

repeat

if k = 0 or (Problem (LERMPk) is feasible and LBD < UBDPB and LBD <

UBD− ε) then

repeat

Set k = k + 1

1. Solve the decomposed primal bounding problem (PBPh(y
(k))) for each

scenario h = 1, ..., s sequentially. If Problem (PBPh(y
(k))) is feasible

for all the scenarios with Lagrange multipliers λ
(k)
h , add optimality

cuts to the enhanced relaxed master problem (LERMPk) according to

λ
(k)
1 , ..., λ

(k)
s , set T k = T k−1 ∪ {k}.

2. If Problem (PBPh(y
(k))) is feasible for all the scenarios, solve sub-

problem (PBP-LAPh(y
(k))) for each scenario h = 1, ..., s sequentially.

If Problem (PBP-LAPh(y
(k))) is feasible with Lagrange multipliers

¯̄λ
(k)
h for all the scenarios, add enhanced optimality cuts to Problem

(LERMPk) according to ¯̄λ
(k)
1 , ..., ¯̄λ

(k)
s , set ¯̄T k = ¯̄T k−1 ∪ {k}, and record

the optimal solutions x
(k)
h , q

(k)
h , u

(k)
h , δ

(k)
h , x̄

(k)
h , q̄

(k)
h , ū

(k)
h for all s scenar-

ios. If objPBP−LAP(y(k)) < UBDPB, update UBDPB = objPBP−LAP(y(k)),

y∗ = y(k), k∗ = k.

3. If Problem (PBP-LAPh(y
(k))) is feasible, check the integrality of relaxed

binary variables δ
(k)
h in all s scenario. For each scenario h = 1, ..., s,

for each m = 1, ...,M , if δ
(k)
h,m does not satisfy integrality, solve the

corresponding cut generation problem (CGPh,m), record parameters

αh, βh, set nl,h = nl,h+1, add the new lift-and-project cut into Problem

(PBP-LAPh(y
(k+1))).
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4. If Problem (PBPh(y
(k))) is infeasible for one scenario, stop solving

it for the remaining scenarios and set Sk = Sk−1 ∪ {k}. Then, solve

the decomposed feasibility subproblem (FPh(y
(k))) for h = 1, ..., s and

obtain the corresponding Lagrange multipliers µ
(k)
h . Add feasibility

cuts to Problem (LERMPk) according to these multipliers.

5. If T k = ∅, solve the feasibility problem (RMFPk); otherwise, solve

Problem (LERMPk). In the latter case, if Problem (LERMPk) is fea-

sible, set LBD to its optimal objective value. In both cases, set y(k+1)

to the y value at the solution of either problem.

until LBD ≥ UBDPB or (Problem (LERMPk) or (RMFPk) is infeasible).

end if

if UBDPB < UBD− ε then

1. Solve the decomposed primal subproblem (PPh(y
∗)) to εh-optimality

for each scenario h = 1, ..., s sequentially. Set U l = U l−1 ∪ {k∗}. If

Problem (PPh(y
∗)) is feasible with optimum (x∗h, q

∗
h, u

∗
h) for all the sce-

narios and objPP(y∗) < UBD, update UBD = objPP(y∗) and set y∗p = y∗,

(x∗p,h, q
∗
p,h, u

∗
p,h) = (x∗h, q

∗
h, u

∗
h) for h = 1, . . . , s.

2. If ¯̄T k \ U l = ∅, set UBDPB = +∞.

3. If ¯̄T k\U l 6= ∅, pick i ∈ ¯̄T k\U l such that objPBP−LAP(y(i)) = minj∈ ¯̄Tk\U l{objPBP−LAP(y(j))}.

Update UBDPB = objPBP−LAP(y(i)), y∗ = y(i), k∗ = i. Set l = l + 1.

end if

until UBDPB ≥ UBD− ε and ((Problem (LERMPk) or (RMFPk) is infeasible) or

LBD ≥ UBD− ε).

An ε-global optimum of the original problem (P) is given by

(y∗p, x
∗
p,1, ..., x

∗
p,s, q

∗
p,1, ..., q

∗
p,s, u

∗
p,1, ..., u

∗
p,s)

or (P) is infeasible.
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The algorithm flowchart is shown in Figure 6-6, in which differences between the

enhanced decomposition algorithm and the original decomposition algorithm are high-

lighted in grey. Compared to the flowchart of the original decomposition algorithm,

three new steps, “PBP-LAP (LP)”, “Cut Generation Problems (LP)” and “Update

Lift-and-project Cuts”, are added in this flowchart, and the step “Relaxed Master

Problem” is replaced by “Enhanced Relaxed Master Problem”. The dashed line in

the flowchart means an information flow, instead of a step in the algorithm. The

selection of the integer realization y(k) for constructing primal subproblems (PPh) is

based on objPBP−LAP(y(k)).

Update LBD 

Initialization End 

PBP Feasible? 

LBD ≥ 

UBDPB? 

No 

Yes 

Feasibility Cut 

Optimality Cut 
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Figure 6-6: Flowchart for the enhanced decomposition algorithm with lift-and-project
cuts.

The convergence property for the enhanced NGBD holds according to Theorem

1.
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6.6 Conclusions

By employing enhancement technologies, the decomposition algorithm achieves much

faster convergence rates, and solves large-scale polygeneration optimization problems

in reasonable times. The computational performance of enhanced decomposition

algorithms will be shown in Chapter 7.
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Chapter 7

Case Studies of Polygeneration

Problems with Decomposition

Algorithms

7.1 Model Reformulations

The objective of the optimization model is to maximize the overall economic perfor-

mance of the flexible polygeneration plant while satisfying all design constraints and

operational constraints in all scenarios (here a scenario represents a time period in

the year or a possible market/policy scenario, as described in the section of case study

problems and implementation). The key design decision variables are equipment ca-

pacities. The key operational decision variables include the consumption rates of

feedstocks (coal, biomass and water), the production rates of products (power, naph-

tha, diesel, methanol and sulfur), the CO2 sequestration rate and the CO2 emission

rate. The mathematical model in this section is reformulated from the flexible poly-

generation model in Chapter 4. The major reformulations, including the application

of aggregate equipment and discrete equipment capacities, were implemented in the

capital cost calculations in the original model and will be discussed in the remaining

part of this section.
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7.1.1 Aggregate Equipment

The concept of “aggregate equipment” is introduced in this model to simplify the

economic analysis and reduce the complexity of the model. Aggregate equipment is a

set of equipment within the same subsystem that follow a similar scaling-up relation-

ship. In capital cost calculations, aggregate equipment can be treated as a single unit

with a scaling-up factor equal to the weighted average of all equipment in the group.

Therefore, the number of units in the economic analysis is reduced from thirty to

seven sets of aggregate equipment whose capacities need to be determined, including

Syngas Cleaning System 1 (for the liquid fuel production), Syngas Cleaning System

2 (for the power production), the CO2 compressor, the Fischer-Tropsch synthesis sys-

tem, the methanol synthesis system, the gas turbine system, and the steam turbine

system. These are illustrated in Figure 7-1, where each set of aggregate equipment

is placed in the same position as Figure 2-2. Optimization of equipment capacities

is therefore based on the seven sets of aggregate equipment instead of the thirty

individual pieces of equipment.

In this work, the dry mass capacity of the gasifier is fixed to 1042 ton/h or 7.815

Mt/yr on the basis of industrial experience of BP engineers [9] (Mt = million tons).

Therefore, the accessory equipment of the gasifier (including the radiant cooler and

the convective cooler) and upstream and downstream equipment whose capacities are

determined by the gasifier (such as the air separation unit(ASU), the COS hydrolysis

reactor, Selexol Unit 1, and the Claus plant), also have fixed capacities. All equipment

with fixed capacities are grouped into one set of aggregate equipment (as shown in

Figure 7-1 with the same position as in Figure 2-2), whose capacity is a specified

parameter in the optimization model.

Note that the concept of aggregate equipment is only applied to the economic

analysis, and all mass and energy balances are still based on individual equipment

and are the same as those in Chapter 4.

186
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Figure 7-1: Illustration of aggregate equipment.

7.1.2 Discrete Capital Costs

The other major model reformulation is to change the equipment capacity variables in

the optimization formulation from continuous variables to discrete variables. There

are two reasons for this reformulation: (1) The current version of the decomposi-

tion method is developed for problems whose first stage decision variables (or design

decision variables) contain only integer variables. Equipment capacities, which are

design decision variables, need to be discretized to fit the framework of the decom-

position method. A direction for future research is to develop new versions of the

decomposition method that can also handle continuous design decision variables. (2)

In real applications, only a limited number of sizes are available in the market for

many kinds of equipment, including gas turbines and steam turbines. It is therefore

more reasonable to model these equipment capacities as discrete choices instead of

continuous variables.
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The capacity of a set of aggregate equipment w is now expressed as

Ew =
d∑
v=1

Ēw,vyw,v, ∀w ∈ {1, . . . , e}, (7.1)

where Ēw,v is the vth choice for the capacity of the set of equipment w, which is a

specified parameter; yw,v is a binary variable that determines whether the vth choice

for the capacity of the set of equipment w is selected or not. d is the number of

all choices for each set of equipment; e is the number of sets of aggregate equipment

without fixed capacity, which is equal to 7. In this work, in order to obtain sufficiently

accurate economic analysis results while keeping the optimization problem tractable

for the decomposition algorithm, d is set to be 10.

The choices for the capacity of the set of equipment w (Ēw,v) are assumed to be

uniformly distributed and can be generated as follows

Ēw,v = ĒL
w +

v − 1

d− 1

(
ĒU
w − ĒL

w

)
, ∀w ∈ {1, . . . , e}, (7.2)

where ĒL
w and ĒU

w are the minimum and maximum possible capacity for the set of

equipment w in the process, respectively, which are specified parameters. ĒL
w and ĒU

w

can be estimated by the rough mass balance calculations given the aforementioned

gasifier capacity, and their values are listed in Table 7.1.

Table 7.1: Parameters for equipment capacities

Aggregate Equipment w ĒL
w ĒU

w

Syngas Cleaning System 1 0 150 Mmol/h
Syngas Cleaning System 2 0 205 Mmol/h
CO2 Compressor 0 2500 ton/h
Fischer-Tropsch Synthesis System 0 340 ton/h
Methanol Synthesis System 0 840 ton/h
Gas Turbine System 200 4750 MW
Steam Turbine System 600 1800 MW

Only one choice for capacity can be selected for each set of equipment, therefore
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the following relationship holds

d∑
v=1

yw,v = 1, ∀w ∈ {1, . . . , e}. (7.3)

The flow rate through each set of equipment is limited by its capacity, hence

Fw,h ≤ Ew, ∀w ∈ {1, . . . , e}, ∀h ∈ {1, . . . , s}, (7.4)

where Fw,h is the input (or output) flow rate of the set of equipment w in scenario h.

s is the number of scenarios, which is a given number.

The capital cost of a set of equipment w is given by

Cw =
d∑
v=1

C̄w,vyw,v, ∀w ∈ {1, . . . , e}, (7.5)

where C̄w,v is the vth choice for the capital cost of the set of equipment w, which is a

specified parameter.

The choices for the capital cost of the set of equipment w (C̄w,v) are estimated by

the following power law scaling relationship

C̄w,v = C̄b,w

(
Ēw,v
Ēb,w

)sfw

, ∀w ∈ {1, . . . , e}, ∀v ∈ {1, . . . , d}, (7.6)

where Ēb,w is the capacity of the set of equipment w in the base case, C̄b,w is the

capital cost of the set of equipment w in the corresponding base case, and sfw is the

sizing factor of the set of equipment w, which are specified parameters. The values

of Ēb,w, C̄b,w and sfw for aggragate equipment, which are estimated from those for

individual equipment in Appendix B, are provided in Table 7.2.

The total capital investment for the plant is given by

Cap =
e∑

w=1

Cw + C̄f , (7.7)

where C̄f is the total capital cost of equipment with fixed capacity, which is a specified
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Table 7.2: Parameters for equipment capital costs

Aggregate Equipment w Ēb,w C̄b,w
a sfw

Syngas Cleaning System 1 28.2 Mmol/h 34.0 0.69
Syngas Cleaning System 2 28.2 Mmol/h 34.0 0.69
CO2 Compressor 469.0 ton/h 75.1 0.80
Fischer-Tropsch Synthesis System 34.2 ton/h 183.4 0.70
Methanol Synthesis System 110.4 ton/h 220.3 0.67
Gas Turbine System 464.0 MW 136.4 0.76
Steam Turbine System 274.7 MW 123.3 0.69

a The unit is million dollars.

parameter. In this work, C̄f = 2978 million dollars.

The net present value (NPV) is denoted by

NPV = Cap

[
−1 +

Rtax

tdp

1

r

(
1− 1

(1 + r)tdp

)]
+

s∑
h=1

Occuh Pronet,h
1

r

(
1− 1

(1 + r)tlf

)
,

(7.8)

where Pronet,h is the annualized net profit in scenario h. Occuh is the fraction of

occurrence of scenario h, Rtax is the tax rate (including both federal and state taxes),

r is the annual discount rate, tdp is the depreciation time of the project, and tlf is

the lifetime of the project, which are specified parameters. In this study, Rtax = 40%

[173, 174], r = 12% [173, 174], tdp = 10yr [158], and tlf = 30yr [173, 174].

For the ease of computation, the objective of this model is selected to be the scaled

NPV, which is given as follows

NPVscale =
NPV

1
r

(
1− 1

(1+r)tlf

)
=

s∑
h=1

Occuh Pronet,h + Cap
−1 + Rtax

tdp

1
r

(
1− 1

(1+r)
tdp

)
1
r

(
1− 1

(1+r)tlf

) .

(7.9)

The binary variables yw,v (∀w ∈ {1, . . . , e}, ∀v ∈ {1, . . . , d}) are the only design
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decision variables in this model. All other design variables, including Ew, Cw, and

Cap, can be replaced by their expressions in terms of yw,v (such as Equations (7.1)

(7.5) and (7.7)).

Therefore, the only design constraints in this model are

Fw,h ≤
d∑
v=1

Ēw,vyw,v, ∀w ∈ {1, . . . , e}, ∀h ∈ {1, . . . , s}, (7.10)

The objective function to be minimized is expressed as

−NPVscale = −
s∑

h=1

Occuh Pronet,h−

(
e∑

w=1

d∑
v=1

C̄w,vyw,v + C̄f

) −1 + Rtax

tdp

1
r

(
1− 1

(1+r)
tdp

)
1
r

(
1− 1

(1+r)tlf

) .

(7.11)

Estimation of equipment capacity and cost parameters, including Ēw,v and C̄w,v

(∀w ∈ {1, . . . , e},∀v ∈ {1, . . . , d}), are provided in Appendix.

7.1.3 Other Reformulations

Topology constraints for aggregate equipment are added into the model to reduce the

integer possibilities. The minimum capacity of equipment (ĒL
w) (or the first choice

for equipment capacity) is typically set to be zero (except for the gas turbine system

and steam turbine system), which implies the set of equipment is not included in the

process. The following topology constraint indicates that if an upstream unit is not

included, all downstream equipment should not be included either:

ywu,1 ≤ ywd,1 (7.12)

where ywu,1 and ywd,1 are the 1st choice for capacity of a set of upper stream equipment

wu and a set of downstream equipment wd, respectively.

The reformulation-linearization technique is employed to generate redundant con-

straints for tighter convex relaxations. The resulting model is similar to the pq-

formulation [168] for the pooling problem.
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7.1.4 Model Summary

The optimization model for flexible polygeneration systems is a large-scale nonconvex

MINLP, including 70 binary variables and 613s continuous variables. s is the number

of scenarios. A scenario represents a time period in multi-period optimization prob-

lems or a possible realization in stochastic optimization problems. The nonconvexity

originates from bilinear terms in mass balances. The overall model can be expressed

in the form of Problem (P)

min
y,x1,...,xs,

q1,...,qs,u1,...,us

cT
1 y +

s∑
h=1

(
cT

2,hxh + cT
3,hqh + cT

4,huh
)

s.t. uh,l,t = xh,lqh,t, ∀(l, t) ∈ Ω, ∀h ∈ {1, . . . , s},

A1,hy + A2,hxh + A3,hqh + A4,huh ≤ bh, ∀h ∈ {1, . . . , s},

(xh, qh, uh) ∈ Πh, ∀h ∈ {1, . . . , s}, y ∈ Y,

(7.13)

where xh represents flow rates and heat/power consumption rates in scenario h, qh

represents split fractions in scenario h, and uh represents intermediate variables intro-

duced for bilinear terms in scenario h, which are all continuous variables; y represents

the binary variables that determine equipment capacities (which is equivalent to yw,v);

the objective function is the general form of Equation (7.11); the first set of constraints

represent the bilinear functions in mass balances, which are the only nonconvex func-

tions in the model; the second set of constraints represent the design constraints (or

equipment capacity constraints as shown in Equation (7.10)), which contain both the

binary and continuous variables. The set for the continuous variables is

Πh = {(xh, qh, uh) ∈ Rnx × Rnq × Rnu : Ã2,hxh + Ã3,hqh + Ã4,huh ≤ b̃h,

xL
h ≤ xh ≤ xU

h , q
L
h ≤ qh ≤ qU

h },

where the inequality represents the linear operational constraints, including mass

and energy balances, production and feedstock consumption rates, reactor feedstock

specifications, and emission regulations; xL
h, xU

h , qL
h , and qU

h are the lower and upper
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bounds for xh, qh, respectively. The set for the binary variables is

Y = {y ∈ {0, 1}ny : By ≤ a}.

where the inequality represents Equations (7.3) and (7.12).

7.2 Case Study Problems and Implementation

Three case study problems are investigated in this work, which are modified from

the case study problems in Chapter 4. Case 1 and 2 are multiperiod optimization

problems considering operations in different time periods during the project lifetime,

and Case 3 is a stochastic optimization problem addressing both market/policy un-

certainties and different time periods.

7.2.1 Description of Case 1 and 2

The description and problem sizes of Case 1 and 2 are listed in Table 7.3.

Table 7.3: Case study problems (Case 1 and 2)

Case 1 Case 2

Settings Middle oil price Middle oil price
Middle carbon tax Middle carbon tax
100% operational flexibility 100% operational flexibility

Number of Scenarios 8 24
Description of Scenarios Peak and off-peak times Peak and off-peak times

in 4 seasons in 12 months
Number of Binary Variables 70 70
Number of Continuous Variables 4904 14712

The average feedstock prices, average product prices and carbon tax for Case 1

and 2, which are under the middle oil price and middle carbon tax, are provided in

Chapter 4, and are listed in Table 7.4.
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Table 7.4: Average market prices and carbon tax in Case 1 and 2

Value Unit

Feedstock Price
Coal 39.5 $/tonne
Biomass 59.2 $/tonne
Water 0.8 $/tonne
Product Price
Electricity 98.9 $/MWh
Naphtha 1012.8 $/tonne
Diesel 1035.5 $/tonne
Methanol 449.8 $/tonne
Sulfur 100.0 $/tonne
Carbon Tax 20.0 $/tonne of CO2

The peak time is defined to be 7 am - 11 pm on working days, and the off-peak

time is the rest of the time in the year, including 11 pm - 7 am on weekdays, and the

whole day on weekends and holidays. The fraction of occurrence of all scenarios over

the lifetime of the plant for Cases 1 and 2 are given in Tables 7.5 and 7.6, respectively.

For simplicity, the feedstock prices and sulfur price are assumed to be constant

in all scenarios for Case 1 and 2, whose values are equal to their average prices.

The prices of other products, including power, naphtha, diesel, and methanol, vary

seasonally, and the power price also changes between peak and off-peak. The product

prices (except for sulfur) in each scenario are given by the following relationship

P p
q,h = P p

q ScFq,h, ∀q ∈ Prod/{sulfur}, ∀h ∈ {1, . . . , s}, (7.14)

where P p
q,h is the price of product q in scenario h, P p

q is the average price of product

q whose value is given in Table 7.4, ScFq,h is the scale factor for the product q

in scenario h. Prod ≡ {electricity, naphtha, diesel, methanol, sulfur} is the set of

products. The scale factors represent the degree of fluctuation of product prices in

different scenarios. Their values for Cases 1 and 2, which are estimated from historical

market data [3, 5, 4], are shown in Figures 7-2 and 7-3.
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Table 7.5: Fractions of occurrence of all scenarios for Case 1

Scenario Occurrence

Spring Peak a 12.01%
Spring Off-peak 13.21%
Summer Peak b 11.82%
Summer Off-peak 13.39%
Fall Peak c 11.32%
Fall Off-peak 13.61%
Winter Peak d 11.19%
Winter Off-peak 13.46%

a Spring ≡ {March, April, May}.
b Summer ≡ {June, July, August}.
c Fall ≡ {September, October, November}.
d Winter ≡ {December, January, February}.
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Figure 7-2: Scale factors of product prices in all scenarios for Case 1.

7.2.2 Description of Case 3

The description and problem sizes of Case 3 are listed in Table 7.7.

In total nine uncertain scenarios are considered in Case 3, including 3 oil price

scenarios (low, middle and high oil prices) combined with 3 carbon tax scenarios

(low, middle and high carbon taxes). Case 3 is viewed as an extension of Case 1 to

stochastic optimization applications.

Other than Case 1 and 2, both feedstock and product prices change in different

scenarios. The feedstock and product prices in all scenarios for Case 3 are expressed

as

P f
q,h = P f

q ScFq,h, ∀q ∈ Feed, ∀h ∈ {1, . . . , s}, (7.15)
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Table 7.6: Fractions of occurrence of all scenarios for Case 2

Scenario Occurrence

January Peak 3.86%
January Off-peak 4.63%
February Peak 3.65%
February Off-peak 4.02%
March Peak 4.04%
March Off-peak 4.45%
April Peak 3.91%
April Off-peak 4.31%
May Peak 4.04%
May Off-peak 4.45%
June Peak 3.91%
June Off-peak 4.31%
July Peak 3.86%
July Off-peak 4.63%
August Peak 4.04%
August Off-peak 4.45%
September Peak 3.73%
September Off-peak 4.49%
October Peak 4.05%
October Off-peak 4.45%
November Peak 3.55%
November Off-peak 4.67%
December Peak 3.68%
December Off-peak 4.82%

P p
q,h = P p

q ScFq,h, ∀q ∈ Prod, ∀h ∈ {1, . . . , s}, (7.16)

where P f
q,h is the price of feedstock q in scenario h, P f

q is the average price of feedstock

q, ScFq,h is the scale factor for the feedstock or product q in scenario h. Feed ≡

{coal, biomass, water} is the set of feedstocks.

The carbon tax in all scenarios for Case 3 are expressed as

P car
tax,h = P car

tax ScFcar
tax,h, ∀h ∈ {1, . . . , s}, (7.17)

where P car
tax,h is the carbon tax in scenario h, P car

tax is the average carbon tax, ScFcar
tax,h
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Figure 7-3: Scale factors of product prices in all scenarios for Case 2.

Table 7.7: Case study problem (Case 3)

Case 3

Settings Stochastic optimization for 9 market/policy scenarios
100% operational flexibility

Number of Scenarios 72
Description of Scenarios 3 oil price scenarios × 3 carbon tax scenarios

× Peak and off-peak times in 4 seasons
Number of Binary Variables 70
Number of Continuous Variables 44136

is the scale factor for the carbon tax in scenario h.

The average feedstock prices, product prices and carbon tax over all uncertain

market/policy scenarios and time periods for Case 3 are listed in Table 7.8.

The scale factors of feedstock and product prices in all scenarios for Case 3 are

given as

ScFq,h = ScFq,h′ ScFq,h′′ ,

∀q ∈ Feed ∪ Prod, ∀h ∈ {1, . . . , s}, ∀h′ ∈ {1, . . . , s′}, ∀h′′ ∈ {1, . . . , s′′}

(7.18)

where h′ and h′′ are the indexes of scenarios representing market/policy uncertainties

and time periods, respectively; s′ and s′′ are the numbers of uncertain scenarios and

time periods, respectively. In Case 3, s′ = 9, s′′ = 8. s = s′×s′′ is the number of total

scenarios. ScFq,h′ and ScFq,h′′ are scale factors of market prices in uncertain scenario
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Table 7.8: Average market prices and carbon tax in Case 3

Value Unit

Feedstock Price
Coal 39.2 $/tonne
Biomass 58.8 $/tonne
Water 0.8 $/tonne
Product Price
Electricity 97.3 $/MWh
Naphtha 990.2 $/tonne
Diesel 1027.6 $/tonne
Methanol 433.1 $/tonne
Sulfur 100.0 $/tonne
Carbon Tax 26.7 $/tonne of CO2

h′ and time period h′′, respectively. The values of ScFq,h′′ in Case 3 are the same

as those in Case 1, e.g., ScFq,h′′ = 1 for all feedstocks and sulfur, and ScFq,h′′ for all

products except sulfur are shown in Figure 7-2. The values of ScFq,h′ only change in

different oil price scenarios, as provided in Table 7.9.

Table 7.9: Scale factors of market prices under different oil price scenarios

Low Oil Price Middle Oil Price High Oil Price

Feedstock
Coal 0.9351 1.0081 1.0568
Biomass 0.9351 1.0081 1.0568
Water 1 1 1
Product
Electricity 0.6918 1.0161 1.2921
Naphtha 0.536 1.0228 1.4412
Diesel 0.5471 1.0077 1.4452
Methanol 0.6075 1.0387 1.3537
Sulfur 1 1 1
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The scale factors of carbon tax in all scenarios for Case 3 are given as

ScFcar
tax,h = ScFcar

tax,h′ ScFcar
tax,h′′ , ∀h ∈ {1, . . . , s}, ∀h′ ∈ {1, . . . , s′}, ∀h′′ ∈ {1, . . . , s′′}

(7.19)

ScFcar
tax,h′ and ScFcar

tax,h′′ are scale factors of the carbon tax in uncertain scenario h′ and

time period h′′, respectively. ScFcar
tax,h′′ = 1 since the carbon tax remains the same

in different time periods. The values of ScFcar
tax,h′ only change in different carbon tax

scenarios, as provided in Table 7.10.

Table 7.10: Scale factors of the carbon tax under different carbon tax scenarios

Low Carbon Tax Middle Carbon Tax High Carbon Tax

Carbon Tax 0.375 0.75 1.875

The fraction of occurrence of all scenarios for Cases 3 is given by the following

relationship

Occuh = Occuh′ Occuh′′ , ∀h ∈ {1, . . . , s}, ∀h′ ∈ {1, . . . , s′}, ∀h′′ ∈ {1, . . . , s′′}

(7.20)

where Occuh′ and Occuh′′ are fractions of occurrence of uncertain scenario h′ and time

period h′′, respectively. The values of Occuh′′ are provided in Table 7.5, which are

the same as those in Case 1. Three oil price scenarios are assumed to have the same

probability, i.e., the probability of each oil price scenario is equal to 1/3. Similar for

three carbon tax scenarios. Hence, Occuh′ = 1/9 for each combined oil price and

carbon tax scenario h′.

7.2.3 Implementation

The solver times for the following six methods are compared for the aforementioned

three case study problems: (1) branch-and-reduce method (realized by BARON 9.0.6

[169]), (2) NGBD, (3) enhanced NGBD with primal dual cuts (NGBD-D) (and

also with primal dual multicuts, NGBD-MD), (4) enhanced NGBD with piecewise
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convex relaxation (NGBD-PCR), (5) enhanced NGBD with both primal dual cuts

and piecewise convex relaxation (NGBD-D-PCR), (6) enhanced NGBD with lift-

and-project cuts (NGBD-LAP).

BARON 9.0.6 employs CONOPT 3.14 [55] for local NLP subproblems and CPLEX

12.2 [1] for LP subproblems. NGBD and enhanced NGBD algorithms employ BARON

9.0.6 (with the same settings described above) for NLP subproblems and CPLEX 12.2

for LP and MILP subproblems.

Case study problems are solved on a computer allocated a single 2.66 GHz CPU

and running Linux kernel. GAMS 23.5.2 is used to formulate the models, program

the NGBD and enhanced NGBD algorithms, and interface the various solvers for the

subproblems. For all the methods, the absolute and relative termination criteria are

10−2 and the initial integer realization (y(1)) is 0. Only the solver time reported by

GAMS is reported here.

7.3 Optimization Results

7.3.1 Optimization for Different Time Periods

The optimal objective values (which are negative scaled NPVs) for Case 1 and Case

2 are -1123.017 and -1124.385 million dollars, respectively. The actual NPVs can be

calculated from the scaled NPVs by Eq (7.9), and their values are shown in Table 7.14.

The optimal equipment selections for Cases 1 and 2 are the same, whose values are

listed in Table 7.11. The capacity choice means the selection of possible equipment

capacities that are pre-determined in Section 7.1.2, e.g., choice 10 means the 10th

possible capacity is selected. The optimal feedstock consumption rates, production

rates, CO2 sequestration rates and CO2 emission rates for Cases 1 and 2 are shown in

Tables 7.12 and 7.13, respectively. Total capital investments, annual net profits and

net present values of Cases 1 and 2 are compared in Table 7.14.

In both cases, power generation is preferred during peak times while methanol

production is preferred during off-peak times because of the large variation of power
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Table 7.11: Optimal equipment designs for Cases 1 and 2

Aggregate Equipment Capacity Choice Capacity Capital Costd

Syngas Cleaning System 1 1 0a 0
Syngas Cleaning System 2 7 137a 102
CO2 Compressor 6 1389b 180
Fischer-Tropsch Synthesis System 1 0b 0
Methanol Synthesis System 10 840b 858
Gas Turbine System 10 4750c 799
Steam Turbine System 10 1800c 448

a The unit is Mmol/h.
b The unit is tonne/h.
c The unit is MW.
d The unit is million dollars.

prices between peak and off-peak. Liquid fuels, including naphtha and diesel, are not

produced in any scenario due to their low prices compared to other products. CO2

emissions are relatively high in peak times because all feedstocks are used for power

generation and carbon sequestration is not implemented in order to save power for

export. However, CO2 emissions significantly drop in off-peak times since most of

carbon in feedstocks now flows into the methanol and carbon sequestration becomes

profitable to implement due to the low power price.

The fact that the equipment capacities are the same in Cases 1 and 2 (as shown

in Table 7.11) implies that the operational flexibility of the polygeneration plant

does not increase by considering monthly price variations instead of seasonal ones.

Discussions in Chapter 4 indicated the degree of price fluctuations between peak and

off-peak times had significant impacts on the optimal design and operation while the

seasonal price changes, which were much smaller than those between peak and off-

peak, had little or no influence. Although the monthly price changes are larger than

the seasonal ones in this work, they are still not comparable with price differences

between peak and off-peak. Therefore, monthly price fluctuations are not reflected

in the optimal design and operation in both cases (except for the November peak
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times in Case 2), and the economic improvement of Case 2 compared to Case 1 is not

significant (as shown in Table 7.14).

7.3.2 Optimization under Market and Policy Uncertainties

The optimal objective value (which is the negative scaled NPV) for Case 3 is -1041.58

million dollars. The optimal equipment selections for Case 3 are listed in Table 7.15.

The optimal feedstock consumption rates, production rates, CO2 sequestration rates

and CO2 emission rates for Case 3 are shown in Tables 7.16, 7.17, 7.18 and 7.19,

respectively. Total capital investment, expected annual net profit and expected net

present value of Case 3 are shown in Table 7.20.

The stochastic optimization in Case 3 obtained the optimal design for the max-

imum expected NPV over all possible market and policy scenarios. In this optimal

design, Syngas Cleaning System 1 (used for power generation with CCS) and the

Fischer-Tropsch synthesis system are not installed due to their high capital costs

and low profitability, and the methanol synthesis system, the gas turbine system and

the steam turbine system are designed at their maximum capacities to introduce the

operation flexibility for both market/policy uncertainties and different time periods.

Operations in different oil price and carbon tax scenarios are also optimized. In

high carbon tax scenarios, electricity production is somewhat suppressed due to its

high CO2 emissions, while methanol production is promoted during peak times. Car-

bon capture and sequestration (CCS) is only implemented under middle and high

carbon taxes, and in high carbon tax scenarios CCS is also encouraged during some

peak times. The optimal CO2 emissions decrease significantly with the increase of

the carbon tax because CCS and methanol production are encouraged under higher

carbon taxes.
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7.4 Computational Performance

7.4.1 NGBD and Enhanced NGBD with Primal Dual Cuts

(NGBD-D and NGBD-MD)

The computational performance of BARON, NGBD, NGBD-D and NGBD-MD for

Cases 1 and 2 are compared in Tables 7.21 and 7.22, respectively. BARON did

not return a global solution within 30 CPU days for either problem, while NGBD

and enhanced NGBD all obtained a global solution within 18 CPU hours for Case 1

and within 60 CPU hours for Case 2. These results demonstrate that viability of the

decomposition strategy for the global optimization of flexible polygeneration systems.

Note that the solution time for Problem (PP) dominates the total solution time

within NGBD, because Problem (PP) is the only nonconvex NLP subproblem in

NGBD and the solution time for it is much longer than that for other subproblems.

By introducing extra dual information from the primal problem to form a tighter

relaxed master problem, NGBD-D significantly reduced the number of iterations for

convergence and it solved much fewer Problem (PBP) and (more importantly) Prob-

lem (PP). The solution time with NGBD-D was reduced by almost an order of mag-

nitude compared to that with NGBD for both cases, although it spent a fairly large

amount of time to solve Problem (DPP) to obtain extra dual information for a tighter

relaxation. In addition, by adopting the multicut strategy for an even tighter relax-

ation, NGBD-MD achieved faster convergence than NGBD-D and further reduced

the solution time for both cases.

Also note that the number of scenarios in Case 2 is three times of that in Case

1, and the solution time for Case 2 was around 2-4 times of that for Case 1 for all

of the three decomposition methods. This indicates the favorable scalability of the

decomposition strategy with respect to the number of scenarios, as also shown by the

case studies in Ref [110].

The computational performance of BARON, NGBD and NGBD-D for Cases 3

are compared in Tables 7.23. Due to the large problem size of Case 3, even NGBD
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cannot return a global solution within a reasonable time. Meanwhile, NGBD-D

practically solved this problem in less than 45 CPU hours. It demonstrates that

enhanced NGBD with primal dual cuts can efficiently solve large-scale nonconvex

stochastic/multiperiod problems.

7.4.2 Enhanced NGBD with Piecewise Convex Relaxation

(NGBD-PCR)

The computational performance of NGBD and NGBD-PCR for Cases 1 and 2 are

compared in Tables 7.24 and 7.25, respectively. Both the fixed and adaptive partition

strategies are studied for NGBD-PCR. Tables 7.24 and 7.25 show that NGBD-PCR

reduced the solution time by one order of magnitude compared to NGBD, because

much fewer Problem (PP) were solved.

In the fixed partition strategy, the domains of the variables to be partitioned are

assumed to be partitioned uniformly into the same number of subdomains, denoted

by M , and NGBD-PCR was implemented for three different M values, say M =

5, 10 or 15, to show the effect of M on the performance of NGBD-PCR. As the

piecewise relaxation helped to generate improved lower bounding problems that have a

better chance to locate an optimal integer realization earlier, the NGBD-PCR method

with more finely partitioned subdomains led to fewer Problem (PP) to be solved.

On the other hand, integrating piecewise relaxation requires solving an additional

MILP problem (PBP-PCR) (and sometimes (DPBP-PCR) as well) for each integer

realization visited, and these MILPs are expensive to solve compared to Problem

(PBP) in NGBD (although they are much easier than Problem (PP)). As M increases,

these additional MILPs contain more integer variables and are more difficult to solve.

Therefore, the solution time by NGBD-PCR depends on both the solution time for

Problem (PP) and the solution time for the additional MILPs, and these two times

are in principle negatively correlated. In this study, NGBD-PCR with M = 15 had

the fastest solution because it achieved the best trade-off between the two times in

three M values.
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In the adaptive partition strategy, the number of subdomains for partition vari-

ables does not need to be pre-determined. Instead, the partition is implemented

within the algorithm based on the solution of Problem (PP). Case study results show

that the number of subdomains for different variables ranged from 1 to 15 in Case 1,

and from 1 to 16 in Case 2, and exhibited a flexible partition pattern. The perfor-

mance of the adaptive NGBD-PCR might be worse than the fixed NGBD-PCR with

some optimal choice of M (M = 15), but it was better than the fixed NGBD-PCR

with other choices of M , as shown in Tables 7.24 and 7.25. In reality, the optimal value

for M is difficult to know in advance for general problems. The adaptive NGBD-PCR

could achieve fast convergence for problems without much prior information.

Note that the results in the two tables indicate the scalability of NGBD and

NGBD-PCR, whose solution time increased moderately with the number of scenarios.

The computational performance of NGBD and NGBD-PCR for Case 3 is compared

in Table 7.26. In order to achieve fast convergence for Case 3, only the fixed partition

strategy with the optimal selection of M (M = 15) was studied for NGBD-PCR here.

The results show that NGBD-PCR could solve large-scale stochastic/multiperiod

problems in reasonable times.

7.4.3 Enhanced NGBD with Primal Dual Cuts and Piecewise

Convex Relaxation (NGBD-D-PCR)

The computational performance of NGBD and NGBD-D-PCR for Cases 1, 2 and 3

are compared in Tables 7.27, 7.28 and 7.29, respectively. NGBD-D-PCR reduced the

solution time by one order of magnitude compared to NGBD. Compared with the

results in previous two sections, the performance of NGBD-D-PCR was better than

both NGBD-D and NGBD-PCR. Note that under some choices of subdomains num-

bers (e.g., M = 15), the performance improvement of NGBD-D-PCR compared to

NGBD-PCR was not significant since the solution time of Problem (DPP) accounted

for a large portion of the total solution time.
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7.4.4 Enhanced NGBD with Lift-and-Project Cuts (NGBD-

LAP)

The computational performance of NGBD and NGBD-LAP for Cases 1 and 2 are

compared in Tables 7.30 and 7.31, respectively, in which the solution times of cut

generation problems (CGP) are grouped into those of Problem (PBP). Results show

that NGBD-LAP reduced the solution time by one order of magnitude compared to

NGBD.

In this study, only the fixed subdomain partition strategy is considered for NGBD-

LAP. The effect of subdomain numbers M on the computational performance was

studied. With the increase of M , tighter relaxation of the original problem can be

obtained, leading to fewer iterations for the whole algorithm; on the other hand,

more Problem (CGP) need to be solved, resulting in more solution times for Problem

(CGP) (and Problem (PBP) here). Note that the solution time of Problem (PBP)

and (CGP) dominated the total solution time for Case 1 and 2, hence large numbers

of subdomains had the negative effect on the performance of NGBD-LAP here.
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Table 7.12: Optimal operations in Case 1

Value Unit

Feedstock Consumption Rate
Coal

All Seasons, Peak and Off-peak 1172 tonne/h
Biomass

All Seasons, Peak and Off-peak 0 tonne/h
Water

All Seasons, Peak 205 tonne/h
All Seasons, Off-peak 412 tonne/h

Production Rate
Electricity

All Seasons, Peak 3966 MW
All Seasons, Off-peak 72 MW

Naphtha
All Seasons, Peak and Off-peak 0 tonne/h

Diesel
All Seasons, Peak and Off-peak 0 tonne/h

Methanol
All Seasons, Peak 0 tonne/h
All Seasons, Off-peak 831 tonne/h

Sulfur
All Seasons, Peak and Off-peak 29 tonne/h

Carbon Dioxide
Sequestration Rate

All Seasons, Peak 0 tonne/h
All Seasons, Off-peak 1389 tonne/h

Emission Rate
All Seasons, Peak 2684 tonne/h
All Seasons, Off-peak 153 tonne/h
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Table 7.13: Optimal Operations in Case 2

Value Unit

Feedstock Consumption Rate
Coal

All Months, Peak and Off-peak 1172 tonne/h
Biomass

All Months, Peak and Off-peak 0 tonne/h
Water

All Months except November, Peak 205 tonne/h
November, Peak 87 tonne/h
All Months, Off-peak 412 tonne/h

Production Rate
Electricity

All Months except November, Peak 3966 MW
November, Peak 3630 MW
All Months, Off-peak 72 MW

Naphtha
All Months, Peak and Off-peak 0 tonne/h

Diesel
All Months, Peak and Off-peak 0 tonne/h

Methanol
All Months except November, Peak 0 tonne/h
November, Peak 74 tonne/h
All Months, Off-peak 831 tonne/h

Sulfur
All Months, Peak and Off-peak 29 tonne/h

Carbon Dioxide
Sequestration Rate

All Months except November, Peak 0 tonne/h
November, Peak 131 tonne/h
All Months, Off-peak 1389 tonne/h

Emission Rate
All Months except November, Peak 2684 tonne/h
November, Peak 2450 tonne/h
All Months, Off-peak 153 tonne/h
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Table 7.14: Economics of Cases 1 and 2

Case 1 Case 2 Unit

Capital Investment 5363 5363 million dollars
Annual Net Profit 1638 1640 million dollars per year
Net Present Value 9046 9057 million dollars

Table 7.15: Optimal equipment designs for Cases 3

Aggregate Equipment Capacity Choice Capacity Capital Costd

Syngas Cleaning System 1 1 0a 0
Syngas Cleaning System 2 7 137a 102
CO2 Compressor 6 1389b 180
Fischer-Tropsch Synthesis System 1 0b 0
Methanol Synthesis System 10 840b 858
Gas Turbine System 10 4750c 799
Steam Turbine System 10 1800c 448

a The unit is Mmol/h.
b The unit is tonne/h.
c The unit is MW.
d The unit is million dollars.
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Table 7.16: Optimal feedstock consumption rates in Case 3

Value Unit

Coal
All Oil Prices, All Carbon Taxes

All Seasons, Peak and Off-peak 1172 tonne/h
Biomass

All Oil Prices, All Carbon Taxes
All Seasons, Peak and Off-peak 0 tonne/h

Water
All Oil Prices, Low and Middle Carbon Tax

All Seasons, Peak 205 tonne/h
All Seasons, Off-peak 412 tonne/h

Low Oil Price, High Carbon Tax
Spring, Fall and Winter, Peak 408 tonne/h
Summer, Peak 205 tonne/h
All Seasons, Off-peak 412 tonne/h

Middle and High Oil Prices, High Carbon Tax
Spring, Summer and Winter, Peak 205 tonne/h
Fall, Peak 408 tonne/h
All Seasons, Off-peak 412 tonne/h
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Table 7.17: Optimal production rates in Case 3 (electricity, naphtha and diesel)

Value Unit

Electricity
All Oil Prices, Low Carbon Tax

All Seasons, Peak 3966 MW
All Seasons, Off-peak 174 MW

All Oil Prices, Middle Carbon Tax
All Seasons, Peak 3966 MW
All Seasons, Off-peak 72 MW

Low Oil Price, High Carbon Tax
Spring, Fall and Winter, Peak 2445 MW
Summer, Peak 3966 MW
All Seasons, Off-peak 72 MW

Middle Oil Price, High Carbon Tax
Spring, Summer and Winter, Peak 3966 MW
Fall, Peak 380 MW
All Seasons, Off-peak 72 MW

High Oil Price, High Carbon Tax
Spring, Summer and Winter, Peak 3966 MW
Fall, Peak 405 MW
All Seasons, Off-peak 72 MW

Naphtha
All Oil Prices, All Carbon Taxes

All Seasons, Peak and Off-peak 0 tonne/h
Diesel

All Oil Prices, All Carbon Taxes
All Seasons, Peak and Off-peak 0 tonne/h
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Table 7.18: Optimal production rates in Case 3 (methanol and sulfur)

Value Unit

Methanol
All Oil Prices, Low and Middle Carbon Tax

All Seasons, Peak 0 tonne/h
All Seasons, Off-peak 831 tonne/h

Low Oil Price, High Carbon Tax
Spring, Fall and Winter, Peak 279 tonne/h
Summer, Peak 0 tonne/h
All Seasons, Off-peak 831 tonne/h

Middle Oil Price, High Carbon Tax
Spring, Summer and Winter, Peak 0 tonne/h
Fall, Peak 766 tonne/h
All Seasons, Off-peak 831 tonne/h

High Oil Price, High Carbon Tax
Spring, Summer and Winter, Peak 0 tonne/h
Fall, Peak 760 tonne/h
All Seasons, Off-peak 831 tonne/h

Sulfur
All Oil Prices, All Carbon Taxes

All Seasons, Peak and Off-peak 29 tonne/h
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Table 7.19: Optimal CO2 sequestration rates and emission rates in Case 3

Value Unit

CO2 Sequestration Rates
All Oil Prices, Low Carbon Tax

All Seasons, Peak and Off-peak 0 tonne/h
All Oil Prices, Middle Carbon Tax

All Seasons, Peak 0 tonne/h
All Seasons, Off-peak 1389 tonne/h

Low Oil Price, High Carbon Tax
Spring, Fall and Winter, Peak 1389 tonne/h
Summer, Peak 0 tonne/h
All Seasons, Off-peak 1389 tonne/h

Middle and High Oil Price, High Carbon Tax
Spring, Summer and Winter, Peak 0 tonne/h
Fall, Peak 1389 tonne/h
All Seasons, Off-peak 1389 tonne/h

CO2 Emission Rates
All Oil Prices, Low Carbon Tax

All Seasons, Peak 2684 tonne/h
All Seasons, Off-peak 1542 tonne/h

All Oil Prices, Middle Carbon Tax
All Seasons, Peak 2684 tonne/h
All Seasons, Off-peak 153 tonne/h

Low Oil Price, High Carbon Tax
Spring, Fall and Winter, Peak 911 tonne/h
Summer, Peak 2684 tonne/h
All Seasons, Off-peak 153 tonne/h

Middle Oil Price, High Carbon Tax
Spring, Summer and Winter, Peak 2684 tonne/h
Fall, Peak 243 tonne/h
All Seasons, Off-peak 153 tonne/h

High Oil Price, High Carbon Tax
Spring, Summer and Winter, Peak 2684 tonne/h
Fall, Peak 251 tonne/h
All Seasons, Off-peak 153 tonne/h
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Table 7.20: Economics of Cases 3

Case 3 Unit

Capital Investment 5363 million dollars
Expected Annual Net Profit 1557 million dollars per year
Expected Net Present Value 8390 million dollars

Table 7.21: Computational performance of BARON, NGBD, NGBD-D and NGBD-
MD for Case 1 (70 binary variables and 4904 continuous variables)

BARON NGBD NGBD-D NGBD-MD

Solver Time (CPU seconds)
Total —b 64316.5 7898.7 7426.4
Problem (PBPh) n/a 17.3 8.9 1.8
Problem (FPh) n/a 0.3 1.1 1.1
Relaxed Master Problema n/a 282.2 20.0 7.1
Problem (PPh) n/a 64016.7 4750.8 2631.7
Problem (DPPh) n/a n/a 3118.0 4784.7

Integer Realizations Visited
Problem (PBPh) n/a 464 128 53
Problem (PPh) n/a 396 73 15
Problem (DPPh) n/a n/a 5 3

a The relaxed master problem is Problem (RMP) or (DERMP) or (MDERMP).
b No global solution was returned within 30 CPU days.
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Table 7.22: Computational Performance of BARON, NGBD, NGBD-D and NGBD-
MD for Case 2 (70 binary variables and 14712 continuous variables)

BARON NGBD NGBD-D NGBD-MD

Solver Time (CPU seconds)
Total —b 215280.2 26390.0 15158.6
Problem (PBPh) n/a 202.2 39.7 1.2
Problem (FPh) n/a 6.6 2.4 0.8
Relaxed Master Problema n/a 612.5 26.3 10.3
Problem (PPh) n/a 214458.9 12454.7 4519.8
Problem (DPPh) n/a n/a 13867.0 10626.5

Integer Realizations Visited
Problem (PBPh) n/a 613 132 46
Problem (PPh) n/a 537 77 14
Problem (DPPh) n/a n/a 6 3

a The relaxed master problem is Problem (RMP) or (DERMP) or (MDERMP).
b No global solution was returned within 30 CPU days.

Table 7.23: Computational Performance of BARON, NGBD and NGBD-D for Case
3 (70 binary variables and 44136 continuous variables)

BARON NGBD NGBD-D

Solver Time (CPU seconds)
Total —b —b 153192.8
Problem (PBPh) n/a n/a 38.1
Problem (FPh) n/a n/a 21.5
Relaxed Master Problema n/a n/a 344.5
Problem (PPh) n/a n/a 117300.4
Problem (DPPh) n/a n/a 35488.3

Integer Realizations Visited
Problem (PBPh) n/a n/a 416
Problem (PPh) n/a n/a 313
Problem (DPPh) n/a n/a 2

a The relaxed master problem is Problem (RMP) or (DERMP) or (MDERMP).
b No global solution was returned within 1000000 CPU seconds.
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Table 7.24: Computational performance of NGBD and NGBD-PCR for Case 1 (70
binary variables and 4904 continuous variables)

NGBD NGBD-PCR
M = 5 M = 10 M = 15 Adaptive

Solver Time (CPU seconds)
Total 64316.5 19055.1 8004.2 3652.9 5294.4
Problem (PBPh) 17.3 781.9 2519.8 2357.1 1002.7
Problem (FPh) 0.3 0.4 0.2 0.2 1.0
Relaxed Master Problema 282.2 63.2 50.3 6.7 47.8
Problem (PPh) 64016.7 18209.5 5434.0 1289.0 4242.9

Integer Realizations Visited
Problem (PBPh) 464 277 207 99 179
Problem (PPh) 396 207 92 28 22

a The relaxed master problem is Problem (RMP) or (PERMP).

Table 7.25: Computational performance of NGBD and NGBD-PCR for Case 2 (70
binary variables and 14712 continuous variables)

NGBD NGBD-PCR
M = 5 M = 10 M = 15 Adaptive

Solver Time (CPU seconds)
Total 215280.2 52052.9 29863.7 9328.9 22106.4
Problem (PBPh) 202.2 3014.5 11463.7 7090.0 4048.5
Problem (FPh) 6.6 0.9 0.3 0.3 0.4
Relaxed Master Problema 612.5 103.8 82.7 7.7 68.8
Problem (PPh) 214458.9 48933.7 18317.0 2230.7 17988.7

Integer Realizations Visited
Problem (PBPh) 613 324 304 103 243
Problem (PPh) 537 233 107 27 41

a The relaxed master problem is Problem (RMP) or (PERMP).

216



Table 7.26: Computational performance of NGBD and NGBD-PCR for Case 3 (70
binary variables and 44136 continuous variables)

NGBD NGBD-PCR
M = 15

Solver Time (CPU seconds)
Total —b 116123.4
Problem (PBPh) n/a 79366.9
Problem (FPh) n/a 11.1
Relaxed Master Problema n/a 130.6
Problem (PPh) n/a 36614.9

Integer Realizations Visited
Problem (PBPh) n/a 342
Problem (PPh) n/a 57

a The relaxed master problem is Problem (RMP) or (PERMP).
b No global solution was returned within 1000000 CPU seconds.

Table 7.27: Computational performance of NGBD and NGBD-D-PCR for Case 1 (70
binary variables and 4904 continuous variables)

NGBD NGBD-D-PCR
M = 5 M = 10 M = 15 Adaptive

Solver Time (CPU seconds)
Total 64316.5 5488.7 6191.6 3600.1 5390.8
Problem (PBPh) 17.3 355.9 1905.2 2253.0 132.1
Problem (FPh) 0.3 0.2 0.3 0.4 0.3
Relaxed Master Problema 282.2 9.6 23.2 4.2 7.2
Problem (PPh) 64016.7 3526.0 3681.3 636.6 3346.7
Problem (DPPh) 64016.7 1596.9 581.8 705.9 1904.6

Integer Realizations Visited
Problem (PBPh) 464 121 163 86 84
Problem (PPh) 396 70 75 19 18
Problem (DPPh) n/a 4 1 1 2

a The relaxed master problem is Problem (RMP) or (DPERMP).
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Table 7.28: Computational performance of NGBD and NGBD-D-PCR for Case 2 (70
binary variables and 14712 continuous variables)

NGBD NGBD-D-PCR
M = 5 M = 10 M = 15 Adaptive

Solver Time (CPU seconds)
Total 215280.2 16078.2 20678.9 9154.1 15150.0
Problem (PBPh) 202.2 1218.1 6696.9 6448.5 1778.0
Problem (FPh) 6.6 0.7 0.4 0.5 0.4
Relaxed Master Problema 612.5 13.4 26.7 5.2 35.8
Problem (PPh) 214458.9 10827.8 12856.4 1573.4 6248.0
Problem (DPPh) 64016.7 4018.3 581.8 1126.5 7087.8

Integer Realizations Visited
Problem (PBPh) 613 130 195 84 170
Problem (PPh) 537 72 82 21 13
Problem (DPPh) n/a 4 1 1 3

a The relaxed master problem is Problem (RMP) or (DPERMP).

Table 7.29: Computational performance of NGBD and NGBD-D-PCR for Case 3 (70
binary variables and 44136 continuous variables)

NGBD NGBD-D-PCR
M = 15

Solver Time (CPU seconds)
Total —b 68392.6
Problem (PBPh) n/a 43070.7
Problem (FPh) n/a 9.2
Relaxed Master Problema n/a 28.1
Problem (PPh) n/a 12626.5
Problem (DPPh) n/a 12658.1

Integer Realizations Visited
Problem (PBPh) n/a 230
Problem (PPh) n/a 21
Problem (DPPh) n/a 1

a The relaxed master problem is Problem (RMP) or (DPERMP).
b No global solution was returned within 1000000 CPU seconds.
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Table 7.30: Computational performance of NGBD and NGBD-LAP for Case 1 (70
binary variables and 4904 continuous variables)

NGBD NGBD-LAP
M = 5 M = 10 M = 15

Solver Time (CPU seconds)
Total 64316.5 2368.3 4970.4 17830.3
Problem (PBPh) 17.3 1325.4 3463.3 9381.5
Problem (FPh) 0.3 1.0 0.7 0.6
Relaxed Master Problema 282.2 30.2 8.0 11.7
Problem (PPh) 64016.7 1011.7 1498.4 8436.6

Integer Realizations Visited
Problem (PBPh) 464 281 111 108
Problem (PPh) 396 3 8 29

a The relaxed master problem is Problem (RMP) or (LERMP).

Table 7.31: Computational performance of NGBD and NGBD-LAP for Case 2 (70
binary variables and 14712 continuous variables)

NGBD NGBD-LAP
M = 5

Solver Time (CPU seconds)
Total 215280.2 18213.3
Problem (PBPh) 202.2 9209.1
Problem (FPh) 6.6 7.5
Relaxed Master Problema 612.5 146.6
Problem (PPh) 214458.9 8850.1

Integer Realizations Visited
Problem (PBPh) 613 394
Problem (PPh) 537 11

a The relaxed master problem is Problem (RMP) or (LERMP).
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

Energy polygeneration processes with high efficiency and low emissions are promising

in the energy industries, serving as possible supplements to the current oil-based

processes. Compared to the conventional single-product processes, polygeneration

processes have advantages of higher profits, lower economic risks and higher energy

efficiency.

In this thesis, an energy polygeneration system using coal and biomass as feed-

stocks and co-producing electricity, liquid fuels (naphtha and diesel) and chemicals

(methanol) is studied. This system comprises a gasifier, an air separation unit, syngas

clean-up units, Selexol units, a Claus plant, water gas shift reactors, Fischer-Tropsch

(FT) synthesis reactors, hydrocarbon separation units, hydrocracking reactors, au-

tothermal reforming reactors, methanol synthesis reactors, methanol separation units,

gas turbines, steam turbines, compressors, pumps and heat exchangers.

The optimal design and operation of a static energy polygeneration system under

different market and policy scenarios is investigated. A mathematical model is de-

veloped for this purpose, in which mass and energy balances in all unit operations,

enthalpy calculations, reduced unit operation models, reactor feedstock specifications,

emissions regulations, capital cost estimations and economic analyses are addressed.

The optimal product distributions, NPVs and CO2 emissions of the static polygen-
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eration system are obtained under different product prices and carbon taxes. The

results provide suggestions for planning production strategies and CO2 emissions in

polygeneration systems. The preference of power generation versus liquids production

is strongly dependent on the ratio of the naphtha price to the power price, and the

preference of liquid fuels production or methanol production is highly dependent on

the ratio of the naphtha price to the methanol price. The co-production of electricity

and liquids or liquid fuels and methanol is usually not the optimal choice under the

static operation pattern due to its high capital investment. CO2 emissions are mostly

dependent on the level of carbon tax, and carbon capture and sequestration is only

profitable above a certain level of carbon tax. Biomass usage is dependent on both

the carbon tax and the biomass price. High carbon tax will be the major factor that

promotes the usage of biomass. Polygeneration processes with a certain amount of

biomass usage will achieve zero or negative net CO2 emissions. Product distributions

are also influenced by the type of carbon tax policy, e.g., whether the tax charges

the CO2 emissions only from the production process or from both the process and all

downstream usages. The static polygeneration plant always has a higher (or equal)

net present value than the single-product plants. However, the economic benefit from

static polygeneration is not significant based on the case study results.

Flexible operations are further considered in the energy polygeneration process.

In the flexible polygeneration process, the production rates change during different

time periods in response to the market conditions in order to achieve higher profits.

The major challenge in this flexible design is determination of the optimal trade-off

between flexibility and capital cost because higher flexibility typically implies both

higher product revenues and larger equipment sizes. A two-stage optimization frame-

work, in which design decision variables (equipment sizes) and operational decision

variables in all scenarios (flow rates, split fractions and temperatures) are optimized si-

multaneously to achieve the best overall economic performance, is hence incorporated

into the mathematical model for the polygeneration system. The global optimization

solver, BARON, is applied to the polygeneration optimization problem to ensure

the global optimal solution. The optimal product distributions, equipment capacity
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usages, NPVs and CO2 emissions of the flexible polygeneration system are studied

under different product prices and carbon taxes. Case study results show that the

net present values of flexible polygeneration plants are higher than static polygenera-

tion systems for the same oil price and carbon tax, although the capital investments

for flexible polygeneration systems are also higher. The economic improvement of

the flexible operations can be quite significant, e.g., the NPVs of flexible plants are

10%-60% higher than static plants under some market scenarios. With an increase in

operational flexibility, the capital investment, the net profits and the net present value

all increase as well. Hence, this analysis suggests that flexible designs are generally

more profitable than static designs for polygeneration systems when sufficient capital

is available for investment. The optimal product portfolios of flexible systems are

quite different from those of static systems. For example, co-production of different

products, such as electricity and liquids, becomes common in the optimal operation

of flexible systems. The annual CO2 emissions of flexible systems can be higher or

lower than static systems depending on the product distributions.

The flexible polygeneration optimization problem is potentially a large-scale non-

convex MINLP with high computational burden. State-of-the-art global optimization

solvers, such as BARON, cannot solve problems with a large number of scenarios in

reasonable times. The nonconvex generalized Benders decomposition (NGBD) algo-

rithm, which exploits the special mathematical structure of the two-stage program, is

developed for efficient solution of large-scale nonconvex stochastic/multiperiod opti-

mization problems. In NGBD, the original problem is reformulated by projection and

dualization. A sequence of nondecreasing lower bounds and a sequence of nonincreas-

ing upper bounds are generated by iteratively solving several subproblems whose sizes

are independent of the number of scenarios, including decomposed primal bounding

problems (PBP), decomposed feasibility problems (FP), decomposed primal problems

(PP) and relaxed master problems (RMP). The global optimal solution is obtained

when the lower and upper bounds coincide. NGBD guarantees finite termination with

an ε-optimal solution or infeasibility indication. The CPU time for NGBD is expected

to increase linearly with the number of scenarios. The case study results indicate that
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the decomposition algorithm achieved much shorter computational times compared

to BARON in the polygeneration application.

Several enhancement technologies are incorporated into NGBD for faster conver-

gence, including primal dual information, piecewise convex relaxation and lift-and-

project cuts. In NGBD with primal dual information (NGBD-D), primal dual cuts are

obtained by solving a relaxed dual or Lagrangian relaxation of Problem (PP) and are

then added into Problem (DERMP) for tighter relaxation. By introducing the primal

dual multicuts, the performance of decomposition algorithm is further improved. In

NGBD with piecewise convex relaxation (NGBD-PCR), the domains of variables in

bilinear functions are partitioned into subdomains, and piecewise McCormick relax-

ation is performed for Problem (PBP-PCR) on these subdomains. The relaxed dual

of Problem (PBP-PCR) is then solved to generate enhanced optimality cuts for Prob-

lem (PERMP). With the piecewise convex relaxation technique, a tighter relaxation is

generated that provides improved information for NGBD to converge. In NGBD with

lift-and-project cuts (NGBD-LAP), piecewise convex relaxation is performed, and a

cutting plane algorithm that generates lift-and-project cuts is implemented for solv-

ing Problem (PBP-LAP). Again, enhanced optimality cuts generated from Problem

(PBP-LAP) are introduced to Problem (LERMP). In NGBD-LAP, a certain amount

of cut generation problems (CGP) need to be solved to obtain the lift-and-project

cuts. Note that although all three enhanced decomposition algorithms obtain tighter

relaxations than the original NGBD, they introduce some additional subproblems

that may be difficult to solve, such as Problem (DPP) in NGBD-D, Problems (PBP-

PCR) and (DPBP-PCR) in NGBD-PCR, and Problems (PBP-LAP) and (CGP) in

NGBD-LAP. There is a trade-off between the tightness of the relaxation and solution

times for additional subproblems. In order to introduce the appropriate number of

enhanced cuts for fast solution, some heuristics determining whether or not to solve

the additional subproblems for tighter relaxations are used. For example, in NGBD-

D, Problem (DPP) is only solved when Problem (PP) is feasible and updates the

current upper bound; while in NGBD-PCR or NGBD-LAP, Problems (PBP-PCR),

(DPBP-PCR) or Problems (PBP-LAP), (CGP) are solved at every iteration when
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Problem (PBP) is feasible. The case study results demonstrate that the enhanced

decomposition algorithms reduced the solution time by about one order of magni-

tude compared to the original NGBD. The global optimal solutions of polygeneration

optimization problems can be obtained by the enhanced NGBD in relatively short

times.

After applying NGBD and enhanced NGBD to the polygeneration application,

energy polygeneration problems with larger numbers of scenarios are studied, includ-

ing flexible polygeneration considering more time periods and stochastic optimization

under the market and policy uncertainties. After more time periods are considered,

the economic performance of the flexible polygeneration system can be slightly im-

proved due to the increase of operational flexibility. When the stochastic optimization

is performed, the optimal design is obtained to achieve the best expected net present

value under 3 oil price and 3 carbon tax scenarios. Note that in this case the basic

NGBD algorithm could not solve this problem in a reasonable time, but the various

enhanced NGBD algorithms could.

8.2 Future Work

8.2.1 Polygeneration Model

Several improvements for the mathematical model of the polygeneration system are

potential subjects of future study.

First, a polygeneration model encompassing a superstructure with multiple tech-

nical alternatives needs to be develop. Recently, several new technologies related to

energy polygeneration have been studied. For example, membrane technology has

been developed for efficient CO2 capture [124] and hydrogen separation [11]; solid

oxide fuel cells (SOFCs) have shown great promise in reducing CO2 emissions for

electricity production [8]; and the incorporation of natural gas as a third possible

feedstock has also shown economic benefits [9], especially considering the abundance

of shale gas in the U.S. and elsewhere. These novel alternatives may help to achieve
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higher energy efficiency and better economic performance for the energy polygener-

ation process, and need to be incorporated into the future optimization model. In

addition, different conventional technologies need to be compared in the future study,

such as a gasifier with slurry feed vs. a gasifier with dry feed, radiant cooler vs.

quench, Selexol vs. Rectisol for acid gas removal, gas-phase FT or methanol reactor

vs. slurry-phase FT or methanol reactor, and iron-based catalyst vs. cobalt-based

catalyst for the FT reactor. Technical and economical parameters for these new tech-

nologies, e.g., conversions and selectivity for reactors, split fractions for separation

units, operating temperatures and pressures and equipment capital costs, need to

be estimated. They can be obtained from process or unit simulations, experimental

data or the literature. After comparing different technologies, an optimal design with

higher profits and lower emissions is expected to be obtained compared to the design

in this work. Note that additional integer variables will be introduced to address

different technical choices, which will increase the computational complexity for the

model. More efficient global optimization algorithms will possibly be required for fast

solution of this larger-scale problem.

Second, the cost of the flexible operation needs to be considered for more accurate

economic analysis. In this work, the performance of all equipment is assumed to re-

main constant under all operating conditions, e.g., constant conversions and efficiency

are assumed for reactors and turbines under different flow rates, respectively. In real

applications, the performance of equipment may drop when operated below its design

capacity. For example, the efficiency of the gas turbine under the off-design mode can

be much lower than under its design mode. A possible way of addressing this issue is

to incorporate some correlations that express equipment performance as a function of

operating conditions or equipment capacity usage. Note that these correlations can

be highly nonlinear and nonconvex functions, and advanced optimization algorithms

might be needed for this new computational complexity. Another cost comes from

the transition between different operational conditions. In this model, operations are

considered to be at steady state at all times, and the transition times are neglected.

However, chemical units (including reactors and separation units) typically require
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some time to change from one steady state to another steady state, and off-spec prod-

ucts may be produced during these times. This profit loss can be estimated by the

models representing change-over performance of unit operations. Dynamic optimiza-

tion algorithms [188, 157] can be developed to find the optimal transition strategy for

flexible operations. In addition, operational reliability suffers when deviating from

steady state because control systems are generally designed to operate best at steady

states and additional manual interventions are normally required to start up, shut

down or change rates. This reliability loss may need to be addressed in future models.

Third, more sophisticated unit operation models may be incorporated in the fu-

ture polygeneration models. For example, linear reactor models in the current model

will be replaced by more accurate nonlinear models, in which reactor conversions

will be expressed by some nonlinear functions of operating conditions (such as molar

compositions and temperatures), instead of being fixed as parameters. Similarly for

separation units, compressors and turbines. In addition, temperatures and pressures

in unit operations, which are fixed in the current model, can be relaxed as decisions

in the future models. If this update is applied to the model, more profitable polygen-

eration systems will be designed, but more computational difficulty is also expected.

Fourth, more detailed energy integration can be addressed. The heat balance cal-

culation in this model may lead to an overestimation of energy efficiency for the whole

system, as temperatures of some heat generation units are lower than those of heat

consumption units and part of heat actually cannot be utilized in the process. Pinch

analysis can be incorporated into the model addressing the detailed heat network

design.

Finally, stochastic optimization for the polygeneration system needs to be further

studied. Uncertainties for more economic and technical parameters will be considered,

e.g., the supply and price of biomass could be quite unstable, and the performance

and capital cost of new technologies are also quite uncertain. Sensitivity analysis

needs to be performed to identify uncertain parameters that potentially have signif-

icant influence on the economic performance of the system. Uncertainties in these

parameters should be addressed in the future models.
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8.2.2 Decomposition Algorithm

Several issues will be addressed in the future development of decomposition algo-

rithms.

First, enhancement technologies can be incorporated into NGBD in a more ef-

ficient and effective manner so that the solution can be further accelerated. So far

some heuristics are employed for determining whether or not to add enhanced cuts

for the relaxed master problem, e.g., primal dual cuts are added only when Problem

(PP) is feasible and update the current upper bound, and piecewise optimality cuts

are added when Problem (PBP) is feasible. These heuristics are developed based on

our previous computational experience, and may not be the optimal choice for the

best computational performance. In the future study, some systematic ways should

be developed for effectively adding those enhanced cuts. For example, in NGBD-D, a

better heuristic may be developed to determine whether to solve Problem (DPP) or

not at each iteration so that this difficult nonconvex NLP is only solved when it can

provide strong primal dual cuts to accelerate the solution; in NGBD-PCR, Problem

(PBP-PCR) and (DPBP-PCR) may be only solved when strong piecewise optimality

cuts are obtained, and this heuristic could significantly reduce the solution time of

piecewise subproblems especially when the number of subdomains is large.

Second, more effective partition strategies should be developed for tighter piece-

wise relaxation in NGBD-PCR and NGBD-LAP. The case study results indicate that

the number of partitioned subdomains impacts the efficiency of NGBD-PCR and

NGBD-LAP. So it will be an interesting work to develop a systematic approach to

improve the selection of this number. The adaptive partition strategy developed in

this thesis has been demonstrated as an efficient approach. In the future work, the

adaptive partition approach can be further improved by incorporating more interme-

diate solution information and introducing more flexibility for domain partitioning.

Third, lift-and-project cuts may be generated in a more efficient way for NGBD-

LAP. The solution time for cut generation problems (CGP) accounts for a large

portion of the total solution time. The computational performance of NGBD-LAP can
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be further improved if fewer Problem (CGP) are solved without losing the tightness

of relaxations. Some heuristics will be compared for this purpose, including solving

Problem (CGP) for all relaxed integer variables vs. for only one variable with the

maximum integrality violation, and solving Problem (CGP) once per iteration vs.

several times per iteration.

Four, a new generation of NGBD addressing continuous complicating variables

could be developed. Convergence of the current NGBD is guaranteed by the Balas

cuts excluding previous examined integer realizations. However, this convergence

property cannot hold for problems with continuous complicating variables, as no

previous visited value can be excluded for continuous variables. Therefore, new ap-

proaches need to be developed to address this issue. One possible way is to apply

the adaptive partition strategy to NGBD-LAP. As more finely partitioned subdo-

mains are obtained, tighter lower bounding problems are solved, and finally the so-

lution of the relaxed master problem and the primal problem will coincide without

any duality gap. Another way is to introduce the idea of parametric programming

[60, 69, 145, 56, 135, 58] into NGBD-PCR, by which the previously visited regions

for continuous variables can be effectively excluded as done by the Balas cuts.

Finally, parallel computation architectures could be considered for NGBD. Note

that there is no interaction between decomposed subproblems for each scenario.

Hence, parallel computation can be employed for solving subproblems simultane-

ously, and the computational speed can be greatly accelerated if multiple CPUs are

available.
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Appendix A

Detailed Mathematical Model for

Static Polygeneration Systems

A.1 Mathematical Model

A.1.1 Mass Balance

Air Separation Unit

The input rate of each species of air is denoted by:

F asu
air,j = xair,j F

asu
air , ∀j ∈ Jair (A.1)

where F asu
air,j is the molar flow rate of species j in air, F asu

air is the total molar flow rate

of input air; xair,j is the mole fraction of species j in air; Jair ≡ {N2, O2, Ar} is the

set of species in air.

The mass balances of the ASU are given by:

F asu
oxy,j = xoxy,j F

asu
oxy , ∀j ∈ Jair (A.2)

F asu
oxy,O2

= Sasu
O2

F asu
air,O2

(A.3)

F asu
air,j = F asu

oxy,j + F asu
nit,j , ∀j ∈ Jair (A.4)
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where F asu
oxy,j and F asu

nit,j are the molar flow rate of species j in the oxygen rich stream

and nitrogen rich stream from the ASU, F asu
oxy is the total molar flow rate of the

oxygen rich stream; xoxy,j is the mole fraction of species j in the oxygen rich stream,

Sasu
O2

is the split fraction of O2 in air to the oxygen rich stream, which are specified

parameters.

The oxygen stream is split for different downstream processes. The mass balance

of the split is denoted by:

F asu
oxy = F gas

oxy + F cls
oxy + F atr

oxy (A.5)

where F gas
oxy , F cls

oxy and F atr
oxy are the total molar flow rates of the oxygen stream sent to

the gasifier, the Claus plant and the auto-thermal reforming reactor in the Fischer-

Tropsch process. All above oxygen streams have the same species compositions as

the oxygen stream from the ASU.

Gasifier

The mass balance in the gasifier is given by:

Rgas
i [wcoal,i (1− wcoal,H2O)mgas

coal + wbio,i (1− wbio,H2O)mgas
bio ]

+ wH2O,i (wcoal,H2O mgas
coal + wbio,H2O mgas

bio) + ni,H2O MWH2O F gas
w,in +

∑
j

ni,j MWi F
gas
oxy,j

=
∑
j

ni,j MWi F
gas
rsyn,j , ∀i ∈ Ifeed , ∀j ∈ Jrsyn

(A.6)

And

(1− wbio,H2O)mgas
bio = Rb/f [(1− wcoal,H2O)mgas

coal + (1− wbio,H2O)mgas
bio ] (A.7)

where mgas
coal and mgas

bio are the mass flow rates of coal and biomass fed into the gasifier

respectively, F gas
rsyn,j and F gas

oxy,j are the molar flow rates of species j in the raw syngas

produced from the gasifier and the oxygen stream fed into the gasifier respectively,
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F gas
w,in is the molar flow rate of the water stream fed into the gasifier, Rb/f is the dry

mass fraction of biomass in the total feedstock; Rgas
i is the conversion of element i

in the gasifier, wcoal,H2O and wbio,H2O are the mass fraction of water in the coal and

biomass fed into the gasifier, wcoal,i and wbio,i are the dry mass fractions of element i

in the coal and biomass, which are specified parameters and assumed to be unchanged

throughout the project period; wH2O,i is the mass fraction of element i in the water,

MWi is the molar weight of element i, and ni,j is the number of atoms of element i

in one molecule of species j, which are constants; Ifeed ≡ {C, H, O, N, S, Cl} is the

set of elements in the feedstock of the gasifier, Jrsyn ≡ {CO, H2, CO2, H2O, CH4, N2,

Ar, H2S, COS, NH3, HCl} is the set of species in the raw syngas from the gasifier.

The mole flow rates of species in the raw syngas are expressed as:

F gas
rsyn,j =

[
Rb/f

Rb/f,max

(
Rrsyn
j/key,bio −R

rsyn
j/key

)
+Rrsyn

j/key

]
F gas

rsyn,key , ∀j ∈ J ′rsyn , ∀key ∈ Jrsyn,key

(A.8)

where F gas
rsyn,key is the molar flow rates of key species in the raw syngas; Rb/f,max is

the maximum mass fraction of biomass in the feedstock (= 30% here), Rrsyn
j/key and

Rrsyn
j/key,bio are the ratios of molar flow rates of species j and the key species in the raw

syngas produced from 100% of coal and the coal/biomass mixture with 30% (mass

based) of biomass, which are specified parameters; J ′rsyn ≡ {H2, CO2, H2O, CH4,

COS, NH3} ⊂ Jrsyn is the set of part of species in the raw syngas, Jrsyn,key ≡ {CO,

H2S, N2} is the set of key species in the raw syngas. For j ∈ {H2, CO2, H2O, CH4},

key = CO; if j = COS, key = H2S; if j = NH3, key = N2. So far, the mass balance

equations for the gasifier are complete.

Scrubber

The mass balance is denoted by:

F sr
tsyn,j = F sc

rsyn,j , ∀j ∈ Jtsyn (A.9)
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where F sc
rsyn,j and F sr

tsyn,j are the molar flow rates of species j in the raw syngas exiting

the syngas convective cooler and the treated syngas exiting the scrubber respectively;

Jtsyn ≡ {CO, H2, CO2, H2O, CH4, N2, Ar, H2S, COS} is the set of species in the

treated syngas exiting the scrubber.

COS Hydrolysis Reactor

The mass balance in the hydrolysis reactor is denoted by:

F hy
tsyn,j = F sr

tsyn,j + Stohy
j F sr

tsyn,COS , ∀j ∈ Jtsyn (A.10)

where F hy
tsyn,j is the molar flow rate of species j in the treated syngas exiting the COS

hydrolysis reactor; Stohy
j is the stoichiometric coefficient of species j in the hydrolysis

reaction (2.1).

Selexol Units

The mass balance in Selexol Unit 1 is given by:

F se1
csyn,j = Sse1

j

(
F co1

tsyn,j + F cls
tail,j

)
, ∀j ∈ Jcsyn (A.11)

F se1
sul,j = F co1

tsyn,j + F cls
tail,j − F se1

csyn,j , ∀j ∈ Jsul (A.12)

F se1
sul,H2S = xsul,H2S

(
F se1

sul,H2S + F se1
sul,CO2

)
(A.13)

where F se1
csyn,j, F

se1
sul,j, F

co1
tsyn,j and F cls

tail,j are the molar flow rates of species j in the clean

syngas from Selexol Unit 1, the H2S rich stream from Selexol Unit 1, the treated

syngas from Syngas Cooler 1 and the tail gas from the Claus plant, respectively; Sse1
j

is the split fraction of species j to the clean syngas in Selexol Unit 1, xsul,H2S is the

mole fraction of H2S in the H2S rich stream, which are specified parameters; Jcsyn ≡

{CO, H2, CO2, H2O, CH4, N2, Ar, H2S} is the set of species in the clean syngas

exiting Selexol Unit 1, Jsul ≡ CO2, H2S is the set of species in the H2S rich stream

exiting the Selexol unit. Sse1
j is set to be 1 for all species except H2S.
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The mass balance in Selexol Unit 2 is given by:

F se2
csyn,j = Sse2

j F co2
csyn,j , ∀j ∈ Jcsyn (A.14)

F se2
car = F co2

csyn,CO2
− F se2

csyn,CO2
(A.15)

where F se2
csyn,j and F co2

csyn,j are the molar flow rates of the clean syngas from Selexol Unit

2 and Syngas Cooler 2 respectively, F se2
car is the total molar flow rate of CO2 stream

from Selexol Unit 2; Sse2
j is the split fraction of species j to the clean syngas in Selexol

Unit 2, which is a specified parameter. Sse2
j is set to be 1 for all species except CO2.

The mass balance in Selexol Unit 3 is similar.

All above parameters are estimated from the rigorous Aspen simulation models.

Claus Plant

The mass balance is denoted by:

F cls
tail,j = F cls

oxy,j + F se1
sul,j + Stocls

j Rcls
H2S F

se1
sul,H2S , ∀j ∈ Jtail (A.16)

F cls
oxy,O2

− 1

2
Rcls

H2S F
se1
sul,H2S = 0 (A.17)

F cls
es = Rcls

H2S F
se1
sul,H2S (A.18)

where F cls
oxy,j and F cls

tail,j are the molar flow rates of species j in the oxygen stream from

the ASU injected into the Claus plant and the tail gas exiting the Claus plant, F cls
es

is the molar flow rate of elemental sulfur produced by the Claus plant; Rcls
H2S is the

conversion of H2S in the Claus reaction, which is a specified parameter; Stocls
j is the

stoichiometric coefficient of species j in the Claus reaction (2.2); Jtail ≡ {CO2, H2O,

N2, Ar, H2S} is the set of species in the tail gas exiting the Claus plant.
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Water-gas Shift Reactors

The mass balance in WGS Reactor 1 is denoted by:

Fwgs1
pd,j = Fwgs1

fd,j + Stowgs
j Rwgs1

CO Fwgs1
fd,CO , ∀j ∈ Jcsyn/{H2O} (A.19)

Fwgs1
pd,H2O = Fwgs1

fd,H2O + Fwgs1
w,in −R

wgs1
CO Fwgs1

fd,CO (A.20)

where Fwgs1
fd,j and Fwgs1

pd,j are the molar flow rates of species j in the feedstock stream

and product stream of WGS Reactor 1, Fwgs1
w,in is the molar flow rate of steam injected

into WGS Reactor 1, and Rwgs1
CO is the conversion of CO in WGS Reactor 1; Stowgs

j is

the stoichiometric coefficient of species j in the WGS reaction (2.3).

The product molar flow rates of the WGS reaction is constrained by the following

nonlinear correlation:

Fwgs1
pd,H2

Fwgs1
pd,CO2

+ Awgs Fwgs1
pd,CO Fwgs1

pd,H2O = 0 (A.21)

where Awgs is a factor regressed from the simulation results of the detailed WGS

reactor model.

The mass balance of WGS Reactor 2 is similar.

The H2 to CO mole ratio in the product of WGS Reactor 1 is required to be 2,

thus an additional specification equation is given:

Fwgs1
pd,H2

= 2Fwgs1
pd,CO (A.22)

There is no product requirement for WGS Reactor 2.

Pressure-swing Adsorption Unit

The mass balance in PSA is given by:

F psa
tail,j = F psa

csyn,j , ∀j ∈ Jcsyn/{H2} (A.23)
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F psa
tail,H2

=
(
1− Spsa

H2

)
F psa

csyn,H2
(A.24)

F psa
hyd = Spsa

H2
F psa

csyn,H2
(A.25)

where F psa
csyn,j and F psa

tail,j are the molar flow rates of species j in the clean syngas fed

into the PSA and the tail gas exiting the PSA, and F psa
hyd is the molar flow rate of the

pure hydrogen stream produced by the PSA; Spsa
H2

is the split fraction of H2 to the

hydrogen product stream from the PSA (or H2 recovery ratio), which is a specified

parameter.

Fischer-Tropsch Synthesis Reactor

The mass balance in the FT synthesis reactor is denoted by:

F fts
pd,CO =

(
1−Rfts

CO

)
F fts

fd,CO (A.26)

F fts
pd,H2

= F fts
fd,H2
−Rfts

CO

∑
j

[(
nH,j

2nC,j

+ 1

)
Sfts
j F fts

fd,CO

]
+Rfts

CO Sfts
CO2

F fts
fd,CO , ∀j ∈ Jfts

(A.27)

F fts
pd,j = F fts

fd,j +
1

nC,j

Rfts
CO Sfts

j F fts
fd,CO , ∀j ∈ Jfts (A.28)

F fts
pd,H2O = F fts

fd,H2O +Rfts
CO

(
1− 2Sfts

CO2

)
F fts

fd,CO (A.29)

F fts
pd,j = F fts

fd,j , ∀j ∈ {N2,Ar} (A.30)

where F fts
fd,j and F fts

pd,j are the molar flow rates of species j in the feedstock and product

streams of the FT synthesis reactor respectively; Rfts
CO is the conversion of CO in the

FT reaction, and Sfts
j is the carbon selectivity to species j in the FT reaction, which

are specified parameters; Jfts ≡ {CH4, C2H4, C2H6, C3H6, C3H8, C4H8, C4H10, C6H14,

C8H18, C16H34, C33H68, CO2} is the set of species produced from the FT reaction.

The feedstock specification for the FT synthesis reactor is given by:

F fts
fd,CO2

≤ xfts
CO2,max F

fts
fd (A.31)

where F fts
fd and F fts

fd,CO2
are the total molar flow rate and the CO2 molar flow in
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the feedstock stream of the FT synthesis reactor respectively; xfts
CO2,max is the upper

bound of the mole fraction of CO2 in the FT reactor feedstock, which is a specified

parameter. F fts
fd =

∑
j F

fts
fd,j, ∀j ∈ Jftfd, where Jftfd ≡ {CO, H2, CO2, H2O, N2, Ar,

CH4, C2H4, C2H6, C3H6, C3H8, C4H8, C4H10, C6H14} is the set of species in the FT

reactor feedstock stream.

Hydrocarbon Separation Unit

The mass balance in the hydrocarbon separation unit is given by:

F hs
lig,j = F fts

pd,j , ∀j ∈ Jlig/{C6H14} (A.32)

F hs
lig,C6H14

=
(
1− Shs

nap,C6H14

)
F fts

pd,C6H14
(A.33)

F hs
nap,C6H14

= Shs
nap,C6H14

F fts
pd,C6H14

(A.34)

F hs
nap,C8H18

= F fts
pd,C8H18

+ F hc
pd,C8H18

(A.35)

F hs
dis = F fts

pd,C16H34
+ F hc

pd,C16H34
(A.36)

F hs
wax = F fts

pd,C33H68
+ F hc

pd,C33H68
(A.37)

F hs
w,out = F fts

pd,H2O (A.38)

where F hs
lig,j and F hs

nap,j is the molar flow rate of species j in the light ends stream and

the naphtha (C6H14 and C8H18) stream, F hs
dis is the molar flow rate of the diesel (pure

C16H34) stream, F hs
wax is the molar flow rate of the wax (pure C33H68) stream, F hs

w,out

is the molar flow rate of the output water (pure H2O) stream, and F hc
pd,j is the molar

flow rate of species j in the product stream of the hydrocracking reactor; Shs
nap,C6H14

is the split fraction of C6H14 to the naphtha stream, which is a specified parameter

estimated from the Aspen simulation model; Jlig ≡ {CH4, C2H4, C2H6, C3H6, C3H8,

C4H8, C4H10, C6H14, CO, H2, CO2, H2O, N2, Ar} is the set of species in the light

ends stream.
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Hydrocracking Reactor

Mass balance is given by:

F hc
pd,C33H68

= Rhc
wax F

hs
wax (A.39)

F hc
pd,C8H18

=
33

8
Rhc

wax S
hc
nap F

hs
wax (A.40)

F hc
pd,C16H34

=
33

16
Rhc

wax

(
1− Shc

nap

)
F hs

wax (A.41)

F hc
pd,H2

= F psa
hyd + 34F hs

wax − 9F hc
pd,C8H18

− 17F hc
pd,C16H34

− 34F hc
pd,C33H68

(A.42)

F hc
pd,H2

=
(
1−Rhc

H2

)
F psa

hyd (A.43)

where Rhc
wax is the conversion of wax, Rhc

H2
is the conversion of H2, and Shc

nap is the

carbon selectivity to naphtha, which are specified parameters.

Auto-thermal Reforming Reactor

The mass balance is established as:

F atr
pd,CO =

(
1−Ratr

cm,CO

)
F atr

fd,CO +
∑
j

nC,j R
atr
rf,j

(
1−Ratr

cm,j

)
F atr

fd,j , ∀j ∈ Jatr (A.44)

F atr
pd,H2

=
(
1−Ratr

cm,H2

)
F atr

fd,H2
+
∑
j

(
nC,j +

nH,j

2

)
Ratr

rf,j

(
1−Ratr

cm,j

)
F atr

fd,j , ∀j ∈ Jatr

(A.45)

F atr
pd,H2O = F atr

w,in+Ratr
cm,H2

F atr
fd,H2

+
∑
j

nH,j

2
Ratr

cm,j F
atr
fd,j−

∑
j

nC,j R
atr
rf,j

(
1−Ratr

cm,j

)
F atr

fd,j , ∀j ∈ Jatr

(A.46)

F atr
pd,CO2

= F atr
fd,CO2

+Ratr
cm,CO F atr

fd,CO +
∑
j

nC,j R
atr
cm,j F

atr
fd,j , ∀j ∈ Jatr (A.47)

F atr
pd,j =

(
1−Ratr

cm,j

) (
1−Ratr

rf,j

)
F atr

fd,j , ∀j ∈ Jatr (A.48)

0 = F atr
oxy,O2

−1

2
Ratr

cm,CO F atr
fd,CO−

1

2
Ratr

cm,H2
F atr

fd,H2
−
∑
j

(
nC,j +

nH,j

4

)
Ratr

cm,j F
atr
fd,j , ∀j ∈ Jatr

(A.49)

F atr
pd,j = F atr

fd,j + F atr
oxy,j , ∀j ∈ {N2,Ar} (A.50)
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where F atr
fd,j, F

atr
pd,j and F atr

oxy,j are the molar flow rates of species j in the feedstock

stream of the ATR reactor, the product stream of the ATR reactor and the oxygen

stream from the ASU injected into the ATR reactor, and F atr
w,in is the molar flow

rate of steam injected in the ATR reactor; Ratr
cm,j is the conversion of species j in the

combustion reaction, which is defined as a variable dependent on the amount of input

oxygen; Ratr
rf,j is the conversion of species j in the steam reforming reaction (after

the combustion reaction), which is a specified parameter; Jatr ≡ {CH4, C2H4, C2H6,

C3H6, C3H8, C4H8, C4H10, C6H14} is the set of hydrocarbon species reacted in the

ATR reactor. For simplicity, we assume all combustible species in the ATR reactor

including CO, H2 and hydrocarbons have the same percent conversion, thus Ratr
cm,j

is assumed to be equal for all reactant species, and all Ratr
cm,j can be reduced to one

variable Ratr
cm. Ratr

rf,j is set to be 1 for all hydrocarbon species except CH4.

Excess steam needs to be added to achieve high conversion in the steam reforming

reactor. The appropriate steam injection rate should be determined by the detailed

ATR reactor model. Here, a fixed fraction of input water is assumed to be consumed

in the ATR reactor. Hence, the amount of injected steam is simply calculated by:

F atr
pd,H2O =

(
1−Ratr

w

)(
F atr

w,in +Ratr
cm,H2

F atr
fd,H2

+
∑
j

nH,j

2
Ratr

cm,j F
atr
fd,j

)
, ∀j ∈ Jatr

(A.51)

where Ratr
w is the water conversion in the ATR reactor, which is a specified parameter.

Methanol Synthesis Reactor

The mass balance in the MeOH reactor is given by:

Fmes
pd,j = Fmes

fd,j +Rmes
CO Smes

m Stomes
m,j F

mes
fd,CO +Rmes

CO (1− Smes
m ) Stomes

s,j Fmes
fd,CO , ∀j ∈ Jmes

(A.52)

where Fmes
fd,j and Fmes

pd,j is the molar flow rates of species j in the feedstock stream

and the product stream of the MeOH reactor respectively; Rmes
CO is the conversion

of CO in the MeOH reactor, Smes
m is the selectivity to the main reaction (or mole

ratio of CO reacted in the main reaction to total reacted CO); Stomes
m,j and Stomes

s,j are

240



the stoichiometric coefficients of species j in the main reaction and the side reaction

respectively; Jmes ≡ {CO, H2, CO2, H2O, CH4, N2, Ar, CH3OH, C2H5OH} is the set

of species involved in the MeOH reactor.

CO2 content in the feedstock of MeOH reactor is constrained by an up limit, which

is given by:

Fmes
fd,CO2

≤ xmes
CO2,max F

mes
fd (A.53)

where Fmes
fd and Fmes

fd,CO2
are the total molar flow rate and the CO2 molar flow in the

feedstock stream of the MeOH synthesis reactor respectively; xmes
CO2,max is the upper

bound of the mole fraction of CO2 in the MeOH reactor feedstock, which is a specified

parameter. Fmes
fd =

∑
j F

mes
fd,j , ∀j ∈ Jmefd, where Jmefd ≡ {CO, H2, CO2, H2O, N2, Ar,

CH4, CH3OH} is the set of species in the MeOH reactor feedstock stream.

Methanol Separation Unit

The mass balance in the methanol separation unit is given by:

Fms
unr,j = Fmes

pd,j , ∀j ∈ Junr/{CH3OH} (A.54)

Fms
unr,CH3OH = Sms

unr,CH3OH Fmes
pd,CH3OH (A.55)

Fms
met = Sms

met,CH3OH Fmes
pd,CH3OH (A.56)

Fms
alc,CH3OH =

(
1− Sms

unr,CH3OH − Sms
met,CH3OH

)
Fmes

pd,CH3OH (A.57)

Fms
alc,j = Fmes

pd,j , ∀j ∈ Jalc/{CH3OH} (A.58)

where Fms
unr,j and Fms

alc,j are the molar flow rates of species j in the unreacted syngas

stream and the higher alcohols stream, and Fms
met is the molar flow rate of the methanol

(pure CH3OH) stream; Sms
unr,CH3OH and Sms

met,CH3OH are the split fractions of CH3OH to

the unreacted syngas stream and the methanol stream, which are specified parameters

estimated from the Aspen simulation model; Junr ≡ {CO, H2, CO2, CH4, N2, Ar,

CH3OH} is the set of species in the unreacted syngas stream, and Jalc ≡ {CH3OH,

H2O, C2H5OH} is the set of species in the higher alcohols stream.
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Gas Turbine

The mass balance is denoted by:

F gtc
pd,CO2

= F gtc
fd,CO2

+
∑
j

nC,j F
gtc
fd,j , ∀j ∈ Jgtc (A.59)

F gtc
pd,SO2

=
∑
j

nS,j F
gtc
fd,j , ∀j ∈ Jgtc (A.60)

F gtc
pd,H2O = F gtc

fd,H2O +
1

2

∑
j

nH,j F
gtc
fd,j , ∀j ∈ Jgtc (A.61)

F gtc
pd,O2

= F gtc
fd,O2
−
∑
j

(
nC,j + nS,j +

1

4
nH,j −

1

2
nO,j

)
F gtc

fd,j , ∀j ∈ Jgtc (A.62)

F gtc
pd,j = F gtc

fd,j , ∀j ∈ {N2,Ar} (A.63)

F gtc
pd,H2O = Rgtc

O2
F gtc

fd,H2O (A.64)

where F gtc
fd,j and F gtc

pd,j are the molar flow rates of species j in the feedstock stream

and the product stream of the gas turbine combustor; Rgtc
O2

is the excess ratio of O2

in the gas turbine combustor, which is a specified parameter; Jgtc ≡ {CO, H2, CH4,

C2H4, C2H6, C3H6, C3H8, C4H8, C4H10, C6H14, CH3OH, H2S} is the set of combusted

species in the gas turbine combustor.

The high temperature flue gas produced from the gas turbine combustor expands

in the gas turbine, passes through the HRSG, and then is discharged. The mass

balance in the gas turbine and HRSG is given by:

F gt
pd,j = F gtc

pd,j , ∀j ∈ Jgt (A.65)

F sg
fl,j = F gt

pd,j , ∀j ∈ Jgt (A.66)

where F gt
pd,j and F sg

fl,j are the molar flow rates of species j in the product stream (or

flue gas) of the gas turbine and the HRSG respectively; Jgt ≡ {N2, O2, Ar, CO2,

H2O, SO2} is the set of species in the gas turbine flue gas.
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The SO2 molar flow rate in the flue gas is limited by the following sulfur regulation:

MWS F
sg
fl,SO2

≤ Rfl
S,max [wcoal,S (1− wcoal,H2O)mgas

coal + wbio,S (1− wbio,H2O)mgas
bio ]

(A.67)

where Rfl
S,max is the upper bound of the ratio of the sulfur mass flow rate in the flue

gas to the sulfur mass flow rate in the feedstock of the entire process, which is a

specified parameter.

Gas Coolers and Heaters

In the gas coolers without water output and gas heaters, the mass balance in the

general form is simply given by:

F k
out,j = F k

in,j , ∀j ∈ Jspe(k) , ∀k ∈ Kco ∪Krh (A.68)

where F k
in,j and F k

out,j are the molar flow rates of species j in the input stream and

output stream of unit operation k respectively; Jspe(k) is the set of species in the unit

operation k, Kco ≡ {rc, sc, atrpdco} is the set of gas coolers without water output,

and Krh ≡ {rh1, wgs1ht, wgs2ht, rh2, rh3, atrfdh, nh, gtcwh} is the set of gas heaters.

In the gas coolers with water output, the mass balance in the general form is given

by:

F k
out,j = F k

in,j , ∀j ∈ Jspe(k)/{H2O} , ∀k ∈ Kcow (A.69)

F k
out,H2O = xco

w F k
out , ∀k ∈ Kcow (A.70)

F k
out =

∑
j

F k
out,j , ∀j ∈ Jspe(k) , ∀k ∈ Kcow (A.71)

F k
w,out = F k

in,H2O − F k
out,H2O , ∀k ∈ Kcow (A.72)

where F k
out is the total molar flow rates of the output stream of unit operation k; xco

w

is the mole fraction of water in the output stream of gas coolers, which is a specified

parameter; Kcow ≡ {co1, co2, co3, clsc} is the set of gas coolers with water output.
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Compressors and Turbines

For all compressors and turbines, the mass balance in the general form is simply given

by:

F k
out,j = F k

in,j , ∀j ∈ Jspe(k) , ∀k ∈ Kcp ∪Ktb (A.73)

Where Kcp ≡ {oxyc, clsc, cc, psagtc, atrscc, ligc1, ligc2, oxycr, unrc1, unrc2, nc, ac}

is the set of compressors, and Ktb ≡ {sntft, sntgt1, sntgt2, gt} is the set of turbines.

Mixers

In the polygeneration process, the mixers are placed before reactors, blending the

reactor feedstock from different sources. The mass balance in mixers is given by:

F k
fd,j =

∑
k′

F k′

out,j , ∀j ∈ Jspe(k) , ∀k ∈ Krtf , ∀k′ ∈ Kfed(k) (A.74)

where F k
fd,j is the molar flow rate of species j in the feed stream of unit operation

k; Krtf ≡ {wgs1, fts, atr, mes, gtc} is the set of reactors requiring feedstock mixer,

Kfed(k) is the set of unit operations providing the feedstock to reactor k.

Splitters

The mass balance in splitters is given by:

F k′

in,j = Sk
′
F k

in,j , ∀j ∈ Jspe(k) , ∀k ∈ Kspl , ∀k′, k′′ ∈ Kout(k) (A.75)

F k′′

in,j = F k
in,j − F k′

in,j , ∀j ∈ Jspe(k) , ∀k ∈ Kspl , ∀k′, k′′ ∈ Kout(k) (A.76)

where Sk
′
is the split fraction of the splitter output stream to unit operation k′; Kspl ≡

{splsyn1, splsyn2, splcar, splpsa, spllig, splatr, splunr} is the set of splitters, Kout(k)

is the set of unit operations receiving the output of the splitter k.
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A.1.2 Energy Balance

Gas Coolers and Heaters

The heat generation of the gas coolers without water output is equal to the difference

of input enthalpy and output enthalpy:

Qk
g =

∑
j

F k
in,j hj

(
T kin
)
−
∑
j

F k
out,j hj

(
T kout

)
, ∀j ∈ Jspe(k) , ∀k ∈ Kco (A.77)

where Qk
g is the heat generation rate of the unit operation k. hj is the molar enthalpy

of species j, which is a function of temperature. T kin and T kout are temperatures of

the input stream and the output stream of unit operation k respectively, which are

specified parameters. In energy balance calculations, all temperatures except the tem-

perature of gas turbine input stream are specified parameters. hj
(
T kin
)

and hj
(
T kout

)
are the molar enthalpy of species j in the input stream and the output stream of unit

operation k respectively, which will be calculated in Section A.1.3.

The heat consumption of the gas heaters is given by:

Qk
c =

∑
j

F k
out,j hj

(
T kout

)
−
∑
j

F k
in,j hj

(
T kin
)
, ∀j ∈ Jspe(k) , ∀k ∈ Krh (A.78)

where Qk
c is the heat consumption rate of the unit operation k.

Reactors

The heat generation of the reactors in the general form is denoted by:

Qk
g =

∑
k′

∑
j

F k′

out,j hj

(
T k
′

out

)
−
∑
j

F k
out,j hj

(
T kout

)
, ∀j ∈ Jspe(k) , ∀k ∈ Krt , ∀k′ ∈ Kfed(k)

(A.79)

where Krt ≡ {hy, cls, wgs1, wgs2, fts, hc, atr, mes, gtc} is the set of reactors.

The ATR reactor is required to satisfy the auto-thermal constraint:

Qatr
g ≥ 0 (A.80)
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The temperature of gas turbine combustor product (or output) stream is a vari-

able, whose value is dependent on the input rates of nitrogen and steam dilution

stream. Its value is limited by:

T gtc
out ≤ T gtc

max (A.81)

where T gtc
max is the upper bound of the allowable temperatures of the gas turbine

combustor product, which is a specified parameter estimated from the NETL report.

And the gas turbine combustor is assumed to be an adiabatic reactor:

Qgtc
g = 0 (A.82)

Separation Units

The heat and power consumption in the Selexol units for H2S removal are given by:

Qk
c = QCsesul

c F k
fd , ∀k ∈ {se1} (A.83)

Ek
c = ECsesul

c F k
fd , ∀k ∈ {se1} (A.84)

where Ek
c is the power consumption rate in the unit operation k, and F k

fd is the

total molar flow rate of the feedstock stream of unit operation k. F k
fd =

∑
j F

k
fd,j,

∀j ∈ Jspe(k). In this case, F se1
fd = F co1

tsyn =
∑

j F
co1
tsyn,j, ∀j ∈ Jtsyn. QCsesul

c and ECsesul
c

are the coefficients of the heat consumption rate and the power consumption rate in

the Selexol unit for H2S removal, which are specified parameters regressed from the

Aspen simulation results.

The power consumption in the Selexol units for CO2 removal is given by:

Ek
c = ECsecar

c F k
car , ∀k ∈ {se2, se3} (A.85)

where F k
car is the molar flow rate of the CO2 stream produced from unit operation k;

ECsecar
c is the coefficient of the power consumption rate in the Selexol unit for CO2

removal, which is a specified parameter regressed from the Aspen simulation results.

Heat consumption in the Selexol units for CO2 removal is neglected.
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The heat and power consumption in the hydrocarbon separation unit are given

by:

Qhs
c = QChs

c,A F fts
pd + QChs

c,B F
fts
fd,CO (A.86)

Ehs
c = EChs

c F fts
fd,CO (A.87)

where F fts
pd is the total molar flow rate of the product stream of the FT synthesis

reactor, and F fts
fd,CO is the molar flow rate of CO in the feedstock stream of the FT

synthesis reactor; QChs
c,A and QChs

c,B are the coefficients of the heat consumption rate in

the hydrocarbon separation unit, and EChs
c is the coefficient of the power consumption

rate in the hydrocarbon separation unit, which are specified parameters regressed

from the Aspen simulation results. F fts
pd =

∑
j F

fts
pd,j, ∀j ∈ Jftpd, where Jftpd ≡ {CO,

H2, CO2, H2O, N2, Ar, CH4, C2H4, C2H6, C3H6, C3H8, C4H8, C4H10, C6H14, C8H18,

C16H34, C33H68} is the set of species in the FT reactor product stream.

The heat and power consumption in the methanol separation unit are given by:

Qms
c = QCms

c,A Fmes
pd + QCms

c,B F
mes
fd,CO (A.88)

Ems
c = ECms

c Fmes
pd (A.89)

where Fmes
pd is the total molar flow rate of the product stream of the MeOH synthesis

reactor, and Fmes
fd,CO is the molar flow rate of CO in the feedstock stream of the MeOH

synthesis reactor; QCms
c,A and QCms

c,B are the coefficients of the heat consumption rate

in the methanol separation unit, and ECms
c is the coefficient of the power consumption

rate in the methanol separation unit, which are specified parameters regressed from

the Aspen simulation results. Fmes
pd =

∑
j F

mes
pd,j, ∀j ∈ Jmepd, where Jmepd ≡ {CO, H2,

CO2, H2O, N2, Ar, CH4, CH3OH, C2H5OH} is the set of species in the MeOH reactor

product stream.
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Compressors and Turbines

The power consumption in compressors is given by:

Ek
c = Ek

c,0

F k
in

F k
in,0

, ∀k ∈ Kcp (A.90)

where F k
in is the total molar flow rate of the input stream of unit operation k; F k

in,0 is

the total molar flow rate of the input stream of unit operation k in the base case, Ek
c,0

is the power consumption rate of unit operation k in the corresponding base case,

which are specified parameters. F k
in =

∑
j F

k
in,j, ∀j ∈ Jspe(k).

The power consumption rates in the ASU and gasifier are calculated in the same

way:

Ek
c = Ek

c,0

F k
in

F k
in,0

, ∀k ∈ {asu, gas} (A.91)

The power generation in turbines except the gas turbine and steam turbine is

given by:

Ek
g = Ek

g,0

F k
in

F k
in,0

, ∀k ∈ Ktb/{gt} (A.92)

where F k
in,0 is the total molar flow rate of the input stream of unit operation k in the

base case, Ek
g,0 is the power generation rate of unit operation k in the corresponding

base case, which are specified parameters.

The power generation in the gas turbine is denoted by:

Egt
g = ηgt Qgt

c (A.93)

where Egt
g is the power generation rate in the gas turbine and Qgt

c is the heat con-

sumption rate in the gas turbine; ηgt is the mechanical efficiency in the gas turbine,

which is a specified parameter estimated from the Aspen simulation model.

The heat consumption in the gas turbine is given by:

Qgt
c = Qgt

g (A.94)
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Qgt
g =

∑
j

F gtc
pd,j hj

(
T gtc

pd

)
−
∑
j

F gt
pd,j hj

(
T gt

pd

)
, ∀j ∈ Jgt (A.95)

where Qgt
g is the heat generation rate in the gas turbine, T gtc

pd is the temperature of the

product stream of the gas turbine combustor; T gt
pd is the temperature of the product

stream of the gas turbine, which is a specified parameter estimated from the Aspen

simulation model.

The power generated in the steam turbine is divided into two parts: power gen-

erated from the high quality heat and the low quality heat, whose energy conversion

efficiency are different. The power generation in the steam turbine is then given by:

Esthi
g = ηsthi Qsthi

c (A.96)

Estlo
g = ηstlo Qstlo

c (A.97)

where Esthi
g and Estlo

g are the power generation rates in the steam turbine from the

high quality heat and the low quality heat respectively, Qsthi
c and Qstlo

c are the high

quality heat consumption rate and the low quality heat consumption rate in the steam

turbine; ηsthi and ηstlo are the energy conversion efficiency of the high quality heat and

low quality heat respectively, which are specified parameters estimated from Aspen

simulation model.

High quality heat only includes the heat generated under relatively high temper-

atures. In this model, it is given by:

Qsthi
c ≤ Qrc

g +Qsc
g +Qsg

g +Qatrpdco
g −Qstrfdh

c −Qwgs1ht
c −Qwgs2ht

c (A.98)

where Qrc
g , Qsc

g , Qsg
g and Qatrpdco

g are the heat generation rates in the gasifier radiant

cooler, the gasifier convective cooler, the gas turbine flue gas cooler in the HRSG and

the ATR reactor product cooler; Qstrfdh
c , Qwgs1ht

c , Qwgs2ht
c are the heat consumption

rates in the ATR feedstock heater, the heater for WGS Reactor 1 injected steam and

the heater for WGS Reactor 2 injected steam.

Low quality heat is supplied by all other heat generated in the process.
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Heat Recovery Steam Generator

The heat recovery from the gas turbine flue gas in the HRSG is given by:

Qsg
g =

∑
j

F gt
pd,j hj

(
T gt

pd

)
−
∑
j

F sg
fl,j hj (T sg

fl ) , ∀j ∈ Jgt (A.99)

where T sg
fl is the temperature of the flue gas discharged from the HRSG, which is a

specified parameter estimated from the Aspen simulation model.

The heat balance of the whole system is established as:

∑
k

Qk
g −

∑
k′

Qk′

c = 0 , ∀k ∈ Kqg , ∀k′ ∈ Kqc (A.100)

where Kqg ≡ {rc, sc, wgs1, wgs2, cls, fts, atr, atrpdco, mes, gt, sg} is the set of

unit operations with heat generation and Kqc ≡ {se1, rh1, wgs1ht, wgs2ht, rh2,

rh3, hs, atrfdh, ms, nh, gtcwh, gt, sthi, stlo} is the set of unit operations with heat

consumption.

A.1.3 Enthalpy Calculation

The molar enthalpy of each species is expressed as the polynomial function of tem-

perature:

hj(T ) = hA,j T
2 + hB,j T + hC,j , ∀j ∈ Jspe (A.101)

where hA,j, hB,j and hC,j are molar enthalpy coefficients, which are specified pa-

rameters regressed from the Aspen Plus property analysis data and are functions of

pressure. Jspe is the set of all species in the entire system.

A.1.4 Production Rates and Feedstock Consumption Rates

The power generation rate of the whole system is given as follows:

mp
ele =

∑
k

Ek
g −

∑
k′

Ek′

c , ∀k ∈ Keg , ∀k′ ∈ Kec (A.102)
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where Keg ≡ {sntft, sntgt1, sntgt2, gt, sthi, stlo} is the set of unit operations with

power generation and Kec ≡ {asu, oxyc, gas, se1, clsc, se2, se3, cc, psagtc, hs, atrscc,

lig1, lig2, oxycr, ms, unrc1, unrc2, nc, ac} is the set of unit operations with power

consumption.

The naphtha production rate (mass based) is given by:

mp
nap = MWC6H14 F

hs
nap,C6H14

+ MWC8H18 F
hs
nap,C8H18

(A.103)

The diesel production rate (mass based) is given by:

mp
dis = MWC16H34 F

hs
dis (A.104)

The methanol production rate (mass based) is given by:

mp
met = MWCH3OH Fms

met (A.105)

The sulfur production rate (mass based) is given by:

mp
es = MWS F

cls
es (A.106)

The CO2 sequestration rate (mass based) is given by:

mp
car = MWCO2 F

cc
car (A.107)

where F cc
car is the molar flow rate of the CO2 stream sent to the CO 2 compressor.

F cc
car = Sseq F

se2
car + F se3

car (A.108)

where F se2
car and F se3

car are the molar flow rates of CO2 streams exiting Selexol Unit 2 and

Selexol Unit 3 respectively, Sseq is the split fraction of CO2 stream to sequestration.
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The coal consumption rate (mass based) is given by:

mf
coal = mgas

coal (A.109)

The biomass consumption rate (mass based) is given by:

mf
bio = mgas

bio (A.110)

The water consumption rate (mass based) is given by:

mf
w = MWH2O

(∑
k

F k
w,in −

∑
k′

F k′

w,out

)
, ∀k ∈ Kwi; , ∀k′ ∈ Kwo (A.111)

where F k
w,in and F k′

w,out are the molar flow rates of the input water in unit operation

k and the output water in unit operation k′ respectively; Kwi ≡ {gas, wgs1, wgs2,

atrfdh, gtc} is the set of unit operations with water input and Kwo ≡ {co1, co2, co3,

clsc, hs} is the set of unit operations with water output.

A.1.5 Capital Costs

The capital costs of feedstock preparing equipments are given by:

C l = C l
b

(
mgas

fd

F l
b

)sfl

, ∀l ∈ {fdh, fdp} (A.112)

where C l is the capital cost of equipment l, mgas
fd is the mass flow rate of total feedstock

fed into the gasifier;

mgas
fd = mgas

coal +mgas
bio (A.113)

F l
b is the total mass (or molar) flow rate of the input stream of equipment l in the

base case, C l
b is the capital cost of equipment l in the corresponding base case, and

sf l is the sizing factor of equipment l, which are all specified parameters.
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The capital costs of gasification related equipments are given by:

C l = C l
b

(
mgas

fd,dry

F l
b

)sfl

, ∀l ∈ {gas, ash, sr, oth} (A.114)

where mgas
fd,dry is the dry mass flow rate of total feedstock fed into the gasifier.

mgas
fd,dry = (1− wcoal,H2O)mgas

coal + (1− wbio,H2O)mgas
bio (A.115)

The dry mass flow rate of gasifier feedstock is limited by:

mgas
fd,dry ≤ mgas

ca (A.116)

where mgas
ca is the upper limit of dry mass flow rate of total feedstock fed into the

gasifier or the maximum capacity of the gasifier, which is a specified parameter.

The capital cost of CO2 compressor is given by:

Ccc = Ccc
b

(
mp

car

F cc
b

)sfcc

(A.117)

The capital costs of equipments in the hydrocarbon separation process are given

by:

C l = C l
b

(
mp

fue

F l
b

)sfl

, ∀l ∈ {hs, hc} (A.118)

where mp
fue is the mass based liquid fuels production rate of the whole process.

mp
fue = mp

nap +mp
dis (A.119)

The capital costs of the methanol separation unit are given by:

Cms = Cms
b

(
mp

met

Fms
b

)sfms

(A.120)
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The capital costs of the gas turbine and steam turbine are given by:

C l = C l
b

(
El

g

F l
b

)sfl

, ∀l ∈ {gt, st} (A.121)

where Est
g is the power generation rate in the steam turbine, and

Est
g = Esthi

g + Estlo
g (A.122)

The capital cost of the HRSG is given by:

Csg = Csg
b

(
Est

g

F sg
b

)sfsg

(A.123)

The capital costs of the Selexol units for CO2 removal are calculated as two parts:

the first part is related to the total molar flow rate of input stream, which is given

by:

C l = C l
b

(
F l

in

F l
b

)sfl

, ∀l ∈ {se2tot, se3tot} (A.124)

and the second part is related to the molar flow rate of the output CO2 stream, which

is given by:

C l = C l
b

(
F l

car

F l
b

)sfl

, ∀l ∈ {se2car, se3car} (A.125)

where, F l
in is the total molar flow rate of the input stream of equipment l, and F l

car is

the molar flow rate of CO2 stream exiting the equipment l.

The capital costs of all remaining equipment in the system can be expressed as

the general form:

C l = C l
b

(
F l

in

F l
b

)sfl

, ∀l ∈ {asu, hy, se1, cls,wgs1,wgs2, psa, sco, fts, atr, fto,mes,meo}

(A.126)

The total capital investment of the process is given by:

Cap =
∑
l

C l , ∀l ∈ Leq (A.127)
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where Cap is the total capital investment; Leq ≡ {fdh, fdp, asu, gas, ash, sr, hy, se1,

cls, wgs1, se2tot, se2car, wgs2 se3tot, se3car, cc, psa, sco, fts, hs, hc, atr, fto, mes,

ms, meo, gt, st, sg, oth} is set of equipments with capital cost.

A.1.6 Economic Analysis

The total annual cost is:

Cost = Costfed + Costcar
tax + Costcar

ccs + Costope (A.128)

where Cost is the total annual cost, Costfed is the cost of purchasing the feedstock,

Costcar
tax is the carbon emissions tax, Costcar

ccs is the cost of carbon sequestration and

Costope is the operational cost.

The feedstock cost is given by:

Costfed =

(∑
q

P f
q m

f
q

)
top , ∀q ∈ Feed (A.129)

where mf
q is the consumption rate of feedstock q; P f

q is the market price of feedstock

q, and top is the annual operating time, which are specified parameters; Feed ≡ {coal,

bio, w} is the set of feedstocks.

The carbon tax is given by:

Costcar
tax = P car

tax Emisnet (A.130)

where Emisnet is the annual net CO2 emissions; P car
tax is the carbon tax per tonne of

CO2 emitted, which is a specified parameter. CO2 emissions are calculated by:

Emisgro = MWCO2

[
F sg

fl,CO2
+ (1− Sseq)F se2

car

]
top (A.131)

Emisnet = Emisgro −
MWCO2

MWC

(1− wbio,H2O)wbio,C m
gas
bio top (A.132)

where Emisgro is the annual gross CO2 emissions. If the carbon tax policy also taxes
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the carbon in the liquid fuels (since they will ultimately be burned in their final use),

the annual net CO2 emissions are given by:

Emisnet =Emisgro −
MWCO2

MWC

(1− wbio,H2O)wbio,C m
gas
bio top

+ MWCO2

(
6F hs

nap,C6H14
+ 8F hs

nap,C8H18
+ 16F hs

dis

)
top

(A.133)

The carbon sequestration cost is given by:

Costcar
ccs = P car

ccs m
p
car (A.134)

where P car
ccs is the carbon sequestration fee per tonne CO2, which is a specified param-

eter.

The operational cost is given by:

Costope = Costfix
ope + Costvar

ope (A.135)

where Costfix
ope is the fixed annual operational cost, which is a specified parameter;

Costvar
ope is variable annual operational cost, which is calculated by the linear scaling

up relationship:

Costvar
ope = Costvar

ope,b

mgas
fd

mgas
fd,b

(A.136)

where mgas
fd,b is the mass flow rate of the total feedstock fed into the gasifier in the

base case, and Costvar
ope,b is the annual variable operational cost in the corresponding

base case, which are specified parameters.

The revenue is denoted by:

Reve =

(∑
q

P p
q m

p
q

)
top , ∀q ∈ Prod (A.137)

where mp
q is the production rate of product q; P p

q is the market price of product q,

which are specified parameters; Prod ≡ {ele, nap, dis, met, es} is the set of products.
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The profit is calculated by:

Progro = Reve− Cost (A.138)

Pronet = (1−Rtax) Progro (A.139)

where Progro and Pronet are the annual gross profit and the annual net profit respec-

tively; Rtax is the tax rate, which is a specified parameter.

The net present value, which is the objective function of this model, is denoted

by:

NPV = −Cap + Pronet
1

r

(
1− 1

(1 + r)tlf

)
+
Rtax Cap

tdp

1

r

(
1− 1

(1 + r)tdp

)
(A.140)

where NPV is the net present value of the polygeneration project; r is the annual

discount rate, tlf is the life time of the project, and tdp is the depreciation time of the

project, which are specified parameters.

A.2 Parameter Tables
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Table A.1: Mole/mass compositions

Parameter Value

xair,N2 0.7719

xair,O2 0.2076

xair,Ar 0.0205

xoxy,N2 0.018

xoxy,O2 0.95

xoxy,Ar 0.032

xsul,H2S 0.48

xfts
CO2,max 0.05

xmes
CO2,max 0.1

xco
w 0.0016

wcoal,H2O 0.1112

wbio,H2O 0.082

wcoal,C 0.7172

wcoal,H 0.0506

wcoal,O 0.0775

wcoal,N 0.0141

wcoal,S 0.0282

wcoal,Cl 0.0033

wbio,C 0.476

wbio,H 0.058

wbio,O 0.4012

wbio,N 0.005

wbio,S 0.0008

wbio,Cl 0.001

wH2O,H 0.1119

wH2O,O 0.8881
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Table A.2: Mass/molar ratios

Parameter Value

Rb/f,max 0.3

Rrsyn
H2/CO 0.756

Rrsyn
H2O/CO 0.478

Rrsyn
CO2/CO 0.27

Rrsyn
CH4/CO 0.00039

Rrsyn
COS/H2S 0.0586

Rrsyn
NH3/N2

0.00406

Rrsyn
H2/CO,bio 0.7825

Rrsyn
H2O/CO,bio 0.7145

Rrsyn
CO2/CO,bio 0.3792

Rrsyn
CH4/CO,bio 1.56 × 10−5

Rrsyn
COS/H2S,bio 0.05647

Rrsyn
NH3/N2,bio 0.003525

Rfl
S,max 0.001

Table A.3: Conversions

Parameter Value

Rgas
C 0.98

Rgas
i (i 6= C) 1

Rcls
HS

0.975

Rfts
CO 0.65

Rhc
wax 0.3333

Rhc
H2

0.7495

Ratr
rf,CH4

0.96

Ratr
rf,j (j 6= CH4) 1

Ratr
w 0.5

Rmes
CO 0.33

Rgtc
O2

0.647

Awgs 42.766
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Table A.4: Efficiency

Parameter Value

ηgt 0.985

ηsthi 0.4407

ηstlo 0.1542

Table A.5: Selectivity

Parameter Value

Sfts
CH4

0.05

Sfts
C2H4

0.0005

Sfts
C2H6

0.01

Sfts
C3H6

0.02

Sfts
C3H8

0.01

Sfts
C4H8

0.02

Sfts
C4H10

0.01

Sfts
C6H14

0.08

Sfts
C8H18

0.11

Sfts
C16H34

0.22

Sfts
C33H68

0.46

Sfts
CO2

0.0095

Shc
nap 0.1053

Smes
m 0.99
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Table A.6: Split fractions

Parameter Value

Sasu
O2

0.94

Sse1
H2S 6 × 10−7

Sse1
j (j 6= H2S) 1

Sse2
CO2

, Sse3
CO2

0.031

Sse2
j , Sse3

j (j 6= CO2) 1

Spsa
H2

0.9

Shs
nap,C6H14

0.986

Sms
unr,CH3OH 0.031

Sms
met,CH3OH 0.959
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Table A.7: Temperatures (◦C)

Parameter Value

T asu 32.2

T gas 1370

T rc 593

T sc 205

T co1, T co2, T co3 39

T se1
csyn, T se2

hyg, T se3
hyg 22.5

T se1
sul 49

T cls
tail 35

T cls
w 39.7

T cls
es 189.2

T rh1, T rh2, T rh3 240

Twgs
w,in 270

Twgs 232

T fts
pd 240

T atr
fd 550

T atr
pd 1000

T sntft 131.3

Tmes
pd 240

Tms
alc 84.7

T sntgt1, T sntgt2 187.5

T nh 196

T ac 405

T gtc
max 1200

T gt
pd 563.3

T sg
fl 131.9
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Table A.8: Base case flow rates for power consumption/generation (Mmol/hr)

Parameter Value

F asu
air,0 29.138

F oxyc
oxy,0 5.8975

mgas
fd,0

∗ 226.97

F clsc
tail,0 0.2931

F cc
car,0 11.357

F psa
tail,0 1

F sntft
fd,0 30

F ligc1
lig,0 4.7551

F ligc2
lig,0 2.3775

F oxycr
oxy,0 0.2812

F strscc
fd,0 10

F unrc1
unr,0 19.5507

F unrc2
unr,0 17.6034

F sntgt
fd,0 18.4207

F nc
nit,0 19.38

F ac
air,0 110.664

* : the unit is tonne/hr.
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Table A.9: Base case power consumption/generation rates (MW)

Parameter Value

Easu
c,0 72.2496

Eoxyc
c,0 11.422

Egas
c,0 5.17

Eclsc
c,0 1.087

Ecc
c,0 36.943

Epsagtc
c,0 2.1681

Esntft
c,0 26.484

Eligc1
c,0 9.598

Eligc2
c,0 1.1479

Eoxycr
c,0 0.1805

Estrscc
c,0 9.7352

Eunrc1
c,0 9.6435

Eunrc2
c,0 11.8344

Esntgt
c,0 8.1863

Enc
c,0 35.7034

Eac
c,0 364.425

Table A.10: Heat/power consumption coefficients

Parameter Value Unit

QCsesul
c 3.8496 kJ/mol

ECsesul
c 0.1061 W·hr/mol

ECsecar
c 1.6981 W·hr/mol

QChs
c,A -0.8581 kJ/mol

QChs
c,B 9.1778 kJ/mol

EChs
c 0.0421 W·hr/mol

QCms
c,A 0 kJ/mol

QCms
c,B 39.9528 kJ/mol

ECms
c -0.8806 W·hr/mol
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Table A.11: Molar weight (kg/kmol)

Parameter Value

MWC 12.01

MWH 1.008

MWO 16

MWN 14.01

MWS 32.07

MWCl 35.45

MWH2O 18.01

MWCO2 44.01

MWC6H14 86.18

MWC8H18 114.23

MWC16H34 226.44

MWCH3OH 32.04
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Table A.12: Coefficients for enthalpy calculations under 5.5 MPa

Component hA hB hC

N2 2.179 × 10−6 2.957 × 10−2 -1.047

O2 2.143 × 10−6 3.16 × 10−2 -1.349

Ar -4.263 × 10−7 2.172 × 10−2 -0.922

CO 2.176 × 10−6 3 × 10−2 -111.65

H2 1.526 × 10−6 2.826 × 10−2 -0.577

CO2 4.066 × 10−6 4.872 × 10−2 -397.65

H2O 1.66 × 10−6 4.223 × 10−2 -248.06

H2S 3.734 × 10−6 4.177 × 10−2 -25.069

COS 1.405 × 10−6 5.658 × 10−2 -148.24

HCl -1.586 × 10−7 3.348 × 10−2 -95.529

NH3 8.433 × 10−6 4.548 × 10−2 -50.837

CH3OH -4.879 × 10−5 1.147 × 10−1 -219.53

CH4 1.985 × 10−5 4.218 × 10−2 -77.124

C2H4 3.169 × 10−5 5.269 × 10−2 48.556

C2H6 4.173 × 10−5 6.514 × 10−2 -88.944

C3H6 3.415 × 10−5 9.2 × 10−2 11.092

C3H8 4.634 × 10−5 1.061 × 10−1 -115.16

C4H8 3.34 × 10−5 1.391 × 10−1 -16.869

C4H10 3.458 × 10−5 1.631 × 10−1 -145.1

C6H14 -1.401 × 10−4 4.109 × 10−1 -235.58

H2O(l) ∗ 3.54 × 10−5 7.663 × 10−2 -289.58

C2H5OH -6.327 × 10−4 4.984 × 10−1 -308.94

* : (l) represents the liquid phase.
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Table A.13: Coefficients for enthalpy calculations under 3.2 MPa

Component hA hB hC

N2 2.489 × 10−6 2.906 × 10−2 -0.9

O2 2.755 × 10−6 3.074 × 10−2 -1.109

Ar -3.743 × 10−7 2.147 × 10−2 -0.778

CO 2.584 × 10−6 2.937 × 10−2 -111.47

H2 1.289 × 10−6 2.849 × 10−2 -0.638

CO2 6.39 × 10−6 4.483 × 10−2 -396.19

H2O 3.587 × 10−6 3.736 × 10−2 -245.22

H2S 6.026 × 10−6 3.74 × 10−2 -23.128

CH3OH -9.242 × 10−5 1.199 × 10−1 -215.7

CH4 2.285 × 10−5 3.86 × 10−2 -76.325

C2H4 3.582 × 10−5 4.873 × 10−2 49.689

C2H6 4.802 × 10−5 5.932 × 10−2 -87.356

C3H6 4.84 × 10−5 7.91 × 10−2 14.46

C3H8 5.91 × 10−5 9.382 × 10−2 -111.72

C4H8 5.509 × 10−5 1.179 × 10−1 -10.928

C4H10 6.085 × 10−5 1.375 × 10−1 -138.08

C6H14 3.814 × 10−5 2.503 × 10−1 -197.68
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Table A.14: Coefficients for enthalpy calculations under 2 MPa

Component hA hB hC

N2 2.62 × 10−6 2.883 × 10−2 -0.827

O2 2.898 × 10−6 3.048 × 10−2 -1.011

Ar -2.358 × 10−7 2.122 × 10−2 -0.683

CO 2.732 × 10−6 2.911 × 10−2 -111.4

H2 1.305 × 10−6 2.847 × 10−2 -0.647

CO2 7.194 × 10−6 4.345 × 10−2 -395.64

H2O 4.373 × 10−6 3.572 × 10−2 -244.28

CH4 2.311 × 10−5 3.813 × 10−2 -76.129

C2H4 2.822 × 10−5 5.295 × 10−2 49.659

C2H6 3.97 × 10−5 6.398 × 10−2 -87.344

C3H6 4.2 × 10−5 8.272 × 10−2 14.769

C3H8 5.229 × 10−5 9.733 × 10−2 -111.22

C4H8 5.285 × 10−5 1.182 × 10−1 -9.78

C4H10 6.288 × 10−5 1.345 × 10−1 -136.14

C6H14 8.068 × 10−5 2.128 × 10−1 -187.95

C8H18 9.959 × 10−4 -7.626 × 10−2 -222.71

C16H34 4.592 × 10−4 4.402 × 10−1 -459.54

C33H68 6.88 × 10−4 8.708 × 10−1 -822.94

H2O(l) ∗ 3.722 × 10−5 7.646 × 10−2 -289.63

CH3OH(l) ∗ 1.63 × 10−4 9.512 × 10−2 -243.62

C2H5OH(l) ∗ 1.808 × 10−4 1.264 × 10−1 -281.34

* : (l) represents the liquid phase.
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Table A.15: Coefficients for enthalpy calculations under 1.6 MPa

Component hA hB hC

N2 2.456 × 10−6 2.897 × 10−2 -0.84

O2 2.453 × 10−6 3.092 × 10−2 -1.062

Ar -1.277 × 10−7 2.107 × 10−2 -0.641

CO2 6.235 × 10−6 4.431 × 10−2 -395.67

H2O 5.07 × 10−6 3.461 × 10−2 -243.83

SO2 3.409 × 10−6 4.93 × 10−2 -300.17

Table A.16: Coefficients for enthalpy calculations under 1 MPa

Component hA hB hC

N2 -1.236 × 10−6 2.972 × 10−2 -0.818

O2 1.283 × 10−6 2.984 × 10−2 -0.841

Ar -1.635 × 10−6 2.141 × 10−2 -0.626

Table A.17: Coefficients for enthalpy calculations under 0.1 MPa

Component hA hB hC

N2 2.532 × 10−6 2.858 × 10−2 -0.711

O2 4.584 × 10−6 2.903 × 10−2 -0.74

Ar -3.414 × 10−8 2.082 × 10−2 -0.529

CO2 1.245 × 10−5 3.873 × 10−2 -394.57

H2O 5.152 × 10−6 3.316 × 10−2 -242.73

H2S 8.474 × 10−6 3.356 × 10−2 -21.516

SO2 1.162 × 10−5 4.106 × 10−2 -298.01

S(l) ∗ -3.892 × 10−6 6.492 × 10−2 180.08

* : (l) represents the liquid phase.
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Table A.18: Base case flow rates for capital costs

Parameter Value Unit

F fdh
b 226.97 tonne/hr

F fdp
b 226.97 tonne/hr

F asu
b 29.18 Mmol/hr

F gas
b 201.73 tonne/hr

F ash
b 201.73 tonne/hr

F sr
b 201.73 tonne/hr

F hy
b 27.34 Mmol/hr

F se1
b 19.77 Mmol/hr

F se2tot
b , F se3tot

b 38.84 Mmol/hr

F se2car
b , F se3car

b 10.66 Mmol/hr

F cls
b 0.3878 Mmol/hr

Fwgs1
b , Fwgs2

b 36.73 Mmol/hr

F psa
b 28.18 Mmol/hr

F cc
b 469.04 tonne/hr

F sco
b 30.7 Mmol/hr

F fts
b 87.93 Mmol/hr

F hs
b 34.18 tonne/hr

F hc
b 243.67 tonne/h

F atr
b 18.9 Mmol/hr

F fto
b 57.69 Mmol/hr

Fmes
b 38.92 Mmol/hr

Fms
b 110.35 tonne/hr

Fmeo
b 61.76 Mmol/hr

F gt
b 464.01 MW

F sg
b 274.69 MW

F st
b 274.69 MW

F oth
b 824.21 tonne/hr

270



Table A.19: Base case capital costs ($MM)

Parameter Value

C fdh
b 36.35

C fdp
b 58.41

Casu
b 195.69

Cgas
b 234.84

Cash
b 45.89

Csr
b 50.37

Chy
b 7.86

Cse1
b 24.85

Cse2tot
b , Cse3tot

b 18.38

Cse2car
b , Cse3car

b 36.38

Ccls
b 33.77

Cwgs1
b , Cwgs2

b 15.66

Cpsa
b 82.02

Ccc
b 38.69

Csco
b 19.86

C fts
b 285.59

Chs
b 31.82

Chc
b 80.83

Catr
b 35.33

C fto
b 104.47

Cmes
b 94.79

Cms
b 66.91

Cmeo
b 64.56

Cgt
b 136.37

Csg
b 56.72

Cst
b 66.55

Coth
b 279.29
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Table A.20: Sizing factors for capital costs

Parameter Value

sf fdh 0.85

sf fdp 0.81

sfasu 0.75

sfgas 0.82

sfash 0.93

sfsr 0.82

sfhy 0.65

sfse1 0.7

sfse2tot, sfse3tot 0.8

sfse2car, sfse3car 0.75

sfcls 0.67

sfwgs1, sfwgs2 0.65

sfpsa 0.7

sfcc 0.85

sfsco 0.67

sf fts 0.72

sfhs 0.7

sfhc 0.7

sfatr 0.6

sf fto 0.67

sfmes 0.65

sfms 0.7

sfmeo 0.67

sfgt 0.76

sfsg 0.67

sfst 0.7

sfoth 0.67

272



Table A.21: Maximum capacity (tonne/hr)

Parameter Value

mgas
ca 1042

Table A.22: Economic parameters

Parameter Value Unit

Costfix
ope 25.061 $MM/yr

mgas
fd,b 824.206 tonne/hr

Costvar
ope,b 207.295 $MM/yr

P car
ccs 10 $/tonne CO2

top 7500 hr

Rtax 0.4

r 0.12

tlf 30 yr

tdp 10 yr
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Appendix B

Detailed Mathematical Model for

Flexible Polygeneration Systems

B.1 Mathematical Model

The mathematical model in this paper is similar to the static polygeneration model in

Appendix A, hence only the differences between the current model and the previous

model are described here.

B.1.1 Mass Balance

This section is similar to the mass balance in the previous model (Appendix A.1.1).

Differences are described below.

Replace mgas
coal and mgas

bio by mgas
coal,h and mgas

bio,h respectively, where mgas
coal,h and mgas

bio,h

are the mass flow rates of coal and biomass fed into the gasifier in scenario h respec-

tively.

Replace Rb/f by Rb/f,h, where Rb/f,h is the dry mass fraction of biomass in the

total feedstock in the gasifier in scenario h.

Replace F k
r,j and F k

r by F k
r,j,h and F k

r,h respectively, where F k
r,j,h is the molar flow

rate of species j in the stream r exiting (or entering) unit operation k in scenario h,

and F k
r,h is the total molar flow rate of stream r exiting (or entering) unit operation
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k in scenario h.

Replace F k
w,in and F k

w,out by F k
w,in,h and F k

w,out,h respectively, where F k
w,in,h and

F k
w,out,h are the molar flow rates of input water and output water of unit operation k

in scenario h respectively.

Replace F atr
cm,j by F atr

cm,j,h, where F atr
cm,j,h is the conversion of species j in the com-

bustion reaction in the ATR reactor in scenario h.

Replace Sk by Skh, where Skh is the split fraction of the splitter output stream to

unit operation k in scenario h.

Apply all above related equations to all scenarios (∀h ∈ Nh), where Nh ≡ {spp,

spo, sup, suo, fap, fao, wip, wio} is the set of scenarios in the project life time.

B.1.2 Energy Balance

This section is similar to the energy balance in the previous model (Appendix A.1.2).

Differences are described below.

Replace Qk
c , Qk

g, Ek
c and Ek

g by Qk
c,h, Q

k
g,h, E

k
c,h and Ek

g,h, and apply the related

equations to all scenarios (∀h ∈ Nh), where Qk
c,h, Q

k
g,h, E

k
c,h and Ek

g,h are the heat

consumption rate, heat generation rate, power consumption rate and power generation

rate in unit operation k in scenario h respectively.

All temperatures except T gtc
out , which is the output temperature of the gas turbine

combustor. Replace T gtc
out by T gtc

out,h, where T gtc
out,h is the output temperature of the

gas turbine combustor in scenario h, and apply the related equations to all scenarios

(∀h ∈ Nh).

B.1.3 Enthalpy Calculation

This section is exactly the same as the enthalpy calculation in the previous model

(Appendix A.1.3).
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B.1.4 Production Rates and Feedstock Consumption Rates

This section is similar to the part of production rates and feedstock consumption

rates in the previous model (Appendix A.1.4). Differences are described below.

Replace mf
q and mp

q by mf
q,h and mp

q,h respectively, and apply the related equations

to all scenarios (∀h ∈ Nh), where mf
q,h is the consumption rate of feedstock q in

scenario h and mp
q,h is the production rate of product q in scenario h.

B.1.5 Capital Costs

The capital costs of feedstock preparing equipments are given by:

C l = C l
b

(
m̄gas

F̄ l
b

)sfl

, ∀l ∈ {fdh, fdp} (B.1)

where C l is the capital cost of equipment l, m̄gas is the mass capacity of the gasifier;

F̄ l
b is the mass (or molar) capacity of equipment l in the base case (which is equal to

F l
b in Appendix A), C l

b is the capital cost of equipment l in the corresponding base

case, and sf l is the sizing factor of equipment l, which are all specified parameters.

The mass capacity of the gasifier is calculated by:

mgas
coal,h +mgas

bio,h ≤ m̄gas , ∀h ∈ Nh (B.2)

mgas
coal,h +mgas

bio,h ≥ Camin m̄
gas , ∀h ∈ Nh (B.3)

where Camin is the lower limit of the flow-rate/capacity ratio, which is a specified

parameter representing the operational flexibility.

The capital costs of gasification related equipments are given by:

C l = C l
b

(
m̄gas

dry

F̄ l
b

)sfl

, ∀l ∈ {gas, ash, sr, oth} (B.4)

where is the dry mass capacity the gasifier.

(1− wcoal,H2O)mgas
coal,h + (1− wbio,H2O)mgas

bio,h ≤ m̄gas
dry , ∀h ∈ Nh (B.5)
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(1− wcoal,H2O)mgas
coal,h + (1− wbio,H2O)mgas

bio,h ≥ Camin m̄
gas
dry , ∀h ∈ Nh (B.6)

The dry mass capacity of gasifier feedstock is limited by:

m̄gas
dry ≤ m̄gas

ca (B.7)

where m̄gas
ca is the upper limit of dry mass capacity of the gasifier or the maximum

capacity of the gasifier, which is a specified parameter and is equal tomgas
ca in Appendix

A.

The capital cost of CO2 compressor is given by:

Ccc = Ccc
b

(
m̄cc

F̄ cc
b

)sfcc

(B.8)

where m̄cc is the mass capacity of the CO2 compressor, which is given by:

mp
car,h ≤ m̄cc , ∀h ∈ Nh (B.9)

mp
car,h ≥ Camin m̄

cc , ∀h ∈ Nh (B.10)

The capital costs of equipments in the hydrocarbon separation process are given

by:

C l = C l
b

(
m̄hs

F̄ l
b

)sfl

, ∀l ∈ {hs, hc} (B.11)

where m̄hs is the mass capacity of the hydrocarbon separation unit, which is calculated

by:

mp
nap,h +mp

dis,h ≤ m̄hs , ∀h ∈ Nh (B.12)

mp
nap,h +mp

dis,h ≥ Camin m̄
hs , ∀h ∈ Nh (B.13)

The capital costs of the methanol separation unit are given by:

Cms = Cms
b

(
m̄ms

F̄ms
b

)sfms

(B.14)

where m̄ms is the mass capacity of the methanol separation unit, which is calculated
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by:

mp
met,h ≤ m̄ms , ∀h ∈ Nh (B.15)

mp
met,h ≥ Camin m̄

ms , ∀h ∈ Nh (B.16)

The capital costs of the gas turbine and steam turbine are given by:

C l = C l
b

(
Ēl

g

F̄ l
b

)sfl

, ∀l ∈ {gt, st} (B.17)

where Ēl
g is the power generation capacity of equipment l.

The capacity of the gas turbine is calculated by:

Egt
g,h ≤ Ēgt

g , ∀h ∈ Nh (B.18)

Egt
g,h ≥ Camin Ē

gt
g , ∀h ∈ Nh (B.19)

The capacity of the steam turbine is calculated by:

Esthi
g,h + Estlo

g,h ≤ Ēst
g , ∀h ∈ Nh (B.20)

Esthi
g,h + Estlo

g,h ≥ Camin Ē
st
g , ∀h ∈ Nh (B.21)

The capital cost of the HRSG is given by:

Csg = Csg
b

(
Ēst

g

F̄ sg
b

)sfsg

(B.22)

The capital costs of the Selexol units for CO2 removal are calculated as two parts:

the first part is related to the total molar flow rate of input stream, which is given

by:

C l = C l
b

(
F̄ l

A

F̄ l
b

)sfl

, ∀l ∈ {se2tot, se3tot} (B.23)

and the second part is related to the molar flow rate of the output CO2 stream, which
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is given by:

C l = C l
b

(
F̄ l

B

F̄ l
b

)sfl

, ∀l ∈ {se2car, se3car} (B.24)

where F̄ l
A and F̄ l

B are the molar capacity of equipment l related to above two parts

of cost, which are given by:

F l
in,h ≤ F̄ l

A , ∀h ∈ Nh (B.25)

F l
in,h ≥ Camin F̄

l
A , ∀h ∈ Nh (B.26)

F l
car,h ≤ F̄ l

B , ∀h ∈ Nh (B.27)

F l
car,h ≥ Camin F̄

l
B , ∀h ∈ Nh (B.28)

where, F l
in,h is the total molar flow rate of the input stream of equipment l in scenario

h, and F l
car,h is the molar flow rate of CO2 stream exiting the equipment l in scenario

h.

The capital costs of all remaining equipment in the system can be expressed as

the general form:

C l = C l
b

(
F̄ l

F̄ l
b

)sfl

, ∀l ∈ {asu, hy, se1, cls,wgs1,wgs2, psa, sco, fts, atr, fto,mes,meo}

(B.29)

where F̄ l is the molar capacity of equipment l, which is calculated by:

F l
in,h ≤ F̄ l , ∀h ∈ Nh (B.30)

F l
in,h ≥ Camin F̄

l , ∀h ∈ Nh (B.31)

The total capital investment of the process is given by:

Cap =
∑
l

C l , ∀l ∈ Leq (B.32)

where Cap is the total capital investment; Leq ≡ {fdh, fdp, asu, gas, ash, sr, hy, se1,
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cls, wgs1, se2tot, se2car, wgs2 se3tot, se3car, cc, psa, sco, fts, hs, hc, atr, fto, mes,

ms, meo, gt, st, sg, oth} is set of equipments with capital cost.

B.1.6 Economic Analysis

The total annual cost is

Cost = Costfed + Costcar
tax + Costcar

ccs + Costope (B.33)

where Cost is the total annual cost, Costfed is the cost of purchasing the feedstock,

Costcar
tax is the carbon emissions tax, Costcar

ccs is the cost of carbon sequestration, and

Costope is the operational cost.

The feedstock cost in given by:

Costfed =
∑
h

Occuh

(∑
q

P f
q m

f
q,h

)
top , ∀q ∈ Feed, ∀h ∈ Nh (B.34)

where mf
q,h is the consumption rate of feedstock q in scenario h. P f

q is the annual

average market price of feedstock q, top is the annual operating time, and Occuh is

the fraction of occurrence of scenario h, which are specified parameters. Feed ≡ {coal,

bio, w} is the set of feedstocks.

The carbon tax is given by

Costcar
tax = P car

tax Emisnet (B.35)

where Emisnet is the annual net CO2 emissions; P car
tax is the carbon tax per tonne of

CO2 emitted, which is a specified parameter. CO2 emissions are calculated by

Emisgro = MWCO2

∑
h

Occuh
[
F sg

fl,CO2,h
+ (1− Sseq,h)F

se2
car,h

]
top , ∀h ∈ Nh (B.36)

Emisnet = Emisgro −
MWCO2

MWC

(1− wbio,H2O)wbio,C

∑
h

Occuh m
gas
bio,h top , ∀h ∈ Nh

(B.37)

281



where Emisgro is the annual gross CO2 emissions. If the carbon tax policy also taxes

the carbon in the liquid fuels, the annual net CO2 emissions are given by:

Emisnet =Emisgro −
MWCO2

MWC

(1− wbio,H2O)wbio,C

∑
h

Occuh m
gas
bio,h top

+ MWCO2

∑
h

Occuh
(
6F hs

nap,C6H14,h
+ 8F hs

nap,C8H18,h
+ 16F hs

dis,h

)
top , ∀h ∈ Nh

(B.38)

where F sg
fl,CO2,h

is the molar flow rate of CO2 in the gas turbine flue gas in scenario

h, F se2
car,h is the molar flow rate of CO2 stream exiting Selexol Unit 2 in scenario h,

F hs
nap,C6H14,h

and F hs
nap,C8H18,h

are the molar flow rates of C6H14 and C8H18 in the naphtha

stream exiting the hydrocarbon separation unit in scenario h, respectively, and F hs
dis,h

is the molar flow rate of the diesel stream exiting the hydrocarbon separation unit in

scenario h, mgas
bio,h is the mass flow rate of biomass fed into the gasifier in scenario h,

and Sseq,h is the split fraction of CO2 stream to sequestration in scenario h. wbio,H2O

is the mass fraction of water in the wet biomass, and wbio,C is the mass fraction of C

in the dry biomass, which are specified parameters.

The carbon sequestration cost is given by:

Costcar
ccs = P car

ccs

∑
h

Occuh m
p
car,h , ∀h ∈ Nh (B.39)

where mp
car,h is the CO2 production rate in scenario h; P car

ccs is the carbon sequestration

fee per tonne CO2, which is a specified parameter.

The operational cost is given by:

Costope = Costfix
ope + Costvar

ope (B.40)

where Costfix
ope is the fixed annual operational cost, which is a specified parameter;

Costvar
ope is variable annual operational cost, which is calculated by the linear scaling

up relationship:

Costvar
ope = Costvar

ope,b

∑
h

Occuh
mgas

fd,h

mgas
fd,b

(B.41)
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where mgas
fd,b is the mass flow rate of the total feedstock fed into the gasifier in the

base case, and Costvar
ope,b is the annual variable operational cost in the corresponding

base case, which are specified parameters.

The revenue is given by

Reve =
∑
h

Occuh

(∑
q

P p
q,h m

p
q,h

)
top , ∀q ∈ Prod, ∀h ∈ Nh (B.42)

where mp
q,h is the production rate of product q in scenario h. P p

q,h is the market price

of product q in scenario h, which are specified parameters. Prod ≡ {ele, nap, dis,

met, es} is the set of products.

The profit is calculated by:

Progro = Reve− Cost (B.43)

Pronet = (1−Rtax) Progro (B.44)

where Progro and Pronet are the annual gross profit and the annual net profit respec-

tively; Rtax is the tax rate, which is a specified parameter.

The net present value, which is the objective function of this model, is denoted

by:

NPV = −Cap + Pronet
1

r

(
1− 1

(1 + r)tlf

)
+
Rtax Cap

tdp

1

r

(
1− 1

(1 + r)tdp

)
(B.45)

where NPV is the net present value of the polygeneration project; r is the annual

discount rate, tlf is the life time of the project, and tdp is the depreciation time of the

project, which are specified parameters.

B.2 Parameter Tables
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Table B.1: Base case flow rates for capital costs

Parameter Value Unit

F̄ fdh
b 226.97 tonne/hr

F̄ fdp
b 226.97 tonne/hr

F̄ asu
b 29.18 Mmol/hr

F̄ gas
b 201.73 tonne/hr

F̄ ash
b 201.73 tonne/hr

F̄ sr
b 201.73 tonne/hr

F̄ hy
b 27.34 Mmol/hr

F̄ se1
b 19.77 Mmol/hr

F̄ se2tot
b , F̄ se3tot

b 38.84 Mmol/hr

F̄ se2car
b , F̄ se3car

b 10.66 Mmol/hr

F̄ cls
b 0.3878 Mmol/hr

F̄wgs1
b , F̄wgs2

b 36.73 Mmol/hr

F̄ psa
b 28.18 Mmol/hr

F̄ cc
b 469.04 tonne/hr

F̄ sco
b 30.7 Mmol/hr

F̄ fts
b 87.93 Mmol/hr

F̄ hs
b 34.18 tonne/hr

F̄ hc
b 243.67 tonne/h

F̄ atr
b 18.9 Mmol/hr

F̄ fto
b 57.69 Mmol/hr

F̄mes
b 38.92 Mmol/hr

F̄ms
b 110.35 tonne/hr

F̄meo
b 61.76 Mmol/hr

F̄ gt
b 464.01 MW

F̄ sg
b 274.69 MW

F̄ st
b 274.69 MW

F̄ oth
b 824.21 tonne/hr
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Table B.2: Base case capital costs ($MM)

Parameter Value

C fdh
b 36.35

C fdp
b 58.41

Casu
b 195.69

Cgas
b 234.84

Cash
b 45.89

Csr
b 50.37

Chy
b 7.86

Cse1
b 24.85

Cse2tot
b , Cse3tot

b 18.38

Cse2car
b , Cse3car

b 36.38

Ccls
b 33.77

Cwgs1
b , Cwgs2

b 15.66

Cpsa
b 82.02

Ccc
b 38.69

Csco
b 19.86

C fts
b 285.59

Chs
b 31.82

Chc
b 80.83

Catr
b 35.33

C fto
b 104.47

Cmes
b 94.79

Cms
b 66.91

Cmeo
b 64.56

Cgt
b 136.37

Csg
b 56.72

Cst
b 66.55

Coth
b 279.29
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Table B.3: Sizing factors for capital costs

Parameter Value

sf fdh 0.85

sf fdp 0.81

sfasu 0.75

sfgas 0.82

sfash 0.93

sfsr 0.82

sfhy 0.65

sfse1 0.7

sfse2tot, sfse3tot 0.8

sfse2car, sfse3car 0.75

sfcls 0.67

sfwgs1, sfwgs2 0.65

sfpsa 0.7

sfcc 0.85

sfsco 0.67

sf fts 0.72

sfhs 0.7

sfhc 0.7

sfatr 0.6

sf fto 0.67

sfmes 0.65

sfms 0.7

sfmeo 0.67

sfgt 0.76

sfsg 0.67

sfst 0.7

sfoth 0.67
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Table B.4: Maximum capacity (tonne/hr)

Parameter Value

m̄gas
ca 1042

Table B.5: Economic parameters

Parameter Value Unit

Costfix
ope 25.061 $MM/yr

mgas
fd,b 824.206 tonne/hr

Costvar
ope,b 207.295 $MM/yr

P car
ccs 10 $/tonne CO2

top 7500 hr

Rtax 0.4

r 0.12

tlf 30 yr

tdp 10 yr
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Nomenclature

Sets

Feed set of feedstocks

I set of elements

J set of species

J ′ set of species

K set of unit operations

L set of equipment

Nh set of scenarios

Prod set of products

Variables

C capital cost

Cap capital investment

Cost cost

Ec power consumption rate

Eg power generation rate

Emis CO2 emissions

F molar flow rate
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hgtc molar enthalpy of the gas turbine combustor product

m mass flow rate

mf feedstock consumption rate

mp production rate

NPV net present value

Pro profit

Qc heat consumption rate

Qg heat generation rate

Rb/f dry mass fraction of biomass in the total feedstock in the gasifier

Ratr
cm conversion in the combustion reaction in the ATR reactor

Reve revenue

S split fraction

T gtc
out output temperature of the gas turbine combustor

Parameters

η energy conversion efficiency

Awgs factor for the conversion in the WGS reactor

Cb capital cost in the base case

Costfix
ope annual fixed operational cost

Costvar
ope,b annual variable operational cost in the base case

Ec,0 power consumption rate in the base case

Eg,0 power generation rate in the base case

ECc coefficient of the power consumption rate

Fb total mass (or molar) flow rate of the input stream in the base case

F0 molar flow rate in the base case

F̄b mass (or molar) capacity in the base case
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h molar enthalpy

hA molar enthalpy coefficient

hB molar enthalpy coefficient

hC molar enthalpy coefficient

mgas
ca upper limit of dry mass flow rate of total feedstock fed into the gasifier

mgas
fd,b mass flow rate of the total feedstock fed into the gasifier in the base case

m̄gas
ca upper limit of dry mass capacity of the gasifier

MW molar weight

n number of atoms in one molecule

Occu frequency of occurrence

P f feedstock price

P p product price

P car
ccs CO2 sequestration fee

P car
tax carbon tax

QCc coefficient of the heat consumption rate

r annual discount rate

Rb/f,max maximum dry mass fraction of biomass in the total feedstock in the gasifier

Rtax tax rate

Ratr
rf conversion in the steam reforming reaction in the ATR reactor

Ratr
w water conversion in the ATR reactor

Rcls
H2S H2S conversion in the Claus plant

Rfl
S,max upper limit of the ratio of sulfur mass flow rate in flue gas to the feedstock

Rfts
CO CO conversion in the FT reactor

Rgas conversion in the gasifier

Rgtc
O2

excess ratio of O2 in the gas turbine combustor
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Rhc conversion in hydrocracking reactor

Rrsyn ratio of molar flow rates of species in the raw syngas produced from coal

Rrsyn
bio ratio of molar flow rates of species in the raw syngas produced from

the coal/biomass mixture with 30% of biomass

Rwgs1
CO CO conversion in WGS Reactor 1

Sasu
O2

split fraction of O2 in air to the oxygen rich stream in the ASU

Sfts carbon selectivity in the FT reactor

Shc
nap carbon selectivity to naphtha in the hydrocracking reactor

Shs
nap split fraction to the naphtha stream in the hydrocarbon separation unit

Sms
met split fraction to the methanol stream in the methanol separation unit

Sms
unr split fraction to the unreacted syngas stream in the methanol separation unit

Spsa
H2

split fraction of H2 to the H2 product stream in the PSA unit

Sse1 split fraction in Selexol Unit 1

Sse2 split fraction in Selexol Unit 2

ScF scale factor for the price of product

sf sizing factor

Sto stoichiometric coefficient

T temperature

T gtc
max upper limit of the gas turbine combustor output temperature

tdp depreciation time of the project

tlf life time of the project

top annual operating time

w mass fraction

x mole fraction
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Superscripts

ac air compressor in the gas turbine

ash ash handling unit

asu air saparation unit

atr autothermal reforming reactor

atrscc ATR product compressor

atrfdh ATR feedstock heater

strpdco ATR product cooler

car carbon

cc CO2 stream compressor

cls Claus unit

clsc Claus unit tail gas compressor

co gas cooler

co1 Syngas Cooler 1

co2 Syngas Cooler 2

co3 Syngas Cooler 3

fao fall off-peak time

fap fall peak time

fdh feedstock handling unit

fdp feedstock preparation unit

fix fixed part

fl flue has

fto other equipment in the FT process

fts Fischer-Tropsch synthesis reactor

gas gasifier
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gt gas turbine

gtc gas turbine combustor

gtcwh gas turbine combustor water heater

hc hydrocracking reactor

hs hydrocarbon separation unit

hy COS hydrolysis reactor

k unit operation

k′ unit operation

k′′ unit operation

l equipment

ligc1 Light Ends Compressor 1 in the FT process

ligc2 Light Ends Compressor 2 in the FT process

meo other equipment in the MeOH process

mes methanol synthesis reactor

ms methanol separation unit

nc N2 stream compressor

nh N2 stream heater

oth other equipment in the process

oxyc O2 stream (to the gasifier) compressor

oxycr O2 stream (to the ATR reactor) compressor

psa pressure-swing adsorption unit

psagtc PSA tail gas compressor

rc syngas radiant cooler after the gasifier

rh1 Syngas Heater 1

rh2 Syngas Heater 2
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rh3 Syngas Heater 3

rsyn raw syngas stream

sc syngas convective cooler after the gasifier

sco other equipment in the syngas cleaning process

se1 Selexol Unit 1

se2 Selexol Unit 2

se2car the part of Selexol Unit 2 related to the molar flow rate of CO2 stream

se2tot the part of Selexol Unit 2 related to the total molar flow rate of input stream

se3 Selexol Unit 3

se3car the part of Selexol Unit 3 related to the molar flow rate of CO2 stream

se3tot the part of Selexol Unit 3 related to the total molar flow rate of input stream

secar Selexol unit for CO2 removal

sesul Selexol unit for H2S removal

sg heat recovery steam generator

sntft syngas turbine before the FT process

sntgt1 Syngas Turbine 1 before the gas turbine

sntgt2 Syngas Turbine 2 before the gas turbine

splatr splitter for the ATR product in the FT process

splcar CO2 stream splitter

spllig splitter for the light ends in the FT process

splpsa spliter for the PSA

splsyn1 Syngas Splitter 1 (to liquid production branch) in Syngas Cleaning Process

splsyn2 Syngas Splitter 2 (to power production with CCS branch) in Syngas Cleaning

Process

splunr splitter for the unreacted syngas in the MeOH process
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spo spring off-peak time

spp spring peak time

sr scrubber

st steam turbine

sthi steam turbine for the high quality heat

stlo steam turbine for the low quality heat

suo summer off-peak time

sup summer peak time

unrc1 Unreacted Syngas Compressor 1 in the MeOH process

unrc2 Unreacted Syngas Compressor 2 in the MeOH process

var variable part

wgs water gas shift reactor

wgs1 Water Gas Shift Reactor 1

wgs2 Water Gas Shift Reactor 2

wgs1ht WGS Reactor 1 steam heater

wgs2ht WGS Reactor 2 steam heater

wio winter off-peak time

wip winter peak time

Subscripts

air air stream

alc higher alcohol stream

atr autothermal reforming reactor

bio biomass

ca capacity

car CO2
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ccs carbon capture and sequestration

cm combustion reaction

co gas cooler without water output

coal coal

cow gas cooler with water output

cp compressor

csyn clean syngas stream

dis diesel

dry dry feedstock

ec unit operation with power consumption

eg unit operation with power generation

ele electricity

eq equipment

es elemental sulfur

fd feedstock stream

fed feedstock

feed feedstock

fl flue gas

ftfd feedstock of the FT reaction

ftpd product of the FT reaction

fts FT synthesis reaction

fue liquid fuels

gro gross

gt gas turbine

gtc gas turbine combustor
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h scenario

hyd H2 rich stream

i element

in input stream

j species

k unit operation

key key species

lig light ends

m main reaction

max upper limit

mefd feedstock of the MeOH reaction

mepd product of the MeOH reaction

mes methanol synthesis reactor

met methanol

min lower limit

nap naphtha

net net

nit N2 rich stream

ope operational

out output stream

oxy O2 rich stream

pd product stream

q feedstock or product

qc unit operation with heat consumption

qg unit operation with heat generation
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unr unreacted syngas stream

r stream

rf steam reforming reactor

rh gas heater

rsyn raw syngas stream

rt reactor

rtf reactor with feedstock mixer

s side reaction

seq sequestration

spe species

spl splitter

sul H2S rich stream

tail tail gas stream

tax tax

tb turbine

tsyn treated syngas stream

w water

wax wax stream

wi unit operation with water input

wo unit operation with water output
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