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Abstract

Systems of engineering interest usually evolve in time. Models that capture this dynamic
behavior can more accurately describe the system. Dynamic models are especially important
in the chemical, oil and gas, and pharmaceutical industries, where processes are intrinsically
dynamic, or taking into account dynamic behavior is critical for safety. Especially where
safety is concerned, uncertainty in the inputs to these models must be addressed. The
problems of forward reachability and robust design provide information about a dynamic
system when uncertainty is present.

This thesis develops theory and numerical methods for approaching the problems of
reachability and robust design applied to dynamic systems. The main assumption is that
the models of interest are initial value problems (IVPs) in ordinary differential equations
(ODEs). In the case of reachability analysis, the focus is on efficiently calculated enclosures
or “bounds” of the reachable sets, since one motivating application is to (deterministic)
global dynamic optimization, which requires such information. The theoretical approach
taken is inspired by the theory of differential inequalities, which leads to methods which
require the solution of an auxiliary IVP defined by parametric optimization problems. Major
contributions of this work include methods and theory for efficiently estimating and handling
these auxiliary problems. Along these lines, a method for constructing affine relaxations
with special parametric properties is developed. The methods for calculating bounds also are
extended to a method for calculating affine relaxations of the solutions of IVPs in parametric
ODEs.

Further, the problem of ODEs with linear programs embedded is analyzed. This formula-
tion has further application to dynamic flux balance models, which can apply to bioreactors.
These models have properties that can make them difficult to handle numerically, and this
thesis provides the first rigorous analysis of this problem as well as a very efficient numerical
method for the solution of dynamic flux balance models.

The approach taken to robust design is inspired by design centering and, more generally,
generalized semi-infinite programming. Theoretical results for reformulating generalized
semi-infinite programs are proposed and discussed. This discussion leads to a method for
robust design that has clear numerical benefits over others when the system of interest is
dynamic in nature. One major benefit is that much of the computational effort can be
performed by established commercial software for global optimization. Another method
which has a simple implementation in the context of branch and bound is also developed.

Thesis Supervisor: Paul I. Barton
Title: Lammot du Pont Professor of Chemical Engineering
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Chapter 1

Introduction

The general objective of this thesis is to develop theory and numerical methods for handling

uncertainty in dynamic systems. In specific, the problems of forward reachability analysis

and robust design for dynamic systems are considered. These two problems aim to provide

information about a system when there is uncertainty in various parameters or inputs.

The pharmaceutical industry provides current and interesting applications for these prob-

lems. Relevant processes are typically dynamic in nature and the ability to predict the effect

that perturbations in process inputs will have is vital to quality by design initiatives [212].

Because of uncertainties in measurements, a rigorous enclosure of all possible responses is

the most desirable information (this is related to forward reachability analysis). Further,

quality by design typically requires a design space, a set of parameters and input variables

that produce a predictable, desirable output (this is related to the robust design problem).

The following section discusses these and related problems in greater detail and reviews

existing approaches and results. Then §1.2 provides an overview of the contributions of this

thesis.

1.1 Background

1.1.1 Forward reachability

The problem of forward reachability analysis as considered here applies to the initial value

problem (IVP) in ordinary differential equations (ODEs) subject to uncertain initial condi-
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tions and control inputs:

ẋ(𝑡) = f(𝑡,u(𝑡),x(𝑡)), 𝑡 ∈ [𝑡0, 𝑡𝑓 ], (1.1a)

x(𝑡0) = x0, (1.1b)

for u and x0 in some set of admissible controls 𝒰 and initial conditions 𝑋0, respectively.

While we refer to the inputs u as controls, they can model uncertain time-varying inputs

in general. The goal is to analyze or estimate the set of states reachable by solutions of

IVP (1.1) for all possible controls and initial conditions, otherwise known as the reachable

set. Specifically, we define the reachable set at time 𝑡 by

𝑅(𝑡) ≡ {x(𝑡) : x is a solution of IVP (1.1) for some (u,x0) ∈ 𝒰 ×𝑋0, }.

Computing the reachable set is complicated by the fact that an exact analytical solution of

IVP (1.1) is often very difficult to obtain in engineering applications.

When the inputs u are parameters, i.e. uncertain but not time-varying, the dynamic

problem reduces to an IVP in parametric ODEs. When some sort of probability distribu-

tion is known for these parameters, approaches focus on more probabilistic descriptions of

the reachable set, in terms of expectations or moments. One such approach is based on poly-

nomial chaos expansions [132, 211], in which the dependence of the solutions of IVP (1.1)

is approximated by an infinite linear combination (series) of polynomials of the parameters.

The approach to reachability analysis taken in this thesis is inspired more by worst-case

analysis of IVP (1.1). In chemical engineering applications, IVP (1.1) often models systems

that have hard constraints. As the name suggests, hard constraints must be satisfied for

safety reasons, for instance. Consequently, it is useful to think of the constraints as de-

termining “safe” and “unsafe” regions of state space. The result is that descriptions of the

reachable set in terms of expectations are typically unacceptable, as we wish to know with

100% certainty that the system can never reach an unsafe operating region. Furthermore,

such approaches based on polynomial chaos expansions require approximations, and error

bounds are often unavailable in the case of nonlinear systems (in [174], despite an exhaus-

tive consideration of potential sources of error, a bound on the error due to truncating the

infinite expansion was only briefly considered, and overall this seems to be an open ques-
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Figure 1-1: A conceptual representation of the forward reachability problem. The set of
initial conditions 𝑋0 yields the reachable set 𝑅(𝑡) at some time 𝑡 under some dynamic
system. One focus of this thesis is the calculation of enclosures or bounds on the set 𝑅(𝑡).

tion). Overall, methods based on polynomial chaos expansions or probabilistic views of the

underlying uncertainty typically aim to answer different questions than in a worst-case or

safety analysis of a system.

As a consequence, we focus on the case that controls take values in some known set,

rather than according to some probability distribution, and the desired estimate of the

reachable set is an enclosure of it. We refer to an enclosure as “bounds” on the reachable

set. See Fig. 1-1 for a conceptual representation. One area that provides relevant theory for

constructing bounds is viability theory [10]. The concepts of viability tubes and kernels are

related to the reachability problem, although in their full generality, they are too abstract

to be of much use numerically; for basic schemes see [44, §7] and [162]. However, the

general theory can be specialized to give bounding theorems based on differential inequalities

[72, 97, 152, 168]. These theories focus on constructing interval bounds through the solution

of an auxiliary IVP in ODEs. Consequently, sophisticated methods and software for the

solution of IVPs in ODEs can be used to approximate the solution of this auxiliary system

numerically. The resulting numerical methods for constructing bounds on the reachable set

can be implemented very efficiently, as demonstrated in [168, 166]. This thesis follows this

general approach; see further discussion in §1.2.1.

Related methods for reachability analysis come from validated integration methods
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[26, 107, 133]. Even when no uncertainty is present, these methods provide enclosures

of the solutions of IVPs in ODEs that are valid despite integration errors and errors due

to round-off (similarly to interval arithmetic [130], the original aim of these methods was

to overcome the issues inherent in dealing with real numbers in finite precision arithmetic).

However, these methods can handle only a limited amount of parametric uncertainty com-

pared to some methods based on differential inequalities as shown in [152]. A more successful

extension of these methods to handle uncertain parameters was introduced in [107]. Subse-

quent extensions and improvements were made in [160]. These extensions depend on Taylor

model arithmetic [114, 136], an extension of interval arithmetic, to handle dependencies on

uncertain parameters in a rigorous way. Roughly, a Taylor model of a function is a Taylor

polynomial approximation with a rigorous error bound. One disadvantage of these exten-

sions is a rapid increase in the number of terms in a Taylor model/polynomial as the order

(and typically, accuracy) of the Taylor polynomial and dimension (number of uncertain

parameters and initial conditions) increases; the number of terms in an order 𝑞 Taylor poly-

nomial with respect to 𝑝 parameters is approximately 𝑝𝑞/𝑞! [65, Ch. 13]. The efficiency of

these methods is constantly improving, however the work in [37, 202] has demonstrated that

the quality of the bounds produced by these methods can be improved by using bounding

theories based on differential inequalities.

1.1.2 Global dynamic optimization

To introduce further motivation for this thesis’ approach to reachability analysis, consider a

system modeled by IVP (1.1) and the case that there is a safety constraint on the states at

the final time, 𝑔(x(𝑡𝑓 )) ≤ 0, for any solution x of IVP (1.1) and any admissible control and

initial condition. The problem of ensuring that the reachable set at the final time does not

intersect the unsafe region of state space can be formulated as the maximization problem

𝑔* = sup
u,x0

𝑔(x(𝑡𝑓 )) (1.2)

s.t. ẋ(𝑡) = f(𝑡,u(𝑡),x(𝑡)), 𝑡 ∈ [𝑡0, 𝑡𝑓 ],

x(𝑡0) = x0,

(u,x0) ∈ 𝒰 ×𝑋0.

22



If the optimal objective value 𝑔* (or an upper bound of 𝑔*) is less than or equal to zero,

we can ensure that the system obeys the constraints for all admissible controls and initial

conditions. It should be stressed that this requires global information about Problem (1.2),

especially if safety is concerned. A suboptimal (or local) solution (u†,x†
0) of Problem (1.2)

with corresponding objective value 𝑔† ≤ 0 does not guarantee that the system is safe for

all admissible controls and initial conditions. Problem (1.2) is called a global dynamic

optimization problem or optimal control problem. This is an extremely important class of

problems to many fields and industries and has applications beyond just safety analysis. The

books [13, 22, 27, 198] and recent theses [160, 163, 166, 175] are devoted to this problem

and attest to its importance.

This connection between reachability analysis and global dynamic optimization is quite

important and further motivates the approaches in this thesis. Theory and analysis of

optimal control problems have a long history, with topics including dynamic programming

and Pontryagin’s principle [13]. However, since the focus is on global solution of optimal

control problems, and the Pontryagin principle is only a necessary optimality condition and

may yield sub-optimal solutions, the most relevant framework is dynamic programming and

the related Hamilton-Jacobi-Bellman (HJB) partial differential equation (PDE). In fact, this

theory can be adapted to give a direct approach to calculating the reachable set; see [84, 103,

121], and for a better explanation of a related problem, see [31]. Although the solution of this

PDE yields an exact representation of the reachable set, analytical solutions are typically not

possible. Numerical solution is possible; in [31, 102, 121], numerical solutions are obtained

from level-set methods, a class of finite-difference methods (see [141]). Whether the PDE

is solved by finite differences, finite volumes, or finite elements, the solution obtained is

essentially a finite grid or mesh of points in state space, and at each point is a value that

determines whether the mesh point is in the reachable set or not. This lends itself to

nice visualization in 3 or fewer dimensions. However, in general, practically using this

solution in subsequent analysis or computation would require extra calculation to obtain

a more easily represented or manipulated set, such as an interval, ellipsoid, or (convex)

polyhedron, which somewhat defeats the purpose of calculating the exact reachable set. If

the ultimate goal is to solve an optimal control problem, then there are still issues, as solving

the HJB equation in the first place is computationally demanding, as noted in [84], with the

additional complication that the equation itself is defined by a potentially nonconvex global
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optimization problem. This has restricted its application to systems with specific structure,

such as systems with linear dynamics or systems which permit an explicit expression to

be written for the embedded global optimization problem defining the HJB equation; see

[31, 84, 102, 103, 121].

Another class of methods that can solve dynamic optimization problems globally is the

class of “direct” methods, and in particular, the sequential or control parameterization ap-

proach. Control problems such as (1.2) are infinite dimensional, since the decision space

includes 𝒰 , a subset of a function space. As the name suggests, the control parameteri-

zation approach handles this issue by parameterizing the controls with a finite number of

parameters, thus transforming the infinite dimensional problem into a finite one. Conse-

quently, a wealth of methods and theory from finite nonlinear programming can be applied

to the problem. See [198], in particular Ch. 6, for more on the control parameterization

approach, and [27], in particular Ch. 4, for another direct method often called the simulta-

neous approach. As noted in §1.1 of [163], the control parameterization approach reduces

the number of optimization variables compared to the simultaneous approach and thus is

better suited to the application of deterministic global optimization methods.

As mentioned earlier, we focus on global optimization as this yields the only acceptable

information in applications such as safety analysis, and similarly, we focus on deterministic

(as opposed to stochastic) methods, as these yield more rigorous global information (see

[137] for a review of global optimization methods). Branch and bound provides a promising

framework. This deterministic global optimization method rigorously searches the entire de-

cision space and requires upper and lower bounds on the objective. In “normal” optimization

problems, i.e. problems with data given by explicitly defined functions, interval arithmetic

and convex and concave relaxations give this global information [57, 117, 130],[137, §16].

Thus, to apply branch and bound to dynamic optimization problems via the control param-

eterization approach, convex and concave relaxations of the solutions of IVPs in parametric

ODEs are required. This has been achieved in [169, 176]. Both of these methods require

interval enclosures of the reachable set of a dynamic system. This provides further motiva-

tion for the approaches taken in this thesis toward estimating the reachable set. The branch

and bound algorithm requires these relaxations many times, and so tight, but efficiently

calculated interval enclosures are desired. The methods based on differential inequalities

mentioned earlier have yielded promising results and merit further investigation.
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1.1.3 Robust design

In a dynamic setting, the problem of robust design is complementary to the forward reacha-

bility problem. Consider IVP (1.1) in the case that it depends on parameters (i.e. uncertain

but constant inputs). Suppose that a safety analysis has determined that the set of pa-

rameters and initial conditions is not acceptable; there is some parameter/initial condition

pair that results in a solution entering an unsafe region of state space. A natural recourse

is to try to find a set of inputs that does guarantee safe system behavior for all resulting

solutions. Robust design can help solve this problem.

A general form of the problem is

max
y

volume(𝐷(y)) (1.3)

s.t. ̂︀g(p) ≤ 0, ∀p ∈ 𝐷(y),

y ∈ 𝑌,

for some decision space 𝑌 . In this problem, 𝐷(y) is a candidate “design space,” a set of

parameter values which could potentially be realized in the operation of an uncertain system.

This system has design/operational constraints expressed as ̂︀g(p) ≤ 0; the function ̂︀g likely

will be expressed in terms a mathematical model of the process (see Problem (1.4) below).

Consequently, a design space is feasible if and only if every possible parameter in it satisfies

the constraints. The goal is to maximize operational flexibility by choosing the largest

design space. Suppose 𝐷(y) is expressed as deviation from some central or nominal point;

let y = (p𝑐, 𝛿) and 𝐷(p𝑐, 𝛿) = {p : ‖p− p𝑐‖ ≤ 𝛿}. Then if the optimal solution is (p𝑐, 𝛿),

p𝑐 is a parameter corresponding to a robust system; operation of the system at this setpoint

affords the most robustness to noise in operation or uncertainty in the model by ensuring

that the constraints are satisfied for any other parameter value within 𝛿 of p𝑐 (in some

norm). Knowing the value of this acceptable deviation is an important part of the solution;

it permits easy monitoring of whether the process is obeying the desired constraints.

As in the forward reachability problem, some approaches to this and related problems

assume that probability distributions are available for the uncertain parameters [156, 173,

215]. The resulting formulations have chance constraints; the probability that the constraintŝ︀g(p) ≤ 0 hold must be greater than some threshold. Again, for the approach taken in this
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thesis, this is unacceptable.

The approach taken here is inspired more by the work on feasibility and flexibility in

[68, 195, 196]. These formulations are based on worst-case or bounded uncertainty analy-

sis. Extensions to more challenging models have been considered in [5, 43, 193]. See also

[66, 213] for reviews of related problems. Similarly to these other approaches, the current

approach is characterized by the fact that the fundamental problem (Problem (1.3)) is in-

finitely constrained (the constraints ̂︀g(p) ≤ 0 must hold for all p in the set 𝐷(y), which

typically will be infinite, and even further, uncountable). In contrast with the dynamic

optimization problem (1.2), we focus on the case that Problem (1.3) has a finite number of

decision variables y. The result is that Problem (1.3) is a type of generalized semi-infinite

program (GSIP) [67, 182, 187, 188]. The theory and methods for this class of problems will

be vital in the approach to robust design taken in this thesis.

Robust design is also related to design centering, a specific case of GSIP. This class

of problems has the intuitive geometric interpretation of inscribing the largest set (chosen

from some class of sets) into some container set. In terms of (1.3), the constraints define the

container set 𝐺 = {p : ̂︀g(p) ≤ 0}, into which we aim to fit the largest 𝐷(y) for y ∈ 𝑌 . See

Fig. 1-2. A classic application is to lapidary cutting problems [138, 210], where the largest

gem or gems are to be cut from a given rough stone. In the dynamic setting, this highlights a

conceptual difference between forward reachability and robust design in this thesis; forward

reachability seeks an enclosure or superset, robust design seeks a subset.

When the robust design problem is dynamic in nature, ̂︀g may be defined in part by the

solution of an IVP in parametric ODEs. For instance, the robust design problem might have

the form

max
y

volume(𝐷(y)) (1.4)

s.t. g(x(𝑡𝑓 ,p,x0)) ≤ 0, ∀(p,x0) ∈ 𝐷(y),

ẋ(𝑡,p,x0) = f(𝑡,p,x(𝑡,p,x0)), 𝑡 ∈ [𝑡0, 𝑡𝑓 ],

x(𝑡0,p,x0) = x0,

y ∈ 𝑌.

Here ̂︀g(p,x0) = g(x(𝑡𝑓 ,p,x0)). The problem of “backward reachability” is related; in its
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Figure 1-2: A geometric interpretation of the robust design problem. The container set
𝐺 could represent parameter values which yield safe system behavior. The set 𝐷(y) is a
feasible design space since it is a subset of 𝐺; the goal is to calculate a design space which
affords the most flexibility.

basic form, this problem aims to determine the set of initial conditions from which a solution

of an IVP in ODEs can reach a given target set. We could treat parameters as states with

zero time derivative and adapt this approach to solve Problem (1.4); we then determine the

backward reachable set corresponding to the set of states {z : g(z) ≤ 0}. Methods from

optimal control involving the HJB equation mentioned earlier could be used, but in addition

to the aforementioned numerical difficulties, there is the drawback that the solution obtained

does not necessarily define an easily represented, regular set such as an interval or ellipse.

As discussed above, the solution of a robust design problem should yield an acceptable

deviation (e.g. 𝛿). Inner approximations by ellipsoids have been proposed [38, 142], but

these are specific to linear dynamics. Meanwhile, the theory and methods of GSIP, combined

with techniques from global dynamic optimization and applied to Problem (1.4), promise a

flexible framework for addressing the backward reachability problem.

1.2 Contributions

The overall structure of this thesis and its contributions are discussed in the following sec-

tions.
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1.2.1 Forward reachability

Chapters 5, 6, and 7 build up the approaches to the forward reachability problem. Chapter 5

develops a numerical method for the construction of interval bounds on the reachable set

of IVP (1.1). The theory and numerical methods are then generalized to the construction

of polyhedral bounds for dynamic systems in Ch. 6. Although methods for constructing

polyhedral bounds exist, this thesis broadens the class of problems for which polyhedral

bounds can be constructed, and addresses a number of practical numerical issues that limit

the efficiency of previous methods. For instance, previous work focuses on linear dynamics

[84], partitions the state space and approximates the dynamics on these regions [9], requires

that nonconvex global optimization problems be approximated [39], or manually implements

the time steps of the numerical integration [63, 64]. Another contribution of this thesis is

the development of a special procedure for constructing parameterized affine relaxations of

general functions (see §1.2.3 below). The result is that the bounding methods developed

in this thesis depend on parametric linear programs, can be used with established methods

for numerical integration, and can be applied to general nonlinear systems. The result is

expanded applicability and efficient implementation.

Chapter 6 also explores problem formulations and structure that can be exploited to non-

trivially improve bounds without a significant increase in computational cost. This relates to

using constraint information or a priori enclosures of the reachable set of the system. This

information is often available for models of chemical reactors, and this thesis has identified a

way to extend the results to continuously-stirred tank reactors that previously only applied

to batch reactors [167].

Chapter 7 develops a general bounding theory and explores the connections to many

existing theorems. This theory takes into consideration state constraints, which has ap-

plications to path constraints in dynamic optimization, measurements in state estimation,

and differential-algebraic equations. In addition, this leads to a theory for constructing

relaxations of the solutions of parametric ordinary differential equations, which is vital to

deterministic global dynamic optimization. The new theory is flexible and numerical exper-

iments show that an implementation is fast and the resulting relaxations are tighter than

some comparable previous methods.
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1.2.2 Robust design

Chapters 8 and 9 consider generalized semi-infinite programming and robust design. This

thesis develops theoretical results and numerical analysis of methods for solving certain

classes of GSIP which lead to numerical methods for solving robust design problems. The

result is an effective method for general, nonlinear models. This is achieved by using La-

grangian duality results to formulate a semi-infinite program (SIP) restriction of Prob-

lem (1.3) and subsequently apply a numerical method for SIP. Most of this theoretical and

numerical work is the focus of Ch. 8.

In particular, this method is applicable and efficient even when the robust design problem

is dynamic in nature, that is, similar in form to Problem (1.4). The numerical method can

be tailored to take advantage of the structure of the problem in order to avoid some of the

computational expense associated with the dynamic nature of the problem. Although the

method is approximate, any design space that the method produces is guaranteed to be

feasible and an example shows that it is effective. This is discussed in Ch. 9.

1.2.3 Parametric affine relaxations

In support of the forward reachability problem, two other contributions are made. The first

of these is a method for calculating affine relaxations of general functions. In particular, these

relaxations are desired in a dynamic setting, and specific parametric regularity properties

must hold. This is the subject of Ch. 3.

1.2.4 Ordinary differential equations with linear programs embedded

The second topic explored in connection with the forward reachability problem is discussed

in Ch. 4. This relates to the IVP in ODEs with a lexicographic linear program embedded:

ẋ(𝑡) = f(𝑡,x(𝑡),q(𝑡,x(𝑡))), 𝑡 ∈ [𝑡0, 𝑡𝑓 ], (1.5)

x(𝑡0) = x0, (1.6)
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where

𝑞1(𝑡, z) = min
v∈R𝑛𝑣

cT1 v (1.7)

s.t.Av = b(𝑡, z),

v ≥ 0,

and for 𝑖 ∈ {2, . . . , 𝑛𝑞},

𝑞𝑖(𝑡, z) = min
v∈R𝑛𝑣

cT𝑖 v (1.8)

s.t.

⎡⎢⎣
A
cT1
...

cT𝑖−1

⎤⎥⎦v =

⎡⎢⎣ b(𝑡,z)
𝑞1(𝑡,z)

...
𝑞𝑖−1(𝑡,z)

⎤⎥⎦ ,

v ≥ 0.

Understanding the potential numerical difficulties of this problem is important to the nu-

merical methods developed in Chapters 5 and 6.

In addition, the problem of ODEs with a linear program embedded has merit on its own.

Models of bioreactors based on dynamic flux balance analysis (DFBA) take this general form

[70, 79, 81]. This thesis develops the first rigorous mathematical analysis of this industrially-

relevant modeling framework, and subsequently develops an efficient and robust numerical

method for handling models of this form.

The numerical challenges in handling DFBA models include potential nonuniqueness of

the solution set of LP (1.7), potential infeasibility of LP (1.7), and overall nonsmoothness of

the vector field of the ODE (right-hand side of (1.5)). The numerical method developed ap-

proaches the problem using tools from hybrid systems theory and parametric programming

to reformulate the system as index-one differential-algebraic equations (DAEs) with discrete

modes. Powerful methods for the integration of index-one DAEs and event detection can

then be used. This approach addresses the issues of infeasibility and nonsmoothness. Mean-

while, considering lexicographic linear programs allows modelers to overcome the issue of

nonuniqueness. A way of efficiently handling the lexicographic linear program in the context

of the overall numerical method is developed.
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Chapter 2

Preliminaries

This chapter introduces some general notation, technical results, and technical concepts that

will be used in this thesis.

2.1 Notation

The following notation and terminology is fairly standard but we include this discussion

for completeness. Let N and R denote the natural and real numbers, respectively. For

(𝑚,𝑛) ∈ N2, let R𝑚×𝑛 denote the set of 𝑚×𝑛 real matrices. Vectors and matrices are denoted

with lowercase bold letters (e.g. v) and uppercase bold letters (e.g. M), respectively. The

transposes of a vector v and matrix M are denoted vT and MT, respectively. The exception

is that 0 may denote either a matrix or vector of zeros, but it should be clear from context

what the appropriate dimensions are. Similarly, 1 denotes a vector of ones and I denotes the

identity matrix where the dimensions should be clear from context. The 𝑗𝑡ℎ component of a

vector v is denoted 𝑣𝑗 . For (𝑝, 𝑛) ∈ N2 and a matrix M ∈ R𝑝×𝑛, the notation M = [mT
𝑖 ] may

be used to emphasize that the 𝑖𝑡ℎ row of M is m𝑖, for 𝑖 ∈ {1, . . . , 𝑝}. Similarly, M = [𝑚𝑖,𝑗 ]

emphasizes that the element in the 𝑖𝑡ℎ row and 𝑗𝑡ℎ column is 𝑚𝑖,𝑗 .

For (𝑡1, 𝑡2) ∈ R2, with 𝑡1 ≤ 𝑡2, a nonempty interval is denoted [𝑡1, 𝑡2]. If 𝑡1 < 𝑡2, an open

interval is denoted (𝑡1, 𝑡2); it should be clear from context that this is a subset of R and not

a point in R2. “Half-open intervals” are denoted [𝑡1, 𝑡2) and (𝑡1, 𝑡2] (see also Definition 2.17

of [158]).

Inequalities between vectors hold componentwise. For 𝑛 ∈ N and (v,w) ∈ R𝑛 × R𝑛,

[v,w] ≡ [𝑣1, 𝑤1]× [𝑣2, 𝑤2]× · · · × [𝑣𝑛, 𝑤𝑛] denotes an interval in R𝑛. Note that this interval
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may be empty; [v,w] is nonempty if and only if v ≤ w. Denote the midpoint of an interval

𝑋 = [v,w] by mid(𝑋) ≡ 1/2(v +w).

For (𝑚,𝑛) ∈ N2, a polyhedron is any subset of R𝑛 that can be expressed as {z ∈ R𝑛 :

Mz ≤ d}, for some matrix M ∈ R𝑚×𝑛 and vector d ∈ R𝑚 (i.e. it is the intersection of a

finite number of closed halfspaces). Consequently, polyhedra are always closed, convex sets.

For 𝑛 ∈ N, the equivalence of norms on R𝑛 is used often; when a statement or result

holds for any choice of norm, it is denoted ‖·‖. In some cases, it is useful to reference a

specific norm, in which case it is subscripted; for instance, ‖·‖1 denotes the 1-norm. The

dual norm of a norm ‖·‖ is denoted ‖·‖*.

For sets 𝑋, 𝑌 , a mapping 𝑆 from 𝑋 to the set of subsets of 𝑌 is denoted 𝑆 : 𝑋 ⇒ 𝑌 . For

sets 𝑋, 𝑌 , and 𝑍 with 𝑋 ⊂ 𝑍 and 𝑌 ⊂ 𝑍, the difference between 𝑋 and 𝑌 (𝑋 intersected

with the complement of 𝑌 in 𝑍) is denoted 𝑋∖𝑌 . In a metric space, a neighborhood of

a point 𝑥 is denoted 𝑁(𝑥) and refers to an open ball centered at 𝑥 with some nonzero

radius. If this radius 𝛿 is important, it may be emphasized as a subscript, e.g. 𝑁𝛿(𝑥). The

closure of a set 𝑆 is denoted 𝑆. The diameter of a nonempty set 𝑆 ⊂ R𝑛 is defined as

diam(𝑆) = sup{‖z1 − z2‖∞ : (z1, z2) ∈ 𝑆 × 𝑆}. This coincides with the definition of the

width of an interval.

Differentiability of functions is understood in the Fréchet sense. For (𝑚,𝑛) ∈ N2, open

𝐷 ⊂ R𝑛, and f : 𝐷 → R𝑚 which is differentiable at x0 ∈ 𝐷, the Jacobian matrix of f at

x0 exists and is denoted by 𝜕f
𝜕x(x0) ∈ R𝑚×𝑛. The gradient (the transpose of the Jacobian)

is denoted ∇xf(x0) or just ∇f(x0). When 𝑛 = 1, we allow the domain 𝐷 to be an open,

closed, or half-open interval, and denote the derivative at 𝑡 ∈ 𝐷 (if it exists) by ḟ(𝑡), using

“left-hand” or “right-hand” derivatives at the boundary as necessary.

For 𝑛 ∈ N and a set 𝑇 ⊂ R, denote the Lebesgue space 𝐿1(𝑇,R𝑛) ≡ {(v : 𝑇 → R𝑛) :∫︀
𝑇 |𝑣𝑖| < +∞,∀𝑖}. That is, v ∈ 𝐿1(𝑇,R𝑛) if each component of v is in 𝐿1(𝑇 ) ≡ 𝐿1(𝑇,R).

Statements that hold at almost every 𝑡 ∈ 𝑇 (i.e. except on a subset of Lebesgue measure

zero) are abbreviated 𝑎.𝑒. 𝑡 ∈ 𝑇 .

A vector-valued function f is called convex if each component 𝑓𝑖 is convex, and similarly

for concavity.
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2.2 Compact analysis

Some concepts dealing with compact sets are discussed. In the following, (𝑋, 𝑑) is a metric

space (with metric 𝑑).

The set of nonempty compact subsets of (𝑋, 𝑑) is denoted K𝑋. Define the distance from

a point 𝑥 to a set 𝑌 in (𝑋, 𝑑) by

𝑑(𝑥, 𝑌 ) ≡ inf{𝑑(𝑥, 𝑦) : 𝑦 ∈ 𝑌 }.

The Hausdorff distance 𝑑𝐻 between two sets 𝑌, 𝑍 in (𝑋, 𝑑) is given by

𝑑𝐻(𝑌, 𝑍) = max {sup{𝑑(𝑦, 𝑍) : 𝑦 ∈ 𝑌 }, sup{𝑑(𝑧, 𝑌 ) : 𝑧 ∈ 𝑍}} .

If for all 𝑦 ∈ 𝑌 there exists a 𝑧 ∈ 𝑍 such that 𝑑(𝑦, 𝑧) ≤ 𝛿 and vice versa, then 𝑑𝐻(𝑌,𝑍) ≤ 𝛿.

Conversely, if 𝑌 and 𝑍 are compact and 𝑑𝐻(𝑌, 𝑍) ≤ 𝛿, then for all 𝑦 ∈ 𝑌 there exists 𝑧 ∈ 𝑍

with 𝑑(𝑦, 𝑧) ≤ 𝛿 and for all 𝑧 ∈ 𝑍 there exists 𝑦 ∈ 𝑌 with 𝑑(𝑧, 𝑦) ≤ 𝛿. The Hausdorff

distance defines a metric on K𝑋. For more discussion and related topics see §5 of [51].

A space is locally compact if every point has a compact neighborhood (i.e. every point

is contained in the interior of a compact set). It follows that R𝑛 is locally compact. Further,

any closed or open subset of a locally compact space is locally compact as well; see [131].

Lemma 2.2.1. Let (𝑋, 𝑑) be a metric space. Let 𝒦 be a compact subset of (K𝑋, 𝑑𝐻). Then̂︀𝐾 =
⋃︀

𝑍∈𝒦 𝑍 is compact.

Proof. Choose a sequence {𝑥𝑖} ⊂ ̂︀𝐾. We will show that a subsequence of it converges to an

element of ̂︀𝐾. By the definition of ̂︀𝐾, we can construct a corresponding sequence {𝑍𝑖} ⊂ 𝒦

such that 𝑍𝑖 ∋ 𝑥𝑖 for each 𝑖. Since 𝒦 is compact, there exists a subsequence {𝑍𝑖𝑗} which

converges (with respect to the Hausdorff metric) to some 𝑍* ∈ 𝒦. Using the definition of

the Hausdorff metric and the fact that 𝑍𝑖 and 𝑍* are compact, we have

∀𝜖 > 0,∃𝐽 > 0 such that ∀𝑗 > 𝐽,∃𝑧𝑗 ∈ 𝑍* such that 𝑑(𝑥𝑖𝑗 , 𝑧𝑗) ≤ 𝜖.

It follows that we can construct a subsequence of {𝑥𝑖𝑗}, which we will denote {𝑥ℓ}, and

{𝑧ℓ} ⊂ 𝑍* such that ∀𝜖 > 0,∃𝐿 > 0 such that ∀ℓ > 𝐿, 𝑑(𝑥ℓ, 𝑧ℓ) ≤ 𝜖. But since 𝑍* is

compact, a subsequence {𝑧ℓ𝑚} converges to some 𝑧 ∈ 𝑍*. Using the triangle inequality, we
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have ∀𝜖 > 0,∃𝑀 > 0 such that ∀𝑚 > 𝑀 , 𝑑(𝑥ℓ𝑚 , 𝑧) ≤ 𝑑(𝑥ℓ𝑚 , 𝑧ℓ𝑚) + 𝑑(𝑧ℓ𝑚 , 𝑧) < 𝜖. Thus,

{𝑥ℓ𝑚} converges to 𝑧 ∈ ̂︀𝐾, and so ̂︀𝐾 is compact.

2.3 Local Lipschitz continuity

The concepts of Lipschitz continuity and local Lipschitz continuity are central to many

results in this thesis.

Definition 2.3.1. Let (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌 ) be metric spaces. A mapping 𝑓 : 𝑋 → 𝑌 is

Lipschitz continuous if there exists 𝐿 > 0 such that

𝑑𝑌 (𝑓(𝑥1), 𝑓(𝑥2)) ≤ 𝐿𝑑𝑋(𝑥1, 𝑥2)

for all (𝑥1, 𝑥2) ∈ 𝑋 ×𝑋.

Definition 2.3.2. Let (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌 ) be metric spaces. A mapping 𝑓 : 𝑋 → 𝑌 is

locally Lipschitz continuous if for all 𝑥 ∈ 𝑋 there exists a neighborhood 𝑁(𝑥) of 𝑥 and

𝐿(𝑥) > 0 such that

𝑑𝑌 (𝑓(𝑥1), 𝑓(𝑥2)) ≤ 𝐿(𝑥)𝑑𝑋(𝑥1, 𝑥2)

for all (𝑥1, 𝑥2) ∈ 𝑁(𝑥)×𝑁(𝑥).

Compactness and local compactness allow us to infer Lipschitz continuity on subsets

from local Lipschitz continuity.

Lemma 2.3.1. If 𝑓 is locally Lipschitz continuous on a metric space (𝑋, 𝑑), then 𝑓 is

Lipschitz continuous on any compact subset of 𝑋. If (𝑋, 𝑑) is locally compact and 𝑓 is

Lipschitz continuous on every compact subset of 𝑋, then 𝑓 is locally Lipschitz continuous

on 𝑋.

The following establishes that the composition of locally Lipschitz continuous mappings

is also locally Lipschitz continuous. See Theorem 2.5.6 in [166] for its proof.

Lemma 2.3.2. Let (𝑋, 𝑑𝑋), (𝑌, 𝑑𝑌 ), and (𝑍, 𝑑𝑍) be metric spaces and let 𝑓 : 𝑋 → 𝑌

and 𝑔 : 𝑌 → 𝑍 be locally Lipschitz continuous. Then 𝑔 ∘ 𝑓 : 𝑋 → 𝑍 is locally Lipschitz

continuous.
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This composition result is very useful and permits us to infer the local Lipschitz con-

tinuity of the (finite) sum, (finite) product, maximum, minimum, etc., of locally Lipschitz

continuous mappings.

2.4 Parametric programming

A few results regarding parametric optimization problems, in particular parametric linear

programs (LPs), are considered. A general resource for related results is [12].

Lemma 2.4.1. Let (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌 ) be metric spaces. Assume 𝑓 : 𝑋 × 𝑌 → R and

𝑀 : 𝑌 ⇒ 𝑋 are mappings such that

1. 𝑀 is nonempty-valued,

2. 𝑓(·, 𝑦) attains its infimum on 𝑀(𝑦) for each 𝑦 ∈ 𝑌 ,

3. there exists 𝐿𝑓 > 0 such that for all (𝑥1, 𝑦1) and (𝑥2, 𝑦2) ∈ 𝑋 × 𝑌 , 𝑓 satisfies

|𝑓(𝑥1, 𝑦1)− 𝑓(𝑥2, 𝑦2)| ≤ 𝐿𝑓 (𝑑𝑋(𝑥1, 𝑥2) + 𝑑𝑌 (𝑦1, 𝑦2)),

4. there exists 𝐿𝑀 > 0 such that for all (𝑦1, 𝑦2) ∈ 𝑌 × 𝑌 and for all 𝑥1 ∈ 𝑀(𝑦1), there

exists 𝑥2 ∈𝑀(𝑦2) such that 𝑑𝑋(𝑥1, 𝑥2) ≤ 𝐿𝑀𝑑𝑌 (𝑦1, 𝑦2).

Then 𝑓min : 𝑌 ∋ 𝑦 ↦→ min{𝑓(𝑥, 𝑦) : 𝑥 ∈𝑀(𝑦)} is Lipschitz continuous.

Proof. Choose (𝑦1, 𝑦2) ∈ 𝑌 × 𝑌 . By assumption, 𝑓(·, 𝑦1) achieves its minimum on 𝑀(𝑦1),

thus 𝑓min(𝑦1) = 𝑓(𝑥1, 𝑦1) for some 𝑥1 ∈ 𝑀(𝑦1). By assumption there is a 𝐿𝑀 > 0 and̃︀𝑥2 ∈𝑀(𝑦2) such that 𝑑𝑋(𝑥1, ̃︀𝑥2) ≤ 𝐿𝑀𝑑𝑌 (𝑦1, 𝑦2). Because 𝑓 is Lipschitz continuous, there

is a 𝐿𝑓 > 0 such that

|𝑓(𝑥1, 𝑦1)− 𝑓(̃︀𝑥2, 𝑦2)| ≤ 𝐿𝑓 (𝑑𝑋(𝑥1, ̃︀𝑥2) + 𝑑𝑌 (𝑦1, 𝑦2)) ≤ 𝐿𝑓 (𝐿𝑀 + 1)𝑑𝑌 (𝑦1, 𝑦2).

This implies that

𝑓(̃︀𝑥2, 𝑦2) ≤ 𝐿𝑓 (𝐿𝑀 + 1)𝑑𝑌 (𝑦1, 𝑦2) + 𝑓min(𝑦1),

which implies that

𝑓min(𝑦2) ≤ 𝑓(̃︀𝑥2, 𝑦2) ≤ 𝐿𝑓 (𝐿𝑀 + 1)𝑑𝑌 (𝑦1, 𝑦2) + 𝑓min(𝑦1),
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thus

𝑓min(𝑦2)− 𝑓min(𝑦1) ≤ 𝐿𝑓 (𝐿𝑀 + 1)𝑑𝑌 (𝑦1, 𝑦2). (2.1)

Similarly, 𝑓(·, 𝑦2) achieves its minimum on 𝑀(𝑦2), thus 𝑓min(𝑦2) = 𝑓(𝑥2, 𝑦2) for some

𝑥2 ∈ 𝑀(𝑦2) and there is a ̃︀𝑥1 ∈ 𝑀(𝑦1) such that 𝑑𝑋(̃︀𝑥1, 𝑥2) ≤ 𝐿𝑀𝑑𝑌 (𝑦1, 𝑦2). By reasoning

similar to above, 𝑓(̃︀𝑥1, 𝑦1) ≤ 𝐿𝑓 (𝐿𝐺 + 1)𝑑𝑌 (𝑦1, 𝑦2) + 𝑓(𝑥2, 𝑦2) thus

𝑓min(𝑦1)− 𝑓min(𝑦2) ≤ 𝐿𝑓 (𝐿𝐺 + 1)𝑑𝑌 (𝑦1, 𝑦2)

which combined with Eqn. (2.1) gives

|𝑓min(𝑦1)− 𝑓min(𝑦2)| ≤ 𝐿𝑓 (𝐿𝐺 + 1)𝑑𝑌 (𝑦1, 𝑦2)

as desired.

The following result establishes “Lipschitz continuity” of the feasible sets, solution sets,

and optimal objective value of an LP parameterized by the “right-hand side” of its con-

straints. This result is from the literature; see for instance Theorem 2.4 of [115].

Lemma 2.4.2. Assume (𝑚,𝑛) ∈ N2, A ∈ R𝑚×𝑛, b ∈ R𝑚, and c ∈ R𝑛. Consider the linear

program

𝑞(b) = sup{cTz : Az ≤ b}.

Let 𝑃 (b) = {z : Az ≤ b} (the feasible set), 𝑆(b) = {z ∈ 𝑃 (b) : cTz = 𝑞(b)} (the solution

set), 𝐹 = {b : 𝑃 (b) ̸= ∅}, and 𝐹𝑆 = {b : 𝑆(b) ̸= ∅}. Then for any choice of norms ‖·‖𝛼,

‖·‖𝛽,

1. there exists 𝐿 > 0 such that for all (b1,b2) ∈ 𝐹 × 𝐹 and for any z1 ∈ 𝑃 (b1), there

exists a z2 ∈ 𝑃 (b2) with

‖z1 − z2‖𝛼 ≤ 𝐿 ‖b1 − b2‖𝛽 ,

2. there exists 𝐿𝑆 > 0 such that for all (b1,b2) ∈ 𝐹𝑆 ×𝐹𝑆 and for any z1 ∈ 𝑆(b1), there

exists a z2 ∈ 𝑆(b2) with

‖z1 − z2‖𝛼 ≤ 𝐿𝑆 ‖b1 − b2‖𝛽 ,
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3. and 𝑞 : 𝐹𝑆 → R is Lipschitz continuous.

We prove a related result that establishes local Lipschitz continuity of the optimal ob-

jective value of an optimization problem parameterized by its objective and feasible set.

Lemma 2.4.3. Assume (𝑚,𝑛, 𝑝) ∈ N3. Let A ∈ R𝑚×𝑛 and 𝐼 = {1, . . . , 𝑝}. Let 𝑃 : R𝑚 ∋

b ↦→ {z : Az ≤ b} and 𝐹 = {b : 𝑃 (b) ̸= ∅}. Assume that 𝑃 (b) is bounded for all b ∈ 𝐹 .

Define 𝑞 : 𝐹 × R𝑝𝑛 × R𝑝 → R by

𝑞 : (b, c1, c2, . . . , c𝑝,h) ↦→ min
z∈R𝑛

max
𝑖∈𝐼
{cT𝑖 z+ ℎ𝑖} (2.2)

s.t.Az ≤ b.

Then 𝑞 is locally Lipschitz continuous.

Proof. An important fact is that 𝐹 is closed, see §4.7 of [25]. It follows that 𝐹 × R𝑝𝑛 × R𝑝

is locally compact, and so by Lemma 2.3.1 it suffices to show that 𝑞 is Lipschitz continuous

on any compact subset. So choose compact 𝐾 ⊂ 𝐹 × R𝑝𝑛 × R𝑝. Then there exist compact

𝐾𝑑 ⊂ 𝐹 , 𝐾𝑐 ⊂ R𝑝𝑛, and 𝐾ℎ ⊂ R𝑝 such that 𝐾 ⊂ 𝐾𝑑 ×𝐾𝑐 ×𝐾ℎ.

To apply Lemma 2.4.1, we need to extend the domain of 𝑃 so that we consider it a

function of c = (c1, c2, . . . , c𝑝) ∈ 𝐾𝑐 and h ∈ 𝐾ℎ as well. In an abuse of notation, denote

this function 𝑃 : 𝐾𝑑 × 𝐾𝑐 × 𝐾ℎ ⇒ R𝑛. Since 𝑃 is compact-valued, Lemma 2.4.2 implies

that 𝑃 : 𝐾𝑑 ×𝐾𝑐 ×𝐾ℎ → KR𝑛 is Lipschitz continuous. Thus the image of 𝐾𝑑 ×𝐾𝑐 ×𝐾ℎ

under 𝑃 , denoted 𝒦, is compact in KR𝑛. By Lemma 2.2.1, 𝐾𝑣 ≡
⋃︀

𝑍∈𝒦 𝑍 is compact.

Since 𝑓 : (z,b, c1, . . . , c𝑝,h) ↦→ max𝑖∈𝐼{cT𝑖 z + ℎ𝑖} is locally Lipschitz continuous on all of

R𝑛 × R𝑚 × R𝑝𝑛 × R𝑝, it is Lipschitz continuous on 𝐾𝑣 ×𝐾𝑑 ×𝐾𝑐 ×𝐾ℎ.

By assumption, 𝑃 (b, c,h) is closed, bounded, nonempty, and a subset of 𝐾𝑣 for all

(b, c,h) ∈ 𝐾𝑑×𝐾𝑐×𝐾ℎ, and by Lemma 2.4.2 is Lipschitz continuous in the sense required

by Lemma 2.4.1. Thus, 𝑓(·,b, c,h) achieves its minimum on 𝑃 (b, c,h) for each (b, c,h) ∈

𝐾𝑑 ×𝐾𝑐 ×𝐾ℎ. So, we can apply Lemma 2.4.1 and obtain that 𝑞 is Lipschitz continuous on

𝐾𝑑 ×𝐾𝑐 ×𝐾ℎ, and thus on 𝐾.

In the special case that the index set 𝐼 = {1}, it is clear that optimization problem (2.2)

is a linear program parametrized by both its cost vector and right-hand side. In this case,

results from, for instance, [208] show that the optimal objective value is locally Lipschitz
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continuous. In the general case, the objective function of (2.2) is a convex piecewise affine

function; consequently, it can be reformulated as the linear program

𝑞(b, c1, . . . , c𝑝,h) = min
(z,𝑠)∈R𝑛+1

𝑠

s.t.Az ≤ b,

cT𝑖 z+ ℎ𝑖 ≤ 𝑠, ∀𝑖 ∈ 𝐼.

However, in this form, the parameterization is now influencing the constraints of the LP,

which in general is less well behaved (see for instance [208]). Thus, rather than obscure

the nice parametric properties just established, parametric optimization problems of the

form (2.2) are kept in that form and loosely referred to as “linear programs.”

2.5 Ordinary differential equations

Initial value problems in ordinary differential equations (IVPs in ODEs) will also be impor-

tant in this thesis. For 𝑛 ∈ N, 𝐷 ⊂ R𝑛, 𝑇 ⊂ R, 𝐷 nonempty, 𝑇 = [𝑡0, 𝑡𝑓 ] ̸= ∅, x0 ∈ 𝐷, and

f : 𝑇 ×𝐷 → R𝑛, consider the IVP in ODEs

ẋ(𝑡) = f(𝑡,x(𝑡)), 𝑎.𝑒. 𝑡 ∈ 𝑇, x(𝑡0) = x0. (2.3)

An important property of this ODE system relates to the Lipschitz continuity of its dynamics

(or right-hand side) f . The specific property is given in the following definition, borrowing

terminology from Ch. 3 of [163].

Definition 2.5.1. Let (𝑇, 𝑑𝑇 ), (𝑋, 𝑑𝑋), and (𝑌, 𝑑𝑌 ) be metric spaces, and let 𝑓 : 𝑇×𝑋 → 𝑌 .

Then 𝑓 is locally Lipschitz continuous on 𝑋, uniformly on 𝑇 , if for all 𝑥 ∈ 𝑋 there exists a

neighborhood 𝑁(𝑥) of 𝑥 and 𝐿(𝑥) > 0 such that

𝑑𝑌 (𝑓(𝑡, 𝑥1), 𝑓(𝑡, 𝑥2)) ≤ 𝐿(𝑥)𝑑𝑋(𝑥1, 𝑥2)

for all (𝑡, 𝑥1, 𝑥2) ∈ 𝑇 ×𝑁(𝑥)×𝑁(𝑥).

In the context of IVP (2.3), we desire f to be locally Lipschitz continuous on 𝐷, uni-

formly on 𝑇 . The uniqueness of the solutions of (2.3) rely on this property; see Theorem 1.10
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of Ch. II of [116] or Theorem 2 in §1 of [51]. Further, a similar condition establishes that

many numerical integration methods, including Runge-Kutta and linear multistep meth-

ods, are convergent for problem (2.3); see, for instance, Theorem 1.1 of §1.4 of [105], and

Definition 1.6 of §II.1 and the convergence analyses in Sections III.3 and VII.4 of [116].

The next result shows that local Lipschitz continuity on a partially compact domain can

yield the Lipschitz property in Definition 2.5.1.

Lemma 2.5.1. Assume (𝑚,𝑛, 𝑝) ∈ N3. Let 𝐶 ⊂ R𝑚 be nonempty and compact and 𝐷 ⊂ R𝑛

be nonempty. Let g : 𝐶 × 𝐷 → R𝑝 be locally Lipschitz continuous. Then for all z ∈ 𝐷,

there exists a neighborhood 𝑁(z) and 𝐿 > 0 such that for all (y, z1, z2) in 𝐶× (𝑁(z)∩𝐷)×

(𝑁(z) ∩𝐷)

‖g(y, z1)− g(y, z2)‖ ≤ 𝐿 ‖z1 − z2‖ .

Proof. Choose z ∈ 𝐷. For each y ∈ 𝐶, let 𝑁(y, z) be a neighborhood of (y, z) such that g

is Lipschitz continuous on 𝑁(y, z) ∩ (𝐶 ×𝐷), with corresponding Lipschitz constant 𝐿(y).

However, this collection of open sets form an open cover of 𝐶 × {z}, which is compact, and

thus we can choose a finite number of these neighborhoods {𝑁(y𝑖, z) : 1 ≤ 𝑖 ≤ 𝑘}, such

that their union, ̃︀𝑁 , contains 𝐶 ×{z}. Let 𝐿 be the (finite) maximum of the corresponding

Lipschitz constants (i.e. 𝐿 = max{𝐿(y𝑖) : 1 ≤ 𝑖 ≤ 𝑘}). Note that ̃︀𝑁 is an open set, and g

is Lipschitz continuous on ̃︀𝑁 ∩ (𝐶 ×𝐷) with Lipschitz constant 𝐿.

We claim that there exists a 𝛿 > 0 such that 𝐶×𝑁𝛿(z) ⊂ ̃︀𝑁 (where 𝑁𝛿(z) is viewed as a

subset of R𝑛). This follows from, for instance, Lemma 1 in §5 of [51]. The argument is that

the complement of ̃︀𝑁 , ̃︀𝑁𝐶 , is closed and disjoint from 𝐶 × {z}, and so there exists a 𝛿 > 0

such that the distance between any point in 𝐶 × {z} and any point in ̃︀𝑁𝐶 is greater than

𝛿. This implies that 𝐶 ×𝑁𝛿(z) is disjoint from ̃︀𝑁𝐶 , which in turn implies 𝐶 ×𝑁𝛿(z) ⊂ ̃︀𝑁 .

The result follows from Lipschitz continuity on (𝐶×𝑁𝛿(z))∩ (𝐶×𝐷) = 𝐶×𝑁𝛿(z)∩𝐷.
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Chapter 3

Parametric affine relaxations

3.1 Introduction

As motivation for the discussion in this chapter, consider the following problem: Given

ℎ : R𝑛 → R, we seek (h𝑎𝑙,h𝑎𝑢) : R𝑛×R𝑛 → R𝑛×R𝑛 and (ℎ𝑏𝑙, ℎ𝑏𝑢) : R𝑛×R𝑛 → R×R such

that for any interval subset [v,w] of R𝑛, we have

(h𝑎𝑙(v,w))Tz+ ℎ𝑏𝑙(v,w) ≤ ℎ(z) ≤ (h𝑎𝑢(v,w))Tz+ ℎ𝑏𝑢(v,w),

for all z ∈ [v,w]. Furthermore, we want h𝑎𝑙, h𝑎𝑢, ℎ𝑏𝑙, and ℎ𝑏𝑢 to be at least continuous

(in specific, locally Lipschitz continuous). In other words, we want affine relaxations of ℎ

that are continuously parameterized by the set on which these relaxations are valid. Such

relaxations will be important in later chapters, specifically in the context of estimating the

optimal objective values of parameterized optimization problems in a dynamic setting.

In general, a method is presented for constructing affine relaxations which are contin-

uously parameterized by the underlying set and/or “seed” relaxations. This method has

parallels to interval arithmetic [130], and requires the simultaneous calculation of interval

bounds. In interval arithmetic, we have a “library” of basic arithmetic operations (such

as addition) and elemental functions (such as the exponential or square root). For each

of these functions in the library, interval bounds on the range of the function (given some

input interval) are available. Then, we can obtain interval bounds on the range of any

more complicated function that can be expressed as the finite composition of these library

functions.
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This affine relaxation method addresses some shortcomings in the literature. Affine re-

laxations can be obtained from first-order Taylor models [114], subgradients to convex and

concave relaxations [124], or other types of “affine arithmetic” [41, 204]. These methods pro-

vide affine under and overestimators on some underlying set, usually an interval. However,

none of these methods address the issue of how the affine relaxations (h𝑎𝑙 and ℎ𝑏𝑙 in the

example above) depend on the underlying set. In the case of the method in [124], the sub-

gradients are for McCormick relaxations which are potentially nonsmooth. Consequently,

these subgradients have potentially discontinuous behavior as the interval set on which the

relaxations are valid changes. Similarly, the affine relaxations from [204] do not have the

required parametric regularity. Meanwhile, Taylor model arithmetic involves estimating

the range of various polynomials. Even if the Taylor model is first-order, this may involve

bounding second or higher order polynomials. This can be achieved in various ways (see

§5.4.3 of [113] and [136]). However, the default method employed in the implementation

of Taylor model arithmetic in MC++ [36], for instance, comes from [107], which involves

different cases depending on certain data. As a result, the scalar shifts (ℎ𝑏𝑙 and ℎ𝑏𝑢) of the

affine relaxations may be discontinuous as the underlying set changes.

The affine arithmetic developed in [41, 190] is very close to what will be described here,

but has different motivations and consequently does not address parametric regularity of the

affine relaxations. As mentioned, the parametric affine relaxations will be used to estimate

the optimal objective values of parameterized optimization problems. These estimates will

define the dynamics of an initial value problem in ordinary differential equations; thus,

the parametric affine relaxations developed here will need to be calculated many times

over the course of numerical integration. Therefore, another aim in the development of

the parametric affine relaxations of this chapter is that their calculation is as efficient as

possible. Meanwhile, the affine arithmetic from [41, 190] requires the addition of an “error

term” each time a nonlinear library function is encountered; the size of the underlying

objects consequently increases over the course of the evaluation of the affine relaxations. In

other words, although the initial uncertainty (the underlying interval over which relaxations

are desired) might only be in two dimensions, the final affine relaxations are over a 2 + 𝑝

dimensional interval, where 𝑝 is a nonnegative integer. Obtaining relaxations on the original

interval is possible, but more than anything this points out the different aims of the affine

arithmetic from [41, 190], and thus developing a theory focused on parametric regularity is
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worthwhile.

3.2 Composition result

The basis of the theory is a composition result for constructing locally Lipschitz continuous

affine relaxations of a function given locally Lipschitz continuous affine relaxations of its

arguments. The following lemma will be useful; its proof is clear in light of Lemma 2.3.2

and the discussion that follows it.

Lemma 3.2.1. Let 𝑋 be a metric space. Let c1 and c2 be locally Lipschitz continuous

mappings 𝑋 → R𝑚, and 𝑠 be a locally Lipschitz continuous mapping 𝑋 → R. Define

c3 : 𝑋 → R𝑚 by

c3 : x ↦→ max{𝑠(x), 0}c1(x) + min{𝑠(x), 0}c2(x) =

⎧⎪⎨⎪⎩
𝑠(x)c1(x) if 𝑠(x) ≥ 0,

𝑠(x)c2(x) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

Then c3 is a locally Lipschitz continuous mapping on 𝑋.

The composition result follows.

Proposition 3.2.2. Let (𝑚,𝑛) ∈ N2. Let 𝑋 be a metric space, 𝑌 ⊂ R𝑚, and 𝑍 ⊂ R𝑛. Let

𝑓 : 𝑌 → R and g : 𝑍 → R𝑚. Let 𝑍𝐷 : 𝑋 ⇒ 𝑍. Let 𝑌𝐷 ⊂ {(v,w) ∈ 𝑌 × 𝑌 : [v,w] ⊂ 𝑌 }.

For 𝑖 ∈ {1, . . . ,𝑚}, let g𝑎𝑙
𝑖 and g𝑎𝑢

𝑖 be locally Lipschitz continuous mappings 𝑋 → R𝑛 and

𝑔𝑏𝑙𝑖 , 𝑔𝑏𝑢𝑖 , 𝑔𝐿𝑖 , 𝑔𝑈𝑖 be locally Lipschitz continuous mappings 𝑋 → R which for all x ∈ 𝑋 satisfy

g𝑎𝑙
𝑖 (x)

Tz+ 𝑔𝑏𝑙𝑖 (x) ≤ 𝑔𝑖(z) ≤ g𝑎𝑢
𝑖 (x)Tz+ 𝑔𝑏𝑢𝑖 (x), ∀z ∈ 𝑍𝐷(x), ∀𝑖,

g𝐿(x) ≤ g(z) ≤ g𝑈 (x), ∀z ∈ 𝑍𝐷(x),

(g𝐿(x),g𝑈 (x)) ∈ 𝑌𝐷.

Let f𝑎𝑙 and f𝑎𝑢 be locally Lipschitz continuous mappings 𝑌𝐷 → R𝑚 and 𝑓 𝑏𝑙, 𝑓 𝑏𝑢, 𝑓𝐿, and

𝑓𝑈 be locally Lipschitz continuous mappings 𝑌𝐷 → R which for all (v,w) ∈ 𝑌𝐷 satisfy

f𝑎𝑙(v,w)Ty + 𝑓 𝑏𝑙(v,w) ≤ 𝑓(y) ≤ f𝑎𝑢(v,w)Ty + 𝑓 𝑏𝑢(v,w),

𝑓𝐿(v,w) ≤ 𝑓(y) ≤ 𝑓𝑈 (v,w),
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for all y ∈ [v,w].

Let ℎ : 𝑍 → R be defined by ℎ : z ↦→ 𝑓(g(z)). For 𝑖 ∈ {1, . . . ,𝑚}, let

h𝑎𝑙
𝑖 : x ↦→

⎧⎪⎨⎪⎩
𝑓𝑎𝑙
𝑖 (g𝐿(x),g𝑈 (x))g𝑎𝑙

𝑖 (x) if 𝑓𝑎𝑙
𝑖 (g𝐿(x),g𝑈 (x)) ≥ 0,

𝑓𝑎𝑙
𝑖 (g𝐿(x),g𝑈 (x))g𝑎𝑢

𝑖 (x) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

ℎ𝑏𝑙𝑖 : x ↦→

⎧⎪⎨⎪⎩
𝑓𝑎𝑙
𝑖 (g𝐿(x),g𝑈 (x))𝑔𝑏𝑙𝑖 (x) if 𝑓𝑎𝑙

𝑖 (g𝐿(x),g𝑈 (x)) ≥ 0,

𝑓𝑎𝑙
𝑖 (g𝐿(x),g𝑈 (x))𝑔𝑏𝑢𝑖 (x) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

h𝑎𝑢
𝑖 : x ↦→

⎧⎪⎨⎪⎩
𝑓𝑎𝑢
𝑖 (g𝐿(x),g𝑈 (x))g𝑎𝑢

𝑖 (x) if 𝑓𝑎𝑢
𝑖 (g𝐿(x),g𝑈 (x)) ≥ 0,

𝑓𝑎𝑢
𝑖 (g𝐿(x),g𝑈 (x))g𝑎𝑙

𝑖 (x) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

ℎ𝑏𝑢𝑖 : x ↦→

⎧⎪⎨⎪⎩
𝑓𝑎𝑢
𝑖 (g𝐿(x),g𝑈 (x))𝑔𝑏𝑢𝑖 (x) if 𝑓𝑎𝑢

𝑖 (g𝐿(x),g𝑈 (x)) ≥ 0,

𝑓𝑎𝑢
𝑖 (g𝐿(x),g𝑈 (x))𝑔𝑏𝑙𝑖 (x) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

Let h𝑎𝑙, h𝑎𝑢 : 𝑋 → R𝑛 and ℎ𝑏𝑙, ℎ𝑏𝑢 : 𝑋 → R be defined by

h𝑎𝑙 : x ↦→
∑︁
𝑖

h𝑎𝑙
𝑖 (x), ℎ𝑏𝑙 : x ↦→ 𝑓 𝑏𝑙(g𝐿(x),g𝑈 (x)) +

∑︁
𝑖

ℎ𝑏𝑙𝑖 (x),

h𝑎𝑢 : x ↦→
∑︁
𝑖

h𝑎𝑢
𝑖 (x), ℎ𝑏𝑢 : x ↦→ 𝑓 𝑏𝑢(g𝐿(x),g𝑈 (x)) +

∑︁
𝑖

ℎ𝑏𝑢𝑖 (x).

Let ℎ𝐿 : 𝑋 ∋ x ↦→ 𝑓𝐿(g𝐿(x),g𝑈 (x)) and ℎ𝑈 : 𝑋 ∋ x ↦→ 𝑓𝑈 (g𝐿(x),g𝑈 (x)). Then h𝑎𝑙, h𝑎𝑢,

ℎ𝑏𝑙, ℎ𝑏𝑢, ℎ𝐿, ℎ𝑈 are locally Lipschitz continuous mappings on 𝑋 which for all x ∈ 𝑋 satisfy

h𝑎𝑙(x)Tz+ ℎ𝑏𝑙(x) ≤ ℎ(z) ≤ h𝑎𝑢(x)Tz+ ℎ𝑏𝑢(x),

ℎ𝐿(x) ≤ ℎ(z) ≤ ℎ𝑈 (x),

for all z ∈ 𝑍𝐷(x).

Proof. Local Lipschitz continuity is established first. By assumption, for each x ∈ 𝑋,

(g𝐿(x),g𝑈 (x)) ∈ 𝑌𝐷. By the local Lipschitz continuity of the composition of functions

(Lemma 2.3.2), x ↦→ 𝑓𝑎𝑙
𝑖 (g𝐿(x),g𝑈 (x)) and x ↦→ 𝑓𝑎𝑢

𝑖 (g𝐿(x),g𝑈 (x)) are locally Lipschitz

continuous functions on 𝑋, for each 𝑖. Similarly, ℎ𝐿, ℎ𝑈 , x ↦→ 𝑓 𝑏𝑙(g𝐿(x),g𝑈 (x)) and x ↦→

𝑓 𝑏𝑢(g𝐿(x),g𝑈 (x)) are locally Lipschitz continuous on 𝑋. Then by Lemma 3.2.1, h𝑎𝑙
𝑖 , h𝑎𝑢

𝑖 ,

ℎ𝑏𝑙𝑖 , and ℎ𝑏𝑢𝑖 are locally Lipschitz continuous for each 𝑖. Finally, noting that the sum of
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locally Lipschitz continuous functions is locally Lipschitz continuous, we have that h𝑎𝑙, h𝑎𝑢,

ℎ𝑏𝑙, ℎ𝑏𝑢 (and ℎ𝐿 and ℎ𝑈 ) are locally Lipschitz continuous on 𝑋.

Next, the lower and upper estimation properties are established. Choose any x ∈ 𝑋. By

assumption, (g𝐿(x),g𝑈 (x)) ∈ 𝑌𝐷, and since g(z) ∈ [g𝐿(x),g𝑈 (x)] for any z ∈ 𝑍𝐷(x), we

have

f𝑎𝑙(g𝐿(x),g𝑈 (x))Tg(z) + 𝑓 𝑏𝑙(g𝐿(x),g𝑈 (x)) ≤ 𝑓(g(z)), (3.1)

f𝑎𝑢(g𝐿(x),g𝑈 (x))Tg(z) + 𝑓 𝑏𝑢(g𝐿(x),g𝑈 (x)) ≥ 𝑓(g(z)),

for any z ∈ 𝑍𝐷(x). Consider each term in the inner products. If 𝑓𝑎𝑙
𝑖 (g𝐿(x),g𝑈 (x)) ≥ 0, for

instance, then we have

𝑓𝑎𝑙
𝑖 (g𝐿(x),g𝑈 (x))

(︁
g𝑎𝑙
𝑖 (x)

Tz+ 𝑔𝑏𝑙𝑖 (x)
)︁
≤ 𝑓𝑎𝑙

𝑖 (g𝐿(x),g𝑈 (x))𝑔𝑖(z),

and otherwise

𝑓𝑎𝑙
𝑖 (g𝐿(x),g𝑈 (x))

(︁
g𝑎𝑢
𝑖 (x)Tz+ 𝑔𝑏𝑢𝑖 (x)

)︁
≤ 𝑓𝑎𝑙

𝑖 (g𝐿(x),g𝑈 (x))𝑔𝑖(z).

Applying the definitions of h𝑎𝑙
𝑖 and ℎ𝑏𝑙𝑖 , we have

(︃∑︁
𝑖

h𝑎𝑙
𝑖 (x)

)︃T

z+
∑︁
𝑖

(︁
ℎ𝑏𝑙𝑖 (x)

)︁
+ 𝑓 𝑏𝑙(g𝐿(x),g𝑈 (x)) ≤

f𝑎𝑙(g𝐿(x),g𝑈 (x))Tg(z) + 𝑓 𝑏𝑙(g𝐿(x),g𝑈 (x)),

which, combined with Inequality (3.1), and using the definitions of h𝑎𝑙 and ℎ𝑏𝑙 establishes

h𝑎𝑙(x)Tz+ ℎ𝑏𝑙(x) ≤ 𝑓(g(z)) = ℎ(z),

for all z ∈ 𝑍𝐷(x). Similar reasoning establishes the case for the affine overestimator

(h𝑎𝑢(x), ℎ𝑏𝑢(x)) and the interval bounds ℎ𝐿(x) and ℎ𝑈 (x).

Note that the hypotheses of Proposition 3.2.2 do not preclude the possibility that 𝑍𝐷(x)

is empty for some x ∈ 𝑋. In this case, we allow [g𝐿(x),g𝑈 (x)] to be empty, and it is for this
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Table 3.1: Library functions 𝑓 , their domain 𝑌 , and the domain 𝑌𝐷 of their parametric
interval and affine relaxations.

𝑓 Domain 𝑌 Domain 𝑌𝐷
𝑠 ∈ R, 𝑦 ↦→ 𝑠 R R2

𝑠 ∈ R, 𝑦 ↦→ 𝑠𝑦 R R2

𝑠 ∈ R, 𝑦 ↦→ 𝑦 + 𝑠 R R2

(𝑦1, 𝑦2) ↦→ 𝑦1 + 𝑦2 R2 R4

(𝑦1, 𝑦2) ↦→ 𝑦1 − 𝑦2 R2 R4

(𝑦1, 𝑦2) ↦→ 𝑦1𝑦2 R2 R4

𝑦 ↦→ 𝑦2 R R2

𝑦 ↦→ |𝑦| R {(𝑣, 𝑤) ∈ R2 : 𝑣 ̸= 𝑤}
𝑦 ↦→ exp(𝑦) R {(𝑣, 𝑤) ∈ R2 : 𝑣 ̸= 𝑤}
𝑦 ↦→ ln(𝑦) {𝑦 ∈ R : 𝑦 > 0} {(𝑣, 𝑤) ∈ R2 : 𝑣 > 0, 𝑤 > 0, 𝑣 ̸= 𝑤}
𝑦 ↦→ √𝑦 {𝑦 ∈ R : 𝑦 ≥ 0} {(𝑣, 𝑤) ∈ R2 : 𝑣 > 0, 𝑤 > 0}
𝑦 ↦→ 1/𝑦 {𝑦 ∈ R : 𝑦 ̸= 0} {v ∈ R2 : v > 0} ∪ {v ∈ R2 : v < 0}

reason that 𝑌𝐷 is defined to let [v,w] = ∅ for some (v,w) ∈ 𝑌𝐷. In this case the conditions

f𝑎𝑙(v,w)Ty + 𝑓 𝑏𝑙(v,w) ≤ 𝑓(y) ≤ f𝑎𝑢(v,w)Ty + 𝑓 𝑏𝑢(v,w),

𝑓𝐿(v,w) ≤ 𝑓(y) ≤ 𝑓𝑈 (v,w),

for all y ∈ [v,w], are trivially true.

3.3 Function library

In order to apply Proposition 3.2.2 in practice, locally Lipschitz continuous interval and

affine relaxations of various functions 𝑓 comprising a library are required. First, as required

by Proposition 3.2.2, the parametric interval and affine relaxations for a given function

require a common domain 𝑌𝐷. These are summarized in Table 3.1. The interval bounds are

summarized in Table 3.2. These are standard and come from interval analysis. Parametric

affine under and overestimators are summarized in Table 3.3. The reasoning behind these

choices and other discussion are in the following subsections.

3.3.1 Simple arithmetic functions

The constant mapping, scalar multiplication, addition of a constant, bivariate addition, and

bivariate subtraction all have straightforward affine relaxations that do not depend on the
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Table 3.2: Library functions 𝑓 and their parameterized interval relaxations on [y𝐿,y𝑈 ].

𝑓 𝑓𝐿(y𝐿,y𝑈 ) 𝑓𝑈 (y𝐿,y𝑈 )

𝑠 ∈ R, 𝑦 ↦→ 𝑠 𝑠 𝑠
𝑠 ∈ R, 𝑦 ↦→ 𝑠𝑦 min{𝑠𝑦𝐿, 𝑠𝑦𝑈} max{𝑠𝑦𝐿, 𝑠𝑦𝑈}
𝑠 ∈ R, 𝑦 ↦→ 𝑦 + 𝑠 𝑦𝐿 + 𝑠 𝑦𝑈 + 𝑠
(𝑦1, 𝑦2) ↦→ 𝑦1 + 𝑦2 𝑦𝐿1 + 𝑦𝐿2 𝑦𝑈1 + 𝑦𝑈2
(𝑦1, 𝑦2) ↦→ 𝑦1 − 𝑦2 𝑦𝐿1 − 𝑦𝑈2 𝑦𝑈1 − 𝑦𝐿2
(𝑦1, 𝑦2) ↦→ 𝑦1𝑦2 min{𝑦𝐿1 𝑦𝐿2 , 𝑦𝐿1 𝑦𝑈2 , 𝑦𝑈1 𝑦𝐿2 , 𝑦𝑈1 𝑦𝑈2 } max{𝑦𝐿1 𝑦𝐿2 , 𝑦𝐿1 𝑦𝑈2 , 𝑦𝑈1 𝑦𝐿2 , 𝑦𝑈1 𝑦𝑈2 }
𝑦 ↦→ 𝑦2 (median {𝑦𝐿, 𝑦𝑈 , 0})2 max{(𝑦𝐿)2, (𝑦𝑈 )2}
𝑦 ↦→ |𝑦|

⃒⃒
median {𝑦𝐿, 𝑦𝑈 , 0}

⃒⃒
max{

⃒⃒
𝑦𝐿
⃒⃒
,
⃒⃒
𝑦𝑈
⃒⃒
}

𝑦 ↦→ exp(𝑦) exp(𝑦𝐿) exp(𝑦𝑈 )
𝑦 ↦→ ln(𝑦) ln(𝑦𝐿) ln(𝑦𝑈 )

𝑦 ↦→ √𝑦
√︀
𝑦𝐿

√︀
𝑦𝑈

𝑦 ↦→ 1/𝑦 1/𝑦𝑈 1/𝑦𝐿

underlying interval.

3.3.2 Bivariate multiplication

The specific expression for the affine relaxations of the bilinear function can be obtained in

a few ways. First, a second-order Taylor expansion at some reference y𝑟 is

𝑦1𝑦2 = 𝑦𝑟1𝑦
𝑟
2 +

⎡⎣𝑦𝑟2
𝑦𝑟1

⎤⎦T

(y − y𝑟) + 1/2(y − y𝑟)T

⎡⎣0 1

1 0

⎤⎦ (y − y𝑟)

= 𝑦𝑟1𝑦
𝑟
2 + 𝑦𝑟2(𝑦1 − 𝑦𝑟1) + 𝑦𝑟1(𝑦2 − 𝑦𝑟2) + (𝑦1 − 𝑦𝑟1)(𝑦2 − 𝑦𝑟2),

which one can verify is exact. Letting y𝑟 equal the midpoint of the interval [y𝐿,y𝑈 ] and eval-

uating the second-order term in interval arithmetic yields the affine relaxations in Table 3.3.

More generally, the expressions obtained, seen as defining functions of (𝑦𝐿1 , 𝑦𝐿2 , 𝑦𝑈1 , 𝑦𝑈2 ), are

indeed locally Lipschitz continuous on all of R4, and constitute valid affine under and over-

estimators when y𝐿 ≤ y𝑈 .

Alternatively, we could obtain the affine underestimator in Table 3.3 from the pointwise

average of the two affine functions comprising the convex envelope of the bilinear term on

[y𝐿,y𝑈 ]:

max{𝑦𝐿2 𝑦1 + 𝑦𝐿1 𝑦2 − 𝑦𝐿1 𝑦
𝐿
2 , 𝑦

𝑈
2 𝑦1 + 𝑦𝑈1 𝑦2 − 𝑦𝑈1 𝑦

𝑈
2 }.

Similarly the affine overestimator comes from the pointwise average of the two affine func-
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Table 3.3: Library functions 𝑓 and their parameterized affine under and overestimators on
[y𝐿,y𝑈 ]. Define 𝑚 : (𝑦𝐿, 𝑦𝑈 ) ↦→ 𝑦𝐿+𝑦𝑈

2 .

Underestimators:

𝑓 f𝑎𝑙(y𝐿,y𝑈 ) 𝑓 𝑏𝑙(y𝐿,y𝑈 )

𝑠 ∈ R, 𝑦 ↦→ 𝑠 0 𝑠
𝑠 ∈ R, 𝑦 ↦→ 𝑠𝑦 𝑠 0
𝑠 ∈ R, 𝑦 ↦→ 𝑦 + 𝑠 1 𝑠
(𝑦1, 𝑦2) ↦→ 𝑦1 + 𝑦2 (1, 1) 0
(𝑦1, 𝑦2) ↦→ 𝑦1 − 𝑦2 (1,−1) 0
(𝑦1, 𝑦2) ↦→ 𝑦1𝑦2

(︀
𝑚(𝑦𝐿2 , 𝑦

𝑈
2 ),𝑚(𝑦𝐿1 , 𝑦

𝑈
1 )
)︀

−1/2(𝑦𝐿1 𝑦
𝐿
2 + 𝑦𝑈1 𝑦

𝑈
2 )

𝑦 ↦→ 𝑦2 2𝑚(𝑦𝐿, 𝑦𝑈 ) −𝑚(𝑦𝐿, 𝑦𝑈 )2

𝑦 ↦→ |𝑦| |𝑦𝑈 |−|𝑦𝐿|
𝑦𝑈−𝑦𝐿

0

𝑦 ↦→ exp(𝑦) exp(𝑚(𝑦𝐿, 𝑦𝑈 )) exp(𝑚(𝑦𝐿, 𝑦𝑈 ))(1−𝑚(𝑦𝐿, 𝑦𝑈 ))

𝑦 ↦→ ln(𝑦) ln(𝑦𝑈 )−ln(𝑦𝐿)
𝑦𝑈−𝑦𝐿

− ln(𝑦𝑈 )−ln(𝑦𝐿)
𝑦𝑈−𝑦𝐿

𝑦𝐿 + ln(𝑦𝐿)

𝑦 ↦→ √𝑦
(︀√︀

𝑦𝐿 +
√︀

𝑦𝑈
)︀−1 −

(︀√︀
𝑦𝐿 +

√︀
𝑦𝑈
)︀−1

𝑦𝐿 +
√︀

𝑦𝐿

𝑦 ↦→ 1/𝑦

{︃
−(𝑚(𝑦𝐿, 𝑦𝑈 )−2) if (𝑦𝐿, 𝑦𝑈 ) > 0

−(𝑦𝐿𝑦𝑈 )−1 if (𝑦𝐿, 𝑦𝑈 ) < 0

{︃
2𝑚(𝑦𝐿, 𝑦𝑈 )−1 if (𝑦𝐿, 𝑦𝑈 ) > 0

1/𝑦𝐿 + 1/𝑦𝑈 if (𝑦𝐿, 𝑦𝑈 ) < 0

Overestimators:

𝑓 f𝑎𝑢(y𝐿,y𝑈 ) 𝑓 𝑏𝑢(y𝐿,y𝑈 )

𝑠 ∈ R, 𝑦 ↦→ 𝑠 0 𝑠
𝑠 ∈ R, 𝑦 ↦→ 𝑠𝑦 𝑠 0
𝑠 ∈ R, 𝑦 ↦→ 𝑦 + 𝑠 1 𝑠
(𝑦1, 𝑦2) ↦→ 𝑦1 + 𝑦2 (1, 1) 0
(𝑦1, 𝑦2) ↦→ 𝑦1 − 𝑦2 (1,−1) 0
(𝑦1, 𝑦2) ↦→ 𝑦1𝑦2

(︀
𝑚(𝑦𝐿2 , 𝑦

𝑈
2 ),𝑚(𝑦𝐿1 , 𝑦

𝑈
1 )
)︀

−1/2(𝑦𝑈1 𝑦
𝐿
2 + 𝑦𝐿1 𝑦

𝑈
2 )

𝑦 ↦→ 𝑦2 𝑦𝐿 + 𝑦𝑈 −𝑦𝐿𝑦𝑈

𝑦 ↦→ |𝑦| |𝑦𝑈 |−|𝑦𝐿|
𝑦𝑈−𝑦𝐿

−|𝑦
𝑈 |−|𝑦𝐿|
𝑦𝑈−𝑦𝐿

𝑦𝐿 +
⃒⃒
𝑦𝐿
⃒⃒

𝑦 ↦→ exp(𝑦) exp(𝑦𝑈 )−exp(𝑦𝐿)
𝑦𝑈−𝑦𝐿

− exp(𝑦𝑈 )−exp(𝑦𝐿)
𝑦𝑈−𝑦𝐿

𝑦𝐿 + exp(𝑦𝐿)

𝑦 ↦→ ln(𝑦) 𝑚(𝑦𝐿, 𝑦𝑈 )−1 ln(𝑚(𝑦𝐿, 𝑦𝑈 ))− 1

𝑦 ↦→ √𝑦
(︁
2
√︀
𝑚(𝑦𝐿, 𝑦𝑈 )

)︁−1
1/2
√︀
𝑚(𝑦𝐿, 𝑦𝑈 )

𝑦 ↦→ 1/𝑦

{︃
−(𝑦𝐿𝑦𝑈 )−1 if (𝑦𝐿, 𝑦𝑈 ) > 0

−(𝑚(𝑦𝐿, 𝑦𝑈 )−2) if (𝑦𝐿, 𝑦𝑈 ) < 0

{︃
1/𝑦𝐿 + 1/𝑦𝑈 if (𝑦𝐿, 𝑦𝑈 ) > 0

2𝑚(𝑦𝐿, 𝑦𝑈 )−1 if (𝑦𝐿, 𝑦𝑈 ) < 0
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tions comprising the concave envelope on [y𝐿,y𝑈 ]:

min{𝑦𝐿2 𝑦1 + 𝑦𝑈1 𝑦2 − 𝑦𝑈1 𝑦
𝐿
2 , 𝑦

𝑈
2 𝑦1 + 𝑦𝐿1 𝑦2 − 𝑦𝐿1 𝑦

𝑈
2 }.

3.3.3 Square

As with a number of functions in the library, there are various choices for defining the affine

relaxations. The motivation behind the relaxations for the “square” function 𝑦 ↦→ 𝑦2 holds

for a number of univariate library functions. Since the square function is a convex function,

an underestimator comes from a tangent at any point in [𝑦𝐿, 𝑦𝑈 ]. We might be tempted

to choose a linearization point so that the minimum of the affine underestimator coincides

with the minimum of 𝑦 ↦→ 𝑦2 on [𝑦𝐿, 𝑦𝑈 ]. However, the parametric affine relaxations are

constructed simultaneously with interval bounds, and the interval bounds are already cap-

turing the exact minimum and maximum of the square function on the interval of interest.

Thus, the affine relaxations should complement the interval arithmetic and provide “good”

first-order information. In general one would want to use the Chebyshev affine approxima-

tion (minimizing the maximum error between the function and the affine underestimator,

see §3.3 of [41]). As stated in §3.1, the motivation for these affine relaxations is first and

foremost parametric regularity, and simplicity and speed of calculation.

Along these lines, the linearization point for the square function and others is chosen as

the midpoint of the interval. Thus, the underestimator for the square function is

2
(︁𝑦𝐿 + 𝑦𝑈

2

)︁(︁
𝑦 − 𝑦𝐿 + 𝑦𝑈

2

)︁
+
(︁𝑦𝐿 + 𝑦𝑈

2

)︁2
.

which simplifies. Meanwhile, an overestimator comes from the secant over the interval

[𝑦𝐿, 𝑦𝑈 ],
(𝑦𝑈 )2 − (𝑦𝐿)2

𝑦𝑈 − 𝑦𝐿
(𝑦 − 𝑦𝐿) + (𝑦𝐿)2,

which simplifies.

3.3.4 Absolute value

Similar to the case of the square function, the overestimator for the absolute value function

comes from the secant over the underlying interval; the underestimator is the line parallel

to the overestimator with zero intercept.
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Note that the domain 𝑌𝐷 in Table 3.1 precludes a degenerate interval. In part, this is

because the expression for f𝑎𝑙 and f𝑎𝑢 would become singular. We might try to define an

extension of f𝑎𝑙, for instance, by defining

f𝑎𝑙 : (𝑦𝐿, 𝑦𝑈 ) ↦→

⎧⎪⎨⎪⎩
1 if 𝑦𝐿 = 𝑦𝑈 ≥ 0,

−1 if 𝑦𝐿 = 𝑦𝑈 < 0.

However, note that this is not continuous.

3.3.5 Exponential and natural logarithm

The underestimator of the exponential function and overestimator of the natural logarithm

are tangents at the midpoint of the interval; the overestimator of the exponential and un-

derestimator of the natural logarithm are secants over the interval. As in the case of the

absolute value function, the expressions for these secants become singular for degenerate

intervals. However, since these functions are smooth, it is likely that there are locally Lip-

schitz continuous extensions of the affine overestimator (the mappings f𝑎𝑢 and 𝑓 𝑏𝑢) for the

exponential function, for instance, to all of R2. This is a subject for future research.

3.3.6 Square root

As in the case of the natural logarithm, the underestimator is a secant while the overesti-

mator is a tangent at the midpoint of the interval; these expressions simplify to those in

Table 3.3. While the domain 𝑌 of the square root function is the nonnegative reals, it is

only locally Lipschitz continuous on the positive reals. Thus, the domain 𝑌𝐷 of the interval

and affine relaxations must be restricted to the (strictly) positive orthant of R2 to be locally

Lipschitz continuous.

3.3.7 Reciprocal

On interval subsets of the positive reals, the affine underestimator of the reciprocal function

𝑦 ↦→ 1/𝑦 is a tangent at the midpoint of the interval; the affine overestimator is a secant.

On interval subsets of the negative reals, this is reversed; the affine under and overestimator

are a secant and tangent at the midpoint, respectively. Although the affine relaxations

involve different “branches,” the domain 𝑌𝐷 is disconnected and so the relaxations are locally
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Lipschitz continuous.

3.3.8 Trigonometric functions, integer powers

Trig functions and odd integer powers (e.g. 𝑦 ↦→ sin(𝑦), 𝑦 ↦→ 𝑦3) are subjects for future

research. Even integer powers could be handled in a manner similar to the square function.

3.4 Examples

Constructing affine relaxations proceeds by recursively applying Proposition 3.2.2, illustrated

by the following examples.

Example 3.4.1. Let ℎ : R×R2 ∋ (𝑝, z) ↦→ 𝑝𝑧1(1− 𝑧2), where 𝑝 is an uncertain parameter.

The goal is to construct, for any 𝑝 ∈ [𝑝𝐿, 𝑝𝑈 ] such that 𝑝𝐿 > 0, affine relaxations of ℎ(𝑝, ·)

on any interval [z𝐿, z𝑈 ] such that 𝑧𝐿1 > 0 and 𝑧𝐿2 > 1. Furthermore, one desires that these

relaxations are locally Lipschitz continuous with respect to (z𝐿, z𝑈 ). In terms of the notation

in Proposition 3.2.2, we let 𝑋 = R2 × R2, 𝑍 = R2, and 𝑍𝐷 : (z𝐿, z𝑈 ) ↦→ [z𝐿, z𝑈 ].

As mentioned, the process resembles the construction of an interval enclosure of the

range of ℎ via interval arithmetic. Evaluation of ℎ is broken down into a sequence of

auxiliary variables called “factors,” which can be expressed as simple arithmetic operations

on previously computed factors. Interval and affine relaxations of each factor can also be

computed, and following the rules in Proposition 3.2.2 and Tables 3.2 and 3.3, the affine

relaxations will also be locally Lipschitz continuous in the manner desired. See Table 3.4 for

the factored expression. Note that factor 𝑣3, corresponding to the parameter 𝑝, is initialized

with the trivial affine relaxations 0Tz + 𝑝𝐿 ≤ 𝑝 ≤ 0Tz + 𝑝𝑈 . This ensures that the final

relaxations obtained are valid for all 𝑝 ∈ [𝑝𝐿, 𝑝𝑈 ], since in addition the calculation of the

interval and affine relaxations do not depend on the value of 𝑝. Also, note that the restrictions

𝑧𝐿1 > 0, 𝑧𝐿2 > 1, and 𝑝𝐿 > 0, simplify the evaluation and preclude the need to consider the

different branches when constructing the affine relaxations for factors 𝑣5 and 𝑣6, as indicated

in Proposition 3.2.2 (for example, this implies that 1/2(𝑣𝐿4 + 𝑣𝑈4 ) < 0). Although in general,

the different cases must be taken into account.

The final factor, 𝑣6, gives the value of ℎ(𝑝, ·), and thus one also has for any 𝑝 ∈ [𝑝𝐿, 𝑝𝑈 ]

(v𝑎𝑙
6 )

Tz+ 𝑣𝑏𝑙6 ≤ ℎ(𝑝, z) ≤ (v𝑎𝑢
6 )Tz+ 𝑣𝑏𝑢6
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Table 3.4: Factored expression, corresponding interval enclosures, and corresponding affine
relaxations for Example 3.4.1.

Factor Value Lower bound Upper Bound
𝑣1 𝑧1 𝑣𝐿1 = 𝑧𝐿1 𝑣𝑈1 = 𝑧𝑈1
𝑣2 𝑧2 𝑣𝐿2 = 𝑧𝐿2 𝑣𝑈2 = 𝑧𝑈2
𝑣3 𝑝 𝑣𝐿3 = 𝑝𝐿 𝑣𝑈3 = 𝑝𝑈

𝑣4 1− 𝑣2 𝑣𝐿4 = 1− 𝑣𝑈2 𝑣𝑈4 = 1− 𝑣𝐿2
𝑣5 𝑣1𝑣4 𝑣𝐿5 =

min{𝑣𝐿1 𝑣𝐿4 , 𝑣𝐿1 𝑣𝑈4 , 𝑣𝑈1 𝑣𝐿4 , 𝑣𝑈1 𝑣𝑈4 }
𝑣𝑈5 =
max{𝑣𝐿1 𝑣𝐿4 , 𝑣𝐿1 𝑣𝑈4 , 𝑣𝑈1 𝑣𝐿4 , 𝑣𝑈1 𝑣𝑈4 }

𝑣6 𝑣3𝑣5 𝑣𝐿6 =
min{𝑣𝐿3 𝑣𝐿5 , 𝑣𝐿3 𝑣𝑈5 , 𝑣𝑈3 𝑣𝐿5 , 𝑣𝑈3 𝑣𝑈5 }

𝑣𝑈6 =
max{𝑣𝐿3 𝑣𝐿5 , 𝑣𝐿3 𝑣𝑈5 , 𝑣𝑈3 𝑣𝐿5 , 𝑣𝑈3 𝑣𝑈5 }

Factor Underestimator Overestimator
𝑣1 v𝑎𝑙

1 = (1, 0), 𝑣𝑏𝑙1 = 0 v𝑎𝑢
1 = (1, 0), 𝑣𝑏𝑢1 = 0

𝑣2 v𝑎𝑙
2 = (0, 1), 𝑣𝑏𝑙2 = 0 v𝑎𝑢

2 = (0, 1), 𝑣𝑏𝑢2 = 0

𝑣3 v𝑎𝑙
3 = (0, 0), 𝑣𝑏𝑙3 = 𝑝𝐿 v𝑎𝑢

3 = (0, 0), 𝑣𝑏𝑢3 = 𝑝𝑈

𝑣4 v𝑎𝑙
4 = −v𝑎𝑢

2 , 𝑣𝑏𝑙4 = 1− 𝑣𝑏𝑢2 v𝑎𝑢
4 = −v𝑎𝑙

2 , 𝑣𝑏𝑢4 = 1− 𝑣𝑏𝑙2
𝑣5 v𝑎𝑙

5 = 1/2(𝑣𝐿4 + 𝑣𝑈4 )v
𝑎𝑢
1

+1/2(𝑣𝐿1 + 𝑣𝑈1 )v
𝑎𝑙
4 ,

𝑣𝑏𝑙5 = −1/2(𝑣𝐿1 𝑣
𝐿
4 + 𝑣𝑈1 𝑣

𝑈
4 )

+1/2(𝑣𝐿4 + 𝑣𝑈4 )𝑣
𝑏𝑢
1

+1/2(𝑣𝐿1 + 𝑣𝑈1 )𝑣
𝑏𝑙
4

v𝑎𝑢
5 = 1/2(𝑣𝐿4 + 𝑣𝑈4 )v

𝑎𝑙
1

+1/2(𝑣𝐿1 + 𝑣𝑈1 )v
𝑎𝑢
4 ,

𝑣𝑏𝑢5 = −1/2(𝑣𝑈1 𝑣
𝐿
4 + 𝑣𝐿1 𝑣

𝑈
4 )

+1/2(𝑣𝐿4 + 𝑣𝑈4 )𝑣
𝑏𝑙
1

+1/2(𝑣𝐿1 + 𝑣𝑈1 )𝑣
𝑏𝑢
4

𝑣6 v𝑎𝑙
6 = 1/2(𝑣𝐿5 + 𝑣𝑈5 )v

𝑎𝑢
3

+1/2(𝑣𝐿3 + 𝑣𝑈3 )v
𝑎𝑙
5 ,

𝑣𝑏𝑙6 = −1/2(𝑣𝐿3 𝑣
𝐿
5 + 𝑣𝑈3 𝑣

𝑈
5 )

+1/2(𝑣𝐿5 + 𝑣𝑈5 )𝑣
𝑏𝑢
3

+1/2(𝑣𝐿3 + 𝑣𝑈3 )𝑣
𝑏𝑙
5

v𝑎𝑢
6 = 1/2(𝑣𝐿5 + 𝑣𝑈5 )v

𝑎𝑙
3

+1/2(𝑣𝐿3 + 𝑣𝑈3 )v
𝑎𝑢
5 ,

𝑣𝑏𝑢6 = −1/2(𝑣𝑈3 𝑣
𝐿
5 + 𝑣𝐿3 𝑣

𝑈
5 )

+1/2(𝑣𝐿5 + 𝑣𝑈5 )𝑣
𝑏𝑙
3

+1/2(𝑣𝐿3 + 𝑣𝑈3 )𝑣
𝑏𝑢
5

for all z ∈ [z𝐿, z𝑈 ]. However, by virtue of Proposition 3.2.2, v𝑎𝑙
6 , v𝑎𝑢

6 , 𝑣𝑏𝑙6 , 𝑣𝑏𝑢6 can be

considered locally Lipschitz continuous functions with respect to (z𝐿, z𝑈 ).

Example 3.4.2. This example demonstrates the proper application of Proposition 3.2.2

when constructing relaxations that are locally Lipschitz continuous with respect to the seed

or initial relaxations. Consider trying to construct affine relaxations of ̃︀ℎ : R2 ⊃ 𝑃 → R :

p ↦→ 𝑝1 + 𝑝2 + ̃︀𝑧(p), where 𝑃 = [p𝐿,p𝑈 ] is a nonempty set and ̃︀𝑧 : 𝑃 → R, where all we

know is that

(a𝑙)Tp+ 𝑏𝑙 ≤ ̃︀𝑧(p) ≤ (a𝑢)Tp+ 𝑏𝑢,

𝑧𝐿 ≤ ̃︀𝑧(p) ≤ 𝑧𝑈 ,
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for all p ∈ 𝑃 , for some (a𝑙,a𝑢, 𝑏𝑙, 𝑏𝑢, 𝑧𝐿, 𝑧𝑈 ) ∈ R2 × R2 × R × R × R × R. Construction of

affine relaxations of ̃︀ℎ on 𝑃 is straightforward; let

̃︀h𝑎𝑙 : (a𝑙,a𝑢, 𝑏𝑙, 𝑏𝑢, 𝑧𝐿, 𝑧𝑈 ) ↦→ (1, 0) + (0, 1) + a𝑙,

̃︀h𝑎𝑢 : (a𝑙,a𝑢, 𝑏𝑙, 𝑏𝑢, 𝑧𝐿, 𝑧𝑈 ) ↦→ (1, 0) + (0, 1) + a𝑢,

̃︀ℎ𝑏𝑙 : (a𝑙,a𝑢, 𝑏𝑙, 𝑏𝑢, 𝑧𝐿, 𝑧𝑈 ) ↦→ 𝑏𝑙,

̃︀ℎ𝑏𝑢 : (a𝑙,a𝑢, 𝑏𝑙, 𝑏𝑢, 𝑧𝐿, 𝑧𝑈 ) ↦→ 𝑏𝑢,

̃︀ℎ𝐿 : (a𝑙,a𝑢, 𝑏𝑙, 𝑏𝑢, 𝑧𝐿, 𝑧𝑈 ) ↦→ 𝑝𝐿1 + 𝑝𝐿2 + 𝑧𝐿,

̃︀ℎ𝑈 : (a𝑙,a𝑢, 𝑏𝑙, 𝑏𝑢, 𝑧𝐿, 𝑧𝑈 ) ↦→ 𝑝𝑈1 + 𝑝𝑈2 + 𝑧𝑈 .

Furthermore, it is clear that these are locally Lipschitz continuous mappings.

However, for more complex expressions (and for automation of the constructions) we

must use Proposition 3.2.2, and defining 𝑍𝐷 in this case is difficult. For instance, let

𝑋 = R2×R2×R×R×R×R, ̃︀𝑍𝐷 : x ↦→ 𝑃 , 𝑔1 : p ↦→ ̃︀𝑧(p), 𝑔𝐿1 : (a𝑙,a𝑢, 𝑏𝑙, 𝑏𝑢, 𝑧𝐿, 𝑧𝑈 ) ↦→ 𝑧𝐿,

and 𝑔𝑈1 : (a𝑙,a𝑢, 𝑏𝑙, 𝑏𝑢, 𝑧𝐿, 𝑧𝑈 ) ↦→ 𝑧𝑈 . Then the hypotheses of Proposition 3.2.2 cannot be

satisfied; for x = (0,0, 0, 0, 2, 1) ∈ 𝑋 it does not hold that

𝑔𝐿1 (x) ≤ 𝑔1(p) ≤ 𝑔𝑈1 (x),

for all p ∈ ̃︀𝑍𝐷(x).

Proper application of Proposition 3.2.2 proceeds by letting 𝑋 = R2×R2×R×R×R×R

as before, but letting 𝑍 = R× 𝑃 and

𝑍𝐷 : (a𝑙,a𝑢, 𝑏𝑙, 𝑏𝑢, 𝑧𝐿, 𝑧𝑈 ) ↦→ {(𝑧,p) ∈ [𝑧𝐿, 𝑧𝑈 ]× 𝑃 : (a𝑙)Tp+ 𝑏𝑙 ≤ 𝑧 ≤ (a𝑢)Tp+ 𝑏𝑢},

and instead constructing affine relaxations of ℎ : (𝑧,p) ↦→ 𝑝1 + 𝑝2 + 𝑧. In this case, we can
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apply Proposition 3.2.2 once, by letting e2 = (0, 1, 0), e3 = (0, 0, 1),

g : (𝑧,p) ↦→ (𝑝1, 𝑝2, 𝑧)

(g𝑎𝑙
1 ,g

𝑎𝑙
2 ,g

𝑎𝑙
3 ) : (a

𝑙,a𝑢, 𝑏𝑙, 𝑏𝑢, 𝑧𝐿, 𝑧𝑈 ) ↦→
(︀
e2, e3, (0, 𝑎

𝑙
1, 𝑎

𝑙
2)
)︀
,

(g𝑎𝑢
1 ,g𝑎𝑢

2 ,g𝑎𝑢
3 ) : (a𝑙,a𝑢, 𝑏𝑙, 𝑏𝑢, 𝑧𝐿, 𝑧𝑈 ) ↦→

(︀
e2, e3, (0, 𝑎

𝑢
1 , 𝑎

𝑢
2)
)︀
,

(𝑔𝑏𝑙1 , 𝑔
𝑏𝑙
2 , 𝑔

𝑏𝑙
3 ) : (a

𝑙,a𝑢, 𝑏𝑙, 𝑏𝑢, 𝑧𝐿, 𝑧𝑈 ) ↦→ (0, 0, 𝑏𝑙),

(𝑔𝑏𝑢1 , 𝑔𝑏𝑢2 , 𝑔𝑏𝑢3 ) : (a𝑙,a𝑢, 𝑏𝑙, 𝑏𝑢, 𝑧𝐿, 𝑧𝑈 ) ↦→ (0, 0, 𝑏𝑢),

(𝑔𝐿1 , 𝑔
𝐿
2 , 𝑔

𝐿
3 ) : (a

𝑙,a𝑢, 𝑏𝑙, 𝑏𝑢, 𝑧𝐿, 𝑧𝑈 ) ↦→ (𝑝𝐿1 , 𝑝
𝐿
2 , 𝑧

𝐿),

(𝑔𝑈1 , 𝑔
𝑈
2 , 𝑔

𝑈
3 ) : (a

𝑙,a𝑢, 𝑏𝑙, 𝑏𝑢, 𝑧𝐿, 𝑧𝑈 ) ↦→ (𝑝𝑈1 , 𝑝
𝑈
2 , 𝑧

𝑈 ),

and letting 𝑌 = R3, 𝑌𝐷 = R6,

𝑓 : (𝑦1, 𝑦2, 𝑦3) ↦→ 𝑦1 + 𝑦2 + 𝑦3,

(f𝑎𝑙, f𝑎𝑢) : (v,w) ↦→
(︀
(1, 1, 1), (1, 1, 1)

)︀
,

(𝑓 𝑏𝑙, 𝑓 𝑏𝑢) : (v,w) ↦→ (0, 0),

(𝑓𝐿, 𝑓𝑈 ) : (v,w) ↦→ (𝑣1 + 𝑣2 + 𝑣3, 𝑤1 + 𝑤2 + 𝑤3).

The hypotheses hold (perhaps trivially) since, for instance, 𝑍𝐷(a
𝑙,a𝑢, 𝑏𝑙, 𝑏𝑢, 𝑧𝐿, 𝑧𝑈 ) = ∅

when 𝑧𝑈 < 𝑧𝐿. The result is that we get

h𝑎𝑙 : (a𝑙,a𝑢, 𝑏𝑙, 𝑏𝑢, 𝑧𝐿, 𝑧𝑈 ) ↦→ (0, 1 + 𝑎𝑙1, 1 + 𝑎𝑙2),

h𝑎𝑢 : (a𝑙,a𝑢, 𝑏𝑙, 𝑏𝑢, 𝑧𝐿, 𝑧𝑈 ) ↦→ (0, 1 + 𝑎𝑢1 , 1 + 𝑎𝑢2),

ℎ𝑏𝑙 : (a𝑙,a𝑢, 𝑏𝑙, 𝑏𝑢, 𝑧𝐿, 𝑧𝑈 ) ↦→ 𝑏𝑙,

ℎ𝑏𝑢 : (a𝑙,a𝑢, 𝑏𝑙, 𝑏𝑢, 𝑧𝐿, 𝑧𝑈 ) ↦→ 𝑏𝑢,

ℎ𝐿 : (a𝑙,a𝑢, 𝑏𝑙, 𝑏𝑢, 𝑧𝐿, 𝑧𝑈 ) ↦→ 𝑝𝐿1 + 𝑝𝐿2 + 𝑧𝐿,

ℎ𝑈 : (a𝑙,a𝑢, 𝑏𝑙, 𝑏𝑢, 𝑧𝐿, 𝑧𝑈 ) ↦→ 𝑝𝑈1 + 𝑝𝑈2 + 𝑧𝑈 ,

which satisfy the conclusion of Proposition 3.2.2. Since the first component of h𝑎𝑙 and h𝑎𝑢
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(corresponding to “𝑧”) is zero, the conclusion of Proposition 3.2.2 reduces to: for all x ∈ 𝑋,

̃︀h𝑎𝑙(x)Tp+ ̃︀ℎ𝑏𝑙(x) ≤ ℎ(𝑧,p) ≤ ̃︀h𝑎𝑢(x)Tp+ ̃︀ℎ𝑏𝑢(x),
̃︀ℎ𝐿(x) ≤ ℎ(𝑧,p) ≤ ̃︀ℎ𝑈 (x),

for all (𝑧,p) ∈ 𝑍𝐷(x). Thus, this example demonstrates the proper interpretation when

constructing affine relaxations that are parameterized by the seed interval and affine relax-

ations.

3.5 Complexity

We analyze the computational complexity of evaluating affine relaxations via the methods in

this chapter. The approach taken is similar to the analysis in §4.4 of [65] for the complexity

of calculating interval relaxations, and so a bound on the complexity of evaluating the affine

relaxations relative to evaluating the original function is sought. Let the function of interest

be ℎ : R𝑛 ⊃ 𝑍 → R and the goal is to construct affine relaxations on some subset of

its domain. Assume that the sequence of library functions required for the evaluation of

ℎ is {𝑓1, 𝑓2, . . . , 𝑓𝑁} for some finite 𝑁 . As in §4.4 of [65], the main assumption required

for this analysis is that the cost of evaluating ℎ, denoted 𝑐𝑜𝑠𝑡(ℎ), is equal to the sum of

the cost of evaluating each library function in the sequence {𝑓𝑘 : 𝑘 ∈ {1, . . . , 𝑁}}; that

is, 𝑐𝑜𝑠𝑡(ℎ) =
∑︀𝑁

𝑘=1 𝑐𝑜𝑠𝑡(𝑓𝑘) (for this discussion, “cost” is roughly measured in terms of

floating-point operations).

Now, analyze one step in the evaluation of ℎ; that is, one evaluation of a library

function 𝑓 : R𝑚 ⊃ 𝑌 → R. Using the notation in Proposition 3.2.2, let (𝑓𝐿, 𝑓𝑈 ) :

𝑌𝐷 → R2 be the parameterized lower and upper bounds of the interval enclosure of 𝑓 (i.e.

[𝑓𝐿(v,w), 𝑓𝑈 (v,w)] ∋ 𝑓(y), for all y ∈ [v,w]). Assume that the cost of evaluating 𝑓𝐿 and

𝑓𝑈 is no more than 𝛼𝑐𝑜𝑠𝑡(𝑓), for some 𝛼 > 0, for any possible 𝑓 in the library of functions.

For instance, based on Table 3.2, the most complicated interval evaluation is for bivariate

multiplication, which requires four (scalar) multiplications and three comparisons; assuming

that comparison and multiplication are roughly the same cost, one could take 𝛼 = 7 for the

library considered in Table 3.2. It follows that evaluation of an interval enclosure of ℎ will

be no more expensive than 2𝛼𝑐𝑜𝑠𝑡(ℎ). Thus, the cost of evaluating an interval enclosure is
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bounded above by a scalar multiple of the cost of evaluating the original function. This is

consistent with a slightly more detailed argument in §4.4 of [65].

To evaluate the affine relaxations, similar reasoning applies; again assume that evaluation

of the affine relaxations f𝑎𝑙, f𝑎𝑢, 𝑓 𝑏𝑙, 𝑓 𝑏𝑢 of any library function 𝑓 is no more expensive than

𝛽𝑐𝑜𝑠𝑡(𝑓), for some 𝛽 > 0. This is reasonable based on Table 3.3. Let {g𝑎𝑙
𝑖 , 𝑔

𝑏𝑙
𝑖 ,g

𝑎𝑢
𝑖 , 𝑔𝑏𝑢𝑖 }

be the values of the affine relaxations corresponding to the previously computed factors

g. Since the affine relaxations of ℎ are with respect to each of its arguments, each of g𝑎𝑙
𝑖

and g𝑎𝑢
𝑖 are in R𝑛. Assume that the cost of scalar addition (+) and multiplication (×) are

bounded above by some scalar multiple of the cost of evaluating 𝑓 , for any 𝑓 in the library of

functions. That is, there exists 𝜂 > 0 such that 𝑐𝑜𝑠𝑡(+) ≤ 𝜂𝑐𝑜𝑠𝑡(𝑓) and 𝑐𝑜𝑠𝑡(×) ≤ 𝜂𝑐𝑜𝑠𝑡(𝑓)

for all 𝑓 in the library. Again, this is consistent with a slightly more detailed argument in

§4.4 of [65]; also, this is a reasonable assumption since scalar addition and multiplication

are two of the cheapest operations. Following the rules in Proposition 3.2.2 and keeping

track of the operations required, the cost of propagating the affine relaxations for one step

is bounded by (Ψ +ϒ)𝑐𝑜𝑠𝑡(𝑓), for some Ψ > 0 and ϒ > 0. In this case, Ψ only depends on

the library of intrinsic functions used, while ϒ depends on the dimension of the system, i.e.

𝑛. In more detail, let 𝑀 ∈ N be the maximum number of arguments any 𝑓 in the library

can take. In terms of the notation in Proposition 3.2.2, the cost of evaluation of

1. {h𝑎𝑙
𝑖 : 𝑖 ∈ {1, . . . ,𝑚}} is 𝑐𝑜𝑠𝑡(f𝑎𝑙) + (𝑚𝑛)𝑐𝑜𝑠𝑡(×) ≤ (𝛽)𝑐𝑜𝑠𝑡(𝑓) + (𝑀𝑛𝜂)𝑐𝑜𝑠𝑡(𝑓),

2. {h𝑎𝑢
𝑖 : 𝑖 ∈ {1, . . . ,𝑚}} is 𝑐𝑜𝑠𝑡(f𝑎𝑢) + (𝑚𝑛)𝑐𝑜𝑠𝑡(×) ≤ (𝛽)𝑐𝑜𝑠𝑡(𝑓) + (𝑀𝑛𝜂)𝑐𝑜𝑠𝑡(𝑓),

3. {ℎ𝑏𝑙𝑖 , ℎ𝑏𝑢𝑖 : 𝑖 ∈ {1, . . . ,𝑚}} is (2𝑚)𝑐𝑜𝑠𝑡(×) ≤ (2𝑀𝜂)𝑐𝑜𝑠𝑡(𝑓),

4. {h𝑎𝑙,h𝑎𝑢} is (2𝑚𝑛)𝑐𝑜𝑠𝑡(+) ≤ (2𝑀𝑛𝜂)𝑐𝑜𝑠𝑡(𝑓),

5. ℎ𝑏𝑙 is 𝑐𝑜𝑠𝑡(𝑓 𝑏𝑙) + (𝑚)𝑐𝑜𝑠𝑡(+) ≤ (𝛽)𝑐𝑜𝑠𝑡(𝑓) + (𝑀𝜂)𝑐𝑜𝑠𝑡(𝑓),

6. ℎ𝑏𝑢 is 𝑐𝑜𝑠𝑡(𝑓 𝑏𝑢) + (𝑚)𝑐𝑜𝑠𝑡(+) ≤ (𝛽)𝑐𝑜𝑠𝑡(𝑓) + (𝑀𝜂)𝑐𝑜𝑠𝑡(𝑓).

The sum of these bounds is (4𝛽 + 4𝑀𝜂 + 4𝑀𝑛𝜂)𝑐𝑜𝑠𝑡(𝑓). Then let Ψ = 4𝛽 + 4𝑀𝜂 and

ϒ = 4𝑀𝑛𝜂.

Thus the cost of evaluating the affine relaxations of the overall function ℎ is bounded

by (Ψ + ϒ)
∑︀𝑁

𝑘=1 𝑐𝑜𝑠𝑡(𝑓𝑘) = (Ψ + ϒ)𝑐𝑜𝑠𝑡(ℎ). Adding in the cost of evaluating the interval

relaxations makes this (Ψ + ϒ + 2𝛼)𝑐𝑜𝑠𝑡(ℎ). Therefore the cost of evaluating a pair of

affine under and overestimators is no more expensive than a scalar multiple of the cost of

evaluating the original function, although this multiple depends on the number of variables.
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3.6 Implementation

As the expression defining the function for which affine relaxations are desired grows more

complex, attempting to construct affine relaxations by the methods in this chapter by hand

becomes tedious and error prone. Consequently, a C++ code implementing the rules in

Proposition 3.2.2 and Tables 3.2 and 3.3 has been developed. This code is based on the

CompGraph code originally developed by Achim Wechsung, which uses operator overloading

to analyze an expression and build up the sequence of factors and library functions required

to evaluate the expression (its computational graph, see Ch. 3 of [206]). With this informa-

tion, it is fairly easy to go through the sequence of factors and apply Proposition 3.2.2 each

time. With the aim of making the evaluation of affine relaxations as efficient as possible,

C++ code is generated which performs the evaluation.

3.7 Extensions

3.7.1 Piecewise affine relaxations

One possible extension of the theory and methods described so far in this chapter would

be the construction of convex piecewise affine underestimators and concave piecewise affine

overestimators. That is, for some (𝑛𝑙, 𝑛𝑢) ∈ N2 one would construct {(h𝑎𝑙
𝑘 , ℎ

𝑏𝑙
𝑘 ) : 𝑘 ∈

{1, . . . , 𝑛𝑙}} and {(h𝑎𝑢
𝑘 , ℎ𝑏𝑢𝑘 ) : 𝑘 ∈ {1, . . . , 𝑛𝑢}} such that

max{(h𝑎𝑙
𝑘 )

Tz+ ℎ𝑏𝑙𝑘 : 𝑘 ∈ {1, . . . , 𝑛𝑙}} ≤ ℎ(z) ≤ min{(h𝑎𝑢
𝑘 )Tz+ ℎ𝑏𝑢𝑘 : 𝑘 ∈ {1, . . . , 𝑛𝑢}}

for all z in the set of interest. Since interval relaxations ℎ𝐿 and ℎ𝑈 are also constructed,

we already have such a situation, with 𝑛𝑙 = 𝑛𝑢 = 2 and the second set of affine relaxations

given by h𝑎𝑙
2 = h𝑎𝑢

2 = 0 and ℎ𝑏𝑙2 = ℎ𝐿 and ℎ𝑏𝑢2 = ℎ𝑈 .

A fairly simple way to extend this idea would be to define different affine relaxations

of the library functions and to repeat the construction using various combinations of the

library function relaxations. For instance, as mentioned in §3.3.2, the convex and concave

envelopes of the bilinear function on an interval each are defined by two affine functions.

Thus, each time bivariate multiplication is required in the evaluation of an expression, four

different affine relaxations could be constructed (two affine underestimators combined with

two affine overestimators for the blinear function). However, it is clear that this can lead
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to a potentially very large number (i.e. large 𝑛𝑙 and 𝑛𝑢) of possible affine relaxations; for

instance, even for the simple function considered in Example 3.4.1, we could define up to

42 = 16 affine under and overestimators. Of course, we could also choose, by some heuristic,

to calculate only a subset of this collection of possible affine relaxations.

A prototype implementation of these ideas (specifically using the four different com-

binations of affine under and overestimators of the bilinear function) has been coded in

MATLAB. However, numerical experiments with this code seem to indicate that there is

little improvement in the quality of the piecewise affine relaxations compared to the method

as already described.

3.7.2 Tighter interval bounds

Another possible extension is to use the affine relaxations to tighten the interval relaxations.

Assume that we have

(︁
h𝑎𝑙(z𝐿, z𝑈 ),h𝑎𝑢(z𝐿, z𝑈 ), ℎ𝑏𝑙(z𝐿, z𝑈 ), ℎ𝑏𝑢(z𝐿, z𝑈 ), ℎ𝐿(z𝐿, z𝑈 ), ℎ𝑈 (z𝐿, z𝑈 )

)︁
which constitute affine and interval relaxations of the final function ℎ on some interval

[z𝐿, z𝑈 ], then certainly

max
{︁
ℎ𝐿(z𝐿, z𝑈 ),min{h𝑎𝑙(z𝐿, z𝑈 )Tz+ ℎ𝑏𝑙(z𝐿, z𝑈 ) : z ∈ [z𝐿, z𝑈 ]}

}︁
≤

min{ℎ(z) : z ∈ [z𝐿, z𝑈 ]}.

However, this can be performed at each application of Proposition 3.2.2. In other words,

in the conclusion of Proposition 3.2.2, ℎ𝐿 can be redefined as the maximum of the interval

lower bound and the minimum of the affine underestimator on the underlying interval, and

similarly ℎ𝑈 can be redefined as the minimum of the interval upper bound and the maximum

of the affine overestimator. This is stated formally in the following.

Proposition 3.7.1. Let (𝑚,𝑛) ∈ N2. Let 𝑌 ⊂ R𝑚, 𝑍 ⊂ R𝑛, and 𝑋 = {(v,w) ∈ 𝑍 × 𝑍 :

[v,w] ⊂ 𝑍}. Let 𝑓 : 𝑌 → R and g : 𝑍 → R𝑚. Let 𝑍𝐷 : 𝑋 ∋ (z𝐿, z𝑈 ) ↦→ [z𝐿, z𝑈 ]. Let

𝑌𝐷 ⊂ {(v,w) ∈ 𝑌 ×𝑌 : [v,w] ⊂ 𝑌 }. For 𝑖 ∈ {1, . . . ,𝑚}, let g𝑎𝑙
𝑖 and g𝑎𝑢

𝑖 be locally Lipschitz

continuous mappings 𝑋 → R𝑛 and 𝑔𝑏𝑙𝑖 , 𝑔𝑏𝑢𝑖 , 𝑔𝐿𝑖 , 𝑔𝑈𝑖 be locally Lipschitz continuous mappings
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𝑋 → R which for all x ∈ 𝑋 satisfy

g𝑎𝑙
𝑖 (x)

Tz+ 𝑔𝑏𝑙𝑖 (x) ≤ 𝑔𝑖(z) ≤ g𝑎𝑢
𝑖 (x)Tz+ 𝑔𝑏𝑢𝑖 (x), ∀z ∈ 𝑍𝐷(x), ∀𝑖,

g𝐿(x) ≤ g(z) ≤ g𝑈 (x), ∀z ∈ 𝑍𝐷(x),

(g𝐿(x),g𝑈 (x)) ∈ 𝑌𝐷.

Let f𝑎𝑙 and f𝑎𝑢 be locally Lipschitz continuous mappings 𝑌𝐷 → R𝑚 and 𝑓 𝑏𝑙, 𝑓 𝑏𝑢, 𝑓𝐿, and

𝑓𝑈 be locally Lipschitz continuous mappings 𝑌𝐷 → R which for all (v,w) ∈ 𝑌𝐷 satisfy

f𝑎𝑙(v,w)Ty + 𝑓 𝑏𝑙(v,w) ≤ 𝑓(y) ≤ f𝑎𝑢(v,w)Ty + 𝑓 𝑏𝑢(v,w),

𝑓𝐿(v,w) ≤ 𝑓(y) ≤ 𝑓𝑈 (v,w),

for all y ∈ [v,w].

Define h𝑎𝑙, h𝑎𝑢, ℎ𝑏𝑙, ℎ𝑏𝑢 as in Proposition 3.2.2. Let ̃︀ℎ𝐿 : 𝑋 ∋ x ↦→ 𝑓𝐿(g𝐿(x),g𝑈 (x))

and ̃︀ℎ𝑈 : 𝑋 ∋ x ↦→ 𝑓𝑈 (g𝐿(x),g𝑈 (x)). Define

ℎ𝑎,𝑚𝑖𝑛 : x = (z𝐿, z𝑈 ) ↦→ ℎ𝑏𝑙(z𝐿, z𝑈 ) +

𝑛∑︁
𝑖=1

max{ℎ𝑎𝑙𝑖 (x), 0}𝑧𝐿𝑖 +min{ℎ𝑎𝑙𝑖 (x), 0}𝑧𝑈𝑖 ,

ℎ𝑎,𝑚𝑎𝑥 : x = (z𝐿, z𝑈 ) ↦→ ℎ𝑏𝑢(z𝐿, z𝑈 ) +

𝑛∑︁
𝑖=1

max{ℎ𝑎𝑢𝑖 (x), 0}𝑧𝑈𝑖 +min{ℎ𝑎𝑢𝑖 (x), 0}𝑧𝐿𝑖 ,

and

ℎ𝐿 : x ↦→ max{̃︀ℎ𝐿(x), ℎ𝑎,𝑚𝑖𝑛(x)},

ℎ𝑈 : x ↦→ min{̃︀ℎ𝑈 (x), ℎ𝑎,𝑚𝑎𝑥(x)}.

Then the conclusion of Proposition 3.2.2 holds with the definitions of ℎ𝐿 and ℎ𝑈 given here.

Proof. The result is clear noting that for all (z𝐿, z𝑈 ) ∈ 𝑋 such that [z𝐿, z𝑈 ] ̸= ∅

ℎ𝑎,𝑚𝑖𝑛(z𝐿, z𝑈 ) = min{h𝑎𝑙(z𝐿, z𝑈 )Tz+ ℎ𝑏𝑙(z𝐿, z𝑈 ) : z ∈ [z𝐿, z𝑈 ]},

ℎ𝑎,𝑚𝑎𝑥(z𝐿, z𝑈 ) = max{h𝑎𝑢(z𝐿, z𝑈 )Tz+ ℎ𝑏𝑢(z𝐿, z𝑈 ) : z ∈ [z𝐿, z𝑈 ]},

and that by Lemma 3.2.1, ℎ𝑎,𝑚𝑖𝑛 and ℎ𝑎,𝑚𝑎𝑥 are locally Lipschitz continuous.
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An affine relaxation method based on Proposition 3.7.1 would be more expensive, since

it involves the extra calculation of the minimum and maximum of the affine relaxations at

each step. However, there is the potential for tighter overall relaxations. Compare this to

McCormick relaxations, for instance, where the interval bounds are not (easily) improved

by the convex and concave relaxations.
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Chapter 4

Efficient solution of ordinary

differential equations with a

parametric lexicographic linear

program embedded

4.1 Introduction

The focus of this chapter is the initial value problem (IVP) in ordinary differential equations

(ODEs) with a parametric lexicographic linear program (LP) embedded. The LP is said

to be “embedded” because the vector field depends on the solution of the lexicographic

LP, which is in turn parametrized by the dynamic states. See §4.2 for a formal problem

statement. The consideration of a lexicographic LP affords a lot of modeling flexibility while

simultaneously enforcing a well-defined problem. This chapter focuses on the situations

in which this problem can be numerically intractable and when this intractability can be

difficult to detect a priori . The main contribution of this work is to develop a numerical

method for the solution of this problem which is accurate, efficient, and robust despite these

difficulties.

The situations of interest include applications to the modeling of industrial fermentation

processes. This modeling framework is known as dynamic flux balance analysis (DFBA) [70,

79, 81]. In its basic form, differential equations describe the evolution of the concentrations
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of biomass and various metabolites of interest, such as glucose or ethanol. These equations

depend on the metabolism of the microbial population, which is modeled by a parametric

LP. The microbes’ growth rate and uptake of resources are taken from the solution set of

this LP.

One issue is that the LP may not have a singleton solution set. This means that quantities

that are needed to define the dynamics of the overall system are not uniquely defined. This

may lead some modelers to treat the resulting dynamic model as a differential inclusion

instead. However, the ultimate goal of most research in DFBA and the motivation of

this work is to obtain a numerical approximation of the solution of the dynamic problem.

The idea often followed in related problems is to simulate a specifically chosen measurable

selection [44, 69, 161]. The lexicographic LP provides a way to do exactly this by allowing

the modeler to minimize or maximize various quantities in a hierarchical (or lexicographic)

order over the solution set of the base LP model of the cellular metabolism. By minimizing

or maximizing these quantities, a unique value for each is obtained. In essence, a specifc

measurable selection is chosen, and the proposed method can calculate this very efficiently.

The result is that the method reduces the ambiguity of the simulation results.

Another difficulty in simulating a dynamic system with an LP embedded relates to the

fact that the embedded LP can be infeasible, which could induce a closed domain of definition

for the dynamic system (referred to as the “domain issue”). For typical numerical integration

methods for IVPs in ODEs, this is a serious issue. Certain computations that are performed

by the integration method, such as predictor steps, corrector iterations, or the calculation of

Jacobian information by finite differences, require the evaluation of the dynamics at states

that are near the current computed solution. When the computed solution is near the

boundary of this domain of definition, these states might not be in this domain, and the

result is that the numerical integrator cannot obtain the necessary information and may fail,

or produce incorrect results.

Consequently, our attention goes to hybrid systems theory, where different “modes” are

defined on possibly closed domains [14, 55]. Typically the dynamics in those modes are

trivially extended outside the domain; as in [14, 55], for instance, the definition of the

dynamics on an open set is given as part of the problem statement. The challenge here is

defining such an extension. Thus parametric linear programming results become important

[54]. This subject is concerned with the computation of the set of values that the right-hand
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side of the LP constraints can take and still yield a nonempty feasible set. Using results

from this literature, an appropriate extension of the domain of definition of the right-hand

side of the ODEs is defined. Conceptually this is similar to some parametric programming

algorithms, such as those in [123].

Inspired by these results, a method is developed which redefines the system locally as

index-one differential-algebraic equations (DAEs) with an open domain. The contribution

of this work is the application of the parametric LP results and hybrid systems theory to

the problem of ODEs with an LP embedded; this results in a powerful and implementable

numerical method which is more flexible, efficient, and accurate than previous methods.

Mature methods for the solution of DAEs can be used (adaptive time-stepping and error

control can be used, corrector iterations are defined, Jacobians are easy to obtain analytically

or by finite differences). Further, the consideration of lexicographic LPs is a novel extension.

This work’s ability to handle the lexicographic LP in an efficient manner is a nontrivial

development.

DFBA is considered in [70, 71, 79, 92, 149], and so these papers deal with a problem

similar to the one considered here. The work in [70, 71, 79] deals with experimental val-

idation of these models, but does not consider specific numerical issues. Meanwhile, [149]

applies a differential variational inequality (DVI) formulation, and solves it with a uniform

discretization in time, similarly to some time-stepping methods. This approach involves the

solution of a large optimization problem (a variational inequality or mixed complementarity

problem) to determine the solution trajectory all at once [4, 144], and so it is very differ-

ent from numerical integration methods such as the method proposed. Further, it will be

seen (see §4.6) that ODEs with LPs embedded can be extremely stiff, which motivates the

proposed developments and the ability to use numerical integration methods with adaptive

time steps. The work in [92] reformulates the problem as a DAE system by replacing the

embedded LP with its KKT conditions. Because of the potential for a nonunique solution

set, the result is that the reformulated DAE is high-index. The subsequent need to use

specialized solvers for such systems also motivates the current developments, in which an

index-one DAE is obtained. As mentioned, more established numerical integration methods

can be used. Finally, the aforementioned references have not explored the domain issue as it

relates to DFBA, which is a significant source of numerical intractability of the ODEs with

LP embedded problem. The use of a lexicographic LP distinguishes this work as well.
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The rest of this chapter is organized as follows. Section 4.2 introduces notation and nec-

essary concepts and formally states the problem. Section 4.3 provides motivating discussion

and examples which highlight some of the difficulties inherent in the problem formulation.

Section 4.4 considers existence and uniqueness results for the solutions of the ODE. In the

context of this work, this serves as more motivation for the numerical developments. Sec-

tion 4.5 represents the main contribution of this work, and states the proposed algorithm for

solving the ODE with LP embedded problem, which includes a specific method for solving

the lexicographic LP. Section 4.6 applies the algorithm to models of industrial fermentation

processes using DFBA.

4.2 Problem statement and preliminaries

The formal problem statement is as follows. For (𝑛𝑥, 𝑛𝑞,𝑚, 𝑛𝑣) ∈ N4, let 𝐷𝑡 ⊂ R, 𝐷𝑥 ⊂ R𝑛𝑥

and 𝐷𝑞 ⊂ R𝑛𝑞 be nonempty open sets. Let f : 𝐷𝑡 ×𝐷𝑥 ×𝐷𝑞 → R𝑛𝑥 , b : 𝐷𝑡 ×𝐷𝑥 → R𝑚,

A ∈ R𝑚×𝑛𝑣 , and c𝑖 ∈ R𝑛𝑣 for 𝑖 ∈ {1, . . . , 𝑛𝑞} be given. First, let R = R ∪ {−∞} ∪ {+∞}.

Let ̂︀q : R𝑚 → R𝑛𝑞 be defined by

̂︀𝑞1 : d ↦→ inf
v∈R𝑛𝑣

cT1 v (4.1)

s.t.Av = d,

v ≥ 0,

and for 𝑖 ∈ {2, . . . , 𝑛𝑞},

̂︀𝑞𝑖 : d ↦→ inf
v∈R𝑛𝑣

cT𝑖 v (4.2)

s.t.

⎡⎢⎢⎢⎢⎢⎢⎣
A

cT1
...

cT𝑖−1

⎤⎥⎥⎥⎥⎥⎥⎦v =

⎡⎢⎢⎢⎢⎢⎢⎣
d̂︀𝑞1(d)
...̂︀𝑞𝑖−1(d)

⎤⎥⎥⎥⎥⎥⎥⎦ ,

v ≥ 0.
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Subsequently, define

𝐹 ≡ {d ∈ R𝑚 : −∞ < ̂︀𝑞𝑖(d) < +∞, ∀𝑖 ∈ {1, . . . , 𝑛𝑞}} , (4.3)

𝐾 ≡ b−1(𝐹 ).

Note that 𝐾 ⊂ 𝐷𝑡 ×𝐷𝑥.

The focus of this work is an initial value problem in ODEs: given a 𝑡0 ∈ 𝐷𝑡 and x0 ∈ 𝐷𝑥,

we seek an interval [𝑡0, 𝑡𝑓 ] = 𝐼 ⊂ 𝐷𝑡, and absolutely continuous function x : 𝐼 → 𝐷𝑥 which

satisfy

ẋ(𝑡) = f (𝑡,x(𝑡),q(𝑡,x(𝑡))) , 𝑎.𝑒. 𝑡 ∈ 𝐼, (4.4a)

x(𝑡0) = x0, (4.4b)

where q : 𝐾 → R𝑛𝑞 : (𝑡, z) ↦→ ̂︀q(b(𝑡, z)). Such an 𝐼 and x are called a solution of IVP (4.4).

Linear program (4.2) is called the 𝑖𝑡ℎ-level LP; it is an optimization problem over the

solution set of the (𝑖 − 1)𝑡ℎ-level LP, where the first-level LP is given by (4.1). Together,

these LPs are called a lexicographic linear program, using the terminology from [154] (further

background on lexicographic optimization is presented in §4.5.3). Note that any solution of

the 𝑛𝑡ℎ
𝑞 -level LP must also be a solution of the 𝑖𝑡ℎ-level LP, 𝑖 ∈ {1, . . . , 𝑛𝑞 − 1}.

Proposition 4.2.1 establishes an important topological property of 𝐹 , the domain of ̂︀q.

Proposition 4.2.1. Assume 𝐹 defined in (4.3) is nonempty. Then

𝐹 = {Av ∈ R𝑚 : v ≥ 0} ,

and thus it is closed.

Proof. Choose any d ∈ 𝐹 . It follows that ̂︀𝑞1(d) is finite, which implies that the first-level

LP is feasible for d; i.e. Av = d for some v ≥ 0. Thus 𝐹 ⊂ {Av : v ≥ 0}.

Conversely, since 𝐹 is nonempty, there exists d* ∈ R𝑚 such that ̂︀𝑞𝑖(d*) is finite for each

𝑖. Consequently, ̂︀𝑞1(d*) = max
{︀
(d*)Tw : ATw ≤ c1

}︀
; i.e. the dual of the first-level LP is

feasible and has a bounded solution. Note that the dual is feasible for any value of d (its

feasible set is invariant). Thus, using duality results such as those in Table 4.2 of [25], ̂︀𝑞1(d)
is finite for all d such that the first-level LP is feasible (i.e. for any d ∈ {Av : v ≥ 0}).
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Next, assume that ̂︀𝑞𝑖−1(d) is finite for any d ∈ {Av : v ≥ 0}. Since ̂︀𝑞𝑖(d*) is finite, a

similar argument establishes that ̂︀𝑞𝑖(d) is finite for any d ∈ {Av : v ≥ 0}. Proceeding by

induction, one has that for each 𝑖 ∈ {1, . . . , 𝑛𝑞}, ̂︀𝑞𝑖(d) is finite for any d ∈ {Av : v ≥ 0}.

Thus {Av : v ≥ 0} ⊂ 𝐹 and, combined with the inclusion above, equality follows.

4.3 Domain issues

This section demonstrates how domain issues are manifested as numerical complications by

applying other methods to simple instances of (4.4). To understand this from a theoretical

view, note that any solution of (4.4) must satisfy (𝑡,x(𝑡)) ∈ 𝐾, 𝑎.𝑒. 𝑡 ∈ 𝐼, otherwise

q(𝑡,x(𝑡)) is undefined on a set of nonzero measure, and consequently Eqn. (4.4a) does not

hold. Consequently, even though 𝐷𝑡 × 𝐷𝑥 is nonempty and open, the effective domain of

definition of the system, 𝐾, may not be either of those.

4.3.1 Direct method

The direct method refers to solving IVP (4.4) by using a standard numerical integrator

and calling an LP solver directly from the function evaluation subroutine to determine the

dynamics. This approach can be made quite efficient, especially as it can rely on established

commercial codes for the numerical integration and LP solution. Unfortunately, it can also

be unreliable. Consider the following example:

x(0) = 0, ẋ(𝑡) = f (x(𝑡), 𝑞(x(𝑡))) =

⎡⎣ 1

𝑥2(𝑡)𝑞(x(𝑡))− (𝑥2(𝑡))
2 + 2𝑥1(𝑡)

⎤⎦ ,

where 𝑞(z) = min{𝑣 : 𝑧21 ≤ 𝑣 ≤ 𝑧2}.

The first thing to note is that the LP is feasible only if z ∈ 𝐾 = {z : 𝑧21 ≤ 𝑧2}. Although

this is a closed set, we can verify that x(𝑡) = (𝑡, 𝑡2) is a solution; x(0) = (0, 0), 𝑞(x(𝑡)) = 𝑡2,

and f (x(𝑡), 𝑞(x(𝑡))) = (1, 2𝑡) = ẋ(𝑡). Consider now what happens when applying an explicit

Euler step. Let ̃︀x(𝑡) be the numerical estimate of the solution at 𝑡. Then for ℎ > 0 and
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̃︀x(0) = x(0),

̃︀x(0 + ℎ) = ̃︀x(0) + ℎf (̃︀x(0), 𝑞(̃︀x(0)))
= 0+ ℎ(1, 0) = (ℎ, 0).

We see that ̃︀x(ℎ) /∈ 𝐾. Thus when attempting to evaluate 𝑞(̃︀x(ℎ)) for the next step, we

encounter an infeasible LP, and the numerical method fails.

Although explicit Euler is a very simple method, the explicit Euler step is often a part

of more sophisticated integration methods; the second stage derivative of an explicit Runge-

Kutta method is evaluated after taking an explicit Euler step, and the initial predictor

of many linear multistep predictor-corrector methods is given by an explicit Euler step

[105]. Meanwhile, numerical integration methods which do not involve an explicit Euler

step will often involve an implicit Euler step; this includes the backwards differentiation

formulas (BDF) and semi-implicit Runge-Kutta methods [105], where again the first step

of a BDF method is an implicit Euler step, and the first stage derivative of a semi-implicit

Runge-Kutta method is determined by an implicit Euler step [105]. For the example above,

an implicit method may work, but there is nothing intrinsic to an implicit method that

avoids the domain issue; see §4.3.2 for a counterexample. In fact, implicit methods have

more opportunities to fail when simulating ODEs with an LP embedded. Implicit methods

typically must solve nonlinear equations by a fixed-point or Newton iteration. Since f and

thus q must be evaluated at each point produced by the iteration, the sequence of iterates

must be in 𝐾, which need not hold in general. Further, obtaining Jacobian information by

finite differences provides another point of potential failure, as the perturbed states may not

be in 𝐾.

4.3.2 DVI time-stepping method

Time-stepping methods refer to a class of numerical methods for solving an initial-value

DVI [4, 8, 144, 205]. The solution set of an LP is equivalent to the solution set of its KKT

conditions, and the KKT conditions are a type of complementarity problem or variational

inequality. Thus ODEs with an LP embedded are a special case of a DVI, and one could

potentially apply a time-stepping method to IVP (4.4). However, as the essential step in

these methods is the solution of a system of equations with conditions that are equivalent to
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the embedded LP having an optimal solution, they do not differ in a meaningful way from

the direct method previously mentioned. More generally, implicit integration methods also

suffer from domain issues.

As a counterexample, consider a problem similar to the one in §4.3.1:

x(0) = 0, ẋ(𝑡) = f (x(𝑡), 𝑞(x(𝑡))) =

⎡⎣ 1

𝑥2(𝑡)𝑞(x(𝑡))− (𝑥2(𝑡))
2 + 2𝑥1(𝑡)

⎤⎦ , (4.5)

where 𝑞(z) = min{𝑣 : 𝑧2 ≤ 𝑣 ≤ 𝑧21}.

The embedded LP is feasible only if x ∈ 𝐾 = {z : 𝑧2 ≤ 𝑧21}, a closed, nonconvex set. Note

that x(𝑡) = (𝑡, 𝑡2) is a solution. Letting b(z) = (𝑧21 ,−𝑧2) and rewriting 𝑞 in terms of the

embedded LP’s dual, we have

𝑞(z) = max{b(z)Tw : w ≤ 0, 𝑤1 − 𝑤2 = 1}.

Letting 𝑊 denote the feasible set of the above (dual) LP, this is equivalent to finding w* ∈𝑊

such that (w−w*)T(−b(z)) ≥ 0, ∀w ∈𝑊 . This is a parametric variational inequality and

is denoted VI(𝑊,−b(z)). This requires the dynamics to be rewritten as

f (x(𝑡), 𝑞(x(𝑡))) =

̂︀f(x(𝑡),u(𝑡)) =
⎡⎣ 1

𝑥2(𝑡)
(︀
(𝑥1(𝑡))

2𝑢1(𝑡)− 𝑥2(𝑡)𝑢2(𝑡)
)︀
− (𝑥2(𝑡))

2 + 2𝑥1(𝑡)

⎤⎦ ,

where u(𝑡) is a solution of VI (𝑊,−b(x(𝑡))). Given ℎ > 0, an implicit time-stepping scheme

takes the form

̃︀x(𝑡+ ℎ) = ̃︀x(𝑡) + ℎ̂︀f (̃︀x(𝑡+ ℎ), ̃︀u(𝑡+ ℎ)) , (4.6)

̃︀u(𝑡+ ℎ) solves VI (𝑊,−b(̃︀x(𝑡+ ℎ))) .

Typically this implicit system is solved as the equivalent variational inequality VI(R2×𝑊,g𝑡)
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where

g𝑡 : (z,v) ↦→

⎡⎢⎢⎢⎢⎢⎢⎣
𝑧1 − ̃︀𝑥1(𝑡)− ℎ

𝑧2 − ̃︀𝑥2(𝑡)− ℎ(𝑧21𝑧2𝑣1 − 𝑧22𝑣2 − 𝑧22 + 2𝑧1)

−𝑧21
𝑧2

⎤⎥⎥⎥⎥⎥⎥⎦
(see for instance [144]). However, again letting ̃︀x(0) = x(0) = 0, the initial variational

inequality VI(R2 ×𝑊,g0) does not have a solution for any choice of ℎ.

To see this, assume, for a contradiction, that a solution exists. Then there is a (z*,v*) ∈

R2 ×𝑊 such that

(𝑧1 − 𝑧*1)(𝑧
*
1 − ℎ) + (𝑧2 − 𝑧*2)

(︀
𝑧*2 − ℎ((𝑧*1)

2𝑧*2𝑣
*
1 − (𝑧*2)

2𝑣*2 − (𝑧*2)
2 + 2𝑧*1)

)︀
+

(𝑣1 − 𝑣*1)(−(𝑧*1)2) + (𝑣2 − 𝑣*2)(𝑧
*
2) ≥ 0, (4.7)

for all (z,v) ∈ R2 ×𝑊 . First note that 𝑧*1 = ℎ, otherwise we could always find a 𝑧1 ∈ R

such that the inequality (4.7) did not hold. Similarly, we must have

𝑧*2 = ℎ
(︀
(𝑧*1)

2𝑧*2𝑣
*
1 − (𝑧*2)

2𝑣*2 − (𝑧*2)
2 + 2𝑧*1

)︀
. (4.8)

Using this in inequality (4.7), we obtain

(𝑣1 − 𝑣*1)(−ℎ2) + (𝑣2 − 𝑣*2)(𝑧
*
2) ≥ 0,

for all (z,v) ∈ R2 ×𝑊 . For any v ∈𝑊 , we can write 𝑣2 = 𝑣1 − 1. Then we get

(𝑣1 − 𝑣*1)(−ℎ2) + (𝑣1 − 1− (𝑣*1 − 1))(𝑧*2) ≥ 0,

which yields

(𝑣1 − 𝑣*1)(𝑧
*
2 − ℎ2) ≥ 0,

for all 𝑣1 ≤ 0, where 𝑣*1 ≤ 0 and 𝑧*2 ∈ R satisfy

ℎ𝑣*1(𝑧
*
2)

2 + (1− ℎ3𝑣*1)𝑧
*
2 − 2ℎ2 = 0 (4.9)

(which is obtained from Eqn. (4.8) via the substitutions 𝑧*1 = ℎ and 𝑣*2 = 𝑣*1 − 1).
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We can now analyze three cases:

1. 𝑧*2 > ℎ2 : However, if this was the case, then whatever the value of 𝑣*1, we could always

find a 𝑣′1 < 𝑣*1 which then implies (𝑣′1 − 𝑣*1)(𝑧
*
2 − ℎ2) < 0, which is a contradiction.

2. 𝑧*2 < ℎ2 : However, if this was the case, we must have 𝑣*1 = 0, otherwise there exists a 𝑣′1

such that 𝑣*1 < 𝑣′1 ≤ 0 which then implies that (𝑣′1− 𝑣*1)(𝑧
*
2 −ℎ2) < 0. Thus, assuming

𝑣*1 = 0, use Eqn. (4.9) to check the value of 𝑧*2 . However, that yields 𝑧*2 = 2ℎ2, which

contradicts 𝑧*2 < ℎ2.

3. 𝑧*2 = ℎ2 : However, if this was the case, we can use Eqn. (4.9) to check the consistency

of values. This yields

ℎ5𝑣*1 + ℎ2 − ℎ5𝑣*1 − 2ℎ2 = 0 =⇒ −ℎ2 = 0,

which contradicts ℎ > 0.

Thus, it follows that there does not exist a point (z*,v*) ∈ R2×𝑊 which solves VI(R2×

𝑊,g0).

Note that the implicit time-stepping scheme (4.6) is equivalent to the direct method

applying an implicit Euler step to the original system (4.5). Thus, the failure of the system

(4.6) to have a solution indicates that the direct method, even with an implicit integration

routine, also fails.

4.4 Existence of solutions

This section presents some results for the existence and uniqueness of solutions of IVP (4.4).

First, the idea of an “extended IVP” is introduced. This represents an approach from the

perspective of hybrid systems theory, and existence results based on this idea lead to a useful

understanding of how to approach the IVP (4.4) numerically. Then an existence result based

on viability theory is proved, and it is discussed why this does not lead to a useful numerical

method.

4.4.1 Extended solutions

The following theorem presents what is essentially an a posteriori check for existence. In

the following 𝜆 denotes Lebesgue measure.
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Theorem 4.4.1. Suppose ̂︀q𝐸 : R𝑚 → R𝑛𝑞 is an extension of ̂︀q (i.e. ̂︀q𝐸 is defined on

all of R𝑚 and ̂︀q𝐸 restricted to 𝐹 equals ̂︀q), b(·, z) is measurable for all z ∈ 𝐷𝑥, b(𝑡, ·) is

continuous for 𝑎.𝑒. 𝑡 ∈ 𝐷𝑡, and there exist an interval 𝐼𝐸 = [𝑡0, 𝑡
𝐸
𝑓 ] and absolutely continuous

function x : 𝐼𝐸 → 𝐷𝑥 which are a solution of the IVP

ẋ(𝑡) = f
(︀
𝑡,x(𝑡), ̂︀q𝐸 (b(𝑡,x(𝑡)))

)︀
, 𝑎.𝑒. 𝑡 ∈ 𝐼𝐸 , (4.10a)

x(𝑡0) = x0. (4.10b)

Letting 𝑆(𝑡) = {𝑠 ∈ [𝑡0, 𝑡] : (𝑠,x(𝑠)) /∈ 𝐾}, if (𝑡0,x0) ∈ 𝐾 and

𝑡𝑓 = sup
{︀
𝑡 ∈ 𝐼𝐸 : 𝜆 (𝑆(𝑡)) = 0

}︀
,

then 𝐼 = [𝑡0, 𝑡𝑓 ] and x restricted to 𝐼 are a solution of IVP (4.4). Furthermore, this is the

largest interval on which x is a solution of (4.4).

Proof. Since x is continuous, the composite function bx : 𝐼𝐸 → R𝑚 : 𝑡 ↦→ b(𝑡,x(𝑡)) is

measurable (see Lemma 1 in §1 of [51]). By Proposition 4.2.1, the complement of 𝐹 , 𝐹𝐶 , is

open, so 𝑆𝐸 = b−1
x (𝐹𝐶) is measurable. Then one has 𝜆(𝑆(𝑡)) =

∫︀
[𝑡0,𝑡]

𝜒𝑆𝐸 (𝑠)𝑑𝑠, where 𝜒𝑆𝐸

is the indicator function of 𝑆𝐸 . This implies that 𝜆(𝑆(·)) is continuous and increasing.

Thus, 𝜆(𝑆(𝑡𝑓 )) = 0 and so for almost every 𝑡 ∈ 𝐼, (𝑡,x(𝑡)) ∈ 𝐾 and therefore b(𝑡,x(𝑡)) ∈

𝐹 . So q(𝑡,x(𝑡)) = ̂︀q𝐸(b(𝑡,x(𝑡))) for almost every 𝑡 ∈ 𝐼, which combined with Eqn. (4.10a)

implies x satisfies (4.4a) for almost every 𝑡 ∈ 𝐼, and thus is a solution. The second claim

follows easily; for 𝑡′ > 𝑡𝑓 , 𝜆(𝑆(𝑡′)) > 0 and so Eqn. (4.4a) cannot be satisfied for almost

every 𝑡 ∈ [𝑡0, 𝑡
′].

Refer to IVP (4.10) as the “extended IVP.” Note that the interval 𝐼 in Theorem 4.4.1

could be degenerate, i.e. 𝑡0 = 𝑡𝑓 . This leads to a somewhat trivial solution. Ruling out this

case requires something akin to the sufficient conditions for existence from viability-type

results; see §4.4.2.

The characterization of 𝑡𝑓 given in Theorem 4.4.1 is not in a particularly useful form.

The next result alleviates this under stricter assumptions on b.

Corollary 4.4.2. Suppose there is a solution 𝐼𝐸 = [𝑡0, 𝑡
𝐸
𝑓 ], x of the extended IVP (4.10).

Let 𝑆(𝑡) = {𝑠 ∈ [𝑡0, 𝑡] : (𝑠,x(𝑠)) /∈ 𝐾} and 𝑡𝑓 = sup{𝑡 ∈ 𝐼𝐸 : 𝜆(𝑆(𝑡)) = 0}. Assume that for
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any 𝑡 ∈ 𝐷𝑡, there exists an interval [𝑡1, 𝑡2) ⊂ 𝐷𝑡 such that [𝑡1, 𝑡2) ∋ 𝑡 and b is continuous

on [𝑡1, 𝑡2)×𝐷𝑥. Then 𝑡𝑓 = inf{𝑡 ∈ 𝐼𝐸 : (𝑡,x(𝑡)) /∈ 𝐾}.

Proof. For a contradiction, assume 𝑡𝑓 > inf{𝑡 ∈ 𝐼𝐸 : (𝑡,x(𝑡)) /∈ 𝐾}, that is, there exists a

𝑡* ∈ 𝐼𝐸 such that 𝑡* < 𝑡𝑓 and (𝑡*,x(𝑡*)) /∈ 𝐾. By assumption, there is an interval [𝑡1, 𝑡2) ∋ 𝑡*

on which b is continuous. Without loss of generality, assume 𝑡2 < 𝑡𝑓 . Then since x, as a

solution of the extended IVP, is continuous, bx : 𝑡 ↦→ b(𝑡,x(𝑡)) is continuous on [𝑡*, 𝑡2), and

bx(𝑡
*) /∈ 𝐹 . By Proposition 4.2.1, the complement of 𝐹 , 𝐹𝐶 , is open, so b−1

x (𝐹𝐶) is open

in [𝑡*, 𝑡2) and nonempty. Thus there exists 𝑡** ∈ (𝑡*, 𝑡2) such that b(𝑡,x(𝑡)) /∈ 𝐹 for all

𝑡 ∈ [𝑡*, 𝑡**). This implies that 𝜆(𝑆(𝑡**)) > 0. But as in the proof of Theorem 4.4.1, 𝜆(𝑆(·))

is increasing on 𝐼𝐸 , and so 𝑡𝑓 ≤ 𝑡**, which contradicts 𝑡** < 𝑡2 < 𝑡𝑓 .

Now, assume 𝑡𝑓 < inf{𝑡 ∈ 𝐼𝐸 : (𝑡,x(𝑡)) /∈ 𝐾}. This implies that there exists a 𝑡* > 𝑡𝑓

such that (𝑡,x(𝑡)) ∈ 𝐾 for all 𝑡 < 𝑡*, and so 𝜆(𝑆(𝑡*)) = 0. But this contradicts the definition

of 𝑡𝑓 as a supremum.

Corollary 4.4.2 says that, under the appropriate conditions on b (roughly, “continuity

from the right”), a solution of the extended IVP ceases to be a solution of the original system

(4.4) at the first time the solution trajectory leaves 𝐾. Intuitively this makes sense, but this

intuition can lead to trouble for the numerical method as demonstrated in §4.3; just because

one cannot find a solution of the LP at a specific step in the numerical procedure does not

mean that a solution no longer exists. Care must be taken when applying Corollary 4.4.2.

Since (𝑡, z) ↦→ f(𝑡, z, ̂︀q𝐸(b(𝑡, z))) is defined on the open set 𝐷𝑡×𝐷𝑥 (assuming ̂︀q𝐸(b(𝑡, z))

is in 𝐷𝑞 for all (𝑡, z)), standard existence and uniqueness results can now be applied to the

extended IVP. The main concern is whether we can define an appropriate extension ̂︀q𝐸 . In

fact, we can define a Lipschitz continuous extension.

Proposition 4.4.1. There exists a Lipschitz continuous function ̂︀q𝐸 : R𝑚 → R𝑛𝑞 such that̂︀q𝐸 restricted to 𝐹 equals ̂︀q, the solution of the lexicographic linear program (4.1)-(4.2).

Proof. If 𝐹 is empty the result is trivial. Otherwise, assume without loss of generality that

the first 𝑘1 = rank(A) rows of A are linearly independent and let ̃︀A1 ∈ R𝑘1×𝑛𝑣 be a matrix

formed from the first 𝑘1 rows of A. Define d𝐸
1 : R𝑚 → R𝑘1 as d ↦→ (𝑑1, 𝑑2, . . . , 𝑑𝑘1). Then

̂︀𝑞1(d) = min{cT1 v : ̃︀A1v = d𝐸
1 (d),v ≥ 0} (4.11)
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for all d ∈ 𝐹 . Since 𝐹 is nonempty, it follows that the dual of LP (4.11) has a nonempty

feasible set. Furthermore, by the discussion in §5.2 of [25], {p𝑗 ∈ R𝑘1 : 1 ≤ 𝑗 ≤ 𝑛1}, the set of

vertices of the feasible set of the dual of LP (4.11), is nonempty and ̂︀𝑞1(d) = max{pT
𝑗 d

𝐸
1 (d) :

1 ≤ 𝑗 ≤ 𝑛1} for d ∈ 𝐹 . However, this is perfectly well-defined and Lipschitz continuous for

all d ∈ R𝑚, so let ̂︀𝑞𝐸1 : d ↦→ max{pT
𝑗 d

𝐸
1 (d) : 1 ≤ 𝑗 ≤ 𝑛1}.

Then assume full row rank ̃︀A𝑖 ∈ R𝑘𝑖×𝑛𝑣 and Lipschitz continuous ̂︀𝑞𝐸𝑖 and d𝐸
𝑖 : R𝑚 → R𝑘𝑖

have been constructed such that ̂︀𝑞𝐸𝑖 restricted to 𝐹 equals ̂︀𝑞𝑖 and {v : ̃︀A𝑖v = d𝐸
𝑖 (d),v ≥ 0}

equals the feasible set of the 𝑖𝑡ℎ-level LP for all d ∈ 𝐹 . If c𝑖 and the rows of ̃︀A𝑖 are linearly

independent, let 𝑘𝑖+1 = 𝑘𝑖 + 1, ̃︀A𝑖+1 =
[︁ ̃︀A𝑖

cT𝑖

]︁
, and d𝐸

𝑖+1 : d ↦→ (d𝐸
𝑖 (d), ̂︀𝑞𝐸𝑖 (d)); otherwise let

𝑘𝑖+1 = 𝑘𝑖, ̃︀A𝑖+1 = ̃︀A𝑖, and d𝐸
𝑖+1 : d ↦→ d𝐸

𝑖 (d). Then

̂︀𝑞𝑖+1(d) = min{cT𝑖+1v : ̃︀A𝑖+1v = d𝐸
𝑖+1(d),v ≥ 0} (4.12)

for all d ∈ 𝐹 . Similarly to the induction basis, let {p𝑗 ∈ R𝑘𝑖+1 : 1 ≤ 𝑗 ≤ 𝑛𝑖+1} be the

nonempty set of vertices of the feasible set of the dual of LP (4.12); then let

̂︀𝑞𝐸𝑖+1 : d ↦→ max{pT
𝑗 d

𝐸
𝑖+1(d) : 1 ≤ 𝑗 ≤ 𝑛𝑖+1}.

Then ̂︀𝑞𝐸𝑖+1 is also Lipschitz continuous, and when restricted to 𝐹 it equals ̂︀𝑞𝑖+1. Proceeding

by induction, we obtain the desired Lipschitz continuous extension ̂︀q𝐸 .

For completeness, a local existence and uniqueness result for the extended IVP is stated.

Furthermore, the assumptions of the following result provide basic conditions under which

the extended IVP is numerically tractable. Weakening the assumptions to allow f to be

measurable with respect to time can be done by following results in Ch. 1 of [51].

Proposition 4.4.2. Assume

1. ̂︀q𝐸(b(𝑡0,x0)) ∈ 𝐷𝑞,

2. there exists 𝑡1 > 𝑡0 such that b is continuous on [𝑡0, 𝑡1) ×𝐷𝑥 and f is continuous on

[𝑡0, 𝑡1)×𝐷𝑥 ×𝐷𝑞, and

3. there exist open neighborhoods 𝑁𝑥 ∋ x0 and 𝑁𝑞 ∋ ̂︀q𝐸(b(𝑡0,x0)), constants 𝐿𝑏 ≥ 0,
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𝐿𝑓 ≥ 0, such that for all (𝑡, z1, z2,p1,p2) ∈ [𝑡0, 𝑡1)×𝑁𝑥 ×𝑁𝑥 ×𝑁𝑞 ×𝑁𝑞,

‖b(𝑡, z1)− b(𝑡, z2)‖ ≤ 𝐿𝑏 ‖z1 − z2‖ ,

‖f(𝑡, z1,p1)− f(𝑡, z2,p2)‖ ≤ 𝐿𝑓 (‖z1 − z2‖+ ‖p1 − p2‖).

Then a unique solution of the IVP (4.10) exists.

Proof. By Proposition 4.4.1, we can assume ̂︀q𝐸 is Lipschitz continuous with constant 𝐿𝑞, so

q𝐸 = ̂︀q𝐸 ∘ b is continuous on [𝑡0, 𝑡1)×𝐷𝑥 and satisfies

⃦⃦
q𝐸(𝑡, z1)− q𝐸(𝑡, z2)

⃦⃦
≤ 𝐿𝑞𝐿𝑏 ‖z1 − z2‖ .

Since q𝐸 is continuous, we can assume without loss of generality that q𝐸(𝑡, z) ∈ 𝑁𝑞 for all

(𝑡, z) ∈ [𝑡0, 𝑡1)×𝑁𝑥. Thus,

⃦⃦
f(𝑡, z1,q

𝐸(𝑡, z1))− f(𝑡, z2,q
𝐸(𝑡, z2))

⃦⃦
≤ 𝐿𝑓 (1 + 𝐿𝑞𝐿𝑏) ‖z1 − z2‖

(i.e. (𝑡, z) ↦→ f(𝑡, z,q𝐸(𝑡, z)) is locally Lipschitz continuous on 𝑁𝑥, uniformly on [𝑡0, 𝑡1), as

in Definition 2.5.1). Therefore we can apply Theorem 2.3 of Ch. II of [116] to the mapping

(𝑡, z) ↦→ f(𝑡, z,q𝐸(𝑡, z)) and conclude that there exists a 𝑡𝐸𝑓 > 𝑡0 and continuous function x

on [𝑡0, 𝑡
𝐸
𝑓 ] which are a solution of (4.10).

4.4.2 Viability-based existence

This section presents a tangential discussion, mostly to contrast with the theory in the

previous section. An existence result based on viability theory [10] is proved. While in

theory such an existence result would allow us to apply numerical integration schemes that

can overcome the fact that 𝐾 might not be open, we will see that it relies on a condition

that is next to impossible to verify in the situations of interest.

The following background is helpful. Recalling the discussion of local compactness from

§2.2, we have the additional results (see [131] for proofs and further background): the finite

product of locally compact metric spaces is locally compact (i.e. if 𝑋 and 𝑌 are locally

compact metric spaces then so is 𝑋 × 𝑌 ); for 𝑡0 < 𝑡1, [𝑡0, 𝑡1) ⊂ R is locally compact. The

contingent cone (sometimes called the Bouligand tangent cone) 𝑇𝑉 (v) of a set 𝑉 ⊂ R𝑛 at
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v ∈ 𝑉 is given by

𝑇𝑉 (v) =

{︂
w ∈ R𝑛 : lim inf

ℎ→0+

𝑑(v + ℎw, 𝑉 )

ℎ
= 0

}︂
.

The following lemmata establish some required properties of the contingent cone.

Lemma 4.4.3. If w ∈ 𝑇𝑉 (v), then for any open set 𝑁 ∋ v, w ∈ 𝑇𝑉 ∩𝑁 (v).

Proof. If w ∈ 𝑇𝑉 (v), an equivalent characterization is that there exist sequences ℎ𝑛 → 0,

ℎ𝑛 > 0 for all 𝑛, and w𝑛 → w such that for all 𝑛 ∈ N, v+ℎ𝑛w𝑛 ∈ 𝑉 (see §1.1 of [10]). Since

𝑁 is open, for sufficiently small ℎ, v+ℎ̂︀w ∈ 𝑁 for any ̂︀w. Thus, there are subsequences ℎ𝑛𝑘

and w𝑛𝑘
of ℎ𝑛 and w𝑛, respectively, such that v+ℎ𝑛𝑘

w𝑛𝑘
∈ 𝑁 for all 𝑘 ∈ N. Consequently,

v + ℎ𝑛𝑘
w𝑛𝑘

∈ 𝑉 ∩𝑁 for all 𝑘 ∈ N, and so v ∈ 𝑉 ∩𝑁 and w ∈ 𝑇𝑉 ∩𝑁 (v).

Lemma 4.4.4. If w ∈ 𝑇𝑉 (v), v = (𝑣, ̃︀v) and w = (1, ̃︀w), then w ∈ 𝑇𝑉 ∩𝑅(v) for any

𝑅 = [𝑣𝑎, 𝑣𝑏)× ̃︀𝑁 , where ̃︀𝑁 is an open set containing ̃︀v and 𝑣𝑎 ≤ 𝑣 < 𝑣𝑏.

Proof. The proof proceeds similarly to that of Lemma 4.4.3. There exist sequences ℎ𝑛 → 0,

ℎ𝑛 > 0, and (𝑦𝑛, ̃︀w𝑛) → (1, ̃︀w), such that (𝑣, ̃︀v) + ℎ𝑛(𝑦𝑛, ̃︀w𝑛) ∈ 𝑉 for all 𝑛. Then, for

large enough 𝑛, (𝑣, ̃︀v) + ℎ𝑛(𝑦𝑛, ̃︀w𝑛) ∈ 𝑅 since ̃︀𝑁 is open and 𝑣 is a limit point of [𝑣𝑎, 𝑣𝑏).

Thus there are subsequences such that (𝑣, ̃︀v) + ℎ𝑛𝑘
(𝑦𝑛𝑘

, ̃︀w𝑛𝑘
) ∈ 𝑉 ∩ 𝑅, and it follows that

v ∈ 𝑉 ∩𝑅 and w ∈ 𝑇𝑉 ∩𝑅(v).

The following result is an example of the kind of conditions that would be sufficient to

establish existence of a solution of IVP (4.4).

Proposition 4.4.5. If (𝑡0,x0) ∈ 𝐾, q(𝑡0,x0) ∈ 𝐷𝑞, f is continuous, b is continuous,

and there exist 𝑡1 ∈ 𝐷𝑡, 𝑡1 > 𝑡0, and an open set 𝑁𝑥 ⊂ 𝐷𝑥 containing x0 such that

(1, f(𝑡, z,q(𝑡, z))) ∈ 𝑇𝐾(𝑡, z) for all (𝑡, z) ∈ 𝐾 ∩𝑁0 where 𝑁0 = [𝑡0, 𝑡1)×𝑁𝑥, then a solution

of IVP (4.4) exists.

Proof. By Proposition 4.4.1, ̂︀q is continuous on 𝐹 , and combined with the continuity of b,

q is continuous on 𝐾, and so q−1(𝐷𝑞) is open in 𝐾. By simple topological arguments, this

means that q−1(𝐷𝑞) = 𝐾 ∩𝑁1 for some open 𝑁1 ⊂ R1+𝑛𝑥 , and we can further assume that

𝑁1 ⊂ 𝐷𝑡 ×𝐷𝑥. Note that (𝑡0,x0) ∈ q−1(𝐷𝑞) ⊂ 𝑁1.

Let ̂︀𝐾 = 𝐾 ∩ 𝑁1 ∩ 𝑁0. Note that ̂︀𝐾 is nonempty, since (𝑡0,x0) is in each of 𝐾, 𝑁1,

𝑁0. More importantly, it is locally compact. To see this, first note that [𝑡0, 𝑡1) and 𝑁𝑥 are
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locally compact, and so 𝑁0 is also locally compact. Then, since 𝑁1∩𝑁0 is an open subset of

𝑁0, it too is locally compact. Since 𝐾 is nonempty, then so is 𝐹 , and by Proposition 4.2.1

𝐹 is closed. Finally, ̂︀𝐾 = 𝐾 ∩𝑁1 ∩𝑁0 = b−1(𝐹 ) is a closed subset of 𝑁1 ∩𝑁0, since b is

continuous on 𝑁1 ∩𝑁0 and 𝐹 is closed. As a closed subset of a locally compact space, ̂︀𝐾 is

locally compact.

Note that q is defined, continuous, and takes values in 𝐷𝑞 on ̂︀𝐾, and so f(·, ·,q(·, ·)) is

defined and continuous on ̂︀𝐾. Now, let

̂︀f : ̂︀𝐾 → R1+𝑛𝑥 : (𝑡, z) ↦→ (1, f(𝑡, z,q(𝑡, z))) .

By construction, ̂︀f is continuous on ̂︀𝐾. Introduce the dummy variable 𝑠 and formulate the

initial value problem

ẏ(𝑠) = ̂︀f(y(𝑠)), y(𝑠0) = (𝑡0,x0). (4.13)

The value of 𝑠 is immaterial, so let 𝑠0 = 𝑡0. If there exists a solution y(𝑠) = (𝑡(𝑠),x(𝑠)) of

(4.13), then it follows that 𝑑𝑡
𝑑𝑠(𝑠) = 1 and that 𝑡(𝑠) = 𝑠. Furthermore,

𝑑x

𝑑𝑠
(𝑠) = f(𝑡(𝑠),x(𝑠),q(𝑡(𝑠),x(𝑠))) = f(𝑠,x(𝑠),q(𝑠,x(𝑠))).

Thus there would exist a corresponding solution of IVP (4.4).

Now, choose any (𝑡, z) ∈ ̂︀𝐾. Then (𝑡, z) ∈ 𝐾 ∩𝑁0, and by assumption ̂︀f(𝑡, z) ∈ 𝑇𝐾(𝑡, z).

So by Lemma 4.4.3, ̂︀f(𝑡, z) ∈ 𝑇𝐾∩𝑁1(𝑡, z). Then, by Lemma 4.4.4, ̂︀f(𝑡, z) ∈ 𝑇𝐾∩𝑁1∩𝑁0(𝑡, z).

Thus ̂︀f(𝑡, z) ∈ 𝑇 ̂︀𝐾(𝑡, z) for any (𝑡, z) ∈ ̂︀𝐾. We say that ̂︀𝐾 is a viability domain for ̂︀f (see

Ch. 1 of [10]). Consequently, by the Nagumo Theorem, see for instance Theorem 1.2.1 of

[10], a solution exists for (4.13), which corresponds to a solution of (4.4).

If 𝐾 is closed and we can establish a priori that a solution must exist, we could apply

numerical integration methods tailored to this situation [10, §1.3], [161]. These methods

enforce the fact the solution must remain in 𝐾 by applying a projection operation to the

solution estimates produced by some standard integration method.

As a first complication, this assumes more strict conditions on 𝐾 (e.g. compactness,

convexity, or an explicit representation in terms of inequality constraints is available). In

the engineering-relevant examples in §4.6, this is certainly not the case. Second, Propo-

sition 4.4.5 indicates that, in order to establish that a solution exists, we must verify the
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“tangency condition”: (1, f(𝑡, z,q(𝑡, z))) ∈ 𝑇𝐾(𝑡, z), for all (𝑡, z) ∈ 𝐾. This condition, for

all but the simplest cases, is completely abstract; 𝐾 is defined in terms of a preimage, and

the contingent cone typically does not admit a simple representation (the contingent cone

of a set defined by smooth inequality constraints is one exception [11, §4.3.2]). In the case

that b satisfies stronger regularity conditions, the condition could be recast in terms of the

contingent cone of 𝐹 , although this incurs its own complications like requiring the calcula-

tion of the preimage of the derivative of b (see Corollary 4.3.4 of [11]). And although we

could attempt to verify the tangency condition with numerical information at a single point,

this is complicated by the fact that it must hold on (at least) a neighborhood of the initial

conditions. Consequently, for practical engineering applications, attempting to verify the

tangency condition either numerically or analytically is extremely difficult.

4.5 Numerical developments

This section discusses the numerical method that has been developed for the efficient and

reliable integration of ODEs with LP embedded. First, notation specific to this section and

background from linear programming are introduced in §4.5.1. Then the overall numerical

integration routine is introduced in §4.5.2. This method depends on a specific way to solve

the lexicographic LP (4.1)-(4.2), which is described in §4.5.3.

4.5.1 Notation and background

The cardinality of a set 𝐽 is card(𝐽). Consider a vector v ∈ R𝑛 and a matrix M ∈ R𝑝×𝑛.

Denote the 𝑗𝑡ℎ column of M by M𝑗 . For an index set 𝐽 = {𝑗1, . . . , 𝑗𝑛𝐽} ⊂ {1, . . . , 𝑛}, let

v𝐽 = (𝑣𝑗1 , . . . , 𝑣𝑗𝑛𝐽
) and similarly M𝐽 =

[︁
M𝑗1 . . . M𝑗𝑛𝐽

]︁
. Similar notation applies to

vectors and matrices that already have a subscript. For instance, 𝑐𝑖,𝑗 is the 𝑗𝑡ℎ component

of the vector c𝑖, and for some index set 𝐽 ⊂ {1, . . . , 𝑛𝑣}, c𝑖,𝐽 is the vector formed from

the components of c𝑖 corresponding to 𝐽 . In Algorithm 2 matrices ̂︀A𝑖 ∈ R𝑚𝑖×𝑛𝑖 (for some

(𝑚𝑖, 𝑛𝑖)), will be constructed. It will be useful to think of their columns as indexed by

some set 𝑃𝑖, with card(𝑃𝑖) = 𝑛𝑖, rather than {1, . . . , 𝑛𝑖}. Thus, for 𝑗 ∈ 𝑃𝑖 and 𝐽 ⊂ 𝑃𝑖, the

“𝑗𝑡ℎ” column of ̂︀A𝑖 is denoted ̂︀A𝑖,𝑗 , and ̂︀A𝑖,𝐽 is the matrix formed from the columns of ̂︀A𝑖

corresponding to 𝐽 .

The following linear programming background will be helpful, which draws freely from
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the first four chapters of [25]. Consider the first-level LP as a prototype for standard-form

LPs parameterized by the right-hand side of the constraints:

̂︀𝑞1(d) = inf
{︀
cT1 v : v ∈ R𝑛𝑣 ,Av = d,v ≥ 0

}︀
. (4.14)

The following assumption will hold in this and subsequent sections. It is a standard as-

sumption of the simplex method, upon which the proposed numerical developments are

based.

Assumption 4.5.1. The matrix A is full row rank.

The concept of a basis is introduced. A basis 𝐵 is a subset of {1, . . . , 𝑛𝑣} with 𝑚 =

card(𝐵). An optimal basis is one which satisfies

A−1
𝐵 d ≥ 0, (4.15)

cT1 − cT1,𝐵A
−1
𝐵 A ≥ 0T. (4.16)

A basis which satisfies (4.15) is primal feasible, while one that satisfies (4.16) is dual feasible.

Thus, a basis is optimal if and only if it is primal and dual feasible. The invertible matrix

A𝐵 is the corresponding basis matrix. A basis also serves to describe a vector v ∈ R𝑛𝑣 ; the

components of the vector corresponding to 𝐵, v𝐵, are given by v𝐵 = A−1
𝐵 d, and the rest

are zero, i.e. 𝑣𝑗 = 0, 𝑗 /∈ 𝐵. If the basis 𝐵 is optimal, then the vector v which it describes is

in the optimal solution set of the first-level LP. Thus, ̂︀𝑞1(d) = cT1 v = cT1,𝐵v𝐵. The variables

v𝐵 are called the basic variables. The vector cT1 − cT1,𝐵A
−1
𝐵 A is the vector of reduced costs.

It is clear that perturbations in d do not affect dual feasibility of a basis. Thus, a basis is

optimal for all d such that the basic variables are nonnegative. As a basic observation, the

existence of either a primal or dual feasible basis implies that A is full row rank (𝑚 columns

are linearly independent, which implies that the column rank is at least 𝑚, which implies

that A is full row rank).

4.5.2 Solution algorithm

Theorem 4.4.1, Corollary 4.4.2, and Proposition 4.4.2 indicate how we should approach

calculating a solution of IVP (4.4): solve the extended IVP (4.10) and detect the earliest

time that the solution trajectory leaves 𝐾, indicated by the infeasibility of the embedded
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LP at a point on the solution trajectory. In general terms, this is the approach taken in the

following numerical method. Under the assumptions of Proposition 4.4.2, broad classes of

numerical integration methods are convergent for the extended IVP (4.10), including linear

multistep and Runge-Kutta methods [105]. However, there is still the issue that we need

to detect the earliest time that the solution trajectory leaves 𝐾 accurately and reliably.

As indicated by the examples in §4.3, we cannot merely rely on detecting an infeasible

embedded LP, as this could occur during a corrector iteration, for instance. The following

method addresses these issues.

The essence of the method is easily understood when 𝑛𝑞 = 1, in which case the dynamics

only depend on the optimal objective value of a single LP parameterized by its right-hand

side. If we solve the embedded LP at the initial conditions with any method which finds

an optimal basis 𝐵, then for as long as 𝐵 is optimal, we can obtain the optimal basic

variables by solving the system A𝐵u𝐵(𝑡) = b(𝑡,x(𝑡)) for u𝐵(𝑡), from which we obtain

𝑞1(𝑡,x(𝑡)) = cT1,𝐵u𝐵(𝑡). Meanwhile, 𝐵 is optimal for as long as the basic variables are

nonnegative, i.e. u𝐵(𝑡) ≥ 0. Consequently, the general idea is to reformulate the system

as DAEs, where the basic variables u𝐵 have been added as algebraic variables, and employ

event detection to detect when the value of a basic variable crosses zero. Once a basic

variable crosses zero, a new optimal basis is found by re-solving the LP, and the procedure

is repeated.

For the time being suppose that a 𝛿-optimal basis 𝐵 is acceptable; that is to say that

A−1
𝐵 b(𝑡,x(𝑡)) > −𝛿1. To guarantee the detection of when 𝐵 ceases to be 𝛿-optimal, we

need to use a feasibility tolerance 𝜖 < 𝛿 when solving the embedded LP. Then, the initial

values of the basic variables satisfy

u𝐵(𝑡0) ≥ −𝜖1 > −𝛿1.

Consequently, u𝐵(𝑡0) + 𝛿1 is strictly positive. If 𝐵 ceases to be 𝛿-optimal, then for some

index 𝑗, the value 𝑢𝑗(𝑡) + 𝛿 will cross zero, which can be detected quite accurately with

event detection algorithms [145]. The following DAEs, while u𝐵(𝑡) > −𝛿1, are integrated
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numerically:

ẋ(𝑡)− f(𝑡,x(𝑡), cT1,𝐵u𝐵(𝑡)) = 0,

A𝐵u𝐵(𝑡)− b(𝑡,x(𝑡)) = 0.

Since A𝐵 is nonsingular, it is clear from inspection that this is a semi-explicit index-one

system of DAEs, and amenable to many numerical integration methods.

Of course, 𝜖 is a small, but positive, number, and so 𝛿 must be as well. Consequently,

we have to ask whether it actually is acceptable for the basis 𝐵 to be merely 𝛿-optimal.

Since the goal is to calculate a solution of the extended IVP, we need to ensure that for a

𝛿-optimal basis 𝐵, ̂︀𝑞𝐵1 (d) = cT1,𝐵A
−1
𝐵 d is an accurate approximation of ̂︀𝑞𝐸1 (d). Indeed it is.

For a dual feasible basis 𝐵, let 𝐹𝐵 = {d ∈ R𝑚 : A−1
𝐵 d ≥ 0}, thus 𝐹𝐵 is the subset of 𝐹 on

which 𝐵 is primal feasible and so also optimal. Let 𝐹𝐵,𝛿 = {d ∈ R𝑚 : A−1
𝐵 d ≥ −𝛿1}, thus

𝐹𝐵,𝛿 is the set on which 𝐵 is 𝛿-optimal. Now assume d ∈ 𝐹𝐵,𝛿 and let v = A−1
𝐵 d. Construct̃︀v such that ̃︀𝑣𝑖 = max{𝑣𝑖, 0}, thus ̃︀v ≥ 0. Let ̃︀d = A𝐵̃︀v ∈ 𝐹𝐵. Note that ‖v − ̃︀v‖∞ ≤ 𝛿,

thus
⃦⃦⃦
d− ̃︀d⃦⃦⃦

∞
≤ ‖A𝐵‖∞ 𝛿. Since ̂︀𝑞𝐵1 = ̂︀𝑞𝐸1 on 𝐹𝐵, ̂︀𝑞𝐵1 (̃︀d) = ̂︀𝑞𝐸1 (̃︀d). Consequently,

⃒⃒̂︀𝑞𝐵1 (d)− ̂︀𝑞𝐸1 (d)⃒⃒ ≤ ⃒⃒⃒̂︀𝑞𝐵1 (d)− ̂︀𝑞𝐵1 (̃︀d)⃒⃒⃒+ ⃒⃒⃒̂︀𝑞𝐵1 (̃︀d)− ̂︀𝑞𝐸1 (d)⃒⃒⃒
=
⃒⃒⃒̂︀𝑞𝐵1 (d)− ̂︀𝑞𝐵1 (̃︀d)⃒⃒⃒+ ⃒⃒⃒̂︀𝑞𝐸1 (̃︀d)− ̂︀𝑞𝐸1 (d)⃒⃒⃒

≤
⃦⃦
cT1,𝐵A

−1
𝐵

⃦⃦
2

⃦⃦⃦
d− ̃︀d⃦⃦⃦

2
+ 𝐿𝑞

⃦⃦⃦
d− ̃︀d⃦⃦⃦

2

≤𝑀𝛿,

where the Lipschitz continuity of ̂︀𝑞𝐸1 and the equivalence of norms have been used. Note

that 𝑀 is finite and can be chosen so that the inequality holds for any choice of 𝐵, since

there are a finite number of dual feasible bases. Thus, the error in approximating ̂︀𝑞𝐸1 using

a 𝛿-optimal basis must go to zero as 𝛿 goes to zero.

The failure to find a 𝛿-optimal basis at a particular value of b(𝑡,x(𝑡)) simply implies that

(𝑡,x(𝑡)) /∈ 𝐾. If a 𝛿-optimal basis does not exist, then certainly an optimal basis does not

exist, which means that b(𝑡,x(𝑡)) /∈ 𝐹 implying (𝑡,x(𝑡)) /∈ 𝐾, and so by Corollary 4.4.2, the

calculated solution is no longer a solution of IVP (4.4). However, since the test of whether

b(𝑡,x(𝑡)) /∈ 𝐹 is only performed as part of the determination of a new optimal basis, after

the old one has stopped being 𝛿-optimal, this is a much more reliable indication that the
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solution cannot be continued.

To generalize this method to the case 𝑛𝑞 > 1 the overall structure remains unchanged.

This is because it is possible to find a basis 𝐵 which is optimal for the first-level LP and

which describes a point which is in the optimal solution set of the 𝑖𝑡ℎ-level LP, for all 𝑖.

Then ̂︀q(d) = (cT1,𝐵A
−1
𝐵 d, . . . , cT𝑛𝑞 ,𝐵

A−1
𝐵 d) for all d such that 𝐵 is optimal for the first-level

LP. This idea is proved in Theorem 4.5.1 and the method for determining the appropriate

basis is summarized in Algorithm 2, both presented in §4.5.3.

The numerical method in the general case is summarized in Algorithm 1. An empty

basis set returned by Algorithm 2 serves as a flag that b(𝑡,x(𝑡)) /∈ 𝐹 and that the solution

cannot be continued. The convergence of Algorithm 1 (as 𝛿 and step size tend to zero) is

guaranteed if the numerical method used to integrate the DAE system (4.17) is convergent

for the extended IVP (4.10), which, as mentioned earlier, includes broad classes under the

assumptions of Proposition 4.4.2. This follows from simple arguments for the convergence

of methods for semi-explicit index-one DAEs; see for instance §3.2.1 of [34]. Overall, Algo-

rithm 1 produces an approximation of the solution of the extended IVP, and gives a reliable

and accurate indication of when this solution is no longer a solution of the original IVP (4.4).

Algorithm 1 Overall solution method for the IVP (4.4)
Require: 𝛿 > 𝜖 > 0, 𝑡𝑓 > 𝑡0̃︀𝑡← 𝑡0, ̃︀x← x0

loop
𝐵 ← 𝐵*(b(̃︀𝑡, ̃︀x), 𝜖) (See Algorithm 2)
if 𝐵 = ∅ then

Terminate.
end if
Solve A𝐵̃︀u𝐵 = b(̃︀𝑡, ̃︀x) for ̃︀u𝐵.
Set q𝐵 : u ↦→ (cT1,𝐵u, . . . , c

T
𝑛𝑞 ,𝐵

u).
while ̃︀u𝐵 > −𝛿1 do

Update
(︀̃︀𝑡, ̃︀x, ̃︀u𝐵

)︀
by integrating the following DAE system with an appropriate

method:

ẋ(𝑡)− f(𝑡,x(𝑡),q𝐵(u𝐵(𝑡))) = 0, (4.17)
A𝐵u𝐵(𝑡)− b(𝑡,x(𝑡)) = 0.

if ̃︀𝑡 ≥ 𝑡𝑓 then
Terminate.

end if
end while

end loop
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An implementation of Algorithm 1 has been coded incorporating DAEPACK [200] com-

ponent DSL48E for the numerical integration of the DAE and event detection. DSL48E

uses a BDF method and the sparse unstructured linear algebra code MA48 [47], and so is

appropriate for the numerical integration of stiff systems; these features will be indispens-

able in the solution of DFBA models in §4.6. Meanwhile, the event detection algorithm

is an accurate and efficient method developed in [145]. A code employing CPLEX version

12.4 [85] implements Algorithm 2. This implementation of the algorithms has been named

DSL48LPR.

4.5.3 Lexicographic optimization

An inefficient way to try to generalize the basic idea behind Algorithm 1 to 𝑛𝑞 > 1 would

be to calculate an optimal basis for each level LP, disregarding the connections between the

levels.

However, by exploiting the relationship between the individual levels in the lexicographic

LP, it in fact suffices to determine a single optimal basis for the first-level LP (4.1) to

calculate some element of the solution set of the 𝑖𝑡ℎ-level LP for each 𝑖. Theorem 4.5.1

formalizes this and its proof provides a constructive method of finding the appropriate

basis. The construction is summarized in Algorithm 2.

The benefit of Algorithm 2 is that it allows us to use standard primal simplex. That

is, any pivot selection rules can be used, and so we can rely on a commercial implemen-

tation of primal simplex to implement Algorithm 2, and then degeneracy and cycling are

not a concern. Modifications of the simplex algorithm (“lexicographic simplex”) have been

presented in [86, Ch. 3], [186, §10.5], and [87, 101, 148] to solve lexicographic LPs. These

methods are similar in effect to Algorithm 2. In contrast, these methods either do not

consider the parametric results needed here, require specific pivot selection rules, or do not

consider degeneracy or cycling.

Theorem 4.5.1. Assume that d ∈ 𝐹 . Then there exists a basis 𝐵*
1 that is optimal for the

first-level LP (4.1) and

̂︀q(d) = (︁cT1,𝐵*
1
A−1

𝐵*
1
d, . . . , cT𝑛𝑞 ,𝐵*

1
A−1

𝐵*
1
d
)︁
. (4.18)

Further, this relation holds for all d such that 𝐵*
1 is optimal for the first-level LP.
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Algorithm 2 Method for determining optimal basis for lexicographic LP (4.1)-(4.2)
Require: d ∈ R𝑚, 𝜖 > 0
𝑃1 ← {1, . . . , 𝑛𝑣}
𝑛1 ← 𝑛𝑣, 𝑁1 ← ∅̂︀A1 ← A, d1 ← d
Solve first-level LP with absolute feasibility tolerance 𝜖:

𝑞*1 = inf{cT1 v : Av = d,v ≥ 0,v ∈ R𝑛𝑣}.

if −∞ < 𝑞*1 < +∞ then
Determine optimal basis 𝐵1 for first-level LP.

else
return 𝐵*(d, 𝜖)← ∅

end if
𝑖← 1
while 𝑖 < 𝑛𝑞 do

if 𝑐𝑖,𝑗 − cT𝑖,𝐵𝑖

̂︀A−1
𝑖,𝐵𝑖

̂︀A𝑖,𝑗 > 0, ∀𝑗 ∈ 𝑃𝑖∖𝐵𝑖 then
return 𝐵*(d, 𝜖)← 𝐵1

end if
if cT𝑖,𝑃𝑖

− cT𝑖,𝐵𝑖

̂︀A−1
𝑖,𝐵𝑖

̂︀A𝑖 = 0T then
𝑃𝑖+1 ← 𝑃𝑖

𝑛𝑖+1 ← 𝑛𝑖, 𝑁𝑖+1 ← 𝑁𝑖̂︀A𝑖+1 ← ̂︀A𝑖, d𝑖+1 ← d𝑖

else
Choose 𝑗 ∈ 𝑃𝑖 such that 𝑐𝑖,𝑗 − cT𝑖,𝐵𝑖

̂︀A−1
𝑖,𝐵𝑖

̂︀A𝑖,𝑗 > 0.

𝑃𝑖+1 =
{︁
𝑘 ∈ 𝑃𝑖 : 𝑐𝑖,𝑘 − cT𝑖,𝐵𝑖

̂︀A−1
𝑖,𝐵𝑖

̂︀A𝑖,𝑘 = 0
}︁
∪ {𝑗}

𝑛𝑖+1 ← card(𝑃𝑖+1), 𝑁𝑖+1 ← 𝑁𝑖 ∪ {𝑗}̂︀A𝑖+1 ←
[︂
cT𝑖,𝑃𝑖+1̂︀A𝑖,𝑃𝑖+1

]︂
, d𝑖+1 ←

[︂
𝑞*𝑖
d𝑖

]︂
end if
Solve (𝑖 + 1)𝑡ℎ projected LP with primal simplex using initial basis 𝐵1 ∪ 𝑁𝑖+1 and absolute
feasibility tolerance 𝜖:

𝑞*𝑖+1 = inf
v∈R𝑛𝑖+1

cT𝑖+1,𝑃𝑖+1
v

s.t. ̂︀A𝑖+1v = d𝑖+1,

v ≥ 0.

if −∞ < 𝑞*𝑖+1 < +∞ then
For (𝑖+ 1)𝑡ℎ projected LP, optimal basis is 𝐵𝑖+1 = ̃︀𝐵1 ∪𝑁𝑖+1.
𝐵1 ← ̃︀𝐵1

else
return 𝐵*(d, 𝜖)← ∅

end if
𝑖← 𝑖+ 1
𝐵*(d, 𝜖)← 𝐵1

end while
return 𝐵*(d, 𝜖)
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Supporting results

This section presents some definitions, results, and discussion to support the proof of The-

orem 4.5.1 in the following section, which deals with finding a specific optimal basis for the

lexicographic LP.

Definition 4.5.1. Equivalence.

1. Let (𝑛1, 𝑛2) ∈ N2 with 𝑛1 ≤ 𝑛2. Two sets 𝑆1 ⊂ R𝑛1 and 𝑆2 ⊂ R𝑛2 are equivalent if

𝑛1 < 𝑛2 and 𝑆2 = 𝑆1 × {0}, or 𝑛1 = 𝑛2 and 𝑆2 = 𝑆1.

2. Two linear programs are equivalent if their solution sets are equivalent.

Intuitive results regarding equivalence follow.

Lemma 4.5.1. Let (𝑛1, 𝑛2, 𝑛3) ∈ N3 with 𝑛1 ≤ 𝑛2 ≤ 𝑛3.

1. Let 𝐹𝑖 ⊂ R𝑛𝑖 for 𝑖 ∈ {1, 2, 3}. If sets 𝐹1 and 𝐹2 are equivalent and 𝐹2 and 𝐹3 are

equivalent, then 𝐹1 and 𝐹3 are equivalent.

2. If two sets 𝐹1 ∈ R𝑛1 and 𝐹2 ∈ R𝑛2 are equivalent, then for any c ∈ R𝑛1 and ̃︀c ∈ R𝑛2−𝑛1

the linear programs

min{cTv : v ∈ 𝐹1} and min{̂︀cTv : v ∈ 𝐹2}

are equivalent, where ̂︀c = (c,̃︀c) (with the claim being trivial if 𝑛1 = 𝑛2).

For the next two results refer to the lexicographic LP

𝑞(d) = inf
{︀
cTv : Mv = d,v ≥ 0

}︀
, (4.19)

̂︀𝑞(d) = inf
{︀̂︀cTv : Mv = d, cTv = 𝑞(d),v ≥ 0

}︀
. (4.20)

The next result establishes the form of the simplex tableau for the two-level lexicographic

LP. Strictly speaking, tableau (4.21) below is missing the “zeroth” row of reduced costs for

the second-level LP (4.20); for simplicity it is omitted.

Lemma 4.5.2. Consider the lexicographic LP (4.19)-(4.20). Let 𝐵 be a dual feasible basis for

the first-level LP (4.19), and assume that the 𝑗𝑡ℎ reduced cost is positive (𝑐𝑗 − cT𝐵M
−1
𝐵 M𝑗 >

0). For all d such that 𝐵 is optimal for the first-level LP, the simplex tableau for the
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second-level LP (4.20) resulting from the basis ̂︀𝐵 = {𝑗} ∪𝐵 is

⎡⎣ 𝑐𝑗 cT𝐵

M𝑗 M𝐵

⎤⎦−1 ⎡⎣𝑞(d) cT

d M

⎤⎦ =

⎡⎢⎣ 0
cT−cT𝐵M−1

𝐵 M

𝑐𝑗−cT𝐵M−1
𝐵 M𝑗

M−1
𝐵 d M−1

𝐵

(︁
M−M𝑗

cT−cT𝐵M−1
𝐵 M

𝑐𝑗−cT𝐵M−1
𝐵 M𝑗

)︁
⎤⎥⎦ . (4.21)

Proof. The proof proceeds by using Schur complements to form the inverse of
[︁

𝑐𝑗 cT𝐵
M𝑗 M𝐵

]︁
,

performing the matrix multiplication, and simplifying, noting that cT𝐵M
−1
𝐵 d = 𝑞(d) for all

d such that M−1
𝐵 d ≥ 0.

The concept of a “null variable” is important to the proof of Theorem 4.5.1, which is

defined as a variable which is zero everywhere in the feasible set of an LP. It is clear that

removing a null variable and the corresponding parameters (components of the cost vector

and columns of the constraint matrix) yields an equivalent LP. The next result states a way

to identify null variables in the second-level LP (4.20).

Lemma 4.5.3. Consider the lexicographic LP (4.19)-(4.20). Let 𝐵 be a dual feasible basis for

the first-level LP (4.19), and assume that the 𝑗𝑡ℎ reduced cost is positive (𝑐𝑗 − cT𝐵M
−1
𝐵 M𝑗 >

0). For all d such that 𝐵 is optimal for the first-level LP and for all v feasible in the

second-level LP (4.20), 𝑣𝑗 = 0.

Proof. The result follows from the “null variable theorem” in §4.7 of [111]; this states that 𝑣𝑗

is a null variable for a general standard-form LP (4.19) if and only if there exists a nonzero

p such that pTd = 0, pTM ≥ 0T, and the 𝑗𝑡ℎ component of pTM is strictly greater than

zero. Applying this result to the second-level LP (4.20), the result follows from inspection

of the tableau (4.21); the first row of
[︁

𝑐𝑗 cT𝐵
M𝑗 M𝐵

]︁−1
serves as the appropriate p.

Finally, some aspects of the primal simplex algorithm are noted. If we have an optimal

basis already, but a different optimal basis is sought, a pivot could be forced in the sense

that, while the 𝑖𝑡ℎ reduced cost is zero, the 𝑖𝑡ℎ column is chosen as the pivot column. If the

𝑖𝑡ℎ reduced cost is zero, but the pivot operation is carried out in the standard way, a new

primal feasible basis is obtained for which the reduced costs are the same as the old basis,

and so the new basis is also optimal. This is because the reduced costs are updated in a

pivot operation by adding a multiple of the pivot row to the reduced costs (the zeroth row

of the tableau) so that the 𝑖𝑡ℎ entry of the zeroth row is zero. But, if the 𝑖𝑡ℎ reduced cost
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is already zero, no changes to the zeroth row are made, and so the reduced costs retain the

same values.

Proof of Theorem 4.5.1

Proof. Existence and construction of the appropriate basis proceed by induction; again, the

construction is summarized in Algorithm 2. At each induction step a special “projected” LP

is constructed and optimized. The reason behind considering this projected LP is that we

can draw conclusions about the pivots taken when optimizing it with primal simplex. This

allows us to argue about the form of the optimal basis.

First introduce some specific notation. For some index set 𝐽 and a matrix M, the matrix

M𝐽 is the matrix equaling M with those columns corresponding to 𝐽 set to 0.

Fix d ∈ 𝐹 to the value of interest. For an induction basis, let 𝐵1 be any optimal basis

for the first-level LP (4.1) (which must exist by Assumption 4.5.1 and since ̂︀𝑞1(d) is finite,

see [25, §3.4]), 𝑛1 = 𝑛𝑣, 𝑚1 = 𝑚, 𝑃1 = {1, . . . , 𝑛𝑣}, 𝑁1 = ∅, ̂︀A1 = A and d1 : d′ ↦→ d′. An

optimal tableau for the first-level LP is

̂︀A−1
1,𝐵1

[︁
d1(d) ̂︀A1

]︁
=
[︁
A−1

𝐵1
d A−1

𝐵1

(︁
A𝑁1

𝑃1

)︁]︁
.

For the 𝑖𝑡ℎ induction step assume the following:

1. Assume for 𝑘 ∈ {2, . . . , 𝑖}, 𝑛𝑘−1 ≥ 𝑛𝑘, 𝑚𝑘−1 ≤ 𝑚𝑘, 𝑁𝑘−1 ⊂ 𝑁𝑘, and for 𝑘 ∈ {1, . . . , 𝑖},

𝑃𝑘 = {1, . . . , 𝑛𝑘}, 𝑁𝑘 ⊂ 𝑃𝑘, ̂︀A𝑘 ∈ R𝑚𝑘×𝑛𝑘 and d𝑘 : 𝐹 → R𝑚𝑘 . Consider the 𝑘𝑡ℎ

“projected” LP, for 𝑘 ∈ {1, . . . , 𝑖}

𝑞𝑃𝑘 (d) = min
v∈R𝑛𝑘

cT𝑘,𝑃𝑘
v (4.22)

s.t. ̂︀A𝑘v = d𝑘(d),

v ≥ 0.

2. Assume that the 𝑖𝑡ℎ-level LP (4.2) is equivalent to the 𝑖𝑡ℎ projected LP in the sense

of Definition 4.5.1.

3. Assume the bases 𝐵1, and for 𝑘 ∈ {2, . . . , 𝑖}, 𝐵𝑘 = 𝑁𝑘 ∪ 𝐵1 are optimal for the first-

level and 𝑘𝑡ℎ projected LPs, respectively. Also assume that for 𝑘 ∈ {1, . . . , 𝑖−1}, 𝑐𝑘,𝑗−

cT𝑘,𝐵𝑘

̂︀A−1
𝑘,𝐵𝑘

̂︀A𝑘,𝑗 > 0 for each 𝑗 ∈ (𝑃𝑘∖𝑃𝑘+1)∪(𝑁𝑘+1∖𝑁𝑘), and 𝑐𝑘,𝑗−cT𝑘,𝐵𝑘

̂︀A−1
𝑘,𝐵𝑘

̂︀A𝑘,𝑗 = 0
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for each 𝑗 ∈ 𝑃𝑖∖𝐵𝑖.

4. Assume that the tableau for the 𝑖𝑡ℎ projected LP resulting from the basis 𝐵𝑖 is

̂︀A−1
𝑖,𝐵𝑖

[︁
d𝑖(d) ̂︀A𝑖

]︁
=

⎡⎣ 0 E𝑖

A−1
𝐵1

d A−1
𝐵1

(︁
A𝑁𝑖

𝑃𝑖

)︁
⎤⎦ ,

where E𝑖 is a (𝑚𝑖−𝑚1)× 𝑛𝑖 matrix constructed from the rows of the 𝑛𝑖× 𝑛𝑖 identity

matrix that correspond to elements of 𝑁𝑖. Recall that the left-most column of the

above tableau is typically called the “zeroth” column.

There are three cases when constructing the next LP. In the first case, consider the

reduced costs for the 𝑖𝑡ℎ projected LP determined from the basis 𝐵𝑖 from induction as-

sumption 3. If each reduced cost corresponding to a nonbasic variable is positive (i.e. for

all 𝑗 ∈ 𝑃𝑖∖𝐵𝑖, 𝑐𝑖,𝑗 − cT𝑖,𝐵𝑖
̂︀A−1
𝑖,𝐵𝑖
̂︀A𝑖,𝑗 > 0), then the point described by the basis 𝐵𝑖 is the

unique optimal solution point for the 𝑖𝑡ℎ projected LP [25, §3.9]. By induction assump-

tion 2 (equivalence), the solution set of the 𝑖𝑡ℎ-level LP is also a singleton; let this point

be v* ∈ R𝑛𝑣 . Combined with induction assumption 4, the only nonzero components of v*

are those corresponding to 𝐵1, so we have cT1 v
* = cT1,𝐵1

A−1
𝐵1

d. Of course, by the nature

of the lexicographic LP, v* must be an optimal solution point of the 𝑘𝑡ℎ-level LP, for all

𝑘 ∈ {1, . . . , 𝑛𝑞}, and so letting 𝐵*
1 = 𝐵1 we have that Eqn. (4.18) holds.

For the other two cases, a higher-level LP must be considered. Our aim is to construct

the (𝑖+ 1)𝑡ℎ projected LP

𝑞𝑃𝑖+1(d) = min
v∈R𝑛𝑖+1

cT𝑖+1,𝑃𝑖+1
v (4.23)

s.t. ̂︀A𝑖+1v = d𝑖+1(d),

v ≥ 0.

In the second case, if cT𝑖,𝑃𝑖
−cT𝑖,𝐵𝑖

̂︀A−1
𝑖,𝐵𝑖
̂︀A𝑖 = 0T, then cT𝑖,𝑃𝑖

and the rows of ̂︀A𝑖 are linearly

dependent, and so the constraint cT𝑖,𝑃𝑖
v = 𝑞𝑃𝑖 (d) is redundant (it is satisfied everywhere in

the feasible set of the 𝑖𝑡ℎ projected LP). Let 𝑛𝑖+1 = 𝑛𝑖, 𝑚𝑖+1 = 𝑚𝑖, 𝑃𝑖+1 = 𝑃𝑖, 𝑁𝑖+1 = 𝑁𝑖,̂︀A𝑖+1 = ̂︀A𝑖 and d𝑖+1 = d𝑖. The basis 𝐵𝑖+1 = 𝐵𝑖 is primal feasible for the (𝑖 + 1)𝑡ℎ

projected LP. To help establish that induction assumption 3 will hold for the (𝑖+1)𝑡ℎ step,

note that we trivially have 𝑐𝑖,𝑗 − cT𝑖,𝐵𝑖
̂︀A−1
𝑖,𝐵𝑖
̂︀A𝑖,𝑗 > 0 for each 𝑗 ∈ (𝑃𝑖∖𝑃𝑖+1)∪ (𝑁𝑖+1∖𝑁𝑖), and
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𝑐𝑖,𝑗−cT𝑖,𝐵𝑖
̂︀A−1
𝑖,𝐵𝑖
̂︀A𝑖,𝑗 = 0 for each 𝑗 ∈ 𝑃𝑖+1∖𝐵𝑖+1. The resulting tableau is the same form as in

induction assumption 4. Further, the feasible set of the (𝑖+1)𝑡ℎ projected LP is the solution

set of the 𝑖𝑡ℎ projected LP; by induction assumption 2 (equivalence) and Lemma 4.5.1, we

have that the (𝑖+ 1)𝑡ℎ projected LP is equivalent to the (𝑖+ 1)𝑡ℎ-level LP.

In the third case, if there is a 𝑗 ∈ 𝑃𝑖 such that 𝑐𝑖,𝑗 − cT𝑖,𝐵𝑖
̂︀A−1
𝑖,𝐵𝑖
̂︀A𝑖,𝑗 > 0, then let

𝑃𝑖+1 =
{︁
𝑘 ∈ 𝑃𝑖 : 𝑐𝑖,𝑘 − cT𝑖,𝐵𝑖

̂︀A−1
𝑖,𝐵𝑖
̂︀A𝑖,𝑘 = 0

}︁
∪ {𝑗}.

Let 𝑛𝑖+1 be the number of elements in 𝑃𝑖+1 and assume without loss of generality that

𝑃𝑖+1 = {1, . . . , 𝑛𝑖+1} (the variables could be re-ordered as necessary). Let 𝑚𝑖+1 = 𝑚𝑖 + 1,

𝑁𝑖+1 = {𝑗} ∪ 𝑁𝑖 and 𝐵𝑖+1 = 𝑁𝑖+1 ∪ 𝐵1. Note that 𝐵𝑖+1 = {𝑗} ∪ 𝑁𝑖 ∪ 𝐵1, and since

𝐵𝑖 = 𝑁𝑖 ∪ 𝐵1, we have 𝐵𝑖+1 = {𝑗} ∪ 𝐵𝑖. From Lemma 4.5.2, we have that 𝐵𝑖+1 is primal

feasible for the (𝑖+1)𝑡ℎ projected LP. Since the basic variables of the 𝑖𝑡ℎ projected LP have

corresponding reduced costs that are zero, from the definition of 𝑃𝑖+1 we have 𝐵𝑖+1 ⊂ 𝑃𝑖+1

so this is a well-defined basis. To help establish that induction assumption 3 will hold for

the (𝑖 + 1)𝑡ℎ step, note that by construction of 𝑃𝑖+1, 𝐵𝑖+1, and 𝑁𝑖+1, the 𝑘𝑡ℎ reduced cost

of the 𝑖𝑡ℎ projected LP is positive for all 𝑘 ∈ (𝑃𝑖∖𝑃𝑖+1) ∪ (𝑁𝑖+1∖𝑁𝑖), and the 𝑘𝑡ℎ reduced

cost is zero for all 𝑘 ∈ 𝑃𝑖+1∖𝐵𝑖+1. Let

̂︀A𝑖+1 =

⎡⎣ cT𝑖,𝑃𝑖+1̂︀A𝑖,𝑃𝑖+1

⎤⎦ and d𝑖+1 : d
′ ↦→

⎡⎣𝑞𝑃𝑖 (d′)

d𝑖(d
′)

⎤⎦ .

By the construction of the index set 𝑃𝑖+1, we have that

cT𝑖,𝑃𝑖+1
− cT𝑖,𝐵𝑖

̂︀A−1
𝑖,𝐵𝑖
̂︀A𝑖,𝑃𝑖+1

𝑐𝑖,𝑗 − cT𝑖,𝐵𝑖
̂︀A−1
𝑖,𝐵𝑖
̂︀A𝑖,𝑗

is the 𝑗𝑡ℎ unit vector in R𝑛𝑖+1 (denoted eT𝑗 ), and so by Lemma 4.5.2, the resulting tableau

for the (𝑖+ 1)𝑡ℎ projected LP is

⎡⎣ 0 eT𝑗̂︀A−1
𝑖,𝐵𝑖

d𝑖(d) ̂︀A−1
𝑖,𝐵𝑖

(︁̂︀A𝑖,𝑃𝑖+1 − ̂︀A𝑖,𝑗e
T
𝑗

)︁
⎤⎦ =

⎡⎣ 0 eT𝑗̂︀A−1
𝑖,𝐵𝑖

d𝑖(d) ̂︀A−1
𝑖,𝐵𝑖

(︁̂︀A{𝑗}
𝑖,𝑃𝑖+1

)︁
⎤⎦ . (4.24)

What is important to note is that the last 𝑚𝑖 rows of (4.24) form the first 𝑛𝑖+1+1 columns

of the tableau in assumption 4, except with the 𝑗𝑡ℎ column equal to 0. Thus, tableau (4.24)
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is equal to ⎡⎣ 0 E𝑖+1

A−1
𝐵1

d A−1
𝐵1

(︁
A

𝑁𝑖+1

𝑃𝑖+1

)︁
⎤⎦ . (4.25)

Similarly to the previous case, in this case the (𝑖 + 1)𝑡ℎ-level and projected LPs are

equivalent. To see this, note that the feasible set of the (𝑖 + 1)𝑡ℎ projected LP (4.23) is

equivalent to the solution set of the 𝑖𝑡ℎ projected LP by Lemma 4.5.3 (only null variables have

been removed by the definition of 𝑃𝑖+1). By assumption 2 (equivalence) and Lemma 4.5.1,

the equivalence of the (𝑖+ 1)𝑡ℎ-level and projected LPs follows.

We now optimize the (𝑖 + 1)𝑡ℎ projected LP (however it was constructed). The reason

behind considering the projected LPs is that we can assert that after a primal simplex pivot,

the new basis is 𝐵′
𝑖+1 = 𝑁𝑖+1 ∪ 𝐵′

1, where 𝐵′
1 is an optimal basis for the first-level LP. We

also assert that 𝐵′
𝑘 = 𝑁𝑘 ∪𝐵′

1 is optimal for the 𝑘𝑡ℎ projected LP for all 𝑘 ≤ 𝑖. Further, the

tableau retains the same form, and the reduced costs of the first-level and the 𝑘𝑡ℎ projected

LPs do not change:

cT𝑘,𝑃𝑘
− cT𝑘,𝐵𝑘

̂︀A−1
𝑘,𝐵𝑘

̂︀A𝑘 = cT𝑘,𝑃𝑘
− cT𝑘,𝐵′

𝑘

̂︀A−1
𝑘,𝐵′

𝑘

̂︀A𝑘 (4.26)

for all 𝑘 ≤ 𝑖. Since d ∈ 𝐹 and the (𝑖+1)𝑡ℎ-level and projected LPs are equivalent, the primal

simplex algorithm must terminate. At this point we will have optimal bases 𝐵*
𝑘 = 𝑁𝑘 ∪𝐵*

1 ,

for the 𝑘𝑡ℎ projected LP, for all 𝑘 ≤ 𝑖+ 1, where 𝐵*
1 is optimal for the first-level LP.

To see this, first note that we have for 𝑘 ∈ {1, . . . , 𝑖},

𝑐𝑘,𝑗 − cT𝑘,𝐵𝑘
̂︀A−1
𝑘,𝐵𝑘

̂︀A𝑘,𝑗 = 0, ∀𝑗 ∈ 𝑃𝑖+1∖𝐵𝑖+1. (4.27)

This follows from the construction of the index sets 𝑃𝑖+1 and 𝐵𝑖+1 (in either case), induction

assumption 3, and the inclusion 𝑃𝑖+1∖𝐵𝑖+1 ⊂ 𝑃𝑖∖𝐵𝑖 (which follows from 𝑃𝑖+1 ⊂ 𝑃𝑖 and

𝐵𝑖+1 ⊃ 𝐵𝑖). Now consider the specifics of a primal simplex pivot. Under any pivoting rule,

let the index of the pivot column chosen be 𝑝𝑐 ∈ 𝑃𝑖+1∖𝐵𝑖+1. Note that the first 𝑚𝑖+1 −𝑚1

elements of the 𝑝𝑡ℎ𝑐 column of the tableau (4.25) are zero (the only columns of E𝑖+1 that

have nonzero elements correspond to 𝑁𝑖+1 ⊂ 𝐵𝑖+1). So to determine the pivot row we only

need to consider the 𝑝𝑡ℎ𝑐 column of A−1
𝐵1

(︁
A

𝑁𝑖+1

𝑃𝑖+1

)︁
, but this in fact equals A−1

𝐵1
A𝑝𝑐 . This

means that whatever basis element is chosen to exit the basis 𝐵𝑖+1 is the same element
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that would exit the basis 𝐵1 if we applied the primal simplex algorithm to the first-level

LP and had chosen the 𝑝𝑡ℎ𝑐 column as the pivot column. By (4.27), the 𝑝𝑡ℎ𝑐 reduced cost

of the first-level LP (given by 𝐵1) is zero, and so this leads us to the conclusion that by

following the pivot rules of the primal simplex algorithm applied to the (𝑖+ 1)𝑡ℎ projected

LP, we are in fact executing acceptable pivots of the primal simplex algorithm applied to the

first-level LP. Further, the discussion following Lemma 4.5.3 establishes that the reduced

costs of the first-level LP will remain the same after the pivot (i.e. Eqn. (4.26) holds for

𝑘 = 1). Consequently, we obtain the new primal feasible basis 𝐵′
𝑖+1 = 𝑁𝑖+1 ∪ 𝐵′

1 for the

(𝑖+ 1)𝑡ℎ projected LP, where 𝐵′
1 is still optimal for the first-level LP.

Similar reasoning establishes that these pivots are also acceptable primal simplex pivots

applied to the 𝑘𝑡ℎ projected LP, for all 𝑘 ≤ 𝑖. The 𝑝𝑡ℎ𝑐 reduced cost of the 𝑘𝑡ℎ projected

LP is zero, and so again all the reduced costs retain the same value after the pivot and

Eqn. (4.26) holds for 𝑘 ∈ {2, . . . , 𝑖}. Again, this means 𝐵′
𝑘 = 𝑁𝑘 ∪ 𝐵′

1 is optimal for the

𝑘𝑡ℎ projected LP. Further, whatever index 𝑝𝑜𝑢𝑡 exits the basis (i.e. 𝐵′
1 = {𝑝𝑐} ∪𝐵1∖{𝑝𝑜𝑢𝑡})

will have zero reduced cost in the 𝑘𝑡ℎ projected LP (since it was basic in the old basis

and the reduced costs have the same values after the pivot). Then by (4.27) and since

𝑃𝑖+1∖𝐵′
𝑖+1 ⊂ {𝑝𝑜𝑢𝑡} ∪ (𝑃𝑖+1∖𝐵𝑖+1), we can claim that for each 𝑘 ≤ 𝑖 and 𝑗 ∈ 𝑃𝑖+1∖𝐵′

𝑖+1,

that the 𝑗𝑡ℎ reduced cost of the 𝑘𝑡ℎ projected LP is still zero with the new basis 𝐵′
𝑘 (that

is, 𝑐𝑘,𝑗 − cT𝑘,𝐵′
𝑘

̂︀A−1
𝑘,𝐵′

𝑘

̂︀A𝑘,𝑗 = 0).

Further, the tableau for the (𝑖+1)𝑡ℎ projected LP after this pivot operation has the same

form as tableau (4.25) (just with 𝐵′
1 replacing 𝐵1). This is because the pivot operation is

executed by multiplying the tableau (from the left) by a 𝑚𝑖+1 ×𝑚𝑖+1 matrix of the form

⎡⎣I𝑖 0T𝑖

0𝑖 Q1

⎤⎦ ,

where Q1 is an invertible 𝑚1 ×𝑚1 matrix, I𝑖 is the (𝑚𝑖+1 −𝑚1) × (𝑚𝑖+1 −𝑚1) identity

matrix, and 0𝑖 is a 𝑚1 × (𝑚𝑖+1 −𝑚1) matrix of zeros. If the index of the pivot row is 𝑝𝑟,

then Q1A
−1
𝐵1

A𝑝𝑐 equals the the (𝑝𝑟 − (𝑚𝑖+1 −𝑚1))
𝑡ℎ unit vector in R𝑚1 . This achieves the

overall effect of the pivot operation, which is to change the 𝑝𝑡ℎ𝑐 column (of tableau (4.25))

into the 𝑝𝑡ℎ𝑟 unit vector in R𝑚𝑖+1 .

Therefore, when the simplex method terminates for the (𝑖 + 1)𝑡ℎ projected LP, we will

have an optimal basis 𝐵*
𝑘 = 𝑁𝑘 ∪ 𝐵*

1 for the 𝑘𝑡ℎ projected LP, for all 𝑘 ∈ {1, . . . , 𝑖 + 1},
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where 𝐵*
1 is optimal for the first-level LP. All the induction assumptions hold for the (𝑖+1)𝑡ℎ

step; equivalence (induction assumption 2) has already been established, while the statement

about the bases and reduced costs (induction assumption 3) and the form of the tableau

(induction assumption 4) hold by the discussion above and a mini-induction argument for

the sequence of simplex pivots applied to the (𝑖+ 1)𝑡ℎ projected LP.

Proceeding by induction, it follows that we can obtain an optimal basis for the 𝑛𝑡ℎ
𝑞

projected LP, 𝐵*
𝑛𝑞

= 𝑁𝑛𝑞 ∪𝐵*
1 , where 𝐵*

1 is an optimal basis for the first-level LP (4.1). The

basis 𝐵*
𝑛𝑞

describes the point v*; by equivalence and the nature of the lexicographic LP, this

point is in the solution set of the 𝑖𝑡ℎ-level LP (4.2) for all 𝑖. Again by assumption 4, the only

nonzero components of v* are those corresponding to 𝐵*
1 , so we have cT𝑖 v

* = cT𝑖,𝐵*
1
A−1

𝐵*
1
d for

all 𝑖. So we have that Eqn. (4.18) holds.

We now establish the final claim that Eqn. (4.18) holds for all d such that 𝐵*
1 is optimal.

The reasoning follows from the previous argument, although formally a separate induction

argument is needed. The essence of the argument is that the basis 𝐵*
𝑖 = 𝑁𝑖 ∪𝐵*

1 is optimal

for the corresponding projected LP as defined earlier for all d such that 𝐵*
1 is optimal for the

first-level LP. This is because dual feasibility for each basis does not change, while the form

of the tableau from induction assumption 4 indicates that primal feasibility of 𝐵*
1 implies

primal feasibility of 𝐵*
𝑖 . Further, if the 𝑖𝑡ℎ-level and projected LPs are equivalent for all d

such that 𝐵*
1 is optimal, then the (𝑖+ 1)𝑡ℎ-level and projected LPs are equivalent for all d

such that 𝐵*
1 is optimal. This follows from application of Lemma 4.5.1 and, if necessary,

Lemma 4.5.3, which indicates that null variables remain null variables for all d such that 𝐵*
𝑖

is optimal. Combined with the previous observation that optimality of 𝐵*
1 implies optimality

of 𝐵*
𝑖 , this means that the (𝑖+1)𝑡ℎ-level and projected LPs are equivalent for all d such that

𝐵*
1 is optimal. If the construction terminated early after determining that the 𝑖𝑡ℎ projected

LP has a unique solution, then this projected LP has a unique solution for as long as the

basis 𝐵*
𝑖 is optimal, which again holds for all d such that 𝐵*

1 is optimal. The conclusion of

the induction argument is that for all d such that 𝐵*
1 is optimal, 𝐵*

1 describes a point in

the solution set of each projected LP, and by equivalence, a point in the solution set of each

level of the lexicographic LP (4.1)-(4.2).
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4.6 Examples

The simple example from §4.3 is reconsidered to clarify the qualitative difference between

Algorithm 1 and the previously mentioned direct and time-stepping methods. Then, two

examples based on dynamic flux balance analysis are presented. In §4.6.2, a model of batch

fermentation displaying domain issues is presented. This example also demonstrates a signif-

icant numerical difference between the performance of Algorithm 1 and the direct method.

In §4.6.3, a model of batch fermentation is presented in which a non-unique solution set of

the embedded LP is encountered. The LP is reformulated as a lexicographic LP to resolve

the non-uniqueness to obtain a better-defined and more numerically tractable problem. Nu-

merical examples are performed on a 32-bit Linux virtual machine allocated a single core of

a 3.07 GHz Intel Xeon CPU and 1.2 GB RAM. In the DSL48LPR implementation of Algo-

rithms 1 and 2, relative and absolute integration tolerances are 10−6, and in Algorithm 1

we set 𝜖 = 10−6 and 𝛿 = 2𝜖.

4.6.1 Robustness for simple example

Consider once more the simple example from §4.3.1. The solution estimate after an explicit

Euler step (of stepsize ℎ) is still ̃︀x(ℎ) = (ℎ, 0). As in §4.3.1, ̃︀x(ℎ) /∈ 𝐾 = {z : 𝑧2 ≥ 𝑧21}.

However, in contrast with the direct method, this is not a complication; at any time 𝑡, the

system of equations to be solved for the DAE reformulation from Algorithm 1 is

̃︀x(𝑡+ ℎ)− ̃︀x(𝑡)− ℎf(̃︀x(𝑡), 𝑞𝐵(̃︀u𝐵(𝑡))) = 0,

A𝐵̃︀u𝐵(𝑡)− b(̃︀x(𝑡)) = 0,

where 𝑞𝐵 is defined as in Algorithm 1. Whatever the choice of the basis 𝐵 is, u𝐵(𝑡) and 𝑞𝐵

are well defined and the system of equations has a solution. This is a significant qualitative

difference between Algorithm 1 and the direct or time-stepping methods.

Of course, this qualitative difference translates to a noticeable difference in numerical

performance. When the solution is at the boundary of 𝐾, only Algorithm 1 can guarantee

that an approximate solution can be continued. As demonstrated by the next example, this

can lead to an unmistakable difference in the quality of the numerical solution. Specifically,

the direct method fails or gives an incorrect indication of when the solution of the extended
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IVP is no longer a solution of the original IVP (4.4).

4.6.2 E. coli fermentation

Batch and fed-batch fermentation reactions are important industrial processes for the pro-

duction of valuable chemicals such as ethanol. This example considers a model of a fer-

mentation reactor consisting of the dynamic mass balances of the reactor coupled to a

genome-scale network reconstruction of the E. coli metabolism presented in [70]. Using in-

formation gleaned from genomic analysis, E. coli ’s metabolism can be modeled as a network

of reactions that must satisfy simple stoichiometric constraints. Analysis and construction

of such a network is called flux balance analysis (FBA) [140]. However, this network is

often under-determined; the fluxes of the different substrates and metabolites can vary and

still produce a system that satisfies the stoichiometric constraints. Thus, one assumes that

fluxes will be such that some cellular objective is maximized. Most often, the production

of biomass is chosen as the cellular objective to maximize, and in general it is a reasonable

choice [143]. The result, then, is in fact a system that has the same form as (4.4). The

simulation represents the initial phase of batch operation of the fermentation reactor under

aerobic growth on glucose and xylose media. No ethanol production during aerobic condi-

tions is observed; this phase is used to increase the biomass. Thus, the concentration of

ethanol is omitted from the dynamics.

Model

The dynamic mass balance equations of the extracellular environment of the batch reactor

are

�̇�(𝑡) = 𝜇(𝑡)𝑥(𝑡), (4.28)

�̇�(𝑡) = −𝑚𝑔𝑢𝑔(𝑡)𝑥(𝑡),

�̇�(𝑡) = −𝑚𝑧𝑢𝑧(𝑡)𝑥(𝑡),

where x(𝑡) = (𝑥(𝑡), 𝑔(𝑡), 𝑧(𝑡)) is the vector of biomass, glucose and xylose concentrations,

respectively, at time 𝑡. The uptake kinetics for glucose, xylose and oxygen are given by the
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Michaelis-Menten kinetics

𝑢𝑔(𝑡) = 𝑢𝑔,𝑚𝑎𝑥
𝑔(𝑡)

𝐾𝑔 + 𝑔(𝑡)
, (4.29)

𝑢𝑧(𝑡) = 𝑢𝑧,𝑚𝑎𝑥
𝑧(𝑡)

𝐾𝑧 + 𝑧(𝑡)

1

1 + 𝑔(𝑡)
𝐾𝑖𝑔

, (4.30)

𝑢𝑜(𝑡) = 𝑢𝑜,𝑚𝑎𝑥
𝑜(𝑡)

𝐾𝑜 + 𝑜(𝑡)
. (4.31)

It is assumed that the oxygen concentration in the reactor, 𝑜(𝑡), is controlled and therefore

a known value; see Table 4.1 for parameter values. Meanwhile, the growth rate 𝜇(𝑡) is

determined from the metabolic network model of the E. coli bacterium iJR904 [153], which

is available online [164]. The model consists of 625 unique metabolites, 931 intracellular

fluxes, 144 exchange fluxes and an additional flux representing the biomass generation as

growth rate 𝜇(𝑡). The flux balance model is an LP of the form

𝜇(𝑡) = min
v∈R𝑛𝑣

cTv (4.32)

s.t. Sv = 0,

𝑣𝑔𝑒𝑥𝑡 = 𝑢𝑔(𝑡),

𝑣𝑧𝑒𝑥𝑡 = 𝑢𝑧(𝑡),

𝑣𝑜𝑒𝑥𝑡 = 𝑢𝑜(𝑡),

v𝐿𝐵 ≤ v ≤ v𝑈𝐵,

where 𝑛𝑣 is the number of fluxes, 𝑛𝑚 is the number of metabolites, S ∈ R𝑛𝑚×𝑛𝑣 is the

stoichiometry matrix of the metabolic network, and v𝐿𝐵 and v𝑈𝐵 are the lower and upper

bounds on the fluxes. The metabolic network is connected to the extracellular environment

through the exchange fluxes for glucose, xylose and oxygen 𝑣𝑔𝑒𝑥𝑡 , 𝑣𝑧𝑒𝑥𝑡 , and 𝑣𝑜𝑒𝑥𝑡 , respectively,

which are given by Equations (4.29)-(4.31). After putting the LP (4.32) in standard form

and assuring that it satisfies Assumption 4.5.1, the LP has 749 constraints and 2150 primal

variables. Numerical parameter values are according to [70], repeated in Table 4.1.
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Table 4.1: Parameter values for E. coli model, Equations (4.28)-(4.32).

Parameter/Symbol Value/Expression

[𝑡0, 𝑡𝑓 ] [0, 10] (h)
𝑢𝑔,𝑚𝑎𝑥 10.5 (mmol/g/h)
𝑢𝑧,𝑚𝑎𝑥 6 (mmol/g/h)
𝑢𝑜,𝑚𝑎𝑥 15 (mmol/g/h)
𝐾𝑔 0.0027 (g/L)
𝐾𝑧 0.0165 (g/L)
𝐾𝑜 0.024 (mmol/L)
𝐾𝑖𝑔 0.005 (g/L)
𝑚𝑔 0.18 (g/mmol)
𝑚𝑧 0.15 (g/mmol)
𝑜 𝑡 ↦→ 0.24 (mmol/L)
𝑥(𝑡0) 0.03 (g/L)
𝑔(𝑡0) 15.5 (g/L)
𝑧(𝑡0) 8 (g/L)

Simulation results

The solution of the system (4.28)-(4.32) was calculated with DSL48LPR and, for comparison,

with the direct method, which was implemented with DSL48E (without any events) with

the function evaluator calling CPLEX.

The time evolution of the dynamic states is shown in Fig. 4-1. First glucose, as the

preferred carbon source, is consumed. After glucose has been depleted, at around 7h, the

optimal basis changes and xylose becomes the main carbon source. The final batch time is

determined by the glucose and xylose concentrations. The simulation stops when glucose

and xylose concentration are equal to zero (around 8.2h); at this point, the LP is infeasible

and so by Corollary 4.4.2 the solution ceases to exist. This makes sense physically, since

with no carbon source the E. coli stop growing and begin to die; cell death is not a phase

that this particular flux balance model can really predict and so the simulation must stop.

When simulating the system with DSL48E and CPLEX, the simulation fails at the point

when the E. coli switches from glucose to xylose metabolism. This is clear when examining

the primal variables (the fluxes) in Fig. 4-2. The values of the primal variables change

quite rapidly (however they are still continuous). This indicates that the system (4.28)-

(4.32) is stiff. Stiff dynamics combined with the numerical manifestation of domain issues

as discussed in §4.3 cause the direct method to fail. In contrast, DSL48LPR manages to

integrate past the change in metabolism and more accurately indicate when the solution

fails to exist.
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Figure 4-1: Species concentrations from Equations (4.28)-(4.32) in bioreactor as calculated
by DSL48LPR.
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Figure 4-2: A representative selection of exchange fluxes (solution of LP (4.32)) as calculated
by DSL48LPR. Note the extremely steep, but still continuous, change at around 7h, when
the metabolism changes.
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Computational times

This example also provides a good chance to compare the computational times for various

solution methods. The time required by DSL48LPR and by various forms of the direct

method to complete the simulation are compared in Table 4.2. The direct method was

implemented using various different LP algorithms, and this can impact the solution time

quite strongly. DSL48LPR is fast, both on the interval [0, 7]h and on the whole simulation

interval. Meanwhile, DSL48E embedding CPLEX fails to complete the entire simulation,

but the computational time to run the simulation to the point of failure can vary quite a lot.

Using dual simplex with an advanced basis is the fastest, and competitive with DSL48LPR.

This follows from the fact that using a dual feasible basis to warm start dual simplex is very

similar to the basic algorithm of DSL48LPR. While this basis is also optimal, CPLEX only

needs to solve a linear system to determine the values of the primal variables given the new

value of the right-hand side vector. It should be noted that, to our knowledge, this use of

dual simplex has not been proposed before for the solution of ODEs with LPs embedded.

The other LP algorithms, however, increase the simulation time. Neglecting that a dual

feasible basis is available and using full (Phase I and Phase II) simplex is slower, followed

by a barrier method (most likely the primal-dual path following algorithm, see §9.5 of [25]).

Although interior point methods for LPs are praised for their polynomial solution time, it is

an unwise choice in this context. Comparable to a nonlinear solve in at least 2000 variables,

it incurs much more overhead, likely because it is factoring the necessary matrices more often

than DSL48E is factoring the Jacobian within DSL48LPR. Further, it is possible that there

are issues initializing the algorithm, since the previous solution point may be infeasible after

a perturbation of the value of b; consequently, the algorithm again lacks advanced starting

point information which slows it down considerably.

4.6.3 Yeast fermentation

Normally, the solution sets of flux-balance models are not singletons [112]. Consider a second

dynamic flux balance simulation of fed-batch fermentation using Saccharomyces cerevisiae.

Besides ethanol, as the main metabolic product of interest, other by-products, such as

glycerol, can be analyzed. A non-unique glycerol flux is predicted by the metabolic network

reconstruction iND750 [46] of S. cerevisiae under anaerobic growth conditions [79]. In order
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Table 4.2: Computational times (averaged over 50 runs) and integration statistics for solving
Equations (4.28)-(4.32) with various methods. The “*” symbol indicates that the method
failed before finishing the simulation.

DSL48E embedding CPLEX
Method DSL48LPR Dual Simplex Full Simplex Barrier Method

CPU time (s) 1.196 * * *
(full simulation)

CPU time (s) 1.004 0.436 2.799 4.772
(on [0, 7]h)

Integration steps 408 125 125 125
(on [0, 7]h)

Jacobian evaluations 169 53 53 53
(on [0, 7]h)

Error test failures 30 22 22 22
(on [0, 7]h)

Convergence test fail-
ures (on [0, 7]h)

0 11 11 11

to determine the range of the glycerol flux during batch fermentation, this example utilizes

a lexicographic LP to determine a maximum and then minimum glycerol flux at the optimal

growth rate.

This model has been considered in [80] for the production of ethanol by fed-batch fer-

mentation of S. cerevisiae. The dynamics are

�̇�(𝑡) = 𝑑(𝑡), (4.33)

�̇�(𝑡) = −𝑚𝑔𝑢𝑔(𝑡)𝑥(𝑡) + 𝑑(𝑡)(𝑔𝑖𝑛 − 𝑔(𝑡))/𝑣(𝑡),

�̇�(𝑡) = 𝑢𝑏(𝑡)𝑥(𝑡)− 𝑑(𝑡)𝑥(𝑡)/𝑣(𝑡),

�̇�(𝑡) = 𝑚𝑒𝑢𝑒(𝑡)𝑥(𝑡)− 𝑑(𝑡)𝑒(𝑡)/𝑣(𝑡),

ℎ̇(𝑡) = 𝑚ℎ𝑢ℎ(𝑡)𝑥(𝑡)− 𝑑(𝑡)ℎ(𝑡)/𝑣(𝑡),

where 𝑣(𝑡) is the total volume in the reactor, 𝑑(𝑡) is the dilution rate, and 𝑔(𝑡), 𝑥(𝑡), 𝑒(𝑡)

and ℎ(𝑡) are the concentrations of glucose, biomass, ethanol and glycerol respectively, in

the reactor. Uptake kinetics for glucose and oxygen are again given by Michaelis-Menten
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kinetics with ethanol inhibition

𝑢𝑔(𝑡) = 𝑢𝑔,𝑚𝑎𝑥
𝑔(𝑡)

𝐾𝑔 + 𝑔(𝑡)

1

1 + 𝑒(𝑡)
𝐾𝑖𝑒

, (4.34)

𝑢𝑜(𝑡) = 𝑢𝑜,𝑚𝑎𝑥
𝑜(𝑡)

𝐾𝑜 + 𝑜(𝑡)
. (4.35)

Meanwhile, 𝑔𝑖𝑛 is the constant glucose inlet concentration, and 𝑢𝑏(𝑡), 𝑢𝑒(𝑡), 𝑢ℎ(𝑡) are given

by

𝑢𝑏(𝑡) = max
v

𝑣𝑏 (4.36)

s.t.Av = b(𝑔(𝑡), 𝑒(𝑡), 𝑜(𝑡)),

v ≥ 0,

𝑢𝑒(𝑡) = max
v

𝑣𝑒 (4.37)

s.t.Av = b(𝑔(𝑡), 𝑒(𝑡), 𝑜(𝑡)),

𝑣𝑏 = 𝑢𝑏(𝑡),

v ≥ 0,

and 𝑢ℎ(𝑡) = max
v

𝑣ℎ (4.38)

s.t.Av = b(𝑔(𝑡), 𝑒(𝑡), 𝑜(𝑡)),

𝑣𝑒 = 𝑢𝑒(𝑡),

𝑣𝑏 = 𝑢𝑏(𝑡),

v ≥ 0.

The LP (4.36) is obtained by transforming a flux balance model for yeast in a similar manner

to what was done in the previous example; (4.36) is connected to the extracellular environ-

ment via the Michaelis-Menten equations (4.34) and (4.35), and then put into standard

form.

Note that (𝑢𝑏(𝑡), 𝑢𝑒(𝑡), 𝑢ℎ(𝑡)) is the solution to a lexicographic LP. After maximizing the

growth rate, the optimal growth rate is added as a constraint and the resulting program

is optimized with respect to ethanol flux. This optimal ethanol flux is again added as a
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Table 4.3: Parameter values for Yeast model, Equations (4.33)-(4.38).

Parameter/Symbol Value/Expression

[𝑡0, 𝑡𝑓 ] [0, 16] (h)
𝑢𝑔,𝑚𝑎𝑥 20 (mmol/g/h)
𝑢𝑜,𝑚𝑎𝑥 8 (mmol/g/h)
𝐾𝑔 0.5 (g/L)
𝐾𝑖𝑒 10 (g/L)
𝐾𝑜 0.003 (mmol/L)
𝑚𝑔 0.18015 (g/mmol)
𝑚𝑒 0.046 (g/mmol)
𝑚ℎ 0.092 (g/mmol)

𝑜 𝑡 ↦→

{︃
0.15 (mmol/L), 𝑡 < 7.7;

0 (mmol/L), 𝑡 ≥ 7.7

𝑑 𝑡 ↦→ 0.044 (L/h)
𝑔𝑖𝑛 100 (g/L)
𝑣(𝑡0) 0.5 (L)
𝑔(𝑡0) 10 (g/L)
𝑥(𝑡0) 0.05 (g/L)
𝑒(𝑡0) 0 (g/L)
ℎ(𝑡0) 0 (g/L)

constraint and then glycerol flux is maximized. The result is that these three fluxes are

now uniquely defined and the dynamic problem (4.33) is well-defined. It is more difficult to

address the non-uniqueness of the glycerol flux when solving (4.33) with the direct method;

even if it is considered it requires the solution of extra LPs which can be costly. Meanwhile, a

lexicographic LP provides a more straightforward way to enforce uniqueness, which reduces

the ambiguity of the simulation results.

The parameter values for the simulation are from [80], repeated in Table 4.3. The

simulation presents an aerobic-anaerobic operation. The aerobic to anaerobic switch occurs

at 7.7h, after which a range of glycerol flux rates are possible. This leads to a maximum and

minimum possible glycerol concentration; the discrepancy is called the production envelope

[112]. To determine this envelope, a second simulation in which glycerol flux is instead

minimized in (4.38) is performed. This simulation shows no glycerol production throughout

the batch reaction. At the end of the simulations, the difference between the maximum

and minimum glycerol concentrations is 3.71 g/L, where the concentrations of nutrients and

metabolites are on the order of 10 g/L throughout the simulation. Clearly, a non-unique

solution of the LP can have a significant impact on the overall solution of the dynamic

system. The results are seen in Fig. 4-3.
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Figure 4-3: Species concentrations from Equations (4.33)-(4.38) in bioreactor as calculated
by DSL48LPR. Note that the glycerol concentration potentially can take a range of values,
if the glycerol flux is not explicitly fixed to a maximal or minimal value (minimal value is
zero).
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4.7 Conclusions

This chapter has analyzed the initial value problem in ordinary differential equations with

a parametric lexicographic linear program embedded. This problem finds application in

dynamic flux balance analysis, which is used in the modeling of industrial fermentation

reactions. This work has proposed a numerical method which has distinct advantages over

other applicable methods. These advantages allow the method to be applied successfully to

examples of DFBA, and achieve unambiguously improved approximate solutions to these

examples. The current implementation of the proposed method proves very successful in

the motivating application of DFBA. Furthermore, the method is flexible and allows various

numerical integration routines to be applied.

102



Chapter 5

Bounds on reachable sets using

ordinary differential equations with

linear programs embedded

5.1 Introduction

The problem of interest is the computation of time-varying enclosures of the reachable sets

of the initial value problem (IVP)

ẋ(𝑡,u,x0) = f(𝑡,u(𝑡),x(𝑡,u,x0)), (5.1)

x(𝑡0,u,x0) = x0,

where u and x0 take values in some set of permissible controls and initial conditions, re-

spectively. Using the bounding theory developed in [168], this chapter demonstrates that

tight component-wise upper and lower bounds, called state bounds, can be computed by

solving numerically a related IVP depending on parametric linear programs. Numerical

considerations relate to the work in Ch. 4, but it useful to analyze the problem of ordinary

differential equations (ODEs) with linear programs (LPs) embedded in the specific setting

of this chapter.

Reachability analysis refers to estimating the set of possible states that a dynamic sys-

tem may achieve for a range of parameter values or controls. This is an important task in
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state and parameter estimation [88, 98, 99, 150, 178], uncertainty propagation [72], safety

verification and quality assurance [108, 82], and as well global dynamic optimization [177].

This problem traces back as far as the work in [24], however some of the more recent appli-

cable references are [7, 107, 121, 176]. Meanwhile, the goal of this chapter is to introduce

a new implementation of the theory developed in [168]. This theory provides a way to in-

corporate an “a priori enclosure” of the reachable sets to improve the estimates computed.

As in §5.3.1, this is an enclosure of the reachable set based on mathematical manipulations

of Eqn. (5.1). This type of information is conceptually distinct from continuous-time mea-

surements of a physical system that (5.1) models. This type of information serves as a basis

to improve the bounds obtained in [118, 128], for instance, which constructs bounds based

on observers. Further, the bounding methods in [118, 128], still depend on an application

of the classic “Müller theorem,” of which the result in [168] is an extension.

The theory in [168] relies on differential inequalities, which in essence yields an IVP

derived from (5.1) but involving parametric optimization problems. The implementation in

[168] uses interval analysis to estimate the solutions of these optimization problems. This

chapter will construct linear programs to estimate the solutions of the necessary optimization

problems. An added benefit of this is that the implementation developed in this chapter can

handle, in a meaningful way, a polyhedral set of admissible control values, which contrasts

with the previous implementation in [168], and related work such as [176], for example,

which employed interval arithmetic and so could only meaningfully handle an interval set of

admissible control values.

The rest of the chapter is as follows. Section 5.2 introduces notation and establishes the

formal problem statement concerning the reachable set estimation. Section 5.3 considers

the state bounding problem and demonstrates that estimates of the reachable set can be

obtained from the solution of an IVP in ODEs with LPs embedded. Section 5.4 considers

numerical aspects of the solution of ODEs with LPs embedded. Section 5.5 applies this

formulation to calculate state bounds for reacting chemical systems. Section 5.6 concludes

with some final remarks.
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5.2 Problem statement

The formal problem statement is as follows. Let (𝑛𝑥, 𝑛𝑢) ∈ N2, nonempty 𝑇 = [𝑡0, 𝑡𝑓 ] ⊂ R,

open 𝐷𝑢 ⊂ R𝑛𝑢 , open 𝐷 ⊂ R𝑛𝑥 , nonempty compact 𝑈 ⊂ 𝐷𝑢, nonempty compact 𝑋0 ⊂ 𝐷,

and f : 𝑇 × 𝐷𝑢 × 𝐷 → R𝑛𝑥 be given. The goal is to compute functions (x𝐿,x𝑈 ) : 𝑇 →

R𝑛𝑥 × R𝑛𝑥 such that x(𝑡,u,x0) ∈ [x𝐿(𝑡),x𝑈 (𝑡)], for all (𝑡,u,x0) ∈ 𝑇 × 𝒰 × 𝑋0, where

𝒰 = {u ∈ 𝐿1(𝑇,R𝑛𝑢) : u(𝑡) ∈ 𝑈, 𝑎.𝑒. 𝑡 ∈ 𝑇} and x is a solution of

ẋ(𝑡,u,x0) = f(𝑡,u(𝑡),x(𝑡,u,x0)), 𝑎.𝑒. 𝑡 ∈ 𝑇, (5.2)

x(𝑡0,u,x0) = x0.

Such x𝐿 and x𝑈 are called state bounds, as in [168]; the intervals [x𝐿(𝑡),x𝑈 (𝑡)] can also be

thought of as enclosures of the reachable sets of the ODE system (5.2).

As mentioned, the approach to constructing bounds in this chapter involves parametric

LPs, and so the results and discussion in §2.4 will be useful.

5.3 State bounding

5.3.1 An auxiliary IVP

Sufficient conditions for two functions to constitute state bounds of (5.2) are established

in [168]. That paper also addresses how one can leverage an a priori enclosure to reduce

the state bound overestimation. An a priori enclosure 𝐺 ⊂ R𝑛𝑥 is a rough enclosure of the

solutions of (5.2): x(𝑡,u,x0) ∈ 𝐺, ∀(𝑡,u,x0) ∈ 𝑇 × 𝒰 ×𝑋0. Depending on the dynamics,

physical arguments, such as conservation of mass, may inspire this. When the ODEs (5.2)

are the dynamics of a chemical kinetics model, one can often determine a polyhedral 𝐺 [167].

For the rest of this section assume there is a polyhedron 𝐺 that is a rough enclosure for

the solutions of (5.2), and that 𝑈 is a nonempty compact polyhedron. Let KR𝑛𝑥
𝑃 denote the

set of nonempty compact polyhedra in R𝑛𝑥 . Let 𝑃𝐿
𝑖 , 𝑃

𝑈
𝑖 : KR𝑛𝑥

𝑃 → KR𝑛𝑥
𝑃 be given by

𝑃𝐿
𝑖 : ̂︀𝑃 ↦→ {︁

z ∈ ̂︀𝑃 : 𝑧𝑖 = min{𝜁𝑖 : 𝜁 ∈ ̂︀𝑃}}︁ ,

𝑃𝑈
𝑖 : ̂︀𝑃 ↦→ {︁

z ∈ ̂︀𝑃 : 𝑧𝑖 = max{𝜁𝑖 : 𝜁 ∈ ̂︀𝑃}}︁ .

105



Consider the system of ODEs

�̇�𝐿𝑖 (𝑡) = 𝑞𝐿𝑖 (𝑡,x
𝐿(𝑡),x𝑈 (𝑡)) (5.3)

= min
{︀
𝑓 𝑐𝑣
𝑖 (𝑡,p, z,x𝐿(𝑡),x𝑈 (𝑡)) : p ∈ 𝑈, z ∈ 𝑃𝐿

𝑖

(︀
[x𝐿(𝑡),x𝑈 (𝑡)] ∩𝐺

)︀}︀
,

�̇�𝑈𝑖 (𝑡) = 𝑞𝑈𝑖 (𝑡,x
𝐿(𝑡),x𝑈 (𝑡))

= max
{︀
𝑓 𝑐𝑐
𝑖 (𝑡,p, z,x𝐿(𝑡),x𝑈 (𝑡)) : p ∈ 𝑈, z ∈ 𝑃𝑈

𝑖

(︀
[x𝐿(𝑡),x𝑈 (𝑡)] ∩𝐺

)︀}︀
,

for 𝑖 ∈ {1, . . . , 𝑛𝑥}, with initial conditions that satisfy 𝑋0 ⊂ [x𝐿(𝑡0),x
𝑈 (𝑡0)], where for

each 𝑖, 𝑓 𝑐𝑣
𝑖 (𝑡, ·, ·,v,w) is a convex piecewise affine under-estimator of 𝑓𝑖(𝑡, ·, ·) on 𝑈 ×

𝑃𝐿
𝑖 ([v,w] ∩𝐺) and 𝑓 𝑐𝑐

𝑖 (𝑡, ·, ·,v,w) is a concave piecewise affine over-estimator of 𝑓𝑖(𝑡, ·, ·) on

𝑈 ×𝑃𝑈
𝑖 ([v,w] ∩𝐺). Specifically, there exists a positive integer 𝑛𝐿

𝑖 , and for 𝑘 ∈ {1, . . . , 𝑛𝐿
𝑖 },

there exist c𝑖,𝐿𝑘 (𝑡,v,w) ∈ R𝑛𝑢+𝑛𝑥 and ℎ𝑖,𝐿𝑘 (𝑡,v,w) ∈ R such that

𝑓 𝑐𝑣
𝑖 (𝑡,p, z,v,w) = max

{︁
(c𝑖,𝐿𝑘 (𝑡,v,w))Ty + ℎ𝑖,𝐿𝑘 (𝑡,v,w) : 𝑘 ∈ {1, . . . , 𝑛𝐿

𝑖 }
}︁
≤ 𝑓𝑖(𝑡,p, z),

for each y = (p, z) ∈ 𝑈 × 𝑃𝐿
𝑖 ([v,w] ∩𝐺) (and similarly for 𝑓 𝑐𝑐

𝑖 , except it is taken as the

pointwise minimum of a set of affine functions). It will now be shown that the solutions (if

any) of (5.3) are state bounds for the system (5.2).

The goal is to apply Theorem 2 of [168]. Its statement and required assumptions are

repeated below

Assumption 5.3.1. For any z ∈ 𝐷, there exists a neighborhood 𝑁(z) of z and 𝛼 ∈ 𝐿1(𝑇 )

such that for almost every 𝑡 ∈ 𝑇 and every 𝑝 ∈ 𝑈 ,

‖f(𝑡,p, z1)− f(𝑡,p, z2)‖ ≤ 𝛼(𝑡) ‖z1 − z2‖

for every z1 and z2 in 𝑁(z) ∩𝐷.

Assumption 5.3.2. Assume 𝐷Ω ⊂ R𝑛𝑥 × R𝑛𝑥 and for 𝑖 ∈ {1, . . . , 𝑛𝑥}, (Ω𝐿
𝑖 ,Ω

𝑈
𝑖 ) : 𝐷Ω →

KR𝑛𝑥 ×KR𝑛𝑥 satisfy the following.

1. For any (v,w) ∈ R𝑛𝑥×R𝑛𝑥 , if there exists (𝑡,u,x0) ∈ 𝑇×𝒰×𝑋0 satisfying x(𝑡,u,x0) ∈

[v,w] and 𝑥𝑖(𝑡,u,x0) = 𝑣𝑖 (respectively, 𝑥𝑖(𝑡,u,x0) = 𝑤𝑖), then (v,w) ∈ 𝐷Ω and

x(𝑡,u,x0) ∈ Ω𝐿
𝑖 (v,w) (respectively, x(𝑡,u,x0) ∈ Ω𝑈

𝑖 (v,w)).
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2. For any (v,w) ∈ 𝐷Ω, there exists an open neighborhood 𝑁(v,w) of (v,w) and 𝐿 > 0

such that

𝑑𝐻(Ω𝐿
𝑖 (v1,w1),Ω

𝐿
𝑖 (v2,w2)) ≤ 𝐿(‖v1 − v2‖∞ + ‖w1 −w2‖∞)

for all (v1,w1) and (v2,w2) in 𝑁(v,w) ∩ 𝐷Ω, and a similar statement for Ω𝑈
𝑖 also

holds.

Theorem 5.3.1 (Thm. 2 in [168]). Let Assumptions 5.3.1 and 5.3.2 hold. Let (v,w) : 𝑇 →

R𝑛𝑥 × R𝑛𝑥 be absolutely continuous functions satisfying

1. For every 𝑡 ∈ 𝑇 and every index 𝑖,

(a) (v(𝑡),w(𝑡)) ∈ 𝐷Ω,

(b) Ω𝐿
𝑖 (v(𝑡),w(𝑡)) ⊂ 𝐷 and Ω𝑈

𝑖 (v(𝑡),w(𝑡)) ⊂ 𝐷,

2. 𝑋0 ⊂ [v(𝑡0),w(𝑡0)],

3. For 𝑎.𝑒. 𝑡 ∈ 𝑇 and each index 𝑖,

(a) �̇�𝑖(𝑡) ≤ 𝑓𝑖(𝑡,p, z), for all z ∈ Ω𝐿
𝑖 (v(𝑡),w(𝑡)) and p ∈ 𝑈 ,

(b) �̇�𝑖(𝑡) ≥ 𝑓𝑖(𝑡,p, z), for all z ∈ Ω𝑈
𝑖 (v(𝑡),w(𝑡)) and p ∈ 𝑈 ,

then x(𝑡,u,x0) ∈ [v(𝑡),w(𝑡)], for all (𝑡,u,x0) ∈ 𝑇 × 𝒰 ×𝑋0.

The main challenge is defining 𝐷Ω, Ω𝐿
𝑖 , Ω𝑈

𝑖 such that Assumption 5.3.2 holds. It is

shown that this is the case if we let

𝐷Ω = {(v,w) ∈ R𝑛𝑥 × R𝑛𝑥 : [v,w] ∩𝐺 ̸= ∅},

Ω𝐿
𝑖 : (v,w) ↦→ 𝑃𝐿

𝑖 ([v,w] ∩𝐺) ,

Ω𝑈
𝑖 : (v,w) ↦→ 𝑃𝑈

𝑖 ([v,w] ∩𝐺) .

To see this, choose any (v,w) ∈ 𝐷Ω and let

𝑧𝑚𝑖 (v,w) = min{𝜁𝑖 : 𝜁 ∈ [v,w] ∩𝐺)}, (5.4)

𝑧𝑀𝑖 (v,w) = max{𝜁𝑖 : 𝜁 ∈ [v,w] ∩𝐺)}

(note that 𝑣𝑖 ≤ 𝑧𝑚𝑖 (v,w) ≤ 𝑧𝑀𝑖 (v,w) ≤ 𝑤𝑖). If there exists (𝑡,u,x0) ∈ 𝑇 ×𝒰×𝑋0 such that

x(𝑡,u,x0) ∈ [v,w], then x(𝑡,u,x0) ∈ [v,w]∩𝐺 by definition of 𝐺, so (v,w) ∈ 𝐷Ω. Further,
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if x(𝑡,u,x0) ∈ [v,w]∩𝐺 and 𝑥𝑖(𝑡,u,x0) = 𝑣𝑖, then 𝑧𝑚𝑖 (v,w) ≤ 𝑥𝑖(𝑡,u,x0) = 𝑣𝑖 ≤ 𝑧𝑚𝑖 (v,w),

so it is clear that x(𝑡,u,x0) ∈ 𝑃𝐿
𝑖 ([v,w] ∩𝐺). An analogous argument gives the condition

for 𝑃𝑈
𝑖 .

To see that the second condition holds consider the nature of the sets 𝑃𝐿
𝑖 ([v,w] ∩ 𝐺).

Since 𝐺 is a polyhedron it can be expressed as 𝐺 = {z ∈ R𝑛𝑥 : A𝐺z ≤ b𝐺} for some

A𝐺 ∈ R𝑚𝑔×𝑛𝑥 and b𝐺 ∈ R𝑚𝑔 . Thus [v,w] ∩𝐺 = {z : Az ≤ b(v,w)} where

A =

⎡⎢⎢⎢⎣
A𝐺

−I

I

⎤⎥⎥⎥⎦ , b(v,w) =

⎡⎢⎢⎢⎣
b𝐺

−v

w

⎤⎥⎥⎥⎦ . (5.5)

By Lemma 2.4.2, 𝑧𝑚𝑖 is a Lipschitz continuous function on 𝐷Ω with Lipschitz constant 𝐿1.

Finally, noting that

Ω𝐿
𝑖 (v,w) = 𝑃𝐿

𝑖 ([v,w] ∩𝐺) = {z : Az ≤ b(v,w), 𝑧𝑖 ≤ 𝑧𝑚𝑖 (v,w), 𝑧𝑖 ≥ 𝑧𝑚𝑖 (v,w)},

by Lemma 2.4.2 there exists 𝐿2 > 0 such that

𝑑𝐻
(︀
Ω𝐿
𝑖 (v1,w1),Ω

𝐿
𝑖 (v2,w2)

)︀
≤ 𝐿2 (‖b(v1,w1)− b(v2,w2)‖∞ + 2 |𝑧𝑚𝑖 (v1,w1)− 𝑧𝑚𝑖 (v2,w2)|)

≤ 𝐿2

(︀
‖v1 − v2‖∞ + ‖w1 −w2‖∞ + 2𝐿1(‖v1 − v2‖∞ + ‖w1 −w2‖∞)

)︀
≤ 𝐿2(1 + 2𝐿1)(‖v1 − v2‖∞ + ‖w1 −w2‖∞)

for all (v1,w1) and (v2,w2) in 𝐷Ω. Similar reasoning shows that the required Lipschitz

condition holds for each Ω𝑈
𝑖 as well.

The rest of the hypotheses of Theorem 5.3.1 are easy to verify. Solutions of (5.3) are

understood in the Carathéodory sense, and thus x𝐿 and x𝑈 are absolutely continuous. Mean-

while, any solutions that exist must satisfy [x𝐿(𝑡),x𝑈 (𝑡)]∩𝐺 ̸= ∅ (otherwise the optimization

problems are not defined), which implies that (x𝐿(𝑡),x𝑈 (𝑡)) ∈ 𝐷Ω. Further, the objective

functions of the optimization problems are assumed to be affine underestimators of 𝑓𝑖(𝑡, ·, ·)

on 𝑈×𝑃𝐿
𝑖 ([x

𝐿(𝑡),x𝑈 (𝑡)]∩𝐺), implying that 𝑃𝐿
𝑖 ([x

𝐿(𝑡),x𝑈 (𝑡)]∩𝐺) = Ω𝐿
𝑖 (x

𝐿(𝑡),x𝑈 (𝑡)) ⊂ 𝐷

(and similarly for Ω𝑈
𝑖 ). It is already assumed that the initial conditions satisfy Hypothesis 2

of Theorem 5.3.1, and clearly Hypothesis 3 is satisfied. Thus, any solutions of (5.3) are state
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bounds.

5.3.2 Convergence

This section considers the convergence of the state bounds constructed in §5.3.1 as the

“sizes” of the sets of admissible control values and initial conditions decrease. To begin, it

is necessary to abuse notation in this section and allow the state bounds x𝐿, x𝑈 to have

dependence on the sets of control values and initial conditions. That is to say, assume

[x𝐿(𝑡, 𝑈 ′, 𝑋 ′
0),x

𝑈 (𝑡, 𝑈 ′, 𝑋 ′
0)] ∋ x(𝑡,u,x0), for any (𝑡,u,x0) ∈ 𝑇 ×𝒰 ′×𝑋 ′

0, any solution x of

IVP (5.2) (where 𝒰 ′ = {u ∈ 𝐿1(𝑇,R𝑛𝑢) : u(𝑡) ∈ 𝑈 ′, 𝑎.𝑒. 𝑡 ∈ 𝑇}), and any nonempty

compact polyhedron 𝑈 ′ ⊂ 𝑈 and nonempty compact 𝑋 ′
0 ⊂ 𝑋0. For simplicity, write

𝑋𝐵(𝑡, 𝑈 ′, 𝑋 ′
0) = [x𝐿(𝑡, 𝑈 ′, 𝑋 ′

0),x
𝑈 (𝑡, 𝑈 ′, 𝑋 ′

0)]. Similarly, let the functions q𝐿, q𝑈 defin-

ing the dynamics in the auxiliary ODE system (5.3) have dependence on the polyhedral set

of control values 𝑈 ′.

Next, make the following definitions (taken from Ch. 3 of [163]).

Definition 5.3.1. For 𝑌 ⊂ R𝑛, denote the set of nonempty interval subsets of 𝑌 by I𝑌 ≡

{[v,w] : v ≤ w, [v,w] ⊂ 𝑌 }. Denote the interval hull (the intersection of all interval

supersets) of a set 𝑌 by hull(𝑌 ). If there exist 𝜏 , 𝛽 > 0 such that

𝑑𝐻
(︀
hull(x(𝑡,𝒰 ′, 𝑋 ′

0)), 𝑋
𝐵(𝑡, 𝑈 ′, 𝑋 ′

0)
)︀
≤ 𝜏𝑤(𝑈 ′ ×𝑋 ′

0)
𝛽, ∀(𝑡, 𝑈 ′, 𝑋 ′

0) ∈ 𝑇 × I𝑈 × I𝑋0,

where 𝒰 ′ = {u ∈ 𝐿1(𝑇,R𝑛𝑢) : u(𝑡) ∈ 𝑈 ′, 𝑎.𝑒. 𝑡 ∈ 𝑇}, then 𝑋𝐵 is said to have Hausdorff

convergence in 𝑈 ×𝑋0 of order 𝛽 with prefactor 𝜏 uniformly on 𝑇 .

The next result establishes that the state bounds constructed in §5.3.1 have Hausdorff

convergence in 𝑈 × 𝑋0 of order at least 1 uniformly on 𝑇 (with some prefactor). More

colloquially, the state bounds are said to converge at least linearly with respect to the

uncertain initial conditions and admissible control values. To simplify the discussion, the

following result depends on the assumption that there exist state bounds that are known

a priori to converge at least linearly. An example of such bounds are the “naïve” state

bounds in Definition 3.4.3 in [163], where the functions ̃︀u and ̃︀o defining the dynamics of

the IVP (5.6) below are the lower and upper bounds, respectively, of the natural interval

extension of f . (Although the naïve state bounds in [163] are for parametric ODEs instead of

control systems, a modification of the proof of Theorem 3.4.9 in [163] shows that these state
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bounds are also first-order convergent for control systems.) Meanwhile, Condition (5.7)

below is satisfied as long as interval bounds on 𝑓𝑖 are included in the definition of the

piecewise affine estimators 𝑓 𝑐𝑣
𝑖 , 𝑓 𝑐𝑐

𝑖 . Since the affine relaxation method described in Ch. 3

requires simultaneous evaluation of interval bounds, this is easily satisfied.

Proposition 5.3.1. Let (̃︀u, ̃︀o) : 𝑇 × I𝐷 × I𝑈 → R𝑛𝑥 × R𝑛𝑥 be locally Lipschitz continuous

and monotonic in the sense that

̃︀u(𝑡, [v,w], 𝑈 ′) ≤ ̃︀u(𝑡, [v′,w′], 𝑈 ′), and ̃︀o(𝑡, [v′,w′], 𝑈 ′) ≤ ̃︀o(𝑡, [v,w], 𝑈 ′),

𝑎.𝑒. 𝑡 ∈ 𝑇, ∀([v,w], [v′,w′], 𝑈 ′) ∈ I𝐷 × I𝐷 × I𝑈 : [v′,w′] ⊂ [v,w].

Suppose that for all (𝑈 ′, 𝑋 ′
0) ∈ I𝑈 × I𝑋0, (̃︀v, ̃︀w) : 𝑇 × I𝑈 × I𝑋0 → R𝑛𝑥 ×R𝑛𝑥 are solutions

of

̃̇︀v(𝑡, 𝑈 ′, 𝑋 ′
0) = ̃︀u(𝑡, [̃︀v(𝑡, 𝑈 ′, 𝑋 ′

0), ̃︀w(𝑡, 𝑈 ′, 𝑋 ′
0)], 𝑈

′), (5.6)

̃̇︀w(𝑡, 𝑈 ′, 𝑋 ′
0) = ̃︀o(𝑡, [̃︀v(𝑡, 𝑈 ′, 𝑋 ′

0), ̃︀w(𝑡, 𝑈 ′, 𝑋 ′
0)], 𝑈

′),

with initial conditions that satisfy

[̃︀v(𝑡0, 𝑈 ′, 𝑋 ′
0), ̃︀w(𝑡0, 𝑈

′, 𝑋 ′
0)] ⊃ [x𝐿(𝑡0, 𝑈

′, 𝑋 ′
0),x

𝑈 (𝑡0, 𝑈
′, 𝑋 ′

0)].

Assume that ̃︀v(·, 𝑈 ′, 𝑋 ′
0) and ̃︀w(·, 𝑈 ′, 𝑋 ′

0) are state bounds for the solutions of (5.2) and

that ̃︀v and ̃︀w have Hausdorff convergence in 𝑈 ×𝑋0 of order 1 uniformly in 𝑇 :

𝑑𝐻
(︀
hull(x(𝑡,𝒰 ′, 𝑋 ′

0)), [̃︀v(𝑡, 𝑈 ′, 𝑋 ′
0), ̃︀w(𝑡, 𝑈 ′, 𝑋 ′

0)]
)︀
≤ 𝜏𝑤(𝑈 ′ ×𝑋 ′

0),

∀(𝑡, 𝑈 ′, 𝑋 ′
0) ∈ 𝑇 × I𝑈 × I𝑋0.

Assume that

[q𝐿(𝑡,v,w, 𝑈 ′),q𝑈 (𝑡,v,w, 𝑈 ′)] ⊂ [̃︀u(𝑡, [v,w], 𝑈 ′), ̃︀o(𝑡, [v,w], 𝑈 ′)], (5.7)

𝑎.𝑒. 𝑡 ∈ 𝑇, ∀([v,w], 𝑈 ′) ∈ I𝐷 × I𝑈.

Then the state bounds (x𝐿,x𝑈 ) constructed in §5.3.1 (the solutions, if any, of the IVP (5.3)),

have Hausdorff convergence in 𝑈 ×𝑋0 of order 1 uniformly in 𝑇 .
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Proof. By Theorem 3.4.6 of [163], we have

[̃︀v(𝑡, 𝑈 ′, 𝑋 ′
0), ̃︀w(𝑡, 𝑈 ′, 𝑋 ′

0)] ⊃ [x𝐿(𝑡, 𝑈 ′, 𝑋 ′
0),x

𝑈 (𝑡, 𝑈 ′, 𝑋 ′
0)]

for all (𝑡, 𝑈 ′, 𝑋 ′
0) ∈ 𝑇 × I𝑈 × I𝑋0. Since both are state bounds,

𝑑𝐻
(︀
hull(x(𝑡,𝒰 ′, 𝑋 ′

0)), [x
𝐿(𝑡, 𝑈 ′, 𝑋 ′

0),x
𝑈 (𝑡, 𝑈 ′, 𝑋 ′

0)]
)︀
≤

𝑑𝐻
(︀
hull(x(𝑡,𝒰 ′, 𝑋 ′

0)), [̃︀v(𝑡, 𝑈 ′, 𝑋 ′
0), ̃︀w(𝑡, 𝑈 ′, 𝑋 ′

0)]
)︀
,

and so by the assumption on the convergence of ̃︀v and ̃︀w, we also have that x𝐿 and x𝑈 have

Hausdorff convergence in 𝑈 ×𝑋0 of order 1 uniformly in 𝑇 .

5.4 ODEs with LPs embedded

This section will analyze the IVP (5.3) that must be solved to obtain state bounds. Specif-

ically, it will consider how to construct the convex and concave piecewise affine under and

over-estimators of the dynamics as well as the numerical solution.

The system (5.3) is indeed an initial value problem in ODEs, where the dynamics are

given by parametric optimization problems. Consider the equations defining �̇�𝐿𝑖 (𝑡) for ex-

ample. As discussed as the end of §2.4, since the objective function 𝑓 𝑐𝑣
𝑖 (𝑡, ·, ·,x𝐿(𝑡),x𝑈 (𝑡))

is a convex piecewise affine function, and the feasible set 𝑈 × 𝑃𝐿
𝑖 ([x

𝐿(𝑡),x𝑈 (𝑡)] ∩ 𝐺) is a

polyhedron, this is equivalent to a parametric linear optimization problem. Further, because

the parameterization of this LP depends on the dynamic states (x𝐿(𝑡),x𝑈 (𝑡)), these LPs

must be solved along with the dynamic states during the integration routine. This is the

essence of “ODEs with LPs embedded.”

This formulation is similar to others that have appeared in the literature; see for instance

the work on complementarity systems [165] and differential variational inequalities [144].

However, much of the work on these problems is slightly more general than necessary to

understand and efficiently solve the IVP (5.3). Instead, the approach taken here will be

to establish that, under mild assumptions, standard numerical integration routines and LP

solvers can be used to solve the IVP of interest.
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5.4.1 Lipschitz continuity of dynamics

First, it will be established that the dynamics of the IVP (5.3) satisfy the Lipschitz continuity

condition in Definition 2.5.1. As discussed in §2.5, the purpose is to establish that the

IVP (5.3) is amenable to solution by many different classes of numerical integration methods.

To achieve this, define the following parametric optimization problems which define the

dynamics in Eqn. (5.3):

𝑞𝐿𝑖 (𝑡,v,w) = min
{︀
𝑓 𝑐𝑣
𝑖 (𝑡,p, z,v,w) : p ∈ 𝑈, z ∈ 𝑃𝐿

𝑖 ([v,w] ∩𝐺)
}︀
, (5.8)

𝑞𝑈𝑖 (𝑡,v,w) = max
{︀
𝑓 𝑐𝑐
𝑖 (𝑡,p, z,v,w) : p ∈ 𝑈, z ∈ 𝑃𝑈

𝑖 ([v,w] ∩𝐺)
}︀
. (5.9)

Analyze the LP (5.8) (the analysis for LP (5.9) is similar). Since 𝑈 is a polyhedron, there

exist a matrix A𝑈 ∈ R𝑚𝑢×𝑛𝑢 and vector b𝑈 ∈ R𝑚𝑢 such that the feasible set of (5.8) can

be rewritten as

𝑈 × 𝑃𝐿
𝑖 ([v,w] ∩𝐺) =

{(p, z) ∈ R𝑛𝑢 × R𝑛𝑥 : A𝑈p ≤ b𝑈 ,Az ≤ b(v,w), 𝑧𝑖 ≤ 𝑧𝑚𝑖 (v,w), 𝑧𝑖 ≥ 𝑧𝑚𝑖 (v,w)} , (5.10)

where A and b are given by Eqn. (5.5) and 𝑧𝑚𝑖 is given by Eqn. (5.4). For brevity, write

this as

𝑈 × 𝑃𝐿
𝑖 ([v,w] ∩𝐺) =

{︀
y ∈ R𝑛𝑢+𝑛𝑥 : A𝐿

𝑖 y ≤ b𝐿
𝑖 (v,w)

}︀
.

By the discussion in §5.3, 𝑧𝑚𝑖 is a Lipschitz continuous function on 𝐷Ω. Thus, it is clear

that b𝐿
𝑖 is as well.

Next, by definition, for some integer 𝑛𝐿
𝑖 , there are functions h𝑖,𝐿 : 𝑇 ×𝐷Ω → R𝑛𝐿

𝑖 and

for 𝑘 ∈ {1, . . . , 𝑛𝐿
𝑖 }, c

𝑖,𝐿
𝑘 : 𝑇 ×𝐷Ω → R𝑛𝑢+𝑛𝑥 such that

𝑓 𝑐𝑣
𝑖 (𝑡,p, z,v,w) = max

{︁
(c𝑖,𝐿𝑘 (𝑡,v,w))Ty + ℎ𝑖,𝐿𝑘 (𝑡,v,w) : 𝑘 ∈ {1, . . . , 𝑛𝐿

𝑖 }
}︁
,

where y = (p, z). For more compact notation, let c𝑖,𝐿 = (c𝑖,𝐿1 , . . . , c𝑖,𝐿
𝑛𝐿
𝑖
). Assume that c𝑖,𝐿

and h𝑖,𝐿 are locally Lipschitz continuous on 𝐷Ω, uniformly on 𝑇 (see Definition 2.5.1), and

further are continuous on 𝑇 ×𝐷Ω. The following lemma establishes that for all (v,w) ∈ 𝐷Ω,

there exists a neighborhood 𝑁(v,w) such that the images of 𝑇 ×𝑁(v,w) ∩𝐷Ω under c𝑖,𝐿

and h𝑖,𝐿 are bounded.
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Lemma 5.4.1. Let (𝑇, 𝑑𝑇 ) be a compact metric space, (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌 ) be metric spaces,

and let 𝑓 : 𝑇 × 𝑋 → 𝑌 be continuous on 𝑇 × 𝑋 and locally Lipschitz continuous on 𝑋,

uniformly on 𝑇 . Then for all 𝑥 ∈ 𝑋, there exists a neighborhood 𝑁(𝑥) of 𝑥 such that 𝑓 is

bounded on 𝑇 ×𝑁(𝑥).

Proof. Choose 𝑥* ∈ 𝑋. By Definition 2.5.1, there exists a neighborhood 𝑁(𝑥*) and 𝐿(𝑥*) >

0 such that

𝑑𝑌 (𝑓(𝑡, 𝑥
*), 𝑓(𝑡, 𝑥)) ≤ 𝐿(𝑥*)𝑑𝑋(𝑥*, 𝑥)

for all (𝑡, 𝑥) ∈ 𝑇 × 𝑁(𝑥*). By definition, there exists 𝛿 > 0 such that 𝑑𝑋(𝑥*, 𝑥) ≤ 𝛿 for

all 𝑥 ∈ 𝑁(𝑥*), so 𝑑𝑌 (𝑓(𝑡, 𝑥
*), 𝑓(𝑡, 𝑥)) ≤ 𝐿(𝑥*)𝛿 for all (𝑡, 𝑥) ∈ 𝑇 × 𝑁(𝑥*). Since 𝑓(·, 𝑥*)

is continuous on compact 𝑇 , the image of 𝑇 under 𝑓(·, 𝑥*) is compact and so bounded.

Thus there exist 𝑏 > 0 and 𝑦 ∈ 𝑌 such that 𝑑𝑌 (𝑓(𝑡, 𝑥
*), 𝑦) ≤ 𝑏 for all 𝑡 ∈ 𝑇 . Then for all

(𝑡, 𝑥) ∈ 𝑇 ×𝑁(𝑥*),

𝑑𝑌 (𝑓(𝑡, 𝑥), 𝑦) ≤ 𝑑𝑌 (𝑓(𝑡, 𝑥), 𝑓(𝑡, 𝑥
*)) + 𝑑𝑌 (𝑓(𝑡, 𝑥

*), 𝑦) ≤ 𝐿(𝑥*)𝛿 + 𝑏

which establishes that 𝑓 is bounded on 𝑇 ×𝑁(𝑥*).

If

̃︀𝑞𝐿𝑖 (̃︀b,̃︀c1, . . . ,̃︀c𝑛𝐿
𝑖
, ̃︀h) = min

{︂
max
𝑘

{︀
(̃︀cT𝑘 y + ̃︀ℎ𝑘}︀ : y ∈ R𝑛𝑢+𝑛𝑥 ,A𝐿

𝑖 y ≤ ̃︀b}︂ , (5.11)

then 𝑞𝐿𝑖 (𝑡,v,w) = ̃︀𝑞𝐿𝑖 (b𝐿
𝑖 (v,w), c𝑖,𝐿(𝑡,v,w),h𝑖,𝐿(𝑡,v,w)). Let 𝐹𝐿

𝑖 be the set of ̃︀b such

that the feasible set of optimization problem (5.11) is nonempty. It is easy to see that 𝐹𝐿
𝑖

is a closed set; see §4.7 of [25]. Then for all ̃︀b ∈ 𝐹𝐿
𝑖 , (5.11) is an optimization problem

with a convex piecewise affine objective over a nonempty, bounded polyhedral set. Con-

sequently, we can apply Lemma 2.4.3 to see that ̃︀𝑞𝐿𝑖 is locally Lipschitz continuous on

𝐹𝐿
𝑖 × R𝑛𝐿

𝑖 (𝑛𝑢+𝑛𝑥) × R𝑛𝐿
𝑖 . This implies that ̃︀𝑞𝐿𝑖 is Lipschitz continuous on any compact sub-

set of 𝐹𝐿
𝑖 × R𝑛𝐿

𝑖 (𝑛𝑢+𝑛𝑥) × R𝑛𝐿
𝑖 . Then, choose (v,w) ∈ 𝐷Ω. Without loss of generality,

let 𝑁(v,w) be a neighborhood satisfying Definition 2.5.1 for both c𝑖,𝐿 and h𝑖,𝐿. Let 𝐾𝐿
𝑖

be the closure of b𝐿
𝑖 (𝑁(v,w) ∩𝐷Ω)× c𝑖,𝐿(𝑇 ×𝑁(v,w) ∩𝐷Ω)× h𝑖,𝐿(𝑇 ×𝑁(v,w) ∩𝐷Ω).

Note that 𝐾𝐿
𝑖 is a bounded subset of 𝐹𝐿

𝑖 ×R𝑛𝐿
𝑖 (𝑛𝑢+𝑛𝑥)×R𝑛𝐿

𝑖 , using the Lipschitz continuity

of b𝐿
𝑖 and the boundedness property of c𝑖,𝐿 and h𝑖,𝐿. Thus, 𝐾𝐿

𝑖 is a compact subset of
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𝐹𝐿
𝑖 × R𝑛𝐿

𝑖 (𝑛𝑢+𝑛𝑥) × R𝑛𝐿
𝑖 , and thus there exists a 𝐿𝑞 > 0 such that

⃒⃒
𝑞𝐿𝑖 (𝑡,v1,w1)− 𝑞𝐿𝑖 (𝑡,v2,w2)

⃒⃒
≤ 𝐿𝑞

(︀ ⃦⃦
b𝐿
𝑖 (v1,w1)− b𝐿

𝑖 (v2,w2)
⃦⃦
∞+⃦⃦

c𝑖,𝐿(𝑡,v1,w1)− c𝑖,𝐿(𝑡,v2,w2)
⃦⃦
∞+⃦⃦

h𝑖,𝐿(𝑡,v1,w1)− h𝑖,𝐿(𝑡,v2,w2)
⃦⃦
∞
)︀
,

for all (v1,w1) and (v2,w2) in 𝑁(v,w) ∩𝐷Ω and all 𝑡 ∈ 𝑇 . Using the Lipschitz continuity

of b𝐿
𝑖 and uniform local Lipschitz continuity of c𝑖,𝐿 and h𝑖,𝐿, we see that 𝑞𝐿𝑖 is locally

Lipschitz continuous on 𝐷Ω, uniformly on 𝑇 . Similar analysis establishes that 𝑞𝑈𝑖 has the

same property.

Consequently, we can apply many different classes of numerical integration methods to

solve the IVP (5.3); as mentioned earlier this includes implicit and explicit Runge-Kutta

and linear multistep methods. The benefit of this is that we can rely on the sophisticated

automatic error control of implementations of these methods by adaptive time stepping.

The result is that a highly accurate numerical solution of the IVP (5.3) can be obtained,

although without outward rounding techniques, these solutions will not be “validated” in

the sense of [107].

5.4.2 Parametric affine relaxations

It was assumed in §5.4.1 that we had parameterized convex and concave piecewise affine

relaxations of the original dynamics f . Fortunately, the methods discussed in Ch. 3 provide

us with this information.

First, let 𝐷I = {(v′,w′) ∈ 𝐷 ×𝐷 : [v′,w′] ⊂ 𝐷}, and let [v𝑢,w𝑢] ⊂ 𝐷𝑢 be an interval

enclosure of 𝑈 (since 𝑈 is polyhedral, this could be obtained, for instance, by the procedure

in Definition 4 in [168]; see also Algorithm 3 in §6.4.1). In the context of Proposition 3.2.2,

let 𝑋 = 𝑇 ×𝐷I, 𝑍 = 𝑇 ×𝐷𝑢 ×𝐷, and 𝑍𝐷 : (𝑡,v′,w′) ↦→ [𝑡, 𝑡] × [v𝑢,w𝑢] × [v′,w′]. Then

we can construct affine relaxations on [𝑡, 𝑡]× [v𝑢,w𝑢]× [v′,w′] of each component 𝑓𝑖 of f in

a manner similar to what was demonstrated in Example 3.4.1. The result is that we obtain

affine under and overestimators which satisfy

f𝑎𝑙𝑖 (𝑡,v′,w′)Ty𝑡 + 𝑓 𝑏𝑙
𝑖 (𝑡,v′,w′) ≤ 𝑓𝑖(y𝑡) ≤ f𝑎𝑢𝑖 (𝑡,v′,w′)Ty𝑡 + 𝑓 𝑏𝑢

𝑖 (𝑡,v′,w′),
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for all y𝑡 = (𝑡,p, z) ∈ [𝑡, 𝑡] × [v𝑢,w𝑢] × [v′,w′]. Since we only care about relaxations of

𝑓𝑖(𝑡, ·, ·), we can rearrange the above expressions and define

̃︀c𝑖,𝐿 : (𝑡,v′,w′) ↦→
(︀
𝑓𝑎𝑙
𝑖,2(𝑡,v

′,w′), 𝑓𝑎𝑙
𝑖,3(𝑡,v

′,w′), . . . , 𝑓𝑎𝑙
𝑖,1+𝑛𝑢+𝑛𝑥

(𝑡,v′,w′)
)︀
,

̃︀ℎ𝑖,𝐿 : (𝑡,v′,w′) ↦→ 𝑓 𝑏𝑙
𝑖 (𝑡,v′,w′) + (𝑡)𝑓𝑎𝑙

𝑖,1(𝑡,v
′,w′),

̃︀c𝑖,𝑈 : (𝑡,v′,w′) ↦→
(︀
𝑓𝑎𝑢
𝑖,2 (𝑡,v

′,w′), 𝑓𝑎𝑢
𝑖,3 (𝑡,v

′,w′), . . . , 𝑓𝑎𝑢
𝑖,1+𝑛𝑢+𝑛𝑥

(𝑡,v′,w′)
)︀
,

̃︀ℎ𝑖,𝑈 : (𝑡,v′,w′) ↦→ 𝑓 𝑏𝑢
𝑖 (𝑡,v′,w′) + (𝑡)𝑓𝑎𝑢

𝑖,1 (𝑡,v
′,w′).

The result is that ̃︀c𝑖,𝐿, ̃︀ℎ𝑖,𝐿, ̃︀c𝑖,𝑈 , and ̃︀ℎ𝑖,𝑈 are locally Lipschitz continuous mappings on 𝑋

which satisfy for all (𝑡,v′,w′) ∈ 𝑋

̃︀c𝑖,𝐿(𝑡,v′,w′)Ty + ̃︀ℎ𝑖,𝐿(𝑡,v′,w′) ≤ 𝑓𝑖(𝑡,y) ≤ ̃︀c𝑖,𝑈 (𝑡,v′,w′)Ty + ̃︀ℎ𝑖,𝑈 (𝑡,v′,w′),

for all y = (p, z) ∈ [v′,w′]× [v𝑢,w𝑢].

Finally, the ultimate goal is to obtain affine underestimators of 𝑓𝑖(𝑡, ·, ·) on 𝑈×𝑃𝐿
𝑖 ([v,w]∩

𝐺) (and affine overestimators on 𝑈 ×𝑃𝑈
𝑖 ([v,w]∩𝐺)). To this end, since 𝑃𝐿

𝑖 ([v,w]∩𝐺) is a

polyhedron (see Eqn. (5.10)), we can apply the interval-tightening operation in Algorithm 3

of §6.4.1 to the interval [v,w] in order to obtain a “tighter” interval enclosure of 𝑃𝐿
𝑖 ([v,w]∩

𝐺). Let the endpoints of the interval defined this way be v𝐿
𝑖 : 𝐷Ω → R𝑛𝑥 and w𝐿

𝑖 : 𝐷Ω → R𝑛𝑥

which, by the properties of the interval tightening operator (see Proposition 6.4.1), are

Lipschitz continuous and satisfy [v𝐿
𝑖 (v,w),w𝐿

𝑖 (v,w)] ⊃ 𝑃𝐿
𝑖 ([v,w]∩𝐺), for all (v,w) ∈ 𝐷Ω.

Then, assuming that (v𝐿
𝑖 ,w

𝐿
𝑖 ) is a mapping into 𝐷I, the composite maps on 𝑇 ×𝐷Ω

c𝑖,𝐿 : (𝑡,v,w) ↦→ ̃︀c𝑖,𝐿(𝑡,v𝐿
𝑖 (v,w),w𝐿

𝑖 (v,w)),

ℎ𝑖,𝐿 : (𝑡,v,w) ↦→ ̃︀ℎ𝑖,𝐿(𝑡,v𝐿
𝑖 (v,w),w𝐿

𝑖 (v,w)),

c𝑖,𝑈 : (𝑡,v,w) ↦→ ̃︀c𝑖,𝑈 (𝑡,v𝐿
𝑖 (v,w),w𝐿

𝑖 (v,w)),

ℎ𝑖,𝑈 : (𝑡,v,w) ↦→ ̃︀ℎ𝑖,𝑈 (𝑡,v𝐿
𝑖 (v,w),w𝐿

𝑖 (v,w)),

are locally Lipschitz continuous. Thus, applying Lemma 2.5.1, we see that c𝑖,𝐿, ℎ𝑖,𝐿, c𝑖,𝑈 ,

and ℎ𝑖,𝑈 are locally Lipschitz continuous on 𝐷Ω, uniformly on 𝑇 . In addition, they are

continuous and 𝑇 is compact, and so by Lemma 5.4.1, the extra local boundedness property

holds.
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By the assumption on the form of the relaxations 𝑓 𝑐𝑣
𝑖 and 𝑓 𝑐𝑐

𝑖 , the extension of the

parametric affine relaxations theory discussed in §3.7.1 can be used, where multiple affine

relaxations can be calculated giving piecewise affine convex and concave relaxations. How-

ever, in the examples in §5.5, the basic affine relaxation method is used; in general the

improvement (if any) in the state bounds resulting from using multiple affine relaxations

does not justify the extra computational cost. Thus, piecewise affine under and overesti-

mators consisting of only two affine relaxations each (i.e. 𝑛𝐿
𝑖 = 𝑛𝑈

𝑖 = 2 for all 𝑖) are used,

where one of the affine relaxations comes from the interval bounds. One modification of

the theory from Ch. 3 is the use of different parameterized affine relaxations for bivariate

multiplication (resulting from an older implementation of the ideas in Ch. 3). That is, in

Table 3.3, the rules for the library function 𝑓 : (𝑦1, 𝑦2) ↦→ 𝑦1𝑦2 are changed to

f𝑎𝑙 : (y𝐿,y𝑈 ) ↦→ (𝑦𝐿2 , 𝑦
𝐿
1 ), 𝑓 𝑏𝑙 : (y𝐿,y𝑈 ) ↦→ −𝑦𝐿1 𝑦𝐿2 ,

f𝑎𝑢 : (y𝐿,y𝑈 ) ↦→ (𝑦𝐿2 , 𝑦
𝑈
1 ), 𝑓 𝑏𝑢 : (y𝐿,y𝑈 ) ↦→ −𝑦𝑈1 𝑦𝐿2 .

5.4.3 Numerical solution

Chapter 4 discusses the problem of trying to calculate a solution of an initial value problem

defined by a parametric linear program. One issue that can occur is that the effective domain

may not be an open set, and most numerical methods for the integration of a system of ODEs

assume that the domain of the dynamics is an open set. In the present setting, a similar

complication is possible; any solutions of the IVP (5.3) must satisfy {(x𝐿(𝑡),x𝑈 (𝑡)) : 𝑡 ∈

𝑇} ⊂ 𝐷Ω, and 𝐷Ω may not be an open set. However, in our experience, there is little

complication when using the “direct” method of solving IVP (5.3) numerically, where we use

an LP solver to evaluate the functions (q𝐿,q𝑈 ) in the derivative evaluator of a numerical

integration routine (such as one mentioned in §2.5). The main concern is how to most

efficiently evaluate (q𝐿,q𝑈 ) defined in Eqns. (5.8) and (5.9).

To address this concern, consider the reformulation of the LPs (5.8) and (5.9) as standard

form LPs. Let z = (𝑡,v,w) ∈ 𝑇 × R𝑛𝑥 × R𝑛𝑥 denote the vector parameterizing these

problems. These programs share the same following formulation when put in standard form

via elementary techniques (see, for instance, Ch. 1 of [25]):

𝑞(z) =min{cTy : M(z)y = d(z),y ≥ 0}, (5.12)
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where, for some (𝑚,𝑛) ∈ N2, d : 𝑇 ×𝐷Ω → R𝑚 and M : 𝑇 ×𝐷Ω → R𝑚×𝑛 are continuous

mappings, under the assumption that 𝑓 𝑐𝑣
𝑖 and 𝑓 𝑐𝑐

𝑖 are continuous. Note that the parame-

terization occurs in both the right-hand side of the constraints and the constraint matrix,

and thus the so-called technology matrix case of parametric linear programming results. In

general, this kind of parametric dependence can lead to a discontinuous objective value (see

[208]). However, as already shown in §2.4, this cannot happen for the problems of interest,

and considering the origin of the reformulation, we can show that these problems can be

handled in a fairly efficient way.

First, a basis 𝐵 ⊂ {1, . . . , 𝑛} is an index set which describes a vertex of the feasible set

of an LP. For the LP (5.12), a basis will have 𝑚 elements, and so let M𝐵(z) be the square

submatrix formed by taking the columns of M(z) which correspond to elements of 𝐵, called

a basis matrix. Similarly, given a vector v ∈ R𝑛, let v𝐵 ∈ R𝑚 be defined by taking the

components of v which correspond to elements of 𝐵.

Next, note that for all z ∈ 𝑇 ×𝐷Ω, the linear programs (5.8) and (5.9) have solutions

because, in this case, the feasible sets are nonempty and bounded. Thus the equivalent

problems in standard form must also have solutions. This implies that there exist bases

which each describe a vertex which is optimal for the reformulated problems. These bases

are called optimal bases. In terms of the standard form LP (5.12), a basis 𝐵 is optimal if

the corresponding basis matrix M𝐵(z) satisfies the algebraic conditions

(M𝐵(z))
−1d(z) ≥ 0, (5.13)

cT − cT𝐵(M𝐵(z))
−1M(z) ≥ 0T, (5.14)

referred to as primal and dual feasibility, respectively. When solving an LP with the simplex

algorithm, the algorithm can be “warm-started” by providing a basis which is either primal

or dual feasible; the algorithm terminates much more quickly than if it was cold-started (if

it had to go through Phase I first).

Thus, it is desirable to know, given an optimal basis 𝐵, whether the left-hand side of

the inequality in either of (5.13) or (5.14) may be continuous on an open subset of 𝑇 ×𝐷Ω

containing z. If this is the case, then a given optimal basis 𝐵 that satisfies either (5.13)

and/or (5.14) with strict inequality will remain primal and/or dual feasible for some finite

amount of time. Consequently, in the course of numerical integration of (5.3), for many
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steps we can warm-start the simplex algorithm to solve the LPs. This will speed up the

solution time immensely. The number of steps where a basis is unavailable to warm-start

simplex may be small relative to the overall number of steps taken.

This is indeed the case: given a basis 𝐵 such that M𝐵(z) is optimal, there is an open

subset of 𝑇 × 𝐷Ω containing z on which the left-hand side of the inequality in either of

(5.13) or (5.14) is continuous. To see this, we can use Cramer’s rule; see §4.4 of [191]. For

S ∈ R𝑚×𝑚, e ∈ R𝑚, the vector y = S−1e is given componentwise by

𝑦𝑗 =
det(T𝑗)

det(S)
,

where T𝑗 is the matrix formed by replacing the 𝑗𝑡ℎ column of S with e. Since the determinant

of a matrix is continuous with respect to the entries of the matrix, it is a simple application

of Cramer’s rule to see that the left-hand side of the inequalities (5.13) and (5.14) are

continuous on the set of those z′ such that M𝐵(z
′) is invertible. Further, the set of those z′

such that M𝐵(z
′) is invertible is an open set containing z noting that it is the preimage of

(−∞, 0) ∪ (0,+∞), an open set, under the continuous mapping det(M𝐵(·)). Consequently,

the direct method of solving the IVP (5.3) numerically can be fairly efficient.

5.4.4 Complexity

This section considers the computational complexity of the proposed bounding method. As

the general numerical implementation of the method involves the solution of an initial value

problem in ODEs in which the dynamics are defined by the solution of linear programs,

the complexity of the method will depend on the choice of numerical integrator and linear

program solver. Some observations follow. For this discussion, “cost” is roughly measured

in terms of floating-point operations or just “operations.”

First, the complexity of computing a solution of an IVP in Lipschitz ODEs with a general

numerical integration method is somewhat out of the scope of this chapter; it is a fairly open

problem and has interesting ties to deeper questions in computational complexity theory.

For a more theoretical discussion see [93, 94].

A more practical observation is that, beside evaluating the dynamics, the dominant cost

at each step in most implicit numerical integration methods for stiff systems is the matrix

factorization required for Newton iteration (in the context of the backward differentiation
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formulae (BDF), see §5.2.2 of [34]). Consequently, there is, in general, an order (2𝑛𝑥)
3 cost

associated with the numerical integration of IVP (5.3). However, most implementations of

the BDF, for instance, will deploy a deferred Jacobian, and avoid matrix factorization at

each step; see §5.2.2 of [34] and §6.5 of [105].

The focus of the rest of this section is to analyze the complexity of evaluating the right-

hand sides defining the IVP (5.3). A more complete answer to this question can be found.

This depends heavily on the standard-form LPs (5.12) which define the dynamics (5.8) and

(5.9). First, a bound on the size of these standard-form LPs is needed. This depends on 𝑛𝑥,

𝑛𝑢, 𝑚𝑢 (the number of halfspaces required to represent the polyhedral set of control values

𝑈), 𝑚𝑔 (the number of halfspaces required to represent the polyhedral a priori enclosure 𝐺),

and 𝑛𝐿
𝑖 or 𝑛𝑈

𝑖 (the number of affine functions that make up the piecewise affine estimators

𝑓 𝑐𝑣
𝑖 or 𝑓 𝑐𝑐

𝑖 ). To define 𝑞𝐿𝑖 , one can check that the number of constraints in the corresponding

standard-form LP (5.12) is bounded above by 2𝑛𝑥+𝑚𝑔+𝑚𝑢+1+𝑛𝐿
𝑖 , and that the number

of variables is bounded above by 4𝑛𝑥 + 2𝑛𝑢 + 𝑚𝑔 + 𝑚𝑢 + 2 + 𝑛𝐿
𝑖 (this is obtained by a

rather slavish addition of slack variables, dummy variables, and splitting “free” variables

into nonnegative and nonpositive parts). In addition, evaluation of d, the right-hand side

of the constraints of LP (5.12), involves evaluating 𝑧𝑚𝑖 (or 𝑧𝑀𝑖 ), which itself requires the

solution of a linear program.

Citing the celebrated result that there exist polynomial time algorithms for linear pro-

gramming (see Ch. 8 of [25]), we can establish that one component 𝑞
𝐿/𝑈
𝑖 of the dynamics

defining IVP (5.3) can be evaluated with polynomial cost (with respect to 𝑛𝑥, 𝑛𝑢, 𝑚𝑢, 𝑚𝑔,

𝑛𝐿
𝑖 , and 𝑛𝑈

𝑖 ). However, as indicated in §5.4.3, in practice one might obtain better perfor-

mance using the simplex algorithm and attempting to warm-start the method using a basis

recorded from the previous function evaluation. In summary, however the linear programs

are solved, evaluating the dynamics requires the solution of 4𝑛𝑥 LPs since the IVP is a

system in R2𝑛𝑥 . Compared to the interval arithmetic-based method in [168], the solution of

these linear programs is the most significant increase in cost.

The last step is to consider the complexity of evaluating the piecewise affine under and

overestimators. The analysis in §3.5 establishes that this can be achieved with a cost that

is a scalar multiple of the cost of evaluating the original right-hand side function f . This

evaluation is repeated
∑︀𝑛𝑥

𝑖=1 𝑛
𝐿
𝑖 + 𝑛𝑈

𝑖 times, corresponding to each piece of the piecewise

affine under and overestimators 𝑓 𝑐𝑣
𝑖 , 𝑓 𝑐𝑐

𝑖 , 𝑖 ∈ {1, . . . , 𝑛𝑥}.
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5.5 Examples

This section assesses the performance of a MATLAB implementation of the proposed bound-

ing method, using an implicit linear multistep integration method (ode113, see [172]) and

CPLEX [85] to solve the necessary linear programs. MATLAB release r2011b is used on a

workstation with a 3.07 GHz Intel Xeon processor.

5.5.1 Polyhedral control values versus interval hull

The simple reaction network

A+ B→ C,

A+C→ D,

is considered to demonstrate the ability of the system (5.3) to utilize a polyhedral set

𝑈 . The dynamic equations governing the evolution of the species concentrations x =

(𝑥𝐴, 𝑥𝐵, 𝑥𝐶 , 𝑥𝐷) in a closed system are

�̇�𝐴 = −𝑢1𝑥𝐴𝑥𝐵 − 𝑢2𝑥𝐴𝑥𝐶 , (5.15)

�̇�𝐵 = −𝑢1𝑥𝐴𝑥𝐵,

�̇�𝐶 = 𝑢1𝑥𝐴𝑥𝐵 − 𝑢2𝑥𝐴𝑥𝐶 ,

�̇�𝐷 = 𝑢2𝑥𝐴𝑥𝐶 .

The goal to estimate the reachable set on 𝑇 = [0, 0.1] (s), with 𝑋0 = {x0 = (1, 1, 0, 0)} (M)

and rate parameters u = (𝑢1, 𝑢2) ∈ 𝒰 , with

𝑈 =
{︁
k ∈ R2 : ̂︀k ≤ k ≤ 10̂︀k, 𝑘1 + 2.5𝑘2 = 550

}︁
,

where ̂︀k = (50, 20). A polyhedral enclosure 𝐺 can be determined from considering the

stoichiometry of the system and other physical arguments such as mass balance; see [167]
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Figure 5-1: Interval bounds for 𝑥𝐴 (from system (5.15)) computed from the system of ODEs
with LPs embedded (5.3). Bounds for polyhedral 𝑈 are plotted with solid lines, while bounds
for the interval hull of 𝑈 are plotted with boxes.

for more details. For this system, we have

𝐺 = {z ∈ R4 : 0 ≤ z ≤ x̄,Mz = Mx0}, with

M =

⎡⎣ 1 −1 0 1

−1 2 1 0

⎤⎦ ,

x̄ = (1, 1, 1, 0.5).

Bounds on the states x are calculated using the system of ODEs with LPs embedded (5.3),

first using 𝑈 as is, and again using the interval hull of 𝑈 . The difference can be quite

apparent; see Fig. 5-1. The ability to use a polyhedral set of admissible control values

distinguishes this method from previous work in [168, 176], for example. In each case, the

method takes approximately 1.3 seconds.

5.5.2 Comparison with previous implementation

The enzyme reaction network considered in Example 2 of [168] is used here to demonstrate

the effectiveness of the system (5.3) in producing tight state bounds for an uncertain dynamic
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system. The reaction network is

A+ F 
 F : A→ F + A′,

A′ +R 
 R : A′ → R+A.

The dynamic equations governing the evolution of the species concentrations

x = (𝑥F, 𝑥A, 𝑥F:A, 𝑥A′ , 𝑥R, 𝑥R:A′)

in a closed system are

�̇�F = −𝑢1𝑥F𝑥A + 𝑢2𝑥F:A + 𝑢3𝑥F:A, (5.16)

�̇�A = −𝑢1𝑥F𝑥A + 𝑢2𝑥F:A + 𝑢6𝑥R:A′ ,

�̇�F:A = 𝑢1𝑥F𝑥A − 𝑢2𝑥F:A − 𝑢3𝑥F:A,

�̇�A′ = 𝑢3𝑥F:A − 𝑢4𝑥A′𝑥R + 𝑢5𝑥R:A′ ,

�̇�R = −𝑢4𝑥A′𝑥R + 𝑢5𝑥R:A′ + 𝑢6𝑥R:A′ ,

�̇�R:A′ = 𝑢4𝑥A′𝑥R − 𝑢5𝑥R:A′ − 𝑢6𝑥R:A′ .

The goal to estimate the reachable sets on 𝑇 = [0, 0.04] (s), with x0 = (20, 34, 0, 0, 16, 0) (M),

𝑋0 = {x0}, and rate parameters u = (𝑢1, . . . , 𝑢6) ∈ 𝒰 , with 𝑈 =
{︁
k ∈ R6 : ̂︀k ≤ k ≤ 10̂︀k}︁

and ̂︀k = (0.1, 0.033, 16, 5, 0.5, 0.3). For this system, a polyhedral enclosure 𝐺 is

𝐺 = {z ∈ R6 : 0 ≤ z ≤ x̄,Mz = Mx0}, with

M =

⎡⎢⎢⎢⎣
−1 0 −1 0 0 0

0 0 0 0 −1 −1

−1 1 0 1 −1 0

⎤⎥⎥⎥⎦ ,

x̄ = (20, 34, 20, 34, 16, 16).

The state bounds resulting from the solution of (5.3) and the interval arithmetic-based

implementation used in [168] are similar; the bounds resulting from the solution of (5.3) are

at least as tight as those in [168]. See Fig. 5-2. As demonstrated by Fig. 5-2b, using affine

relaxations can lead to a significant improvement in the bounds. The proposed method takes

122



0 0.01 0.02 0.03 0.04
0

2

4

6

8

10

12

14

16

18

Time (s)

C
on

ce
nt

ra
tio

n 
(M

)

(a) Species R : A′

0 0.01 0.02 0.03 0.04
0

2

4

6

8

10

12

14

16

18

Time (s)

C
on

ce
nt

ra
tio

n 
(M

)

(b) Species A′

Figure 5-2: Interval bounds computed from the system of ODEs with LPs embedded (5.3)
(solid black lines) and from the implementation in [168] (dashed black lines). Solutions of
(5.16) for constant u ∈ 𝒰 are plotted with thin solid lines.

approximately 2.2 seconds, whereas a comparable MATLAB implementation of the method

in [168] takes 0.65 seconds.

5.6 Conclusions

This chapter has considered the problem of bounding the reachable set of a nonlinear dy-

namic system pointwise in time. The approach taken is an implementation of the theory

in [168], which in turn is based on the theory of differential inequalities. The implemen-

tation leads to a system of ordinary differential equations depending on parametric linear

programs. Thus, this chapter also analyzes how numerically tractable such a system is.

The new implementation yields tighter bounds than the previous one, especially when the

admissible controls take values in a compact polyhedron.
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Chapter 6

Efficient polyhedral enclosures for the

reachable sets of nonlinear control

systems

6.1 Introduction

This chapter considers estimating the reachable set of the initial value problem in ordinary

differential equations

ẋ(𝑡,u) = f(𝑡,u(𝑡),x(𝑡,u)),

where the initial condition is in some known set and the inputs u vary in some known set

(see §6.2 for a formal problem statement). The time-varying inputs u can model noise,

disturbances, or control inputs; estimating the reachable set in these cases is critical to

robust MPC [16], fault detection [108] and global optimization of dynamic systems [177].

This chapter will focus on the construction of a time-varying polyhedral enclosure of the

reachable set. Specifically, given a matrix A, an auxiliary initial value problem in ordinary

differential equations is constructed whose solution yields the function b, such that the set

{z : Az ≤ b(𝑡)} contains the values of the solutions of the dynamic system at all times 𝑡.

The major contribution of this chapter is as follows. First, the construction of the aux-

iliary system of bounding equations closely resembles the bounding method in [168] which

produces interval bounds (i.e., component-wise upper and lower bounds) very quickly. That

work is itself an extension of differential inequality-based comparison theorems in, for in-

125



stance, [72]. The extension of these comparison theorems to the construction of polyhedral

bounds is a significant improvement, allowing bounds with the increased flexibility of poly-

hedra (as opposed to intervals) to be calculated with powerful and efficient methods for

numerical integration. The general concept of previous implementations of polyhedron-

based bounding methods, such as those in [7, 39, 40, 64], is to “move” the faces of the

approximating polyhedra in accordance with the maximum value of the dynamics on that

face, which is similar to the theory in this chapter. However, these previous methods man-

ually implement the time-stepping, which contrasts with the proposed method, which takes

advantage of established codes for numerical integration, and thus benefits from their han-

dling of step size to control errors to a desired tolerance. The methods in this chapter could

be used to implement the step forward in time in these previous methods; however, the

work presented here stands on its own as an effective method on the overall time scale of

interest, as demonstrated by the numerical experiments in §6.5. Further, these examples

provide new insight into “intelligent” choices for the matrix A which defines the polyhedral

approximation.

Another significant contribution of this work is its ability to distinguish meaningfully

between time-varying inputs and constant, but unknown, parameters. This contrasts with

the previous work involving comparison theorems, such as in [74, 97, 152, 167, 168]. As

noted in [168], comparison theorems in general take into account time-varying uncertainty,

which can be an advantage or disadvantage depending on one’s perspective or the model

of interest. In contrast, methods based on parametric Taylor-models, such as in [37, 107],

intrinsically handle constant, but uncertain parameter inputs. Since the present work is

inspired by comparison theorems, it is natural that it should be able to handle time-varying

uncertainty. But the use of polyhedra allows one to propagate affine relaxations of the states

with respect to the parameters by treating the unknown parameters as extra states, but with

time derivatives equal to zero. This explicitly enforces these uncertain inputs to be constant,

and as demonstrated by an example in §6.5.3, this leads to an improvement in the bounds.

Other work that should be mentioned involves the computation of the reachable set or

an approximation of it through a level set that evolves in time, such as in [121]. However,

this involves the solution of a Hamilton-Jacobi-type partial differential equation, and conse-

quently is more computationally demanding than the comparison theorem based methods,

including this work. This is noted in [84], in which the solution of matrix exponentials is
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favored over the solution of partial differential equations to obtain a polyhedral approxima-

tion of the reachable set of a dynamic system. However, that work only considers linear

dependence on the inputs, and weakly nonlinear dynamics.

The rest of this chapter is organized as follows. Section 6.2 gives a rigorous problem

statement. Section 6.3 is split into two subsections. Section 6.3.1 states and proves one of

the main results of this chapter, Theorem 6.3.1. This theorem is a general result stating

conditions under which a polyhedral-valued mapping is an enclosure of the reachable set.

Section 6.3.2 provides a specific instance of this theory in Corollary 6.3.3, which states

that the solution of an auxiliary initial value problem yields polyhedral bounds. This leads

to a numerically implementable method for constructing polyhedral bounds discussed in

§6.4. One of the main goals of §6.4 is to establish that the auxiliary problem satisfies

basic assumptions to be amenable to solution with general classes of numerical integration

methods. Section 6.5 demonstrates a numerical implementation of the proposed bounding

method on a few examples. Section 6.6 concludes with some final remarks.

6.2 Problem statement

Let (𝑛𝑥, 𝑛𝑢) ∈ N2, nonempty interval 𝑇 = [𝑡0, 𝑡𝑓 ] ⊂ R, 𝐷𝑥 ⊂ R𝑛𝑥 , and 𝐷𝑢 ⊂ R𝑛𝑢 be given.

For 𝑈 ⊂ 𝐷𝑢, let the set of time-varying inputs be

𝒰 =
{︀
u ∈ 𝐿1(𝑇,R𝑛𝑢) : u(𝑡) ∈ 𝑈, 𝑎.𝑒. 𝑡 ∈ 𝑇

}︀
,

and let the set of possible initial conditions be 𝑋0 ⊂ 𝐷𝑥. Given f : 𝑇 × 𝐷𝑢 × 𝐷𝑥 → R𝑛𝑥 ,

the problem of interest is the initial value problem in ODEs

ẋ(𝑡,u) = f(𝑡,u(𝑡),x(𝑡,u)), 𝑎.𝑒. 𝑡 ∈ 𝑇, (6.1a)

x(𝑡0,u) ∈ 𝑋0. (6.1b)

For given u ∈ 𝒰 , a solution is an absolutely continuous mapping x(·,u) : 𝑇 → 𝐷𝑥 which

satisfies Equations (6.1). The goal of this chapter is to construct a polyhedral-valued map-

ping 𝐵 : 𝑇 ⇒ R𝑛𝑥 such that for all u ∈ 𝒰 and any solution x(·,u) (if one exists for this u),

x(𝑡,u) ∈ 𝐵(𝑡), for all 𝑡 ∈ 𝑇 . Specifically, given a 𝑚 ∈ N and a matrix A ∈ R𝑚×𝑛𝑥 , the goal

is to find b : 𝑇 → R𝑚 such that 𝐵(𝑡) = {z : Az ≤ b(𝑡)}. This mapping 𝐵 will be referred
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to as polyhedral bounds, or just bounds.

6.3 Bounding theory

This section will give a general theorem for polyhedral bounds, which requires a specific

assumption, then discuss how to satisfy this assumption.

6.3.1 General theory

Lemma 6.3.1. Let 𝑇 ⊂ R be an interval, 𝑏 : 𝑇 → R be absolutely continuous, x : 𝑇 → R𝑛

be absolutely continuous, and a ∈ R𝑛. Then the real-valued function 𝑔 : 𝑡 ↦→ max{0,aTx(𝑡)−

𝑏(𝑡)} is absolutely continuous. Further, for almost all 𝑡 such that aTx(𝑡) > 𝑏(𝑡) and for any

v such that aTv ≤ �̇�(𝑡),

�̇�(𝑡) ≤ ‖a‖* ‖v − ẋ(𝑡)‖ .

Proof. Note that 𝑔1 : 𝑡 ↦→ aTx(𝑡) − 𝑏(𝑡) is absolutely continuous, as the sum of absolutely

continuous functions. Obviously, 𝑔2 : 𝑡 ↦→ 0 is absolutely continuous, and so 𝑔, as the

maximum of the two, can be written as 𝑔(𝑡) = 1/2(𝑔1(𝑡) + 𝑔2(𝑡) + |𝑔1(𝑡) − 𝑔2(𝑡)|). We note

this is absolutely continuous, since the composition of a Lipschitz continuous function with

an absolutely continuous function is absolutely continuous, and again the sum of absolutely

continuous functions is absolutely continuous.

On the set of 𝑡 such that aTx(𝑡) > 𝑏(𝑡), we have 𝑔(·) = aTx(·)−𝑏(·). Since 𝑔 is absolutely

continuous, we have that for almost all 𝑡 such that aTx(𝑡) > 𝑏(𝑡), �̇�(𝑡) = aTẋ(𝑡) − �̇�(𝑡).

Thus, for any v such that aTv ≤ �̇�(𝑡), �̇�(𝑡) + aTv ≤ aTẋ(𝑡) − �̇�(𝑡) + �̇�(𝑡). It follows

that �̇�(𝑡) ≤ aTẋ(𝑡) − aTv and so �̇�(𝑡) ≤ aT(ẋ(𝑡) − v). Finally, from the generalization

of the Cauchy-Schwarz inequality (that is, from the definition of the dual norm), we have

�̇�(𝑡) ≤ ‖a‖* ‖ẋ(𝑡)− v‖.

The following Assumptions and Theorem provide the heart of the general bounding

theory. The parallels between this theory and that in [168] should be fairly clear. However,

before continuing, it is useful to note a definition of the matrix A and mappings 𝑀𝑖 required

in Assumption 6.3.2 which yield the classic interval-based comparison theorem-type results

in [72], for instance. This example provides an intuitive geometric interpretation to keep

in mind while understanding the general theory. Interval bounds are obtained by letting
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𝑚 = 2𝑛𝑥 and A = [−I I]T. Then for 𝑖 ∈ {1, . . . ,𝑚}, let 𝑀𝑖(𝑡,d) be the 𝑖𝑡ℎ lower face of

the interval {z : Az ≤ d} (assuming it is nonempty). Similarly, for 𝑖 ∈ {𝑛𝑥 + 1, . . . , 2𝑛𝑥},

let 𝑀𝑖(𝑡,d) be the (𝑖−𝑛𝑥)
𝑡ℎ upper face of the interval. One can check that these definitions

satisfy Assumption 6.3.2. Section 6.3.2 focuses on a more general construction that satisfies

Assumption 6.3.2, which will provide the basis for the following numerical developments.

Assumption 6.3.1 is fairly critical to the general theory. However, it is not restrictive at

all. It is related to standard assumptions that the solutions of IVP (6.1) for a given u ∈ 𝒰 and

fixed initial condition are unique and that general classes of numerical integration methods

are applicable to the IVP (6.1) (see discussion in §2.5).

Assumption 6.3.1. For any z ∈ 𝐷𝑥, there exists a neighborhood 𝑁(z) and 𝛼 ∈ 𝐿1(𝑇 ) such

that for almost every 𝑡 ∈ 𝑇 and every p ∈ 𝑈

‖f(𝑡,p, z1)− f(𝑡,p, z2)‖ ≤ 𝛼(𝑡) ‖z1 − z2‖ ,

for every z1, z2 ∈ 𝑁(z) ∩𝐷𝑥.

Assumption 6.3.2. Consider the problem stated in §6.2. Assume that for some 𝑚 ∈ N,

A = [aT𝑖 ] ∈ R𝑚×𝑛𝑥 , 𝐷𝑀 ⊂ 𝑇 × R𝑚, and 𝑀𝑖 : 𝐷𝑀 ⇒ R𝑛𝑥 satisfy the following conditions

for each 𝑖 ∈ {1, . . . ,𝑚}:

1. For any d ∈ R𝑚, if there exists (𝑡,u) ∈ 𝑇 ×𝒰 such that Ax(𝑡,u) ≤ d and aT𝑖 x(𝑡,u) =

𝑑𝑖 for some solution x(·,u) of IVP (6.1), then (𝑡,d) ∈ 𝐷𝑀 and x(𝑡,u) ∈𝑀𝑖(𝑡,d).

2. For any (𝑡,d) ∈ 𝐷𝑀 , there exists a neighborhood 𝑁(d) of d, 𝑡′ > 𝑡, and 𝐿𝑀 > 0 such

that for any (𝑠,d1) and (𝑠,d2) in ((𝑡, 𝑡′)×𝑁(d))∩𝐷𝑀 and z1 ∈𝑀𝑖(𝑠,d1), there exists

a z2 ∈𝑀𝑖(𝑠,d2) such that

‖z1 − z2‖ ≤ 𝐿𝑀 ‖d1 − d2‖1 .

Theorem 6.3.1. Let Assumptions 6.3.1 and 6.3.2 hold. If

1. b : 𝑇 → R𝑚 is absolutely continuous and 𝐵 : 𝑇 ∋ 𝑡 ↦→ {z : Az ≤ b(𝑡)},

2. 𝑋0 ⊂ 𝐵(𝑡0),

3. for almost every 𝑡 ∈ 𝑇 and each 𝑖 ∈ {1, . . . ,𝑚}, (𝑡,b(𝑡)) ∈ 𝐷𝑀 and 𝑀𝑖(𝑡,b(𝑡)) ⊂ 𝐷𝑥,
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4. for almost every 𝑡 ∈ 𝑇 and each 𝑖 ∈ {1, . . . ,𝑚},

aT𝑖 f(𝑡,p, z) ≤ �̇�𝑖(𝑡), ∀(p, z) ∈ 𝑈 ×𝑀𝑖(𝑡,b(𝑡)),

then for all u ∈ 𝒰 and any solution x(·,u) of IVP (6.1), x(𝑡,u) ∈ 𝐵(𝑡), for all 𝑡 ∈ 𝑇 .

Proof. Fix u ∈ 𝒰 . If no solution of IVP (6.1) exists for this u, then the conclusion of

the theorem holds trivially. Otherwise, choose some solution and for convenience use the

abbreviation x(𝑡) ≡ x(𝑡,u). For each 𝑡 ∈ 𝑇 and 𝑖 ∈ {1, . . . ,𝑚}, let 𝑔𝑖(𝑡) = max{0,aT𝑖 x(𝑡)−

𝑏𝑖(𝑡)}. By Lemma 6.3.1, each 𝑔𝑖 is absolutely continuous. It follows that Ax(𝑡) ≤ b(𝑡)+g(𝑡).

Consequently, g(𝑡) = 0 implies x(𝑡) ∈ 𝐵(𝑡), and by the contrapositive x(𝑡) /∈ 𝐵(𝑡) implies

g(𝑡) ̸= 0. Thus, for a contradiction, assume that there exists a ̃︀𝑡 ∈ 𝑇 such that x(̃︀𝑡) /∈ 𝐵(̃︀𝑡).
Then the set 𝑇𝑣 = {𝑡 ∈ 𝑇 : ‖g(𝑡)‖1 > 0} is nonempty.

Let 𝑡1 = inf 𝑇𝑣. By Hypothesis 2, g(𝑡0) = 0 and so by continuity of g, ‖g(𝑡1)‖1 = 0.

Furthermore, there exists 𝑡2 > 𝑡1 and index set 𝐼 such that 𝑔𝑖(𝑡) = 0 for 𝑖 /∈ 𝐼 and 𝑡 ∈ [𝑡1, 𝑡2),

and aT𝑖 x(𝑡) = 𝑏𝑖(𝑡) + 𝑔𝑖(𝑡) for 𝑖 ∈ 𝐼 and 𝑡 ∈ [𝑡1, 𝑡2). Explicitly, for each 𝑖 define 𝑇𝑖 ≡ {𝑡 :

𝑔𝑖(𝑡) > 0}. By continuity of g, each 𝑇𝑖 is open. Let 𝐼 = {𝑖 : 𝑡1 = inf 𝑇𝑖} (which must be

nonempty) and then choose 𝑡2 > 𝑡1 such that (𝑡1, 𝑡2) ⊂
⋂︀

𝑖∈𝐼 𝑇𝑖 and (𝑡1, 𝑡2)∩ (
⋃︀

𝑖/∈𝐼 𝑇𝑖) = ∅.

Then by Assumption 6.3.2, (𝑡,b(𝑡) + g(𝑡)) ∈ 𝐷𝑀 and x(𝑡) ∈𝑀𝑖(𝑡,b(𝑡) + g(𝑡)) for 𝑖 ∈ 𝐼,

𝑡 ∈ [𝑡1, 𝑡2). Without loss of generality, let 𝑁(b(𝑡1)), 𝑡3 > 𝑡1, and 𝐿𝑀 > 0 satisfy Condition 2

of Assumption 6.3.2 at the point b(𝑡1), for each 𝑖 ∈ 𝐼. Since b and g are continuous,

there exists a 𝑡4 ∈ (𝑡1,min{𝑡2, 𝑡3}) such that b(𝑡) and (b(𝑡) + g(𝑡)) are in 𝑁(b(𝑡1)) for each

𝑡 ∈ (𝑡1, 𝑡4). Along with Hypothesis 3, it follows that for 𝑖 ∈ 𝐼 and almost every 𝑡 ∈ (𝑡1, 𝑡4),

there exists an element z𝑖(𝑡) ∈𝑀𝑖(𝑡,b(𝑡)) with

‖z𝑖(𝑡)− x(𝑡)‖ ≤ 𝐿𝑀‖g(𝑡)‖1. (6.2)

Let 𝑁(x(𝑡1)), and 𝛼 ∈ 𝐿1(𝑇 ) satisfy Assumption 6.3.1 at the point x(𝑡1). Since x and

‖g‖1 are continuous, using Inequality (6.2) and the triangle inequality

‖z𝑖(𝑡)− x(𝑡1)‖ ≤ ‖z𝑖(𝑡)− x(𝑡)‖+ ‖x(𝑡)− x(𝑡1)‖ ,

there exists a 𝑡5 ∈ (𝑡1, 𝑡4) such that z𝑖(𝑡),x(𝑡) ∈ 𝑁(x(𝑡1)), for all 𝑖 ∈ 𝐼 and almost every
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𝑡 ∈ (𝑡1, 𝑡5). Consequently,

‖f(𝑡,u(𝑡), z𝑖(𝑡))− f(𝑡,u(𝑡),x(𝑡))‖ ≤ 𝛼(𝑡) ‖z𝑖(𝑡)− x(𝑡)‖ , 𝑎.𝑒. 𝑡 ∈ (𝑡1, 𝑡5). (6.3)

But by Hypothesis 4, aT𝑖 f(𝑡,u(𝑡), z𝑖(𝑡)) ≤ �̇�𝑖(𝑡) which by Lemma 6.3.1 means

�̇�𝑖(𝑡) ≤ ‖a𝑖‖* ‖f(𝑡,u(𝑡), z𝑖(𝑡))− ẋ(𝑡)‖

= ‖a𝑖‖* ‖f(𝑡,u(𝑡), z𝑖(𝑡))− f(𝑡,u(𝑡),x(𝑡))‖ .

Combining this with Inequalities (6.2) and (6.3) we have

�̇�𝑖(𝑡) ≤ 𝐿𝑀𝛼(𝑡) ‖a𝑖‖* ‖g(𝑡)‖1 , 𝑎.𝑒. 𝑡 ∈ (𝑡1, 𝑡5).

Since this holds for each 𝑖 ∈ 𝐼 and 𝑔𝑖(𝑡) = 0 for each 𝑖 /∈ 𝐼,

∑︁
𝑖∈𝐼

�̇�𝑖(𝑡) ≤ 𝐿𝑀𝛼(𝑡)
∑︁
𝑖∈𝐼
‖a𝑖‖* ‖g(𝑡)‖1 = 𝐿𝑀𝛼(𝑡)

∑︁
𝑗∈𝐼
‖a𝑗‖*

∑︁
𝑖∈𝐼

𝑔𝑖(𝑡)

to which we can apply Gronwall’s inequality (see for instance [209]) to get

∑︁
𝑖∈𝐼

𝑔𝑖(𝑡) ≤
∑︁
𝑖∈𝐼

𝑔𝑖(𝑡1) exp

⎛⎝∫︁
[𝑡1,𝑡]

𝐿𝑀

∑︁
𝑗∈𝐼
‖a𝑗‖* |𝛼|

⎞⎠ , ∀𝑡 ∈ [𝑡1, 𝑡5].

But since
∑︀

𝑖 𝑔𝑖(𝑡1) = 0, this yields
∑︀

𝑖 𝑔𝑖(𝑡) ≤ 0, and since each 𝑔𝑖 is nonnegative always

and 𝑔𝑖(𝑡) = 0 for each 𝑖 /∈ 𝐼, we have 𝑔𝑖(𝑡) = 0 for all 𝑖 and all 𝑡 ∈ (𝑡1, 𝑡5) ⊂ 𝑇𝑣, which is

a contradiction. Since the choices of u ∈ 𝒰 and corresponding solution were arbitrary, the

result follows.

6.3.2 Implementation

This section describes how to construct the mappings 𝑀𝑖 such that they satisfy Assump-

tion 6.3.2 and lead to a numerically implementable bounding method.

Similar to the work in [166, 168], these mappings allow one to use a priori information

about the solution set of (6.1) in the form of a polyhedral-valued mapping 𝐺 : 𝑇 ⇒ R𝑛𝑥 for

which it is known that x(𝑡,u) ∈ 𝐺(𝑡), for all 𝑡 ∈ 𝑇 and u ∈ 𝒰 for which a solution exists.

The specific conditions are formalized in the following assumption and subsequent result.
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Assumption 6.3.3. For 𝑚𝑔 ∈ N, let A𝐺 ∈ R𝑚𝑔×𝑛𝑥 and b𝐺 : 𝑇 → R𝑚𝑔 . Assume that for

all u ∈ 𝒰 and any solution x(·,u) of IVP (6.1), A𝐺x(𝑡,u) ≤ b𝐺(𝑡), for all 𝑡 ∈ 𝑇 .

Proposition 6.3.2. Let Assumption 6.3.3 hold. For 𝑚 ∈ N, let A = [aT𝑖 ] ∈ R𝑚×𝑛𝑥 . Let

𝑃𝑀 : (𝑡,d) ↦→ {z : Az ≤ d,A𝐺z ≤ b𝐺(𝑡)}. (6.4)

Then A,

𝐷𝑀 = {(𝑡,d) ∈ 𝑇 × R𝑚 : 𝑃𝑀 (𝑡,d) ̸= ∅} , and (6.5)

𝑀𝑖 : (𝑡,d) ↦→ argmax{aT𝑖 z : Az ≤ d,A𝐺z ≤ b𝐺(𝑡)}. (6.6)

satisfy Assumption 6.3.2.

Proof. To see that Condition 1 of Assumption 6.3.2 holds, choose any 𝑖 ∈ {1, . . . ,𝑚}, d ∈

R𝑚, and (𝑡,u) ∈ 𝑇×𝒰 such that Ax(𝑡,u) ≤ d and aT𝑖 x(𝑡,u) = 𝑑𝑖. Since A𝐺x(𝑡,u) ≤ b𝐺(𝑡),

it holds that x(𝑡,u) ∈ 𝑃𝑀 (𝑡,d), and thus (𝑡,d) ∈ 𝐷𝑀 . Further, since aT𝑖 x(𝑡,u) = 𝑑𝑖, and

any z such that aT𝑖 z > 𝑑𝑖 would be infeasible in LP (6.6), we must have x(𝑡,u) ∈𝑀𝑖(𝑡,d).

Next, note that if 𝑃𝑀 (𝑡,d) is nonempty, then 𝑀𝑖(𝑡,d) is nonempty for all 𝑖 (𝑀𝑖(𝑡,d) is

the solution set of a linear program that must be feasible and bounded). Then to see that

Condition 2 of Assumption 6.3.2 holds, choose any (𝑠,d1), (𝑠,d2) ∈ 𝐷𝑀 . By definition of

𝐷𝑀 and the previous observation, 𝑀𝑖(𝑠,d𝑗) is nonempty for 𝑖 ∈ {1, . . . ,𝑚} and 𝑗 ∈ {1, 2}.

Applying Lemma 2.4.2, we have that there exists a 𝐿 > 0 and for each z1 ∈𝑀𝑖(𝑠,d1), there

exists a z2 ∈𝑀𝑖(𝑠,d2) such that

‖z1 − z2‖ ≤ 𝐿 ‖(d1,b𝐺(𝑠))− (d2,b𝐺(𝑠))‖1 = 𝐿 ‖d1 − d2‖1 .

The following corollary establishes a useful topological property of the set 𝐷𝑀 as well

as the fact that it is non-trivial.

Corollary 6.3.2. Let Assumption 6.3.3 hold. Assume that b𝐺 is continuous and that

IVP (6.1) has a solution for some u ∈ 𝒰 . Then for any choice of matrix A, 𝐷𝑀 defined in

Eqn. (6.5) is nonempty and closed.
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Proof. Let 𝑃 : (d1,d2) ↦→ {z : Az ≤ d1,A𝐺z ≤ d2}. Note that 𝐹 = {(d1,d2) : 𝑃 (d1,d2) ̸=

∅} is closed. This follows from §4.7 of [25]; the argument is that 𝐹 is the projection of the

polyhedron {(z,d1,d2) : Az − d1 ≤ 0,A𝐺z − d2 ≤ 0} and thus a polyhedron as well, and

so closed.

We note that 𝑃 (d,b𝐺(𝑡)) is exactly 𝑃𝑀 (𝑡,d) defined in Eqn. (6.4), and so 𝐷𝑀 is the

set of (𝑡,d) such that (d,b𝐺(𝑡)) ∈ 𝐹 . Since IVP (6.1) has a solution for u ∈ 𝒰 , there exists

x(·,u) such that for each 𝑡 ∈ 𝑇 , x(𝑡,u) is in 𝑃 (d,b𝐺(𝑡)), where d = Ax(𝑡,u). Therefore

𝐹 and 𝐷𝑀 are nonempty. Finally, note that the mapping (𝑡,d) ↦→ (d,b𝐺(𝑡)) is continuous

from 𝑇×R𝑚 to R𝑚+𝑚𝑔 . Thus, the preimage of 𝐹 under this mapping must be closed relative

to 𝑇 × R𝑚, and it is clear that this preimage must be 𝐷𝑀 . And since 𝑇 × R𝑚 is closed, a

set which is closed relative to it must be closed relative to R× R𝑚.

There are other possible choices for the definitions of 𝐷𝑀 and the mappings 𝑀𝑖. For

instance, the procedure for “tightening” an interval based on a set of linear constraints, given

in Definition 4 of [168], provides a potential alternative. However, if this procedure is used,

𝑀𝑖 would be interval-valued. In general, this interval would not be degenerate, and this

loosely means that the dynamics must be overestimated on a much larger set, leading to

more conservative bounds. In contrast, 𝑀𝑖 in Proposition 6.3.2 takes the value of the face

of a polyhedron (and thus is also polyhedral-valued), and therefore it is always a set in an

affine subspace with a lower dimension. Thus, the dynamics are overestimated on a smaller

set, leading to tighter bounds.

Further, in applications, the set of possible input values 𝑈 is typically at least polyhedral

(and more often an interval). Consequently, we note that in practice, Hypothesis 4 of

Theorem 6.3.1 requires that a linear combination of the dynamics is overestimated on a

polyhedron. This observation shapes the following result, which combines Theorem 6.3.1

and Proposition 6.3.2 to obtain a system of differential equations; the solution of this system

is b, the right-hand sides of the polyhedral-valued bounds 𝐵 : 𝑡 ↦→ {z : Az ≤ b(𝑡)}.

However, as noted, Hypothesis 4 requires that the dynamics of this system of differential

equations overestimate potentially nonlinear optimization problems. Consequently, what is

proposed in the following corollary is to solve parametric linear programming relaxations of

these problems instead, which overall leads to a much more efficiently solved system. This

forms the basis of the numerical method of the next section.
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Corollary 6.3.3. Let Assumptions 6.3.1 and 6.3.3 hold. For 𝑚 ∈ N and A ∈ R𝑚×𝑛𝑥 define

𝐷𝑀 and 𝑀𝑖, 𝑖 ∈ {1, . . . ,𝑚} as in Equations (6.5) and (6.6). For 𝑖 ∈ {1, . . . ,𝑚}, let the

mappings c𝑖 ≡ (c𝑢𝑖 , c
𝑥
𝑖 ) : 𝐷𝑀 → R𝑛𝑢×R𝑛𝑥 and ℎ𝑖 : 𝐷𝑀 → R be given. Assume the following:

1. For some 𝑚𝑢 ∈ N, there exist A𝑈 ∈ R𝑚𝑢×𝑛𝑢 and b𝑈 ∈ R𝑚𝑢 such that 𝑈 = {p :

A𝑈p ≤ b𝑈} and is nonempty and compact.

2. For 𝑖 ∈ {1, . . . ,𝑚} and all (𝑡,d) ∈ 𝐷𝑀 , 𝑀𝑖(𝑡,d) is compact and a subset of 𝐷𝑥.

3. For 𝑖 ∈ {1, . . . ,𝑚}, for each (𝑡,d) ∈ 𝐷𝑀 ,

aT𝑖 f(𝑡,p, z) ≤ (c𝑢𝑖 (𝑡,d))
Tp+ (c𝑥𝑖 (𝑡,d))

Tz+ ℎ𝑖(𝑡,d), ∀(p, z) ∈ 𝑈 ×𝑀𝑖(𝑡,d).

4. The mapping q : 𝐷𝑀 → R𝑚 is defined componentwise by

𝑞𝑖(𝑡,d) =max
(p,z)

(c𝑢𝑖 (𝑡,d))
Tp+ (c𝑥𝑖 (𝑡,d))

Tz+ ℎ𝑖(𝑡,d) (6.7)

s.t.

⎡⎢⎢⎢⎣
A𝑈 0

0 A

0 A𝐺

⎤⎥⎥⎥⎦
⎡⎣p
z

⎤⎦ ≤
⎡⎢⎢⎢⎣

b𝑈

d

b𝐺(𝑡)

⎤⎥⎥⎥⎦ ,

aT𝑖 z = max{aT𝑖 y : Ay ≤ d,A𝐺y ≤ b𝐺(𝑡)}.

5. The mapping b : 𝑇 → R𝑚 is any solution of the initial value problem in ordinary

differential equations

ḃ(𝑡) = q(𝑡,b(𝑡)), 𝑎.𝑒. 𝑡 ∈ 𝑇, (6.8)

with initial conditions that satisfy 𝑋0 ⊂ {z : Az ≤ b(𝑡0)}.

Then for all u ∈ 𝒰 and any solution x(·,u) of IVP (6.1), Ax(𝑡,u) ≤ b(𝑡), for all 𝑡 ∈ 𝑇 .

Proof. First, it is clear that the feasible set of the linear program (6.7) which defines 𝑞𝑖(𝑡,d)

is the nonempty compact set 𝑈 ×𝑀𝑖(𝑡,d). It follows that 𝑞𝑖(𝑡,d) is well defined for each

(𝑡,d) ∈ 𝐷𝑀 . Next, by assumption, Assumption 6.3.1 is satisfied. Further, if 𝐷𝑀 and 𝑀𝑖

are defined as in Equations (6.5) and (6.6), then by Proposition 6.3.2, Assumption 6.3.2 is

satisfied. Let b be any solution of the IVP (6.8). Then it is clear that b must be absolutely

continuous. Let 𝐵 : 𝑡 ↦→ {z : Az ≤ b(𝑡)}. Then by the assumption on the initial conditions

of b, 𝑋0 ⊂ 𝐵(𝑡0). Thus, the first two hypotheses of Theorem 6.3.1 are satisfied. Further, if

b is a solution of IVP (6.8), then (𝑡,b(𝑡)) ∈ 𝐷𝑀 for almost every 𝑡 ∈ 𝑇 , since otherwise q
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would not be defined and Eqn. (6.8) could not be satisfied almost every 𝑡 ∈ 𝑇 . Consequently,

by Hypothesis 2, Hypothesis 3 of Theorem 6.3.1 is satisfied. Finally, by assumption on c𝑖

and ℎ𝑖 and construction of the linear programming relaxation q, for all (𝑡,d) ∈ 𝐷𝑀

𝑞𝑖(𝑡,d) ≥ sup{aT𝑖 f(𝑡,p, z) : (p, z) ∈ 𝑈 ×𝑀𝑖(𝑡,d)}.

Therefore, b must satisfy �̇�𝑖(𝑡) ≥ aT𝑖 f(𝑡,p, z), for all (p, z) ∈ 𝑈 ×𝑀𝑖(𝑡,b(𝑡)), for each 𝑖 ∈

{1, . . . ,𝑚} and almost every 𝑡. Thus, all the assumptions and hypotheses of Theorem 6.3.1

are satisfied and so 𝐵 must bound all solutions of IVP (6.1).

6.4 Numerical implementation

The goals of this section are to state an algorithm to compute q defining IVP (6.8), and

in specific, a method to compute the affine relaxations (c𝑖, ℎ𝑖) required in Hypothesis 3

of Corollary 6.3.3. Furthermore, it is established that, with these definitions, q satisfies an

appropriate Lipschitz continuity condition to ensure that IVP (6.8) is amenable to numerical

solution.

6.4.1 Computing affine relaxations and the dynamics

To implement a bounding method based on Corollary 6.3.3, affine relaxations are needed.

Further, some specific parameterization properties of these relaxations are required. To

simplify the discussion, the following assumption is made. With this assumption, we only

need to calculate an interval enclosure of 𝑀𝑖(𝑡,d) to establish Hypothesis 3 of Corollary 6.3.3.

See Ch. 3 (as well as the discussion in §5.4.2) for a method to construct affine relaxations

on intervals which satisfy Assumption 6.4.1.

Assumption 6.4.1. Let 𝐷I
𝑥 = {(v,w) ∈ R𝑛𝑥 × R𝑛𝑥 : v ≤ w, [v,w] ⊂ 𝐷𝑥}. Assume that

for each 𝑖 ∈ {1, . . . ,𝑚}, there exist continuous ̃︀c𝑖 ≡ (̃︀c𝑢𝑖 ,̃︀c𝑥𝑖 ) : 𝑇 × 𝐷I
𝑥 → R𝑛𝑢 × R𝑛𝑥 and

continuous ̃︀ℎ𝑖 : 𝑇 ×𝐷I
𝑥 → R such that for each (v,w) ∈ 𝐷I

𝑥 and 𝑡 ∈ 𝑇 ,

aT𝑖 f(𝑡,p, z) ≤ (̃︀c𝑢𝑖 (𝑡,v,w))T p+ (̃︀c𝑥𝑖 (𝑡,v,w))T z+ ̃︀ℎ𝑖(𝑡,v,w),

for all (p, z) ∈ 𝑈× [v,w]. Further, for all (v,w) ∈ 𝐷I
𝑥, there exists a neighborhood 𝑁 𝑖(v,w)
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and ̃︀𝐿𝑖 > 0 such that for all (𝑡,v1,w1) and (𝑡,v2,w2) in 𝑇 ×𝑁 𝑖(v,w) ∩𝐷I
𝑥

‖̃︀c𝑖(𝑡,v1,w1)− ̃︀c𝑖(𝑡,v2,w2)‖ ≤ ̃︀𝐿𝑖 ‖(v1,w1)− (v2,w2)‖ ,⃒⃒⃒̃︀ℎ𝑖(𝑡,v1,w1)− ̃︀ℎ𝑖(𝑡,v2,w2)
⃒⃒⃒
≤ ̃︀𝐿𝑖 ‖(v1,w1)− (v2,w2)‖ .

Next, we introduce a procedure for “tightening” an interval given a set of linear con-

straints, originally from Definition 4 in [168]. See Algorithm 3; this algorithm defines the

operation 𝐼𝑡, which tightens a nonempty interval [v,w] by excluding points which cannot

satisfy given linear constraints Mz ≤ d. Specifically, the discussion in §5.2 of [168] estab-

lishes that the tightened interval 𝐼𝑡([v,w],d;M) satisfies

{z ∈ [v,w] : Mz ≤ d} ⊂ 𝐼𝑡([v,w],d;M) ⊂ [v,w].

This property and another regarding parametric regularity are stated formally in Proposi-

tion 6.4.1.

Algorithm 3 Definition of the interval-tightening operator 𝐼𝑡

Require: (𝑛𝑚, 𝑛) ∈ N2, M = [𝑚𝑖,𝑗 ] ∈ R𝑛𝑚×𝑛, d ∈ R𝑛𝑚 , (v,w) ∈ R𝑛 × R𝑛, v ≤ w
(̂︀v, ̂︀w)← (v,w)
for 𝑖 ∈ {1, . . . , 𝑛𝑚} do

for 𝑗 ∈ {1, . . . , 𝑛} do
if 𝑚𝑖,𝑗 ̸= 0 then
𝛾 ← median

{︁̂︀𝑣𝑗 , ̂︀𝑤𝑗 , 1/𝑚𝑖,𝑗

(︀
𝑑𝑖 +

∑︀
𝑘 ̸=𝑗 max{−𝑚𝑖,𝑘̂︀𝑣𝑘,−𝑚𝑖,𝑘 ̂︀𝑤𝑘}

)︀}︁
if 𝑚𝑖,𝑗 > 0 then̂︀𝑤𝑗 ← 𝛾
end if
if 𝑚𝑖,𝑗 < 0 then̂︀𝑣𝑗 ← 𝛾
end if

end if
end for

end for
return 𝐼𝑡([v,w],d;M)← [̂︀v, ̂︀w]

Proposition 6.4.1. For any (𝑛𝑚, 𝑛) ∈ N2, let M ∈ R𝑛𝑚×𝑛. For any (v,w,d) ∈ R𝑛 ×

R𝑛 × R𝑛𝑚 with v ≤ w, the interval-tightening operator 𝐼𝑡 defined in Algorithm 3 satisfies
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𝐼𝑡([v,w],d;M) ̸= ∅ and

{z ∈ [v,w] : Mz ≤ d} ⊂ 𝐼𝑡([v,w],d;M) ⊂ [v,w].

Further, let v𝐼𝑡 and w𝐼𝑡 be the endpoints of 𝐼𝑡:

[v𝐼𝑡(v,w,d;M),w𝐼𝑡(v,w,d;M)] = 𝐼𝑡([v,w],d;M).

Then there exists a 𝐿M > 0 such that for (v1,w1,d1) and (v2,w2,d2) in R𝑛 × R𝑛 × R𝑛𝑚

with v1 ≤ w1 and v2 ≤ w2,

‖v𝐼𝑡(v1,w1,d1;M)− v𝐼𝑡(v2,w2,d2;M)‖ ≤ 𝐿M ‖(v1,w1,d1)− (v2,w2,d2)‖ ,

‖w𝐼𝑡(v1,w1,d1;M)−w𝐼𝑡(v2,w2,d2;M)‖ ≤ 𝐿M ‖(v1,w1,d1)− (v2,w2,d2)‖ .

Proof. First, the fact that 𝐼𝑡 is never empty-valued is established. The end value that 𝐼𝑡

takes is given by [̂︀v, ̂︀w], which is initialized as [v,w] (which is nonempty since v ≤ w), and

then inductively defined in two nested loops. Consider the 𝑖𝑡ℎ iteration of the outer loop

and the 𝑗𝑡ℎ iteration of the inner loop. The key thing to note is that the component ̂︀𝑣𝑗 or̂︀𝑤𝑗 is assigned the value of 𝛾, which is defined as the median of ̂︀𝑣𝑗 , ̂︀𝑤𝑗 , and some other value.

But since ̂︀𝑣𝑗 ≤ ̂︀𝑤𝑗 , whatever this other value is, we always have 𝛾 ∈ [̂︀𝑣𝑗 , ̂︀𝑤𝑗 ]. Whether ̂︀𝑣𝑗
or ̂︀𝑤𝑗 is redefined at this iteration, both [̂︀𝑣𝑗 , 𝛾] and [𝛾, ̂︀𝑤𝑗 ] are nonempty. Since this holds

for each 𝑗 and 𝑖, the end result is a nonempty interval [̂︀v, ̂︀w]. This also establishes that

𝐼𝑡([v,w],d;M) ⊂ [v,w]. The argument from §5.2 of [168] establishes that 𝐼𝑡([v,w],d;M) ⊃

{z ∈ [v,w] : Mz ≤ d}.

To see that the final property holds, note that (v𝐼𝑡,w𝐼𝑡) are defined by the finite compo-

sition of Lipschitz continuous mappings. These operations are the identity mapping, scalar

multiplication, addition, maximum of two numbers, and the median value of three numbers,

median {𝑎, 𝑏, 𝑐} = min{max{𝑎, 𝑏},max{𝑎, 𝑐},max{𝑏, 𝑐}},

and thus it is clear that the operations are Lipschitz continuous. Although there are “if”

statements in Algorithm 3, these depend on the matrix M which is not varying. Conse-

quently, v𝐼𝑡 and w𝐼𝑡 are Lipschitz continuous, as claimed.
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At this point, a specific algorithm for computing q defining the dynamics in IVP (6.8)

can be stated. See Algorithm 4. In Step 1 of Algorithm 4, an interval enclosure of 𝑀𝑖(𝑡,d)

is given by [v𝑖(𝑡,d),w𝑖(𝑡,d)], obtained by recursively applying the tightening operation 𝐼𝑡

to some interval enclosure of the overall polyhedron {z : Az ≤ d,A𝐺z ≤ b𝐺(𝑡)}. In the

algorithm, this initial enclosure is taken as the interval hull. However, this means that

none of the constraints defining the overall polyhedron will result in a reduction of the size

of the interval when applying the tightening operation. Thus, what should be noted is

that the first inequality used in tightening is the one unique to the definition of 𝑀𝑖(𝑡,d):

−aT𝑖 z ≤ −𝑏*𝑖 (𝑡,d). Intuitively, using this constraint first results in the most significant

reduction in the size of the interval.

Algorithm 4 Calculation of dynamics q of bounding IVP (6.8)

Require: (𝑡,d) ∈ 𝐷𝑀

Calculate b*(𝑡,d) by 𝑏*𝑖 (𝑡,d) = max{aT𝑖 z : Az ≤ d,A𝐺z ≤ b𝐺(𝑡)}.
Calculate [v*(𝑡,d),w*(𝑡,d)] by

𝑣*𝑗 (𝑡,d) = min{𝑧𝑗 : Az ≤ d,A𝐺z ≤ b𝐺(𝑡)},
𝑤*
𝑗 (𝑡,d) = max{𝑧𝑗 : Az ≤ d,A𝐺z ≤ b𝐺(𝑡)}.

for 𝑖 ∈ {1, . . . ,𝑚} do
1. Calculate [v𝑖(𝑡,d),w𝑖(𝑡,d)] by the following:

(a) [̂︀v, ̂︀w]← [v*(𝑡,d),w*(𝑡,d)].
(b) [̂︀v, ̂︀w]← 𝐼𝑡([̂︀v, ̂︀w],−𝑏*𝑖 (𝑡,d);−aT𝑖 ).
(c) [̂︀v, ̂︀w]← 𝐼𝑡([̂︀v, ̂︀w],b*(𝑡,d);A).
(d) [v𝑖(𝑡,d),w𝑖(𝑡,d)]← 𝐼𝑡([̂︀v, ̂︀w],b𝐺(𝑡);A𝐺).

2. Calculate c𝑢𝑖 (𝑡,d) = ̃︀c𝑢𝑖 (𝑡,v𝑖(𝑡,d),w𝑖(𝑡,d)), c𝑥𝑖 (𝑡,d) = ̃︀c𝑥𝑖 (𝑡,v𝑖(𝑡,d),w𝑖(𝑡,d)),
and ℎ𝑖(𝑡,d) = ̃︀ℎ𝑖(𝑡,v𝑖(𝑡,d),w𝑖(𝑡,d)) (See Assumption 6.4.1).

3. Calculate

𝑞𝑖(𝑡,d) =max
(p,z)

(c𝑢𝑖 (𝑡,d))
Tp+ (c𝑥𝑖 (𝑡,d))

Tz+ ℎ𝑖(𝑡,d)

s.t.

⎡⎣A𝑈 0
0 A
0 A𝐺

⎤⎦[︂p
z

]︂
≤

⎡⎣ b𝑈

d
b𝐺(𝑡)

⎤⎦ ,

aT𝑖 z = 𝑏*𝑖 (𝑡,d).

end for
return q(𝑡,d)

138



6.4.2 Lipschitz continuity of the dynamics

This section establishes that q defined in Algorithm 4 satisfies a Lipschitz continuity con-

dition akin to that in Definition 2.5.1. As discussed in §2.5, this condition helps establish

that an IVP is amenable to solution with most numerical integration methods. It should be

noted that the domain of q defined in Algorithm 4 is 𝐷𝑀 . This is not necessarily an open

set, which can often cause numerical issues. However, as discussed in §5.4.3, in practice

the Lipschitz condition on q is sufficient for the successful solution of IVP (6.8) with most

numerical integration methods.

The following lemma helps establish that the affine relaxations (c𝑖, ℎ𝑖) defined in Algo-

rithm 4 have the appropriate continuity properties required in Theorem 6.4.1 below.

Lemma 6.4.2. Let Assumptions 6.3.3 and 6.4.1 hold. For 𝑚 ∈ N and A ∈ R𝑚×𝑛𝑥 define

𝐷𝑀 as in Eqn. (6.5). Assume the following:

1. b𝐺 is continuous on 𝑇 .

2. For 𝑖 ∈ {1, . . . ,𝑚}, Step 1 in Algorithm 4 defines (v𝑖,w𝑖) : 𝐷𝑀 → R𝑛𝑥 × R𝑛𝑥 which

satisfies [v𝑖(𝑡,d),w𝑖(𝑡,d)] ⊂ 𝐷𝑥, for all (𝑡,d) ∈ 𝐷𝑀 .

3. For 𝑖 ∈ {1, . . . ,𝑚}, define c𝑖 = (c𝑢𝑖 , c
𝑥
𝑖 ) : 𝐷𝑀 → R𝑛𝑢 × R𝑛𝑥 and ℎ𝑖 : 𝐷𝑀 → R by

Step 2 in Algorithm 4; i.e.

c𝑢𝑖 (𝑡,d) = ̃︀c𝑢𝑖 (𝑡,v𝑖(𝑡,d),w𝑖(𝑡,d)), c𝑥𝑖 (𝑡,d) = ̃︀c𝑥𝑖 (𝑡,v𝑖(𝑡,d),w𝑖(𝑡,d)),

ℎ𝑖(𝑡,d) = ̃︀ℎ𝑖(𝑡,v𝑖(𝑡,d),w𝑖(𝑡,d)).

Then for 𝑖 ∈ {1, . . . ,𝑚}, c𝑖 and ℎ𝑖 are continuous, and for all (𝑡,d) ∈ 𝐷𝑀 , there exists a

neighborhood 𝑁 𝑖(d) of d and 𝐿𝑖 > 0 such that for all (𝑡′,d1) and (𝑡′,d2) in (𝑇×𝑁 𝑖(d))∩𝐷𝑀

⃦⃦
c𝑖(𝑡

′,d1)− c𝑖(𝑡
′,d2)

⃦⃦
≤ 𝐿𝑖 ‖d1 − d2‖ ,⃒⃒

ℎ𝑖(𝑡
′,d1)− ℎ𝑖(𝑡

′,d2)
⃒⃒
≤ 𝐿𝑖 ‖d1 − d2‖ .

Proof. By Lemma 2.4.2 and the fact that b𝐺 is continuous, v*, w*, and b* defined in

Algorithm 4 are continuous, and there exists a 𝐿 > 0 such that for any (𝑡,d1) and (𝑡,d2) in

𝐷𝑀

‖v*(𝑡,d1)− v*(𝑡,d2)‖ ≤ 𝐿 ‖d1 − d2‖ ,
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and similarly for w* and b*. Combined with the Lipschitz continuity of the endpoints of 𝐼𝑡

from Proposition 6.4.1, v𝑖 and w𝑖 are continuous and must satisfy

⃦⃦
v𝑖(𝑡,d1)− v𝑖(𝑡,d2)

⃦⃦
1
≤ 𝐿𝑣,𝑖 ‖d1 − d2‖ , (6.9)⃦⃦

w𝑖(𝑡,d1)−w𝑖(𝑡,d2)
⃦⃦
1
≤ 𝐿𝑣,𝑖 ‖d1 − d2‖ , (6.10)

for some 𝐿𝑣,𝑖 > 0 and all (𝑡,d1) and (𝑡,d2) in 𝐷𝑀 .

Choose (𝑡,d) ∈ 𝐷𝑀 . By Hypothesis 2, (v𝑖(𝑡,d),w𝑖(𝑡,d)) ∈ 𝐷I
𝑥 (as defined in As-

sumption 6.4.1). Let 𝑁 𝑖(v𝑖(𝑡,d),w𝑖(𝑡,d)) be the open neighborhood of (v𝑖(𝑡,d),w𝑖(𝑡,d))

assumed to exist by Assumption 6.4.1. Assume without loss of generality that

𝑁 𝑖(v𝑖(𝑡,d),w𝑖(𝑡,d)) = 𝑁𝛿(v
𝑖(𝑡,d))×𝑁𝛿(w

𝑖(𝑡,d)).

By Inequalities (6.9) and (6.10), if (𝑡,d′) ∈ 𝐷𝑀 satisfies that ‖d− d′‖ < 𝛿/𝐿𝑣,𝑖 = 𝜀𝑖, it

follows that (v𝑖(𝑡,d′),w𝑖(𝑡,d′)) ∈ 𝑁 𝑖(v𝑖(𝑡,d),w𝑖(𝑡,d)). Consequently, for any (𝑡,d1) and

(𝑡,d2) in (𝑇 ×𝑁𝜀𝑖(d)) ∩𝐷𝑀 ,

⃦⃦̃︀c𝑖(𝑡,v𝑖(𝑡,d1),w
𝑖(𝑡,d1))− ̃︀c𝑖(𝑡,v𝑖(𝑡,d2),w

𝑖(𝑡,d2))
⃦⃦

≤ ̃︀𝐿𝑖

⃦⃦
(v𝑖(𝑡,d1),w

𝑖(𝑡,d1))− (v𝑖(𝑡,d2),w
𝑖(𝑡,d2))

⃦⃦
1

≤ ̃︀𝐿𝑖 (𝐿𝑣,𝑖 ‖d1 − d2‖+ 𝐿𝑣.𝑖 ‖d1 − d2‖)

= 2̃︀𝐿𝑖𝐿𝑣,𝑖 ‖d1 − d2‖ .

This establishes that c𝑖 is continuous and satisfies the Lipschitz condition. A similar argu-

ment establishes that ℎ𝑖 is continuous and satisfies this condition as well.

Theorem 6.4.1 below shows that q defined in Algorithm 4 satisfies the desired Lipschitz

continuity assumption of many numerical integration methods, and thus that IVP (6.8) is

amenable to numerical solution.

Theorem 6.4.1. Let Assumptions 6.3.3 and 6.4.1 hold. For 𝑚 ∈ N and A ∈ R𝑚×𝑛𝑥 define

𝐷𝑀 as in Eqn. (6.5). In addition, assume the following.

1. For some 𝑚𝑢 ∈ N, there exist A𝑈 ∈ R𝑚𝑢×𝑛𝑢 and b𝑈 ∈ R𝑚𝑢 such that 𝑈 = {p :

A𝑈p ≤ b𝑈} and is nonempty and compact.
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2. b𝐺 is continuous on 𝑇 .

3. IVP (6.1) has a solution for some u ∈ 𝒰 .

4. For 𝑖 ∈ {1, . . . ,𝑚}, Step 1 in Algorithm 4 defines (v𝑖,w𝑖) : 𝐷𝑀 → R𝑛𝑥 × R𝑛𝑥 which

satisfies [v𝑖(𝑡,d),w𝑖(𝑡,d)] ⊂ 𝐷𝑥, for all (𝑡,d) ∈ 𝐷𝑀 .

Then the mapping q defined in Algorithm 4 is continuous, and for all (𝑡,d) ∈ 𝐷𝑀 , there

exists a neighborhood 𝑁 𝑞(d) of d and 𝐿𝑞 > 0 such that for all (𝑡′,d1) and (𝑡′,d2) in (𝑇 ×

𝑁 𝑞(d)) ∩𝐷𝑀 ⃦⃦
q(𝑡′,d1)− q(𝑡′,d2)

⃦⃦
≤ 𝐿𝑞 ‖d1 − d2‖ .

Proof. For 𝑖 ∈ {1, . . . ,𝑚}, define 𝑏*𝑖 : 𝐷𝑀 → R by 𝑏*𝑖 (𝑡,d) = max{aT𝑖 y : Ay ≤ d,A𝐺y ≤

b𝐺(𝑡)}. It is clear that 𝑏*𝑖 is well defined (i.e. the maximum is indeed attained for any

(𝑡,d) ∈ 𝐷𝑀 ). Furthermore, since b𝐺 is continuous and by Lemma 2.4.2 the optimal objective

value of an LP is continuous with respect to the right-hand side of its constraints, 𝑏*𝑖 is

continuous. Applying Lemma 2.4.2 again, we have that there exists a 𝐿*
𝑖 > 0 such that

|𝑏*𝑖 (𝑡1,d1)− 𝑏*𝑖 (𝑡2,d2)| ≤ 𝐿*
𝑖 ‖(d1,b𝐺(𝑡1))− (d2,b𝐺(𝑡2))‖1

= 𝐿*
𝑖 ‖d1 − d2‖1 + 𝐿*

𝑖 ‖b𝐺(𝑡1)− b𝐺(𝑡2)‖1

for all (𝑡1,d1) and (𝑡2,d2) in 𝐷𝑀 . Let ̂︀𝑚 = 𝑚𝑢 +𝑚+𝑚𝑔 + 2. Let ̂︀b𝑖 : 𝐷𝑀 → R̂︀𝑚 be given

by ̂︀b𝑖(𝑡,d) = (b𝑈 ,d,b𝐺(𝑡), 𝑏
*
𝑖 (𝑡,d),−𝑏*𝑖 (𝑡,d)). Again, ̂︀b𝑖 is the composition of continuous

functions and so is continuous. We also have

⃦⃦⃦̂︀b𝑖(𝑡1,d1)− ̂︀b𝑖(𝑡2,d2)
⃦⃦⃦
1
= ‖d1 − d2‖1 + ‖b𝐺(𝑡1)− b𝐺(𝑡2)‖1 + 2 |𝑏*𝑖 (𝑡1,d1)− 𝑏*𝑖 (𝑡2,d2)|

≤ (2𝐿*
𝑖 + 1)(‖d1 − d2‖1 + ‖b𝐺(𝑡1)− b𝐺(𝑡2)‖1),

for all (𝑡1,d1) and (𝑡2,d2) in 𝐷𝑀 . From this inequality, there exists a ̂︀𝐿𝑖 > 0 such that

⃦⃦⃦̂︀b𝑖(𝑡,d1)− ̂︀b𝑖(𝑡,d2)
⃦⃦⃦
1
≤ ̂︀𝐿𝑖 ‖d1 − d2‖1

for all (𝑡,d1) and (𝑡,d2) in 𝐷𝑀 . Further, since b𝐺 is continuous on compact 𝑇 it is also

bounded, and for any (𝑡,d) ∈ 𝐷𝑀 and (bounded) neighborhood 𝑁(d) of d, there exists a
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finite 𝑘 ≥ 0 such that

⃦⃦⃦̂︀b𝑖(𝑡1,d1)− ̂︀b𝑖(𝑡2,d2)
⃦⃦⃦
≤ 𝑘

for all (𝑡1,d1) and (𝑡2,d2) in (𝑇 × 𝑁(d)) ∩ 𝐷𝑀 , which is to say that the image of (𝑇 ×

𝑁(d)) ∩𝐷𝑀 under ̂︀b𝑖 is bounded.

For 𝑖 ∈ {1, . . . ,𝑚}, define c𝑖 = (c𝑢𝑖 , c
𝑥
𝑖 ) : 𝐷𝑀 → R𝑛𝑢 × R𝑛𝑥 and ℎ𝑖 : 𝐷𝑀 → R as in

Step 2 in Algorithm 4 (the same definition in Lemma 6.4.2). Then by Lemma 6.4.2 each c𝑖

(and ℎ𝑖) are continuous, and so a similar boundedness condition holds for each c𝑖: For any

(𝑡,d) ∈ 𝐷𝑀 and bounded neighborhood 𝑁(d) of d, 𝑇×𝑁(d) is compact. By Corollary 6.3.2,

𝐷𝑀 is nonempty and closed, so (𝑇 ×𝑁(d)) ∩𝐷𝑀 is compact, and so its image under c𝑖 is

compact and thus bounded.

Let

̂︀A𝑖 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A𝑈 0

0 A

0 A𝐺

0 aT𝑖

0 −aT𝑖

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

For d ∈ R̂︀𝑚, let 𝑃𝑖(d) = {y : ̂︀A𝑖y ≤ d}. Let 𝐹𝑖 = {d : 𝑃𝑖(d) ̸= ∅}. 𝐹𝑖 is a closed

set, by a similar argument as in Corollary 6.3.2. Let ̂︀𝑞𝑖 : R𝑛𝑢+𝑛𝑥 × 𝐹𝑖 → R be given bŷ︀𝑞𝑖(c,d) = max{cTy : ̂︀A𝑖y ≤ d}. We note that

𝑃𝑖(̂︀b𝑖(𝑡,d)) = 𝑈 × argmax{aT𝑖 z : Az ≤ d,A𝐺z ≤ b𝐺(𝑡)}.

By the definition of 𝐷𝑀 and Hypothesis 1, 𝑃𝑖(̂︀b𝑖(𝑡,d)) is nonempty for each (𝑡,d) ∈ 𝐷𝑀 .

By Hypothesis 4 and Proposition 6.4.1,

[v𝑖(𝑡,d),w𝑖(𝑡,d)] ⊃ argmax{aT𝑖 z : Az ≤ d,A𝐺z ≤ b𝐺(𝑡)}

and so along with Hypothesis 1, 𝑃𝑖(̂︀b𝑖(𝑡,d)) is also compact for each (𝑡,d) ∈ 𝐷𝑀 . This also

establishes that ̂︀b𝑖(𝑡,d) ∈ 𝐹𝑖 for each (𝑡,d) ∈ 𝐷𝑀 . Applying Lemma 2.4.2, we note that

there exists a 𝐿 > 0 such that for all (d1,d2) ∈ 𝐹𝑖 × 𝐹𝑖, for each y1 ∈ 𝑃𝑖(d1), there exists a
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y2 ∈ 𝑃𝑖(d2) such that

‖y1 − y2‖ ≤ 𝐿 ‖d1 − d2‖ .

Since 𝑃𝑖(̂︀b𝑖(𝑡,d
′)) is nonempty and compact for all (𝑡,d′) ∈ 𝐷𝑀 , there exists a finite

𝑘(𝑡,d′) ≥ 0 such that for all y′
1 and y′

2 in 𝑃𝑖(̂︀b𝑖(𝑡,d
′)),

⃦⃦
y′
1 − y′

2

⃦⃦
≤ 𝑘(𝑡,d′).

Thus, for any d ∈ 𝐹𝑖, and for any y1 and y2 in 𝑃𝑖(d), we can fix (𝑡,d′) ∈ 𝐷𝑀 and

(y′
1,y

′
2) ∈ 𝑃𝑖(̂︀b𝑖(𝑡,d

′))× 𝑃𝑖(̂︀b𝑖(𝑡,d
′)) such that

‖y1 − y2‖ ≤
⃦⃦
y1 − y′

1

⃦⃦
+
⃦⃦
y′
1 − y′

2

⃦⃦
+
⃦⃦
y′
2 − y2

⃦⃦
≤ 2𝐿

⃦⃦⃦
d− ̂︀b𝑖(𝑡,d

′)
⃦⃦⃦
+ 𝑘(𝑡,d′) < +∞.

Consequently, 𝑃𝑖(d) is compact for each d ∈ 𝐹𝑖. It follows that ̂︀𝑞𝑖 is finite and well-defined

on R𝑛𝑢+𝑛𝑥 × 𝐹𝑖, and further by Lemma 2.4.3 it is locally Lipschitz continuous.

Finally, note that 𝑞𝑖(𝑡,d) = ̂︀𝑞𝑖(c𝑖(𝑡,d), ̂︀b𝑖(𝑡,d))+ℎ𝑖(𝑡,d). We have that 𝑞𝑖 is continuous,

since ̂︀𝑞𝑖, c𝑖, ̂︀b𝑖, and ℎ𝑖 are continuous. Now choose (𝑡,d) ∈ 𝐷𝑀 . By Lemma 6.4.2 there

exists a neighborhood 𝑁 𝑖(d) of d and 𝐿𝑖 > 0 such that for all (𝑡′,d1) and (𝑡′,d2) in (𝑇 ×

𝑁 𝑖(d)) ∩𝐷𝑀

⃦⃦
c𝑖(𝑡

′,d1)− c𝑖(𝑡
′,d2)

⃦⃦
≤ 𝐿𝑖 ‖d1 − d2‖ ,⃒⃒

ℎ𝑖(𝑡
′,d1)− ℎ𝑖(𝑡

′,d2)
⃒⃒
≤ 𝐿𝑖 ‖d1 − d2‖ .

Let 𝐾𝑖 be the image of (𝑇 ×𝑁 𝑖(d))∩𝐷𝑀 under (c𝑖, ̂︀b𝑖). As established earlier, c𝑖 and ̂︀b𝑖 are

bounded on (𝑇 ×𝑁 𝑖(d)) ∩𝐷𝑀 , and so it follows that 𝐾𝑖 is bounded and so its closure is a

compact subset of R𝑛𝑢+𝑛𝑥 ×𝐹𝑖. Since ̂︀𝑞𝑖 is locally Lipschitz continuous (on locally compact

R𝑛𝑢+𝑛𝑥 × 𝐹𝑖), it is Lipschitz continuous on 𝐾𝑖, and so there exists ̂︀𝐿𝑞 > 0 such that

⃒⃒
𝑞𝑖(𝑡

′,d1)− 𝑞𝑖(𝑡
′,d2)

⃒⃒
≤ ̂︀𝐿𝑞

⃦⃦
c𝑖(𝑡

′,d1)− c𝑖(𝑡
′,d2)

⃦⃦
1
+

̂︀𝐿𝑞

⃦⃦⃦̂︀b𝑖(𝑡
′,d1)− ̂︀b𝑖(𝑡

′,d2)
⃦⃦⃦
1
+⃒⃒

ℎ𝑖(𝑡
′,d1)− ℎ𝑖(𝑡

′,d2)
⃒⃒
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for all (𝑡′,d1) and (𝑡′,d2) in (𝑇 ×𝑁 𝑖(d))∩𝐷𝑀 . Then, applying the properties of c𝑖, ̂︀b𝑖 and

ℎ𝑖, we have that

⃒⃒
𝑞𝑖(𝑡

′,d1)− 𝑞𝑖(𝑡
′,d2)

⃒⃒
≤ (̂︀𝐿𝑞𝐿𝑖 + ̂︀𝐿𝑞

̂︀𝐿𝑖 + 𝐿𝑖) ‖d1 − d2‖ ,

for all (𝑡′,d1) and (𝑡′,d2) in (𝑇 × 𝑁 𝑖(d)) ∩𝐷𝑀 , applying the equivalence of norms on R𝑛

as necessary. Since this holds for each 𝑖 ∈ {1, . . . ,𝑚}, the desired conclusion holds.

6.5 Numerical examples

This section considers the performance of a numerical implementation of the bounding

method established in Corollary 6.3.3, using the definition of q in Algorithm 4. This im-

plementation is a C/C++ code which solves the IVP (6.8) with the implementation of the

Backwards Differentiation Formulae (BDF) in the CVODE component of the SUNDIALS

suite [78] (http://computation.llnl.gov/casc/sundials/main.html). Newton’s method

is used for the corrector iteration. CPLEX version 12.4 [85] is used to solve the linear pro-

grams required to define the dynamics in Algorithm 4. Further, all LPs are solved with

advanced starting information (“warm-started”) with dual simplex. This results in a fairly

significant speedup of the code, as Phase I simplex typically can be skipped. The feasibility

and optimality tolerances used to solve the LPs and the integration tolerances are given

below for each individual example. It should be noted that for these values of the toler-

ances, an infeasible LP is never encountered in these examples. All numerical studies were

performed on a 64-bit Linux virtual machine allocated a single core of a 3.07 GHz Intel Xeon

processor and 1.28 GB of RAM.

6.5.1 Lotka-Volterra problem

The Lotka-Volterra problem is a classic problem in the study of nonlinear dynamic systems

and often serves as a benchmark for numerical methods. It is thought of as a model for the

evolution in time of the populations of a predator and a prey species, and the solution is
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asymptotically periodic. The equations describing this system are

�̇�1(𝑡) = 𝑢1(𝑡)𝑥1(𝑡)(1− 𝑥2(𝑡)), (6.11)

�̇�2(𝑡) = 𝑢2(𝑡)𝑥2(𝑡)(𝑥1(𝑡)− 1). (6.12)

For this study the initial conditions are x(0) = (1.2, 1.1). The goal is to compute enclosures

of the solutions for any value of the inputs u ∈ 𝒰 , where 𝑈 = [2.99, 3.01] × [0.99, 1.01].

These are the same input ranges and initial conditions used in [107], which demonstrates

the performance of the code VSPODE, an implementation of a Taylor model based bounding

procedure.

For this example, one could claim that since 𝑥1 and 𝑥2 represent the populations of

species, they should always be nonnegative, and consequently one could set A𝐺 = −I and

b𝐺 : 𝑡 ↦→ 0. However, for what will be considered “meaningful” bounds, this kind of a

priori enclosure does not make a difference. Consequently, for the purpose of applying the

theory, the vacuous enclosure given by A𝐺 = [0, 0] and b𝐺 : 𝑡 ↦→ 0 is used, although in the

implementation this information is unnecessary and is easily omitted.

In [107], VSPODE manages to propagate upper and lower bounds on the solution which

remain a subset of the interval in state space [0.5, 1.5] × [0.5, 1.5] on the time interval 𝑇 =

[0, 10]. This is used as a metric to determine whether the calculated bounds are “meaningful.”

First, interval bounds are calculated, which is to say that the matrix A = [−I I]T is used.

Unfortunately, despite the use of affine relaxations to improve the estimate of the dynamics,

the upper and lower bounds for each species calculated using the above A matrix cease to

be a subset of the interval [0.5, 1.5]× [0.5, 1.5] before 𝑡 = 4, or before the completion of one

full cycle. This, of course, is one of the drawbacks of pure interval enclosures, and what

has motivated the development of Taylor model bounding methods. It should be noted that

although the bounds are meaninglessly loose in this case, there is no associated numerical

“breakdown” before 𝑡 = 10; the solution of the linear programs defining the dynamics and

the numerical integration method still proceed without error.

However, using the polyhedral bounding theory discussed in the present work, it is

possible to obtain much better upper and lower bounds, which remain a subset of the

interval [0.5, 1.5]× [0.5, 1.5] for all 𝑡 ∈ 𝑇 . This can be achieved by letting the 𝑖𝑡ℎ row aT𝑖 of
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the matrix A ∈ R16×2 be given by

aT𝑖 =
[︁
cos ((𝑖/16)2𝜋) , sin ((𝑖/16)2𝜋)

]︁
. (6.13)

Each row of A merely represents the normal of a face of a 16-sided polygon. Lower and

upper bounds on each component can be chosen from these bounding hyperplanes. The

results are plotted in Fig. 6-1. The upper and lower bounds resulting from A in Eqn. (6.13)

are superior, and indeed are a subset of [0.5, 1.5]× [0.5, 1.5] for all 𝑡 ∈ [0, 10]. In effect, the

use of the current theory more than doubles the time interval over which meaningful bounds

can be calculated.

Using LP feasibility and optimality tolerances of 10−5 and 10−6, respectively, and abso-

lute and relative integration tolerances of 10−6, the CPU time required to solve the bounding

system is 0.050 seconds (with A defined in Eqn. (6.13)). For comparison, the purely interval

bounds require 0.020 seconds, while the time required by VSPODE (on a processor with a

comparable clock speed) reported in [107] is 0.59 seconds. Although the enclosure obtained

from VSPODE is tighter, it is solving an intrinsically different problem; namely, one in

which the inputs 𝑢1 and 𝑢2 are constant functions on 𝑇 . That is, for all 𝑡 ∈ 𝑇 , u(𝑡) ≡ ̂︀u for

some ̂︀u ∈ 𝑈 .

6.5.2 Stirred-tank reactor

This next example demonstrates that, in contrast to the previous example, a brute-force

approach to constructing polyhedral bounds is not necessary in all cases. For the following

class of engineering-relevant problems, an intelligent choice of bounds is available. Further-

more, much of the justification that the choice is intelligent does not have anything to do

with the idea that it “wraps” the reachable set in an intelligent manner, which is the typical

geometric justification of many bounding methods. Rather, it relates to the idea that the

quantities that must be estimated to construct these bounds can be estimated well with

tools such as interval arithmetic.

The general form of the material balance equations for a homogeneous, constant-density,

stirred-tank reactor with constant material volume is

ẋ(𝑡) = Sr(𝑡,x(𝑡)) + (1/𝑉 ) (C𝑖𝑛(𝑡)v𝑖𝑛(𝑡)− 𝑣𝑜𝑢𝑡(𝑡)x(𝑡)) , x(𝑡0) = x0, (6.14)
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Figure 6-1: Upper and lower bounds on the components of the solution of the Lotka-Volterra
problem versus time; 𝑥1 is in gray, while 𝑥2 is in black. Results from polyhedral bounds
using A as in Eqn. (6.13) are solid lines, while results from purely interval bounds are dashed
lines.

where x(𝑡) is the vector of the 𝑛𝑥 species concentrations at time 𝑡, S ∈ R𝑛𝑥×𝑛𝑟 and r are the

stoichiometry matrix and vector of 𝑛𝑟 rate functions, respectively, 𝑉 is the constant reactor

volume, v𝑖𝑛(𝑡) ∈ R𝑝 is the vector of the volumetric flow rates of the 𝑝 inlets to the reactor at

𝑡, the 𝑗𝑡ℎ column of C𝑖𝑛(𝑡) ∈ R𝑛𝑥×𝑝 is the vector of species concentrations in the 𝑗𝑡ℎ inlet,

and 1Tv𝑖𝑛(𝑡) = 𝑣𝑜𝑢𝑡(𝑡) is the volumetric flow rate of the single outlet from the reactor.

For a system of this form, a linear transformation yields a system in terms of reaction

“variants” and “invariants” [179]. For instance, if S is full column rank, the rows of N are

left null vectors of S, and S+ is the Moore-Penrose pseudoinverse of S (see Ch. 1 of [17]),

then letting y1 = S+x and y2 = Nx we obtain

ẏ1(𝑡) = r𝑦(𝑡,y(𝑡)) + (1/𝑉 )
(︀
S+C𝑖𝑛(𝑡)v𝑖𝑛(𝑡)− 𝑣𝑜𝑢𝑡(𝑡)y1(𝑡)

)︀
, y1(𝑡0) = S+x0, (6.15)

ẏ2(𝑡) = (1/𝑉 ) (NC𝑖𝑛(𝑡)v𝑖𝑛(𝑡)− 𝑣𝑜𝑢𝑡(𝑡)y2(𝑡)) , y2(𝑡0) = Nx0,

where the subscript 𝑦 on r denotes that r𝑦 is considered a function of the transformed

variables. If the system has no inlets or outlets, i.e. is a batch reactor, then ẏ2(𝑡) = 0 for all

𝑡, and so is constant. From the perspective of the original system, the solution must obey

the affine constraints Nx(𝑡) = Nx0 for all 𝑡. This forms the basis of the a priori enclosures
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used in [74, 167, 168].

However, the addition of inlets and outlets complicates this kind of a priori enclosure.

It is possible to salvage this enclosure, by noting that the linear transformation partially

decouples the system of equations. If C𝑖𝑛 and v𝑖𝑛 are known, simple functions or are

constant parameters, then an analytical solution for y2 can be obtained fairly easily. The

result is that the a priori enclosure is now time-varying; specifically, the solution must

obey Nx(𝑡) = y2(𝑡), where again y2 is now known explicitly. This kind of information still

satisfies Assumption 6.3.3, and could be used in the current bounding theory. But again,

matters are more complicated if, for instance, the values of C𝑖𝑛 or v𝑖𝑛 are subject to some

unknown, but bounded time-varying disturbance.

Instead, the approach taken here will be to use a bounding polyhedron that will implicitly

enforce this time-varying enclosure, without the need to determine explicitly y2, or some

other functions that take the role of b𝐺. Since the solution x describes concentrations, the

components must be nonnegative, and so for this example the only a priori enclosure used

is given by these nonnegativity constraints. In general, the bounding matrix is given by

A =

⎡⎢⎣
−I
I

−D+

D+

−N
N

⎤⎥⎦ , (6.16)

where D+ is the Moore-Penrose pseudoinverse of D, a matrix formed from a maximal set

of linearly independent columns of S, and the rows of N are linearly independent and span

the left null space of S.

Before considering the specifics of the example, the merits of this form of polyhedral

bounds, as determined by the matrix A above, are discussed. It helps to write the dynamics

of the system (6.14) in the following general form:

f(𝑡,p, z) =
[︁
S I

]︁⎡⎣ r𝑝(𝑡,p, z)

g1(𝑡,p)− 𝑔2(𝑡,p)z

⎤⎦ = ̂︀Ŝ︀r(𝑡,p, z),
where the functions g1 and 𝑔2 take into account the possibility that the inlet flow rates

and concentrations are modeled as controls, parameters, or disturbances, and r𝑝 takes into

account that the reaction kinetics might not be known exactly. In general, the more rows that

the matrix A has, the tighter the bounds. Of course, too many superfluous rows slows down
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the calculation and does little to improve the bounds. To a certain extent, the bounds on

the individual components (that is, the interval bounds) are improved the most when linear

combinations of the states that are “estimated well” are included in the bounds. Inspired by

the previous discussion, the linear combinations y2 = Nz, which no longer depend on the

reaction rates, are a good candidate. Part of this relates to the specifics of how the affine

overestimators of the dynamics are constructed. The affine relaxation method described in

Ch. 3 requires interval arithmetic, and it is well known that the effectiveness of interval

arithmetic is diminished by the dependency problem (see for instance §1.4 in [135]). As a

general observation, the “simpler” the expression, the more effective interval arithmetic is at

generating a tight estimate of its range. Thus, the quantities y2, whose dynamics no longer

depend on the potentially nonlinear rate function r𝑝, have a good chance of being estimated

well by interval arithmetic and the affine relaxation method. Further, the dynamics for y2

are decoupled. This is significant since the value of aT𝑖 z is unique for z ∈𝑀𝑖(𝑡,d), and it is

over 𝑀𝑖(𝑡,d) which the dynamics must be estimated. This means that if a𝑖 is the 𝑗𝑡ℎ row of

N, then aT𝑖 z = 𝑦2,𝑗 and aT𝑖 f(𝑡,p, z) = aT𝑖 g1(𝑡,p)− 𝑔2(𝑡,p)𝑦2,𝑗 . In a loose sense, uncertainty

with respect to the states has been removed, and overestimating the dynamics in this case

only requires overestimation with respect to the inputs.

Similar reasoning supports why the quantities y1 = D+z also are estimated well. If S

is full column rank, one can choose D = S and then D+ = S+, and so D+S = I. The

result is that the dynamics of these quantities y1 only depend on a single component of the

rate function r𝑝 (in fact, in a batch system, this motivates their interpretation as “extents of

reaction”). As before, the simpler the expression, the more likely it is to be estimated well

via the affine relaxation procedure. If S is not full column rank, for instance S = [D E],

then D+S = [I D+E], and again, the expression for the dynamics of the quantities y1 is

potentially simplified.

At this point it is reasonable to wonder why not apply an interval-based bounding method

to the transformed system (6.15). The complicating fact is that this requires explicitly

rewriting the rate function in terms of the transformed variables to obtain r𝑦. In general,

this is not a trivial task. Although it is possible to automate the evaluation of r𝑦, since

the transformation from x to y is invertible in certain cases [179], it is likely that extending

this evaluation to interval arithmetic will suffer from dependency issues. For this reason,

explicitly bounding the original variables, in terms of which the rate function is originally
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written, helps reduce the overestimation of the original variables, and in turn reduce the

overestimation of the range of the rate function on the various sets it must be estimated.

Finally, as upper and lower bounds on the original variables are most likely the ultimate

goal of estimating the reachable set of this system, there is little reason to exclude bounding

them in the definition of A.

Now, consider the specifics of the example. Let the components of the solution be

x = (𝑥A, 𝑥B, 𝑥C, 𝑥D), which are the concentration profiles (in M) of the four chemical species

A, B, C, and D, respectively. Let

ẋ(𝑡,u) =

⎡⎢⎢⎢⎢⎢⎢⎣
−1 −1 1 0 0 0

−1 0 0 1 0 0

1 −1 0 0 1 0

0 1 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑢3(𝑡)𝑥A(𝑡,u)𝑥B(𝑡,u)

𝑘2𝑥A(𝑡,u)𝑥C(𝑡,u)

(1/𝑉 )(𝑢1(𝑡)𝑣A − 𝑥A(𝑡,u)(𝑣A + 𝑣B))

(1/𝑉 )(𝑢2(𝑡)𝑣B − 𝑥B(𝑡,u)(𝑣A + 𝑣B))

(1/𝑉 )(−𝑥C(𝑡,u)(𝑣A + 𝑣B))

(1/𝑉 )(−𝑥D(𝑡,u)(𝑣A + 𝑣B))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6.17)

The known parameters are 𝑉 = 20 (L), 𝑘2 = 0.4 (M−1min−1), 𝑣A = 𝑣B = 1 (L(min)−1).

The time-varying uncertainties are the inlet concentration of species A, 𝑢1(𝑡) ∈ [0.9, 1.1]

(M), the inlet concentration of species B, 𝑢2(𝑡) ∈ [0.8, 1.0] (M), and the rate constant of

the first reaction, 𝑢3(𝑡) ∈ [10, 50] (M−1min−1). Initially, the concentration of each species

is zero, and at 𝑡 = 0, A and B begin to flow in. The time period of interest is 𝑇 = [0, 10]

(min). The first two columns of the matrix in Eqn. (6.17) correspond to the stoichiometry

matrix S. It columns are linearly independent, and so let

D+ = S+ =

⎡⎣−1/3 −1/3 1/3 0

−1/3 0 −1/3 1/3

⎤⎦ and N =

⎡⎣ −1 2 1 0

1 −1 0 1

⎤⎦ .

Results for two representative species are in Fig. 6-2. For comparison, the interval hull

of the enclosures that result from using

A′ =

⎡⎣ −I
I

⎤⎦ or A′′ =

⎡⎢⎢⎢⎢⎢⎢⎣
−D+

D+

−N

N

⎤⎥⎥⎥⎥⎥⎥⎦ (6.18)
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Figure 6-2: Interval hull of enclosures versus time for the stirred-tank reactor (Eqn. (6.17)).
Solution trajectories for various constant inputs are thin solid lines. Results from A in
Eqn. (6.16) are solid black lines, while results from A′ and A′′ as in Eqn. (6.18) are dotted
lines and dashed lines, respectively.

as the matrix that defines the polyhedral enclosure are included. These are interval bounds

on the original system (6.14), and (roughly) the transformed system (6.15), respectively.

The interval hull of the polyhedral enclosures are calculated in a post-processing step for the

purpose of comparing the different results on an equal footing. It is clear that the bounds that

result from using A in Eqn. (6.16) are superior, and much tighter than just the intersection

of the bounds resulting from the other enclosures. Finally, with LP feasibility and optimality

tolerances of 10−5 and 10−6, respectively, and absolute and relative integration tolerances

of 10−6, the CPU time required to solve the bounding system is 0.030 seconds.

6.5.3 Piecewise affine relaxations

An interesting application of this theory is to the construction of piecewise affine relaxations

of the solutions of initial value problems in parametric ordinary differential equations. The

initial value problem in parametric ordinary differential equations is a special case of the

problem of interest (6.1), when the uncertainty is fixed, i.e. not time-varying. Certainly, the

theory as it stands can handle this case already, but intuitively the bounds produced may

not be as tight as those produced by a method that explicitly takes advantage of the fact

151



that the uncertain inputs have a constant value in time, such as the Taylor-model methods

described in [107].

The idea is fairly straightforward; the fixed uncertain parameters are treated as extra

state variables with zero time derivatives and an uncertain set of initial values. Of course,

nothing is gained from this reformulation if one can only propagate interval bounds on the

states, but if one propagates polyhedral bounds the reformulation is meaningful.

To demonstrate this, an example adapted from Example 2 in [168] is considered, involving

the following enzymatic reaction network:

A+ F 
 F:A→ F + A′,

A′ +R 
 R:A’→ R+A.

The dynamic equations governing the evolution of the species concentrations

x = (𝑥A, 𝑥F, 𝑥F:A, 𝑥A′ , 𝑥R, 𝑥R:A′)

in a closed system are

�̇�A = −𝑘1𝑥F𝑥A + 𝑘2𝑥F:A + 𝑘6𝑥R:A′ , (6.19)

�̇�F = −𝑘1𝑥F𝑥A + 𝑘2𝑥F:A + 𝑘3𝑥F:A,

�̇�F:A = 𝑘1𝑥F𝑥A − 𝑘2𝑥F:A − 𝑘3𝑥F:A,

�̇�A′ = 𝑘3𝑥F:A − 𝑘4𝑥A′𝑥R + 𝑘5𝑥R:A′ ,

�̇�R = −𝑘4𝑥A′𝑥R + 𝑘5𝑥R:A′ + 𝑘6𝑥R:A′ ,

�̇�R:A′ = 𝑘4𝑥A′𝑥R − 𝑘5𝑥R:A′ − 𝑘6𝑥R:A′ .

The time interval of interest is 𝑇 = [0, 0.04] (s). For the original states x, the initial

conditions are x0 = (34, 20, 0, 0, 16, 0) (M). Let the uncertain, but constant, parameters

be (𝑝1, 𝑝2) = (𝑘1, 𝑘6) ∈ [0.1, 1] × [0.3, 3] = 𝑃 . The other 𝑘𝑖 are known: (𝑘2, 𝑘3, 𝑘4, 𝑘5) =

(0.1815, 88, 27.5, 2.75). To obtain the reformulated system, append the equations ṗ = 0 to

Equations (6.19) and now for the reformulated system, the initial conditions are uncertain:

(x(0),p(0)) ∈ {x0} × 𝑃 . As in [168], the following a priori enclosure is available for the
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reformulated system:

𝐺 ≡ {(z, r) ∈ R6 × R2 : 0 ≤ z ≤ x̄,Nz = Nx0, r ∈ 𝑃}, with

N =

⎡⎢⎢⎢⎣
0 −1 −1 0 0 0

0 0 0 0 −1 −1

1 −1 0 1 −1 0

⎤⎥⎥⎥⎦ ,

x̄ = (34, 20, 20, 34, 16, 16).

The bounding matrix A used in this example is

A =

⎡⎢⎢⎢⎢⎢⎢⎣
−I 0

I 0

−I M

I −M

⎤⎥⎥⎥⎥⎥⎥⎦
where M is the matrix whose columns are (approximately) the sensitivities of x with respect

to each 𝑝𝑖, evaluated at the final time 𝑡𝑓 = 0.04 and at the midpoint of the interval 𝑃 . These

sensitivities, as calculated numerically with CVODES, are

⎡⎣ −14.4 −3.12 3.12 1.99 −9.28 9.28

0.105 −0.00577 0.00577 −0.00748 0.103 −0.103

⎤⎦T

,

however, any value with magnitude less than 10−2 is set to zero to construct M. The

reasoning behind this form of A is that the first half of its rows give interval bounds, while

the second half of its rows give affine under and overestimators of each original state with

respect to p, and specifically, these should be “good” estimators at the final time point 𝑡𝑓 .

Fig. 6-3 shows the piecewise affine underestimator (maximum of the lower bound and

affine underestimator) and overestimator (minimum of the upper bound and affine overesti-

mator) for a certain concentration on the set 𝑃 . When only interval bounds are propagated,

the interval bound on the state 𝑥F:A at 𝑡𝑓 is [0.517, 4.79], while the use of the affine relax-

ations reduces this to [0.582, 4.09], corresponding to an 18% reduction in the width of the

enclosure. Thus, using the extra bounds in the form of affine under and overestimators also

improves the interval bounds. This contrasts with the methods in [169] and [176], where the
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Figure 6-3: Piecewise affine under and overestimators of 𝑥F:A at 𝑡𝑓 on 𝑃 ; the sampled
parametric solution surface is in the middle.

benefit is one-way; relaxations with respect to the parameters cannot improve the interval

bounds.

With LP feasibility and optimality tolerances of 10−5 and 10−6, respectively, and absolute

and relative integration tolerances of 10−6, the CPU time required to solve the bounding

system is 0.15 seconds. In comparison, the methods for constructing convex and concave

relaxations of the solutions of parametric ordinary differential equations presented in [169,

170] also involve the solution of an auxiliary dynamic system, but this system must be solved

at each parameter value of interest to determine the value of the relaxations. The current

method only requires that the auxiliary dynamic system is solved once to obtain the value

of the relaxation on the entire parameter range.

6.6 Conclusions

This work has presented a general theory, as well as an efficient numerical implementation,

for the construction of polyhedral bounds on the reachable set of a dynamic system subject to

time-varying inputs and uncertain initial conditions. Some more fine-tuning of the current

numerical implementation of the bounding method is a subject for future research. For

instance, the function q defining the dynamics of the bounding system is nonsmooth, and it

may be beneficial to supply approximate or “locked” Jacobian information to the numerical

integrator. As mentioned in §6.4.2, to ensure that one does not run into domain issues, the
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reformulation in [60] could be used. Alternative implementations of the theory are also a

subject for future research; that is, defining the general mappings 𝑀𝑖 differently provides

avenues for different numerical implementations. These different numerical implementations

might avoid some of the cost of the solution of the linear programs, and provide a slightly

faster method, although potentially at the cost of producing more conservative bounds.

Nevertheless, the current work as is stands as an effective method.

155



156



Chapter 7

Polyhedral bounds for nonlinear

control systems with constraints

7.1 Introduction

This chapter considers the theoretical and numerical aspects of the construction of enclo-

sures (or “bounds”) of the reachable set of nonlinear control systems. First, a general theory

is proven which gives sufficient conditions for a time-varying polyhedron to enclose all solu-

tions of a constrained dynamic system subject to uncertain inputs and initial conditions (see

§7.2.1 for an exact statement). This theory is in the vein of a comparison theorem involving

differential inequalities. Such theorems have a long history, going back to “Müller’s theo-

rem” [203], which was subsequently generalized to control systems in [72]. These theorems

give conditions under which one can construct componentwise upper and lower, or interval,

bounds on the solutions. Recent work in [168, 202] has expanded these theorems. This

chapter continues those developments; in fact, it will be shown that the theories in [168] and

Ch. 6 are special cases of the theory developed here.

One of the main contributions of this work is the extension of these differential inequality-

based theorems to include dynamic systems with constraints. Although the theoretical

developments of [168] and Ch. 6 are very similar to those of this work, neither of these

previous theorems as stated can handle constraints on the states. General reachability

analysis with constraints has been addressed in [104], where the focus is on linear systems

and ellipsoidal enclosures of the reachable sets. Related work deals with control problems
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with state constraints [31, 102], in which the theoretical basis of the approaches is on the

Hamilton-Jacobi-Bellman partial differential equation (PDE); the authors of [102] note that

the solution of such a PDE is in general complicated for nonlinear systems. Meanwhile,

[88, 99, 98] deal with interval bounds on the reachable set in the context of parameter and

state estimation problems.

This work’s treatment of constraints is independent of any particular setting and as a

result a number of interesting connections to other problems and topics arise. For instance, in

the context of dynamic optimization problems, such constraints are called path constraints

[214]; these constraints can be used in the reachable set estimation problem to tighten

the enclosure. Thus, if the enclosure is used to construct a relaxation of the dynamic

optimization problem, the result is a tighter relaxation. A more exact discussion of this is

in §7.2.2. Constraints are also discussed in the context of differential-algebraic equations

(DAEs) in §7.5.4 and continuous-time measurements in state estimation problems in §7.7.1.

Another contribution is that this work provides a new method for the construction of re-

laxations of the solutions of initial value problems (IVPs) in parametric ordinary differential

equations (ODEs). Previous work dealing with this includes [169, 176, 202]. The relaxation

theory developed here is inspired the most by [202]. However, that work focuses on the

case of IVPs in parametric ODEs, while the basic theorem in this work deals with control

systems (time-varying inputs), and derives relaxations for the solutions of parametric ODEs

as a special case. Neither theory is more general than the other; however, some interesting

overlap is discussed, and the two theories provide different approaches to similar problems.

Numerical methods for constructing polyhedral bounds and relaxations are discussed,

and the performances of these methods are assessed with examples. At the heart of these

methods is the construction of an auxiliary system of ODEs, whose solution yields the

parameters describing the polyhedral enclosure. As a result, the proposed methods benefit

from the ability to use powerful methods for numerical integration.

There are many other connections to previous work; these are discussed throughout this

chapter as the connections become apparent. The rest of this chapter is organized as follows.

Section 7.2 provides the formal problem statement. A brief discussion of path constraints

in dynamic optimization in §7.2.2 motivates this work’s consideration of constrained dy-

namic systems. Section 7.3 provides the core theoretical developments. Subsequently, §7.4

discusses specific instances of this theory when constraints are absent. This yields theories

158



for interval bounds (§7.4.1), polyhedral bounds (with time-varying normals for each face,

§7.4.2), and affine relaxations (§7.4.3). Next, §7.5 specializes the theory to construct polyhe-

dral bounds (Sections 7.5.1 and 7.5.2) and affine relaxations (§7.5.3) for constrained systems.

As mentioned, there is also a discussion of the connections to DAEs (§7.5.4). Section 7.6

provides more specific information on the numerical implementation of two of the theories

for constrained systems from the previous section. Section 7.7 then looks at the efficiency

of these methods and tightness of the resulting bounds. One of these examples shows that

the affine relaxation method developed has empirical convergence order of two. Finally, §7.8

concludes with some final thoughts.

7.2 Problem statement

7.2.1 Problem statement

Let (𝑛𝑥, 𝑛𝑢) ∈ N2, nonempty interval 𝑇 = [𝑡0, 𝑡𝑓 ] ⊂ R, 𝐷𝑥 ⊂ R𝑛𝑥 , and 𝐷𝑢 ⊂ R𝑛𝑢 be given.

For 𝑈 : 𝑇 ⇒ 𝐷𝑢, let the set of time-varying inputs be

𝒰 =
{︀
u ∈ 𝐿1(𝑇,R𝑛𝑢) : u(𝑡) ∈ 𝑈(𝑡), 𝑎.𝑒. 𝑡 ∈ 𝑇

}︀
,

and let the set of possible initial conditions be 𝑋0 ⊂ 𝐷𝑥. Let the state constraints be given

by 𝑋𝐶 : 𝑇 ⇒ R𝑛𝑥 . Given f : 𝑇 ×𝐷𝑢×𝐷𝑥 → R𝑛𝑥 , the problem of interest is the constrained

initial value problem in ODEs

ẋ(𝑡,u) = f(𝑡,u(𝑡),x(𝑡,u)), 𝑎.𝑒. 𝑡 ∈ 𝑇, (7.1a)

x(𝑡0,u) ∈ 𝑋0, (7.1b)

x(𝑡,u) ∈ 𝑋𝐶(𝑡), ∀𝑡 ∈ 𝑇. (7.1c)

For given u ∈ 𝒰 , a solution of IVP (7.1) is an absolutely continuous mapping x(·,u) : 𝑇 →

𝐷𝑥 which satisfies Conditions (7.1). The goal of this work is to construct a polyhedral-valued

mapping 𝐵 : 𝑇 ⇒ R𝑛𝑥 such that for all u ∈ 𝒰 and any solution x(·,u) (if one exists for this

u), x(𝑡,u) ∈ 𝐵(𝑡), for all 𝑡 ∈ 𝑇 .

Also of interest is a solution of the unconstrained IVP (7.1), which for given u ∈ 𝒰 ,

is an absolutely continuous mapping x(·,u) : 𝑇 → 𝐷𝑥 which satisfies Conditions (7.1a)
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and (7.1b), but not necessarily (7.1c). A solution of the unconstrained IVP will also be

called an unconstrained solution of IVP (7.1). With this terminology, all solutions are also

unconstrained solutions, but not the other way around.

7.2.2 Dynamic optimization

A more precise motivation for the current problem can now be described. Consider the

simple dynamic optimization problem over the time period 𝑇 = [𝑡0, 𝑡𝑓 ]

𝑞* = inf
u

𝑥1(𝑡𝑓 ,u) (7.2)

s.t. u ∈ 𝒰 ,

g(x(𝑡,u)) ≤ 0, ∀𝑡 ∈ 𝑇,

ẋ(𝑡,u) = f(𝑡,u(𝑡),x(𝑡,u)), 𝑎.𝑒. 𝑡 ∈ 𝑇,

x(𝑡0,u) ∈ 𝑋0,

for appropriate mappings g, f , and sets 𝑋0 and 𝒰 . The path constraints in this problem

are g(x(𝑡,u)) ≤ 0, for all 𝑡 ∈ 𝑇 . If we calculate an interval enclosure of the solutions of

the (unconstrained) initial value problem embedded in the constraints of the optimization

problem (7.2), i.e. (x𝐿,x𝑈 ) such that x(𝑡,u) ∈ [x𝐿(𝑡),x𝑈 (𝑡)] for all 𝑡 ∈ 𝑇 and u ∈ 𝒰 , then

𝑥𝐿1 (𝑡𝑓 ) is a lower bound for the optimal solution value. Obtaining such a lower bound is

an important part of solving dynamic optimization problems to global optimality with a

deterministic method such as branch and bound [166, 175].

However, the path constraint information can be used to improve the tightness of the

lower bound. Instead, assume we calculate (̃︀x𝐿, ̃︀x𝑈 ) such that x(𝑡,u) ∈ [̃︀x𝐿(𝑡), ̃︀x𝑈 (𝑡)] for

all 𝑡 ∈ 𝑇 and u ∈ 𝒰 such that x(·,u) satisfies ẋ(𝑡,u) = f(𝑡,u(𝑡),x(𝑡,u)), almost every

𝑡 ∈ 𝑇 , and g(x(𝑡,u)) ≤ 0 for all 𝑡 ∈ 𝑇 . In other words, x(·,u) is in effect the solution of

a constrained initial value problem. In this case, we still have ̃︀𝑥𝐿1 (𝑡𝑓 ) ≤ 𝑞*. In addition, a

bounding method which uses the constraints effectively should give 𝑥𝐿1 (𝑡𝑓 ) ≤ ̃︀𝑥𝐿1 (𝑡𝑓 ). That

is, a tighter lower bound on the optimal objective value of the dynamic optimization problem

is obtained.
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7.3 Bounding theory

Lemma 7.3.1. Let 𝑇 ⊂ R be an interval, and let 𝑏 : 𝑇 → R, a : 𝑇 → R𝑛, and x : 𝑇 → R𝑛 be

absolutely continuous mappings. Then, the real-valued function 𝑔 : 𝑡 ↦→ max{0,a(𝑡)Tx(𝑡) −

𝑏(𝑡)} is absolutely continuous. Further, for almost all 𝑡 such that a(𝑡)Tx(𝑡) > 𝑏(𝑡) and for

any (v, z) ∈ R𝑛 × R𝑛 such that a(𝑡)Tv + ȧ(𝑡)Tz ≤ �̇�(𝑡),

�̇�(𝑡) ≤ ‖ȧ(𝑡)‖* ‖z− x(𝑡)‖+ ‖a(𝑡)‖* ‖v − ẋ(𝑡)‖ .

Proof. Note that 𝑔1 : 𝑡 ↦→ a(𝑡)Tx(𝑡)−𝑏(𝑡) is absolutely continuous, as the sum of the product

of absolutely continuous functions. Obviously, 𝑔2 : 𝑡 ↦→ 0 is absolutely continuous, and so

𝑔, as the maximum of the two, can be written as 𝑔(𝑡) = 1/2(𝑔1(𝑡) + 𝑔2(𝑡) + |𝑔1(𝑡) − 𝑔2(𝑡)|).

One notes this is absolutely continuous, since the composition of a Lipschitz continuous

function with an absolutely continuous function is absolutely continuous, and again the sum

of absolutely continuous functions is absolutely continuous.

On the set of 𝑡 such that a(𝑡)Tx(𝑡) > 𝑏(𝑡), we have 𝑔(·) = a(·)Tx(·) − 𝑏(·). Since 𝑔

is absolutely continuous, we have that for almost all 𝑡 such that a(𝑡)Tx(𝑡) > 𝑏(𝑡), �̇�(𝑡) =

ȧ(𝑡)Tx(𝑡) + a(𝑡)Tẋ(𝑡) − �̇�(𝑡). Thus, for any (v, z) such that a(𝑡)Tv + ȧ(𝑡)Tz ≤ �̇�(𝑡), we

have �̇�(𝑡) + a(𝑡)Tv + ȧ(𝑡)Tz ≤ ȧ(𝑡)Tx(𝑡) + a(𝑡)Tẋ(𝑡) − �̇�(𝑡) + �̇�(𝑡). It follows that �̇�(𝑡) ≤

ȧ(𝑡)T(x(𝑡) − z) + a(𝑡)T(ẋ(𝑡) − v). Finally, from the generalization of the Cauchy-Schwarz

inequality (that is, from the definition of the dual norm), we have �̇�(𝑡) ≤ ‖ȧ(𝑡)‖* ‖z− x(𝑡)‖+

‖a(𝑡)‖* ‖v − ẋ(𝑡)‖.

The following assumptions and theorem form the core of the general bounding theory.

The way in which the matrix-valued mapping A and the set-valued mappings 𝑀𝑖 satisfying

Assumption 7.3.2 are defined provides the flexibility of the theory. Conceptually, the map-

pings can be thought of in the following ways: In the unconstrained case, 𝑀𝑖 can be thought

of as mapping to the 𝑖𝑡ℎ face of the polyhedral bounds. Meanwhile, in the constrained case,

the constraints may be used to restrict the value that each 𝑀𝑖 might take.

Assumption 7.3.1. For any z ∈ 𝐷𝑥, there exists a neighborhood 𝑁(z) and 𝛼 ∈ 𝐿1(𝑇 ) such

that for almost every 𝑡 ∈ 𝑇 and every p𝑡 ∈ 𝑈(𝑡)

‖f(𝑡,p𝑡, z1)− f(𝑡,p𝑡, z2)‖ ≤ 𝛼(𝑡) ‖z1 − z2‖ ,
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for every z1 and z2 in 𝑁(z) ∩𝐷𝑥.

Assumption 7.3.2. Consider the problem stated in Section 7.2.1. For some 𝑚 ∈ N, assume

that for each 𝑖 ∈ {1, . . . ,𝑚}, a𝑖 : 𝑇 → R𝑛𝑥 is absolutely continuous, and A : 𝑇 ∋ 𝑡 ↦→

[a𝑖(𝑡)
T] ∈ R𝑚×𝑛𝑥 . Assume 𝐷𝑀 ⊂ 𝑇 × R𝑚, and 𝑀𝑖 : 𝐷𝑀 ⇒ R𝑛𝑥 satisfy the following

conditions for each 𝑖 ∈ {1, . . . ,𝑚}:

1. For any d ∈ R𝑚, if there exists (𝑡,u) ∈ 𝑇 × 𝒰 such that A(𝑡)x(𝑡,u) ≤ d and

a𝑖(𝑡)
Tx(𝑡,u) = 𝑑𝑖 for some solution x(·,u) of IVP (7.1), then (𝑡,d) ∈ 𝐷𝑀 and

x(𝑡,u) ∈𝑀𝑖(𝑡,d).

2. For any (𝑡,d) ∈ 𝐷𝑀 , there exists a neighborhood 𝑁(d) of d, 𝑡′ > 𝑡, and 𝐿𝑀 > 0

such that for any (𝑠,d1) and (𝑠,d2) in ((𝑡, 𝑡′)×𝑁(d))∩𝐷𝑀 and z1 ∈𝑀𝑖(𝑠,d1), there

exists a z2 ∈𝑀𝑖(𝑠,d2) such that

‖z1 − z2‖ ≤ 𝐿𝑀 ‖d1 − d2‖1 .

Theorem 7.3.1. Let Assumptions 7.3.1 and 7.3.2 hold. If

1. b : 𝑇 → R𝑚 is absolutely continuous and 𝐵 : 𝑇 ∋ 𝑡 ↦→ {z : A(𝑡)z ≤ b(𝑡)},

2. 𝑋0 ⊂ 𝐵(𝑡0),

3. for almost every 𝑡 ∈ 𝑇 and each 𝑖 ∈ {1, . . . ,𝑚}, (𝑡,b(𝑡)) ∈ 𝐷𝑀 and 𝑀𝑖(𝑡,b(𝑡)) ⊂ 𝐷𝑥,

4. for almost every 𝑡 ∈ 𝑇 and each 𝑖 ∈ {1, . . . ,𝑚},

a𝑖(𝑡)
Tf(𝑡,p, z) + ȧ𝑖(𝑡)

Tz ≤ �̇�𝑖(𝑡), ∀(p, z) ∈ 𝑈(𝑡)×𝑀𝑖(𝑡,b(𝑡)),

then for all u ∈ 𝒰 and any solution x(·,u) of IVP (7.1), x(𝑡,u) ∈ 𝐵(𝑡), for all 𝑡 ∈ 𝑇 .

Proof. Fix u ∈ 𝒰 . If no solution of IVP (7.1) exists for this u, then the conclusion of the the-

orem holds trivially. Otherwise, choose some solution and for convenience use the abbrevia-

tion x(𝑡) ≡ x(𝑡,u). For each 𝑡 ∈ 𝑇 and 𝑖 ∈ {1, . . . ,𝑚}, let 𝑔𝑖(𝑡) = max{0,a𝑖(𝑡)Tx(𝑡)−𝑏𝑖(𝑡)}.

By Lemma 7.3.1, each 𝑔𝑖 is absolutely continuous. It follows that A(𝑡)x(𝑡) ≤ b(𝑡) + g(𝑡).

Consequently, g(𝑡) = 0 implies x(𝑡) ∈ 𝐵(𝑡), and by the contrapositive x(𝑡) /∈ 𝐵(𝑡) implies

g(𝑡) ̸= 0. Thus, for a contradiction, suppose that there exists a ̃︀𝑡 ∈ 𝑇 such that x(̃︀𝑡) /∈ 𝐵(̃︀𝑡).
Then the set 𝑇𝑣 = {𝑡 ∈ 𝑇 : ‖g(𝑡)‖1 > 0} is nonempty.

Let 𝑡1 = inf 𝑇𝑣. By Hypothesis 2, g(𝑡0) = 0 and so by continuity of g, ‖g(𝑡1)‖1 = 0.

Furthermore, there exists 𝑡2 > 𝑡1 and index set 𝐼 such that 𝑔𝑖(𝑡) = 0 for 𝑖 /∈ 𝐼 and 𝑡 ∈ [𝑡1, 𝑡2),
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and a𝑖(𝑡)
Tx(𝑡) = 𝑏𝑖(𝑡) + 𝑔𝑖(𝑡) for 𝑖 ∈ 𝐼 and 𝑡 ∈ [𝑡1, 𝑡2). Explicitly, for each 𝑖 define 𝑇𝑖 ≡ {𝑡 :

𝑔𝑖(𝑡) > 0}. By continuity of g, each 𝑇𝑖 is open. Let 𝐼 = {𝑖 : 𝑡1 = inf 𝑇𝑖} (which must be

nonempty) and then choose 𝑡2 > 𝑡1 such that (𝑡1, 𝑡2) ⊂
⋂︀

𝑖∈𝐼 𝑇𝑖 and (𝑡1, 𝑡2)∩ (
⋃︀

𝑖/∈𝐼 𝑇𝑖) = ∅.

Then by Assumption 7.3.2, (𝑡,b(𝑡) + g(𝑡)) ∈ 𝐷𝑀 and x(𝑡) ∈𝑀𝑖(𝑡,b(𝑡) + g(𝑡)) for 𝑖 ∈ 𝐼,

𝑡 ∈ [𝑡1, 𝑡2). Without loss of generality, let 𝑁(b(𝑡1)), 𝑡3 > 𝑡1, and 𝐿𝑀 > 0 satisfy Condition 2

of Assumption 7.3.2 at the point b(𝑡1), for each 𝑖 ∈ 𝐼. Since b and g are continuous, there

exists a 𝑡4 ∈ (𝑡1,min{𝑡2, 𝑡3}) such that b(𝑡), (b(𝑡) + g(𝑡)) ∈ 𝑁(b(𝑡1)) for each 𝑡 ∈ (𝑡1, 𝑡4).

Along with Hypothesis 3, it follows that for 𝑖 ∈ 𝐼 and almost every 𝑡 ∈ (𝑡1, 𝑡4), there exists

an element z𝑖(𝑡) ∈𝑀𝑖(𝑡,b(𝑡)) with

‖z𝑖(𝑡)− x(𝑡)‖ ≤ 𝐿𝑀 ‖g(𝑡)‖1 . (7.3)

Let 𝑁(x(𝑡1)), and 𝛼 ∈ 𝐿1(𝑇 ) satisfy Assumption 7.3.1 at the point x(𝑡1). Since x and

‖g‖1 are continuous, using Inequality (7.3) and the triangle inequality

‖z𝑖(𝑡)− x(𝑡1)‖ ≤ ‖z𝑖(𝑡)− x(𝑡)‖+ ‖x(𝑡)− x(𝑡1)‖ ,

there exists a 𝑡5 ∈ (𝑡1, 𝑡4) such that z𝑖(𝑡), x(𝑡) ∈ 𝑁(x(𝑡1)), for all 𝑖 ∈ 𝐼 and almost every

𝑡 ∈ (𝑡1, 𝑡5). Consequently,

‖f(𝑡,u(𝑡), z𝑖(𝑡))− f(𝑡,u(𝑡),x(𝑡))‖ ≤ 𝛼(𝑡) ‖z𝑖(𝑡)− x(𝑡)‖ , 𝑎.𝑒. 𝑡 ∈ (𝑡1, 𝑡5). (7.4)

But by Hypothesis 4, a𝑖(𝑡)Tf(𝑡,u(𝑡), z𝑖(𝑡))+ȧ𝑖(𝑡)
Tz𝑖(𝑡) ≤ �̇�𝑖(𝑡) which by Lemma 7.3.1 means

�̇�𝑖(𝑡) ≤‖ȧ𝑖(𝑡)‖* ‖z𝑖(𝑡)− x(𝑡)‖+ ‖a𝑖(𝑡)‖* ‖f(𝑡,u(𝑡), z𝑖(𝑡))− ẋ(𝑡)‖

= ‖ȧ𝑖(𝑡)‖* ‖z𝑖(𝑡)− x(𝑡)‖+ ‖a𝑖(𝑡)‖* ‖f(𝑡,u(𝑡), z𝑖(𝑡))− f(𝑡,u(𝑡),x(𝑡))‖ .

Combining this with Inequalities (7.3) and (7.4) we have

�̇�𝑖(𝑡) ≤ 𝐿𝑀 (‖ȧ𝑖(𝑡)‖* + 𝛼(𝑡) ‖a𝑖(𝑡)‖*) ‖g(𝑡)‖1 , 𝑎.𝑒. 𝑡 ∈ (𝑡1, 𝑡5).
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Since this holds for each 𝑖 ∈ 𝐼,

∑︁
𝑖∈𝐼

�̇�𝑖(𝑡) ≤ 𝐿𝑀

∑︁
𝑖∈𝐼

(‖ȧ𝑖(𝑡)‖* + 𝛼(𝑡) ‖a𝑖(𝑡)‖*) ‖g(𝑡)‖1 , 𝑎.𝑒. 𝑡 ∈ (𝑡1, 𝑡5).

Note that 𝛽 : 𝑡 ↦→
⃒⃒∑︀

𝑖∈𝐼 (‖ȧ𝑖(𝑡)‖* + 𝛼(𝑡) ‖a𝑖(𝑡)‖*)
⃒⃒

is in 𝐿1(𝑇 ). Since 𝑔𝑖(𝑡) > 0 for each

𝑖 ∈ 𝐼 and 𝑔𝑖(𝑡) = 0 for each 𝑖 /∈ 𝐼, we have ‖g(𝑡)‖1 =
∑︀

𝑖∈𝐼 𝑔𝑖(𝑡) and so

∑︁
𝑖∈𝐼

�̇�𝑖(𝑡) ≤ 𝐿𝑀𝛽(𝑡)
∑︁
𝑖∈𝐼

𝑔𝑖(𝑡), 𝑎.𝑒. 𝑡 ∈ (𝑡1, 𝑡5),

to which we can apply Gronwall’s inequality (see for instance [209]) to get

∑︁
𝑖∈𝐼

𝑔𝑖(𝑡) ≤
∑︁
𝑖∈𝐼

𝑔𝑖(𝑡1) exp

(︃∫︁
[𝑡1,𝑡]

𝐿𝑀𝛽(𝑠)𝑑𝑠

)︃
, ∀𝑡 ∈ [𝑡1, 𝑡5].

But since
∑︀

𝑖 𝑔𝑖(𝑡1) = 0, this yields
∑︀

𝑖 𝑔𝑖(𝑡) ≤ 0, and since each 𝑔𝑖 is nonnegative always

and 𝑔𝑖(𝑡) = 0 for each 𝑖 /∈ 𝐼, we have 𝑔𝑖(𝑡) = 0 for all 𝑖 and all 𝑡 ∈ (𝑡1, 𝑡5) ⊂ 𝑇𝑣, which is

a contradiction. Since the choices of u ∈ 𝒰 and corresponding solution were arbitrary, the

result follows.

7.4 Implementations for unconstrained systems

In this section, various ways to satisfy Assumption 7.3.2 are discussed. Each subsection

focuses on a specific implementation of the general theory, the implications for the class

of systems to which the specific method applies, and the connections to previous work.

However, none of these specific instances of the theory in this section use the state constraint

information 𝑋𝐶 , and so the resulting bounds enclose all unconstrained solutions of IVP (7.1).

For concreteness, one can take 𝑋𝐶(𝑡) = R𝑛𝑥 for all 𝑡 ∈ 𝑇 , so that an unconstrained solution

is equivalent to a solution.
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7.4.1 Interval bounds

Perhaps the most simple way to define A, 𝐷𝑀 and 𝑀𝑖 so that they satisfy Assumption 7.3.2

is to let

A : 𝑡 ↦→

⎡⎣−I
I

⎤⎦
𝐷𝑀 = 𝑇 × {d ∈ R2𝑛𝑥 : −𝑑𝑖 ≤ 𝑑𝑖+𝑛𝑥 , ∀𝑖 ∈ {1, . . . , 𝑛𝑥}}, and

𝑀𝑖 : (𝑡,d) ↦→ {z : A(𝑡)z ≤ d,a𝑖(𝑡)
Tz = 𝑑𝑖}.

The result is that the bounds 𝐵 constructed in Theorem 7.3.1 describe a time-varying

interval enclosure of the reachable sets of (the unconstrained) IVP (7.1). A rigorous proof

that these definitions satisfy Assumption 7.3.2 is postponed until §7.5.1, as it is a special

case of the definitions introduced in that section. On the other hand, it is not particularly

difficult to verify this specific case.

Writing b = (−x𝐿,x𝑈 ), the key hypothesis (Hypothesis 4) in Theorem 7.3.1 becomes

�̇�𝐿𝑗 (𝑡) ≤ inf{𝑓𝑗(𝑡,p, z) : p ∈ 𝑈(𝑡),x𝐿(𝑡) ≤ z ≤ x𝑈 (𝑡), 𝑧𝑗 = 𝑥𝐿𝑗 (𝑡)}, (7.5a)

�̇�𝑈𝑗 (𝑡) ≥ sup{𝑓𝑗(𝑡,p, z) : p ∈ 𝑈(𝑡),x𝐿(𝑡) ≤ z ≤ x𝑈 (𝑡), 𝑧𝑗 = 𝑥𝑈𝑗 (𝑡)}, (7.5b)

for each 𝑗 and almost every 𝑡. Assuming f is continuous and 𝑈 is compact-valued, the infima

and suprema are finite, and IVPs in ODEs can be constructed whose solutions (if they exist)

give (x𝐿,x𝑈 ) satisfying (7.5).

More specifically, if 𝑈 is interval-valued, then the feasible sets of the optimization prob-

lems in Inequalities (7.5) are intervals, and tools from interval arithmetic can be used to

estimate the value of the optimization problems efficiently. This forms the basis of many

early bounding methods for the unconstrained problem, such as those described in [72]. The

shortcomings of interval arithmetic motivate a lot of subsequent work, some of which will be

discussed in later sections. The details of numerical implementations based on this theory

are also a large part of the literature, typically when properties such as monotonicity and

other problem structure can be used; see [97, 139, 152] for further work.
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7.4.2 Polyhedral bounds

If we allow A to be time-varying, other possible definitions of 𝐷𝑀 and 𝑀𝑖 consistent with

Assumption 7.3.2 are given in the following result.

Proposition 7.4.1. Given 𝑚 ∈ N, and a𝑖 : 𝑇 → R𝑛𝑥 for 𝑖 ∈ {1, . . . ,𝑚} which are absolutely

continuous, suppose that for all 𝑖 ∈ {1, . . . ,𝑚}, a𝑖(𝑡) ̸= 0, for all 𝑡 ∈ 𝑇 . Then A : 𝑡 ↦→

[a𝑖(𝑡)
T] ∈ R𝑚×𝑛𝑥 ,

𝐷𝑀 = 𝑇 × R𝑚 and (7.6)

𝑀𝑖 : (𝑡,d) ↦→ {z : a𝑖(𝑡)
Tz = 𝑑𝑖} (7.7)

satisfy Assumption 7.3.2.

Proof. To see that Condition 1 of Assumption 7.3.2 holds, choose any 𝑖 ∈ {1, . . . ,𝑚},

d ∈ R𝑚, and (𝑡,u) ∈ 𝑇 × 𝒰 with A(𝑡)x(𝑡,u) ≤ d and a𝑖(𝑡)
Tx(𝑡,u) = 𝑑𝑖 (assuming some

unconstrained solution of IVP (7.1) exists for this u). It is clear that x(𝑡,u) ∈𝑀𝑖(𝑡,d) and

(𝑡,d) ∈ 𝐷𝑀 .

To see that Condition 2 holds, choose any (𝑠,d1) and (𝑠,d2) ∈ 𝐷𝑀 and z1 ∈𝑀𝑖(𝑠,d
1).

If 𝑀𝑖(𝑠,d
1) is empty, then the condition holds trivially. Otherwise, z2 = z1 +

(𝑑2𝑖−𝑑1𝑖 )

‖a𝑖(𝑠)‖22
a𝑖(𝑠)

is in 𝑀𝑖(𝑠,d
2). Thus

‖z2 − z1‖ ≤
‖a𝑖(𝑠)‖
‖a𝑖(𝑠)‖22

⃦⃦
d2 − d1

⃦⃦
1
.

Since a𝑖 is continuous and nonzero on 𝑇 , there exists a 𝐿𝑀 > 0 such that ‖a𝑖(𝑠)‖
‖a𝑖(𝑠)‖22

≤ 𝐿𝑀 , for

all 𝑠 ∈ 𝑇 and all 𝑖.

Note that 𝑀𝑖 as defined in Eqn. (7.7) is unbounded. Consequently, only systems with

a special structure and specially constructed a𝑖 will be able to satisfy Hypothesis 4 in

Theorem 7.3.1. One such instance is when f is affine with respect to the states; i.e. when

it has the form f(𝑡,p, z) = F(𝑡)z + g(𝑡,p). In this case, if we let a be the solution of an

adjoint-like system

ȧ(𝑡)T = −a(𝑡)TF(𝑡), 𝑎.𝑒. 𝑡 ∈ 𝑇,
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then for almost every 𝑡

a(𝑡)Tf(𝑡,p, z) + ȧ(𝑡)Tz = a(𝑡)Tg(𝑡,p) + a(𝑡)TF(𝑡)z+ ȧ(𝑡)Tz

= a(𝑡)Tg(𝑡,p).

This leads to the following result.

Proposition 7.4.2. Suppose that 𝐷𝑥 = R𝑛𝑥 and f has the form

f(𝑡,p, z) = F(𝑡)z+ g(𝑡,p),

where g : 𝑇 × 𝐷𝑢 → R𝑛𝑥 , and F : 𝑇 → R𝑛𝑥×𝑛𝑥 has bounded induced norm: ‖F(𝑡)‖ ≤ 𝐿𝑓 ,

for almost every 𝑡 ∈ 𝑇 . Let 𝑚 ∈ N. Assume b : 𝑇 → R𝑚 and a𝑖 : 𝑇 → R𝑛𝑥 , for

𝑖 ∈ {1, . . . ,𝑚}, are absolutely continuous mappings with a𝑖(𝑡) ̸= 0 for all 𝑡 and each 𝑖. Let

𝐵 : 𝑡 ↦→ {z : a𝑖(𝑡)
Tz ≤ 𝑏𝑖(𝑡), ∀𝑖 ∈ {1, . . . ,𝑚}}. If in addition, for 𝑖 ∈ {1, . . . ,𝑚},

ȧ𝑖(𝑡)
T = −a𝑖(𝑡)TF(𝑡), 𝑎.𝑒. 𝑡 ∈ 𝑇,

�̇�𝑖(𝑡) ≥ sup{a𝑖(𝑡)Tg(𝑡,p) : p ∈ 𝑈(𝑡)}, 𝑎.𝑒. 𝑡 ∈ 𝑇,

𝑋0 ⊂ 𝐵(𝑡0),

then for all u ∈ 𝒰 and any unconstrained solution x(·,u) of IVP (7.1), x(𝑡,u) ∈ 𝐵(𝑡), for

all 𝑡 ∈ 𝑇 .

Proof. Note that Assumption 7.3.1 is satisfied, and although they are not actually used in the

proposition, we can define A, 𝐷𝑀 , and 𝑀𝑖 as in Proposition 7.4.1 so that Assumption 7.3.2

holds. Then, it is clear that all the hypotheses of Theorem 7.3.1 hold, since Hypothesis 4

becomes

�̇�𝑖(𝑡) ≥ a𝑖(𝑡)
Tg(𝑡,p), ∀p ∈ 𝑈(𝑡),

for almost every 𝑡 ∈ 𝑇 , which is satisfied by assumption. The result follows from Theo-

rem 7.3.1.

It is interesting to note that the definitions of 𝐷𝑀 and 𝑀𝑖 from Proposition 7.4.1 are

not explicitly used in the proof of Proposition 7.4.2; merely their existence was needed.

Meanwhile, further assumptions on F, g, and 𝑈 are required to ensure that some a𝑖 and b
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actually exist which satisfy the assumptions of Proposition 7.4.2.

Previous work that follows along these lines includes [73, 84]. The results in [84] are

largely the same, although the derivation follows from arguments involving the Hamilton-

Jacobi-Isaacs PDE. As a result, stronger conclusions can be made, such as the claim that

in the completely linear case (f(𝑡,p, z) = F𝑥(𝑡)z + F𝑢(𝑡)p), the hyperplanes defining 𝐵

are supporting hyperplanes to the exact reachable set of the unconstrained IVP. Another

result from [84] allows an extra, bounded, nonlinear term to be added to the dynamics:

f(𝑡,p, z) = F𝑥(𝑡)z + F𝑢(𝑡)p + 𝜑(𝑡, z), with ‖𝜑(𝑡, z)‖ ≤ 𝛽(𝑡) for all (𝑡, z) ∈ 𝑇 ×𝐷𝑥 and for

some bounded 𝛽 : 𝑇 → R. Modification of Proposition 7.4.2 to take this into account is

straightforward.

Meanwhile, the work in [73] also constructs polyhedral bounds for an affine system, with

the normals of the defining hyperplanes determined from the solution of an adjoint system.

However, that work essentially deals with specific constraint information; only solutions with

x(𝑡,u) ≥ 0 are of interest, and the proof of the main result depends on this fact. Currently,

it is unclear how to use the constraint information with the present theory when the a𝑖 are

time-varying.

7.4.3 Affine relaxations

Another implementation of the theory permits the propagation of affine relaxations of the

solutions of parametric ODEs.

Proposition 7.4.3. Given (𝑛𝑦, 𝑛𝑝) ∈ N2 and 𝑃 ⊂ R𝑛𝑝, let 𝑛𝑥 = 𝑛𝑦+𝑛𝑝 and 𝑃 be nonempty.

Suppose that for all u ∈ 𝒰 and for all unconstrained solutions of IVP (7.1), x(·,u) =

(x𝑦(·,u),x𝑝(·,u)), satisfy x𝑝(𝑡,u) ∈ 𝑃 , for all 𝑡 ∈ 𝑇 . Given a𝑝,𝑗 : 𝑇 → R𝑛𝑝 for 𝑗 ∈

{1, . . . , 𝑛𝑦} which are absolutely continuous, suppose A𝑝 : 𝑡 ↦→ [a𝑝,𝑗(𝑡)
T], 𝑚 = 2𝑛𝑦, and

A : 𝑡 ↦→ [a𝑖(𝑡)
T] =

⎡⎣ −I A𝑝(𝑡)

I −A𝑝(𝑡)

⎤⎦ .

Then A,

𝐷𝑀 =
{︀
(𝑡,d) ∈ 𝑇 × R𝑚 : −𝑑𝑗 ≤ 𝑑𝑗+𝑛𝑦 , ∀𝑗 ∈ {1, . . . , 𝑛𝑦}

}︀
, and

𝑀𝑖 : (𝑡,d) ↦→
{︀
z = (y,p) : A(𝑡)z ≤ d,a𝑖(𝑡)

Tz = 𝑑𝑖,p ∈ 𝑃
}︀
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satisfy Assumption 7.3.2.

Proof. To see that Condition 1 of Assumption 7.3.2 holds, choose any 𝑖 ∈ {1, . . . ,𝑚},

d ∈ R𝑚, and (𝑡,u) ∈ 𝑇 × 𝒰 with A(𝑡)x(𝑡,u) ≤ d and a𝑖(𝑡)
Tx(𝑡,u) = 𝑑𝑖 (assuming some

unconstrained solution of IVP (7.1) exists for this u). It is clear that x(𝑡,u) ∈𝑀𝑖(𝑡,d), and

from the form of A, we have (𝑡,d) ∈ 𝐷𝑀 .

Next, for (𝑡,d,p) ∈ 𝑇 × R𝑚 × R𝑛𝑝 , define 𝐹𝑖(𝑡,d,p) for 𝑖 ≤ 𝑛𝑦 by

𝐹𝑖(𝑡,d,p) =

⎧⎨⎩̃︀y :

⎡⎣−I
I

⎤⎦ ̃︀y +

⎡⎣ A𝑝(𝑡)

−A𝑝(𝑡)

⎤⎦p ≤ d,−̃︀𝑦𝑖 + a𝑝,𝑖(𝑡)
Tp = 𝑑𝑖

⎫⎬⎭
and similarly for 𝑖 > 𝑛𝑦. We establish that for all (𝑡,d) ∈ 𝐷𝑀 , p ∈ 𝑃 , and for all 𝑖,

𝐹𝑖(𝑡,d,p) is nonempty. Choose (𝑡,d) ∈ 𝐷𝑀 and p ∈ 𝑃 , and assume 𝑖 ≤ 𝑛𝑦. Then construct

y ∈ R𝑛𝑦 by letting 𝑦𝑗 = −(𝑑𝑗 − a𝑝,𝑗(𝑡)
Tp) for all 𝑗. Then y is in 𝐹𝑖(𝑡,d,p): Clearly

the equality constraint −𝑦𝑖 + a𝑝,𝑖(𝑡)
Tp = 𝑑𝑖 holds. Further, all the inequality constraints

−𝑦𝑗 + a𝑝,𝑗(𝑡)
Tp ≤ 𝑑𝑗 hold with equality, and by definition of 𝐷𝑀 the other constraints also

hold: 𝑦𝑗 − a𝑝,𝑗(𝑡)
Tp = −𝑑𝑗 ≤ 𝑑𝑗+𝑛𝑦 .

Now, to see that Condition 2 of Assumption 7.3.2 holds, choose any (𝑠,d), (𝑠,d′) ∈ 𝐷𝑀

and (y,p) ∈𝑀𝑖(𝑠,d). Note that 𝐹𝑖(𝑠,d,p) and 𝐹𝑖(𝑠,d
′,p) are nonempty by the argument

above. Note that y ∈ 𝐹𝑖(𝑠,d,p). Since 𝐹𝑖 is a polyhedral set (in fact, an interval set)

parameterized by the right-hand sides of its constraints, by Lemma 2.4.2, there exists 𝐿𝑖 > 0

(which is independent of 𝑠 and p) such that for some y′ ∈ 𝐹𝑖(𝑠,d
′,p)

⃦⃦
y − y′⃦⃦ ≤ 𝐿𝑖

⃦⃦
d− d′⃦⃦

1
.

Finally, note that (y′,p) ∈ 𝑀𝑖(𝑠,d
′). A similar argument establishes the case when 𝑖 > 𝑛𝑦

and so choosing 𝐿𝑀 ≥ 𝐿𝑖 for all 𝑖 yields the result.

One application of the definitions in Proposition 7.4.3 is to the case when the dynam-

ics depend on uncertain, but constant in time, parameters. Certainly these inputs can be

incorporated in the set of time-varying inputs 𝒰 , but enforcing the fact that they are con-

stant in time might yield better bounds. Using the notation from Proposition 7.4.3, these
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parameters are interpreted as states with zero time derivative:

ẋ(𝑡,u) =

⎡⎣ẋ𝑦(𝑡,u)

ẋ𝑝(𝑡,u)

⎤⎦ =

⎡⎣f𝑦(𝑡,u(𝑡),x𝑦(𝑡,u),x𝑝(𝑡,u))

0

⎤⎦ = f(𝑡,u(𝑡),x(𝑡,u)), 𝑎.𝑒. 𝑡 ∈ 𝑇.

(7.8)

Thus for any unconstrained solution of (7.8), x𝑝(𝑡,u) = x𝑝(𝑡0,u) for all 𝑡 ∈ 𝑇 . Then

assuming 𝑋0 ⊂ 𝑋𝑦
0 ×𝑃 for some 𝑋𝑦

0 ⊂ R𝑛𝑦 and 𝑃 ⊂ R𝑛𝑝 , the condition x𝑝(𝑡,u) ∈ 𝑃 for all

𝑡 must be satisfied.

Using the definitions in Proposition 7.4.3, the differential inequalities in Hypothesis 4 of

Theorem 7.3.1 become

−𝑓𝑦,𝑗(𝑡,v,y,p) + ȧ𝑝,𝑗(𝑡)
Tp ≤ �̇�𝑗(𝑡), ∀v ∈ 𝑈(𝑡), (y,p) ∈𝑀𝑗(𝑡,b(𝑡)), (7.9a)

𝑓𝑦,𝑗(𝑡,v,y,p)− ȧ𝑝,𝑗(𝑡)
Tp ≤ �̇�𝑗+𝑛𝑦(𝑡), ∀v ∈ 𝑈(𝑡), (y,p) ∈𝑀𝑗+𝑛𝑦(𝑡,b(𝑡)), (7.9b)

for all 𝑗 ∈ {1, . . . , 𝑛𝑦}. With the definitions in Proposition 7.4.3, the bounds 𝐵 : 𝑡 ↦→ {z :

A(𝑡)z ≤ b(𝑡)} imply

a𝑝,𝑗(𝑡)
Tp− 𝑏𝑗(𝑡) ≤ 𝑥𝑦,𝑗(𝑡,u,p) ≤ a𝑝,𝑗(𝑡)

Tp+ 𝑏𝑗+𝑛𝑦(𝑡), ∀𝑗 ∈ {1, . . . , 𝑛𝑦}, (7.10)

for all 𝑡 ∈ 𝑇 , and for any (u,p) ∈ 𝒰 × 𝑃 for which an unconstrained solution of

ẋ𝑦(𝑡,u) = f𝑦(𝑡,u(𝑡),x𝑦(𝑡,u),p), 𝑎.𝑒. 𝑡 ∈ 𝑇, (7.11a)

(x𝑦(𝑡0,u),p) ∈ 𝑋0, (7.11b)

exists. That is to say, we obtain affine relaxations of the solutions of the IVP in parametric

ODEs (7.11). In practice, satisfaction of Inequalities (7.9) can be achieved using affine

relaxations of f𝑦; see also Sections 7.5.3 and 7.6.2 for further discussion.

To explore connections with other work, simplify the problem by assuming that there

are not any time-varying inputs u and drop them from the notation. For some referencê︀p ∈ 𝑃 , let x𝒫
𝑦 : 𝑇 × 𝑃 → R𝑛𝑦 be defined by

x𝒫
𝑦 (𝑡,p) = x𝑦(𝑡, ̂︀p) +A𝑝(𝑡)(p− ̂︀p)
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and 𝑅 : 𝑡 ↦→ [r𝐿(𝑡), r𝑈 (𝑡)], with r𝐿 and r𝑈 defined componentwise by

𝑟𝐿𝑗 (𝑡) = −𝑏𝑗(𝑡)− 𝑥𝑦,𝑗(𝑡, ̂︀p) + a𝑝,𝑗(𝑡)
T̂︀p, (7.12a)

𝑟𝑈𝑗 (𝑡) = 𝑏𝑗+𝑛𝑦(𝑡)− 𝑥𝑦,𝑗(𝑡, ̂︀p) + a𝑝,𝑗(𝑡)
T̂︀p. (7.12b)

Then by Inequalities (7.10), we have x𝑦(𝑡,p) ∈ {x𝒫
𝑦 (𝑡,p)}+𝑅(𝑡) for all 𝑡 (where Minkowski

addition is being used), or

x𝑦(𝑡,p) ∈ [x𝒫
𝑦 (𝑡,p) + r𝐿(𝑡),x𝒫

𝑦 (𝑡,p) + r𝑈 (𝑡)].

Similarly, one can confirm that

𝑀𝑗(𝑡,b(𝑡)) ={︀
(y,p) : y ∈ [x𝒫

𝑦 (𝑡,p) + r𝐿(𝑡),x𝒫
𝑦 (𝑡,p) + r𝑈 (𝑡)], 𝑦𝑗 = 𝑥𝒫𝑦,𝑗(𝑡,p) + 𝑟𝐿𝑗 (𝑡),p ∈ 𝑃

}︀
,

𝑀𝑗+𝑛𝑦(𝑡,b(𝑡)) ={︀
(y,p) : y ∈ [x𝒫

𝑦 (𝑡,p) + r𝐿(𝑡),x𝒫
𝑦 (𝑡,p) + r𝑈 (𝑡)], 𝑦𝑗 = 𝑥𝒫𝑦,𝑗(𝑡,p) + 𝑟𝑈𝑗 (𝑡),p ∈ 𝑃

}︀
,

for all 𝑗. Going further, taking the time derivative of Equations (7.12) and using Inequali-

ties (7.9) we obtain

�̇�𝐿𝑗 (𝑡) ≤ inf
{︀
𝑓𝑦,𝑗(𝑡,y,p)− 𝑓𝑦,𝑗(𝑡,x𝑦(𝑡, ̂︀p), ̂︀p)− ȧ𝑝,𝑗(𝑡)

T(p− ̂︀p) : (y,p) ∈𝑀𝑗(𝑡,b(𝑡))
}︀
,

�̇�𝑈𝑗 (𝑡) ≥ sup
{︀
𝑓𝑦,𝑗(𝑡,y,p)− 𝑓𝑦,𝑗(𝑡,x𝑦(𝑡, ̂︀p), ̂︀p)− ȧ𝑝,𝑗(𝑡)

T(p− ̂︀p) : (y,p) ∈𝑀𝑗+𝑛𝑦(𝑡,b(𝑡))
}︀
.

Thus (r𝐿, r𝑈 ) satisfy

�̇�𝐿𝑗 (𝑡) ≤ inf
{︀
𝑓𝑦,𝑗(𝑡,x

𝒫
𝑦 (𝑡,p) + q,p)− �̇�𝒫𝑦,𝑗(𝑡,p) : (p,q) ∈ 𝑃 × [r𝐿(𝑡), r𝑈 (𝑡)], 𝑞𝑗 = 𝑟𝐿𝑗 (𝑡)

}︀
,

�̇�𝑈𝑗 (𝑡) ≥ sup
{︀
𝑓𝑦,𝑗(𝑡,x

𝒫
𝑦 (𝑡,p) + q,p)− �̇�𝒫𝑦,𝑗(𝑡,p) : (p,q) ∈ 𝑃 × [r𝐿(𝑡), r𝑈 (𝑡)], 𝑞𝑗 = 𝑟𝑈𝑗 (𝑡)

}︀
,

for all 𝑗 and for almost every 𝑡. These are the same conditions established in [37], in the

specific case that

A𝑝(𝑡) =
𝜕x𝑦

𝜕p
(𝑡, ̂︀p)

(assuming that these sensitivities exist). In this case, (x𝒫
𝑦 (𝑡, ·), 𝑅(𝑡)) constitutes a first-order
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Taylor model of x𝑦(𝑡, ·), using the terminology from [37, 107, 202].

The derivation of this result in [37] proceeds by applying the interval bounding method

of §7.4.1 to the remainder function

r(𝑡,p) = x𝑦(𝑡,p)− x𝒫
𝑦 (𝑡,p),

which satisfies the differential equation

ṙ(𝑡,p) = f𝑦
(︀
𝑡,x𝒫

𝑦 (𝑡,p) + r(𝑡,p),p
)︀
− ẋ𝒫

𝑦 (𝑡,p), 𝑎.𝑒. 𝑡 ∈ 𝑇.

This holds even when x𝒫
𝑦 (𝑡, ·) is a Taylor polynomial approximation of x𝑦(𝑡, ·) of order greater

than one. A generalization in [202] bounds the remainder function with either intervals or

ellipsoids. The convergence properties of these Taylor models are discussed in [202]; §7.7.3

also provides an empirical convergence study for this method and others.

7.5 Implementations for constrained systems

In §7.4.2, the 𝑀𝑖 mappings were not compact-valued, and as a consequence only certain

systems could non-trivially satisfy the hypotheses of Theorem 7.3.1. Meanwhile, the 𝑀𝑖

mappings in §7.4.1 are interval-valued, and thus also compact; however there is some in-

flexibility in only using intervals. These shortcomings motivate the instances of the general

theory discussed in this section. At the expense of being restricted to using a constant A,

these implementations of the theory can use the information from each hyperplane to make

the 𝑀𝑖, in essence, as small as possible. Along these same lines, the state constraints can be

used to further restrict the size of each 𝑀𝑖. In this way, bounds which enclose all solutions,

but not necessarily all unconstrained solutions, can be obtained.

7.5.1 Fast polyhedral bounds

Another instance of the mappings which satisfy Assumption 7.3.2 is given. These mappings

allow one to use polyhedral-valued state constraint information 𝑋𝐶 . The specific conditions

are formalized in the following result.

Proposition 7.5.1. Given 𝑚𝑐 ∈ N, A𝐶 ∈ R𝑚𝑐×𝑛𝑥 , and b𝐶 : 𝑇 → R𝑚𝑐 , assume that
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𝑋𝐶 : 𝑡 ↦→ {z : A𝐶z ≤ b𝐶(𝑡)}. Let 𝑚 ∈ N and ̂︀A = [̂︀aT𝑖 ] ∈ R𝑚×𝑛𝑥 be given. Let

𝑃𝑀 : (𝑡,d) ↦→ {z : ̂︀Az ≤ d,A𝐶z ≤ b𝐶(𝑡)}.

Then A : 𝑡 ↦→ ̂︀A,

𝐷𝑀 = {(𝑡,d) ∈ 𝑇 × R𝑚 : 𝑃𝑀 (𝑡,d) ̸= ∅} , and (7.13)

𝑀𝑖 : (𝑡,d) ↦→ argmax{̂︀aT𝑖 z : ̂︀Az ≤ d,A𝐶z ≤ b𝐶(𝑡)} (7.14)

satisfy Assumption 7.3.2.

Proof. To see that Condition 1 of Assumption 7.3.2 holds, choose any 𝑖 ∈ {1, . . . ,𝑚}, d ∈

R𝑚, and (𝑡,u) ∈ 𝑇 × 𝒰 such that ̂︀Ax(𝑡,u) ≤ d and ̂︀aT𝑖 x(𝑡,u) = 𝑑𝑖. Since a solution x(·,u)

must satisfy A𝐶x(𝑡,u) ≤ b𝐶(𝑡), it holds that x(𝑡,u) ∈ 𝑃𝑀 (𝑡,d), and thus (𝑡,d) ∈ 𝐷𝑀 .

Further, since ̂︀aT𝑖 x(𝑡,u) = 𝑑𝑖, and any z such that ̂︀aT𝑖 z > 𝑑𝑖 would be infeasible in LP (7.14),

we must have x(𝑡,u) ∈𝑀𝑖(𝑡,d).

Next, note that if 𝑃𝑀 (𝑡,d) is nonempty, then 𝑀𝑖(𝑡,d) is nonempty for all 𝑖 (𝑀𝑖(𝑡,d) is

the solution set of a linear program that must be feasible and bounded). Then to see that

Condition 2 of Assumption 7.3.2 holds, choose any (𝑠,d1), (𝑠,d2) ∈ 𝐷𝑀 . By definition of

𝐷𝑀 and the previous observation, 𝑀𝑖(𝑠,d𝑗) is nonempty for 𝑖 ∈ {1, . . . ,𝑚} and 𝑗 ∈ {1, 2}.

Applying Lemma 2.4.2, we have that there exists a 𝐿 > 0 and for each z1 ∈𝑀𝑖(𝑠,d1), there

exists a z2 ∈𝑀𝑖(𝑠,d2) such that

‖z1 − z2‖ ≤ 𝐿 ‖(d1,b𝐶(𝑠))− (d2,b𝐶(𝑠))‖1 = 𝐿 ‖d1 − d2‖1 .

Ignoring the state constraints and defining A appropriately, the interval bounds from

§7.4.1 are regained. Connections with other theories are apparent when one interprets

the state constraints instead as an a priori enclosure of the reachable set. Assume that

it is known beforehand that for all u ∈ 𝒰 and all unconstrained solutions of IVP (7.1),

x(𝑡,u) ∈ 𝑋𝐶(𝑡) for all 𝑡 ∈ 𝑇 . In this case, 𝑋𝐶 is called an a priori enclosure of the

reachable set of the unconstrained IVP. With this interpretation, defining A so that interval

bounds are obtained and assuming b𝐶 is constant on 𝑇 (i.e. assuming the a priori enclosure
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is constant) yields the theory in [75]. Allowing a more general (but still constant) A and

permitting a time-varying b𝐶 yields the theory in Ch. 6. Compared to the developments in

§7.4.2, the benefit is that a more general form of f is allowed.

The critical hypothesis of Theorem 7.3.1 becomes

�̇�𝑖(𝑡) ≥ sup
{︁̂︀aT𝑖 f(𝑡,p, z) : p ∈ 𝑈(𝑡), ̂︀Az ≤ b(𝑡),A𝐶z ≤ b𝐶(𝑡), ̂︀aT𝑖 z = 𝑏*𝑖 (𝑡,b(𝑡))

}︁
, (7.15)

for all 𝑖 and almost every 𝑡, where 𝑏*𝑖 (𝑡,d) = sup{̂︀aT𝑖 z : ̂︀Az ≤ d,A𝐶z ≤ b𝐶(𝑡)}. To obtain

an auxiliary IVP in ODEs whose solution is b, we need (at least) to assume ̂︀A, A𝐶 and b𝐶

are chosen so that 𝑀𝑖 in Eqn. (7.14) is compact-valued, and that in addition f is continuous

and 𝑈 is compact-valued. Further, one needs to assume that b𝐶 is piecewise continuous to

ensure that the auxiliary IVP in ODEs actually has a solution. The details of a numerical

method based on this implementation are given in Ch. 6.

However the optimization problems in Inequality (7.15) are estimated, the definition of

the 𝑀𝑖 mappings involves the solution of linear programs (LPs). Although this can be done

fairly efficiently, it cannot be made quite as efficient as the method in [168], which made the

most significant step toward generalizing the idea of using a priori enclosures. This inspires

the following section’s development of another implementation of the general theory, which

avoids the solution of linear programs.

7.5.2 Faster polyhedral bounds

In the previous section, the implementation of the theory calls for the repeated solution of

LPs. In this section, another instance of the general theory is given which avoids this.

To do so, the interval-tightening operator originally discussed in §6.4.1 is required. For

convenience, its definition and properties are restated in Algorithm 5 and Proposition 7.5.2,

respectively.

Proposition 7.5.2. For any (𝑛𝑚, 𝑛) ∈ N2, let M ∈ R𝑛𝑚×𝑛. For any (v,w,d) ∈ R𝑛 ×

R𝑛 × R𝑛𝑚 with v ≤ w, the interval-tightening operator 𝐼𝑡 defined in Algorithm 5 satisfies

𝐼𝑡([v,w],d;M) ̸= ∅ and

{z ∈ [v,w] : Mz ≤ d} ⊂ 𝐼𝑡([v,w],d;M) ⊂ [v,w].
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Algorithm 5 Definition of the interval-tightening operator 𝐼𝑡

Require: (𝑛𝑚, 𝑛) ∈ N2, M = [𝑚𝑖,𝑗 ] ∈ R𝑛𝑚×𝑛, d ∈ R𝑛𝑚 , (v,w) ∈ R𝑛 × R𝑛, v ≤ w
(̂︀v, ̂︀w)← (v,w)
for 𝑖 ∈ {1, . . . , 𝑛𝑚} do

for 𝑗 ∈ {1, . . . , 𝑛} do
if 𝑚𝑖,𝑗 ̸= 0 then
𝛾 ← median

{︁̂︀𝑣𝑗 , ̂︀𝑤𝑗 , 1/𝑚𝑖,𝑗

(︀
𝑑𝑖 +

∑︀
𝑘 ̸=𝑗 max{−𝑚𝑖,𝑘̂︀𝑣𝑘,−𝑚𝑖,𝑘 ̂︀𝑤𝑘}

)︀}︁
if 𝑚𝑖,𝑗 > 0 then̂︀𝑤𝑗 ← 𝛾
end if
if 𝑚𝑖,𝑗 < 0 then̂︀𝑣𝑗 ← 𝛾
end if

end if
end for

end for
return 𝐼𝑡([v,w],d;M)← [̂︀v, ̂︀w]

Further, let v𝐼𝑡 and w𝐼𝑡 be the endpoints of 𝐼𝑡:

[v𝐼𝑡(v,w,d;M),w𝐼𝑡(v,w,d;M)] = 𝐼𝑡([v,w],d;M).

Then there exists a 𝐿M > 0 such that for (v1,w1,d1) and (v2,w2,d2) in R𝑛 × R𝑛 × R𝑛𝑚

with v1 ≤ w1 and v2 ≤ w2,

‖v𝐼𝑡(v1,w1,d1;M)− v𝐼𝑡(v2,w2,d2;M)‖ ≤ 𝐿M ‖(v1,w1,d1)− (v2,w2,d2)‖ ,

‖w𝐼𝑡(v1,w1,d1;M)−w𝐼𝑡(v2,w2,d2;M)‖ ≤ 𝐿M ‖(v1,w1,d1)− (v2,w2,d2)‖ .

More definitions of 𝐷𝑀 and 𝑀𝑖 satisfying Assumption 7.3.2 can be stated. In the

following, a somewhat specific form of the matrix A is assumed. As a result, interval

bounds are always available. This is not strictly necessary, but it simplifies the required

constructions.

Proposition 7.5.3. Given 𝑚𝑐 ∈ N, A𝐶 ∈ R𝑚𝑐×𝑛𝑥 , and b𝐶 : 𝑇 → R𝑚𝑐 , suppose that

𝑋𝐶 : 𝑡 ↦→ {z : A𝐶z ≤ b𝐶(𝑡)}. Given 𝑚𝑒 ∈ N and A𝑒 ∈ R𝑚𝑒×𝑛𝑥 , let 𝑚 = 2𝑛𝑥 + 𝑚𝑒 and
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̂︀A = [̂︀aT𝑖 ] ∈ R𝑚×𝑛𝑥 be

̂︀A =

⎡⎢⎢⎢⎣
−I

I

A𝑒

⎤⎥⎥⎥⎦ .

Let 𝐷𝑀 = 𝑇 × R𝑚 and define

v : R𝑚 ∋ d ↦→

⎡⎢⎢⎢⎣
min{−𝑑1, 𝑑𝑛𝑥+1}

...

min{−𝑑𝑛𝑥 , 𝑑𝑛𝑥+𝑛𝑥}

⎤⎥⎥⎥⎦ , w : R𝑚 ∋ d ↦→

⎡⎢⎢⎢⎣
max{−𝑑1, 𝑑𝑛𝑥+1}

...

max{−𝑑𝑛𝑥 , 𝑑𝑛𝑥+𝑛𝑥}

⎤⎥⎥⎥⎦ ,

A𝐹,𝑖 =

⎡⎢⎢⎢⎣
−̂︀aT𝑖̂︀A
A𝐶

⎤⎥⎥⎥⎦ , d𝐹,𝑖 : (𝑡,d) ↦→

⎡⎢⎢⎢⎣
−𝑑𝑖

d

b𝐶(𝑡)

⎤⎥⎥⎥⎦ ,

𝐹𝑖 : (𝑡,d) ↦→ 𝐼𝑡([v(d),w(d)],d𝐹,𝑖(𝑡,d);A𝐹,𝑖),

𝑏𝐿𝑖 : (𝑡,d) ↦→ min{̂︀aT𝑖 z : z ∈ 𝐹𝑖(𝑡,d)}, 𝑏𝑈𝑖 : (𝑡,d) ↦→ max{̂︀aT𝑖 z : z ∈ 𝐹𝑖(𝑡,d)},

𝑀𝑖 : (𝑡,d) ↦→ 𝐹𝑖(𝑡,d) ∩
{︀
z : ̂︀aT𝑖 z = median {𝑑𝑖, 𝑏𝐿𝑖 (𝑡,d), 𝑏𝑈𝑖 (𝑡,d)}

}︀
,

for 𝑖 ∈ {1, . . . ,𝑚}. Then A : 𝑡 ↦→ ̂︀A, 𝐷𝑀 , and 𝑀𝑖 for 𝑖 ∈ {1, . . . ,𝑚} satisfy Assump-

tion 7.3.2.

Proof. To see that Condition 1 of Assumption 7.3.2 holds, choose any 𝑖 ∈ {1, . . . ,𝑚},

d ∈ R𝑚, and (𝑡,u) ∈ 𝑇 × 𝒰 such that ̂︀Ax(𝑡,u) ≤ d and ̂︀aT𝑖 x(𝑡,u) = 𝑑𝑖. This means

we have −̂︀aT𝑖 x(𝑡,u) ≤ −𝑑𝑖, and as well by assumption on the form of ̂︀A, we have x(𝑡,u) ∈

[v(d),w(d)]. Since a solution x(·,u) must satisfy A𝐶x(𝑡,u) ≤ b𝐶(𝑡), by Proposition 7.5.2,

x(𝑡,u) ∈ 𝐹𝑖(𝑡,d). This means that 𝑏𝐿𝑖 (𝑡,d) ≤ ̂︀aT𝑖 x(𝑡,u) ≤ 𝑏𝑈𝑖 (𝑡,d). It follows that

𝑀𝑖(𝑡,d) = 𝐹𝑖(𝑡,d) ∩ {z : ̂︀aT𝑖 z = 𝑑𝑖} and so x(𝑡,u) ∈𝑀𝑖(𝑡,d) (and clearly (𝑡,d) ∈ 𝐷𝑀 ).

By construction, v(d) ≤ w(d) for any d ∈ R𝑚, and so by Proposition 7.5.2, 𝐹𝑖(𝑡,d) is

nonempty. Next, since 𝑏𝐿𝑖 (𝑡,d) ≤ 𝑏𝑈𝑖 (𝑡,d) for any (𝑡,d) ∈ 𝐷𝑀 , one can analyze the three

cases 𝑑𝑖 ≤ 𝑏𝐿𝑖 (𝑡,d) ≤ 𝑏𝑈𝑖 (𝑡,d), 𝑏
𝐿
𝑖 (𝑡,d) ≤ 𝑑𝑖 ≤ 𝑏𝑈𝑖 (𝑡,d), and 𝑏𝐿𝑖 (𝑡,d) ≤ 𝑏𝑈𝑖 (𝑡,d) ≤ 𝑑𝑖 to see

that in each case 𝑀𝑖(𝑡,d) must be nonempty for all (𝑡,d). It is clear that v and w are

Lipschitz continuous, and that d𝐹,𝑖 satisfies

‖d𝐹,𝑖(𝑠,d1)− d𝐹,𝑖(𝑠,d2)‖ ≤ 2 ‖d1 − d2‖1 ,
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for any (𝑠,d1), (𝑠,d2) ∈ 𝐷𝑀 . Combined with the Lipschitz continuity properties from

Proposition 7.5.2, there exists 𝐿𝑖 > 0 such that the lower endpoint v𝐹,𝑖 of 𝐹𝑖 satisfies

‖v𝐹,𝑖(𝑠,d1)− v𝐹,𝑖(𝑠,d2)‖ ≤ 𝐿𝑖 ‖d1 − d2‖1 , (7.16)

for any (𝑠,d1), (𝑠,d2) ∈ 𝐷𝑀 , and similarly for the upper endpoint w𝐹,𝑖 of 𝐹𝑖. Since 𝑏𝐿𝑖 and

𝑏𝑈𝑖 are the optimal objective values of certain parametric LPs, the Lipschitz continuity of

the endpoints of 𝐹𝑖 combined with Lemma 2.4.2 establish that 𝑏𝐿𝑖 and 𝑏𝑈𝑖 satisfy inequal-

ities similar to Inequality (7.16). The Lipschitz continuity of median {·, ·, ·} consequently

establishes that 𝑏𝑚𝑒𝑑
𝑖 : (𝑡,d) ↦→ median {𝑑𝑖, 𝑏𝐿𝑖 (𝑡,d), 𝑏𝑈𝑖 (𝑡,d)} also satisfies an inequality like

Inequality (7.16). Writing 𝑀𝑖(𝑡,d) as

{︁
z : −Iz ≤ −v𝐹,𝑖(𝑡,d), Iz ≤ w𝐹,𝑖(𝑡,d),−̂︀aT𝑖 z ≤ −𝑏𝑚𝑒𝑑

𝑖 (𝑡,d), ̂︀aT𝑖 z ≤ 𝑏𝑚𝑒𝑑
𝑖 (𝑡,d)

}︁
,

we can apply Lemma 2.4.2 again to see that Condition 2 of Assumption 7.3.2 holds.

Note that we can change the definitions of A𝐹,𝑖 and d𝐹,𝑖 in Proposition 7.5.3 to

A𝐹,𝑖 =

⎡⎢⎢⎢⎣
̂︀A
−̂︀aT𝑖
A𝐶

⎤⎥⎥⎥⎦ , d𝐹,𝑖 : (𝑡,d) ↦→

⎡⎢⎢⎢⎣
d

−𝑑𝑖

b𝐶(𝑡)

⎤⎥⎥⎥⎦ , (7.17)

and the conclusion of the proposition still holds, with the proof unchanged. The original

definition of 𝑀𝑖 can be seen as an analog of the definitions in Eqn. (7) of [168] (“flattening

then tightening”), while the alternate definition coming from using A𝐹,𝑖 and d𝐹,𝑖 in (7.17) can

be seen as an analog of the definitions in Eqn. (6) of [168] (“tightening then flattening”). The

definition of the 𝑀𝑖 mappings in Proposition 7.5.3 as stated typically lead to better bounds,

since the constraint information is used to tighten each face of the bounding polyhedron

individually. However, this is not always the case, as an example in §7.7.1 demonstrates.

Although the definition of 𝑀𝑖 in Proposition 7.5.3 involves the evaluation of 𝑏𝐿𝑖 and

𝑏𝑈𝑖 , defined by the optimal objective values of LPs, these LPs are over intervals and thus

can be evaluated cheaply by inspecting the sign of each component of the objective ̂︀a𝑖.
The disadvantage of this definition, compared to that in §7.5.1, is that 𝑀𝑖 is not quite as

“small.” Nevertheless, a numerical method based on the definitions of this section proves to
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be effective and fast. The details of its implementation are discussed in §7.6, and numerical

results are presented in Sections 7.7.1 and 7.7.2.

7.5.3 Simultaneous interval and affine relaxations

This section discusses a method for simultaneously calculating an interval enclosure and

affine relaxations. In contrast to previous theories, the information from the interval enclo-

sure can be used to improve the relaxations and vice versa. For example, in [170] or [176],

tight relaxations cannot be used to tighten the interval enclosures.

The development is similar to that in §7.4.3, where some of the differential states are

interpreted as unknown, but constant in time, parameters. The main result of this section

is Proposition 7.5.6, which provides another definition of A and the 𝑀𝑖 mappings which

satisfy Assumption 7.3.2. The bounds {z : A(𝑡)z ≤ b(𝑡)} that result from Theorem 7.3.1

using the definitions of Proposition 7.5.6 imply that

y𝐿(𝑡) ≤ x𝑦(𝑡,u,p) ≤ y𝑈 (𝑡),

[a𝑙𝑗(𝑡)
T]p+ b𝑙(𝑡) ≤ x𝑦(𝑡,u,p) ≤ [a𝑢𝑗 (𝑡)

T]p+ b𝑢(𝑡),

for all 𝑡, p, and u, where (−y𝐿,y𝑈 ,−b𝑙,b𝑢) = b and x𝑦 is a solution of the IVP in

parametric ODEs (7.11). As evidenced by the form of the bounds, the 𝑀𝑖 mappings in

Proposition 7.5.6 are also the intersection of an interval and an “affine” enclosure. Using the

definitions in Proposition 7.5.6 and again letting (−y𝐿,y𝑈 ,−b𝑙,b𝑢) = b, the differential

inequalities in Hypothesis 4 of Theorem 7.3.1 become

�̇�𝐿𝑗 (𝑡) ≤ inf{𝑓𝑦,𝑗(𝑡,v,y,p) : v ∈ 𝑈(𝑡), (y,p) ∈𝑀𝑗(𝑡,b(𝑡)},

�̇�𝑈𝑗 (𝑡) ≥ sup{𝑓𝑦,𝑗(𝑡,v,y,p) : v ∈ 𝑈(𝑡), (y,p) ∈𝑀𝑗+𝑛𝑦(𝑡,b(𝑡)},

�̇�𝑙𝑗(𝑡) ≤ inf{𝑓𝑦,𝑗(𝑡,v,y,p)− ȧ𝑙𝑗(𝑡)
Tp : v ∈ 𝑈(𝑡), (y,p) ∈𝑀𝑗+2𝑛𝑦(𝑡,b(𝑡)},

�̇�𝑢𝑗 (𝑡) ≥ sup{𝑓𝑦,𝑗(𝑡,v,y,p)− ȧ𝑢𝑗 (𝑡)
Tp : v ∈ 𝑈(𝑡), (y,p) ∈𝑀𝑗+3𝑛𝑦(𝑡,b(𝑡)},

for all 𝑗. When establishing that these conditions hold, a combination of interval arithmetic

and some sort of “affine arithmetic” (see Ch. 3) may be used to take advantage of this form

of the 𝑀𝑖.

Before proceeding, the interval-valued operator �(·, ·) is introduced. In words, if v ≤ w,
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�(v,w) returns the nonempty interval [v,w]. If 𝑣𝑗 > 𝑤𝑗 for any 𝑗, the upper and lower

bounds of the resulting interval in the 𝑗𝑡ℎ dimension equal the average value of 𝑣𝑗 and 𝑤𝑗 .

The properties of � in Lemma 7.5.4 clearly hold.

Definition 7.5.1. For any 𝑛 ∈ N and 𝐷 ⊂ R𝑛, let I𝐷 = {[v,w] ⊂ 𝐷 : [v,w] ̸= ∅} .

Definition 7.5.2. For any 𝑛 ∈ N, the mapping � : R𝑛 × R𝑛 → IR𝑛 is defined by

�(v,w) = [̂︀v, ̂︀w] where ̂︀v, ̂︀w are given componentwise by ̂︀𝑣𝑗 = min{𝑣𝑗 , (𝑣𝑗 + 𝑤𝑗)/2} and̂︀𝑤𝑗 = max{𝑤𝑗 , (𝑣𝑗 + 𝑤𝑗)/2}.

Lemma 7.5.4. Let ̂︀v, ̂︀w : R𝑛 × R𝑛 → R𝑛 be defined by the endpoints of �; i.e.

[̂︀v(v,w), ̂︀w(v,w)] = �(v,w).

Then there exists a 𝐿 > 0 such that for all (v,w) and (v′,w′) in R𝑛 × R𝑛,

⃦⃦̂︀v(v,w)− ̂︀v(v′,w′)
⃦⃦
≤ 𝐿

⃦⃦
(v,w)− (v′,w′)

⃦⃦
and similarly for ̂︀w. Further, � is always nonempty-valued.

The definitions in Proposition 7.5.6 depend on Definition 7.5.4, which requires the fol-

lowing class of fundamental objects. Some necessary properties are subsequently stated and

proved.

Definition 7.5.3. For (𝑛, 𝑞) ∈ N2, let 𝑌 ⊂ R𝑛 and 𝑄 ⊂ R𝑞. Let A(𝑌,𝑄) be defined by the

following: 𝐴 ∈ A(𝑌,𝑄) if and only if

1. 𝐴 ⊂ 𝑌 ×𝑄.

2. ∀q ∈ 𝑄, there exists y ∈ 𝑌 such that (y,q) ∈ 𝐴.

3. There exist v, w, d𝑙, d𝑢 ∈ R𝑛, and A𝑙, A𝑢 ∈ R𝑛×𝑞 such that

𝐴 =
{︁
(y,q) ∈ [v,w]×𝑄 : A𝑙q+ d𝑙 ≤ y ≤ A𝑢q+ d𝑢

}︁
.

Definition 7.5.4. For any (𝑛𝑦, 𝑛𝑝,𝑚𝑐) ∈ N3, nonempty compact 𝑃 ⊂ 𝑃 𝐼 ∈ IR𝑛𝑝 , A𝐶 ∈

R𝑚𝑐×(𝑛𝑦+𝑛𝑝), and 𝑖 ∈ {1, . . . , 4𝑛𝑦}, define 𝐴𝑖 : R4𝑛𝑦 × R𝑛𝑦×𝑛𝑝 × R𝑛𝑦×𝑛𝑝 × R𝑚𝑐 ⇒ R𝑛𝑦 × 𝑃

by Algorithm 6.
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Algorithm 6 Calculation of 𝐴𝑖 mapping in Definition 7.5.4

Require: d ∈ R4𝑛𝑦 , A𝑙 = [(a𝑙𝑗)
T] ∈ R𝑛𝑦×𝑛𝑝 , A𝑢 = [(a𝑢𝑗 )

T] ∈ R𝑛𝑦×𝑛𝑝 , b𝐶 ∈ R𝑚𝑐

Set y𝐿, y𝑈 , b𝑙, b𝑢 ∈ R𝑛𝑦 such that (−y𝐿,y𝑈 ,−b𝑙,b𝑢) = d.
Set 𝑗 = ((𝑖− 1) mod 𝑛𝑦) + 1.
(v,w)← (y𝐿,y𝑈 ), (̂︀b𝑙, ̂︀b𝑢)← (b𝑙,b𝑢), (̂︀A𝑙, ̂︀A𝑢)← (A𝑙,A𝑢)
Flatten and Tighten:
if 𝑖 ≤ 𝑛𝑦 then

(corresponds to an interval lower bound)̂︀𝑦𝐿𝑗 ← 𝑣𝑗 ← 𝑦𝐿𝑗̂︀𝑦𝑈𝑗 ← 𝑤𝑗 ← 𝑦𝐿𝑗̂︀𝑏𝑙𝑗 ← ̂︀𝑏𝑢𝑗 ← 𝑦𝐿𝑗 , ̂︀a𝑙𝑗 ← ̂︀a𝑢𝑗 ← 0
else if 𝑖 ≤ 2𝑛𝑦 then

(corresponds to an interval upper bound)̂︀𝑦𝐿𝑗 ← 𝑣𝑗 ← 𝑦𝑈𝑗̂︀𝑦𝑈𝑗 ← 𝑤𝑗 ← 𝑦𝑈𝑗̂︀𝑏𝑙𝑗 ← ̂︀𝑏𝑢𝑗 ← 𝑦𝑈𝑗 , ̂︀a𝑙𝑗 ← ̂︀a𝑢𝑗 ← 0
else if 𝑖 ≤ 3𝑛𝑦 then

(corresponds to an affine underestimator)̂︀𝑦𝐿𝑗 ← 𝑣𝑗 ← min{(a𝑙𝑗)Tp : p ∈ 𝑃}+ 𝑏𝑙𝑗̂︀𝑦𝑈𝑗 ← 𝑤𝑗 ← max{(a𝑙𝑗)Tp : p ∈ 𝑃}+ 𝑏𝑙𝑗̂︀𝑏𝑙𝑗 ← ̂︀𝑏𝑢𝑗 ← 𝑏𝑙𝑗 , ̂︀a𝑙𝑗 ← ̂︀a𝑢𝑗 ← a𝑙𝑗
else

(corresponds to an affine overestimator)̂︀𝑦𝐿𝑗 ← 𝑣𝑗 ← min{(a𝑢𝑗 )Tp : p ∈ 𝑃}+ 𝑏𝑢𝑗̂︀𝑦𝑈𝑗 ← 𝑤𝑗 ← max{(a𝑢𝑗 )Tp : p ∈ 𝑃}+ 𝑏𝑢𝑗̂︀𝑏𝑙𝑗 ← ̂︀𝑏𝑢𝑗 ← 𝑏𝑢𝑗 , ̂︀a𝑙𝑗 ← ̂︀a𝑢𝑗 ← a𝑢𝑗
end if
[v′,w′]× [p𝐿

𝑑𝑢𝑚𝑚𝑦,p
𝑈
𝑑𝑢𝑚𝑚𝑦]← 𝐼𝑡(�(v,w)× 𝑃 𝐼 ,b𝐶 ;A𝐶)

Rectify:
for 𝑘 ∈ {1, . . . , 𝑛𝑦} do

if 𝑘 ̸= 𝑗 then
𝑞diff𝑘 ← min{(a𝑢𝑘 − a𝑙𝑘)

Tp : p ∈ 𝑃}+ 𝑏𝑢𝑘 − 𝑏𝑙𝑘,
𝑞𝑙,diff𝑘 ← 𝑤′

𝑘 −max{(a𝑙𝑘)Tp : p ∈ 𝑃} − 𝑏𝑙𝑘,
𝑞𝑢,diff𝑘 ← min{(a𝑢𝑘)Tp : p ∈ 𝑃}+ 𝑏𝑢𝑘 − 𝑣′𝑘;
if 𝑖 ≤ 2𝑛𝑦 then̂︀𝑦𝐿𝑘 ← 𝑣′𝑘, ̂︀𝑏𝑙𝑘 ← 𝑏𝑙𝑘 +min{0, 𝑞diff𝑘 /2, 𝑞𝑙,diff𝑘 }̂︀𝑦𝑈𝑘 ← 𝑤′

𝑘, ̂︀𝑏𝑢𝑘 ← 𝑏𝑢𝑘 −min{0, 𝑞diff𝑘 /2, 𝑞𝑢,diff𝑘 }
elsê︀𝑦𝐿𝑘 ← 𝑣′𝑘 +min{0, 𝑞𝑢,diff𝑘 }, ̂︀𝑏𝑙𝑘 ← 𝑏𝑙𝑘 +min{0, 𝑞diff𝑘 /2}̂︀𝑦𝑈𝑘 ← 𝑤′

𝑘 −min{0, 𝑞𝑙,diff𝑘 }, ̂︀𝑏𝑢𝑘 ← 𝑏𝑢𝑘 −min{0, 𝑞diff𝑘 /2}
end if

end if
end for
return 𝐴𝑖(d,A

𝑙,A𝑢,b𝐶) =
{︁
(y,p) ∈ [̂︀y𝐿, ̂︀y𝑈 ]× 𝑃 : ̂︀A𝑙p+ ̂︀b𝑙 ≤ y ≤ ̂︀A𝑢p+ ̂︀b𝑢

}︁
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Lemma 7.5.5. For any (𝑛𝑦, 𝑛𝑝,𝑚𝑐) ∈ N3, nonempty compact 𝑃 ⊂ 𝑃 𝐼 ∈ IR𝑛𝑝, A𝐶 ∈

R𝑚𝑐×(𝑛𝑦+𝑛𝑝), and 𝑖 ∈ {1, . . . , 4𝑛𝑦} the following holds:

1. 𝐴𝑖 defined in Definition 7.5.4 is a mapping into A(R𝑛𝑦 , 𝑃 ).

2. There exists 𝐿𝑖 > 0 such that for any A𝑙 ∈ R𝑛𝑦×𝑛𝑝, A𝑢 ∈ R𝑛𝑦×𝑛𝑝, and b𝐶 ∈ R𝑚𝑐 ,

and for any (d1,d2) ∈ R4𝑛𝑦 × R4𝑛𝑦 , and (y1,p1) ∈ 𝐴𝑖(d1,A
𝑙,A𝑢,b𝐶), there exists

(y2,p2) ∈ 𝐴𝑖(d2,A
𝑙,A𝑢,b𝐶) such that ‖(y1,p1)− (y2,p2)‖ ≤ 𝐿𝑖 ‖d1 − d2‖ .

Proof.

1. It is clear from the return value of 𝐴𝑖 in Algorithm 6 that Conditions 1 and 3

of Definition 7.5.3 are satisfied. The main challenge is establishing that for any

(d,A𝑙,A𝑢,b𝐶) in the domain of 𝐴𝑖 and p ∈ 𝑃 , there exists a y ∈ R𝑛𝑦 such that

(y,p) ∈ 𝐴𝑖(d,A
𝑙,A𝑢,b𝐶). However, this is still not too hard to see. In the 𝑗𝑡ℎ dimen-

sion (where 𝑗 is defined as in Algorithm 6), it is clear that the “Flatten and Tighten”

step in Algorithm 6 ensures that [̂︀𝑦𝐿𝑗 , ̂︀𝑦𝑈𝑗 ] contains [(̂︀a𝑙𝑗)Tp+̂︀𝑏𝑙𝑗 , (̂︀a𝑢𝑗 )Tp+̂︀𝑏𝑢𝑗 ] for each

p ∈ 𝑃 . Meanwhile, before the “Rectify” step in Algorithm 6, for 𝑘 ̸= 𝑗 and fixed p ∈ 𝑃 ,

the intersection [𝑣′𝑘, 𝑤
′
𝑘] ∩ [(a𝑙𝑘)

Tp + 𝑏𝑙𝑘, (a
𝑢
𝑘)

Tp + 𝑏𝑢𝑘 ] may be empty. One can verify

that the definitions of ̂︀𝑦𝐿𝑘 , ̂︀𝑦𝑈𝑘 , ̂︀𝑏𝑙𝑘, ̂︀𝑏𝑢𝑘 ensure that [̂︀𝑦𝐿𝑘 , ̂︀𝑦𝑈𝑘 ] ∩ [(a𝑙𝑘)
Tp+̂︀𝑏𝑙𝑘, (a𝑢𝑘)Tp+̂︀𝑏𝑢𝑘 ]

is nonempty for each p ∈ 𝑃 and 𝑘 ̸= 𝑗. This establishes that Condition 2 of Defini-

tion 7.5.3 holds.

2. Choose any A𝑙 ∈ R𝑛𝑦×𝑛𝑝 , A𝑢 ∈ R𝑛𝑦×𝑛𝑝 , and b𝐶 ∈ R𝑚𝑐 . Let ̂︀y𝐿, ̂︀y𝑈 , ̂︀b𝑙, ̂︀b𝑢 be

mappings R4𝑛𝑦 → R𝑛𝑦 which define 𝐴𝑖(·,A𝑙,A𝑢,b𝐶); i.e.

𝐴𝑖(d,A
𝑙,A𝑢,b𝐶) = {(y,p) ∈ [̂︀y𝐿(d), ̂︀y𝑈 (d)]×𝑃 : ̂︀A𝑙p+ ̂︀b𝑙(d) ≤ y ≤ ̂︀A𝑢p+ ̂︀b𝑢(d)}.

We claim that there exists ̂︀𝐿𝑖 > 0 (independent of A𝑙, A𝑢, b𝐶) such that for all d1,

d2 ∈ R4𝑛𝑦 , we have ⃦⃦̂︀y𝐿(d1)− ̂︀y𝐿(d2)
⃦⃦
≤ ̂︀𝐿𝑖 ‖d1 − d2‖ , (7.18)

and similarly for ̂︀y𝑈 , ̂︀b𝑙, ̂︀b𝑢. This is fairly clear from inspection of the operations in

Algorithm 6 and application of Lemma 7.5.4 and Proposition 7.5.2.

Now, choose any (d1,A
𝑙,A𝑢,b𝐶) and (d2,A

𝑙,A𝑢,b𝐶) in the domain of 𝐴𝑖, and any

(y1,p1) ∈ 𝐴𝑖(d1,A
𝑙,A𝑢,b𝐶). By the first claim 𝐴𝑖 is a mapping into A(R𝑛𝑦 , 𝑃 ).

By definition, for 𝑗 ∈ {1, 2}, 𝐴𝑖(d𝑗 ,A
𝑙,A𝑢,b𝐶) ∩ (R𝑛𝑦 × {p1}) is nonempty, and
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furthermore, an interval. So by definition of the Hausdorff distance (or application of

Lemma 2.4.2), we have that there exists y2 such that (y2,p1) ∈ 𝐴𝑖(d2,A
𝑙,A𝑢,b𝐶)

and

‖(y1,p1)− (y2,p1)‖∞ = ‖y1 − y2‖∞ ≤

max
{︁ ⃦⃦̂︀y𝐿(d1)− ̂︀y𝐿(d2)

⃦⃦
∞ ,
⃦⃦̂︀y𝑈 (d1)− ̂︀y𝑈 (d2)

⃦⃦
∞ ,⃦⃦⃦̂︀b𝑙(d1)− ̂︀b𝑙(d2)

⃦⃦⃦
∞
,
⃦⃦⃦̂︀b𝑢(d1)− ̂︀b𝑢(d2)

⃦⃦⃦
∞

}︁
.

Combined with Inequality (7.18) (and the others for ̂︀y𝑈 , ̂︀b𝑙, ̂︀b𝑢) , we have the result,

applying equivalence of norms if necessary.

The following result forms the basis of the numerical method discussed in §7.6.2.

Proposition 7.5.6. Given (𝑛𝑦, 𝑛𝑝) ∈ N2, 𝑃 ⊂ R𝑛𝑝, and 𝑃 𝐼 ∈ IR𝑛𝑝 , let 𝑛𝑥 = 𝑛𝑦 + 𝑛𝑝, and

suppose that 𝑃 is nonempty and compact, and 𝑃 ⊂ 𝑃 𝐼 . Given 𝑚𝑐 ∈ N, A𝐶 ∈ R𝑚𝑐×𝑛𝑥 , and

b𝐶 : 𝑇 → R𝑚𝑐 , let 𝑋𝐶 : 𝑡 ↦→ {z : A𝐶z ≤ b𝐶(𝑡)}. For 𝑖 ∈ {1, . . . , 4𝑛𝑦}, let 𝐴𝑖 be defined as

in Definition 7.5.4 (with 𝑛𝑦, 𝑛𝑝, 𝑚𝑐, 𝑃 , 𝑃 𝐼 , and A𝐶 as given here). Suppose that for all

u ∈ 𝒰 and for all solutions of IVP (7.1), x(·,u) = (x𝑦(·,u),x𝑝(·,u)), satisfy x𝑝(𝑡,u) ∈ 𝑃 ,

for all 𝑡 ∈ 𝑇 . Given (a𝑙𝑗 ,a
𝑢
𝑗 ) : 𝑇 → R𝑛𝑝 × R𝑛𝑝 for 𝑗 ∈ {1, . . . , 𝑛𝑦} which are absolutely

continuous, suppose A𝑙 : 𝑡 ↦→ [a𝑙𝑗(𝑡)
T] ∈ R𝑛𝑦×𝑛𝑝 , A𝑢 : 𝑡 ↦→ [a𝑢𝑗 (𝑡)

T] ∈ R𝑛𝑦×𝑛𝑝, 𝑚 = 4𝑛𝑦, and

A : 𝑡 ↦→

⎡⎢⎢⎢⎢⎢⎢⎣
−I 0

I 0

−I A𝑙(𝑡)

I −A𝑢(𝑡)

⎤⎥⎥⎥⎥⎥⎥⎦ .

For each 𝑖, define 𝑀𝑖 : (𝑡,d) ↦→ 𝐴𝑖(d,A
𝑙(𝑡),A𝑢(𝑡),b𝐶(𝑡)). Then A, 𝐷𝑀 = 𝑇 × R𝑚, and

𝑀𝑖 satisfy Assumption 7.3.2.

Proof. Begin by checking that Condition 1 of Assumption 7.3.2 holds; choose any 𝑖 ∈

{1, . . . ,𝑚}, d ∈ R𝑚, and (𝑡,u) ∈ 𝑇 × 𝒰 such that A(𝑡)x(𝑡,u) ≤ d and a𝑖(𝑡)
Tx(𝑡,u) = 𝑑𝑖.

Trivially, we have that (𝑡,d) ∈ 𝐷𝑀 . Choose (y𝐿,y𝑈 ,b𝑙,b𝑢) so that (−y𝐿,y𝑈 ,−b𝑙,b𝑢) = d

(as in Algorithm 6). Then x(𝑡,u) ∈ {(y,p) ∈ [y𝐿,y𝑈 ]×𝑃 : A𝑙(𝑡)p+b𝑙 ≤ y ≤ A𝑢(𝑡)p+b𝑢}.
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Assume, for example, that 𝑖 ≤ 𝑛𝑦, so that the constraint a𝑖(𝑡)
Tx(𝑡,u) = 𝑑𝑖 corresponds to

𝑥𝑦,𝑖(𝑡,u) = 𝑦𝐿𝑖 . At the end of the “Flatten and Tighten” step in Algorithm 6, it holds that

x𝑦(𝑡,u) is in �(v,w), and so x𝑦(𝑡,u) is in [v′,w′] (using the properties of the interval-

tightening operator from Proposition 7.5.2). The rest of the steps in the algorithm only

widen this interval; i.e. ̂︀𝑦𝐿𝑘 ≤ 𝑣′𝑘 and 𝑤′
𝑘 ≤ ̂︀𝑦𝑈𝑘 for 𝑘 ̸= 𝑗. Similarly, ̂︀𝑏𝑙𝑘 ≤ 𝑏𝑙𝑘 and 𝑏𝑢𝑘 ≤ ̂︀𝑏𝑢𝑘 , and

so it is clear that

x(𝑡,u) ∈
{︁
(y,p) : p ∈ 𝑃, ̂︀𝑦𝐿𝑘 ≤ 𝑦𝑘 ≤ ̂︀𝑦𝑈𝑘 ,a𝑙𝑘(𝑡)Tp+̂︀𝑏𝑙𝑘 ≤ 𝑦𝑘 ≤ a𝑢𝑘(𝑡)

Tp+̂︀𝑏𝑢𝑘 ,∀𝑘 ̸= 𝑗
}︁
,

where 𝑗 = ((𝑖 − 1) mod 𝑛𝑦) + 1 as in Algorithm 6. Along with the constraint 𝑥𝑦,𝑖(𝑡,u) =̂︀𝑦𝐿𝑖 = 𝑦𝐿𝑖 , this is precisely the definition of 𝐴𝑖(d,A
𝑙(𝑡),A𝑢(𝑡),b𝐶(𝑡)) which equals 𝑀𝑖(𝑡,d).

Similar reasoning establishes the cases when 𝑖 > 𝑛𝑦.

Finally, Condition 2 of Assumption 7.3.2 follows from Lemma 7.5.5.

7.5.4 Connections to DAEs

To end this section on constrained ODEs, some interesting connections to DAEs are noted.

Consider the semi-explicit DAE

ẋ𝑧(𝑡) = f𝑧(𝑡,u(𝑡),x𝑧(𝑡),x𝑦(𝑡)),

0 = h(𝑡,x𝑧(𝑡),x𝑦(𝑡)).

Under the assumptions that h is sufficiently smooth and that this is index-one, the derivative

of h with respect to the algebraic variables (x𝑦) is invertible (in a neighborhood of the

solution), and so the time derivative of the algebraic variables satisfies

ẋ𝑦(𝑡) = −
(︂
𝜕h

𝜕y
(𝑡,x𝑧(𝑡),x𝑦(𝑡))

)︂−1(︂𝜕h

𝜕z
(𝑡,x𝑧(𝑡),x𝑦(𝑡))ẋ𝑧(𝑡) +

𝜕h

𝜕𝑡
(𝑡,x𝑧(𝑡),x𝑦(𝑡))

)︂
.

Writing 𝑋𝐶(𝑡) = {(z,y) : h(𝑡, z,y) = 0}, we can think of an index-one DAE as a

constrained ODE. Assuming constant a𝑖 = (a𝑧,𝑖,a𝑦,𝑖), Hypothesis 4 of Theorem 7.3.1 would

look like

aT𝑧,𝑖f𝑧(𝑡,p, z,y)− aT𝑦,𝑖

(︂
𝜕h

𝜕y
(𝑡, z,y)

)︂−1(︂𝜕h

𝜕z
(𝑡, z,y)f(𝑡,p, z,y) +

𝜕h

𝜕𝑡
(𝑡, z,y)

)︂
≤ �̇�𝑖(𝑡),
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for all 𝑖, almost every 𝑡, and all p ∈ 𝑈(𝑡) and (z,y) ∈ 𝑀𝑖(𝑡,b(𝑡)) (for some definition

of 𝑀𝑖). Ensuring this holds is maybe a little tedious; the C++ automatic differentiation

code FADBAD++ [180] could be overloaded with interval arithmetic to obtain interval

extensions of 𝜕h/𝜕y, 𝜕h/𝜕z, and 𝜕h/𝜕𝑡, which could be combined with an interval Newton

method. Meanwhile, Ch. 6 of [166] considers many of the details of another DAE bounding

method and may contain some insight on the specifics of such an approach. Using the theory

in this chapter, it might be possible to use interval relaxations of h to tighten or refine the

value of each 𝑀𝑖 mapping based on the constraints 𝑋𝐶(𝑡) = {(z,y) : h(𝑡, z,y) = 0}.

7.6 Numerical methods

This section presents the details of numerical methods based on the implementations in §7.5.2

and §7.5.3 of the general theory (“Faster polyhedral bounds” and “Simultaneous interval and

affine relaxations,” respectively). These implementations will be the focus of the examples

in §7.7.

7.6.1 Method for faster polyhedral bounds

Given the constant-matrix-valued A(·) ≡ ̂︀A and information A𝐶 and b𝐶 defining the con-

straints 𝑋𝐶 , the goal is to construct a related initial value problem in ordinary differential

equations whose solution, if one exists, is the mapping b so that 𝐵 : 𝑡 ↦→ {z : ̂︀Az ≤ b(𝑡)}

bounds all (constrained) solutions of IVP (7.1).

In §7.5.2, specifically Proposition 7.5.3, assumptions on the form of 𝑋𝐶 and A are

made and definitions of the 𝑀𝑖 mappings are given. With this definition, the value of an

𝑀𝑖 mapping takes the general form of an interval intersected with a hyperplane. Since

A is assumed to be the constant matrix ̂︀A, the differential inequality in Hypothesis 4 of

Theorem 7.3.1 becomes

̂︀aT𝑖 f(𝑡,p, z) ≤ �̇�(𝑡), ∀(p, z) ∈ 𝑈(𝑡)×𝑀𝑖(𝑡,b(𝑡)),

for all 𝑖 and for almost every 𝑡 ∈ 𝑇 . Thus, the values of the potentially nonlinear optimization

problems

𝑞𝑖(𝑡,d) = sup
{︀̂︀aT𝑖 f(𝑡,p, z) : (p, z) ∈ 𝑈(𝑡)×𝑀𝑖(𝑡,d)

}︀
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must be estimated.

One approach is to use an affine relaxation of the objective and solve the resulting linear

programming relaxation exactly. This forms the basis of the method in Ch. 6. However,

as mentioned earlier, the goal of the definitions in Proposition 7.5.3 is to avoid the solution

of LPs. Consequently, an affine relaxation of the objective is still used, but the resulting

LP relaxation is only solved approximately, taking advantage of the specific form of the 𝑀𝑖

mappings.

Before stating the next result, a simplifying assumption is made. In addition to assuming

that 𝑈 is interval-valued, it is assumed that affine relaxations of ̂︀aT𝑖 f(𝑡, ·, ·) are available. As

discussed in Ch. 3, affine relaxations could be obtained from first-order Taylor models [107],

subgradients of convex and concave relaxations [124], or the method in Ch. 3 (although see

the discussion at the end of this section).

Assumption 7.6.1. Let 𝑚 ∈ N and {̂︀a𝑖 ∈ R𝑛𝑥 : 𝑖 ∈ {1, . . . ,𝑚}} be given. Assume that for

each 𝑖 ∈ {1, . . . ,𝑚}, there exist ̃︀c𝑖 ≡ (̃︀c𝑢𝑖 ,̃︀c𝑥𝑖 ) : 𝑇 × I𝐷𝑥 → R𝑛𝑢 ×R𝑛𝑥 and ̃︀ℎ𝑖 : 𝑇 × I𝐷𝑥 → R

such that for each 𝑍 ∈ I𝐷𝑥 and 𝑡 ∈ 𝑇 ,

̂︀aT𝑖 f(𝑡,p, z) ≤ (̃︀c𝑢𝑖 (𝑡, 𝑍))T p+ (̃︀c𝑥𝑖 (𝑡, 𝑍))T z+ ̃︀ℎ𝑖(𝑡, 𝑍),

for all (p, z) ∈ 𝑈(𝑡)× 𝑍.

Proposition 7.6.1. Let Assumption 7.3.1 hold. Given 𝑚𝑒 ∈ N and A𝑒 = [aT𝑒,𝑖] ∈ R𝑚𝑒×𝑛𝑥 ,

assume a𝑒,𝑖 ̸= 0 for all 𝑖. Given 𝑚𝑐 ∈ N, A𝐶 ∈ R𝑚𝑐×𝑛𝑥 , and b𝐶 : 𝑇 → R𝑚𝑐 , assume that

𝑋𝐶 : 𝑡 ↦→ {z : A𝐶z ≤ b𝐶(𝑡)}. Define ̂︀A = [̂︀aT𝑖 ], 𝑏𝐿𝑖 , 𝑏𝑈𝑖 , and 𝐹𝑖 as in Proposition 7.5.3. Let

Assumption 7.6.1 hold for 𝑚 and {̂︀a𝑖}. Assume 𝑈 : 𝑇 ⇒ R𝑛𝑢 is interval-valued. Assume

b : 𝑇 → R𝑚 is an absolutely continuous function satisfying

1. 𝑋0 ⊂ {z : ̂︀Az ≤ b(𝑡0)},

2. for all 𝑖 ∈ {1, . . . ,𝑚} and for almost every 𝑡 ∈ 𝑇 , 𝐹𝑖(𝑡,b(𝑡)) ⊂ 𝐷𝑥,

3. for almost every 𝑡 ∈ 𝑇 and all 𝑖 ∈ {1, . . . ,𝑚}

�̇�𝑖(𝑡) = ̃︀ℎ𝑖(𝑡, 𝐹𝑖(𝑡,b(𝑡)) + 𝛼𝑖(𝑡,b(𝑡))𝑏
𝑚
𝑖 (𝑡,b(𝑡))+ (7.19)

max
{︁
(c𝑢𝑖 (𝑡,b(𝑡)))

Tp+ (c𝑥𝑖 (𝑡,b(𝑡))− 𝛼𝑖(𝑡,b(𝑡))̂︀a𝑖)T z : (p, z) ∈ 𝑈(𝑡)× 𝐹𝑖(𝑡,b(𝑡))
}︁
,
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where

𝛼𝑖 : (𝑡,d) ↦→
(c𝑥𝑖 (𝑡,d))

T̂︀a𝑖
‖̂︀a𝑖‖22 ,

(c𝑢𝑖 , c
𝑥
𝑖 ) : (𝑡,d) ↦→ (̃︀c𝑢𝑖 (𝑡, 𝐹𝑖(𝑡,d)),̃︀c𝑥𝑖 (𝑡, 𝐹𝑖(𝑡,d))), and

𝑏𝑚𝑖 : (𝑡,d) ↦→ median {𝑑𝑖, 𝑏𝐿𝑖 (𝑡,d), 𝑏𝑈𝑖 (𝑡,d)}.

Then for all u ∈ 𝒰 and any solution x(·,u) of IVP (7.1), ̂︀Ax(𝑡,u) ≤ b(𝑡), for all 𝑡 ∈ 𝑇 .

Proof. The goal is to construct the bounds 𝐵 : 𝑡 ↦→ {z : A(𝑡)z ≤ b(𝑡)} and establish that

all the assumptions and hypotheses of Theorem 7.3.1 are satisfied, specifically using the

definitions of A, 𝐷𝑀 and 𝑀𝑖 from Proposition 7.5.3.

First, since 𝐷𝑀 = 𝑇 × R𝑚, we have (𝑡,b(𝑡)) ∈ 𝐷𝑀 for all 𝑡 ∈ 𝑇 . Also, since 𝑀𝑖(𝑡,d) ⊂

𝐹𝑖(𝑡,d) for all (𝑡,d) and 𝐹𝑖(𝑡,b(𝑡)) ⊂ 𝐷𝑥 for almost every 𝑡, we also have 𝑀𝑖(𝑡,b(𝑡)) ⊂ 𝐷𝑥

for all 𝑖 and almost every 𝑡. Further, we clearly have 𝑋0 ⊂ 𝐵(𝑡0).

The final step is to establish that the differential inequality in Hypothesis 4 of Theo-

rem 7.3.1 holds. As mentioned earlier, this reduces to establishing that

�̇�𝑖(𝑡) ≥ 𝑞𝑖(𝑡,b(𝑡)) = sup
{︀̂︀aT𝑖 f(𝑡,p, z) : (p, z) ∈ 𝑈(𝑡)×𝑀𝑖(𝑡,b(𝑡))

}︀
(7.20)

for all 𝑖 and almost every 𝑡. Since 𝐹𝑖(𝑡,b(𝑡)) is an interval subset of 𝐷𝑥 for almost every 𝑡, we

have 𝐹𝑖(𝑡,b(𝑡)) ∈ I𝐷𝑥. Thus the values of c𝑥𝑖 and c𝑢𝑖 are defined at (𝑡,b(𝑡)). In addition, the

maximum in the right-hand side of Eqn. (7.19) is indeed achieved, since 𝑈(𝑡)×𝐹𝑖(𝑡,b(𝑡)) is

compact and the objective of the maximization in Eqn. (7.19) is linear and thus continuous.

Overall the right-hand side of Eqn. (7.19) is well defined for almost every 𝑡 ∈ 𝑇 .

Note that for any ̃︀𝛼 ∈ R, we can rewrite 𝑞𝑖 defined in Eqn. (7.20) as

𝑞𝑖(𝑡,b(𝑡)) = max
{︀̂︀aT𝑖 f(𝑡,p, z)− ̃︀𝛼̂︀aT𝑖 z+ ̃︀𝛼̂︀aT𝑖 z : (p, z) ∈ 𝑈(𝑡)×𝑀𝑖(𝑡,b(𝑡))

}︀
= max

{︀̂︀aT𝑖 f(𝑡,p, z)− ̃︀𝛼̂︀aT𝑖 z : (p, z) ∈ 𝑈(𝑡)×𝑀𝑖(𝑡,b(𝑡))
}︀
+ ̃︀𝛼𝑏𝑚𝑖 (𝑡,b(𝑡)),

where the second equality follows from the fact that ̂︀aT𝑖 z = 𝑏𝑚𝑖 (𝑡,d) for all z ∈ 𝑀𝑖(𝑡,d). If

follows that we can relax this maximization problem to get the inequality

𝑞𝑖(𝑡,b(𝑡)) ≤ max
{︀̂︀aT𝑖 f(𝑡,p, z)− ̃︀𝛼̂︀aT𝑖 z : (p, z) ∈ 𝑈(𝑡)× 𝐹𝑖(𝑡,b(𝑡))

}︀
+ ̃︀𝛼𝑏𝑚𝑖 (𝑡,b(𝑡)).
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Finally, using the affine relaxations of ̂︀aT𝑖 f(𝑡, ·, ·) from Assumption 7.6.1, we have �̇�𝑖(𝑡) ≥

𝑞𝑖(𝑡,b(𝑡)) for all 𝑖 and 𝑎.𝑒. 𝑡, since the specific choice of ̃︀𝛼 at each 𝑡 does not matter. The

result follows from Theorem 7.3.1.

As a brief note, Proposition 7.6.1 above holds for any choice of 𝛼𝑖. For instance, the

claim still holds if each 𝛼𝑖 was defined as identically zero instead. The specific form used

aims to take advantage of the fact that the set 𝑀𝑖(𝑡,d) is a subset of an affine subspace.

For concreteness, consider the following optimization problem:

max{cTz : z ∈ 𝑍,aTz = 𝑑}.

If c = 𝛼a and assuming the feasible set is nonempty, the optimal objective value is clearly

𝛼𝑑. In general, if one has the freedom to choose 𝛼 so that ‖c− 𝛼a‖ is small, then the hope

is that

max{(c− 𝛼a)Tz : z ∈ 𝑍}+ 𝛼𝑑

is a good approximation to the value of the original optimization problem. If a ̸= 0, one

can then confirm that
cTa

‖a‖22
∈ argmin

{︁
‖c− 𝛼a‖22 : 𝛼 ∈ R

}︁
,

which is precisely the form used in Proposition 7.6.1.

As noted earlier, the goal of this implementation is to avoid solving linear programs.

Although a linear program appears in the right-hand side of the differential equation (7.19),

its feasible set is an interval and the optimal objective value can be evaluated by inspecting

the signs of the components of the objective vectors.

Finally, to ensure that some b exists which satisfies the differential equation (7.19),

and more importantly that a numerical approximation can be calculated with standard

numerical integration algorithms, some regularity conditions on ̃︀c𝑥𝑖 , ̃︀c𝑢𝑖 and ̃︀ℎ𝑖 are required.

As indicated in Sections 5.4.1 and 6.4.2, the specific method in Ch. 3 ensures these regularity

properties.

7.6.2 Method for simultaneous interval and affine relaxations

The focus of this section are the specifics of a numerical method for constructing interval and

affine relaxations by the theory in §7.5.3. For simplicity, only parametric dependence will
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be considered; i.e. the interval and affine relaxations are for the solutions of the constrained

initial value problem in parametric ODEs

ẋ𝑦(𝑡,p) = f𝑦(𝑡,x𝑦(𝑡,p),p), 𝑎.𝑒. 𝑡 ∈ 𝑇, (7.21a)

(x𝑦(𝑡0,p),p) ∈ 𝑋0, (7.21b)

(x𝑦(𝑡,p),p) ∈ 𝑋𝐶(𝑡), ∀𝑡 ∈ 𝑇, (7.21c)

for p ∈ 𝑃 . The main benefit of affine relaxations is the potential for better-than-first order

convergence rate; including dependence on (unparameterized controls) would tend to reduce

this convergence order. Consequently, in practice, one would only consider using this method

if there was not any control dependence.

As in the previous section, the following assumption specifies the exact situation and

provides a way to estimate the optimization problems that appear in Hypothesis 4 of The-

orem 7.3.1.

Assumption 7.6.2.

1. Assume that (𝑛𝑦, 𝑛𝑝) ∈ N2, 𝑇 = [𝑡0, 𝑡𝑓 ] ⊂ R, 𝐷𝑦 ⊂ R𝑛𝑦 , 𝑃 ∈ IR𝑛𝑝, 𝑋0 ⊂ 𝐷𝑦 × 𝑃 , and

f𝑦 : 𝑇 × 𝐷𝑦 × 𝑃 → R𝑛𝑦 are given such that for any (y,p) ∈ 𝐷𝑦 × 𝑃 , there exists a

neighborhood 𝑁(y,p) and 𝛼 ∈ 𝐿1(𝑇 ) such that for almost every 𝑡 ∈ 𝑇

‖f𝑦(𝑡,y1,p1)− f𝑦(𝑡,y2,p2)‖ ≤ 𝛼(𝑡) ‖(y1,p1)− (y2,p2)‖ ,

for every (y1,p1), (y2,p2) ∈ 𝑁(y,p) ∩𝐷𝑦 × 𝑃 .

2. Given 𝑚𝑐 ∈ N, A𝐶 ∈ R𝑚𝑐×(𝑛𝑦+𝑛𝑝), and b𝐶 : 𝑇 → R𝑚𝑐 , assume that 𝑋𝐶 : 𝑡 ↦→ {z :

A𝐶z ≤ b𝐶(𝑡)}.

3. Assume that for p𝑟 = mid(𝑃 ), there exists y𝑟 : 𝑇 → R𝑛𝑦 satisfying (y𝑟(𝑡0),p𝑟) ∈ 𝑋0,

ẏ𝑟(𝑡) = f𝑦(𝑡,y𝑟(𝑡),p𝑟) for 𝑎.𝑒. 𝑡 ∈ 𝑇 , and 𝜕f𝑦
𝜕y (𝑡,y𝑟(𝑡),p𝑟) and 𝜕f𝑦

𝜕p (𝑡,y𝑟(𝑡),p𝑟) exist

𝑎.𝑒. 𝑡 ∈ 𝑇 .

4. Assume that for each 𝑗 ∈ {1, . . . , 𝑛𝑦}, there exist 𝑓𝐿
𝑦,𝑗, 𝑓

𝑈
𝑦,𝑗 : 𝑇 × A(𝐷𝑦, 𝑃 ) → R, 𝑓 𝑏𝑙

𝑦,𝑗,

𝑓 𝑏𝑢
𝑦,𝑗 : 𝑇 × A(𝐷𝑦, 𝑃 ) → R, and f𝑎𝑙𝑦,𝑗, f

𝑎𝑢
𝑦,𝑗 : 𝑇 × A(𝐷𝑦, 𝑃 ) → R𝑛𝑝 and such that for each
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𝐴 ∈ A(𝐷𝑦, 𝑃 ) and 𝑡 ∈ 𝑇

𝑓𝐿
𝑦,𝑗(𝑡, 𝐴) ≤ 𝑓𝑦,𝑗(𝑡,y,p) ≤ 𝑓𝑈

𝑦,𝑗(𝑡, 𝐴),

(f𝑎𝑙𝑦,𝑗(𝑡, 𝐴))
Tp+ 𝑓 𝑏𝑙

𝑦,𝑗(𝑡, 𝐴) ≤ 𝑓𝑦,𝑗(𝑡,y,p) ≤ (f𝑎𝑢𝑦,𝑗(𝑡, 𝐴))
Tp+ 𝑓 𝑏𝑢

𝑦,𝑗(𝑡, 𝐴)

for all (y,p) ∈ 𝐴.

5. For 𝑖 ∈ {1, . . . , 4𝑛𝑦}, let 𝐴𝑖 be defined as in Definition 7.5.4 (with 𝑛𝑦, 𝑛𝑝, 𝑚𝑐, 𝑃 ,

𝑃 𝐼 = 𝑃 , and A𝐶 as assumed here).

6. For 𝑗 ∈ {1, . . . , 𝑛𝑦}, assume 𝐴𝐿
𝑗 , 𝐴𝑈

𝑗 , 𝐴𝑙
𝑗, 𝐴

𝑢
𝑗 defined by

𝐴𝐿
𝑗 : (𝑡,d,A𝑙,A𝑢) ↦→ 𝐴𝑗(d,A

𝑙,A𝑢,b𝐶(𝑡)),

𝐴𝑈
𝑗 : (𝑡,d,A𝑙,A𝑢) ↦→ 𝐴𝑗+𝑛𝑦(d,A

𝑙,A𝑢,b𝐶(𝑡)),

𝐴𝑙
𝑗 : (𝑡,d,A

𝑙,A𝑢) ↦→ 𝐴𝑗+2𝑛𝑦(d,A
𝑙,A𝑢,b𝐶(𝑡)),

𝐴𝑢
𝑗 : (𝑡,d,A𝑙,A𝑢) ↦→ 𝐴𝑗+3𝑛𝑦(d,A

𝑙,A𝑢,b𝐶(𝑡)),

are mappings 𝑇 × R4𝑛𝑦 × R𝑛𝑦×𝑛𝑝 × R𝑛𝑦×𝑛𝑝 → A(𝐷𝑦, 𝑃 ).

7. Let q𝐿, q𝑈 be mappings 𝑇×R4𝑛𝑦×R𝑛𝑦×𝑛𝑝×R𝑛𝑦×𝑛𝑝 → R𝑛𝑦 and let q𝑙, q𝑢 be mappings

𝑇 × R4𝑛𝑦 × R𝑛𝑦×𝑛𝑝 × R𝑛𝑦×𝑛𝑝 × R𝑛𝑦×𝑛𝑝 → R𝑛𝑦 defined for each 𝑗 ∈ {1, . . . , 𝑛𝑦} by

𝑞𝐿𝑗 : (𝑡,d,A𝑙,A𝑢) ↦→

max
{︁
𝑓𝐿
𝑦,𝑗(𝑡, 𝐴

𝐿
𝑗 (𝑡,d,A

𝑙,A𝑢)),

min
{︀(︀

f𝑎𝑙𝑦,𝑗(𝑡, 𝐴
𝐿
𝑗 (𝑡,d,A

𝑙,A𝑢))
)︀T

p+ 𝑓 𝑏𝑙
𝑦,𝑗(𝑡, 𝐴

𝐿
𝑗 (𝑡,d,A

𝑙,A𝑢)) : p ∈ 𝑃
}︀}︁

,

𝑞𝑈𝑗 : (𝑡,d,A𝑙,A𝑢) ↦→

min
{︁
𝑓𝑈
𝑦,𝑗(𝑡, 𝐴

𝑈
𝑗 (𝑡,d,A

𝑙,A𝑢)),

max
{︀(︀

f𝑎𝑢𝑦,𝑗(𝑡, 𝐴
𝑈
𝑗 (𝑡,d,A

𝑙,A𝑢))
)︀T

p+ 𝑓 𝑏𝑢
𝑦,𝑗(𝑡, 𝐴

𝑈
𝑗 (𝑡,d,A

𝑙,A𝑢)) : p ∈ 𝑃
}︀}︁

,
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𝑞𝑙𝑗 : (𝑡,d,A
𝑙,A𝑢, [sT𝑘 ]) ↦→

max
{︁
min

{︀
− sT𝑗 p+ 𝑓𝐿

𝑦,𝑗(𝑡, 𝐴
𝑙
𝑗(𝑡,d,A

𝑙,A𝑢)) : p ∈ 𝑃
}︀
,

min
{︀(︀

f𝑎𝑙𝑦,𝑗(𝑡, 𝐴
𝑙
𝑗(𝑡,d,A

𝑙,A𝑢))− s𝑗
)︀T

p+ 𝑓 𝑏𝑙
𝑦,𝑗(𝑡, 𝐴

𝑙
𝑗(𝑡,d,A

𝑙,A𝑢)) : p ∈ 𝑃
}︀}︁

,

𝑞𝑢𝑗 : (𝑡,d,A𝑙,A𝑢, [sT𝑘 ]) ↦→

min
{︁
max

{︀
− sT𝑗 p+ 𝑓𝑈

𝑦,𝑗(𝑡, 𝐴
𝑢
𝑗 (𝑡,d,A

𝑙,A𝑢)) : p ∈ 𝑃
}︀
,

max
{︀(︀

f𝑎𝑢𝑦,𝑗(𝑡, 𝐴
𝑢
𝑗 (𝑡,d,A

𝑙,A𝑢))− s𝑗
)︀T

p+ 𝑓 𝑏𝑢
𝑦,𝑗(𝑡, 𝐴

𝑢
𝑗 (𝑡,d,A

𝑙,A𝑢)) : p ∈ 𝑃
}︀}︁

.

Proposition 7.6.2. Let Assumption 7.6.2 hold. Let a𝑙𝑗, a𝑢𝑗 for 𝑗 ∈ {1, . . . , 𝑛𝑦} be ab-

solutely continuous mappings 𝑇 → R𝑛𝑝, and y𝐿, y𝑈 , b𝑙, b𝑢 be absolutely continuous

mappings 𝑇 → R𝑛𝑦 . Let (A𝑙,A𝑢) : 𝑡 ↦→ ([a𝑙𝑗(𝑡)
T], [a𝑢𝑗 (𝑡)

T]) ∈ R𝑛𝑦×𝑛𝑝 × R𝑛𝑦×𝑛𝑝 and

b : 𝑡 ↦→ (−y𝐿(𝑡),y𝑈 (𝑡),−b𝑙(𝑡),b𝑢(𝑡)). Assume

𝑋0 ⊂ {(y,p) ∈ [y𝐿(𝑡0),y
𝑈 (𝑡0)]× 𝑃 : A𝑙(𝑡0)p+ b𝑙(𝑡0) ≤ y ≤ A𝑢(𝑡0)p+ b𝑢(𝑡0)},

and for almost every 𝑡 ∈ 𝑇

Ȧ𝑙(𝑡) =
𝜕f𝑦
𝜕y

(𝑡,y𝑟(𝑡),p𝑟)A
𝑙(𝑡) +

𝜕f𝑦
𝜕p

(𝑡,y𝑟(𝑡),p𝑟),

Ȧ𝑢(𝑡) =
𝜕f𝑦
𝜕y

(𝑡,y𝑟(𝑡),p𝑟)A
𝑢(𝑡) +

𝜕f𝑦
𝜕p

(𝑡,y𝑟(𝑡),p𝑟),

ẏ𝐿(𝑡) = q𝐿(𝑡,b(𝑡),A𝑙(𝑡),A𝑢(𝑡)),

ẏ𝑈 (𝑡) = q𝑈 (𝑡,b(𝑡),A𝑙(𝑡),A𝑢(𝑡)),

ḃ𝑙(𝑡) = q𝑙(𝑡,b(𝑡),A𝑙(𝑡),A𝑢(𝑡), Ȧ𝑙(𝑡)),

ḃ𝑢(𝑡) = q𝑢(𝑡,b(𝑡),A𝑙(𝑡),A𝑢(𝑡), Ȧ𝑢(𝑡)).

Then for all 𝑡 ∈ 𝑇

y𝐿(𝑡) ≤ x𝑦(𝑡,p) ≤ y𝑈 (𝑡),

A𝑙(𝑡)p+ b𝑙(𝑡) ≤ x𝑦(𝑡,p) ≤ A𝑢(𝑡)p+ b𝑢(𝑡),

for any p ∈ 𝑃 and solution x𝑦(·,p) of IVP (7.21).

Proof. Under Assumption 7.6.2, for any p ∈ 𝑃 , a solution x𝑦(·,p) of (7.21) corresponds to a
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solution of (7.1) by letting 𝑛𝑥 = 𝑛𝑦 +𝑛𝑝, 𝐷𝑥 = 𝐷𝑦 ×𝑃 , and f : (𝑡,v,y,p) ↦→ (f𝑦(𝑡,y,p),0).

Further, Assumption 7.3.1 holds for this f . Then for any u ∈ 𝒰 , take x(·,u) = (x𝑦(·,p),p).

The goal, then, is to apply Theorem 7.3.1. All the hypotheses of Proposition 7.5.6 hold, so

define A and 𝑀𝑖 as in that result, using the values of A𝑙, A𝑢 assumed to exist in the present

hypotheses. Thus, the bounds 𝐵 : 𝑡 ↦→ {z : A(𝑡)z ≤ b(𝑡)} for the original IVP (7.1) will

yield the interval and affine relaxations at the conclusion of this proposition. It is not too

hard to check that all the hypotheses of Theorem 7.3.1 hold. As usual, the main challenge is

verifying Hypothesis 4. Consider, for instance, the definitions of 𝑞𝑢𝑗 , 𝐴𝑢
𝑗 , and the properties

of the relaxations 𝑓𝑈
𝑦,𝑗 , f

𝑎𝑢
𝑦,𝑗 , and 𝑓 𝑏𝑢

𝑦,𝑗 . Then we have

𝑓𝑦,𝑗(𝑡,y,p)− (ȧ𝑢𝑗 (𝑡))
Tp ≤ 𝑞𝑢𝑗 (𝑡,b(𝑡),A

𝑙(𝑡),A𝑢(𝑡), Ȧ𝑢(𝑡)) = �̇�𝑢𝑗 (𝑡) = �̇�𝑗+3𝑛𝑦(𝑡),

for all (y,p) ∈ 𝑀𝑗+3𝑛𝑦(𝑡,b(𝑡)) = 𝐴𝑢
𝑗 (𝑡,b(𝑡),A

𝑙(𝑡),A𝑢(𝑡)). Similar logic establishes this for

the other cases and the result follows.

7.7 Examples

The performance of implementations of the numerical methods discussed in §7.6 is consid-

ered. At the hearts of these numerical methods are the initial value problems in Proposi-

tions 7.6.1 and 7.6.2. The implementations of these methods are C/C++ codes employing

the CVODE component of the SUNDIALS suite [78] to solve these initial value problems.

All numerical studies were performed on a 64-bit Linux virtual machine allocated a single

core of a 3.07 GHz Intel Xeon processor and 1.28 GB RAM. Computational times are for

GCC with the -O3 optimization flag.

7.7.1 State estimation with continuous-time measurements

This section considers a problem in which state constraint information greatly improves the

constructed bounds. The specific bounding method used is the “faster polyhedral bounds”

considered in Sections 7.5.2 and 7.6.1.

Consider the problem of state estimation: the goal is to determine or estimate the

internal state of a real system. While only certain states or functions of the states can

be measured directly, a mathematical model of the system is available. When the system

is a dynamic one, a history of measurements is typically available. Estimating the state
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using a dynamic model and measurements goes back to the Kalman filter [90], where a more

statistical estimate of the state is obtained. More recently, work has focused on estimates

in the form of guaranteed bounds on the state in the presence of bounded uncertainties and

measurement errors [48, 88, 119, 129, 199].

Consider now the specific case that the system is dynamic, the mathematical model is an

IVP in ODEs, and a continuous history of measurements of the system (or more realistically,

a history of measurements so frequent that interpolation is acceptable) is available, beginning

at time 𝑡0 up to the time 𝑡𝑓 at which the state estimate is desired. Denote the state

variables at a given time by x(𝑡) ∈ R𝑛𝑥 . Assume that the measurements are of some

function y : R𝑛𝑥 → R𝑛𝑦 of the states, and that they have bounded error. Thus, for each

𝑡 ∈ 𝑇 = [𝑡0, 𝑡𝑓 ] the measurements imply y(x(𝑡)) ∈ [y𝐿(𝑡),y𝑈 (𝑡)], for some y𝐿, y𝑈 : 𝑇 → R𝑛𝑦 .

Furthermore, there may be uncertainty in inputs, initial conditions, and model parameters.

The approach to state estimation taken here will be to use the mathematical model of the

system to calculate guaranteed upper and lower bounds on the states at the current time

𝑡𝑓 that are consistent with the measurements. In other words, bounds on the solutions of a

constrained IVP in ODEs (such as (7.1)) are sought.

As a specific example, the bioreactor system from [128] is considered. The dynamic

model describes the evolution in time of the concentrations of biomass and feed substrate.

The dynamic equations on the time domain 𝑇 = [0, 20] (day) are

�̇�(𝑡) =

(︂
𝜇0

𝑠(𝑡)

𝑠(𝑡) + 𝑘𝑠 + 𝑠(𝑡)2/𝑘𝑖
− 𝛼𝐷(𝑡)

)︂
𝑥(𝑡), 𝑥(0) ∈ [0, 10] (mmol/L),

�̇�(𝑡) = −𝑘𝜇0𝑥(𝑡)
𝑠(𝑡)

𝑠(𝑡) + 𝑘𝑠 + 𝑠(𝑡)2/𝑘𝑖
+𝐷(𝑡)(𝑠𝑖𝑛(𝑡)− 𝑠(𝑡)), 𝑠(0) ∈ [0, 100] (mmol/L),

where 𝑥(𝑡) and 𝑠(𝑡) are the biomass and substrate concentrations, respectively, at time 𝑡,
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and

̂︀𝑠𝑖𝑛 : 𝑡 ↦→ 50 + 15 cos(𝑡/5) (mmol/L),

𝜇0 ∈ [0.703, 0.777] (day−1),

𝑠𝑖𝑛(𝑡) ∈ [0.95̂︀𝑠𝑖𝑛(𝑡), 1.05̂︀𝑠𝑖𝑛(𝑡)], ∀𝑡 ∈ 𝑇,

(𝑘𝑠, 𝑘𝑖) = (9.28, 256) (mmol/L),

(𝑘, 𝛼) = (42.14, 0.5),

𝐷(𝑡) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2 (day−1), if 𝑡 ∈ [0, 5],

0.5 (day−1), if 𝑡 ∈ (5, 10],

1.067 (day−1), if 𝑡 ∈ (10, 20].

In this case we take 𝑈 : 𝑡 ↦→ [0.703, 0.777] × [0.95̂︀𝑠𝑖𝑛(𝑡), 1.05̂︀𝑠𝑖𝑛(𝑡)] (although 𝜇0 is an

uncertain constant, we treat it as a time-varying input). In addition, it is assumed that

the biomass concentration is continuously measured, and so the measurements/constraints

𝑥(𝑡) ∈ [𝑦𝐿(𝑡), 𝑦𝑈 (𝑡)], for all 𝑡 ∈ 𝑇 are available; for this example, 𝑦𝐿 and 𝑦𝑈 are obtained

from plus/minus 5% deviation of the biomass concentration of a nominal trajectory (̂︀𝑥, ̂︀𝑠),
with ̂︀𝑥(0) = 5, ̂︀𝑠(0) = 40, 𝜇0 = 0.74, and 𝑠𝑖𝑛(𝑡) = ̂︀𝑠𝑖𝑛(𝑡) (i.e. 𝑦𝐿 = 0.95̂︀𝑥 and 𝑦𝑈 = 1.05̂︀𝑥).

Since concentrations cannot be negative, nonnegativity of the constraints is also included.

Then 𝑋𝐶 : 𝑡 ↦→ {(𝑥, 𝑠) : 𝑥 ∈ [𝑦𝐿(𝑡), 𝑦𝑈 (𝑡)], 𝑥 ≥ 0, 𝑠 ≥ 0}.

The method from §7.6.1 is used to calculate interval bounds on the substrate concentra-

tion at the current time. Although bounds on the biomass concentration are also obtained,

the measurements/constraints are already available and tighter. Since interval bounds only

are propagated (and not a more general polyhedral enclosure), the method is similar to the

one described in [168]. However, as stated, the theory in [168] cannot handle the type of

constraint information considered in this example.

The results are seen in Fig. 7-1. The interval estimate of the substrate concentration is

𝑠(𝑡𝑓 = 20) ∈ [20.6, 26.5] (mmol/L), which indeed encloses the value of the nominal trajectorŷ︀𝑠. This is quite good for a guaranteed estimate, considering the initial uncertainties. These

results are of comparable quality to the interval observer-based methods from [119, 128].

For comparison, bounds were constructed using the same method, but ignoring the mea-

surement/constraint information; that is, 𝑋𝐶 : 𝑡 ↦→ {(𝑥, 𝑠) : 𝑥 ≥ 0, 𝑠 ≥ 0}, with which the
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Figure 7-1: Upper and lower bounds on substrate concentration versus time for the bioreactor
state estimation problem. Results of the method from §7.6.1 using state measurements
as constraints are thick black lines, while the results of the same method ignoring the
measurement information are dashed lines. The nominal value (̂︀𝑠) is plotted with a thin
solid line.

raw bounds (the solution of the IVP (7.19)) are intersected at each point in time. Even

with this post-processing intersection, the bounds are clearly inferior; the estimate of the

substrate concentration at 𝑡𝑓 = 20 is [0, 40.4] (mmol/L).

For this example, the method from §7.6.1 uses the Backwards Differentiation Formulae

(BDF) implementation in CVODE, using a Newton iteration for the corrector, with relative

and absolute integration tolerances equal to 10−6. With these integration parameters, the

method requires 0.001s to compute the estimate.

As mentioned in §7.5.2, there are different options for defining the mappings 𝑀𝑖; specifi-

cally, the definition in Proposition 7.5.3 could be modified to use A𝐹,𝑖 and d𝐹,𝑖 in Eqn. (7.17).

The result of this is seen in Fig. 7-2. It is interesting to note that one method is not always

better than the other for the biomass concentration (however, the substrate concentration

bounds are the same). To get an idea of why this is the case, look at the dynamics of the

biomass concentration, which can be written in the general form

�̇�(𝑡) = 𝑔(𝑡, 𝜇0, 𝑠(𝑡))𝑥(𝑡).

If 𝑔(𝑡, 𝜇0, 𝑠(𝑡)) ≥ 0, then 𝑥 grows more slowly when 𝑥(𝑡) is small than when it is large. But

if 𝑔(𝑡, 𝜇0, 𝑠(𝑡)) < 0, then 𝑥 grows more slowly when 𝑥(𝑡) is large than when it is small.

Consequently, let d = (−𝑥𝐿,−𝑠𝐿, 𝑥𝑈 , 𝑠𝑈 ), with [𝑥𝐿, 𝑥𝑈 ] ⊃ [𝑦𝐿(𝑡), 𝑦𝑈 (𝑡)] for some 𝑡 ∈ 𝑇
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Figure 7-2: Upper and lower bounds on biomass concentration versus time for the bioreactor
state estimation problem. Results of the method from §7.6.1 as stated are thick black lines,
while the results of the modified method are dotted black lines.

and 𝑠𝐿 ≥ 0. Consider what happens when one constructs the set 𝑀3(𝑡,d) corresponding

to the upper bound of 𝑥. If one “flattens then tightens” (as in Proposition 7.5.3 as stated),

𝑀3(𝑡,d) will have the form [𝑥𝑈 , 𝑥𝑈 ] × [𝑠𝐿, 𝑠𝑈 ]. Meanwhile, using the alternate definition

(“tighten then flatten”), 𝑀3(𝑡,d) will have the form [𝑦𝑈 (𝑡), 𝑦𝑈 (𝑡)]× [𝑠𝐿, 𝑠𝑈 ]. Letting

𝑎(𝑡,d) = sup
{︀
𝑔(𝑡, 𝜇0, 𝑟)𝑧 : 𝜇0 ∈ [0.703, 0.777], (𝑧, 𝑟) ∈ [𝑥𝑈 , 𝑥𝑈 ]× [𝑠𝐿, 𝑠𝑈 ]

}︀
,

𝑏(𝑡,d) = sup
{︀
𝑔(𝑡, 𝜇0, 𝑟)𝑧 : 𝜇0 ∈ [0.703, 0.777], (𝑧, 𝑟) ∈ [𝑦𝑈 (𝑡), 𝑦𝑈 (𝑡)]× [𝑠𝐿, 𝑠𝑈 ]

}︀
,

then as noted above, one may have 𝑎(𝑡,d) ≥ 𝑏(𝑡,d) or 𝑎(𝑡,d) ≤ 𝑏(𝑡,d) at different points in

time. As a result, one set of bounds is not always better than the other. This observation

hints at an improved method; however, the method based on Proposition 7.5.3 as stated

proves to be effective, as demonstrated by this example and the next.

7.7.2 Faster polyhedral bounds

The model of a stirred-tank reactor from §6.5.2 is considered to demonstrate the effectiveness

of the “faster polyhedral bounds” considered in Sections 7.5.2 and 7.6.1. In particular,

the faster polyhedral bounds are compared with the “fast polyhedral bounds” from §7.5.1,

originally presented in Ch. 6.

The specific equations describing the evolution of the concentrations of chemical species
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A, B, C, and D (denoted x = (𝑥A, 𝑥B, 𝑥C, 𝑥D)) are

ẋ(𝑡,u) =

⎡⎢⎢⎢⎢⎢⎢⎣
−1 −1

−1 0

1 −1

0 1

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎣ 𝑢3(𝑡)𝑥A(𝑡,u)𝑥B(𝑡,u)

𝑘2𝑥A(𝑡,u)𝑥C(𝑡,u)

⎤⎦+
⎡⎢⎢⎢⎢⎢⎢⎣

(1/𝑉 )(𝑢1(𝑡)𝑣A − 𝑥A(𝑡,u)(𝑣A + 𝑣B))

(1/𝑉 )(𝑢2(𝑡)𝑣B − 𝑥B(𝑡,u)(𝑣A + 𝑣B))

(1/𝑉 )(−𝑥C(𝑡,u)(𝑣A + 𝑣B))

(1/𝑉 )(−𝑥D(𝑡,u)(𝑣A + 𝑣B))

⎤⎥⎥⎥⎥⎥⎥⎦ .

(7.22)

The known parameters are 𝑉 = 20 (L), 𝑘2 = 0.4 (M−1min−1), 𝑣A = 𝑣B = 1 (L(min)−1).

The time-varying uncertainties are the inlet concentration of species A, 𝑢1(𝑡) ∈ [0.9, 1.1]

(M), the inlet concentration of species B, 𝑢2(𝑡) ∈ [0.8, 1.0] (M), and the rate constant of

the first reaction, 𝑢3(𝑡) ∈ [10, 50] (M−1min−1). Initially, the concentration of each species

is zero, and at 𝑡 = 0, A and B begin to flow in. The time period of interest is 𝑇 = [0, 10]

(min).

The bounds are given by a constant matrix

A : 𝑡 ↦→

⎡⎢⎣
−I
I

−D+

D+

−N
N

⎤⎥⎦ ,

where

D+ =

⎡⎣−1/3 −1/3 1/3 0

−1/3 0 −1/3 1/3

⎤⎦ and N =

⎡⎣ −1 2 1 0

1 −1 0 1

⎤⎦ .

The merits of this form for the bounds are discussed in §6.5.2. Meanwhile, constraint

information in the form of nonnegativity of the states is used (𝑋𝐶 : 𝑡 ↦→ {z : z ≥ 0}).

The results for two representative species are plotted in Fig. 7-3. As one can see, the

bounds resulting from the numerical method from §7.6.1 are of comparable quality compared

to the method from Ch. 6. Both methods use the same affine relaxations from Ch. 3 to

overestimate the dynamics. Both methods employ the BDF implementation in CVODE,

using a Newton iteration for the corrector, with relative and absolute integration tolerances

equal to 10−6. The method from Ch. 6, which must solve linear programs, requires 0.0275s,

while the method from §7.6.1 requires 0.0055s, or a factor of 5 faster.
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Figure 7-3: Upper and lower bounds on concentration versus time for the stirred-tank reactor
(Eqn. (7.22)). Solution trajectories for various constant inputs are thin solid lines. Results
from the polyhedral bounding method from Ch. 6 are plotted with circles, while the results
from the method in §7.6.1 are plotted with thick black lines.

7.7.3 Simultaneous interval and affine relaxations

This section considers the numerical method from §7.6.2, for construction of simultaneous

interval and affine relaxations.

The stirred-tank reactor model from §7.7.2 is considered again. To assess the performance

of the affine relaxation method, empirical convergence is studied; relaxations are calculated

on a sequence of intervals {𝑃𝑛}. Since relaxations are desired in this case, the uncertain

quantities will be constant in time; i.e. replace 𝑢1(𝑡), 𝑢2(𝑡), and 𝑢3(𝑡) with 𝑝1, 𝑝2, and

𝑝3, respectively, in Eqn. (7.22). Then p ∈ 𝑃𝑛 = [0.9, 𝑝𝑈𝑛,1] × [0.8, 𝑝𝑈𝑛,2] × [10, 𝑝𝑈𝑛,3], with p𝑈
𝑛

initially equal to (1.1, 1.0, 50) and decreasing to p𝐿 = (0.9, 0.8, 10).

Constraint information coming from the stoichiometry of the reaction can be used in

this example. This type of information inspires the form of the A mapping used in §7.7.2;

consider the matrix N used in that definition of A. Let y𝑁 = Nx. Then y𝑁 obeys the

differential equation (multiply Eqn. (7.22) from the left by N)

ẏ𝑁 (𝑡,p) =
1

𝑉

⎡⎣ −𝑝1𝑣A + 2𝑝2𝑣B

𝑝1𝑣A − 𝑝2𝑣B

⎤⎦− 𝑣A + 𝑣B
𝑉

y𝑁 (𝑡,p),

with initial conditions y𝑁 (0,p) = 0. This is a separable system of linear, first-order ODEs
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and has the solution

y𝑁 (𝑡,p) =

(︂
exp

(︂
−𝑣A + 𝑣B

𝑉
𝑡

)︂
− 1

)︂(︂
− 1

𝑣A + 𝑣B

)︂⎡⎣ −𝑝1𝑣A + 2𝑝2𝑣B

𝑝1𝑣A − 𝑝2𝑣B

⎤⎦ .

At each point in time, we can evaluate this expression in interval arithmetic and obtain

an enclosure of y𝑁 (𝑡, 𝑃𝑛); denote this [y𝐿
𝑁 (𝑡, 𝑃𝑛),y

𝑈
𝑁 (𝑡, 𝑃𝑛)]. This yields an enclosure of

two linear combinations of the original differential states, and we can take 𝑋𝐶 : 𝑡 ↦→ {z :

Nz ≤ y𝑈
𝑁 (𝑡, 𝑃𝑛),−Nz ≤ −y𝐿

𝑁 (𝑡, 𝑃𝑛), z ≥ 0} (where nonnegativity of the states also has

been included).

In addition to the method for simultaneous interval and affine relaxations from §7.6.2,

a few other affine or interval relaxation methods are included for comparison; the specifics

of the method and its name are listed in Table 7.1. All methods rely on the solution of an

auxiliary IVP in ODEs to determine the bounds. In each case, the implementation of the

BDF in CVODE with a Newton iteration was used with relative and absolute integration

tolerances equal to 10−9. A maximum of 105 integration steps was allowed. This is significant

since the Affine only methods fail on the larger parameter intervals; the bounds become very

large and the numerical integrator must take time steps on the order of machine precision,

resulting in integration failure when the maximum number of steps is reached.

Fig. 7-4 summarizes the convergence results; these figures plot the “width” of the bounds

at the final time against diam(𝑃𝑛). For the interval bounding methods, the width is taken

to be the diameter of the interval. For any of the affine relaxations, the width is defined as

the maximum difference between the overestimator and underestimator in any dimension

(at the final time). That is, for generic affine underestimators [(a𝑙𝑗)
T]p + b𝑙 and affine

overestimators [(a𝑢𝑗 )
T]p+ b𝑢 on 𝑃𝑛, the width is

max
{︀
max{(a𝑢𝑗 − a𝑙𝑗)

Tp+ 𝑏𝑢𝑗 − 𝑏𝑙𝑗 : p ∈ 𝑃𝑛} : 𝑗 ∈ {1, . . . , 𝑛𝑦}
}︀
.

Thus, just by looking at these widths, one can make conclusions about the (empirical)

pointwise and thus Hausdorff convergence order of the relaxations at the final time; see also

Ch. 3 of [163].

The performances of the affine relaxation methods are similar on “small” intervals. Mean-

while, the interval methods (and the Linearized MC method) are similar on “large” intervals.
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Table 7.1: Names and specifics of methods used in convergence study of §7.7.3.

Name Description
Sim. Affine/Interval Affine and interval parts of simultaneous interval and affine relax-

ation method from §7.6.2, using affine relaxations from Ch. 3 to
satisfy Condition 4 of Assumption 7.6.2.

Sim. Affine (TM) Same as Sim. Affine, but using first-order Taylor-model (and in-
terval) arithmetic to satisfy Assumption 7.6.2 (implementation in
MC++ version 0.7 with default options [36], which includes lin-
earization at the midpoint of the parameter interval).

Affine only Affine relaxation method from §7.4.3, with A𝑝(·) =
𝜕x𝑦

𝜕p (·,mid(𝑃𝑛)) (i.e. sensitivities at a reference trajectory
at the midpoint of the parameter interval), and using affine
relaxations from Ch. 3 to satisfy Inequalities (7.9).

Affine only (TM) Same as Affine only, but using first-order Taylor-model arithmetic
to satisfy Inequalities (7.9) (implementation in MC++ version 0.7
with default options [36], which includes linearization at the mid-
point of the parameter interval).

Interval only Interval bounds from the method in §7.6.1 with ̂︀A = [−I I]T

(includes constraints, but treats parameters as time-varying un-
certainty).

Linearized MC Affine relaxations obtained from subgradients of convex and con-
cave (McCormick) relaxations from [169]. Base interval bounds
are “Interval only.” Subgradients are evaluated at the midpoint of
the parameter interval following the scheme in §10.3.2 of [166] and
§2.1.3.3 of [163].
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(a) At time 𝑡𝑓 = 10
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(b) At time 𝑡𝑓 = 100

Figure 7-4: Empirical convergence results for the tank reactor (Eqn. (7.22)) at two different
time points. See Table 7.1 for the meaning of the labels. All available data points are visible
(i.e. the Affine only methods failed on the larger parameter intervals).
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However, the prefactors of the Sim. Affine and Affine only methods seem to depend less heav-

ily on time, compared to the Linearized MC relaxations (comparing Figures 7-4a and 7-4b).

Still, all of the affine relaxation methods display second-order convergence once the param-

eter interval is small enough. This agrees with the analysis of §6 of [202], which establishes

that the Affine Only (TM) method should have second-order Hausdorff convergence.

The better of the Interval only and Affine only methods for any parameter interval is of

comparable quality to the better of the Sim. Affine and Sim. Interval methods. However,

simultaneous calculation of the interval and affine relaxations indeed non-trivially improves

the Sim. Affine relaxations compared to the Affine only method on large parameter intervals,

as well as the Sim. Interval relaxations compared to the Interval only method on small pa-

rameter intervals. Furthermore, calculation of the Affine only and Interval only relaxations

separately and then taking the better of the two can be potentially more computationally

expensive than the simultaneous calculation as in §7.6.2. For example, consider the calcula-

tion of relaxations on the largest parameter interval 𝑃1 = [0.9, 1.1]×[0.8, 1.0]×[10, 50] on the

time interval 𝑇 = [0, 10] and using the integration options listed earlier. The (simultaneous)

calculation of the Sim. Affine and Sim. Interval relaxations takes 0.026s, while calculation of

Affine only and Interval only relaxations separately (and intersecting) takes at least 0.73s,

or a factor of almost 30 longer. As mentioned earlier, this relates to the fact that numerical

integration for the Affine only relaxations fails, which in general is expensive.

7.8 Conclusions

This chapter has considered the problem of estimating the reachable set of constrained

dynamic systems. Specifically, a theory was presented giving conditions under which a

time-varying polyhedron bounds all solutions of a constrained dynamic system subject to

uncertain initial conditions and inputs. This theory was then specialized to yield a number of

specific theories, highlighting the connections to previous work. Even further, new methods

for constructing polyhedral bounds and affine relaxations were discussed, and their numerical

implementations were assessed with various examples. The state constraints yield a number

of interesting connections.

Further work might include fine-tuning the numerical methods presented. These meth-

ods depend on overestimating the dynamics on various sets; this will most likely involve
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interval arithmetic or something similar. As a consequence, the dynamics of the auxiliary

system yielding the bounds almost certainly will be nonsmooth. Taking advantage of recent

advances in calculating elements of generalized derivatives [96], it might be possible to even

further speed up the current methods. In the case of the simultaneous interval and affine

relaxation method, a modification of the corrector iteration in BDF, along the lines of the

staggered corrector in sensitivity calculation [50], might also speed up the method by taking

advantage of the structure of the auxiliary system of ODEs in Proposition 7.6.2. However,

the methods as presented are effective.
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Chapter 8

Lower-level duality and the global

solution of generalized semi-infinite

programs

8.1 Introduction

The problem of interest is the generalized semi-infinite program (GSIP):

𝑓* = inf
x∈𝑋

𝑓(x) (GSIP)

s.t. 𝑔(x,y) ≤ 0, ∀y ∈ ̂︀𝑌 (x),

̂︀𝑌 (x) ≡ {y ∈ 𝑌 : h(x,y) ≤ 0},

where for (𝑛𝑥, 𝑛𝑦,𝑚) ∈ N3, 𝑋 ⊂ R𝑛𝑥 , 𝑌 ⊂ 𝐷𝑦 ⊂ R𝑛𝑦 , 𝑋 and 𝑌 are nonempty, 𝑓 : 𝑋 → R,

𝑔 : 𝑋 × 𝐷𝑦 → R and h : 𝑋 × 𝐷𝑦 → R𝑚. A “standard” semi-infinite program (SIP)

differs from a GSIP in that the index set of the constraint (i.e. ̂︀𝑌 ) does not depend on the

decision variable x. The challenge of semi-infinite programming comes from the fact that the

cardinality of 𝑌 may be greater than ℵ0, which is to say that there may be an uncountable

number of constraints.

This chapter focuses on conditions when one can reformulate a GSIP into equivalent,

but easier to solve problems, such as SIPs and (finite) nonlinear programs (NLPs). These

conditions involve the convexity of the lower-level program as the reformulation involves
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duality arguments; see §8.2 for the definition of the lower-level program. Similar reformu-

lations have been explored before in the literature, however it is not apparent in previous

work that the full benefit of a duality-based reformulation has been realized. Much of this

relates to a lack of work on the details or performance of associated numerical methods,

especially with connections to global methods. In this chapter, it is demonstrated that a

duality-based reformulation can be more readily obtained, is a more numerically tractable

problem or can be solved via the solution of simple, numerically tractable problems, and is

more flexible and applies to a broader class of GSIP.

The present work is most closely related to that in [42, 106, 184, 185]. These articles

exemplify the approach wherein one assumes that −𝑔(x, ·) and h(x, ·) are convex functions,

permitting one to make a global statement about minimizers of the lower-level program. In

[184, 185], the lower-level program is replaced with its Karush-Kuhn-Tucker (KKT) con-

ditions, which then yields a finite number of algebraic constraints. The result then is a

finite NLP, but the complementarity constraints in the KKT conditions make this NLP a

mathematical program with complementarity constraints (MPCC). Although some progress

has been made, general-purpose solvers typically have trouble with these problems. Indeed,

the majority of the effort in those papers goes to regularizing and solving the MPCC. These

shortcomings of the MPCC reformulation motivate the work in [42, 106]. The reformulation

obtained in [106] is a finite NLP, but it is for a very specific form of GSIP, and the necessary

assumptions are quite restrictive. Meanwhile, [42] marks a movement toward duality-based

reformulations of GSIP. A number of finite NLP reformulations are proposed, however, the

focus of that work is on establishing the regularity of the local minimizers of those reformu-

lations. This chapter continues the development of duality-based reformulations of GSIP,

although the reformulations in this work are based on slightly different duality results, and

the focus is on obtaining reformulations that can be solved globally in a tractable manner.

In the case that the lower-level program has differentiable data, the reformulation is a finite

NLP, while in general the reformulation is an SIP. The specific cases when the lower-level

program is a linear or second-order cone program are also considered. These specific cases

are interesting because stronger results hold.

Meanwhile, local reduction methods, described in e.g., [183, 187, 188, 189], rely on

characterizing the set of local minimizers of the lower-level program. This is typically done

by characterizing the set of KKT points. Under the appropriate conditions, this set is finite
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in a neighborhood around a specific x, and thus describes a finite subset of the constraints

which must hold at that point. Consequently, the GSIP is locally equivalent to an NLP.

However, the “reduction ansatz” which must hold for all x ∈ 𝑋 for the reduction to hold

globally has only been shown to hold “most” of the time for linear problems [183], and it is

an open question whether it can be expected to hold in a more general setting. In addition,

the references above provide few numerical results for methods based on this approach.

Related to local reduction is the approach of formulating necessary or sufficient conditions

for (local) optimality of the GSIP [89, 91, 157]. However, any numerical method developed

from these conditions would be local methods. Discretization methods are another class of

solution method. Fairly successful global methods for SIP based purely on discretization have

a long history (see [30] for an early contribution). Some conceptual attempts to generalize

these methods to GSIP have been presented in [67, 188]. Unfortunately, they are outer

approximation methods; the solution furnished is not guaranteed to be feasible in the original

problem, which can be unacceptable in certain applications, such as design centering. See

also [67, 182, 189] for reviews of theory and numerical methods for GSIP. A recent advance for

the solution of GSIP with nonconvex lower-level program has been presented in [127]. The

numerical method in that work is similar to the method in [122], which provides the basis for

the numerical method described in this chapter. As one might expect, the nonconvex lower-

level program makes the solution method in [127] slightly more arduous; the method involves

the solution of disjunctive or nonsmooth nonlinear programs, which in implementation are

reformulated as mixed-integer nonlinear programs. In contrast, the solution method in this

work does not introduce any additional nonsmoothness into the problems that must be

solved.

The formulation (GSIP) omits additional (finite) inequality or equality constraints on x

when considering the theoretical and numerical aspects, but these are easily included.

The rest of the chapter is organized as follows. Section 8.2 introduces notation and

terminology, including the definition of the lower-level program (LLP), dual function, and

dual problem. Section 8.3 focuses on the case when the LLP satisfies a strong duality

result. In this case, (GSIP) is reformulated as an SIP. Section 8.4 provides a reformulation

to a finite NLP. Specifically, Section 8.4.1 discusses the case when the LLP is convex and

differentiable. Although an NLP is obtained, it involves the derivatives of functions defining

the LLP. Some numerical disadvantages of this reformulation, such as how to obtain explicit
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expressions for the derivatives, are discussed. Section 8.4.2 discusses the special case of

(GSIP) when it has a linear LLP. The merits of this reformulation, compared to the MPCC

reformulation based on KKT conditions, are discussed. Sections 8.4.3 and 8.4.4 discuss the

advantages and disadvantages of reformulations based on duality results for cone programs.

Using the SIP reformulation, a solution method from [122] is adapted to solve the GSIP in

Section 8.5. Section 8.6 presents some numerical examples. The examples in Sections 8.6.2

and 8.6.3 demonstrate the advantages of the duality-based reformulation in the case of the

linear LLP. The examples in Sections 8.6.4 and 8.6.5 demonstrate the effectiveness of the

numerical method from §8.5 for nonlinear LLP. Section 8.7 concludes with final remarks.

8.2 Definitions

Of central importance to (GSIP) is the corresponding lower-level program (LLP)

𝑔*(x) = sup{𝑔(x,y) : h(x,y) ≤ 0,y ∈ 𝑌 }. (LLP)

If ̂︀𝑌 (x) is nonempty, then the infinite constraint of (GSIP) is equivalent to 𝑔*(x) ≤ 0. If̂︀𝑌 (x) is empty, then no constraints are required to hold; consequently x ∈ 𝑋 is feasible in

(GSIP). In this case, assigning 𝑔*(x) = −∞ is consistent with the typical definition of the

supremum of a real-valued function over an empty set, and permits the characterization of

x ∈ 𝑋 feasible in (GSIP) if and only if 𝑔*(x) ≤ 0.

The reformulations in this work are based on Lagrangian duality theory [21, Ch. 5].

Define the dual function of (LLP) as

𝑞(x,𝜇) = sup{𝑔(x,y)− 𝜇Th(x,y) : y ∈ 𝑌 } (8.1)

for all 𝜇 ∈ R𝑚 and x ∈ 𝑋. Since 𝑞(x,𝜇) may equal +∞ for some (x,𝜇), denote its (effective)

domain

dom(𝑞(x, ·)) = {𝜇 ∈ R𝑚 : 𝑞(x,𝜇) < +∞}.

Subsequently, define the dual problem of (LLP) as

𝑞*(x) = inf{𝑞(x,𝜇) : 𝜇 ≥ 0,𝜇 ∈ dom(𝑞(x, ·))}. (8.2)
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Duality results from convex programming will be used; for instance, under appropriate

assumptions on 𝑔, h, and 𝑌 , strong duality asserts that 𝑔*(x) = 𝑞*(x). Such assumptions

can be found in, for instance, Proposition 5.3.1 in [23]. Weak duality will also be useful,

which states that 𝑔*(x) ≤ 𝑞*(x) always holds; see Proposition 5.1.3 and discussion in §5.1.4

of [21].

8.3 Reformulation as SIP

This section discusses the relation between (GSIP) and the following SIP for some 𝑀 ⊂ R𝑚:

𝑓*
𝑆𝐼𝑃 = inf

(x,𝜇)∈𝑋×𝑀
𝑓(x) (SIP)

s.t. 𝑔(x,y)− 𝜇Th(x,y) ≤ 0, ∀y ∈ 𝑌,

𝜇 ≥ 0.

Theorem 8.3.1 below provides the core of these theoretical developments; it relies on Assump-

tion 8.3.1, which provides the assertion that strong duality holds for the LLP for a given set

𝑀 containing the dual variables 𝜇. Establishing specific conditions when Assumption 8.3.1

holds is the focus of much of this section.

The first result establishes that (SIP) is a restriction of (GSIP).

Proposition 8.3.1. For any 𝑀 ⊂ R𝑚 and for any (x,𝜇) feasible in (SIP), x is feasible in

(GSIP). Consequently, 𝑓* ≤ 𝑓*
𝑆𝐼𝑃 .

Proof. If (SIP) is infeasible, then the result holds trivially. Otherwise, choose (x,𝜇) feasible

in (SIP). Then, 𝑞(x,𝜇) = sup{𝑔(x,y)− 𝜇Th(x,y) : y ∈ 𝑌 } ≤ 0. Thus 𝑞*(x) ≤ 𝑞(x,𝜇) ≤ 0

since 𝜇 ≥ 0. By weak duality, 𝑔*(x) ≤ 𝑞*(x) ≤ 0, and so x is feasible in (GSIP). It follows

that 𝑓* ≤ 𝑓*
𝑆𝐼𝑃 .

Under Assumption 8.3.1 below, a stronger conclusion can be made.

Assumption 8.3.1. For given 𝑀 ⊂ R𝑚, assume that for each x ∈ 𝑋 there exists 𝜇 ∈ 𝑀 ,

𝜇 ≥ 0, such that

1. if 𝑔*(x) is finite, 𝑔*(x) ≤ 0 =⇒ 𝑞(x,𝜇) = 𝑔*(x),

2. if 𝑔*(x) = −∞, then 𝑞(x,𝜇) ≤ 0.
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The following result is similar to an unproved claim in [189]. The result establishes the

equivalence of (GSIP) and (SIP).

Theorem 8.3.1. For 𝑀 ⊂ R𝑚, let Assumption 8.3.1 hold. Then for any x feasible in

(GSIP), there exists 𝜇 ∈ R𝑚 such that (x,𝜇) is feasible in (SIP), and conversely for any

(x,𝜇) feasible in (SIP), x is feasible in (GSIP). Consequently, 𝑓* = 𝑓*
𝑆𝐼𝑃 .

Proof. Consider x which is feasible in (GSIP). Then 𝑔*(x) ≤ 0. By Assumption 8.3.1, there

exists a 𝜇 ∈𝑀 , 𝜇 ≥ 0, such that 𝑞(x,𝜇) ≤ 0. It follows that

𝑔(x,y)− 𝜇Th(x,y) ≤ 0, ∀y ∈ 𝑌.

Thus (x,𝜇) is feasible in (SIP).

Conversely, by Proposition 8.3.1 for any (x,𝜇) feasible in (SIP), x is feasible in (GSIP).

The equality of the optimal objective values follows.

The rest of this section is devoted to establishing conditions under which Assump-

tion 8.3.1 holds. Of specific interest are conditions when Assumption 8.3.1 holds for a

bounded 𝑀 . For unbounded 𝑀 , the most obvious and immediate case is when strong

duality holds for (LLP).

Lemma 8.3.2. Suppose 𝑌 is convex, and for all x ∈ 𝑋, 𝑔(x, ·) and −h(x, ·) are concave on

𝑌 , 𝑔*(x) is finite, and there exists y𝑠(x) ∈ 𝑌 such that h(x,y𝑠(x)) < 0. Then for 𝑀 = R𝑚,

Assumption 8.3.1 holds.

Proof. Under these assumptions, strong duality for the LLP holds for each x ∈ 𝑋; see

Proposition 5.3.1 in [23]. This states that 𝑔*(x) = 𝑞*(x), and the dual problem achieves its

infimum. Thus for some 𝜇 ≥ 0, 𝑞*(x) = 𝑞(x,𝜇).

As mentioned, showing that Assumption 8.3.1 holds for bounded 𝑀 is of more interest.

One reason is that many algorithms for SIP require that the decision variables are contained

in a compact set [28, 29, 30, 53, 126, 122]. The numerical method for GSIP described in §8.5

is based on the method for SIP in [122], and indeed establishing that the SIP reformulation

(SIP) holds for bounded 𝑀 is critical. In Lemma 8.3.2 the condition that there exists a

y𝑠(x) ∈ 𝑌 such that h(x,y𝑠(x)) < 0 is known as the Slater condition. A slightly stronger

assumption than the Slater condition allows a practical way of bounding the solution sets
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𝑆(x) of the dual problem, and thus yields a bounded 𝑀 . However, it should be noted that

it is sufficient to show that there exists a bounded 𝑀 ⊂ R𝑚 such that 𝑀 ∩𝑆(x) ̸= ∅ for all

x ∈ 𝑋; this is a direction for future research.

Lemma 8.3.3. Suppose that for all x ∈ 𝑋, 𝑔*(x) = 𝑞*(x) and the dual problem achieves

its infimum. Further, suppose there exist y𝑠(x) ∈ 𝑌 , 𝑔𝑏 > 0, and h𝑏 > 0, such that

𝑔(x,y𝑠(x)) > −𝑔𝑏 and h(x,y𝑠(x)) ≤ −h𝑏 for all x ∈ 𝑋. Then Assumption 8.3.1 holds for

compact 𝑀 = [0,b*], where b* is given by 𝑏*𝑖 = 𝑔𝑏/ℎ𝑏,𝑖 for each 𝑖 ∈ {1, . . . ,𝑚}.

Proof. We wish to establish that 𝑀 contains the solution set 𝑆(x) of the dual problem for

all x feasible in (GSIP). First let

̂︀𝑞(x,𝜇) = 𝑔(x,y𝑠(x))− 𝜇Th(x,y𝑠(x)),

which we note for all 𝜇 satisfies ̂︀𝑞(x,𝜇) ≤ 𝑞(x,𝜇), since y𝑠(x) ∈ 𝑌 and by the definition of

𝑞 as a supremum over 𝑌 . Next, let

̂︀𝑆(x) = {𝜇 ≥ 0 : ̂︀𝑞(x,𝜇) ≤ 0}.

Assume now that x is feasible in (GSIP). Then 𝑔*(x) ≤ 0. Note that if 𝜇 ∈ 𝑆(x), then

𝜇 ≥ 0 and by strong duality we have

̂︀𝑞(x,𝜇) ≤ 𝑞(x,𝜇) = 𝑞*(x) ≤ 0 =⇒ 𝜇 ∈ ̂︀𝑆(x).
Thus 𝑆(x) ⊂ ̂︀𝑆(x). Consequently, we could obtain various norm-bounds on ̂︀𝑆(x) (and

subsequently 𝑆(x) as well) by solving max{‖𝜇‖ : 𝜇 ∈ ̂︀𝑆(x)}. However, it is easy and useful

to obtain bounds on each component of 𝜇 separately. So, consider

𝑏𝑖(x) = max
{︀
𝜇𝑖 : 𝜇 ≥ 0, 𝑔(x,y𝑠(x))−

∑︁
𝑗

𝜇𝑗ℎ𝑗(x,y𝑠(x)) ≤ 0
}︀

for each 𝑖. Since ℎ𝑗(x,y𝑠(x)) < 0 for each 𝑗, the above program achieves its maximum if

𝜇𝑗 = 0, 𝑗 ̸= 𝑖. Since 𝑔(x,y𝑠(x)) ≤ 𝑔*(x) ≤ 0, we have

𝜇𝑖 ≤
𝑔(x,y𝑠(x))

ℎ𝑖(x,y𝑠(x))
=⇒ 𝑏𝑖(x) =

𝑔(x,y𝑠(x))

ℎ𝑖(x,y𝑠(x))
.
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Since 𝑆(x) is a subset of the nonnegative orthant, it must be a subset of [0,b(x)].

Finally, since 𝑔(x,y𝑠(x)) ≤ 𝑔*(x) ≤ 0, and for each 𝑖, ℎ𝑖(x,y𝑠(x)) < 0, an upper

bound for 𝑏𝑖(x) on 𝑋 is given by 𝑏*𝑖 = 𝑔𝑏/ℎ𝑏,𝑖. If follows that 𝑀 is compact and that

Assumption 8.3.1 holds.

The assumptions for the numerical method described in §8.5 include continuity of the

defining functions and compactness of 𝑋. Under these assumptions, if in addition one has

knowledge of a continuously parameterized Slater point y𝑠 (which naturally falls out of

some design centering problems), then it is clear that the constants 𝑔𝑏 and h𝑏 required by

Lemma 8.3.3 exist.

Lemma 8.3.4. Let the assumptions of Lemma 8.3.2 hold. Assume 𝑋 is compact, 𝑔 and h

are continuous, and that there exists continuous y𝑠 : 𝑋 → 𝑌 such that h(x,y𝑠(x)) < 0 for

each x ∈ 𝑋. Then there exists 𝑔𝑏 > 0 and h𝑏 > 0 such that the conclusion of Lemma 8.3.3

holds.

8.4 Reformulation as NLP

This section discusses the case when one can reformulate (GSIP) as a finite NLP. Proposi-

tion 8.4.1 is similar to Corollary 2.4 in [42]; however it does not require that 𝑔(x, ·) is concave

on all of R𝑛𝑦 as in the latter result. Further, this section then specializes this result for a

number of cases, such as when the lower-level program is a linear program. These special

cases have important implications for global optimization; namely, the lower-level variables

y do not appear in the reformulated problems, which in general improves the run time of

branch and bound. While the advantages of obtaining an NLP (versus SIP) reformulation

are clear, some potential numerical disadvantages are discussed.

8.4.1 General convex LLP

Since the sum of convex functions is convex, we see, under the assumptions of Lemma 8.3.2,

that the lower-level program of (SIP), sup{𝑔(x,y)−𝜇Th(x,y) : y ∈ 𝑌 }, is a convex program

when 𝜇 ≥ 0. Thus, one might ask why not try to reformulate (SIP) as a simpler problem.

If we have convex functions defining 𝑌 , duality arguments similar to the ones employed

already do not reduce the SIP to an NLP; instead we merely dualize the constraints defining

𝑌 and obtain an SIP in which the index set of the infinite constraint is now R𝑛𝑦 .
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However, a reformulation of (GSIP) to an NLP is possible. This is inspired by the

observation that if 𝑔(x, ·)− 𝜇Th(x, ·) is concave and differentiable on open convex 𝑌 , then

its maximum is achieved at y if and only if ∇y𝑔(x,y)−∇yh(x,y)𝜇 = 0. Then the infinite

constraint in (SIP), 𝑔(x,y) − 𝜇Th(x,y) ≤ 0 for all y ∈ 𝑌 , can be replaced with 𝑔(x,y) −

𝜇Th(x,y) ≤ 0 for any y such that ∇y𝑔(x,y) − ∇yh(x,y)𝜇 = 0. The benefit is that the

resulting reformulation is not an MPCC.

Proposition 8.4.1. For 𝑀 ⊂ R𝑚, let Assumption 8.3.1 hold. Suppose 𝐷𝑦 is an open set

and 𝑌 is an open convex set. Suppose that for all x ∈ 𝑋, 𝑔(x, ·) and h(x, ·) are differentiable

on 𝐷𝑦, 𝑔(x, ·) and −h(x, ·) are concave on 𝑌 , and (LLP) achieves its supremum. Consider

the NLP

inf
x,y,𝜇

𝑓(x) (8.3)

s.t. 𝑔(x,y)− 𝜇Th(x,y) ≤ 0,

∇y𝑔(x,y)−∇yh(x,y)𝜇 = 0,

𝜇 ≥ 0,

(x,y,𝜇) ∈ 𝑋 × 𝑌 ×𝑀.

Then for any x feasible in (GSIP), there exists (y,𝜇) ∈ 𝑌 ×R𝑚 such that (x,y,𝜇) is feasible

in NLP (8.3), and conversely for any (x,y,𝜇) feasible in NLP (8.3), x is feasible in (GSIP).

Proof. Choose x feasible in (GSIP). Then 𝑔*(x) ≤ 0, and by assumption there exists

a maximizer y𝑥 of (LLP), so 𝑔*(x) is also finite. So by Assumption 8.3.1, there exists

𝜇𝑥 ∈𝑀 , 𝜇𝑥 ≥ 0, such that 𝑞(x,𝜇𝑥) = 𝑔*(x). In other words, 𝜇𝑥 is a duality (or Lagrange)

multiplier for (LLP). Then by Proposition 5.1.1 in [21], for example, y𝑥 ∈ argmax{𝑔(x,y)−

𝜇T
𝑥h(x,y) : y ∈ 𝑌 }. This implies 𝑔(x,y𝑥)−𝜇T

𝑥h(x,y𝑥) ≤ 0. And since 𝑔(x, ·) and −h(x, ·)

are differentiable and 𝑌 is open, this implies ∇y𝑔(x,y𝑥) − ∇yh(x,y𝑥)𝜇𝑥 = 0. It follows

that (x,y𝑥,𝜇𝑥) is feasible in NLP (8.3).

Conversely choose (x,y,𝜇) feasible in NLP (8.3). Again, since 𝑔(x, ·) and −h(x, ·) are

concave and differentiable and 𝑌 is convex, ∇y𝑔(x,y) − ∇yh(x,y)𝜇 = 0 implies y is a

maximizer of 𝑔(x, ·)− 𝜇Th(x, ·) on 𝑌 . It follows that (x,𝜇) is feasible in (SIP), and so by

Proposition 8.3.1, x is feasible in (GSIP).

Although the reformulation in Proposition 8.4.1 is a finite NLP, it has a potential nu-
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merical disadvantage. This relates to the fact that the reformulation requires derivative

information. Although not too difficult to obtain in many cases, many deterministic global

optimization software (such as BARON [197, 159]) require an explicit form for the func-

tions defining the constraints. In the case of (8.3), this means that an explicit form for the

derivatives is necessary. While obtaining an explicit expression is not impossible, numerical

derivative information is much easier to obtain. The solution method described in §8.5,

based on the SIP reformulation, requires the solution of various NLP subproblems; these

subproblems are defined in terms of the original functions 𝑓 , 𝑔, and h defining the (GSIP),

and their solution would typically require at most numerical derivative information.

As a specific case, consider applying Proposition 8.4.1 when the LLP is a convex quadratic

program (QP):

𝑔*(x) = sup
{︀
(1/2)yTQ(x)y + c(x)Ty + 𝑑(x) : A(x)y ≤ b(x)

}︀
,

for some Q : 𝑋 → R𝑛𝑦×𝑛𝑦 which is negative-definite-valued, c : 𝑋 → R𝑛𝑦 , 𝑑 : 𝑋 → R,

A : 𝑋 → R𝑚×𝑛𝑦 , and b : 𝑋 → R𝑚 (and assuming 𝑌 = R𝑛𝑦). Since Q(x) is negative-

definite, 𝑔*(x) is finite and the LLP achieves its supremum for all x such that the LLP is

feasible. Then by Proposition 5.2.1 in [21], for instance, strong duality holds for all such

x, and so Assumption 8.3.1 holds for 𝑀 = R𝑚. Further, the stationarity condition for the

Lagrangian appearing in the constraints of NLP (8.3) becomes

Q(x)y + c(x)−A(x)T𝜇 = 0.

The preceding discussion is formalized in the following.

Corollary 8.4.1. Suppose that 𝑌 = 𝐷𝑦 = R𝑛𝑦 and 𝑔 : (x,y) ↦→ (1/2)yTQ(x)y + c(x)Ty +

𝑑(x) for some Q : 𝑋 → R𝑛𝑦×𝑛𝑦 which is negative-definite-valued, c : 𝑋 → R𝑛𝑦 , 𝑑 : 𝑋 → R,

and h : (x,y) ↦→ A(x)y − b(x) for some A : 𝑋 → R𝑚×𝑛𝑦 and b : 𝑋 → R𝑚. Suppose that
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for all x ∈ 𝑋 there exists y ∈ R𝑛𝑦 such that h(x,y) ≤ 0. Consider the NLP

inf
x,y,𝜇

𝑓(x) (8.4)

s.t. (1/2)yTQ(x)y + c(x)Ty + 𝑑(x)− 𝜇T(Ay − b(x)) ≤ 0,

Q(x)y + c(x)−A(x)T𝜇 = 0,

𝜇 ≥ 0,

(x,y,𝜇) ∈ 𝑋 × R𝑛𝑦 × R𝑚.

Then for any x feasible in (GSIP), there exists (y,𝜇) ∈ R𝑛𝑦 × R𝑚 such that (x,y,𝜇) is

feasible in NLP (8.4), and conversely for any (x,y,𝜇) feasible in NLP (8.4), x is feasible

in (GSIP).

The main reason for pointing out this specific case is the fact that it relies on a strong du-

ality result (Proposition 5.2.1 in [21]) that does not require a Slater point, as in Lemma 8.3.2,

to satisfy Assumption 8.3.1. More generally, in the case that 𝑔*(x) is finite, 𝑔(x, ·) is con-

cave on 𝑌 = R𝑛𝑦 , and the feasible set of the LLP is nonempty and a polyhedron for all x,

we could applying Proposition 5.2.1 in [21] to show that Assumption 8.3.1 is satisfied for

𝑀 = R𝑚 and subsequently apply Proposition 8.4.1.

If Q is constant or diagonal-valued, it may be possible to explicitly invert it. Then the

stationarity condition of the Lagrangian implies

y = (Q(x))−1(A(x)T𝜇− c(x)).

In this case, the variables y can be removed from problem (8.4) by replacing them with

the expression above. As mentioned, this reduction in the number of variables can have

a significant impact on the runtime of branch and bound, which in general has worst-case

exponential scaling in the number of decision variables.

8.4.2 Linear LLP

This section considers the case that 𝑔 and h are affine in y for each x ∈ 𝑋. The subsequent

reformulation is a specific case of the reformulation in §8.4.1. As mentioned, a reformulation

in [42] is similar to the one in §8.4.1, and both require the assumption that (LLP) is feasible

for each x ∈ 𝑋. However, in the specific case of a linear LLP, it is established below that the
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equivalence can still hold when the LLP is infeasible. Further, the numerical disadvantages

mentioned in the previous section, that analytical derivative information is needed, no longer

apply. Consequently, it is worthwhile to focus on this specific case. This is specified in the

following assumption.

Assumption 8.4.1. Assume that 𝑌 = 𝐷𝑦 = R𝑛𝑦 , 𝑔 : (x,y) ↦→ (c(x))Ty + 𝑑(x), and

h : (x,y) ↦→ A(x)y − b(x) for some functions c : 𝑋 → R𝑛𝑦 , 𝑑 : 𝑋 → R, A : 𝑋 → R𝑚×𝑛𝑦 ,

and b : 𝑋 → R𝑚.

Under Assumption 8.4.1 the LLP for (GSIP) is the linear program (LP)

𝑔*(x) = 𝑑(x) + sup{(c(x))Ty : A(x)y ≤ b(x)}. (8.5)

The dual problem is also an LP and has the form

𝑞*(x) = 𝑑(x) + inf{pTb(x) : pTA(x) = (c(x))T,p ≥ 0}. (8.6)

Theorem 8.4.2. Let Assumption 8.4.1 hold. Consider the following finite NLP:

inf
(x,p)∈𝑋×R𝑚

𝑓(x) (8.7)

s.t. pTb(x) + 𝑑(x) ≤ 0,

pTA(x) = (c(x))T,p ≥ 0.

Suppose that for each x ∈ 𝑋, {p ∈ R𝑚 : pTA(x) = (c(x))T,p ≥ 0} is nonempty. Then for

all x feasible in (GSIP), there exists p ∈ R𝑚 such that (x,p) is feasible in NLP (8.7), and

for all (x,p) feasible in NLP (8.7), x feasible in (GSIP).

Proof. Choose x feasible in (GSIP); then 𝑔*(x) ≤ 0. Consider first the case that 𝑔*(x) =

−∞. Since 𝑑 is real (finite)-valued, it follows that the LLP (8.5) is infeasible. By assumption,

the dual LP (8.6) is feasible; consequently it either has a solution or is unbounded. But by

linear programming duality theory, see for instance Table 4.2 in [25], the dual LP (8.6) must

be unbounded. In other words, for any finite 𝑅, there exists p satisfying pTA(x) = (c(x))T,

p ≥ 0, pTb(x) < 𝑅. Thus, choose a p such that pTb(x) < −𝑑(x) (and pTA(x) = (c(x))T,

p ≥ 0). It follows that (x,p) is feasible in NLP (8.7). Otherwise, if −∞ < 𝑔*(x) ≤ 0,

then LLP (8.5) has a finite optimum, and again linear programming duality asserts that
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𝑔*(x) = 𝑞*(x) = pTb(x) + 𝑑(x) for some p satisfying pTA(x) = (c(x))T, p ≥ 0 (see for

instance Theorem 4.4 in [25]). Again, it follows that (x,p) is feasible in NLP (8.7).

Conversely, choose (x,p) feasible in NLP (8.7). If the dual LP (8.6) is unbounded, then

again we must have that LLP (8.5) is infeasible, and so x is feasible in (GSIP). Otherwise,

the dual LP (8.6) has a finite optimum and 𝑔*(x) = 𝑞*(x), and by the definition of 𝑞*(x) as

an infimum we must have 𝑞*(x) ≤ pTb(x) + 𝑑(x) ≤ 0. Thus, 𝑔*(x) ≤ 0 and the feasibility

of x in (GSIP) follows.

When an LP has a solution, it is equivalent to its KKT conditions. Thus, when LLP (8.5)

is feasible and bounded, it is easy to see that (GSIP) is equivalent to the NLP

inf
(x,y,p)∈𝑋×R𝑛𝑦×R𝑚

𝑓(x) (8.8)

s.t. (c(x))Ty + 𝑑(x) ≤ 0,

A(x)y ≤ b(x),

pTA(x) = (c(x))T,p ≥ 0,

𝑝𝑖(a
T
𝑖 y − 𝑏𝑖(x)) = 0, ∀𝑖 ∈ {1, . . . ,𝑚},

where aT𝑖 is the 𝑖𝑡ℎ row of A. As mentioned, this is the subject of [184, 185], among

others. The most obvious differences between (8.7) and (8.8) are the inclusion in (8.8) of the

lower-level primal variables y and the related constraints, and the complementary slackness

conditions or complementarity constraints 𝑝𝑖(a
T
𝑖 y − 𝑏𝑖(x)) = 0 for each 𝑖. As mentioned,

this makes NLP (8.8) an MPCC.

However, a significant theoretical difference between the NLPs (8.7) and (8.8) is the fact

that (8.7) is still equivalent to the (GSIP) when the lower-level program (8.5) is infeasible,

as established in Theorem 8.4.2. Meanwhile, if for some x ∈ 𝑋 the LLP (8.5) is infeasible,

then there does not exist (y,p) satisfying the KKT conditions in the constraints of (8.8),

and so x is infeasible in the NLP (8.8). These differences suggest that the duality-based

reformulation (8.7) is superior to the reformulation based on the KKT conditions (8.8).

Indeed, the examples in §8.6 establish both the theoretical and numerical benefits of the

duality-based reformulation (8.7).

Note that the numerical tractability and expanded applicability of the duality-based

reformulation stem from the same reason: the exclusion of a representation of the optimal
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solution set of the LLP (8.5) in the constraints of the NLP (8.7), unlike in the KKT-

based reformulation. In fact, the constraints of the KKT-based reformulation also include a

representation of the feasible set and optimal solution set of the dual LP (8.2). Results from

parametric programming establish that these solution sets can have undesirable parametric

properties, such as being non-singleton valued [54]. In contrast, the constraints of the

duality-based reformulation (8.7) merely represent the dual feasible set.

8.4.3 Second-order cone program LLP

This section focuses on the case that the LLP is a second-order cone program (SOCP),

which is a class of programs for which strong duality holds. One complication that prevents

the application of Proposition 8.4.1 to this case is that fact that the constraints involve the

two-norm, and thus h is not differentiable. This case is specified by the following assumption.

Assumption 8.4.2. Assume that 𝑌 = 𝐷𝑦 = R𝑛𝑦 , 𝑔 : (x,y) ↦→ (c(x))Ty + 𝑠(x) for some

functions c : 𝑋 → R𝑛𝑦 and 𝑠 : 𝑋 → R, and for each 𝑖 ∈ {1, . . . ,𝑚}, ℎ𝑖 : (x,y) ↦→

‖A𝑖(x)y + b𝑖(x)‖2− (e𝑖(x))
Ty−𝑑𝑖(x) for some functions A𝑖 : 𝑋 → R𝑛𝑖×𝑛𝑦 , b𝑖 : 𝑋 → R𝑛𝑖 ,

e𝑖 : 𝑋 → R𝑛𝑦 , and 𝑑𝑖 : 𝑋 → R.

Under Assumption 8.4.2, the LLP is the SOCP

𝑔*(x) = 𝑠(x) + sup
y∈R𝑛𝑦

(c(x))Ty (8.9)

s.t. ‖A𝑖(x)y + b𝑖(x)‖2 ≤ (e𝑖(x))
Ty + 𝑑𝑖(x), ∀𝑖 ∈ {1, . . . ,𝑚}.

The dual problem is also an SOCP (see for instance [109]):

𝑞*(x) = 𝑠(x) + inf
z1,𝑤1,...,z𝑚,𝑤𝑚

𝑚∑︁
𝑖=1

zT𝑖 b𝑖(x) + 𝑤𝑖𝑑𝑖(x) (8.10)

s.t.

𝑚∑︁
𝑖=1

zT𝑖 A𝑖(x) + 𝑤𝑖(e𝑖(x))
T = −(c(x))T,

‖z𝑖‖2 ≤ 𝑤𝑖, (z𝑖, 𝑤𝑖) ∈ R𝑛𝑖 × R, ∀𝑖 ∈ {1, . . . ,𝑚}.

Linear programs, convex quadratically-constrained quadratic programs, and (convex) QP

are special cases of SOCP. However, the duality property for SOCP used in the following

result requires the existence of a Slater point for the SOCP LLP (8.9). In contrast, a Slater
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point is not required when the LLP is a QP or linear program (see Corollary 8.4.1 and

Theorem 8.4.2).

Theorem 8.4.3. Let Assumption 8.4.2 hold. Consider the following finite NLP:

inf
x,z1,𝑤1,...,z𝑚,𝑤𝑚

𝑓(x) (8.11)

s.t. 𝑠(x) +

𝑚∑︁
𝑖=1

zT𝑖 b𝑖(x) + 𝑤𝑖𝑑𝑖(x) ≤ 0,

𝑚∑︁
𝑖=1

zT𝑖 A𝑖(x) + 𝑤𝑖(e𝑖(x))
T = −(c(x))T,

‖z𝑖‖2 ≤ 𝑤𝑖, (z𝑖, 𝑤𝑖) ∈ R𝑛𝑖 × R, ∀𝑖 ∈ {1, . . . ,𝑚},

x ∈ 𝑋.

Suppose that for all x ∈ 𝑋, there exists y𝑠(x) such that

‖A𝑖(x)y𝑠(x) + b𝑖(x)‖2 < (e𝑖(x))
Ty𝑠(x) + 𝑑𝑖(x), ∀𝑖.

Then for all x feasible in (GSIP) there exists v ≡
(︀
z1, 𝑤1, . . . , z𝑚, 𝑤𝑚

)︀
such that (x,v) is

feasible in NLP (8.11), and conversely for all
(︀
x, z1, 𝑤1, . . . , z𝑚, 𝑤𝑚

)︀
feasible in NLP (8.11),

x is feasible in (GSIP).

Proof. Under the assumption that (8.9) is bounded (has bounded optimal objective value)

and has a feasible point that strictly satisfies the inequality constraints, then strong dual-

ity holds and a dual optimal solution exists; see Theorem 4.2.1 in [134]. Then for x such

that 𝑔*(x) ≤ 0, (8.9) has bounded optimal objective value, and by assumption there ex-

ists a strictly feasible point, and so there exists
(︀
z1, 𝑤1, . . . , z𝑚, 𝑤𝑚

)︀
feasible in the dual

SOCP (8.10) with 𝑠(x) +
∑︀𝑚

𝑖=1 z
T
𝑖 b𝑖(x) + 𝑤𝑖𝑑𝑖(x) = 𝑞*(x) = 𝑔*(x) ≤ 0. Conversely, for(︀

x, z1, 𝑤1, . . . , z𝑚, 𝑤𝑚

)︀
feasible in NLP (8.11), we have (by weak duality) 𝑔*(x) ≤ 𝑞*(x) ≤ 0,

and so x is feasible in (GSIP).

As a practical point, the constraints ‖z𝑖‖2 ≤ 𝑤𝑖 appearing in NLP (8.11) are not differ-

entiable. To overcome this, they could be replaced with the pair of constraints ‖z𝑖‖22 ≤ 𝑤2
𝑖 ,

𝑤𝑖 ≥ 0. Note that such a manipulation applied directly to the SOCP LLP (8.9), in the

hope of obtaining an LLP with smooth h(x, ·) in order to apply Proposition 8.4.1, in general
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would not preserve the convexity of the new function h(x, ·). Meanwhile, as NLP (8.11) is

already nonconvex in general, such a reformulation has no downside.

8.4.4 General cone program LLP

Another class of convex programs that satisfy a strong duality property is the class of cone

programs; see §4.6.1 of [33] and Ch. 4 of [134]. This is a very broad class encompassing LP,

convex QP, SOCP, and semi-definite programs (SDP). Under the proper assumptions, the

dual problem of a cone program is also a cone program and strong duality holds.

Thus, reformulation of (GSIP) when (LLP) is a cone program is possible; the issue is

that the reformulation, while a finite NLP, involves generalized inequalities induced by the

defining cone. For instance, the constraints ‖z𝑖‖2 ≤ 𝑤𝑖 in the dual SOCP (8.10) express

the constraint that (z,𝑤𝑖) ∈ 𝐾𝑆𝑂𝐶,𝑖, where 𝐾𝑆𝑂𝐶,𝑖 is the second-order cone in R𝑛𝑖+1. It

happens that this constraint is not too difficult to handle; similarly if the defining cone is

polyhedral, as in LP, the reformulation leads to practical numerical solution methods.

In contrast, if (LLP) is an SDP, the defining cone is the cone of positive semi-definite

matrices. The dual is also an SDP, and as a result, the reformulation of (GSIP) would in-

volve matrix inequalities. In general, these would be nonlinear matrix inequality constraints

as well. General-purpose deterministic global optimization software typically cannot han-

dle these constraints. Without more structure, global solution of the reformulation is not

numerically possible at present.

For these same reasons, the case when the LLP is a (possibly nonconvex) quadratic pro-

gram with a single quadratic constraint is not considered. Although this class of problems,

despite being nonconvex, satisfies a strong duality property (see Appendix B of [33]), the

dual is an SDP and the same issues arise.

8.4.5 Connections to robust optimization

Consider the following “uncertain” optimization problem with a polyhedral feasible set:

min
x∈R𝑛

𝑓(x) (8.12)

s.t.Mx ≤ d,
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where the data defining the feasible set are uncertain; i.e. all that is known is that (M,d) ∈

𝑈 for some 𝑈 ⊂ R𝑝×𝑛 × R𝑝. The “robust” counterpart of problem (8.12) is

min
x∈R𝑛

𝑓(x) (8.13)

s.t.Mx ≤ d, ∀(M,d) ∈ 𝑈.

For illustrative purposes, assume that there is only one constraint and so M = mT. In

the case that 𝑈 is an ellipsoidal set, the robust counterpart (8.13) is an SIP with an SOCP

LLP. To see this, assume that 𝑈 = {y ∈ R𝑛+1 : ‖A(y − y0)‖2 ≤ 1} for some invertible

A ∈ R(𝑛+1)×(𝑛+1) and y0 ∈ R𝑛+1 (in this case 𝑈 = {y0+A−1y′ : ‖y′‖2 ≤ 1}, i.e. the image

of the unit ball under an affine mapping). Let c : x ↦→ (x,−1). Then the robust counterpart

becomes

min
x∈R𝑛

𝑓(x)

s.t.mTx− 𝑑 = c(x)Ty ≤ 0, ∀(m, 𝑑) ≡ y : ‖A(y − y0)‖2 ≤ 1,

which is indeed an SIP with an SOCP LLP. We can apply Theorem 8.4.3 to obtain

min
x,z,𝑤

𝑓(x)

s.t. − zTAy0 + 𝑤 ≤ 0,

zTA = (−x, 1)T,

‖z‖2 ≤ 𝑤,

(x, z, 𝑤) ∈ R𝑛 × R𝑛+1 × R.

If 𝑓 is affine, this program is also an SOCP.

Uncertain convex programs and their robust counterpart have been considered in [18, 19].

These papers focus on the cases when the robust counterpart has a convex reformulation,

as in the example above. When 𝑓 is nonconvex, or c is nonaffine (allowing us to potentially

construct uncertain programs with non-polyhedral feasible sets), Theorem 8.4.3 provides a

way to reformulate the robust counterpart as a finite program. Similarly, when the uncer-

tainty 𝑈 is polyhedral (for instance, an interval), Theorem 8.4.2 potentially provides a way

to reformulate the robust counterparts.
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8.5 Numerical method

The goal of this section is to apply the SIP solution method of [122] and discuss the as-

sumptions necessary for the method to converge to the global solution of the reformulation

(SIP), and thus to the global solution of the original (GSIP).

The method in [122] proceeds by iteratively solving NLPs which furnish lower and upper

bounds on the global optimal value of an SIP. The upper bound is always evaluated at

some SIP feasible point, and so upon finite termination one has a feasible point which

yields an objective value within some tolerance of the global optimum. Considering (SIP),

subproblems at a specific iteration are the lower bounding problem (LBP) for a finite subset

𝑌 𝐿𝐵𝑃 ⊂ 𝑌

𝑓*
𝐿𝐵𝑃 = inf

(x,𝜇)∈𝑋×𝑀
𝑓(x) (LBP)

s.t. 𝑔(x,y)− 𝜇Th(x,y) ≤ 0, ∀y ∈ 𝑌 𝐿𝐵𝑃 ,

𝜇 ≥ 0,

the upper bounding problem (UBP) for a finite subset 𝑌 𝑈𝐵𝑃 ⊂ 𝑌 and 𝜖𝑅 > 0

𝑓*
𝑈𝐵𝑃 = inf

(x,𝜇)∈𝑋×𝑀
𝑓(x) (UBP)

s.t. 𝑔(x,y)− 𝜇Th(x,y) ≤ −𝜖𝑅, ∀y ∈ 𝑌 𝑈𝐵𝑃 ,

𝜇 ≥ 0,

and evaluation of (8.1), the dual function 𝑞 at given (x,𝜇), which coincides with the lower-

level program of (SIP). Note that the constraints of the subproblems (LBP) and (UBP),

although nonlinear, are inequality constraints, and no “irregularity” has been introduced by

the reformulation as an SIP. Similarly, evaluation of the dual function 𝑞 is a convex program

under the assumptions of Lemma 8.3.2 and when 𝜇 is nonnegative. Thus, these subproblems

are amenable to solution with many available solvers. With these definitions, the algorithm

for solution of (GSIP) is given in Algorithm 7, which is in essence Algorithm 2.1 in [122]

adapted for the current problem and notation. However, Algorithm 7 is more explicit in its

use of approximate solutions to the various subproblems and pays closer attention to the

interplay of tolerances.
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Algorithm 7 Solution method for (GSIP)

Require: 𝛿𝑎 > 0, 𝛿𝑟 ∈ (0, 0.2], 𝜖𝑎𝑡𝑜𝑙 ≥ 5𝛿𝑎, 𝜖𝑟𝑡𝑜𝑙 ≥ 5𝛿𝑟, 𝜖𝑅,0 > 0, 𝑟 > 1, 𝑌 𝐿𝐵𝑃,0 ⊂ 𝑌 ,
𝑌 𝑈𝐵𝑃,0 ⊂ 𝑌
Set 𝜖𝑡𝑜𝑙 = 𝜖𝑎𝑡𝑜𝑙, 𝑓𝐿𝐵𝐷 = −∞, 𝑓𝑈𝐵𝐷 = +∞, 𝑌 𝐿𝐵𝑃 = 𝑌 𝐿𝐵𝑃,0, 𝑌 𝑈𝐵𝑃 = 𝑌 𝑈𝐵𝑃,0, 𝜖𝑅 = 𝜖𝑅,0.

while 𝑓𝑈𝐵𝐷 − 𝑓𝐿𝐵𝐷 > 𝜖𝑡𝑜𝑙 do
Calculate 𝑓𝐿𝐵𝐷 and (x̄, �̄�) feasible in (LBP) such that 𝑓𝐿𝐵𝐷 ≤ 𝑓*

𝐿𝐵𝑃 ≤ 𝑓(x̄) and
𝑓(x̄)− 𝑓𝐿𝐵𝐷 ≤ max{𝛿𝑎, 𝛿𝑟 |𝑓(x̄)|}.
Determine: that 𝑞(x̄, �̄�) ≤ 0, or calculate ȳ ∈ 𝑌 such that 𝑔(x̄, ȳ)− �̄�Th(x̄, ȳ) > 0.
if 𝑞(x̄, �̄�) ≤ 0 then
𝑓𝑈𝐵𝐷 ← 𝑓(x̄), x* ← x̄
return x*.

else
𝑌 𝐿𝐵𝑃 ← {ȳ} ∪ 𝑌 𝐿𝐵𝑃

end if
Determine feasibility of (UBP).
if (UBP) is infeasible then
𝜖𝑅 ← 𝜖𝑅/𝑟

else
Calculate 𝑓

𝑈𝐵𝑃
and (x̄, �̄�) feasible in (UBP) such that 𝑓

𝑈𝐵𝑃
≤ 𝑓*

𝑈𝐵𝑃 ≤ 𝑓(x̄) and
𝑓(x̄)− 𝑓

𝑈𝐵𝑃
≤ max{𝛿𝑎, 𝛿𝑟 |𝑓(x̄)|}.

Determine: that 𝑞(x̄, �̄�) ≤ 0, or calculate ȳ ∈ 𝑌 such that 𝑔(x̄, ȳ)− �̄�Th(x̄, ȳ) > 0.
if 𝑞(x̄, �̄�) ≤ 0 then

if 𝑓(x̄) ≤ 𝑓𝑈𝐵𝐷 then
𝑓𝑈𝐵𝐷 ← 𝑓(x̄), x* ← x̄

end if
𝜖𝑅 ← 𝜖𝑅/𝑟

else
𝑌 𝑈𝐵𝑃 ← {ȳ} ∪ 𝑌 𝑈𝐵𝑃

end if
end if
if 𝑓𝑈𝐵𝐷 < +∞ then
𝜖𝑡𝑜𝑙 ← max{𝜖𝑎𝑡𝑜𝑙, 𝜖𝑟𝑡𝑜𝑙|𝑓𝑈𝐵𝐷|}

end if
end while
return x*.
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The rest of this section is devoted to establishing conditions on the original GSIP that

ensure that Algorithm 7 converges to the global solution of (GSIP). A few assumptions that

will be critical are stated first.

Assumption 8.5.1. Assume that 𝑋 and 𝑌 = 𝐷𝑦 are compact, and that 𝑓 , 𝑔, and h are

continuous.

Assumption 8.5.2. For given 𝜖𝑓 > 0, assume that there exists a point x𝑆 ∈ 𝑋 such that

x𝑆 is an 𝜖𝑓 -optimal GSIP Slater point for (GSIP); i.e.

𝑓(x𝑆) ≤ 𝑓* + 𝜖𝑓 and 𝑔(x𝑆 ,y) < 0, ∀y ∈ ̂︀𝑌 (x𝑆).

First, it is easy to establish that a GSIP Slater point implies the existence of an SIP

Slater point.

Proposition 8.5.1. For some 𝑀 ⊂ R𝑚, let Assumption 8.3.1 hold. For some 𝜖𝑓 > 0,

let Assumption 8.5.2 hold. Assume 𝑌 = 𝐷𝑦 is compact and that 𝑔(x𝑆 , ·) and h(x𝑆 , ·) are

continuous. Then there exists 𝜇𝑆 ∈𝑀 and 𝜖𝑆 > 0 such that

𝑓(x𝑆) ≤ 𝑓* + 𝜖𝑓 , 𝜇𝑆 ≥ 0, and 𝑔(x𝑆 ,y)− 𝜇T
𝑆h(x𝑆 ,y) ≤ −𝜖𝑆 , ∀y ∈ 𝑌

(i.e. (x𝑆 ,𝜇𝑆) is an SIP Slater point for (SIP)).

Proof. Since h(x𝑆 , ·) is continuous and 𝑌 is compact, ̂︀𝑌 (x𝑆) is compact. Thus, since 𝑔(x𝑆 , ·)

is continuous and negative on ̂︀𝑌 (x𝑆), 𝑔*(x𝑆) = −𝜖𝑆 for some 𝜖𝑆 > 0. Then, by Assump-

tion 8.3.1, there exists a 𝜇𝑆 ∈𝑀 , 𝜇𝑆 ≥ 0 such that

−𝜖𝑆 = 𝑞(x𝑆 ,𝜇𝑆) = sup{𝑔(x𝑆 ,y)− 𝜇T
𝑆h(x𝑆 ,y) : y ∈ 𝑌 }.

Consequently,

𝑔(x𝑆 ,y)− 𝜇T
𝑆h(x𝑆 ,y) ≤ −𝜖𝑆 , ∀y ∈ 𝑌.

We can now establish the finite convergence of Algorithm 7 to a feasible, epsilon-optimal

solution of the original (GSIP).

222



Theorem 8.5.1. For some bounded 𝑀 ⊂ R𝑚, let Assumption 8.3.1 hold. Let Assump-

tion 8.5.1 hold, and for 𝜖𝑓 > 0 let Assumption 8.5.2 hold. Then for inputs 𝛿𝑎 ≥ 𝜖𝑓 ,

𝛿𝑟 ∈ (0, 0.2], 𝜖𝑎𝑡𝑜𝑙 ≥ 5𝛿𝑎, 𝜖𝑟𝑡𝑜𝑙 ≥ 5𝛿𝑟, 𝜖𝑅,0 > 0, 𝑟 > 1, 𝑌 𝐿𝐵𝑃,0 ⊂ 𝑌 , 𝑌 𝑈𝐵𝑃,0 ⊂ 𝑌 , Al-

gorithm 7 terminates finitely with a point x* such that 𝑓(x*) ≤ 𝑓*+ 𝜖𝑡𝑜𝑙, where x* is feasible

in (GSIP).

Proof. Since 𝑀 is bounded, 𝑋 ×𝑀 is compact. Further, 𝐿 : 𝑋 ×𝑀 × 𝑌 → R defined by

𝐿 : (x,𝜇,y) ↦→ 𝑔(x,y)−𝜇Th(x,y) is continuous. By Proposition 8.5.1, an SIP Slater point

exists, and by Theorem 8.3.1, this SIP Slater point is also 𝜖𝑓 -optimal for (SIP). We will

establish that in finite iterations Algorithm 7 produces a point x* feasible and 𝜖𝑡𝑜𝑙-optimal

in (SIP), and thus also feasible and 𝜖𝑡𝑜𝑙-optimal in (GSIP). (By a point “x* feasible in (SIP)”

it is meant that there exists a 𝜇* ≥ 0, 𝜇* ∈𝑀 , such that (x*,𝜇*) is feasible in (SIP).)

Algorithm 7 can terminate in one of two ways: the difference between the upper and

lower bounds (𝑓𝑈𝐵𝐷 − 𝑓𝐿𝐵𝐷) is less than a certain tolerance or the solution of (LBP) is

feasible in (SIP).

Consider the first case: the termination condition

𝑓𝑈𝐵𝐷 − 𝑓𝐿𝐵𝐷 ≤ 𝜖𝑡𝑜𝑙 = max{𝜖𝑎𝑡𝑜𝑙, 𝜖𝑟𝑡𝑜𝑙
⃒⃒
𝑓𝑈𝐵𝐷

⃒⃒
} (8.14)

is satisfied. By the definition of the upper and lower bounds we have 𝑓𝑈𝐵𝐷 = 𝑓(x*) and

𝑓𝐿𝐵𝐷 ≤ 𝑓*
𝑆𝐼𝑃 (since 𝑓𝐿𝐵𝐷 is a lower bound for 𝑓*

𝐿𝐵𝑃 and (LBP) is always a relaxation

of (SIP)). Thus, 𝑓(x*) ≤ 𝑓*
𝑆𝐼𝑃 + 𝜖𝑡𝑜𝑙 (and the point x* is always feasible in (SIP)). Con-

sequently, it remains to show that the required difference between the upper and lower

bounds can be achieved in finite iterations. By Lemma 2.4 in [122], in finite iterations we

have 𝑓*
𝑈𝐵𝑃 ≤ 𝑓*

𝑆𝐼𝑃 + 𝜖𝑓 . Further, the corresponding approximate solution of (UBP), x*, is

feasible in (SIP). By Lemma 2.2 in [122], in finite iterations we have 𝑓*
𝑆𝐼𝑃 − (1/3)𝜖𝑓 ≤ 𝑓*

𝐿𝐵𝑃 .

Thus, at some iteration, we have

𝑓*
𝑈𝐵𝑃 − 𝑓*

𝐿𝐵𝑃 ≤
4

3
𝜖𝑓 .

Let the corresponding upper bound of (UBP) be 𝑓𝑈𝐵𝐷 (which equals 𝑓(x*) for some x*

feasible in (SIP)) and the corresponding lower bound and upper bound of (LBP) be 𝑓𝐿𝐵𝐷

and 𝑓𝐿𝐵𝑃 , respectively. By the construction of these values (i.e. by the termination criteria
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for the subproblems) we have

𝑓𝑈𝐵𝐷 − 𝑓*
𝑈𝐵𝑃 ≤ max{𝛿𝑎, 𝛿𝑟

⃒⃒
𝑓𝑈𝐵𝐷

⃒⃒
},

𝑓*
𝐿𝐵𝑃 − 𝑓𝐿𝐵𝐷 ≤ max{𝛿𝑎, 𝛿𝑟

⃒⃒
𝑓𝐿𝐵𝑃

⃒⃒
},

which subsequently yields

𝑓𝑈𝐵𝐷 − 𝑓𝐿𝐵𝐷 ≤ max{𝛿𝑎, 𝛿𝑟
⃒⃒
𝑓𝑈𝐵𝐷

⃒⃒
}+max{𝛿𝑎, 𝛿𝑟

⃒⃒
𝑓𝐿𝐵𝑃

⃒⃒
}+ 4

3
𝜖𝑓 . (8.15)

The challenge now is to go through the various cases and show that Inequality (8.15) implies

the termination criterion (8.14).

Case 1: 𝛿𝑎 ≥ 𝛿𝑟
⃒⃒
𝑓𝐿𝐵𝑃

⃒⃒
.

Using 𝜖𝑓 ≤ 𝛿𝑎 we have 𝑓𝑈𝐵𝐷 − 𝑓𝐿𝐵𝐷 ≤ max{𝛿𝑎, 𝛿𝑟
⃒⃒
𝑓𝑈𝐵𝐷

⃒⃒
}+ 7

3𝛿𝑎.

Case 1a: 𝛿𝑎 ≥ 𝛿𝑟
⃒⃒
𝑓𝑈𝐵𝐷

⃒⃒
.

We have 𝑓𝑈𝐵𝐷 − 𝑓𝐿𝐵𝐷 ≤ 10
3 𝛿𝑎 ≤ 5𝛿𝑎 = max{5𝛿𝑎, 5𝛿𝑟

⃒⃒
𝑓𝑈𝐵𝐷

⃒⃒
} which implies

(8.14).

Case 1b: 𝛿𝑎 < 𝛿𝑟
⃒⃒
𝑓𝑈𝐵𝐷

⃒⃒
.

We have 𝑓𝑈𝐵𝐷 − 𝑓𝐿𝐵𝐷 ≤ 10
3 𝛿𝑟

⃒⃒
𝑓𝑈𝐵𝐷

⃒⃒
≤ max{5𝛿𝑎, 5𝛿𝑟

⃒⃒
𝑓𝑈𝐵𝐷

⃒⃒
} which implies

(8.14).

Case 2: 𝛿𝑎 < 𝛿𝑟
⃒⃒
𝑓𝐿𝐵𝑃

⃒⃒
.

First, by the termination criterion of (LBP) and the reverse triangle inequality, we

have
⃒⃒
𝑓𝐿𝐵𝑃

⃒⃒
−
⃒⃒
𝑓𝐿𝐵𝐷

⃒⃒
≤
⃒⃒
𝑓𝐿𝐵𝑃 − 𝑓𝐿𝐵𝐷

⃒⃒
≤ max{𝛿𝑎, 𝛿𝑟

⃒⃒
𝑓𝐿𝐵𝑃

⃒⃒
} = 𝛿𝑟

⃒⃒
𝑓𝐿𝐵𝑃

⃒⃒
. By the

assumptions on 𝛿𝑟, we can rearrange to get
⃒⃒
𝑓𝐿𝐵𝑃

⃒⃒
≤ 1/(1− 𝛿𝑟)

⃒⃒
𝑓𝐿𝐵𝐷

⃒⃒
. Thus

𝑓𝑈𝐵𝐷 − 𝑓𝐿𝐵𝐷 ≤ max{𝛿𝑎, 𝛿𝑟
⃒⃒
𝑓𝑈𝐵𝐷

⃒⃒
}+ 𝛿𝑟

(1− 𝛿𝑟)

⃒⃒
𝑓𝐿𝐵𝐷

⃒⃒
+

4

3
𝜖𝑓 . (8.16)

Case 2a: 𝛿𝑎 ≥ 𝛿𝑟
⃒⃒
𝑓𝑈𝐵𝐷

⃒⃒
.

Using 𝜖𝑓 ≤ 𝛿𝑎 we have 𝑓𝑈𝐵𝐷−𝑓𝐿𝐵𝐷 ≤ (7/3)𝛿𝑎+
𝛿𝑟

(1−𝛿𝑟)

⃒⃒
𝑓𝐿𝐵𝐷

⃒⃒
. The reverse trian-

gle inequality gives
⃒⃒
𝑓𝐿𝐵𝐷

⃒⃒
−
⃒⃒
𝑓𝑈𝐵𝐷

⃒⃒
≤
⃒⃒
𝑓𝑈𝐵𝐷 − 𝑓𝐿𝐵𝐷

⃒⃒
≤ (7/3)𝛿𝑎+

𝛿𝑟
(1−𝛿𝑟)

⃒⃒
𝑓𝐿𝐵𝐷

⃒⃒
.

Again, by the assumptions on 𝛿𝑟, we can rearrange this to get

⃒⃒
𝑓𝐿𝐵𝐷

⃒⃒
≤ 1− 𝛿𝑟

1− 2𝛿𝑟
(
⃒⃒
𝑓𝑈𝐵𝐷

⃒⃒
+ (7/3)𝛿𝑎).
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Using this in Inequality (8.16), we get 𝑓𝑈𝐵𝐷 − 𝑓𝐿𝐵𝐷 ≤ (7/3)𝛿𝑎 +
𝛿𝑟

1−2𝛿𝑟
(
⃒⃒
𝑓𝑈𝐵𝐷

⃒⃒
+

(7/3)𝛿𝑎). Since 𝛿𝑟 ≤ 0.2, we have 𝛿𝑟/(1− 2𝛿𝑟) ≤ (5/3)𝛿𝑟. Then we have 𝑓𝑈𝐵𝐷 −

𝑓𝐿𝐵𝐷 ≤ (7/3)𝛿𝑎+(5/3)𝛿𝑟
⃒⃒
𝑓𝑈𝐵𝐷

⃒⃒
+(5/3)(7/3)𝛿𝑟𝛿𝑎. Using the fact that 𝛿𝑟 ≤ 0.2 and

the assumption of this case (𝛿𝑎 ≥ 𝛿𝑟
⃒⃒
𝑓𝑈𝐵𝐷

⃒⃒
), we get 𝑓𝑈𝐵𝐷−𝑓𝐿𝐵𝐷 ≤ (4+7/9)𝛿𝑎 ≤

5𝛿𝑎 = max{5𝛿𝑎, 5𝛿𝑟
⃒⃒
𝑓𝑈𝐵𝐷

⃒⃒
} which implies (8.14).

Case 2b: 𝛿𝑎 < 𝛿𝑟
⃒⃒
𝑓𝑈𝐵𝐷

⃒⃒
.

Similarly to the previous case, we obtain from (8.16):
⃒⃒
𝑓𝐿𝐵𝐷

⃒⃒
≤ 1−𝛿𝑟

1−2𝛿𝑟
(
⃒⃒
𝑓𝑈𝐵𝐷

⃒⃒
+

(7/3)𝛿𝑟
⃒⃒
𝑓𝑈𝐵𝐷

⃒⃒
). Using this in Inequality (8.16), we get

𝑓𝑈𝐵𝐷 − 𝑓𝐿𝐵𝐷 ≤ (7/3)𝛿𝑟
⃒⃒
𝑓𝑈𝐵𝐷

⃒⃒
+

𝛿𝑟
1− 2𝛿𝑟

(
⃒⃒
𝑓𝑈𝐵𝐷

⃒⃒
+ (7/3)𝛿𝑟

⃒⃒
𝑓𝑈𝐵𝐷

⃒⃒
).

As before, 𝛿𝑟/(1− 2𝛿𝑟) ≤ (5/3)𝛿𝑟, so

𝑓𝑈𝐵𝐷 − 𝑓𝐿𝐵𝐷 ≤ (7/3 + 5/3 + (5/3)(7/3)𝛿𝑟)𝛿𝑟
⃒⃒
𝑓𝑈𝐵𝐷

⃒⃒
.

Using the fact that 𝛿𝑟 ≤ 0.2 we get 𝑓𝑈𝐵𝐷 − 𝑓𝐿𝐵𝐷 ≤ (4 + 7/9)𝛿𝑟
⃒⃒
𝑓𝑈𝐵𝐷

⃒⃒
≤

max{5𝛿𝑎, 5𝛿𝑟
⃒⃒
𝑓𝑈𝐵𝐷

⃒⃒
}, which implies (8.14).

Now, consider the the other case for termination: (LBP) produces a point x* feasi-

ble in (SIP). It follows that 𝑓(x*) is a valid upper bound for 𝑓*
𝑆𝐼𝑃 , and indeed we set

𝑓𝑈𝐵𝐷 = 𝑓(x*). But from the termination criterion for (LBP), we have 𝑓𝑈𝐵𝐷 − 𝑓𝐿𝐵𝐷 =

𝑓(x*) − 𝑓𝐿𝐵𝐷 ≤ max{𝛿𝑎, 𝛿𝑟 |𝑓(x*)|}. Letting 𝑓𝐿𝐵𝑃 = 𝑓(x*), the analysis proceeding from

Inequality (8.15) can be reused.

As a final note, Assumptions 8.3.1 and 8.5.1 are fairly easy to verify for a specific problem.

On the other hand, Assumption 8.5.2 is more difficult to verify. However, Assumption 8.5.2

is required only to guarantee finite termination of Algorithm 7. Similar to the discussion

in §2.2 of [122], it is easy to see that if Algorithm 7 converges finitely, then the solution

provided is global optimal to a certain tolerance. That is to say, without Assumption 8.5.2,

we do not need to worry that finite termination of Algorithm 7 furnishes a suboptimal or

infeasible solution.
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8.6 Examples

Numerical experiments are considered in this section. The example in §8.6.2 considers

(GSIP) when Assumption 8.4.1 holds (when the LLP is linear). This example demonstrates

that the duality-based reformulation (8.7) can significantly reduce the computational effort

compared to the KKT-based reformulation (8.8). The example in §8.6.3 also considers a

GSIP with a linear LLP, but in this example the LLP is infeasible for certain values of x.

This example clearly establishes that the duality-based reformulation is qualitatively dif-

ferent from the KKT-based reformulation. Section 8.6.4 considers a portfolio optimization

problem which yields a GSIP with nonlinear LLP and applies three applicable reformula-

tions. Section 8.6.5 also considers a GSIP with nonlinear LLP; the flexibility of Algorithm 7

is demonstrated.

8.6.1 Methods

All numerical studies are performed on a 64-bit Linux virtual machine allocated a single core

of a 3.07 GHz Intel Xeon processor and 1.28 GB RAM. The studies are performed in GAMS

version 24.3.3 [56]. Deterministic global optimizers BARON version 14.0.3 [197, 159] and

ANTIGONE version 1.1 [120] are employed. Examples that require it use an implementation

of Algorithm 7 which is based on an implementation of Algorithm 2.1 in [122] by Alexander

Mitsos. This implementation is coded in GAMS, employing BARON for the solution of

(LBP), (UBP), and the dual function (8.1) unless otherwise noted. Unless otherwise noted

the parameters are 𝜖𝑅,0 = 1, 𝑟 = 2, 𝑌 𝐿𝐵𝑃,0 = 𝑌 𝑈𝐵𝑃,0 = ∅, 𝜖𝑎𝑡𝑜𝑙 = 5𝛿𝑎, and 𝜖𝑟𝑡𝑜𝑙 = 5𝛿𝑟.

8.6.2 Computation times for linear LLP

Under Assumption 8.4.1, consider an instance of (GSIP) where 𝑛𝑦 ∈ N, 𝑛𝑥 = 3𝑛𝑦, ̃︀𝑋 =

[−10, 10]2𝑛𝑦 × [−1, 1]𝑛𝑦 , 𝑋 = {x ∈ ̃︀𝑋 : 𝑥𝑛𝑦+𝑖 ≥ 𝑥𝑖, ∀𝑖 ∈ {1, . . . , 𝑛𝑦}},

𝑑 : x ↦→ 0,

c : x ↦→ (𝑥2𝑛𝑦+1, . . . , 𝑥3𝑛𝑦),

b : x ↦→ (−𝑥1, . . . ,−𝑥𝑛𝑦 , 𝑥𝑛𝑦+1, . . . , 𝑥2𝑛𝑦),

A : x ↦→

⎡⎣ −I
I

⎤⎦ ,

and 𝑓 : x ↦→ −
∏︀𝑛𝑦

𝑖=1(𝑥𝑛𝑦+𝑖 − 𝑥𝑖), where I is the 𝑛𝑦 × 𝑛𝑦 identity matrix. For a geometric

interpretation, we can think of this problem as related to a design centering problem in
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Table 8.1: Solution of GSIP with linear LLP from §8.6.2 for various sizes 𝑛𝑦; the “*” indicates
that the desired optimality tolerances were not satisfied by the end of the time reported.

𝑛𝑦 = 4 𝑛𝑦 = 6 𝑛𝑦 = 8 𝑛𝑦 = 10

Duality-based reformulation (8.7), CPU time (s) 0.06 0.20 0.26 0.08
KKT-based reformulation (8.8), CPU time (s) 0.62 11.5 373 1200 (*)

𝑛𝑦 dimensions, in which a maximum volume box (̂︀𝑌 (x) = [𝑥1, 𝑥𝑛𝑦+1] × · · · × [𝑥𝑛𝑦 , 𝑥2𝑛𝑦 ])

is desired, except that the normal of the vector defining the linear infinite constraint is

a function of the upper-level variables x. When 𝑛𝑦 = 2, one possible solution is x =

(−10,−10, 0, 10, 1, 0). In general, the optimal objective value is −10× (20)𝑛𝑦−1.

Since the lower-level program of this problem always has a solution (for all x ∈ 𝑋, the

feasible set is bounded and nonempty), so does its dual LP (8.6), and thus the duality-based

reformulation as the NLP (8.7) given by Theorem 8.4.2 is applicable. Similarly, the KKT-

based reformulation in (8.8) can also be applied. These NLP reformulations are solved with

BARON, with relative and absolute optimality tolerances both equal to 10−5. Results are

summarized in Table 8.1 for various 𝑛𝑦.

The duality-based reformulation can be solved in less than a second for each problem

size considered. Meanwhile, the solution time of the KKT-based reformulation grows rapidly

with the size of the problem, and when 𝑛𝑦 = 10, there is still optimality gap of approximately

100% at the end of the time allotted (20 minutes).

8.6.3 Infeasible linear LLP

Again, consider a GSIP with a linear LLP defined by 𝑛𝑦 = 2, 𝑛𝑥 = 4, 𝑋 = [−10, 10]4,

𝑑 : x ↦→ 0,

c : x ↦→ (−1,−1),

b : x ↦→ (−𝑥1,−𝑥2, 𝑥3, 𝑥4, 0),

A : x ↦→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0

0 −1

1 0

0 1

1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and 𝑓 : x ↦→ −(𝑥4 − 𝑥2)(𝑥3 − 𝑥1). This is related to a two-dimensional design centering

problem, in which a maximum volume box [𝑥1, 𝑥3] × [𝑥2, 𝑥4] is sought. However, there is

an extra constraint in the definition of the set ̂︀𝑌 (x) so that it is empty if 𝑥1 > 0. Of

227



course, this means that such x are feasible in the GSIP. It so happens that the infimum

of this problem is not achieved. Note that the sequence x𝑘 = (𝑥1,𝑘,−10, 10, 10) with 𝑥1,𝑘

decreasing to 0 is feasible and 𝑓(x𝑘)→ −200; however x = (0,−10, 10, 10) is infeasible since

the LLP is feasible and its feasible set contains a point y (for instance, y = (0,−1)) such

that c(x)Ty > 0.

Despite this, within some tolerance we can approximate this optimal objective value with

a feasible point by solving the duality-based NLP reformulation. The LLP has a solution

for some x ∈ 𝑋, thus so does the dual LP (8.6), and so for this x the dual feasible set

is nonempty. But since A and c are constant, the dual feasible set is always nonempty

and so Theorem 8.4.2 applies. Solving the duality-based reformulation with BARON with

relative and absolute optimality tolerances both equal to 10−5, the solution found is x* =

(0.00003,−10, 10, 10) (which solves in less than a tenth of a second).

However, solving the KKT-based reformulation with BARON with the same tolerances

yields the solution x* = (0, 0, 10, 10). This is a completely different answer; the point is

indeed feasible in the original GSIP, but it is clearly suboptimal. This demonstrates that

one must be careful when applying the KKT-based reformulation, and that in general the

duality-based reformulation is more flexible for defining an equivalent problem, and still

amenable to approximate numerical solution.

8.6.4 Portfolio optimization

The following problem is Problem 7 from §5.2 in [184]. The problem is related to a portfolio

optimization problem; a fixed amount of capital (for simplicity, taken to be one dollar) is

to be invested among 𝑁 shares. The 𝑖𝑡ℎ share at the end of some period has some return

𝑦𝑖. The objective is to maximize the portfolio value at the end the the period. Of course,

there is some uncertainty in the return values, and in addition there is some aversion to

straying too far from investing equally in all shares. For a more detailed description and
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related problems, see [184]. The mathematical program is the following GSIP:

max
x,𝑟

𝑟 (8.17)

s.t. 𝑟 − yTx ≤ 0, ∀y ∈ ̂︀𝑌 (x),

1Tx = 1, x ≥ 0,

(x, 𝑟) ∈ [0,1]× R,

̂︀𝑌 (x) =

{︃
y ∈ R𝑁 :

𝑁∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)
2 ≤ Θ(x)2

}︃
,

where

Θ : x ↦→ 1.5

(︃
1 +

𝑁∑︁
𝑖=1

(︀
𝑥𝑖 − 1/𝑁

)︀2)︃
,

𝑦𝑖 = 1.15 + 𝑖
(︀
0.05/𝑁

)︀
.

Three solution approaches are discussed: Algorithm 7 is applied to the SIP reformulation

from Theorem 8.3.1; BARON and ANTIGONE are applied to the NLP reformulation (8.3)

from Proposition 8.4.1; and BARON and ANTIGONE are applied as well to the NLP

reformulation (8.11) from Theorem 8.4.3. For Algorithm 7, let 𝛿𝑎 = 𝛿𝑟 = 2 × 10−5, giving

overall relative and absolute optimality tolerances equal to 10−4. Relative and absolute

optimality tolerances for BARON and ANTIGONE applied to the NLP reformulations are

both 10−4.

SIP reformulation

First consider the SIP reformulation. Take 𝑔 : (x, 𝑟,y) ↦→ 𝑟 − yTx and ℎ1 : (x, 𝑟,y) ↦→∑︀𝑁
𝑖=1(𝑦𝑖 − 𝑦𝑖)

2 −Θ(x)2. Then the LLP is a smooth convex program

𝑔*(x, 𝑟) = sup

{︃
𝑟 − yTx :

𝑁∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)
2 ≤ Θ(x)2

}︃
,

which achieves its supremum for all (x, 𝑟) and for which ȳ is a Slater point for all x (since

Θ is bounded below by 1.5). Next, compact 𝑋, 𝑌 , and 𝑀 are required. Since each 𝑥𝑖 ∈

[0, 1], Θ(x) is bounded above by 1.5(1 + 𝑁) for all x ∈ [0,1]. Consequently, ̂︀𝑌 (x) ⊂

[ȳ − (1.5(1 + 𝑁))1, ȳ + (1.5(1 + 𝑁))1] for all x ∈ [0,1]. Estimating further (noting that
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ȳ ∈ [(1.15)1, (1.2)1]), let 𝑦𝐿(𝑁) = 1.15−1.5(1+𝑁) and 𝑦𝑈 (𝑁) = 1.2+1.5(1+𝑁) and take

𝑌 = [(𝑦𝐿(𝑁))1, (𝑦𝑈 (𝑁))1] which is a superset of ̂︀𝑌 (x) for all x (thus we can intersect the

feasible set of the LLP with this 𝑌 and not change the optimal value). Then by Lemma 8.3.2,

strong duality holds for all x.

For (x, 𝑟) feasible in problem (8.17), we have 𝑟 ≤ yTx for all y ∈ ̂︀𝑌 (x), and so 𝑟 ≤ yTx

for all y ∈ 𝑌 . Since x ≥ 0 and 1Tx = 1, an upper bound for feasible 𝑟 is 𝑦𝑈 (𝑁). Similarly,

a lower bound is 𝑦𝐿(𝑁) (specifically, for any (x, 𝑟) optimal for problem (8.17), 𝑟 > 𝑦𝐿(𝑁)).

Thus, take 𝑋 = {x : x ≥ 0,1Tx = 1} × [𝑦𝐿(𝑁), 𝑦𝑈 (𝑁)]. Then 𝑔(x, 𝑟, ȳ) ≥ 𝑦𝐿(𝑁)− ȳTx ≥

𝑦𝐿(𝑁)− 1.2(1Tx) = 𝑦𝐿(𝑁)− 1.2 for all (x, 𝑟) ∈ 𝑋. An upper bound for ℎ1 evaluated at a

Slater point is −(1.5)2. Then by Lemma 8.3.3 take 𝑀 = [0, (𝑦𝐿(𝑁)− 1.2)/2.25]. It is clear that

Assumption 8.5.1 holds.

General LLP reformulation

Next, the reformulation from Proposition 8.4.1 is applied. For the purposes of applying this

reformulation, take 𝐷𝑦 = R𝑁 and let 𝑌 equal the interior of its previous definition (i.e. the

interior of
[︀
(𝑦𝐿(𝑁))1, (𝑦𝑈 (𝑁))1

]︀
). Then with the definitions of 𝑋 and 𝑀 as before, the

hypotheses of Proposition 8.4.1 are satisfied and the reformulation of problem (8.17) is

max
x,𝑟,y,𝜇1

𝑟 (8.18)

s.t. 𝑟 − yTx− 𝜇1

(︃
𝑁∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)
2 −Θ(x)2

)︃
≤ 0,

− x− 𝜇12(y − ȳ) = 0,

(x, 𝑟) ∈ 𝑋, y ∈ 𝑌 , 𝜇1 ∈𝑀.

SOCP LLP reformulation

Now consider the reformulation based on SOCP duality from Theorem 8.4.3. Since Θ is

non-negative-valued, the LLP can be written as an SOCP:

𝑔*(x, 𝑟) = sup{𝑟 − yTx : ‖y − ȳ‖2 ≤ Θ(x)}.

To satisfy Assumption 8.4.2 explicitly, let c : (x, 𝑟) ↦→ −x, 𝑠 : (x, 𝑟) ↦→ 𝑟, A1 : (x, 𝑟) ↦→ I

(the identity), b1 : (x, 𝑟) ↦→ −ȳ, e1 : (x, 𝑟) ↦→ 0, and 𝑑1 : (x, 𝑟) ↦→ Θ(x). As before, ȳ
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Table 8.2: Solution of portfolio optimization problem (8.17) with 𝑁 = 10 by various meth-
ods.

Method Lower bound Optimality gap CPU
time (s)

Algorithm 7 0.7033 7× 10−5 44.3
NLP Reformulation (8.3), BARON 0.7033 7.25 1200
NLP Reformulation (8.3), ANTIGONE 0.7033 0.13 1200
NLP Reformulation (8.11), BARON 0.7033 10−4 0.06
NLP Reformulation (8.11), ANTIGONE 0.7033 10−4 0.19

satisfies the Slater point assumption of Theorem 8.4.3. The reformulation becomes

max
x,𝑟,z,𝑤

𝑟 (8.19)

s.t. 𝑟 − zTȳ + 𝑤Θ(x) ≤ 0,

zT = xT,

‖z‖22 ≤ 𝑤2, 𝑤 ≥ 0,

(x, 𝑟) ∈ 𝑋, (z, 𝑤) ∈ R𝑁 × R.

Note that the smooth reformulation of the second-order cone constraint has been used.

Further, (z, 𝑤) have not been restricted to a compact set. However, it is possible to do

so; clearly z is in a compact set, and since (z, 𝑟) ↦→ 𝑟 − zTȳ is bounded on 𝑋 and Θ is

positive-valued, we could derive an upper bound for 𝑤. It is very likely that BARON and

ANTIGONE identify such bounds as part of constraint propagation when they pre-process

the problem.

Discussion

First, set 𝑁 = 10. Table 8.2 lists solution statistics. The optimal objective value (or

lower bound) agrees with the results of [184] (which uses a local method applied to a KKT-

based reformulation). Algorithm 7 applied to the SIP reformulation from Theorem 8.3.1 is

fairly successful; although it requires 48 iterations, over which almost 200 NLP subprob-

lems are solved, these subproblems are fairly easy and the overall CPU time is less than a

minute to achieve the desired optimality tolerances. The NLP reformulation (8.11) based on

SOCP duality from Theorem 8.4.3 is solved very quickly by either BARON or ANTIGONE.
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Table 8.3: Solution of SOCP duality-based reformulation (8.19) of portfolio optimization
problem (8.17) for various 𝑁 .

Lower BARON ANTIGONE
bound Optimality gap CPU time (s) Optimality gap CPU time (s)

𝑁 = 10 0.7033 1.0× 10−4 0.06 1.0× 10−4 0.19
𝑁 = 20 0.8411 1.0× 10−4 0.46 1.0× 10−4 0.53
𝑁 = 50 0.9638 3.7× 10−4 1200 1.0× 10−4 3.0
𝑁 = 100 1.0259 1.3× 10−2 1200 1.0× 10−4 51.0
𝑁 = 150 1.0535 5.0× 10−3 1200 1.1× 10−4 185

Meanwhile, solution of the NLP reformulation (8.3) from Proposition 8.4.1 encounters some

difficulty; neither BARON nor ANTIGONE achieve the desired optimality tolerances in

the time allotted (20 minutes), although both identify an optimal feasible solution as a

candidate. One possible reason for this comes from the observation that there are “worse”

nonconvexities appearing in problem (8.18) compared to problem (8.19); for instance, there

will be a term of the form 𝜇1𝑥
2
1𝑥

2
2 in the constraints of problem (8.18), while only quadratic

terms and trilinear terms of the form 𝑤𝑥2𝑖 appear in the constraints of problem (8.19).

Using the SOCP duality-based reformulation (8.19), larger instances (larger 𝑁) are at-

tempted and reported in Table 8.3. Both BARON and ANTIGONE find an optimal solution

as a candidate, although the time required by each to verify that this solution is optimal

to the desired tolerance varies. Overall, the performance of ANTIGONE is quite good, and

the optimal objective values agree with the results of [184].

8.6.5 Nonlinear LLP

A design centering problem with nonlinear LLP is considered and solved with Algorithm 7.

Since the LLP of the following example involves trigonometric functions, BARON cannot be

used to calculate the dual function value required by Algorithm 7. However, as mentioned

earlier, under the assumptions of Lemma 8.3.2, the dual function (8.1) is defined in terms

of a convex program (when 𝜇 ≥ 0). In Algorithm 7 the dual function is always evaluated

at nonnegative 𝜇, and so SNOPT [59] is used instead to evaluate the dual function.
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Consider the following design centering problem:

max
x∈𝑋

vol(̂︀𝑌 (x)) (8.20)

s.t. 𝑔(y) = − cos(𝑦1) sin(𝑦2) +
𝑦1

𝑦22 + 1
−
∑︁
𝑖

𝛼𝑖(−𝑦𝑖)(1− 𝑦𝑖) ≤ 0, ∀y ∈ ̂︀𝑌 (x),

where 𝛼1 = 1.841, 𝛼2 = 6.841, 𝑌 = 𝐷𝑦 = [−1, 1]× [−1, 1],

h : (x,y) ↦→

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥1 − 𝑦1

𝑥2 − 𝑦2

−𝑥3 + 𝑦1

−𝑥4 + 𝑦2

⎤⎥⎥⎥⎥⎥⎥⎦ ,

̂︀𝑌 (x) = {y ∈ 𝑌 : h(x,y) ≤ 0} = {y ∈ 𝑌 : 𝑦1 ∈ [𝑥1, 𝑥3], 𝑦2 ∈ [𝑥2, 𝑥4]}, vol(̂︀𝑌 (x)) =

(𝑥3 − 𝑥1)(𝑥4 − 𝑥2), and 𝑋 = {x ∈ 𝑌 × 𝑌 ⊂ R4 : 𝑥3 − 𝑥1 ≥ 0.002, 𝑥4 − 𝑥2 ≥ 0.002}.

It is easy to see that 𝑔 is twice continuously differentiable on 𝑌 . Using this fact we can

verify that the Hessian matrix of 𝑔 is negative semi-definite for all y ∈ 𝑌 . Consequently 𝑔 is

concave on 𝑌 (the form of 𝑔 is inspired by 𝛼BB relaxations- see §3.3 of [6]). The rest of the

hypotheses of Lemma 8.3.2 also hold, establishing strong duality for the LLP: 𝑌 is convex.

For each x, h(x, ·) is convex. The midpoint y𝑠(x) of ̂︀𝑌 (x) satisfies ℎ𝑖(x,y𝑠(x)) ≤ 0.001 for

each x. ̂︀𝑌 (x) is nonempty and compact for each x, thus sup{𝑔(y) : y ∈ ̂︀𝑌 (x)} is finite for

each x.

Further, using interval arithmetic we can show that 𝑔 is bounded below by −1.84148 on

𝑌 , thus by Lemma 8.3.3, Assumption 8.3.1 holds for 𝑀 = [0, (1.84148/0.001)1]. Finally, it is

clear that Assumption 8.5.1 also holds. Using 𝛿𝑎 = 𝛿𝑟 = 2× 10−5, Algorithm 7 converges in

23 iterations to x* = (−1,−1, 1,−0.15103). The corresponding CPU time is 4.8s.

For comparison, the NLP reformulation from Proposition 8.4.1 is also constructed and

solved (although 𝑌 is not open in this example it is plausible that the reformulation still

holds). Again, the presence of trigonometric functions precludes the use of the versions of

BARON and ANTIGONE included in GAMS version 24.3.3. The solution obtained from

solving the NLP reformulation (8.3) locally with SNOPT depends on the starting point. See

Table 8.4. Although the local solver is fast in each case (less than a tenth of a second), the

quality of the solution obtained varies.
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Table 8.4: Starting point and solution obtained from solving NLP reformulation (8.3) of
GSIP (8.20) locally with SNOPT. The other components of the starting point are (y,𝜇) =
(0,0).

Starting x Solution x* Relation to GSIP (8.20)

(−1,−1, 1, 1) (−1,−1, 1, 1) infeasible
(−1,−1, 1, 0.5) (−1,−1, 1, 1) infeasible
(−0.5,−0.5, 0.5, 0.5) (−1,−1,−0.382, 1) suboptimal
(−0.5,−0.5, 0.5, 0) (−1,−1, 1,−0.15098) optimal

8.7 Conclusions

This chapter has considered duality-based reformulations of (GSIP) and the practicality of

the global solution of these reformulations. A reformulation to a finite NLP was discussed,

which avoids the inclusion of complementarity constraints, in contrast with previous results

based on the KKT conditions. More specific reformulations are possible, such as when the

LLP is an LP or SOCP. In the case of a linear LLP, the reformulation can hold even when the

lower-level program is infeasible. Under more general assumptions, it was established that

(GSIP) is equivalent to an SIP. These assumptions are easily satisfied when strong duality

holds for the lower-level program. A global feasible point method for the solution of SIP was

adapted for the solution of (GSIP). The merits of this method were discussed, which include

the fact that it involves the iterative solution of simple, tractable, and easily constructed

finite NLPs. The computational benefits of the reformulations and solution methods were

demonstrated with numerical examples.
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Chapter 9

Design centering and robust design in

engineering applications

9.1 Introduction

This chapter discusses the theoretical and practical issues involved with solving design cen-

tering problems. The problems considered will be in the general form

max
x

vol(𝐷(x)) (DC)

s.t. 𝐷(x) ⊂ 𝐺,

x ∈ 𝑋,

where (𝑛𝑥, 𝑛𝑦,𝑚) ∈ N3, 𝑌 ⊂ R𝑛𝑦 , g : 𝑌 → R𝑚, 𝐺 = {y ∈ 𝑌 : g(y) ≤ 0}, 𝑋 ⊂ R𝑛𝑥 , 𝐷 is

a set-valued mapping 𝑋 ⇒ R𝑛𝑦 , and vol(·) denotes the “volume” of a set (or some suitable

proxy- in this work 𝐷 will either be ball- or interval-valued, and the choice of volume/proxy

will be clear). 𝐷(x) is called a “candidate” design space, which is feasible if 𝐷(x) is a subset

of 𝐺, and optimal if it is the “largest” such feasible design space.

Ensuring feasibility of the solution is typically of paramount importance in any method

for the solution of (DC). An application of (DC) is to robust design problems. In this case, g

represents constraints on a system or process. Given some input parameters y, one desires,

for instance, on-specification product, or perhaps more importantly, safe system behavior,

indicated by g(y) ≤ 0. In robust design, one seeks a nominal set point y𝑐 at which to

235



operate the system, and further determine the amount one can deviate from this set point

(with respect to some norm) and still have safe process behavior. Then the result is that one

seeks a set 𝐷(y𝑐, 𝛿) = {y : ‖y − y𝑐‖ ≤ 𝛿} ⊂ 𝐺. One goal might be to maximize operational

flexibility, in which case the largest 𝐷(y𝑐, 𝛿) is sought, i.e. (y𝑐, 𝛿) with the largest 𝛿. This

example provides some basic motivation for the focus of this work: The focus on the case

that 𝐷 is ball- or interval-valued comes from the fact that a solution should yield an explicit

bound on the maximum acceptable deviation from some nominal set point. The focus on

solution methods that are feasible point methods comes from the fact that a solution which

violates 𝐷(x) ⊂ 𝐺 is not acceptable, especially when safety is concerned.

Under some subtle assumptions (discussed in §9.2), problem (DC) is equivalent to a

generalized semi-infinite program (GSIP) expressed as

max
x

vol(𝐷(x)) (GSIP)

s.t. 𝑔𝑖(y) ≤ 0, ∀y ∈ 𝐷(x), ∀𝑖 ∈ {1, . . . ,𝑚},

x ∈ 𝑋.

Because design centering problems are a particular instance of GSIP, this work approaches

design centering problems from the perspective of and with tools from the GSIP literature.

This approach is hardly original [181, 185, 210], however, bringing together these ideas in one

work is useful. Further, this work compares different numerical approaches from the GSIP

literature. In particular, global optimization methods are considered; as a consequence,

challenges and advantages appear that are not present when applying local optimization

methods.

The end goal of this work is the case when the constraints of the system g are implicitly

defined by the solution of systems of algebraic or differential equations, as is often the case

for robust design in engineering applications. In this case, explicit expressions for g and

its derivatives are, in general, difficult to obtain, and many methods for GSIP require this

information in a numerical implementation. Consequently, the focus turns toward approx-

imate solution methods inspired by global, feasible point methods. This discussion, and in

particular the challenges in implementing the numerical methods, is original. Some of these

approximations come from restrictions of (DC) which are apparent when considering the

GSIP reformulation. Other approximations come from terminating a feasible point method
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early.

Connections to previous work in the literature are pointed out throughout this chapter,

which is organized as follows. Section 9.2 discusses some important concepts and the re-

lationship between (DC) and (GSIP), and assumptions that will hold for the rest of this

work. Some interesting cases of (DC) and connections to other problems including “flexibil-

ity indices” are also discussed. Section 9.3 discusses the case when g is an affine function.

Reformulations as smooth, convex programs with polyhedral feasible sets are possible in this

case. The main purpose of this section is to point out this special and tractable case. These

reformulations are not necessarily apparent when approaching (DC) from the more general

perspective taken in the GSIP literature, which is to use duality results for the lower level

programs (see §9.2) to reformulate the infinite constraints. This approach is the subject of

Section 9.5; thus in this section the lower level programs are convex programs, or more gener-

ally, strong duality holds for the lower-level programs. A number of reformulations of (DC)

to simpler problems (finite nonlinear programs (NLPs) or standard semi-infinite programs

(SIPs)) are possible. The application of global optimization methods to these reformulations

reveals some interesting behavior that is not apparent when applying local methods, as in

previous work. Section 9.6 discusses the most general case, when the lower-level programs

are not necessarily convex, and the subsequent need for approximate methods. An example

of robust design from an engineering application is considered. Section 9.7 concludes with

some final thoughts.

9.2 Preliminaries

9.2.1 Notation

Denote the set of symmetric matrices in R𝑛×𝑛 by S𝑛×𝑛. For a symmetric matrix M, the

notation M ⪰ 0 (M ⪯ 0) means that M is positive (negative) semidefinite. Similarly,

M ≻ 0 (M ≺ 0) means M is positive (negative) definite. Denote a square diagonal matrix

with diagonal given by the vector m by diag(m).

9.2.2 Equivalence of (DC) and (GSIP)

Throughout this chapter, the terms “equivalent” and “equivalence” are used to relate two

mathematical programs in the standard way.
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Definition 9.2.1. (Equivalence) Two mathematical programs

max
x

𝑓(x) max
x,z

𝑓(x)

s.t. x ∈ 𝑋, s.t. (x, z) ∈ 𝑆,

are said to be equivalent if for each x ∈ 𝑋, there exists z such that (x, z) ∈ 𝑆, and for each

(x, z) ∈ 𝑆, x ∈ 𝑋.

It is clear that if two programs are equivalent, then the solution sets (if nonempty) have

the same “x” components since the objective functions are the same.

Next, the following assumption is made; this assumption holds for the remainder of this

work, however most results still include hypotheses which imply this assumption. Under

this assumption it is shown that in fact (DC) and (GSIP) are equivalent.

Assumption 9.2.1. Assume that in (DC), 𝐷(x) is nonempty and a subset of 𝑌 for all

x ∈ 𝑋.

Consider the lower level programs (LLPs) of (GSIP), for x ∈ 𝑋 and 𝑖 ∈ {1, . . . ,𝑚}:

𝑔*𝑖 (x) = sup {𝑔𝑖(y) : y ∈ 𝐷(x)} . (LLP i)

In the context of robust design, y represents parameters or inputs to a system. In the context

of GSIP, y are called the lower (level) variables, while x are called the upper variables. For

x ∈ 𝑋, it is clear that if 𝐷(x) is nonempty, then x is feasible in (GSIP) if and only if

𝑔*𝑖 (x) ≤ 0 for each 𝑖. On the other hand, if 𝐷(x) is empty, then no constraints are required

to hold in (GSIP), and so x is feasible (alternatively we could define the supremum of a real

function on the empty set as −∞).

However, this is hardly acceptable behavior for a design centering problem. A method

should not return an empty design space as an “optimal” solution, although a useful feature

of a method would be the ability to identify whether any non-empty feasible design space

exists. For the most part, we will need to assume, for instance, that 𝐺 is nonempty in order

to apply a method.

Another complicating fact is that 𝐺 is defined as a subset of 𝑌 . If Assumption 9.2.1 did
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not hold, the constraints in (GSIP) would need to be modified to read

𝑔𝑖(y) ≤ 0, ∀y ∈ 𝐷(x) ∩ 𝑌.

However, this leads to similar complications as before. If, for instance, 𝐷(x) is nonempty,

but 𝐷(x) ∩ 𝑌 is empty, then neither 𝐷(x) nor 𝐷(x) ∩ 𝑌 are acceptable solutions to (DC).

Understanding this, the equivalence of (DC) and (GSIP), established in the following

result, is intuitive.

Proposition 9.2.1. Under Assumption 9.2.1, problems (DC) and (GSIP) are equivalent.

Proof. Since the objective functions in (DC) and (GSIP) are the same, we just need to

establish that their feasible sets are the same. So consider x feasible in (DC). Then x ∈ 𝑋

and 𝐷(x) ⊂ 𝐺. This means that for all y ∈ 𝐷(x), y ∈ 𝑌 and g(y) ≤ 0. We immediately

have that x is feasible in (GSIP).

Conversely, choose x feasible in (GSIP). Again, x ∈ 𝑋 and for all y ∈ 𝐷(x), g(y) ≤ 0.

Under Assumption 9.2.1, 𝐷(x) is nonempty and a subset of 𝑌 , and so for all y ∈ 𝐷(x),

y ∈ 𝐺. Thus 𝐷(x) ⊂ 𝐺 and x is feasible in (DC).

9.2.3 Related problems

Design under uncertainty

It is often of interest in robust design to take into account unknown, uncertain, or varying

parameters/inputs. This takes into account noise or model error. In this case, if we par-

tition the lower level variables into controls inputs and uncertain parameter inputs (u,p),

respectively, then an interesting problem is to determine whether a control set point exists

that yields desirable system behavior for all possible realizations of the uncertainty, and if

so, determine such a set point that allows the most flexibility to deviate from it. Given the

set of possible uncertain inputs 𝑃 , this problem is

max
x

vol( ̃︀𝐷(x)) (9.1)

s.t. g(u,p) ≤ 0, ∀(u,p) ∈ ̃︀𝐷(x)× 𝑃,

x ∈ 𝑋.
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For instance, if the system of interest is a process near steady-state, then a feasible point

x of (9.1) would guarantee that the process constraints g(u(𝑡),p(𝑡)) ≤ 0 are satisfied, for

all 𝑡 such that (u(𝑡),p(𝑡)) ∈ ̃︀𝐷(x) × 𝑃 . In other words, no matter what the values of the

uncertain, potentially time-varying inputs p are, as long as the controlled inputs u take

values in ̃︀𝐷(x), the system will behave as desired. We note that (9.1) is the same form as

problem (GSIP), it is just that part of the form of the design space has been fixed to be the

uncertainty 𝑃 .

A related problem is that of calculating a “feasibility index” for process design under

uncertainty. This idea goes back to [68, 195, 196], and has been addressed more recently in

[52, 192, 193]. This problem can be written equivalently as an SIP or a min-max problem

in the forms

min
x

𝑓(x) ⇐⇒ min
x

𝑓(x) (9.2)

s.t. ̃︀𝑔(x,y) ≤ 0, ∀y ∈ ̃︀𝑌 , s.t. 0 ≥ sup{̃︀𝑔(x,y) : y ∈ ̃︀𝑌 }.
One interpretation of this problem is that x represents some process design decisions, while y

is a vector of uncertain model parameters. The goal is to minimize some economic objective

𝑓 of the design variables which guarantees safe process design for any realization of the

uncertain parameter y (indicated by ̃︀𝑔(x,y) ≤ 0, for any y ∈ ̃︀𝑌 ).

The definition of the “flexibility index” in Equation 8 of [195] is a kind of GSIP. The rest

of that work focuses on conditions that allow this definition to be reformulated as an SIP of

the form (9.2). The results in [195] focus on the case when 𝐷 is interval-valued. A similar

argument is repeated below, which depends on having a design space which is the image of

the unit ball under an affine mapping. In this case the proxy for volume is taken to be the

determinant of the matrix in the affine transformation.

Proposition 9.2.2. Suppose 𝑋 ⊂ 𝑌 × R𝑛𝑦×𝑛𝑦 , 𝐷 : (y𝑐,P) ↦→ {y𝑐 + Py𝑑 : ‖y𝑑‖ ≤ 1} for

some norm ‖·‖ on R𝑛𝑦 , 𝐷(y𝑐,P) ⊂ 𝑌 for all (y𝑐,P) ∈ 𝑋, and vol(𝐷(y𝑐,P)) = det(P).
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Then (GSIP) is equivalent to the SIP

max
y𝑐,P

det(P) (9.3)

s.t. g(y𝑐 +Py𝑑) ≤ 0, ∀y𝑑 ∈ 𝐵1 ≡ {y : ‖y‖ ≤ 1},

(y𝑐,P) ∈ 𝑋.

Proof. The reformulation is immediate given the form of 𝐷 and the fact that Assump-

tion 9.2.1 holds. But to be explicit, consider the problem for given (y𝑐,P) ∈ 𝑋

𝑔**𝑖 (y𝑐,P) = sup{𝑔𝑖(y𝑐 +Py𝑑) : y𝑑 ∈ 𝐵1}.

For y feasible in (LLP i), by definition there exists y𝑑 ∈ 𝐵1 such that y = y𝑐 + Py𝑑.

Thus 𝑔*𝑖 (y𝑐,P) ≤ 𝑔**𝑖 (y𝑐,P). Conversely, for y𝑑 ∈ 𝐵1, there exists y ∈ 𝐷(y𝑐,P) with

y = y𝑐 + Py𝑑. Thus 𝑔**𝑖 (y𝑐,P) ≤ 𝑔*𝑖 (y𝑐,P), and together the inequalities imply that the

feasible sets of (GSIP) and (9.3) are the same, and so equivalence follows.

In robust design applications, an extra step is required to make use of this form of 𝐷.

To check that an operating condition or process parameters y are in the calculated design

space requires checking that the norm of the solution y𝑑 of y − y𝑐 = Py𝑑 is less than one.

Consequently, the LU factorization of the optimal P should be computed to minimize this

computation, especially if it is to be performed online. Further, SIP (9.3) is still a somewhat

abstract problem and assuming more structure leads to more tractable restrictions such as

max
y𝑐,d

𝑛𝑦∑︁
𝑖=1

ln(𝑑𝑖) (9.4)

s.t. g(y𝑐 + diag(d)y𝑑) ≤ 0, ∀y𝑑 : ‖y𝑑‖ ≤ 1,

(y𝑐,d) ∈ 𝑋 ⊂ {(y𝑐,d) ∈ 𝑌 × R𝑛𝑦 : d > 0},

where in effect the variable P in SIP (9.3) has been restricted to (a subset of) the space of

diagonal positive-definite matrices (see also the proof of Corollary 9.3.3 for justification of

the use of the logarithm of the objective). Of course (9.4) is still a semi-infinite problem,

but under further assumptions on g and the norm used, finite convex reformulations are

possible (see §9.3.2).
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Dynamic problems and backward reachability

When the system of interest is dynamic in nature, g may be defined in terms of the solution

of an initial value problem in ordinary differential equations. In this case the design centering

problem has some connections to the problem of computing the “backward” reachable set

of a dynamic system. For instance, consider that the lower-level variables y represent the

initial conditions (concentrations) of a batch chemical reaction, and 𝐺 is the set of initial

conditions which yield a desired output purity specification. Then 𝐺 can be characterized as

the backward reachable set of the set of (final) states which satisfy the purity specification

(see also the example in §9.6.3). The calculation or approximation of reachable sets has a

rich literature [84, 152, 168], and see in particular [31, 103, 121] for the backwards problem.

In the present setting, calculating the exact backward reachable set (i.e. 𝐺) is of little

use for the same reasons discussed in §9.1; in this example, a nominal initial condition and

the maximum deviation from it such that the purity specification is still met are desired.

An “inner” ellipsoidal estimate could be calculated, but this is typically only possible when

the dynamics are linear [38, 142]. As mentioned earlier, this work aims to develop methods

that are applicable even when g may be implicitly defined by the solutions of a nonlinear

dynamic system.

9.3 Affine constraints

This section deals with the case that g is an affine function and 𝑌 = R𝑛𝑦 . Specifically,

assume that for each 𝑖 ∈ {1, . . . ,𝑚},

𝑔𝑖(y) = cT𝑖 y − 𝑏𝑖,

for some c𝑖 ∈ R𝑛𝑦 and 𝑏𝑖 ∈ R. Consequently, 𝐺 is a (convex) polyhedron. Reformulations

for different forms of 𝐷 are given; in each case the reformulation is a convex program.

In §9.5, reformulations of (GSIP) are presented which rely on strong duality holding for

each (LLP i). Consequently, the reformulations in §9.5 will be applicable to the current

situation with g affine and 𝐷 convex-valued. However, in the best case those reformulations

involve nonconvex NLPs, which do not reduce to convex programs under the assumptions

of the present section. Thus, it is worthwhile to be aware of the special reformulations in
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the present section.

9.3.1 Ball-valued design space

Let the upper variables x of (DC) be (y𝑐, 𝛿) ∈ R𝑛𝑦 × R, and let 𝐷(x) be the closed 𝛿-ball

around y𝑐 for some norm ‖·‖: 𝐷 : (y𝑐, 𝛿) ↦→ {y : ‖y − y𝑐‖ ≤ 𝛿}. Then problem (DC)

becomes

max
y𝑐,𝛿

𝛿 (9.5)

s.t. cT𝑖 y − 𝑏𝑖 ≤ 0, ∀y : ‖y − y𝑐‖ ≤ 𝛿, ∀𝑖 ∈ {1, . . . ,𝑚},

y𝑐 ∈ R𝑛𝑦 , 𝛿 ≥ 0.

To check that Assumption 9.2.1 holds, note that 𝐷(y𝑐, 𝛿) is nonempty for 𝛿 ≥ 0 (it at least

contains y𝑐), and it must trivially be a subset of 𝑌 = R𝑛𝑦 .

Problem (9.5) can be reformulated as a linear program (LP), following the ideas in §8.5

of [33]. Problem (9.5) is related to the problem of Chebyshev centering. For specific norms,

this reformulation also appears in [76]. To establish this, consider the LLPs:

𝑔*𝑖 (y𝑐, 𝛿) = sup{cT𝑖 y : ‖y − y𝑐‖ ≤ 𝛿} − 𝑏𝑖. (9.6)

The following lemma establishes an explicit expression for 𝑔*𝑖 .

Lemma 9.3.1. For all y𝑐 ∈ R𝑛𝑦 and all 𝛿 ≥ 0, 𝑔*𝑖 defined in Equation (9.6) satisfies

𝑔*𝑖 (y𝑐, 𝛿) = 𝛿 ‖c𝑖‖* + cT𝑖 y𝑐 − 𝑏𝑖.

Proof. If 𝛿 = 0, then the supremum defining 𝑔*𝑖 is over the singleton set {y𝑐}, and so

𝑔*𝑖 (y𝑐, 𝛿) = cT𝑖 y𝑐 − 𝑏𝑖 which satisfies the conclusion of the lemma. Otherwise, note that

𝑔*𝑖 (y𝑐, 𝛿) = sup{cT𝑖 (y − y𝑐) : ‖y − y𝑐‖ ≤ 𝛿}+ cT𝑖 y𝑐 − 𝑏𝑖,

and further, if 𝛿 > 0, one can set z = (y − y𝑐)/𝛿 and then

𝑔*𝑖 (y𝑐, 𝛿) = sup
{︀
(𝛿c𝑖)

Tz : ‖z‖ ≤ 1
}︀
+ cT𝑖 y𝑐 − 𝑏𝑖.
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Applying the definition of the dual norm ‖·‖*, we obtain

𝑔*𝑖 (y𝑐, 𝛿) = 𝛿 ‖c𝑖‖* + cT𝑖 y𝑐 − 𝑏𝑖.

We can now establish that problem (9.5) is equivalent to an LP, which consequently

provides an efficient numerical solution for problem (9.5).

Theorem 9.3.1. Problem (9.5) is equivalent to the LP

max
y𝑐,𝛿

𝛿 (9.7)

s.t. cT𝑖 y𝑐 + (‖c𝑖‖*)𝛿 ≤ 𝑏𝑖 ∀𝑖 ∈ {1, . . . ,𝑚},

y𝑐 ∈ R𝑛𝑦 , 𝛿 ≥ 0.

Proof. As in Proposition 9.2.1, equivalence follows once we show that the feasible sets are

equal. So, consider (y𝑐, 𝛿) feasible in problem (9.5). Considering problem (9.5) as a GSIP,

it follows that 𝑔*𝑖 (y𝑐, 𝛿) ≤ 0 for all 𝑖. By Lemma 9.3.1, it immediately follows that (y𝑐, 𝛿)

are feasible in (9.7). Conversely, for (y𝑐, 𝛿) feasible in (9.7), Lemma 9.3.1 again establishes

that (y𝑐, 𝛿) are feasible in (9.5).

9.3.2 General ellipsoidal design space

A convex reformulation is also possible when the design space is an ellipsoid and its “shape”

is a decision variable. This is a special case of the reformulation in Proposition 9.2.2. In this

case, let 𝑋 ⊂ {(y𝑐,P) ∈ R𝑛𝑦 × S𝑛𝑦×𝑛𝑦 : P ≻ 0} and 𝐷 : (y𝑐,P) ↦→ {y𝑐 +Py𝑑 : ‖y𝑑‖2 ≤ 1},

i.e., the design space is the image of the unit two-norm ball under an affine transformation,

and thus an ellipsoid. Let vol(𝐷(·)) : (y𝑐,P) ↦→ det(P) and 𝑌 = R𝑛𝑦 . Problem (DC)

becomes

max
y𝑐,P

det(P)

s.t. cT𝑖 (y𝑐 +Py𝑑)− 𝑏𝑖 ≤ 0, ∀y𝑑 : ‖y𝑑‖2 ≤ 1, ∀𝑖 ∈ {1, . . . ,𝑚},

(y𝑐,P) ∈ 𝑋.
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Similarly to the argument in Theorem 9.3.1 (and taking the logarithm of the objective), this

becomes

max
y𝑐,P

ln(det(P)) (9.8)

s.t. cT𝑖 y𝑐 +
⃦⃦
cT𝑖 P

⃦⃦
2
− 𝑏𝑖 ≤ 0, ∀𝑖 ∈ {1, . . . ,𝑚},

(y𝑐,P) ∈ 𝑋.

Problem 9.8 is in fact a convex program and enjoys a rich history of analysis; see [33, §8.4.2],

[134, Sections 6.4.4 and 6.5], [95]. However, further reformulation to a “standard” form (such

as a semidefinite program) is necessary in order to apply general-purpose software for cone

programs such as YALMIP [3, 110] and CVX [62, 61] (both of which provide front-ends for

the solvers SeDuMi [194, 2] and MOSEK [1]). This is possible by the arguments in [134,

§6.4.4] or [20, §4.2].

9.3.3 Interval-valued design space

In the case of the infinity-norm, we can generalize the form of the design space a little more,

and still obtain a fairly tractable formulation. In this case, let the upper variables x of

(DC) be (y𝐿,y𝑈 ) ∈ R𝑛𝑦 ×R𝑛𝑦 , and let 𝐷(y𝐿,y𝑈 ) be a nonempty interval: 𝐷 : (y𝐿,y𝑈 ) ↦→

[y𝐿,y𝑈 ]. Again with affine g, problem (DC) becomes

max
y𝐿,y𝑈

∏︁
𝑗

(𝑦𝑈𝑗 − 𝑦𝐿𝑗 ) (9.9)

s.t. cT𝑖 y − 𝑏𝑖 ≤ 0, ∀y ∈ [y𝐿,y𝑈 ], ∀𝑖 ∈ {1, . . . ,𝑚},

y𝐿 ≤ y𝑈 ,

(y𝐿,y𝑈 ) ∈ R𝑛𝑦 × R𝑛𝑦 .

The constraints y𝐿 ≤ y𝑈 ensure that 𝐷(y𝐿,y𝑈 ) is nonempty, and thus that Assumption

9.2.1 holds.

The reformulation of this problem has been considered in [15, 171]. An alternative

derivation follows. Begin by analyzing the lower-level programs 𝑔*𝑖 (y
𝐿,y𝑈 ) = sup{cT𝑖 y : y ∈

[y𝐿,y𝑈 ]}−𝑏𝑖. Again, if (y𝐿,y𝑈 ) is feasible in (9.9), then 𝑔*𝑖 (y
𝐿,y𝑈 ) ≤ 0. Further, the lower-

level programs are linear programs with box constraints, and consequently can be solved
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by inspection: an optimal solution y𝑖 of the 𝑖𝑡ℎ lower-level program can be constructed by

letting 𝑦𝑖𝑗 = 𝑦𝑈𝑗 if 𝑐𝑖,𝑗 ≥ 0 and 𝑦𝑖𝑗 = 𝑦𝐿𝑗 otherwise (where 𝑐𝑖,𝑗 denotes the 𝑗𝑡ℎ component of c𝑖).

In fact, we can construct matrices M𝐿
𝑖 , M𝑈

𝑖 ∈ R𝑛𝑦×𝑛𝑦 by initializing them to zero matrices,

and then setting the 𝑗𝑡ℎ element of the diagonal of M𝑈
𝑖 to 1 (one) if 𝑐𝑖,𝑗 ≥ 0, and otherwise

setting the 𝑗𝑡ℎ element of the diagonal of M𝐿
𝑖 to 1. The result is that M𝐿

𝑖 y
𝐿 +M𝑈

𝑖 y
𝑈 = y𝑖

as constructed earlier. Since each c𝑖 is constant, this holds no matter what the value of

(y𝐿,y𝑈 ) is. This leads to the following result.

Theorem 9.3.2. Consider the linearly-constrained NLP

max
y𝐿,y𝑈

∏︁
𝑗

(𝑦𝑈𝑗 − 𝑦𝐿𝑗 ) (9.10)

s.t. cT𝑖 M
𝐿
𝑖 y

𝐿 + cT𝑖 M
𝑈
𝑖 y

𝑈 ≤ 𝑏𝑖, ∀𝑖,

y𝐿 ≤ y𝑈 ,

(y𝐿,y𝑈 ) ∈ R𝑛𝑦 × R𝑛𝑦 ,

where M𝐿
𝑖 and M𝑈

𝑗 are diagonal 𝑛𝑦 by 𝑛𝑦 matrices where the 𝑗𝑡ℎ element of the diagonals,

𝑚𝐿
𝑖,𝑗 and 𝑚𝑈

𝑖,𝑗, respectively, are given by

𝑚𝐿
𝑖,𝑗 =

⎧⎪⎨⎪⎩
1 𝑐𝑖,𝑗 < 0,

0 𝑐𝑖,𝑗 ≥ 0,

and 𝑚𝑈
𝑖,𝑗 =

⎧⎪⎨⎪⎩
0 𝑐𝑖,𝑗 < 0,

1 𝑐𝑖,𝑗 ≥ 0.

Problem (9.10) is equivalent to problem (9.9).

A more numerically favorable restriction of (9.10) is possible, at the expense of the

restriction potentially being infeasible if 𝐺 is “thin.”

Corollary 9.3.3. Consider the convex program

max
y𝐿,y𝑈

∑︁
𝑗

ln(𝑦𝑈𝑗 − 𝑦𝐿𝑗 ) (9.11)

s.t. cT𝑖 M
𝐿
𝑖 y

𝐿 + cT𝑖 M
𝑈
𝑖 y

𝑈 ≤ 𝑏𝑖, ∀𝑖,

y𝑈 − y𝐿 ≥ 𝜖1,

(y𝐿,y𝑈 ) ∈ R𝑛𝑦 × R𝑛𝑦 ,
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where 𝜖 > 0, and M𝐿
𝑖 and M𝑈

𝑗 are defined as in Theorem 9.3.2. If an optimal solution

(y𝐿,*,y𝑈,*) of problem (9.9) satisfies y𝑈,* − y𝐿,* ≥ 𝜖1, then this is also a solution of prob-

lem (9.11).

Proof. Since ln(·) is a nondecreasing concave function and for each 𝑗, (𝑦𝐿𝑗 , 𝑦
𝑈
𝑗 ) ↦→ (𝑦𝑈𝑗 − 𝑦𝐿𝑗 )

is a concave function, then the objective function
∑︀

𝑗 ln(𝑦
𝑈
𝑗 − 𝑦𝐿𝑗 ) is concave on the convex

feasible set, and so this maximization problem is indeed a convex program.

Denote the feasible set of problem (9.11) by 𝑋𝑅. Denote the objective function of (9.9) by

𝑓(y𝐿,y𝑈 ) =
∏︀

𝑗(𝑦
𝑈
𝑗 −𝑦𝐿𝑗 ). Note that 𝑓 is positive on 𝑋𝑅. If an optimal solution (y𝐿,*,y𝑈,*)

of problem (9.9) satisfies y𝑈,* − y𝐿,* ≥ 𝜖1, then clearly (y𝐿,*,y𝑈,*) ∈ 𝑋𝑅. Since ln(·) is

increasing, argmax{𝑓(y𝐿,y𝑈 ) : (y𝐿,y𝑈 ) ∈ 𝑋𝑅} = argmax{ln(𝑓(y𝐿,y𝑈 )) : (y𝐿,y𝑈 ) ∈

𝑋𝑅}, and so (y𝐿,*,y𝑈,*) is a solution of problem (9.11).

9.4 Convex constraints

When 𝑌 is a convex set and g is a convex function, 𝐺 is a convex set. In this case, results

typically used in the analysis of interior point methods for convex programming inspire

approaches for design centering. A few connections are mentioned here.

First, an analytic center of 𝐺 is defined as an optimal solution of the convex problem

min
y
−

𝑚∑︁
𝑖=1

ln(−𝑔𝑖(y)) (9.12)

s.t. g(y) < 0.

The objective is the logarithmic barrier function associated with the set of inequalities

representing 𝐺, which tends to positive infinity at the boundary of 𝐺. Conceptually, an

element of the solution set of (9.12) is maximizing the distance to the boundary of 𝐺.

Consequently, an analytic center may provide a good estimate of the center of a ball or

interval-valued design space. Unfortunately, as discussed in §9.1, a measure of “operational

flexibility” is also desired, and in general this information is not available for the analytic

center.

However, when 𝜑 is a self-concordant barrier function for 𝐺 (see Definition 2.3.1 in [134]),

one can make a statement about when an ellipsoid defined by the Hessian of 𝜑 (the Dikin

ellipsoid) is a subset of 𝐺; see Proposition 2.3.2 of [134]. When g is affine (as in §9.3) the
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objective of (9.12) is in fact a self-concordant barrier function for 𝐺. Of course, when g is

affine, the case of inscribing an ellipsoid has already been considered in §9.3.2. For further

discussion and references see §8.5 of [33].

9.5 Convex LLP

For the most part, in this section it is assumed that the LLPs are convex programs (and so

g is a concave function), but to be more accurate, the main focus of this section is when

duality results hold for each LLP. When this is the case, a number of reformulations provide

a way to solve (GSIP) via methods for NLPs or SIPs. In §9.5.1, the LLPs have a specific

form and the concavity of g is not necessary. Reformulation results from the literature are

reviewed and numerical examples considered.

9.5.1 Reformulation

KKT conditions

In the literature, one of the first reformulations of (GSIP) when the LLPs are convex pro-

grams comes from replacing the LLPs with algebraic constraints which are necessary and suf-

ficient for a maximum; i.e., their KKT conditions. This approach can be found in [184, 185],

for instance. The following result establishes the equivalence of (GSIP) with a mathematical

program with complementarity constraints (MPCC), a type of NLP. Refer to MPCC (9.13)

as the “KKT reformulation.”

Proposition 9.5.1. Suppose 𝑌 is a nonempty, open, convex set. Suppose 𝐷(x) is compact

for each x ∈ 𝑋 and 𝐷(x) = {y ∈ 𝑌 : h(x,y) ≤ 0} for some h : 𝑋 ×𝑌 → R𝑛ℎ where h(x, ·)

is convex and differentiable for each x ∈ 𝑋. Suppose that for each 𝑖 ∈ {1, . . . ,𝑚} and each

x ∈ 𝑋 the Slater condition holds for (LLP i): there exists a y𝑠 ∈ 𝑌 such that h(x,y𝑠) < 0.
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Suppose that g is concave and differentiable. Then (GSIP) is equivalent to the MPCC

max
x,y1,𝜇1,...,y𝑚,𝜇𝑚

vol(𝐷(x)) (9.13)

s.t. 𝑔𝑖(y
𝑖) ≤ 0, ∀𝑖,

h(x,y𝑖) ≤ 0, ∀𝑖,

∇𝑔𝑖(y𝑖)−∇yh(x,y
𝑖)𝜇𝑖 = 0, ∀𝑖,

𝜇𝑖 ≥ 0, y𝑖 ∈ 𝑌, ∀𝑖,

𝜇𝑖
𝑗ℎ𝑗(x,y

𝑖) = 0, ∀(𝑖, 𝑗),

x ∈ 𝑋.

Note that the assumptions imply that 𝐷(x) is nonempty and a subset of 𝑌 for all

x ∈ 𝑋; thus Assumption 9.2.1 is still satisfied. For each 𝑖 ∈ {1, . . . ,𝑚}, the hypotheses

imply that (LLP i) is a differentiable convex program (satisfying a constraint qualification)

which achieves its maximum; thus there exists a 𝜇𝑖 ∈ R𝑛ℎ such that (y𝑖,𝜇𝑖) is a KKT

point if and only if y𝑖 is a global optimum of (LLP i). It can be shown that the result

in Proposition 9.5.1 holds under weaker conditions than the Slater condition for the LLPs,

as in [184]. However, the Slater condition has a natural interpretation in design centering

problems; a design space must have some minimum size or afford some minimum amount

of operational flexibility. The Slater condition is common to many reformulations in this

work. Indeed, a Slater-like condition has already been used in Corollary 9.3.3 and will be

used throughout the rest of §9.5.

The constraints 𝜇𝑖
𝑗ℎ𝑗(x,y

𝑖) = 0, 𝜇𝑖
𝑗 ≥ 0, and ℎ𝑗(x,y

𝑖) ≤ 0 in NLP (9.13) are the

complementarity constraints which give the class of MPCC its name. Unfortunately, there

are numerical difficulties involved in solving MPCCs. This relates to the fact that the

Mangasarian-Fromovitz Constraint Qualification is violated everywhere in its feasible set

[42]. This motivates the reformulation of Proposition 9.5.5.

Lagrangian dual

It is helpful to analyze a reformulation of (GSIP) based on Lagrangian duality at this point.

Assume 𝐷(x) = {y ∈ 𝑌 : h(x,y) ≤ 0} for some h : 𝑋×𝑌 → R𝑛ℎ . Define the dual function
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𝑞𝑖(x, ·) and its effective domain by

𝑞𝑖(x,𝜇) = sup{𝑔𝑖(y)− 𝜇Th(x,y) : y ∈ 𝑌 },

dom(𝑞𝑖(x, ·)) = {𝜇 ∈ R𝑛ℎ : 𝑞𝑖(x,𝜇) < +∞}.

Then define the (Lagrangian) dual problem of (LLP i) by

𝑞*𝑖 (x) = inf {𝑞𝑖(x,𝜇) : 𝜇 ≥ 0,𝜇 ∈ dom(𝑞𝑖(x, ·))} . (9.14)

Under appropriate assumptions, one can establish that 𝑔*𝑖 (x) = 𝑞*𝑖 (x) (known as strong

duality) for each x. This forms the basis for the following results. The first result establishes

that one can always obtain an SIP restriction of (GSIP).

Proposition 9.5.2. Suppose 𝐷(x) = {y ∈ 𝑌 : h(x,y) ≤ 0} for some h : 𝑋 × 𝑌 → R𝑛ℎ.

For any 𝑀 ⊂ R𝑛ℎ and for any (x,𝜇1, . . . ,𝜇𝑚) feasible in the SIP

max
x,𝜇1,...,𝜇𝑚

vol(𝐷(x)) (9.15)

s.t. 𝑔𝑖(y)− (𝜇𝑖)Th(x,y) ≤ 0, ∀y ∈ 𝑌, ∀𝑖,

𝜇𝑖 ≥ 0, 𝜇𝑖 ∈𝑀, ∀𝑖,

x ∈ 𝑋,

x is feasible in (GSIP).

Proof. Follows from Proposition 8.3.1.

The next result establishes that SIP (9.15) is equivalent to (GSIP) under hypotheses

similar to those in Proposition 9.5.1.

Proposition 9.5.3. Suppose 𝑌 is convex. Suppose 𝐷(x) = {y ∈ 𝑌 : h(x,y) ≤ 0} for some

h : 𝑋 × 𝑌 → R𝑛ℎ. For all x ∈ 𝑋, suppose g is concave, h(x, ·) is convex, 𝑔*𝑖 (x) (defined

by (LLP i)) is finite for all 𝑖, and there exists a y𝑠(x) ∈ 𝑌 such that g(y𝑠(x)) > −g𝑏 for

some g𝑏 > 0 and h(x,y𝑠(x)) ≤ −h𝑏 for some h𝑏 > 0. Then for compact 𝑀 = [0,b*] ⊂ R𝑛ℎ

(where 𝑏*𝑗 = max𝑖{𝑔𝑏,𝑖}/ℎ𝑏,𝑗), (GSIP) is equivalent to SIP (9.15).

Proof. Follows from Lemmata 8.3.2 and 8.3.3 and Theorem 8.3.1.
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Wolfe dual

To obtain a more numerically tractable reformulation than the KKT reformulation (9.13),

we follow the ideas in [42] to obtain a reformulation of (GSIP) which does not have com-

plementarity constraints. This follows by looking at the dual function 𝑞𝑖(x, ·) and noting

that if 𝑌 is a nonempty open convex set and 𝑔𝑖 and −h(x, ·) are concave and differentiable,

then for 𝜇 ≥ 0, the supremum defining the dual function is achieved at y if and only if

∇𝑔𝑖(y)−∇yh(x,y)𝜇 = 0. Consequently, we obtain the Wolfe dual problem of (LLP i):

𝑞𝑊𝑖 (x) = inf
{︀
𝑔𝑖(y)− 𝜇Th(x,y) : y ∈ 𝑌,𝜇 ≥ 0,∇𝑔𝑖(y)−∇yh(x,y)𝜇 = 0

}︀
. (9.16)

Under suitable assumptions (namely, that (LLP i) achieves its supremum and a Slater con-

dition), strong duality holds. An alternate proof follows, based on (much better established)

Lagrangian duality results. See also [58, §6.3].

Lemma 9.5.4. Suppose 𝑌 is a nonempty open convex set. For a given x ∈ 𝑋 and 𝑖 ∈

{1, . . . ,𝑚}, suppose the following: 𝐷(x) is compact and 𝐷(x) = {y ∈ 𝑌 : h(x,y) ≤ 0} for

some h(x, ·) : 𝑌 → R𝑛ℎ which is convex and differentiable. Suppose that the Slater condition

holds for (LLP i) (there exists a y𝑠 ∈ 𝑌 such that h(x,y𝑠) < 0). Suppose 𝑔𝑖 is concave and

differentiable. Then there exists (y𝑖,𝜇𝑖) satisfying 𝜇𝑖 ≥ 0, y𝑖 ∈ 𝑌 , ∇𝑔𝑖(y𝑖)−∇yh(x,y
𝑖)𝜇𝑖 =

0, and 𝑔*𝑖 (x) = 𝑔𝑖(y
𝑖)− (𝜇𝑖)Th(x,y𝑖). Further, 𝑞𝑊𝑖 (x) = 𝑔*𝑖 (x).

Proof. First, it is established that the Wolfe dual is weaker than the Lagrangian dual (9.14)

(i.e. 𝑞𝑊𝑖 (x) ≥ 𝑞*𝑖 (x), thus establishing weak duality between (LLP i) and the Wolfe dual). As

before, since 𝑌 is a nonempty open convex set and 𝑔𝑖 and −h are concave and differentiable,

then for ̃︀𝜇 ≥ 0, sup{𝑔𝑖(y) − ̃︀𝜇Th(x,y) : y ∈ 𝑌 } is achieved at ̃︀y ∈ 𝑌 if and only if

∇𝑔𝑖(̃︀y)−∇yh(x, ̃︀y)̃︀𝜇 = 0. Let

𝐹𝑊 = {(̃︀y, ̃︀𝜇) : ̃︀𝜇 ≥ 0, ̃︀y ∈ 𝑌,∇𝑔𝑖(̃︀y)−∇yh(x, ̃︀y)̃︀𝜇 = 0}.

Thus, for all (̃︀y, ̃︀𝜇) ∈ 𝐹𝑊 , we have

sup{𝑔𝑖(y)− ̃︀𝜇Th(x,y) : y ∈ 𝑌 } = 𝑔𝑖(̃︀y)− ̃︀𝜇Th(x, ̃︀y),
which also implies that ̃︀𝜇 ∈ dom(𝑞𝑖(x, ·)). It follows that for all (̃︀y, ̃︀𝜇) ∈ 𝐹𝑊 , we have
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̃︀𝜇 ≥ 0, ̃︀𝜇 ∈ dom(𝑞𝑖(x, ·)), and 𝑞𝑖(x, ̃︀𝜇) = 𝑔𝑖(̃︀y)− ̃︀𝜇Th(x, ̃︀y). Therefore, by definition of the

dual problem (9.14), for all (̃︀y, ̃︀𝜇) ∈ 𝐹𝑊 , we have

𝑞*𝑖 (x) ≤ 𝑔𝑖(̃︀y)− ̃︀𝜇Th(x, ̃︀y).
Consequently, taking the infimum over all (̃︀y, ̃︀𝜇) ∈ 𝐹𝑊 yields 𝑞*𝑖 (x) ≤ 𝑞𝑊𝑖 (x), by the def-

inition of the Wolfe dual. Note that 𝐹𝑊 may be empty, in which case the infimum in the

definition of 𝑞𝑊𝑖 (x) is over an empty set, and the inequality 𝑞*𝑖 (x) ≤ 𝑞𝑊𝑖 (x) holds somewhat

trivially.

Next we establish 𝑞𝑊𝑖 (x) ≤ 𝑔*𝑖 (x), using strong duality for the Lagrangian dual. Since

𝑔𝑖 is differentiable on 𝑌 , it is continuous on 𝑌 and since 𝐷(x) is compact, (LLP i) achieves

its supremum (since 𝐷(x) is nonempty under the Slater condition). Under the convexity

assumptions and Slater conditions, strong duality holds for (LLP i); i.e. 𝑞*𝑖 (x) = 𝑔*𝑖 (x) (see

for instance Proposition 5.3.1 in [23]). Further, a duality multiplier exists; that is, there

exists 𝜇𝑖 ≥ 0 such that 𝑔*𝑖 (x) = sup{𝑔𝑖(y)− (𝜇𝑖)Th(x,y) : y ∈ 𝑌 }. Since (LLP i) achieves

its supremum, there exists a maximizer y𝑖 of (LLP i). Because a duality multiplier exists,

by Proposition 5.1.1 in [21], we have y𝑖 ∈ argmax{𝑔𝑖(y)− (𝜇𝑖)Th(x,y) : y ∈ 𝑌 }, and thus

𝑔*𝑖 (x) = 𝑔𝑖(y
𝑖)− (𝜇𝑖)Th(x,y𝑖).

Again, since 𝑌 is a nonempty open set we have ∇𝑔𝑖(y𝑖) − ∇yh(x,y
𝑖)𝜇𝑖 = 0. In other

words, (y𝑖,𝜇𝑖) ∈ 𝐹𝑊 defined before, which establishes the first claim. Finally, applying

the definition of 𝑞𝑊𝑖 (x) as an infimum over 𝐹𝑊 , we get that 𝑔*𝑖 (x) ≥ 𝑞𝑊𝑖 (x). But since

𝑔*𝑖 (x) = 𝑞*𝑖 (x) and 𝑞*𝑖 (x) ≤ 𝑞𝑊𝑖 (x) (established above), we have 𝑔*𝑖 (x) = 𝑞𝑊𝑖 (x).

With this, one can establish an NLP reformulation of (GSIP) which does not have

complementarity constraints. Refer to NLP (9.17) as the “Wolfe reformulation.”

Proposition 9.5.5. Suppose 𝑌 is a nonempty open convex set. Suppose 𝐷(x) is compact

for each x ∈ 𝑋 and 𝐷(x) = {y ∈ 𝑌 : h(x,y) ≤ 0} for some h : 𝑋 ×𝑌 → R𝑛ℎ where h(x, ·)

is convex and differentiable for each x ∈ 𝑋. Suppose that for each 𝑖 ∈ {1, . . . ,𝑚} and each

x ∈ 𝑋 the Slater condition holds for (LLP i): there exists a y𝑠 ∈ 𝑌 such that h(x,y𝑠) < 0.
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Suppose g is concave and differentiable. Then (GSIP) is equivalent to the NLP

max
x,y1,𝜇1,...,y𝑚,𝜇𝑚

vol(𝐷(x)) (9.17)

s.t. 𝑔𝑖(y
𝑖)− (𝜇𝑖)Th(x,y𝑖) ≤ 0, ∀𝑖,

∇𝑔𝑖(y𝑖)−∇yh(x,y
𝑖)𝜇𝑖 = 0, ∀𝑖,

𝜇𝑖 ≥ 0, y𝑖 ∈ 𝑌, ∀𝑖,

x ∈ 𝑋.

Proof. Choose x ∈ 𝑋 feasible in (GSIP), then 𝑔*𝑖 (x) ≤ 0 for each 𝑖. By Lemma 9.5.4,

there exists (y𝑖,𝜇𝑖) such that 𝜇𝑖 ≥ 0, y𝑖 ∈ 𝑌 , ∇𝑔𝑖(y𝑖) − ∇yh(x,y
𝑖)𝜇𝑖 = 0, and 𝑔*𝑖 (x) =

𝑔𝑖(y
𝑖)− (𝜇𝑖)Th(x,y𝑖). In other words, (x,y1,𝜇1, . . . ,y𝑚,𝜇𝑚) is feasible in (9.17).

Conversely, choose (x,y1,𝜇1, . . . ,y𝑚,𝜇𝑚) feasible in (9.17). Again, by Lemma 9.5.4

(in fact, weak duality between (LLP i) and the Wolfe dual (9.16) suffices), we must have

𝑔*𝑖 (x) ≤ 0 for each 𝑖, which establishes that x is feasible in (GSIP). Equivalence follows.

One notes that indeed NLP (9.17) does not have the complementarity constraints that

make MPCC (9.13) numerically unfavorable. Proposition 9.5.5 is similar to Corollary 2.4

in [42]. The difference is that the latter result assumes that −g and h(x, ·) are convex on

all of 𝑌 = R𝑛𝑦 . As this is a rather strong assumption, this motivates the authors of [42] to

weaken this, and merely assume that g is concave on 𝐷(x) for each x. They then obtain an

NLP which adds the constraints h(x,y𝑖) ≤ 0 to NLP (9.17). The justification is cursory,

although the result is plausible. In design centering applications, assuming that g is concave

on 𝑌 versus assuming g is concave on 𝐷(x) for all x is typically not much stronger anyway.

From inspection of their constraints, NLP (9.17) is a relaxation of MPCC (9.13). How-

ever, what is interesting is that (GSIP) is equivalent to MPCC (9.13) and NLP (9.17) under

the same conditions (the identical assumptions of Propositions 9.5.1 and 9.5.5). Thus,

MPCC (9.13) and NLP (9.17) are in fact equivalent under these conditions.

When (LLP i) is a linear program or second-order cone program, more specific duality

results hold and thus stronger reformulations are possible (see §8.4). However, this would

imply that 𝑔𝑖 is affine, and this case has been covered in §9.3.
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General quadratically constrained quadratic LLP

When 𝑌 = R𝑛𝑦 , 𝐷(x) is defined in terms of a ball given by a weighted 2-norm, and each 𝑔𝑖 is

quadratic, a specific duality result can be used to reformulate (GSIP). It should be stressed

that this does not require that the LLPs are convex programs, despite the fact that this is

part of a section titled “Convex LLP.” This duality result applies to the general case of a

quadratic program with a single quadratic constraint; given A0, A ∈ S𝑛𝑦×𝑛𝑦 , b0, b ∈ R𝑛𝑦 ,

and 𝑐0, 𝑐 ∈ R, define

𝑝* = sup{yTA0y + 2bT
0 y + 𝑐0 : y ∈ R𝑛𝑦 ,yTAy + 2bTy + 𝑐 ≤ 0}. (9.18)

The (Lagrangian) dual of this problem is

𝑞𝑄 : 𝜇 ↦→ sup{yT(A0 − 𝜇A)y + 2(b0 − 𝜇b)Ty + 𝑐0 − 𝜇𝑐 : y ∈ R𝑛𝑦},

𝑑* = inf{𝑞𝑄(𝜇) : 𝜇 ∈ dom(𝑞𝑄), 𝜇 ≥ 0}. (9.19)

Noting that the Lagrangian of (9.18) is a quadratic function, for given 𝜇 ≥ 0 the supremum

defining the dual function 𝑞𝑄 is achieved at y* if and only if the second-order conditions

A0 − 𝜇A ⪯ 0, (A0 − 𝜇A)y* = −(b0 − 𝜇b), are satisfied; otherwise the supremum is +∞.

This leads to

𝑑* = inf
𝜇,y

yT(A0 − 𝜇A)y + 2(b0 − 𝜇b)Ty + 𝑐0 − 𝜇𝑐 (9.20)

s.t. (A0 − 𝜇A)y = −(b0 − 𝜇b),

A0 − 𝜇A ⪯ 0,

𝜇 ≥ 0, y ∈ R𝑛𝑦

(note the similarity to the Wolfe dual (9.16)). Whether or not program (9.18) is convex,

strong duality holds assuming (9.18) has a Slater point. That is to say, 𝑝* = 𝑑* (and the

dual solution set is nonempty) assuming there exists y𝑠 such that yT
𝑠 Ay𝑠 + 2bTy𝑠 + 𝑐 < 0.

A proof of this can be found in Appendix B of [33]. The proof depends on the somewhat

cryptically named “S-procedure,” which is actually a theorem of the alternative. A review

of results related to the S-procedure or S-lemma can be found in [147]. The required results

are stated formally in the following.
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Lemma 9.5.6. Consider the quadratically constrained quadratic program (9.18) and its

dual (9.19). Suppose there exists y𝑠 such that yT
𝑠 Ay𝑠 + 2bTy𝑠 + 𝑐 < 0. Then 𝑝* = 𝑑*.

Further, if 𝑝* is finite, then the solution set of the dual problem (9.19) is nonempty.

Lemma 9.5.7. Consider problem (9.18) and its dual (9.19). If 𝑝* = 𝑑* (strong duality

holds), and there exists (𝜇*,y*) with 𝜇* in the solution set of the dual (9.19) and y* in the

solution set of problem (9.18), then (𝜇*,y*) is optimal in problem (9.20).

Proof. Since there is no duality gap, 𝜇* is a duality multiplier (see Proposition 5.1.4 in [21]).

Thus, any optimal solution of the primal problem (9.18) maximizes the Lagrangian for this

fixed 𝜇*, i.e. 𝑞𝑄(𝜇*) = (y*)T(A0−𝜇*A)y*+2(b0−𝜇*b)Ty*+𝑐0−𝜇*𝑐 (see Proposition 5.1.1

in [21]). Thus the second-order conditions A0 − 𝜇*A ⪯ 0, (A0 − 𝜇*A)y* = −(b0 − 𝜇*b),

are satisfied. Since 𝑑* = 𝑞𝑄(𝜇*), (𝜇*,y*) must be optimal in (9.20).

A reformulation of (GSIP) when the LLPs are quadratically constrained quadratic pro-

grams follows.

Proposition 9.5.8. Suppose 𝑌 = R𝑛𝑦 , and that for 𝑖 ∈ {1, . . . ,𝑚} there exist (A𝑖,b𝑖, 𝑐𝑖) ∈

S𝑛𝑦×𝑛𝑦 × R𝑛𝑦 × R such that 𝑔𝑖 : y ↦→ yTA𝑖y + 2bT
𝑖 y + 𝑐𝑖. Suppose 𝑋 ⊂ {(P,y𝑐) ∈

S𝑛𝑦×𝑛𝑦 × R𝑛𝑦 : P ≻ 0}. Suppose that 𝐷(P,y𝑐) = {y : (y − y𝑐)
TP(y − y𝑐) ≤ 1} and

vol(𝐷(P,y𝑐)) = det(P)−1. Then (GSIP) is equivalent to the program

max
P,y𝑐,𝜇,y1,...,y𝑚

det(P)−1 (9.21)

s.t. (y𝑖)TA𝑖y
𝑖 + 2bT

𝑖 y
𝑖 + 𝑐𝑖 − 𝜇𝑖

(︀
(y𝑖 − y𝑐)

TP(y𝑖 − y𝑐)− 1
)︀
≤ 0, ∀𝑖,

(A𝑖 − 𝜇𝑖P)y𝑖 = −(b𝑖 + 𝜇𝑖Py𝑐), ∀𝑖,

A𝑖 − 𝜇𝑖P ⪯ 0, ∀𝑖,

𝜇𝑖 ≥ 0, y𝑖 ∈ R𝑛𝑦 , ∀𝑖,

(P,y𝑐) ∈ 𝑋.

Proof. Note that 𝐷(P,y𝑐) = {y : yTPy− 2yT
𝑐 Py+yT

𝑐 Py𝑐− 1 ≤ 0}. Also, for all (P,y𝑐) ∈

𝑋, a solution exists for (LLP i) for each 𝑖 since P is constrained to be positive definite and

so 𝐷(P,y𝑐) is compact. Further, by assumption on 𝑋, y𝑐 is a Slater point for each LLP for

all (P,y𝑐) ∈ 𝑋. Consequently, by Lemma 9.5.6, strong duality holds for each LLP and an

optimal dual solution exists.
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Choose (P,y𝑐) feasible in (GSIP). Then for all 𝑖, 𝑔*𝑖 (P,y𝑐) ≤ 0. Then by Lemma 9.5.7,

there exists (𝜇𝑖,y
𝑖) optimal in the dual of (LLP i) written in the form (9.20), and com-

bined with strong duality (P,y𝑐,𝜇,y
1, . . . ,y𝑚) is feasible in (9.21). Conversely, choose

(P,y𝑐,𝜇,y
1, . . . ,y𝑚) feasible in (9.21). Weak duality establishes that 𝑔*𝑖 (P,y𝑐) ≤ 0 for

each 𝑖, and so (P,y𝑐) is feasible in (GSIP). Equivalence follows.

Note that program (9.21) contains nonlinear matrix inequalities. Consequently, many

general-purpose software for the solution of NLP cannot handle this problem. Choosing P

by some heuristic leads to a more practical reformulation. Further, 𝑌 can be restricted to a

subset of R𝑛𝑦 by taking advantage of strong duality. Refer to NLP (9.22) as the “Quadratic

reformulation.”

Corollary 9.5.1. Suppose that for 𝑖 ∈ {1, . . . ,𝑚} there exist (A𝑖,b𝑖, 𝑐𝑖) ∈ S𝑛𝑦×𝑛𝑦×R𝑛𝑦×R

such that 𝑔𝑖 : y ↦→ yTA𝑖y + 2bT
𝑖 y + 𝑐𝑖. Suppose P ∈ S𝑛𝑦×𝑛𝑦 is given and P ≻ 0, and

further 𝑋 ⊂ {(y𝑐, 𝛿) : y𝑐 ∈ R𝑛𝑦 , 𝛿 ≥ 𝜖} for some 𝜖 > 0. Suppose that 𝐷(y𝑐, 𝛿) = {y :

(y − y𝑐)
TP(y − y𝑐) ≤ 𝛿2}, vol(𝐷(y𝑐, 𝛿)) = 𝛿, and that 𝑌 ⊂ R𝑛𝑦 satisfies 𝐷(y𝑐, 𝛿) ⊂ 𝑌 for

all (y𝑐, 𝛿) ∈ 𝑋. Then (GSIP) is equivalent to the program

max
y𝑐,𝛿,𝜇,y1,...,y𝑚

𝛿 (9.22)

s.t. 𝑔𝑖(y
𝑖)− 𝜇𝑖

(︀
(y𝑖 − y𝑐)

TP(y𝑖 − y𝑐)− 𝛿2
)︀
≤ 0, ∀𝑖,

(A𝑖 − 𝜇𝑖P)y𝑖 = −(b𝑖 + 𝜇𝑖Py𝑐), ∀𝑖,

A𝑖 − 𝜇𝑖P ⪯ 0, ∀𝑖,

𝜇𝑖 ≥ 0, y𝑖 ∈ 𝑌, ∀𝑖,

(y𝑐, 𝛿) ∈ 𝑋.

Proof. The proof is similar to that of Proposition 9.5.8. The added constraint that the y𝑖

components of the solutions of (9.22) are in 𝑌 does not change the fact that (9.22) is a

“restriction” of (GSIP) (i.e. for (y𝑐, 𝛿,𝜇,y
1, . . . ,y𝑚) feasible in (9.22), (y𝑐, 𝛿) is feasible in

(GSIP)).

We only need to check that for (y𝑐, 𝛿) feasible in (GSIP), that there exist (𝜇𝑖,y
𝑖) such

that (y𝑐, 𝛿,𝜇,y
1, . . . ,y𝑚) is feasible in (9.22) (specifically that y𝑖 ∈ 𝑌 for each 𝑖). But this

must hold since we can take y𝑖 and 𝜇𝑖 to be optimal solutions of (LLP i) and its dual,

respectively, for each 𝑖. Thus y𝑖 ∈ 𝐷(y𝑐, 𝛿) ⊂ 𝑌 for each 𝑖, and so by strong duality and
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Lemma 9.5.7, (y𝑐, 𝛿,𝜇,y
1, . . . ,y𝑚) is feasible in (9.22).

The Quadratic reformulation (9.22) is still nonlinear and nonconvex, but the matrix

inequality constraints are linear, and as demonstrated by an example in §9.5.2, these can

sometimes be reformulated as explicit constraints on 𝜇.

Convex quadratic constraints

This section discusses a special case, when 𝐷(x) is defined in terms of a ball given by a

weighted 2-norm, and each 𝑔𝑖 is convex and quadratic. In this case, a convex reformulation

is possible. This case has the geometric interpretation of inscribing the maximum volume

ellipsoid in the intersection of ellipsoids, and has been considered in [20, §4.9.1], [32, §3.7.3],

[33, §8.5]. The representation of the design space is a little different from what has been

considered so far; it depends on the inverse of the symmetric square root of a positive

semidefinite matrix.

Proposition 9.5.9. Suppose 𝑌 = R𝑛𝑦 , and that for 𝑖 ∈ {1, . . . ,𝑚} there exist (A𝑖,b𝑖, 𝑐𝑖) ∈

S𝑛𝑦×𝑛𝑦 × R𝑛𝑦 × R, with A𝑖 ≻ 0, such that 𝑔𝑖 : y ↦→ yTA𝑖y + 2bT
𝑖 y + 𝑐𝑖. Suppose 𝑋 ⊂

{(P,y𝑐) ∈ S𝑛𝑦×𝑛𝑦 ×R𝑛𝑦 : P ≻ 0}. Suppose that 𝐷(P,y𝑐) = {y : (y−y𝑐)
TP−2(y−y𝑐) ≤ 1}

and vol(𝐷(P,y𝑐)) = det(P). Then (GSIP) is equivalent to the program

max
P,y𝑐,𝜇

det(P) (9.23)

s.t. 𝜇 ≥ 0, (P,y𝑐) ∈ 𝑋,⎡⎢⎢⎢⎣
−A−1

𝑖 −A−1
𝑖 b𝑖 − y𝑐 P

(−A−1
𝑖 b𝑖 − y𝑐)

T 𝜇𝑖 − (bT
𝑖 A

−1
𝑖 b𝑖 − 𝑐𝑖) 0

P 0 −𝜇𝑖I

⎤⎥⎥⎥⎦ ⪯ 0, ∀𝑖.

Proof. The proof depends on the following characterization of (in essence) the dual function

of (LLP i) in this case: Assuming P, A𝑖 are positive definite symmetric matrices and 𝜇𝑖 ≥ 0,

we have

sup
{︀
yTA𝑖y + 2bT

𝑖 y + 𝑐𝑖 − 𝜇𝑖

(︀
(y − y𝑐)

TP−2(y − y𝑐)− 1
)︀
: y ∈ R𝑛𝑦

}︀
≤ 0 (9.24)
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if and only if

⎡⎢⎢⎢⎣
−A−1

𝑖 −A−1
𝑖 b𝑖 − y𝑐 P

(−A−1
𝑖 b𝑖 − y𝑐)

T 𝜇𝑖 − (bT
𝑖 A

−1
𝑖 b𝑖 − 𝑐𝑖) 0

P 0 −𝜇𝑖I

⎤⎥⎥⎥⎦ ⪯ 0.

A proof of this equivalence can be found in §3.7.3 of [32].

Choosing (P,y𝑐) feasible in (GSIP), by strong duality (Lemma 9.5.6) we have that for

each 𝑖 there exists 𝜇𝑖 ≥ 0 such that the dual function is nonpositive (i.e. Inequality (9.24)

holds). Thus (P,y𝑐,𝜇) is feasible in problem (9.23). Conversely, for (P,y𝑐,𝜇) feasible in

problem (9.23), by the above equivalence and weak duality (P,y𝑐) is feasible in (GSIP).

The matrix constraints in problem (9.23) are linear inequalities, and reformulating the

objective along the lines of the discussion in §9.3.2 yields an SDP. As another practical note,

the explicit matrix inverses in problem (9.23) could be removed, for instance, by introducing

new variables (E𝑖,d𝑖, 𝑓𝑖) and adding the linear constraints A𝑖E𝑖 = I, A𝑖d𝑖 = b𝑖, bT
𝑖 d𝑖 = 𝑓𝑖,

for each 𝑖.

9.5.2 Numerical examples

In this section global NLP solvers are applied to the reformulations of design centering prob-

lems discussed in the previous sections. The studies are performed in GAMS version 24.3.3

[56]. Deterministic global optimizers BARON version 14.0.3 [197, 159] and ANTIGONE

version 1.1 [120] are employed. Algorithm 2.1 in [122] is applied to the SIP reformulation.

More specifically, an implementation of Algorithm 7 from §8.5 is employed. This implemen-

tation is coded in GAMS, employing BARON for the solution of the subproblems. Unless

otherwise noted the parameters are 𝜖𝑅,0 = 1, 𝑟 = 2, and 𝑌 𝐿𝐵𝑃,0 = 𝑌 𝑈𝐵𝑃,0 = ∅. These ex-

amples have a single infinite constraint (single LLP), and so the subscripts on 𝑔 and solution

components are dropped. All numerical studies were performed on a 64-bit Linux virtual

machine allocated a single core of a 3.07 GHz Intel Xeon processor and 1.28 GB RAM.
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Table 9.1: Solution times and solutions for problem (9.25) by various reformulations.

Method Solution Time (s) Solution
BARON ANTIGONE y𝐿 y𝑈 𝜇 y

KKT reformulation (9.13) 0.07 0.05 (0,−1) (1, 1) (2, 0, 0, 0) (0, 1)
Wolfe reformulation (9.17) 0.65 0.29 (0,−1) (1, 1) (2, 0, 0, 0) (0, 1)

SIP reformulation (9.15) 10.5 (−1,−1) (1, 0) (0, 0, 0, 2)

Convex LLP with interval design space

The following design centering problem is considered:

max
y𝐿,y𝑈

vol([y𝐿,y𝑈 ]) (9.25)

s.t. 𝑔(y) = −(𝑦1 + 1)2 − (𝑦2 − 1)2 + 1 ≤ 0, ∀y ∈ [y𝐿,y𝑈 ],

where vol([y𝐿,y𝑈 ]) = (𝑦𝑈1 − 𝑦𝐿1 )(𝑦
𝑈
2 − 𝑦𝐿2 ).

For the KKT and Wolfe reformulations, letting 𝑌 = (−2, 2)× (−2, 2), 𝑋 = {(y𝐿,y𝑈 ) ∈

[−1, 1]2 × [−1, 1]2 : 𝑦𝑈1 − 𝑦𝐿1 ≥ 0.002, 𝑦𝑈2 − 𝑦𝐿2 ≥ 0.002}, and

h : 𝑋 × 𝑌 ∋ (y𝐿,y𝑈 ,y) ↦→

⎡⎣−I
I

⎤⎦y +

⎡⎣ y𝐿

−y𝑈

⎤⎦
it is clear that the hypotheses of Propositions 9.5.1 and 9.5.5 hold. The corresponding

reformulations are solved to global optimality with BARON and ANTIGONE. The relative

and absolute optimality tolerances are both 10−4. The solution obtained in each case is

(y𝐿,y𝑈 ) = (0,−1, 1, 1). The other components of the solution and the solution times are in

Table 9.1.

Meanwhile, the SIP reformulation from Proposition 9.5.3 holds for 𝑀 = [0,b*], where

b* = (18 × 103)1 (for instance, by noting that 𝑔(y) ≥ −18 for all y ∈ 𝑌 and taking ℎ𝑏,𝑖 =

0.001). Let 𝑌 = [−2, 2] × [−2, 2] for the purposes of this reformulation. For Algorithm 7,

let the subproblem relative and absolute optimality tolerances 𝛿𝑟 and 𝛿𝑎 equal 10−5 and the

overall relative and absolute optimality tolerances equal 10−4. The method terminates in

28 iterations and the solution obtained is (y𝐿,y𝑈 ) = (−1,−1, 1, 0). Although different from

what what obtained with the NLP reformulations, the optimal objective value is the same

and it is still optimal. The solution time is included in Table 9.1.
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As expected, the NLP reformulations are quicker to solve than the SIP reformulation.

What is somewhat surprising is that the KKT reformulation, which is an MPCC, solves

more quickly than the Wolfe reformulation, which omits the complementarity constraints.

This is perhaps due to the nature of the global solvers BARON and ANTIGONE, which can

recognize and efficiently handle the complementarity constraints [159], and overall make use

of the extra constraints to improve domain reduction through constraint propagation.

However, note that the KKT and Wolfe reformulations involve the derivatives of g and

h. Subsequently, solving these reformulations with implementations of global methods such

as BARON and ANTIGONE requires explicit expressions for these derivatives. In a general-

purpose modeling language such as GAMS, supplying these derivative expressions typically

must be done by hand which is tedious and error prone. In contrast, the various NLP

subproblems required by Algorithm 7 are defined in terms of the original functions g and h.

Nonconvex quadratic LLP

The following design centering problem is considered:

max
y𝑐,𝛿

𝛿 (9.26)

s.t. 𝑔(y) = 𝑦21 − 𝑦22 ≤ 0, ∀y : ‖y − y𝑐‖2 ≤ 𝛿.

Note that 𝑔 is a nonconvex quadratic function, and that the lower-level program is a

quadratically-constrained quadratic program. Each of the reformulations of §9.5 are con-

sidered. This is to demonstrate what happens when strong duality holds for the lower-level

program, but an inappropriate reformulation is used. It will be seen that the KKT and

Wolfe reformulations fail to give a correct answer, while the SIP reformulation succeeds.

Let 𝑋 = {(y𝑐, 𝛿) : ‖y𝑐‖2 ≤ 2, 0.1 ≤ 𝛿 ≤ 2}. Let

A =
[︀
1 0
0 −1

]︀
and P = I,

where I is the identity matrix, so that 𝑔(y) = yTAy and 𝐷(y𝑐, 𝛿) = {y : (y − y𝑐)
TP(y −

y𝑐) ≤ 𝛿2}. With 𝑌 = [−4, 4] × [−4, 4], the Quadratic reformulation (9.22) is applicable

by Corollary 9.5.1. Further, since A and P are diagonal, the matrix inequality constraint

A− 𝜇P ⪯ 0 in that problem can be reformulated as nonpositivity of the diagonal elements
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Table 9.2: Solution times and solutions for problem (9.26) by various reformulations.

Method Solution Time (s) Solution
BARON ANTIGONE y𝑐 𝛿 𝜇 y

Quadratic reformulation (9.22) 2.07 17.08 (0,−2) 1.414 1 (4,−1)
KKT reformulation (9.13) 0.01 0.01 (0, 0) 2 0 (0, 0)
Wolfe reformulation (9.17) 0.01 0.01 (0, 0) 2 0 (0, 0)

SIP reformulation (9.15) 22.76 (0, 2) 1.414 1

of A − 𝜇P, which reduces to 𝜇 ≥ 1 (and 𝜇 ≥ −1, but this is redundant). General-purpose

solvers can handle this form of the constraint more easily.

The Quadratic reformulation (9.22) is solved to global optimality with BARON and

ANTIGONE. The relative and absolute optimality tolerances are both 10−4. The solution

obtained in each case is y𝑐 = (0,−2), 𝛿 = 1.414. The other components of the solution and

solution statistics are in Table 9.2.

The SIP reformulation is also applicable in this case. The center of the design space

y𝑐 is a Slater point for the lower-level program for all (y𝑐, 𝛿) ∈ 𝑋, and so 𝑔(y𝑐) ≥ −4 for

all (y𝑐, 𝛿) ∈ 𝑋. Further, let ℎ(y𝑐, 𝛿,y) = (y − y𝑐)
TP(y − y𝑐) − 𝛿2, so that ℎ(y𝑐, 𝛿,y𝑐) =

−𝛿2 ≤ −0.01 for all (y𝑐, 𝛿) ∈ 𝑋. With Lemma 8.3.3 and the strong duality result from

Lemma 9.5.6, the conclusion of Proposition 9.5.3 holds with 𝑀 = [0, 400]. For Algorithm 7,

let the subproblem relative and absolute optimality tolerances 𝛿𝑟 and 𝛿𝑎 equal 2× 10−5 and

the overall relative and absolute optimality tolerances equal 10−4. The method terminates in

33 iterations and the solution obtained is (y𝑐, 𝛿) = (0, 2, 1.414), a different optimal solution

for (9.26). What is interesting to note is that the SIP solution method is competitive with

the solution of the Quadratic reformulation for this example; see Table 9.2.

Not surprisingly, the KKT and Wolfe reformulations fail to provide even a feasible so-

lution. Quite simply, this is due to the omission of the constraint 𝜇 ≥ 1, which is the only

difference between the Wolfe reformulation (9.17) and the Quadratic reformulation (9.22).

Consequently, even when strong duality holds, one must be careful if attempting to apply

the KKT and Wolfe reformulations. In [42], the authors apply reformulations similar to

(9.13) and (9.17) to a problem with quadratic LLPs, but do not include the constraint on

the duality multiplier for a nonconvex LLP. However, since the numerical results were for

a local solution method, if the starting point for the local solver was sufficiently close to a

local minimum, convergence to an infeasible point would not be observed.
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9.6 Nonconvex LLP: Approximation methods

In this section, approaches for finding a feasible solution of (GSIP) are considered, with

optimality being a secondary concern. To this end, the focus is on constructing restrictions

of (GSIP) which can be solved to global optimality practically. This has the benefit that

these methods do not rely on initial guesses that typically must be supplied to a local

optimization method.

Furthermore, the motivation of this section are those instances of (GSIP) when g might

not be explicitly defined. For instance, in many engineering applications, the design con-

straints g may be defined implicitly by the solution of a system of algebraic or differential

equations; the example in §9.6.3 provides an instance. In this case, many solution methods

are impractical if not impossible to apply. For example, in the previous section, global solu-

tion of the NLP reformulations (9.13) and (9.17) typically requires explicit expressions for

the derivative of g. Thus applying these reformulations does not lead to a practical method.

In the context of SIP, [193] provides a good discussion of why many methods (for SIP)

cannot be applied practically to infinitely-constrained problems in engineering applications.

Methods for the general case of GSIP, and related problems such as bi-level programs,

with nonconvex lower-level programs have been presented in [125, 127, 201]. The method in

[127] is an extension of the SIP method from [122], upon which the developments of §9.6.2

are based. As that section demonstrates, the method from [122] does provide a practical

approximate method for (GSIP). Similar arguments seem to apply to the method for non-

convex GSIP in [127], and thus this method merits further investigation for its applicability

to robust design in engineering applications. However, the method is based on a refor-

mulation of (GSIP) which introduces nonsmoothness. The implementation of the method

requires reformulation of this nonsmoothness by introducing integer variables. The result is

that the method requires the iterative solution of mixed-integer nonlinear programs, whereas

the method in §9.6.2 only needs to solve NLPs, for which no additional nonsmoothness has

been introduced.

9.6.1 Interval restriction with branch and bound

In this section, a method for solving a restriction of (GSIP) is described. The restriction

is constructed by noting that the constraint 𝑔𝑖(y) ≤ 0 for all y ∈ 𝐷(x) is equivalent to
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𝑔*𝑖 (x) ≤ 0, where 𝑔*𝑖 is defined by (LLP i). To describe the restriction and solution method,

make the following assumption; as in §9.3.3, it is assumed that a candidate design space is

an interval parameterized by its endpoints.

Assumption 9.6.1. Let I𝑌 denote the set of all nonempty interval subsets of 𝑌 (I𝑌 =

{[v,w] ⊂ 𝑌 : [v,w] ̸= ∅}). Suppose that 𝑋 ⊂ {(v,w) ∈ R𝑛𝑦 × R𝑛𝑦 : v ≤ w} and denote

the upper variables of (GSIP) as x = (y𝐿,y𝑈 ) and let 𝐷(y𝐿,y𝑈 ) = [y𝐿,y𝑈 ]. Assume that

for interval 𝐴, vol(𝐴) equals the volume of 𝐴. Assume that for each 𝑖 there is a function

𝑔𝑈𝑖 : I𝑌 → R such that 𝑔𝑈𝑖 (𝐷(x)) ≥ 𝑔*𝑖 (x) for all x ∈ 𝑋. Assume that each 𝑔𝑈𝑖 is monotonic

in the sense that 𝑔𝑈𝑖 (𝐴) ≤ 𝑔𝑈𝑖 (𝐵) for all 𝐴, 𝐵 ∈ I𝑌 with 𝐴 ⊂ 𝐵.

Under Assumption 9.6.1, the following program is a restriction of (GSIP):

max
x

vol(𝐷(x)) (9.27)

s.t. 𝑔𝑈𝑖 (𝐷(x)) ≤ 0, ∀𝑖,

x ∈ 𝑋.

One could take 𝑔𝑈𝑖 (𝐴) = max{𝑔𝑖(y) : y ∈ 𝐴} (so that 𝑔𝑈𝑖 (𝐷(x)) = 𝑔*𝑖 (x) trivially). There

exist a number of results dealing with such mappings; [11, 12, 100, 151] are among a few

dealing with the continuity and differentiability properties of such maps. Then one approach

to solve (GSIP) might be to analyze (9.27) as an NLP using some of these parametric

optimization results. This characterizes the “local reduction” approaches in [77, 91, 157, 187],

as well as a local method for SIP which takes into account the potential nonsmoothness of

𝑔*𝑖 in [146].

The subject of this section is a different approach, where the restriction (9.27) is solved

globally with branch and bound. In this case, one can take advantage of 𝑔𝑈𝑖 which are cheap

to evaluate. For instance, one choice for 𝑔𝑈𝑖 would be the upper bound of an interval-valued

inclusion monotonic inclusion function of 𝑔𝑖 (see [130] for an introduction to interval arith-

metic and inclusion functions). The benefit is that the interval-valued inclusion functions are

typically cheaper to evaluate than the global optimization problems defining 𝑔*𝑖 . The idea of

using interval arithmetic to construct a restriction is related to the method in [155], except

that the optimization approach in that work is based on an “evolutionary” optimization

algorithm. Conceptually similar are the methods for the global solution of SIP in [28, 29].
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To solve problem (9.27) via branch and bound, we need to be able to obtain lower bounds

and upper bounds on the optimal objective values of the subproblems

𝑓*
𝑘 = max{vol(𝐷(x)) : x ∈ 𝑋𝑘, 𝑔

𝑈
𝑖 (x) ≤ 0,∀𝑖},

where 𝑋𝑘 ⊂ 𝑋. For this discussion assume 𝑋𝑘 is a nonempty interval subset of 𝑋. This

means 𝑋𝑘 will have the form [v𝐿
𝑘 ,v

𝑈
𝑘 ] × [w𝐿

𝑘 ,w
𝑈
𝑘 ] for v𝐿

𝑘 , v𝑈
𝑘 , w𝐿

𝑘 , w𝑈
𝑘 ∈ R𝑛𝑦 . Under

Assumption 9.2.1, we always have y𝐿 ≤ y𝑈 for (y𝐿,y𝑈 ) = x ∈ 𝑋. Thus, if 𝑋𝑘 is a subset

of 𝑋, we have v𝑈
𝑘 ≤ w𝐿

𝑘 . Furthermore,

[v𝑈 ,w𝐿] ⊂ [y𝐿,y𝑈 ] ⊂ [v𝐿,w𝑈 ], ∀(y𝐿,y𝑈 ) ∈ [v𝐿,v𝑈 ]× [w𝐿,w𝑈 ] : v𝑈 ≤ w𝐿.

Consequently, 𝑈𝐵𝑘 = vol([v𝐿
𝑘 ,w

𝑈
𝑘 ]) is an upper bound for the optimal subproblem objective

𝑓*
𝑘 . Meanwhile, any feasible point provides a lower bound. In the context of the current

problem, there are two natural choices:

1. The point (v𝐿
𝑘 ,w

𝑈
𝑘 ) represents the “largest” candidate design space possible in 𝑋𝑘.

Consequently, if feasible, it gives the best lower bound for this node.

2. The point (v𝑈
𝑘 ,w

𝐿
𝑘 ) represents the “smallest” candidate design space possible in 𝑋𝑘,

and thus is more likely to be feasible, and thus to provide a nontrivial lower bound.

However, if it is infeasible, i.e. if 𝑔𝑈𝑖 (v
𝑈
𝑘 ,w

𝐿
𝑘 ) > 0 for some 𝑖, then 𝑔𝑈𝑖 (y

𝐿,y𝑈 ) > 0 for

all (y𝐿,y𝑈 ) = x ∈ 𝑋𝑘 (by the monotonicity property in Assumption 9.6.1), and thus

𝑋𝑘 can be fathomed by infeasibility.

As noted, with the definition 𝑔𝑈𝑖 (𝐷(x)) = 𝑔*𝑖 (x), determining whether either of these points

is feasible requires evaluating 𝑔*𝑖 , which is still a global optimization problem. In contrast,

if the 𝑔𝑈𝑖 are cheap to evaluate, these lower and upper bounds are also cheap to obtain.

Under mild assumptions, if (GSIP) has a solution, so does the restriction (9.27), although

it may be a somewhat trivial solution. Assume 𝑔𝑈𝑖 ([y,y]) = 𝑔𝑖(y) for all y (as is the case

when 𝑔𝑈𝑖 is the upper bound of an interval extension of 𝑔𝑖). Let 𝐷(x*) = [y𝐿,*,y𝑈,*] be a

solution of (GSIP); then for any ̂︀y ∈ 𝐷(x*), we have 𝑔𝑖(̂︀y) ≤ 0 for all 𝑖, and so [̂︀y, ̂︀y] is

feasible in the restriction (9.27), assuming (̂︀y, ̂︀y) ∈ 𝑋. Although [̂︀y, ̂︀y] would violate the

Slater condition that has been present in many results, it is unnecessary in this approach.

Numerical experiments (see §9.6.3) show that the branch and bound algorithm applied to
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this problem can be slow. To try to explain why this might be the case, consider the lower and

upper bounds described above. For a nonempty interval subset 𝑋𝑘 = [v𝐿
𝑘 ,v

𝑈
𝑘 ]× [w𝐿

𝑘 ,w
𝑈
𝑘 ] of

𝑋, in the worst case 𝑓*
𝑘 = vol(𝐷(v𝑈

𝑘 ,w
𝐿
𝑘 )), while the upper bound is 𝑈𝐵𝑘 = vol(𝐷(v𝐿

𝑘 ,w
𝑈
𝑘 )).

In one dimension (𝑛𝑦 = 1), for example, vol(𝐷(𝑦𝐿, 𝑦𝑈 )) = 𝑦𝑈 − 𝑦𝐿, so 𝑓*
𝑘 = 𝑤𝐿

𝑘 − 𝑣𝑈𝑘 and

𝑈𝐵𝑘 = 𝑤𝑈
𝑘 − 𝑣𝐿𝑘 . Meanwhile, the width (or diameter) of 𝑋𝑘 is diam(𝑋𝑘) = max{(𝑤𝑈

𝑘 −

𝑤𝐿
𝑘 ), (𝑣

𝑈
𝑘 − 𝑣𝐿𝑘 )}. Thus one has

𝑈𝐵𝑘 − 𝑓*
𝑘 = (𝑤𝑈

𝑘 − 𝑤𝐿
𝑘 ) + (𝑣𝑈𝑘 − 𝑣𝐿𝑘 ) ≤ 2 diam(𝑋𝑘).

Thus, the bounding procedure described is at least first-order convergent (see Definition

2.1 in [206], noting that the present problem is a maximization). See §9.8 for the general

case. However, also note that for all 𝛼 > 0, there exists nonempty ̃︀𝑋 = [̃︀𝑣𝐿, ̃︀𝑣𝑈 ]× [ ̃︀𝑤𝐿, ̃︀𝑤𝑈 ]

sufficiently small so that ̃︀𝑤𝑈 − ̃︀𝑤𝐿 > 𝛼( ̃︀𝑤𝑈 − ̃︀𝑤𝐿)2 and ̃︀𝑣𝑈 −̃︀𝑣𝐿 > 𝛼(̃︀𝑣𝑈 −̃︀𝑣𝐿)2 which implies

( ̃︀𝑤𝑈 − ̃︀𝑤𝐿) + (̃︀𝑣𝑈 − ̃︀𝑣𝐿) > 𝛼
(︀
( ̃︀𝑤𝑈 − ̃︀𝑤𝐿)2 + (̃︀𝑣𝑈 − ̃︀𝑣𝐿)2)︀

≥ 𝛼max{( ̃︀𝑤𝑈 − ̃︀𝑤𝐿)2, (̃︀𝑣𝑈 − ̃︀𝑣𝐿)2}
= 𝛼(max{( ̃︀𝑤𝑈 − ̃︀𝑤𝐿), (̃︀𝑣𝑈 − ̃︀𝑣𝐿)})2 = 𝛼 diam( ̃︀𝑋)2.

This establishes that the method is not, in general, second-order convergent. When the

solution is unconstrained, a convergence order of two or greater is required to avoid the

“cluster problem” when applying the branch and bound method; this refers to a phenomenon

that hinders the efficiency of the branch and bound method (see [45, 207]). A deeper

understanding of these issues might be wise if attempting to develop the method in this

section further.

9.6.2 SIP restriction

Proposition 9.5.2 provides the inspiration for another restriction-based method; for 𝑀 ⊂ R𝑛ℎ

with nonempty intersection with the nonnegative orthant, SIP (9.15) is a restriction of

(GSIP). Subsequently solving this SIP restriction with a feasible-point method yields a

feasible solution of (GSIP).

In contrast, the other duality-based reformulations of (GSIP), such as those in Proposi-

tions 9.5.1 and 9.5.5, do not provide restrictions if the assumption of convexity of the LLPs
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is dropped. Furthermore, as mentioned in the discussion in §9.5.2, solving these reformula-

tions globally would require explicit expressions for the derivatives of g. Since the overall

goal of this section is to be able to handle robust design problems where g might be defined

implicitly by the solution of systems of algebraic or differential equations, such information

can be difficult to obtain.

The discussion in §9.5.2 also demonstrates that the SIP reformulation can take advantage

of strong duality even in the cases that the specific hypotheses of Proposition 9.5.3 fail. In

other words, if strong duality happens to hold for the LLPs of a specific problem, there is

hope that the global solution of SIP (9.15) will also be the global solution of the original

problem (GSIP).

For simplicity assume 𝑚 = 1 (so there is a single LLP) and drop the corresponding

index. Global solution of SIP (9.15) by the feasible-point method from [122] (at a specific

iteration of the method) requires the solution of the subproblems (see also §8.5)

max
x,𝜇

vol(𝐷(x)) (UBP)

s.t. 𝑔(y)− 𝜇Th(x,y) ≤ 0, ∀y ∈ 𝑌 𝑈𝐵𝑃 ,

𝜇 ≥ 0, 𝜇 ∈𝑀

x ∈ 𝑋,

max
x,𝜇

vol(𝐷(x)) (LBP)

s.t. 𝑔(y)− 𝜇Th(x,y) ≤ −𝜖𝑅, ∀y ∈ 𝑌 𝐿𝐵𝑃 ,

𝜇 ≥ 0, 𝜇 ∈𝑀,

x ∈ 𝑋,

and for given (x,𝜇),

𝑞(x,𝜇) = sup{𝑔(y)− 𝜇Th(x,y) : y ∈ 𝑌 }, (SIP LLP)

for finite subsets 𝑌 𝐿𝐵𝑃 ⊂ 𝑌 , 𝑌 𝑈𝐵𝑃 ⊂ 𝑌 , and 𝜖𝑅 > 0. Note that each subproblem is a finite

NLP that is defined in terms of the original functions 𝑔 and h, and not their derivatives. As

their names suggest, (UBP) and (LBP) aim to furnish upper and lower bounds, respectively,
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on SIP (9.15) that converge as the algorithm iterates.

A source of numerical difficulty that can arise in applying this method follows. A part

of the algorithm is determining the feasibility (in SIP (9.15)) of the optimal solution (x,𝜇)

of either (UBP) or (LBP). This requires solving (SIP LLP) and checking that 𝑞(x,𝜇) ≤

0. One must either guarantee that 𝑞(x,𝜇) ≤ 0, or else find y ∈ 𝑌 such that 𝑔(y) −

𝜇Th(x,y) > 0. In the latter case, y is added to the discretization set 𝑌 𝑈𝐵𝑃 (or 𝑌 𝐿𝐵𝑃 ).

Typically global optimization methods find such guaranteed bounds and feasible points,

but in practice we can often have the situation on finite termination that the approximate

solution y of (SIP LLP) and its guaranteed upper bound 𝑈𝐵𝑙𝑙𝑝 satisfy 𝑔(y)−𝜇Th(x,y) ≤

0 < 𝑈𝐵𝑙𝑙𝑝. In this case, we cannot guarantee that the point (x,𝜇) is feasible in SIP (9.15).

Meanwhile, adding y to the discretization set 𝑌 𝑈𝐵𝑃 does nothing to further restrict (UBP)

since 𝑔(y) − 𝜇Th(x,y) ≤ 0; that is, the upper-bounding problem remains unchanged for

the next iteration. Its solution in the next iteration is the same as in the last, and the same

ambiguity arises when solving (SIP LLP). The cycle repeats, and the upper bound that

the method provides fails to improve. A similar effect can occur with the lower-bounding

problem (LBP).

This effect can be overcome by redefining 𝑔 by adding a constant tolerance to its value.

Consider that the pathological case ̃︀𝑔 = 𝑔(y)−𝜇Th(x,y) ≤ 0 < 𝑈𝐵𝑙𝑙𝑝 occurs, where y is the

approximate solution found for (SIP LLP). Assume that the relative and absolute optimality

tolerances for the global optimization method used are 𝜀𝑟𝑡𝑜𝑙 ≤ 1 and 𝜀𝑎𝑡𝑜𝑙, respectively. In

this case 𝑈𝐵𝑙𝑙𝑝 − ̃︀𝑔 > 𝜀𝑟𝑡𝑜𝑙 |̃︀𝑔|. So assuming that the termination criterion of the global

optimization procedure is 𝑈𝐵𝑙𝑙𝑝 − ̃︀𝑔 ≤ max{𝜀𝑎𝑡𝑜𝑙, 𝜀𝑟𝑡𝑜𝑙 |̃︀𝑔|}, it is easy to see that we must

have 𝑈𝐵𝑙𝑙𝑝 − ̃︀𝑔 ≤ 𝜀𝑎𝑡𝑜𝑙 and thus 𝑈𝐵𝑙𝑙𝑝 ≤ ̃︀𝑔 + 𝜀𝑎𝑡𝑜𝑙.

To determine if (x,𝜇) is feasible, solve (SIP LLP) and let the solution be y. Then, if

𝑔(y) + 𝜀𝑎𝑡𝑜𝑙 − 𝜇Th(x,y) ≤ 0, by the preceding discussion we can guarantee that (x,𝜇) is

feasible in the SIP (9.15). However, if 𝑔(y) + 𝜀𝑎𝑡𝑜𝑙 − 𝜇Th(x,y) > 0, adding the point y

to the discretization set 𝑌 𝑈𝐵𝑃 actually does restrict the upper-bounding problem (UBP),
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where 𝑔 is redefined as 𝑔 ≡ 𝑔 + 𝜀𝑎𝑡𝑜𝑙. In effect, the following restriction of SIP (9.15)

max
x,𝜇

vol(𝐷(x)) (9.28)

s.t. 𝑔(y) + 𝜀𝑎𝑡𝑜𝑙 − 𝜇Th(x,y) ≤ 0, ∀y ∈ 𝑌,

𝜇 ≥ 0, 𝜇 ∈𝑀,

x ∈ 𝑋,

is being solved with a method which does not quite guarantee feasibility (in (9.28)) of the

solutions found. However, the solutions found are feasible in the original SIP (9.15).

For concreteness, further aspects of this approach are discussed in the context of the

example considered in §9.6.3.

9.6.3 Practical aspects and an example

Consider the following robust design problem. In a batch chemical reactor, two chemical

species A and B react according to mass-action kinetics with an Arrhenius dependence on

temperature to form chemical species C. However, A and C also react according to mass-

action kinetics with a dependence on temperature to form chemical species D. The initial

concentrations of A and B vary from batch to batch, although it can be assumed they are

never outside the range [0.5, 2] (M). Although temperature can be controlled by a cooling

element, it too might vary from batch to batch; it can be assumed it never leaves the range

[300, 800] (K). What are the largest acceptable ranges for the initial concentrations of A

and B and the operating temperature to ensure that the mole fraction of the undesired side

product D is below 0.05 at the end of any batch operation?

As a mathematical program this problem is written as (since there is one LLP the

subscript on 𝑔 is dropped)

max
y𝐿,y𝑈

∏︁
𝑗

(𝑦𝑈𝑗 − 𝑦𝐿𝑗 ) (9.29)

s.t. 𝑔(y) =
𝑧D(𝑡𝑓 ,y)

1Tz(𝑡𝑓 ,y)
− 0.05 ≤ 0, ∀y ∈ [y𝐿,y𝑈 ],

y𝐿 ≤ y𝑈 ,

y𝐿,y𝑈 ∈ [0.5, 2]× [0.5, 2]× [3, 8],

268



where z is a solution of the initial value problem in parametric ordinary differential equations

�̇�A(𝑡,y) = −𝑘1(100𝑦3)𝑧A(𝑡,y)𝑧B(𝑡,y)− 𝑘2(100𝑦3)𝑧A(𝑡,y)𝑧C(𝑡,y),

�̇�B(𝑡,y) = −𝑘1(100𝑦3)𝑧A(𝑡,y)𝑧B(𝑡,y),

�̇�C(𝑡,y) = 𝑘1(100𝑦3)𝑧A(𝑡,y)𝑧B(𝑡,y)− 𝑘2(100𝑦3)𝑧A(𝑡,y)𝑧C(𝑡,y),

�̇�D(𝑡,y) = 𝑘2(100𝑦3)𝑧A(𝑡,y)𝑧C(𝑡,y),

on the time interval [𝑡0, 𝑡𝑓 ], with initial conditions z(𝑡0,y) = (𝑦1, 𝑦2, 0, 0). See Table 9.3 for a

summary of the parameter values used and the expressions for the kinetic parameters 𝑘1 and

𝑘2. Note that the variables 𝑦1 and 𝑦2 correspond to the initial concentrations of A and B,

respectively, while 𝑦3 is a scaled temperature. This scaling helps overcome some numerical

issues. These numerical studies were performed on a 64-bit Linux virtual machine allocated

a single core of a 3.07 GHz Intel Xeon processor.

Table 9.3: Parameter values for problem (9.29).

Symbol Value/Expression

[𝑡0, 𝑡𝑓 ] [0, 0.1] (h)
𝐴1 150 (M−1h)
𝐴2 80 (M−1h)
𝐸1 4× 103 (J/mol)
𝐸2 15× 103 (J/mol)
𝑅 8.3145 (J/K ·mol)
𝑘1 𝑘1 : 𝑇 ↦→ 𝐴1 exp(−𝐸1/(𝑅𝑇 ))
𝑘2 𝑘2 : 𝑇 ↦→ 𝐴2 exp(−𝐸2/(𝑅𝑇 ))

SIP restriction

First consider applying the SIP restriction method discussed in §9.6.2. Let

𝑌 = [0.5, 2]× [0.5, 2]× [3, 8],

𝑋 = {(y𝐿,y𝑈 ) ∈ 𝑌 × 𝑌 : y𝑈 − y𝐿 ≥ (0.01)1},

𝑀 = [0, (10)1],
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and

h : 𝑋 × 𝑌 ∋ (y𝐿,y𝑈 ,y) ↦→

⎡⎣−I
I

⎤⎦y +

⎡⎣ y𝐿

−y𝑈

⎤⎦ .

Thus it is clear that 𝑋, 𝑌 , and 𝑀 are compact, and that the objective and constraints of

the SIP restriction (9.15) are continuous; the latter (specifically, the continuity of 𝑔) follows

from standard parametric analysis of initial value problems from, for instance, Chapter II

of [116]. The value of 𝑀 is somewhat arbitrary; the SIP restriction is still valid for any 𝑀 .

If 𝑀 is too large, there can be numerical issues and solving the subproblems can be slow,

but as 𝑀 becomes smaller, the restriction can become more conservative.

Consider the subproblems (LBP), (UBP), and (SIP LLP) that must be solved. The

lower-level program of the SIP restriction for this example is a global dynamic optimization

problem. This problem must be solved repeatedly in the course of the SIP solution algo-

rithm as a test for feasibility. Although this may seem daunting, the computational time is

reasonable. Here, the “direct method” approach of sequential parameterization (sometimes

called single-shooting) is taken; see §1.1 of [163]. A C++ code implementing the dynamic

affine relaxation method from §7.6.2 and branch-and-bound is used to solve (SIP LLP) at

the required values of (x,𝜇).

Next consider (UBP) and (LBP). Although the function 𝑔 appears in the constraints of

these problems, this does not make them dynamically-constrained problems for this specific

example. For this example, only the finite set of values {𝑔(y) : y ∈ 𝑌 𝐿𝐵𝑃 ∪ 𝑌 𝑈𝐵𝑃 } is

required at any iteration. These values can be obtained without too much extra effort in the

course of solving the (SIP LLP) (since 𝑌 𝑈𝐵𝑃 and 𝑌 𝐿𝐵𝑃 are populated with the maximizers

of the lower-level program). Meanwhile, h is a known, explicit function of x and y, as are

the objectives of (UBP) and (LBP), and overall their solution is no more arduous than in

the cases considered in §9.5. The (UBP) and (LBP) are solved in GAMS with BARON. The

user-defined extrinsic function capability of GAMS is used to communicate with the C++

code solving (SIP LLP).

Meanwhile, suppose that a ball-valued design space was being used in this example,

and contrast this with the situation of trying to solve the SIP reformulation from Propo-

sition 9.2.2. Since the SIP method from [122] holds for general SIP, one could attempt to

solve an exact SIP reformulation similar to the form (9.3). However, the upper bounding
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problem for that reformulation would be

max
y𝑐,𝛿

𝛿

s.t. 𝑔(y𝑐 + 𝛿y𝑑) ≤ 0, ∀y𝑑 ∈ ̃︀𝐵𝑈𝐵𝑃
1 ,

(y𝑐, 𝛿) ∈ 𝑋.

The complication here is that the upper-level variables (y𝑐, 𝛿) are required to evaluate 𝑔; that

is, in contrast to above, a finite set of values does not suffice, and in fact the upper and lower

bounding problems become dynamic optimization problems in addition to the lower-level

program. However, applying the solution method from [193] to the SIP reformulation from

Proposition 9.2.2 might lead to a successful method for design centering problems when g

is defined by the solution of a system of algebraic equations.

For the results in §9.6.3, the initial discretizations are 𝑌 𝐿𝐵𝑃,0 = 𝑌 𝑈𝐵𝑃,0 = ∅, the initial

right-hand side restriction parameter is 𝜀𝑅,0 = 1, the right-hand side restriction parameter

reduction factor is 𝑟 = 1.4, and the overall relative and absolute optimality tolerances of

0.01, while the subproblems (UBP), (LBP), and (SIP LLP) are solved with relative and

absolute tolerances of 10−5 (thus 𝜀𝑎𝑡𝑜𝑙 = 10−5 in (9.28) and the preceding discussion).

Interval restriction with branch and bound

To apply the interval restriction method from §9.6.1, Assumption 9.6.1 must be satisfied.

The main challenge is defining the upper bound function 𝑔𝑈 . In the robust design problem

(9.29), 𝑔 is defined in terms of the solution of an initial value problem in ordinary differential

equations, and so the dynamic bounding method from [168] is used. This method provides

interval bounds on each component of z(𝑡𝑓 , ·), the solution of the embedded differential

equations. Combined with interval arithmetic, one obtains an inclusion monotonic interval

extension (and thus an inclusion function) of 𝑔. Subsequently, the upper bound of this

inclusion function (denote it 𝑔𝑈 ) satisfies the relevant parts of Assumption 9.6.1. A C++

implementation of the dynamic bounding method from [168] is used in conjunction with the

interval arithmetic capabilities of MC++ [36, 124] to calculate the value of 𝑔𝑈 .

The same C++ code implementing the branch-and-bound framework is used as in the

previous section for solving (SIP LLP). The bounding scheme discussed in §9.6.1 is imple-

mented with this branch-and-bound framework. For the results in §9.6.3, the relative and
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Table 9.4: Results of the Interval and SIP restriction methods applied to (9.29).

Method Solution Objective
Value

Solution
Time (s)

y𝐿 y𝑈

Interval restriction (§9.6.1) (0.51, 1.26, 3.04) (0.92, 1.99, 4.80) 0.52 430
SIP restriction (§9.6.2) (0.50, 0.50, 3.00) (2.0, 2.0, 3.74) 1.66 84.6
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(c) 𝑦1 = 2

Figure 9-1: Sampling of 𝐺 = {y ∈ 𝑌 : 𝑔(y) ≤ 0} for various fixed values of 𝑦1 for prob-
lem (9.29); points in 𝐺 are marked with a circle. The interval restriction solution (§9.6.1) is
the striped gray box; the SIP restriction solution (§9.6.2) is the solid gray box.

absolute optimality tolerances for branch-and-bound are 0.15 and 10−6, respectively.

Results and discussion

The results of the two methods applied to the robust design problem (9.29) are summarized in

Table 9.4. Fig. 9-1 visualizes the results. As hinted in §9.6.1, the convergence of the branch-

and-bound approach to solving the interval restriction is slow. Even with the fairly loose

relative optimality tolerance of 0.15, the method takes 430 seconds to finish, requiring the

solution of 218,541 lower-bounding problems. In contrast, the solution of the SIP restriction

finishes in 85 seconds. This represents 7 iterations of the method from [122] (or more

specifically, Algorithm 7). The dynamic optimization problem (SIP LLP) is solved 13 times.

The total time required to solve the lower-level programs is 75.5 seconds, representing a

majority of the effort in solving the SIP restriction.

The SIP restriction method attains a better optimal objective value than the interval

restriction method by a factor of three, and in a fifth of the time. However, careful inspection

of the dynamic bounding method used to construct 𝑔𝑈 reveals that the interval restriction
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method is in fact a restriction for the problem

max
y𝐿,y𝑈

∏︁
𝑗

(𝑦𝑈𝑗 − 𝑦𝐿𝑗 ) (9.30)

s.t.
𝑧D(𝑡𝑓 ,y)

1Tz(𝑡𝑓 ,y)
− 0.05 ≤ 0, ∀(𝑦1, 𝑦2, 𝑦3) ∈ [𝑦𝐿1 , 𝑦

𝑈
1 ]× [𝑦𝐿2 , 𝑦

𝑈
2 ]× 𝒰(𝑦𝐿3 , 𝑦𝑈3 ),

y𝐿 ≤ y𝑈 ,

y𝐿,y𝑈 ∈ [0.5, 2]× [0.5, 2]× [3, 8],

𝒰(𝑦𝐿3 , 𝑦𝑈3 ) =
{︀
𝑢 ∈ 𝐿1([𝑡0, 𝑡𝑓 ],R) : 𝑢(𝑡) ∈ [𝑦𝐿3 , 𝑦

𝑈
3 ], 𝑎.𝑒. 𝑡 ∈ [𝑡0, 𝑡𝑓 ]

}︀
.

In words, one is looking for the largest acceptable ranges for the initial concentrations of A

and B and range for the temperature control profile to ensure that the mole fraction of D

is below the threshold. This is due to the fact that the bounding method from [168] indeed

produces an interval [z𝐿(y𝐿,y𝑈 ), z𝑈 (y𝐿,y𝑈 )] satisfying

z(𝑡𝑓 ,y) ∈ [z𝐿(y𝐿,y𝑈 ), z𝑈 (y𝐿,y𝑈 )], ∀y ∈ [𝑦𝐿1 , 𝑦
𝑈
1 ]× [𝑦𝐿2 , 𝑦

𝑈
2 ]× 𝒰(𝑦𝐿3 , 𝑦𝑈3 ).

Continuing the evaluation of 𝑔 in interval arithmetic then guarantees that 𝑔(y) ≤ 𝑔𝑈 ([y𝐿,y𝑈 ])

for all y ∈ [𝑦𝐿1 , 𝑦
𝑈
1 ]× [𝑦𝐿2 , 𝑦

𝑈
2 ]× 𝒰(𝑦𝐿3 , 𝑦𝑈3 ). Thus the restriction (9.27) still holds.

One could argue that problem (9.30) is a somewhat harder problem than (9.29), and

thus the increased computational time required and more conservative solution produced by

the interval restriction method is acceptable in this case.

9.7 Conclusions and future work

This work has discussed a number of approaches to solving design centering problems, mo-

tivated by the specific instance of robust design in engineering applications. Reformulations

to simpler problems were reviewed; many of these are inspired by duality-based reformu-

lations from the GSIP literature. Two approaches for determining a feasible solution of a

design centering problem were discussed and applied to an engineering application of robust

design. The two methods are successful, with the SIP restriction-based approach (§9.6.2)

performing better for this example.

One aspect of the restriction-based approaches in §9.6 that was not considered was the

case of multiple infinite constraints (i.e. multiple LLPs). The interval restriction (§9.6.1) can
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likely handle multiple constraints in practice without much numerical difficulty. Meanwhile,

[122] mentions a potential way to extend the basic SIP algorithm; this simply depends on

using separate discretization sets and restriction parameters for each LLP. Unfortunately,

numerical experiments show that such an extension to the method performs poorly for design

centering problems. The lower-bounding problem (LBP) has trouble finding a feasible point,

and so the algorithm is slow to converge. Extending the SIP method from [122] and the

GSIP method [127] merits further investigation.

9.8 Convergence of bounding method from §9.6.1

Let [v𝑈 ,w𝐿] ⊂ [v𝐿,w𝑈 ] ⊂ [ȳ𝐿, ȳ𝑈 ] ⊂ R𝑛𝑦 . Let

𝑌 𝑣
𝑗 = [𝑣𝐿1 , 𝑤

𝑈
1 ]× · · · × [𝑣𝐿𝑗−1, 𝑤

𝑈
𝑗−1]× [𝑣𝐿𝑗 , 𝑣

𝑈
𝑗 ]× [𝑣𝐿𝑗+1, 𝑤

𝑈
𝑗+1]× · · · × [𝑣𝐿𝑛𝑦

, 𝑤𝑈
𝑛𝑦
],

𝑌 𝑤
𝑗 = [𝑣𝐿1 , 𝑤

𝑈
1 ]× · · · × [𝑣𝐿𝑗−1, 𝑤

𝑈
𝑗−1]× [𝑤𝐿

𝑗 , 𝑤
𝑈
𝑗 ]× [𝑣𝐿𝑗+1, 𝑤

𝑈
𝑗+1]× · · · × [𝑣𝐿𝑛𝑦

, 𝑤𝑈
𝑛𝑦
],

for each 𝑗 ∈ {1, . . . , 𝑛𝑦}. Then it is easy to see that the “outer” interval [v𝐿,w𝑈 ] is a subset

of [v𝑈 ,w𝐿]∪
(︀⋃︀

𝑗(𝑌
𝑣
𝑗 ∪𝑌 𝑤

𝑗 )
)︀
; for any y ∈ [v𝐿,w𝑈 ], each component 𝑦𝑗 lies in one of [𝑣𝐿𝑗 , 𝑣

𝑈
𝑗 ],

[𝑣𝑈𝑗 , 𝑤
𝐿
𝑗 ], or [𝑤𝐿

𝑗 , 𝑤
𝑈
𝑗 ], which is included in the definition of one of 𝑌 𝑣

𝑗 , [v𝑈 ,w𝐿], or 𝑌 𝑤
𝑗 .

Thus

vol([v𝐿,w𝑈 ]) ≤ vol([v𝑈 ,w𝐿]) +
∑︁
𝑗

vol(𝑌 𝑣
𝑗 ) + vol(𝑌 𝑤

𝑗 )

= vol([v𝑈 ,w𝐿]) +
∑︁
𝑗

((𝑣𝑈𝑗 − 𝑣𝐿𝑗 ) + (𝑤𝑈
𝑗 − 𝑤𝐿

𝑗 ))
∏︁
𝑘 ̸=𝑗

(𝑤𝑈
𝑘 − 𝑣𝐿𝑘 ).

Let 𝛼 = diam([ȳ𝐿, ȳ𝑈 ]). Then (𝑤𝑈
𝑘 − 𝑣𝐿𝑘 ) ≤ 𝛼 for each 𝑘. If 𝑋 ′ = [v𝐿,v𝑈 ]× [w𝐿,w𝑈 ],

then (𝑣𝑈𝑗 − 𝑣𝐿𝑗 )+ (𝑤𝑈
𝑗 −𝑤𝐿

𝑗 ) ≤ 2 diam(𝑋 ′) for each 𝑗. Putting all these inequalities together

one obtains

vol([v𝐿,w𝑈 ])− vol([v𝑈 ,w𝐿]) ≤ 2𝑛𝑦𝛼
𝑛𝑦−1 diam(𝑋 ′).

Thus assuming [y𝐿,y𝑈 ] ⊂ [ȳ𝐿, ȳ𝑈 ] for all (y𝐿,y𝑈 ) ∈ 𝑋, this establishes that the bounding

method described in §9.6.1 is at least first-order convergent.
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Chapter 10

Conclusions

10.1 Summary

This thesis has considered the problems of forward reachability and robust design in dy-

namic systems. Overall, the approaches taken are motivated by or involve deterministic

global dynamic optimization. In specific, the direct method of control parameterization for

global dynamic optimization is one of the main applications of the methods for enclosing,

or bounding, the reachable set developed in this thesis. Consequently, these methods aim

to be efficiently implementable. This has been achieved by developing auxiliary initial value

problems in ordinary differential equations that are sufficiently regular to be amenable to

numerical solution with established methods for numerical integration. In some chemical en-

gineering applications, taking advantage of model or overall problem structure can improve

the quality of the bounds without incurring a significant extra computational cost.

Meanwhile, the theoretical and numerical approaches taken to robust design in dynamic

systems are inspired by the semi-infinite programming literature. Numerical methods for

solving semi-infinite programs have been employed, but the dynamic nature of the problem

requires the solution of global dynamic optimization problems or the application of related

techniques. The work on the forward reachability problem thus has been critical to these

approaches.
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10.2 Future work

There are a few areas that merit further investigation. First, the work on ordinary differential

equations with a linear program embedded in Ch. 4 has already been extended in [60].

That work even more robustly addresses the domain issues by adding slack variables to the

embedded linear program to ensure that it is always feasible. The first objective in the

hierarchy of objectives is to minimize the sum of these slack variables, so that the original

feasible set (if indeed nonempty) is regained. This is similar in effect to the Phase I method

of initializing primal simplex.

The problem of ODEs with LPs embedded could be applied to the numerical method

from Ch. 6. A slight modification of the ODEs with LPs embedded formulation is required,

to allow a state-dependent cost vector. However, domain issues effectively do not appear

in the method for constructing polyhedral bounds from Ch. 6. Further, the alternative

numerical method from §7.6.1 avoids the solution of linear programs without a significant

loss in the quality of the bounds.

The theory in Ch. 6 extends almost directly to abstract equations of evolution in general

normed spaces (see Appendix A). A direction for future research is establishing the usefulness

of this generalization; at present, it appears to apply to specific classes of partial differential

equations, although further generalization may establish its usefulness for more challenging

classes of engineering problems.

The generality of the bounding theory in Ch. 7 is exciting. Future work could entail

developing a more tailored numerical method for constructing relaxations by the method

in §7.6.2; by taking advantage of the structure of the ordinary differential equations in

Proposition 7.6.2, a more efficient numerical integration scheme is likely, along the lines of

a staggered corrector in sensitivity analysis [50].

The approaches to solving robust design problems from Ch. 9 show promise and ap-

plicability to other problems that are essentially a semi-infinite program constrained by a

dynamic system, such as flexibility analysis of dynamic systems as in [43]. Most likely, future

work would focus on the specifics of numerical implementations. For instance, reformulation

of a dynamic robust design problem to an SIP along the lines of Proposition 9.2.2 and then

application of an SIP solution method (such as the one in [122]) would require the iterative

solution of global dynamic optimization problems. Perhaps more fundamental is to adapt
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the SIP solution method from [122] to handle multiple infinite constraints in a more efficient

or robust way. As mentioned in §9.7, the solution method from §8.5 (which relates to the

SIP solution method from [122]) seems to perform poorly for design centering problems with

multiple constraints.
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Appendix A

Polyhedral bounds for Banach space

ordinary differential equations

A.1 Introduction

This appendix generalizes the theory from Ch. 6 to equations of evolution, specifically ini-

tial value problems (IVPs) in ordinary differential equations (ODEs), in Banach spaces.

Applications include certain classes of partial differential equations (PDEs); the most obvi-

ous case is linear second-order parabolic PDEs, with the theory developed in Ch. 7 of [49].

Consequently, it also seems that this could apply to certain stochastic differential equations

through the Fokker-Planck partial differential equation, which is a parabolic PDE.

The bounds are in the form of bounds on linear functionals, and so can be considered

“polyhedral” bounds (more discussion in §A.2). Applied to PDEs, this means that we could

obtain, for instance, pointwise in time bounds on the (spatial) Fourier coefficients or moments

of the solution. However, §A.4.2 provides some insight on how to choose the linear functionals

which are to be bounded in the special case that the dynamics are linear with respect to

the differential variables. In this case, a (relatively simple) initial value problem in (finite)

ODEs can be solved to give the bounds.

A.2 Problem statement

First, a (somewhat pedantic) discussion of notation. All vector spaces in this chapter will be

over R. Typically, lowercase bold letters denote vectors and vector-valued mappings. The
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exception is for linear mappings/operators; scalar-valued linear mappings are denoted by

lowercase bold letters (seen as vectors in a dual space, defined below), while vector-valued

linear mappings/operators are denoted by uppercase bold letters. As usual the value of an

operator M at a point v is denoted Mv. For a normed (vector) space 𝑉 , its norm is denoted

‖·‖𝑉 , or if there is no confusion, by just ‖·‖. The dual of a normed space 𝑉 (space of all

continuous linear real-valued mappings on 𝑉 ) is denoted 𝑉 *, and similarly the dual norm

on 𝑉 * is denoted ‖·‖𝑉 * or ‖·‖*. The scalar product between 𝑉 * and 𝑉 is denoted ⟨·, ·⟩; i.e.

for a ∈ 𝑉 * and v ∈ 𝑉 , ⟨a,v⟩ is a evaluated at v. For normed spaces 𝑉 and 𝑊 with 𝑉 ⊂𝑊 ,

𝑉 is embedded in 𝑊 if there exists a scalar 𝑐 > 0 such that ‖v‖𝑊 ≤ 𝑐 ‖v‖𝑉 for all v ∈ 𝑉 .

In this case we write 𝑉 →˓ 𝑊 , and 𝑊 * can be considered a subset of 𝑉 *; if 𝑎 : 𝑊 → R is

a bounded linear mapping, then for some 𝑏 > 0, |𝑎(v)| ≤ 𝑏 ‖v‖𝑊 and so |𝑎(v)| ≤ 𝑏𝑐 ‖v‖𝑉 ,

and thus is a bounded linear mapping on 𝑉 as well. Thus if a ∈ 𝑊 *, ⟨a,v⟩ makes sense

for v ∈ 𝑉 , and has the same value in R regardless of whether it is interpreted as the scalar

product between 𝑊 * and 𝑊 , or 𝑉 * and 𝑉 .

A polyhedron is any subset of a normed space 𝑉 that can be written as {v ∈ 𝑉 :

⟨a𝑖,v⟩ ≤ 𝑑𝑖, 𝑖 ∈ {1, . . . ,𝑚}}, for some 𝑚 ∈ N, subset of the dual space {a1, . . . ,a𝑚} ⊂ 𝑉 *,

and d ∈ R𝑚. Thus, a polyhedron is the intersection of a finite number of closed halfspaces,

and so polyhedra are always closed, convex sets. Denote the Bochner space 𝐿1(𝑇, 𝑉 ) (the

space of Bochner/strongly-measurable mappings v : 𝑇 → 𝑉 with
∫︀
𝑇 ‖v‖𝑉 < +∞, for more

background see Appendix E in [49]). For 𝑇 ⊂ R, normed spaces 𝑉 and 𝑊 with 𝑉 →˓ 𝑊 ,

and mapping x : 𝑇 → 𝑉 , we say that x has strong derivative ẋ(𝑡) in 𝑊 at 𝑡 in the interior

of 𝑇 if limℎ→0 ‖(x(𝑡+ ℎ)− x(𝑡))/ℎ− ẋ(𝑡)‖𝑊 = 0.

The problem statement follows. Let 𝑉𝑥, 𝑊𝑥, 𝑉𝑢 be real Banach spaces with 𝑉𝑥 →˓ 𝑊𝑥.

Let nonempty interval 𝑇 = [𝑡0, 𝑡𝑓 ] ⊂ R, 𝐷𝑥 ⊂ 𝑉𝑥, and 𝐷𝑢 ⊂ 𝑉𝑢 be given. For 𝑈 ⊂ 𝐷𝑢, let

the set of time-varying inputs be

𝒰 =
{︀
u ∈ 𝐿1(𝑇, 𝑉𝑢) : u(𝑡) ∈ 𝑈, 𝑎.𝑒. 𝑡 ∈ 𝑇

}︀
,

and let the set of possible initial conditions be 𝑋0 ⊂ 𝐷𝑥. Given f : 𝑇 ×𝐷𝑢×𝐷𝑥 →𝑊𝑥, the
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problem of interest is the initial value problem in ODEs

ẋ(𝑡,u) = f(𝑡,u(𝑡),x(𝑡,u)), 𝑎.𝑒. 𝑡 ∈ 𝑇, (A.1a)

x(𝑡0,u) ∈ 𝑋0. (A.1b)

For a given u ∈ 𝒰 , a solution is a mapping x(·,u) : 𝑇 → 𝐷𝑥 with strong derivative ẋ(𝑡,u) in

𝑊𝑥 at almost every 𝑡 ∈ 𝑇 , such that x(𝑡,u) and ẋ(𝑡,u) satisfy Equations (A.1). The goal of

this work is to construct a polyhedral-valued mapping 𝐵 : 𝑇 ⇒ 𝑉𝑥 such that x(𝑡,u) ∈ 𝐵(𝑡),

for all (𝑡,u) ∈ 𝑇 ×𝒰 . Specifically, given a 𝑚 ∈ N and {a1, . . . ,a𝑚} ⊂ 𝑉 *
𝑥 , the goal is to find

b : 𝑇 → R𝑚 such that 𝐵(𝑡) = {z : ⟨a𝑖, z⟩ ≤ 𝑏𝑖(𝑡),∀𝑖}. This mapping 𝐵 will be referred to

as polyhedral bounds, or just bounds.

It should be noted that the notion of a solution above is slightly weaker than normal.

Typically, for u ∈ 𝒰 , a solution is a mapping x(·,u) : 𝑇 → 𝐷𝑥 such that x(·,u) ∈ 𝐿1(𝑇, 𝑉𝑥)

with weak derivative ẋ(·,u) ∈ 𝐿1(𝑇,𝑊𝑥) which satisfy Equations (A.1). However in this

case, the strong derivative of x(·,u) exists in 𝑊𝑥 at almost every 𝑡 and coincides with the

value of the weak derivative ẋ(𝑡,u). See [49] and the appendix of Ch. 6 of [83], specifically

Theorem 6.35.

A.3 Bounding theory

This section presents the general bounding theory. The following section focuses on how to

implement this theory.

Lemma A.3.1. Let 𝑇 ⊂ R be a nonempty interval, 𝑉 and 𝑊 be real normed spaces with

𝑉 →˓𝑊 , 𝑏 : 𝑇 → R be absolutely continuous, x : 𝑇 → 𝑉 with strong derivative ẋ(𝑡) in 𝑊 for

almost every 𝑡 ∈ 𝑇 , and a ∈ 𝑊 *. Then the real-valued function 𝑔 : 𝑡 ↦→ max{0, ⟨a,x(𝑡)⟩ −

𝑏(𝑡)} is absolutely continuous. Further, for almost all 𝑡 such that ⟨a,x(𝑡)⟩ > 𝑏(𝑡) and for all

w ∈𝑊 such that ⟨a,w⟩ ≤ �̇�(𝑡),

�̇�(𝑡) ≤ ‖a‖𝑊 * ‖w − ẋ(𝑡)‖𝑊 .

Proof. Note that 𝑔1 : 𝑡 ↦→ ⟨a,x(𝑡)⟩ − 𝑏(𝑡) is absolutely continuous. To see this, note that for
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almost all 𝑡, (x(𝑡+ ℎ)− x(𝑡))/ℎ converges to ẋ(𝑡) (in 𝑊 ), and so

lim
ℎ→0

⟨
a,

x(𝑡+ ℎ)− x(𝑡)

ℎ
− ẋ(𝑡)

⟩
= 0,

which, upon rearrangement, yields

lim
ℎ→0

⟨a,x(𝑡+ ℎ)⟩ − ⟨a,x(𝑡)⟩
ℎ

= ⟨a, ẋ(𝑡)⟩ .

Thus the real-valued function ⟨a,x(·)⟩ has a derivative almost everywhere and thus is ab-

solutely continuous. Subtract the absolutely continuous function 𝑏 and we see that 𝑔1 is

absolutely continuous. Obviously, 𝑔2 : 𝑡 ↦→ 0 is absolutely continuous, and so 𝑔, as the

maximum of the two, can be written as 𝑔(𝑡) = 1/2(𝑔1(𝑡) + 𝑔2(𝑡) + |𝑔1(𝑡)− 𝑔2(𝑡)|). We note

this is absolutely continuous since the composition of a Lipschitz continuous function with

an absolutely continuous function is absolutely continuous, and again the sum of absolutely

continuous functions is absolutely continuous.

Consequently, for almost all 𝑡 such that ⟨a,x(𝑡)⟩ > 𝑏(𝑡), 𝑔(𝑡) = ⟨a,x(𝑡)⟩ − 𝑏(𝑡), and so

�̇�(𝑡) = ⟨a, ẋ(𝑡)⟩ − �̇�(𝑡). Thus, for any w such that ⟨a,w⟩ ≤ �̇�(𝑡), �̇�(𝑡) + ⟨a,w⟩ ≤ ⟨a, ẋ(𝑡)⟩ −

�̇�(𝑡)+ �̇�(𝑡). It follows that �̇�(𝑡) ≤ ⟨a, ẋ(𝑡)⟩−⟨a,w⟩ and so �̇�(𝑡) ≤ ⟨a, ẋ(𝑡)−w⟩. Finally, from

the generalization of the Cauchy-Schwarz inequality (that is, from the definition of the dual

norm), we have �̇�(𝑡) ≤ ‖a‖* ‖ẋ(𝑡)−w‖.

Assumptions A.3.1 and A.3.2 and Theorem A.3.1 below provide the heart of the general

bounding theory.

Assumption A.3.1. For any z ∈ 𝐷𝑥, there exists a neighborhood 𝑁(z) and 𝛼 ∈ 𝐿1(𝑇,R)

such that for almost every 𝑡 ∈ 𝑇 and every p ∈ 𝑈

‖f(𝑡,p, z1)− f(𝑡,p, z2)‖𝑊𝑥
≤ 𝛼(𝑡) ‖z1 − z2‖𝑉𝑥

,

for every z1 and z2 in 𝑁(z) ∩𝐷𝑥.

Assumption A.3.2. Consider the problem stated in §A.2. For 𝑚 ∈ N, let {a1, . . . ,a𝑚} ⊂
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𝑊 *
𝑥 . Assume that the linear operator

A : 𝑊𝑥 ∋ z ↦→

⎡⎢⎢⎢⎣
⟨a1, z⟩

...

⟨a𝑚, z⟩

⎤⎥⎥⎥⎦ ∈ R𝑚,

𝐷𝑀 ⊂ 𝑇 ×R𝑚, and 𝑀𝑖 : 𝐷𝑀 ⇒ 𝑉𝑥 satisfy the following conditions for each 𝑖 ∈ {1, . . . ,𝑚}.

1. For any d ∈ R𝑚, if there exists (𝑡,u) ∈ 𝑇×𝒰 such that Ax(𝑡,u) ≤ d and ⟨a𝑖,x(𝑡,u)⟩ =

𝑑𝑖 for some solution x(·,u) of IVP (A.1), then (𝑡,d) ∈ 𝐷𝑀 and x(𝑡,u) ∈𝑀𝑖(𝑡,d).

2. For any (𝑡,d) ∈ 𝐷𝑀 , there exists a neighborhood 𝑁(d) of d, 𝑡′ > 𝑡, and 𝐿𝑀 > 0 such

that for any (𝑠,d1) and (𝑠,d2) in ((𝑡, 𝑡′)×𝑁(d))∩𝐷𝑀 and z1 ∈𝑀𝑖(𝑠,d1), there exists

a z2 ∈𝑀𝑖(𝑠,d2) such that

‖z1 − z2‖𝑉𝑥
≤ 𝐿𝑀 ‖d1 − d2‖1 .

Theorem A.3.1. Let Assumptions A.3.1 and A.3.2 hold. If

1. b : 𝑇 → R𝑚 is absolutely continuous and 𝐵 : 𝑇 ∋ 𝑡 ↦→ {z ∈ 𝑉𝑥 : Az ≤ b(𝑡)},

2. 𝑋0 ⊂ 𝐵(𝑡0),

3. for almost every 𝑡 ∈ 𝑇 and each 𝑖 ∈ {1, . . . ,𝑚}, (𝑡,b(𝑡)) ∈ 𝐷𝑀 and 𝑀𝑖(𝑡,b(𝑡)) ⊂ 𝐷𝑥,

4. for almost every 𝑡 ∈ 𝑇 and each 𝑖 ∈ {1, . . . ,𝑚},

⟨a𝑖, f(𝑡,p, z)⟩ ≤ �̇�𝑖(𝑡), ∀(p, z) ∈ 𝑈 ×𝑀𝑖(𝑡,b(𝑡)),

then for all u ∈ 𝒰 and any solution x(·,u) of IVP (A.1), x(𝑡,u) ∈ 𝐵(𝑡), for all 𝑡 ∈ 𝑇 .

Proof. Fix u ∈ 𝒰 . If no solution of IVP (A.1) exists for this u, then the conclusion of

the theorem holds trivially. Otherwise, choose some solution and for convenience use the

abbreviation x(𝑡) ≡ x(𝑡,u). For each 𝑡 ∈ 𝑇 and 𝑖 ∈ {1, . . . ,𝑚}, let 𝑔𝑖(𝑡) = max{0, ⟨a𝑖,x(𝑡)⟩−

𝑏𝑖(𝑡)}. By Lemma A.3.1, each 𝑔𝑖 is absolutely continuous. It follows that Ax(𝑡) ≤ b(𝑡)+g(𝑡).

Consequently, g(𝑡) = 0 implies x(𝑡) ∈ 𝐵(𝑡), and by the contrapositive x(𝑡) /∈ 𝐵(𝑡) implies

g(𝑡) ̸= 0. Thus, for a contradiction, assume that the set 𝑇𝑣 = {𝑡 ∈ 𝑇 : ‖g(𝑡)‖1 > 0} is

nonempty.

Let 𝑡1 = inf 𝑇𝑣. By Hypothesis 2, g(𝑡0) = 0 and so by continuity of g, ‖g(𝑡1)‖1 = 0.

Furthermore, there exists 𝑡2 > 𝑡1 and index set 𝐼 such that 𝑔𝑖(𝑡) = 0 for 𝑖 /∈ 𝐼 and 𝑡 ∈ [𝑡1, 𝑡2),
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and ⟨a𝑖,x(𝑡)⟩ = 𝑏𝑖(𝑡) + 𝑔𝑖(𝑡) for 𝑖 ∈ 𝐼 and 𝑡 ∈ [𝑡1, 𝑡2). Explicitly, for each 𝑖 define 𝑇𝑖 ≡ {𝑡 :

𝑔𝑖(𝑡) > 0}. By continuity of g, each 𝑇𝑖 is open. Let 𝐼 = {𝑖 : 𝑡1 = inf 𝑇𝑖} (which must be

nonempty) and then choose 𝑡2 > 𝑡1 such that (𝑡1, 𝑡2) ⊂
⋂︀

𝑖∈𝐼 𝑇𝑖 and (𝑡1, 𝑡2)∩ (
⋃︀

𝑖/∈𝐼 𝑇𝑖) = ∅.

Then by Condition 1 of Assumption A.3.2, (𝑡,b(𝑡)+g(𝑡)) ∈ 𝐷𝑀 and x(𝑡) ∈𝑀𝑖(𝑡,b(𝑡)+

g(𝑡)) for 𝑖 ∈ 𝐼, 𝑡 ∈ [𝑡1, 𝑡2). Without loss of generality, let 𝑁(b(𝑡1)), 𝑡3 > 𝑡1, and 𝐿𝑀 > 0

satisfy Condition 2 of Assumption A.3.2 at the point b(𝑡1), for each 𝑖 ∈ 𝐼. Since b and g are

continuous, there exists a 𝑡4 ∈ (𝑡1,min{𝑡2, 𝑡3}) such that b(𝑡) and (b(𝑡) + g(𝑡)) ∈ 𝑁(b(𝑡1))

for each 𝑡 ∈ (𝑡1, 𝑡4). Along with Hypothesis 3, it follows that for 𝑖 ∈ 𝐼 and almost every

𝑡 ∈ (𝑡1, 𝑡4), there exists an element z𝑖(𝑡) ∈𝑀𝑖(𝑡,b(𝑡)) with

‖z𝑖(𝑡)− x(𝑡)‖𝑉𝑥
≤ 𝐿𝑀 ‖g(𝑡)‖1 . (A.2)

Let 𝑁(x(𝑡1)), and 𝛼 ∈ 𝐿1(𝑇,R) satisfy Assumption A.3.1 at the point x(𝑡1). Since x

and ‖g‖1 are continuous, using Inequality (A.2) and the triangle inequality

‖z𝑖(𝑡)− x(𝑡1)‖ ≤ ‖z𝑖(𝑡)− x(𝑡)‖+ ‖x(𝑡)− x(𝑡1)‖ ,

there exists a 𝑡5 ∈ (𝑡1, 𝑡4) such that z𝑖(𝑡),x(𝑡) ∈ 𝑁(x(𝑡1)), for all 𝑖 ∈ 𝐼 and almost every

𝑡 ∈ (𝑡1, 𝑡5). Consequently,

‖f(𝑡,u(𝑡), z𝑖(𝑡))− f(𝑡,u(𝑡),x(𝑡))‖𝑊𝑥
≤ 𝛼(𝑡) ‖z𝑖(𝑡)− x(𝑡)‖𝑉𝑥

, 𝑎.𝑒. 𝑡 ∈ (𝑡1, 𝑡5). (A.3)

But by Hypothesis 4, ⟨a𝑖, f(𝑡,u(𝑡), z𝑖(𝑡))⟩ ≤ �̇�𝑖(𝑡) which by Lemma A.3.1 means

�̇�𝑖(𝑡) ≤ ‖a𝑖‖𝑊 *
𝑥
‖f(𝑡,u(𝑡), z𝑖(𝑡))− ẋ(𝑡)‖𝑊𝑥

= ‖a𝑖‖𝑊 *
𝑥
‖f(𝑡,u(𝑡), z𝑖(𝑡))− f(𝑡,u(𝑡),x(𝑡))‖𝑊𝑥

.

Combining this with Inequalities (A.2) and (A.3) we have

�̇�𝑖(𝑡) ≤ 𝐿𝑀𝛼(𝑡) ‖a𝑖‖𝑊 *
𝑥
‖g(𝑡)‖1 , 𝑎.𝑒. 𝑡 ∈ (𝑡1, 𝑡5).

Since this holds for each 𝑖 ∈ 𝐼 and 𝑔𝑖(𝑡) = 0 for each 𝑖 /∈ 𝐼,

∑︁
𝑖∈𝐼

�̇�𝑖(𝑡) ≤ 𝐿𝑀𝛼(𝑡)
∑︁
𝑖∈𝐼
‖a𝑖‖𝑊 *

𝑥
‖g(𝑡)‖1 = 𝐿𝑀𝛼(𝑡)

∑︁
𝑗∈𝐼
‖a𝑗‖𝑊 *

𝑥

∑︁
𝑖∈𝐼

𝑔𝑖(𝑡)
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to which we can apply Gronwall’s inequality (see for instance [209]) to get

∑︁
𝑖∈𝐼

𝑔𝑖(𝑡) ≤
∑︁
𝑖∈𝐼

𝑔𝑖(𝑡1) exp

⎛⎝∫︁
[𝑡1,𝑡]

𝐿𝑀

∑︁
𝑗∈𝐼
‖a𝑗‖𝑊 *

𝑥
|𝛼|

⎞⎠ , ∀𝑡 ∈ [𝑡1, 𝑡5].

But since
∑︀

𝑖 𝑔𝑖(𝑡1) = 0, this yields
∑︀

𝑖 𝑔𝑖(𝑡) ≤ 0, and since each 𝑔𝑖 is nonnegative always

and 𝑔𝑖(𝑡) = 0 for each 𝑖 /∈ 𝐼, we have 𝑔𝑖(𝑡) = 0 for all 𝑖 and all 𝑡 ∈ (𝑡1, 𝑡5) ⊂ 𝑇𝑣, which is

a contradiction. Since the choices of u ∈ 𝒰 and corresponding solution were arbitrary, the

result follows.

A.4 Specific instances

This section describes how to construct the mappings 𝑀𝑖 such that they satisfy Assump-

tion A.3.2.

A.4.1 Utilizing a priori information

The goal of this section is to define mappings 𝑀𝑖, which, as in [74, 168], allow one to use

a priori information about the solution set of IVP (A.1) in the form of a polyhedral-valued

mapping 𝐺 : 𝑇 ⇒ 𝑉𝑥 for which it is known that x(𝑡,u) ∈ 𝐺(𝑡), for all 𝑡 ∈ 𝑇 and u ∈ 𝒰 for

which a solution exists. The specific conditions are formalized in the following assumption.

Assumption A.4.1. For 𝑚𝑔 ∈ N, let {g1, . . . ,g𝑚𝑔} ⊂ 𝑉 *
𝑥 and b𝐺 : 𝑇 → R𝑚𝑔 . Define

G : 𝑉𝑥 → R𝑚𝑔 by Gz = (⟨g1, z⟩ , . . . ,
⟨︀
g𝑚𝑔 , z

⟩︀
). Assume that for all u ∈ 𝒰 and any solution

x(·,u) of IVP (A.1), Gx(𝑡,u) ≤ b𝐺(𝑡), for all 𝑡 ∈ 𝑇 .

Before a specific form of the 𝑀𝑖 can be defined, some results are needed. First, a

decomposition result for Banach spaces is noted.

Lemma A.4.1. Let 𝑉 be a real Banach space. For 𝑚 ∈ N, let {a1, . . . ,a𝑚} ⊂ 𝑉 *. Then

there exists 𝑝 ∈ N and {e1, . . . , e𝑝} ⊂ 𝑉 such that for all v ∈ 𝑉 there exists w ∈ 𝑉 and

c ∈ R𝑝 such that v = w +
∑︀𝑝

𝑗=1 𝑐𝑗e𝑗 and ⟨a𝑖,w⟩ = 0 for all 𝑖.

If, in addition, a𝑖 ̸= 0 for all 𝑖, then for all 𝑖 there exists 𝑗𝑖 such that ⟨a𝑖, e𝑗𝑖⟩ ≠ 0.

Proof. Let 𝐴 = span{a1, . . . ,a𝑚}, a finite dimensional and thus closed subspace of 𝑉 *.

Thus 𝑊 = 𝐴⊥ = {v ∈ 𝑉 : ⟨a,v⟩ = 0, ∀a ∈ 𝐴} has finite codimension, by Proposition 11.14
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in [35], for example. By definition of finite codimension (see discussion preceding Proposi-

tion 11.5 in [35]), there exists a finite dimensional subspace 𝐸 ⊂ 𝑉 such that 𝑊 + 𝐸 = 𝑉

and 𝑊 ∩ 𝐸 = {0}; i.e. for any v ∈ 𝑉 , there exist w ∈ 𝑊 and x ∈ 𝐸 such that v = w + x.

Further, since 𝐸 is finite dimensional, there exists a finite basis for it {e1, . . . , e𝑝}, so that

x =
∑︀

𝑖 𝑐𝑖e𝑖 for scalars 𝑐𝑖. Further, by definition of 𝑊 , ⟨a𝑖,w⟩ = 0 for all 𝑖.

For the final claim, we somewhat inelegantly append a finite number of vectors e′𝑖 to the

set {e1, . . . , e𝑝} so that ⟨a𝑖, e′𝑖⟩ ̸= 0 for each 𝑖. The previous claim is unaffected; for any

v ∈ 𝑉 the same w ∈ 𝑊 and x ∈ 𝐸 can be chosen as before, and then we have ⟨a𝑖,w⟩ = 0

and x =
∑︀

𝑖 𝑐𝑖e𝑖+
∑︀

𝑖 0e
′
𝑖. In detail, choose 𝑖 ∈ {1, . . . ,𝑚} and let 𝐴𝑖 = span{a𝑖}. Similarly

to before, let 𝑊𝑖 = 𝐴⊥
𝑖 . Again, 𝑊𝑖 has finite codimension so there exists finite dimensional

subspace 𝐸𝑖 ⊂ 𝑉 such that 𝑊𝑖+𝐸𝑖 = 𝑉 and 𝑊𝑖∩𝐸𝑖 = {0}. More specifically, the dimension

of 𝐴𝑖 equals the codimension of 𝑊𝑖 equals the dimension of 𝐸𝑖 (again, by Proposition 11.14

and discussion in §11.1 in [35]; see also Example 2 in §2.4 in [35]). Thus, if a𝑖 ̸= 0, the

dimension of 𝐴𝑖 and thus the dimension of 𝐸𝑖 equals one. Consequently we can assume that

there exists e′𝑖 ̸= 0 such that 𝐸𝑖 = span{e′𝑖}. We must have ⟨a𝑖, e′𝑖⟩ ̸= 0; otherwise for all

𝛼 ∈ R we have 𝛼 ⟨a𝑖, e′𝑖⟩ = ⟨𝛼a𝑖, e′𝑖⟩ = 0 which implies e′𝑖 ∈ 𝐴⊥
𝑖 = 𝑊𝑖, which contradicts

that 𝑊𝑖 ∩ 𝐸𝑖 = {0}.

The following result generalizes the “Lipschitz continuity” of polyhedra with respect to

their right-hand sides in finite dimensional spaces.

Lemma A.4.2. Let 𝑉 be a real Banach space. For 𝑚 ∈ N, let {a1, . . . ,a𝑚} ⊂ 𝑉 *. For

b ∈ R𝑚, let

𝑃 (b) = {v ∈ 𝑉 : ⟨a𝑖,v⟩ ≤ 𝑏𝑖,∀𝑖}.

Then there exists 𝐿 ≥ 0 such that for all (b,b′) ∈ R𝑚 × R𝑚 such that 𝑃 (b) and 𝑃 (b′) are

nonempty and all v ∈ 𝑃 (b), there exists a v′ ∈ 𝑃 (b′) such that

⃦⃦
v − v′⃦⃦

𝑉
≤ 𝐿

⃦⃦
b− b′⃦⃦

1
.

Proof. We use the decomposition result from Lemma A.4.1; we can assume that there exist

{e1, . . . , e𝑝} ⊂ 𝑉 such that for any v ∈ 𝑉 , there exists a w ∈ 𝑉 and c ∈ R𝑝 with ⟨a𝑖,w⟩ = 0

for each 𝑖 and v = w +
∑︀

𝑗 𝑐𝑗e𝑗 .

Now, choose b and b′ such that 𝑃 (b) and 𝑃 (b′) are nonempty. Choose v ∈ 𝑃 (b). By
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the above discussion, v = w+
∑︀

𝑗 𝑐𝑗e𝑗 for c ∈ R𝑝 and w ∈𝑊 . Since v satisfies the system

of inequalities, for each 𝑖 we have ⟨a𝑖,w +
∑︀

𝑐𝑗e𝑗⟩ ≤ 𝑏𝑖, which simplifies to ⟨a𝑖,
∑︀

𝑐𝑗e𝑗⟩ ≤ 𝑏𝑖

since ⟨a𝑖,w⟩ = 0. Consequently,
∑︀

𝑗 𝑐𝑗 ⟨a𝑖, e𝑗⟩ ≤ 𝑏𝑖 for each 𝑖, which implies Mc ≤ b where

M = [𝑚𝑖,𝑗 ] ∈ R𝑚×𝑝 is given by 𝑚𝑖,𝑗 = ⟨a𝑖, e𝑗⟩.

Similarly, since 𝑃 (b′) is nonempty by assumption, there exist ̃︀v ∈ 𝑃 (b′) which we can

decompose as ̃︀v = ̃︀w +
∑︀

𝑗 ̃︀𝑐𝑗e𝑗 . Again, we obtain M̃︀c ≤ b′. Thus we can apply the finite

dimensional results (for instance Lemma 2.4.2) to the mapping 𝑃𝐹 : b ↦→ {u ∈ R𝑝 : Mu ≤

b}. Since c ∈ 𝑃𝐹 (b) and ̃︀c ∈ 𝑃𝐹 (b
′), and so they are nonempty, there exists a 𝐿𝑀 > 0 and

c′ ∈ 𝑃𝐹 (b
′) such that ⃦⃦

c− c′
⃦⃦
1
≤ 𝐿𝑀

⃦⃦
b− b′⃦⃦

1
.

Thus, let v′ = w+
∑︀

𝑐′𝑗e𝑗 . Note that v′ ∈ 𝑃 (b′), since
⟨
a𝑖,w +

∑︀
𝑗 𝑐

′
𝑗e𝑗

⟩
=
∑︀

𝑗 𝑐
′
𝑗 ⟨a𝑖, e𝑗⟩ ≤

𝑏′𝑖 for each 𝑖 since c′ satisfies Mc′ ≤ b′. Finally,

⃦⃦
v − v′⃦⃦

𝑉
=
⃦⃦⃦∑︁

𝑐𝑗e𝑗 −
∑︁

𝑐′𝑗e𝑗

⃦⃦⃦
𝑉

≤
∑︁⃒⃒

𝑐𝑗 − 𝑐′𝑗
⃒⃒
‖e𝑗‖𝑉

≤ max{‖e𝑗‖𝑉 }
⃦⃦
c− c′

⃦⃦
1

≤ max{‖e𝑗‖𝑉 }𝐿𝑀

⃦⃦
b− b′⃦⃦

1
.

Since the choice of v was arbitrary, the result follows since the Lipschitz constant is inde-

pendent of b and b′ which were chosen arbitrarily.

The next result establishes Lipschitz continuity of the solution sets of certain optimiza-

tion problems over a polyhedron.

Lemma A.4.3. Let 𝑉 be a real Banach space. For 𝑚 ∈ N, let {a1, . . . ,a𝑚} ⊂ 𝑉 *, and for

b ∈ R𝑚, 𝑃 (b) = {v ∈ 𝑉 : ⟨a𝑖,v⟩ ≤ 𝑏𝑖, ∀𝑖}. For b ∈ 𝐹 = {d : 𝑃 (d) ̸= ∅}, let

𝑞𝑖(b) = sup{⟨a𝑖,v⟩ : v ∈ 𝑃 (b)},

𝑆𝑖(b) = {v ∈ 𝑃 (b) : ⟨a𝑖,v⟩ = 𝑞𝑖(b)}.

Then for each 𝑖, there exists 𝐿𝑖 > 0 such that for all (b,b′) ∈ 𝐹 ×𝐹 and for any v ∈ 𝑆𝑖(b),
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there exists a v′ ∈ 𝑆𝑖(b
′) with

⃦⃦
v − v′⃦⃦

𝑉
≤ 𝐿𝑖

⃦⃦
b− b′⃦⃦

1
.

Proof. We use the decomposition result from Lemma A.4.1; we can assume that there exist

{e1, . . . , e𝑝} ⊂ 𝑉 such that for any v ∈ 𝑉 , there exists a w ∈ 𝑉 and c ∈ R𝑝 with ⟨a𝑗 ,w⟩ = 0

for each 𝑗 and v = w +
∑︀

𝑘 𝑐𝑘e𝑘.

Choose 𝑖 ∈ {1, . . . ,𝑚}. Define m𝑖 ∈ R𝑝 by 𝑚𝑖,𝑘 = ⟨a𝑖, e𝑘⟩, and M = [𝑚𝑗,𝑘] ∈ R𝑚×𝑝

by 𝑚𝑗,𝑘 = ⟨a𝑗 , e𝑘⟩ (and so mT
𝑖 is the 𝑖𝑡ℎ row of M). Consider the (finite) linear program

parameterized by the right-hand side of its constraints

𝑝𝑖 : b ↦→ sup
{︀
mT

𝑖 c : c ∈ R𝑝,Mc ≤ b
}︀
. (A.4)

For b ∈ 𝐹 , there exists v ∈ 𝑃 (b), and by the decomposition result there exists c ∈ R𝑝

feasible in LP (A.4). Further, it is clear that 𝑝𝑖(b) is finite (the LP is bounded and feasible);

thus 𝑝𝑖(b) = mT
𝑖 c

* for some c* such that Mc* ≤ b. Let v* =
∑︀

𝑘 𝑐
*
𝑘e𝑘. Then v* ∈ 𝑃 (b)

and ⟨a𝑖,v*⟩ = 𝑝𝑖(b). By definition of the supremum, 𝑝𝑖(b) ≤ 𝑞𝑖(b), and if this holds with

strict inequality, then there exists a ̂︀v ∈ 𝑃 (b) with ⟨a𝑖, ̂︀v⟩ > 𝑝𝑖(b). However, this would

imply that there exists a ̂︀c ∈ R𝑝 with M̂︀c ≤ b and mT
𝑖 ̂︀c > 𝑝𝑖(b), which is a contradiction.

Thus, 𝑝𝑖(b) = 𝑞𝑖(b). Further, v* ∈ 𝑆𝑖(b). By Lemma 2.4.2, 𝑝𝑖 is Lipschitz continuous on

𝐹 , and so 𝑞𝑖 is Lipschitz continuous on 𝐹 .

Now, choose b and b′ in 𝐹 . By the above, 𝑆𝑖(b) and 𝑆𝑖(b
′) are nonempty. Writing

𝑆𝑖(b) as

𝑆𝑖(b) = {v ∈ 𝑉 : ⟨−a𝑖,v⟩ ≤ −𝑞𝑖(b), ⟨a𝑗 ,v⟩ ≤ 𝑏𝑗 ,∀𝑗}

we apply Lemma A.4.2, to get that for any v ∈ 𝑆𝑖(b), there exists v′ ∈ 𝑆𝑖(b
′) such that

⃦⃦
v − v′⃦⃦

𝑉
≤ 𝐿𝑆,𝑖

⃦⃦
(b, 𝑞𝑖(b))− (b′, 𝑞𝑖(b

′))
⃦⃦
1
= 𝐿𝑆,𝑖

(︀⃦⃦
b− b′⃦⃦

1
+
⃒⃒
𝑞𝑖(b)− 𝑞𝑖(b

′)
⃒⃒)︀

for some 𝐿𝑆,𝑖 > 0. Combined with the Lipschitz continuity of 𝑞𝑖, this gives

⃦⃦
v − v′⃦⃦

𝑉
≤ 𝐿𝑆,𝑖 (1 + 𝐿𝑞,𝑖)

⃦⃦
b− b′⃦⃦

1

and the result follows.
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It is now possible to state a specific instance of the mappings which satisfy Assump-

tion A.3.2.

Proposition A.4.4. Let Assumption A.4.1 hold. For 𝑚 ∈ N, let {a1, . . . ,a𝑚} ⊂ 𝑊 *
𝑥 and

define A : 𝑊𝑥 → R𝑚 by Az = (⟨a1, z⟩ , . . . , ⟨a𝑚, z⟩). Let

𝑃𝑀 : (𝑡,d) ↦→ {z ∈ 𝑉𝑥 : Az ≤ d,Gz ≤ b𝐺(𝑡)}.

Then A,

𝐷𝑀 = {(𝑡,d) ∈ 𝑇 × R𝑚 : 𝑃𝑀 (𝑡,d) ̸= ∅} , and (A.5)

𝑀𝑖 : (𝑡,d) ↦→ argmax{⟨a𝑖, z⟩ : Az ≤ d,Gz ≤ b𝐺(𝑡), z ∈ 𝑉𝑥} (A.6)

satisfy Assumption A.3.2.

Proof. To see that Condition 1 of Assumption A.3.2 holds, choose any 𝑖 ∈ {1, . . . ,𝑚},

d ∈ R𝑚, and (𝑡,u) ∈ 𝑇 ×𝒰 such that Ax(𝑡,u) ≤ d and ⟨a𝑖,x(𝑡,u)⟩ = 𝑑𝑖. Since Gx(𝑡,u) ≤

b𝐺(𝑡), it holds that x(𝑡,u) ∈ 𝑃𝑀 (𝑡,d), and thus (𝑡,d) ∈ 𝐷𝑀 . Further, since ⟨a𝑖,x(𝑡,u)⟩ =

𝑑𝑖, and any z such that ⟨a𝑖, z⟩ > 𝑑𝑖 would be infeasible in LP (A.6), we must have x(𝑡,u) ∈

𝑀𝑖(𝑡,d).

Next, note that if 𝑃𝑀 (𝑡,d) is nonempty, then 𝑀𝑖(𝑡,d) is nonempty for all 𝑖 (𝑀𝑖(𝑡,d)

is the solution set of a linear optimization problem that must be feasible and bounded; if

necessary, we can repeat the argument in Lemma A.4.3). Then to see that Condition 2 of

Assumption A.3.2 holds, choose any (𝑠,d1) and (𝑠,d2) in 𝐷𝑀 . By definition of 𝐷𝑀 and

the previous observation, 𝑀𝑖(𝑠,d𝑗) is nonempty for 𝑖 ∈ {1, . . . ,𝑚} and 𝑗 ∈ {1, 2}. Applying

Lemma A.4.3, we have that there exists a 𝐿 > 0 and for each z1 ∈𝑀𝑖(𝑠,d1), there exists a

z2 ∈𝑀𝑖(𝑠,d2) such that

‖z1 − z2‖𝑉𝑥
≤ 𝐿 ‖(d1,b𝐺(𝑠))− (d2,b𝐺(𝑠))‖1 = 𝐿 ‖d1 − d2‖1 .
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A.4.2 A simplification

This section discusses a specific choice of the set {a𝑖, . . . ,a𝑚} ⊂ 𝑊 *
𝑥 which simplifies the

construction of a bounding system by Theorem A.3.1. In this case, we must assume that

𝐷𝑥 is a dense linear subspace of 𝑉𝑥 and the dynamics f have the form

f(𝑡,p, z) = Fz+ h(𝑡,p),

for some linear operator (not necessarily continuous/bounded) F : 𝐷𝑥 → 𝑊𝑥 and h :

𝑇 × 𝐷𝑢 → 𝑊𝑥. However, this may also provide some insight into an intelligent choice of

the a𝑖 in the general case. First, the concept of the adjoint of a linear operator should be

introduced. The following comes from §2.6 of [35]. Since 𝐷𝑥 is a dense linear subspace of

𝑉𝑥, the adjoint of F is F* : 𝐷(F*) → 𝑉 *
𝑥 , for some linear subspace 𝐷(F*) of 𝑊 *

𝑥 . The

fundamental relation between F and F* is

⟨y,Fz⟩ = ⟨F*y, z⟩ , ∀(z,y) ∈ 𝐷𝑥 ×𝐷(F*).

Next, an alternative definition of the 𝑀𝑖 mappings is proposed. As is, it does not take

advantage of any a priori information, however it could be modified to do so.

Proposition A.4.5. Assume that 𝐷𝑥 is a closed linear subspace of 𝑉𝑥. For 𝑚 ∈ N, let

{a1, . . . ,a𝑚} ⊂ 𝑊 *
𝑥 such that a𝑖 ̸= 0 for all 𝑖, and define A : 𝑊𝑥 → R𝑚 by Az =

(⟨a1, z⟩ , . . . , ⟨a𝑚, z⟩). Then A,

𝑀𝑖 : (𝑡,d) ↦→ {z ∈ 𝐷𝑥 : ⟨a𝑖, z⟩ = 𝑑𝑖} , and (A.7)

𝐷𝑀 = 𝑇 × R𝑚 (A.8)

satisfy Assumption A.3.2.

Proof. To see that Condition 1 of Assumption A.3.2 holds, choose any 𝑖 ∈ {1, . . . ,𝑚},

d ∈ R𝑚, and (𝑡,u) ∈ 𝑇 × 𝒰 such that Ax(𝑡,u) ≤ d and ⟨a𝑖,x(𝑡,u)⟩ = 𝑑𝑖. Immediately we

have x(𝑡,u) ∈𝑀𝑖(𝑡,d), and trivially (𝑡,d) ∈ 𝐷𝑀 .

Since 𝐷𝑥 is a closed linear subspace of 𝑉𝑥, it is thus a Banach space (with the norm ‖·‖𝑉𝑥
).

If a𝑖 is continuous linear functional on 𝑉𝑥, then it is a continuous linear functional on the

subspace 𝐷𝑥, and so a𝑖 ∈ 𝐷*
𝑥. Consequently, we can decompose 𝐷𝑥 as in Lemma A.4.1;
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there exists 𝑝 ∈ N and {e1, . . . , e𝑝} ⊂ 𝐷𝑥 such that for any z ∈ 𝐷𝑥, there exists w ∈ 𝐷𝑥

and c ∈ R𝑝 such that z = w +
∑︀

𝑗 𝑐𝑗e𝑗 , ⟨a𝑖,w⟩ = 0 for all 𝑖, and for all 𝑖 there is some 𝑘𝑖

such that ⟨a𝑖, e𝑘𝑖⟩ ≠ 0.

To see that Condition 2 of Assumption A.3.2 holds, choose any 𝑖 ∈ {1, . . . ,𝑚} and

(𝑠,d1), (𝑠,d2) ∈ 𝐷𝑀 . For any z1 ∈ 𝑀𝑖(𝑠,d1), we have ⟨a𝑖, z1⟩ = 𝑑1,𝑖. As above, let

z1 = w +
∑︀

𝑗 𝑐𝑗e𝑗 . Let 𝛼 = 𝑑2,𝑖 − 𝑑1,𝑖 and z2 = z1 + (𝛼/
⟨︀
a𝑖, e𝑘𝑖

⟩︀
)e𝑘𝑖 . Then we have

⟨a𝑖, z2⟩ = ⟨a𝑖, z1⟩+ (𝛼/
⟨︀
a𝑖, e𝑘𝑖

⟩︀
) ⟨a𝑖, e𝑘𝑖⟩

= 𝑑1,𝑖 + 𝛼 = 𝑑2,𝑖.

Thus z2 ∈𝑀𝑖(𝑠,d2), and

‖z1 − z2‖𝑉𝑥
≤ ‖e𝑘𝑖‖
|⟨a𝑖, e𝑘𝑖⟩|

‖d1 − d2‖1 .

We can choose a Lipschitz constant large enough so that the desired condition holds.

The definition of 𝑀𝑖 in Eqn. (A.7) is in general much “larger,” and so roughly speak-

ing “worse” than the one defined in Eqn. (A.6). However, consider the case when F* has

nontrivial eigenvectors (i.e. a vector v ∈ 𝐷(F*), v ̸= 0, such that F*v = 𝜆v for some real

𝜆). If we choose {a1, . . . ,a𝑚} ⊂ 𝐷(F*) to be a set of eigenvectors of F* with corresponding

eigenvalues {𝜆1, . . . , 𝜆𝑚}, then Hypothesis 4 in Theorem A.3.1 becomes

⟨a𝑖,Fz+ h(𝑡,p)⟩ ≤ �̇�𝑖(𝑡), ∀(p, z) ∈ 𝑈 ×𝐷𝑥 : ⟨a𝑖, z⟩ = 𝑏𝑖(𝑡), (A.9)

where 𝑀𝑖 has been defined as in Eqn. (A.7). However,

⟨a𝑖,Fz+ h(𝑡,p)⟩ = ⟨a𝑖,Fz⟩+ ⟨a𝑖,h(𝑡,p)⟩ ,

= ⟨F*a𝑖, z⟩+ ⟨a𝑖,h(𝑡,p)⟩ ,

= 𝜆𝑖 ⟨a𝑖, z⟩+ ⟨a𝑖,h(𝑡,p)⟩ ,

where the properties of the adjoint and its eigenvectors have been used. Plugging this back

into (A.9), we have

𝜆𝑖𝑏𝑖(𝑡) + ⟨a𝑖,h(𝑡,p)⟩ ≤ �̇�𝑖(𝑡), ∀p ∈ 𝑈, (A.10)
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which in effect has removed all uncertainty with respect to the states. Depending on the

form of h, it may be much easier to construct an initial value problem in ordinary differential

equations whose solution b satisfies the inequality (A.10).

As a final note, it is assumed in this section that 𝐷𝑥 is a dense subspace of 𝑉𝑥 to ensure

that the adjoint of F exists. Combined with the assumption in Proposition A.4.5 that 𝐷𝑥

is closed, this implies that 𝐷𝑥 = 𝑉𝑥.
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