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1. Introduction. This work discusses existence and uniqueness theorems for the solution
of an initial value problem in ordinary differential equations (ODEs) with a linear program
(LP) embedded. Specifically, the solution set of a LP influences the vector field of the ODE,
meanwhile the LP has a parametric dependence on the differential state through the right-hand
sides of its constraints. These results are fairly general and are based on known results from
viability theory.

2. Problem Statement and Preliminaries. Let Dt ⊂ R, Dx ⊂ Rnx and Dg ⊂ Rng be
open connected sets. Let U be a subset of P(Rnu). Let f : Dt×Dx×Dg → Rnx , g : U → Rng ,
b : Dt ×Dx → Rm, A ∈ Rm×nu , and c ∈ Rnu be given. First, let

q(d) = inf
v∈Rnu

cTv

s.t. Av = d,

v ≥ 0.

Subsequently, define F ≡ {d ∈ Rm : −∞ < q(d) < +∞}. Finally, define K ⊂ Dt × Dx by
K ≡ b−1(F ).

The focus of this work is an initial value problem in ODEs: given a t0 ∈ Dt and x0 ∈ Dx,
we seek an interval [t0, tf ] = I ⊂ Dt, and (absolutely continuous) function x ∈ C(I,Dx) which
satisfy

ẋ(t) = f(t,x(t),g ◦ U(t,x(t))), a.e. t ∈ (t0, tf ], (2.1)

x(t0) = x0,

where U : K ⇒ Rnu is given by

U(t, z) = arg min
v∈Rnu

cTv (2.2)

s.t. Av = b(t, z),

v ≥ 0.

Such an I and x will be called a solution of (2.1).

The following preliminaries will be helpful. It should be clear that the solution set of LP
(2.2), U(t, z), is nonempty ∀(t, z) ∈ K. From sensitivity analysis and duality theory, F is either
empty or F = {Av ∈ Rm : v ≥ 0} (see Table 4.2 of [2]). In either case, F is a closed set.
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Another useful definition will be Û : F ⇒ Rnu as defined by

Û(d) = arg min
v∈Rnu

cTv (2.3)

s.t. Av = d,

v ≥ 0.

Û is the solution set as a function of the right-hand side of the equality constraints of the LP.
Note that U(t, z) = Û(b(t, z)), ∀(t, z) ∈ K.

The following assumptions will be fairly critical to the work that follows. Most theoretical
results will require Assumptions 2.1.

Assumption 2.1. Let Ŝ = {Û(d) : d ∈ F}, g : Ŝ → Rng . Assume

(i) g ◦ Û is continuous on F ,

(ii) g ◦ Û is locally Lipschitz continuous on F ,

(iii) g ◦ Û is Lipschitz continuous on F .
While Assumption 2.1 (iii) implies Assumption 2.1 (ii) implies Assumption 2.1 (i), it will

be helpful to be able to refer to them separately.
The contingent cone (sometimes called the Bouligand tangent cone) TV (v) of a set V ⊂ Rn

at v ∈ V is given by

TV (v) =

{
w ∈ Rn : lim inf

h→0+

d(v + hw, V )

h
= 0

}
where d(z, V ) = infv∈V ‖z− v‖. A basic property is that if v ∈ intV , then TV (v) = Rn. The
following lemmata establish other properties.

Lemma 2.2. If w ∈ TV (v), then for any open set N 3 v, w ∈ TV ∩N (v).
Proof. If w ∈ TV (v), an equivalent characterization is that there exist sequences {hn >

0 : n ≥ 1}, hn → 0+ and {wn : n ≥ 1}, wn → w such that for all n ≥ 1, v + hnwn ∈ V (cf.
§1.1 of [1]). Since N is open, for sufficiently small h, v + hŵ ∈ N for any ŵ. Thus, there are
subsequences of hn and wn, {hnk

: k ≥ 1} and {wnk
: k ≥ 1}, such that v+hnk

wnk
∈ N for all

k ≥ 1. Consequently, v + hnk
wnk

∈ V ∩N for all k ≥ 1, and so v ∈ V ∩N and w ∈ TV ∩N (v).

Lemma 2.3. If w ∈ TV (v), v = (v, ṽ) and w = (1, w̃), then for any R = [va, vb) × Ñ ,

where Ñ is an open set containing ṽ and va ≤ v < vb, w ∈ TV ∩R(v).
Proof. The proof proceeds similarly to that of Lemma 2.2. There exist sequences hn → 0+

and (yn, w̃n) → (1, w̃), such that (v, ṽ) + hn(yn, w̃n) ∈ V for all n. Then, for large enough

n, (v, ṽ) + hn(yn, w̃n) ∈ R since Ñ is open and v is a limit point of [va, vb). Thus there are
subsequences such that (v, ṽ) + hnk

(ynk
, w̃nk

) ∈ V ∩ R, and it follows that v ∈ V ∩R and
w ∈ TV ∩R(v).

The following concepts and results from viability theory (see Ch. 1 of [1]) will be useful

in some of the theorems in the following section. First, let f̂ : Dx → Rnx . Consider the initial
value problem in an autonomous ODE:

ẋ(t) = f̂(x(t)), ∀t ∈ [t0, tf ], (2.4)

x(t0) = x0.

Definition 2.4. Let V ⊂ Rnx . A function x from [t0, tf ] to Rnx is viable in V on [t0, tf ]
if x(t) ∈ V for all t ∈ [t0, tf ],

Definition 2.5. Let V ⊂ Dx. V is locally viable under f̂ if for any initial state x0 ∈ V ,
there exists tf > t0 and a viable function x on [t0, tf ] such that [t0, tf ] and x are a solution to
problem (2.4).
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Definition 2.6. Let V ⊂ Dx. V is a viability domain of f̂ if

f̂(z) ∈ TV (z), ∀z ∈ V.

Theorem 2.7. Assume that V is locally compact and f̂ is continuous from V to Rnx . Then
V is locally viable under f̂ if and only if V is a viability domain of f̂ .

Thm. 2.7 is often called the Nagumo Theorem; for a proof see §1.2 of [1]. V is a locally
compact space if every point of V has a neighborhood whose closure is compact [9]. A few basic
propositions concerning locally compact metric spaces are as follows; the reader is referred to
[7] for proofs and further background.

1. Rn is locally compact.
2. Closed subsets of locally compact metric spaces inherit local compactness.
3. Open subsets of locally compact metric spaces inherit local compactness.
4. The finite product of locally compact metric spaces is locally compact; i.e. if X and Y

are locally compact metric spaces then so is X × Y .
5. For t0 < t1, [t0, t1) ⊂ R is locally compact.

3. Existence and Uniqueness. The complication in proving an existence result comes
from the fact that K could be empty, or g ◦ U(t, z) /∈ Dg for some (t, z) ∈ Dt ×Dx. As well,
K is not necessarily open, and since it is the domain of definition for the LP (2.2), the solution
ceases to exist if (t,x(t)) leaves K. Because of considerations such as these, in general one
cannot apply an existence theorem such as Peano’s directly to (2.1).

3.1. Carathéodory Systems. The following theorem provides a solution in the sense of
Carathéodory. Such a theorem is useful for applications involving controls, however there is a
trade-off as its assumptions imply that the initial point (t0,x0) cannot be a boundary point of
K. In many situations this is not a restrictive assumption, but it must be kept in mind.

Theorem 3.1. Let Assumption 2.1 (i) hold. If
1. ∃ an open neighborhood N0 of (t0,x0) s.t. g ◦ U(t, z) ∈ Dg, ∀(t, z) ∈ N0,
2. ∃ a Lebesgue-integrable function m(t) s.t.‖f(t, z,v)‖ ≤ m(t), ∀(t, z,v) ∈ N0×g◦U(N0),
3. f(·, z,v) is measurable ∀(z,v) ∈ Dx ×Dg,
4. f(t, ·, ·) is continuous a.e. t ∈ Dt,
5. b(·, z) is measurable ∀z ∈ Dx, and
6. b(t, ·) is continuous a.e. t ∈ Dt,

then a solution of Eqn. (2.1) exists.
Proof. Note that if g ◦ U is defined on N0, then N0 ⊂ K. Moreover, N0 contains a set

R = It × Ix 3 (t0,x0) where It ⊂ Dt, Ix ⊂ Dx, and It and Ix are connected sets.

Since g ◦ Û is continuous on F , the composition g ◦ Û ◦ b(t, ·) = g ◦ U(t, ·) is continuous

for a.e. t ∈ Dt. Similarly, g ◦ Û ◦ b(·, z) = g ◦ U(·, z) is measurable ∀z ∈ Dx.
Then, by the assumptions on f , it follows that f(t, ·,g ◦ U(t, ·)) is defined and continuous

on Ix for a.e. t ∈ It. Further, f(·, z,g ◦ U(·, z)) is defined and measurable on It for all z ∈ Ix.
Finally, ‖f(t, z,g ◦ U(t, z))‖ ≤ m(t) for all (t, z) in It × Ix. Consequently, one can immediately
apply the Carathéodory existence theorem, see for example Thm. 1 of §1 in [4]. Thus a solution
exists.

The following theorem establishes a uniqueness result. It follows a fairly classical approach,
see for instance Thm. 2.1 in Ch. 1 of [3]. However, the possibility of discontinuities in g ◦ U
necessitates stronger (non-local) Lipschitz continuity hypotheses.

Theorem 3.2. Let Assumption 2.1 (iii) hold. If the hypotheses of Theorem 3.1 are satisfied,
and if in addition:
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1. ∀(s, z) ∈ Dt × Dx, there exist open neighborhoods Nf
t ⊂ Dt, Nf

x ⊂ Dx of s, z,

respectively, such that for a.e. t ∈ Nf
t , f(t, ·, ·) is Lipschitz continuous on Nf

x ×Dg with some

Lipschitz constant that holds for a.e. t ∈ Nf
t ,

2. ∀(s, z) ∈ Dt × Dx, there exist open neighborhoods N b
t ⊂ Dt, N b

x ⊂ Dx of s, z, re-
spectively, such that for a.e. t ∈ N b

t , b(t, ·) is Lipschitz continuous on N b
x with some Lipschitz

constant that holds for a.e. t ∈ N b
t ,

then a unique solution of Eqn. (2.1) exists.
Proof. By Thm. 3.1 at least one solution must exist. For a contradiction, assume two

distinct solutions x1 and x2 exist. Assume without loss of generality that x1(t0) = x2(t0) = x0

and x1(t) 6= x2(t), ∀t ∈ (t0, tf ].
By Hypotheses 1 and 2, there exist open neighborhoods Nt, Nx of t0, x0, respectively,

such that for a.e. t ∈ Nt, f(t, ·, ·) is Lipschitz continuous on Nx × Dg and b(t, ·) is Lipschitz

continuous on Nx. Let Î = [t0, tf ] ∩Nt ∩ x−11 (Nx) ∩ x−12 (Nx). Note that since x1 and x2 are

continuous and Nx is open, Î = [t0, ta), for some ta > t0. Let ΠK(t) = {z ∈ Nx : (t, z) ∈ K}.
It follows that for a.e. t ∈ Î and for i ∈ {1, 2}, xi(t) ∈ ΠK(t).

Now, since g ◦ Û is Lipschitz continuous on F , and b(t, ·) is Lipschitz continuous on Nx for

a.e. t ∈ Î, then g ◦ Û(b(t, ·)) = g ◦ U(t, ·) is Lipschitz continuous on ΠK(t) for a.e. t ∈ Î (with

some Lipschitz constant that holds for a.e. t ∈ Î). Finally, f(t, ·, ·) is Lipschitz continuous on

Nx ×Dg for a.e. t ∈ Î, and so f(t, ·,g ◦ U(t, ·)) is Lipschitz continuous on ΠK(t).

Let the Lipschitz constant for f(t, ·,g ◦ U(t, ·)) be k, which holds for a.e. t ∈ Î. Thus, for

a.e. t ∈ Î,

‖f(t,x1(t),g ◦ U(t,x1(t)))− f(t,x2(t),g ◦ U(t,x2(t)))‖ ≤ k‖x1(t)− x2(t)‖.

Next, since xi satisfies (2.1), ẋi(s) = f(s,xi(s),g ◦ U(s,xi(s))) for a.e. s ∈ Î and for
i ∈ {1, 2}. So, one has

‖ẋ1(s)− ẋ2(s)‖ = ‖f(s,x1(s),g ◦ U(s,x1(s)))− f(s,x2(s),g ◦ U(s,x2(s)))‖, a.e. s ∈ Î ,

and then by the above discussion,

‖ẋ1(s)− ẋ2(s)‖ ≤ k‖x1(s)− x2(s)‖, a.e. s ∈ Î . (3.1)

Integrating (3.1) from t0 to any t, t ≤ ta, yields∥∥∥∥∫ t

t0

ẋ1(s)− ẋ2(s)ds

∥∥∥∥ ≤ k

∫ t

t0

‖x1(s)− x2(s)‖ds.

Then

‖x1(t)− x2(t)‖ − ‖x1(t0)− x2(t0)‖ ≤
‖(x1(t)− x2(t))− (x1(t0)− x2(t0))‖ ≤

k

∫ t

t0

‖x1(s)− x2(s)‖ds.

Finally, an application of Gronwall’s inequality (see for instance Thm. 1.1 in Ch. III of [6])
yields

‖x1(t)− x2(t)‖ ≤ ‖x1(t0)− x2(t0)‖ek(t−t0).
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However, ‖x1(t0)− x2(t0)‖ = 0, so one sees that ‖x1(t)− x2(t)‖ ≤ 0, or that x1(t) = x2(t) for

all t ∈ Î which is a contradiction. Thus a unique solution exists.
With the uniqueness result, one can continue the solution for as long as the existence results

hold; however one must be aware that the additional hypotheses, described below, are required
once (t,x(t)) becomes a boundary point of K.

3.2. General Initial Point. The general case – i.e. any initial point – is now considered.
This case relies on the Nagumo Theorem. As previously stated, this theorem furnishes a
continuously differentiable solution x, rather than an absolutely continuous one (as would be
obtained from a Carathéodory equation). Extensions of the Nagumo theorem to Carathéodory-
type equations have been explored in the literature; most stem from set-valued analysis and
solutions for differential inclusions. For instance [5] gives a necessary and sufficient condition
for existence of a solution of a differential inclusion with time varying constraints, which is very
similar to what occurs with problem (2.1). However, the assumptions required on the set K
are too restrictive for the present purposes.

Theorem 3.3. Let Assumption 2.1 (i) hold. If
1. (t0,x0) ∈ K,
2. g ◦ U(t0,x0) ∈ Dg,
3. f is continuous,
4. b is continuous, and
5. there exist t1 ∈ Dt, t1 > t0, and an open set Nx ⊂ Dx containing x0 such that

(1, f(t, z,g ◦ U(t, z))) ∈ TK(t, z) for all (t, z) ∈ K ∩N0 where N0 ≡ [t0, t1)×Nx,
then a solution of Eqn. (2.1) exists.

Proof. We will construct a set that is a viability domain for an equivalent autonomous
system and apply Thm. 2.7.

First, g ◦ Û is continuous on F , so g ◦ U is continuous on K, and so (g ◦ U)−1(Dg)
is open in K. By simple topological arguments, this means that (g ◦ U)−1(Dg) = K ∩ N1

for some open N1 ⊂ R1+nx , and we can further assume that N1 ⊂ Dt × Dx. Note that
(t0,x0) ∈ (g ◦ U)−1(Dg) ⊂ N1.

Let K̂ = K ∩ N1 ∩ N0. Note that K̂ is nonempty, since (t0,x0) is in each of K, N1, N0.
More importantly, it is locally compact. To see this, first note that [t0, t1) and Nx are locally
compact, and so N0 is also locally compact. Then, since N1 ∩ N0 is an open subset of N0, it
too is locally compact. Finally, K̂ = K ∩N1∩N0 = b−1(F ) is a closed subset of N1∩N0, since

b is continuous on N1 ∩N0 and F is closed. As a closed subset of a locally compact space, K̂
is locally compact.

Note that g◦U is defined, continuous, and takes values in Dg on K̂, and so f(·, ·,g◦U(·, ·))
is defined and continuous on K̂.

Now, let

f̂ : K̂ → R1+nx : (t, z) 7→ (1, f(t, z,g ◦ U(t, z))).

By construction, f̂ is continuous on K̂. Introduce the dummy variable s and formulate the
initial value problem

ẏ(s) = f̂(y(s)), y(s0) = (t0,x0). (3.2)

The value of s is immaterial, so let s0 = t0. If there exists a solution y(s) = (t(s),x(s)) of
(3.2), then it follows that dt

ds (s) = 1 and that t(s) = s. Furthermore,

dx

ds
(s) = f(t(s),x(s),g ◦ U(t(s),x(s))) = f(s,x(s),g ◦ U(s,x(s))).
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Thus there would exist a corresponding solution of (2.1).

To show that K̂ is a viability domain of f̂ , pick any (t, z) ∈ K̂. Then (t, z) ∈ K ∩N0, and

by assumption f̂(t, z) ∈ TK(t, z). So by Lemma 2.2, f̂(t, z) ∈ TK∩N1
(t, z). Then, by Lemma

2.3, f̂(t, z) ∈ TK∩N1∩N0(t, z).

Thus, for all (t, z) ∈ K̂, f̂(t, z) ∈ TK̂(t, z), and so K̂ is a viability domain of f̂ , and by Thm.
2.7 a solution exists for (3.2), which corresponds to a solution of (2.1).

Finally, a uniqueness result for general initial points follows. Since b follows stronger
continuity properties, the Lipschitz continuity requirements can be relaxed to local Lipschitz
continuity.

Theorem 3.4. Let Assumption 2.1 (ii) hold. If the hypotheses of Thm. 3.3 hold, and if
in addition

1. ∀(s, z,v) ∈ Dt×Dx×Dg, there exist open neighborhoods Nf
t ⊂ Dt, N

f
x ⊂ Dx, Ng ⊂ Dg

of s, z, v, respectively, such that for a.e. t ∈ Nf
t , f(t, ·, ·) is Lipschitz continuous on Nf

x ×Ng

with some Lipschitz constant that holds for a.e. t ∈ Nf
t ,

2. ∀(s, z) ∈ Dt × Dx, there exist open neighborhoods N b
t ⊂ Dt, N b

x ⊂ Dx of s, z, re-
spectively, such that for a.e. t ∈ N b

t , b(t, ·) is Lipschitz continuous on N b
x with some Lipschitz

constant that holds for a.e. t ∈ N b
t ,

then a unique solution of (2.1) exists.
Proof. By Thm. 3.3, at least one solution must exist. For a contradiction, assume two

distinct solutions x1 and x2 exist. Assume without loss of generality that x1(t0) = x2(t0) = x0

and x1(t) 6= x2(t), ∀t ∈ (t0, tf ].
Let Ng be the open neighborhood of g ◦ U(t0,x0) as in Hypothesis 1. Let Nb be the open

neighborhood of b(t0,x0) on which g ◦ Û is Lipschitz continuous. Let Nt = Nf
t ∩ N b

t and
Nx = Nf

x ∩ N b
x be the open neighborhoods of t0, x0, respectively, such that for a.e. t ∈ Nt,

f(t, ·, ·) is Lipschitz continuous on Nx ×Ng and b(t, ·) is Lipschitz continuous on Nx.

Since xi (i ∈ {1, 2}), b and g ◦ Û are continuous, so are b(·,xi(·)) and g ◦ U(·,xi(·))
(i ∈ {1, 2}). Note that the neighborhood Nb is actually open with respect to F . This is not an
issue, though, because the functions b(·,xi(·)) are still continuous functions from [t0, tf ] into
F , and so the preimage of Nb under b(·,xi(·)) is open in [t0, tf ]. Thus

Ĩ ≡ Nt ∩

 ⋂
i∈{1,2}

(
x−1i (Nx) ∩ (b(·,xi(·)))−1(Nb) ∩ (g ◦ U(·,xi(·)))−1(Ng)

)
is open in [t0, tf ] and contains t0. Let Î be a subset of Ĩ of the form [t0, ta), ta > t0.

It follows that for a.e. t ∈ Î,

‖f(t,x1(t),g ◦ U(t,x1(t)))− f(t,x2(t),g ◦ U(t,x2(t)))‖ ≤ k‖x1(t)− x2(t)‖

for some positive, finite k. At this point, the proof proceeds exactly as that of Thm. 3.2. We
reach the contradiction that ‖x1(t) − x2(t)‖ ≤ 0, or that x1(t) = x2(t) for all t ∈ Î, and so a
unique solution exists.

The combination of all these existence and uniqueness results provide conditions that guar-
antee that the system (2.1) and (2.2) are amenable to numerical integration.
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