
Sensitivity Analysis for Nonsmooth Dynamic Systems

by

Kamil Ahmad Khan

B.S.E., Chemical Engineering, Princeton University (2009)
M.S. Chemical Engineering Practice, Massachusetts Institute of

Technology (2012)

Submitted to the Department of Chemical Engineering
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Chemical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Februrary 2015

c○Massachusetts Institute of Technology 2015. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Chemical Engineering

December 16, 2014

Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Paul I. Barton

Lammot du Pont Professor of Chemical Engineering
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Patrick S. Doyle

Chairman, Department Committee on Graduate Theses



2



Sensitivity Analysis for Nonsmooth Dynamic Systems

by

Kamil Ahmad Khan

Submitted to the Department of Chemical Engineering
on December 16, 2014, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Chemical Engineering

Abstract

Nonsmoothness in dynamic process models can hinder conventional methods for
simulation, sensitivity analysis, and optimization, and can be introduced, for ex-
ample, by transitions in flow regime or thermodynamic phase, or through discrete
changes in the operating mode of a process. While dedicated numerical methods
exist for nonsmooth problems, these methods require generalized derivative in-
formation that can be difficult to furnish. This thesis presents some of the first
automatable methods for computing these generalized derivatives.

Firstly, Nesterov’s lexicographic derivatives are shown to be elements of the
plenary hull of Clarke’s generalized Jacobian whenever they exist. Lexicographic
derivatives thus provide useful local sensitivity information for use in numerical
methods for nonsmooth problems. A vector forward mode of automatic differ-
entiation is developed and implemented to evaluate lexicographic derivatives for
finite compositions of simple lexicographically smooth functions, including the
standard arithmetic operations, trigonometric functions, exp / log, piecewise dif-
ferentiable functions such as the absolute-value function, and other nonsmooth
functions such as the Euclidean norm. This method is accurate, automatable, and
computationally inexpensive.

Next, given a parametric ordinary differential equation (ODE) with a lexico-
graphically smooth right-hand side function, parametric lexicographic derivatives
of a solution trajectory are described in terms of the unique solution of a cer-
tain auxiliary ODE. A numerical method is developed and implemented to solve
this auxiliary ODE, when the right-hand side function for the original ODE is a
composition of absolute-value functions and analytic functions. Computationally
tractable sufficient conditions are also presented for differentiability of the original
ODE solution with respect to system parameters.

Sufficient conditions are developed under which local inverse and implicit func-
tions are lexicographically smooth. These conditions are combined with the re-
sults above to describe parametric lexicographic derivatives for certain hybrid dis-
crete/continuous systems, including some systems whose discrete mode trajecto-
ries change when parameters are perturbed.
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Lastly, to eliminate a particular source of nonsmoothness, a variant of Mc-
Cormick’s convex relaxation scheme is developed and implemented for use in
global optimization methods. This variant produces twice-continuously differen-
tiable convex underestimators for composite functions, while retaining the advan-
tageous computational properties of McCormick’s original scheme. Gradients are
readily computed for these underestimators using automatic differentiation.

Thesis Supervisor: Paul I. Barton
Title: Lammot du Pont Professor of Chemical Engineering
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Chapter 1

Introduction

This thesis examines the local behavior of nonsmooth dynamic systems as under-

lying system parameters are varied, to provide useful sensitivity information to

established methods for equation-solving and optimization. The contributions of

this thesis include new theoretical results in nonsmooth analysis and the first nu-

merical methods for nonsmooth dynamic sensitivity analysis. Much of the mate-

rial appearing in this thesis has been published or submitted as the journal arti-

cles [54–56, 58–61] and the conference proceedings [53, 57]. The remainder of this

chapter elaborates upon the motivation, goal, and contributions of this thesis, and

summarizes established methods for approaching these goals.

1.1 Motivation

1.1.1 Nonsmoothness in chemical processes

Nonsmoothness in process systems and models can cause problems for simulation,

sensitivity analysis, and optimization. When applied to nonsmooth problems, nu-

merical methods developed for smooth functions can perform poorly, and their

theoretical convergence results may no longer apply. Nonsmoothness can be intro-

duced into models of chemical processes through various sources, some of which

are listed in this section. As these sources suggest, nonsmoothness in a model of-
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ten reflects a qualitative change in the behavior of the underlying system, as time

or parameters are varied.

Firstly, transitions in thermodynamic phase or flow regime can require an un-

derlying model to switch discretely between the phases or flow regimes of interest.

Examples of transitions in flow regime include transitions between laminar flow

and turbulent flow, or the onset of choked flow through a valve.

Discrete transitions in operating regime are a further source of nonsmoothness.

Startup of a continuous process – modeled, for example, as in [6] – can involve

individual process units being started up only when upstream process units are

already sufficiently operational. Process shutdown is analogous. Safety mech-

anisms can also introduce discrete transitions: activating only when certain mea-

sured system variables leave a predetermined set of acceptable values. In processes

with cyclic steady states, such as pressure-swing adsorption [105] and simulated

moving bed processes [51], each process subunit typically cycles between discrete

operating modes.

Embedded optimization problems provide another source of nonsmoothness

in process models; the optimal solution values of such problems can be nondif-

ferentiable functions of system parameters or state variables. Approaches to pinch

analysis for heat integration [21], for example, represent the minimum heating and

cooling demanded by a process in terms of various bivariate max{·, ·} functions

and a linear program that incorporates information concerning stream flow rates,

heat capacities, and desired inlet and outlet temperatures. This approach is also

used in the simulation of multi-stream heat exchangers [49]. In dynamic flux bal-

ance analysis models of bioreactors [36, 43, 44], a linear program that models quasi-

steady state cellular metabolism is embedded in a dynamic model of a bioreactor.

The numerical methods applied to a problem may themselves introduce non-

smoothness. For example, established convex relaxation techniques [74, 76, 104]

generate lower-bounding information for an objective function, for use in global

optimization methods. As discussed in [76] and in Chapter 9, these techniques can

introduce nondifferentiability even when the original objective function is smooth.

18



Methods for extending these relaxation techniques to dynamic systems [102, 103]

inherit the original methods’ nondifferentiability; these dynamic relaxation meth-

ods obtain their lower-bounding information from auxiliary dynamic systems with

possibly nondifferentiable dependence on parameters.

1.1.2 Numerical methods for nonsmooth systems

For functions f : Rn → Rm that are locally Lipschitz continuous but not necessar-

ily differentiable everywhere, several notions of generalized derivatives have been

advanced as analogs of the classical Fréchet derivative. Bundle methods for local

optimization and semismooth Newton methods for equation-solving use these gen-

eralized derivatives to construct local approximations of the objective function or

residual function under consideration. These methods assume that, at any visited

domain point of the objective function or residual function under consideration,

both the function and an associated generalized derivative may be evaluated.

Semismooth Newton methods work as follows. Given an open set X ⊂ Rn

and a locally Lipschitz continuous function g : X → Rn that is semismooth [92],

consider the problem of determining x* ∈ X for which

g(x*) = 0. (1.1)

Many nonsmooth functions encountered in practice are semismooth. In particular,

all functions that are piecewise differentiable in the sense of Scholtes [97] are semis-

mooth [23], compositions of semismooth functions are semismooth, and solutions

of parametric ODEs with semismooth right-hand side functions are themselves

semismooth with respect to the ODE parameters [88].

If the residual function g in (1.1) is twice-continuously differentiable, and if

the derivative of g is nonsingular at some solution x* of (1.1), then Newton’s

well-known method for equation-solving exhibits local Q-quadratic convergence

to x* [81]. The iterations of the basic Newton method take the following form:

19



x(k+1) ← x(k) + d, where Jg(x(k)) d = −g(x(k)),

where Jg(y) denotes the (Fréchet) derivative of g at any y ∈ X.

When g is not differentiable everywhere, the essence of a semismooth Newton

method is to replace the derivative required by the classical Newton method with a

generalized derivative. Thus, the prototypical Newton iteration above becomes

x(k+1) ← x(k) + d, where Hd = −g(x(k)),

where H is chosen from a suitable set V(x(k)) of generalized derivative candidates.

Intuitively, for this method to be useful, V(x(k)) must describe the local behavior

of the function g near x(k) meaningfully. To use this method, the ability to eval-

uate the function g and to compute an appropriate generalized derivative H are

assumed. Several generalized derivative concepts have been formulated for use in

nonsmooth numerical methods, including Clarke’s generalized Jacobian [16] and

its plenary hull [109], the B-subdifferential [92], Nesterov’s lexicographic deriva-

tives [79], and Mordukhovich’s coderivatives [78]; the generalized derivatives that

are pertinent to this thesis are summarized in Section 2.3.

As particular instances of the general semismooth Newton method above, Ko-

jima and Shindo’s Newton method [65, Algorithm EN] exhibits local Q-quadratic

convergence when g is piecewise differentiable in the sense of Scholtes [97], V(x(k))

is chosen to be the B-subdifferential of g at x(k), and the B-subdifferential of g at the

solution x* contains no singular matrices. Qi [91] shows that this method still ex-

hibits local Q-superlinear convergence even if the assumption of piecewise differ-

entiability is relaxed. This local Q-superlinear convergence is retained if Clarke’s

generalized Jacobian is used in place of the B-subdifferential [92]. A more recent

LP-Newton method by Facchinei et al. [22] replaces the linear equation system at

each iteration with a linear program, and weakens the invertibility requirements

of the semismooth Newton method. This method can accommodate certain cases
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in which a solution x* is not isolated, and in which x* is subject to constraints.

While the region of convergence for the classical Newton method may be en-

larged significantly by damping, semismooth Newton methods cannot be global-

ized so easily. As shown by Ralph [93], a globalized Newton method for non-

smooth equation-solving would require solution of a uniform first-order approxi-

mation of the residual function at each iteration. While the first-order Taylor ap-

proximation provides such an approximation for a smooth residual function, any

uniform first-order approximation of a nondifferentiable function must itself be

nondifferentiable, and may therefore be nontrivial to solve.

Bundle methods [63, 67, 70, 71] for local optimization of semismooth functions

maintain a bundle of objective function values and associated generalized deriva-

tives computed at previously visited domain points. At each iteration, this bundle

is used to construct a piecewise affine local approximation of the objective func-

tion; a quadratic program is then constructed and solved to determine a possi-

ble solution. If this solution does not satisfy certain necessary optimality condi-

tions, then its corresponding objective function value and an associated gener-

alized derivative are added to the bundle. Recent combinations [50] of bundle

methods with cutting-plane methods exhibit global convergence for nonconvex

problems.

1.2 Goal

Consider a nonsmooth dynamic process model that is represented as a system of

parametric ordinary differential equations (ODEs), with state variables x and pa-

rameters p:

dx
dt

(t, p) = f(t, p, x(t, p)), x(t0, p) = x0(p).

Classical sensitivity analysis theory for ODEs is presented in [35], and is summa-

rized in Section 2.2. According to this theory, if f and x0 are continuously differ-

entiable, then so is any unique solution x of the above ODE system; moreover,
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given any valid choice of parameters p := p0, the partial derivative mapping

t ↦→ ∂x
∂p (t, p0) evolves as the unique solution of a certain auxiliary linear ODE

system.

This thesis, however, examines the case in which the functions f and x0 are

locally Lipschitz continuous, but are not necessarily differentiable everywhere.

Though a solution mapping x for this ODE system will remain continuously dif-

ferentiable with respect to t in this case, the following example from [55] illustrates

that nondifferentiability in f can lead to nondifferentiability in x with respect to the

parameters p.

Example 1.2.1. Consider the following parametric ODE, with c ∈ R denoting a scalar

parameter:

dx
dt

(t, c) = |x(t, c)|, x(0, c) = c.

By inspection, this ODE is uniquely solved by the mapping:

x : (t, c) ↦→
{

c et, if c ≥ 0,
c e−t, if c < 0,

which is plotted in Figure 1-1. This expression for x shows that, for any fixed t ̸= 0, the

mapping x(t, ·) is continuous but not differentiable at 0.

Given a nonsmooth parametric ODE system, the central goal of this thesis is

the development and implementation of numerical methods for computing gener-

alized derivatives for the solution of this ODE with respect to system parameters,

for use in methods for optimization and equation-solving. The ODE right-hand

side function is assumed to be a finite composition of known simple differentiable

and nondifferentiable functions; beyond this, little a priori knowledge concerning

the behavior of the dynamic system is assumed.
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Figure 1-1: The ODE solution y = x(t, c) described in Example 1.2.1, plotted
against t for various values of c ∈ [−2, 2].

1.3 Existing approaches

Since calculus rules [16, 78] for the well-known generalized derivatives hold only

as inclusions rather than as equations, and since these inclusions may be strict [23],

existing methods to evaluate generalized derivatives for known composite func-

tions are limited. As summarized in [61], however, elements of the Clarke Jacobian

have been computed analytically in certain special cases, for use in semismooth

Newton methods. For example, the primal-dual active set methods of Hinter-

müller et al. [40] compute certain Clarke Jacobian elements for a nonsmooth equa-

tion system representing necessary optimality conditions for a quadratic program.

This approach has been extended and applied successfully in certain large optimal

control problems [39, 106] and data-fitting problems involving L1-norms of func-

tions [17]. Ulbrich [115] extends the underlying theory of semismooth Newton

methods to general function spaces, to solve appropriate reformulations of certain

variational inequalities: again computing the required Clarke Jacobian elements
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analytically. Mordukhovich’s coderivative has also been evaluated successfully

for certain problems [7, 38]. As shown by Griewank [32], the classical forward mode

of automatic differentiation continues to evaluate directional derivatives for a broad

class of composite nondifferentiable functions. For semismooth functions, direc-

tional derivatives are linear combinations of the columns of certain generalized

derivatives [92, Lemma 2.2].

Ralph’s approach [93] for globalizing semismooth Newton methods, outlined

in Section 1.1.2, has been implemented successfully for mixed complementarity prob-

lems in the PATH solver [19, 25]. A recent approach by Griewank [33] applies

to a more general class of nonsmooth residual functions, and involves construct-

ing uniform first-order approximations that are piecewise affine in the sense of

Scholtes [97], using a method reminiscent of the forward mode of automatic dif-

ferentiation.

As is well-known in convex analysis [42], nondifferentiable convex functions

exhibit many useful calculus properties that their nonconvex counterparts lack.

For any convex function on an open set, Clarke’s generalized Jacobian is identical

to the convex subdifferential; when the integrand in a parametric integral is convex

with respect to parameters, the parametric subdifferential of the resulting integral

is exactly the integral of the parametric subdifferential of the integrand [16]. A

similar result holds for solutions of parametric ODE systems with convex right-

hand side functions. Example 5.2.7 in Chapter 5, however, shows that this property

of convex subdifferentials is not retained by Clarke’s generalized Jacobian once

nonconvexity is introduced. If a convex function of parameters is described as

the solution of a parametric ODE with a nonconvex right-hand side function, as

in the relaxation theory of [102], then the subdifferential of the ODE solution is

not necessarily the solution of an auxiliary ODE in which the original nonconvex

right-hand side function is replaced by its Clarke Jacobian. Moreover, these results

do not naturally extend to compositions of well-behaved functions; the difference

or composition of two convex functions, for example, is not necessarily convex.

As a key result in nonsmooth dynamic sensitivity analysis, Clarke [16, Theo-
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rem 7.4.1] provides a sufficient condition for parametric differentiability of solu-

tions of parametric ODEs, which was extended by Yunt [124] to certain hybrid

discrete/continuous systems and differential-algebraic equation systems. Clarke’s

sufficient condition considers the times at which an ODE solution visits domain

points at which the ODE right-hand side function is nondifferentiable. If the set

of all such times has zero Lebesgue measure, then the ODE solution is in fact dif-

ferentiable with respect to its parameters at that particular parameter value, and

its corresponding parametric derivative solves a certain auxiliary linear ODE sys-

tem. As shown in Chapter 6, this sufficient condition for differentiability becomes

tractable to verify numerically for cases in which the ODE right-hand side is a fi-

nite composition of absolute-value functions and analytic functions. Established

sensitivity analysis results for parametric hybrid discrete/continuous systems [30]

also provide sufficient conditions for differentiability. These conditions require the

sequence of visited discrete modes to be independent of the parameters, and the

timing of each discrete event to be a well-defined implicit function of the parame-

ters.

When Clarke’s sufficient condition for differentiability is not satisfied by the

solution of a parametric ODE, Pang and Stewart [88] provide the lone established

result concerning parametric generalized derivatives of this solution. Pang and

Stewart describe linear Newton approximations for such systems as the solutions of

auxiliary linear ODE systems in which the original ODE right-hand side function

is replaced by its parametric Clarke Jacobian. As shown in Example 5.1.1 in Chap-

ter 5, however, linear Newton approximations do not necessarily share the desir-

able properties of the generalized derivatives studied in this thesis. In particular,

linear Newton approximations for continuously differentiable functions or convex

functions do not necessarily reduce to the derivative or the subdifferential, respec-

tively; as a result, sufficient optimality conditions cannot be formulated in terms

of linear Newton approximations.

As noted in [4], for example, it is possible to solve certain nonsmooth problems

by instead solving a sequence of smooth problems which converges in some sense
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to the problem of interest; this approach has no use for generalized derivatives, and

is not pursued further in this thesis. By discretizing the independent variable in an

ODE system, the solution of this system may be approximated as a large equation

system, in which case dedicated sensitivity analysis results for dynamic systems

would not be necessary. This approach, in essence, combines the original ODE

system with a particular ODE solution method used to integrate it. However, with

time discretized a priori, such an approach cannot take advantage of integration

techniques such as adaptive time-stepping with error control, and may not be well-

suited to stiff dynamic systems.

1.4 Contributions and thesis structure

The main contribution of this thesis is the development of the first numerical

method for evaluating generalized derivatives for nonsmooth dynamic systems.

To obtain this method, several theoretical results and incidental numerical meth-

ods were developed that are contributions in their own right. This section briefly

summarizes the contents and contributions of each chapter of this thesis. As noted

earlier, much of the material appearing in this thesis has been published or submit-

ted as the journal articles [54–56, 58–61] and the conference proceedings [53, 57].

Chapter 2 summarizes the established mathematical concepts underlying the

results and methods in the subsequent chapters. These concepts include basic

notions of differentiability, classical results from the theory of ordinary differen-

tial equations, various formulations of generalized derivatives for nonsmooth func-

tions, results concerning functions that are piecewise differentiable in the sense of

Scholtes [97], and a description of the vector forward mode of automatic differen-

tiation. Notational conventions used throughout this thesis are also described.

Chapter 3 develops new relationships between various generalized derivatives,

and is collected from the articles [55, 61]. A new generalized derivative, the LD-

derivative, is developed as a variant of Nesterov’s lexicographic derivative [79] that

satisfies a particularly simple variant of Nesterov’s chain rule. Moreover, lexico-
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graphic derivatives are readily computed from LD-derivatives. It is shown that

lexicographic derivatives, whenever they exist, are elements of the plenary hull

of Clarke’s generalized Jacobian; this result generalizes a similar result by Nes-

terov [79] concerning scalar-valued functions. This result is strengthened for func-

tions that are piecewise differentiable [97]; it is shown that all such functions are

lexicographically smooth, with lexicographic derivatives that are always elements

of the B-subdifferential.

In Chapter 4, the chain rule for LD-derivatives from Chapter 3 is exploited to

yield a vector forward mode of automatic differentiation for lexicographic deriva-

tive evaluation. This chapter is reproduced from [61]. The developed method ap-

plies to finite compositions of lexicographically smooth elemental functions; these

elemental functions can include smooth functions such as the standard arithmetic

and trigonometric functions, piecewise differentiable functions such as the absolute-

value function and the bivariate max{·, ·} function, and other nonsmooth func-

tions such as the Euclidean norm. This method is implemented in C++, and is com-

putationally tractable, accurate, and automatable. This method is, essentially, an

improved version of our first developed method [53, 54] for generalized derivative

evaluation for vector-valued composite nonsmooth functions; this earlier method

is reproduced in Appendix A for reference.

Chapter 5, reproduced from [55], considers parametric ordinary differential

equation (ODE) systems, with right-hand side functions that are lexicographically

smooth with respect to the differential variables. Lexicographic derivatives of a

unique solution of such an ODE with respect to the ODE parameters are described

in terms of the unique solution of a certain auxiliary ODE system, in an analo-

gous manner to the development of classical sensitivity analysis [35, Ch. V] for

ODEs with smooth right-hand side functions. Though the auxiliary ODE is guar-

anteed to have a unique solution, it does not necessarily satisfy the Carathéodory

assumptions [26]. To our knowledge, this is the first description of a useful gener-

alized derivative for a unique solution of a parametric nonsmooth ODE system. As

an intermediate result, a result by Pang and Stewart [88] is generalized to describe
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directional derivatives of the ODE solution with respect to the ODE parameters.

Chapter 6, reproduced from [59], considers the switching behavior of solu-

tions of ODEs whose right-hand side functions are compositions of analytic func-

tions and absolute-value functions. These ODE solutions are found to exhibit non-

Zenoness [29, 48, 108], in that no absolute-value function in the ODE right-hand

side function may switch between its two linear pieces infinitely often in any finite

duration. This non-Zenoness persists even when a discontinuous control input

is included, provided that this control input satisfies a certain left/right-analyticity

property. The obtained non-Zenoness results are used to obtain a tractable formu-

lation of Clarke’s sufficient conditions [16, Theorem 7.4.1] for differentiability of

a unique solution of a parametric ODE with a nondifferentiable right-hand side

function. The obtained sufficient conditions can be tested during numerical inte-

gration of the ODE, and can, in certain cases, be verified to hold a priori.

Chapter 7, reproduced from [58], combines the main results of Chapters 5 and 6,

to obtain a numerical method for evaluating parametric lexicographic derivatives

for the solutions of parametric ODEs with right-hand side functions that are com-

positions of analytic functions and absolute-value functions. Though these lexico-

graphic derivatives were described in terms of a non-Carathéodory ODE in Chap-

ter 5, the non-Zenoness theory of Chapter 6 is exploited to reformulate this non-

Carathéodory ODE as an equivalent hybrid discrete/continuous system. Theoret-

ical properties of this hybrid system are obtained and exploited in the developed

method. This is the first numerical method to evaluate generalized derivatives for

general nonsmooth parametric ODEs.

Chapter 8, reproduced from [56], develops conditions under which local in-

verse and implicit functions are lexicographically smooth, and describes their LD-

derivatives. These results are then combined with the results of Chapter 5 to

present LD-derivatives for the hybrid discrete/continuous systems considered by

Galán et al. [30]. Unlike the development in [30], however, the functions describ-

ing a solution’s continuous evolution and discrete transitions are now permitted to

be merely lexicographically smooth rather than continuously differentiable. With
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this relaxation, even certain hybrid systems with varying discrete mode sequences

can be shown to have solutions that are lexicographically smooth with respect to

parameters. Moreover, the LD-derivatives of these solutions can be described.

In a departure from the chapters described above, Chapter 9 eliminates a par-

ticular source of nondifferentiability, and is reproduced from [60]. A variant of

McCormick’s scheme [74] for generating convex underestimators for composite

functions is developed and implemented, in which the obtained convex relaxations

are guaranteed to be twice-continuously differentiable, without sacrificing any of

the useful properties of McCormick’s original relaxation scheme. The modified

relaxations can still be computed cheaply and accurately, and converge rapidly to

the function they relax as the underlying parameter interval is reduced in width.

Moreover, gradients can be obtained for these relaxations using automatic differen-

tiation. These relaxations and their gradients are evaluated using a modification of

the C++ library MC++ [15]. While McCormick’s original relaxations are not guar-

anteed to be differentiable, the modified relaxations are amenable to treatment by

numerical methods developed for twice-continuously differentiable functions.
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Chapter 2

Mathematical background

This section describes relevant established mathematical concepts underlying the

material in this thesis, and is largely reproduced from the background sections in

the articles [54–56, 58, 59, 61]. This material covers concepts regarding ordinary

differential equations, generalized derivatives for nonsmooth functions, Scholtes’

piecewise differentiable functions [97], and automatic differentiation. Notational

conventions used in this thesis are also described.

In addition to the material presented in this section, Chapter 8 presents further

background information concerning hybrid discrete/continuous systems, and Chap-

ter 9 presents further background information concerning McCormick’s convex

relaxation scheme [74] and the generalized McCormick theory of [100, 104].

2.1 Notation and basic concepts

Notational conventions used throughout this article are as follows; this section

is largely reproduced from [61]. The vector space Rn is endowed with the usual

Euclidean norm ‖ · ‖ and inner product ⟨·, ·⟩, and the vector space Rm×n of matrices

is endowed with the corresponding induced norm. The column space of a matrix

M ∈ Rn×p is defined as the set ℛ(M) := {Mv : v ∈ Rp} ⊂ Rn. Elements of

R and scalar-valued functions are denoted as lowercase letters (e.g. m), vectors in

Rn and vector-valued functions are denoted as lowercase boldface letters (e.g. m),
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matrices in Rn×m are denoted as uppercase boldface letters (e.g. M), and sets are

denoted as uppercase letters (e.g. M). For notational compactness, a well-defined

vertical block matrix (or vector):

[
A
B

]
will frequently be denoted as (A, B). The ith component of a vector v is denoted as

vi. The kth column of a matrix M is denoted with a parenthetical subscript as m(k),

whose ith component is m(k),i; a similar parenthetical subscript indicates a vector

evaluated during the kth iteration of an algorithm, or the kth element of a sequence

of vectors. Parenthetical superscripts (e.g. f(k)) are reserved for lexicographic dif-

ferentiation, which is described in Section 2.3.3. 0 denotes a zero matrix or vector,

and I denotes a square identity matrix. When the dimensions of 0 or I are un-

clear from the context, these will be noted in a subscript as, for example, 0m ∈ Rm,

0m×n ∈ Rm×n, or In×n ∈ Rn×n. The columns of In×n are the unit coordinate vectors,

and are denoted e(1), . . . , e(n).

In the inductive proofs in this thesis, it will be convenient to refer to an empty

matrix ∅n×0 of real numbers, with n rows but no columns. In a further abuse of

notation, the set {∅n×0} will be denoted Rn×0. No operations will be performed

on ∅n×0 beyond concatenation, which proceeds as expected:

[
A ∅n×0

]
=
[
∅n×0 A

]
:= A, ∀A ∈ Rn×m, ∀m ∈N∪ {0}.

Given a collection of vectors v(1), v(2), . . . , v(p) ∈ Rn,
[
v(1) · · · v(j)

]
∈ Rn×j will

denote ∅n×0 when j = 0. Similarly, it will be convenient at times to refer to an

empty vector ∅0 ∈ R0 of real numbers, with no components.

If a function f : X → Y satisfies some local property P at each x ∈ X, then f will

be said simply to satisfy P, without reference to any particular x ∈ X.

The convex hull, linear hull, closure, and interior of a set S ⊂ Rn are denoted as

conv S, span S, cl(S), and int(S), respectively. The boundary of S ⊂ Rn is the set

cl(S)∖int(S). If S ⊂ Rn is nonempty, then the convex cone generated by S is the set
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cone S :=

{
p

∑
i=1

λix(i) : p ∈N, x(i) ∈ S, λi ≥ 0, ∀i ∈ {1, . . . , p}
}
⊂ Rn.

If S is finite, then cone S is a polyhedral cone, and |S| denotes the number of elements

of S. A conical subdivision of Rn is a finite collection Λ of distinct polyhedral cones

in Rn with nonempty interiors, such that

⋃
C∈Λ

C = Rn, and int(C1) ∩ int(C2) = ∅, ∀C1, C2 ∈ Λ s.t. C1 ̸= C2.

2.1.1 Differentiability and directional differentiability

This section presents basic notions of differentiability of a function f : X ⊂ Rn →

Rm at a domain point x ∈ X.

Definition 2.1.1. Consider an open set X ⊂ Rn, some x ∈ X, and a function f : X →

Rm. The following limit, if it exists, is the directional derivative of f at x in the direction

d ∈ Rn:

f′(x; d) := lim
t→0+

f(x + td)− f(x)
t

.

If f′(x; d) exists in Rm for each d ∈ Rn, then f is directionally differentiable at x.

As summarized by Scholtes [97], if f : X ⊂ Rn → Rm is directionally differen-

tiable, then f′(x; ·) is positively homogeneous for each x ∈ X. If, in addition, f is

locally Lipschitz continuous on its domain, then

lim
h→0

f(x + h)− (f(x) + f′(x; h))
‖h‖ = 0, ∀x ∈ X; (2.1)

thus, the mapping h ↦→ f(x) + f′(x; h) approximates f well near x. In this case,

for any fixed x ∈ X, the function f′(x; ·) is Lipschitz continuous on Rn. Functions

that are both locally Lipschitz continuous and directionally differentiable satisfy

the following useful chain rule.
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Proposition 2.1.2 (Theorems 3.1.1 and 3.1.2 in [97]). Consider open sets X ⊂ Rn and

Z ⊂ Rp, and functions g : Z → X and f : X → Rm that are locally Lipschitz continuous

and directionally differentiable at z ∈ Z and g(z), respectively. The composite function

f ∘ g is then also locally Lipschitz continuous and directionally differentiable at z, and

satisfies

[f ∘ g]′(z; d) = f′(g(z); g′(z; d)), ∀d ∈ Rp.

Definition 2.1.3. Consider an open set X ⊂ Rn, some x ∈ X, and a function f : X →

Rm. The function f is (Fréchet) differentiable at x ∈ X if there exists a matrix A ∈

Rm×n that satisfies:

0 = lim
h→0

f(x + h)− (f(x) + Ah)
‖h‖ .

In this case, A is uniquely described by the above equation, and is called the (Fréchet)

derivative or Jacobian matrix Jf(x) ∈ Rm×n. If m = 1, in which case f ≡ f is scalar-

valued, then the gradient of f at x is ∇ f (x) := (J f (x))T ∈ Rn.

The function f is continuously differentiable (𝒞1) at x if there exists a neighborhood

N ⊂ X of x for which f is differentiable at each y ∈ N, and for which the Jacobian mapping

y ↦→ Jf(y) is continuous at x.

Standard notation for partial derivatives is used; for example, given a mapping

(x, z) ↦→ g(x, z) that is differentiable at (x̄, z̄), the partial derivative ∂g
∂x (x̄, z̄) denotes

the derivative J[g(·, z̄)](x̄).

Any 𝒞1 function is also locally Lipschitz continuous. If f : X ⊂ Rn → Rm is

differentiable at x ∈ X, then f is also directionally differentiable at x, with

f′(x; d) = Jf(x) d, ∀d ∈ Rn.

As considered in [16, 82, 83], for example, a function f : X ⊂ Rn → Rm is

Gâteaux differentiable at x ∈ X if the directional derivative mapping d ↦→ f′(x; d)

is well-defined and linear on Rn. If f is locally Lipschitz continuous, however,

then Fréchet differentiability of f at x is equivalent to Gâteaux differentiability of
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f at x [16]. This thesis is concerned primarily with locally Lipschitz continuous

functions; there will be no need to consider any distinction between Gâteaux and

Fréchet differentiability.

2.1.2 Analytic functions

The class of analytic functions is described at length in [66], and is defined below.

Definition 2.1.4 (adapted from Definition 1.1.5 in [66]). Given an open set T ⊂ R, a

scalar-valued function f is (real-)analytic (𝒞ω) at t* ∈ T if there exists a neighborhood

N ⊂ T of t* and constants {ak}∞
k=0 in R for which the power series

∞

∑
k=0

ak(t− t*)k

converges to f (t) for each t ∈ N. A function f : T → Rm is analytic at t* if each of its

component functions f1, . . . , fm : T → R is analytic at t*.

Observe that the basic arithmetic operations, trigonometric functions, power

functions, and logarithmic functions are each 𝒞ω on the interiors of their respective

domains. If a function f is 𝒞ω at t*, then f is also 𝒞ω on some neighborhood of

t* [66, Corollary 1.2.4]. A well-defined composition of two 𝒞ω functions is itself

𝒞ω [66, Proposition 2.2.8]. The following elementary property of 𝒞ω functions will

be exploited in Chapters 6 and 7.

Proposition 2.1.5 (adapted from Corollary 1.2.6 in [66]). Consider an open set T ⊂ R

and a 𝒞ω function f : T → R. If there exists a nonempty open set U ⊂ T for which

f (t) = 0, ∀t ∈ U,

then f is the zero mapping on T.

2.1.3 Set-valued mappings

As described in [3, 23], a set-valued mapping F : Y⇒ Z is a function that maps each

element of Y to a subset of Z. Suppose that Y ⊂ Rn is open and Z = Rm. In this
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case, f is upper-semicontinuous at y ∈ Y if, for each ε > 0, there exists δ > 0 such

that whenever ‖z‖ < δ,

F(y + z) ⊂ F(y) + {v ∈ Rm : ‖v‖ < ε}.

If F is upper-semicontinuous at y ∈ Y, then given any convergent sequences

{y(i)}i∈N in Y and {z(i)}i∈N in Rm such that limi→∞ y(i) = y, limi→∞ z(i) = z,

and z(i) ∈ F(y(i)) for each i ∈N, it follows that z ∈ F(y).

2.2 Ordinary differential equations

This section summarizes relevant results concerning systems of ordinary differen-

tial equations (ODEs). Familiarity with ODEs is assumed; for further details, the

reader is pointed to the texts [18, 26, 35].

Consider the following ODE system, whose right-hand side g : R × Rnp ×

Rn → Rn and initial condition depend directly on parameters p.

dz
dt

(t, p) = g(t, p, z(t, p)), z(t0, p) = z0(p). (2.2)

Throughout this thesis, the solution of such an ODE at p := p0 refers to a solution

in the Carathéodory sense, as summarized in [26]. Thus, a mapping z̃(·, p0) solves

the above ODE at p := p0 on [t0, t f ] if and only if both z̃(t0, p0) = z0(p0) and

dz̃
dt

(t, p0) = g(t, p0, z̃(t, p0))

for almost every t ∈ [t0, t f ] with respect to Lebesgue measure. Equivalently, z̃(·, p0)

solves the above ODE at p := p0 on [t0, t f ] if and only if

z̃(t) = z0(p0) +
∫ t

t0

g(s, p0, z̃(s, p0)) ds, ∀t ∈ [t0, t f ].

Here, and throughout this thesis, the integral is understood to be a Lebesgue inte-

gral.

Conditions for the local existence and uniqueness of ODE solutions are pre-

sented in [18, 26, 35]. In particular, existence and uniqueness of a solution do not
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require the ODE right-hand side g to be continuous with respect to its t argument.

Neglecting the influence of the parameter p, consider the simplified ODE:

dy
dt

(t) = h(t, y(t)), y(t0) = y0. (2.3)

Suppose that h is defined on some open superset D of (t0, y0), and satisfies all

of the following conditions, as presented in [26]:

∙ h(t, ·) is well-defined and continuous for almost all t,

∙ h(·,𝜂) is measurable for each 𝜂, and

∙ there exists an integrable function mh for which, for all 𝜂, ‖h(t,𝜂)‖ ≤ mh(t).

Under these Carathéodory existence conditions, there exists a solution y of the ODE (2.3)

on some neighborhood of t0.

Next, suppose that there exists an integrable function kh for which, for all t, 𝜂A,

and 𝜂B for which (t,𝜂A), (t,𝜂B) ∈ D,

‖h(t,𝜂A)− h(t,𝜂B)‖ ≤ kh(t) ‖𝜂A − 𝜂B‖.

Under this condition, any solution of (2.3) is unique [26]. When this condition is

combined with the Carathéodory existence conditions, these conditions will to-

gether be referred to as the Carathéodory existence and uniqueness conditions.

In the results in this thesis concerning ODEs, it will often be assumed explicitly

that an ODE solution exists on a given duration [t0, t f ]. Under the Carathéodory

existence and uniquenss assumptions, this solution is unique, and can be extended

to yield a unique solution of the ODE on some open superset of [t0, t f ] [18, 35].

Returning now to the parametric ODE (2.2), suppose that the behavior of the

state variables z with respect to parameters p is under investigation. Roughly, if

the right-hand side function g is well-behaved with respect to its first and sec-

ond arguments, then these arguments can be appended to z as extra ODE state

variables: the first with a time-derivative of unity, and the second with a time-

derivative of 0np . Moreover, the influence of the initial-condition mapping z0 may
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be handled a posteriori using an appropriate chain rule. With these modifications in

mind, it suffices for our purposes to consider the simpler parametric ODE system:

dx
dt

(t, c) = f(x(t, c)), x(t0, c) = c, (2.4)

in which the parameter is the initial condition c. In general, this modification sim-

plifies the notation and presentation of relevant results in this thesis considerably.

In the theoretical development in Chapter 5, however, it will be convenient to per-

mit g to be discontinuous with respect to t, in which case any direct dependence of

g with respect to t will not be ascribed to an augmented state variable instead. Sev-

eral results in Chapter 6 will also consider situations in which g is discontinuous

with respect to t.

2.2.1 Classical sensitivity analysis

Sensitivity analysis theory for parametric ODEs with 𝒞1 right-hand side functions

is well-established, and is described, for example, by Hartman [35, Ch. V]. This

classical theory serves as a useful analog of the theory developed in this thesis;

any results concerning parametric generalized derivatives for ODEs with nondif-

ferentiable right-hand side functions should, intuitively, reduce to the classical case

when the right-hand side is 𝒞1.

As brief overview of this classical sensitivity theory, consider the following

parametric ODE:

dx
dt

(t, c) = f(t, x(t, c)), x(t0, c) = c, (2.5)

with a 𝒞1 right-hand side function f. Suppose that when c := c0, there exists a

unique ODE solution x(·, c0) on [t0, t f ]. Then, there also exists a unique solution

x(·, c) on [t0, t f ] for each c in some neighborhood of c0. Moreover, for each fixed

t ∈ [t0, t f ], x(t, ·) is 𝒞1 at c0; the partial derivative mapping t ↦→ ∂x
∂c (t, c0) is the

unique solution A on [t0, t f ] of the following linear ODE:
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dA
dt

(t) =
∂f
∂x

(t, x(t, c))A(t), A(t0) = I.

This latter sensitivity ODE can be solved simultaneously with the original ODE

in x to evaluate the partial derivative ∂x
∂c (t, c0). Established implicit integration

methods [24, 73] perform this simultaneous integration accurately and efficiently,

by exploiting an inherent redundancy and sparsity in the derivatives used in their

corrector iterations.

The following result by Clarke [16] provides a sufficient condition for differen-

tiability of the solution x of the ODE (2.5) with respect to the initial condition c,

even if the right-hand side function f is not differentiable everywhere.

Proposition 2.2.1 (adapted from Theorem 7.4.1 in [16]). Suppose that the right-hand

side function f of the ODE (2.5) is locally Lipschitz continuous, and that there exists a

unique solution x(·, c0) of (2.5) on [t0, t f ]. Let S be the set on which f is differentiable. If

the set

{t ∈ [t0, t f ] : (t, x(t, c0)) /∈ S}

has zero Lebesgue measure, then x(t*, ·) is differentiable at c0 for each t* ∈ [t0, t f ]. More-

over, ∂x
∂c (t

*, c0) = A(t*), where A denotes the unique solution of the linear ODE:

dA
dt

(t) =
{

∂f
∂x (t, x(t, c0))A(t), if (t, x(t, c0)) ∈ S,
0, if (t, x(t, c0)) /∈ S.

2.3 Generalized derivatives

Several concepts of generalized derivatives have been developed, as analogs of

the Fréchet derivative for functions that are locally Lipschitz continuous but not

everywhere differentiable. The pertinent generalized derivatives are summarized

in this section. This section is largely reproduced from the articles [54, 55, 61].
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2.3.1 Clarke’s generalized Jacobian and the B-subdifferential

Clarke’s generalized Jacobian [16] and the associated B-subdifferential [92] are

used in established numerical methods for nonsmooth problems, and are defined

as follows.

Definition 2.3.1 (from [16] and [91]). Given an open set X ⊂ Rn and a locally Lipschitz

continuous function f : X → Rm, let S ⊂ X be the set on which f is differentiable. The

B-subdifferential of f at x ∈ X is defined as

∂Bf(x) :=
{

H ∈ Rm×n : H = lim
j→∞

Jf(x(j)), x = lim
j→∞

x(j), x(i) ∈ S, ∀i ∈N

}
.

Clarke’s generalized Jacobian of f at x is ∂f(x) := conv ∂Bf(x).

In the above definition, for any x ∈ X, the sets ∂Bf(x) and ∂f(x) are necessarily

nonempty and compact, and ∂f(x) is convex. If f is differentiable at x, then Jf(x) ∈

∂f(x). If f is 𝒞1 at x, then {Jf(x)} = ∂Bf(x) = ∂f(x). As suggested by the notation

of the Clarke Jacobian, if f ≡ f is both scalar-valued and convex, then ∂ f (x) is the

set of transposed subgradients of f at x.

The Clarke Jacobian satisfies classical calculus rules as inclusions instead of

equations [16, Sections 2.3, 2.6, and 2.7], and exhibits several useful properties,

including satisfaction of the following mean value theorem, inverse function the-

orem, and implicit function theorem [16]. Clarke’s mean value theorem is repro-

duced below.

Proposition 2.3.2 (Proposition 2.6.5 in [16]). Consider an open, convex set X ⊂ Rn

and a locally Lipschitz continuous function f : X → Rm. For each x, 𝜉 ∈ X,

f(x)− f(𝜉) ∈ conv {H(x− 𝜉) : H ∈ ∂f(z), z = λx + (1− λ)𝜉, λ ∈ [0, 1]}.

Useful optimality conditions can be expressed in terms of the Clarke Jaco-

bian [16, Theorem 6.1.1]. Elements of the Clarke Jacobian are used in semismooth
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Newton methods for equation solving [92], and in bundle methods for local opti-

mization [67].

The set-valued mapping x ↦→ ∂f(x) is upper-semicontinuous, as is the mapping

x ↦→ ∂Bf(x) [23].

2.3.2 Plenary Jacobians

Sweetser [109] introduced the notion of plenary sets and hulls; combined with the

Clarke Jacobian, these provide a generalized derivative that is a superset of the

Clarke Jacobian, but does not sacrifice any of the latter’s useful properties.

Definition 2.3.3 (from [109]). A set A ⊂ Rm×n is plenary if

A = {H ∈ Rm×n : ∀d ∈ Rn, ∃A ∈ A s.t. Hd = Ad}.

The plenary hull of a set S ⊂ Rm×n is the intersection of all plenary supersets of S in

Rm×n, and is denoted plen S ⊂ Rm×n.

It is possible for plen S to be a strict superset of S, even if S is both convex and

compact. The intersection of any collection of plenary sets is itself plenary [109];

thus, the plenary hull of any set of matrices is itself plenary. Given a set S ⊂ Rm×n

with either n = 1, m = 1, or both, S is itself plenary, and so plen S = S.

Definition 2.3.4 (adapted from [109]). Given an open set X ⊂ Rn and a function

f : X → Rm, the plenary Jacobian ∂Pf(x) of f at x ∈ X is the plenary hull of the Clarke

Jacobian ∂f(x). Equivalently,

∂Pf(x) := {H ∈ Rm×n : ∀d ∈ Rn, ∃A ∈ ∂f(x) s.t. Hd = Ad}.

The plenary Jacobian ∂Pf(x) is convex, compact, and not empty [46]. The equiv-

alence mentioned in the above definition follows immediately from (2.6) and [109,

Lemma 3.1], since ∂Pf(x) is compact and ∂f(x) is both convex and compact. This

second characterization of the plenary Jacobian will be used in Chapter 3 to deter-

mine whether particular matrices are elements of ∂Pf(x).
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The plenary Jacobian has been investigated in [41, 46, 109, 123], and satisfies:

∂f(x) ⊂ ∂Pf(x) ⊂
m

∏
i=1

∂ fi(x), (2.6)

where either or both of the above inclusions may be strict. (The rightmost set

above denotes the set of matrices M whose ith row is an element of ∂ fi(x), for

every i ∈ {1, . . . , m}.) When min{m, n} = 1, however, ∂f(x) = ∂Pf(x). Since the

objective functions in nonlinear programs (NLPs) are scalar-valued, it follows that

bundle methods for finding local minima for nonsmooth NLPs [63, 67] are unaffected

if the plenary Jacobian is used in place of Clarke’s generalized Jacobian.

Combining Definition 2.3.4 with the inclusion ∂f(x) ⊂ ∂Pf(x) yields:

{H e ∈ Rm : H ∈ ∂Pf(x)} = {H e ∈ Rm : H ∈ ∂f(x)}, ∀e ∈ Rn. (2.7)

The following proposition shows that if m = n, and if certain nonsingularity

assumptions apply, then a similar relationship holds between images of inverses

of elements of ∂f(x) and ∂Pf(x). The condition that ∂f(x) does not contain any

singular matrices is a key assumption in Clarke’s inverse function theorem and

implicit function theorem for locally Lipschitz continuous functions [16].

Proposition 2.3.5. Given an open set X ⊂ Rn and a locally Lipschitz continuous function

f : X → Rn, suppose that for some x ∈ X, ∂f(x) does not contain any singular matrices.

Then ∂Pf(x) does not contain any singular matrices either, and

{H−1e ∈ Rn : H ∈ ∂Pf(x)} = {H−1e ∈ Rn : H ∈ ∂f(x)} ∀e ∈ Rn.

Proof. Since ∂f(x) does not contain any singular matrices, [123, Proposition 3] im-

plies that ∂Pf(x) does not contain any singular matrices either. Since ∂f(x) ⊂

∂Pf(x), the inclusion {H−1e ∈ Rn : H ∈ ∂Pf(x)} ⊃ {H−1e ∈ Rn : H ∈ ∂f(x)}

is trivial for each e ∈ Rn. To prove the reverse inclusion, choose any e ∈ Rn and

any A ∈ ∂Pf(x). This implies that A is nonsingular. By (2.7),
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e = A(A−1e) ∈ {H(A−1e) ∈ Rn : H ∈ ∂Pf(x)} = {H(A−1e) ∈ Rn : H ∈ ∂f(x)}.

Thus, there exists B ∈ ∂f(x) for which e = B(A−1e). By the hypotheses of the

proposition, B is nonsingular, and so A−1e = B−1e ∈ {H−1 e ∈ Rn : H ∈ ∂f(x)}.

It follows that if the plenary Jacobian is used in place of Clarke’s generalized Ja-

cobian in a semismooth Newton method [92], then any sequence of iterates gener-

ated by the altered method can necessarily be generated using the original method.

Thus, convergence results for the original method remain applicable when the ple-

nary Jacobian is used in place of the Clarke Jacobian. Similarly, it follows from (2.7)

that if the plenary Jacobian is used in place of the generalized Jacobian in Clarke’s

mean value theorem [16, Proposition 2.6.5], then the result is unaffected. Since

∂Pf(x) contains a singular matrix if and only if ∂f(x) contains a singular matrix

[123], Clarke’s inverse function theorem [16, Theorem 7.1.1] for locally Lipschitz

continuous functions is also unaffected if the generalized Jacobian is replaced with

the plenary Jacobian.

As a set-valued mapping on X, ∂Pf is upper-semicontinuous [123]. Thus, (2.7),

[23, Definition 7.2.2], and [23, Definition 7.5.13] imply that ∂Pf is a linear Newton

approximation [23] of f at any x ∈ X. In light of the previous paragraph, ∂Pf is in

some sense as good a linear Newton approximation of f as ∂f. Similarly, it follows

from (2.7) and Proposition 2.3.5 that the plenary Jacobian is a Newton map [64]

satisfying the invertibility conditions in [64, Section 10.1] if and only if the Clarke

Jacobian is as well.

2.3.3 Lexicographic derivatives

The theory of lexicographic differentiation was developed by Nesterov [79], and is

summarized in this section. This thesis presents new theoretical results concerning

lexicographic derivatives and new numerical methods for computing them.
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Definition 2.3.6. Given an open set X ⊂ Rn and a locally Lipschitz continuous function

f : X → Rm, f is lexicographically smooth (L-smooth) at x ∈ X if it is directionally

differentiable at x and if, for any p ∈ N and M ∈ Rn×p, the following higher-order

directional derivatives are well-defined:

f(0)x,M : Rn → Rm : h ↦→ f′(x; h),

f(1)x,M : Rn → Rm : h ↦→ [f(0)x,M]′(m(1); h),

f(2)x,M : Rn → Rm : h ↦→ [f(1)x,M]′(m(2); h),
...

f(p)
x,M : Rn → Rm : h ↦→ [f(p−1)

x,M ]′(m(p); h).

The following lemma provides basic properties of higher-order directional deriva-

tives.

Lemma 2.3.7. Given an open set X ⊂ Rn, a function f : X → Rn that is L-smooth

at x ∈ X, some p ∈ N, and some M =
[
m(1) · · · m(p)

]
∈ Rn×p, the following

properties are satisfied:

1. f(j)
x,M(τd) = τf(j)

x,M(d), ∀τ ≥ 0, ∀d ∈ Rn, ∀j ∈ {0, 1, . . . , p},

2. f(j)
x,M(d) = f(j+1)

x,M (d) = · · · = f(p)
x,M(d), ∀d ∈ span {m(1), . . . , m(j)}, ∀j ∈

{1, . . . , p},

3. f(j)
x,M is linear on span {m(1), . . . , m(j)} for each j ∈ {1, . . . , p},

4. f(j−1)
x,M (m(j)) = f(j)

x,M(m(j)) = · · · = f(p)
x,M(m(j)), ∀j ∈ {1, . . . , p},

5. With M̃ :=
[
m(1) · · · m(j) A

]
for any particular j ∈ {0, 1, . . . , p}, q ∈ N ∪

{0}, and A ∈ Rn×q, f(j)
x,M(d) = f(j)

x,M̃(d) for each d ∈ Rn.

Proof. Properties 1, 2, and 3 are demonstrated in [79, Lemma 3]. To obtain the

leftmost equation in Property 4, combining the definition of f(j)
x,M with the positive

homogeneity of f(j−1)
x,M implied by Property 1 yields
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f(j)
x,M(m(j)) = lim

τ→0+

(1 + τ)f(j−1)
x,M (m(j))− f(j−1)

x,M (m(j))

τ
= f(j−1)

x,M (m(j)).

The remaining equations in Property 4 follow immediately from Property 2. Prop-

erty 5 follows from the construction of the mappings f(j)
x,M, noting that for each

d ∈ Rn, f(j)
x,M(d) is independent of the rightmost (p− j) columns of M.

Remark 2.3.8. It follows from Property 5 of Lemma 2.3.7 that for any d ∈ Rn, f(0)x,∅n×0
(d)

is well-defined, and equals f′(x; d).

The class of L-smooth functions is closed under composition, and includes all

𝒞1 functions and all convex functions, among others. If the columns of M ∈ Rn×p

span Rn, f(p)
x,thenM is guaranteed to be linear [79], motivating the following defini-

tion.

Definition 2.3.9. Consider an open set X ⊂ Rn and a function f : X → Rm that is

L-smooth at x ∈ X. For any nonsingular square matrix M ∈ Rn×n, the lexicographic

derivative of f at x in the directions M is JLf(x; M) := Jf(n)x,M(0) ∈ Rm×n. The lexico-

graphic subdifferential of f at x is then

∂Lf(x) := {JLf(x; N) : N ∈ Rn×n, det N ̸= 0} ⊂ Rm×n.

Observe that two functions with the same directional derivatives at x ∈ X will

have the same lexicographic derivatives at x. If f is differentiable at x, then f is also

L-smooth at x; for all M ∈ Rn×p and d ∈ Rn,

f(0)x,M(d) = f(1)x,M(d) = . . . = f(p)
x,M(d) = Jf(x) d,

and so ∂Lf(x) = {Jf(x)} in this case. Given a scalar-valued L-smooth function f ,

the inclusion ∂L f (x) ⊂ ∂ f (x) was demonstrated in [79].

Unlike the Clarke Jacobian and the B-subdifferential, the lexicographic deriva-

tive satisfies sharp calculus rules. In an abuse of notation, for any M ∈ Rn×p with

p ∈ N, let J̃Lf(x; M) ∈ Rm×n denote any particular matrix for which f(p)
x,M(d) =
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J̃Lf(x; M) d for each d ∈ ℛ(M). Property 3 of Lemma 2.3.7 shows that at least one

such matrix exists.

According to Nesterov’s chain rule for lexicographic derivatives [79, Theorem 5],

if X ⊂ Rn and Y ⊂ Rm are open, and if functions g : X → Y and f : Y → Rq are lex-

icographically smooth, then the composition f ∘ g is also lexicographically smooth.

Moreover, for any nonsingular matrix M ∈ Rn×n and any x ∈ X,

JL[f ∘ g](x; M) = J̃Lf(g(x); JLg(x; M)M) JLg(x; M). (2.8)

Observe that the matrix JLg(x; M)M in the above expression may be rectangular,

and that its columns do not necessarily span Rm. This chain rule offers a means of

evaluating a lexicographic derivative JLf(x; M) for a composite function f, without

explicitly constructing the higher-order directional derivatives f(j)
x,M. In Chapter 3,

this chain rule will be recast in a more tractable form.

Example 3.3.7 shows that, unlike the Clarke Jacobian and the B-subdifferential,

the lexicographic subdifferential is not upper-semicontinuous as a set-valued map-

ping.

2.4 Piecewise differentiable functions

As formalized by Scholtes [97], piecewise differentiable functions represent a broad

class of functions that need not be differentiable everywhere, but nevertheless sat-

isfy useful properties. The material in this section is largely reproduced from [54,

56, 61]. Piecewise differentiable functions are defined as follows.

Definition 2.4.1 (from [97]). Given an open set X ⊂ Rn, some x ∈ X, and a function

f : X → Rm, f is piecewise differentiable (𝒫𝒞1) at x if there exists a neighborhood

N ⊂ X of x and a finite collection ℱf(x) of 𝒞1 selection functions mapping N into Rm,

for which f is continuous on N, and

f(y) ∈ {𝜑(y) : 𝜑 ∈ ℱf(x)}, ∀y ∈ N.

If, in addition, each selection function 𝜑 ∈ ℱf(x) is linear, then f is piecewise linear

46



(𝒫ℒ) at x. If each selection function 𝜑 ∈ ℱf(x) is affine, then f is piecewise affine (𝒫𝒜)

at x.

Proposition 2.4.2 (Proposition 4.1.1 in [97]). Given an open set X ⊂ Rn, a function

f : X → Rm that is 𝒫𝒞1 at x ∈ X, and a finite collection ℱf(x) of 𝒞1 selection functions

for f around x, there exists a neighborhood N ⊂ X of x and a collection ℰf(x) ⊂ ℱf(x) of

essentially active selection functions for f around x, for which both

x ∈ cl(int({y ∈ N : f(y) = 𝜑(y)})) , ∀𝜑 ∈ ℰf(x),

and

f(y) ∈ {𝜑(y) : 𝜑 ∈ ℰf(x)}, ∀y ∈ N.

As described by Scholtes [97], 𝒫𝒞1 functions exhibit several useful properties:

they are locally Lipschitz continuous [97, Corollary 4.1.1] and directionally differ-

entiable [97, Proposition 4.1.3] on their domains, and the class of 𝒫𝒞1 functions is

closed under composition. If f is 𝒫𝒞1 at x, then the directional derivative mapping

d ↦→ f′(x; d) is 𝒫ℒ on Rn [97, Proposition 4.1.3]. Moreover, the following propo-

sition relates the generalized derivatives of a 𝒫𝒞1 function to its essentially active

selection functions.

Proposition 2.4.3. Consider an open set X ⊂ Rn, a function f : X → Rm that is 𝒫𝒞1

at x ∈ X, and any finite collection ℰf(x) of essentially active 𝒞1 selection functions for f

around x. Then:

1. for each d ∈ Rn, f′(x; d) ∈ {J𝜑(x) d : 𝜑 ∈ ℰf(x)}, and

2. ∂Bf(x) = {J𝜑(x) : 𝜑 ∈ ℰf(x)}.

Proof. The property concerning f′(x; d) is provided by [97, Proposition 4.1.3], and

the property concerning ∂Bf(x) follows from the proof of [97, Proposition 4.3.1].

Kojima and Shindo describe a Newton method [65, Algorithm EN] for solving

equation systems with 𝒫𝒞1 residual functions, using B-subdifferential elements at

47



each iteration. This method exhibits local Q-quadratic convergence, provided that

its nonsingularity assumptions are met.

The B-subdifferential of a 𝒫𝒞1 function f : X ⊂ Rn → Rm also satisfies the

inclusion ∂B[f′(x; ·)](0) ⊂ ∂Bf(x) for each x ∈ X [85, Lemma 2]. It will be shown in

Chapter 3 that all 𝒫𝒞1 functions are L-smooth, and that their lexicographic deriva-

tives are always elements of their B-subdifferentials.

Useful characterizations of the inverses of invertible 𝒫𝒞1 functions are pro-

vided in [94], and will be exploited in Chapter 8.

2.5 Factorable functions and automatic differentiation

The vector forward mode of automatic differentiation (AD) is a computationally effi-

cient procedure for evaluating derivatives of finite compositions of simple elemen-

tal functions, as described in [34]. Such composite functions are formalized below.

Definition 2.5.1. Given an open set X ⊂ Rn, a function f : X → Rm is factorable if

there exist:

∙ an elemental library ℒ of functions, with each 𝜓 ∈ ℒ mapping some open set

X𝜓 ⊂ Rn𝜓 into Rm𝜓 ,

∙ a number ` ∈N,

∙ elemental functions 𝜓(j) ∈ ℒ for each j ∈ {1, . . . , `}, and

∙ a binary relation ≺ such that (i ≺ j) ∈ {true, false} for each pair (i, j) ∈

{1, . . . , `}2 with i < j,

such that f can be represented as follows. For any matrix (or vector) quantity A(j) defined

for each j ∈ {1, . . . , `} such that all A(j)s have the same number of columns, let [A(i)]i≺j

denote the matrix (or vector) obtained by stacking the elements of {A(i) : i ≺ j} vertically

in order of increasing i. Then, for any x ∈ X, f(x) can be evaluated according to the

following factored representation of f:
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Set v(0) ← x
for j = 1 to ` do

Set u(j) ← [v(i)]i≺j
Set v(j) ← 𝜓(j)(u(j))

end for
Set f(x)← v(`).

The following example illustrates the usefulness of including coordinate pro-

jection functions in the employed elemental library ℒ.

Example 2.5.2. Consider the function f : R2 → R : (x1, x2) ↦→ sin x2. Defining the

coordinate projection mapping π2 : (x1, x2) ↦→ x2, a factored representation for f is as

follows:

Set v(0) ← (x1, x2)
Set u(1) ← v(0)
Set v(1) ← π2(u(1))
Set u(2) ← v(1)
Set v(2) ← sin u(2)
Set f (x1, x2)← v(2).

The intermediate variables u(j) and v(j) in a factored representation may be

thought of as functions of x; for notational convenience, however, they will not be

represented as u(j)(x) or v(j)(x). For each x ∈ X, u(j) ∈ X𝜓(j)
must hold. Factored

representations are clearly not unique. Unless otherwise noted, any mentioned

factorable function will be considered to have the generic factored representation

given in Definition 2.5.1.

The following subclasses of factorable functions are amenable to certain vari-

eties of AD. Another type of factorable function will be considered in Chapter 9.

Definition 2.5.3. A factorable function f is 𝒞1-factorable if the elemental library ℒ con-

tains only 𝒞1 functions whose Jacobians can be computed.

AD is conventionally applied to 𝒞1-factorable functions. A 𝒞1-factorable func-

tion is evidently 𝒞1 itself; Algorithm 1, adapted from [34], is the vector forward AD

mode for evaluating its Jacobian, postmultiplied by a given matrix.
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Algorithm 1 Computes f(x) and Jf(x)M for a 𝒞1-factorable function f
Require: f : X ⊂ Rn → Rm is 𝒞1-factorable, x ∈ X, M ∈ Rn×p

Set v(0) ← x
Set V̇(0) ← M
for j = 1 to ` do

Set u(j) ← [v(i)]i≺j
Set v(j) ← 𝜓(j)(u(j))

Set U̇(j) ← [V̇(i)]i≺j

Set V̇(j) ← J𝜓(j)(u(j)) U̇(j)
end for
return f(x) = v(`) and Jf(x)M = V̇(`)

Definition 2.5.4. A factorable function f is abs-𝒞1-factorable if the elemental library

ℒ comprises both the absolute value function x ↦→ |x|, and various 𝒞1 functions whose

Jacobians can be computed. If, in addition, each 𝒞1 function in ℒ is also 𝒞ω, then f is

abs-𝒞ω-factorable, or simply abs-factorable.

Abs-𝒞1-factorable functions represent a broad class of nonsmooth functions en-

countered in practice. The class of abs-𝒞1-factorable functions was considered pre-

viously in [32, 33, 53].

Definition 2.5.5. A factorable function f is 𝒫𝒞1-factorable if each function 𝜓 ∈ ℒ is

𝒫𝒞1, and for which the following information is known or computable for each x ∈ X𝜓:

∙ the value 𝜓(x),

∙ a finite active normal set H𝜓(x) ⊂ Rn𝜓 , such that𝜓′(x; ·) is smooth except on the

set {d ∈ Rn𝜓 : ∃a ∈ H𝜓(x) s.t. a ̸= 0 and ⟨a, d⟩ = 0}. With rmax := |H𝜓(x)|,

enumerate the elements of H𝜓(x) as a(1)𝜓 (x), . . . , a(rmax)
𝜓 (x),

∙ a function ζ𝜓 : X𝜓 → {true, false} such that ζ𝜓(x) = false if and only if

H𝜓(x) contains a nonzero vector, and

∙ a branch-locked Jacobian mapping Γ𝜓(x; ·) if ζ𝜓(x) = false, such that for each

s ∈ {−1, 1}|H𝜓(x)|,

𝜓′(x; d) = Γ𝜓(x; s) d,
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for all d ∈ Rn𝜓 such that

sr⟨a(r)𝜓 (x), d⟩ ≥ 0, ∀r ∈ {1, . . . , |H𝜓(x)|}.

As motivated by the above restrictions on d, components of the argument s are called

halfspace specifiers.

Such functions 𝜓 are called elemental 𝒫𝒞1 functions.

The existence of H𝜓(x) and ζ𝜓 for any 𝒫𝒞1 function 𝜓 is demonstrated in

Appendix A; existence of a branch-locked Jacobian mapping follows from Lem-

mata A.1.11 and A.6.1. As shown in the examples in Section A.2 in Appendix A,

the required information for elemental𝒫𝒞1 functions is readily furnished for many

𝒫𝒞1 functions encountered in practice, including 𝒞1 functions with computable Ja-

cobians, basic nonsmooth 𝒫𝒞1 functions such as abs, min{·, ·} and max{·, ·}, and

more complicated 𝒫𝒞1 functions such as (x, y) ↦→ supz∈[x,y] sin z where x < y,

which occur in interval arithmetic.

The first computationally tractable methods for evaluating Clarke Jacobian el-

ements for a broad class of vector-valued nonsmooth functions were developed

in [53, 54]; the article [54] is reproduced in Appendix A. Algorithm 12 in Ap-

pendix A evaluates an element of ∂Bf(x) ⊂ ∂f(x) for any 𝒫𝒞1-factorable function

f : X ⊂ Rn → Rm, when for any particular nonsingular matrix M ∈ Rn×n, the

vectors q(1), . . . , q(n) in the algorithm are initialized as the columns m(1), . . . , m(n)

of M. Denote the element of ∂Bf(x) thus obtained as the conical Jacobian JCf(x; M),

and define the conical subdifferential as

∂Cf(x) := {JCf(x; M) : M ∈ Rn×n, det M ̸= 0} ⊂ ∂Bf(x).

In the language of Appendix A, JCf(x; M) is the Jacobian of a conically active se-

lection function of f at x. Thus, in light of [97, Proposition 4.3.1], Example A.1.14

shows that the above inclusion may be strict.
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Chapter 3

Relationships between generalized

derivatives

This chapter develops new theoretical properties and relationships involving the

generalized derivatives described in Section 2.3. Firstly, the LD-derivative is de-

veloped as an analog of the lexicographic derivative, and is shown to satisfy a

particularly tractable extension of Nesterov’s chain rule for lexicographic deriva-

tives. Secondly, lexicographic derivatives are shown to be elements of the plenary

Jacobian whenever they exist. This inclusion is tightened for 𝒫𝒞1 functions: such

functions are shown to be L-smooth, with lexicographic derivatives that are al-

ways B-subdifferential elements. The material in this chapter is reproduced from

the articles [55, 61].

3.1 LD-derivatives and lexicographic derivatives

This section introduces the LD-derivative, which provides a more tractable exten-

sion of Nesterov’s chain rule for lexicographic derivatives [79, Theorem 5]. Various

properties relating LD-derivatives and lexicographic derivatives are developed.

This section is reproduced from [61].

Definition 3.1.1. Given an open set X ⊂ Rn, a locally Lipschitz continuous function
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f : X → Rm that is L-smooth at x ∈ X, and a matrix M :=
[
m(1) · · · m(p)

]
∈ Rn×p,

the lexicographic directional (LD-)derivative of f at x in the directions M is

f′(x; M) :=
[
f(0)x,M(m(1)) f(1)x,M(m(2)) · · · f(p−1)

x,M (m(p))
]

,

=
[
f(p)

x,M(m(1)) · · · f(p)
x,M(m(p))

]
. (3.1)

The second equation in (3.1) follows from Property 4 in Lemma 2.3.7. Note that

f′(x; M) is uniquely defined for all M ∈ Rn×p and all p ∈ N, unlike the similar

construction gp(f, M, x) described in [79], which is denoted as J̃Lf(x; M) in [55]. As

its name and notation suggest, the LD-derivative is a generalization of the standard

directional derivative; the two are equivalent when M has only one column.

It follows from the discussion in Section 2.3.3 that if f is differentiable at x, then

f′(x; M) = Jf(x)M. If M is square and nonsingular, then f′(x; M) = JLf(x; M)M.

A useful feature of the LD-derivative is that it simplifies the form and treatment of

Nesterov’s chain rule [79, Theorem 5], as follows.

Proposition 3.1.2. Consider open sets X ⊂ Rn and Y ⊂ Rm, and locally Lipschitz

continuous functions g : X → Y and f : Y → Rq that are L-smooth at x ∈ X and

g(x) ∈ Y, respectively. The composition f ∘ g is L-smooth at x. Moreover, given any

matrix M :=
[
m(1) · · · m(p)

]
∈ Rn×p, the following chain rule for LD-derivatives is

satisfied:

[f ∘ g]′(x; M) = f′(g(x); g′(x; M)). (3.2)

Proof. Assume temporarily that g and f are L-smooth on neighborhoods of x and

g(x), respectively. Under this additional assumption, [79, Theorem 1] shows that

the composition f ∘ g is L-smooth at x, and that:

[f ∘ g](p)
x,M(d) = f(p)

g(x),[g(1)
x,M(m(1)) ··· g(p)

x,M(m(p))]

(
g(p)

x,M(d)
)

, ∀d ∈ Rn. (3.3)

Now, observe that the proof of [79, Theorem 1] makes use of [79, Lemma 1], and
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that [97, Theorem 3.1.1] yields the same result as [79, Lemma 1] under milder as-

sumptions. Thus, if [79, Lemma 1] is replaced with [97, Theorem 3.1.1] throughout

the proof of [79, Theorem 1], then the above results are shown to hold without re-

quiring the assumption that was invoked at the start of the current proof. Hence,

this additional assumption can be removed.

Next, applying [79, Lemma 3] and the definition of the LD-derivative to (3.3)

yields

[f ∘ g](p)
x,M(d) = f(p)

g(x),g′(x;M)

(
g(p)

x,M(d)
)

, ∀d ∈ Rn.

Thus, for each k ∈ {1, . . . , p}, the definition of the LD-derivative and the above

relationship yield

[f ∘ g]′(x; M) e(k) = [f ∘ g](p)
x,M(m(k)),

= f(p)
g(x),g′(x;M)

(g(p)
x,M(m(k))),

= f′(g(x); g′(x; M)) e(k).

Arranging the above equations for all k ∈ {1, . . . , p} as the columns of a single

matrix equation yields (3.2).

This chain rule for LD-derivatives resembles the chain rule for directional deriva-

tives of functions that are directionally differentiable and locally Lipschitz continu-

ous [97, Theorem 3.1.1], and does not demand M to be nonsingular or square. Note

that Proposition 3.1.2 reduces to Nesterov’s chain rule [79, Theorem 5] when M is

chosen to be square and nonsingular, and reduces further to the classical chain rule

when, in addition, f and g are both differentiable.

The following analogs of classical calculus rules are immediate consequences of

Proposition 3.1.2, where u and v are L-smooth functions with appropriate domains

and ranges, and where 𝜓 is differentiable on its open domain:

∙ [u + v]′(x; M) = u′(x; M) + v′(x; M): obtained by setting f : (x, y) ↦→ x + y

and g : x ↦→ (u(x), v(x)),
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∙ [uv]′(x; M) = v(x) u′(x; M) + u(x) v′(x; M): obtained by setting f : (x, y) ↦→

xy and g : x ↦→ (u(x), v(x)),

∙ [𝜓 ∘ u]′(x; M) = J𝜓(u(x)) u′(x; M),

∙ [u ∘𝜓]′(x; M) = u′(𝜓(x); J𝜓(x)M).

Consider any L-smooth function f : X ⊂ Rn → Rm, some x ∈ X, and some

M ∈ Rn×p, and define an affine transformation 𝒯M,x : Rp → Rn : y ↦→ x + My.

The mapping 𝒯M,x is evidently differentiable. It follows that 𝒯M,x(0) = x, and

[𝒯M,x]
′(0; I) = J𝒯M,x(0) = M. Thus,

f′(x; M) = f′(𝒯M,x(0); [𝒯M,x]
′(0; I)) = [f ∘ 𝒯M,x]

′(0; I) = JL[f ∘ 𝒯M,x](0; I). (3.4)

In this way, f′(x; M) is expressed as the lexicographic derivative of a related func-

tion along the standard basis. Using this relationship, properties of lexicographic

derivatives can be extended to describe LD-derivatives.

Combining the above observations, to obtain JLf(x; M) for some nontrivial

function f : X ⊂ Rn → Rm and some nonsingular matrix M ∈ Rn×n, it is in many

cases easier to compute f′(x; M) first using the calculus rules for the LD-derivative,

and to then solve the linear equation system JLf(x; M)M = f′(x; M) for JLf(x; M).

When there is freedom to choose M, setting M to I renders this linear equation

system trivial.

Lemma 3.1.3 (from [56]). Given an open set X ⊂ Rn, suppose that a function g : X →

Rm is L-smooth at x ∈ X. For each M ∈ Rn×p,

g′(x; M) ∈ {AM : A ∈ ∂Lg(x)}.

Proof. Choose a matrix B ∈ Rn×q for which the block matrix N :=
[
M B

]
∈

Rn×(p+q) has full row rank. The definition of the LD-derivative and Lemma 2.3.7

yield:

g′(x; M) =
[
g(p+q)

x,N (m(1)) · · · g(p+q)
x,N (m(p))

]
.
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Moreover, by [79, Theorem 2 and Lemma 4], the function g(p+q)
x,N is linear, and has

a derivative A ∈ ∂Lg(x). The required result follows immediately.

The notion of LD-derivatives suggests the following definition, which exists

alongside the similar types of factorable functions defined in Chapter 2.

Definition 3.1.4. A factorable function f is L-factorable if the elemental library ℒ con-

tains only lexicographically smooth functions whose LD-derivatives are known or com-

putable.

Any 𝒞1-factorable or abs-𝒞1-factorable function is evidently L-factorable. The

methods in Chapter 4 evaluate LD-derivatives efficiently for L-factorable func-

tions. The following definition of a subclass of 𝒫𝒞1 functions is adapted from [54],

which is reproduced for reference as Appendix A. This definition be used in Chap-

ters 3 and 4.

It will be shown in Section 4.2 that all 𝒫𝒞1-factorable functions are also L-

factorable. As noted by Griewank [33], given a function that is L-factorable but

not 𝒫𝒞1, it may be impossible to construct an approximation of this function that

is both piecewise affine in the sense of Scholtes [97] and uniformly first-order in

the sense of Ralph [93].

3.2 Lexicographic derivatives and plenary Jacobians

This section is reproduced from [55]. Consider an open set X ⊂ Rn, some x ∈

X, and a function f : X → Rm that is both locally Lipschitz continuous and

directionally differentiable. The main results of this section are the inclusions

∂B[f′(x; ·)](0) ⊂ ∂Pf(x) and ∂Lf(x) ⊂ ∂Pf(x), with the latter result assuming fur-

ther that f is L-smooth at x. It follows immediately that any numerical or analytical

method for evaluating an element of ∂B[f′(x; ·)](0) or ∂Lf(x) is also a method for

evaluating an element of ∂Pf(x).
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Lemma 3.2.1. Consider a function f : Rn → Rm that is positively homogeneous and

locally Lipschitz continuous1. For any d ∈ Rn, ∂Bf(d) ⊂ ∂Bf(0).

Proof. The result is trivial when d = 0, so assume that d ̸= 0, and consider any par-

ticular H ∈ ∂Bf(d). By definition of the B-subdifferential, there exists a sequence

{d(i)}i∈N in Rn converging to d, such that f is differentiable at each d(i), and such

that limi→∞ Jf(d(i)) = H. Since d ̸= 0 and limi→∞ d(i) = d, it may be assumed

without loss of generality that d(i) ̸= 0 for all i ∈ N. Making use of the positive

homogeneity of f, for each i ∈N, each t > 0, and each nonzero h ∈ Rn,

f(td(i) + h)− f(td(i))− Jf(d(i)) h
‖h‖ =

f(d(i) + 1
t h)− f(d(i))− Jf(d(i)) (1

t h)

‖1
t h‖

Noting that f is differentiable at d(i) and taking the limit h→ 0 yields:

0 = lim
h→0

f(d(i) + 1
t h)− f(d(i))− Jf(d(i)) (1

t h)

‖1
t h‖

,

= lim
h→0

f(td(i) + h)− f(td(i))− Jf(d(i)) h
‖h‖ .

Thus, for each i ∈ N and each t > 0, f is differentiable at (td(i)), with a derivative

of Jf(td(i)) = Jf(d(i)). Since limi→∞ Jf(d(i)) = H, it follows that

H = lim
i→∞

Jf

(
d(i)

2i‖d(i)‖

)
.

Noting that limi→∞

(
d(i)

2i‖d(i)‖

)
= 0, it follows that H ∈ ∂Bf(0).

Lemma 3.2.2. Consider an open set X ⊂ Rn, some x ∈ X, and a function f : X → Rm

that is locally Lipschitz continuous and directionally differentiable. If f′(x; ·) is differen-

tiable at some particular d ∈ Rn, then J[f′(x; ·)](d) ∈ ∂Pf(x).

Proof. For notational simplicity, define A := J[f′(x; ·)](d). The differentiability of

f′(x; ·) at d implies that
1Though irrelevant to this lemma, if kf is a Lipschitz constant for f in a neighborhood of 0, then

kf is a global Lipschitz constant for f [97].
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lim
h→0

f′(x; d + h)− f′(x; d)−Ah
‖h‖ = 0. (3.5)

To prove the lemma, the cases in which d = 0 and d ̸= 0 will be considered

separately. If d = 0, then applying (3.5) and the positive homogeneity of f′(x; ·)

yields f′(x; 0) = 0, and

0 = lim
t→0+

f′(x; th)− f′(x; 0)− tAh
t‖h‖ =

f′(x; h)−Ah
‖h‖ , ∀h ∈ Rn∖{0}.

Combining these statements, f′(x; h) = Ah for each h ∈ Rn. Hence, f is Gâteaux

differentiable at x, with a Gâteaux derivative of A. Since Gâteaux and Fréchet dif-

ferentiability are equivalent for locally Lipschitz continuous functions on Rn [16],

it follows that f is Fréchet differentiable at x, with Jf(x) = A. Thus, A ∈ ∂f(x) ⊂

∂Pf(x), as required.

Now consider the case in which d ̸= 0. In light of Definition 2.3.4, it suffices to

show that for any particular e ∈ Rn, Ae = He for some H ∈ ∂f(x). This statement

is trivial when e = 0, so assume that e ̸= 0. It follows from (3.5) that for any ε > 0,

there exists some δε > 0 such that whenever |τ| < δε,

‖f′(x; d + τe)− f′(x; d)−A(τe)‖ < ε‖τe‖.

It will be assumed that δε < 1 without loss of generality, since otherwise, setting

δε ← min{δε, 1
2} does not affect the validity of the above statement. Since f′(x; ·)

is positively homogeneous, multiplying both sides of the above inequality by any

α > 0 and setting τ := 1
2 δε yields:

‖f′(x; α(d + 1
2 δεe))− f′(x; αd)− 1

2 αδεAe‖ < 1
2 εαδε‖e‖, ∀α > 0. (3.6)

It follows from (2.1) that for any ε > 0, there exists some δ̄ε > 0 such that

whenever ‖v‖ ≤ δ̄ε, f is defined at (x + v), and

‖f(x + v)− f(x)− f′(x; v)‖ < εδε‖v‖. (3.7)
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It will be assumed that limε→0+ δ̄ε = 0 without loss of generality, since otherwise,

setting δ̄ε ← min{δ̄ε, ε} does not affect the validity of the above statement.

Now, choose any fixed ε > 0, and set

αε :=
δ̄ε

‖d‖+ 1
2 δε‖e‖

> 0.

The triangle inequality shows that for each τ ∈ [0, 1
2 δε],

αε‖d + τe‖ ≤ αε(‖d‖+ τ‖e‖) ≤ αε(‖d‖+ 1
2 δε‖e‖) = δ̄ε. (3.8)

Thus, in (3.7), v may be set to (αε(d + τe)) for any τ ∈ [0, 1
2 δε] to yield:

‖f(x + αε(d + τe))− f(x)− f′(x; αε(d + τe))‖ < εδεαε‖d + τe‖ ≤ εδεδ̄ε, (3.9)

Setting τ to 0 and 1
2 δε in (3.9), respectively, yields:

‖f(x) + f′(x; αεd)− f(x + αεd)‖ < εδεδ̄ε, (3.10)

‖f(x + αε(d + 1
2 δεe))− f(x)− f′(x; αε(d + 1

2 δεe))‖ < εδεδ̄ε. (3.11)

Setting α to αε in (3.6), adding (3.10) and (3.11), and applying the triangle inequality

yields:

‖f(x + αε(d + 1
2 δεe))− f(x + αεd)− 1

2 αεδεAe‖ < εδε(
1
2 αε‖e‖+ 2δ̄ε). (3.12)

Now, Clarke’s mean value theorem for locally Lipschitz continuous functions [16,

Proposition 2.6.5] implies that

f(x + αε(d + 1
2 δεe))− f(x + αεd)

∈ conv {1
2 αεδεHe : ∃τ ∈ [0, 1

2 δε] s.t. H ∈ ∂f(x + αε(d + τe))}.

Substituting this result into (3.12) and applying the Carathéodory Theorem yields

the existence of λ
(i)
ε ∈ [0, 1], τ

(i)
ε ∈ [0, 1

2 δε], and H(i)
ε ∈ ∂f(x + αε(d + τ

(i)
ε e)) for

each i ∈ {1, 2, . . . , m + 1} such that:
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1 =
m+1

∑
i=1

λ
(i)
ε , and

∥∥∥∥∥1
2

m+1

∑
i=1

λ
(i)
ε αεδεH(i)

ε e− 1
2

αεδεAe

∥∥∥∥∥ < εδε(
1
2 αε‖e‖+ 2δ̄ε).

(3.13)

Dividing both sides of the above inequality by 1
2 αεδε, applying the definition of αε,

and noting that δε < 1 yields:

∥∥∥∥∥m+1

∑
i=1

λ
(i)
ε H(i)

ε e−Ae

∥∥∥∥∥ < ε

(
‖e‖+ 4δ̄ε

αε

)
< ε(3‖e‖+ 4‖d‖). (3.14)

For each ε > 0 and each i ∈ {1, . . . , m + 1}, λ
(i)
ε is an element of the compact set

[0, 1] ⊂ R, and τ
(i)
ε is an element of the compact set [0, 1

2 δε]. Moreover, if kf denotes

a Lipschitz constant for f on {y ∈ X : ‖y− x‖ ≤ δ̄1}, then, noting that limε→0+ δ̄ε =

0, it follows from (3.8) and [16, Proposition 2.6.2(d)] that for sufficiently small ε >

0, H(i)
ε is an element of the compact set {H ∈ Rm×n : ‖H‖ ≤ kf} for each i ∈

{1, . . . , m + 1}.

Since any sequence in a compact set has a convergent subsequence, it follows

that there exists a sequence {εj}j∈N such that each εj > 0, limj→∞ εj = 0, and the

sequences {λ(i)
εj }j∈N, {τ(i)

εj }j∈N, and {H(i)
εj }j∈N converge for each i ∈ {1, . . . , m +

1}, permitting the following definitions:

λ̄(i) := lim
j→∞

λ
(i)
εj , τ̄(i) := lim

j→∞
τ
(i)
εj , and H̄(i) := lim

j→∞
H(i)

εj .

It follows from (3.13) and (3.14) that

1 =
m+1

∑
i=1

λ̄(i), and

∥∥∥∥∥m+1

∑
i=1

λ̄(i)H̄(i) e−Ae

∥∥∥∥∥ = 0. (3.15)

Since each τ
(i)
εj ∈ [0, 1

2 δε], applying (3.8) with τ := τ
(i)
εj and ε := εj, taking the limit

j→ ∞, and noting that limε→0+ δ̄ε = 0,

0 ≤ lim sup
j→∞

∥∥∥αεj(d + τ
(i)
εj e)

∥∥∥ ≤ lim
j→∞

δ̄εj = 0.

Thus, for each i ∈ {1, . . . , m + 1}, limj→∞(x + αεj(d + τ
(i)
εj e)) = x. Moreover, by

construction,
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H(i)
εj ∈ ∂f(x + αεj(d + τ

(i)
εj e)), ∀i ∈ {1, . . . , m + 1}, ∀j ∈N.

The upper-semicontinuity of Clarke’s generalized Jacobian then yields H̄(i) ∈ ∂f(x).

Since ∂f(x) is convex and ∑m+1
i=1 λ̄(i) = 1, it follows that H̄ := ∑m+1

i=1 λ̄(i)H̄(i) ∈ ∂f(x).

Moreover, (3.15) shows that H̄e = Ae, as required.

Theorem 3.2.3. Given an open set X ⊂ Rn and a function f : X → Rm that is locally

Lipschitz continuous and directionally differentiable, ∂B[f′(x; ·)](0) ⊂ ∂Pf(x) for each

x ∈ X.

Proof. Consider any particular x ∈ X and any particular H ∈ ∂B[f′(x; ·)](0). By

definition of the B-subdifferential, there exists a sequence {d(i)}i∈N in Rn such that

f′(x; ·) is differentiable at each d(i), and limi→∞ J[f′(x; ·)](d(i)) = H. By Lemma 3.2.2,

J[f′(x; ·)](d(i)) ∈ ∂Pf(x) for each i ∈N. Since ∂Pf(x) is a closed set [109], it follows

that H ∈ ∂Pf(x).

Corollary 3.2.4. Given an open set X ⊂ Rn and a function f : X → Rm that is locally

Lipschitz continuous and directionally differentiable,

∂B[f′(x; ·)](0) ⊂ ∂[f′(x; ·)](0) ⊂ ∂P[f′(x; ·)](0) ⊂ ∂Pf(x), ∀x ∈ X.

Proof. Consider any particular x ∈ X. The inclusions

∂B[f′(x; ·)](0) ⊂ ∂[f′(x; ·)](0) ⊂ ∂P[f′(x; ·)](0)

follow immediately from the definitions of Clarke’s generalized Jacobian and the

plenary hull. Now, Theorem 3.2.3 yields the inclusion ∂B[f′(x; ·)](0) ⊂ ∂Pf(x).

Since ∂Pf(x) is convex [109], and since the convex hull of ∂B[f′(x; ·)](0) is the inter-

section of all of its convex supersets in Rm×n, it follows that

conv ∂B[f′(x; ·)](0) = ∂[f′(x; ·)](0) ⊂ ∂Pf(x).
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Since ∂Pf(x) is plenary, and since the plenary hull of ∂[f′(x; ·)](0) is the intersection

of all of its plenary supersets in Rm×n, it follows that ∂P[f′(x; ·)](0) ⊂ ∂Pf(x). The

required chain of inclusions is therefore established.

Corollary 3.2.5. Given an open set X ⊂ Rn and a function f : X → Rm that is L-smooth,

∂Lf(x) ⊂ ∂Pf(x) for each x ∈ X.

Proof. Consider any particular x ∈ X and any particular H ∈ ∂Lf(x). By definition

of ∂Lf(x), there exists some nonsingular matrix M :=
[
m(1) · · · m(n)

]
∈ Rn×n

such that the following functions are well-defined:

f(0)x,M : Rn → Rm : h ↦→ f′(x; h),

f(j)
x,M : Rn → Rm : h ↦→ [f(j−1)

x,M ]′(m(j); h), ∀j ∈ {1, . . . , n},

and such that f(n)x,M is linear (and therefore differentiable) on its domain, with a

derivative of Jf(n)x,M(0) = H. As an intermediate result, it will be proved by induc-

tion on k = n, (n − 1), . . . , 0 that for each k ∈ {0, 1, . . . , n}, H ∈ ∂Pf(k)x,M(0). For

the base case, the differentiability of f(n)x,M implies that H = Jf(n)x,M(0) ∈ ∂f(n)x,M(0) ⊂

∂Pf(n)x,M(0).

For the inductive step, suppose that for some k ∈ {1, . . . , n}, H ∈ ∂Pf(k)x,M(0).

It follows from the construction of f(k)x,M that f(k−1)
x,M is directionally differentiable.

Moreover, it follows from repeated application of [97, Theorem 3.1.2] that f(k−1)
x,M

is Lipschitz continuous. Thus, noting that f(k)x,M ≡ [f(k−1)
x,M ]′(m(k); ·), Corollary 3.2.4

implies that ∂Pf(k)x,M(0) ⊂ ∂Pf(k−1)
x,M (m(k)). Applying the inductive assumption then

yields:

H ∈ ∂Pf(k−1)
x,M (m(k)). (3.16)

Now, Lemma 2.3.7 implies that f(k−1)
x,M is positively homogeneous, in which case

Lemma 3.2.1 yields

∂Bf(k−1)
x,M (m(k)) ⊂ ∂Bf(k−1)

x,M (0) ⊂ ∂Pf(k−1)
x,M (0).

Since ∂Pf(k−1)
x,M (0) is convex, it follows that ∂f(k−1)

x,M (m(k)) ⊂ ∂Pf(k−1)
x,M (0). Similarly,
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since ∂Pf(k−1)
x,M (0) is plenary, it follows that ∂Pf(k−1)

x,M (m(k)) ⊂ ∂Pf(k−1)
x,M (0). Thus,

(3.16) implies that H ∈ ∂Pf(k−1)
x,M (0), which completes the inductive step.

It follows from this inductive proof that H ∈ ∂Pf(0)x,M(0) = ∂P[f′(x; ·)](0). A final

application of Corollary 3.2.4 yields H ∈ ∂Pf(x).

3.3 Specialization to 𝒫𝒞1 functions

This section is reproduced from [61], and provides a stronger version of the result

of the previous section for 𝒫𝒞1 functions, using results from [54]. The main results

of this section are that for a 𝒫𝒞1 function f and a domain point x, f is L-smooth,

and ∂Lf(x) = ∂B[f′(x; ·)](0) ⊂ ∂Bf(x). These relationships will be exploited in

Chapter 4 to yield improved methods for evaluating generalized derivatives for

𝒫𝒞1-factorable functions.

Proposition 3.3.1. Given an open set X ⊂ Rn, any 𝒫𝒞1 function f : X → Rm is

L-smooth.

Proof. Choose any such f, some x ∈ X, and some M :=
[
m(1) · · · m(p)

]
∈ Rn×p

with p ∈N. Since f is 𝒫𝒞1, it is also locally Lipschitz continuous. It will be shown

by induction on k ∈ {0, . . . , p} that f(k)x,M exists and is piecewise linear.

For the case in which k = 0, [97, Proposition 4.1.3] shows that f is directionally

differentiable at x, and that f′(x; ·) is piecewise linear. Hence, f(0)x,M ≡ f′(x; ·) exists

and is piecewise linear.

Now consider any k* ∈ {1, . . . , p}, and suppose that the required result holds

with k := k*− 1. By the inductive assumption, f(k
*−1)

x,M exists and is piecewise linear.

Thus, [97, Proposition 4.1.3] shows that f(k
*−1)

x,M is directionally differentiable, and

that f(k
*)

x,M ≡ [f(k
*−1)

x,M ]
′
(m(k*); ·) is piecewise linear. This completes the inductive

argument. Since x and M were chosen arbitrarily, it follows that f is L-smooth.

Lemma 3.3.2. Given a polyhedral cone C ⊂ Rn with nonempty interior, there exist n

linearly independent vectors q(1), . . . , q(n) ∈ Rn such that cone {q(1), . . . , q(n)} ⊂ C.
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Proof. By the Farkas-Minkowski-Weyl Theorem (which is summarized as [97, The-

orem 2.1.1]), there exists a matrix M =
[
m(1) · · · m(p)

]
∈ Rn×p for which

C = {Mv : v ∈ R
p
+} = cone {m(1), . . . , m(p)}. (3.17)

To obtain a contradiction, suppose that there do not exist n linearly independent

vectors satisfying the statement of the lemma. By (3.17), each column of M is an

element of C. It follows that the columns of M do not span Rn, implying the

existence of a vector d ∈ Rn which is not in the column space of M. Since C

has nonempty interior, there exists v ∈ R
p
+ such that Mv ∈ int(C). Hence, for

sufficiently small ε > 0, (Mv + εd) ∈ C, and so (Mv + εd) = Mu for some

u ∈ R
p
+. It follows that d = M 1

ε (u− v), so d is in the column space of M, which

contradicts the definition of d.

Theorem 3.3.3. Given an open set X ⊂ Rn, a vector x ∈ X, and a 𝒫𝒞1-factorable

function f : X → Rm, ∂Cf(x) = ∂B[f′(x; ·)](0).

Proof. To show that ∂Cf(x) ⊂ ∂B[f′(x; ·)](0), consider any H ∈ ∂Cf(x). By con-

struction of ∂Cf(x), there exists some nonsingular matrix M ∈ Rn×n such that

H = JCf(x; M).

Since polyhedral cones are closed under nonnegative combinations of their el-

ements, it follows that for any α > 0, the operation q(k) ← q(k) + αq(k*) transforms

a polyhedral cone C̄ := cone {q(1), . . . , q(n)} into a subset of itself. Thus, Theo-

rem A.3.2, Corollary A.6.3, and Lemma A.6.6 imply that there exists a polyhedral

cone C ⊂ cone {m(1), . . . , m(n)} ⊂ Rn with nonempty interior, for which

f′(x; d) = Hd, ∀d ∈ C.

Since C is closed under multiplication by a positive scalar, it follows that if t > 0

and d̄ ∈ int(C), then td̄ ∈ int(C) as well, and so f′(x; d) = Hd for each d in a

sufficiently small neighborhood of td̄. Thus, for each t > 0, f′(x; ·) is differentiable

at td̄, with J[f′(x; ·)](td̄) = H. Taking the limit t→ 0+ yields H ∈ ∂B[f′(x; ·)](0), as

required.
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To show that ∂B[f′(x; ·)](0) ⊂ ∂Cf(x), consider any H ∈ ∂B[f′(x; ·)](0). Since f

is 𝒫𝒞1, [97, Proposition 4.1.3] implies that f′(x; ·) is 𝒫ℒ. By [97, Proposition 2.2.3],

there exists a conical subdivision Λ of Rn such that f′(x; ·) is linear on each par-

ticular cone C ∈ Λ, with some Jacobian HC ∈ Rm×n. Thus, for each d ∈ Rn,

f′(x; d) ∈ {HC d : C ∈ Λ}. It follows from the proof of [97, Proposition 4.3.1] that

∂B[f′(x; ·)](0) ⊂ {HC : C ∈ Λ}.

Thus, H = HC for some C ∈ Λ. Since C has nonempty interior, Lemma 3.3.2

implies the existence of linearly independent vectors q(1), . . . , q(n) ∈ C. Thus,

f′(x; d) = Hd, ∀d ∈ cone {q(1), . . . , q(n)}.

Noting that nonnegative combinations of elements of Q := cone {q(1), . . . , q(n)}

are themselves elements of Q, it follows from Theorem A.3.2 and Lemma A.6.6

with j := ` that H = JCf(x;
[
q(1) · · · q(n)

]
) ∈ ∂Cf(x).

Theorem 3.3.4. Given an open set X ⊂ Rn, a vector x ∈ X, a 𝒫𝒞1-factorable function

f : X → Rm, and a nonsingular matrix M =
[
m(1) · · · m(n)

]
∈ Rn×n, JCf(x; M) =

JLf(x; M).

Proof. Since f is 𝒫𝒞1, Proposition 3.3.1 implies that it is also L-smooth. According

to Lemma A.6.2, Lemma A.6.6, and Theorem A.3.2, there exists `k,j ≥ 0 for each

k ∈ {1, . . . , n} and each j ∈ {1, . . . , k} such that `k,k = 1 for each k, and if

q(k) :=
k

∑
j=1

`k,jm(j), ∀k ∈ {1, . . . , n},

then

f′(x; d) = JCf(x; M) d, ∀d ∈ cone {q(1), . . . , q(n)}. (3.18)

To obtain the required result, it will be proved by induction on k ∈ {0, 1, . . . , n}

that
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f(k)x,M(d) = JCf(x; M) d, ∀d ∈ span {m(1), . . . , m(k)}+ cone {q(k+1), . . . , q(n)}.
(3.19)

For notational consistency, when k = 0, span {m(1), . . . , m(k)} denotes the set

{0} ⊂ Rn. Likewise, when k = n, cone {q(k+1), . . . , q(n)} denotes the set {0} ⊂ Rn.

Since f(0)x,M ≡ f′(x; ·), (3.18) yields the k = 0 case. For the inductive step, suppose

that (3.19) holds with k equal to some p ∈ {0, 1, . . . , (n− 1)}. Consider any partic-

ular d̄ ∈ span {m(1), . . . , m(p+1)}+ cone {q(p+2), . . . , q(n)}. By construction, d̄ can

be decomposed as d̄ = u + v + w, where u ∈ span {m(1), . . . , m(p)}, v := αm(p+1)

for some α ∈ R, and w ∈ cone {q(p+2), . . . , q(n)}. (If p = n− 1, then w = 0.)

Now, applying [79, Equation 3.7] and the inductive assumption with d = u

yields:

f(p+1)
x,M (u) = f(p)

x,M(u) = JCf(x; M) u. (3.20)

Applying the definition of the directional derivative, the definition of q(p+1), and

the definition of v yields:

f(p+1)
x,M (v + w)

= [f(p)
x,M]

′
(m(p+1); v + w)

= lim
τ→0+

f(p)
x,M((1 + τα)m(p+1) + τw)− f(p)

x,M(m(p+1))

τ

= lim
τ→0+

1
τ

[
f(p)

x,M

(
(1 + τα)q(p+1) − (1 + τα)

p

∑
j=1

`p+1,jm(j) + τw

)

− f(p)
x,M

(
q(p+1) −

p

∑
j=1

`p+1,jm(j)

)]
.

Applying [79, Equation 3.6] and collecting terms yields:
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f(p+1)
x,M (v + w)

= lim
τ→0+

f(p)
x,M((1 + τα)q(p+1) + τw)− ταf(p)

x,M(∑
p
j=1 `p+1,jm(j))− f(p)

x,M(q(p+1))

τ
.

(3.21)

Now, (∑
p
j=1 `p+1,jm(j)) ∈ span {m(1), . . . , m(p)}, and q(p+1) ∈ cone {q(p+1), . . . , q(n)}.

By construction, w ∈ cone {q(p+2), . . . , q(n)} ⊂ cone {q(p+1), . . . , q(n)}. It follows

that for sufficiently small τ > 0, (1 + τα) > 0, and so ((1 + τα)q(p+1) + τw) ∈

cone {q(p+1), . . . , q(n)}. Thus, applying the inductive assumption to each term in

the numerator of the right-hand side of (3.21) for sufficiently small τ > 0 yields:

f(p+1)
x,M (v + w)

= lim
τ→0+

1
τ

[
JCf(x; M) ((1 + τα)q(p+1) + τw)

− ταJCf(x; M)

(
p

∑
j=1

`p+1,jm(j)

)
− JCf(x; M) q(p+1)

]

= JCf(x; M)

(
αq(p+1) − α

p

∑
j=1

`p+1,jm(j) + w

)
= JCf(x; M) (αm(p+1) + w)

= JCf(x; M) (v + w). (3.22)

To complete the inductive step, since u ∈ span {m(1), . . . , m(p)}, [79, Equation 3.6]

may be applied to yield

f(p+1)
x,M (d̄) = f(p+1)

x,M (u + v + w) = f(p+1)
x,M (u) + f(p+1)

x,M (v + w).

Thus, (3.20) and (3.22) imply that

f(p+1)
x,M (d̄) = JCf(x; M) u+ JCf(x; M) (v+w) = JCf(x; M) (u+v+w) = JCf(x; M) d̄.

Since d̄ was chosen aribrarily from span {m(1), . . . , m(p+1)}+ cone {q(p+2), . . . , q(n)},

(3.19) has been demonstrated for k = p + 1, completing the inductive step.
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Now, setting k to n in (3.19) yields the following, noting that the columns of M

span Rn:

f(n)x,M(d) = JCf(x; M) d, ∀d ∈ Rn.

Thus, JLf(x; M) = Jf(n)x,M(0) = JCf(x; M), as required.

Since LD-derivatives of a function do not depend on the existence or forms of

the function’s factored representations, the following corollary of the above theo-

rem is immediate.

Corollary 3.3.5. JCf(x; M) and ∂Cf(x) are independent of the particular factored repre-

sentation of f used when carrying out Algorithm 12 in Appendix A.

As the following corollary shows, the result from Corollary 3.2.5 that ∂Lf(x) ⊂

∂Pf(x) for a L-smooth function f is strengthened when f is known to be 𝒫𝒞1.

Corollary 3.3.6. Given an open set X ⊂ Rn and a 𝒫𝒞1 function f : X → Rm,

∂Lf(x) = ∂B[f′(x; ·)](0) ⊂ ∂Bf(x) ⊂ ∂f(x), ∀x ∈ X.

Proof. The function f may be considered to be an elemental 𝒫𝒞1 function with-

out loss of generality: while active normal sets and branch-locked Jacobians for f

are not necessarily known or easily computed, their existence is sufficient for this

corollary. In turn, f can be endowed with the following trivial factored representa-

tion, and may therefore be considered 𝒫𝒞1-factorable:

Set v(0) ← x
Set u(1) ← v(0)
Set v(1) ← f(u(1))

Set f(x)← v(1).

Thus, for any x ∈ X, Theorem 3.3.3 and Theorem A.3.2 imply that

∂B[f′(x; ·)](0) = ∂Cf(x) ⊂ ∂Bf(x) ⊂ ∂f(x). (3.23)

Applying Theorem 3.3.4 to f yields the required result, in combination with (3.23).
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The following example uses the above corollary to show that even for𝒫𝒞1 func-

tions, the lexicographic subdifferential is not necessarily upper semicontinuous as

a set-valued mapping, in the sense of [3, Definition 1.4.1].

Example 3.3.7. Consider the following 𝒫𝒞1 function f : R2 → R, which was considered

previously in [54, Example 2.14]:

f : x ↦→


x2 + x2

1 if x2 ≤ −x2
1,

0 if − x2
1 < x2 < x2

1,
x2 − x2

1 if x2
1 ≤ x2.

The function f is plotted in Figure 3-1.

-2
-1

 0
 1

 2
x1 -2
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 0

 1

 2
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 0

 1

 2

Figure 3-1: The function f described in Example 3.3.7.

For each ε > 0, f is differentiable at (ε, 0), with J f (ε, 0) =
[
0 0

]
. By inspection, the

directional derivative of f at 0 is
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f ′(0; d) = d2, ∀d ∈ R2,

and so ∂B[ f ′(0; ·)](0) = {
[
0 1

]
}. Thus, applying Corollary 3.3.6,

lim
A∈∂L f (ε,0)

ε→0+

A =
[
0 0

]
/∈
{[

0 1
]}

= ∂L f (0).

It follows that the set-valued mapping ∂L f is not upper semicontinuous at 0.
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Chapter 4

Evaluating lexicographic derivatives

for factorable functions

4.1 Introduction

This chapter is reproduced from the article [61]. As discussed in Chapter 2, Clarke’s

generalized Jacobian [16] is a set-valued extension of the classical derivative to

functions f : X ⊂ Rn → Rm that are locally Lipschitz continuous, but not necessar-

ily differentiable everywhere. Several numerical methods for nonsmooth functions

require Clarke Jacobian elements at each iteration, including semismooth Newton

methods for equation-solving, and bundle methods for local optimization.

In Chapter 3, it was demonstrated that Nesterov’s lexicographic derivatives [79]

are elements of the plenary hull [109] of the Clarke Jacobian whenever they exist.

Consequently, lexicographic derivatives are no less useful in nonsmooth numeri-

cal methods than Clarke Jacobian elements. Moreover, as also shown in Chapter 3,

this result can be strengthened for functions that are piecewise differentiable in

the sense of Scholtes [97]. Such a function has well-defined lexicographic deriva-

tives, with these lexicographic derivatives being elements of the B-subdifferentials

of both the original function and its directional derivative. In this case, it follows

from [97, Proposition 4.3.1] that lexicographic derivatives provide the derivative
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information required for local Q-quadratic convergence of Kojima and Shindo’s

Newton method [65, Algorithm EN], provided that this method’s nonsingularity

assumptions are satisfied.

Although the Clarke Jacobian satisfies calculus rules as inclusions rather than

equations, recently developed methods [33, 54] evaluate Clarke Jacobian elements

for finite compositions of simple elemental functions that are piecewise differen-

tiable in the sense of Scholtes [97]. The method in [54] is reproduced for refer-

ence in Appendix A; this method requires applications of automatic differentia-

tion (AD) at intermediate steps, in such a way that it cannot be implemented in a

“tapeless” fashion like the standard forward AD mode for directional derivative

evaluation [34]. Instead, this method requires storage of the composite function’s

computational graph, analogously to the reverse AD mode [34]. A system of linear

equations must also be solved at the final step of the algorithm. The approach in

[33] applies to a narrower class of functions: comprising compositions of simple

smooth functions and the absolute value function. However, this method does not

require either the remedial AD applications or the final linear solves of the method

in Appendix A.

In this chapter, the methods described in the previous paragraph are unified

and combined with techniques for lexicographic differentiation [79], to yield a new

method for generalized derivative evaluation in the spirit of the vector forward AD

mode. This method applies to a superset of the broad class of composite functions

considered in Appendix A, while also retaining the computational benefits of the

method in [33]. In particular, the composite functions under consideration need

not be piecewise differentiable in the sense of Scholtes [97]. The method essen-

tially proceeds by evaluating an LD-derivative: the variant of the lexicographic

derivative introduced in Chapter 3 to simplify the treatment of the lexicographic

derivative’s calculus rules. Lexicographic derivatives are readily obtained from

these LD-derivatives.

This chapter is structured as follows. Section 4.2 presents vector forward AD

modes for generalized derivative evaluation and discusses their worst-case com-
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putational performance, and Section 4.3 describes and applies a C++ implementa-

tion of these methods.

4.2 Generalized derivative evaluation

Corollary 3.3.6 shows that for a 𝒫𝒞1 function, any lexicographic derivative is an

element of both the B-subdifferential and the Clarke Jacobian. As shown in Sec-

tion 3.1, lexicographic derivatives are readily obtained from LD-derivatives. Moti-

vated by these results, this section presents numerical methods that evaluate LD-

derivatives for L-factorable functions and 𝒫𝒞1-factorable functions. These meth-

ods essentially combine the computational benefits of previous methods for Clarke

Jacobian element evaluation [33, 54] and lexicographic derivative evaluation [79].

The computational tractability of these methods is established and discussed.

4.2.1 Method overview

Given an L-factorable function f, applying Proposition 3.1.2 to the factored rep-

resentation of f shows that Algorithm 2 evaluates f′(x; M). Algorithm 2 is, in

essence, a generalization of Algorithm 1 in which LD-derivatives replace Jacobians

throughout. In the special case in which each elemental function 𝜓(j) is differen-

tiable at u(j),

[𝜓(j)]
′(u(j); U̇(j)) = J𝜓(j)(u(j)) U̇(j),

and so Algorithm 2 reduces to Algorithm 1. If f is 𝒫𝒞1 and M ∈ Rn×n is square

and nonsingular, then Corollary 3.3.6 implies that Algorithm 2 computes HM for

some matrix H ∈ ∂B[f′(x; ·)](0) ⊂ ∂Bf(x). Any 𝒫𝒞1-factorable function is 𝒫𝒞1

by construction; the following section shows that it is L-factorable as well, and

discusses computation of the required LD-derivatives of elemental 𝒫𝒞1 functions.

Unlike Algorithm 12 in Appendix A, this algorithm does not require remedial

applications of the forward mode of AD. As a result, it can be implemented using
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Algorithm 2 Computes f(x) and f′(x; M) for an L-factorable function f
Require: f : X ⊂ Rn → Rm is L-factorable, x ∈ X, p ∈N, M ∈ Rn×p

v(0) ← x
V̇(0) ← M
for j = 1 to ` do

u(j) ← [v(i)]i≺j
v(j) ← 𝜓(j)(u(j))

U̇(j) ← [V̇(i)]i≺j

V̇(j) ← [𝜓(j)]
′(u(j); U̇(j))

end for
return f(x) = v(`) and f′(x; M) = V̇(`)

operator overloading in a similar tapeless fashion to the vector forward AD mode

for smooth functions [34, Chapter 6]. Computational cost is correspondingly re-

duced, due to the relative computational expense of carrying out the forward AD

mode.

A key difference between Algorithm 2 and the standard vector forward AD

mode is that in Algorithm 2, the kth column v̇(j),k of V̇(j) does not represent the

directional derivative [v(j)]
′(x; m(k)). Instead, by inspection of the LD-derivative’s

definition, v̇(j),k denotes [v(j)]
(k−1)
x,M (m(k)).

4.2.2 Evaluating LD-derivatives for elemental functions

To evaluate LD-derivatives for an L-factorable function f using Algorithm 2, LD-

derivatives for the elemental functions 𝜓(j) must be readily computable. Thus,

this section presents closed-form expressions for LD-derivatives of abs, max{·, ·},

min{·, ·}, and ‖ · ‖2, along with a general, computationally tractable method for

computing LD-derivatives for elemental 𝒫𝒞1 functions, when these are not known

a priori.

Given a lexicographically smooth elemental function 𝜓, some x ∈ X𝜓, and

some M ∈ Rn×p, the standard forward AD mode for directional derivative eval-

uation may be used to evaluate 𝜓(0)
x,M, and then to successively evaluate 𝜓(k+1)

x,M

from 𝜓
(k)
x,M for each k. The computational cost of evaluating 𝜓(p−1)

x,M in this manner,

however, scales worst-case exponentially with p. As a result, this is not an ideal
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way to compute the LD-derivative 𝜓(x; M) in general. When 𝜓 is an elemental

𝒫𝒞1 function, however, the following lemma shows that Algorithm 3 evaluates

LD-derivatives for 𝜓, by exploiting (3.4) and Theorem 3.3.4. As discussed in the

next section, this method is computationally tractable.

Algorithm 3 Computes 𝜓′(x; M) for an elemental 𝒫𝒞1 function 𝜓
Require: 𝜓 : X𝜓 ⊂ Rn𝜓 → Rm𝜓 is an elemental 𝒫𝒞1 function, x ∈ X𝜓, p ∈N, M ∈ Rn×p

if ζ𝜓(x) = true then
V̇← J𝜓(x)M

else[
ẇ(1) · · · ẇ(p)

]
← M

for r = 1 to |H𝜓(x) | do
sr ← 1
c* ← 0
for k = 1 to p do

Set c← ⟨a(r)𝜓 (x), ẇ(k)⟩ ∈ R

if c ̸= 0 then
if c* = 0 then

c* ← c
sr ← sign c
k* ← k

else if cc* < 0 then
ẇ(k) ← ẇ(k) − ( c

c* )ẇ(k*)
end if

end if
end for

end for
V̇← Γ𝜓(x; s1, . . . , s|H𝜓(x)|)M

end if
return 𝜓′(x; M) = V̇

Lemma 4.2.1. Given an open set X ⊂ Rn, a vector x ∈ X, an elemental 𝒫𝒞1 function

𝜓 : X → Rm, and a matrix M =
[
m(1) · · · m(p)

]
∈ Rn×p, Algorithm 3 computes

𝜓′(x; M).

Proof. Define the mapping 𝒯M,x : Rp → Rn : y ↦→ x + My. If ζ𝜓(x) = true,

then 𝜓 is differentiable at x. In this case, 𝜓′(x; M) = J𝜓(x)M, which is returned

by Algorithm 3. Otherwise, if ζ𝜓(x) = false, then Theorem 3.3.4 implies that

JC[𝜓 ∘ 𝒯M,x](0; I) is equal to JL[𝜓 ∘ 𝒯M,x](0; I), which is in turn equal to 𝜓′(x; M)

according to (3.4). In this case, it suffices to show that Algorithm 3 is equivalent

77



to the procedure for evaluating JC[𝜓 ∘ 𝒯M,x](0; I) according to [54, Algorithm 4.1],

which is reproduced as Algorithm 12 in Appendix A.

To show that Algorithm 3 and the procedure for evaluating JC[𝜓 ∘ 𝒯M,x](0; I)

are equivalent, consider the following factored representation of f ≡ 𝜓 ∘ 𝒯M,x:

v(0) ← y
u(1) ← v(0)
v(1) ← 𝒯M,x(u(1))
u(2) ← v(1)
v(2) ← 𝜓(u(2))

f(y)← v(2),

and suppose that Algorithm 12 in Appendix A is used to compute JCf(0; I),

noting that f is defined on some neighborhood of 0. Immediately before the out-

ermost for-loop in the algorithm is reached, the vectors u̇(2,1), . . . , u̇(2,p) will have

been computed using the forward AD mode as

u̇(2,k) = v̇(1)(0; e(k)) = [𝒯M,x]
′(0; e(k)) = J𝒯M,x(0) e(k) = Me(k) = m(k),

∀k ∈ {1, . . . , p}.

Hence, for each k, at this point in Algorithm 12, u̇(2,k) is equal to the initial value of

ẇ(k) in Algorithm 3.

Since 𝒯M,x is differentiable, no action is taken during the first iteration of the

outermost for-loop of Algorithm 12, in which j = 1. Immediately after the second

iteration, in which j = 2, the proof of Lemma A.6.6 and inspection of Algorithm 12

show that for each k, u̇(2,k) is now equal to the final value of ẇ(k) in Algorithm 3.

Moreover, since the same sequence of elementary column operations was applied

to
[
u̇(2,1) · · · u̇(2,p)

]
as to

[
q(1) · · · q(p)

]
, there exists some A ∈ Rp×p such

that

[
u̇(2,1) · · · u̇(2,p)

]
= MA, and

[
q(1) · · · q(p)

]
= IA.

Thus, A =
[
q(1) · · · q(p)

]
, and

[
u̇(2,1) · · · u̇(2,p)

]
= M

[
q(1) · · · q(p)

]
. (4.1)
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Now, if c* is assigned a nonzero value during the rth iteration of the middle for-

loop in Algorithm 12, then the corresponding value of sign c* is, by inspection,

equal to the assigned value of sr in the rth iteration of the outer for-loop in Algo-

rithm 3. Moreover, as in the proof of Lemma A.6.6, once the second iteration of the

outermost for-loop in Algorithm 12 is completed,

sr

〈
a(r)𝜓 (x), u̇(2,k)

〉
≥ 0, ∀k ∈ {1, . . . , p}.

The above relationship holds even if c* remains at zero throughout the rth iteration

of the middle for-loop in Algorithm 12, since for this to occur, it must be true that

⟨a(r)𝜓 (x), u̇(2,k)⟩ = 0 for each k.

Thus, as in the proof of Lemma A.6.6, there now exists a polyhedral cone

C* :=
|H𝜓(x)|⋂

r=1

{
z ∈ Rn : sr⟨a(r)𝜓 (x), z⟩ ≥ 0

}
,

which contains each u̇(2,k) = ẇ(k). The definition of Γ𝜓(x; s1, . . . , s|H𝜓(x)|) implies

that

Γ𝜓(x; s1, . . . , s|H𝜓(x)|)u̇(2,k) = 𝜓′(x; u̇(2,k)), ∀k ∈ {1, . . . , p}. (4.2)

Applying the chain rule for directional derivatives, for each k ∈ {1, . . . , p},

[𝜓 ∘ 𝒯M,x]
′(0; q(k)) = 𝜓′(𝒯M,x(0); J𝒯M,x(0) q(k)) = 𝜓′(x; Mq(k)).

Applying (4.1) and (4.2), for each k ∈ {1, . . . , p},

[𝜓 ∘ 𝒯M,x]
′(0; q(k))

= 𝜓′(x; u̇(2,k))

= Γ𝜓(x; s1, . . . , s|H𝜓(x)|) u̇(2,k)

= Γ𝜓(x; s1, . . . , s|H𝜓(x)|)Mq(k).

Comparing these equations to the linear system solved at the end of Algorithm 12,

and noting that
[
q(1) · · · q(p)

]
is nonsingular by Lemma A.6.2, it follows that
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JC[𝜓 ∘ 𝒯M,x](0; I) = Γ𝜓(x; s1, . . . , s|H𝜓(x)|)M,

which is the output of Algorithm 3. As discussed earlier, this result completes the

proof.

The following examples apply Algorithm 3 to evaluate LD-derivatives for sim-

ple nonsmooth functions which are commonly encountered in practice. These ex-

amples show that iterations of the for-loop in Algorithm 2 are readily executed

when 𝜓(j) is a simple 𝒫𝒞1 function.

Example 4.2.2. When 𝜓 ≡ abs (·), Algorithm 3 reduces to the following. Since abs (·)

admits a scalar argument, V̇ and M are both row vectors in this case.

if x ̸= 0 then
V̇← (sign x)M

else
s1 ← 1
for k = 1 to p do

if m(k) ̸= 0 then
s1 ← sign m(k)
Break out of for-loop

end if
end for
V̇← s1M

end if

The above procedure may be further rearranged and simplified to yield the following

variant of an expression in [79, Section 4]:

V̇← ψ′(x; M),

=


(sign x)M if x ̸= 0,
0 if M = 0,
(sign m(k*))M with k* := min{k : m(k) ̸= 0}, if x = 0 and M ̸= 0.

These procedures may be rephrased without reference to matrix operations, as follows:

s1 ← sign x
for k = 1 to p do

if s1 = 0 then
s1 ← sign m(k)

80



end if
v̇(k) ← s1m(k)

end for

If f is abs -factorable, and if the abs (·) function is handled according to Exam-

ple 4.2.2, then Algorithm 2 effectively reduces to the approach of [33, Section 6.2].

Example 4.2.3. When 𝜓 ≡ max{·, ·}, Algorithm 3 reduces to the following:

if x1 > x2 then
V̇←

[
m(1),1 · · · m(p),1

]
else if x1 < x2 then

V̇←
[
m(1),2 · · · m(p),2

]
else

s1 ← 1
for k = 1 to p do

if m(k),1 ̸= m(k),2 then
s1 ← sign (m(k),1 −m(k),2)
Break out of for-loop

end if
end for
if s1 ≥ 0 then

V̇←
[
m(1),1 · · · m(p),1

]
else

V̇←
[
m(1),2 · · · m(p),2

]
end if

end if

As in the ψ ≡ abs (·) case, this procedure can be further simplified to yield the follow-

ing variant of an expression in [79, Section 4]:

V̇← ψ′(x; M) =



[
1 0

]
M if x1 > x2,[

0 1
]

M if x1 < x2,[
1 0

]
M if x1 = x2 and

[
1 −1

]
M = 0,[

1 0
]

M if x1 = x2,
[
1 −1

]
M ̸= 0, and m(k*),1 > m(k*),2,

with k* := min{k : m(k),1 ̸= m(k),2},[
0 1

]
M if x1 = x2,

[
1 −1

]
M ̸= 0, and m(k*),1 < m(k*),2,

with k* := min{k : m(k),1 ̸= m(k),2}.

The procedure is identical when 𝜓 ≡ min{·, ·}, except with the comparison operators >

and < reversed in each instance.
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The above procedures may be rephrased without reference to matrix operations, as fol-

lows:

s1 ← sign (x1 − x2)
for k = 1 to p do

if s1 = 0 then
s1 ← sign (m(k),1 −m(k),2)

end if
if s1 ≥ 0 then

v̇(k) ← m(k),1
else

v̇(k) ← m(k),2
end if

end for

Again, replacing the “≥” operator with “≤” yields an analogous procedure for min{·, ·}.

Any elemental 𝒫𝒞1 function may be used in Algorithm 3, provided that the

required information is available. If, however, at least one elemental function 𝜓(j)

is lexicographically smooth but not 𝒫𝒞1, then Corollary 3.3.6 may not apply. Nev-

ertheless, a lexicographic derivative obtained from Algorithm 2 will still be a ple-

nary Jacobian element due to Corollary 3.2.5. To this end, the following example

presents LD-derivatives for the function ‖ · ‖2, which is lexicographically smooth

but not 𝒫𝒞1.

Example 4.2.4. LD-derivatives for ψ ≡ ‖·‖2 on Rn are obtained as follows. With q̂

denoting the unit vector q
‖q‖2

for any nonzero q ∈ Rn, it is readily verified that ψ is

differentiable at each x ̸= 0, with

Jψ(x) = x̂T, ∀x ̸= 0.

Since ψ is convex, it is lexicographically smooth; the directional derivative of ψ at 0 is

ψ′(0; d) = ‖d‖2 = ψ(d) = d̂Td, ∀d ∈ Rn.

Using the above results, it is readily shown that for any M :=
[
m(1) · · · m(p)

]
∈

Rn×p and any k ∈ {0, 1, . . . , p},
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ψ
(k)
0,M(d) =

{
ψ(d), if m(j) = 0 ∀j ∈ {1, . . . , k}

(m̂(`))
Td, with ` := min{j : m(j) ̸= 0}, otherwise.

It follows that the LD-derivative of ψ is given by

ψ′(x; M) =


x̂TM, if x ̸= 0,
0, if M = 0,
(m̂(j*))

TM with j* := min{j : m(j) ̸= 0}, if x = 0 and M ̸= 0.

4.2.3 Estimating computational complexity

The worst-case computational complexity of Algorithm 2 may be estimated as fol-

lows. Let the computational cost of evaluating a function g at some domain point

x be 𝒞[g(x)]. Consider an L-factorable function f : X ⊂ Rn → Rm, whose fac-

tored representation consists of elemental functions from an elemental library ℒ.

Comparing Algorithm 2 with the definition of a factored representation, for any

particular M ∈ Rn×p, it follows that

𝒞[f′(x; M)] ≤

 max
j∈{1,...,`}

𝒞
[
[𝜓(j)]

′(u(j); U̇(j))
]

𝒞[𝜓(j)(u(j))]

 𝒞[f(x)]
≤ max

{
𝒞 [𝜓′(z; N)]

𝒞[𝜓(z)] : 𝜓 ∈ ℒ, z ∈ X𝜓, N ∈ Rn𝜓×p
}
𝒞[f(x)]. (4.3)

The coefficient of 𝒞[f(x)] in the above estimate is a library-dependent constant, and

may itself be estimated as follows. Assume that each function in ℒ is either a stan-

dard smooth function or operation such as +, ×, cos, or exp, a simple nonsmooth

function as considered in Examples 4.2.2 to 4.2.4, or an elemental 𝒫𝒞1 function.

These cases will be considered separately.

If a function 𝜓 ∈ ℒ is a standard smooth function or operation, then for any

z ∈ X𝜓 and N ∈ Rn𝜓×p, it follows from the discussion in [34, Section 4.5] and the

identity 𝜓′(z; N) = J𝜓(z)N that
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𝒞
[
𝜓′(z; N)

]
= 𝒞 [J𝜓(z)N] ≤ (1 + 1.5p) 𝒞[𝜓(z)].

If ψ ≡ abs (·), then the procedure at the end of Example 4.2.2 can be used to

evaluate ψ′(z; N). Assume for simplicity that if-statements, the sign (·) function,

and products of the form sy for s ∈ {−1, 0, 1} and y ∈ R are each of complexity

𝒞[abs (z)], since they each essentially require evaluation of one or two branching

conditions, followed perhaps by a trivial negative operation. In this case, inspec-

tion of the final procedure in Example 4.2.2 shows that

𝒞
[
ψ′(z; N)

]
≤ (3p + 1) 𝒞[abs (z)] = (3p + 1) 𝒞[ψ(z)].

Assuming further that 𝒞[max(y, z)] ≈ 𝒞[abs (z)], inspection of Example 4.2.3 shows

that with ψ ≡ max(·, ·) or min(·, ·),

𝒞
[
ψ′((y, z); N)

]
≤ (3p + 1) 𝒞[ψ(y, z)].

With ψ ≡ ‖·‖2 on Rnψ , assume for simplicity that for any y, z ∈ Rnψ , 𝒞[ψ(z)] ≥

𝒞[yTz], since ψ(z) =
√

zTz. Since norms and inner products evidently dominate

the computational complexity of the procedure in Example 4.2.4, it follows that for

some k′ ∈ {1, . . . , p},

𝒞
[
ψ′(z; N)

]
. 𝒞

[
(n̂(k′))

TN
]
≤ 𝒞[n̂(k′)] +

p

∑
k=1
𝒞
[
yTn(k)

]
≤ (p + 1) 𝒞[ψ(z)].

Lastly, assume that 𝜓 is an elemental 𝒫𝒞1 function, and that its LD-derivatives

are evaluated using Algorithm 3. Elemental 𝒫𝒞1 functions can be arbitrarily com-

plicated; to restrict ourselves to elemental functions that are useful in practice,

assume that

rmax := max{|H𝜓(y)| : 𝜓 ∈ ℒ, y ∈ X𝜓}

is well-defined and finite. Note that with ψ ≡ abs (·), max(·, ·), or min(·, ·), for

example,
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max{|H𝜓(y)| : y ∈ X𝜓} = 1.

In the spirit of complexity results for the standard vector forward AD mode [34,

Section 4.5], assume that for some library-dependent constant γ ∈ R,

𝒞 [J𝜓(z)N] ≤ γp 𝒞[𝜓(z)] and 𝒞
[
Γ𝜓(z; s1, . . . , s|H𝜓(z)|)N

]
≤ γp 𝒞[𝜓(z)],

whenever the left-hand quantities are defined. Inspection of Algorithm 3 shows

that, retaining only the dominant terms,

𝒞
[
𝜓′(z; N)

]
. rmaxp (𝒞[⟨a, ẇ⟩] + 𝒞[ẇ− αẇ*]) + γp 𝒞[𝜓(z)]

Assuming further that 𝒞[𝜓(z)] exceeds both 𝒞[⟨a, ẇ⟩] and 𝒞[ẇ− αẇ*], as is likely

the case for all but the simplest elemental 𝒫𝒞1 functions 𝜓, the above estimate

simplifies to:

𝒞
[
𝜓′(z; N)

]
. (2rmax + γ)p 𝒞[𝜓(z)].

It follows from the above discussion and from (4.3) that the computational com-

plexity of using Algorithm 2 to evaluate f′(x; M) satisfies the estimate:

𝒞
[
f′(x; M)

]
. 𝒪(p) 𝒞 [f(x)] .

In particular, if the elemental library ℒ contains only abs (·), min(·, ·), max(·, ·),

‖·‖2, and the standard smooth functions and operations, then

𝒞
[
f′(x; M)

]
. (3p + 1) 𝒞 [f(x)] .

Hence, Algorithm 2 is computationally tractable relative to the cost of a function

evaluation. Like the standard vector forward AD mode [34], the cost of Algo-

rithm 2 scales worst-case linearly with p.
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4.3 Implementation and examples

This section describes an implementation of Algorithm 2 in C++, and presents re-

sults of applying this implementation to various example problems for illustration.

An example of a nonsmooth equation system is presented in which if the general-

ized derivatives required by the semismooth Newton method are incorrectly com-

puted using the standard vector forward AD mode for smooth functions, then the

local convergence of the semismooth Newton method is lost.

4.3.1 Implementation

Algorithm 2 was implemented in C++, following a similar approach to the for-

ward AD mode implementation described in [34, Section 6.1]. Analogously to the

adouble class used in [34] to represent the function value/directional derivative

pairs (v(j), v̇(j)), this implementation introduces an ldouble class to represent the

function value/LD-derivative pairs (v(j), V̇(j)) appearing in Algorithm 2, with the

row vector V̇(j) represented as a std::vector<double>. For simplicity, all elemen-

tal functions considered are scalar-valued: these currently include the negative,

the standard arithmetic operations +, −, ×, and ÷, and the nonsmooth elemental

functions | · |, max{·, ·}, min{·, ·}, and ‖(·, ·)‖2 ≡
√
(·)2 + (·)2. Further elemental

functions such as sin/cos/tan and exp/log can be included readily as well.

The implementation evaluates LD-derivatives as follows. The L-factorable func-

tion under consideration is entered as a template subroutine, expressed in terms

of the elemental functions mentioned above, and written as though its inputs and

outputs are double arrays. The various elemental functions are overloaded so that

appropriate ldouble outputs are produced when ldouble inputs are given. To

evaluate the LD-derivatives required by this overloading, the relationship f′(x; M) =

Jf(x)M is applied for differentiable elemental functions, and the procedures in Ex-

amples 4.2.2, 4.2.3, and 4.2.4 are applied for the nonsmooth elemental functions

considered.

To initialize the inputs x and M to Algorithm 2, an ldouble array is constructed,
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whose kth entry is (xk,
[
m(1),k · · · m(p),k

]
). Thus, input components are effec-

tively handled one at a time in the spirit of Example 2.5.2; introducing the coordi-

nate projection function πk : x ↦→ xk, it is readily verified that

[πk]
′(x; M) =

[
m(1),k · · · m(p),k

]
.

The outputs of Algorithm 2 are produced in a similar format to the inputs, with the

LD-derivative of each coordinate projection of the output given separately. Note

that for any lexicographically smooth function f : X ⊂ Rn → Rm,

f′(x; M) =

 [ f1]
′(x; M)

...
[ fm]

′(x; M)

 .

and so an LD-derivative of a vector-valued function is readily assembled from LD-

derivatives of its coordinate projections.

By inspection, several approaches to exploiting sparsity in the standard vector

forward AD mode [34, Chapters 7 and 8] are also applicable to Algorithm 2, and

could reduce the computational cost of LD-derivative evaluation significantly for

large problems with sparse computational graphs. For simplicity, however, these

approaches were not pursued further in the implementation described above.

4.3.2 Examples

To verify that the implementation of Algorithm 2 works for 𝒫𝒞1-factorable func-

tions, the generalized Jacobian elements computed for 𝒫𝒞1-factorable functions in

Examples A.5.1–A.5.5 were also computed using this implementation, setting the

direction matrix M to I in each instance.

The following example demonstrates LD-derivative evaluation for a function

that is L-factorable but not 𝒫𝒞1-factorable, in order to solve a nonlinear comple-

mentarity problem using a semismooth Newton method. This example is small for

illustration, and shows that, while compositions of nonsmooth functions tradition-

ally make generalized derivative evaluation difficult [23], the methods in this chap-
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ter are well-suited to such compositions. As described in Section 5.1, semismooth

Newton methods have already been applied successfully to much larger problems

in which the required generalized derivatives can be described analytically. Fol-

lowing a similar approach to this example, semismooth Newton methods may be

combined with the methods in this chapter to locate points satisfying the Karush–

Kuhn–Tucker optimality conditions for a constrained optimization problem, with-

out requiring twice-differentiability of the objective function or constraints.

Example 4.3.1. Similar to the formulation given in [23], a nonlinear complementarity

problem (NCP) involves determining a vector x ∈ Rn such that, for a given function

f : Rn → Rn, the following conditions are satisfied simultaneously:

x ≥ 0, f(x) ≥ 0, and xTf(x) = 0.

Such an NCP arises, for example, in formulating the Karush–Kuhn–Tucker optimality

conditions for the constrained nonlinear program:

min
x∈Rn

h(x) subject to x ≥ 0,

where h is differentiable, with f := ∇h.

As discussed in [23], this NCP can be equivalently reformulated as the following nons-

mooth equation system, using the Fischer-Burmeister function (a, b) ↦→ ‖(a, b)‖2− (a +

b):

0 = g(x), where gi : x ↦→ ‖(xi, fi(x))‖2 − (xi + fi(x)), ∀i ∈ {1, . . . , n}.
(4.4)

As a variation of an example from [84], consider an instance of an NCP in which n = 4,

and f is defined as the mapping:

f : R4 → R4 : x ↦→


3x2

1 + 2x1x2 + 2x2
2 + x3 + 3x4 + |x3 − 2x4 − 3| − 6

2x2
1 + x1 + x2

2 + 10x3 + 2x4 − 2
3x2

1 + x1x2 + 2x2
2 + 2x3 + 9x4 + |x3 − 2x4 − 3| − 9

x2
1 + 3x2

2 + 2x3 + 3x4 − 3

 . (4.5)
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Though the function f is typically 𝒞1 in instances of NCP, this is not the case here. This

nonsmoothness, however, does not present any problems when applying a semismooth

Newton method to solve (4.4), even though the redundancy of the nonsmooth terms in

f yields nontrivial generalized Jacobians, as discussed in [23, Example 7.1.15].

There are two sources of nonsmoothness in the resulting equation system (4.4): the

2-norms appearing in the definition of g, and the absolute value functions appearing in

the definition of f. The kink of at least one ‖ · ‖2 function in (4.4) is reachable: with

x = (1, 0,−0.1, 0), for example, (x2, f2(x)) = (0, 0). As a result, the residual function g

in (4.4) is not 𝒫𝒞1 everywhere, though it is L-factorable, and is readily verified using [75,

Theorem 5] to be semismooth in the sense of [92].

As discussed in Chapters 2 and 3, ∂Lg(x) ⊂ ∂Pg(x), and an element of ∂Pg(x) is as

useful as an element of ∂g(x) in Qi and Sun’s semismooth Newton method [92]. Hence,

this semismooth Newton method was used to solve (4.4) in this instance, using the devel-

oped implementation of Algorithm 2 to evaluate g′(x(k); I) = JLg(x(k); I) ∈ ∂Lg(x(k))

when computing the (k + 1)th Newton step. The C++ library uBLAS included with Ver-

sion 1.54.0 of Boost [117] was used to solve the linear equation system determining each

Newton step. The method was determined to have converged to x* if ‖g(x*)‖2 < 10−6.

Results of the semismooth Newton method are presented for various initial guesses x(0)

in Table 4.1; the method converged to a solution of the underlying NCP for each initial

guess used. Convergence was observed to be at least Q-superlinear for each tested ini-

tial guess except (−5, 5,−5, 5); for illustration, the progress of the method for an initial

guess of (1.5,−1, 3.5, 0.25) is shown in Table 4.2. Convergence from the initial guess

(−5, 5,−5, 5) to the solution (0, 0, 0, 1) was observed to be Q-linear; to explain this be-

havior, the developed implementation of Algorithm 2 was used to show that

JLf




0
0
0
1

 ;


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1


 =


−1 0 0 0
−1 0 −10 −2
0 0 −1 0
0 0 −2 −3

 ,

which was also verified by hand. This lexicographic derivative is singular; it follows from

[123, Proposition 3(e)] and Corollary 3.2.5 that ∂f(0, 0, 0, 1) contains a singular matrix, in
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Initial guess x(0) Converged solution x* Iterations until convergence
(−5,−5,−5,−5) (0, 0.717, 0.059, 0.447) 7
(−5, 5,−5, 5) (0, 0, 0, 1) 18
(5,−5, 5,−5) (0.612, 0, 0.75, 0.375) 6
(5, 5, 5, 5) (0, 0.717, 0.059, 0.447) 8
(5,−5, 3, 0) (0, 0.717, 0.059, 0.447) 8

(5,−5, 0,−1.5) (0, 0.717, 0.059, 0.447) 9
(1, 0,−0.1, 0) (0.612, 0, 0.75, 0.375) 4

(1.5,−1, 3.5, 0.25) (1, 0, 3, 0) 5

Table 4.1: Results of using a semismooth Newton method to solve (4.4)–(4.5)

Iteration k x(k) ‖x(k) − x*‖2
0 (1.50,−1.00, 3.50, 0.250) 1.25
1 (0.683,−0.004, 1.50, 0.001) 1.53
2 (0.997, 0.000, 2.56, 0.000) 0.442
3 (1.00, 0.000, 2.96, 0.000) 3.9× 10−2

4 (1.00, 0.000, 3.00, 0.000) 2.6× 10−4

5 (1.00, 0.000, 3.00, 0.000) 1.2× 10−8

Table 4.2: Progress of a semismooth Newton method applied to (4.4)–(4.5) with an
initial guess of (1.5,−1, 3.5, 0.25)

which case the assumptions of Qi and Sun’s Q-superlinear convergence result [92, Propo-

sition 3.1] are not satisfied at (0, 0, 0, 1). Note that this approach does not represent a

general method for verifying that a Clarke Jacobian element is singular: the existence of

such an element does not imply the existence of a singular lexicographic derivative, and

does not suggest which direction matrix to choose if it does exist.

The solution discussed above, x̄ = (0, 0, 0, 1), is such that x̄2 = 0 and f2(x̄) = 0.

Thus, the residual function g is nonsmooth at x̄. The function f is nonsmooth at the initial

guesses (5,−5, 3, 0), (5,−5, 0,−1.5), and (1.5,−1, 3.5, 0.25), and at the converged solu-

tion (1, 0, 3, 0). Moreover, the function g is nonsmooth at the initial guess (1, 0,−0.1, 0),

though f is not. Neither this nonsmoothness nor the 2-norms present in the definition of g

posed an obstacle when evaluating LD-derivatives.

The following example shows that even when the requirements for local quadratic

convergence of Kojima and Shindo’s nonsmooth Newton method [65, Theorem 1]

are met, if the pseudo-Jacobian
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Ĵf(x) :=
[
f′(x; e(1)) · · · f′(x; e(n))

]
is used in place of an element of the generalized Jacobian at each iteration, then the

local convergence of this method is not necessarily preserved.

Example 4.3.2. Consider the function:

f : R2 → R2 : (x1, x2) ↦→



1
3(x1, x2 − 2x1) if x1 ≤ 0 and x2 ≥ 0,
1
3(2x1, x2) if x1 ≥ 0 and x2 ≤ 0,
1
3(2x1 − 2x2, x2) if x1 ≥ 2x2 and x2 ≥ 0,
1
3(x1, 2x2 − 2x1) if 2x1 ≤ x2 and x2 ≤ 0,
1
3(x1, x2) if x1 ≤ 2x2 and x1 ≥ 0,

or if 2x1 ≥ x2 and x1 ≤ 0.

It can be verified that f is continuous, and is therefore 𝒫ℒ, with linear selection functions

whose Jacobians are each nonsingular. The equation system f(x*) = 0 has the unique

solution x* = 0. This equation system satisfies the hypotheses of [65, Theorem 1], so local

Q-quadratic convergence of Kojima and Shindo’s Newton method [65, Algorithm EN] to 0

is guaranteed. Indeed, Algorithm EN in [65] converges after one iteration given any initial

guess other than 0.

Suppose, instead, that the pseudo-Jacobian Ĵf(x) is used in place of a B-subdifferential

element at each iteration, and suppose an initial guess of x(0) := (2a, a) is chosen, for

some a > 0. Since x(0),1 > 0, x(0),2 > 0, and x(0),1 = 2x(0),2, it follows that f(x(0)) =

f(2a, a) = (2a, a), and

Ĵf(x(0)) =
1
3

[
2 0
0 1

]
.

Thus, the modified Newton method defines the next iterate as

x(1) := x(0) − Ĵf(x(0))
−1f(x(0)) =

[
2a
a

]
−
[3

2 0
0 3

] [
2a
a

]
=

[
−a
−2a

]
.

Since x(1),1 < 0, x(1),2 < 0, and 2x(1),1 = x(1),2, it follows that f(x(1)) = f(−a,−2a) =

(−a,−2a), and
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Ĵf(x(1)) =
1
3

[
1 0
0 2

]
.

Thus, the modified Newton method defines the next iterate as

x(2) := x(1) − Ĵf(x(1))
−1f(x(1)) =

[
−a
−2a

]
−
[

3 0
0 3

2

] [
−a
−2a

]
=

[
2a
a

]
= x(0).

It follows that (2a, a) = x(0) = x(2) = x(4) = . . ., and that (−a,−2a) = x(1) = x(3) =

x(5) = . . .. Hence, this modified Newton method does not converge given an initial guess of

(2a, a) for any a > 0, and therefore does not have a neighborhood of convergence around the

solution x* = 0. This shows that the modified Newton method does not necessarily have

a neighborhood of convergence around a solution, even when conditions for local quadratic

convergence of Kojima and Shindo’s nonsmooth Newton method are met.

4.4 Conclusions

A vector forward AD mode has been developed for evaluating LD-derivatives for

L-factorable functions, from which lexicographic derivatives are readily obtained.

This method improves our earlier method in Appendix A, which was the first

computationally tractable method for computation of generalized derivatives for

a broad class of nonsmooth vector-valued functions. Moreover, the method in this

chapter incorporates the computational advantages of the method in [33]; it can be

implemented in a tapeless fashion using operator overloading.
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Chapter 5

Lexicographic derivatives for

solutions of nonsmooth ODEs

5.1 Introduction

This chapter reproduces the article [55] and the proceedings [57]. For any lo-

cally Lipschitz continuous mapping between finite-dimensional Euclidean spaces,

Clarke’s generalized Jacobian [16] is a set-valued mapping that provides useful lo-

cal sensitivity information. Elements of Clarke’s generalized Jacobian are used in

semismooth Newton methods for equation-solving [65, 92], and in bundle methods for

local optimization [63, 67, 70]. Chapter 4, Appendix A, and [33] present methods

to evaluate generalized Jacobian elements for finite compositions of simple smooth

and nonsmooth functions. However, there is currently no general method for de-

termining generalized Jacobian elements for nonsmooth dynamic systems, which

are defined in this chapter to be parametric Carathéodory ordinary differential

equations (ODEs) with right-hand side functions that are not necessarily differen-

tiable with respect to the dependent variables and parameters. These ODEs will

be referred to as nonsmooth parametric ODEs throughout this chapter.

Classical results concerning parametric sensitivities of solutions of parametric

ODEs require that the ODE right-hand side function has continuous partial deriva-
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tives, and imply differentiability of a unique solution with respect to the parame-

ters [35]. These results can be extended to certain hybrid discrete/continuous dy-

namic systems, in which any discontinuities or kinks in an otherwise differentiable

solution are defined as the solutions of equation systems with residual functions

that are both continuously differentiable and locally invertible [30]. Nevertheless,

the following example shows that a solution of a nonsmooth parametric ODE sys-

tem is not necessarily differentiable with respect to the parameters. In this case,

classical sensitivity results for parametric ODEs do not apply.

Even if the solutions of nonsmooth parametric ODEs are known to be smooth

or convex functions of the ODE parameters, there is no general method for evaluat-

ing their gradients or subgradients. Such applications arise in global optimization

of systems with nonconvex parametric ODE solutions embedded, where convex

underestimators of these nonconvex ODE solutions have been described as solu-

tions of corresponding nonsmooth parametric ODEs [102].

As described in Chapter 2, Clarke [16, Theorem 7.4.1] presents the primary

existing result describing generalized Jacobians of parametric ODE solutions, in

which certain supersets of generalized Jacobians of the ODE solutions are con-

structed. Using properties of these supersets, sufficient conditions for the differen-

tiability of the original ODE solution have been formulated [16, 125].

Pang and Stewart [88, Theorem 11 and Corollary 12] show that when a para-

metric ODE has a right-hand side function that is semismooth in the sense of Qi [92],

the generalized Jacobian supersets described by Clarke are in fact linear Newton ap-

proximations about any domain point. As summarized in Section 7.5.1 of [23], a

linear Newton approximation for a locally Lipschitz continuous function about

a domain point is a set-valued mapping containing local sensitivity information.

Throughout this chapter, all discussed linear Newton approximations are linear

Newton approximations about every domain point simultaneously; any reference

to a linear Newton approximation of a function at a domain point refers to the

value of this linear Newton approximation when evaluated at that domain point.

Yunt [124] extends Pang and Stewart’s result to adjoint sensitivities, systems de-
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scribed by index-1 differential-algebraic equations, and multi-stage systems with

discontinuities in the right-hand side function occurring only at finitely many

known values of the independent variable. However, the following example shows

that linear Newton approximations are not guaranteed to satisfy certain properties

that are satisfied by Clarke’s generalized Jacobian. In particular, the linear New-

ton approximation of a continuously differentiable function at a domain point can

include elements other than the derivative of the function at that point. Moreover,

the linear Newton approximation of a convex scalar-valued function at a domain

point can include elements that are not subgradients of the function at that point.

Thirdly, given a convex scalar-valued function on an open set, the fact that the lin-

ear Newton approximation of the function at a domain point contains the origin

is not a sufficient condition for a global minimum. Clarke’s generalized Jacobian

for a locally Lipschitz function, on the other hand, includes only the derivative

whenever the function is continuously differentiable, and is identical to the con-

vex subdifferential whenever the function is scalar-valued and convex [16]. In the

latter case, the fact that the value of Clarke’s generalized Jacobian at a domain

point contains the origin is sufficient for a global minimum on an open set.

Example 5.1.1. Consider the mappings f : R → R : x ↦→ x, g : R → R : x ↦→

max{x, 0}, and h : R → R : x ↦→ min{x, 0}. Using [16, Theorem 2.5.1], the Clarke

generalized Jacobians of g and h are evaluated as:

∂g(x) =


{0}, if x < 0,
[0, 1], if x = 0,
{1}, if x > 0,

∂h(x) =


{1}, if x < 0,
[0, 1], if x = 0,
{0}, if x > 0.

Now, g and h are each piecewise linear, and are therefore semismooth [23]. Since f ≡ g+ h

on R, it follows from [23, Corollary 7.5.18] that the following set-valued mapping is a

linear Newton approximation for f :

Γ f : x ↦→ ∂g(x) + ∂h(x) =


{1}, if x < 0,
[0, 2], if x = 0,
{1}, if x > 0.

By inspection, f is convex and continuously differentiable on its domain, and has a deriva-
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tive of J f (x) = 1 for each x ∈ R. In addition, f does not have any local minima on R.

However, although J f (0) ̸= 0, 0 ∈ Γ f (0).

The plenary hull of Clarke’s generalized Jacobian has been investigated in [41,

109, 123], and is referred to in this thesis as the plenary Jacobian. Though the ple-

nary Jacobian is a superset of the generalized Jacobian, it satisfies several key non-

smooth analysis results in place of the generalized Jacobian. A benefit of the ple-

nary Jacobian is that membership of the plenary Jacobian is easier to verify than

membership of Clarke’s generalized Jacobian. As argued in Chapter 2, the plenary

Jacobian is in some sense as good a linear Newton approximation as the general-

ized Jacobian, and is just as useful in semismooth Newton methods and in bundle

methods.

Sensitivities for unique solutions of a smooth parametric ODE system are tra-

ditionally expressed as the unique solutions of a corresponding linear ODE system

obtained from the original system by application of the chain rule, as summarized

in [35, Ch. V, Theorem 3.1]. In this spirit, the goal of this chapter is to present

the first description of a plenary Jacobian element of the unique solution of a non-

smooth parametric ODE system as the unique solution of another ODE system.

Nesterov’s lexicographic derivatives [79] are used as a tool to construct this ple-

nary Jacobian element.

The following section presents the main results of this chapter, in which direc-

tional derivatives and lexicographic derivatives for solutions of nonsmooth para-

metric ODEs are expressed as the unique solutions of corresponding ODE systems.

Various implications of these results are discussed.

5.2 Generalized derivatives for solutions of paramet-

ric ODEs

This section extends a result by Pang and Stewart [88] to show that when the right-

hand side function of a Carathéodory ODE [26] is directionally differentiable with
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respect to the dependent variables, then directional derivatives of any ODE solu-

tion with respect to its initial condition can be expressed as the solution of another

Carathéodory ODE. This result is in turn extended to show that if the right-hand

side function of the original ODE is L-smooth with respect to the dependent vari-

ables, then lexicographic derivatives of the ODE solution can also be expressed as

the unique solution of another ODE. This latter ODE may be decoupled into a se-

quence of Carathéodory ODEs, but does not necessarily satisfy the Carathéodory

assumptions itself.

5.2.1 Propagating directional derivatives

The following theorem extends a result by Pang and Stewart [88, Theorem 7] con-

cerning directional derivatives of ODE solutions to the case in which direct depen-

dence of the ODE right-hand side function on the independent variable is mea-

surable but not necessarily continuous. This theorem and the subsequent corol-

lary show that these directional derivatives uniquely solve a corresponding ODE

whose right-hand side function may be discontinuous in the independent variable,

even if the right-hand side function of the original ODE was continuous. Hence,

allowing for discontinuous dependence of the original right-hand side function on

the independent variable is essential when using these results in inductive proofs

to describe higher-order directional derivatives and lexicographic derivatives of

the ODE solution.

Theorem 5.2.1. Given an open, connected set X ⊂ Rn and real numbers t0 < t f , suppose

that a function f : [t0, t f ]× X → Rn satisfies the following conditions:

∙ the mapping f(·, c) : [t0, t f ]→ Rn is measurable for each c ∈ X,

∙ for each t ∈ [t0, t f ] except in a zero-measure subset Zf, the mapping f(t, ·) : X →

Rn is continuous and directionally differentiable,

∙ with x(·, c) denoting any solution of the parametric ODE system:
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dx
dt

(t, c) = f(t, x(t, c)), x(t0, c) = c, (5.1)

there exists a solution {x(t, c0) : t ∈ [t0, t f ]} ⊂ X for some c0 ∈ X,

∙ there exists an open set N ⊂ X such that {x(t, c0) : t ∈ [t0, t f ]} ⊂ N, and such

that there exist Lebesgue integrable functions kf, mf : [t0, t f ] → R+ ∪ {+∞} for

which

‖f(t, c)‖ ≤ mf(t), ∀t ∈ [t0, t f ], ∀c ∈ N,

and

‖f(t, c1)− f(t, c2)‖ ≤ kf(t) ‖c1 − c2‖, ∀t ∈ [t0, t f ], ∀c1, c2 ∈ N.

Then, for each t ∈ [t0, t f ], the function xt ≡ x(t, ·) is well-defined and Lipschitz continu-

ous on a neighborhood of c0, with a Lipschitz constant that is independent of t. Moreover,

xt is directionally differentiable at c0 for each t ∈ [t0, t f ], and for each d ∈ Rn, the map-

ping t ↦→ [xt]
′(c0; d) is the unique solution on [t0, t f ] of the ODE:

dy
dt

(t) = [f̂t]
′
(x(t, c0); y(t)), y(t0) = d, (5.2)

where f̂t : X → Rn is defined in terms of f as follows, and is directionally differentiable for

each t ∈ [t0, t f ]:

f̂t(c) =
{

f(t, c), if t ∈ [t0, t f ]∖Zf,
0, if t ∈ Zf.

Proof. By [26, Ch. 1, §1, Theorem 2], x(·, c0) is the unique solution of (5.1) on [t0, t f ]

with c = c0. Consequently, by [26, Ch. 1, §1, Theorems 2 and 6], there exists

a neighborhood N0 ⊂ N of c0 such that for each c ∈ N0, there exists a unique

solution {x(t, c) : t ∈ [t0, t f ]} ⊂ N of (5.1).

To obtain the Lipschitz continuity of x(t, ·) near c0, choose any t ∈ [t0, t f ] and

any c1, c2 ∈ N0. Since the ODE solutions x(·, c1) and x(·, c2) exist on [t0, t f ], it
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follows that

‖x(t, c1)− x(t, c2)‖ =
∥∥∥∥c1 +

∫ t

t0

f(s, x(s, c1))ds− c2 −
∫ t

t0

f(s, x(s, c2))ds
∥∥∥∥ ,

≤ ‖c1 − c2‖+
∫ t

t0

kf(s) ‖x(s, c1)− x(s, c2)‖ds.

Let kx := exp
(∫ t f

t0
kf(s)ds

)
. Applying the version of Gronwall’s Inequality de-

scribed in Section 1 of [122], since the above inequality holds with any t̄ ∈ [t0, t] in

place of t, it follows that

‖x(t, c1)− x(t, c2)‖ ≤ ‖c1 − c2‖ exp
(∫ t

t0

kf(s)ds
)
≤ kx‖c1 − c2‖, ∀c1, c2 ∈ N0.

This demonstrates the Lipschitz continuity of x(t, ·) near c0 for each t ∈ [t0, t f ],

with a Lipschitz constant kx that is independent of t.

By construction of f̂t, f̂t is directionally differentiable on its domain for each

t ∈ [t0, t f ]∖Zf. f̂t is the zero function on Zf, and is therefore also directionally

differentiable for each t ∈ Zf. Hence, f̂t is directionally differentiable for each

t ∈ [t0, t f ]. The mapping g : [t0, t f ] × Rn → Rn : (t, v) ↦→ [f̂t]
′
(x(t, c0); v) is

therefore well-defined, and is the right-hand side function of the ODE (5.2).

Now, choose any particular v ∈ Rn. Since x(·, c0) is continuous on the compact

set [t0, t f ], the set {x(t, c0) : t ∈ [t0, t f ]} ⊂ N is compact, and does not contain

any points in the closed set (Rn∖N). Thus, there exists δ > 0 such that for any

τ ∈ [0, δ] and any t ∈ [t0, t f ], (x(t, c0) + τv) ∈ N; this is trivial when N = Rn, and

follows from [26, Ch. 2, §5, Lemma 1] otherwise. Since x(·, c0) is continuous on

[t0, t f ], [26, Ch. 1, §1, Lemma 1] shows that the mapping t ↦→ f(t, x(t, c0) + τv) is

measurable on [t0, t f ] for each τ ∈ [0, δ]. Thus, the mapping t ↦→ f̂t(x(t, c0) + τv)

is also measurable on [t0, t f ] for each τ ∈ [0, δ].

For each τ ∈ (0, δ], the previous paragraph implies that the following mapping

is well-defined and measurable:
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𝛾τ : [t0, t f ]→ Rn : t ↦→ f̂t(x(t, c0) + τv)− f̂t(x(t, c0))

τ
.

It follows from the directional differentiability of f̂t and the definition of g that

for each t ∈ [t0, t f ], g(t, v) = limτ→0+ 𝛾τ(t). Noting that v ∈ Rn was chosen

arbitrarily, it follows that for each v ∈ Rn, the mapping g(·, v) is the pointwise

limit of a sequence of measurable functions, and is therefore measurable on [t0, t f ].

Now, define Zkf
:= {t ∈ [t0, t f ] : kf(t) = +∞}. Since kf is integrable on [t0, t f ],

Zkf
has zero measure. For each t ∈ [t0, t f ]∖(Zf ∪ Zkf

), the definition of kf implies

that kf(t) is a finite Lipschitz constant for ft near x(t, c0). Thus, [97, Theorem 3.1.2]

implies that

‖g(t, v1)− g(t, v2)‖ ≤ kf(t) ‖v1 − v2‖, ∀t ∈ [t0, t f ]∖(Zf ∪ Zkf
), ∀v1, v2 ∈ Rn.

The above relationship still holds if t ∈ Zf, since g(t, v) = 0 for each v ∈ Rn in

this case. The relationship also holds if t ∈ Zkf
, since kf(t) = +∞ in this case.

Combining these cases,

‖g(t, v1)− g(t, v2)‖ ≤ kf(t) ‖v1 − v2‖, ∀t ∈ [t0, t f ], ∀v1, v2 ∈ Rn. (5.3)

Choose some d ∈ Rn, and let my := ‖d‖ exp
(∫ t f

t0
kf(s)ds

)
+ ‖d‖ + 1. Since

g(t, 0) = 0 for each t ∈ [t0, t f ], it follows that whenever ‖v‖ < my,

‖g(t, v)‖ = ‖g(t, v)− g(t, 0)‖ ≤ kf(t) ‖v‖ ≤ kf(t)my. (5.4)

Thus, ‖g‖ is bounded above on [t0, t f ] × {v ∈ Rn : ‖v‖ < my} by an inte-

grable function of t. By Carathéodory’s existence theorem [18, Ch. 2, Theorems 1.1

and 1.3], there exists a solution y of (5.2) on [t0, t̄], where t̄ is the least element of

]t0, t f ] for which either t̄ = t f , ‖y(t̄)‖ ≥ my, or both. Now, for each t ∈ [t0, t̄], (5.4)

implies that

‖y(t)‖ =
∥∥∥∥d +

∫ t

t0

g(s, y(s))ds
∥∥∥∥ ≤ ‖d‖+ ∫ t

t0

kf(s) ‖y(s)‖ds.
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Thus, Gronwall’s Inequality [122] implies that

‖y(t̄)‖ ≤ ‖d‖ exp
(∫ t̄

t0

kf(s)ds
)
≤ ‖d‖ exp

(∫ t f

t0

kf(s)ds
)
< my.

Comparing this inequality with the definition of t̄, it follows that t̄ = t f , and so

there exists a solution y of (5.2) on [t0, t f ]. Moreover, (5.3), (5.4), and [26, Ch. 1, §1,

Theorem 2] show that this solution is unique.

The remainder of this proof proceeds similarly to the proof of [88, Theorem 7].

For sufficiently small τ̄ > 0, (c0 + τd) ∈ N0. Thus, for each choice of t ∈ [t0, t f ]

and τ ∈ (0, τ̄], let

ex(t, τ) :=
x(t, c0 + τd)− x(t, c0)

τ
− y(t),

and

ef(t, τ) :=
f(t, x(t, c0 + τd))− f(t, x(t, c0))

τ
− g

(
t,

x(t, c0 + τd)− x(t, c0)

τ

)
.

It follows from the established bounds that for each t ∈ [t0, t f ] and each τ ∈ (0, τ̄],

‖ef(t, τ)‖ ≤
∥∥∥∥ f(t, x(t, c0 + τd))− f(t, x(t, c0))

τ

∥∥∥∥+ ∥∥∥∥g
(

t,
x(t, c0 + τd)− x(t, c0)

τ

)∥∥∥∥ ,

≤ kf(t)
τ
‖x(t, c0 + τd)− x(t, c0)‖+

kf(t)
τ
‖x(t, c0 + τd)− x(t, c0)‖,

≤ 2kxkf(t)‖d‖. (5.5)

Now, (5.3) and the definitions of ex and ef imply that for each t ∈ [t0, t f ] and

τ ∈ (0, τ̄],

‖ex(t, τ)‖ =
∥∥∥∥∫ t

t0

(
f(s, x(s, c0 + τd))− f(s, x(s, c0))

τ
− g(s, y(s))

)
ds
∥∥∥∥ ,

=

∥∥∥∥∫ t

t0

(
ef(s, τ) + g

(
s,

x(s, c0 + τd)− x(s, c0)

τ

)
− g(s, y(s))

)
ds
∥∥∥∥ ,

≤
∫ t

t0

(‖ef(s, τ)‖+ kf(s)‖ex(s, τ)‖)ds.
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Since ‖ex(·, τ)‖ is continuous, it is bounded on the compact set [t0, t f ]. Hence, the

mapping t ↦→ kf(t)‖ex(t, τ)‖ is integrable on [t0, t f ]. This permits application of a

variation [122, Theorem 2] of Gronwall’s Inequality, which yields the following for

any t ∈ [t0, t f ] and τ ∈ (0, τ̄]:

0 ≤ ‖ex(t, τ)‖ ≤
∫ t

t0

‖ef(s, τ)‖ exp
(∫ t

s
kf(r)dr

)
ds ≤ kx

∫ t

t0

‖ef(s, τ)‖ds. (5.6)

Substituting (5.5) into (5.6) for each t ∈ [t0, t f ] and τ ∈ (0, τ̄] yields ‖ex(t, τ)‖ ≤

mex , where

mex := 2‖d‖(kx)
2
∫ t f

t0

kf(s)ds.

Now, for each t ∈ [t0, t f ]∖(Zf ∪ Zkf
), the assumptions of the theorem imply that

f(t, ·) is directionally differentiable and Lipschitz continuous on X, with a Lips-

chitz constant of kf(t). Hence, (2.1) implies that for each t ∈ [t0, t f ]∖(Zf ∪ Zkf
), for

each ε > 0, there exists some δt,ε > 0 such that if ‖h‖ < δt,ε,

‖f(t, x(t, c0) + h)− f(t, x(t, c0))− g(t, h)‖ ≤ ε‖h‖.

Moreover, the Lipschitz continuity of x(t, ·) on N0 for each t ∈ [t0, t f ] implies that

for any ε > 0, any t ∈ [t0, t f ]∖(Zf ∪ Zkf
), and any τ ∈ (0, min{τ̄, δt,ε

kx‖d‖+1}),

‖x(t, c0 + τd)− x(t, c0)‖ ≤ kxτ‖d‖ < δt,ε.

Thus, if t ∈ [t0, t f ]∖(Zf ∪ Zkf
) and 0 < τ < min{τ̄, δt,ε

kx‖d‖+1},

‖f(t, x(t, c0 + τd))− f(t, x(t, c0))− g(t, x(t, c0 + τd)− x(t, c0))‖
≤ ε‖x(t, c0 + τd)− x(t, c0)‖.

Noting that g(t, ·) is positively homogeneous and that τ > 0, dividing both sides

of the above inequality by τ yields the following, for each t ∈ [t0, t f ]∖(Zf ∪ Zkf
),

each ε > 0, and each τ ∈ (0, min{τ̄, δt,ε
kx‖d‖+1}):
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‖ef(t, τ)‖ ≤ ε

∥∥∥∥x(t, c0 + τd)− x(t, c0)

τ

∥∥∥∥ = ε‖ex(t, τ) + y(t)‖ < ε(mex + my).

Thus, limτ→0+ ‖ef(t, τ)‖ = 0 for almost all t ∈ [t0, t f ]. Using this limit and the

bound (5.5), applying the dominated convergence theorem to (5.6) yields

lim
τ→0+

‖ex(t, τ)‖ = 0, ∀t ∈ [t0, t f ].

Hence,

lim
τ→0+

x(t, c0 + τd)− x(t, c0)

τ
= y(t), ∀t ∈ [t0, t f ].

Noting that d ∈ Rn was chosen arbitrarily, it follows that for each d ∈ Rn, the

directional derivative [xt]
′(c0; d) exists and is finite for each t ∈ [t0, t f ], and so xt is

directionally differentiable at c0 for each t ∈ [t0, t f ]. Moreover, the above equation

shows that t ↦→ [xt]
′(c0; d) is the unique solution y of (5.2) on [t0, t f ].

Corollary 5.2.2. Under the assumptions of Theorem 5.2.1, and using the same notation as

in the theorem, the mapping g : [t0, t f ]×Rn → Rn : (t, v) ↦→ [f̂t]
′
(x(t, c0); v) satisfies

the following conditions:

∙ the mapping g(·, v) : [t0, t f ]→ Rn is measurable for each v ∈ Rn,

∙ for each t ∈ [t0, t f ] except in a zero-measure set Zg, the mapping g(t, ·) : Rn → Rn

is defined and continuous,

∙ for each d ∈ Rn, there exists a solution {z(t, d) : t ∈ [t0, t f ]} ⊂ Rn of the

parametric ODE system:

dz
dt

(t, d) = g(t, z(t, d)), z(t0, d) = d.

∙ for each d ∈ Rn, there exists an open set Ng(d) ⊂ Rn such that

{z(t, d) : t ∈ [t0, t f ]} ⊂ Ng(d),
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and such that there exist Lebesgue integrable functions kg, mg : [t0, t f ] → R+ ∪

{+∞} for which

‖g(t, v)‖ ≤ mg(t), ∀t ∈ [t0, t f ], ∀v ∈ Ng(d),

and

‖g(t, v1)− g(t, v2)‖ ≤ kg(t) ‖v1 − v2‖, ∀t ∈ [t0, t f ], ∀v1, v2 ∈ Ng(d).

If, in addition, the mapping f(t, ·) : X → Rn is L-smooth for each t ∈ [t0, t f ]∖Zf, then

the mapping g(t, ·) : Rn → Rn is L-smooth for each t ∈ [t0, t f ]. In this case, the set Zg

described above may be set to ∅.

Proof. The measurability of g(·, v) and the existence and Lipschitz continuity of

g(t, ·) except on some zero-measure set Zg ⊂ (Zf ∪ Zkf
) were established in the

proof of Theorem 5.2.1. For any d ∈ Rn, setting z(·, d) to be the unique solution

y of (5.2) establishes the existence of the trajectory {z(t, d) : t ∈ [t0, t f ]}. The

existence of a set Ng(d) and functions kg and mg satisfying the claimed properties

follows from the proof of Theorem 5.2.1 as well, with the identifications Ng(d) :=

{v ∈ Rn : ‖v‖ < my}, kg ≡ kf on [t0, t f ], and mg : t ↦→ kf(t)my.

Now, suppose that the mapping ft ≡ f(t, ·) : X → Rn is L-smooth for each

t ∈ [t0, t f ]∖Zf. Choose any fixed t ∈ [t0, t f ]∖Zf. The construction of g implies

that g(t, ·) ≡ [ft]
′(x(t, c0); ·). Since ft is L-smooth on X, it follows that g(t, ·) is

L-smooth on Rn. Now, choose any fixed t ∈ Zf. By construction of g, g(t, ·) is

the zero function, which is trivially L-smooth. Combining these cases, g(t, ·) is L-

smooth on Rn for each t ∈ [t0, t f ]. Since this demonstrates a posteriori that g(t, ·) is

continuous on Rn for each t ∈ [t0, t f ], the set Zg described in the statement of the

corollary may be set to ∅.
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5.2.2 Propagating lexicographic derivatives

The following corollary extends the results of the previous subsection to describe

the higher-order directional derivatives of the solution of a nonsmooth parametric

ODE. The subsequent theorem uses this result to express the LD-derivatives of

the unique solution of an ODE with a L-smooth right-hand side function as the

unique solution of another ODE. Some implications of this result are discussed.

As discussed in Chapter 3, lexicographic derivatives are readily obtained from LD-

derivatives in which the direction matrix is square and nonsingular.

Corollary 5.2.3. Given an open, connected set X ⊂ Rn and real numbers t0 < t f , suppose

that a function f : [t0, t f ]×X → Rn satisfies the conditions of Theorem 5.2.1, and suppose

in addition that f(t, ·) is L-smooth on X for each t ∈ [t0, t f ]∖Zf. Then, for each t ∈ [t0, t f ],

with the function xt ≡ x(t, ·) defined as in the statement of Theorem 5.2.1, xt is L-smooth

at c0. Moreover, for each p ∈ N, each M :=
[
m(1) · · · m(p)

]
∈ Rn×p, each j ∈

{0, 1, . . . , p}, and each d ∈ Rn, the mapping t ↦→ [xt]
(j)
c0,M(d) is the unique solution on

[t0, t f ] of the ODE:

dz
dt

(t) = h(j)(t, z(t)), z(t0) = d, (5.7)

where the functions h(j) : [t0, t f ]×Rn → Rn are defined inductively as follows:

h(0) : (t, v) ↦→ [f̂t]
′
(x(t, c0); v),

h(j) : (t, v) ↦→ [h(j−1),t]
′([xt]

(j−1)
c0,M (m(j)); v), ∀j ∈ {1, . . . , p},

where f̂t : X → Rn is defined for each t ∈ [t0, t f ] as in the statement of Theorem 5.2.1,

and where h(j),t ≡ h(j)(t, ·). Lastly, for each t ∈ [t0, t f ] and each j ∈ {0, 1, . . . , p}, let

Y(t, j, c0, M) :=
[
[xt]

(0)
c0,M(m(1)) [xt]

(1)
c0,M(m(2)) · · · [xt]

(j−1)
c0,M (m(j))

]
∈ Rn×j.

(Thus, Y(t, 0, c0, M) = ∅n×0.) The functions h(j) satisfy:

105



h(j)(t, v) = [f̂t]
(j)
x(t,c0),Y(t,j,c0,M)

(v), ∀(t, v) ∈ [t0, t f ]×Rn, ∀j ∈ {0, 1, . . . , p}.

Proof. Corollary 5.2.2 shows that f̂t is L-smooth at x(t, c0) for each t ∈ [t0, t f ]. Now,

choose any fixed p ∈ N and M ∈ Rn×p. It will be shown by induction on j ∈

{0, 1, . . . , p} that for every such j and every d ∈ Rn, the mapping t ↦→ [xt]
(j)
c0,M(d)

is the unique solution on [t0, t f ] of the ODE (5.7), that h(j)(t, ·) is L-smooth for each

t ∈ [t0, t f ], and that h(j) satisfies the assumptions of Theorem 5.2.1 in place of f,

with Zf = ∅.

The case in which j = 0 follows immediately from Theorem 5.2.1 and Corol-

lary 5.2.2. For the inductive step, suppose that for some k ∈ {1, . . . , p} and every

d ∈ Rn, the mapping t ↦→ [xt]
(k−1)
c0,M (d) is the unique solution on [t0, t f ] of (5.7),

and that h(k−1) satisfies the assumptions of Theorem 5.2.1 in place of f. The ex-

istence of kth-order directional derivatives of xt is not assumed a priori. Applying

Theorem 5.2.1 with h(k−1) in place of f, with m(k) in place of c0, with the mapping

(t, d) ↦→ [xt]
(k−1)
c0,M (d) in place of x, and with Zf = ∅, for each d ∈ Rn, the mapping

t ↦→ [(xt)
(k−1)
c0,M ]′(m(k); d) is the unique solution on [t0, t f ] of the ODE:

dz
dt

(t) = [h(k−1),t]
′([xt]

(k−1)
c0,M (m(k)); z(t)), z(t0) = d.

Applying the definition of h(k), it follows immediately that t ↦→ [(xt)
(k−1)
c0,M ]′(m(k); d)

is the unique solution on [t0, t f ] of (5.7) with j := k. Moreover, Theorem 5.2.1 shows

that [xt]
(k−1)
c0,M is directionally differentiable at m(k) for each t ∈ [t0, t f ], implying

that [xt]
(k)
c0,M ≡ [(xt)

(k−1)
c0,M ]′(m(k); ·). Combining these remarks, for each d ∈ Rn,

the mapping t ↦→ [xt]
(k)
c0,M(d) uniquely solves the ODE (5.7) with j := k. To com-

plete the inductive step, Corollary 5.2.2 shows that h(k)(t, ·) is L-smooth for each

t ∈ [t0, t f ], and that h(k) satisfies the assumptions of Theorem 5.2.1 in place of f,

with Zf = ∅.

Since p and M were arbitrary in the above inductive argument, this argument

shows that xt is L-smooth at c0 for each t ∈ [t0, t f ], as required.

Next, a simpler inductive proof shows that h(j)(t, ·) ≡ [f̂t]
(j)
x(t,c0),Y(t,j,c0,M)

for
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each t ∈ [t0, t f ] and each j ∈ {0, 1, . . . , p}, as follows. For the base case, the defini-

tion of h(0) implies that for each t ∈ [t0, t f ],

h(0)(t, v) = [f̂t]
′
(x(t, c0); v) = [f̂t]

(0)
x(t,c0),Y(t,0,c0,M)

(v), ∀v ∈ Rn,

as required. For the inductive step, suppose that for some k ∈ {1, . . . , p},

h(k−1),t ≡ h(k−1)(t, ·) ≡ [f̂t]
(k−1)
x(t,c0),Y(t,k−1,c0,M)

, ∀t ∈ [t0, t f ].

The constructive definition of h(k), the inductive assumption, and the definitions

of Y(t, k− 1, c0, M) and Y(t, k, c0, M) imply that, for each t ∈ [t0, t f ],

h(k)(t, ·) ≡ [(f̂t)
(k−1)
x(t,c0),Y(t,k−1,c0,M)

]
′
([xt]

(k−1)
c0,M (m(k)); ·) ≡ [f̂t]

(k)
x(t,c0),Y(t,k,c0,M)

.

This completes the inductive step.

Using the notation of Corollary 5.2.3, if e(1), . . . , e(n) denote the coordinate vec-

tors in Rn, then for any nonsingular M ∈ Rn×n and any t ∈ [t0, t f ],

JLxt(c0; M) =
[
[xt]

(n)
c0,M(e(1)) · · · [xt]

(n)
c0,M(e(n))

]
.

Thus, Corollary 5.2.3 provides a method for evaluating lexicographic derivatives

of x(t, ·). Without further assumptions, though, this method is computationally

expensive in the worst case, as it involves construction and evaluation of the ODE

right-hand side function (t, v) ↦→ h(j)(t, v) = [f̂t]
(j)
x(t,c0),Y(t,j,c0,M)

(v) for each j ∈

{0, 1, . . . , n}. If the forward mode of automatic differentiation is used to construct

these mappings using the identity

[f̂t]
(j)
x(t,c0),Y(t,j,c0,M)

≡ [(f̂t)
(j−1)
x(t,c0),Y(t,j−1,c0,M)

]′(m(j); ·),

then the overall cost of this construction scales worst-case exponentially with j, rel-

ative to the cost of evaluating f. To avoid this computational burden, the following

theorem expresses LD-derivatives [xt]
′(c0; M), and thus lexicographic derivatives

JLxt(c0; M), in terms of the unique solution of an ODE, without requiring explicit

construction of the intermediate directional derivatives [f̂t]
(j)
x(t,c0),Y(t,j,c0,M)

.
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Theorem 5.2.4. Given an open, connected set X ⊂ Rn and real numbers t0 < t f , suppose

that a function f : [t0, t f ]× X → Rn satisfies the following conditions:

∙ the mapping f(·, c) : [t0, t f ]→ Rn is measurable for each c ∈ X,

∙ for each t ∈ [t0, t f ] except in a zero-measure subset Zf, the mapping f(t, ·) : X →

Rn is L-smooth,

∙ with x(·, c) denoting any solution of the parametric ODE system:

dx
dt

(t, c) = f(t, x(t, c)), x(t0, c) = c,

there exists a solution {x(t, c0) : t ∈ [t0, t f ]} ⊂ X for some c0 ∈ X,

∙ there exists an open set N ⊂ X such that {x(t, c0) : t ∈ [t0, t f ]} ⊂ N, and such

that there exist Lebesgue integrable functions kf, mf : [t0, t f ] → R+ ∪ {+∞} for

which

‖f(t, c)‖ ≤ mf(t), ∀t ∈ [t0, t f ], ∀c ∈ N,

and

‖f(t, c1)− f(t, c2)‖ ≤ kf(t) ‖c1 − c2‖, ∀t ∈ [t0, t f ], ∀c1, c2 ∈ N.

Then, for each t ∈ [t0, t f ], the function xt ≡ x(t, ·) is well-defined and Lipschitz continu-

ous on a neighborhood of c0, with a Lipschitz constant that is independent of t. Moreover,

xt is L-smooth at c0; for any p ∈ N and any M ∈ Rn×p, the LD-derivative mapping

t ↦→ [xt]
′(c0; M) is the unique solution on [t0, t f ] of the following ODE:

dA
dt

(t) = [f̂t]
′
(x(t, c0); A(t)), A(t0) = M, (5.8)

where f̂t : X → Rn is defined in terms of f as follows, and is L-smooth by construction for

each t ∈ [t0, t f ]:
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f̂t(c) =
{

f(t, c), if t ∈ [t0, t f ]∖Zf,
0, if t ∈ Zf.

Proof. For each t ∈ [t0, t f ], the L-smoothness of xt at c0 was established in Corol-

lary 5.2.3. Moreover, it was established in the proof of Theorem 5.2.1 that xt is

Lipschitz continuous on a neighborhood of c0 for each t ∈ [t0, t f ], with a Lipschitz

constant that is independent of t.

Now, consider any fixed p ∈ N and M :=
[
m(1) · · · m(p)

]
∈ Rn×p. As an

intermediate result, it will be shown by induction that for each j ∈ {1, . . . , p}, the

coupled ODE system:

dz(i)
dt

(t) = [f̂t]
(i−1)
x(t,c0),[z(1)(t) z(2)(t) ··· z(i−1)(t)]

(z(i)(t)), z(i)(t0) = m(i), ∀i ∈ {1, . . . , j}
(5.9)

has a unique solution on [t0, t f ], in which z(i)(t) = [xt]
(i−1)
c0,M (m(i)) for each t ∈

[t0, t f ] and each i ∈ {1, . . . , j}. (Note that the right-hand sides of the coupled ODEs

above are all well-defined, since Corollary 5.2.2 established the L-smoothness of f̂t

at x(t, c0) for each t ∈ [t0, t f ]).

The case in which j = 1 follows immediately from Corollary 5.2.3. For the in-

ductive step, suppose that for some k ∈ {2, 3, . . . , p}, the coupled ODE system (5.9)

has a unique solution on [t0, t f ] when j := k− 1, in which z(i)(t) = [xt]
(i−1)
c0,M (m(i))

for each t ∈ [t0, t f ] and each i ∈ {1, . . . , k − 1}. Now, consider the case in which

j := k. In this case, the ODEs in (5.9) with i ∈ {1, . . . , k− 1} are unchanged from the

case in which j = k− 1. Thus, by the inductive assumption, the ODEs in (5.9) with

i ∈ {1, . . . , k− 1} have unique solutions on [t0, t f ] in which z(i)(t) = [xt]
(i−1)
c0,M (m(i))

for each t ∈ [t0, t f ]. As a result, the ODE in (5.9) with i = k becomes:

dz(k)
dt

(t) = [f̂t]
(k−1)
x(t,c0),Y(t,k−1,c0,M)

(z(k)(t)), z(k)(t0) = m(k), (5.10)

with Y(t, k − 1, c0, M) defined as in the statement of Corollary 5.2.3. This corol-

lary shows that (5.10) is uniquely solved on [t0, t f ] by the mapping z(k) : t ↦→

[xt]
(k−1)
c0,M (m(k)). Combining this statement with the inductive assumption com-
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pletes the inductive step.

Using this inductive result, the coupled ODE system:

dz(i)
dt

(t) = [f̂t]
(i−1)
x(t,c0),[z(1)(t) z(2)(t) ··· z(i−1)(t)]

(z(i)(t)), z(i)(t0) = m(i), ∀i ∈ {1, . . . , p}
(5.11)

has a unique solution on [t0, t f ], in which z(i)(t) = [xt]
(i−1)
c0,M (m(i)) for each i ∈

{1, . . . , p}. Using the definition of the LD-derivative, it follows that for each i ∈

{1, . . . , p}, each t ∈ [t0, t f ], and each choice of v(1), . . . , v(p) ∈ Rn,

[f̂t]
(i−1)
x(t,c0),[v(1) ··· v(i−1)]

(v(i)) = [f̂t]
′
(x(t, c0);

[
v(1) · · · v(p)

]
) e(i).

Thus, the following coupled ODE system is equivalent to (5.11):


dz(i)

dt
(t) = [f̂t]

′
(x(t, c0);

[
z(1)(t) · · · z(p)(t)

]
) e(i),

z(i)(t0) = m(i),
∀i ∈ {1, . . . , p},

(5.12)

and therefore has the same unique solution on [t0, t f ] as (5.11). Moreover, Prop-

erty 4 in Lemma 2.3.7 and the definition of the LD-derivative imply that

[xt]
(i−1)
c0,M (m(i)) = [xt]

′(c0; M) e(i), ∀t ∈ [t0, t f ], ∀i ∈ {1, . . . , p}.

Thus, the unique solution of (5.12) on [t0, t f ] satisfies z(i)(t) = [xt]
′(c0; M) e(i) for

each i ∈ {1, . . . , p} and each t ∈ [t0, t f ]. The coupled ODEs (5.12) may be written

as the columns of a single ODE with the matrix-valued dependent variable A :=[
z(1) · · · z(p)

]
to yield the ODE (5.8), which therefore has the unique solution:

t ↦→
[
[xt]
′(c0; M) e(1) · · · [xt]

′(c0; M) e(p)

]
= [xt]

′(c0; M)

on [t0, t f ].

Corollary 3.2.5 and Theorem 5.2.4 together show that plenary Jacobian ele-

ments can be obtained for solutions of a nonsmooth parametric ODE, provided
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that lexicographic derivatives can be evaluated for the ODE right-hand side func-

tion, and provided that the unique solution of the ODE (5.8) can be determined or

approximated numerically. This implies the following corollaries, which make use

of a priori knowledge concerning the differentiability or convexity of the solution

to a nonsmooth parametric ODE. These results do not require differentiability or

convexity assumptions on the ODE right-hand side function.

Corollary 5.2.5. Suppose that the hypotheses of Theorem 5.2.4 hold, and let xt ≡ x(t, ·).

If xt f is known to be differentiable at c0, then the ODE:

dA
dt

(t) = [f̂t]
′
(x(t, c0); A(t)), A(t0) = I (5.13)

has a unique solution A on [t0, t f ], which satisfies A(t f ) = Jxt f (c0).

Proof. By Theorem 5.2.4, the mapping A : t ↦→ JLxt(c0; I) is the unique solution on

[t0, t f ] of (5.13). Since xt f is differentiable at c0, it follows from [79] that

JLxt f (c0; I) ∈ ∂Lxt f (c0) = {Jxt f (c0)}.

Thus, A(t f ) = [xt f ]
′(c0; I) = JLxt f (c0; I) = Jxt f (c0).

Now, for any function g : X ⊂ Rn → Rm that is piecewise differentiable in

the sense of Scholtes [97], ∂Lg(x) ⊂ ∂g(x) for each x ∈ X [61]. It follows that if

the ODE right-hand side function (t, c) ↦→ f(t, c) is piecewise differentiable with

respect to c for almost all t ∈ [t0, t f ], then the solution to (5.8) is also an element

of the linear Newton approximation to x(t, ·) at c0 described in [88, Corollary 12],

right-multiplied by M.

While the ODE (5.8) has a unique solution, the following example shows that its

right-hand side function, (t, A) ↦→ [f̂t]
′
(x(t, c0); A), is not necessarily continuous

with respect to A at almost every fixed t ∈ [t0, t f ]. Thus, (5.8) is not necessarily a

Carathéodory ODE. As the proof of Theorem 5.2.4 suggests, however, the columns

of (5.8) can be decoupled to yield a sequence of Carathéodory ODEs, each with a

unique solution.
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Example 5.2.6. Consider the following parametric ODE system with two differential vari-

ables:

dx1

dt
(t, p) =

dx2

dt
(t, p) = max{x1(t, p), x2(t, p)}, x(0, p) = p.

This ODE system satisfies the Carathéodory existence and uniqueness conditions when

x(t, p) is restricted to any bounded neighborhood of p; when p = (0, 0), the unique solu-

tion is x(t, 0) := (x1(t, 0), x2(t, 0)) = 0 for each t ∈ R. Now, with

A :=
[

a11 a12
a21 a22

]
∈ R2×2, and f : R2 → R2 : c ↦→ (max{c1, c2}, max{c1, c2}),

it follows that f is the composition of continuously differentiable functions and the function

c ↦→ max{c1, c2}, and is therefore L-smooth. Since f is not an explicit function of t, it

follows that f itself plays the role of f̂t in Theorems 5.2.1 and 5.2.4. By inspection, for any

d ∈ R2 and any t ∈ R,

f(0)x(t,0),A(d) =
{

(d1, d1), if d1 ≥ d2,
(d2, d2), if d1 < d2;

f(1)x(t,0),A(d) = [f(0)x(t,0),A]
′
((a11, a21); d),

=

{
(d1, d1), if a11 > a21, or if a11 = a21 and d1 ≥ d2,
(d2, d2), if a11 < a21, or if a11 = a21 and d1 < d2.

Using Lemma 2.3.7, it follows that:

f′(x(t, 0); A) =
[
f(2)x(t,0),A(a11, a21) f(2)x(t,0),A(a12, a22)

]
,

=
[
f(0)x(t,0),A(a11, a21) f(1)x(t,0),A(a12, a22)

]
,

=


[

a11 a12
a11 a12

]
, if a11 > a21, or if a11 = a21 and a12 ≥ a22,[

a21 a22
a21 a22

]
, if a11 < a21, or if a11 = a21 and a12 < a22.

It follows that for any t ∈ R, the mapping A ↦→ f′(x(t, 0); A) is discontinuous at any

A ∈ R2×2 for which both a11 = a21 and a12 ̸= a22.
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The following example presents a straightforward application of Theorem 5.2.4,

in which the relevant ODE systems can all be solved analytically.

Example 5.2.7. Consider the function:

f : R2 → R2 : y ↦→
[
(1− y2)|y1|

1

]
,

and the following nonsmooth parametric ODE system with two differential variables, in

which c := (c1, c2) ∈ R2 denotes a parameter:

dx
dt

(t, c) = f(x(t, c)), x(0, c) = c.

It is readily verified that this ODE system is uniquely solved by the mapping:

x : R×R2 → R2 : (t, c) ↦→


[

c1 exp (−1
2 t2 + (1− c2)t)
c2 + t

]
, if c1 ≥ 0,[

c1 exp (1
2 t2 + (c2 − 1)t)
c2 + t

]
, if c1 < 0.

(5.14)

Thus, x(t, 0) = (0, t) for each t ∈ R. The mapping t ↦→ x1(t, (c1, 0)) is plotted in

Figure 5-1(a) for various values of c1 ∈ [−2, 2].

B-subdifferentials of the parametric ODE solution can be evaluated analytically in this

case, as follows. For each fixed t ∈ R, the mapping xt ≡ x(t, ·) is evidently differentiable

at all domain points c for which c1 ̸= 0. The definition of the B-subdifferential can thus be

used to show that, when c = 0,

∂Bxt(0) =
{[

exp (−1
2 t2 + t) 0
0 1

]
,
[

exp (1
2 t2 − t) 0
0 1

]}
.

Thus, Definition 2.3.4 can be used to show that

∂Pxt(0) = ∂xt(0) = conv
{[

exp (−1
2 t2 + t) 0
0 1

]
,
[

exp (1
2 t2 − t) 0
0 1

]}
.

Elements of the linear Newton approximation of xt described in [88, Corollary 12] can

be evaluated as follows. The function f is evidently differentiable at all domain points y
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Figure 5-1: ODE solutions and sensitivities for Example 5.2.7: (a) x1(t, (c1, 0)) vs. t
for various values of c1 ∈ [−2, 2], and (b) the (1,1)-entries of two elements of the
linear Newton approximation Γxt(0) vs. t (dashed blue), and the set-valued (1,1)-
entry of ∂Lxt(0) vs. t (solid red).

for which y1 ̸= 0. Thus, for each t ∈ R, Clarke’s generalized Jacobian of f is evaluated at

x(t, 0) = (0, t) to be:

∂f(x(t, 0)) =
{

λ (1− t)
[

1 0
0 0

]
: λ ∈ [−1, 1]

}
, ∀t ∈ R.

Now, define the mapping:

h : R× [−1, 1]→ [−1, 1] : (t, µ) ↦→
{

µ, if t ≤ 1,
−µ, if t > 1.

The above results show that the linear Newton approximation of xt at 0 described in [88,

Corollary 12] includes the solutions of the following ODE for all µ ∈ [−1, 1]:

dA
dt

(t, µ) = h(t, µ) (1− t)
[

1 0
0 0

]
A(t, µ), A(0, µ) =

[
1 0
0 1

]
.

This ODE is readily solved to yield:
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A(t, µ) =


[

exp(µ(−1
2 t2 + t)) 0

0 1

]
, if t ≤ 1,[

exp(µ(1
2 t2 − t + 1)) 0

0 1

]
, if t > 1.

Thus, for each t > 1, the linear Newton approximation Γxt(0) of xt at 0 described in [88,

Corollary 12] is such that

conv
{[

exp(1
2 t2 − t + 1) 0

0 1

]
,
[

exp(−1
2 t2 + t− 1) 0

0 1

]}
⊂ Γxt(0).

The (1, 1)-entries of the linear Newton approximation elements on which the above convex

hull is contructed are plotted in Figure 5-1(b).

Lexicographic derivatives of the parametric ODE solution can be evaluated using The-

orem 5.2.4 as follows. Following a similar approach to Example 5.2.6, the following is

obtained for each A ∈ R2×2. Here, aij denotes the (i, j)–element of A.

f′(x(t, 0); A) =


[
(1− t)a11 (1− t)a12

0 0

]
, if a11 > 0, or if a11 = 0 and a12 ≥ 0,[

(t− 1)a11 (t− 1)a12
0 0

]
, if a11 < 0, or if a11 = 0 and a12 < 0.

Thus, for any nonsingular M ∈ R2×2, Theorem 5.2.4 shows that the mapping t ↦→

[xt]
′(0; M) = JLxt(c0; M)M is the unique solution of the ODE:

dA
dt

(t) =


(1− t)

[
a11(t) a12(t)

0 0

]
, if a11(t) > 0, or if a11(t) = 0 and a12(t) ≥ 0,

(t− 1)
[

a11(t) a12(t)
0 0

]
, if a11(t) < 0, or if a11(t) = 0 and a12(t) < 0,

A(0) = M.

This ODE can be solved by inspection; post-multiplying the result by M−1 yields:
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JLxt(0; M) =


[

exp (−1
2 t2 + t) 0
0 1

]
, if m11 > 0, or if m11 = 0 and m12 ≥ 0,[

exp (1
2 t2 − t) 0
0 1

]
, if m11 < 0, or if m11 = 0 and m12 < 0,

and so

∂Lxt(0) =
{[

exp (−1
2 t2 + t) 0
0 1

]
,
[

exp (1
2 t2 − t) 0
0 1

]}
.

The (1, 1)-entries of these lexicographic derivatives are plotted in Figure 5-1(b). This result

is readily confirmed by lexicographic differentiation of (5.14) with respect to c at c = 0.

Collecting the above results, and noting that, for each t > 1,

exp (−1
2 t2 + t− 1) < min{exp (−1

2 t2 + t), exp (1
2 t2 − t)},

and exp (1
2 t2 − t + 1) > max{exp (−1

2 t2 + t), exp (1
2 t2 − t)},

it follows that, for this example,

∂Lxt(0) = ∂Bxt(0) ⊂ ∂xt(0) = ∂Pxt(0) ⊂ Γxt(0), ∀t > 1.

The rightmost inclusion above is strict. In particular, when t = 2, the evaluated general-

ized derivatives satisfy:

∂Lx2(0) = ∂Px2(0) =
{[

1 0
0 1

]}
⊂
{[

λ 0
0 1

]
: λ ∈ [1

e , e]
}
⊂ Γx2(0).

Although x2 is strictly differentiable at 0 in the sense of [16], Γx2(0) evidently contains

elements other than Jx2(0).

The result of Theorem 5.2.4 is easily extended to cover ODEs whose initial con-

ditions are nontrivial functions of parameters p ∈ Rnp :

dx
dt

(t, p) = f(t, x(t, p)), x(t0, p) = f0(p). (5.15)

provided that f satisfies the hypotheses of Theorem 5.2.4 (with f0(p0) in place of
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c0 for some p0 ∈ Rnp), and provided that f0 : Rnp → Rn is L-smooth at p0. Intro-

ducing the auxiliary parametrized ODE:

dz
dt

(t, c) = f(t, z(t, c)), z(t0, c) = c,

and defining xt ≡ x(t, ·) and zt ≡ z(t, ·), it follows that xt ≡ zt ∘ f0 for each t. Now,

for any nonsingular M ∈ Rnp×np , let B := [f0]
′(p0; M). Applying the chain rule

(2.8) and post-multiplying the result by M yields:

xt
′(p0; M) = [zt]

′(f0(p0); B). (5.16)

Thus, JLxt(p0; M) can be evaluated by the following procedure:

Step 1: Evaluate B.

Step 2: Use Theorem 5.2.4 to evaluate [zt]
′(f0(p0); B).

Step 3: Evaluate JLxt(p0; M) by solving the linear equation system (5.16).

Theorem 5.2.1 may be extended to cover (5.15) in a similar fashion.

This result may be extended in turn to parametric ODEs whose right-hand side

functions depend explicitly on parameters p ∈ Rnp :

dx
dt

(t, p) = f(t, p, x(t, p)), x(t0, p) = f0(p). (5.17)

Considering p as a constant dependent variable instead, the following ODE is con-

structed in terms of the augmented dependent variable z ≡ (p, x), and is equiva-

lent to (5.17):

dz
dt

(t, p) = h(t, z(t, p)), z(t0, p) = h0(p),

where

h : (t, (q, c)) ↦→
[

0
f(t, q, c)

]
, and h0 : q ↦→

[
q

f0(q)

]
.

Provided that h satisfies conditions analogous to the hypotheses of Theorem 5.2.4,

the above ODE in z may be treated in the same manner as (5.15). In the special
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case in which xt is scalar-valued and convex on some neighborhood of p0, the

discussion in Section 6.2 of [79] implies that JLxt(p0; M) is a subgradient of xt at

p0. Hence, Theorem 5.2.4 describes certain subgradients of any convex solution

of a nonsmooth parametric ODE system as the unique solutions of corresponding

ODEs.

5.3 Sensitivities for optimal control

This section reproduces the conference proceedings [57], and combines the theory

developed in this chapter with Nesterov’s inclusion ∂L f (x) ⊂ ∂ f (x) [79] for scalar-

valued functions f : X ⊂ Rn → R, to describe generalized derivatives for certain

optimal control problems.

Given open sets X ⊂ Rn and U ⊂ Rnu , consider the following generic open-

loop optimal control problem:

inf
u∈𝒰

φ(u(t f ), x(t f , u)), (5.18)

where 𝒰 := L1([t0, t f ], U) is the class of Lebesgue-integrable functions mapping

[t0, t f ] into U, where, for each u ∈ 𝒰 , t ↦→ x(t, u) is an absolutely continuous

solution of the following ordinary differential equation (ODE):

ẋ(t, u) = f(u(t), x(t, u)), a.e. t ∈ [t0, t f ] (5.19)

x(t0, u) = x0 ∈ X,

and where the functions φ : U × X → R and f : U × X → Rn are locally Lips-

chitz continuous and lexicographically smooth in the sense of Nesterov [79], but

are not necessarily differentiable everywhere. Since f is locally Lipschitz contin-

uous, it follows that for any fixed u ∈ 𝒰 , any solution t ↦→ x(t, u) of the above

ODE on [t0, t f ] is necessarily unique [26]. Applications of such problems include

control of systems with discrete operating regimes, control of chemical processes

with discrete transitions in thermodynamic phase or flow regime, and control of
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bioreactors modelled using dynamic flux balance analysis [43].

Observe that any direct dependence of φ on t f or of f on t may be handled in

this framework by appending an extra state variable to x which holds the value of

t. Integral terms may be similarly incorporated into the objective function of (5.18)

by appending extra state variables to the ODE.

Standard optimal control approaches (summarized, for example, in [27, 62])

typically demand differentiability of the functions φ and f in (5.18) and (7.2); any

nonsmoothness in these functions thus limits the applicability of these approaches.

While there exist extensions [16, Ch. 5] of standard indirect methods to nonsmooth

problems, these methods require full knowledge of the generalized derivatives of

certain Hamiltonian functions, which can be nontrivial to furnish.

This section is concerned with direct methods for solving (5.18), in which the

control u is discretized and represented by a finite collection of parameters. With

this approximation, bundle methods [63, 67] for nonsmooth optimization can be

used to solve (5.18) locally. These methods require evaluation of any single element

of Clarke’s generalized gradient [16] of the objective function at each iteration;

describing such a generalized gradient element is the central goal of this work.

Since the generalized gradient does not satisfy a sharp chain rule, lexicographic

differentiation [79] will be employed to handle compositions of functions.

Thus, two representative discrete parametrizations of the control u will be con-

sidered. In the first parametrization, the control is represented as a finite linear

combination of bounded, Lebesgue-measurable basis functions {𝜓(i)}i∈N, with

𝜓(i) : [t0, t f ]→ Rnu for each i ∈N:

a ∈ A ⊂ Rna ; u : t ∈ [t0, t f ] ↦→
na

∑
i=1

ai𝜓(i)(t), (5.20)

where A is an open set, chosen so that ∑na
i=1 ai𝜓(i)(t) ∈ U for each t ∈ [t0, t f ]

and each a ∈ A. For example, the functions 𝜓(i) could be chosen as Lagrange

polynomials or Legendre polynomials. In the second parametrization, the control

is piecewise constant: constants {tk}ns
k=1 are chosen in [t0, t f ] such that t0 < t1 <
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. . . < tns = t f , and the control u satisfies:

u(t) = w(i), ∀t ∈ [ti−1, ti), ∀i ∈ {1, . . . , ns}, (5.21)

and u(t f ) = w(ns), for parameters w(1), . . . , w(ns) ∈ U. This second parametriza-

tion may be expressed in the form of the first parametrization; however, it is less

cumbersome to treat directly.

Under these parametrizations of u, Corollaries 5.3.2 and 5.3.4 in this article de-

scribe generalized gradient elements of the objective function of (5.18) with respect

to the parameters a and w(1), . . . , w(ns). This description builds on the results of

this chapter concerning generalized derivatives of ODE solutions with respect to

the ODE initial conditions, as well as results from Chapter 3 concerning the evalua-

tion of generalized derivatives for compositions of known functions. The obtained

generalized gradient elements are described in terms of the unique solutions of

certain auxiliary ODEs.

In the special case in which the objective function of the considered parametrized

version of (5.18) is convex, the described generalized gradient elements are sub-

gradients in the sense of convex analysis. If the objective function is strictly dif-

ferentiable at a considered domain point, then the described generalized element

is the derivative of this function, even though f may not be differentiable. To our

knowledge, this work represents the first description of generalized derivatives

with these properties for a generic nonsmooth optimal control problem.

The remainder of this section extends the results of this chapter to describe el-

ements of Clarke’s generalized gradients for (5.18) under the control parametriza-

tions (5.20) and (5.21).

Assume that LD-derivatives are computable for the lexicographically smooth

functions φ and f describing the optimal control problem (5.18). This assumption

is mild: a general procedure for evaluating LD-derivatives for finite compositions

of known functions is presented in [61]. Under this assumption, the following

results extend Theorem 4.2 of [55] to show that for each of the two considered dis-

crete parametrizations of (5.18), elements of the generalized gradient of the objec-
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tive function can be described in terms of the unique solutions of certain auxiliary

ODEs.

5.3.1 Control with basis function expansion

With u parametrized according to (5.20), we may consider x(t, ·) to be a function

of the parameter a instead of the function u, yielding the following reformulation

of the original optimal control problem (5.18):

inf
a∈A

φ
(
ū(t f , a), x(t f , a)

)
(5.22)

where

ū(t, a) :=
na

∑
i=1

ai𝜓(i)(t), ∀a ∈ A,

and where we assume that, for each a ∈ A, x(·, a) solves the following ODE

uniquely on [t0, t f ]:

ẋ(t, a) = f (ū(t, a), x(t, a)) , x(t0, a) = x0. (5.23)

Theorem 5.3.1. At any t ∈ [t0, t f ], the mapping xt ≡ x(t, ·) described by (5.23) is

lexicographically smooth at any particular â ∈ A. Moreover, defining a matrix:

Ψ(t) :=
[
𝜓(1)(t) · · · 𝜓(na)(t)

]
∈ Rnu×na , ∀t ∈ [t0, t f ],

and choosing any p ∈ N and any matrix M ∈ Rna×p, the mapping t ↦→ [xt]
′(â; M) is

the unique solution on [t0, t f ] of the ODE:

Ȧ(t) = f′
(
(ū(t, â), x(t, â));

[
Ψ(t)M

A(t)

])
, A(t0) = 0n×p.

Proof. Define a mapping g : [t0, t f ]× X× A→ Rn such that:

g(t, 𝜉,𝛼) := f(ū(t,𝛼), 𝜉),
∀t ∈ [t0, t f ], ∀(𝜉,𝛼) ∈ X× A.
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For any vector c ∈ X × A in a sufficiently small neighborhood of (x0, â), let z(·, c)

denote a solution on [t0, t f ] of the ODE:

ż(t, c) =
[

g(t, z(t, c))
0na

]
, z(t0, c) = c.

Since f is locally Lipschitz continuous, the right-hand side function of the above

ODE is locally Lipschitz continuous as well, and thus z(·, c) is unique. By con-

struction of g and z, observe that for each t ∈ [t0, t f ] and each a in a sufficiently

small neighborhood of â ∈ A,

z(t, x0, a) =
[

x(t, a)
a

]
. (5.24)

Applying [55, Theorem 4.2], for each t ∈ [t0, t f ], the mapping zt ≡ z(t, ·) is lexico-

graphically smooth at (x0, â), and, for fixed M ∈ Rna×p, the mapping

t ↦→ [zt]
′
(
(x0, â);

[
0n×p

M

])
is the unique solution (B, C) on [t0, t f ] of the ODE system:

Ḃ(t) = [gt]
′
(

z(t, x0, â);
[

B(t)
C(t)

])
,

Ċ(t) = 0na×p,
B(t0) = 0n×p, C(t0) = M,

where gt ≡ g(t, ·). By inspection, C(t) = M for all t, and so B is the unique

solution of the ODE:

Ḃ(t) = [gt]
′
(

z(t, x0, â);
[

B(t)
M

])
, B(t0) = 0n×p. (5.25)

Equation (5.24) shows that each component of x(t, a) ∈ X is a component of

z(t, x0, a), for each t ∈ [t0, t f ] and each a in some neighborhood of â. Thus, the

above results and Proposition 3.1.2 show that xt ≡ x(t, ·) is lexicographically

smooth at â, and that the mapping t ↦→ [xt]
′(â; M) is given by the function B

described above. Now, for each t ∈ [t0, t f ], define a mapping 𝛾t : X × A → U × X
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such that:

𝛾t(𝜉,𝛼) ↦→ (ū(t,𝛼), 𝜉) =

(
na

∑
i=1

αi𝜓(i)(t), 𝜉

)
,

∀(𝜉,𝛼) ∈ X× A.

Since 𝛾t is continuously differentiable for each t, Proposition 3.1.2 implies that for

any matrix Γ ∈ Rn×p, any 𝜉 ∈ X, and any 𝛼 ∈ A,

[𝛾t]
′
(
(𝜉,𝛼);

[
Γ

M

])
=

[
0nu×n Ψ(t)
In×n 0n×na

] [
Γ

M

]
=

[
Ψ(t)M

Γ

]
.

Thus, observing that gt ≡ f ∘ 𝛾t by construction, Proposition 3.1.2 shows that the

right-hand side functions of the ODE (6.8) and the ODE describing A in the state-

ment of the theorem are identical. Hence, the ODE describing A has a unique

solution A ≡ B on [t0, t f ], and the result of the theorem follows immediately.

The following corollary uses the above theorem to describe a generalized gra-

dient element for the objective function of (5.22).

Corollary 5.3.2. Denote the objective function of the parametrized optimal control prob-

lem (5.22) as

J1 : a ↦→ φ
(
ū(t f , a), x(t f , a)

)
,

and define Ψ(t) for each t as in Theorem 5.3.1. For any nonsingular M ∈ Rn×n, the

unique vector v solving the following linear equation system is an element of the general-

ized gradient of J1 at â ∈ A:

vTM = φ′
((

ū(t f , â), x(t f , â)
)

;
[

Ψ(t f )M
[xt f ]

′(â; M)

])
,

in which the LD-derivative [xt f ]
′(â; M) is evaluated according to Theorem 5.3.1.

Proof. The nonsingularity of M implies the uniqueness of v, and Theorem 5.3.1

evidently describes [xt f ]
′(â; M). To complete this proof, observe that, with the

continuously differentiable function 𝛾t : X × A → U × X defined for each t as
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in the proof of Theorem 5.3.1, Proposition 3.1.2 shows that J1 is lexicographically

smooth at â, with:

[J1]
′(â; M)

= φ′
(
𝛾t f (x(t f , â), â); [𝛾t f ]

′
(
(x(t f , â), â);

[
[xt f ]

′(â; M)

M

]))
,

= φ′
((

ū(t f , â), x(t f , â)
)

;
[

Ψ(t f )M
[xt f ]

′(â; M)

])
.

Moreover, since M is nonsingular and J1 is scalar-valued, there exists an element v̂

of the generalized gradient of J1 at â for which v̂TM = [J1]
′(â; M). Hence, v = v̂ is

an element of the generalized gradient of J1 at â.

5.3.2 Piecewise constant control

With u parametrized according to (5.20), define a vector w ∈ Rnsnu as:

w :=

w(1)
...

w(ns)

 ∈ Uns ⊂ Rnsnu ,

where each w(i) ∈ U. We may thus consider x(t, ·) to be a function of the parameter

w instead of the function u, yielding the following reformulation of the original

optimal control problem (5.18):

inf
w∈Uns

φ(w(ns), x(t f , w)) (5.26)

where we assume that, for each w ∈ Uns , x(·, w) is absolutely continuous on [t0, t f ],

and solves the following ODE system uniquely:

ẋ(t, w) = f(w(i), x(t, w)), (5.27)

∀t ∈ (ti−1, ti), ∀i ∈ {1, . . . , ns},
x(t0, w) = x0.

Observe that for any fixed ŵ ∈ Uns , the ODE solution x(·, ŵ) is continuously
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differentiable on the set [t0, t f ]∖{t1, . . . , tns}.

Theorem 5.3.3. At any t ∈ [t0, t f ], the mapping xt ≡ x(t, ·) is lexicographically smooth

at any particular ŵ ∈ Uns . Moreover, consider any matrix

M :=

M(1)
...

M(ns)

 ∈ Rnsnu×p,

where p ∈N and each M(i) ∈ Rnu×p. The mapping t ↦→ [xt]
′(ŵ; M) is then the unique,

absolutely continuous solution on [t0, t f ] of the ODE:

Ȧ(t) = f′
(
(ŵ(i), x(t, ŵ));

[
M(i)
A(t)

])
,

∀t ∈ (ti−1, ti), ∀i ∈ {1, . . . , ns},
A(t0) = 0n×p.

Proof. Define t−1 := t0 for notational convenience, in which case [t−1, t0] = {t0}.

It suffices to prove by induction on i ∈ {0, 1, . . . , ns} that for each t ∈ [ti−1, ti], xt

is lexicographically smooth, and that the mapping A described in the statement

of the theorem is well-defined when restricted to [ti−1, ti], and that the mapping

t ↦→ [xt]
′(ŵ; M) is identical to A on [ti−1, ti].

As the base case of the induction, with i := 0, observe that A(t0) = 0n×p by

construction. Moreover, since x(t0, w) = x0 for each w ∈ Uns , xt0 is constant, and

is thus trivially lexicographically smooth, with

[xt0 ]
′(ŵ; M) = 0n×p = A(t0).

Since [t−1, t0] = {t0}, the base case is thereby complete.

As the inductive step, suppose that the required statement holds for i := j− 1,

for some j ∈ {1, . . . , ns}. Thus, A(tj−1) is well-defined, xtj−1 is lexicographically

smooth, and A(tj−1) = [xtj−1 ]
′(ŵ; M). Consider the case in which i := j.

Thus, consider the mapping:

𝜋(j) : Uns → U : w ↦→ w(j).
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This mapping is evidently linear; its derivative is given by:

J𝜋(j)(w) =
[
P(1) · · · P(ns)

]
,

where

P(k) :=
{

Inu×nu , if k = j,
0nu×nu , if k ̸= j, ∀k ∈ {1, . . . , ns}.

The ODE (5.27) shows that on (tj−1, tj), x(·, w) evolves according to:

ẋ(t, w) = f(𝜋(j)(w), x(t, w)).

Now, define a mapping g̃ : X×Uns → Rn such that:

g̃(𝜉,𝜔) = f(𝜔(j), 𝜉), ∀(𝜉,𝜔) ∈ X×Uns .

where 𝜔(j) := 𝜋(j)(𝜔) is defined analogously to w(j). For any vector d in a suffi-

ciently small neighborhood of (x0, ŵ) ∈ X ×Uns , let 𝜁(·, d) denote a solution on

[tj−1, tj] of the ODE:

𝜁̇(t, d) =
[

g̃(𝜁(t, d))
0nsnu

]
, 𝜁(tj−1, d) = d.

Proceeding similarly to the proof of Theorem 5.3.1, since f is locally Lipschitz con-

tinuous, the right-hand side function of the above ODE is locally Lipschitz contin-

uous as well, and thus 𝜁(·, d) is unique. By construction of g̃ and 𝜁, observe that

for each t ∈ [tj−1, tj] and each w in a sufficiently small neighborhood of ŵ ∈ Uns ,

𝜁(t, x(tj−1, w), w) =

[
x(t, w)

w

]
. (5.28)

Applying [55, Theorem 4.2], for each t ∈ [tj−1, tj], the mapping 𝜁t ≡ 𝜁(t, ·) is

lexicographically smooth at (x(tj−1, ŵ), ŵ), and the LD-derivative mapping

t ↦→ [𝜁t]
′
(
(x(tj−1, ŵ), ŵ);

[
[xtj−1 ]

′(ŵ; M)

M

])
is the unique solution (B̃, C̃) on [tj−1, tj] of the ODE system:
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˙̃B(t) = g̃′
(
𝜁(t, x(tj−1, ŵ), ŵ);

[
B̃(t)
C̃(t)

])
,

˙̃C(t) = 0nsnu×p,

B̃(tj−1) = [xtj−1 ]
′(ŵ; M), C̃(tj−1) = M.

By inspection, C̃(t) = M for all t, and so B̃ is the unique solution of the ODE:

˙̃B(t) = g̃′
(
𝜁(t, x(tj−1, ŵ), ŵ);

[
B̃(t)
M

])
, (5.29)

B̃(tj−1) = [xtj−1 ]
′(ŵ; M).

Equation (5.28) shows that each component of x(t, ŵ) ∈ X is a component of

𝜁(t, (x(tj−1, ŵ), ŵ)), for each t ∈ [tj−1, tj]. Thus, the above results and Proposi-

tion 3.1.2 show that xt ≡ x(t, ·) is lexicographically smooth at ŵ, and that the

mapping t ↦→ [xt]
′(ŵ; M) is given on [tj−1, tj] by the function B̃ described above.

Now, define a mapping 𝜂 : X×Uns → U × X such that:

𝜂(𝜉,𝜔) ↦→ (𝜋(j)(𝜔), 𝜉), ∀(𝜉,𝜔) ∈ X×Uns .

The function 𝜂 is evidently continuously differentiable; Proposition 3.1.2 implies

that for any matrix Γ ∈ Rn×p, any 𝜉 ∈ X, and any 𝜔 ∈ Uns ,

𝜂′
(
(𝜉,𝜔);

[
Γ

M

])
=

[
0nu×n J𝜋(j)(𝜔)
In×n 0n×nsnu

] [
Γ

M

]
=

[
M(j)

Γ

]
.

Thus, observing that g̃ ≡ f ∘ 𝜂 by construction, Proposition 3.1.2 shows that the

right-hand side functions of the ODE (6.9) and the ODE describing A in the state-

ment of the theorem are identical when restricted to [tj−1, tj]. Applying the induc-

tive assumption, the ODE describing A is well-defined and has a unique solution

A ≡ B̃ on [tj−1, tj], thereby completing the inductive step.

The following corollary uses the above theorem to describe a generalized gra-

dient element for the objective function of (5.26).
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Corollary 5.3.4. Denote the objective function of the parametrized optimal control prob-

lem (5.26) as

J2 : w ↦→ φ
(

w(ns), x(t f , w)
)

.

For any nonsingular matrix

M :=

M(1)
...

M(ns)

 ∈ Rnsnu×nsnu ,

with M(i) ∈ Rnu×nsnu for each i, the unique vector v solving the following linear equation

system is an element of the generalized gradient of J2 at ŵ ∈ Uns :

vTM = φ′
((

ŵ(ns), x(t f , ŵ)
)

;

[
M(ns)

[xt f ]
′(ŵ; M)

])
,

in which the LD-derivative [xt f ]
′(ŵ; M) is evaluated according to Theorem 5.3.3.

Proof. The nonsingularity of M implies the uniqueness of v, and Theorem 5.3.3

evidently describes [xt f ]
′(ŵ; M). Thus, with 𝜂 : X × Uns → U × X defined as

in the proof of Theorem 5.3.3 when j := ns, Proposition 3.1.2 shows that J2 is

lexicographically smooth at ŵ, with:

[J2]
′(ŵ; M)

= φ′
(
𝜂(x(t f , ŵ), ŵ);𝜂′

(
(x(t f , ŵ), ŵ);

[
[xt f ]

′(ŵ; M)

M

]))
,

= φ′
((

ŵ(ns), x(t f , ŵ)
)

;

[
M(ns)

[xt f ]
′(ŵ; M)

])
.

Since M is nonsingular and J2 is scalar-valued, there exists an element v̂ of the

generalized gradient of J2 at ŵ for which v̂TM = [J2]
′(ŵ; M). Hence, v = v̂ is an

element of the generalized gradient of J2 at ŵ.
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5.4 Conclusions

Theorems 5.2.1 and 5.2.4 describe directional derivatives and lexicographic deriva-

tives for the unique solution of a parametric ODE system as the unique solutions

of other ODEs. If the original ODE solution is known to be a scalar-valued convex

function of the ODE parameters, then a subgradient is described, without requir-

ing smoothness or convexity of the ODE right-hand side function. Similarly, if a

differentiable function is the unique solution of a parametric ODE with a nons-

mooth right-hand side, then its derivatives can be expressed as the solutions of

corresponding ODE systems. To our knowledge, this chapter provides the first de-

scription of generalized derivatives of solutions of nonsmooth parametric ODEs

that exhibit these properties.
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Chapter 6

Switching behavior of solutions of

nonsmooth ODEs

6.1 Introduction

This chapter is reproduced from the article [59], and focuses on solutions of the

ordinary differential equation (ODE) system:

dx
dt

(t) = f(t, x(t)), x(t0) = c,

whose right-hand side function f is the finite composition of analytic functions

and absolute-value functions. Such an abs-factorable function may be nonsmooth,

but is necessarily locally Lipschitz continuous [32]; thus, any corresponding ODE

solution x must be unique. Noting that every piecewise affine function is abs-

factorable [97], this ODE formulation permits description of a broad range of non-

smooth dynamic systems. Applications of such systems include chemical process

models with switches in thermodynamic phase and/or flow regime, auxiliary dy-

namic systems used to describe convex and concave relaxations of nonconvex dy-

namic systems [103], reachable-set methods employing ordinary differential equa-

tions with linear programs embedded [37], and dynamic flux balance analysis mod-

els [43], in which a nonsmooth model of cellular metabolism is embedded in the
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dynamic model of a bioreactor.

Roughly, for a well-defined ODE system that switches between various smooth

right-hand side functions, a solution trajectory which switches infinitely many

times in a finite duration is said to exhibit Zeno behavior [29, 48]. In the sys-

tems considered in the present work, any switching behavior is entirely due to the

absolute-value functions in the abs-factorable right-hand side function of the ODE.

Non-Zenoness is a guarantee that Zeno behavior will not emerge. A general non-

Zenoness result was demonstrated by Sussmann for ODEs with extendably piecewise

analytic right-hand sides [108], and has been specialized to particular formulations

of nonsmooth dynamic systems, such as nonlinear complementarity systems [86] and

piecewise affine dynamic systems [111]. We formalize certain types of switching be-

havior for the abs-factorable ODEs under consideration, and obtain non-Zenoness

results for these systems, even when a discontinuous control input is included. In

this manner, we extend the main results of [110, 111] significantly. We also pro-

vide a pertinent restatement of our results for the special case of ODEs with linear

programs embedded, as studied previously in [36, 44].

Clarke [16, Theorem 7.4.1] shows that for an ODE with a nonsmooth right-hand

side function, nondifferentiability of the ODE solution x with respect to system

parameters or initial conditions requires f to fail to be continuously differentiable

at (t, x(t)) for all t in some set of nonzero (Lebesgue) measure. We extend our

non-Zenoness results to show that, when the control input is omitted, Clarke’s

necessary condition for nondifferentiability can only be satisfied when the ODE

solution trajectory x exhibits a valley-tracing mode, in which the argument of some

absolute-value function in f is identically zero for a nonzero duration. Moreover,

necessary conditions that are readily verifiable during numerical integration are

provided for the emergence of these valley-tracing modes. In certain cases, these

conditions can be shown a priori not to be satisfied.

This chapter is structured as follows. Section 6.2 formalizes the classes of non-

smooth and discontinuous functions considered: abs-factorable functions, which

are the right-hand side functions of the ODEs under consideration, and left/right-
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analytic functions, which include the considered control inputs, and will be shown

to include the solutions of the considered ODEs. Section 6.3 presents various non-

Zenoness results for these ODEs, and characterizes the switching behavior of the

absolute-value functions in the ODE right-hand sides. Section 6.4 extends the re-

sults of the previous section to posit necessary conditions for the emergence of

valley-tracing modes. Examples are presented for illustration.

6.2 Left/right-analytic functions

This chapter exploits properties of two classes of nonsmooth systems: the abs-

factorable functions described in Chapter 2, and the left/right-analytic functions de-

scribed in this section, which are univariate functions that may be discontinuous,

but are nevertheless piecewise analytic in a particular sense. The results in this

work pertain to ODEs with abs-factorable right-hand side functions and left/right-

analytic control inputs; as a key intermediate result, solutions of such ODEs will

be shown to be left/right-analytic.

The signum function is defined as follows:

sign : R→ {−1, 0,+1} : u ↦→


+1, if u > 0,
0, if u = 0,
−1, if u < 0.

Definition 6.2.1. Given an open set T ⊂ R, a function g : T → Rn is right-analytic at

t ∈ T if there exist a, b ∈ T such that a < t < b, and an analytic function g̃ : (a, b)→ Rn

such that g ≡ g̃ on (t, b).

Similarly, h : T → Rn is left-analytic at t if there exist a, b ∈ T such that a < t < b,

and an analytic function h̃ : (a, b)→ Rn such that h ≡ h̃ on (a, t).

A function that is both right-analytic and left-analytic at t is said to be left/right-

analytic at t.

Remark 6.2.2. A function that is left/right-analytic at each domain point is not neces-

sarily analytic, or even continuous or differentiable. For example, a step function on R is
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evidently left/right-analytic. The class of continuous left/right-analytic functions is iden-

tical to the class of functions of single real variables which are defined on open sets and are

extendably piecewise analytic in the sense of Sussmann [108]. Thus, [108, Lemma 1]

shows that any continuous left/right-analytic function is locally Lipschitz continuous.

Remark 6.2.3. Any left/right-analytic function h on an open set T ⊂ R is measurable:

for any compact I ⊂ T, h may be expressed on I as a sum of finitely many pointwise

products of analytic functions and indicator functions of measurable sets.

Proof of Remark 2.5. Consider an open set T ⊂ R and a left/right-analytic function

x : T → Rn. Choose a compact set K ⊂ T; since K is chosen arbitrarily, it suffices to

show that the restriction x|K : K → Rn : t ↦→ x(t) is measurable. Note that x|K ≡ x

on K.

Since x is left/right-analytic, for each t ∈ K, there exists δt > 0 such that Tt :=

(t− δt, t + δt) ⊂ T, and such that there exist analytic functions x̃L
(t), x̃R

(t) : Tt → Rn,

for which x ≡ x̃L
(t) on TL

t := (t− δt, t), and x ≡ x̃R
(t) on TR

t := (t, t + δt).

For any measurable set S ⊂ R, let IS denote the indicator function of S:

IS : R→ {0, 1} : u ↦→
{

1, if u ∈ S,
0, if u /∈ S.

Since K is compact, and since the sets {Tt}t∈K comprise an open cover of K, there

exists a finite subset A ⊂ K such that

K ⊂
⋃

t∈A
Tt =

⋃
t∈A

(TL
t ∪ {t} ∪ TR

t ).

Enumerate the elements of A as a1 < a2 < . . . < am. For each i ∈ {1, . . . , m}, define

sets SL
i , SC

i , SR
i inductively as follows:
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SL
1 := TL

1 ,

SC
1 := {a1},

SR
1 := TR

1 ,

SL
i := TL

i ∖

i−1⋃
j=1

(SL
j ∪ SC

j ∪ SR
j )

 , ∀i ∈ {2, . . . , m},

SC
i := {ai}∖

i−1⋃
j=1

(SL
j ∪ SC

j ∪ SR
j )

 , ∀i ∈ {2, . . . , m},

SR
i := TR

i ∖

i−1⋃
j=1

(SL
j ∪ SC

j ∪ SR
j )

 , ∀i ∈ {2, . . . , m}.

By construction, the sets in the collection {SL
i , SC

i , SR
i }m

i=1 are measurable and dis-

joint, yet have the union
⋃

t∈A Tt ⊃ K.

Combining the above results, it follows that for each t ∈ K,

x|K(t) =
m

∑
i=1

(
ISL

i ∩K(t) x̃L
(ai)

(t) + ISC
i ∩K(t) x(ai) + ISR

i ∩K(t) x̃R
(ai)

(t)
)

,

with x̃L
(ai)

(t) and x̃R
(ai)

(t) defined arbitrarily as 0 whenever t /∈ Tai . (In this case,

the indicator functions multiplying these terms would evaluate to 0 regardless.) It

follows that x|K is measurable.

The following lemmata concern right-analytic functions, and are readily adapted

to yield analogous results concerning left-analytic functions and left/right-analytic

functions.

Lemma 6.2.4. Given an open set T ⊂ R, if a function g : T → R is right-analytic

at t* ∈ T, then there exists d ∈ T such that d > t* and exactly one of the following

statements holds:

∙ g(t) > 0 for each t ∈ (t*, d], or

∙ g(t) < 0 for each t ∈ (t*, d], or
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∙ g(t) = 0 for each t ∈ (t*, d].

Proof. If g is right-analytic at t*, then there exists a, b ∈ T with a < t* < b, and

an analytic function g̃ : (a, b) → R such that g ≡ g̃ on (t*, b). Thus, for some

β ∈ (t*, b), there exists a sequence {αi}i∈N in R such that

g̃(t) = g̃(t*) +
∞

∑
i=1

αi(t− t*)i, ∀t ∈ [t*, β],

with the above power series converging for each t ∈ [t*, β]. The continuity of g̃

implies that the sets {t ∈ (a, b) : g̃(t) > 0} and {t ∈ (a, b) : g̃(t) < 0} are both

open. If g̃(t*) ̸= 0, then, for sufficiently small d ∈ (t*, b), either g̃(t) > 0 for each

t ∈ [t*, d] or g̃(t) < 0 for each t ∈ [t*, d]. Since g ≡ g̃ on (t*, d], the required result

then follows.

Thus, throughout the remainder of this proof, assume that g̃(t*) = 0. If αi = 0

for each i ∈ N, then g(t) = g̃(t) = 0 for each t ∈ (t*, β], as required. Otherwise,

there exists p := min {i ∈N : αi ̸= 0}, allowing g to be expressed on (t*, β] as:

g(t) = g̃(t) = (t− t*)p

(
αp +

∞

∑
i=1

αp+i(t− t*)i

)
, ∀t ∈ (t*, β]. (6.1)

Suppose that αp > 0; the case in which αp < 0 is analogous. Now,

lim
t→(t*)+

(
αp +

∞

∑
i=1

αp+i(t− t*)i

)
= αp > 0.

Thus, for sufficiently small d ∈ (t*, β],

αp +
∞

∑
i=1

αp+i(t− t*)i > 0, ∀t ∈ (t*, d],

and so (6.1) implies that g(t) > 0 for each t ∈ (t*, d], as required.

Lemma 6.2.5. Given open sets T ⊂ R and Z ⊂ Rn, a function g : T → Z, and a function

h : Z → Rm, if g is right-analytic at some t* ∈ T, then the limit g* := limt→(t*)+ g(t)

exists in Rn. If g* ∈ Z, and if h is analytic at g*, then the composite function h ∘ g is

right-analytic at t*.
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Proof. The existence of g* ∈ Rn follows immediately from g being right-analytic at

t*. Suppose that g* ∈ Z, and, without loss of generality, assume that m = 1: this

case is readily extended to cover the m > 1 case by considering h1 ∘ g, . . . , hm ∘ g

separately. Under this assumption, h is a scalar-valued function h : Z → R.

Since g is right-analytic at t* ∈ T, there exist a, d ∈ T such that a < t* < d, and

analytic functions g̃1, . . . , g̃n : (a, d)→ R for which

gk(t) = g̃k(t), ∀t ∈ (t*, d), ∀k ∈ {1, . . . , n}.

Thus,

h ∘ g(t) = h(g̃1(t), . . . , g̃n(t)), ∀t ∈ (t*, d),

and g* = (g̃1(t*), . . . , g̃n(t*)). Moreover, [66, Corollary 1.2.4 and Proposition 2.2.8]

show that the mapping t ↦→ h(g̃1(t), . . . , g̃n(t)) is well-defined and analytic on

some neighborhood N ⊂ T of t*, as required.

Lemma 6.2.6. Consider open sets T, U ⊂ R, some t* ∈ T, a function g : T → U, and

a function h : U → Rn. If g is right-analytic at t*, then the limit g* := limt→(t*)+ g(t)

exists in R. If g* ∈ U, and if h is left/right-analytic at g*, then the function h ∘ g is

right-analytic at t*.

Proof. The existence of g* ∈ R is an immediate consequence of g being right-

analytic at t*. Suppose that g* ∈ U. Since h is left/right-analytic at g*, there exist

δ > 0 and analytic functions h̃A : (g*− δ, g*+ δ)→ Rn and h̃B : (g*− δ, g*+ δ)→

Rn such that, for each s ∈ (g*, g* + δ),

h(s) = h̃A(s), ∀s ∈ (g* − δ, g*), and h(s) = h̃B(s).

Since the function γ ≡ g − g* is right-analytic at t*, Lemma 2.6 implies that for

sufficiently small d > t*, either g(t) ≥ g* for all t ∈ (t*, d], or g(t) ≤ g* for

all t ∈ (t*, d], or both. Since g is right-analytic at t*, there exist tL, tU ∈ T with

tL < t* < tU and an analytic function g̃ : (tL, tU) → R for which g ≡ g̃ on

(t*, tU), and for which t ∈ (t*, tU) implies |g(t) − g*| = |g̃(t) − g̃(t*)| < δ. Set

d̃ := min(d, tU).
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The cases in which g(t) ≥ g* for all t ∈ (t*, d], or g(t) ≤ g* for all t ∈ (t*, d],

will be considered separately. If g(t) ≥ g* for all t ∈ (t*, d], then, combining the

above results,

h(g(t)) = h̃B(g̃(t)), ∀t ∈ (t*, d̃).

The composition h̃B ∘ g̃ is analytic at t*, and so h ∘ g is right-analytic at t*, as re-

quired.

Similarly, if g(t) ≤ g* for all t ∈ (t*, d], then

h(g(t)) = h̃A(g̃(t)), ∀t ∈ (t*, d̃).

The composition h̃A ∘ g̃ is analytic at t*, and so h ∘ g is right-analytic at t*, as

required.

Lemma 6.2.7. Given open sets T ⊂ R and Z ⊂ Rn, a function z : T → Y for some

closed set Y ⊂ Z, and an abs-factorable function f : Z → Rm, if z is right-analytic at

t* ∈ T, then the composite function f ∘ z is also right-analytic at t*, as are the functions

v(j) ∘ z for each j ∈ {0, 1 . . . , `} and u(j) ∘ z for each j ∈ {1, . . . , `}.

Proof. Since Y is closed and z is right-analytic at t*, limt→(t*)+ z(t) exists and is

an element of Z. Thus, using Lemmata 6.2.5 and 6.2.6, a simple strong inductive

proof on j = 0, 1, . . . , ` shows that v(j) ∘ z is right-analytic for each j ∈ {0, 1 . . . , `},

as is u(j) ∘ z for each j ∈ {1, . . . , `}. Since f ≡ v(`) on Z, the lemma is thereby

demonstrated.

6.3 Non-Zenoness for abs-factorable ODEs

This section establishes various notions of switching behavior and non-Zenoness

for the ODE systems formalized in the following assumptions, the first of which

includes a left/right-analytic control input that may be discontinuous. A pertinent

restatement of the obtained non-Zenoness results is provided for ODE systems

with linear programs embedded.
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The results in this section depend heavily on the condition that all differentiable

functions in the elemental library ℒ are analytic. Example 1 in [72] shows that this

condition cannot be relaxed in general while retaining non-Zenoness.

Assumption 6.3.1. Consider open sets T̄ ⊂ R, X ⊂ Rn, and W ⊂ Rm, a compact set

U ⊂ W, some c ∈ X, a left/right-analytic function w : T̄ → U, and an abs-factorable

function f : T̄ × X ×W → Rn, and suppose that there exists a solution trajectory x

(in the Carathéodory sense, as summarized in [26, Section 1]) of the following ODE on

[t0, t f ] ⊂ T̄:

dx
dt

(t) = f(t, x(t), w(t)), x(t0) = c. (6.2)

The following assumption is the special case of the above assumption in which

m = 0, and so the control input w is omitted. Thus, any result pertaining to the

system in Assumption 6.3.1 also applies to the system in the following assumption.

Assumption 6.3.2. Consider open sets T̄ ⊂ R and X ⊂ Rn, some c ∈ X, and an abs-

factorable function f : T̄ × X → Rn, and suppose that there exists a solution trajectory x

of the following ODE on [t0, t f ] ⊂ T̄:

dx
dt

(t) = f(t, x(t)), x(t0) = c. (6.3)

If the control input w in Assumption 6.3.1 is abs-factorable, then Assump-

tion 6.3.2 applies with f redefined as the mapping (t, x) ↦→ f(t, x, w(t)). Thus,

results pertaining to the system in Assumption 6.3.2 are applicable in this case.

Under Assumption 6.3.1, since x is absolutely continuous, the image x([t0, t f ])

of [t0, t f ] under x is compact. Thus, since f is locally Lipschitz continuous, there

exist open sets Y ⊂ T̄ × X and V ⊂W such that

[t0, t f ]× x([t0, t f ])×U ⊂ Y×V,

and such that f is bounded and uniformly Lipschitz continuous (with Lipschitz

constant kf) on Y × V. Since w is bounded and measurable, it follows that the
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mapping fw : Y → Rn : (t, x) ↦→ f(t, x, w(t)) is bounded and measurable, and is

also uniformly Lipschitz continuous (also with Lipschitz constant kf) with respect

to x for each fixed t. Consequently, the solution trajectory x described in Assump-

tion 6.3.1 (or 6.3.2) is unique. Moreover, by [26, Section 1, Theorems 1 and 2],

this solution may be extended to yield a unique solution x of (6.2) (or (6.3)) on

T := [t`, tu] ⊂ T̄, for some t` < t0 and some tu > t f . In the spirit of [33], for each i ∈

{1, . . . , pf} and each t ∈ T, define a signature σi(t) := sign u(λf(i))(t, x(t), w(t)) ∈

{−1, 0, 1}; the w(t) argument will be understood to be omitted in the case of As-

sumption 6.3.2. Thus, for each t ∈ T and i ∈ {1, . . . , pf},

v(λf(i))(t, x(t), w(t)) = |u(λf(i))(t, x(t), w(t))|
= σi(t) u(λf(i))(t, x(t), w(t)). (6.4)

Under Assumption 6.3.2, the following example illustrates that the ODE (6.3)

can be expressed as a hybrid automaton in the sense of [72], with continuous evolu-

tion described by an analytic ODE right-hand side function in each discrete mode.

The subsequent remark shows that (6.3) may also be represented as a nonlinear

complementarity system (NCS) in the sense of [86, 99, 116]. Since the control w in

(6.2) may be discontinuous, (6.2) is not necessarily representable as a NCS that is

strongly regular in the sense of [86].

Example 6.3.3. Consider the following ODE with two differential variables:

dx
dt

(t) =
[

|x1(t)|
−|x2(t)− x1(t)|

]
, x(0) = c. (6.5)

Note that for each y ∈ R, |y| ∈ {qy : q ∈ {−1,+1}}. Thus, defining Q := {−1,+1}2,

the ODE can be reformulated as the following instance (Q, R2, Init, f, I, E, G, R) of the

generic hybrid automaton described in [72, Definition 2]:

∙ Init := {(q, x) : q1x1 ≥ 0, q2(x2 − x1) ≥ 0, q ∈ Q, x ∈ R2},

∙ f(q, x) :=

 q1x1

−q2(x2 − x1)

, for each q ∈ Q and x ∈ R2,
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∙ I(q) := {x ∈ R2 : q1x1 ≥ 0, q2(x2 − x1) ≥ 0}, for each q ∈ Q,

∙ E := E1 ∪ E2, where E1 := {((q1, q2), (−q1, q2)) : q1, q2 ∈ {−1,+1}}, and

E2 := {((q1, q2), (q1,−q2)) : q1, q2 ∈ {−1,+1}},

∙ G(e) := {x ∈ R2 : x1 = 0} for each e ∈ E1, and G(e) := {x ∈ R2 : x2− x1 = 0}

for each e ∈ E2,

∙ R(e, x) := {x}, for each e ∈ E and x ∈ R2.

Observe that f(q, ·) is linear – and therefore analytic – for each q ∈ Q. This hybrid

automaton is equivalent to the ODE (6.5) in the following sense. Given any solution

{x(t) : t ∈ [0, t f ]} of the ODE (6.5), a valid execution of the hybrid automaton on [0, t f ]

is given by (𝜏 , (q1, q2), x), where q1(t) := +1 if x1(t) ≥ 0 and −1 otherwise, where

q2(t) := +1 if x2(t) − x1(t) ≥ 0 and −1 otherwise, and where each discontinuity in

q1 or q2 coincides with the endpoint of an interval in 𝜏 . Conversely, given any execution

(𝜏 , q, x) of the hybrid automaton on [0, t f ], x evidently solves the ODE (6.5) on [0, t f ].

Remark 6.3.4. For any particular x ∈ R, the statement z = |x| is equivalent to the

existence of y ∈ R for which

z = 2y− x, and 0 ≤ y ⊥ y− x ≥ 0; (6.6)

it is readily verified that these conditions are satisfied if and only if y = max{x, 0} and

z = |x|.

When the domain of each 𝜓(j) is Rnj for appropriate nj ∈ N, the above relationship

allows the ODE (6.3) to be expressed as an equivalent nonlinear complementarity sys-

tem (NCS), as defined in [86, 87]. This can be shown as follows. For each fixed y ∈ Rpf ,

define an abs-factorable function f̂(·, ·, y) : T̄ × X → Rn as having the same factored

representation as f, except for the following changes. Let quantities relating to the factored

representation of f̂(·, ·, y) be denoted with carets. For each i ∈ {1, . . . , pf}, noting that

ψ(λf(i)) is the mapping u ↦→ |u|, define ψ̂(λf(i)) : u ↦→ 2yi − u instead. Allowing now for

variation in y, the function f̂ is evidently analytic on its domain, since it is the composition
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of analytic functions. Thus, inspection of (6.6) shows that the ODE (6.3) is equivalent to

the NCS:

dx
dt

(t) = f̂(t, x(t), y(t)), x(t0) = c,

0 ≤ y(t) ⊥ ĥ(t, x(t), y(t)) ≥ 0,

where the function ĥ : T̄ × X×Rpf → Rpf is defined so that for each i ∈ {1, . . . , pf},

ĥi : (t, x, y) ↦→ yi − û(λf(i))(t, x, y).

Since each û(λf(i)) is the composition of analytic functions, ĥ is evidently analytic.

This argument must be refined when the elemental library contains functions 𝜓(j)

whose domain is some strict subset of Rnj : in this case, certain values of y ∈ Rpf may

lead to domain violations in the function f̂ described above. Since the NCS representation

of (6.3) is tangential to the results in this work, these refinements will not be pursued

further here.

6.3.1 Basic observations about switching behavior

The following definition formalizes intuitive notions of switching behavior in the

trajectory x, in which the arguments of the absolute-value functions in the ODE

right-hand side change sign over time.

Definition 6.3.5. Suppose that Assumption 6.3.1 (or 6.3.2) holds. The trajectory x has a

valley-crossing at t* ∈ [t0, t f ] if there exists i ∈ {1, . . . , pf} for which lim supt→t* σi(t) =

+1 and lim inft→t* σi(t) = −1. The trajectory x has a (valley)–crossing opportunity

at t̄ ∈ [t0, t f ] if limt→t̄ σi(t) does not exist for some i ∈ {1, . . . , pf}. The trajectory x

has a valley-tracing mode on a nondegenerate interval [a, b] ⊂ [t0, t f ] if there exists

i ∈ {1, . . . , pf} such that σi(t) = 0 for each t ∈ [a, b]. (An interval [a, b] ⊂ R is

nondegenerate if a < b.)

The “valleys” in the above definition refer to the shape of the absolute-value

function’s graph. Valley-tracing modes exhibit the sliding motion described by Fil-
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ippov [26] when considering an ODE right-hand side that is smooth on particular

subdomains. However, since the right-hand side functions considered here are

locally Lipschitz continuous with respect to x, the ODE solution x exists in the

Carathéodory sense, and so Filippov’s alternative notion of a solution [26] is not

necessary.

Remark 6.3.6. Valley-crossings can only occur at crossing opportunities. A discontinuity

in some σi is not necessarily a crossing opportunity or a valley-crossing.

Lemma 6.3.7. Suppose that Assumption 6.3.2 holds. If x does not have a valley-crossing

at t* ∈ [t0, t f ], then x is analytic at t*.

Proof. Consider such a t* ∈ [t0, t f ], and define x* := x(t*). Since t* ∈ [t0, t f ] is not a

valley-crossing, it follows that for each i ∈ {1, . . . , pf}, either lim supt→t* σi(t) ≤ 0

or lim inft→t* σi(t) ≥ 0. Thus, there exists a neighborhood N ⊂ T of t* such that

either u(λf(i))(t, x(t)) ≤ 0 for each t ∈ N, or u(λf(i))(t, x(t)) ≥ 0 for each t ∈ N.

Combining this statement with (6.4), there exists s ∈ {−1,+1}pf such that

v(λf(i))(t, x(t)) = si u(λf(i))(t, x(t)), ∀t ∈ N, ∀i ∈ {1, . . . , pf}.

Now, define an abs-factorable function f̃s as having the same factored representa-

tion as f, but with ψ(λf(i)) replaced for each i ∈ {1, . . . , pf} by ψ̃(λf(i)) : u ↦→ siu.

Since each 𝜓(j) is locally Lipschitz continuous and defined on an open set, and

since f̃s(t*, x*) = f(t*, x*), it follows that f̃s is well-defined and locally Lipschitz

continuous on some neighborhood of (t*, x*). Moreover, x evidently solves the

ODE:

dx̃
dt

(t) = f̃s(t, x̃(t)), x̃(t*) = x* (6.7)

on N. Noting that f̃s is analytic by construction, it follows from [35, Ch. II, Sec-

tion 1] that x is analytic at t*.

Lemma 6.3.8. Suppose that Assumption 6.3.1 holds. The set of crossing opportunities of

x in [t0, t f ] is compact.
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Proof. Since [t0, t f ] is compact, it suffices to show that the set B of crossing oppor-

tunities in [t0, t f ] is closed. Suppose that t* ∈ [t0, t f ] is a limit point of B; it will be

shown that t* ∈ B. By construction of t*, there exists a sequence {tj}j∈N in B for

which |tj − t*| < 2−j for each j ∈N.

By definition of a crossing opportunity, for each j ∈N, there exists i ∈ {1, . . . , pf}

such that lim supt→tj
σi(t) ̸= lim inft→tj σi(t). Since {1, . . . , pf} is a finite set, there

exists i* ∈ {1, . . . , pf} such that the set

I := {j ∈N : lim sup
t→tj

σi*(t) ̸= lim inf
t→tj

σi*(t)}

is infinite. Since σi*(t) ∈ {−1, 0,+1} for each t ∈ T, it follows that

lim sup
t→tj

σi*(t) ≤ +1

for each j ∈ I, and so lim inft→tj σi*(t) ∈ {−1, 0} for each j ∈ I. The cases in which

the set J := {j ∈ I : lim inft→tj σi*(t) = 0} is infinite or finite will be considered

separately.

First, suppose that J is infinite. Noting that tj is a crossing opportunity for each

j ∈N, it follows that

0 = lim inf
t→tj

σi*(t) < lim sup
t→tj

σi*(t), ∀j ∈ J,

and so lim supt→tj
σi*(t) = +1 for each j ∈ J. Thus, for each j ∈ J, there exist

rj, sj ∈ T such that σi*(rj) = 0, σi*(sj) = +1, |rj − tj| < 2−j, and |sj − tj| < 2−j. The

triangle inequality yields the following for each j ∈ J:

|rj − t*| ≤ |rj − tj|+ |tj − t*| < 21−j,

|sj − t*| ≤ |sj − tj|+ |sj − t*| < 21−j.

Thus, limJ∋j→∞ sj = limJ∋j→∞ rj = t*, and so
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lim sup
t→t*

σi*(t) ≥ lim
j∈J

j→∞

σi*(sj)

= +1 > 0 = lim
j∈J

j→∞

σi*(rj) ≥ lim inf
t→t*

σi*(t),

which shows that t* is a crossing opportunity.

Next, suppose, instead, that J is finite. The set

K := I∖J = {j ∈ I : lim inf
t→tj

σi*(t) = −1}

is then infinite. Since tj is a crossing opportunity for each j ∈ K, it follows that

lim supt→tj
σi*(t) ≥ 0 for each j ∈ K. Thus, a similar argument to the previous case

shows that

lim sup
t→t*

σi*(t) ≥ 0 > −1 ≥ lim inf
t→t*

σi*(t),

by considering appropriate sequences {sj}j∈K and {rj}j∈K which each converge to

t*.

6.3.2 Establishing non-Zenoness

In this subsection, certain types of non-Zenoness are established for solutions of

ODE systems satisfying Assumptions 6.3.1 and 6.3.2.

Firstly, under Assumption 6.3.1, the main non-Zenoness results of [110, 111]

may be extended significantly, as the following theorem demonstrates. Observe

that, by [97, Proposition 2.2.2], any function that is piecewise affine in the sense of

Scholtes [97] is also abs-factorable.

Theorem 6.3.9. Suppose that Assumption 6.3.1 holds. The trajectory x is absolutely

continuous and left/right-analytic at each t* ∈ [t0, t f ].

Proof. Since x is a solution of a Carathéodory ODE, x is absolutely continuous on T.

It will be shown that x is right-analytic at t*; the proof that x is also left-analytic at t*

is analogous. Set x* := x(t*) and w* := limt→(t*)+ w(t). This limit exists, since w is
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right-analytic. Moreover, there exists a neighborhood Nw ⊂ T̄ of t* and an analytic

function w̃ : Nw → W such that w ≡ w̃ on (t*, b) for some b ∈ (t*, tu) ∩ Nw, and

so w̃(t*) = w*.

This proof proceeds by induction on pf ∈ {0, 1, 2, . . .}. For the base case, if

pf = 0, then f is analytic. Thus, for some d ∈ (t*, b) and some a ∈ (t`, t*) ∩ Nw, the

function

g : (a, d]× X → Rn : (t, z) ↦→ f(t, z, w̃(t))

is well-defined and analytic, and x solves the following ODE on [t*, d]:

d𝜉
dt

(t) = g(t, 𝜉(t)), 𝜉(t*) = x*.

Moreover, since g is analytic, it is locally Lipschitz continuous, and so x is the

unique solution on [t*, d] of the above ODE. From standard ODE existence theory,

there exists a unique continuation x̃ of this solution to (ā, d] for some ā ∈ (a, t*).

Since g is analytic, so is x̃ [35]. Thus, since x ≡ x̃ on (t*, d), and since x̃ is defined

and analytic on (ā, d) ∋ t*, x is right-analytic at t*, as required.

Now, consider the case in which pf = k ∈ N, and denote λf(k) as λ for sim-

plicity. As the inductive assumption, suppose that the required result would hold

if f were replaced by any abs-factorable function 𝜑 for which p𝜑 = k − 1. To

show that x is right-analytic at t*, the following cases will be considered separately:

u(λ)(t*, x*, w*) > 0, u(λ)(t*, x*, w*) < 0, and u(λ)(t*, x*, w*) = 0.

If u(λ)(t*, x*, w*) > 0, then the continuity of x, u(λ), and w̃ implies the existence

of a neighborhood Na ⊂ Nw of t* for which u(λ)(t, x(t), w̃(t)) > 0 for each t ∈ Na.

Define an abs-factorable function fA as having the same factored representation

as f, except with ψ(λ) : u → |u| replaced by ψA,(λ) : u → u. (Throughout this

proof, the subscript A will denote quantities relating to fA instead of f.) Noting

that f(t*, x*, w*) = fA(t*, x*, w*) by construction, and that each function in the

factored representation of fA is locally Lipschitz continuous and defined on an

open set, it follows that fA is well-defined and locally Lipschitz continuous on

some neighborhood of (t*, x*, w*). Thus, there exists some sufficiently small tA ∈
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(t*, b) ∩ Na for which the ODE:

dxA

dt
(t) = fA(t, xA(t), w(t)), xA(t*) = x* (6.8)

has a unique solution xA on [t*, tA]. Since pfA = k − 1 by construction, the in-

ductive assumption shows that xA is right-analytic at t*. Moreover, for each t ∈

(t*, tA], since u(λ)(t, x(t), w(t)) = u(λ)(t, x(t), w̃(t)) > 0, it follows that

v(λ)(t, x(t), w(t)) = |u(λ)(t, x(t), w(t))|
= u(λ)(t, x(t), w(t)) = vA,(λ)(t, x(t), w(t)).

Thus, f(t, x(t), w(t)) = fA(t, x(t), w(t)) for each t ∈ (t*, tA], and so x solves the

ODE (6.8) on [t*, tA]. The uniqueness of any solution of (6.8) yields x ≡ xA on [t*, tA],

which shows that x is right-analytic at t*.

If u(λ)(t*, x*, w*) < 0, then define an abs-factorable function fB as having the

same factored representation as f, except with ψB,(λ) : u → −u. A similar argu-

ment to the previous case shows that fB is well-defined on some neighborhood of

(t*, x*, w*), and that, for sufficiently small tB ∈ (t*, tu), x uniquely solves the ODE:

dxB

dt
(t) = fB(t, xB(t), w(t)), xB(t*) = x* (6.9)

on [t*, tB]. By the inductive assumption, therefore, x is right-analytic at t*.

If u(λ)(t*, x*, w*) = 0, then observe that, with fA and fB described as in the

previous cases, both fA and fB are well-defined on some neighborhood Nab of

(t*, x*, w*), and that there exist unique solutions xA and xB of (6.8) and (6.9) on

[t*, t1] for some sufficiently small t1 ∈ (t*, tu). Noting that u(λ), uA,(λ), and uB,(λ)

are equivalent mappings by construction, Lemma 6.2.7 and the inductive assump-

tion show that the mappings t ↦→ u(λ)(t, xA(t), w(t)) and t ↦→ u(λ)(t, xB(t), w(t))

are both right-analytic at t*. Thus, Lemma 6.2.4 shows that there exists β ∈ (t*, t1)∩

(t*, b) and σA, σB ∈ {−1, 0,+1} for which

sign u(λ)(t, xD(t), w(t)) = σD, ∀t ∈ (t*, β], ∀D ∈ {A, B}.
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The following cases are exhaustive, and will be considered separately: σA ≥ 0,

σB ≤ 0, and (σA, σB) = (−1,+1).

If σA ≥ 0, then u(λ)(t, xA(t), w(t)) ≥ 0 for each t ∈ (t*, β]. In this case, for each

t ∈ (t*, β],

v(λ)(t, xA(t), w̃(t)) = |u(λ)(t, xA(t), w(t))|
= u(λ)(t, xA(t), w(t)) = vA,(λ)(t, xA(t), w(t)),

and so f(t, xA(t), w̃(t)) = fA(t, xA(t), w(t)) for each t ∈ (t*, β]. Thus, xA solves the

ODE:

d𝜉
dt

(t) = f(t, 𝜉(t), w̃(t)), 𝜉(t*) = x*, (6.10)

on [t*, β], as does x, by inspection. Since f is locally Lipschitz continuous, unique-

ness of any solution of (6.10) then implies that xA ≡ x on [t*, β]. By the inductive

assumption, xA is right-analytic at t*, implying that x is also right-analytic at t*.

If σB ≤ 0, then a similar argument shows that xB ≡ x on [t*, β], and that x is

right-analytic at t*.

The case in which (σA, σB) = (−1,+1) does not occur. To show this, suppose,

to obtain a contradiction, that both σA = −1 and σB = +1. Hence,

u(λ)(t, xA(t), w̃(t)) < 0 < u(λ)(t, xB(t), w̃(t)), ∀t ∈ (t*, β],

which implies that xA(t) ̸= xB(t) for each t ∈ (t*, β]. Define an abs-factorable

function f̄ as having the same factored representation as f, except with ψ̄(λ) : u →

−|u|. Let quantities relating to f̄ be denoted with overbars. Clearly f̄(t*, x*, w*) =

f(t*, x*, w*), and so f̄ is well-defined and locally Lipschitz continuous on a neigh-

borhood of (t*, x*, w*). Thus, for sufficiently small α ∈ (t*, β), for each t ∈ (t*, α],
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v̄(λ)(t, xA(t), w̃(t)) = −|u(λ)(t, xA(t), w(t))|
= u(λ)(t, xA(t), w(t)) = vA,(λ)(t, xA(t), w(t));

v̄(λ)(t, xB(t), w̃(t)) = −|u(λ)(t, xB(t), w(t))|
= −u(λ)(t, xB(t), w(t)) = vB,(λ)(t, xB(t), w(t)).

Consequently, for each t ∈ (t*, α], both f̄(t, xA(t), w̃(t)) = fA(t, xA(t), w(t)) and

f̄(t, xB(t), w̃(t)) = fB(t, xB(t), w(t)). It follows that xA and xB both solve the ODE:

dx̄
dt

(t) = f̄(t, x̄(t), w̃(t)), x̄(t*) = x*

on [t*, α], contradicting the uniqueness of any solution of this ODE on [t*, α], which

follows from the local Lipschitz continuity of f̄. Therefore, it cannot be that both

σA = −1 and σB = +1.

The above cases cover all possible situations, and thereby complete the induc-

tive step.

Next, the following corollary demonstrates non-Zenoness in the sense of [86],

and motivates the subsequent definition.

Corollary 6.3.10. Suppose that Assumption 6.3.1 holds. For each t* ∈ [t0, t f ] and each

i ∈ {1, . . . , pf}, there exist σL
i (t
*), σR

i (t
*) ∈ {−1, 0,+1} such that for sufficiently small

δ > 0,

σi(t) = σL
i (t
*), ∀t ∈ [t* − δ, t*),

and σi(t) = σR
i (t
*), ∀t ∈ (t*, t* + δ].

Proof. By Lemma 6.2.7 and Theorem 6.3.9, the mapping t ↦→ u(λf(i))(t, x(t), w(t))

is left/right-analytic at any t* ∈ [t0, t f ] for each i ∈ {1, . . . , pf}. The required result

then follows from Lemma 6.2.4 and the definition of each σi.

Definition 6.3.11. Suppose that Assumption 6.3.1 holds. For each t* ∈ [t0, t f ] and each

i ∈ {1, . . . , pf}, define a left-signature σL
i (t
*) ∈ {−1, 0,+1} and a right-signature

σR
i (t
*) ∈ {−1, 0,+1} as described in Corollary 6.3.10.
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Left/right-signatures play a similar role to the Lie derivatives considered in [72].

The concept of left/right-signatures permits a more intuitive characterization of

valley-crossings and crossing opportunities, as described by the following two

lemmata.

Lemma 6.3.12. Suppose that Assumption 6.3.1 or 6.3.2 holds. There is a valley-crossing

at t* ∈ [t0, t f ] if and only if there exists some i ∈ {1, . . . , pf} such that (σL
i (t
*), σR

i (t
*)) ∈

{(−1,+1), (+1,−1)}. If Assumption 6.3.2 holds, then σi(t*) = 0 at any valley-crossing

t* of x.

Proof. The first result follows immediately from Corollary 6.3.10 and the definition

of a valley-crossing. If Assumption 6.3.2 holds, then the second result follows from

the first result and the continuity of t ↦→ u(λf(i))(t, x(t)) at t*.

Lemma 6.3.13. Suppose that Assumption 6.3.1 or 6.3.2 holds. There is a crossing oppor-

tunity of x at t* ∈ [t0, t f ] if and only if there exists some i ∈ {1, . . . , pf} such that

(σL
i (t
*), σR

i (t
*)) ∈ {(−1, 0), (−1,+1), (0,−1),

(0,+1), (+1,−1), (+1, 0)}.

If Assumption 6.3.2 holds, then σi(t*) = 0 at any crossing opportunity t* of x.

Proof. Comparing Corollary 6.3.10 and the definition of a crossing opportunity,

there is a crossing opportunity at t* if and only if σL
i (t
*) ̸= σR

i (t
*) for some i ∈

{1, . . . , pf}, which is equivalent to the first required result. If Assumption 6.3.2

holds, then the second result follows from the first result and the continuity of

t ↦→ u(λf(i))(t, x(t)) at t*.

The following theorem essentially rules out the emergence of the Zeno au-

tomata illustrated in [48, Section 3.1] in the abs-factorable ODEs considered in this

work.

Theorem 6.3.14. Suppose that Assumption 6.3.1 holds. There are finitely many valley-

crossings and crossing opportunities of x in [t0, t f ].
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Proof. Since any valley-crossing is also a crossing opportunity, it suffices to show

that the set B of crossing opportunities in [t0, t f ] is finite. If, instead, B were infinite,

then the compactness of [t0, t f ] would imply that B has a limit point, which would

itself be an element of B due to Lemma 6.3.8. Hence, it suffices to show that each

element of B is isolated.

If B is empty, then the theorem is trivially satisfied. Otherwise, choose any

t* ∈ B. Corollary 6.3.10 shows that for some δ > 0, for each i ∈ {1, . . . , pf}, σi is

constant on (t*, t* + δ) and on (t* − δ, t*). This, in conjunction with Lemma 6.3.13,

shows that the open intervals (t*, t*+ δ) and (t*− δ, t*) do not contain any crossing

opportunities. Hence, t* is the only element of B ∩ (t* − δ, t* + δ), and is therefore

isolated.

Corollary 6.3.15. Suppose that Assumption 6.3.1 holds. There exists ε > 0 such that,

for each t* ∈ [t0, t f ], x has at most one crossing opportunity or valley-crossing on the set

[t*, t* + ε] ∩ [t0, t f ].

The remaining results in this subsection show that, under Assumption 6.3.2,

the mappings t ↦→ u(λf(i))(t, x(t)) are analytic between successive crossing oppor-

tunities, and each crossing opportunity for the trajectory x must also be a valley-

crossing. Under Assumption 6.3.2, let B denote the set of crossing opportunities of

x in [t0, t f ]. In light of Theorem 6.3.14, the set B̄ := B ∪ {t0, t f } will be enumerated

in the following two lemmata as {τk}
qf
k=0, where t0 = τ0 < τ1 < τ2 < . . . < τqf = t f ,

for some qf ∈N.

Lemma 6.3.16. Suppose that Assumption 6.3.2 holds. For each k ∈ {1, . . . , qf} and each

i ∈ {1, . . . , pf}, there exist a, b ∈ T and an analytic function ũk,i : (a, b) → R such that

a < τk−1 < τk < b, and u(λf(i))(t, x(t)) ≡ ũk,i(t) for each t ∈ [τk−1, τk].

Proof. Choose some particular k ∈ {1, . . . , qf} and i ∈ {1, . . . , pf}. Since there

are no crossing opportunities of x in (τk−1, τk), there cannot exist t*, t′ ∈ [τk−1, τk]

for which both σi(t*) = +1 and σi(t′) = −1. To show this, suppose, to obtain

a contradiction, that such t* and t′ do exist. Noting that u(λf(i))(t
*, x(t*)) > 0,

and that u(λf(i)) and x are continuous on their respective domains, there exists
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a nondegenerate interval [α, β] that is a connected component of the closed set

P := {t ∈ [τk−1, τk] : u(λf(i))(t, x(t)) ≥ 0} containing t*. Since t′ /∈ P, it follows

that either α ̸= τk−1 or β ̸= τk. Suppose that β ̸= τk; the case in which α ̸= τk−1

is analogous. By definition of β, for each γ ∈ (β, τk], there must exist t ∈ [β, γ] for

which u(λf(i))(t, x(t)) < 0. (Otherwise, [α, γ] would be a larger connected subset

of P than [α, β].) Hence, σL
i (β) ≥ 0, and σR

i (β) = −1, and so β is a crossing

opportunity. This contradicts the established inequality τk−1 < β < τk and the

construction of τk−1 and τk.

It therefore follows that either σi(t) ≥ 0 for all t ∈ [τk−1, τk], or σi(t) ≤ 0 for

all t ∈ [τk−1, τk]. Noting that i ∈ {1, . . . , pf} was chosen arbitrarily, there exists

s ∈ {−1,+1}pf such that

v(λf(i))(t, x(t)) = si u(λf(i))(t, x(t)), (6.11)

∀t ∈ [τk−1, τk], ∀i ∈ {1, . . . , pf}.

Thus, define an abs-factorable function f̄ as having the same factorable represen-

tation as f, except with ψ̄(λf(i)) : u ↦→ siu replacing ψ(λf(i)) : u ↦→ |u| for each

i ∈ {1, . . . , pf}. Since f̄(t, x(t)) = f(t, x(t)) for each t ∈ [τk−1, τk], and since each

elemental function 𝜓̄(j) in the factored representation of f̄ is locally Lipschitz con-

tinuous and defined on an open set, it follows that f̄ is well-defined and locally

Lipschitz continuous on some open superset of {(t, x(t)) : t ∈ [τk−1, τk]}. Thus, x

is the unique solution on [τk−1, τk] of the ODE:

dx̄
dt

(t) = f̄(t, x̄(t)), x̄(τk−1) = x(τk−1). (6.12)

Noting that f̄ is analytic by construction, it follows that the above ODE has a

unique analytic solution x̄ on some open superset of [τk−1, τk], which implies that

x ≡ x̄ on [τk−1, τk]. Since uλf(i)(t, x(t)) = ū(λf(i))(t, x̄(t)) for each t ∈ [τk−1, τk]

and each i ∈ {1, . . . , pf}, since each ū(λf(i)) is analytic by construction, and since

t ↦→ ū(λf(i))(t, x̄(t)) is defined on some open superset of [τk−1, τk], the required

result follows.
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Lemma 6.3.17. Suppose that Assumption 6.3.2 holds. For each k ∈ {1, . . . , qf} and each

i ∈ {1, . . . , pf}, the set

Sk,i := {t ∈ [τk−1, τk] : u(λf(i))(t, x(t)) = 0}

is either finite or equal to [τk−1, τk].

Proof. Employing the analytic function ũk,i provided by Lemma 6.3.16, observe

that Sk,i = {t ∈ [τk−1, τk] : ũk,i(t) = 0}. The continuity of ũk,i implies that Sk,i

is closed. If Sk,i is finite, then the required result is trivially satisfied. Thus, sup-

pose that Sk,i is infinite. The compactness of [τk−1, τk] implies that Sk,i has a limit

point, which must itself be an element of Sk,i since Sk,i is closed. In this case, [66,

Corollary 1.2.7] implies that ũk,i ≡ 0, and so Sk,i = [τk−1, τk].

The following theorem demonstrates the converse of the first statement in Re-

mark 6.3.6, under Assumption 6.3.2.

Theorem 6.3.18. Suppose that Assumption 6.3.2 holds. Every crossing opportunity of x

in [t0, t f ] is also a valley-crossing.

Proof. To obtain a contradiction, suppose there exists a crossing opportunity t* ∈

[t0, t f ] of x that is not also a valley-crossing, and set x* := x(t*). Lemmata 6.3.12

and 6.3.13 imply that for some i* ∈ {1, . . . , pf},

(σL
i*(t
*), σR

i* (t
*)) ∈ {(−1, 0), (+1, 0), (0,−1), (0,+1)}. (6.13)

Since t* is not a valley-crossing, Lemma 6.3.7 shows that x is analytic at t*. Con-

sider the analytic function f̃s described in the proof of Lemma 6.3.7, and let quan-

tities related to the factorable representation of f̃s be denoted with tildes. It fol-

lows that x solves the ODE (6.7) on some neighborhood N ⊂ T of t*. Thus,

u(λf(i*))(t, x(t)) = ũ(λf(i*))(t, x(t)) for each t ∈ N, and so t ↦→ u(λf(i*))(t, x(t)) is

analytic at t*. Equation (6.13) also shows that either σL
i*(t
*) = 0 or σR

i* (t
*) = 0;

[66, Corollary 1.2.7] then implies that u(λf(i*))(t, x(t)) = 0 for all t ∈ N, which

contradicts (6.13).
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Corollary 6.3.19. Suppose that Assumption 6.3.2 holds. If there exist t* ∈ [t0, t f ] and

i ∈ {1, . . . , pf} such that

(σL
i (t
*), σR

i (t
*)) ∈ {(−1, 0), (+1, 0), (0,−1), (0,+1)},

then there exists j ∈ {1, . . . , pf} such that j ̸= i, σj(t*) = 0, and

(σL
j (t
*), σR

j (t
*)) ∈ {(−1,+1), (+1,−1)}.

Proof. The corollary is a direct consequence of Theorem 6.3.18 and Lemmata 6.3.12

and 6.3.13.

6.3.3 ODEs with linear programs embedded

This section extends Theorem 6.3.14 to the systems considered in [36, 44], in which

an ODE right-hand side depends on the optimal costs of certain standard-form

linear programs (LPs), expressed in terms of a varying right-hand side constraint

vector. Such functions are formalized in the following definitions, which make use

of results from LP sensitivity theory [10, Section 5.2].

Definition 6.3.20. For any vectors c ∈ Rn and b ∈ Rm, and any matrix A ∈ Rm×n, let

LPA,c(b) denote the standard-form LP:

inf
z∈Rn

cTz, subject to Az = b, z ≥ 0.

Definition 6.3.21. Consider c ∈ Rn and A ∈ Rm×n such that A has linearly independent

rows, and the dual-feasible set DFA,c := {p ∈ Rm : pTA ≤ cT} is nonempty. Define the

dual-extreme set DEA,c as the set of extreme points of DFA,c. Define the dual-optimal

and extreme set DOA,c(b) := arg max{pTb : p ∈ DEA,c} for each b ∈ Rm, and define

the LP-mapping qA,c : Rm → R : b ↦→ max{pTb : p ∈ DEA,c}.

Theorem 2.6 in [10] implies that DEA,c is finite and nonempty, and that qA,c is

well-defined. Thus, qA,c is convex and piecewise linear in the sense of Scholtes [97].

Strong duality for LPs implies that if LPA,c(b) has a finite solution value, then

qA,c(b) is the solution value for LPA,c(b).

154



Lemma 6.3.22. Any LP-mapping qA,c : Rm → R is abs-factorable.

Proof. For any b ∈ Rm,

qA,c(b)

= max{pTb : p ∈ DEA,c},
= max{max {pTb, qTb} : p, q ∈ DEA,c},
= max{ 1

2(p + q)Tb + 1
2 |(p− q)Tb| : p, q ∈ DEA,c}. (6.14)

Since the set DEA,c is finite, the outer ‘max’ operation in (6.14) can be represented as

a finite composition of bivariate ‘max’ operations, which may in turn be expressed

as a composition of linear functions and absolute-value functions.

An explicit abs-factorable representation of an LP-mapping would be difficult

to construct in practice, and would be intractable to use computationally. Never-

theless, the existence of such a representation shows that the non-Zenoness results

developed in this work remain applicable if LP-mappings are added to the ele-

mental library ℒ used to define the abs-factorable ODE right-hand side f. Let ℒ̄

denote this augmented elemental library, and let an ℒ̄-factorable function denote

a factorable function defined in terms of the elemental library ℒ̄. The following

corollary establishes a pertinent restatement of the obtained non-Zenoness results

for ODEs with ℒ̄-factorable right-hand side functions.

Corollary 6.3.23. Suppose that Assumption 6.3.1 holds, except with f being ℒ̄-factorable

instead of abs-factorable. Suppose there exists j ∈ {1, . . . , `} for which 𝜓(j) is an LP-

mapping qA,c. For each t* ∈ [t0, t f ], there exists δ > 0 such that the set-valued mapping

t ↦→ DOA,c(u(j)(t, x(t), w(t))) is constant on (t* − δ, t*) (with value DOL
A,c(t

*) ⊂

DEA,c) and on (t*, t* + δ) (with value DOR
A,c(t

*) ⊂ DEA,c). Moreover, there exists a

finite set ZT ⊂ [t0, t f ] such that if t* /∈ ZT, then DOL
A,c(t

*) = DOR
A,c(t

*).

Proof. Since f is abs-factorable, Corollary 6.3.10, Lemma 6.3.13, and Theorem 6.3.14

apply. Thus, it suffices to show that for some particular factored representation

of f using only the elemental library ℒ used to define abs-factorable functions,
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DOA,c(u(j)(t, x(t), w(t))) is uniquely determined for each t ∈ T by the quanti-

ties {σi(t)}
pf
i=1. Such a factored representation of f is readily generated by re-

placing each LP-mapping in the factored representation of f with the equivalent

composition of linear functions and absolute-value functions considered in the

proof of Lemma 6.3.22. Let overbars denote quantities relating to this new fac-

tored representation, and choose j̄ ∈ {1, . . . , ¯̀} such that ū( j̄) ≡ u(j). Observe that,

for each t ∈ T, with u := ū( j̄)(t, x(t), w(t)), p ∈ DOA,c(u) if and only if both

sign (p− q)Tu = 0 for each q ∈ DOA,c(u), and sign (p− q)Tu = +1 for each

q ∈ DEA,c∖DOA,c(u). Moreover, (6.14) shows that there exists ī ∈ {1, . . . , ¯̀} such

that ψ̄(ī) ≡ | · | and σ̄ī(t) = sign (p− q)Tu. Thus, DOA,c(ū( j̄)(t, x(t), w(t))), which

is equal to DOA,c(u(j)(t, x(t), w(t))) by construction, is uniquely determined for

each t ∈ T by the quantities {σ̄k(t)}
p̄f
k=1, as required.

6.4 Necessary conditions for valley-tracing modes

The main theorem of this section combines several of the results obtained in the

previous section under Assumption 6.3.2, to describe necessary conditions for the

emergence of valley-tracing modes (cf. Definition 6.3.5) in the solution trajectory

x on [t0, t f ] of the ODE (6.3). Equivalently, failure of any of these conditions is

sufficient to conclude that there are no valley-tracing modes of x on [t0, t f ]. In

practice, these conditions can be checked while solving (6.3) numerically. More-

over, the corollaries and examples throughout this section illustrate situations in

which some of these conditions can be seen not to hold a priori, in which case there

can be no valley-tracing modes. The theorem makes use of the classical directional

derivative, which is defined as follows.

Definition 6.4.1. Given an open set Y ⊂ Rn and some y ∈ Y, a function g : Y → Rm

is directionally differentiable at y if the following directional derivative exists and is

finite for each d ∈ Rn:

g′(y; d) := lim
t→0+

g(y + td)− g(y)
t

∈ Rm.
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As shown in [32], any abs-factorable function is directionally differentiable, and

its directional derivatives may be evaluated numerically using a simple extension

of the standard forward mode of automatic differentiation.

Theorem 6.4.2. Suppose that Assumption 6.3.2 holds. For each i ∈ {1, . . . , pf}, the set

Zi := {t ∈ [t0, t f ] : σi(t) = 0} is the union of finitely many points and intervals that are

disjoint, compact, and nondegenerate. Any such interval [a, b] ⊂ [t0, t f ] satisfies all of the

following conditions:

1. σi(a) = 0 and σi(b) = 0,

2. [u(λf(i))]
′

 a

x(a)

 ;

 1

f(a, x(a))

 = 0,

3. [u(λf(i))]
′

 b

x(b)

 ;

 −1

−f(b, x(b))

 = 0,

4. either a = t0, or there exists iA ∈ {1, . . . , pf} such that each of the following condi-

tions is satisfied:

∙ iA ̸= i,

∙ σiA(a) = 0,

∙ (σL
iA
(a), σR

iA
(a)) ∈ {(−1,+1), (+1,−1)},

5. either b = t f , or there exists iB ∈ {1, . . . , pf} such that each of the following condi-

tions is satisfied:

∙ iB ̸= i,

∙ σiB(b) = 0,

∙ (σL
iB
(b), σR

iB
(b)) ∈ {(−1,+1), (+1,−1)}.

If there do not exist i ∈ {1, . . . , pf} and a, b ∈ [t0, t f ] satisfying a < b and all of the above

conditions, then each Zi is finite, and x does not have any valley-tracing modes in [t0, t f ].
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Proof. Using the notation of Lemma 6.3.17, Zi =
⋃qf

k=1 Sk,i for each i ∈ {1, . . . , pf}.

Application of Lemma 6.3.17 then yields the first assertion of the theorem.

Next, suppose that [a, b] ⊂ [t0, t f ] is one of the disjoint, closed, nondegener-

ate intervals comprising Zi for some i ∈ {1, . . . , pf}. By definition of σi and Zi, it

follows that t ↦→ u(λf(i))(t, x(t)) is the zero function when restricted to [a, b]. Con-

dition 1 of the theorem follows immediately, as does the assertion that

[u(λf(i)) ∘ z]′(a; 1) = 0 = [u(λf(i)) ∘ z]′(b;−1),

where z is the mapping t ↦→ (t, x(t)). Conditions 2 and 3 of the theorem then

follow from [97, Theorem 3.1.1].

To show that Condition 4 holds, suppose that a ̸= t0. By construction of a,

σR
i (a) = 0. Since [a, b] is a connected component of Zi, σL

i (a) must be nonzero,

otherwise Corollary 6.3.10 would imply that for some δ > 0, σi(t) = 0 for all t ∈

[a− δ, a], and thus for all t ∈ [a− δ, b], contradicting the definition of a. It follows

that (σL
i (a), σR

i (a)) ∈ {(−1, 0), (+1, 0)}; Condition 4 of the theorem then follows

from Corollary 6.3.19. Condition 5 is demonstrated analogously. The remaining

claim of the theorem is the contrapositive of the claims demonstrated above.

During numerical integration, it is difficult to detect the start or end of a valley-

tracing mode [a, b] using the definition of a valley-tracing mode directly, since this

requires verifying numerically that some u(λf(i))(·, x(·)) is identically zero on an

interval. However, Condition 4 of the above theorem shows that if a ̸= t0, then a

coincides with a sign-change of a discontinuity function t ↦→ u(λf(iA))
(t, x(t)) with

iA ̸= i. This sign-change can be detected during integration using standard event-

detection techniques [89]. An analogous situation occurs at b if b ̸= t f .

The following corollary shows that, under Assumption 6.3.2, Clarke’s sufficient

condition [16, Theorem 7.4.1] for differentiability of an ODE solution with respect

to the initial condition is satisfied when there are no valley-tracing modes.

Corollary 6.4.3. Suppose that Assumption 6.3.2 holds. Let Sf ⊂ T̄ × X be the set on

which f is not continuously differentiable. If there are no valley-tracing modes of x on
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[t0, t f ], then the set St := {t ∈ [t0, t f ] : (t, x(t)) ∈ Sf} has zero Lebesgue measure.

Proof. By Theorem 6.4.2, the absence of valley-tracing modes implies that Zi :=

{t ∈ [t0, t f ] : σi(t) = 0} is finite for each i ∈ {1, . . . , pf}. Thus, the set Z̄ :=
⋃pf

i=1 Zi

has zero measure. It therefore suffices to show that St ⊂ Z̄. For any particu-

lar t* ∈ [t0, t f ]∖Z̄, σi(t*) ̸= 0 for each i ∈ {1, . . . , pf}, and so 𝜓(j) is analytic at

u(j)(t*, x(t*)) for each j ∈ {1, . . . , `}. This shows that f is analytic (and thus contin-

uously differentiable) at (t*, x(t*)), which implies that t* /∈ St. Since t* was chosen

arbitrarily, it follows that St ⊂ Z̄, as required.

The following two examples illustrate the results of Theorem 6.4.2 when ap-

plied to simple nonsmooth ODEs that exhibit valley-tracing modes and can be

solved analytically. Together, these examples illustrate that there is no requirement

in Conditions 4 and 5 of Theorem 6.4.2 that iA, iB > i, or that iA, iB < i.

Example 6.4.4. Consider the following ODE, with a single differential variable:

dx
dt

(t) =
∣∣x(t)− 1− |x(t)− 1|

∣∣+ 2x(t)− 1, x(0) = 0.

It is readily confirmed that this ODE is solved by the mapping:

x : t ↦→
{

t, if t ≤ 1,
1
2(1 + e2(t−1)), if t > 1.

Moreover, since the ODE right-hand side function is abs-factorable, and therefore locally

Lipschitz continuous, this solution is unique. Two absolute-value functions appear in a

direct factored representation of the ODE right-hand side function f , with u(λ f (1)) and

u(λ f (2)) equivalent to the arguments of the inner and outer absolute-value functions in the

ODE right-hand side, respectively. Thus, for all (t, z) ∈ R2,

u(λ f (1))(t, z) = z− 1 and u(λ f (2))(t, z) = z− 1− |z− 1|.

The mappings x, t ↦→ uλ f (1)(t, x(t)), and t ↦→ uλ f (2)(t, x(t)) are plotted in Figure 6-1.

Since x(1) = 1, u(λ f (1))(1, x(1)) = u(λ f (2))(1, x(1)) = 0. For any t < 1,
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Figure 6-1: Plots of mappings described in Example 6.4.4: x(t) vs. t (solid red),
uλ f (1)(t, x(t)) vs. t (dashed blue), and uλ f (2)(t, x(t)) vs. t (dash-dotted black).

uλf(1)(t, x(t)) = x(t)− 1 = t− 1 < 0,

uλf(2)(t, x(t)) = x(t)− 1 + (x(t)− 1) = 2t− 2 < 0.

For any t > 1,

uλf(1)(t, x(t)) = x(t)− 1 = 1
2(e

2(t−1) − 1) > 0,

uλf(2)(t, x(t)) = x(t)− 1− (x(t)− 1) = 0.

Thus, (σL
1 (1), σR

1 (1)) = (−1,+1), and (σL
2 (1), σR

2 (1)) = (−1, 0). Restricting x to the

subdomain [0, 2] ⊂ R, and defining Z1 and Z2 as in Theorem 6.4.2, note that Z1 = {1}

and Z2 = [1, 2]. There is a single valley-tracing mode of x, which occurs on [1, 2]. The

conditions implied by Theorem 6.4.2 are evidently satisfied by this valley-tracing mode,

with a := 1 ̸= t0, b := 2 = t f , i := 2, and iA := 1. Observe that iA < i.

Example 6.4.5. Consider the following ODE, with a single differential variable:
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dx
dt

(t) =
∣∣2x(t)− 2 + |x(t)− t|

∣∣+ 3x(t)− t− 1, x(0) = 0.

It is readily confirmed that this ODE is solved by the mapping:

x : t ↦→
{

t, if t ≤ 1,
1
9(3t + 5 + e6(t−1)), if t > 1.

Moreover, since the ODE right-hand side function is locally Lipschitz continuous, this

solution is unique. As in the previous example, two absolute-value functions appear in

any straightforward factored representation of the ODE right-hand side function f , with

u(λ f (1)) and u(λ f (2)) equivalent to the arguments of the inner and outer absolute-value

functions in the ODE right-hand side, respectively. Thus, for all (t, z) ∈ R2,

u(λ f (1))(t, z) = z− t and u(λ f (2))(t, z) = 2z− 2− |z− t|.

The mappings x, t ↦→ uλ f (1)(t, x(t)), and t ↦→ uλ f (2)(t, x(t)) are plotted in Figure 6-2.

-2

-1
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 1

 2

 3

 4

 0  0.5  1  1.5  2

t

Figure 6-2: Plots of mappings described in Example 6.4.5: x(t) vs. t (solid red),
uλ f (1)(t, x(t)) vs. t (dashed blue), and uλ f (2)(t, x(t)) vs. t (dash-dotted black).

Since x(1) = 1, u(λ f (1))(1, x(1)) = u(λ f (2))(1, x(1)) = 0. For any t < 1,
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uλ f (1)(t, x(t)) = x(t)− t = t− t = 0,

uλ f (2)(t, x(t)) = 2x(t)− 2 + |0| = 2t− 2 < 0.

For any t > 1,

uλ f (1)(t, x(t)) = x(t)− t,

= 1
9(−6t + 5 + e6(t−1)),

> 1
9(−6t + 5 + (1 + 6(t− 1))) = 0,

uλ f (2)(t, x(t)) = 2x(t)− 2 + (x(t)− t),

= 3x(t)− t− 2 = 1
3(−1 + e6(t−1)) > 0.

Thus, (σL
1 (1), σR

1 (1)) = (0,+1), and (σL
2 (1), σR

2 (1)) = (−1,+1). Restricting x to the

subdomain [0, 2] ⊂ R, and defining Z1 and Z2 as in Theorem 6.4.2, note that Z1 = [0, 1]

and Z2 = {1}. There is a single valley-tracing mode of x, which occurs on [0, 1]. The

conditions implied by Theorem 6.4.2 are evidently satisfied by this valley-tracing mode,

with a := 0 = t0, b := 1 ̸= t f , i := 1, and iB := 2. Observe that iB > i.

The following corollaries and examples describe situations in which the indices

iA, iB ∈ {1, . . . , pf} mentioned in Conditions 4 and 5 of Theorem 6.4.2 cannot be

furnished. Hence, any valley-tracing mode of x must begin at t0 and end at t f .

Corollary 6.4.6. Suppose that Assumption 6.3.2 holds. If pf = 1, then the set Z1 is either

finite or equal to [t0, t f ]. If, in addition, σ1(t0) ̸= 0 or [u(λf(1))]
′((t0, c); (1, f(t0, c))) ̸= 0,

then Z1 is finite, so there are no valley-tracing modes of x on [t0, t f ].

Example 6.4.7. Given some fixed c ∈ Rn and analytic functions g : R×Rn ×R→ Rn

and h : Rn → R, suppose the ODE:

dx
dt

(t) = g(t, x(t), |h(x(t))|), x(0) = c,

has a solution x on [0, t f ]. (Examples 1.2.1 and 5.2.7 have this structure.) If h(c) ̸= 0, or

if
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(∇h(c))T g(0, c, |h(c)|) ̸= 0,

then there are no valley-tracing modes of x on [0, t f ].

Example 6.4.8. Given some fixed c ∈ Rn and analytic functions g,𝛾 : R → Rn and

h, η : Rn → R, suppose the ODE:

dx
dt

(t) = g(max {h(x(t)), η(x(t))}) + 𝛾(min {h(x(t)), η(x(t))}),

x(0) = c,

has a solution x on [0, t f ]. Defining f as the abs-factorable right-hand side function of

the above ODE, it appears that pf = 2. However, noting that max {y, z} = 1
2(y +

z) + 1
2 |y − z| and min {y, z} = 1

2(y + z) − 1
2 |y − z|, it follows that f can be written

as a composition of analytic functions and a single nonsmooth function, z ↦→ |h(z) −

η(z)|. With f rewritten in this manner, pf becomes unity, which permits application of

Corollary 6.4.6.

Thus, if h(c) ̸= η(c), or if

(∇h(c)−∇η(c))T (g(max{h(c), η(c)}) + 𝛾(min{h(c), η(c)})) ̸= 0,

then there are no valley-tracing modes of x on [0, t f ].

Corollary 6.4.9. Suppose that Assumption 6.3.2 holds. If there is no t ∈ [t0, t f ] such that

|{i ∈ {1, . . . , pf} : σi(t) = 0}| ≥ 2, then for each i ∈ {1, . . . , pf}, the set Zi is either

finite or equal to [t0, t f ].

Corollary 6.4.10. Suppose that Assumption 6.3.2 holds. If there is no t ∈ [t0, t f ] such

that |{i ∈ {1, . . . , pf} : σi(t) = 0}| ≥ 2, and if σi*(t0) ̸= 0 or

[u(λf(i*))]
′((t0, c); (1, f(t0, c))) ̸= 0

for some i* ∈ {1, . . . , pf}, then the set Zi* is finite.
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Example 6.4.11. Given some fixed c ∈ R and analytic functions g, h : R → R, suppose

the ODE:

dx
dt

(t) = g(t) |x(t)− 1|+ h(t) |x(t)|, x(0) = c

has a solution x on [0, t f ]. If c /∈ {0, 1}, or if

g(0) |c− 1| ̸= −h(0) |c|,

then there are no valley-tracing modes of x on [0, t f ]; the sets {t ∈ [0, t f ] : x(t) = 1} and

{t ∈ [0, t f ] : x(t) = 0} are finite. If c ∈ {0, 1}, then {t ∈ [0, t f ] : x(t) = c} is either

finite or equal to [t0, t f ].

6.5 Conclusions

Non-Zenoness results and necessary conditions for valley-tracing mode emergence

have been developed for the solutions of ODEs with abs-factorable right-hand side

functions. The conditions for valley-tracing mode emergence are testable during

numerical integration; if any of these fail, then there cannot be any valley-tracing

modes.
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Chapter 7

Evaluating lexicographic derivatives

for ODE solutions

7.1 Introduction

This chapter is reproduced from the article [58]; it is concerned with the unique

solution x(·, p) on [t0, t f ] of the following parametric ordinary differential equation

(ODE) system:

dx
dt

(t, p) = f(t, p, x(t, p)), x(t0) = x0(p),

which is presumed to be embedded either in an optimization problem:

min
p

s(p, x(t f , p)),

or in an equation-solving problem, in which a parameter p ∈ Rm is sought for

which

0 = r(p, x(t f , p)).

The former optimization problem represents a general class of dynamic optimiza-

tion problems, while the latter equation-solving problem includes various formu-

lations of boundary-value problems.
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Numerical methods for solution of the above problems typically require deriva-

tive information for the objective function p ↦→ s(p, x(t f , p)) or the residual func-

tion p ↦→ r(p, x(t f , p)). This derivative information is readily furnished when f

and s or r are continuously differentiable; a classical sensitivity analysis result from

ODE theory (summarized in [35]) states that x is also continuously differentiable

in this case, and that the partial derivative mapping t ↦→ ∂x
∂p (t, p) solves a certain

linear ODE system uniquely. This partial derivative can be combined with the clas-

sical chain rule to compute the desired sensitivity information. Moreover, adjoint

sensitivity analysis [13] describes derivatives of the objective function of the above

optimization problem without evaluating the partial derivative ∂x
∂p (t f , p) at all.

These approaches are not applicable, however, when the function f is locally

Lipschitz continuous but not differentiable everywhere. In this case, as shown in

Example 1.2.1, x may also fail to be differentiable. In this chapter, f is assumed to

be a finite composition of analytic functions and absolute value functions; with-

out loss of generality, the same structure is imposed on x0 and s or r. Though the

classical Fréchet derivatives of f and x may not exist in this case, various notions

of generalized derivatives [16, 78, 79, 109] are still well-defined, and can be used in

dedicated numerical methods [22, 63, 92] for nonsmooth problems. These gener-

alized derivatives are, however, more difficult to evaluate than their smooth coun-

terparts, since they satisfy weakened versions of classical calculus rules [16, 23].

Nevertheless, Nesterov’s lexicographic derivatives [79] satisfy an intuitive chain

rule [61, 79], and lexicographic derivatives of the ODE solution x with respect to

the parameter p were described in Chapter 5 in terms of the unique solution of a

certain auxiliary ODE. Moreover, it was argued in Chapter 2 that if lexicographic

derivatives are used in place of elements of Clarke’s generalized Jacobian in nons-

mooth numerical methods, then the convergence results of these methods are not

weakened.

However, as shown in Chapter 5, the auxiliary ODE describing lexicographic

derivatives of x is not a Carathéodory ODE, and thus cannot be solved directly us-

ing established methods for ODE integration. The goal of this chapter, therefore, is
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to develop and present a tractable numerical method for computing lexicographic

derivatives of x with respect to p, so as to compute lexicographic derivatives of

the residual function p ↦→ r(p, x(t f , p)) or the objective function p ↦→ s(p, x(t f , p))

above. The developed numerical method exploits inherent structural properties of

the auxiliary ODE, using the vector forward mode of automatic differentiation pre-

sented in Chapter 4, and the non-Zenoness theory of Chapter 6. This method repre-

sents the first tractable method for evaluating a plenary Jacobian element [55, 109]

for the unique solution of a parametric ODE with a general nondifferentiable right-

hand side function.

For notational simplicity, by considering the parameters p to be extra state vari-

ables that do not vary with t, the parameter vector p may be appended to the state

variable vector x without loss of generality. The initial-condition generating func-

tion x0 may be considered a posteriori using the lexicographic derivative’s chain

rule, as considered in Chapter 3. These considerations yield the simpler ODE for-

mulation:

dx
dt

(t, c) = f(t, x(t, c)), x(t0) = c,

in which x depends on the ODE independent variable t and the initial condition c.

This description will be formalized in Section 7.3 below.

As a caveat, we note that the developed theory and method are unnecessary if

there are no valley-tracing modes [59] in the ODE solution trajectory x. In this case,

the ODE solution x is differentiable with respect to the parameter c; the parametric

derivatives ∂x
∂c can then be evaluated using slight modifications of classical sensitiv-

ity analysis [16, 125]. Our method, nevertheless, computes the correct parametric

derivatives even in this case.

This chapter is structured as follows. Section 7.2 summarizes relevant mathe-

matical concepts which complement the material in Chapter 2, Section 7.3 formal-

izes the central problem formulation that was outlined above, Section 7.4 develops

useful theoretical properties of the auxiliary ODE determining the sensitivities of

x, and Section 7.5 harnesses this theory to obtain a numerical method for evaluat-
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ing lexicographic derivatives of an ODE solution with respect to the ODE initial

conditions. An implementation of the method is described in Section 7.6, and is

applied to various example problems for illustration.

7.2 Preliminaries

This section presents fundamental concepts and results which, together with the

material presented in Chapter 2, underlie the results and methods in this chapter.

7.2.1 Left/right-analytic functions

The concept of left/right-analyticity was introduced in Chapter 6. As shown in

Chapter 6, the unique solution of an ODE with an abs-factorable right-hand side

function is left/right-analytic; roughly, this property prevents any absolute-value

function in the ODE right-hand side from switching between its linear pieces in-

finitely often in any finite duration. This lack of pathological switching behavior

is referred to as non-Zenoness [29, 48], and will be exploited heavily – if indirectly –

throughout this chapter.

The following property of scalar-valued L/R-analytic functions extends Corol-

lary 6.3.10, and will be used frequently in this chapter.

Lemma 7.2.1. Given an open set T ⊂ R, a finite set S ⊂ R, and a function g : T → S

that is L/R-analytic at t* ∈ T, there exist γL, γR ∈ S such that, for some sufficiently small

δ > 0,

g(t) = γL, ∀t ∈ [t* − δ, t*),

and g(t) = γR, ∀t ∈ (t*, t* + δ].

Moreover, for any compact set U ⊂ T, there exists a finite set Z ⊂ U such that g is

constant on some neighborhood of each t ∈ U∖Z.

Proof. Given an open set W ⊂ T, any 𝒞ω function g̃ : W → S is continuous, and
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must therefore be constant, since each element of S is isolated. The existence of γL

and γR then follows from the definition of L/R-analyticity.

Now, choose any compact set U ⊂ T. The first result of the lemma implies that,

for each t* ∈ U, there exist γL(t*), γR(t*) ∈ S and δ(t*) > 0 for which

g(t) = γL(t*), ∀t ∈ (t* − δ(t*), t*),

and g(t) = γR(t*), ∀t ∈ (t*, t* + δ(t*)).

Moreover, since U is compact, there exists a finite set Z ⊂ U for which

U ⊂
⋃

t*∈Z
(t* − δ(t*), t* + δ(t*)).

The above results show that g is constant on some neighborhood of each t ∈ U∖Z.

Definition 7.2.2. Define the signum function as follows:

sign : R→ {−1, 0,+1} : x ↦→


+1, if x > 0,
0, if x = 0,
−1, if x < 0,

and define an unsignum function as follows, for each p ∈N:

unsign : Rp → {0,+1} : x ↦→
p

∏
k=1

(1− | sign xp|) =
{

0, if ∃k s.t. xk ̸= 0,
+1, if xk = 0 ∀k.

Define unsign∅0 = +1.

The signum function is evidently L/R-analytic, and the following result holds.

Lemma 7.2.3. Given an open set T ⊂ R and an L/R-analytic function v : T → Rq, the

composite function φ ≡ unsign ∘v is also L/R-analytic on T.

Proof. Choose any t* ∈ T; it suffices to show that φ is L/R-analytic at t*. This proof

proceeds by strong induction on q ∈N.

First, suppose that q = 1, in which case v is a scalar-valued function v. Ap-

plication of Lemma 6.2.6 with g := v, Z := R, and h := sign(·) shows that
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the mapping t ↦→ sign v(t) is L/R-analytic at t*. A second application of that

lemma, with g : t ↦→ sign v(t), Z := (−2, 2), and h := abs, shows that the

mapping t ↦→ | sign v(t)| is also L/R-analytic at t*. Thus, Lemma 6.2.5 (with

g : t ↦→ | sign v(t)|, Z := (−2, 2), and h : z ↦→ 1− z) shows that t ↦→ unsign v(t) is

L/R-analytic at t*.

Next, suppose that the required result has been demonstrated for all q ≤ q* ∈

N, and consider now the case in which q := q* + 1. Thus, both of the functions

φA : t ↦→ unsign v1:q*(t) and φB : t ↦→ unsign vq*+1(t) are L/R-analytic at t*.

Observing that φ(t) = φA(t) φB(t) for each t ∈ T, applying Lemma 6.2.5 (with

g : t ↦→ (φA(t), φB(t)), Z := (−2, 2)2, and h : z ∈ R2 ↦→ z1z2) then shows that φ is

also L/R-analytic at t*.

The unsignum function is useful when describing the directional derivatives of

the absolute-value function:

abs′(x; d) =
{

(sign x) d, if x ̸= 0,
|d|, if x = 0, = (sign x) d + (unsign x) |d|, ∀x, d ∈ R.

(7.1)

The first-sign function was introduced in [33], and is defined as follows.

Definition 7.2.4. The first-sign function is defined as follows, for each q ∈N:

fsign : Rq → {−1, 0, 1} : v ↦→
{

sign vk* , with k* := min{k : v(k) ̸= 0}, if v ̸= 0,
0, if v = 0.

Define fsign∅0 = 0.

The following two lemmata collect basic properties of the first-sign function.

Lemma 7.2.5. The first-sign function satisfies the following identities, for each q ∈ N,

z ∈ Rq, and k ∈ {1, . . . , q}:

1. fsign z = sign z1 + ∑
q−1
k=1(unsign z1:k)(sign zk+1),

2. fsign z = fsign z1:(q−1) + (unsign z1:(q−1))(sign zq),
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3. (fsign z) zk = (fsign z1:(k−1)) zk + (unsign z1:(k−1)) |zk|.

Proof. The first property follows immediately from the definitions of the signum,

unsignum, and first-sign functions. The second property is trivial if q = 1, and

follows immediately from the first property if q > 1.

The third property is trivial if k = 1 or zk = 0, so assume that k > 1 and zk ̸= 0.

Thus, fsign z = fsign z1:k; the second property of the lemma then yields:

(fsign z)zk = (fsign z1:k)zk = (fsign z1:(k−1))zk + (unsign z1:(k−1))(sign zk)zk,

which is equivalent to the third claimed property.

Lemma 7.2.6. Given an open set T ⊂ R, suppose that a function v : T → Rq is L/R-

analytic on T. The composite function φ ≡ fsign ∘ v is also L/R-analytic on T.

Proof. Choose any t* ∈ T; it suffices to show that φ is L/R-analytic at t*. This proof

is analogous to the proof of Lemma 7.2.3, and proceeds by induction on q ∈N.

First, suppose that q = 1, in which case v is a scalar-valued function v. In

this case, fsign v(t) = sign v(t) for each t ∈ T, and Lemma 6.2.6 shows that the

mapping t ↦→ sign v(t) is L/R-analytic at t*.

Next, suppose that the required result has been demonstrated for q := q* ∈ N,

and consider now the case in which q := q* + 1. Property 2 of Lemma 7.2.5 yields:

φ(t) = fsign v1:q(t) + (unsign v1:q(t))(sign vq+1(t)), ∀t ∈ T.

Again, Lemma 6.2.6 shows that the mapping t ↦→ sign vq+1(t) is L/R-analytic at t*.

This result, the inductive assumption, Lemma 7.2.3, and Lemma 6.2.5 thus show

that φ is L/R-analytic at t*, completing the inductive step.

Definition 7.2.7. Define a first-nonzero locating function as follows, for each q ∈N:

fnzero : Rq → {0, 1, . . . , q} :

z ↦→
q

∑
k=1

unsign z1:k =

{
(min{k : zk ̸= 0})− 1, if z ̸= 0,
q, if z = 0.
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Lemma 7.2.8. Given an open set T ⊂ R, suppose that a function v : T → Rq is L/R-

analytic. The composite function φ ≡ fnzero ∘ v is also L/R-analytic on T.

Proof. The required result follows from Lemma 7.2.3 and Lemma 6.2.5.

7.2.2 LD-derivatives for the absolute-value function

If a function f : X ⊂ Rn → Rm is differentiable at x ∈ X, then f′(x; M) = Jf(x)M

for each M ∈ Rn×p. Adapting Example 4.2.2, LD-derivatives for the absolute-

value function are given by:

abs ′(x; M) = (fsign (x, m(1), . . . , m(p)))M, ∀M ∈ R1×p, ∀p ∈N.

By Lemma 7.2.5, the kth column of this row vector is:

abs (k−1)
x,M (m(k))

= (fsign (x, m(1), . . . , m(p)))m(k),

= (fsign (x, m(1), . . . , m(k−1)))m(k) + (unsign (x, m(1), . . . , m(k−1))) |m(k)|.

7.3 Problem formulation

The main results of this chapter concern the dynamic system formalized by the

following assumption.

Assumption 7.3.1. Consider open sets X ⊂ Rn and T̄ ⊂ R, elements t0, t f ∈ T̄ with

t0 < t f , some c0 ∈ X, and an abs-factorable function f : T̄ × X → Rn with at least one

absolute-value function in its factored representation. Given the parametric ODE:

dx
dt

(t, c) = f(t, x(t, c)), x(t0, c) = c, (7.2)

assume that, with c := c0, there exists a unique solution x(·, c0) of the above ODE on

[t0, t f ].
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In fact, since f is locally Lipschitz continuous, the particular assumption that

the ODE solution x(·, c0) is unique is implied by the remaining parts of Assump-

tion 7.3.1. The inequality t0 < t f is assumed without loss of generality; analogous

results will hold if t f < t0 instead.

A classical result of ODE theory [35] shows that the unique ODE solution x(·, c0)

on [t0, t f ] described in Assumption 7.3.1 can be extended to yield a unique solu-

tion x(·, c0) of (7.2) on some open set T ⊂ T̄ for which [t0, t f ] ⊂ T. Moreover, there

exists a neighborhood N ⊂ X of c0 such that, for any c ∈ N, the ODE (7.2) has a

unique solution x(·, c) on [t0, t f ]. The existence of T and N will prove to be useful

in the following section.

Theorem 5.2.4 implies that xt ≡ x(t, ·) is L-smooth at c0 for each t ∈ [t0, t f ];

moreover, for any p ∈ N and M ∈ Rn×p, with ft ≡ f(t, ·), the LD-derivative

mapping t ↦→ [xt]
′(c0; M) is the unique solution A on [t0, t f ] of the sensitivity ODE:

dA
dt

(t) = [ft]
′(x(t, c0); A(t)) = f′((t, x(t, c0)); (01×p, A(t))), A(t0) = M. (7.3)

As shown in Example 5.2.6, however, this ODE does not necessarily satisfy the

Carathéodory assumptions (summarized in [26]), since the right-hand side of (7.3)

may be discontinuous with respect to the A(t) term. As a result, this ODE is

not amenable to established numerical integration methods. Thus, the goal of

this chapter is to present a numerical method for computing the LD-derivative

[xt f ]
′(c0; M) despite its non-Carathéodory nature.

For any k ∈ {1, . . . , p}, Corollary 5.2.3 permits the kth column of the above ODE

to be expressed in terms of the leftmost (k− 1) columns of [xt]
′(c0; M) as follows.

According to this corollary, the mapping t ↦→ [xt]
(k−1)
c0,M (m(k)) = [xt]

′(c0; M) e(k) is

the unique solution of the ODE:
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dy
dt

(t) = [ft]
(k−1)
x(t,c0),[xt]

′(c0;M(1:k−1))
(y(t)),

= f′
([

t
x(t, c0)

]
;
[

01×(k−1) 0
[xt]
′(c0; M(1:k−1)) y(t)

])
e(k), (7.4)

y(t0) = m(k).

7.4 Theoretical properties of the sensitivity system

This section develops theoretical properties of the sensitivity ODE (7.3), which will

be exploited in later sections to develop a numerical method for solving the sen-

sitivity ODE. The quantities introduced in this section depend on the initial con-

dition c0 ∈ X, and are likely to vary nontrivially if c0 is changed. For notational

simplicity, however, explicit references to c0 are generally omitted.

Algorithm 4 is a specialization of Algorithm 2 from Chapter 4, and computes

the right-hand side function of the sensitivity ODE (7.3). This algorithm assumes

for notational simplicity that the quantities described in the factored representation

of f are available.

Algorithm 4 Computes [ft]
′(z; A) = f′((t, z); (01×p, A)), with f described by As-

sumption 7.3.1
Require: (t, z) ∈ T × X, A ∈ Rn×p

V̇(0) ← (01×p, A)
for j = 1 to ` do

U̇(j) ← [V̇(i)]i≺j
if j ∈ Λf then

V̇(j) ← (fsign (u(j)(t, z), u̇(j),1, . . . , u̇(j),p)) U̇(j)
else

V̇(j) ← J𝜓(j)(u(j)(t, z)) U̇(j)
end if

end for
return [ft]

′(z; A) = V̇(`)
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7.4.1 Left/right-analyticity

This section shows that the solution t ↦→ [xt]
′(c0; M) of the sensitivity ODE (7.3)

is L/R-analytic. In later sections, this L/R-analyticity will prove to be crucial for

developing a numerical method to solve (7.3).

The following intermediate result is not subject to Assumption 7.3.1, and will

be used in each step of an inductive proof in the subsequent proposition.

Lemma 7.4.1. Given open sets T̄w ⊂ R, Z ⊂ Rn, and W ⊂ Rm, an interval [t0, t f ] ⊂

T̄w, and a compact set U ⊂ W, suppose that w : T̄w → U is L/R-analytic, g : Z×W →

Rn is abs-factorable, z0 ∈ Z, and the ODE:

dz
dt

(t) = g(z(t), w(t)), z(t0) = z0 (7.5)

has a unique solution z on some open superset Tz ⊂ T̄w of [t0, t f ]. For each 𝜔 ∈W, define

g𝜔 : 𝜁 ↦→ g(𝜁,𝜔). Then, for each d ∈ Rn, there exists an open set Ty ⊂ R for which:

∙ [t0, t f ] ⊂ Ty ⊂ Tz,

∙ the auxiliary ODE:

dy
dt

(t) = [gw(t)]
′(z(t); y(t)) = g′((z(t), w(t)); (y(t), 0m)), y(t0) = d

(7.6)

has a unique solution y on Ty, and

∙ this unique solution y is L/R-analytic on Ty.

Moreover, the ODE (7.6) may be expressed in the form of (7.5) as follows. Defining Z̃ :=

Rn, there exist r ∈ N, an open set T̃ ⊂ R, an open set W̃ ⊂ Rr, a compact set Ũ ⊂ W̃,

an L/R-analytic function w̃ : T̃ → Ũ, and an abs-factorable function g̃ : Z̃ × W̃ → Rn

such that [t0, t f ] ⊂ T̃ ⊂ Ty, and

g̃(𝜂, w̃(τ)) = [gw(τ)]
′(z(τ);𝜂), ∀τ ∈ T̃,𝜂 ∈ Z̃.
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Proof. Define an interval Iz := [az, bz] ⊂ Tz for which az < t0 and t f < bz.

Theorem 6.3.9 shows that z is L/R-analytic on Iz, and Theorem 5.2.1 shows that

the ODE (7.6) does indeed have a unique solution y on [t0, t f ], which can be ex-

tended [35] to yield a unique solution y on some open set T̄y ⊂ R for which

[t0, t f ] ⊂ T̄y ⊂ Tz.

Now, consider a particular factored representation of g:
v(0) ← (𝜁,𝜔) ∈ Z×W
for j = 1 to ` do

u(j) ← [v(i)]i≺j
v(j) ← 𝜓(j)(u(j))

end for
g(𝜁,𝜔)← v(`),

and define Λg := {j ∈ {1, . . . , `} : 𝜓(j) ≡ abs}. Following the approaches of

[32] and Chapter 6, a factored representation can be generated for the right-hand

side 𝛾A : (𝜂, 𝜁,𝜔) ∈ Rn × Z ×W ↦→ [g𝜔]
′(𝜁;𝜂) of the ODE (7.6), using (7.1) and

the forward mode of automatic differentiation. This approach yields the following

result:
v(0) ← (𝜁,𝜔) ∈ Z×W
v̇(0) ← (𝜂, 0m) ∈ Rn ×Rm

for j = 1 to ` do
u(j) ← [v(i)]i≺j
u̇(j) ← [v̇(i)]i≺j
if j ∈ Λg then

v(j) ← |u(j)|
v̇(j) ← (sign u(j)) u̇(j) + (unsign u(j)) |u̇(j)|

else
v(j) ← 𝜓(j)(u(j))

v̇(j) ← J𝜓(j)(u(j)) u̇(j)
end if

end for
𝛾A(𝜂, 𝜁,𝜔)← v̇(`).

Next, the “sign u(j)” and “unsign u(j)” terms in the above representation will

be represented as inputs instead. Observe that the factored representation for g

defines each u(j) as a function on Z×W. Hence, consider a variation 𝛾B : Rn×Z×

W × (−2, 2)` × (−2, 2)` → Rm of 𝛾A, so that 𝛾B(𝜂, 𝜁,𝜔,𝜎, 𝜎̄) is defined according

to the following factored representation:
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v(0) ← (𝜁,𝜔) ∈ Z×W
v̇(0) ← (𝜂, 0m) ∈ Rn ×Rm

for j = 1 to ` do
u(j) ← [v(i)]i≺j
u̇(j) ← [v̇(i)]i≺j
if j ∈ Λg then

v(j) ← |u(j)|
v̇(j) ← σju̇(j) + σ̄j|u̇(j)|

else
v(j) ← 𝜓(j)(u(j))

v̇(j) ← J𝜓(j)(u(j)) u̇(j)
end if

end for
𝛾B(𝜂, 𝜁,𝜔,𝜎, 𝜎̄)← v̇(`).

Unlike 𝛾A, 𝛾B is abs-factorable.

Now, define mappings s, s̄ : Iz → {−1, 0,+1}`, such that for each j ∈ {1, . . . , `}

and t ∈ Iz,

sj(t) =
{

sign u(j)(z(t), w(t)) if j ∈ Λg,
0 if j /∈ Λg,

and s̄j(t) =
{

unsign u(j)(z(t), w(t)) if j ∈ Λg,
0 if j /∈ Λg.

Since z is continuous, the set {z(t) : t ∈ Iz} is compact. Define an interval Ĩz :=

[ãz, b̃z] ⊂ Iz so that az < ãz < t0 and t f < b̃z < bz. Thus, since z and w are

L/R-analytic on Iz, Lemma 6.2.7 implies that the mapping t ↦→ u(j)(z(t), w(t)) is

L/R-analytic on Ĩz for each j ∈ Λg; Lemma 6.2.6 and Lemma 7.2.3 then imply that

both s and s̄ are L/R-analytic on Ĩz. Now, observe that the ODE (7.6) is equivalent

to the ODE:

dy
dt

(t) = 𝛾B(y(t), z(t), w(t), s(t), s̄(t)), y(t0) = d,

which has an abs-factorable right-hand side function 𝛾B. Moreover, the functions

z, w, s, and s̄ are each L/R-analytic on Ĩz. Define an interval Ĩy := [ãy, b̃y] ⊂ Ĩz

such that ãz < ãy < t0 and t f < b̃y < b̃z. Theorem 6.3.9 then implies that y is

L/R-analytic on Ĩy, and so Ty := (ãy, b̃y) satisfies the requirements of the lemma.
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The remaining claim of the lemma is trivially satisfied by setting r := n + m + 2`,

W̃ := Z×W × (−2, 2)` × (−2, 2)` ⊂ Rr,

Ũ := {z(t) ∈ Z : t ∈ Ĩz} ×U × {−1, 0,+1}` × {−1, 0,+1}`,

w̃ ≡ (z, w, s, s̄), and g̃ ≡ 𝛾B.

Proposition 7.4.2. Suppose that Assumption 7.3.1 holds, and consider any M ∈ Rn×p.

The mapping t ↦→ [xt]
′(c0; M) is L/R-analytic on some open set T̃ ⊂ R for which

[t0, t f ] ⊂ T̃ ⊂ T.

Proof. To obtain the required result, this proof demonstrates by induction that, for

each k ∈ {1, . . . , p}, the mapping t ↦→ [xt]
(k−1)
c0,M (m(k)) is L/R-analytic on some open

set T(k) ⊂ R for which [t0, t f ] ⊂ T(k) ⊂ T. For the case in which k = 1, consider

an interval I0 := [a0, b0] ⊂ T for which a0 < t0 and t f < b0. Theorem 5.2.1 implies

that the mapping t ↦→ [xt]
(0)
c0,M(m(1)) = [xt]

′(c0; m(1)) solves the following ODE

uniquely on I0, with ft ≡ f(t, ·):

dy
dt

(t) = [ft]
′(x(t, c0); y(t)), y(t0) = m(1).

Applying Lemma 7.4.1 with z ≡ x(·, c0), T̄w := T̄ ∩ (t0 − 1, t f + 1), U := [t0 −

1, t f + 1], W := R, w : t ↦→ t, and g ≡ f thus shows that there exists an open

set T(1) ⊂ R for which [t0, t f ] ⊂ T(1) ⊂ (a0, b0) ∩ T̄w ∩ T, for which the mapping

t ↦→ [xt]
(0)
c0,M(m(1)) is L/R-analytic on T(1), and for which there exist r̃ ∈N, an open

set W̃ ⊂ Rr̃, a compact set Ũ ⊂ W̃, an L/R-analytic function w̃ : T(1) → Ũ, and an

abs-factorable function g̃ : Rn × W̃ → Rn such that g̃(𝜂, w̃(τ)) = [fτ]
′(x(τ, c0);𝜂)

for each (τ,𝜂) ∈ T(1) ×Rn.

As the inductive assumption, suppose that, with k := q for some q ∈ {1, . . . , p−

1}, the mapping t ↦→ [xt]
(q−1)
c0,M (m(q)) is L/R-analytic on some open set T(q) for

which [t0, t f ] ⊂ T(q) ⊂ T, and there exist r̂ ∈ N, an open set Ŵ ⊂ Rr̂, a compact

set Û ⊂ Ŵ, an L/R-analytic function ŵ : T(q) → Û, and an abs-factorable function

ĝ : Rn × Ŵ → Rn such that t ↦→ [xt]
(q−1)
c0,M (m(q)) is the unique solution y on T(q) of

the ODE:
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dy
dt

(t) = ĝ(y(t), w̃(t)), y(t0) = m(q).

With ĝ𝜔 ≡ ĝ(·,𝜔), Theorem 5.2.1 implies the existence of some interval Iq+1 :=

[aq+1, bq+1] ⊂ T(q) for which aq+1 < t0 and t f < bq+1, and for which the mapping

t ↦→ [xt]
(q)
c0,M(m(q+1)) =

[
[xt]

(q−1)
c0,M

]′
(m(q); m(q+1)) is the unique solution y on Iq+1

of the ODE:

dy
dt

(t) = [ĝw̃(t)]
′([xt]

(q−1)
c0,M (m(q)); y(t)), y(t0) = m(q+1).

Lemma 7.4.1 then implies that the inductive assumption holds for k := q + 1 as

well, completing the inductive proof. The proposition is thereby demonstrated

with T̃ := T(p).

Corollary 7.4.3. Suppose that Assumption 7.3.1 holds, consider any M ∈ Rn×p, and

consider the set T̃ ⊂ R described in Proposition 7.4.2. There exists an open set T̂ ⊂ R

for which [t0, t f ] ⊂ T̂ ⊂ T̃, and for which, for each j ∈ {1, . . . , `}, the mappings t ↦→

U̇(j)((t, x(t, c0)); (01×p, [xt]
′(c0; M))) and t ↦→ V̇(j)((t, x(t, c0)); (01×p, [xt]

′(c0; M)))

are L/R-analytic on T̂.

Proof. By Lemma 6.2.7 and Theorem 6.3.9, there exists an interval Iu := [au, bu] ⊂ T̃

for which au < t0 and t f < bu, for which the mappings t ↦→ x(t, c0) and t ↦→

u(j)(t, x(t, c0)) are L/R-analytic on Iu for each j ∈ {1, . . . , `}. Noting that x(·, c0) is

continuous by construction, the set {x(t, c0) : t ∈ Iu} is compact. Similarly, the set

{u(j)(t, x(t, c0)) : t ∈ Iu} is compact for each j ∈ {1, . . . , `}.

Now, this proof proceeds by strong induction on j ∈ {0, . . . , `}. For the j := 0

case, observe that

V̇(0)((t, x(t, c0)); (01×p, [xt]
′(c0; M))) = (01×p, [xt]

′(c0; M)) ∈ R(n+1)×p, ∀t ∈ T.

Proposition 7.4.2 thus implies that the mapping

t ↦→ V̇(0)((t, x(t, c0)); (01×p, [xt]
′(c0; M)))
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is L/R-analytic on T̃.

Next, as the strong inductive assumption, choose any j* ∈ {1, . . . , `}, and sup-

pose that, for each j < j*, there exists an open set T*(j) ⊂ T̃ for which [t0, t f ] ⊂ T*(j),

and for which the mapping t ∈ T*(j) ↦→ V̇(j)((t, x(t, c0)); (01×p, [xt]
′(c0; M))) is L/R-

analytic. The cases in which j* /∈ Λf and j* ∈ Λf will be considered separately.

If j* /∈ Λf, then𝜓(j*) is 𝒞ω on its domain. Since the set {u(j*)(t, x(t, c0)) : t ∈ Iu}

is a compact subset of the domain of 𝜓(j*), Lemma 6.2.5 implies that the mapping

t ↦→ J𝜓(j*)(u(j*)(t, x(t, c0))) is L/R-analytic on (au, bu). Defining an open superset

T̃* :=
⋂
{j:j≺j*} T*(j) of [t0, t f ], the inductive assumption shows that the mapping

t ∈ T̃* ↦→ U̇(j*)((t, x(t, c0)); (01×p, [xt]
′(c0; M))) is L/R-analytic. Thus, Algorithm 4

and Lemma 6.2.5 imply that, with T*(j*) := (au, bu) ∩ T̃*, the mapping t ∈ T*(j*) ↦→

V̇(j*)((t, x(t, c0)); (01×p, [xt]
′(c0; M))) is also L/R-analytic.

Otherwise, if j* ∈ Λf, then 𝜓(j*) ≡ abs, and there exists a single index j < j* for

which j ≺ j*; the strong inductive assumption then shows that the mapping

t ∈ T̃* ↦→ U̇(j*)((t, x(t, c0)); (01×p, [xt]
′(c0; M))),

= V̇(j)((t, x(t, c0)); (01×p, [xt]
′(c0; M)))

is L/R-analytic. Define T*(j*) := (au, bu) ∩ T*(j) ⊃ [t0, t f ]. The definition of Iu, Algo-

rithm 4, Lemma 7.2.6, the inductive assumption, and Lemma 6.2.5 thus imply that

the mapping

t ∈ T*(j*) ↦→ V̇(j*)((t, x(t, c0)); (01×p, [xt]
′(c0; M)))

is L/R-analytic.

The inductive argument is thus completed; the corollary is thereby demon-

strated with T̂ :=
⋂`

j=0 T*(j).

7.4.2 Classical evolution between discrete valley crossings

This section uses the L/R-analyticity result of the previous section to show that

there exist finitely many discrete events in the interval [t0, t f ], between which the
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sensitivity ODE (7.3) evolves according to a classical linear sensitivity system cor-

responding to a certain auxiliary ODE. These discrete events will be referred to

as valley crossings, and are generalizations of the valley crossings described pre-

viously in Chapter 6. Roughly, the theory developed in this section adds to the

various non-Zenoness results obtained in Chapter 6.

Definition 7.4.4. Suppose that Assumption 7.3.1 holds, and define the set T̂ ⊂ R as in

Corollary 7.4.3. Consider any t* ∈ T ∩ T̂ and j ∈ Λf. For notational simplicity, in the

remainder of this chapter, the superset T ∩ T̂ of [t0, t f ] will be denoted as T, the quantity

u(j)(t*, x(t*, c0)) will frequently be denoted as “u(j)(t*)”, and the quantity

U̇(j)((t
*, x(t*, c0)); (01×p, [xt* ]

′(c0; M)))

will be denoted as “U̇(j)(t*)”, whose kth column is a scalar that will be denoted as “u̇(j),k(t*)”.

Define:

σj,0(t*) := sign u(j)(t
*) ∈ {−1, 0,+1},

σj,k(t*) := sign u̇(j),k(t
*) ∈ {−1, 0,+1}, ∀k ∈ {1, . . . , p},

σj,p+1(t*) := 0,

κj(t*) := fnzero (u(j)(t
*), u̇(j),1(t

*), . . . , u̇(j),p(t
*)) ∈ {0, 1, . . . , p + 1},

and ζ j(t*) := fsign (u(j)(t
*), u̇(j),1(t

*), . . . , u̇(j),p(t
*)) = σj,κj(t*)(t

*) ∈ {−1, 0,+1}.

The quantities σj,k(t*), κj(t*), and ζ j(t*) will be referred to as signatures, valley-tracing

depths, and critical signatures, respectively.

Remark 7.4.5. Define a function 𝜑 : {1, . . . , p} × T × Rn according to Algorithm 5,

which employs the constructions of the previous definition. For each k ∈ {1, . . . , p},

comparison of Algorithms 4 and 5 shows that

𝜑(k, t, a) = [ft]
(k−1)
x(t,c0),[xt]

′(c0;M(1:k−1))
(a),

= f′
([

t
x(t, c0)

]
;
[

01×(k−1) 0
[xt]
′(c0; M(1:k−1)) a

])
e(k), ∀(t, a) ∈ T ×Rn.
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Thus,𝜑(k, ·, ·) is the right-hand side function of the ODE (7.4); it follows immediately that

the mapping t ↦→ [xt]
(k−1)
c0,M (m(k)) = [xt]

′(c0; M) e(k) is the unique solution on [t0, t f ] of

the ODE:

dy
dt

(t) = 𝜑(k, t, y(t)), y(t0) = m(k). (7.7)

Algorithm 5 Computes 𝜑(k, t, a), with f and x described by Assumption 7.3.1
Require: k ∈ {1, . . . , p}, t ∈ T, a ∈ Rn

v̄(0) ← (0, a)
for j = 1 to ` do

ū(j) ← [v̄(i)]i≺j
if j ∈ Λf and κj(t) < k then

v̄(j) ← ζ j(t) ū(j)
else if j ∈ Λf and κj(t) ≥ k then

v̄(j) ← |ū(j)|
else if j /∈ Λf then

v̄(j) ← J𝜓(j)(u(j)(t, x(t, c0))) ū(j)
end if

end for
return 𝜑(k, t, a) := v̄(`)

Corollary 7.4.3 and Lemmata 7.2.1, 7.2.6, and 7.2.8 together demonstrate the

following lemma. Similar constructions were employed in Chapter 6.

Lemma 7.4.6. Suppose that Assumption 7.3.1 holds. For each t* ∈ T, j ∈ Λf, and

k ∈ {0, 1, . . . , p + 1}, the mappings σj,k, κj, and ζ j are L/R-analytic at t*. Thus, there

exist σL
j,k(t

*), σR
j,k(t

*) ∈ {−1, 0,+1} so that, for some sufficiently small δ > 0,

σj,k(t) = σL
j,k(t

*), ∀t ∈ [t* − δ, t*),

and σj,k(t) = σR
j,k(t

*), ∀t ∈ (t*, t* + δ].

Similarly, there exist κL
j (t
*), κR

j (t
*) ∈ {0, 1, . . . , p+ 1} so that, for some sufficiently small

δ > 0,

κj(t) = κL
j (t
*), ∀t ∈ [t* − δ, t*),

and κj(t) = κR
j (t
*), ∀t ∈ (t*, t* + δ].
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Lastly, there exist ζL
j (t
*), ζR

j (t
*) ∈ {−1, 0,+1} so that, for some sufficiently small δ > 0,

ζ j(t) = ζL
j (t
*), ∀t ∈ [t* − δ, t*),

and ζ j(t) = ζR
j (t
*), ∀t ∈ (t*, t* + δ].

Definition 7.4.7. Suppose that Assumption 7.3.1 holds. For each t* ∈ T, j ∈ Λf, and

k ∈ {0, 1, . . . , p + 1}, define σL
j,k(t

*), σR
j,k(t

*), κL
j (t
*), κR

j (t
*), ζL

j (t
*), and ζR

j (t
*) as in

the previous lemma. Collect these quantities over all j ∈ Λf as vectors 𝜎L
(k)(t

*), 𝜎R
(k)(t

*),

𝜅L(t*), 𝜅R(t*), 𝜁L(t*), and 𝜁R(t*). To preserve the notational convention that zi de-

notes the ith component of a vector z, the aforementioned vectors will be considered to have

dimension `, but their components corresponding to any j /∈ Λf will not be used.

Lemma 7.4.8. There exists a finite set Z ⊂ [t0, t f ] such that, for each t ∈ [t0, t f ]∖Z,

j ∈ Λf, and k ∈ {0, 1, . . . , p + 1}, the following equations hold: σj,k(t) = σR
j,k(t), κj(t) =

κR
j (t), and ζ j(t) = ζR

j (t).

Proof. The required result follows immediately from Lemmata 7.2.1 and 7.4.6.

Lemma 7.2.1 implies that the sets V̂ and V in the following definition are both

finite, and can therefore be enumerated as described. This definition modifies the

definition of valley crossings in Chapter 6, and will be in effect throughout this chap-

ter.

Definition 7.4.9. Suppose that Assumption 7.3.1 holds. For any j ∈ Λf and k ∈

{0, 1, . . . , p}, t* ∈ T is a (j-)valley (k-)crossing if both

(σL
j,k(t

*), σR
j,k(t

*)) ∈ {(−1,+1), (+1,−1)},

and σL
j,q(t

*) = σR
j,q(t

*) = 0 for each q ∈ {0, 1, . . . , (k − 1)}. Equivalently, t* ∈ T is a

(j-)valley (k-)crossing if both

κL
j (t
*) = κR

j (t
*) = k and (ζL

j (t
*), ζR

j (t
*)) ∈ {(−1,+1), (+1,−1)}.
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Denote the set of all valley crossings in [t0, t f ] as V̂, and set V := V̂ ∪ {t0, t f }. Enumerate

the elements of V as

t0 =: ω0 < ω1 < . . . < ωλ := t f .

For any j ∈ Λf and k ∈ {0, 1, . . . , p}, t* ∈ T is a (j-)valley (k-)tracing switch if

(σL
j,k(t

*), σR
j,k(t

*)) ∈ {(−1, 0), (+1, 0), (0,−1), (0,+1)}.

As in Chapter 6, the “valleys” in the above definition refer to the shape of

the absolute-value function’s graph. Observe that the valley crossings described

in Chapter 6 are all valley 0-crossings. The following lemma generalizes Corol-

lary 6.3.19, by showing that each valley q*-tracing switch is also a valley q-crossing

for some q ≤ q*.

Lemma 7.4.10. Suppose that Assumption 7.3.1 holds. If t* ∈ T is an i*-valley q*-

tracing switch, with i* ∈ Λf and q* ∈ {0, 1, . . . , p}, then there exist i ∈ Λf and

q ∈ {0, 1, . . . , q*} such that t* is also an i-valley q-crossing.

Proof. Since t* is a valley q*-tracing switch by assumption, there exists a least ele-

ment k* of {0, 1, . . . , q*} for which t* is a valley k*-tracing switch. Let j* be the least

element of Λf for which t* is a j*-valley k*-tracing switch.

If k* = 0, then Corollary 6.3.19 yields the required result. Thus, assume that

k* ≥ 1. To obtain a contradiction, suppose that t* is not an i-valley q-crossing for

any i ∈ Λf and q ∈ {0, 1, . . . , k*}. Thus, Definition 7.4.9 and the definition of k*

show that for each j ∈ Λf, exactly one of the following cases holds:

1. both κL
j (t
*) ≥ k* and κR

j (t
*) ≥ k*, and so σL

j,k = σR
j,k = 0 for each k ∈

{0, . . . , k* − 1}, or

2. both κL
j (t
*) = κR

j (t
*) < k* and ζL

j (t
*) = ζR

j (t
*) ∈ {−1,+1}.

In the first case, define a quantity ζ̄ j := 0; in the second case, define ζ̄ j := ζL
j (t
*) =

ζR
j (t
*) ∈ {−1,+1}. Define δ̄j := unsign ζ̄ j ∈ {0,+1}. Thus, there exists a neigh-

borhood N ⊂ T̂ of t* for which:
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fsign (u(j)(t), u̇(j),1(t), . . . , u̇(j),k*−1(t)) = ζ̄ j, ∀t ∈ N∖{t*}, ∀j ∈ Λf,

and

unsign (u(j)(t), u̇(j),1(t), . . . , u̇(j),k*−1(t)) = δ̄j, ∀t ∈ N∖{t*}, ∀j ∈ Λf.

Define a function h̃ : N×Rn → Rn so that h̃(t, a) is evaluated according to the

following factored representation.

ṽ(0) ← (0, a) ∈ Rn+1

for j = 1 to ` do
ũ(j) ← [ṽ(i)]i≺j
if j ∈ Λf then

ṽ(j) ← ζ̄ j ũ(j) + δ̄j |ũ(j)|
else

ṽ(j) ← J𝜓(j)(u(j)(t, x(t, c0))) ũ(j)
end if

end for
h̃(t, a)← ṽ(`)

Observe that the mappings t ↦→ u(j)(t, x(t, c0)) are L/R-analytic. This observation,

Corollary 7.4.3, the definitions of ζ̄ j and δ̄j, and Lemmata 7.2.3 and 7.2.6 show that

the ODE

dy
dt

(t) = h̃(t, y(t)), y(t*) = [xt* ]
(k*−1)
c0,M (m(k*)) (7.8)

is a Carathéodory ODE when restricted to t ∈ N. Comparing the definition of h̃

with Algorithm 5, observe that

𝜑(k*, t, a) = h̃(t, a), ∀t ∈ N∖{t*}, ∀a ∈ Rn.

Remark 7.4.5 then implies that the mapping t ↦→ [xt]
(k*−1)
c0,M (m(k*)) solves the ODE (7.8)

on N, and is thus the unique solution of this ODE on N, since h̃(t, ·) is evidently

locally Lipschitz continuous for each fixed t ∈ N.

Since t* is not a valley q-crossing for any q ∈ {0, 1, . . . , k*}, it follows that, for

each j ∈ Λf for which δ̄j = +1,
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(σL
j,k*(t

*), σR
j,k*(t

*)) ∈ {(−1, 0), (+1, 0), (−1,−1), (0, 0), (+1,+1), (0,−1), (0,+1)}.

Each of the above cases implies that, choosing N to be a smaller neighborhood of

t* if necessary, for each j ∈ Λf for which δ̄j = +1, there exists sj ∈ {−1,+1} such

that

∣∣∣ũ(j)

(
t, [xt]

(k*−1)
c0,M (m(k*))

)∣∣∣ = sj ũ(j)

(
t, [xt]

(k*−1)
c0,M (m(k*))

)
, ∀t ∈ N∖{t*}.

Define sj := 0 for each j ∈ Λf for which δ̄j = 0. Thus, define a function ĥ :

N ×Rn → Rn so that ĥ(t, a) is evaluated according to the following factored rep-

resentation.

v̂(0) ← (0, a) ∈ Rn+1

for j = 1 to ` do
û(j) ← [v̂(i)]i≺j
if j ∈ Λf then

v̂(j) ← (ζ̄ j + sjδ̄j) û(j)
else

v̂(j) ← J𝜓(j)(u(j)(t, x(t, c0))) û(j)
end if

end for
ĥ(t, a)← v̂(`)

Observe that ĥ is 𝒞ω, and therefore locally Lipschitz continuous, on its domain of

definition. Moreover,

h̃(t, a) = ĥ(t, a), ∀t ∈ N∖{t*}.

The above discussion implies that the ODE:

dy
dt

(t) = ĥ(t, y(t)), y(t*) = [xt* ]
(k*−1)
c0,M (m(k*))

is a Carathéodory ODE for t ∈ N, and that the mapping t ↦→ [xt]
(k*−1)
c0,M (m(k*)) also

solves this ODE uniquely on N. Since ĥ is 𝒞ω, the mapping t ↦→ [xt]
(k*−1)
c0,M (m(k*))

is also 𝒞ω on N [35]. Thus, the mapping t ↦→ û(j*)(t, [xt]
(k*−1)
c0,M (m(k*))) is also 𝒞ω

on N. By construction, though,
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û(j*)

(
t, [xt]

(k*−1)
c0,M (m(k*))

)
= u̇(j*),k*(t), ∀t ∈ N∖{t*}. (7.9)

Since t* is a j*-valley k*-tracing switch, either σL
j*,k*(t

*) = 0 or σR
j*,k*(t

*) = 0. Thus,

there exists δ* > 0 such that, for either each t ∈ (t*− δ*, t*) or each t ∈ (t*, t*+ δ*),

û(j*)

(
t, [xt]

(k*−1)
c0,M (m(k*))

)
= 0.

The above analyticity result and [66, Corollary 1.2.6] then imply that

û(j*)

(
t, [xt]

(k*−1)
c0,M (m(k*))

)
= 0, ∀t ∈ N.

Equation (7.9) then implies that both σL
j*,k*(t

*) = 0 and σR
j*,k*(t

*) = 0, which con-

tradicts the definitions of j* and k*.

Thus, there exist i ∈ Λf and q ∈ {0, 1, . . . , k*} such that t* is an i-valley q-

crossing. Since k* ≤ q* by construction, the required result follows immediately.

Corollary 7.4.11. Suppose that Assumption 7.3.1 holds. If there exist t* ∈ T and j ∈ Λf

such that κL
j (t
*) ̸= κR

j (t
*), then there exist i ∈ Λf∖{j} and

q ∈
{

0, 1, . . . , min
{

κL
j (t
*), κR

j (t
*)
}}

such that t* is an i-valley q-crossing.

Proof. Define k* := min{κL
j (t
*), κR

j (t
*)} ∈ {0, 1, . . . , p}. Since κL

j (t
*) ̸= κR

j (t
*),

the definition of κj implies that t* is a j-valley k*-tracing switch. Moreover, the

definition of k* shows that t* is not a j-valley crossing. Lemma 7.4.10 then yields

the required result.

Corollary 7.4.12. Suppose that Assumption 7.3.1 holds. For each i* ∈ {1, . . . , λ}, j* ∈

Λf, and k* ∈ {0, 1, . . . , p}, the mappings t ↦→ σR
j*,k*(t), t ↦→ κR

j*(t), and t ↦→ ζR
j*(t) are

constant on [ωi*−1, ωi*).

Moreover, if i* ∈ {1, . . . , λ− 1}, and ωi* is not a valley k-crossing for any k ≤ k*,

then σR
j*,k*(ωi*−1) = σR

j*,k*(ωi*). If, in addition, κR
j*(ωi*−1) ≤ k*, then κR

j*(ωi*−1) =

κR
j*(ωi*) and ζR

j*(ωi*−1) = ζR
j*(ωi*) ∈ {−1,+1}.
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Proof. Lemma 7.4.10 and Corollary 7.4.11 imply that any discontinuity in the map-

pings t ∈ [t0, t f ] ↦→ σR
j,k(t) or t ∈ [t0, t f ] ↦→ κR

j (t) is also a valley crossing. Hence,

for each i ∈ {1, . . . , λ}, these mappings are constant on (ωi−1, ωi).

By construction, the mappings t ∈ [t0, t f ] ↦→ σR
j,k(t) and t ∈ [t0, t f ] ↦→ κR

j (t)

are each right-continuous; the first required result follows immediately. Now,

consider any i* ∈ {1, . . . , λ − 1} for which ωi* is not a valley k-crossing for any

k ≤ k*. The first result of this corollary shows that σR
j*,k*(ωi*−1) = σL

j*,k*(ωi*). Thus,

Lemma 7.4.10 and the construction of i* show that

(σR
j*,k*(ωi*−1), σR

j*,k*(ωi*))

= (σL
j*,k*(ωi*), σR

j*,k*(ωi*)),

/∈ {(−1,+1), (+1,−1), (−1, 0), (+1, 0), (0,−1), (0,+1)},

which implies that σR
j*,k*(ωi*−1) = σR

j*,k*(ωi*), as required. Suppose in addition that

κR
j*(ωi*−1) ≤ k*. The first result of this corollary shows that κR

j*(ωi*−1) = κL
j*(ωi*)

and ζR
j*(ωi*−1) = ζL

j*(ωi*). Corollary 7.4.11 and the construction of i* then show

that

κR
j*(ωi*−1) = κL

j*(ωi*) = κR
j*(ωi*) =: q* ≤ k*,

as required. Thus, ζR
j*(ωi*−1) and ζR

j*(ωi*) are each nonzero. Noting that ωi* is not

a valley q*-crossing, the definitions of κR
j* and ζR

j* imply that

ζR
j*(ωi*−1) = ζL

j*(ωi*) = ζR
j*(ωi*),

as required.

The following lemma shows that between any two successive valley crossings,

the LD-derivative mapping t ↦→ [xt]
′(c0; M) evolves as the unique solution of a

linear ODE.

Lemma 7.4.13. Suppose that Assumption 7.3.1 holds. The LD-derivative mapping t ↦→

[xt]
′(c0; M) is the unique solution on [t0, t f ] of the Carathéodory ODE:
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dA
dt

(t) = H̃(t, A(t)), A(t0) = M, (7.10)

where the function H̃ : [t0, t f ]×Rn×p → Rn×p is defined so that:

H̃(t, A) :=
{

Ĥ(𝜁R(ωi−1), t, A), if i ∈ {1, . . . , λ} and t ∈ [ωi−1, ωi),
Ĥ(𝜁R(ωλ−1), t f , A), if t = t f ,

with the function Ĥ : {−1, 0,+1}` × T ×Rn×p → Rn×p defined according to Algo-

rithm 6.

Algorithm 6 Evaluates Ĥ(𝜁, t, A), with f and x described by Assumption 7.3.1
Require: q ∈N, 𝜁 ∈ {−1, 0,+1}`, t ∈ T, and A ∈ Rn×q

V̂(0) ← (01×q, A)
for j = 1 to ` do

Û(j) ← [V̂(i)]i≺j
if j ∈ Λf then

V̂(j) ← ζ̂ j Û(j)
else

V̂(j) ← J𝜓(j)(u(j)(t, x(t, c0))) Û(j)
end if

end for
return Ĥ(𝜁, t, A) = V̂(`)

Proof. Consider the finite set Z ⊂ [t0, t f ] described by Lemma 7.4.8. Using the re-

sults of Lemma 7.4.8 and Corollary 7.4.12, inspection of Algorithms 4 and 6 shows

that

H̃(t, [xt]
′(c0; M)) = [ft]

′(x(t, c0); [xt]
′(c0; M)), ∀t ∈ [t0, t f ]∖(Z ∪V).

Since both Z and V have zero Lebesgue measure, comparison of the ODEs (7.10)

and (7.3) shows that the mapping t ↦→ [xt]
′(c0; M) solves (7.10) on [t0, t f ]. Observ-

ing that the mapping Ĥ(𝜁, t, ·) is linear, and thus Lipschitz continuous, for each

fixed 𝜁 ∈ {−1, 0,+1}` and t ∈ [t0, t f ], it follows that t ↦→ [xt]
′(c0; M) is the unique

solution of (7.10) on [t0, t f ].
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The following theorem extends the above results to show that, between any two

successive valley crossings, the LD-derivative mapping t ↦→ [xt]
′(c0; M) evolves

according to a classical ODE sensitivity system, as described, for example, by [35,

Ch. V, Theorem 3.1].

Theorem 7.4.14. Suppose that Assumption 7.3.1 holds, and consider any particular i ∈

{1, . . . , λ}. Consider the following parametric ODE, with p ∈ Rp denoting a parameter,

and with a 𝒞ω function h(i, ·, ·) : [ωi−1, ωi]×X → Rn defined according to Algorithm 7.

d𝜉
dt

(t, p) = h(i, t, 𝜉(t, p)), 𝜉(ωi−1, p) = x(ωi−1, c0) + [xωi−1 ]
′(c0; M) p. (7.11)

This ODE has a unique solution {𝜉(t, p) : t ∈ [ωi−1, ωi]} for each p in some neighbor-

hood of 0 ∈ Rp. For each t ∈ [ωi−1, ωi], the mapping 𝜉(t, ·) is differentiable at 0; the

partial derivative mapping t ↦→ ∂𝜉
∂p (t, 0) is the unique solution on [ωi−1, ωi] of the ODE:

dA
dt

(t) =
∂h
∂z

(i, t, 𝜉(t, 0))A(t), A(ωi−1) = [xωi−1 ]
′(c0; M). (7.12)

Moreover, for each t ∈ [ωi−1, ωi], x(t, c0) = 𝜉(t, 0) and [xt]
′(c0; M) = ∂𝜉

∂p (t, 0).

Algorithm 7 Evaluates h(i, t, z)
Require: i ∈ {1, . . . , λ}, t ∈ [ωi−1, ωi], and z ∈ X

v̂(0) ← (t, z)
for j = 1 to ` do

û(j) ← [v̂(i)]i≺j
if j ∈ Λf then

v̂(j) ← ζR
j (ωi−1) û(j)

else
v̂(j) ← 𝜓(j)(û(j))

end if
end for
return h(i, t, z) = v̂(`)

Proof. Consider any fixed t ∈ [ωi−1, ωi]∖Z and j ∈ Λf. Lemma 7.4.8 and Corol-

lary 7.4.12 imply that ζ j(t) = ζR
j (ωi−1). Now, if u(j)(t) = 0, then |u(j)(t)| = 0 =

ζ j(t) u(j)(t). On the other hand, if u(j)(t) ̸= 0, then ζ j(t) = σj,0(t) = sign u(j)(t) ∈
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{−1,+1}, and so |u(j)(t)| = ζ j(t) u(j)(t). Combining the above results, and per-

mitting variation in t and j, it follows that

v(j)(t) = |u(j)(t)| = ζR
j (ωi−1) u(j)(t), ∀t ∈ [ωi−1, ωi]∖Z, ∀j ∈ Λf.

Thus, noting that the set Z is finite, inspection of the ODE (7.11) shows that x(·, c0)

solves (7.11) with p := 0 on [ωi−1, ωi]. By inspection of Algorithm 7, there exists

an open set Ti ⊃ [ωi−1, ωi] for which h(i, ·, ·) is in fact well-defined on Ti × X,

since h(i, ·, ·) is a finite composition of locally Lipschitz continuous functions on

open sets. Observe that h(i, ·, ·) is 𝒞ω on Ti × X, since Algorithm 7 expresses this

function as a composition of 𝒞ω functions. Thus, since h(i, ·, ·) is locally Lipschitz

continuous, it follows that x(·, c0) is the unique solution of (7.11) with p := 0

on [ωi−1, ωi], as required. Standard ODE theory [35, Ch. V, Theorem 2.1] then

implies that the ODE (7.11) has a unique solution on [ωi−1, ωi] for each p in some

neighborhood N of 0 ∈ Rp, as required.

[35, Ch. V, Theorem 3.1] then implies that, for each t ∈ [ωi−1, ωi], the mapping

𝜉(t, ·) is differentiable at 0, and that the partial derivative mapping t ↦→ ∂𝜉
∂p (t, 0)

solves the ODE (7.12) uniquely on [ωi−1, ωi].

Lastly, for each t ∈ [ωi−1, ωi] and each A ∈ Rn×p, inspection of Algorithms 6

and 7 shows that if the vector forward mode of automatic differentiation [34] is

applied to Algorithm 7 to compute the quantity

∂h
∂z

(i, t, 𝜉(t, 0))A =
∂h
∂z

(i, t, x(t, c0))A,

then the result is in fact Ĥ(𝜁R(ωi−1), t, A). It follows immediately that the ODEs

(7.10) and (7.12) have the same unique solution on [ωi−1, ωi], which implies that

[xt]
′(c0; M) = ∂𝜉

∂p (t, 0) for each t ∈ [ωi−1, ωi].

The ODE (7.11) will be referred to as a bank-locked ODE, since each of the absolute-

value function “valleys” in the right-hand side of the ODE (7.2) have been locked

into one of its two linear “banks”. Similarly, the linear ODE (7.12) will be re-

ferred to as a bank-locked sensitivity ODE. To compute [xt]
′(c0; M), the ODEs (7.11)
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and (7.12) can be solved simultaneously on [ωi−1, ωi] for each i ∈ {1, . . . , λ}, using

any ODE solver with sensitivity analysis capabilities. Standard approaches [24, 73]

for exploiting sparsity and redundancy in sensitivity systems remain applicable

between each pair of successive valley crossings. This approach, however, requires

computing the valley crossing ωi−1 and the critical signatures 𝜁R(ωi−1) for each

i ∈ {1, . . . , λ}, since these quantities are not known a priori. The following sections

discuss evaluation of these quantities.

7.4.3 Determining tracing depths and critical signatures

This section lays a theoretical foundation for determining the valley-tracing depths

𝜅R(ωi) and the critical signatures 𝜁R(ωi) for each i ∈ {0, 1, . . . , λ− 1}. The results

in this section are subject to the following remark.

Remark 7.4.15. In the remainder of this section, Assumption 7.3.1 will be in effect, i ∈

{0, 1, . . . , λ − 1} will be fixed, and ωi will be assumed to be known. Though λ is not

known a priori, observe that i < λ if and only if ωi < t f . Thus, ωi+1 exists and is no

greater than t f ; though ωi+1 is not known a priori either, its existence will be convenient

when formulating the results in this section.

For consistency, consider t f to be a valley k-crossing for each k ∈ {0, 1, . . . , p}. This

consideration will simplify the presentation of results in this section; for example, the i =

λ− 1 case will not need to be treated differently from the i < λ− 1 case.

Lemma 7.4.16. Suppose that Remark 7.4.15 holds. If t* ∈ (ωi, t f ] is such that there are

no valley 0-crossings in (ωi, t*), then

σR
j,0(ωi) = sign

∫ t*

ωi

u(j)(t, x(t, c0)) dt, ∀j ∈ Λf. (7.13)

Similarly, for any q ∈ {1, . . . , p}, if t̂ ∈ (ωi, t f ] is such that there are no valley k-crossings

in (ωi, t̂) for any k ≤ q, then

σR
j,q(ωi) = sign

∫ t̂

ωi

u̇(j),q(t) dt, ∀j ∈ Λf.
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Proof. The required results follow from Corollary 7.4.12 and Lemma 7.4.8. Note

that, for each j ∈ Λf, the mapping t ↦→ u(j)(t, x(t, c0)) is continuous, and is

therefore integrable on the compact set [ωi, t?]. Moreover, for each j ∈ Λf and

q ∈ {1, . . . , p}, u̇(j),q is L/R-analytic, and is therefore measurable. Inspection of

Algorithm 4 shows that u̇(j),q is also bounded on [ωi, t̂], and is therefore integrable

on [ωi, t̂].

Observe that Theorem 5.2.4 provides necessary conditions for σR
j,0(ωi) to be

zero; these conditions can be exploited to avoid computing the integral (7.13) in

certain situations. The following result is an immediate corollary of Theorem 5.2.4,

noting that each mapping t ↦→ u(j)(t, x(t, c0)) is both L/R-analytic and continuous.

Corollary 7.4.17. Choose any j ∈ Λf. For any εσ ≥ 0, if |u(j)(ωi, x(ωi, c0))| > εσ, then

ζR
j (ωi) = σR

j,0(ωi) = sign u(j)(ωi, x(ωi, c0)) ∈ {−1,+1},

and κR
j (ωi) = 0. Similarly, if the directional derivative

dj := [u(j)]
′((ωi, x(ωi, c0)); (1, f(ωi, x(ωi, c0)))

satisfies |dj| > εσ, then

ζR
j (ωi) = σR

j,0(ωi) = fsign (u(j)(ωi, x(ωi, c0)), dj) ∈ {−1,+1},

and κR
j (ωi) = 0.

For any j ∈ Λf, the following quadrature ODE in wj may be appended to the

original ODE (7.2), to compute the integral (7.13):

dwj

dt
(t) = u(j)(t, x(t, c0)), wj(ωi) = 0. (7.14)

For each j ∈ Λf, σR
j,0(ωi) can be determined from Corollary 7.4.12, Lemma 7.4.16,

or Corollary 7.4.17. Then, for each j ∈ Λf, κR
j (ωi) = 0 if and only if σR

j,0(ωi) ∈

{−1,+1}, in which case ζR
j,0(ωi) ∈ {−1,+1}. Thus, as a strong inductive assump-

tion, suppose that, for some q? ∈ {1, . . . , p}, the set
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J(q*) := {j ∈ Λf : q? ≤ κR
j (ωi)}

is known, as are κR
j (ωi) and ζR

j (ωi) for each j ∈ Λf∖J(q?). Collect the known

components of 𝜁R
j (ωi) in a vector 𝜁 ∈ {−1, 0,+1}`, defined so that

ζ̄ j :=
{

ζR
j (ωi) ∈ {−1,+1}, if j ∈ Λf∖J(q?),

0, if j ∈ J(q?).

As with 𝜁R
j , the components ζ̄ j for which j /∈ Λf will not be used. Assume that

J(q?) is nonempty; if J(q?) is empty, then 𝜁R(ωi) = 𝜁, and all critical signatures

have been determined already.

Under the assumptions in the previous paragraph, the results presented in the

remainder of this section seek to identify all j ∈ J(q?) for which κR
j (ωi) = q?, and

to identify the corresponding values of ζR
j (ωi) = σR

j (ωi) ∈ {−1,+1}.

Lemma 7.4.18. Consider functions

f? : {−1, 0,+1}` × T ×Rn → Rn, and g? : {−1, 0,+1}` × T ×Rn → Rn

as described in Algorithm 8, and the following probe ODEs in y and z:

dy
dt

(t) = f?(𝜁, t, y(t)), y(ωi) = [xωi ]
′(c0; M) e(q?), (7.15)

dz
dt

(t) = ż(t) := g?(𝜁, t, y(t)), z(ωi) = 0 ∈ R`. (7.16)

Let ω? be the least element of (ωi, t f ] for which there exists k < q? such that ω? is a valley

k-crossing. (Here, t f is considered to be a valley k-crossing for each k ∈ {0, 1, . . . , p}.)

The above ODEs have unique solutions y and z on some open superset T? of [ωi, ω?].

Moreover, y(t) = [xt]
′(c0; M) e(q?) for each t ∈ [ωi, ω?]. The function ż is L/R-analytic;

for each t? ∈ T? and j ∈ Λf, there exist ηL
j (t

?), ηR
j (t

?) ∈ {−1, 0,+1} for which, for

sufficiently small δ > 0
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sign żj(t) = ηL
j (t

?), ∀t ∈ [t? − δ, t?),

and sign żj(t) = ηR
j (t

?), ∀t ∈ (t?, t? + δ]. (7.17)

For each t ∈ (ωi, ω?) and j ∈ Λf, ηL
j (t) = σL

j,q?(t) and ηR
j (t) = σR

j,q?(t).

Algorithm 8 Computes f?(𝜁, t, a) ∈ Rn and g?(𝜁, t, a) ∈ R`, with f and x described
by Assumption 7.3.1
Require: 𝜁 ∈ {−1, 0,+1}`, t ∈ T, a ∈ Rn

v?
(0) ← (0, a)

g← 0 ∈ R`

for j = 1 to ` do
u?
(j) ← [v?

(i)]i≺j

if j ∈ Λf and ζ̂ j ̸= 0 then
v?(j) ← ζ̂ j u?

(j)
gj ← u?

(j)

else if j ∈ Λf and ζ̂ j = 0 then
v?(j) ← |u

?
(j)|

gj ← u?
(j)

else if j /∈ Λf then
v?
(j) ← J𝜓(j)(u(j)(t, x(t, c0))) u?

(j)
end if

end for
return f?(𝜁, t, a) := v?

(`) and g?(𝜁, t, a) := g

Proof. With 𝜑 defined according to Algorithm 5, it follows from the definition of 𝜁,

Lemma 7.4.8, and Corollary 7.4.12 that

𝜑(q?, t, a) = f?(𝜁, t, a), ∀a ∈ Rn, ∀t ∈ [ωi, ω?]∖Z.

Remark 7.4.5 then implies that the mapping t ↦→ [xt]
′(c0; M) e(q?) solves the ODE (7.15)

uniquely on [ωi, ω?]. Standard ODE theory implies that this solution can be ex-

tended to yield a unique solution y of (7.15) on some open superset Ty ⊂ T of

[ωi, ω?]; moreover, y coincides with the mapping t ↦→ [xt]
′(c0; M) e(q?) on [ωi, ω?].

Next, observe that the right-hand side of the ODE (7.16) does not contain a

“z(t)” term, and is thus equivalent to a simple integral. Inspection of Algorithm 8
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shows that the mapping f?(𝜁, ·, ·) is locally Lipschitz continuous; Gronwall’s In-

equality then implies that y is locally Lipschitz continuous on Ty. This observation

and Algorithm 8 imply that t ↦→ ż(t) = g?(𝜁, t, y(t)) is locally Lipschitz continu-

ous on Ty. Thus, there exists an open set T? ⊂ Ty for which [ωi, ω?] ⊂ T?, and

for which the mapping ż is bounded and Lipschitz continuous on T?. Since y and

x(·, c0) are L/R-analytic, Lemmata 6.2.5 and 6.2.6 imply that ż is also L/R-analytic,

and therefore measurable. It follows that, for each t? ∈ T?, the solution

z(t?) =
∫ t?

ωi

ż(t) dt

of the ODE (7.16) is unique and well-defined in Rn. Moreover, Lemma 7.2.1 implies

the existence of quantities ηL
j (t

?), ηR
j (t

?) ∈ {−1, 0,+1} satisfying (7.17) for each

t? ∈ T? and j ∈ Λf. Comparing Algorithms 4 and 8, it follows from the definition

of 𝜁, Lemma 7.4.8, and Corollary 7.4.12 that

żj(t) = u̇(j),q?(t), ∀t ∈ [ωi, ω?]∖Z, ∀j ∈ Λf.

Moreover, since Z is finite, there exists δ > 0 such that, for each t? ∈ (ωi, ω?), there

is no element of Z in the set [t? − δ, t?) ∪ (t?, t? + δ]. The final claim of the lemma

follows immediately.

The following theorem permits determination of ζR
j (ωi) ∈ {−1,+1} for each

j ∈ Λf for which κR
j (ωi) = q?, without requiring the latter knowledge a priori.

Theorem 7.4.19. Suppose that the conditions of Lemma 7.4.18 hold. Using the notation

introduced in Lemma 7.4.18, for each t? ∈ (ωi, ω?), t? is a valley q?-crossing if and only

if there exists j ∈ J(q?) for which (ηL
j (t

?), ηR
j (t

?)) ∈ {(−1,+1), (+1,−1)}.

Next, choose any τ? ∈ (ωi, ω?] for which there are no valley q?-crossings in (ωi, τ?).

For each j ∈ J(q?), each of the following conditional statements holds. In these statements,

zj refers to the jth component of the unique solution z of the ODE (7.16).

∙ If zj(τ
?) = 0, then σR

j,q?(ωi) = 0, and κR
j (ωi) > q?.

∙ If zj(τ
?) > 0, then ζR

j,q?(ωi) = σR
j,q?(ωi) = +1, and κR

j (ωi) = q?.
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∙ If zj(τ
?) < 0, then ζR

j,q?(ωi) = σR
j,q?(ωi) = −1, and κR

j (ωi) = q?.

Proof. Consider any t? ∈ (ωi, ω?). By construction of ω?, there are no valley k-

crossings in (ωi, ω?) for any k < q?. By construction of J(q?), there are no j?-valley

crossings in (ωi, ω?) for any j? ∈ Λf∖J(q?). Moreover, for each j ∈ J(q?), Corol-

lary 7.4.12 implies that σL
j,k(t

?) = σR
j,k(t

?) = 0 for each k < q?, and Lemma 7.4.18

implies that (ηL
j (t

?), ηR
j (t

?)) = (σL
j,q?(t

?), σR
j,q?(t

?)). The first claim of the theorem

follows immediately.

The remaining claims of the theorem follow immediately from Lemmata 7.4.16

and 7.4.18, and the definitions of J(q?), 𝜁R(ωi), and 𝜅R(ωi).

7.4.4 Determining valley crossings

This section provides a theoretical foundation for determining the valley crossings

ωi for i ∈ {1, . . . , λ} during integration of the bank-locked ODE (7.11) and the

bank-locked sensitivity ODE (7.12). Observe that λ is not known a priori; rather,

i = λ if and only if there are no valley crossings in the set (ωi−1, t f ). By definition,

ω0 = t0. Thus, as an inductive assumption, suppose in the remainder of this sec-

tion that Assumption 7.3.1 holds, and, for some fixed i ∈ N, the quantities ωi−1,

[xωi−1 ]
′(c0; M), 𝜅R(ωi−1), and 𝜁R(ωi−1) are known, with ωi−1 < t f .

Inspection of Algorithm 7 shows that h(i, ·, ·) is defined as a finite composi-

tion of functions that are locally Lipschitz continuous on open sets. Thus, there

exists an open superset T̄i ⊂ R of [ωi−1, ωi] for which Algorithm 7 describes a

well-defined function h(i, ·, ·) on T̄i ×Rn rather than [ωi−1, ωi] ×Rn. Using this

extended domain, standard ODE extension theory implies that the unique solu-

tions of the bank-locked ODEs (7.11) and (7.12) may be extended to yield unique

solutions on some open set Ti ⊂ R for which [ωi−1, ωi] ⊂ Ti ⊂ T̄i. Note, how-

ever, that the extended solutions of these ODEs are not expected to correspond to

x(t, c0) or its LD-derivatives for any t /∈ [ωi−1, ωi].

Inspection of Algorithm 7 shows that h(i, ·, ·) is 𝒞ω on its domain; it follows

immediately that 𝜉(·, 0) is 𝒞ω on Ti. Thus, for each j ∈ Λf, the function û(j)(i, ·, ·)
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defined by Algorithm 7 is 𝒞ω as well. For any t ∈ Ti and j ∈ Λf, denote the

quantity û(j)(i, t, 𝜉(t, 0)) in Algorithm 7 as “û(j),0(t)”. For each k ∈ {1, . . . , p},

denote the scalar quantity

∂û(j)

∂z
(i, t, 𝜉(t, 0))

∂𝜉

∂p
(t, 0) e(k)

as “û(j),k(t)”; as discussed in the proof of Theorem 7.4.14, for each k > 0, û(j),k(t) is

also the kth column of the row vector

Û(j)

(
𝜁R(ωi−1), t, ∂𝜉

∂p (t, 0)
)

described by Algorithm 6. Theorem 7.4.14, Lemmata 7.4.8 and 7.4.13, and Corol-

lary 7.4.12 thus imply that

û(j),0(t) = u(j)(t) and û(j),k(t) = u̇(j),k(t), (7.18)

∀t ∈ [ωi−1, ωi]∖Z, ∀k ∈ {1, . . . , p}, ∀j ∈ Λf;

the continuity of û(j),0 and u(j) then yields

û(j),0(t) = u(j)(t), ∀t ∈ [ωi−1, ωi], ∀j ∈ Λf. (7.19)

Moreover, the above discussion implies that each û(j),k is 𝒞ω, and thus L/R-analytic,

on Ti. The following two lemmata then follow from Lemma 7.2.1 and [66, Corol-

lary 1.2.6], respectively.

Lemma 7.4.20. For each t* ∈ Ti, j ∈ Λf, and k ∈ {0, 1, . . . , p}, there exist quantities

sL
j,k(t

*), sR
j,k(t

*) ∈ {−1, 0,+1} so that, for some sufficiently small δ > 0,

sL
j,k(t

*) = sign û(j),k(t), ∀t ∈ [t* − δ, t*),

and

sR
j,k(t

*) = sign û(j),k(t), ∀t ∈ (t*, t* + δ].

Lemma 7.4.21. For each t* ∈ Ti, j ∈ Λf, and k ∈ {0, 1, . . . , p},
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(sL
j,k(t

*), sR
j,k(t

*)) /∈ {(−1, 0), (+1, 0), (0,−1), (0,+1)}.

The constructions in Lemma 7.4.20 motivate the following definition, which

formalizes an analog of valley crossings for the bank-locked ODE and sensitivity

ODE.

Definition 7.4.22. For each t* ∈ Ti, j ∈ Λf, and k ∈ {0, 1, . . . , p}, define sL
j,k(t

*) ∈

{−1, 0,+1} and sR
j,k(t

*) ∈ {−1, 0,+1} as in Lemma 7.4.20. t* is a (j-)bank (k-)jump if

both k = κR
j (ωi−1) and

(sL
j,k(t

*), sR
j,k(t

*)) ∈ {(−1,+1), (+1,−1)}.

Bank jumps can be found in Ti during numerical integration of the bank-locked

ODE and sensitivity ODE, using standard event detection techniques [89]. More-

over, as the remaining results in this section demonstrate, certain bank jumps cor-

respond to valley crossings in the original ODE (7.2) and sensitivity ODE (7.3),

which permits determination of ωi.

Lemma 7.4.23. There are no bank jumps in (ωi−1, ωi).

Proof. Choose any t* ∈ (ωi−1, ωi); it suffices to show that t* is not a bank jump.

Since the set Z described by Lemma 7.4.8 is finite, there exists some sufficiently

small δ > 0 for which Z ∩ ([t* − δ, t*) ∪ (t*, t* + δ]) = ∅. Thus, Lemma 7.4.20

and (7.18) imply that, for each j ∈ Λf and k ∈ {0, 1, . . . , p}, for sufficiently small

δ > 0, sL
j,k(t

*) = σL
j,k(t

*) and sR
j,k(t

*) = σR
j,k(t

*). Since there are no valley crossings

in (ωi−1, ωi) by construction, the required result follows.

Lemma 7.4.24. Suppose that ωi < t f , and let q* be the least value of k ∈ {0, 1, . . . , p}

for which ωi is a valley k-crossing. Then, ωi is a bank q*-jump, but is not a bank k-jump

for any k < q*.

Proof. The second required result will be demonstrated first. Since the case in

which q* = 0 is trivial, suppose instead that q* ≥ 1; for an arbitrary choice of
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k* ∈ {0, 1, . . . , q* − 1}, it will be shown that ωi is not a bank k*-jump. Corol-

lary 7.4.12 implies that σR
j,k(ωi) = σR

j,k(ωi−1) for each j ∈ Λf and k ≤ k*. For any

particular j ∈ Λf, Corollary 7.4.12 implies that if κR
j (ωi−1) ≤ k*, then ζR

j (ωi) =

ζR
j (ωi−1). Corollary 7.4.11 implies that if κR

j (ωi−1) > k*, then κR
j (ωi) > k* as well,

in which case Lemma 7.4.8 implies that σj,k(t) = σR
j,k(ωi−1) = 0 for each k ≤ k* and

t ∈ [ωi−1, ωi+1]∖Z. Combining the above cases, it follows that

ζR
j (ωi) u(j)(t) = ζR

j (ωi−1) u(j)(t), ∀t ∈ [ωi−1, ωi+1]∖Z, ∀j ∈ Λf,

and

ζR
j (ωi) u̇(j),k(t) = ζR

j (ωi−1) u̇(j),k(t),

∀t ∈ [ωi−1, ωi+1]∖Z, ∀j ∈ Λf, ∀k ∈ {1, . . . , k*}.

With H̃ defined as in Lemma 7.4.13, and with h defined as in Algorithm 7 (per-

mitting, for the moment, the t argument of h to take values outside [ωi−1, ωi]), it

follows that h(i, t, x(t, c0)) is well-defined at each t ∈ [ωi, ωi+1]∖Z, with

h(i, t, x(t, c0)) = h(i + 1, t, x(t, c0)), ∀t ∈ [ωi−1, ωi+1]∖Z,

and

H̃(t, [xt]
′(c0; M(1:k*))) = Ĥ(𝜁R(ωi−1), t, [xt]

′(c0; M(1:k*))), ∀t ∈ [ωi−1, ωi+1]∖Z.

So, by inspection, the mapping t ↦→ x(t, c0) solves the bank-locked ODE (7.11) on

[ωi−1, ωi+1], rather than just on [ωi−1, ωi]. Similarly, the mapping

t ↦→ [xt]
′(c0; M(1:k*)) = [xt]

′(c0; M) I(1:k*)

solves the leftmost k* columns of the bank-locked sensitivity ODE (7.12) on the in-

terval [ωi−1, ωi+1], rather than just on [ωi−1, ωi]. Thus, the proof of Theorem 7.4.14,

Lemmata 7.4.8 and 7.4.13, and Corollary 7.4.12 imply that (7.18) remains applicable

for each t ∈ ([ωi−1, ωi+1]∩ Ti)∖Z and k ≤ k*, which implies that sL
j,k(ωi) = σL

j,k(ωi)
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and sR
j,k(ωi) = σR

j,k(ωi) for each j ∈ Λf and k ≤ k*.

Now suppose, to obtain a contradiction, that ωi is a j-bank k*-jump for some

j ∈ Λf. Thus, k* = κR
j (ωi−1). Corollary 7.4.12 then implies that σL

j,k*(ωi) ∈

{−1,+1}. Since ωi is not a valley k*-crossing, it follows that (σL
j,k*(ωi), σR

j,k*(ωi) ∈

{(−1,−1), (−1, 0), (+1,+1), (+1, 0)}. The final result in the previous paragraph

then shows that (sL
j,k*(ωi), sR

j,k*(ωi) ∈ {(−1,−1), (−1, 0), (+1,+1), (+1, 0)}. This

shows that ωi is also not a bank k*-jump, which is the required contradiction.

Next, to obtain a contradiction, suppose that ωi is not a bank q*-jump. The

cases in which q* = 0 and q* > 0 will be considered separately. First, suppose

that q* = 0. Corollary 7.4.12 and (7.19) imply that sL
j,0(ωi) = σL

j,0(ωi) = σR
j,0(ωi−1)

for each j ∈ Λf. Thus, if sL
j,0(ωi) ∈ {−1,+1} for some j ∈ Λf, then κR

j (ωi−1) =

0. Using this result, since ωi is not a bank 0-jump, Lemma 7.4.21 implies that

sR
j,0(ωi) = sL

j,0(ωi) = σR
j,0(ωi−1) ∈ {−1, 0,+1} for each j ∈ Λf. The continuity of

û(j),0 at ωi then implies that, for sufficiently small δ > 0,

|û(j),0(t)| = σR
j,0(ωi−1) û(j),0(t) = ζR

j (ωi−1) û(j),0(t),

∀t ∈ (ωi − δ, ωi + δ), ∀j ∈ Λf;

the rightmost equation above follows from (7.19), considering the cases in which

σR
j,0(ωi−1) is either zero or nonzero separately. Inspecting the factored represen-

tation of f, the above result, combined with (7.19), shows that the mapping t ↦→

𝜉(t, 0) solves the following ODE on (ωi − δ, ωi + δ) uniquely:

dz
dt

(t) = f(t, z(t)), z(ωi) = 𝜉(ωi, 0) = x(ωi, c0).

Thus, 𝜉(·, 0) ≡ x(·, c0) on (ωi − δ, ωi + δ), and so sL
j,0(ωi) = σL

j,0(ωi) and sR
j,0(ωi) =

σR
j,0(ωi) for each j ∈ Λf. Since there exists j* ∈ Λf for which ωi is a j*-valley 0-

crossing, it follows immediately that ωi is a j*-bank 0-jump, which is the required

contradiction.

Next, suppose that q* > 0. Using the final claim of the lemma, which was

proven above, it follows that ωi is not a bank k-jump for any k ≤ q*. Since ωi
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is not a bank 0-jump, a similar argument to the “q* = 0” case shows that there

exists a neighborhood N̂ ⊂ Ti of ωi on which 𝜉(·, 0) ≡ x(·, c0), and so sL
j,0(ωi) =

σL
j,0(ωi) and sR

j,0(ωi) = σR
j,0(ωi) for each j ∈ Λf. Since ωi is not a valley 0-crossing,

Lemma 7.4.10 then implies that sL
j,0(ωi) = sR

j,0(ωi) for each j ∈ Λf.

Since ωi is not a bank k-jump for any k ≤ q*, Corollary 7.4.12, Lemma 7.4.21,

(7.18), and (7.19) imply that, for each j ∈ Λf for which κ̄j := κR
j (ωi−1) ≤ q*,

ζR
j (ωi−1) = σR

j,κ̄j
(ωi−1) = σL

j,κ̄j
(ωi) = sL

j,κ̄j
(ωi) = sR

j,κ̄j
(ωi).

The rightmost equation above follows by contradiction; if, instead, sL
j,κ̄j

(ωi) ̸=

sR
j,κ̄j

(ωi), then Lemma 7.4.21 implies that (sL
j,κ̄j

(ωi), sR
j,κ̄j

(ωi)) ∈ {(−1,+1), (+1,−1)},

in which case ωi is a bank κ̄j-jump, which is false by assumption.

Moreover, for each j ∈ Λf and k < κR
j (ωi−1), (7.18) and (7.19) imply that

sR
j,k(ωi−1) = σR

j,k(ωi−1) = 0;

the analyticity of û(j),k on T(i) then implies that

û(j),k(t) = 0, ∀t ∈ Ti, ∀j ∈ Λf, ∀k < κR
j (ωi−1).

Combining the above results and Lemma 7.2.1, and choosing N̂ to be a smaller

neighborhood of ωi if necessary, there exists a finite set Ẑ ⊂ N̂ for which:

fsign (û(j),0(t), . . . , û(j),q*(t)) û(j),k(t) = ζR
j (ωi−1) û(j),k(t),

∀t ∈ N̂∖Ẑ, ∀j ∈ Λf, ∀k ∈ {1, . . . , q*}.

Comparing Algorithms 4 and 6 and combining the above results, it follows that,

for each t ∈ N̂∖Ẑ,

Ĥ
(
𝜁R(ωi−1), t, ∂𝜉

∂p (t, 0) I(1:q*)

)
= [ft]

′(x(t, c0);
∂𝜉
∂p (t, 0) I(1:q*)).

Moreover, it follows directly from the definition of the LD-derivative that

[xωi ]
′(c0; M) I(1:q?) = [xωi ]

′(c0; M(1:q?)).
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Thus, the mapping t ↦→ ∂𝜉
∂p (t, 0) I(1:q*) is the unique solution on N̂ of the ODE:

dA
dt

(t) = [ft]
′(x(t, c0); A(t)), A(ωi) =

∂𝜉

∂p
(ωi, 0) I(1:q*) = [xωi ]

′(c0; M(1:q*)).

Since the mapping t ↦→ [xt]
′(c0; M(1:q*)) also solves this ODE, it follows that the

mappings t ↦→ ∂𝜉
∂p (t, 0) I(1:q*) and t ↦→ [xt]

′(c0; M(1:q*)) are identical on N̂, and so

sL
j,k(ωi) = σL

j,k(ωi) and sR
j,k(ωi) = σR

j,k(ωi) for each j ∈ Λf and k ≤ q*. Since there

exists j* ∈ Λf for which ωi is a j*-valley q*-crossing, it follows immediately that ωi

is a j*-bank q*-jump, which is the required contradiction.

The previous two lemmata yield the following theorem, which can be used

to determine ωi during integration of the bank-locked ODE and sensitivity ODE.

Recall that the bank-locked ODE and sensitivity ODE have well-defined unique

solutions on an open superset Ti of [ωi−1, ωi], even though ωi is not known a priori.

Theorem 7.4.25. If there is no bank jump in the set (ωi−1, t f ), then ωi = t f . Otherwise,

ωi is the least bank jump in the set (ωi−1, t f ). In the latter case, if k* denotes the least

value of k ∈ {0, 1, . . . , p} for which ωi is a bank k-jump, then ωi is a valley k*-crossing,

but is not a valley k-crossing for any k < k*.

Proof. If there is no bank jump in the set (ωi−1, t f ), then the contrapositive of

Lemma 7.4.24 implies that ωi ≥ t f . So, ωi = t f , as required.

In the remainder of this proof, suppose that there exists a bank jump in the

set (ωi−1, t f ). In this case, Lemma 7.2.1 implies that there are finitely many bank

jumps in the set [ωi−1, t f ], and so there exists a least bank jump τ in (ωi−1, t f ).

Lemma 7.4.23 implies that ωi ≤ τ < t f , and so Lemma 7.4.24 implies that ωi is a

bank jump. Thus, the definition of τ and the inequality ωi ≤ τ together show that

ωi = τ, as required.

Choose q* ∈ {0, 1, . . . , p} as in the statement of Lemma 7.4.24; Lemma 7.4.24

implies that ωi is a bank q*-jump, but is not a bank k-jump for any k < q*. Thus,

q* = k*; the definition of q* then shows that ωi is a valley k*-crossing, but is not a

valley k-crossing for any k < q* = k*.
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Remark 7.4.26. Since the bank-locked sensitivity ODE is linear, its columns are uncou-

pled. Thus, for any k ∈ {1, . . . , p}, locating a bank k-jump requires integrating only the

bank-locked ODE and the kth column of the bank-locked sensitivity ODE.

7.5 Numerical method

Algorithm 9 is a method that uses the main results of Section 7.4 to evaluate the LD-

derivative [xt f ]
′(c0; M), assuming exact arithmetic and exact integration of ODEs.

Algorithm 10 is a subroutine that is called in each iteration of the main loop of

Algorithm 9. When this overall method is implemented in practice, numerical

error will be introduced inevitably; in response to this error, further assumptions

and modifications will be made below. This section describes Algorithm 9 and its

implementation, and considers its advantages over alternative methods.

7.5.1 Method outline

This section presents a brief outline of Algorithm 9; a more detailed account is pre-

sented in the following section. Broadly, Algorithm 9 proceeds by first initializing

ω0 := t0, x(t0, c0) := c0, [xt0 ]
′(c0; M) := M, and a counter i := 0. The algorithm

then uses the results of Section 7.4 to integrate a tractable reformulation of the sen-

sitivity ODE (7.3), alternating between a probe phase and a bank-locked integration

phase, until ωλ = t f is reached, and the required LD-derivative [xt f ]
′(c0; M) has

been evaluated.

In the probe phase, the results of Section 7.4.3 are used to determine the quan-

tities 𝜁R(ωi) and 𝜅R(ωi). After the probe phase, i is incremented by 1, and the

bank-locked integration phase begins; in this phase, the results of Sections 7.4.2

and 7.4.4 are used to compute ωi and the quantities x(ωi, c0) and [xωi ]
′(c0; M). If

ωi < t f , then the procedure returns to the beginning of the probe phase and con-

tinues.
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Algorithm 9 Computes [xt f ]
′(c0; M), with x described by Assumption 7.3.1

Require: p ∈N, M ∈ Rn×p

i← 0
ω0 ← t0
x(t0, c0)← c0
[xt0 ]

′(c0; M)← M
𝜁 ← 0 ∈ {−1, 0,+1}`
𝜅̄← (p + 1)1 ∈ {0, 1, . . . , p + 1}`
q? ← 0
J? ← Λf
loop

Use Algorithm 10 to compute 𝜁 ← 𝜁R(ωi) and 𝜅̄← 𝜅R(ωi).
i← i + 1
p← 0 ∈ Rp

Begin integrating the ODEs (7.11) and (7.12) simultaneously on [ωi−1, t f ], detecting
bank jumps.
if a bank jump is detected in (ωi−1, t f ) then

Terminate integration at the least bank jump ωi in (ωi−1, t f ).
x(ωi, c0)← 𝜉(ωi, 0)
[xωi ]

′(c0; M)← A(ωi)
Set q? to be the least element k of {0, 1, . . . , p} for which ωi is a bank k-jump.

else
return [xt f ]

′(c0; M) = A(t f )
end if
if |{j ∈ Λf : κ̄j = q?}| = 1 then

Find j? ∈ Λf for which κ̄j? = q?.
ζ̄ j? ← −ζ̄ j?

J? ← {j ∈ Λf : κ̄j ≥ q?}∖{j?}
else

J? ← {j ∈ Λf : κ̄j ≥ q?}
end if

end loop
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Algorithm 10 Probe phase of Algorithm 9, which computes 𝜁 ← 𝜁R(ωi) and 𝜅̄ ←
𝜅R(ωi).
Require: p, t f , x(ωi , c0), [xωi ]

′(c0; M), 𝜁 ∈ {−1, 0,+1}`, 𝜅̄ ∈ {0, 1, . . . , p + 1}`, q? ∈ {0, 1, . . . , p}, J? ⊂ Λf and ωi ∈ [t0, t f )
from Algorithm 9, and δ > 0
if J? = ∅ then

return
end if
t? ← min {ωi + δ, t f }
for all j ∈ J? do

ζ̄ j ← 0, κ̄j ← p + 1
end for
if q? = 0 then

for all j ∈ J* do
if a sufficient condition in Corollary 7.4.17 for κR

j (ωi) to be 0 is met then

Compute ζ̄ j ← σR
j,0(ωi) ∈ {−1,+1} using Corollary 7.4.17.

κ̄j ← 0, J? ← J?∖{j}
end if

end for
if J? = ∅ then

return
end if
Begin integrating the ODEs (7.2) and (7.14) for each j ∈ J? on [ωi , t?], detecting valley 0-crossings.
if a valley 0-crossing is detected in (ωi , t?] then

Terminate integration at the least valley 0-crossing τ? in (ωi , t?]
t? ← τ?

end if
for all j ∈ J? do

if wj(t?) ̸= 0 then
ζ̄ j ← sign wj(t?), κ̄j ← 0, J? ← J?∖{j}

end if
end for
q? ← 1

else if q? ≥ 1 then
p← 0 ∈ Rp

Begin integrating the ODE (7.11) and the leftmost (q? − 1) columns of the ODE (7.12) simultaneously on [ωi , t?],
detecting bank k-jumps for all k < q?.
if a bank k-jump is detected in (ωi , t?] then

Terminate integration at the least bank jump τ? detected in (ωi , t?].
t? ← τ?

end if
end if
k? ← q?
while k? ≤ p and J? ̸= ∅ do

Begin integrating the ODEs (7.2), (7.15), and (7.16) simultaneously on [ωi , t*], detecting valley k?-crossings.
if a valley k?-crossing is detected in (ωi , t?) then

Terminate integration at the least valley k?-crossing τ? in (ωi , t?)
t? ← τ?

end if
for all j ∈ J? do

if zj(t?) ̸= 0 then
ζ̄ j ← sign zj(t?), κ̄j ← k?, J? ← J?∖{j}

end if
end for
k? ← k? + 1

end while
return
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7.5.2 Method summary

A more detailed description of Algorithm 9 is presented in this section. Algo-

rithm 9 sets a counter i ← 0, corresponding to the current index of ωi. Integration

of the ODEs (7.2) and (7.3) is initialized at ω0 := t0. Vectors 𝜁 and 𝜅̄ are initial-

ized; these vectors will hold the known values of ζR
j (ωi) and κR

j (ωi) throughout

the algorithm, and will otherwise default to 0 or p + 1, respectively. A set J? is

also initialized to Λf, and will play the role of J(q?) in Section 7.4.3. A quantity

q? ∈ {0, 1, . . . , p} is initialized to 0, and will play the role of its namesakes in The-

orem 7.4.25 and Section 7.4.3. The following steps are then repeated until ωλ := t f

is reached, at which point [xt f ]
′(c0; M) is returned.

Firstly, a probe phase described by Algorithm 10 is carried out, to determine and

store the quantities 𝜁R(ωi) and 𝜅R(ωi) in the vectors 𝜁 and 𝜅̄, respectively. This

phase takes an approach motivated by the results of Section 7.4.3. The ODEs de-

scribed in this section are integrated on a duration [ωi, ωi + δ], where the parameter

δ > 0 is chosen to be small relative to (t f − t0), but large enough that any apprecia-

ble deviation of an ODE state variable from its initial condition can be recognized.

Ideally, δ should be short enough that there are no bank jumps or valley crossings

of the corresponding ODE solutions on (ωi, ωi + δ]; if any bank jumps or valley

crossings are detected in this duration, then the algorithm effectively shortens δ

via a proxy quantity t?.

In the probe phase, if q? = 0, then Lemma 7.4.16 and Corollary 7.4.17 are used to

determine σR
j,0(ωi) for each j ∈ Λf. If q? ≥ 1, then Corollary 7.4.12 implies that, for

each j ∈ Λf for which κR
j (ωi−1) < q?, ζR

j (ωi) = ζR
j (ωi−1) and κR

j (ωi) = κR
j (ωi−1),

so there is no need to update these quantities from their previously stored val-

ues. The bank-locked ODE and the leftmost (q? − 1) columns of the bank-locked

sensitivity ODE are used to check that there are no bank k-jumps on (ωi, ωi + δ)

for any k < q?. Observe that, although ζR
j (ωi) is unknown at this point for each

j ∈ Λf for which κR
j (ωi) ≥ q?, these values are not necessary to carry out the re-

quired bank-locked integration, since the corresponding functions û(j),k are iden-
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tically zero. Now Corollary 7.4.12 also implies that, for each j ∈ Λf for which

κR
j (ωi−1) ≥ q?, the inequality κR

j (ωi) ≥ q? also holds. Thus, the strong inductive

approach described in Section 7.4.3 is applied; Theorem 7.4.19 is used to compute

σR
j,k(ωi) values for k := q?, q? + 1, . . . , p, terminating when 𝜁R(ωi) and 𝜅R(ωi) have

been determined. If the jth components of these vectors have not been determined

after the k := p iteration, then it follows that σR
j,k(ωi) = 0 for each k ∈ {0, 1, . . . , p}.

In this case, ζR
j (ωi) = 0 and κR

j (ωi) = p + 1, and so ζ̄ j and κ̄j need not be changed

from their default values.

Once the probe phase is complete, the counter i is incremented by one, and a

bank-locked integration phase begins. The results of Section 7.4.4 are then applied to

solve the ODEs (7.2) and (7.3) on [ωi−1, ωi], determining the unknown quantity ωi

in the process. To accomplish this, Theorem 7.4.25 is applied during simultaneous

integration of the bank-locked ODE and sensitivity ODE, noting that the latter can

be solved efficiently using established techniques for sensitivity analysis of smooth

dynamic systems. If ωi = t f , then the required LD-derivative can be returned; if

not, then Theorem 7.4.25 is used to identify the least value of q? for which ωi is

a valley q?-crossing. If there is only one j? ∈ Λf for which κR
j?(ωi−1) = q?, then

this information is sufficient to conclude that κR
j?(ωi) = κR

j?(ωi−1) and ζR
j?(ωi) =

−ζR
j?(ωi−1), since ωi is certainly a j?-valley q?-crossing in this case. At this point,

the method returns to the probe phase above.

7.5.3 Additional assumptions

The analysis in Section 7.4 concerning the structure of the sensitivity ODE (7.3)

does not make any assumptions beyond the basic Assumption 7.3.1. To implement

Algorithm 9 in practice, the following additional assumptions and considerations

will be enforced to overcome the numerical error introduced by function evalua-

tions and integration methods.

Firstly, to use the event detection algorithm of [89] to detect bank jumps and

valley crossings, appropriate transversality conditions are assumed to hold at each
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event; this assumption can be relaxed if a more rigorous yet more computationally

expensive root-finding approach is used [47]. If these transversality conditions

are not met, then event detection could yield false positives or false negatives; in

Algorithm 10, this could lead to incorrect evaluations of 𝜁R(ωi) and 𝜅R(ωi), while

in the main Algorithm 9, this could lead to valley crossings not being detected, or

to spurious valley crossings being identified. If any of these errors are encountered,

then the LD-derivatives be returned by the method would likely be incorrect.

Secondly, when using the integrals in Lemma 7.4.16 to determine σR
j,0(ω), or

when using Theorem 7.4.19 to determine σR
j,q?(ω

?), numerical error involved in

computing the associated quadrature variables prevents checking that the inte-

grals involved are exactly zero. Thus, if any such integral lies in a set [−ε, ε] for

a small tolerance ε > 0, then this integral will be assumed to be zero for the pur-

poses of Algorithm 10. If the integral is not, in fact, exactly zero, then the returned

LD-derivatives would likely be incorrect. The chosen parameter ε should increase

with both the parameter δ, and an estimate of the Lipschitz constant of the right-

hand side of the bank-locked sensitivity ODE (7.12).

As a similar issue, observe that the sufficient conditions for κR
j (ωi) to be zero

provided by Corollary 7.4.17 are valid regardless of the value of εσ ≥ 0. Thus,

εσ should be chosen to be a small positive tolerance: the smaller εσ is, the more

likely the sufficient conditions of Corollary 7.4.17 are to hold. Nevertheless, εσ

should be large enough that, if u(j)(ωi, x(ωi, c0)) or dj would both be exactly zero in

the absence of numerical error, then the numerical error introduced by computing

these quantities would not lead to a sufficient condition in Corollary 7.4.17 from

being erroneously satisfied.

Since there are a finite number of valley crossings in [t0, t f ], there exists δ̂ >

0 for which, for each i ∈ {0, 1, . . . , λ − 1}, the set (ωi, ωi + δ̂] does not contain

any valley crossings. If the parameter δ > 0 in Algorithm 10 is assumed to be

such a δ̂, then there is no need for detection of bank jumps or valley crossings

in Algorithm 10. With these steps omitted, Algorithm 10 becomes the simpler

Algorithm 11. However, as discussed earlier, δ > 0 should also be chosen to be
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large enough that any considered ODE solution that is not constant on [ωi, ωi +

δ] can be reasonably expected to differ significantly from its value at ωi over the

interval [ωi, ωi + δ]. Despite the discussion in this paragraph, detection of bank

jumps in the main Algorithm 9 is a critical step of the method, and is required to

determine the quantities ωi.

Observe that the original ODE (7.2) has an abs-factorable right-hand side func-

tion, as do the probe ODEs (7.14)–(7.16). Thus, if an implicit integration method

such as a backward differentiation formula (BDF) method is used to solve these

ODEs, then each step of the integration method will require solving an equation

system with a residual function that may not be differentiable everywhere. If these

equation systems cannot be circumvented or solved with equation-solving meth-

ods developed for smooth problems, then dedicated equation-solving methods for

nondifferentiable problems [91, 92] could be employed. Alternatively, specialized

integration methods [33] have also been proposed for such nonsmooth ODEs, and

could be employed here. Since the bank-locked ODE and bank-locked sensitivity

ODE have smooth right-hand side functions, they are not affected by the issues in

this paragraph.

7.5.4 Computational performance

The computational complexity of Algorithm 9 is evidently dominated by the com-

plexity of the various ODE integration steps. The bank-locked integration steps

of the main Algorithm 9 ultimately require solving the ODEs (7.11) and (7.12) on

[ωi−1, ωi] for each i ∈ {1, . . . , λ}. If solved naïvely, the cost of formulating and

solving the bank-locked sensitivity ODE (7.12) would be approximately p times

the cost of solving the original ODE (7.2). Since (7.12) is a classical sensitivity sys-

tem, however, it can be solved efficiently using the staggered corrector method [24];

the total computational cost of this bank-locked integration is therefore likely to be

significantly less than in the naïve case.

The probe phase is carried out λ times in total: once at ωi for each i ∈ {0, 1, . . . , λ−
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Algorithm 11 Modified probe phase of Algorithm 9, as discussed in Section 7.5.3.
Require: p, t f , x(ωi, c0), [xωi ]

′(c0; M), 𝜁 ∈ {−1, 0,+1}`, 𝜅̄ ∈ {0, 1, . . . , p + 1}`, q? ∈
{0, 1, . . . , p}, J? ⊂ Λf and ωi ∈ [t0, t f ) from Algorithm 9, and δ > 0
if J? = ∅ then

return
end if
t? ← min {ωi + δ, t f }
for all j ∈ J? do

ζ̄ j ← 0
κ̄j ← p + 1

end for
if q? = 0 then

for all j ∈ J* do
if a sufficient condition in Corollary 7.4.17 for κR

j (ωi) to be 0 is met then
Compute ζ̄ j ← σR

j,0(ωi) ∈ {−1,+1} using Corollary 7.4.17.
κ̄j ← 0
J? ← J?∖{j}

end if
end for
if J? = ∅ then

return
end if
Integrate the ODEs (7.2) and (7.14) for each j ∈ J? on [ωi, t?].
for all j ∈ J? do

if wj(t?) ̸= 0 then
ζ̄ j ← sign wj(t?)
κ̄j ← 0
J? ← J?∖{j}

end if
end for
q? ← 1

end if
k? ← q?

while k? ≤ p and J? ̸= ∅ do
Integrate the ODEs (7.2), (7.15), and (7.16) simultaneously on [ωi, t*].
for all j ∈ J? do

if zj(t?) ̸= 0 then
ζ̄ j ← sign zj(t?)
κ̄j ← k?

J? ← J?∖{j}
end if

end for
k? ← k? + 1

end while
return
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1}. If Algorithm 11 is used in place of Algorithm 10, as discussed in Section 7.5.3,

then the cost of each probe phase is dominated by the cost of solving the cou-

pled ODEs (7.2) and (7.14) and the coupled ODEs (7.15) and (7.16) on a subset of

[ωi, ωi + δ]. By inspection of the ODEs involved, the cost of solving the former cou-

pled pair is comparable to the cost of solving the latter coupled pair, so it suffices

to consider only the latter in detail. Though we expect that large values of κR
j (ωi)

are unlikely, and that κR
j (ωi) will often be 0 or 1 in practice, each probe phase could

require p iterations of the while–loop in Algorithms 10 or 11 in the worst case. As

a particular pathological case in which this worst case is reached, observe that, if

the provided factored representation for f contains an absolute value v(j) := |u(j)|

whose argument is zero at each x(t, c) regardless of the value of c, then u̇(j),k(t) will

be zero at each k and t, in which case κR
j (t) will be (p + 1) at each t. Though this

case could in principle be eliminated through preprocessing or manual reformula-

tion of the provided representation of f, the former approach would likely not be

able to handle pathological formulations in the vein of

f : (t, x) ↦→ x2 + | sin2(x) + cos2(x)− 1|,

without some capacity for symbolic manipulation.

Within the probe phase, evaluating the right-hand sides for the ODE pair (7.15)

and (7.16) requires computing x(t, c0); to accomplish this, (7.15) and (7.16) can be

solved simultaneously with the original ODE (7.2) on [ωi, t?]. The structural simi-

larity of Algorithm 8 to the factored representation of f suggests that the staggered

corrector method could be used again to reduce the computational cost of solving

(7.15) and (7.16). Algorithm 10 has an else if block that Algorithm 11 lacks; this

block demands solution of a reduced bank-locked sensitivity ODE on [ωi, t?], and

can be accomplished efficiently using the staggered corrector method. The detec-

tion of bank jumps and valley crossings in Algorithm 10 requires appending extra

algebraic variables to the considered ODEs: one for each absolute-value function

in the provided factored representation of f.
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7.5.5 Alternative methods

This section briefly describes why certain plausible alternative approaches to Al-

gorithm 9 were not pursued.

Firstly, it is, of course, possible to attempt to integrate the sensitivity ODE (7.3)

directly, using a standard numerical integration method. Since the ODE (7.3) has

a right-hand side that may be discontinuous with respect to its A(t) term, how-

ever, there is no guarantee that any produced numerical solution will be mean-

ingful [14]; the behavior of the integration method near any discontinuity of the

right-hand side would be unpredictable.

Secondly, rather than solving the ODEs (7.2), (7.15), and (7.16) simultaneously

in each iteration of the while–loop in Algorithm 10, the ODE (7.2) could be solved

only once on [ωi, t*] at the start of this loop; the results of this integration could in

principle be stored and fed into the right-hand sides of the ODEs (7.15) and (7.16)

at each iteration of the while–loop. This approach would eliminate the need for

redundant integration of (7.2), and would likely improve the computational effi-

ciency of the overall procedure. However, this approach would also require careful

storage and extraction of the LU-factors used in the corrector iterations of the in-

tegration method when solving (7.2), which would consequently tie the presented

method to a particular nonstandard ODE solver.

Thirdly, according to Lemma 7.4.18, the probe ODE (7.15) in y? can be inte-

grated to provide any particular column of the desired LD-derivative [xt]
′(c0; M).

Moreover, valley crossings can be detected during integration of the ODE (7.16)

according to Theorem 7.4.19. Combining these observations, if each integration of

the probe ODEs (7.15) and (7.16) in Algorithm 10 were carried out on [ωi, ωi+1] in-

stead of [ωi, t*], with ωi+1 determined during integration of the probe ODEs, then

certain columns of the required LD-derivatives could be computed in this manner

instead. This method, however, would suffer even more from the computational

burden of either integrating the original ODE (7.2) redundantly on [ωi, ωi+1] dur-

ing each probe integration, or storing the LU-factors corresponding to this integra-
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tion of (7.2) on the interval [ωi, ωi+1]. Moreover, this method cannot exploit the

computational efficiency of solving the bank-locked sensitivity ODE (7.12) to the

same extent as the presented approach.

7.6 Implementation and examples

This section describes an implementation of the method described in Section 7.5,

and demonstrates its application to example problems for illustration.

7.6.1 Implementation

Algorithm 9 was implemented in Fortran, with Algorithm 11 embedded as the

probe phase. In this implementation, all integration is performed using the in-

tegrator DSL48SE [112, 113], which has capabilities for event detection and spar-

sity exploitation. To use DSL48SE, appropriate Fortran subroutines corresponding

to the right-hand side functions of the quadrature ODE (7.14), the coupled probe

ODEs (7.2), (7.15), and (7.16), and the bank-locked system (7.11) and (7.12) are

generated automatically. This automatic code generation is performed in C++, us-

ing a modified version of a code generation tool developed for use in the reverse

propagation of McCormick relaxations [120]. This modified code generation tool

uses operator overloading in C++ to construct and store a factored representation

the right-hand side function f of the ODE (7.2). Once this factored representation

is stored, the tool constructs the required auxiliary right-hand side subroutines

by stepping through this factored representation, and writing appropriate Fortran

code corresponding to each elemental function encountered.

7.6.2 Examples

In this section, the developed implementation of Algorithms 9 and 11 is applied to

various example problems. In each case, the tolerance parameters ε and εg were
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Table 7.1: LD-derivative results for Example 7.6.1, with Λ f =: {j*}
t0 t f c0 M x(t f , c0) [xt f ]

′(c0; M) ζ̄ j*(t0) κ̄j*(t0)

0 2 1
[
1 0 0

]
7.389

[
7.389 0 0

]
+1 0

0 2 −1
[
1 0 0

]
−0.1353

[
0.1353 0 0

]
−1 0

0 2 0
[
1 0 0

]
0

[
7.389 0 0

]
+1 1

0 2 0
[
−1 0 0

]
0

[
−0.1353 0 0

]
−1 1

0 2 0
[
0 2 0

]
0

[
0 14.78 0

]
+1 2

0 2 0
[
0 0 0

]
0

[
0 0 0

]
0 4

chosen to be 10−3

t f−t0
, and each required ODE integration was carried out with abso-

lute and relative tolerances of 10−8.

Example 7.6.1. Consider an instance of the system described by Assumption 7.3.1, with

n := 1, X := R, t0 := 0, t f := 2, and

f : R×R ↦→ R : (t, z) ↦→ |z|.

The developed implementation was applied to this system to evaluate [xt f ]
′(c0; M) at vari-

ous values of c0 ∈ R and M ∈ R1×3; the numerical results of this application are presented

in Table 7.1. Observe that Λ f contains a single element; in Table 7.1, this element is de-

noted j*. The obtained results were verified by direct computation in each case, since the

considered ODE can be solved analytically.

Example 7.6.2. Consider another instance of the system described by Assumption 7.3.1,

with n := 1, X := R, t0 := 0, t f := 2, and

f : R×R ↦→ R : (t, z) ↦→ (1− t)|z|.

The developed implementation was applied to this system to evaluate [xt f ]
′(c0; M) at vari-

ous values of c0 ∈ R and M ∈ R1×3; the numerical results of this application are presented

in Table 7.2. Again, Λ f contains a single element; in Table 7.2, this element is denoted j*.

The obtained results were verified by direct computation in each case, since the considered

ODE system can be solved analytically.
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Table 7.2: LD-derivative results for Example 7.6.2, with Λ f =: {j*}
t0 t f c0 M x(t f , c0) [xt f ]

′(c0; M) ζ̄ j*(t0) κ̄j*(t0)

0 2 1
[
1 0 0

]
1.000

[
1.000 0 0

]
+1 0

0 2 −1
[
1 0 0

]
−1.000

[
1.000 0 0

]
−1 0

0 2 0
[
1 0 0

]
0

[
1.000 0 0

]
+1 1

0 2 0
[
0 −1 0

]
0

[
0 −1.000 0

]
−1 2

0 2 0
[
0 0 0

]
0

[
0 0 0

]
0 4

7.7 Conclusions

To our knowledge, the method presented in this chapter is the first numerical

method for parametric generalized derivative evaluation for a broad class of para-

metric ordinary differential equations with right-hand side functions that are not

differentiable everywhere. Thus, this method extends the scope of established

methods for equation-solving and local optimization that are based on generalized

derivatives. This method relies heavily on the theoretical foundation provided in

Chapters 5 and 6.
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Chapter 8

Lexicographic derivatives of hybrid

systems

8.1 Introduction

This chapter is reproduced from the article [56]. Hybrid discrete/continuous sys-

tems [29, 30, 48, 72] represent dynamic systems exhibiting continuous evolution de-

scribed by classical systems of differential equations, punctuated by well-defined

discrete events. At these events, the underlying system of differential equations

may be switched, and the state variables of the system may be permitted to jump.

These discrete transitions permit intuitive modelling of discrete phenomena in the

underlying system, including transitions between operating regimes of a process

system, activation of safety mechanisms, and changes in thermodynamic phase.

More abstract examples of hybrid systems emerge in [102], as auxiliary dynamic

systems which provide convex underestimators for the state variables of an under-

lying continuous system, for use in global optimization methods [45].

Sensitivity analysis results have been obtained for certain hybrid systems [30],

which are summarized in Section 8.2 below. In these systems, the functions de-

scribing the continuous evolution of the system and the handling of discrete events

are all continuously differentiable, and each event time is described as a well-
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defined continuously differentiable implicit function of the system parameters.

The latter condition is an example of a transversality condition. Under these con-

ditions, the state variables are themselves continuously differentiable functions of

the parameters (except possibly at event times), with parametric derivatives that

are described as the unique solution of an auxiliary hybrid system.

Chapters 3, 5, and 7 have shown that Nesterov’s lexicographic derivatives [79]

may be evaluated for the unique solutions of parametric ordinary differential equa-

tions (ODEs) with right-hand side functions that are locally Lipschitz continu-

ous but not necessarily differentiable everywhere. Lexicographic derivatives have

been shown in [79] and Chapter 2 to perform as well as elements of Clarke’s gen-

eralized Jacobian [16] in established numerical methods for solving nonsmooth

equation systems (e.g. [22, 92]) and local optimization problems (e.g. [63, 71]).

Moreover, any lexicographic derivative of a differentiable function is in fact the

classical (Fréchet) derivative, and any lexicographic derivative of a convex func-

tion is a subgradient in the sense of convex analysis [79]. To our knowledge, the

lexicographic derivative is the only generalized derivative that has these proper-

ties and has been described for the solutions of parametric ODEs with nondiffer-

entiable right-hand side functions.

Unlike the sensitivity analysis results for hybrid systems in [30], the theory

of Chapter 5 does not permit the system state to jump, but does not require any

transversality conditions to be satisfied when the system state visits points of non-

differentiability in the ODE right-hand side function. This chapter seeks to com-

bine the benefits of both approaches, by considering a hybrid system as described

in [30], but with all continuous differentiability requirements relaxed, so that the

functions involved are lexicographically smooth in the sense of Nesterov [79], but

need not be differentiable everywhere. Thus, discrete jumps in the system state are

permitted, provided that transversality conditions are satisfied. However, nondif-

ferentability in the functions determining the continuous evolution of the system,

the event times, and the system state jumps is also permitted, relaxing the transver-

sality conditions, and permitting more modelling flexibility. The hybrid systems
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describing convex relaxations of ODEs in [102] are of this form, for example. More-

over, this flexibility permits sensitivity analysis for certain hybrid systems that ex-

hibit pathological behavior, such as well-defined changes in the discrete mode se-

quence.

To handle the hybrid systems described in the previous paragraph, this chap-

ter develops sufficient conditions under which a local inverse function or implicit

function will be lexicographically smooth, and describes these functions’ lexico-

graphic derivatives. These lexicographic derivatives are readily computed when

the functions involved are piecewise differentiable in the sense of Scholtes [97]. Com-

bining this theory with the theory of Chapter 5, parametric lexicographic deriva-

tives are described for the hybrid system in question, in terms of an auxiliary hy-

brid system. These lexicographic derivatives are then computed using the LD-

derivative, which was defined in Chapter 3 as a variant of the lexicographic deriva-

tive that satisfies intuitive calculus rules.

This chapter is structured as follows. Section 8.2 summarizes established re-

sults concerning hybrid systems. Section 8.3 presents sufficient conditions under

which a local inverse function or a local implicit function will be lexicographically

smooth, and describes the corresponding lexicographic derivatives. Section 8.4

presents the main theorem of the chapter, in which lexicographic derivatives are

presented for the hybrid systems described above, and Section 8.5 develops inter-

mediate results that are used in the proof of this main theorem. Section 8.6 presents

examples in which the developed theory is applied to various hybrid systems for

illustration.

8.2 Classical sensitivity analysis for hybrid systems

This section summarizes relevant established results concerning sensitivity anal-

ysis for hybrid discrete/continuous systems. The sensitivity analysis results of

Galán et al. [30] can be applied to a parametric hybrid system described by:
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x(1)(τ(1), p) = 𝜉(1)(p),
dx(i)

dt
(t, p) = f(i)(x(i)(t, p)), ∀t ∈ (τ(i), τ(i), f ], ∀i ∈ {1, 2, . . .},

0 = g(i)(x(i)(τ(i+1)(p), p)), ∀i ∈ {1, 2, . . .},
x(i+1)(τ(i+1)(p), p) = 𝜃(i+1)(x(i)(τ(i+1)(p), p)), ∀i ∈ {1, 2, . . .}.

Here, for each i ∈ {1, 2, . . .}, τ(i+1)(p) denotes the least value of

t* ∈ (τ(i)(p), τ(i), f (p))

for which

0 = g(i)(x(i)(t
*, p)).

Note that direct dependence of the functions f(i), g(i), or 𝜃(i) on t or p may be

included by considering t and p to be auxiliary state variables, and considering

the evolution of an augmented state variable vector z(i)(t, p) := (t, p, x(i)(t, p)).

The results in [30] assume that the functions 𝜉(1), f(i), g(i), and 𝜃(i) are each

𝒞1; this assumption will be relaxed in Assumption 8.4.1 below. It is also assumed

in [30] that a unique solution of the hybrid system exists on a duration [τ(1), τf ] for

all p in a neighborhood of some p̄, and that the implicit functions τ(i) are each 𝒞1

at p̄. This latter assumption is implied by the following transversality conditions:

0 ̸= (∇g(i)(x(i)(τ(i+1)(p̄), p̄)))T f(i)(x(i)(τ(i+1)(p̄), p̄)), ∀i ∈ {1, 2, . . .}.

Under the assumptions above, the partial derivative
∂x(i)
∂p (t, p̄) exists whenever

x(i)(t, p̄) is well-defined; this partial derivative is described as the unique solution

of the following auxiliary hybrid system:
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∂x(1)
∂p

(τ(1), p̄) = J𝜉(1)(p̄),

d
dt

[
∂x(i)
∂p

]
(t, p̄) =

∂f(i)
∂x

(x(i)(t, p̄))
∂x(i)
∂p

(t, p̄),

∀t ∈ (τ(i)(p̄), τ(i+1)(p̄)), ∀i ∈ {1, 2, . . .},

Jτ(i+1)(p̄) = −
(∇g(i)(x(i)))T ∂x(i)

∂p

(∇g(i)(x(i)))T f(i)(x(i))
, ∀i ∈ {1, 2, . . .},

∂x(i+1)

∂p
(τ(i+1)(p̄), p̄) =

(
J𝜃(i)(x(i)) f(i)(x(i))− f(i+1)(x(i+1))

)
Jτ(i+1)(p̄)

+ J𝜃(i)(x(i))
∂x(i)
∂p

,

∀i ∈ {1, 2, . . .}.

The arguments of x(i), x(i+1), and
∂x(i)
∂p in the bottom two equations above are

(τ(i+1)(p̄), p̄) in each case, and are omitted for simplicity.

8.3 Lexicographic smoothness of inverse and implicit

functions

In this section, sufficient conditions are provided for the L-smoothness of local

inverse functions and local implicit functions, motivated by the classical inverse

and implicit function theorems. Computationally tractable numerical methods are

provided for computing the corresponding LD-derivatives, when the functions

involved are piecewise differentiable in the sense of Scholtes [97].

Theorem 8.3.1. Given an open set Y ⊂ Rn and some ŷ ∈ Y, suppose that a function

f : Y → Rn is a Lipschitz homeomorphism on some neighborhood N ⊂ Y of ŷ. Suppose,

in addition, that f is L-smooth at ŷ. Then, the corresponding local inverse function f−1

of f around ŷ is L-smooth at ẑ := f(ŷ); for each M ∈ Rn×p, [f−1]
′
(ẑ; M) is the unique

solution N ∈ Rn×p of the equation system:

f′(ŷ; N) = M. (8.1)
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Proof. Consider any particular matrix M :=
[
m(1) · · · m(p)

]
∈ Rn×p. To demon-

strate the L-smoothness of f−1 at ẑ, [97, Theorem 3.2.3] will be used in an inductive

argument to show that, for each k ∈ {0, 1, . . . , p}, there exists a matrix N(k) ∈ Rn×k

such that f(k)ŷ,N(k)
is a Lipschitz homeomorphism on Rm, and such that [f−1]

(k)
ẑ,M exists

and is equivalent to [f(k)ŷ,N(k)
]−1 on Rn.

For the case in which k = 0, note that f is directionally differentiable at ŷ. Thus,

[97, Theorem 3.2.3] implies that f′(ŷ; ·) ≡ f(0)ŷ,∅n×0
is a Lipschitz homeomorphism on

Rn, and that f−1 is Lipschitz continuous and directionally differentiable at ẑ, with

[f−1]
′
(ẑ; ·) ≡

[
f−1
](0)

ẑ,M
≡
[
f(0)ŷ,∅n×0

]−1
.

For the inductive step, suppose that, for some k ∈ {1, . . . , p}, there exists a matrix

N(k−1) ∈ Rn×(k−1) such that f(k−1)
ŷ,N(k−1)

is a Lipschitz homeomorphism on Rn, and

such that

[
f(k−1)

ŷ,N(k−1)

]−1
≡
[
f−1
](k−1)

ẑ,M
. (8.2)

Since f(k−1)
ŷ,N(k−1)

is a homeomorphism, there exists a vector n(k) ∈ Rn such that

m(k) = f(k−1)
ŷ,N(k−1)

(n(k)).

Since f is L-smooth at ŷ, f(k−1)
ŷ,N(k−1)

is directionally differentiable. Thus, by the induc-

tive assumption and [97, Theorem 3.2.3], with N(k) :=
[
N(k−1) n(k)

]
∈ Rn×k, it

follows that the mapping

[
f(k−1)

ŷ,N(k−1)

]′
(n(k); ·) ≡

[
f(k−1)

ŷ,N(k)

]′
(n(k); ·) ≡ f(k)ŷ,N(k)

is a Lipschitz homeomorphism. Moreover, by [97, Theorem 3.2.3] and (8.2), the

inverse mapping
[
f(k−1)

ŷ,N(k)

]−1
is directionally differentiable at m(k), with

222



[
f(k)ŷ,N(k)

]−1
≡
[[

f(k−1)
ŷ,N(k)

]−1
]′
(m(k); ·),

≡
[[

f(k−1)
ŷ,N(k−1)

]−1
]′
(m(k); ·),

≡
[[

f−1
](k−1)

ẑ,M

]′
(m(k); ·).

It follows that
[
f−1](k)

ẑ,M exists and is equivalent to
[
f(k)ŷ,N(k)

]−1
, which completes the

inductive argument. Since M was chosen arbitrarily, the L-smoothness of f−1 at ẑ

is thereby demonstrated.

By definition, the identity f(f−1(z)) = z holds for all z in f(N), which is open.

Applying the chain rule for LD-derivatives to this identity, for any particular M :=[
m(1) · · · m(p)

]
∈ Rn×p,

f′
(

ŷ; [f−1]
′
(ẑ; M)

)
= M.

Thus, [f−1]
′
(ẑ; M) is a solution N of (8.1). To show that (8.1) has no more than

one solution, let N :=
[
n(1) · · · n(p)

]
∈ Rn×p be a solution of (8.1). Writing the

columns of (8.1) separately yields

f(k−1)
ŷ,M (n(k)) = m(k), ∀k ∈ {1, . . . , p}. (8.3)

As the earlier inductive argument shows, f(k−1)
ŷ,M is a Lipschitz homeomorphism for

each k ∈ {1, . . . , p}. Each equation in (8.3) therefore has a unique solution n(k),

which specifies N uniquely.

With f and ŷ satisfying the conditions of Theorem 8.3.1, let ∂f(ŷ) denote Clarke’s

generalized Jacobian [16] of f at y. Since f is Lipschitz continuous on some neigh-

borhood of ŷ, if ∂f(ŷ) contains no singular matrices, then [16, Theorem 7.1.1]

demonstrates that f is a Lipschitz homeomorphism on some neighborhood of ŷ.

Theorem 8.3.2. Given open sets Y ⊂ Rm and Z ⊂ Rn, and a function h : Y× Z → Rm,

suppose that h(ŷ, ẑ) = 0m for some ŷ ∈ Y and ẑ ∈ Z, and that h is L-smooth at (ŷ, ẑ).

Suppose, in addition, that the auxiliary mapping g : Y × Z → Rm × Z : (y, z) ↦→
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(h(y, z), z) is a Lipschitz homeomorphism on some open set Ny×Nz that contains (ŷ, ẑ).

Then, there exists a locally Lipschitz continuous function 𝜂 : Nz ⊂ Rn → Rm such that

𝜂(ẑ) = ŷ and h(𝜂(z), z) = 0m for all z ∈ Nz. Moreover, 𝜂 is L-smooth at ẑ; for each

M ∈ Rn×p, 𝜂′(ẑ; M) is the unique solution N ∈ Rm×p of the equation system:

h′((ŷ, ẑ); (N, M)) = 0m×p. (8.4)

Proof. The existence of 𝜂 follows from Clarke’s implicit function theorem [16, Sec-

tion 7.1]; the inverse of g on g(Ny × Nz) is such that g−1(0m, z) = (𝜂(z), z) for

each z ∈ Nz. By Theorem 8.3.1, g−1 is L-smooth at (0m, ẑ), and so g−1(0m, ·) and 𝜂

are L-smooth at ẑ.

Now, Theorem 8.3.1 implies that [g−1]
′(
(0m, ẑ); (0m×p, M)

)
is the unique solu-

tion W := (N, P) of the equation system:

(0m×p, M) = g′((ŷ, ẑ); W) .

Applying the definition of g, this equation system is equivalent to

[
0m×p

M

]
=

[
h′((ŷ, ẑ); (N, P))

P

]
,

and so P = M. Hence, this equation system is in turn equivalent to (8.4), which

therefore has a unique solution N. Now, lexicographic differentiation of the iden-

tity 0m = h(𝜂(z), z) with respect to z at z = ẑ yields

0m×p = h′
(
(ŷ, ẑ);

[
𝜂′(ẑ; M)

M

])
,

and so 𝜂′(ẑ; M) is the unique matrix N which satisfies (8.4).

As earlier, with h, ŷ, and ẑ satisfying the conditions of Theorem 8.3.2, let ∂h

denote Clarke’s generalized Jacobian [16] of h. Since h is Lipschitz continuous on

some neighborhood of (ŷ, ẑ), if the set

{[
Im×m 0m×n

]
A : A ∈ ∂h(ŷ, ẑ)

}
contains no singular matrices, then [16, Corollary of Theorem 7.1.1] demonstrates
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that the auxiliary function g described in the statement of the theorem is a Lipschitz

homeomorphism on some neighborhood of (ŷ, ẑ).

The equation systems (8.1) and (8.4) have residual functions that may be dis-

continuous with respect to their N terms. Thus, even though these equation sys-

tems have unique solutions, these solutions may be difficult to identify in practice.

However, as in the proof of Theorem 8.3.1, if the first (k − 1) columns of the so-

lution N of (8.1) are known, then, with N(k−1) :=
[
n(1) · · · n(k−1)

]
, n(k) can be

determined as the unique solution n of the following equation system. This equa-

tion system has a residual function that is Lipschitz continuous, but may not be

differentiable everywhere. Here, e(k) denotes the kth unit coordinate vector in Rk.

0n = f(k−1)
ŷ,N(k−1)

(n)−m(k) =
(
f′(ŷ;

[
N(k−1) n

]
)
)

e(k) −m(k).

Thus, the equation system (8.1) may be solved one column at a time, using a nu-

merical method for nonsmooth equation solving. The equation system (8.4) may

be approached similarly.

Moreover, when the relevant inverse or implicit functions are described in terms

of functions f or h that are piecewise differentiable in the sense of Scholtes [97], the

above theorems suggest an alternative class of tractable methods for computing

the corresponding LD-derivatives. Scholtes’ definition is as follows.

Definition 8.3.3 (from [97]). Given an open set X ⊂ Rn, a function g : X → Rm is

piecewise differentiable (𝒫𝒞1) at x ∈ X if there exist a neighborhood N ⊂ X of x and

a finite collection ℱg(x) of 𝒞1 selection functions mapping N into Rm, for which g is

continuous on N, and

g(y) ∈ {𝛾(y) : 𝛾 ∈ ℱg(x)}, ∀y ∈ N.

Let ∂Bg denote the B-subdifferential [92] of g. As in Chapter 3, any 𝒫𝒞1 function

g is L-smooth, and satisfies ∂Lg(x) = ∂B[g′(x; ·)](0n) ⊂ ∂Bg(x) for each domain

point x. The following examples describe approaches to furnishing a finite col-

lection of selection functions, thus motivating the subsequent methods for solving
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the equation systems (8.1) and (8.4) when the functions f or h are 𝒫𝒞1. Note that

sufficient conditions for a 𝒫𝒞1 function to be a local Lipschitz homeomorphism

have been presented in [94, 97].

Example 8.3.4. Consider a composition f : X ⊂ Rn → Rm of simple 𝒫𝒞1 functions,

such as continuously differentiable functions, the absolute-value function, and multivari-

ate max and min functions. For any x ∈ X, a finite collection ℱf(x) may be furnished by

considering the compositions of selection functions of the 𝒫𝒞1 functions used to define f

that are active [97]. For example, consider the 𝒫𝒞1 function:

f : y ∈ R2 ↦→ |y1 − y2 + 1|+ |y1|.

Since each absolute-value function has a y ↦→ −y branch and a y ↦→ y branch, the follow-

ing collection of selection functions for f around x := (1, 0) ∈ R2 is readily furnished.

ℱf(x) := {y ↦→ s1(y1 − y2 + 1) + s2y1 : s1, s2 ∈ {−1,+1}}.

It is possible, however, to furnish an even smaller collection of selection functions for f. In

a sufficiently small neighborhood of x, observe that the second absolute-value function in

the definition of f is restricted to its y ↦→ y branch, while the first absolute-value function

could be described by either its y ↦→ y branch or its y ↦→ −y branch. Thus, the mappings

y ↦→ (y1 − y2 + 1) + y1 and y ↦→ −(y1 − y2 + 1) + y1 together comprise a smaller

collection ℱf(x) for f around x.

Consider a finite set Z ⊂N, a finite collection {g(i) : i ∈ Z} of continuously differen-

tiable mappings from Rn into R, and the function

g : y ∈ Rn ↦→ max{g(i)(y) : i ∈ Z}.

The function g is evidently 𝒫𝒞1, and {g(i) : i ∈ Z} is clearly a finite collection of selection

functions for g(i) about any y ∈ Rn. Again, though, it may not be necessary to retain each

function in this collection. Following a similar approach to the treatment of f above, it is

readily verified that, given any particular z ∈ Rn, the following is a collection of selection

functions for g around z:
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{g(i) : i ∈ Z, g(i)(z) = g(z)}.

Observe that each condition g(i)(z) = g(z) would be checked incidentally during evalua-

tion of g(z).

Proposition 8.3.5. Suppose that the conditions of Theorem 8.3.1 hold, that the function

f is 𝒫𝒞1 at ŷ, and that a finite collection ℱf(ŷ) of 𝒞1 selection functions for f around ŷ

is known. For any M ∈ Rn×p, there exists 𝜑 ∈ ℱf(ŷ) for which J𝜑(ŷ) is nonsingu-

lar and [f−1]
′
(ẑ; M) = (J𝜑(ŷ))−1M. Thus, the following method solves the equation

system (8.1) for N = [f−1]
′
(ẑ; M):

for all 𝜑 ∈ ℱf(ŷ) do
if J𝜑(ŷ) is nonsingular then

Solve the linear equation system J𝜑(ŷ)A = M for A ∈ Rn×p

if f′(ŷ; A) = M then
return N := A

end if
end if

end for

Proof. This proof depends on the following established results. [97, Proposition 4.2.1]

implies that f−1 is 𝒫𝒞1 at ẑ; Corollary 3.2.4 then yields ∂L[f−1](ẑ) ⊂ ∂B[f−1](ẑ).

There exists a subset ℰf(ŷ) ⊂ ℱf(ŷ) of 𝒞1 selection functions for f about ŷ that

are essentially active at ŷ in the sense of Scholtes [97]. Next, [97, Proposition 4.2.1]

and its proof imply that J𝜑(ŷ) is nonsingular for each 𝜑 ∈ ℰf(ŷ). The classical

inverse function theorem then implies that, for each 𝜑 ∈ ℰf(ŷ), 𝜑 is invertible in a

neighborhood of ŷ, with an inverse 𝜑−1 that is 𝒞1 at ẑ, and satisfies

J[𝜑−1](ẑ) = (J𝜑(ŷ))−1.

Lastly, the proofs of [97, Proposition 4.2.1 and Proposition 4.3.1] imply that

∂B[f−1](ẑ) ⊂ {J[𝜑−1](ẑ) : 𝜑 ∈ ℰf(ŷ)}.

Combining the above results with Lemma 3.1.3 and Theorem 8.3.1, there exists

𝜑 ∈ ℰf(ŷ) ⊂ ℱf(ŷ) such that J𝜑(ŷ) is nonsingular, and satisfies
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f′(ŷ; (J𝜑(ŷ))−1M) = M.

Thus, (J𝜑(ŷ))−1M is the unique solution N of (8.1) that was described by Theo-

rem 8.3.1. The remaining required results follow immediately.

Proposition 8.3.6. Suppose that the conditions of Theorem 8.3.2 hold, that the function h

is 𝒫𝒞1 at (ŷ, ẑ), and that a finite collectionℱh(ŷ, ẑ) of 𝒞1 selection functions for h around

(ŷ, ẑ) is known. For any M ∈ Rn×p, there exists 𝜓 ∈ ℱh(ŷ, ẑ) for which ∂𝜓
∂y (ŷ, ẑ) is

nonsingular and

𝜂′(ẑ; M) = −
(

∂𝜓

∂y
(ŷ, ẑ)

)−1 ∂𝜓

∂z
(ŷ, ẑ)M.

Thus, the following method solves the equation system (8.4) for N = 𝜂′(ẑ; M):

for all 𝜓 ∈ ℱh(ŷ, ẑ) do
if ∂𝜓

∂y (ŷ, ẑ) is nonsingular then

Solve the linear equation system ∂𝜓
∂y (ŷ, ẑ)A = ∂𝜓

∂z (ŷ, ẑ)M for A ∈
Rm×p

if h′ ((ŷ, ẑ); (A, M)) = 0m×p then
return N := A

end if
end if

end for

Proof. This proof proceeds similarly to the proof of Proposition 8.3.5. Define aux-

iliary linear mappings 𝜋 : Rm ×Rn → Rm : (y, z) ↦→ y and 𝜃 : Rn → Rm+n :

z ↦→ (0m, z). Since h is 𝒫𝒞1 at (ŷ, ẑ), and since any well-defined finite composition

of 𝒫𝒞1 functions is itself 𝒫𝒞1 [97], the auxiliary mapping g described in Theo-

rem 8.3.2 is also 𝒫𝒞1 at (ŷ, ẑ). It follows from the proof of Theorem 8.3.2 that g is

invertible on some neighborhood of (ŷ, ẑ), with an inverse g−1 that is L-smooth at

(0m, ẑ) = 𝜃(ẑ). Moreover, [97, Proposition 4.2.1] implies that g−1 is 𝒫𝒞1 at 𝜃(ẑ).

Now, there exists a subset ℰh(ŷ, ẑ) ⊂ ℱh(ŷ, ẑ) of 𝒞1 selection functions for h

about (ŷ, ẑ) that are essentially active at (ŷ, ẑ) in the sense of Scholtes [97]. For

each 𝜓 ∈ ℰh(ŷ, ẑ), define a 𝒞1 mapping 𝛾𝜓 : (y, z) ↦→ (𝜓(y, z), z) on some neigh-

borhood of (ŷ, ẑ). Thus,
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J𝛾𝜓(ŷ, ẑ) =

[
∂𝜓
∂y (ŷ, ẑ) ∂𝜓

∂z (ŷ, ẑ)
0n×m In×n

]
∈ R(m+n)×(m+n). (8.5)

The definition of g implies that a collection of essentially active 𝒞1 selection func-

tions for g about (ŷ, ẑ) can be expressed as:

ℰg(ŷ, ẑ) := {𝛾𝜓 : 𝜓 ∈ ℰh(ŷ, ẑ)}.

Proposition 8.3.5 (with f := g) shows that J𝛾𝜓(ŷ, ẑ) is nonsingular for each 𝜓 ∈

ℰh(ŷ, ẑ); (8.5) then implies that ∂𝜓
∂y (ŷ, ẑ) is nonsingular for each 𝜓 ∈ ℰh(ŷ, ẑ), and

that

(J𝛾𝜓(ŷ, ẑ))−1 =

[(
∂𝜓
∂y (ŷ, ẑ)

)−1
−
(

∂𝜓
∂y (ŷ, ẑ)

)−1
∂𝜓
∂z (ŷ, ẑ)

0n×m In×n

]
∈ R(m+n)×(m+n).

Moreover, as in the proof of Proposition 8.3.5,

∂L[g−1](𝜃(ẑ))

⊂ ∂B[g−1](𝜃(ẑ))

⊂ {J[𝛾−1](𝜃(ẑ)) : 𝛾 ∈ ℰg(ŷ, ẑ)}
= {(J𝛾(ŷ, ẑ))−1 : 𝛾 ∈ ℰg(ŷ, ẑ)}
= {(J𝛾𝜓(ŷ, ẑ))−1 : 𝜓 ∈ ℰh(ŷ, ẑ)}.

Now, inspection of the proof of Theorem 8.3.2 shows that 𝜂 ≡ 𝜋 ∘ g−1 ∘ 𝜃 on

some neighborhood of ẑ. Thus, the above results, Lemma 3.1.3, and the chain rule

for LD-derivatives yield:
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𝜂′(ẑ; M)

= J𝜋(g−1(𝜃(ẑ))) [g−1]
′
(𝜃(ẑ); J𝜃(ẑ)M)

=
[
Im×m 0m×n

]
[g−1]′

(
𝜃(ẑ); (0m×p, M)

)
∈
{[

Im×m 0m×n
]
(J𝛾𝜓(ŷ, ẑ))−1

[
0m×p

M

]
: 𝜓 ∈ ℰh(ŷ, ẑ)

}
=

{[
Im×m 0m×n

] [( ∂𝜓
∂y (ŷ, ẑ)

)−1
−
(

∂𝜓
∂y (ŷ, ẑ)

)−1
∂𝜓
∂z (ŷ, ẑ)

0n×m In×n

] [
0m×p

M

]
:

𝜓 ∈ ℰh(ŷ, ẑ)}

=

{
−
(

∂𝜓

∂y
(ŷ, ẑ)

)−1 ∂𝜓

∂z
(ŷ, ẑ)M : 𝜓 ∈ ℰh(ŷ, ẑ)

}
.

The remaining required results follow immediately.

Observe that computational complexity of the method in Proposition 8.3.5 scales

worst-case linearly with the number of selection functions in the provided collec-

tion ℱf(ŷ), and the cost of solving each required linear equation system scales

as 𝒪(n3p). Similarly, the computational complexity of the method in Proposi-

tion 8.3.6 scales worst-case linearly with the number of selection functions in the

provided collection ℱh(ŷ, ẑ), and the cost of solving each required linear system

scales as 𝒪(m3p).

When the functions f and h are represented as finite compositions of simple

L-smooth functions, the derivatives and partial derivatives required by the above

methods can typically be computed using standard automatic differentiation tech-

niques [34], and the required LD-derivatives can be computed using the variant of

the vector forward mode of automatic differentiation developed in Chapter 4.

8.4 LD-derivatives for hybrid systems

This section describes a hybrid discrete/continuous system that is based on the

presentation by Galán et al. [30], but is generalized to permit the functions in-

volved to be L-smooth instead of 𝒞1. Theorem 8.4.2 below is the main theorem of
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this chapter, and describes the LD-derivatives of this hybrid system as the unique

solution of an auxiliary hybrid system. The proof of this theorem depends on in-

termediate results that are developed in Section 8.5.

The following assumption formalizes the hybrid system for which lexicographic

derivatives are desired. As in Section 8.2, any direct dependence of the functions

f(i), g(i), and 𝜃(i) on t or p is neglected without loss of generality; any such di-

rect dependence may be included by appending auxiliary state variables to x that

contain the values of t and p. Discontinuities of f(i) with respect to t may also be

handled in this framework by appending corresponding functions g(j) and 𝜃(j) to

represent every such discontinuity.

Assumption 8.4.1. For some nm ∈N, for each i ∈ {1, 2, . . . , nm}, let X(i) ⊂ R
n(i) be an

open set, and let a function f(i) : X(i) → R
n(i) be bounded, Lipschitz continuous, and L-

smooth. Let functions g(i) : X(i) → R for each i ∈ {1, . . . , nm} and 𝜃(i) : X(i−1) → X(i)

for each i ∈ {2, 3, . . . , nm} be Lipschitz continuous and L-smooth.

For some open set P ⊂ Rnp and some particular p̄ ∈ P, let functions τ(1) : P → R

and 𝜉(1) : P→ X(1) be L-smooth at p̄. Suppose τ̄f ∈ R is such that τ̄f > τ(1)(p) for each

p ∈ P.

Consider the following parametric hybrid discrete/continuous system, defined for each

p ∈ P:

x(1)(τ(1)(p), p) = 𝜉(1)(p),
dx(i)

dt
(t, p) = f(i)(x(i)(t, p)), ∀i ∈ {1, . . . , nm}, (8.6)

0 = g(i)(x(i)(τ(i+1)(p), p)), ∀i ∈ {1, . . . , nm − 1}, (8.7)

x(i+1)(τ(i+1)(p), p) = 𝜃(i+1)(x(i)(τ(i+1)(p), p)), ∀i ∈ {1, , . . . , nm − 1}. (8.8)

Here, for each i ∈ {1, . . . , nm − 1}, τ(i+1)(p) denotes the least value of t* ∈ (τ(i)(p), τ̄f )

such that

0 = g(i)(x(i)(t
*, p)),

and τ(nm+1)(p) := τ̄f . For each p ∈ P in a particular neighborhood of some p̄ ∈ P,
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for each i ∈ {1, . . . , nm}, suppose that there exists a unique solution {x(i)(t, p) : t ∈

[τ(i)(p), τf ,i(p)]} ⊂ X(i) of (8.6) for some τf ,i(p) > τ(i+1)(p).

Suppose that for each i ∈ {1, . . . , nm − 1}, the composition g(i) ∘ x(i) satisfies the

assumptions of Theorem 8.3.2 at (τ(i+1)(p̄), p̄). For simplicity, define τ*(i) := τ(i)(p̄) for

each i ∈ {1, . . . , nm + 1}, and x*(i) := x(i)(τ*(i+1), p̄) for each i ∈ {1, . . . , nm − 1}.

Galan et al. [30] permit each x(i+1)(τ(i+1)(p), p) to be described as an implicit

function of x(i)(τ(i+1)(p), p), instead of being specified explicitly by the function

𝜃(i) in (8.8). The results in this chapter are compatible with this approach; an im-

plicit version of (8.8) can be handled using Theorem 8.3.2. For simplicity, we do

not pursue this further.

Moreover, the results in this chapter remain valid if, in Assumption 8.4.1, the

functions f(i), g(i), and 𝜃(i) are not uniformly Lipschitz continuous. In fact, the local

Lipschitz continuity implied by L-smoothness yields uniform Lipschitz continuity

on some open superset of the domain points visited by the solution of the hybrid

system with p := p̄. Explicit consideration of these sets, however, would obscure

the arguments underlying our developed results, and so we retain Lipschitz conti-

nuity in Assumption 8.4.1 for simplicity.

The following theorem is the main theorem of this chapter, and describes LD-

derivatives of the hybrid system described by Assumption 8.4.1. The proof of this

theorem depends on various intermediate results that are presented in the follow-

ing section. Various implications of this theorem are described at the end of the

current section.

Theorem 8.4.2. Suppose that Assumption 8.4.1 holds. Then, for each j ∈ {1, . . . , nm}

and each t̃ ∈ (τ(j)(p̄), τ(j+1)(p̄)], x(j)(t̃, ·) is L-smooth at p̄; for any M ∈ Rnp×p,

[x(j),t̃]
′(p̄; M) is the matrix A(j)(t̃) ∈ R

n(j)×p defined uniquely by the following hybrid

discrete/continuous system:
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A(1)(τ(1)(p̄)) = [𝜉(1)]
′(p̄; M)− f(1)(𝜉(1)(p̄)) [τ(1)]

′(p̄; M), (8.9)
dA(i)

dt
(t) = [f(i)]

′(x(i)(t, p̄); A(i)(t)), (8.10)

∀t ∈ (τ*(i), τ*(i+1)], ∀i ∈ {1, . . . , nm},

01×p = [g(i)]
′
(

x*(i); f(i)(x
*
(i)) [τ(i+1)]

′(p̄; M) + A(i)(τ
*
(i+1))

)
, (8.11)

∀i ∈ {1, . . . , nm − 1},

A(i+1)(τ
*
(i+1)) = [𝜃(i+1)]

′
(

x*(i); A(i)(τ
*
(i+1)) + f(i)(x

*
(i)) [τ(i+1)]

′(p̄; M)
)

− f(i+1)

(
x(i+1)(τ

*
(i+1), p̄)

)
[τ(i+1)]

′(p̄; M), (8.12)

∀i ∈ {1, . . . , nm − 1},

where each [τ(i+1)]
′(p̄; M) is defined implicitly as the unique solution of (8.11). If, for

some i ∈ {1, . . . , nm − 1}, g(i) is differentiable at x*(i), then

[τ(i+1)]
′(p̄; M) = −

(∇g(i)(x*(i)))
T A(i)(τ

*
(i+1))

(∇g(i)(x*(i)))
T f(i)(x*(i))

; (8.13)

if 𝜃(i+1) is differentiable at x*(i), then

A(i+1)(τ
*
(i+1))−A(i)(τ

*
(i+1))

=
(

J𝜃(i+1)(x
*
(i))− I

)
A(i)(τ

*
(i+1)) (8.14)

−
(

f(i+1)

(
x(i+1)(τ

*
(i+1), p̄)

)
− J𝜃(i+1)(x

*
(i)) f(i)(x

*
(i))
)
[τ(i+1)]

′(p̄; M).

In particular, if f(i+1)(x(i+1)(τ
*
(i+1), p̄)) = J𝜃(i+1)(x*(i)) f(i)(x*(i)), then there is no need

to evaluate [τ(i+1)]
′(p̄; M). If, in addition, 𝜃(i+1) is the identity mapping, then

A(i+1)(τ
*
(i+1)) = A(i)(τ

*
(i+1)).

Proof. For each j ∈ {2, . . . , nm}, define the mapping 𝜉(j) : p ↦→ x(j)(τ(j)(p), p),

which is analogous to 𝜉(1). In an inductive argument, it will be shown that for

each j ∈ {1, . . . , nm}:

(A) τ(j) is L-smooth at p̄, and, if j > 1, [τ(j)]
′(p̄; M) is determined uniquely

by (8.11),
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(B) 𝜉(j) is L-smooth at p̄, and, if j > 1,

[𝜉(j)]
′(p̄; M) = [𝜃(j)]

′
(

x*(j−1); A(j−1)(τ
*
(j)) + f(j−1)(x

*
(j−1)) [τ(j)]

′(p̄; M)
)

,

(C) for each t ∈ (τ*(j), τ*(j+1)], x(j),t ≡ x(j)(t, ·) is L-smooth at p̄, and [x(j),t]
′(p̄; M) =

A(j)(t), where A(j)(t) is defined uniquely by (8.9)–(8.12).

Corollary 8.5.5 and the assumptions of the theorem yield (A), (B), and (C) when

j := 1. For the inductive step, choose some particular k ∈ {2, . . . , nm}, and suppose

that (A), (B), and (C) hold for j := k− 1.

By the inductive assumption, the hypotheses of Corollary 8.5.7 and Lemma 8.5.6

are satisfied with τ := τ(k−1), 𝜉 := 𝜉(k−1), x := x(k−1), f := f(k−1), and te :=

τ(k). Thus, Corollary 8.5.7 yields (A) with j := k, and Lemma 8.5.6 yields the L-

smoothness of x(k−1) in some neighborhood of (τ(k)(p̄), p̄).

Defining the mapping 𝛾(k) : p ↦→ (τ(k)(p), p), it follows that 𝛾(k) is L-smooth

near p̄, and so the composite mapping [𝜃(k) ∘ x(k−1) ∘ 𝛾(k)] is L-smooth at p̄. By

definition, for each p near p̄,

𝜉(k)(p) = x(k)(𝛾(k)(p)) = 𝜃(k)(x(k−1)(𝛾(k)(p))).

Applying the chain rule for LD-derivatives, it follows that 𝜉(k) is L-smooth at p̄,

with

[𝜉(k)]
′(p̄; M) = [𝜃(k)]

′
(

x*(k−1); [x(k−1)]
′
(
𝛾(k)(p̄); [𝛾(k)]

′(p̄; M)
))

= [𝜃(k)]
′
(

x*(k−1); [x(k−1)]
′
(
𝛾(k)(p̄);

[
[τ(k)]

′(p̄; M)
M

]))
.

By applying Lemma 8.5.6 as above to evaluate the LD-derivative of x(k−1) in the

above expression, (B) is obtained with j := k.

Since (A) and (B) have been demonstrated when j := k, Corollary 8.5.5 yields

(C) when j := k. This completes the inductive assumption, and thereby demon-

strates the claims of the theorem regarding (8.9)–(8.12).
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If g(i) is differentiable for some particular i ∈ {1, . . . , nm − 1}, then (8.11) be-

comes

01×p = (∇g(i)(x
*
(i)))

T
(

f(i)(x
*
(i)) [τ(i+1)]

′(p̄; M) + A(i)(τ
*
(i+1))

)
.

As established by the inductive proof above, this equation has a unique solution

[τ(i+1)]
′(p̄; M), and so a similar argument to the proof of Corollary 8.5.7 demon-

strates (8.13). Moreover, if 𝜃(i+1) is differentiable, then (8.12) becomes

A(i+1)(τ
*
(i+1)) = J𝜃(i+1)(x

*
(i))

(
A(i)(τ

*
(i+1)) + f(i)(x

*
(i)) [τ(i+1)]

′(p̄; M)
)

− f(i+1)

(
x(i+1)(τ

*
(i+1), p̄)

)
[τ(i+1)]

′(p̄; M),

which can be rearranged to yield (8.14). The remaining claims of the theorem fol-

low immediately.

Observe that the auxiliary hybrid system (8.9)–(8.12) described by Theorem 8.4.2

reduces to the classical hybrid sensitivities described in Section 8.2 when the func-

tions f(i), g(i), and 𝜃(i) are each 𝒞1. Observe also that if M has a single column,

then the auxiliary hybrid system (8.9)–(8.12) describes directional derivatives of

the state variables x with respect to the parameters p.

Theorem 8.4.2 does not apply to all hybrid systems; Assumption 8.4.1 requires

that the discrete modes of the hybrid system, enumerated by the index i, are nec-

essarily visited in the order i := 1, 2, 3, . . .. However, although Assumption 8.4.1

nominally requires τ(i+1)(p) to be strictly greater than τ(i)(p) for each i and each

p near p̄, the proofs of Theorem 8.4.2 and Corollary 8.5.7 in fact suggest that

τ(i+1)(p) = τ(i)(p) is permissible, provided that there exists a neighborhood N

of p̄ such that τ(i+1)(p) ≥ τ(i)(p) for each p ∈ N, and such that τ(i+1) is still a well-

defined L-smooth implicit function near p̄. This observation permits handling of

certain changes in the discrete mode sequence visited by the solution trajectory, in

which small changes in parameters p can lead to the discrete index i being updated

in an order other than i := 1, 2, . . .. This possibility is illustrated in Example 8.6.3.

As an incidental corollary of Theorem 8.4.2, observe that LD-derivatives of each
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event time τ(i+1) at p̄ are described by (8.11) (or by (8.13), if applicable).

We conclude this section by noting that it would be difficult, if not impossible,

to verify the transversality conditions in Assumption 8.4.1 that the composite func-

tions g(i) ∘ x(i) each satisfy the conditions of Theorem 8.3.2 at (τ(i+1)(p̄), p̄). By

contrast, in the simpler hybrid system described in Section 8.2, the corresponding

transversality conditions can be verified during the evaluation of the derivative

Jτ(i+1)(p̄). Unlike the development in [30], however, the transversality conditions

in Assumption 8.4.1 apply only to the discrete transitions described by the func-

tions g(i) and 𝜃(i+1), and not to any nondifferentiabilities in the functions f(i). If the

latter were incorporated directly into the theory of [30], then appropriate transver-

sality conditions would need to be applied.

8.5 Intermediate results

This section presents intermediate results that were used in the proof of Theo-

rem 8.4.2 above. Roughly, these intermediate results permit LD-derivatives to be

propagated over each discrete mode i of the hybrid system described in Assump-

tion 8.4.1: detecting the events τ(i)(p̄), carrying out the transitions described by

𝜃(i), and resuming continuous evolution of the system following these transitions.

These results are developed without considering the hybrid system in Assump-

tion 8.4.1 explicitly; rather, it suffices in this section to consider simpler ODEs with

a right-hand side function f that is described by the following assumption.

Assumption 8.5.1. Let X ⊂ Rn be an open set, and consider a function f : X → Rn

which is bounded, Lipschitz continuous, and directionally differentiable. Suppose that

mf > 0 is a bound for f on X, and that kf > 0 is a Lipschitz constant for f on X.

Remark 8.5.2. Under Assumption 8.5.1, it follows from [26, §1, Theorem 2] that any

solution of an ODE with f as its right-hand side function is unique. Thus, the assumed

uniqueness of ODE solutions in the following results is for clarity only, and does not

contribute at all to the hypotheses of these results.
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The following lemma provides a variant of Theorem 5.2.4 that considers the de-

pendence of an ODE dependent variable x on the initial value τ of the independent

variable t.

Lemma 8.5.3. Suppose that Assumption 8.5.1 holds. With x(·, τ, 𝜉) denoting any solu-

tion of the parametric ODE system:

dx
dt

(t, τ, 𝜉) = f(x(t, τ, 𝜉)), x(τ, τ, 𝜉) = 𝜉, (8.15)

suppose that there exists a unique solution {x(t, τ̄, 𝜉) : t ∈ [τ̄, τ̄f ]} ⊂ X for some τ̄, τ̄f ∈

R with τ̄ < τ̄f and some 𝜉 ∈ X. Under these assumptions, for each t ∈ [τ̄, τ̄f ], the

mapping xt ≡ x(t, ·, ·) is well-defined and Lipschitz continuous on a neighborhood of

(τ̄, 𝜉), with a Lipschitz constant that is independent of t. Moreover, xt is directionally

differentiable at (τ̄, 𝜉); for any α ∈ R and d ∈ Rn, the mapping t ↦→ [xt]
′((τ̄, 𝜉); (α, d))

is the unique solution y on [τ̄, τ̄f ] of the ODE:

dy
dt

(t) = f′(x(t, τ̄, 𝜉); y(t)), y(τ̄) = d− αf(𝜉). (8.16)

If, in addition, f is L-smooth on X, then xt is also L-smooth at (τ̄, 𝜉); for any v ∈ Rp

and any M ∈ Rn×p, the mapping t ↦→ [xt]
′((τ̄, 𝜉); (vT, M)

)
is the unique solution A on

[τ̄, τ̄f ] of the ODE:

dA
dt

(t) = f′(x(t, τ̄, 𝜉); A(t)), A(τ̄) = M− f(𝜉) vT. (8.17)

Proof. By [18, Chapter 1, Theorem 4.1], the solution {x(t, τ̄, 𝜉) : t ∈ [τ̄, τ̄f ]} ⊂ X

may be continued to some interval [a, b] ⊂ R such that a < τ̄ and b > τ̄f , while

remaining in X. Thus, [18, Chapter 1, Theorem 7.1] shows that there exists some

neighborhood Nτ ⊂ R of 0 and N̄ ⊂ X of 𝜉 such that for each (τ, 𝜉) ∈ ({τ̄} +

Nτ)× N̄, there exists a unique solution {x(t, τ, 𝜉) : t ∈ [τ, τf ]} ⊂ X of (8.15), for

any τf ∈ (τ̄f + Nτ). Hence, x(t, ·, ·) is well-defined on ({τ̄} + Nτ) × N̄ for each

t ∈ [τ̄, τ̄f ].

Suppose that f is directionally differentiable, but not necessarily L-smooth.

Consider the following auxiliary ODE system, with a parameter c ∈ Rn:
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dz
dt

(t, c) = f(z(t, c)), z(τ̄, c) = c. (8.18)

Unlike (8.15), (8.18) has a fixed initial independent variable, and is therefore amenable

to the treatment of Chapter 5. Since the mapping t ↦→ x(t, τ̄, 𝜉) evidently solves

(8.18) on [τ̄, τ̄f ] when c := 𝜉, (8.18) satisfies the hypotheses of Theorem 5.2.1. Thus,

according to that theorem, for each t ∈ [τ̄, τ̄f ], the mapping zt ≡ z(t, ·) is well-

defined and Lipschitz continuous on a neighborhood Nz of 𝜉, with a Lipschitz

constant kz that is independent of t.

To show that xt is Lipschitz continuous on ({τ̄}+ Nτ)× (N̄ ∩ Nz) for any par-

ticular t ∈ [τ̄, τ̄f ], with a Lipschitz constant that is independent of t, consider any

(τ1, 𝜉1), (τ2, 𝜉2) ∈ ({τ̄}+ Nτ)× (N̄ ∩ Nz). It follows that

‖xt(τ1, 𝜉1)− xt(τ2, 𝜉2)‖
≤ ‖xt(τ1, 𝜉1)− xt(τ1, 𝜉2)‖+ ‖xt(τ1, 𝜉2)− xt(τ2, 𝜉2)‖
= ‖xt+τ̄−τ1(τ̄, 𝜉1)− xt+τ̄−τ1(τ̄, 𝜉2)‖+ ‖xt+τ̄−τ1(τ̄, 𝜉2)− xt+τ̄−τ2(τ̄, 𝜉2)‖

≤ ‖zt+τ̄−τ1(𝜉1)− zt+τ̄−τ1(𝜉2)‖+
∥∥∥∥∫ t+τ̄−τ1

t+τ̄−τ2

f(x(s, τ̄, 𝜉2)) ds
∥∥∥∥

≤ kz‖𝜉1 − 𝜉2‖+ mf|τ1 − τ2|
≤ (kz + mf)‖(τ1, 𝜉1)− (τ2, 𝜉2)‖1.

Next, defining the mapping

x̄ : R× X → Rn : (τ, 𝜉) ↦→ 𝜉− (τ − τ̄)f(𝜉),

this proof proceeds by showing that for each t ∈ [τ̄, τ̄f ], zt ∘ x̄ is a good enough

first-order approximation of xt near (τ̄, 𝜉) to share the same directional derivatives

and lexicographic derivatives at (τ̄, 𝜉).

Now, choose any α ∈ R and d ∈ Rn. By [26, §1, Theorems 2 and 6], noting

that x̄ is Lipschitz continuous on its domain, there exists s̄ > 0 such that for each

s ∈ (0, s̄) and each t ∈ [τ̄, τ̄f ], x(t, τ̄ + sα, 𝜉 + sd) and z(t, x̄(τ̄ + sα, 𝜉 + sd)) are

each well-defined.

For each t ∈ [τ̄, τ̄f ] and each s ∈ (0, s̄), let
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ez(s, t) := (z(t, x̄(τ̄ + sα, 𝜉+ sd))− z(t, x̄(τ̄, 𝜉)))− (x(t, τ̄ + sα, 𝜉+ sd)− x(t, τ̄, 𝜉)) .

By Theorem 5.2.1, zt is directionally differentiable at x̄(τ̄, 𝜉) = 𝜉. Applying the

chain rule for directional derivatives,

[zt ∘ x̄]′((τ̄, 𝜉); (α, d)) = [zt]
′(x̄(τ̄, 𝜉); x̄′((τ̄, 𝜉); (α, d))) = [zt]

′(𝜉; d− αf(𝜉)).

Noting that x(t, τ̄, 𝜉) = z(t, 𝜉) for each t ∈ [τ̄, τ̄f ], it follows from Theorem 5.2.1

that the mapping t ↦→ [zt ∘ x̄]′((τ̄, 𝜉); (α, d)) is the unique solution y of (8.16) on

[τ̄, τ̄f ]. Thus, to show that the mapping t ↦→ [xt]
′((τ̄, 𝜉); (α, d)) exists and solves

(8.16) uniquely on [τ̄, τ̄f ], it suffices to show that

lim
s→0+

ez(s, t)
s

= 0n, ∀t ∈ [τ̄, τ̄f ].

Noting again that x(t, τ̄, 𝜉) = z(t, x̄(τ̄, 𝜉)) for each t ∈ [τ̄, τ̄f ] yields

ez(s, t) = z(t, x̄(τ̄ + sα, 𝜉+ sd))− x(t, τ̄ + sα, 𝜉+ sd).

Fixing s ∈ (0, s̄) and i ∈ {1, . . . , n}, note that

x̄(τ̄ + sα, 𝜉+ sd) = 𝜉+ sd− sαf(𝜉).

Assume that α ≥ 0; the case in which α < 0 is analogous. Since f is continuous,

the mean-value theorem [95, Theorem 5.19] yields the existence of θs ∈ [0, sα] such

that

∥∥∥∥∫ τ̄+sα

τ̄
(f(z(t, x̄(τ̄ + sα, 𝜉+ sd)))− f(𝜉)) dt

∥∥∥∥
≤ sα‖f(z(τ̄ + θs, x̄(τ̄ + sα, 𝜉+ sd)))− f(𝜉)‖.

Using the obtained results, it follows that
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‖ez(s, τ̄ + sα)‖
= ‖z(τ̄ + sα, x̄(τ̄ + sα, 𝜉+ sd))− x(τ̄ + sα, τ̄ + sα, 𝜉+ sd)‖

=

∥∥∥∥(x̄(τ̄ + sα, 𝜉+ sd) +
∫ τ̄+sα

τ̄
f(z(t, x̄(τ̄ + sα, 𝜉+ sd))) dt

)
− (𝜉+ sd)

∥∥∥∥
=

∥∥∥∥∫ τ̄+sα

τ̄
f(z(t, x̄(τ̄ + sα, 𝜉+ sd))) dt− sαf(𝜉)

∥∥∥∥
≤ sα‖f(z(τ̄ + θs, x̄(τ̄ + sα, 𝜉+ sd)))− f(𝜉)‖
≤ sαkf ‖z(τ̄ + θs, 𝜉+ sd− sαf(𝜉))− 𝜉‖
= sαkf ‖z(τ̄ + θs, 𝜉+ sd− sαf(𝜉))− z(τ̄, 𝜉)‖
≤ sαkf (‖z(τ̄ + θs, 𝜉+ sd− sαf(𝜉))− z(τ̄, 𝜉+ sd− sαf(𝜉))‖

+ ‖z(τ̄, 𝜉+ sd− sαf(𝜉))− z(τ̄, 𝜉)‖)

≤ sαkf

(∫ τ̄+θs

τ̄
‖f(z(t, 𝜉+ sd− sαf(𝜉)))‖ dt + kz ‖sd− sαf(𝜉)‖

)
≤ sαkf (θsmf + skz(‖d‖+ αmf))

≤ s2αkf (αmf + kz(‖d‖+ αmf)) .

So, with δz := αkf (αmf + kz(‖d‖+ αmf)), ‖ez(s, τ̄ + sα)‖ ≤ s2δz. For each t ∈

[τ̄, τ̄f ],

‖ez(s, t)‖ =
∥∥∥∥z(τ̄ + sα, x̄(τ̄ + sα, 𝜉+ sd)) +

∫ t

τ̄+sα
f(z(r, x̄(τ̄ + sα, 𝜉+ sd))) dr

−x(τ̄ + sα, τ̄ + sα, 𝜉+ sd)−
∫ t

τ̄+sα
f(x(r, τ̄ + sα, 𝜉+ sd)) dr

∥∥∥∥
≤ ‖z(τ̄ + sα, x̄(τ̄ + sα, 𝜉+ sd))− x(τ̄ + sα, τ̄ + sα, 𝜉+ sd)‖

+
∫ t

τ̄+sα
‖f(z(r, x̄(τ̄ + sα, 𝜉+ sd)))− f(x(r, τ̄ + sα, 𝜉+ sd))‖ dr

≤ ‖ez(s, τ̄ + sα)‖

+ kf

∫ t

τ̄+sα
‖z(r, x̄(τ̄ + sα, 𝜉+ sd))− x(r, τ̄ + sα, 𝜉+ sd)‖ dr

≤ s2δz + kf

∫ t

τ̄+sα
‖ez(s, r)‖ dr.

Applying the version of Gronwall’s inequality described in [122, Section 1], for

each t ∈ [τ̄, τ̄f ],

‖ez(s, t)‖ ≤ s2δz exp(kf(t− τ̄ − sα)).
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Noting that s is positive, dividing both sides of the above inequality by s and taking

the limit s→ 0+ yields

0 ≤ lim
s→0+

‖ez(s, t)‖
s

≤ 0 exp(kf(t− τ̄)) = 0,

as required. As discussed earlier, this implies that xt is directionally differentiable

at (τ̄, 𝜉) for each t ∈ [τ̄, τ̄f ], and that the mapping t ↦→ [xt]
′((τ̄, 𝜉); (α, d)) is the

unique solution y of (8.16) on [τ̄, τ̄f ].

In the remainder of this proof, suppose that f is L-smooth, and consider any

fixed t ∈ [τ̄, τ̄f ]. To show that xt is L-smooth, consider any v := (v1, . . . , vp) ∈

Rp and any M :=
[
m(1) · · · m(p)

]
∈ Rn×p. Define 𝛾̄ := (τ̄, 𝜉) ∈ Rn+1 and

W := (vT, M) ∈ R(n+1)×p. The directional differentiability results established

above show that with k := 0,

[xt]
(k)
𝛾̄,W ≡ [zt ∘ x̄](k)𝛾̄,W.

The following simple inductive argument shows that the above equivalence holds

for each k ∈ {0, 1, . . . , p}. Suppose that for some k ∈ {1, . . . , p}, [xt]
(k−1)
𝛾̄,W exists, and

is equivalent to [zt ∘ x̄](k−1)
𝛾̄,W . By Theorem 5.2.4, zt is L-smooth at x̄(𝛾̄) = 𝜉. Since x̄

is linear, it is also L-smooth, and so the composition zt ∘ x̄ is L-smooth at 𝛾̄ as well.

Hence, [zt ∘ x̄](k)𝛾̄,W exists, and the inductive assumption yields

[zt ∘ x̄](k)𝛾̄,W :=
[
[zt ∘ x̄](k−1)

𝛾̄,W

]′ ([ vk
m(k)

]
; ·
)
≡
[
[xt]

(k−1)
𝛾̄,W

]′ ([ vk
m(k)

]
; ·
)

.

Thus, [xt]
(k)
𝛾̄,W exists and is equivalent to [zt ∘ x̄](k)𝛾̄,W, which completes the inductive

argument. The arbitrariness of v and M shows that xt is L-smooth at 𝛾̄, with

[xt]
′(𝛾̄; W) = [zt ∘ x̄]′(𝛾̄; W).

Since the chain rule for LD-derivatives implies that

[zt ∘ x̄]′(𝛾̄; W) = [zt]
′(x̄(𝛾̄); x̄′(𝛾̄; W)) = [zt]

′(𝜉; M− f(𝜉) vT),

a second application of Theorem 5.2.4 shows that the mapping t ↦→ [xt]
′(𝛾̄; W) is
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the unique solution A of (8.17).

The following assumption extends Assumption 8.5.1 to describe an ODE with a

parameter-dependent initial condition and initial independent variable. The sub-

sequent corollary describes directional derivatives for the corresponding ODE so-

lution with respect to the parameter.

Assumption 8.5.4. Suppose that Assumption 8.5.1 holds, and let P ⊂ Rnp be open.

Suppose that functions τ : P→ R and 𝜉 : P→ X are locally Lipschitz continuous. With

x(·, p) denoting any solution of the parametric ODE system:

dx
dt

(t, p) = f(x(t, p)), x(τ(p), p) = 𝜉(p),

suppose that there exists a unique solution {x(t, p) : t ∈ [τ(p), τ̄f ]} ⊂ X for some

τ̄f ∈ R and each p ∈ P in a particular neighborhood of some p̄ ∈ P. Define τ̄ := τ(p̄)

and 𝜉 := 𝜉(p̄). Suppose that τ and 𝜉 are each directionally differentiable at p̄.

Corollary 8.5.5. Suppose that Assumption 8.5.4 holds. For each t ∈ [τ̄, τ̄f ], the mapping

xt ≡ x(t, ·) is well-defined and Lipschitz continuous on a neighborhood of p̄, with a Lips-

chitz constant that is independent of t. Moreover, xt is directionally differentiable at p̄ for

each t ∈ [τ̄, τ̄f ]; for any d ∈ Rnp , the mapping t ↦→ [xt]
′(p̄; d) is the unique solution y

on [τ̄, τ̄f ] of the ODE:

dy
dt

(t) = f′(x(t, p̄); y(t)), y(τ̄) = 𝜉′(p̄; d)− f(𝜉) τ′(p̄; d).

If, in addition, τ and 𝜉 are L-smooth at p̄, and f is L-smooth on X, then the mapping

xt ≡ x(t, ·) is L-smooth at p̄ for each t ∈ [τ̄, τ̄f ]; for any M ∈ Rnp×p, the mapping

t ↦→ [xt]
′(p̄; M) is the unique solution A on [τ̄, τ̄f ] of the ODE:

dA
dt

(t) = f′(x(t, p̄); A(t)), A(τ̄) = 𝜉′(p̄; M)− f(𝜉) τ′(p̄; M).

Proof. Choose any d ∈ Rnp , consider the following auxiliary ODE system, with

parameters a ∈ R and c ∈ Rn:

dz
dt

(t, a, c) = f(z(t, a, c)), z(a, a, c) = c,
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and define the mappings zt ≡ z(t, ·, ·) and 𝛾 : p ↦→ (τ(p), 𝜉(p)). By Lemma 8.5.3,

for each t ∈ [τ̄, τ̄f ], zt is well-defined and Lipschitz continuous on a neighbor-

hood of 𝛾(p̄), with a Lipschitz constant that is independent of t. Furthermore, zt

is directionally differentiable at 𝛾(p̄). Since xt ≡ zt ∘ 𝛾, and since 𝛾 is locally Lip-

schitz continuous, it follows that xt is well-defined and Lipschitz continuous on a

neighborhood of p̄, with a Lipschitz constant that is independent of t. Moreover,

using the chain rule for directional derivatives, it follows that xt is directionally

differentiable at p̄, with

[xt]
′(p̄; d) = [zt]

′(𝛾(p̄);𝛾 ′(p̄; d)
)
= [zt]

′
(
(τ̄, 𝜉);

[
τ′(p̄; d)
𝜉′(p̄; d)

])
.

Applying Lemma 8.5.3 to the right-hand side of the above equation yields the re-

quired ODE expression for t ↦→ [xt]
′(p̄; d).

The case in which τ, 𝜉, and f are L-smooth is analogous, with an arbitrary

M ∈ Rnp×p replacing d in the above argument, and with Lemma 8.5.3 now used

to demonstrate the L-smoothness of zt at 𝛾(p̄).

The following lemma effectively decouples LD-derivatives of an ODE solution

x into a component reflecting dependence of x on t, and a component reflecting

dependence of x on its initial condition. The latter component can be evaluated

using Corollary 8.5.5.

Lemma 8.5.6. Suppose that Assumption 8.5.4 holds, and let xt ≡ x(t, ·). For any

t ∈ [τ̄, τ̄f ], x is well-defined and Lipschitz continuous on a neighborhood of (t, p̄) and

is directionally differentiable at (t, p̄); for any α ∈ R and d ∈ Rnp ,

x′((t, p̄); (α, d)) = αf(x(t, p̄)) + [xt]
′(p̄; d). (8.19)

If, in addition, τ and 𝜉 are L-smooth at p̄, and f is L-smooth on X, then x is L-smooth at

(t, p̄) for each t ∈ [τ̄, τ̄f ]; for any v ∈ Rp and M ∈ Rnp×p,

x′
(
(t, p̄); (vT, M)

)
= f(x(t, p̄)) vT + [xt]

′(p̄; M).
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Proof. With 𝛾 defined as in the proof of Corollary 8.5.5, using the local Lipschitz

continuity of 𝛾 on P, [18, Theorem 7.1] yields the existence of some a < τ̄, some

b > τ̄f , and some neighborhood N̄ of p̄ such that x is well-defined on (a, b)× N̄.

Choosing τ̂, τ̂f such that a < τ̂ < τ̄ and b > τ̂f > τ̄f , Corollary 8.5.5 implies that xt

is Lipschitz continuous on some neighborhood N̂ of p̄ for any fixed t ∈ [τ̂, τ̂f ], with

a Lipschitz constant k̄x that is independent of t. Thus, for any (t1, p1), (t2, p2) ∈

[τ̂, τ̂f ]× (N̄ ∩ N̂),

‖x(t1, p1)− x(t2, p2)‖
≤ ‖xt1(p1)− xt1(p2)‖+ ‖x(t1, p2)− x(t2, p2)‖

≤ k̄x‖p1 − p2‖+
∥∥∥∥∫ t1

t2

f(x(s, p2)) ds
∥∥∥∥

≤ k̄x‖p1 − p2‖+ mf|t1 − t2|
≤ (k̄x + mf)‖(t1, p1)− (t2, p2)‖1,

and so x is Lipschitz continuous on [τ̂, τ̂f ]× (N̄ ∩ N̂).

Now, choose any fixed t ∈ [τ̄, τ̄f ]. For sufficiently small s > 0, by the mean-

value theorem, there exists θs,i ∈ [0, sα] such that

∫ t+sα

t
fi(x(r, p̄ + sd)) dr = sα fi(x(t + θs,i, p̄ + sd)).

Since fi ∘ x is continuous, and since lims→0+ θs,i = 0, it follows that

lim
s→0+

∫ t+sα
t fi(x(r, p̄ + sd)) dr

s
= α lim

s→0+
fi(x(t + θs,i, p̄ + sd)) = α fi(x(t, p̄)).

Concatenating the above limits for all i,

lim
s→0+

∫ t+sα
t f(x(r, p̄ + sd)) dr

s
= αf(x(t, p̄)). (8.20)

Now, for sufficiently small s > 0,
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x(t + sα, p̄ + sd)− x(t, p̄)
s

=
x(t + sα, p̄ + sd)− x(t, p̄ + sd)

s
+

x(t, p̄ + sd)− x(t, p̄)
s

=

∫ t+sα
t f(x(r, p̄ + sd)) dr

s
+

xt(p̄ + sd)− xt(p̄)
s

.

Since Corollary 8.5.5 implies the directional differentiability of xt at p̄, it follows

from (8.20) and Corollary 8.5.5 that

lim
s→0+

x(t + sα, p̄ + sd)− x(t, p̄)
s

= αf(x(t, p̄)) + [xt]
′(p̄; d).

This in turn yields the directional differentiability of x at (t, p̄), with a directional

derivative described by (8.19).

Suppose now that τ and 𝜉 are L-smooth at p̄, and that f is L-smooth on X.

Consider any v := (v1, . . . , vp) ∈ Rp and any M :=
[
m(1) · · · m(p)

]
. Define

𝛾̄ := (τ(p̄), 𝜉(p̄)) ∈ Rn+1 and W := (vT, M) ∈ R(np+1)×p. The following simple

inductive argument shows that for each k ∈ {0, 1, . . . , p}, x(k)𝛾̄,W exists, and that for

each α ∈ R and each d ∈ Rnp ,

x(k)𝛾̄,W(α, d) = αf(x(t, p̄)) + [xt]
(k)
p̄,M(d). (8.21)

The case in which k = 0 follows immediately from (8.19). For the inductive step,

suppose the above statement is true for some particular k ∈ {0, 1, . . . , (p − 1)}.

Then, for any s > 0, any α ∈ R, and any d ∈ Rnp ,

x(k)𝛾̄,W(vk+1 + sα, m(k+1) + sd)− x(k)𝛾̄,W(vk+1, m(k+1))

s

=

(
(vk+1 + sα)− vk+1

s

)
f(x(t, p̄)) +

[xt]
(k)
p̄,M(m(k+1) + sd)− [xt]

(k)
p̄,M(m(k+1))

s

= αf(x(t, p̄)) +
[xt]

(k)
p̄,M(m(k+1) + sd)− [xt]

(k)
p̄,M(m(k+1))

s
.

By Corollary 8.5.5, xt is L-smooth at p̄. Thus,
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lim
s→0+

x(k)𝛾̄,W(vk+1 + sα, m(k+1) + sd)− x(k)𝛾̄,W(vk+1, m(k+1))

s

= αf(x(t, p̄)) + [xt]
(k+1)
p̄,M (d),

yielding the existence of x(k+1)
𝛾̄,W and its equivalence to the mapping

(α, d) ↦→ αf(x(t, p̄)) + [xt]
(k+1)
p̄,M (d).

This completes the inductive assumption. Since v and M were chosen arbitrarily,

this yields the L-smoothness of x at (t, p̄).

To complete the proof, (8.21) implies that with v and M chosen as in the induc-

tive argument above, and with 𝛾̄ and W defined as above,

x′((t, p̄); W)

=
[
x(0)𝛾̄,W(v1, m(1)) · · · x(p−1)

𝛾̄,W (vp, m(p))
]

=
[(

v1f(x(t, p̄)) + [xt]
(0)
p̄,M(m(1))

)
· · ·

(
vpf(x(t, p̄)) + [xt]

(p−1)
p̄,M (m(p))

)]
= f(x(t, p̄)) vT +

[
[xt]

(0)
p̄,M(m(1)) · · · [xt]

(p−1)
p̄,M (m(p))

]
= f(x(t, p̄)) vT + [xt]

′(p̄; M),

as required.

The following corollary describes parametric LD-derivatives of an event, de-

fined as the earliest value of the independent variable t for which a transition con-

dition is satisfied. This result is, essentially, an analog of [30, Equation 50] that

permits the functions involved to be L-smooth rather than 𝒞1.

Corollary 8.5.7. Suppose that Assumption 8.5.4 holds, suppose a function g : X → R

is L-smooth, and suppose that a function te is implicitly defined on some open subset of P

containing p̄ such that for each applicable p ∈ P, te(p) is the least element t* of (τ(p), τ̄f ]

for which

0 = g(x(t*, p)).
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Suppose that τ and 𝜉 are L-smooth at p̄, and f is L-smooth on X. Let τ* := te(p̄) and

x* := x(τ*, p̄), and suppose the composite mapping g ∘ x satisfies the conditions of The-

orem 8.3.2 at (τ*, p̄). Then te is L-smooth at p̄; for any M ∈ Rnp×p, [te]
′(p̄; M) is the

unique solution vT ∈ R1×p of:

01×p = g′
(

x*; f(x*) vT + [xτ* ]
′(p̄; M)

)
. (8.22)

If, in addition, g is differentiable at x*, then

[te]
′(p̄; M) = − (∇g(x*))T [xτ* ]

′(p̄; M)

(∇g(x*))T f(x*)
. (8.23)

Proof. Choose any M ∈ Rnp×p. By Lemma 8.5.6, x is L-smooth in some neighbor-

hood of (τ*, p̄), and so the mapping g ∘ x is as well. By Theorem 8.3.2, the implicit

function te is L-smooth in some neighborhood of p̄, and [te]
′(p̄; M) is the unique

solution vT of

01×p = [g ∘ x]′
(
(τ*, p̄); (vT, M)

)
.

Applying the chain rule for LD-derivatives, the above equation is equivalent to:

01×p = g′
(

x*; x′
(
(τ*, p̄); (vT, M)

))
.

Lemma 8.5.6 implies that this equation is in turn equivalent to (8.22), which there-

fore has the unique solution vT = [te]
′(p̄; M).

If g is differentiable at x*, then (8.22) is equivalent to

01×p = (∇g(x*))T
(

f(x*) vT + [xτ* ]
′(p̄; M)

)
,

= (∇g(x*))T f(x*) vT + (∇g(x*))T [xτ* ]
′(p̄; M). (8.24)

Suppose, to obtain a contradiction, that (∇g(x*))T f(x*) = 0. In this case, the

right-hand side of (8.24) is independent of v, and so (8.24) has either no solutions

or infinitely many solutions vT. However, since g is differentiable at x*, (8.24) is

equivalent to (8.22), which has a unique solution vT = [te]
′(p̄; M). This yields a

contradiction, and thereby shows that (∇g(x*))T f(x*) ̸= 0 under the assumptions
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of this corollary. Noting that (∇g(x*))T f(x*) is a scalar, (8.24) is readily solved for

vT = [te]
′(p̄; M) to yield (8.23).

Although the above corollary nominally requires te(p) to be strictly greater

than τ(p) for each p ∈ P, the proof of the corollary implies that the result re-

mains valid if te(p̄) = τ̄, provided that te(p) ≥ τ(p) for each p ∈ P, and provided

that te is still a well-defined L-smooth implicit function near p̄.

8.6 Examples

The examples in this section illustrate hybrid systems in which, for various rea-

sons, classical sensitivity analysis approaches [30] cannot be used to compute para-

metric derivatives for the state variables, or even to confirm that these derivatives

exist. Theorem 8.4.2, however, permits evaluation of parametric LD-derivatives

for the system state variables in each case. In each of these examples, the require-

ment in Assumption 8.4.1 that each composition g(i) ∘ x(i) satisfies the conditions

of Theorem 8.3.2 at (τ*(i+1), p̄) can be verified to hold by direct computation.

Example 8.6.1. This example applies Theorem 8.4.2 to a hybrid system with a nondif-

ferentiable discontinuity function. Consider an instance of the parametric hybrid dis-

crete/continuous system described in Assumption 8.4.1, with nm := 2 discrete modes,

n(i) := 2 state variables for each mode i ∈ {1, 2}, and np := 2 parameters, and with the

following function definitions:

𝜉(1) : p ∈ R2 ↦→ p,

τ(1) : p ∈ R2 ↦→ 0,

f(i) : z ∈ R2 ↦→
[

1 0
0 0

]
z +

[
0
1

]
, ∀i ∈ {1, 2},

g(1) : z ∈ R2 ↦→ z1 − e2 + |z2 − 2|,
𝜃(2) : z ∈ R2 ↦→ 1

2 z.

Observe that p is simply the initial condition for the hybrid system; consider the particular
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initial condition p̄ := (1, 0). Set τ̄f := 3, and choose P ⊂ R2 to be a sufficiently small

neighborhood of p̄ to meet the existence and uniqueness conditions of Assumption 8.4.1.

By inspection, this hybrid system has the following solution for p := p̄:

x(1)(t, (1, 0)) = (et, t), ∀t ∈ [0, 3],

τ*(2) := τ(2)(1, 0) = 2,

x*(1) := x(1)(2, (1, 0)) = (e2, 2),

x(2)(t, (1, 0)) = (1
2 et+2, t− 1), ∀t ≥ 2.

Observe that g(1) is nondifferentiable at x?(1); it follows that established sensitivity the-

ory [30] for hybrid systems is not applicable to this system at p := (1, 0). Nevertheless,

the approach of this chapter applies. As in [33], define a first-sign function fsign as fol-

lows:

fsign : Rp → {−1, 0,+1} : z ↦→
{

0, if z = 0,
sign zk* , with k* := min{k : zk ̸= 0}, if z ̸= 0.

The following LD-derivatives are then readily computed, with the absolute-value function

in g(1) handled as in Chapter 4. Given any matrix Q, let qi,j denote the (i, j)-entry of Q.

The following expressions hold for each z ∈ R2 and N ∈ R2×p.

[ f(1)]
′(z; N) = [ f(2)]

′(z; N) =

[
1 0
0 0

]
N,

[g(1)]
′(x*(1); N) =

{ [
1 −1

]
N, if fsign(n2,1, . . . , n2,p) ≤ 0,[

1 1
]

N, if fsign(n2,1, . . . , n2,p) > 0, (8.25)

[𝜃(2)]
′(z; N) = 1

2 N.

Thus, Theorem 8.4.2 implies that, for j = 1 and t̃ ∈ (0, 2], and for j = 2 and t̃ ∈ (2, 3],

for any M ∈ R2×p, the LD-derivative [x(j),t̃]
′((1, 0); M) is the matrix A(j)(t̃) described

as follows. Here, v ∈ Rp is the unique solution of the equation system (8.26) below.
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A(1)(t) =
[

et 0
0 1

]
M, ∀t ∈ [0, 2],

01×p = [g(1)]
′
([

e2

2

]
;
[

e2

1

]
vT +

[
e2 0
0 1

]
M
)

, (8.26)

A(2)(2) =
1
2

([
e2 0
0 2

]
M−

[
e2

1

]
vT
)

,

A(2)(t) =
[

et−2 0
0 1

]
A(2)(2), ∀t > 2.

The implicitly defined quantity v can be evaluated analytically in this case. Define an

intermediate matrix quantity

W :=
[

e2

1

]
vT +

[
e2 0
0 1

]
M ∈ R2×p,

and define σ* := fsign(w2,1, . . . , w2,p). Equations (8.25) and (8.26) imply that, if σ* ≤ 0,

then
[
1 −1

]
W = 01×p. Otherwise, if σ* > 0, then

[
1 1

]
W = 01×p. Since these cases

are exhaustive, the definition of W implies that

vT =

{
1

e2−1

[
−e2 1

]
M, if σ* ≤ 0,

−1
e2+1

[
e2 1

]
M, if σ* > 0.

(8.27)

Substituting this relationship into the definition of W yields:

w2,k ∈
{

e2(m2,k −m1,k)

e2 − 1
,

e2(m2,k −m1,k)

e2 + 1

}
, ∀k ∈ {1, . . . , p}.

Noting that both coefficients of (m2,k−m1,k) in the above expression are positive, it follows

immediately that σ* = fsign
(
(
[
−1 1

]
M)T

)
; v is then obtained by substituting this

expression into (8.27).

Example 8.6.2. This example applies Theorem 8.4.2 to a hybrid system that visits non-

differentiable domain points of its ODE right-hand side function for a nonzero duration.

Consider an instance of the parametric hybrid discrete/continuous system described in As-

sumption 8.4.1, with nm := 2 discrete modes, n(i) := 2 state variables for each mode

i ∈ {1, 2}, and np := 2 parameters, and with the following function definitions:
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𝜉(1) : p ∈ R2 ↦→ p,

τ(1) : p ∈ R2 ↦→ 0,

f(1) : z ∈ R2 ↦→ (|z1|, 1),

g(1) : z ∈ R2 ↦→ z1 + z2 − 2,

𝜃(2) : z ∈ R2 ↦→ z,

f(2) : z ∈ R2 ↦→ (z1, 1).

Again, p is simply the initial condition for the hybrid system; consider the particular

initial condition p̄ := (0, 0). Set τ̄f := 3, and choose P ⊂ R2 to be a sufficiently small

neighborhood of p̄ to meet the existence and uniqueness conditions of Assumption 8.4.1.

By inspection, this hybrid system has the following solution for p := p̄:

x(1)(t, (0, 0)) = (0, t), ∀t ∈ [0, 3],

τ*(2) := τ(2)(0, 0) = 2,

x*(1) := x(1)(2, (0, 0)) = (0, 2),

x(2)(t, (0, 0)) = (0, t), ∀t ≥ 2.

Indeed, for any choice of a ∈ [0, 2), the hybrid system has the following solution for

p := (aea−2, 0):

x(1)(t, (aea−2, 0)) = (aet+a−2, t), ∀t ∈ [0, 3− a],

τ(2)(aea−2, 0) = 2− a,

x(2)(t, (aea−2, 0)) = (aet+a−2, t), ∀t ≥ 2− a,

and has the following solution for p := (−aea+2, 0):

x(1)(t, (−aea+2, 0)) = (−aea+2−t, t), ∀t ∈ [0, a + 3],

τ(2)(−aea+2, 0) = a + 2,

x(2)(t, (−aea+2, 0)) = (−aet−a−2, t), ∀t ≥ a + 2.

The above solution trajectories are illustrated in Figure 8-1 for various values of a ∈ [0, 2).
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Figure 8-1: Solution trajectories (solid red) for the hybrid system considered in
Example 8.6.2, for various choices of a ∈ [0, 2) and p ∈ {(aea−2, 0), (−aea+2, 0)},
the set {z ∈ R2 : g(1)(z) = 0} on which a discrete event occurs (dashed blue), and
a subset of R2 on which f(1) is nondifferentiable (dash-dotted black).

For each t ∈ [0, 2], f(1) is nondifferentiable at x(1)(t, (0, 0)); the sensitivity theory

of [30] is therefore not applicable in this case. Observe that f(1)(x*(1)) = (0, 1), that 𝜃(2) is

the identity mapping, and that

f(2)(x(2)(2, (0, 0))) = J𝜃(2)(x
*
(1)) f(1)(x

*
(1));

the final claim of Theorem 8.4.2 is therefore applicable with i := 1. Defining the first-

sign function as in Example 8.6.1, and handling the absolute-value function as in Chap-

ter 4, Equation (8.10) in Theorem 8.4.2 becomes the following ODE, when i := 1. Here,

“a1,k(t)” refers to the (1, k)-element of A(1)(t).

dA(1)

dt
(t) =

[
fsign(x(1),1(t, p̄), a1,1(t), . . . , a1,p(t)) 0

0 0

]
A(1)(t).

Thus, the auxiliary hybrid system in A(j) presented in Theorem 8.4.2 is readily solved

by inspection. For j = 1 and t̃ ∈ (0, 2], and for j = 2 and t̃ ∈ (2, 3], for any M ∈ R2×p,
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the LD-derivative [x(j),t̃]
′(p̄; M) is the matrix A(j)(t̃) described as follows.

σ := fsign
(
(
[
1 0

]
M)T

)
,

A(1)(t) =
[

eσt 0
0 1

]
M, ∀t ∈ [0, 2],

A(2)(2) = A(1)(2) =
[

e2σ 0
0 1

]
M,

A(2)(t) =
[

et−2 0
0 1

]
A(2)(2) =

[
et+2σ−2 0

0 1

]
M, ∀t > 2.

If x(1)(t, ·) were differentiable at p̄ for some fixed t ∈ (0, 2], then the expression for

A(1)(t) above would vary linearly with M. However, the intermediate quantity σ varies

nonlinearly with M; by choosing M appropriately, the parameter σ can be made to take

any particular value in the set {−1, 0,+1}. Inspection of the above expression for A(1)

then shows that x(1)(t, ·) is nondifferentiable at p̄ for each t ∈ (0, 2]. A similar argument

shows that x(2)(t, ·) is nondifferentiable at p̄ for each t ∈ [2, 3].

Example 8.6.3. This example examines a hybrid system in which small perturbations in

the system parameters can change the discrete mode sequence visited by the solution tra-

jectory. This hybrid system is reformulated so as to satisfy Assumption 8.4.1, whereupon

parametric LD-derivatives are obtained for its solution trajectory using Theorem 8.4.2.

Consider functions:

fI : z ∈ R2 ↦→
[

1 0
0 0

]
z +

[
0
1

]
,

fA : z ∈ R2 ↦→ 2fI(z),

fB : z ∈ R2 ↦→ 1
2 fI(z),

fF : z ∈ R2 ↦→
[

2 0
0 −2

]
z,

and

g± : z ∈ R2 ↦→ z1 − e2 ± (z2 − 2),

and consider the following hybrid discrete/continuous system with four discrete modes,
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indexed by I, A, B, F, and with a parameter p ∈ R2 chosen from a sufficiently small

neighborhood of p̄ := (1, 0). The system’s state variables are initialized in mode I with

xI(0, p) = p. When in any mode J ∈ {I, A, B, F}, x(·, p) ≡ xJ(·, p) evolves according

to the ODE:

dxJ

dt
(t, p) = fJ(xJ(t, p)).

The system does not satisfy Assumption 8.4.1 directly. At each transition between discrete

modes, there is no jump in the system’s state variables. The discrete mode is changed from

mode I at the least value of τI > 0 for which

g+(xI(τI , p)) = 0 OR g−(xI(τI , p)) = 0.

If g+(xI(τI , p)) = 0, then the discrete mode changes from I to A at τI ; otherwise, the

discrete mode changes from I to B at τI .

Once the system is in discrete mode A, the mode is changed from A to F at the least

value of τA ≥ τI for which

g−(xA(τA, p)) = 0.

Once the system is in discrete mode B, the mode is changed from B to F at the least value

of τB ≥ τI for which

g+(xB(τB, p)) = 0.

Once the system enters mode F, there are no further changes to the discrete mode. The event

times τI , τA, and τB depend on p whenever they exist, and will thus be denoted as functions

of p. The discrete mode structure of this hybrid system is illustrated in Figure 8-2(a). This

hybrid system is, essentially, an ODE with a discontinuous right-hand side function, as

considered in [26].

At p := p̄ = (1, 0), it is readily verified that the hybrid system above has the following

unique solution trajectory:
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Figure 8-2: Discrete modes for the hybrid system considered in Example 8.6.3:
(a) the relationship between the continuous state xJ(t, p) and discrete mode J ∈
{I, A, B, F} for the original formulation, assuming that p is sufficiently close to
(1, 0), the set {z ∈ R2 : g+(z) = 0} (dash-dotted black), and the set {z ∈ R2 :
g−(z) = 0} (dashed blue), and (b) the relationship between the continuous state
x(i)(t, p) and discrete mode i ∈ {1, 2, 3, 4} for the modified formulation, the set
{z ∈ R2 : g(1)(z) = 0} (solid red), the set {z ∈ R2 : g(2)(z) = 0} (dashed blue),
and the set {z ∈ R2 : g(3)(z) = 0} (dash-dotted black).

xI(t, (1, 0)) = (et, t), ∀t ∈ [0, 2],
τI(1, 0) = 2,

xA(2, (1, 0)) = xI(2, (1, 0)) = (e2, 2),
τA(1, 0) = 2,

xF(2, (1, 0)) = xA(2, (1, 0)) = (e2, 2),

xF(t, (1, 0)) = (e2t−2, 2e4−2t), ∀t > 2.

Observe that this trajectory visits the discrete modes in the order I → A → F, and that

both g+(xI(τI(1, 0), (1, 0)) = 0 and g−(xI(τI(1, 0), (1, 0)) = 0. It is readily verified

that, for all sufficiently small ε > 0, the solution trajectory with p := p̄ + (ε, 0) =

(1 + ε, 0) instead visits the discrete modes in the order I → B → F. Since small changes

in parameters may change the sequence of visited discrete modes, conventional sensitivity

analysis theory [30] cannot describe sensitivities of the solution trajectory for this particu-
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lar system at p := p̄.

However, as noted in Section 8.4, if Assumption 8.4.1 is relaxed to permit τ(i+1)(p) =

τ(i)(p), then this assumption’s admittance of nondifferentiable discontinuity functions g(i)

can be exploited to provide the following alternative formulation for the above hybrid sys-

tem. Unlike the original formulation, this reformulation exhibits a discrete mode sequence

that is independent of p, provided that p is chosen from some sufficiently small neighbor-

hood of p̄.

𝜉(1) : p ∈ R2 ↦→ p,

τ(1) : p ∈ R2 ↦→ 0,

f(1) : z ∈ R2 ↦→ fI(z),

g(1) : z ∈ R2 ↦→ z1 − e2 + |z2 − 2|,
𝜃(i) : z ∈ R2 ↦→ z, ∀i ∈ {2, 3, 4},
f(2) : z ∈ R2 ↦→ fA(z),

g(2) : z ∈ R2 ↦→ z1 − e2 − (z2 − 2),

f(3) : z ∈ R2 ↦→ fB(z),

g(3) : z ∈ R2 ↦→ z1 − e2 − |z2 − 2|,
f(4) : z ∈ R2 ↦→ fF(z).

The above reformulation may be handled using Theorem 8.4.2; the discrete mode struc-

ture for this reformulation is illustrated in Figure 8-2(b). In this figure, the level sets

{z ∈ R2 : g(i)(z) = 0} have been translated by small amounts to illustrate the invariance

of the mode sequence i : 1 → 2 → 3 → 4; in fact {z ∈ R2 : g(2)(z) = 0} ⊂ {z ∈ R2 :

g(1)(z) = 0} ∪ {z ∈ R2 : g(3)(z) = 0}.

Observe that this reformulation has the following solution trajectory at p̄, which is

analogous to the trajectory obtained for the original formulation above.
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x(1)(t, (1, 0)) = (et, t), ∀t ∈ [0, 3],

τ*(2) := τ(2)(1, 0) = 2,

x*(1) := x(1)(2, (1, 0)) = (e2, 2),

x(2)(2, (1, 0)) = (e2, 2),

τ*(3) := τ(3)(1, 0) = 2,

x*(2) := x(2)(2, (1, 0)) = (e2, 2),

x(3)(2, (1, 0)) = (e2, 2),

τ*(4) := τ(4)(1, 0) = 2,

x*(3) := x(3)(2, (1, 0)) = (e2, 2)

x(4)(t, (1, 0)) = (e2t−2, 2e4−2t), ∀t ≥ 2.

According to Theorem 8.4.2, for each t ∈ (0, 2], x(1)(t, ·) is L-smooth at p̄. Similarly, for

each t > 2, x(4)(t, ·) is L-smooth at p̄. Since L-smoothness implies local Lipschitz con-

tinuity, the state variables of this hybrid system are thereby shown to be locally Lipschitz

continuous at p̄ for each fixed t ̸= 2, even in the original formulation.

Defining the first-sign function as in Example 8.6.1, the following expressions hold for

each z ∈ R2 and N ∈ R2×p:

[ f(1)]
′(z; N) = [ f(4)]

′(z; N) =

[
1 0
0 0

]
N,

[ f(2)]
′(z; N) =

[
2 0
0 0

]
N,

[ f(3)]
′(z; N) =

[
0.5 0
0 0

]
N,

[g(1)]
′(x*(1); N) =

{ [
1 −1

]
N, if fsign(n2,1, . . . , n2,p) ≤ 0,[

1 1
]

N, if fsign(n2,1, . . . , n2,p) > 0,

[g(2)]
′(x*(2); N) = (∇g(2)(x

*
(2)))

TN =
[
1 −1

]
N,

[g(3)]
′(x*(3); N) =

{ [
1 −1

]
N, if fsign(n2,1, . . . , n2,p) ≥ 0,[

1 1
]

N, if fsign(n2,1, . . . , n2,p) < 0, (8.28)

[𝜃(i)]
′(z; N) = N, ∀i ∈ {2, 3, 4}.

Thus, Theorem 8.4.2 implies that, for j = 1 and t̃ ∈ (0, 2], and for j = 4 and t̃ > 2, for
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any M ∈ R2×p, the LD-derivative [x(j),t̃]
′(p̄; M) is the matrix A(j)(t̃) described as follows.

Here, v, u, and w are the unique solutions of (8.29), (8.30), and (8.31) below. Though the

matrices A(2)(2) and A(3)(2) below must be computed in order to compute A(4)(t), they

do not represent LD-derivatives for the hybrid system.

A(1)(t) =
[

et 0
0 1

]
M, ∀t ∈ (0, 2],

01×p = [g(1)]
′
([

e2

2

]
;
[

e2

1

]
vT +

[
e2 0
0 1

]
M
)

, (8.29)

A(2)(2) = A(1)(2) +
([

e2

1

]
−
[

2e2

2

])
vT =

[
e2 0
0 1

]
M−

[
e2

1

]
vT,

uT = −
[
1 −1

]
A(2)(2)[

1 −1
] [2e2

2

] , (8.30)

A(3)(2) = A(2)(2)−
([1

2 e2

1
2

]
−
[

2e2

2

])
uT,

01×p = [g(3)]
′
([

e2

2

]
;
[1

2 e2

1
2

]
wT + A(3)(2)

)
, (8.31)

A(4)(2) = A(3)(2) +
([1

2 e2

1
2

]
−
[

e2

1

])
wT.

A(4)(t) =
[

e2t−4 0
0 e4−2t

]
A(4)(2), ∀t > 2.

As in Example 8.6.1, construct σ* := fsign((
[
−1 1

]
M)T) ∈ {−1, 0,+1}. With this

construction, (8.27) remains applicable; thus,

vT =

{
1

e2−1

[
−e2 1

]
M, if σ* ≤ 0,

−1
e2+1

[
e2 1

]
M, if σ* > 0.

At this point, determination of the intermediate vector quantity w is the only obstacle to

evaluating A(4)(t) by direct computation using the above expressions. Following a similar

approach to the determination of v in Example 8.6.1, the equation system (8.31) may be

solved for w analytically, as follows. For notational convenience, define B := A(3)(2) ∈

R2×p,
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Q :=
1
2

[
e2

1

]
wT + B ∈ R2×p,

and ζ* := fsign(q2,1, . . . , q2,p). Equations (8.28) and (8.31) imply that, if ζ* ≥ 0, then[
1 −1

]
Q = 01×p. Otherwise, if ζ* < 0, then

[
1 1

]
Q = 01×p. Since these cases are

exhaustive, the definitions of Q and B imply that

wT =

{
−2

e2−1

[
1 −1

]
A(3)(2), if ζ* ≥ 0,

−2
e2+1

[
1 1

]
A(3)(2), if ζ* < 0.

(8.32)

Substituting this description into the definition of Q yields:

q2,k ∈
{

1
e2−1(e

2b2,k − b1,k), 1
e2+1(e

2b2,k − b1,k)
}

, ∀k ∈ {1, . . . , p}.

Noting that both coefficients of (e2b2,k− b1,k) in the above expression are positive, it follows

immediately that

ζ* = fsign
(([
−1 e2]B

)T
)
= fsign

(([
−1 e2]A(3)(2)

)T
)

;

w is then obtained by substituting this expression for ζ* into (8.32). With w thus deter-

mined, A(4)(t) can be evaluated for any t ≥ 2 using the expressions above.

In this example, there were no jumps in state variables. Suppose now that the original

formulation is modified to permit jumps in state variables at its discrete events, with these

jumps governed by a function 𝜃+ at the I → A and B→ F transitions, and by a function

𝜃− at the I → B and A → F transitions. To reflect the behavior of this modified system,

the transition functions in the reformulated system would, by inspection of Figure 8-2,

need to satisfy the following conditions:

𝜃(2) ≡ 𝜃+, 𝜃(4) ≡ 𝜃+, and 𝜃(3) ∘ 𝜃(2) ≡ 𝜃(4) ∘ 𝜃(3) ≡ 𝜃−.

Thus, there must exist a function 𝜃(3) such that 𝜃(3) ∘ 𝜃+ ≡ 𝜃+ ∘ 𝜃(3) ≡ 𝜃−. If this

condition cannot be satisfied, then the approach of this example will not be applicable.

Observe that this condition is trivially satisfied by the identity transformation when the

state variables in the original system do not jump; in this case, 𝜃+ and 𝜃− are both the
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identity transformation.

8.7 Conclusions

Sufficient conditions have been presented for L-smoothness of local inverse func-

tions and local implicit functions, and the corresponding LD-derivatives have been

described as the unique solutions of the equation systems (8.1) and (8.4). In the

special case that these functions are described in terms of piecewise differentiable

functions, numerical methods have been provided for efficient evaluation of these

LD-derivatives.

Using the above results, Theorem 8.4.2 provides parametric LD-derivatives

for the broad class of hybrid discrete/continuous systems described by Assump-

tion 8.4.1, in which nonsmoothness may be present in any or all of the functions

determining the continuous evolution, discrete event timing, and state variable

jumps of the hybrid system. This assumption requires the discrete mode sequence

visited by the solution trajectory to be invariant under sufficiently small perturba-

tions of the parameters. Nevertheless, Example 8.6.3 illustrates the possibility of

reformulating certain hybrid systems violating this assumption, so that Assump-

tion 8.4.1 and Theorem 8.4.2 apply to the equivalent reformulated system. Through

this reformulation, the original formulation is demonstrated a posteriori to have

state variables that are locally Lipschitz continuous with respect to the system pa-

rameters at each fixed time that is not a discrete event. This approach is applicable

certain ODE systems with discontinuous right-hand side functions, in the form

considered by Filippov [26].
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Chapter 9

Twice-continuously differentiable

convex relaxations of factorable

functions

9.1 Introduction

As a departure from the earlier chapters in this thesis, this chapter is concerned

with eliminating one particular source of nonsmoothness in optimization prob-

lems. Specifically, a variant of McCormick’s scheme [74] for the generation of con-

vex underestimators is developed. While the original scheme may produce non-

differentiable relaxations even when the relaxed function is smooth, this variant

produces twice-continuously differentiable relaxations, without sacrificing any of

the useful computational properties of McCormick’s scheme. This chapter is re-

produced from [60].

Branch-and-bound methods for global optimization [45] require the ability to

evaluate a lower bound on a nonconvex function on particular classes of subdo-

mains. This lower-bounding information may be generated using a relaxation

scheme by McCormick [74], which evaluates convex underestimators of a noncon-

vex objective function on interval subdomains. McCormick’s relaxation method
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assumes that the objective function can be expressed as a finite, known compo-

sition of simple functions and arithmetic operations. Subgradients may be com-

puted for these underestimators using dedicated variants [5, 76] of automatic dif-

ferentiation [34]. Using this information, a lower bound on a nonconvex objective

function on an interval may be supplied by minimizing the corresponding convex

McCormick underestimator using a local optimization solver. Other methods for

global optimization, such as nonconvex outer approximation [52] and nonconvex

generalized Benders decomposition [68], also require the construction and mini-

mization of convex underestimators.

McCormick’s relaxation method has several useful properties: accurate eval-

uation of a convex underestimator and a corresponding subgradient is computa-

tionally inexpensive and automatable; the C++ library MC++ [15, 76] uses opera-

tor overloading to compute these quantities for well-defined user-supplied com-

positions of the basic arithmetic operations and functions such as sin / cos and

exp / log. Moreover, as the width of the interval on which a McCormick relaxation

is constructed is reduced to zero, the relaxation approaches the objective function

sufficiently rapidly [11] to mitigate a phenomenon called the cluster effect [20, 119],

in which a branch-and-bound method will branch many times on intervals that ei-

ther contain or are near a global minimum. By extending McCormick’s method in

an intuitive manner, generalized McCormick relaxations [100, 104] have been devel-

oped to handle compositions of functions in a more systematic manner, and to han-

dle various extensions of McCormick’s theory to implicit functions [101, 107, 120].

However, as the following example shows, McCormick’s relaxations can be

nondifferentiable.

Example 9.1.1. Let a function mid : R3 → R map to the median of its three scalar

arguments, consider the smooth composite function g : R → R : z ↦→ exp(z3), and set

z* := −1 +
√

3. As shown in [76, Example 2.1], the function:
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gcv : [−1, 1]→ R : z ↦→ exp(mid(z3 + 3z2 − 3, z3 − 3z2 + 3,−1)),

=

{
exp(−1), if z ≤ z*,
exp(z3 + 3z2 − 3), if z > z*

can be generated from g according to McCormick’s rule [76, Section 3] for generating

convex relaxations of a composite function, when αBB relaxations [1] of the inner function

z ↦→ z3 are employed. Indeed, gcv is convex on [−1, 1], and gcv(z) ≤ g(z) for each

z ∈ [−1, 1]. However, even though gcv satisfies McCormick’s proposed sufficient condition

for differentiability of a convex relaxation [74, p. 151], it is in fact nondifferentiable at z*.

Several factors can introduce failure of continuous or twice-continuous differ-

entiability of McCormick’s relaxations. Firstly, as illustrated by the above example,

the median function used in defining McCormick’s composition rule is itself non-

differentiable. Secondly, any nondifferentiability in supplied relaxations of com-

posed functions can propagate to yield nondifferentiability in constructed relax-

ations of composite functions. (Whether the composed functions are themselves

smooth is irrelevant.) Thirdly, as presented in [76, Proposition 2.6], McCormick’s

rule for generating relaxations of products introduces nondifferentiability, due to

its use of bivariate max and min functions. A relaxation scheme preserving con-

tinuous or twice-continuous differentiability would be desirable for a number of

reasons, which are summarized in the following two paragraphs.

In general, nondifferentiable convex relaxations must be solved using ded-

icated numerical methods for nondifferentiable optimization problems such as

bundle methods [63, 67], which lack the strong convergence rate results of their

smooth counterparts. Continuously differentiable convex relaxations may be min-

imized using gradient-based algorithms for local optimization, which typically ex-

hibit Q-linear convergence. Twice-continuously differentiable relaxations can be

minimized by Newton’s method, which exhibits Q-quadratic convergence under

certain invertibility assumptions on the Hessian matrix. Computation of the re-

quired Hessian or Hessian-vector products can be avoided by using a secant-based

quasi-Newton method instead, which exhibits Q-superlinear convergence under
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the assumptions of Newton’s method.

Furthermore, a method for generating continuously differentiable relaxations

would yield theoretical and numerical benefits when used in established meth-

ods for generating convex and concave relaxations of solutions of parametric or-

dinary differential equations (ODEs). If continuously differentiable relaxations are

available for the right-hand side function of such an ODE, then the relaxation-

generating ODE described in [103] would have a continuously differentiable right-

hand side function. Theoretical hurdles concerning evaluation of subgradients

for these relaxations would thus be overcome, since the ODE solution relaxations

would now be differentiable with respect to the ODE parameters. Moreover, the

corresponding parametric derivatives may be computed according to classical ODE

theory [35]. Similarly, incorporation of continuously differentiable relaxations of

an ODE right-hand side function into the relaxation method of [102] would yield

ODEs whose parametric sensitivities are decribed by the hybrid system sensitivity

results of [30].

Thus, the goal of this chapter is to present a variant of McCormick’s relaxation

scheme which produces continuously or twice-continuously differentiable relax-

ations, while retaining the various theoretical and computational benefits of Mc-

Cormick’s original method. To achieve this, variants of McCormick’s product rule

are introduced in Definition 9.3.19, in which the original product rule is further

relaxed in a particular manner. An additional assumption (Assumption 9.2.21) is

imposed on user-supplied relaxations of composed intrinsic functions, so as to en-

force differentiability in McCormick’s composition rule. This assumption is readily

satisfied for standard arithmetic operations and functions. Under these modifica-

tions, the aforementioned sources of nonsmoothness in McCormick’s relaxation

scheme are circumvented. For broader applicability, the relaxation theory devel-

oped in this chapter is presented in the framework of generalized McCormick re-

laxations [100]. To construct twice-continuously differentiable relaxations rather

than once-continuously differentiable relaxations according to the methods in this

chapter, more stringent (yet readily satisfied) assumptions are required on the sup-
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plied relaxations of univariate intrinsic functions, and the employed product rule

must be relaxed further. Gradients of the developed relaxations can be evaluated

efficiently using the standard forward or reverse modes of automatic differentia-

tion [34].

The product rule variants developed in this chapter make use of certain smooth-

ing approximations. Smooth approximations of simple nonsmooth functions have

previously been considered [8], particularly in the context of complementarity

problems [23, 28, 90]. The smoothing approach taken in this chapter is similar in

spirit, but is modified so as to accommodate our requirement that the posited con-

vex/concave relaxations are well-defined, are indeed convex or concave, are valid

bounds on the underlying function, and are either once- or twice-continuously dif-

ferentiable, as desired.

Observe that the αBB relaxation scheme [1] represents an alternative to Mc-

Cormick’s scheme, and shares several of the features of McCormick’s method out-

lined above. Moreover, αBB relaxations of twice-continuously differentiable func-

tions are themselves twice-continuously differentiable. This chapter instead fo-

cuses on variations of McCormick’s method, due to the ability of McCormick’s

theory to handle more general compositions of functions, and due to its extensions

to relaxations of implicit functions, and to relaxations of solutions of differential-

algebraic equations.

This chapter is structured as follows. Section 9.2 summarizes established def-

initions and properties concerning differentiability on intervals, interval analysis,

and McCormick’s relaxation technique. Section 9.3 develops the smoothing con-

structions used in the remainder of the chapter. Section 9.4 develops variants of

McCormick’s relaxation technique, and presents the main theorem of the chapter,

in which these variants are asserted to have desirable properties. The proof of this

theorem is spread over the next three sections: Section 9.5 shows that the proposed

McCormick relaxation variants are indeed valid relaxations, Section 9.6 demon-

strates continuous or twice-continuous differentiability of these relaxations and

demonstrates a technique for propagating their gradients, and Section 9.7 shows
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that as the underlying parameter interval is reduced in size, the relaxations con-

verge to the original function sufficiently rapidly to mitigate clustering in a branch-

and-bound scheme for global optimization. Section 9.8 describes a C++ implemen-

tation of the methods in this chapter, and presents examples of its application for

illustration.

9.2 Background

This section summarizes relevant, established definitions and properties concern-

ing differentiability on closed sets, interval analysis, McCormick’s convex/concave

relaxation scheme, and convergence orders of relaxation schemes.

9.2.1 Differentiability on open and closed sets

Let ‖ · ‖ denote the Euclidean norm on Rn. Given an open set X ⊂ Rn, a function

f : X → Rm is (Fréchet) differentiable at x ∈ X if there exists a matrix A ∈ Rm×n for

which

0 = lim
h→0

f(x + h)− f(x)−Ah
‖h‖ .

In this case, the above equation defines A uniquely, and A is called the Jacobian

matrix Jf(x) of f at x. If m = 1, in which case f ≡ f is scalar-valued, then the

gradient of f at x is the column vector ∇ f (x) := (J f (x))T ∈ Rm.

Given an open set X ⊂ Rn, a function f : X → Rn is continuously differentiable

(𝒞1) on X if it is differentiable on X, and the Jacobian mapping x ↦→ Jf(x) is con-

tinuous on X. Equivalently, f is 𝒞1 on X if its first-order partial derivatives each

exist on X and are continuous. If m = 1, in which case f ≡ f is scalar-valued,

then f is twice-continuously differentiable (𝒞2) on X if f is 𝒞1 on X and there exists a

continuous Hessian mapping x→ ∇2 f (x) for which

0 = lim
h→0

f (x + h)− f (x)−∇ f (x)T h− 1
2 hT∇2 f (x) h

‖h‖2 , ∀x ∈ X.
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Equivalently, f is 𝒞2 on X if its second-order partial derivatives each exist on X and

are continuous. A vector-valued function f is 𝒞2 if each of its component functions

is 𝒞2.

By specializing a classical result by Whitney [121], differentiability on closed

sets such as intervals can be defined in a manner that is consistent with the classical

chain rule of differentiation, as follows.

Definition 9.2.1. Given a closed set B ⊂ Rn and some i ∈ {1, 2}, a function f : B→ Rm

is 𝒞 i on B if there exists an open set X ⊂ Rn such that B ⊂ X, and a function f̂ : X → Rm

such that f̂(x) = f(x) for each x ∈ B, and such that f̂ is 𝒞 i (in the classical sense) on X.

Given any point x in the boundary of B, define Jf(x) := Jf̂(x). If m = 1, in which case

f ≡ f is scalar-valued, then define ∇ f (x) := J f (x)T.

Remark 9.2.2. When x lies in the boundary of B, it is possible that Jf(x) is not uniquely

specified by the above definition, since f̂ might not be specified uniquely. For example, if B

comprises a single point {x0} ⊂ Rn, then f̂ may be chosen to be any 𝒞 i function for which

f̂(x0) = f(x0).

Despite the possible nonuniqueness implied by the previous remark, the fol-

lowing propositions show that the classical chain rule continues to hold.

Proposition 9.2.3. Consider B, i, and f as in Definition 9.2.1, and any point x in the

boundary of B. If there exists any sequence {x(k)}k∈N → x in B∖{x}, then any Jacobian

Jf(x) satisfies

0 = lim
h→0

(x+h)∈B

f(x + h)− f(x)− Jf(x) h
‖h‖ .

Proof. This proposition is an immediate corollary of Theorem 1 in [121].

Corollary 9.2.4. Given a closed convex set B ⊂ Rn and a convex 𝒞1 function f : B→ R,

for each x ∈ B, ∇ f (x) is a subgradient of f at x in that

f (y) ≥ f (x) +∇ f (x)T (y− x), ∀y ∈ B.
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Proposition 9.2.5. Consider nonempty sets B ⊂ Rn and D ⊂ Rm such that B is either

closed, open, or both, and such that D is either closed, open, or both. For any fixed i ∈

{1, 2}, given 𝒞 i functions g : B → D and f : D → Rp, the composite function h ≡

f ∘ g : B→ Rp is well-defined and 𝒞 i on B.

Moreover, for each x ∈ B, Jh(x) = Jf(g(x)) Jg(x). (If B is closed and x lies in

the boundary of B, then this construction of Jh(x) satisfies Definition 9.2.1 and Proposi-

tion 9.2.3 for some valid choice of ĥ.)

Proof. This proposition is an immediate corollary of Theorem 1 in [121].

9.2.2 Interval analysis

This section presents a brief overview of relevant definitions and concepts from

interval analysis; for further details, the reader is directed to introductory sources

[2, 77, 80].

An interval 𝑥 ≡ [x, x] is a nonempty compact set {z ∈ R : x ≤ z ≤ x} ⊂ R;

the set of all such intervals is denoted IR. Intervals and vectors of intervals are de-

noted in this chapter as boldfaced, italicized, lowercase letters (e.g., 𝑦), whereas

vectors in Rn are denoted as boldfaced, romanized, lowercase letters (e.g., y).

Given a set B ⊂ Rn, the set of intervals (or vectors of intervals) that are subsets

of B will be denoted as IB. If B is nonempty, then IB is necessarily nonempty.

An interval vector 𝑦 ∈ IRn will be represented equivalently as [y, y], where y :=

(y
1
, . . . , y

n
) ∈ Rn and y := (y1, . . . , yn) ∈ Rn.

An interval 𝑥 ∈ IR has a width of wid𝑥 := x − x, and an interval vector 𝑦 ≡

(𝑦1, . . . ,𝑦n) ∈ IRn has a width of wid𝑦 := maxk∈{1,...,n}wid𝑦k. An interval or

interval vector with zero width is degenerate, and is nondegenerate otherwise.

Definition 9.2.6 (from [2]). For each c ∈ R, define scalar-interval multiplication so that

for each 𝑥 ∈ IR,

c𝑥 :=

{
[cx, cx], if c ≥ 0,

[cx, cx], if c < 0.
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Setting c← −1 corresponds to a negative operation. Define interval operations +,−,× :

IR× IR→ IR such that

+(𝑥,𝑦) ≡ 𝑥+ 𝑦 := [x + y, x + y], ∀𝑥,𝑦 ∈ IR.

−(𝑥,𝑦) ≡ 𝑥− 𝑦 := [x− y, x− y], ∀𝑥,𝑦 ∈ IR.

×(𝑥,𝑦) ≡ 𝑥𝑦 := [min{xy, xy, xy, xy}, max{xy, xy, xy, xy}], ∀𝑥,𝑦 ∈ IR.

It is readily verified that for any interval operation ∘ ∈ {+,−,×}, 𝑥 ∘ 𝑦 =

{v ∘w : v ∈ 𝑥, w ∈ 𝑦} for any intervals 𝑥,𝑦 ∈ IR, and [v, v] ∘ [w, w] = [v ∘w, v ∘w]

for any v, w ∈ R.

Lemma 9.2.7. Consider an interval 𝑥 ∈ IR and scalars a, b ∈ R for which a ≤ b. If

x ≥ 0, then (a𝑥) ≤ (b𝑥). If x ≤ 0, then (a𝑥) ≥ (b𝑥). Similarly, if x ≥ 0, then

(a𝑥) ≤ (b𝑥). If x ≤ 0, then (a𝑥) ≥ (b𝑥).

Proof. For any c ∈ R,

(c𝑥) =
{

cx, if c ≥ 0,
cx, if c < 0 = x min{c, 0}+ x max{c, 0}. (9.1)

If x ≥ 0, then each term in the final expression above is evidently increasing with

respect to c, yielding the first required inequality. If, instead, x ≤ 0, then each term

in the final expression is decreasing with respect to c, which yields the second

required inequality. Next, for any c ∈ R,

(c𝑥) =
{

cx, if c ≥ 0,
cx, if c < 0 = x min{c, 0}+ x max{c, 0}. (9.2)

Using this result, a similar argument to the previous case yields the remaining

inequalities.

Definition 9.2.8 (from [77]). Consider a nonempty set B ⊂ Rn. An interval-valued

function 𝑓 : IB→ IRm is inclusion monotonic if 𝑓 (𝑥) ⊂ 𝑓 (𝑦) for any pair 𝑥,𝑦 ∈ IB

for which 𝑥 ⊂ 𝑦.

Given a function g : B → Rm, an interval-valued function 𝑔̃ : IB → IRm is an

interval extension of g if 𝑔̃([x, x]) = [g(x), g(x)] for each x ∈ B.
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The following result from [77] motivates the above definition.

Theorem 9.2.9 (Theorem 3.1 in [77]). Consider a function g : B ⊂ Rn → Rm. If a

function 𝑔̃ : IB → IRm is inclusion monotonic and is an interval extension of g, then

g(𝑥) := {g(z) : z ∈ 𝑥} ⊂ 𝑔̃(𝑥) for all 𝑥 ∈ IB.

Definition 9.2.10 (adapted from [77]). Consider a nonempty set B ⊂ Rn. An interval

function 𝑓 : IB → IRm is locally Lipschitz continuous if for each 𝑞 ∈ IB, there exists

k ≥ 0 for which

wid (𝑓 (𝑥)) ≤ k wid𝑥, ∀𝑥 ∈ I𝑞.

A locally Lipschitz continuous, inclusion-monotonic interval extension of a

function f will be called a tight interval extension of f .

Definition 9.2.11. Given a set D ⊂ Rn, define the interval hull�D of D as the intersec-

tion of all intervals in IRn that are supersets of D. Given a function f : B ⊂ Rn → Rm,

define the interval hull �f : IB → IRm so that �f(𝑥) = �{y ∈ Rm : ∃z ∈ 𝑥 s.t. y =

f(z)}.

Definition 9.2.12. Given an open set B ⊂ R, a function u : B → R is univariate

intrinsic if there exists a known tight interval extension 𝑢̃ : IB → IR of u, and if, with

B̄ := {(𝑥, z) ∈ IB × B : z ∈ 𝑥}, there exist known functions ucv, ucc : B̄ → R and

ζmin
u , ζmax

u : IB→ R such that:

∙ For each𝑥 ∈ IB, ucv(𝑥, ·) is convex on𝑥, ucc(𝑥, ·) is concave on𝑥, and ucv(𝑥, z) ≤

u(z) ≤ ucc(𝑥, z) for each z ∈ 𝑥.

∙ For each 𝑥 ∈ IB, ζmin
u (𝑥) ∈ arg min{ucv(𝑥, z) : z ∈ 𝑥} and ζmax

u (𝑥) ∈

arg max{ucc(𝑥, z) : z ∈ 𝑥}.

∙ For any 𝑥,𝑦 ∈ IB with 𝑥 ⊂ 𝑦, and for any z ∈ 𝑥, ucv(𝑦, z) ≤ ucv(𝑥, z) and

ucc(𝑦, z) ≥ ucc(𝑥, z).

∙ For each z ∈ B, ucv([z, z], z) = ucc([z, z], z) = u(z).
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For any z ∈ 𝑥 ∈ IB, define

ucv
I (𝑥, z) := ucv(max{z, ζmin

u (𝑥)}),
ucv

D (𝑥, z) := ucv(min{z, ζmin
u (𝑥)}),

ucc
I (𝑥, z) := ucc(min{z, ζmax

u (𝑥)}),
and ucc

D(𝑥, z) := ucc(max{z, ζmax
u (𝑥)}).

The interval hull of a locally Lipschitz continuous function is clearly a tight

interval extension of the function. The interval operations in Definition 9.2.6 are

interval hulls of the corresponding operations on real numbers. Tight interval ex-

tensions are provided for a number of univariate intrinsic functions in Table 9.1;

these interval extensions are also interval hulls.

Appropriate constructions of the functions ucv and ucc are also provided for

these univariate intrinsic functions in Table 9.2. By inspection, these particular

constructions satisfy the properties:

min
z∈𝑥

ucv(𝑥, z) = min
z∈𝑥

u(z), and max
z∈𝑥

ucc(𝑥, z) = max
z∈𝑥

u(z);

in general, a weaker version of these properties will be required in Assumption 9.2.21

below.

Definition 9.2.13. Given a nonempty set B ⊂ Rn, a function f : B → Rm is MC-

factorable if each of the following conditions is satisfied:

∙ f can be expressed on B as a finite composition (in some order) of addition, multi-

plication, and univariate intrinsic functions with known tight interval extensions,

and

∙ a well-defined natural interval extension 𝑓 : IB → IRn of f can be constructed

by replacing each addition/multipication/univariate intrinsic function by its corre-

sponding tight interval extension, without introducing any domain violations.

The natural interval extension of an MC-factorable function is a tight interval

extension of the function [77, Section 3.3].
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Table 9.1: Tight interval extensions for various univariate intrinsic functions u.

B u(z) for z ∈ B 𝑢̃(𝑥) for 𝑥 ∈ IB

R cz for fixed c ∈ R c𝑥

R exp z [exp x, exp x]

(0,+∞) ln z [ln x, ln x]

R z2k for fixed k ∈N [(mid(0, x, x))2k, max{x2k, x2k}]

R z2k+1 for fixed k ∈N [x2k+1, x2k+1]

(0,+∞)
√

z [
√

x,
√

x]

R |z| [|mid(0, x, x)|, max{|x|, |x|}]

(0,+∞) 1
zk for fixed k ∈N

[
1
zk , 1

zk

]
(−∞, 0) 1

z2k for fixed k ∈N
[

1
z2k , 1

z2k

]
(−∞, 0) 1

z2k−1 for fixed k ∈N
[

1
z2k−1 , 1

z2k−1

]
9.2.3 McCormick objects and relaxations

This section presents and extends definitions and properties from the PhD the-

sis [100], which essentially reframe the classical development of McCormick’s re-

laxation technique [74] in terms of the abstract objects containing bounding and

relaxing information that are propagated by MC++ [15] in order to carry out Mc-

Cormick’s scheme in practice.

Definition 9.2.14. The set of McCormick objects of n variables is defined as MRn :=

{(𝑧B, 𝑧C) ∈ IRn × IRn : 𝑧B ∩ 𝑧C ̸= ∅}. For any 𝒳 ∈ MRn, 𝒳 will be represented

equivalently as

𝒳 ≡ (𝑥B,𝑥C) ≡ ([xB, xB], [xC, xC]).

Given𝒳 ,𝒴 ∈MRn,𝒳 ⊂ 𝒴 if and only if both𝑥B ⊂ 𝑦B and𝑥C ⊂ 𝑦C. The set of proper

McCormick objects of n variables is MRn
prop := {(𝑧B, 𝑧C) ∈MRn : 𝑧C ⊂ 𝑧B}. Given

a set B ⊂ Rn, define MB := {𝒳 ∈ MRn : 𝑥B ∈ IB}, and MBprop := {𝒳 ∈ MRn :

𝑥C ⊂ 𝑥B ∈ IB} ⊂MRn
prop.

Definition 9.2.15. Given a function f : B ⊂ Rn → Rm, a mapping
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ℱ : MB (or MBprop)→MRm

is a McCormick extension of f if ℱ ([x, x], [x, x]) = ([f(x), f(x)], [f(x), f(x)]) for each

x ∈ B.

Definition 9.2.16. Given a set B ⊂ Rn, a function ℱ : MB (or MBprop) → MRm is

inclusion monotonic if ℱ (𝒳 ) ⊂ ℱ (𝒴) for each pair 𝒳 ,𝒴 ∈ MB (or MBprop) such

that 𝒳 ⊂ 𝒴 .

Definition 9.2.17. A pair 𝒳 ,𝒴 ∈MRn is coherent if 𝑥B = 𝑦B. Given coherent 𝒳 ,𝒴 ∈

MRn, for each λ ∈ [0, 1], define:

𝒞onv(λ,𝒳 ,𝒴) := (𝑥B, λ𝑥C + (1− λ)𝑦C).

Given a set B ⊂ Rn, a function ℱ : MB (or MBprop) → MRm is coherent if ℱ (𝒳 )

is coherent to ℱ (𝒴) for every coherent 𝒳 ,𝒴 ∈ MB (or MBprop). A function ℱ :

MB (or MBprop)→MRm is coherently concave if it is coherent, and, for every𝒳 ,𝒴 ∈

MB (or MBprop),

ℱ (𝒞onv(λ,𝒳 ,𝒴)) ⊃ 𝒞onv(λ,ℱ (𝒳 ),ℱ (𝒴)), ∀λ ∈ [0, 1].

The following definition is stricter than in [100], and combines the above prop-

erties.

Definition 9.2.18. Given a function f : B ⊂ Rn → Rm, a mapping

ℱ : MB (or MBprop)→MRm

is a relaxation function for f if it is coherently concave, inclusion monotonic, and a Mc-

Cormick extension of f.

The following two propositions demonstrate the utility of relaxation functions:

they are closed under composition, and effectively define convex underestimators

and concave overestimators of the underlying functions they relax.
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Proposition 9.2.19 (Lemmas 2.4.15 and 2.4.17 in [100]). Consider functions f : B ⊂

Rn → D ⊂ Rm and g : D → Rk, a relaxation function ℱ : MB (or MBprop) →

MRm for f, and a relaxation function 𝒢 : MD (or MDprop) → MRk for g. Define

B0 := {𝒳 ∈ MB (or MBprop) : ℱ (𝒳 ) ∈ MD}. If there are no domain violations in

constructing the composition 𝒢 ∘ ℱ : B0 →MRk, then 𝒢 ∘ ℱ is a relaxation function for

g ∘ f : B→ Rk.

Proposition 9.2.20 (Lemma 2.4.11 in [100]). Given a function f : B ⊂ Rn → R, a

relaxation function ℱ : MB (or MBprop) → MR for f on B, and some 𝑥 ∈ IB, define

functions φ f ,𝑥, ψ f ,𝑥 : 𝑥→ R such that:

φ f ,𝑥(z) = f C(𝑥, [z, z]), and ψ f ,𝑥(z) = f
C
(𝑥, [z, z]), ∀z ∈ 𝑥.

Then φ f ,𝑥 is convex on 𝑥, ψ f ,𝑥 is concave on 𝑥, and φ f ,𝑥(z) ≤ f (z) ≤ ψ f ,𝑥(z) for each

z ∈ 𝑥.

The goal of this chapter is to obtain 𝒞 i relaxations of an MC-factorable function,

for some i ∈ {1, 2}. Achieving this will require appending the following non-

standard assumption to Definition 9.2.12 for each employed univariate intrinsic

function. This assumption will be invoked explicitly whenever it is required.

Assumption 9.2.21. For particular i ∈ {1, 2}, given a univariate intrinsic function u :

B ⊂ R → R, assume for each 𝑥 ∈ IB that the functions ucv(𝑥, ·) and ucc(𝑥, ·) are

each 𝒞 i on 𝑥, and that ũ(𝑥) ≤ ucv(𝑥, ζmin
u (𝑥)) and ũ(𝑥) ≥ ucc(𝑥, ζmax

u (𝑥)). If i = 2,

assume additionally that:

∙ if ζmin
u (𝑥) ∈ int(𝑥), then the second derivative of ucv(𝑥, ·) is zero at ζmin

u (𝑥), and

∙ if ζmax
u (𝑥) ∈ int(𝑥), then the second derivative of ucc(𝑥, ·) is zero at ζmax

u (𝑥).

Observe that the above assumption does not require u itself to be 𝒞 i. Indeed, the

𝒞 i relaxations obtained in this chapter will remain valid even when nondifferen-

tiable univariate intrinsic functions are employed. However, [11] shows that non-

differentiable intrinsic functions cannot satisfy Assumption 9.2.38 below, which
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will be required in this chapter to ensure sufficiently rapid convergence of the ob-

tained relaxations to the original function as the width of 𝑥 approaches zero.

Remark 9.2.22. The following two lemmata show that if i = 1 and a function u : B→ R

is 𝒞1, then Assumption 9.2.21 and the conditions of Definition 9.2.12 are satisfied when

ucv(𝑥, ·) and ucc(𝑥, ·) are chosen to be the convex and concave envelopes of u on 𝑥, re-

spectively, and when ζmin
u (𝑥) and ζmax

u (𝑥) are chosen according to Definition 9.2.12.

Lemma 9.2.23. Consider an interval 𝑥 ∈ IR, a Lipschitz continuous function u : 𝑥 →

R, and the convex envelope ucv : 𝑥 → R of u on 𝑥. Then, ucv(x) = u(x) and ucv(x) =

u(x). Moreover, ucv is Lipschitz continuous on 𝑥, with the same Lipschitz constant as u.

Proof. The required result is trivial if x = x, so assume that x < x. Let ku denote a

Lipschitz constant for u on 𝑥. Applying the definition of the convex envelope,

u(y) ≥ ucv(y) ≥ u(x)− ku(y− x), ∀y ∈ 𝑥; (9.3)

the first inequality above is due to u dominating ucv, and the second inequality is

due to ucv dominating each convex underestimator of u on 𝑥. Setting y to x in the

above inequality chain yields ucv(x) = u(x).

A similar argument yields:

u(y) ≥ ucv(y) ≥ u(x) + ku(y− x), ∀y ∈ 𝑥; (9.4)

setting y to x yields ucv(x) = u(x).

Thus, (9.3) and (9.4) become:

ucv(y)− ucv(x) ≥ −ku(y− x), ∀y ∈ 𝑥,
ucv(y)− ucv(x) ≥ ku(y− x), ∀y ∈ 𝑥.

Defining D+ucv and D−ucv as the right-derivative and left-derivative of ucv de-

scribed in [42, Part I, Theorem 4.1.1], it follows from [42, Part I, Proposition 4.1.3]

that D+ucv(x) and D−ucv(x) both exist, are finite, and satisfy

D+ucv(x) ≥ −ku, and D−ucv(x) ≤ ku.
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Thus, ucv is continuous at x and x. Moreover, [42, Part I, Theorem 4.2.1] implies

that for each y ∈ int(𝑥), each subgradient of ucv at y is an element of [−ku, ku]. This

result, combined with the mean-value theorem [42, Part I, Theorem 4.2.4], shows

that ucv is Lipschitz continuous on 𝑥, with a Lipschitz constant of ku.

Lemma 9.2.24. Consider an interval 𝑥 ∈ IR, and a 𝒞1 function u : 𝑥→ R. The convex

envelope ucv : 𝑥→ R of u on 𝑥 is also 𝒞1 on 𝑥.

Proof. The required result is trivial if x = x, so assume that x < x. Theorem 3.2

in [31] implies that ucv is 𝒞1 on (x, x) = int(𝑥); it remains to be shown that ucv is

also 𝒞1 at x and x. Noting that u is Lipschitz continuous on 𝑥, construct the right-

derivative D+ucv and the left-derivative D−ucv as in the proof of Lemma 9.2.23.

As in the proof of Lemma 9.2.23, D+ucv(x) and D−ucv(x) each exist and are finite.

Define the following function, which extends the domain of ucv to R:

ψ : R→ R : y ↦→


ucv(x) + (D+ucv(x))(y− x), if y < x,
ucv(y), if y ∈ 𝑥,
ucv(x) + (D−ucv(x))(y− x), if x < y.

The function ψ is evidently continuous, and is 𝒞1 at each y ∈ R∖{x, x}. Applying

the definitions of D+ucv and D−ucv, it follows that ψ is differentiable at x and x as

well; thus,

∇ψ(y) =


D+ucv(x), if y ≤ x,
∇ucv(y), if y ∈ int(𝑥),
D−ucv(x), if x ≤ y.

This equation, together with [42, Part I, Theorem 4.2.1(iii)], shows that ψ is 𝒞1 even

at x and x, and is therefore 𝒞1 on R. Hence, ucv is 𝒞1 on 𝑥.

Remark 9.2.25. Consider a univariate function u that is 𝒞2, is either convex or concave,

and is either monotonically increasing or monontonically decreasing on its domain. More-

over, note that the concave envelope of a univariate convex function on an interval is a

secant, as is the convex envelope of a univariate concave function on an interval. Thus,

even if i = 2, Assumption 9.2.21 and the conditions of Definition 9.2.12 are satisfied

when ucv(𝑥, ·) and ucc(𝑥, ·) are chosen to be the convex and concave envelopes of u on 𝑥,

respectively, and when ζmin
u (𝑥) and ζmax

u (𝑥) are chosen according to Definition 9.2.12.
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Remark 9.2.26. The condition in Assumption 9.2.21 that both ũ(𝑥) ≤ ucv(𝑥, ζmin
u (𝑥))

and ũ(𝑥) ≥ ucv(𝑥, ζmax
u (𝑥)) can be imposed without loss of generality, as detailed in

Remark 9.3.13 below.

Example 9.2.27. Suppose the function u : R→ R : x ↦→ x2 is considered as a univariate

intrinsic function. Since u is convex, it is its own convex envelope on any subinterval of

R. In line with Remark 9.2.22, if i = 1, setting ucv(𝑥, ·) ≡ u for each 𝑥 ∈ IR is therefore

consistent with Definition 9.2.12 and Assumption 9.2.21. However, on an interval 𝑦 with

y < 0 < y, ζmin
u (𝑦) = 0 ∈ int(𝑦), but ∇2u(0) = 2, so setting ucv(𝑦, ·) ≡ u is

inconsistent with Assumption 9.2.21 when i = 2. Nevertheless, it is readily shown that

the following choice of ucv is consistent with Definition 9.2.12 and Assumption 9.2.21

when i = 2:

ucv(𝑦, z) :=


z2 if 0 /∈ (y, y),

z3

(y) if y < 0 < y and 0 ≤ z,

z3

(y) if y < 0 < y and z < 0.

Observe that setting ucc(𝑥, ·) to be the affine concave envelope of u on 𝑥 is consistent with

Assumption 9.2.21, since, in this case, either x or x will be a valid choice of ζmax
u (𝑥).

Example 9.2.28. Suppose the function u : R→ R : x ↦→ |x| is considered as a univariate

intrinsic function. In the spirit of the previous example, it is readily confirmed that the

following choice of ucv is consistent with Definition 9.2.12 and Assumption 9.2.21 for

each i ∈ {1, 2}:

ucv(𝑦, x) :=



|x| if 0 /∈ (y, y),

x2+i

y1+i if y < 0 < y and 0 ≤ x,∣∣∣∣ x2+i

y1+i

∣∣∣∣ if y < 0 < y and x < 0.

As in the previous example, observe that setting ucc(𝑥, ·) to be the affine concave envelope

of u on 𝑥 is consistent with Assumption 9.2.21.

Example 9.2.29. For some fixed k ∈ N, suppose the function u : R → R : x ↦→ x2k+1

is considered as a univariate intrinsic function. In line with Remark 9.2.22, if i = 1,
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setting ucv(𝑥, ·) and ucc(𝑥, ·) to be the convex/concave envelopes of u described in [69]

is consistent with Definition 9.2.12 and Assumption 9.2.21. If i = 2, then it is readily

verified that the following choices of ucv and ucc are consistent with Definition 9.2.12 and

Assumption 9.2.21:

ucv(𝑥, z) :=


x2k+1 + (x2k+1 − x2k+1)

(
z−x
x−x

)
, if x ≤ 0,

x2k+1
(

x−z
x−x

)
+ (max{0, z})2k+1, if x < 0 < x,

z2k+1, if 0 ≤ x,

ucc(𝑥, z) :=


z2k+1, if x ≤ 0,
x2k+1

(
z−x
x−x

)
+ (min{0, z})2k+1, if x < 0 < x,

x2k+1 + (x2k+1 − x2k+1)
(

z−x
x−x

)
, if 0 ≤ x.

The functions ucv(𝑥, ·) and ucc(𝑥, ·) described above are evidently strictly increasing on

𝑥 for each 𝑥 ∈ IR. Thus, setting ζmin
u (𝑥) := x and ζmax

u (𝑥) := x is consistent with

Definition 9.2.12.

Any univariate function u : B ⊂ R → R on an open set can be considered to

be a univariate intrinsic function, provided that the functions 𝑢̃, ucv, and ucc are

known or can be constructed. Table 9.2 presents functions ucv, ucc which satisfy the

conditions of Definition 9.2.12 and Assumption 9.2.21 for the univariate intrinsic

functions u considered in Table 9.1.

Within this framework, McCormick’s relaxations [74] can be restated as the

convex/concave relaxations implied by Propositions 9.2.19 and 9.2.20 for an MC-

factorable function, when the following relaxation functions are applied in place

of each addition/multiplication/univariate intrinsic operation. As demonstrated

in [100], these McCormick operations are indeed relaxation functions of the corre-

sponding operations on real numbers.

Definition 9.2.30. Define an addition operation + : MR2 → MR so that, for each

𝒳 ,𝒴 ∈MR,

+(𝒳 ,𝒴) ≡ 𝒳 + 𝒴 := (𝑥B + 𝑦B,𝑥C + 𝑦C),
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and define + : MR2
prop → MR as the restriction of + : MR2 → MR to the domain

MR2
prop.

The following definition of a McCormick multiplication operation is adapted

from McCormick’s original presentation [74] and [76], and will be replaced in this

chapter by Definition 9.3.19 further below. The following operation will be de-

noted by the symbol “∙”; the usual notation for multiplication will be reserved

for Definition 9.3.19. Note that multiplication of a scalar and a McCormick object

was previously treated as a univariate intrinsic function in Tables 9.1 and 9.2; the

following definition instead concerns multiplication of two McCormick objects.

Definition 9.2.31. Define a classical McCormick multiplication operation ∙ : MR2 →

MR so that, for each 𝒳 ,𝒴 ∈MR,

∙(𝒳 ,𝒴) ≡ 𝒳 ∙ 𝒴 := (𝑥B𝑦B, 𝑧),

where 𝑧 ≡ [z, z] ∈ IR is defined in terms of the intermediate quantities 𝑣 := 𝑥B ∩ 𝑥C

and 𝑤 := 𝑦B ∩ 𝑦C as follows:

z := max
(
(yB𝑣) + (xB𝑤)− xByB, (yB𝑣) + (xB𝑤)− xByB

)
,

z := min
(
(yB𝑣) + (xB𝑤)− xByB, (yB𝑣) + (xB𝑤)− xByB

)
.

Definition 9.2.32. Define a function mid : R3 → R as mapping to the median of its

three scalar arguments. Given a univariate intrinsic function u : B ⊂ R → R that

satisfies Assumption 9.2.21, define 𝒰 : MB →MR so that for each 𝒳 ∈MB, 𝒰 (𝒳 ) :=

(𝑢̃(𝑥B), 𝑧), where

𝑧 := [ucv(𝑥B, mid(ζmin
u (𝑥B), xC, xC)), ucc(𝑥B, mid(ζmax

u (𝑥B), xC, xC))].

The above definitions suggest the construction of an analog of a natural inter-

val extension for an MC-factorable function, using McCormick objects instead of
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intervals. This notion is formalized in the following definition, which is motivated

by the subsequent theorem.

Definition 9.2.33 (adapted from [100]). Given an MC-factorable function f : B ⊂

Rn → Rm, a natural McCormick extension ℱ : MB→MRm of f is defined by replac-

ing each addition operation, multiplication operation, and univariate intrinsic function

in the construction of f with its McCormick counterpart described by Definitions 9.2.30–

9.2.32, provided that there are no domain violations in the introduced McCormick arith-

metic.

Theorem 9.2.34 (Theorem 2.4.32 in [100]). Given an MC-factorable function f : B ⊂

Rn → Rm with a well-defined natural McCormick extensionℱ , ℱ is a relaxation function

for f.

The classical McCormick relaxations of an MC-factorable function are the con-

vex/concave relaxations implied by the above theorem and by Proposition 9.2.20.

These relaxations may be nonsmooth; the central goal of this chapter is to develop

𝒞1 and 𝒞2 variants of these relaxations.

9.2.4 Convergence order

Intuitively, to be useful, a scheme for constructing convex and concave relaxations

of a scalar-valued function on an interval should converge rapidly to the under-

lying function as the width of interval is reduced to zero. Appopriate notions of

convergence were formalized in [11], and were extended to McCormick objects in

the PhD thesis [96]. This section summarizes the definitions and properties that

are relevant to the results in this chapter.

Definition 9.2.35 (adapted from [11]). Given a continuous function f : B ⊂ Rn → R,

functions { f cv(𝑥, ·), f cc(𝑥, ·) : 𝑥 → R}𝑥∈IB comprise a scheme of estimators for f if,

for each 𝑥 ∈ IB, f cv(𝑥, ·) is convex on 𝑥, f cc(𝑥, ·) is concave on 𝑥, and

f cv(𝑥, z) ≤ f (z) ≤ f cc(𝑥, z), ∀z ∈ 𝑥.
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Such a scheme is pointwise convergent of order t0 if for each 𝑞 ∈ IB, there exists a0 > 0

such that

sup
z∈𝑥

( f (z)− f cv(𝑥, z)) ≤ a0(wid𝑥)t0 , ∀𝑥 ∈ I𝑞,

and sup
z∈𝑥

( f cc(𝑥, z)− f (z)) ≤ a0(wid𝑥)t0 , ∀𝑥 ∈ I𝑞.

The following example motivates the incorporation of the interval 𝑞 into this

definition.

Example 9.2.36. Consider a function f : R→ R and a scheme of estimators

{ f cv(𝑥, ·), f cc(𝑥, ·)}𝑥∈IR

for f , for which, for each 𝑥 ∈ IR,

sup
z∈𝑥

( f (z)− f cv(𝑥, z)) = sup
z∈𝑥

( f cc(𝑥, z)− f (z)) =
{

(wid𝑥)2 if wid𝑥 ≤ 1,
(wid𝑥)3 if wid𝑥 > 1.

According to the above definition, this scheme is pointwise convergent of order 2. In the

original definition [11], however, this scheme is not pointwise convergent of order 2, since,

for each a0 > 0, there exists a sufficiently large interval 𝑥 ∈ IR for which

a0(wid𝑥)2 < (wid𝑥)3.

In fact, according to the definition in [11], this scheme is not pointwise convergent of

any order. Since applications of pointwise convergence in [11] are only concerned with

sufficiently small intervals, the interval 𝑞 was added to the definition above so that the

constants a0 and t0 need not apply to arbitrarily large intervals in IB.

By Theorem 2 in [11], if f is nonaffine and twice-continuously differentiable,

then there does not exist any scheme of estimators for f with pointwise conver-

gence of order greater than 2. Given an MC-factorable function expressed as a com-

position of twice-continuously differentiable functions, the classical McCormick

relaxations of this function are pointwise convergent of order 2 [11], as are the
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αBB relaxations [1, 11]. A scheme of estimators with second-order pointwise con-

vergence is typically necessary to mitigate clustering when carrying out a branch-

and-bound method for global optimization [20]. Certain problems with nondiffer-

entiable objective functions, however, are not subject to this requirement [118].

Consider an MC-factorable function f that is a composition only of locally Lip-

schitz continuous functions. Given a natural interval extension 𝑓 of f , the constant

mappings {z ↦→ f̃ (𝑥), z ↦→ f̃ (𝑥)}𝑥∈IB comprise a scheme of estimators for f that

is pointwise convergent of order 1 [98].

The following definition formalizes a notion of width of a McCormick object,

and a corresponding notion of convergence of a function of McCormick objects, as

the width of the argument tends to zero.

Definition 9.2.37 (adapted from [96]). A McCormick object 𝒳 ∈MR has a width of

widℳ 𝒳 := wid (𝑥B ∩ 𝑥C) = min{xC, xB} −max{xC, xB}.

A vector 𝒴 ∈MRn of McCormick objects has a width of

widℳ 𝒴 ≡ widℳ (𝒴1, . . . ,𝒴n) := max
k∈{1,...,n}

widℳ 𝒴k.

A function ℱ : MB (or MBprop) ⊂ MRn → MRm has (t1, t2)-convergence on MB

(or MBprop) if for each 𝑞 ∈ IB, there exist a1, a2 > 0 such that

widℳ (ℱ (𝒳 )) ≤ a1(widℳ 𝒳 )t1 + a2(wid𝑥B)t2 , ∀𝒳 ∈M𝑞 (or M𝑞prop).

Again, the interval 𝑞 has been added to this definition to prevent the fixed

constants a1, a2 from having to be applicable to every choice of 𝑥B ∈ IB.

As described in Section 3.2 of [96], given a (t1, t2)-convergent relaxation func-

tion ℱ for a function f , the corresponding convex/concave relaxations of f de-

scribed by Proposition 9.2.20 exhibit pointwise convergence of order t2. More-

over, as described in Section 3.9.7 of [96], a well-defined composition of (1, 2)-

convergent McCormick-valued functions is itself (1, 2)-convergent. This notion
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motivates the following assumption, which will be appended frequently to Defi-

nition 9.2.12.

Assumption 9.2.38. Given a univariate intrinsic function u : B ⊂ R→ R, assume that

the functions {ucv(𝑥, ·), ucc(𝑥, ·)}𝑥∈IB comprise a scheme of estimators for u on B that is

pointwise convergent of order 2.

The above assumption is satisfied by the functions ucv, ucc described in Ta-

ble 9.2, except when u is the absolute value function z ↦→ |z|: this is demonstrated

in [11] for each u other than z ↦→ z2, which is considered in the following lemma.

Lemma 9.2.39. Consider the relaxation scheme {ucv(𝑥, ·), ucc(𝑥, ·)}𝑥∈IR for u : z ↦→ z2

on R described in Example 9.2.27. This scheme satisfies Assumption 9.2.38.

Proof. By [11, Theorem 10], the concave relaxations of u described in Example 9.2.27

are pointwise convergent of order 2, so it remains to consider only the convex re-

laxations of u.

Now, if 𝑥 ∈ IR but 0 /∈ int(𝑥), then u(z) − ucv(𝑥, z) = 0 for all z ∈ 𝑥. If,

instead, 𝑥 ∈ IR and 0 ∈ int(𝑥), then

sup
z∈𝑥

(u(z)− ucv(𝑥, z)) = max

{
sup

z∈[x,0]
(u(z)− ucv(𝑥, z)), sup

z∈[0,x]
(u(z)− ucv(𝑥, z))

}
,

= max

{
sup

z∈[x,0]

(
z2 − z3

(x)

)
, sup

z∈[0,x]

(
z2 − z3

(x)

)}
,

= max
{

4
27 x2, 4

27 x2
}

,

≤ 4
27(wid𝑥)2.

Combining the above cases,

sup
z∈𝑥

(u(z)− ucv(𝑥, z)) ≤ 4
27(wid𝑥)2, ∀𝑥 ∈ IR,

as required.

Lemma 9.2.40. For fixed k ∈N, consider the relaxation scheme {ucv(𝑥, ·), ucc(𝑥, ·)}𝑥∈IR
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for u : z ↦→ z2k+1 on R described in Example 9.2.29. This scheme satisfies Assump-

tion 9.2.38.

Proof. It will be shown that the convex relaxations ucv(𝑥, ·) of u are pointwise con-

vergent of order 2; a similar argument applies to the concave relaxations ucc(𝑥, ·).

Consider any fixed interval 𝑞 ∈ IR, and any 𝑥 ∈ I𝑞. If i = 1 or 0 /∈ 𝑥, then

ucv(𝑥, ·) is the convex envelope of u on 𝑥, which, by [11, Theorem 10], is pointwise

convergent of order 2 with respect to 𝑥.

If i = 2 and 0 ∈ 𝑥, then, noting that ucv(𝑥, ·) is increasing, we obtain:

sup
z∈𝑥

(u(z)− ucv(𝑥, z)) ≤ sup
z∈𝑥

(u(z)− ucv(𝑥, x))

= sup
z∈𝑥

(z2k+1 − x2k+1)

≤ (x− x)2k+1 + (x− x)2k+1

≤ 2(wid 𝑞)2k−1(x− x)2.

The above results together show that ucv(𝑥, ·) is pointwise convergent of order

2 to u with respect to 𝑥, as required.

9.3 Smoothing constructions

This section establishes basic properties of certain 𝒞1 and 𝒞2 relaxations of simple

nonsmooth functions such as z ↦→ max{z, 0} and (x, y) ↦→ max{x, y}, and uses

these to construct variants of McCormick’s multiplication rule. These rules will be

shown in subsequent sections to have various desirable properties.

9.3.1 Relaxing simple nonsmooth functions

Definition 9.3.1. Define functions µ1, µ2 : R→ R as follows:

µ1 : y ↦→


0 if y ≤ 0,
1
4 y2 if 0 < y < 2,
y− 1 if 2 ≤ y,

µ2 : y ↦→


0 if y ≤ 0,
1

16 y3(4− y) if 0 < y < 2,
y− 1 if 2 ≤ y.
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Observe that µ1 is a member of the family of functions considered in [23, Ex-

ample 11.8.11(c)]. In this chapter, in the spirit of [8], [23, Section 11.8] and [9, Sec-

tion 1.10], µ1 and µ2 essentially serve as analogs of the mapping y ↦→ max{y, 0}

which exhibit several useful properties. Ultimately, µ1 will be used to construct 𝒞1

analogs of McCormick relaxations, and µ2 will be used to construct 𝒞2 relaxations.

By inspection, µ1 and µ2 are each 𝒞1, with

∇µ1 : y ↦→


0 if y ≤ 0,
1
2 y if 0 < y < 2,
1 if 2 ≤ y,

∇µ2 : y ↦→


0 if y ≤ 0,
1
4 y2(3− y) if 0 < y < 2,
1 if 2 ≤ y.

(9.5)

The above expressions show that µ1(y), µ2(y), ∇µ1(y), and ∇µ2(y) are each non-

negative for each y ∈ R, noting that 3− y > 0 when 0 < y < 2. Thus, µ1 and µ2

are increasing on R. Moreover, µ2 is 𝒞2, with

∇2µ2 : y ↦→


0 if y ≤ 0,
3
4 y(2− y) if 0 < y < 2,
0 if 2 ≤ y.

(9.6)

Lemma 9.3.2. For each i ∈ {1, 2} and each y ∈ R, max{y− 1, 0} ≤ µi(y) ≤ max{y, 0}.

Proof. The cases in which y ≤ 0, 0 < y ≤ 1, 1 < y < 2, and 2 ≤ y will be considered

separately.

If y ≤ 0, then, for each i ∈ {1, 2},

max{y− 1, 0} = 0 = µi(y) = max{y, 0}.

If 0 < y ≤ 1, then, noting that 3 ≤ 4− y < 4, the following inequality chains

are satisfied:

max{y− 1, 0} = 0 < 1
4 y2 = µ1(y) = y · y

4 < y = max{y, 0},
max{y− 1, 0} = 0 < 1

16 y3(4− y) = µ2(y) ≤ y( 1
16 · 12 · 4) < y = max{y, 0}.

If 1 < y < 2, then, noting that 4− y2 > 0 and 4− y < 3, the following inequality

chains are satisfied:
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max{y− 1, 0} = y− 1 = 1
4 y2 − 1

4(y− 2)2 ≤ 1
4 y2 = µ1(y) = y · y

4 < y = max{y, 0},
max{y− 1, 0} = y− 1 = 1

16 y3(4− y)− 1
16(y− 2)2(4− y2) ≤ 1

16 y3(4− y) = µ2(y),

µ2(y) = y( 1
16 y2(4− y)) ≤ y( 1

16 · 22 · 3) < y = max{y, 0}.

If 2 ≤ y, then, for each i ∈ {1, 2},

max{y− 1, 0} = y− 1 = µi(y) < y = max{y, 0}.

Thus, the required inequalities have been demonstrated for each i ∈ {1, 2} and

each y ∈ R.

Lemma 9.3.3. The functions µ1 and µ2 are convex on R.

Proof. Inspection of (9.5) and (9.6) shows that ∇µ1 is increasing on R, and that

∇2µ2(y) is nonnegative for each y ∈ R. The convexity of µ1 and µ2 follows imme-

diately.

Definition 9.3.4. For each i ∈ {1, 2}, define functions γi, σi : R×R× [0,+∞) → R

as follows:

γi : (z, a, p) ↦→
{

max{z, a} if p = 0,
a + p µi(

z−a
p ) if p > 0,

σi : (z, b, p) ↦→
{

min{z, b} if p = 0,
b− p µi(

b−z
p ) if p > 0,

and define functions νi, λi : R×R× [0,+∞)→ R as follows:

νi : (x, y, p) ↦→ 1
2(γi(x, y, p) + γi(y, x, p)),

λi : (x, y, p) ↦→ 1
2(σi(x, y, p) + σi(y, x, p)).

Useful properties of γi, σi, νi, and λi will be established below. Intuitively,

throughout this chapter, γi(z, a, p) plays a similar role to max{z, a} for fixed a,

σi(z, b, p) is analogous to min{z, b} for fixed b, νi(x, y, p) is analogous to max{x, y}
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for varying x and y, and λi(x, y, p) is analogous to min{x, y} for varying x and y.

Roughly, the parameter p quantifies the extent to which γi and σi are relaxed to

yield a differentiable underestimator of max{·, a} and a differentiable overestima-

tor of min{·, b}, as formalized in the following lemma.

Lemma 9.3.5. Consider any fixed i ∈ {1, 2}, a, b ∈ R, and p ≥ 0. The mapping

γi(·, a, p) is convex and increasing. Moreover,

a ≤ max{z− p, a} ≤ γi(z, a, p) ≤ max{z, a}, ∀z ∈ R.

Similarly, the mapping σi(·, b, p) is concave and increasing, with

min{z, b} ≤ σi(z, b, p) ≤ min{z + p, b} ≤ b, ∀z ∈ R.

If p > 0, then γi(·, a, p) and σi(·, b, p) are both 𝒞 i.

Proof. If p = 0, then γi(z, a, p) = max{z, a} and σi(z, b, p) = min{z, b} for each

z ∈ R, from which the required results follow immediately.

If p > 0, then, for any a ∈ R, γi(·, a, p) is a translated and dilated version of µi.

Hence, the required results concerning γi follow immediately from Lemmas 9.3.2

and 9.3.3, and the fact that µi is 𝒞 i. The required results concerning σi are demon-

strated similarly.

Proposition 9.3.6. Consider any fixed i ∈ {1, 2}, a, b ∈ R and p > 0. Gradients of the

mappings z ↦→ γi(z, a, p) and z ↦→ σi(z, b, p) at some z0 ∈ R may be computed using

(9.5) as follows.

∂γi

∂z
(z0, a, p) = ∇µi(

z0−a
p ),

∂σi

∂z
(z0, b, p) = ∇µi(

b−z0
p ).

Lemma 9.3.7. Given triples (z1, a1, p1), (z2, a2, p2) ∈ R×R× [0,+∞), suppose that

z1 ≤ z2, a1 ≤ a2, and p1 ≥ p2. Then, for each i ∈ {1, 2}, γi(z1, a1, p1) ≤ γi(z2, a2, p2).

Similarly, given triples (z1, b1, p1), (z2, b2, p2) ∈ R × R × [0,+∞), suppose that

z1 ≥ z2, b1 ≥ b2, and p1 ≥ p2. Then, for each i ∈ {1, 2}, σi(z1, b1, p1) ≥ σi(z2, b2, p2).
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Proof. The result concerning γi will be shown; the result concerning σi is analo-

gous. Observe that

γi(z2, a2, p2)− γi(z1, a1, p1) = (γi(z2, a2, p2)− γi(z1, a1, p2))

+ (γi(z1, a1, p2)− γi(z1, a1, p1));

it suffices to show that each parenthetical term in the right-hand side of the above

equation is nonnegative. If p2 = 0, then

γi(z2, a2, p2)− γi(z1, a1, p2) = max{z2, a2} −max{z1, a1} ≥ 0.

Otherwise, if p2 > 0, then

γi(z2, a2, p2)− γi(z1, a1, p2)

= (γi(z2, a2, p2)− γi(z2, a1, p2)) + (γi(z2, a1, p2)− γi(z1, a1, p2)) ,

=
∫ a2

a1

∂γi

∂a
(z2, s, p2) ds + p2

(
µi(

z2−a1
p2

)− µi(
z1−a1

p2
)
)

,

=
∫ a2

a1

(
1−∇µi(

z2−s
p2

)
)

ds + p2

(
µi(

z2−a1
p2

)− µi(
z1−a1

p2
)
)

,

≥ 0;

to obtain the final inequality, note that (9.5) shows that ∇µi(x) ≤ 1 for each x, and

so the integrand in the integral above is nonnegative. The non-integral term is also

nonnegative, since p2 > 0, z2 ≥ z1, and µi is increasing.

It remains to be shown that γi(z1, a1, p2) ≥ γi(z1, a1, p1). This is trivial if p2 =

p1. Otherwise, either p1 > p2 = 0 or p1 > p2 > 0; these two cases will be consid-

ered separately. If p1 > p2 = 0, then Lemma 9.3.5 yields:

γi(z1, a1, p2) = max{z1, a1} ≥ γi(z1, a1, p1),

as required. If p1 > p2 > 0, then z1−a1
p2
≥ z1−a1

p1
, and so, since µi is increasing,

γi(z1, a1, p2)− γi(z1, a1, p1) = µi(
z1−a1

p2
)− µi(

z1−a1
p1

) ≥ 0,

as required.
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Lemma 9.3.8. For any fixed p > 0 and i ∈ {1, 2}, the mappings (x, y) ↦→ νi(x, y, p) and

(x, y) ↦→ λi(x, y, p) are each 𝒞 i on R2.

Proof. With p > 0, for each x, y ∈ R,

νi(x, y, p) =
1
2

(
x + y + p(µi(

x−y
p ) + µi(

y−x
p ))

)
,

and λi(x, y, p) =
1
2

(
x + y− p(µi(

x−y
p ) + µi(

y−x
p ))

)
.

Noting that µi is 𝒞 i then yields the required result.

Proposition 9.3.9. Consider any fixed i ∈ {1, 2} and p > 0. Partial derivatives of the

mappings (x, y) ↦→ νi(x, y, p) and (x, y) ↦→ λi(x, y, p) at some x0, y0 ∈ R may be

computed using (9.5) as follows.

∂νi

∂x
(x0, y0, p) =

∂λi

∂y
(x0, y0, p) =

1
2

(
1 +∇µi(

x0−y0
p )−∇µi(

y0−x0
p )

)
,

∂νi

∂y
(x0, y0, p) =

∂λi

∂x
(x0, y0, p) =

1
2

(
1−∇µi(

x0−y0
p ) +∇µi(

y0−x0
p )

)
.

Proof. This result follows immediately from the previous lemma.

Lemma 9.3.10. Given triples (x1, y1, p1), (x2, y2, p2) ∈ R×R× [0,+∞), suppose that

x1 ≤ x2, y1 ≤ y2, and p1 ≥ p2. Then, for each i ∈ {1, 2}, νi(x1, y1, p1) ≤ νi(x2, y2, p2).

Similarly, given triples (x3, y3, p3), (x4, y4, p4) ∈ R × R × [0,+∞), suppose that

x3 ≥ x4, y3 ≥ y4, and p3 ≥ p4. Then, for each i ∈ {1, 2}, λi(x3, y3, p3) ≥ λi(x4, y4, p4).

Proof. The required result follows immediately from Lemma 9.3.7 and the defini-

tions of νi and λi.

Lemma 9.3.11. Given p ≥ 0 and i ∈ {1, 2}, the mapping (x, y) ↦→ νi(x, y, p) is convex

on R2, and the mapping (x, y) ↦→ λi(x, y, p) is concave on R2. Moreover, for all x, y ∈ R,

1
2(x + y) ≤ 1

2(max{x− p, y}+ max{x, y− p}) ≤ νi(x, y, p) ≤ max{x, y},
and min{x, y} ≤ λi(x, y, p) ≤ 1

2(min{x + p, y}+ min{x, y + p}) ≤ 1
2(x + y).
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Proof. It will be shown that the mapping (x, y) ↦→ νi(x, y, p) is convex; a similar ar-

gument shows that (x, y) ↦→ λi(x, y, p) is concave. Choose any (xA, yA), (xB, yB) ∈

R2 and any ` ∈ (0, 1), and define x̃ := `xA + (1− `)xB and ỹ := `yA + (1− `)yB.

The cases in which p = 0 and p > 0 will be considered separately.

If p = 0, then νi(xj, yj, p) = max{xj, yj} for each j ∈ {A, B}; the convexity of

the bivariate max function then implies that (x, y) ↦→ νi(x, y, p) is convex.

If p > 0, then, noting that x̃− ỹ = `(xA− yA) + (1− `)(xB− yB), the convexity

of µi implies that

` µi(
xA−yA

p ) + (1− `) µi(
xB−yB

p ) ≥ µi(
x̃−ỹ

p );

multiplying both sides of the above inequality by p and adding ỹ yields

` γi(xA, yA, p) + (1− `) γi(xB, yB, p) ≥ γi(x̃, ỹ, p). (9.7)

Since xA, xB, yA, yB were chosen arbitrarily, interchanging xj with yj for each j ∈

{A, B} in the above argument yields

` γi(yA, xA, p) + (1− `) γi(yB, xB, p) ≥ γi(ỹ, x̃, p);

adding this inequality to (9.7) and multiplying the result by 1
2 yields

` νi(xA, yA, p) + (1− `) νi(xB, yB, p) ≥ νi(x̃, ỹ, p),

which shows that (x, y) ↦→ νi(x, y, p) is convex, as required.

The remaining claims of the lemma follow immediately from Lemma 9.3.5 and

the definitions of νi and λi.

Definition 9.3.12. Define a function p : IR → [0,+∞) such that for some constant

ap > 0, p(𝑥) := ap(wid𝑥)2 for each 𝑥 ∈ IR. Denote p(𝑥) as p𝑥.

This particular quadratic expression for p is irrelevant to the results developed

in Sections 9.5 and 9.6 below; the results in these sections remain valid if p is re-

defined so that p(𝑥) := π(wid𝑥), where π : [0,+∞) → [0,+∞) is any particular

strictly-increasing function for which π(0) = 0. Defining π : z ↦→ apz2, however,
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yields the convergence results obtained in Section 9.7. The particular choice of the

constant ap does not affect the theoretical results developed in this chapter; appro-

priate choices of ap will be discussed in Section 9.8.1 from a numerical standpoint.

Remark 9.3.13. As claimed earlier, the condition in Assumption 9.2.21 that both ũ(𝑥) ≤

ucv(𝑥, ζmin
u (𝑥)) and ũ(𝑥) ≥ ucc(𝑥, ζmax

u (𝑥)) can be imposed without loss of generality.

If this condition either fails or is not known to be true, then, for each 𝑥 ∈ IB, ucv(𝑥, ·)

can be replaced with the mapping z ↦→ γi(ucv(𝑥, z), ũ(𝑥), p𝑥), and ucc(𝑥, ·) can be re-

placed with the mapping z ↦→ σi(ucc(𝑥, z), ũ(𝑥), p𝑥); these replacements now satisfy the

condition. The established properties of γi and σi ensure that the other conditions required

of ucv and ucc by Definition 9.2.12 and Assumption 9.2.21 continue to hold under these

replacements.

9.3.2 Relaxing intersections of bounds and relaxations

Roughly, for each i ∈ {1, 2}, the 𝒮qui and 𝑏𝑒𝑙𝑡i operations introduced in this

section are 𝒞 i relaxations of the “Cut” and “Enc” operations presented in Defi-

nitions 2.4.3 and 2.4.5 of [100], and serve analogous roles. It will be shown in this

section that 𝒮qui is a relaxation function of the identity function on R. Further

in this chapter, Lemma 9.7.1 will show that 𝒮qui is (1, 2)-convergent. Intuitively,

𝒮qui also inherits the 𝒞 i nature of γi and σi; this property will be exploited in Sec-

tion 9.6.

Definition 9.3.14. For each 𝒳 ∈ MR and each i ∈ {1, 2}, define a belt operation

𝑏𝑒𝑙𝑡i(𝒳 ) ∈ IR as follows:

𝑏𝑒𝑙𝑡i(𝒳 ) :=
{

[x, x] if xB = xB =: x,
[γi(xC, xB, p𝑥B), σi(xC, xB, p𝑥B)] if xB < xB.

Define a squashing operation 𝒮qui(𝒳 ) := (𝑥B, 𝑏𝑒𝑙𝑡i(𝒳 )) ∈ IR2. Given a vector

𝒴 ∈MRn, define

𝒮qui(𝒴) :=

𝒮qui(𝒴1)
...

𝒮qui(𝒴n)

 ∈ (IR2)n.
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For any 𝒳 ∈ MR, Lemma 9.3.5 implies that 𝑥B ∩ 𝑥C ⊂ 𝑏𝑒𝑙𝑡i(𝒳 ) ⊂ 𝑥B, which

in turn yields 𝒮qui(𝒳 ) ∈ MRprop. Thus, 𝒮qui(𝒴) ∈ MRn
prop for any 𝒴 ∈ MRn.

Furthermore, observe that 𝑏𝑒𝑙𝑡i(([x, x], [x, x])) = [x, x] for each x ∈ R.

Lemma 9.3.15. For each i ∈ {1, 2}, for each coherent pair 𝒳 ,𝒴 ∈ MR and each ` ∈

[0, 1],

𝑏𝑒𝑙𝑡i(𝒞onv(`,𝒳 ,𝒴)) ⊃ ` 𝑏𝑒𝑙𝑡i(𝒳 ) + (1− `) 𝑏𝑒𝑙𝑡i(𝒴).

Moreover, 𝒮qui is coherently concave for each i ∈ {1, 2}.

Proof. Since 𝒳 and 𝒴 are coherent, define 𝑧 := 𝑥B = 𝑦B. The following pair

of inequalities is obtained from the convexity of γi(·, zB, p𝑧) and the concavity of

σi(·, zB, p𝑧):

γi(`xC + (1− `)yC, zB, p𝑧) ≤ ` γi(xC, zB, p𝑧) + (1− `) γi(yC, zB, p𝑧),

σi(`xC + (1− `)yC, zB, p𝑧) ≥ ` σi(xC, zB, p𝑧) + (1− `) σi(yC, zB, p𝑧),

which are equivalent to the required inclusion. Moreover, since 𝒳 , 𝒴 , and ` were

chosen arbitrarily, it follows immediately that 𝒮qui is coherently concave.

Lemma 9.3.16. For each i ∈ {1, 2}, 𝑏𝑒𝑙𝑡i and 𝒮qui are inclusion monotonic.

Proof. Consider any 𝒳 ,𝒴 ∈ MR for which 𝒳 ⊂ 𝒴 . If xB = xB =: x, then 𝑥B ∩

𝑥C ̸= ∅ implies x ∈ 𝑥C. Thus, 𝒳 ⊂ 𝒴 implies

𝑏𝑒𝑙𝑡i(𝒳 ) = [x, x] = 𝑥B = 𝑥B ∩ 𝑥C ⊂ 𝑦B ∩ 𝑦C ⊂ 𝑏𝑒𝑙𝑡i(𝒴),

as required. If xB < xB, then since xC ≥ yC, xB ≥ yB, and p𝑥B ≤ p𝑦B , Lemma 9.3.7

implies that

γi(xC, xB, p𝑥B) ≥ γi(yC, yB, p𝑦B).

A similar argument shows that

σi(xC, xB, p𝑥B) ≤ σi(yC, yB, p𝑦B),
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and so 𝑏𝑒𝑙𝑡i(𝒳 ) ⊂ 𝑏𝑒𝑙𝑡i(𝒴). The inclusion 𝒮qui(𝒳 ) ⊂ 𝒮qui(𝒴) follows immedi-

ately.

Lemma 9.3.17. For each fixed i ∈ {1, 2} and 𝑥B := [xB, xB] ∈ IR, consider the interval-

valued mapping 𝑦 : (ξ, ξ) ↦→ 𝑏𝑒𝑙𝑡i((𝑥
B, [ξ, ξ])). The mappings y and y are both 𝒞 i on

R2.

Proof. If xB = xB, then the mapping 𝑏𝑒𝑙𝑡i((𝑥B, ·)) is constant, and is therefore

𝒞 i. Otherwise, if xB < xB, then the required result follows immediately from

Lemma 9.3.5 and Definition 9.3.12.

Remark 9.3.18. It follows from the above definitions and lemmata that, for each i ∈ {1, 2},

𝒮qui is a relaxation function for the identity mapping x ∈ Rn ↦→ x.

9.3.3 Relaxing multiplication

Throughout this section, let the value of i ∈ {1, 2} be fixed. Setting i = 1 will

yield 𝒞1 relaxations; setting i = 2 will yield 𝒞2 relaxations, but will place stricter

requirements on the univariate intrinsic functions considered, as formalized in As-

sumption 9.2.21.

The following definition replaces Definition 9.2.31; it will be shown in this chap-

ter that this replacement weakens McCormick’s classical multiplication operation

to yield an alternative that is 𝒞 i, while maintaining (1, 2)-convergence. This mod-

ified multiplication operation depends on i, but this dependence will not be re-

flected in its “𝒳𝒴” notation.

Definition 9.3.19. Define a multiplication operation ×i : MR2
prop → MR so that, for

each 𝒳 ,𝒴 ∈MR,

×i(𝒳 ,𝒴) ≡ 𝒳𝒴 := 𝒮qui((𝑥
B𝑦B, 𝑧)),

where 𝑧 ≡ [z, z] ∈ IR is defined so that:
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z := νi

(
(yB𝑥C) + (xB𝑦C)− xByB, (yB𝑥C) + (xB𝑦C)− xByB, p𝑥B𝑦B

)
,

z := λi

(
(yB𝑥C) + (xB𝑦C)− xByB, (yB𝑥C) + (xB𝑦C)− xByB, p𝑥B𝑦B

)
.

9.3.4 Restrictions to proper McCormick objects

The following result shows that the codomains of + : MR2
prop → MR (cf. Defini-

tion 9.2.30) and ×i : MR2
prop → MR may be restricted to MRprop without loss of

generality.

Proposition 9.3.20. Consider any 𝒳 ,𝒴 ∈ MRprop, and define 𝒮 := 𝒳 + 𝒴 and 𝒫 :=

𝒳𝒴 for some i ∈ {1, 2}. Then, 𝒮 ,𝒫 ∈MRprop.

Proof. Firstly, to show that 𝒮 ∈MRprop, observe that

𝑠C = [sC, sC] = [xC, xC] + [yC, yC] ⊂ [xB, xB] + [yB, yB] = 𝑥B + 𝑦B = 𝑠B.

Secondly, 𝒫 = 𝒮qui((𝑝
B, 𝑧)), with 𝑧 ∈ IR given as in Definition 9.3.19. Define

𝑣 := 𝑥B ∩ 𝑥C and 𝑤 := 𝑦B ∩ 𝑦C. Since 𝒳 ,𝒴 ∈MRprop, it follows that 𝑣 = 𝑥C and

𝑤 = 𝑦C. Now, making use of Lemma 9.3.11, it follows that

z ≤ max
(
(yB𝑣) + (xB𝑤)− xByB, (yB𝑣) + (xB𝑤)− xByB

)
and z ≥ min

(
(yB𝑣) + (xB𝑤)− xByB, (yB𝑣) + (xB𝑤)− xByB

)
.

Defining

q := max
(
(yB𝑣) + (xB𝑤)− xByB, (yB𝑣) + (xB𝑤)− xByB

)
,

and q := min
(
(yB𝑣) + (xB𝑤)− xByB, (yB𝑣) + (xB𝑤)− xByB

)
,

it is argued on [100, Page 69] that [q, q] ∩ 𝑝B ̸= ∅. Thus,

𝑧 ∩ 𝑝B ⊃ [q, q] ∩ 𝑝B ̸= ∅.
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This shows that (𝑝B, 𝑧) ∈ MR, which implies that 𝒫 = 𝒮qui((𝑝
B, 𝑧)) ∈ MRprop.

The following result considers univariate intrinsic functions in the same man-

ner as the above result, and shows that the codomains of their McCormick analogs

may be restricted to MRprop without loss of generality.

Proposition 9.3.21. Consider a univariate intrinsic function u : B ⊂ R → R that

satisfies Assumption 9.2.21. With 𝒰 described by Definition 9.2.32, 𝒰 (𝒳 ) ∈MRprop for

each 𝒳 ∈MBprop.

Proof. By construction, ζmin
u (𝑥B) ∈ 𝑥B and ζmax

u (𝑥B) ∈ 𝑥B. Since 𝒳 ∈ MBprop,

𝑥C ⊂ 𝑥B; it follows that mid(ζmin
u (𝑥B), xC, xC) ∈ 𝑥B and mid(ζmax

u (𝑥B), xC, xC) ∈

𝑥B. It therefore follows from the bounds on ucv and ucc in Assumption 9.2.21 that

[uC(𝒳 ), uC(𝒳 )] ⊂ 𝑢̃(𝑥B), which implies that 𝒰 (𝒳 ) ∈MRprop.

9.4 Main theorem

The following definition is a variation of Definition 9.2.33. Observe that all uni-

variate intrinsic functions listed in Table 9.2 satisfy Assumption 9.2.21 for each

i ∈ {1, 2}, and that all of these functions except for the absolute-value function

satisfy Assumption 9.2.38. The result following this definition is the main theorem

of this chapter.

Definition 9.4.1. Given some i* ∈ {1, 2} and an MC-factorable function f : B ⊂ Rn →

Rm whose composed univariate intrinsic functions each satisfy Assumption 9.2.21 with

i := i*, a natural 𝒞 i* McCormick extension ℱ : MBprop → MRm of f is defined by

replacing each addition operation in the description of f with its McCormick counterpart

described in Definition 9.2.30, each multiplication operation with its counterpart in Defi-

nition 9.3.19 with i := i*, and each univariate intrinsic function with its counterpart in

Definition 9.2.32.

Define an unconstrained 𝒞 i* McCormick extension of f as ℱunc := ℱ ∘ 𝒮qui* :

MB→MRm.
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Theorem 9.4.2. Given some i* ∈ {1, 2} and an MC-factorable function f : B ⊂ Rn →

Rm whose composed univariate intrinsic functions each satisfy Assumption 9.2.21 with

i := i*, there are no domain violations in the construction of a natural 𝒞 i* McCormick

extension ℱ : MBprop → MRm of f on B. The function ℱ is a relaxation function for

f on B. Additionally, if each univariate intrinsic function describing f satisfies Assump-

tion 9.2.38, then ℱ is (1, 2)-convergent.

Moreover, if m = 1, in which case f ≡ f is scalar-valued, then the functions φ𝑥, ψ𝑥

defined by Proposition 9.2.20 in terms of ℱ for each 𝑥 ∈ IB are each 𝒞 i* on 𝑥.

Proof. Since f is MC-factorable, it has a well-defined natural interval extension.

Thus, Proposition 9.3.20, Proposition 9.3.21, and Assumption 9.2.21 imply that

there are no domain violations in the construction of ℱ . The remaining claims

of the theorem are proved separately as Theorems 9.5.1, 9.6.1, and 9.7.3 below.

Roughly, an unconstrained 𝒞 i* McCormick extension of a function f : B ⊂

Rn → R yields convex/concave relaxations of f that are weaker than those de-

scribed by a natural 𝒞 i* McCormick extension, yet are well-defined on all of Rn

rather than particular interval subsets, and satisfy the following corollary. As

a result, natural 𝒞 i* McCormick extensions are preferable to unconstrained 𝒞 i*

McCormick extensions in general, since the former generate tighter relaxations.

Unconstrained 𝒞 i* McCormick extensions are preferable in two particular situa-

tions: firstly, if the problem minz∈𝑥 φ𝑥(z) is solved using a constrained convex

optimization method which visits infeasible points, and secondly, if generalized

McCormick relaxations [104] are employed in a manner that permits inputs 𝒳 ≡

(𝑥B,𝑥C) for which 𝑥C * 𝑥B.

Corollary 9.4.3. Given some i* ∈ {1, 2} and an MC-factorable function f : B ⊂ Rn →

Rm whose composed univariate intrinsic functions each satisfy Assumption 9.2.21 with

i := i*, an unconstrained 𝒞 i* McCormick extension ℱunc : MB → MRm of f is a

relaxation function for f. Additionally, if each univariate intrinsic function describing f

satisfies Assumption 9.2.38, then ℱunc is (1, 2)-convergent.
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Moreover, if m = 1, in which case f ≡ f is scalar-valued, then the functions φ𝑥, ψ𝑥

defined by Proposition 9.2.20 in terms of ℱunc for each 𝑥 ∈ IB are each 𝒞 i* on Rn. For

each 𝑥 ∈ IB, φ𝑥 is convex on Rn, and ψ𝑥 is concave on Rn.

9.5 Elemental relaxation functions

The following theorem shows that Definitions 9.2.30, 9.3.19, and 9.2.32 provide

relaxation functions of addition, multiplication, and univariate intrinsic functions;

the remainder of this section is concerned with proving this theorem.

Theorem 9.5.1. The functions + : MR2
prop → MRprop, ×i : MR2

prop → MRprop,

and 𝒰 : MB → MR described in Definitions 9.2.30, 9.3.19, and 9.2.32 are relaxation

functions for + : R2 → R, × : R2 → R, and u : B→ R, respectively.

Proof. This theorem combines Lemmata 9.5.2–9.5.6 below.

Lemma 9.5.2. The function + : MR2
prop → MRprop is coherently concave, inclusion

monotonic, and a McCormick extension of + : R2 → R.

Proof. This result follows from Theorem 2.4.20 in [100], noting that for any choice

of 𝒳 ,𝒴 ∈MRprop, 𝑥B ∩ 𝑥C = 𝑥C and 𝑦B ∩ 𝑦C = 𝑦C.

Lemma 9.5.3. The function ×i : MR2
prop →MRprop is coherently concave.

Proof. Consider a coherent pair (𝒳1,𝒴1), (𝒳2,𝒴2) ∈MR2
prop, and a scalar ` ∈ [0, 1].

Since this pair is coherent, define 𝑥B := 𝑥B
1 = 𝑥B

2 and 𝑦B := 𝑦B
1 = 𝑦B

2 . Define

𝒬1 := 𝒳1𝒴1 and 𝒬2 := 𝒳2𝒴2. Using the definition of the squashing operation,

it follows that 𝑞B
1 = 𝑞B

2 = 𝑥B𝑦B =: 𝑞B, and so 𝒬1 and 𝒬2 are coherent. Define

𝒳0 := 𝒞onv(`,𝒳1,𝒳2), and define 𝒴0 and 𝒬0 analogously. To obtain the required

result, it suffices to show that 𝒳0𝒴0 ⊃ 𝒬0.

If qB = qB =: q, then the definition of the squashing operation implies that

𝒳0𝒴0 = [q, q] = 𝒬0, as required. Thus, it will be assumed throughout the rest of

this proof that qB < qB.

For each j ∈ {0, 1, 2}, define 𝑧j ≡ [zj, zj] ∈ IR such that
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zj := νi

(
(yB𝑥C

j ) + (xB𝑦C
j )− xByB, (yB𝑥C

j ) + (xB𝑦C
j )− xByB, p𝑞B

)
,

and zj := λi

(
(yB𝑥C

j ) + (xB𝑦C
j )− xByB, (yB𝑥C

j ) + (xB𝑦C
j )− xByB, p𝑞B

)
.

Since 𝑞B
1 = 𝑞B

2 = 𝑥B𝑦B = 𝑞B, the required inclusion, 𝒳0𝒴0 ⊃ 𝒞onv(`,𝒬1,𝒬2), is

equivalent to the inclusion:

𝒮qui((𝑞
B, 𝑧0)) ⊃ 𝒞onv(`,𝒮qui((𝑞

B, 𝑧1)),𝒮qui((𝑞
B, 𝑧2))),

which is in turn equivalent to the inclusion:

𝑏𝑒𝑙𝑡i((𝑞
B, 𝑧0)) ⊃ ` 𝑏𝑒𝑙𝑡i((𝑞

B, 𝑧1)) + (1− `) 𝑏𝑒𝑙𝑡i((𝑞
B, 𝑧2)).

Thus, due to Lemma 9.3.15, it suffices to demonstrate the following inclusion:

𝑏𝑒𝑙𝑡i((𝑞
B, 𝑧0)) ⊃ 𝑏𝑒𝑙𝑡i(𝒞onv(`, (𝑞B, 𝑧1), (𝑞B, 𝑧2))),

which can be rewritten as:

𝑏𝑒𝑙𝑡i((𝑞
B, 𝑧0)) ⊃ 𝑏𝑒𝑙𝑡i((𝑞B, [`z1 + (1− `)z2, `z1 + (1− `)z2)]).

Since 𝑏𝑒𝑙𝑡i is inclusion monotonic, it thus suffices to demonstrate the inequalities:

z0 ≤ `z1 + (1− `)z2, and z0 ≥ `z1 + (1− `)z2.

The first of these inequalities will be demonstrated here; the second can be shown

to hold by an analogous argument. For each j ∈ {0, 1, 2}, define:

αj := (yB𝑥C
j ) + (xB𝑦C

j )− xByB, and β j := (yB𝑥C
j ) + (xB𝑦C

j )− xByB.

Now, for each j ∈ {0, 1, 2},

(yB𝑥C
j ) =

 yBxC
j if yB ≥ 0,

yBxC
j if yB < 0.

Moreover, by definition of the 𝒞onv operation,
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xC
0 = `xC

1 + (1− `)xC
2 , and xC

0 = `xC
1 + (1− `)xC

2 .

Combining the above results, it follows that

(yB𝑥C
0 ) = `(yB𝑥C

1 ) + (1− `)(yB𝑥C
2 );

an analogous argument shows that

(xB𝑦C
0 ) = `(xB𝑦C

1 ) + (1− `)(xB𝑦C
2 ).

Adding these two equations and subtracting the constant term xByB, it follows that

α0 = `α1 + (1− `)α2;

an analogous argument shows that

β0 = `β1 + (1− `)β2.

Thus,

νi(α0, β0, p𝑞B) = νi(`α1 + (1− `)α2, `β1 + (1− `)β2, p𝑞B),

which, by Lemma 9.3.11, implies that

νi(α0, β0, p𝑞B) ≤ ` νi(α1, β1, p𝑞B) + (1− `) νi(α2, β2, p𝑞B).

Comparing this inequality with the definitions of αj, β j, and zj for each j ∈ {0, 1, 2},

it follows immediately that

z0 ≤ `z1 + (1− `)z2,

as required.

Lemma 9.5.4. The function ×i : MR2
prop →MRprop is inclusion monotonic.

Proof. Consider any 𝒳1,𝒳2,𝒴1,𝒴2 ∈ MRprop such that 𝒳2 ⊂ 𝒳1 and 𝒴2 ⊂ 𝒴1. It

will be shown that 𝒳2𝒴2 ⊂ 𝒳1𝒴1. Since × : IR2 → IR is inclusion monotonic, it

follows that 𝑥B
2𝑦

B
2 ⊂ 𝑥B

1𝑦
B
1 , and so p𝑥B

2𝑦
B
2
≤ p𝑥B

1𝑦
B
1
. By construction 𝑥C

2 ⊂ 𝑥C
1 and
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𝑦C
2 ⊂ 𝑦C

1 . Define 𝑧1 ∈ IR as in Definition 9.3.19 for the product 𝒳1𝒴1, and define

𝑧2 ∈ IR analogously for the product 𝒳2𝒴2.

Due to Lemma 9.3.16 and the inclusion 𝑥B
2𝑦

B
2 ⊂ 𝑥B

1𝑦
B
1 , it suffices to show that

𝑧2 ⊂ 𝑧1. It will be shown that z2 ≥ z1; an analogous argument shows that z2 ≤

z1. In turn, due to Lemma 9.3.10 and the inequality p𝑥B
2𝑦

B
2
≤ p𝑥B

1𝑦
B
1
, it suffices to

demonstrate the inequalities:

(yB
1
𝑥C

1 ) + (xB
1𝑦

C
1 )− xB

1 yB
1
≤ (yB

2
𝑥C

2 ) + (xB
2𝑦

C
2 )− xB

2 yB
2
,

and (yB
1𝑥

C
1 ) + (xB

1𝑦
C
1 )− xB

1 yB
1 ≤ (yB

2𝑥
C
2 ) + (xB

2𝑦
C
2 )− xB

2 yB
2 .

Noting that 𝑥C
j = 𝑥B

j ∩ 𝑥C
j and 𝑦C

j = 𝑦B
j ∩ 𝑦C

j for each j ∈ {1, 2} by construction,

the proof of [100, Theorem 2.4.23] demonstrates the above inequalities.

Lemma 9.5.5. The function ×i : MR2
prop → MRprop is a McCormick extension of

× : R2 → R.

Proof. Choose x, y ∈ R, and consider the McCormick objects 𝒳0 := ([x, x], [x, x]) ∈

MRprop and 𝒴0 := ([y, y], [y, y]) ∈ MRprop. Observe that [x, x][y, y] = [xy, xy],

and that p[x,x] = p[y,y] = p[x,x][y,y] = 0. Thus, according to Definition 9.3.19 and the

established properties of γi and σi, it follows that:

𝒳0𝒴0 = 𝒮qui(([x, x][y, y], 𝑧)),

where 𝑧 ≡ [z, z] is defined as follows:

z := νi

(
(y[x, x]) + (x[y, y])− xy, (y[x, x]) + (x[y, y])− xy, 0

)
,

= νi(xy, xy, 0) = γi(xy, xy, 0) = xy,

and z := λi

(
(y[x, x]) + (x[y, y])− xy, (y[x, x]) + (x[y, y])− xy, 0

)
,

= λi(xy, xy, 0) = σi(xy, xy, 0) = xy.

Thus, 𝒳0𝒴0 = 𝒮qui(([xy, xy], [xy, xy])) = ([xy, xy], [xy, xy]).
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Lemma 9.5.6 (Theorems 2.4.27, 2.4.29, and 2.4.30 in [100]). For any univariate in-

trinsic function u : B ⊂ R → R, the function 𝒰 : MB → MR is coherently concave,

inclusion monotonic, and a McCormick extension of u.

9.6 Continuous and twice-continuous differentiability

The results in this section show that for any natural or unconstrained 𝒞 i McCormick

extension of an MC-factorable function, the convex/concave relaxations suggested

by Proposition 9.2.20 are indeed 𝒞 i on their interval domains, and their gradients

may be evaluated using the standard forward or reverse modes of automatic dif-

ferentiation [34].

In particular, Lemmata 9.6.5 and 9.6.6 effectively correct McCormick’s proposed

sufficient condition for differentiability of relaxations of composite functions [74,

p. 151], by applying Assumption 9.2.21.

Theorem 9.6.1. Consider any i* ∈ {1, 2}. For fixed intervals 𝑥1,𝑥2 ∈ IR, the mappings

(y
1
, y1, y

2
, y2) ↦→ +C

(
(𝑥1, [y

1
, y1]), (𝑥2, [y

2
, y2])

)
,

(y
1
, y1, y

2
, y2) ↦→ +C

(
(𝑥1, [y

1
, y1]), (𝑥2, [y

2
, y2])

)
,

(y
1
, y1, y

2
, y2) ↦→ ×

C
i

(
(𝑥1, [y

1
, y1]), (𝑥2, [y

2
, y2])

)
,

and (y
1
, y1, y

2
, y2) ↦→ ×

C
i

(
(𝑥1, [y

1
, y1]), (𝑥2, [y

2
, y2])

)
described in Definitions 9.2.30 and 9.3.19 are each 𝒞 i* on {(y

1
, y1, y

2
, y2) ∈ R4 : y

1
≤

y1, y
2
≤ y2, [y

1
, y1] ∈ 𝑥1, [y

2
, y2] ∈ 𝑥2}.

Next, consider a univariate intrinsic function u : B ⊂ R→ R that satisfies Assump-

tion 9.2.21 with i := i*, and choose any fixed interval 𝑥 ∈ IB. The mappings

(y, y) ↦→ uC((𝑥, [y, y])) and (y, y) ↦→ uC((𝑥, [y, y])),

described in Definition 9.2.32, are each 𝒞 i* on {(y, y) ∈ R2 : y ≤ y, [y, y] ⊂ 𝑥}.

Proof. This theorem collects the results of Lemmata 9.6.2–9.6.6 below.
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Lemma 9.6.2. For fixed intervals 𝑥1,𝑥2 ∈ IR, the mappings

(y
1
, y1, y

2
, y2) ↦→ +C

(
(𝑥1, [y

1
, y1]), (𝑥2, [y

2
, y2])

)
,

and (y
1
, y1, y

2
, y2) ↦→ +C

(
(𝑥1, [y

1
, y1]), (𝑥2, [y

2
, y2])

)
are each 𝒞2 on {(y

1
, y1, y

2
, y2) ∈ R4 : y

1
≤ y1, y

2
≤ y2, [y

1
, y1] ∈ 𝑥1, [y

2
, y2] ∈ 𝑥2}.

Proof. The definition of + : MR2
prop ↦→ MRprop implies that the mappings in

question are linear, and are therefore 𝒞2.

Lemma 9.6.3. Suppose that scalars a, b, c, d ∈ R are such that ab = ad = cb = cd. At

least one of the following conditions must hold:

∙ both a = c and b = d hold simultaneously,

∙ a = c = 0,

∙ b = d = 0.

Proof. Suppose that the first condition does not hold; it will be shown that either

the second or third condition must hold in this case. Thus, suppose that either

a ̸= c or b ̸= d. If a ̸= c, then the equations (a− c)b = 0 = (a− c)d imply that b =

d = 0, as required. Otherwise, if b ̸= d, then the equations a(b− d) = 0 = c(b− d)

imply that a = c = 0, as required.

Lemma 9.6.4. For each i ∈ {1, 2}, given fixed intervals 𝑥1,𝑥2 ∈ IR, the mappings

(y
1
, y1, y

2
, y2) ↦→ ×

C
i

(
(𝑥1, [y

1
, y1]), (𝑥2, [y

2
, y2])

)
,

and (y
1
, y1, y

2
, y2) ↦→ ×

C
i

(
(𝑥1, [y

1
, y1]), (𝑥2, [y

2
, y2])

)
are each 𝒞 i on {(y

1
, y1, y

2
, y2) ∈ R4 : y

1
≤ y1, y

2
≤ y2, [y

1
, y1] ∈ 𝑥1, [y

2
, y2] ∈ 𝑥2}.

Proof. The cases in which wid (𝑥1𝑥2) > 0 and wid (𝑥1𝑥2) = 0 will be considered

separately.
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Firstly, suppose that wid (𝑥1𝑥2) > 0. For any c ∈ R, (9.1) and (9.2) imply

that the mappings (v, w) ↦→ (c[v, w]) and (v, w) ↦→ (c[v, w]) are both linear on

{(v, w) ∈ R2 : v ≤ w}, and are therefore 𝒞 i. This observation, together with

Lemma 9.3.8, Lemma 9.3.17, and Definition 9.3.19, implies that the required result

holds.

Secondly, suppose that wid (𝑥1𝑥2) = 0, in which case x1x2 = x1x2 = x1x2 =

x1x2. Applying Lemma 9.6.3, it suffices to consider separately the cases in which

x1 = x1 = 0, x2 = x2 = 0, and both x1 = x1 and x2 = x2.

If x1 = x1 = 0, then 𝑥1𝑥2 = [0, 0], in which case the outer squashing operation

in Definition 9.3.19 implies that (𝑥1, [y
1
, y1])× (𝑥2, [y

2
, y2]) = ([0, 0], [0, 0]). Thus,

each of the two mappings in the statement of the lemma is the zero mapping,

which is trivially 𝒞 i. The case in which x2 = x2 = 0 is analogous.

Lastly, if both x1 = x1 =: x1 and x2 = x2 =: x2, then 𝑥1𝑥2 = [x1x2, x1x2], in

which case the outer squashing operation in Definition 9.3.19 implies that

(𝑥1, [y
1
, y1])× (𝑥2, [y

2
, y2]) = ([x1x2, x1x2], [x1x2, x1x2]).

Thus, each of the two mappings in the statement of the lemma is a constant map-

ping, which, again, is trivially 𝒞 i.

The following two lemmata essentially show that McCormick’s proposed suf-

ficient condition for differentiable relaxations of composite functions [74, p. 151]

becomes valid when Assumption 9.2.21 is applied.

Lemma 9.6.5. Consider a univariate intrinsic function u : B ⊂ R → R that satisfies

Assumption 9.2.21. For any intervals 𝑥,𝑦 ∈ IB for which 𝑦 ⊂ 𝑥,

ucv(𝑥, mid(ζmin
u (𝑥), y, y)) = ucv

I (𝑥, y) + ucv
D (𝑥, y)− ucv(𝑥, ζmin

u (𝑥)),

and ucc(𝑥, mid(ζmax
u (𝑥), y, y)) = ucc

I (𝑥, y) + ucc
D(𝑥, y)− ucc(𝑥, ζmax

u (𝑥)).

Proof. The first required equation will be shown to hold; the second can be demon-

strated analogously. By construction,
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ucv
I (𝑥, y) + ucv

D (𝑥, y)− ucv(𝑥, ζmin
u (𝑥)) (9.8)

= ucv(𝑥, max{y, ζmin
u (𝑥)}) + ucv(𝑥, min{y, ζmin

u (𝑥)})
− ucv(𝑥, ζmin

u (𝑥)).

Since y ≤ y, at least one of the following three cases must apply: ζmin
u (𝑥) ≤ y ≤ y,

y ≤ ζmin
u (𝑥) ≤ y, or y ≤ y ≤ ζmin

u (𝑥). These cases will be considered separately.

If ζmin
u (𝑥) ≤ y ≤ y, then y = mid(ζmin

u (𝑥), y, y), and (9.8) becomes

ucv
I (𝑥, y) + ucv

D (𝑥, y)− ucv(𝑥, ζmin
u (𝑥))

= ucv(𝑥, y) + ucv(𝑥, ζmin
u (𝑥))− ucv(𝑥, ζmin

u (𝑥))

= ucv(𝑥, y).

If y ≤ ζmin
u (𝑥) ≤ y, then ζmin

u (𝑥) = mid(ζmin
u (𝑥), y, y), and (9.8) becomes

ucv
I (𝑥, y) + ucv

D (𝑥, y)− ucv(𝑥, ζmin
u (𝑥))

= ucv(𝑥, ζmin
u (𝑥)) + ucv(𝑥, ζmin

u (𝑥))− ucv(𝑥, ζmin
u (𝑥)) = ucv(𝑥, ζmin

u (𝑥)).

If y ≤ y ≤ ζmin
u (𝑥), then y = mid(ζmin

u (𝑥), y, y), and (9.8) becomes

ucv
I (𝑥, y) + ucv

D (𝑥, y)− ucv(𝑥, ζmin
u (𝑥))

= ucv(𝑥, ζmin
u (𝑥)) + ucv(𝑥, y)− ucv(𝑥, ζmin

u (𝑥))

= ucv(𝑥, y).

In each case, the required result is satisfied.

Lemma 9.6.6. Consider a univariate intrinsic function u : B ⊂ R → R that satisfies

Assumption 9.2.21, and an interval x ∈ IB. The functions ucv
I (𝑥, ·), ucv

D (𝑥, ·), ucc
I (𝑥, ·),

and ucc
D(𝑥, ·) are each 𝒞 i on x.

Proof. It will be shown that ucv
I (𝑥, ·) and ucv

D (𝑥, ·) are 𝒞 i; the remaining results can

be demonstrated analogously. The cases in which x < ζmin
u (𝑥) < x, ζmin

u (𝑥) = x,

or ζmin
u (𝑥) = x will be considered separately.
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Suppose first that x < ζmin
u (𝑥) < x. Since the mapping φ := ucv(𝑥, ·) is 𝒞1 on

𝑥, regardless of the value of i ∈ {1, 2}, it follows that∇φ(ζmin
u (𝑥)) = 0. Using this

result, it is readily verified that φI := ucv
I (𝑥, ·) and φD := ucv

D (𝑥, ·) are 𝒞1 on 𝑥, with

∇φI(z) =
{

0 if z ≤ ζmin
u (𝑥),

∇φ(z) if z > ζmin
u (𝑥),

and ∇φD(z) =
{
∇φ(z) if z < ζmin

u (𝑥),
0 if z ≥ ζmin

u (𝑥).
(9.9)

Furthermore, if i = 2, then Assumption 9.2.21 implies that φ is 𝒞2 on 𝑥, and that

∇2φ(ζmin
u (𝑥)) = 0. Using this result, it is readily verified that φD and φI are 𝒞2 on

𝑥, with

∇2φI(z) =
{

0 if z ≤ ζmin
u (𝑥),

∇2φ(z) if z > ζmin
u (𝑥),

and ∇2φD(z) =
{
∇2φ(z) if z < ζmin

u (𝑥),
0 if z ≥ ζmin

u (𝑥).

Next, suppose that either ζmin
u (𝑥) = x or ζmin

u (𝑥) = x. In these cases, the

functions φI and φD are each equivalent on 𝑥 to either φ or to the constant mapping

φ* : z ↦→ φ(ζmin
u (𝑥)), and are therefore 𝒞 i on 𝑥.

9.6.1 Gradient propagation

Using the obtained differentiability results, the standard forward or reverse modes

of automatic differentiation [34] can be used to evaluate derivatives of the con-

vex/concave relaxations obtained for natural or unconstrained 𝒞 i McCormick ex-

tensions, provided that gradients can be evaluated for the composed addition,

multiplication, and univariate intrinsic operations. The obtained gradients are

clearly subgradients of the corresponding relaxations.

To evaluate derivatives for 𝒞 i McCormick extensions, addition and univariate

intrinsic composition can be treated exactly as in Proposition 2.9 and Theorem 3.2

in [76], with all subgradients mentioned in these results replaced by the corre-
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sponding gradients. For multiplication, repeated application of the chain rule to

Definition 9.3.19 yields the following, which makes use of the partial derivatives

of νi and λi provided by Proposition 9.3.9.

Theorem 9.6.7. Consider functions f , g : D ⊂ Rn → R, and relaxation functions

ℱ ,𝒢 : MD (or MDprop) → MR for f and g on D, such that the mappings 𝒳 ↦→

𝑓B(𝒳 ) and𝒳 ↦→ 𝑔B(𝒳 ) are each independent of their𝑥C argument. Consider the product

function h : D → R : z ↦→ f (z) g(z), and the corresponding product relaxation function

ℋ : MD (or MDprop) →MR : 𝒳 ↦→ ℱ (𝒳 ) 𝒢(𝒳 ). As in Proposition 9.2.20, for some

fixed 𝑦 ∈ ID, construct the convex/concave relaxations φh,𝑦 : z ↦→ hC((𝑦, [z, z])) and

ψh,𝑦 : z ↦→ h
C
((𝑦, [z, z])) of h on 𝑦, and construct the analogous relaxations φ f ,𝑦/ψ f ,𝑦

of f and φg,𝑦/ψg,𝑦 of g. Gradients of φh,𝑦 and ψh,𝑦 at some particular x ∈ 𝑦 may be

computed as follows, with 𝒴 := (𝑦, x) ∈ MD (or MDprop). For notational simplicity,

the 𝒴 arguments of 𝑓B(𝒴) ≡ [ f B(𝒴), f
B
(𝒴)], 𝑔B(𝒴) ≡ [gB(𝒴), gB(𝒴)], and ℎB(𝒴) ≡

[hB(𝒴), h
B
(𝒴)] will be omitted.

If h
B
= hB, then ∇φh,𝑦(x) = ∇ψh,𝑦(x) = 0. Otherwise, if h

B
> hB, then define

intermediate scalar quantities:

n1(x) := (gB 𝑓C(𝒴)) + ( f B 𝑔C(𝒴))− f BgB,

n2(x) := (gB 𝑓C(𝒴)) + ( f
B
𝑔C(𝒴))− f

B
gB,

n3(x) := (gB 𝑓C(𝒴)) + ( f
B
𝑔C(𝒴))− f

B
gB,

n4(x) := (gB 𝑓C(𝒴)) + ( f B 𝑔C(𝒴))− f BgB,

If f
B
= f B, then define intermediate scalar quantities b1(x) = b2(x) = b3(x) = b4(x) :=

0. Otherwise, if f
B
> f B, then define:

b1(x) :=

{
gB∇φ f ,𝑦(x), if gB ≥ 0,

gB∇ψ f ,𝑦(x), if gB < 0,
b2(x) :=

{
gB∇φ f ,𝑦(x), if gB ≥ 0,

gB∇ψ f ,𝑦(x), if gB < 0,

b3(x) :=

{
gB∇ψ f ,𝑦(x), if gB ≥ 0,

gB∇φ f ,𝑦(x), if gB < 0,
b4(x) :=

{
gB∇ψ f ,𝑦(x), if gB ≥ 0,

gB∇φ f ,𝑦(x), if gB < 0.
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If gB = gB, then define intermediate scalar quantities b5(x) = b6(x) = b7(x) = b8(x) :=

0. Otherwise, if gB > gB, then define:

b5(x) :=

 f B∇φg,𝑦(x), if f B ≥ 0,

f B∇ψg,𝑦(x), if f B < 0,
b6(x) :=

 f
B∇φg,𝑦(x), if f

B ≥ 0,

f
B∇ψg,𝑦(x), if f

B
< 0,

b7(x) :=

 f
B∇ψg,𝑦(x), if f

B ≥ 0,

f
B∇φg,𝑦(x), if f

B
< 0,

b8(x) :=

 f B∇ψg,𝑦(x), if f B ≥ 0,

f B∇φg,𝑦(x), if f B < 0.

Next, define the following intermediate scalar quantities:

a1(x) :=
∂νi

∂x
(n1(x), n2(x), pℎB) b1(x) +

∂νi

∂y
(n1(x), n2(x), pℎB) b2(x),

a2(x) :=
∂νi

∂x
(n1(x), n2(x), pℎB) b5(x) +

∂νi

∂y
(n1(x), n2(x), pℎB) b6(x),

a3(x) :=
∂λi

∂x
(n3(x), n4(x), pℎB) b3(x) +

∂λi

∂y
(n3(x), n4(x), pℎB) b4(x),

a4(x) :=
∂λi

∂x
(n3(x), n4(x), pℎB) b7(x) +

∂λi

∂y
(n3(x), n4(x), pℎB) b8(x).

Then,

∇φh,𝑦(x) =
∂γi

∂z
(hC(𝒴), hB, pℎB) (a1(x) + a2(x)) ,

∇ψh,𝑦(x) =
∂σi

∂z
(h

C
(𝒴), h

B
, pℎB) (a3(x) + a4(x)) .

Proof. This result follows immediately from Definition 9.3.19 and the chain rule in

Proposition 9.2.5. Observe that, in light of Remark 9.2.2, if a composed function

is defined only at a single point, then its derivative at this point may be set to 0

without affecting the validity of this chain rule.

When constructing unconstrained 𝒞 i McCormick relaxations, the following gra-

dient propagation result can be used to handle the initial squashing operation.

Proposition 9.6.8. For fixed 𝑦 ∈ IR and i ∈ {1, 2}, consider the functions sC
𝑦 , sC

𝑦 :

R2 → R defined so that 𝒮qui((𝑦, 𝑧)) = (𝑦, [sC
𝑦 (z, z), sC

𝑦 (z, z)]) for each 𝑧 ∈ IR. Then
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∇sC
𝑦 (z, z) =

[
∂γi
∂z (z, y, p𝑦) 0

]
, and ∇sC

𝑦 (z, z) =
[
0 ∂σi

∂z (z, y, p𝑦)
]

.

Proof. This result follows immediately from the definition of the squashing opera-

tion.

9.7 Convergence order

This section shows that both natural and unconstrained 𝒞 i McCormick extensions

are (1, 2)-convergent, provided that each employed univariate intrinsic function

satisfies Assumptions 9.2.21 and 9.2.38. Thus, convex/concave relaxations based

on these McCormick extensions exhibit second-order pointwise convergence. Each

univariate function in Table 9.2 satisfies Assumption 9.2.38 except the absolute-

value function; the nonsmoothness of the absolute-value function prevents second-

order pointwise convergence from being achievable [11, Example 5].

Lemma 9.7.1. The squashing operation is (1, 2)-convergent for each fixed i ∈ {1, 2}.

Proof. Choose any 𝒳 ∈MR. If wid𝑥B = 0, then

widℳ (𝒮qui(𝒳 )) = 0 = widℳ 𝒳 + 2ap(wid𝑥B)2.

If wid𝑥B > 0, then, using Lemma 9.3.5, and noting that 𝒮qui(𝒳 ) ∈ MRprop, it

follows that:

widℳ (𝒮qui(𝒳 )) = wid (𝑏𝑒𝑙𝑡i(𝒳 ))

= σi(xC, xB, p𝑥B)− γi(xC, xB, p𝑥B)

≤ min{xC + p𝑥B , xB} −max{xC − p𝑥B , xB}
≤ min{xC + p𝑥B , xB + p𝑥B} −max{xC − p𝑥B , xB − p𝑥B}
= min{xC, xB} −max{xC, xB}+ 2p𝑥B

= widℳ 𝒳 + 2ap(wid𝑥B)2. (9.10)

Noting that 𝒳 was chosen arbitrarily, the required result follows.
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Lemma 9.7.2. The multiplication operation described in Definition 9.3.19 is (1, 2)-convergent

for each fixed i ∈ {1, 2}.

Proof. Choose any q ≡ (𝑞1, 𝑞2) ∈ IR2, and any 𝒳 ∈ (M𝑞1)prop,𝒴 ∈ (M𝑞2)prop, in

which case widℳ 𝒳 ≤ wid𝑥B ≤ wid 𝑞1, and widℳ 𝒴 ≤ wid𝑦B ≤ wid 𝑞1. Con-

struct the interval 𝑧 ∈ IR described in Definition 9.3.19. Define 𝒵 := (𝑥B𝑦B, 𝑧) ∈

MRprop and p := p𝑥B𝑦B for notational convenience.

Applying Lemma 3.9.19 in [96], and noting that 𝑥B
1 = 𝑥B and 𝑦B

1 = 𝑦B by

construction, there exist a1, a2 > 0 (which may depend on 𝑞1, but are independent

of 𝒳 and 𝒴) for which

widℳ (𝒳 ∙ 𝒴) ≤ a1 widℳ (𝒳 ,𝒴) + a2(wid (𝑥B,𝑦B))2.

(Recall that the symbol “∙” refers to the classical McCormick product described in

Definition 9.2.31.) Define the following intermediate quantities:

n1 := (yB𝑥C) + (xB𝑦C)− xByB, n2 := (yB𝑥C) + (xB𝑦C)− xByB,

n3 := (yB𝑥C) + (xB𝑦C)− xByB, n4 := (yB𝑥C) + (xB𝑦C)− xByB.

Using Lemma 9.3.11,

widℳ 𝒵 ≤ wid 𝑧
= λi(n3, n4, p)− νi(n1, n2, p)

≤ 1
2 (min{n3 + p, n4}+ min{n3, n4 + p})

− 1
2 (max{n1 − p, n2}+ min{n1, n2 − p})

≤ min{n3 + p, n4 + p} −max{n1 − p, n2 − p}
= min{n3, n4} −max{n1, n2}+ 2p
= widℳ (𝒳 ∙ 𝒴) + 2p.

Define the absolute value of any interval 𝑎 ∈ IR as |𝑎| := max{|a|, |a|} ≥ 0.

Using [77, Equation 4.3],

wid (𝑥B𝑦B) ≤ |𝑥B|wid𝑦B + |𝑦B|wid𝑥B ≤ |𝑞1|wid (𝑥B,𝑦B).
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Thus,

p ≤ ap(|𝑞1|wid (𝑥B,𝑦B))2.

Combining the above results, Lemma 9.7.1, and (9.10),

widℳ (𝒳𝒴) = widℳ (𝒮qui(𝒵))
≤ widℳ 𝒵 + 2p
≤ widℳ (𝒳 ∙ 𝒴) + 4p

≤ a1 widℳ (𝒳 ,𝒴) + a2(wid (𝑥B,𝑦B))2 + 4p

≤ a1 widℳ (𝒳 ,𝒴) + (4ap|𝑞1|2 + a2)(wid (𝑥B,𝑦B))2,

which yields the required result, since a1, a2, ap, and |𝑞1| are each independent of

𝒳 and 𝒴 .

Theorem 9.7.3. Given some i* ∈ {1, 2} and an MC-factorable function f : B ⊂ Rn →

Rm whose composed univariate intrinsic functions satisfy Assumptions 9.2.21 and 9.2.38

with i := i*, any natural 𝒞 i* McCormick extension ℱ : MBprop → MRm of f is (1, 2)-

convergent. Any unconstrained 𝒞 i* McCormick extension ℱunc : MB → MRm of f is

also (1, 2)-convergent.

Proof. As discussed in [96, Section 3.9.7], the composition of (1, 2)-convergent func-

tions is itself (1, 2)-convergent. The addition operation + : MR2
prop → MRprop is

(1, 2)-convergent [96, Lemma 3.9.17], as is any univariate intrinsic function which

satisfies Assumption 9.2.38 [96, Lemma 3.9.23]. Lemmata 9.7.1 and 9.7.2 show

that the squashing operation and the multiplication operation described in Defi-

nition 9.3.19 are each (1, 2)-convergent as well. Combining these results, ℱ and

ℱunc are each (1, 2)-convergent.

9.8 Implementation and examples

This section first discusses how to choose the parameter ap in Definition 9.3.12

in accordance with numerical considerations. A C++ implementation of the re-
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laxation theory in this chapter is then described, and is subsequently applied to

various example problems for illustration.

9.8.1 Choosing the parameter ap

When constructing a 𝒞 i McCormick extension of a function f , the parameter ap in

Definition 9.3.12 is only used if either f is described in terms of at least one prod-

uct function, an unconstrained 𝒞 i McCormick extension is desired, or the construc-

tions described in Remark 9.3.13 for pathological univariate intrinsic functions are

required. If none of these circumstances apply, then there is no need to choose ap.

Although the established (1, 2)-convergence of 𝒞 i McCormick extensions is in-

dependent of ap, larger values of ap ultimately yield weaker relaxations φ f ,𝑥/ψ f ,𝑥

when wid𝑥 is large, making fathoming by value dominance less likely at the early

stages of a branch-and-bound procedure for nonconvex optimization. On the other

hand, smaller values of ap yield relaxations that are theoretically 𝒞 i, yet may differ

(with respect to the L2-norm) only marginally from a nondifferentiable function

when wid𝑥 is reduced.

Moreover, observe that in the results established in this chapter, there is no need

for the same value of ap to be used each time the function p : IR → [0,+∞) is

invoked during construction of a particular 𝒞 i McCormick extension of a function.

This notion provides a degree of freedom which can be exploited to ensure that

the values of ap employed are neither too great or too small, in accordance with

the previous paragraph.

Now, it follows from Lemma 9.3.5 that for any 𝒳 ≡ (𝑥B,𝑥C) ∈ MRprop and

each i ∈ {1, 2},

0 ≤ wid (𝑏𝑒𝑙𝑡i(𝒳 ))

wid𝑥B − wid𝑥C

wid𝑥B ≤ max
{

2p𝑥B

wid𝑥B , 1
}

= max{2ap wid𝑥B, 1}.

This sequence of inequalities suggests that the belt operation increases the ratio
wid𝑥C

wid𝑥B by at most (2ap wid𝑥B). Note that if wid𝑥C

wid𝑥B = 1, then, intuitively, the re-

312



laxation information contained in 𝑥C is simply returning the interval bounds 𝑥B.

If wid (𝑏𝑒𝑙𝑡i(𝒳 ))
wid𝑥B ≈ wid𝑥C

wid𝑥B , then there is little numerical difference between the 𝒞 i

McCormick relaxations and the classical McCormick relaxations.

In light of the above discussion, suppose that during execution of a branch-

and-bound procedure, when any interval subdomain 𝑥 is visited, then the 𝒞 i Mc-

Cormick extension of a function demands evaluation of p𝑦B(𝑥), where the interval-

valued function 𝑦B is defined by the natural interval extension of the MC-factorable

objective function. Due to inclusion monotonicity of natural interval extensions,

wid (𝑦B(𝑥)) decreases as wid𝑥 decreases. Now, if 𝑥0 denotes the interval domain

considered at the root node of the branch-and-bound procedure, the above discus-

sion suggests setting

ap ←
bp

2 wid𝑦B(𝑥0)
(9.11)

for some constant bp in the range [0.01, 0.2]. With this choice, the 𝒞 i McCormick

extensions are not relaxed too much relative to the corresponding original natural

McCormick extensions, and yet (2ap wid𝑦B(𝑥)) remains significantly greater than

0 (relative to a computer’s typical numerical precision) even after several succes-

sive branches in the branch-and-bound procedure.

Lastly, note that (2ap wid𝑦B(𝑥)) → 0+ in the limit (wid𝑥) → 0+. If the quan-

tity (2ap wid𝑦B(𝑥)) falls below some small tolerance ε > 0, then affine relaxations

defined either by the subgradients of the classical natural McCormick extensions

or the gradients of 𝒞 i McCormick extensions may be preferable to the McCormick

extensions themselves.

9.8.2 Implementation

A C++ implementation of 𝒞 i McCormick extension evaluation was developed by

modifying version 1.0 of the header library MC++ [15] to carry out the meth-

ods in this chapter. This new implementation describes McCormick objects us-

ing a template class mc::smoothMcC<T>, which is a modified version of the class
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mc::McCormick<T> defined by MC++. As in MC++, the templated argument T

refers to the interval objects used by an employed interval arithmetic library. The

specific modifications used to construct the class mc::smoothMcC<T> from the class

mc::McCormick<T> from MC++ are as follows.

Firstly, static member variables _MCbp and _MCi were added to the class, so as

to hold the values of the parameters bp and i ∈ {1, 2}, respectively. These parame-

ters can be set and retrieved using static member functions setBp, getBp, setI, and

getI. Static member functions MCp, MCmu, dMCmu, MCgamma, MCsigma, MCnu, ddxMCnu,

ddyMCnu, MClambda, ddxMClambda, and ddyMClambda were also included, to evaluate

the functions p, µi, ∇µi, γi, σi, νi,
∂νi
∂x , ∂νi

∂y , λi,
∂λi
∂x , and ∂λi

∂y , respectively. The execu-

tion of MCp is detailed in the next paragraph. In the following description, let mcX

denote an arbitrary mc::smoothMcC<T> objects representing a McCormick object

𝒳 . Member functions squash and p were added to the class, so that mcX.squash()

replaces its calling member 𝒳 with 𝒮qui(𝒳 ), and so that mcX.p() invokes MCp

to return the value p𝑥B . Using these constructions, McCormick-McCormick mul-

tiplication (via a friend function operator*(const& mc::smoothMcC<T>, const&

mc::smoothMcC<T>)) was implemented according to Definition 9.3.19, with gra-

dients propagated according to Theorem 9.6.7. The relaxations described in Ex-

amples 9.2.27, 9.2.28 and 9.2.29 were implemented by modifying the overloaded

operations fabs and pow appropriately, along with a squaring function sqr that

was implemented in MC++.

To implement evaluation of p via MCp according to the discussion in Section 9.8.1,

a static member enum variable _apMode was added to the mc::smoothMcC<T> class,

to describe whether the parameters ap should be evaluated as if the root node in

a branch-and-bound process is being visited, or whether a child node is being vis-

ited instead. If _apMode=SET_AP, which can be forced using a static void member

function beginStoringAp, then each time p is evaluated, the parameter ap is evalu-

ated in the root-node mode described in Section 9.8.1, and the value of ap is pushed

onto the end of a static member std::vector<double> named _apList. To handle

child nodes in a branch-and-bound process, when values of ap have already been
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stored in _apList, a static void member function beginRetrievingAp sets _apMode

to GET_AP. In this mode, each time p is evaluated, the appropriate value of ap is

retrieved from _apList; the appropriate component of _apList to be retrieved is

tracked using a static member std::vector<double>::const_iterator variable

named _apListIterator.

Ultimately, given a user-supplied template subroutine f that is written as if its

inputs and outputs are doubles or double arrays, the implementation described

above permits natural 𝒞 i McCormick extensions of f to be evaluated using op-

erator overloading, along with directional derivatives that are evaluated using

the forward mode of automatic differentiation. To obtain unconstrained 𝒞 i Mc-

Cormick extensions instead, the squash operation should first be applied to each

mc::smoothMcC<T> input to f. The univariate intrinsic functions and operations

described in Table 9.2 are all supported in this implementation.

9.8.3 Complexity analysis

Roughly, denote the computational cost of evaluating an MC-factorable function

f : X ⊂ Rn → R using its factored representation as 𝒞ost( f ). Observe that,

when constructing the convex or concave relaxation suggested by a natural 𝒞2

McCormick extension for f , each addition, multiplication, and univariate intrin-

sic function in the factored representation of f is replaced with its 𝒞2 McCormick

counterpart. Thus, there exists γc > 0 for which the computational cost of eval-

uating a 𝒞2 convex or concave relaxation of f is no greater than γc 𝒞ost( f ). The

parameter γc is independent of f , but depends on the library of univariate intrin-

sic functions considered.

Similarly, using standard complexity results for automatic differentiation [34],

it follows that there exist similar library-dependent constants γa, γt > 0, satisfy-

ing the following claim. If the reverse mode of automatic differentiation is used to

evaluate a subgradient of such a relaxation, then the cost of doing so is bounded

above by γa 𝒞ost( f ); if the forward mode is used instead, then the cost of evaluat-
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ing this subgradient is bounded above by nγt 𝒞ost( f ), where n denotes the domain

dimension of f .

9.8.4 Examples

In this section, the implementation of 𝒞2 McCormick relaxation described in Sec-

tion A.5.1 is applied to various example problems for illustration.

Example 9.8.1. To illustrate the modified multiplication rule provided by Definition 9.3.19,

consider the function f : R2 → R : (x, y) ↦→ y(x2− 1), which is plotted in Figure 9-1(a).

The function f is (real-)analytic but nonconvex on z := [−4, 4]2 ⊂ R2.

Using MC++ [15], the classical McCormick convex relaxation of f was constructed

on z, and is plotted in Figure 9-1(b). This relaxation is not differentiable everywhere; this

nondifferentiability is introduced via McCormick’s rule for relaxing the product of terms

whose signs change on the interval of interest. A natural 𝒞2 McCormick relaxation of f on

z was constructed using the implementation described in Sections 9.8.1 and A.5.1, with

bp := 0.2; this relaxation is plotted in Figure 9-1(c). Observe that this relaxation is visibly

differentiable (and is, in fact, 𝒞2), but is otherwise qualitatively similar to the classical

McCormick relaxation. The classical McCormick relaxation dominates its 𝒞2 counterpart

on z.

For comparison, the αBB relaxation of f on z with a nonuniform diagonal shift matrix

that minimizes maximum separation distance [1] was computed directly to be:

f α : (x, y) ↦→ f (x, y) + 8(x2 − 16) + 4(y2 − 16),

and is plotted in Figure 9-1(d). The obtained αBB relaxation is analytic, and has a mini-

mum at (x*, y*) := (0, 0.125). Observe that f α(x*, y*) = −192.0625, which is less than

the lower bound f̃ (z) = −60 provided by the natural interval extension of f on z. This

interval lower bound coincides with min(x,y)∈z f (x, y), and is dominated on z by both the

constructed classical McCormick relaxation and the constructed 𝒞2 McCormick relaxation.

Example 9.8.2. To illustrate the handling of the absolute-value function according to Ex-

ample 9.2.28, consider the function
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Figure 9-1: The function f : (x, y) ↦→ y(x2 − 1) and its convex relaxations on
[−4, 4]2: (a) the function f , (b) the classical McCormick relaxation of f , (c) a 𝒞2 Mc-
Cormick relaxation of f , and (d) the αBB relaxation of f that minimizes maximum
separation distance.

g : R2 → R : (x, y) ↦→ |x + 1|+ |x− 1| − |x + y− 1| − |x− y + 1|, (9.12)

which is plotted in Figure 9-2(a). The function g is piecewise affine, and is nonconvex on

z := [−2, 2]2 ⊂ R2.

As in the previous example, the classical McCormick convex relaxation of g on z was

constructed using MC++, and is plotted in Figure 9-2(b); this relaxation is readily verified

to be piecewise affine. The 𝒞2 McCormick relaxation of g on z was evaluated using the

implementation described in Section A.5.1, and is plotted in Figure 9-2(c). Since there
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Figure 9-2: The function g described in (9.12) and its convex relaxations on [−2, 2]2:
(a) the function g, (b) the classical McCormick relaxation of g, and (c) a 𝒞2 Mc-
Cormick relaxation of g.

does not exist a scheme of estimators satisfying Assumption 9.2.38 for the absolute-value

function, the generated McCormick and 𝒞2 McCormick relaxations are not guaranteed to

be pointwise convergent of order 2.

Example 9.8.3. To illustrate the handling of the squaring function z ↦→ z2 according to

Example 9.2.27, consider the function

h : R2 → R : (x, y) ↦→ (xy− 1)2, (9.13)

which is plotted in Figure 9-3(a). The function h is analytic and nonconvex on z :=

[−2, 2]2 ⊂ R2.

The classical McCormick convex relaxation hcv of h on z was evaluated using MC++,

along with a subgradient at each point. This relaxation hcv is plotted in Figure 9-3(b);

x- and y-components of the evaluated subgradients of hcv are plotted in Figures 9-3(c)

and 9-3(d), respectively. As a function of (x, y), the evaluated subgradient is evidently

not differentiable everywhere; it follows that hcv is not twice-differentiable, let alone 𝒞2.

This example illustrates that, even though the squaring function is convex, considering

the squaring function as its own convex relaxation can yield failures of twice-continuous

differentiability. This observation motivates Assumption 9.2.21 and Example 9.2.27.

A natural 𝒞2 McCormick relaxation h̃cv of h on z was constructed using the imple-
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Figure 9-3: The function h described in (9.13) and its convex relaxations and associ-
ated subgradients on [−2, 2]2: (a) the function h, (b) the classical McCormick relax-
ation hcv of h, (c) the x-component of some subgradient of hcv, (d) the y-component
of some subgradient of hcv, (e) a 𝒞2 McCormick relaxation h̃cv of h, (f) the partial
derivative ∂h̃cv

∂x , and (g) the partial derivative ∂h̃cv

∂y .

mentation described in Sections 9.8.1 and A.5.1, with bp := 0.2; this relaxation is plotted

in Figure 9-1(e). Gradients of h̃cv were also evaluated using the described implementation;

the partial derivatives ∂h̃cv

∂x and ∂h̃cv

∂y are plotted in Figures 9-3(f) and 9-3(g), respectively.

These partial derivatives appear to be differentiable, and are indeed 𝒞1.

Example 9.8.4. This example illustrates the second-order pointwise convergence of the

𝒞2 McCormick relaxations presented in this chapter. As in [11, Example 7], consider the

function

f : R+ → R : x ↦→ (z− z2)(log z + e−z)

on intervals of the form [0.5 − ε, 0.5 + ε] for ε ∈ (0, 0.2). The function f is plotted

in Figure 9-4, together with a series of 𝒞2 relaxations ψ𝑥(ε) of f constructed using the

implementation described in Sections 9.8.1 and A.5.1, on intervals 𝑥 ∈ {[0.5− ε, 0.5 +

ε] : ε = 0.4(2k), k ∈ {1, . . . , 20}}, with the parameters in (9.11) set to 𝑥0 := [0.3, 0.7]

and bp := 0.2.

For the considered values of ε, Figure 9-4(b) plots supx∈𝑥(ε)( f (x)−ψ𝑥(ε)(x)) against
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Figure 9-4: (a) The function f described in Example 9.8.4 (red) and its 𝒞2 convex
relaxations ψ𝑥(ε) of f on intervals 𝑥(ε) := [0.5− ε, 0.5 + ε] for ε ∈ {0.4(2−k) : k ∈
N} (blue), and (b) a plot of d f := supx∈𝑥(ε)( f (x)− ψ𝑥(ε)(x)) vs. w := wid𝑥(ε) =
2ε.

wid𝑥(ε) on a logarithmic scale; the slope of this plot suggests second-order pointwise

convergence of the convex relaxation ψ𝑥(ε) to f as ε→ 0+.

9.9 Conclusions

A variant of McCormick’s relaxation scheme has been presented, which produces

𝒞2 convex and concave relaxations of a provided MC-factorable function, while

retaining the computational benefits of McCormick’s method. Gradients are read-

ily evaluated for the provided relaxations using standard automatic differentiation

methods. As an avenue for possible future work, we expect that the methods in

this chapter are compatible with an established scheme for reverse propagaion of

McCormick relaxations [120], and could yield a scheme for constructing 𝒞2 relax-

ations for implicit functions.

As an open problem, observe that the methods in this chapter do not extend im-

mediately to the multivariate relaxations described by Tsoukalas and Mitsos [114].

Such an extension would be desirable, since the multivariate product relaxations
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are tighter than the classical McCormick product relaxation described in Defini-

tion 9.2.31.
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Chapter 10

Conclusions

In this thesis, numerical methods have been developed and implemented to eval-

uate Nesterov’s lexicographic derivatives for composite L-smooth functions, and

for the unique solutions of parametric ODE systems with L-smooth right-hand

side functions. The methods presented in Appendix A and the conference pro-

ceedings [53] are the first tractable methods for computing generalized deriva-

tives for a broad class of vector-valued composite nonsmooth functions, and the

method presented in Chapter 7 is the first method for computing a useful general-

ized derivative for a broad class of nonsmooth dynamic systems. These methods

broaden the scope of equation-solving problems and optimization problems that

may be approached using semismooth Newton methods, bundle methods, or their

variants.

This thesis has also presented several new theoretical results in nonsmooth sen-

sitivity analysis. The LD-derivative was introduced as a tool to facilitate evalua-

tion of lexicographic derivatives. In Chapter 3, lexicographic derivatives of any

L-smooth function were shown to be plenary Jacobian elements, and are also B-

subdifferential elements when the underlying function is piecewise differentiable

in the sense of Scholtes [97]. Chapter 5 presented the first theoretical descrip-

tion of a useful generalized derivative for a parametric ODE system in terms of

an auxiliary ODE system, thus extending classical sensitivity results for smooth

ODE systems to the nonsmooth case. Chapter 8 develops lexicographic deriva-
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tives for local inverse functions and implicit functions that are described in terms

of L-smooth functions, and exploits these to describe lexicographic derivatives for

certain pathological hybrid discrete/continuous systems that cannot be treated by

classical sensitivity theory [30].

Numerical tools were also developed to mitigate the impact of nonsmoothness

on certain problems. McCormick’s classic method [74] for computing convex re-

laxations of composite functions was weakened in Chapter 9 to yield a variant that

computes twice-continuous differentiable relaxations, while preserving the vari-

ous computational advantages of McCormick’s original method. In Chapter 6,

Clarke’s sufficient condition [16, Theorem 7.4.1] for parametric differentiability of

the solution of a parametric nonsmooth ODE was shown to take a numerically

tractable form when the ODE right-hand side is a finite composition of analytic

functions and absolute-value functions.

10.1 Avenues for future work

The work in this thesis suggests several theoretical and numerical avenues for fu-

ture work. As an open theoretical question, it is unknown if lexicographic deriva-

tives are always B-subdifferential elements, as was shown in Chapter 3 for the

special case of piecewise differentiable functions. Even if they are not, these two

generalized derivatives may nevertheless behave similarly when used in numeri-

cal methods for equation-solving or optimization, thus mirroring the relationship

between the Clarke Jacobian and its plenary hull. As another open theoretical

question, it is currently unknown whether the solution of a parametric ODE with

a piecewise differentiable right-hand side function is itself piecewise differentiable

with respect to the ODE parameters. If true, then these ODE solutions would be

subject to the results in Section 3.3, and could be treated using Kojima and Shindo’s

Newton method [65], which exhibits local Q-quadratic convergence if its invertibil-

ity requirements are met.

The numerical method for dynamic LD-derivative computation in Chapter 7
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depends strongly on the ODE right-hand side function being a known compo-

sition of analytic functions and absolute value functions. It would be useful to

extend this numerical method to include dynamic systems with linear programs

embedded, without having to express these linear programs in an abs-factored

form; numerical methods for ODE integration have already been extended in such

a manner [36]. It may be possible to accommodate ODE right-hand side func-

tions that are L-smooth but not piecewise differentiable: perhaps including the

Euclidean norm.

Taken together, the results of Chapters 5, 7, and 8 suggest that it may be possi-

ble to develop a method for computing parametric LD-derivatives for unique so-

lutions of certain parametric index-1 differential-algebraic equation systems; such

a method would, inevitably, be a generalization of the method in Chapter 7.
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Appendix A

Previous methods for Clarke Jacobian

element evaluation

For reference, this appendix reproduces most of the article [54]. The numerical

methods developed in this article and the related conference proceedings [53] were

the first tractable, accurate methods for evaluation of a generalized derivative for

a broad class of nonsmooth vector-valued functions. Unlike the methods in Chap-

ter 4, the methods in this appendix require storage of the computational graph

of the function under consideration; they are not tapeless. The theory underlying

these methods is used to obtain certain results in Chapters 2 and 3.

Note that the elemental 𝒫𝒞1 functions defined in this appendix are different from

the elemental 𝒫𝒞1 functions considered in Chapter 2.

A.1 Mathematical background

This section presents key theoretical results from polyhedral theory, nonsmooth

analysis, and the theory of piecewise differentiable functions. These results will be

useful in formulating and validating the methods developed in this work. Apart

from the development of hyperplane normal sets in Sections A.1.1 and A.1.3, this

section echoes the background presented in [53].

General notational conventions used in this work are as follows. The Euclidean
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metric spaces considered are equipped with the Euclidean norm ‖ · ‖. If a function

f : X → Y satisfies a local property P at every x ∈ X, then f is said to satisfy P,

without reference to any particular x ∈ X.

For any column vector x ∈ Rn, if e(1), . . . , e(n) are the unit coordinate vectors

in Rn, then xi denotes the inner product ⟨e(i), x⟩ ∈ R for each i ∈ {1, . . . , n}. An

equivalent representation of x is then (x1, . . . , xn).

Given an open set X ⊂ Rn, a function f : X → Rm, some x ∈ X, and some

d ∈ Rn, if the one-sided limit

lim
t→0+

f(x + td)− f(x)
t

exists, then this limit is the directional derivative of f at x in the direction d, and

is denoted by f′(x; d). If this limit exists and is finite for all d ∈ Rn, then f is

directionally differentiable at x.

Given an open set X ⊂ Rn, a function f : X → Rm is (Fréchet)-differentiable at

x ∈ X if there exists a matrix A ∈ Rm×n for which

0 = lim
h→0

‖f(x + h)− f(x)−Ah‖
‖h‖ .

In this case, A is the unique Jacobian matrix of f at x, and is denoted by Jf(x).

If f is differentiable at x, then it is also directionally differentiable at x, with the

directional derivative:

f′(x; d) = Jf(x) d, ∀d ∈ Rn. (A.1)

Given a function f : X ⊂ Rn → Rm and some x ∈ X, f is continuously differentiable

(𝒞1) at x if there exists an open set N ⊂ X such that x ∈ N, f is differentiable at

each y ∈ N, and Jf is continuous at x.

A.1.1 Polyhedral theory

Given a set S ⊂ Rn, the interior, closure, and convex hull of S are denoted by int(S),

cl(S), and conv S, respectively. If S is nonempty, then the convex cone generated
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by S is the set of nonnegative combinations of elements of S, and is denoted by

cone S. The number of elements in a finite set S is denoted by |S|. If S is finite

and nonempty, then cone S is a polyhedral cone, and is closed and convex. Any

polyhedral cone in Rn can be represented equivalently as the set {x ∈ Rn : Ax ≤

0} for some real-valued matrix A of appropriate dimensions [126].

A partition of a discrete set S is a collection of mutually disjoint sets whose union

is S. A partition of a connected set Ŝ is a collection of sets whose union is Ŝ, but

whose interiors are mutually disjoint. A conical subdivision of Rn is a partition of

Rn comprising finitely many polyhedral cones with nonempty interior.

Rather than deal with a particular conical subdivision Λ explicitly, it is more

convenient to work with the halfspaces of Rn whose intersections describe the

polyhedral cones in Λ. This motivates the following lemmas and definition, which

use similar notation to [126, Chapter 7].

Lemma A.1.1. Given a conical subdivision Λ of Rn, there exists a finite subset ℋ :=

{a(1), . . . , a(p)} ⊂ Rn such that for any cone σ ∈ Λ, there exists a vector s ∈ {−1, 0, 1}p

such that σ =
⋂p

r=1{x ∈ Rn : sr⟨a(r), x⟩ ≤ 0}.

Proof. For each σ ∈ Λ, there exists a matrix Aσ of appropriate dimensions for

which σ = {x ∈ Rn : Aσx ≤ 0}. Thus, ifℋ is defined to be

ℋ =
⋃

σ∈Λ

{a ∈ Rn : aT is a row of Aσ},

then ℋ is finite, and so its elements may be enumerated as a(1), . . . , a(p) for some

p ∈N.

Now, given any σ̄ ∈ Λ, each row of Aσ̄ is a transposed element of ℋ. As a

result, if a vector s ∈ {−1, 0, 1}p is constructed so that for each r ∈ {1, . . . , p},

sr =

{
1 if aT

(r) is a row of Aσ̄,
0 otherwise,

then σ̄ =
⋂p

r=1{x ∈ Rn : sr⟨a(r), x⟩ ≤ 0}, as required.

Definition A.1.2. Given a conical subdivision Λ of Rn, a hyperplane normal set corre-

sponding to Λ is a setℋ ⊂ Rn satisfying the description in the statement of Lemma A.1.1.

329



Remark A.1.3. For a given conical subdivision Λ of Rn, the proof of Lemma A.1.1 shows

that the lemma remains true with the additional restriction that each s ∈ {0, 1}p. Nev-

ertheless, permitting s to be chosen from the set {−1, 0, 1}p can yield hyperplane normal

sets with fewer elements, such as those discussed in Section A.2.1.

A.1.2 Nonsmooth analysis

A directionally differentiable function need not be smooth, as the following exam-

ple shows.

Example A.1.4. For the absolute value function abs : R → R : x ↦→ |x|, it is readily

verified that for each x, d ∈ R,

abs′(x; d) =
{

d if x > 0, or if x = 0 and d ≥ 0,
−d if x < 0, or if x = 0 and d < 0. (A.2)

Definition A.1.5. Given an open set X ⊂ Rn, some x ∈ X, and a locally Lipschitz

continuous function f : X → Rm, let S ⊂ X be the set on which f is not differentiable.

The Bouligand (B-)subdifferential ∂Bf(x) of f at x is then defined as

∂Bf(x) =
{

H ∈ Rm×n : H = lim
i→∞

Jf(x(i))

for some sequence {x(i)}i∈N in X∖S such that lim
i→∞

x(i) = x
}

.

The (Clarke) generalized Jacobian ∂f(x) of f at x is the convex hull of ∂Bf(x) [16]. Both

∂Bf(x) and ∂f(x) exist, are unique, and are nonempty. If f is differentiable at x, then

Jf(x) ∈ ∂f(x). If f is 𝒞1 at x, then ∂Bf(x) = ∂f(x) = {Jf(x)}.

Computing generalized Jacobian elements for composite functions is a nontriv-

ial task, since the generalized Jacobian satisfies calculus rules as inclusions instead

of equations [16].
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A.1.3 Piecewise differentiable functions

As defined rigorously in Definition A.1.6, piecewise differentiable functions in-

clude a broad range of nonsmooth functions, yet preserve many useful properties

of 𝒞1 functions. Unless otherwise noted, the definitions and properties presented

in this subsection are as stated and proven in [97].

Definition A.1.6. Given an open set X ⊂ Rn, a function f : X → Rm is piecewise

differentiable (𝒫𝒞1) at x ∈ X if there exists an open neighborhood N ⊂ X of x such that

f is continuous on N, and such that there exists a finite collection ℱf(x) of 𝒞1 functions

which map N into Rm and satisfy

f(y) ∈ {f*(y) : f*∈ ℱf(x)}, ∀y ∈ N. (A.3)

The functions f* ∈ ℱf(x) are called selection functions for f around x, and a collection

ℱf(x) of selection functions satisfying (A.3) is called a sufficient collection of selection

functions for f around x.

If there exists a sufficient collection of selection functions for f which are each linear

(i.e. affine and homogeneous), then f is piecewise linear (𝒫ℒ).

Remark A.1.7. Any 𝒞1 or 𝒫ℒ function is trivially 𝒫𝒞1. The abs function mentioned in

Example A.1.4 is 𝒫ℒ, since the functions y ↦→ y and y ↦→ −y are a sufficient collection

of selection functions for abs around any domain point.

Lemma A.1.8. Any 𝒫𝒞1 function f : X → Rm on an open set X ⊂ Rn exhibits the

following properties [97, Corollary 4.1.1, Proposition 4.1.3, and Theorem 3.1.1]:

1. f is locally Lipschitz continuous.

2. f is directionally differentiable, and f′(x; ·) is 𝒫ℒ for any fixed x ∈ X.

3. Given an open set Y ⊂ Rm containing the range of f, and a 𝒫𝒞1 function g : Y →

R`, the composite function h : X → R` : x ↦→ g ∘ f(x) is also 𝒫𝒞1. Moreover, the

directional derivative of h satisfies the chain rule:

h′(x; d) = g′(f(x); f′(x; d)), ∀x ∈ X, ∀d ∈ Rn. (A.4)
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Definition A.1.9. Given a sufficient collection ℱf(x) of selection functions for a 𝒫𝒞1

function f : X → Rm at x ∈ X, a selection function f*∈ ℱf(x) is essentially active for

f at x if x ∈ cl(int({y ∈ X : f(y) = f*(y)})).

Lemma A.1.10. Given an open set X ⊂ Rn, a 𝒫𝒞1 function f : X → Rm, and some

x ∈ X, f exhibits the following properties involving essentially active selection functions

[97, Propositions 4.1.1, 4.1.3, and A.4.1]:

1. There exists a sufficient collection ℰf(x) of selection functions for f at x which are

each essentially active at x. Thus, any selection function not in ℰf(x) may be dis-

carded without loss of generality.

2. For any d ∈ Rn, the directional derivative of f at x in the direction d satisfies:

f′(x; d) ∈ {Jf*(x) d : f*∈ ℰf(x)}.

3. The B-subdifferential of f at x satisfies:

∂Bf(x) = {Jf*(x) : f*∈ ℰf(x)} ⊂ ∂f(x).

As defined in the subsequent lemma and definition, conically active selection

functions are introduced in this work to describe the essentially active selection

functions for a 𝒫𝒞1 function f that are necessary to define the directional deriva-

tives of f.

Lemma A.1.11. Given an open set X ⊂ Rn, a 𝒫𝒞1 function f : X → Rm, and a vector

x ∈ X, there exists a conical subdivision Λf(x) of Rn such that for each polyhedral cone

σ ∈ Λf(x), there is an essentially active selection function fσ ∈ ℰf(x) for which

f′(x; d) = Jfσ(x) d, ∀d ∈ σ. (A.5)

Proof. The result follows immediately from Property 2 in Lemma A.1.8, Property 2

in Lemma A.1.10, and [97, Proposition 2.2.3].
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Definition A.1.12. A conical subdivision Λf(x) as described in Lemma A.1.11 is called

an active conical subdivision for f at x. Each cone σ ∈ Λf(x) is an active cone for f

at x. For each active cone σ, an essentially active selection function fσ satisfying (A.5) is

called a conically active selection function for f at x corresponding to σ. A hyperplane

normal set Hf(x) corresponding to Λf(x) is called an active normal set for f at x.

The following example shows that active conical subdivisions and active nor-

mal sets for f at x need not be unique.

Example A.1.13. Consider an arbitrary 𝒞1 function f : X ⊂ Rn → Rm. Any conical

subdivision Λ of Rn is an active conical subdivision for f at any particular x ∈ X, since

(A.5) is satisfied for each σ ∈ Λ with fσ := f. In this case, any hyperplane normal set

corresponding to Λ is an active normal set for f at x.

As the following example shows, an essentially active selection function is not

necessarily also conically active.

Example A.1.14. Consider the 𝒫𝒞1 function f : R2 → R defined as follows:

f (x, y) =


y− x2 if y > x2,
y + x2 if y < −x2,
0 otherwise

∀(x, y) ∈ R2.

Then the function g : R2 → R : (x, y) ↦→ 0 is an essentially active function for f at 0,

since

0 ∈ cl
(

int({(x, y) ∈ R2 : f (x, y) = 0})
)
= {(x, y) ∈ R2 : |y| ≤ x2}.

However, {d ∈ R2 : f ′(0; d) = g′(0; d)} = {d ∈ R2 : d2 = 0}, which has an

empty interior. Since all of the polyhedral cones in any conical subdivision have nonempty

interior, it follows that g is not a conically active selection function for f at 0, regardless of

the particular active conical subdivision employed.
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A.2 PC1-factorable functions

This section introduces the broad subclass of 𝒫𝒞1 functions to which the meth-

ods developed in this work can be applied. A generalization of a result in [32] is

developed to show that the forward mode of automatic differentiation produces

directional derivatives for this class of functions.

A.2.1 Elemental PC1 functions

As formalized in the following definition, the class of elemental 𝒫𝒞1 functions is

intuitively the class of simple, known 𝒫𝒞1 functions, and includes abs, min, and

max. The methods developed in this work apply to finite compositions of these

elemental 𝒫𝒞1 functions.

Definition A.2.1. Given an open set X ⊂ Rn, a 𝒫𝒞1 function f : X → Rm is an

elemental 𝒫𝒞1 function if the following information is known:

∙ analytical directional derivatives for f,

∙ an active normal set Hf(x) for f at each x ∈ X, with its elements enumerated arbi-

trarily as {a(r)f (x)}|Hf(x)|
r=1 , and

∙ a Boolean function ζ f : X → {true, false}, for which ζ f(x) = false if and only

if Hf(x) contains an element other than the zero vector.

The remainder of this subsection presents examples of elemental 𝒫𝒞1 func-

tions. Further examples are given in Examples A.2.9 and A.2.10. Though each

active normal set Hf(x) could be constructed as in the proof of Lemma A.1.1, it

will instead be advantageous to choose each Hf(x) to contain as few elements as

possible while remaining easy to compute. Note that knowledge of Hf(x) for each

x ∈ X is sufficient to define ζ f.

Remark A.2.2. If a 𝒫𝒞1 function f : X → Rm is 𝒞1 at some x ∈ X, and if Jf(x) is

known, then the directional derivatives of f at x can be computed using (A.1). Moreover,

{0} is trivially an active normal set for f at x.
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Remark A.2.3. If a 𝒫𝒞1 function f on X ⊂ R is not 𝒞1 at x ∈ X, then {1} is an active

normal set for f at x. This is because polyhedral cones are closed under multiplication by

nonnegative scalars, and so any polyhedral cone in R must equal either {0}, R, {d ∈ R :

d ≤ 0}, or {d ∈ R : −d ≤ 0}.

In light of the above remarks, all 𝒞1 functions with known Jacobians are ele-

mental 𝒫𝒞1 functions. The following examples show that abs, min, and max are

nonsmooth elemental𝒫𝒞1 functions. Further examples of elemental𝒫𝒞1 functions

are given in Section A.2.2.

Example A.2.4. The absolute value function abs is an elemental 𝒫𝒞1 function, since its

directional derivatives are given in Example A.1.4, and since for each x ∈ R, the set

Habs(x) =
{
{1} if x = 0,
{0} otherwise

is an active normal set for abs at x.

Example A.2.5. The max and min functions on Rn are elemental 𝒫𝒞1 functions, as the

following argument demonstrates. It follows from the definition of the directional deriva-

tive that for any x, d ∈ Rn, if f (x) := max(x1, . . . , xn), then

f ′(x; d) = max{di : xi = max(x1, . . . , xn)}.

Directional derivatives for min are analogous.

Noting that the max function on R2 is locally linear except on the hyperplane S :=

{x ∈ R2 : x1 = x2}, which is perpendicular to (1,−1), it is readily verified that for any

given x ∈ R2,

Hmax(x) =
{
{(1,−1)} if x1 = x2,
{0} otherwise

is an active normal set for max at x.

By a similar argument, for any n ≥ 2, an active normal set for max : Rn → R at any

given x ∈ Rn is

Hmax(x) = {e(i) − e(j) : (xi = xj = max(x1, . . . , xn)) ∧ (i < j)} ∪ {0}.
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An active normal set for the min function on Rn at x is analogous.

A.2.2 Composing elemental PC1 functions

The class of 𝒫𝒞1-factorable functions is defined as follows, and is analogous to the

class of composite smooth functions to which automatic differentiation is conven-

tionally applied [34]. Intuitively, 𝒫𝒞1-factorable functions include all well-defined

finite compositions of elemental 𝒫𝒞1 functions.

Definition A.2.6. Given an open set X ⊂ Rn, a 𝒫𝒞1-factorable function f : X → Rm

is a function for which the following exist and are known:

∙ an intermediate function number ` ∈N,

∙ a Boolean dependence operator ≺, such that (i ≺ j) ∈ {true, false} for each

j ∈ {1, 2, . . . , `} and each i ∈ {0, 1, . . . , j− 1}, and

∙ an elemental 𝒫𝒞1 function 𝜓(j) : X(j) ⊂ Rnj → Y(j) ⊂ Rmj for each j ∈

{1, . . . , `}, where ∏{i:i≺j} Y(i) ⊂ X(j), and where m` = m,

and where for any x ∈ X, f(x) can be evaluated by the following procedure:
Set v(0) ← x
for j = 1 to ` do

Set u(j) ∈ X(j) to be a column vector consisting of all v(i)s for which
i ≺ j, stacked in order of increasing i.
Set v(j) ← 𝜓(j)(u(j))

end for
Set f(x)← v(`)

The above procedure defines f completely, and is called a𝒫𝒞1-factored representation

of f.

The functions considered in Examples A.5.1 to A.5.5 are all𝒫𝒞1-factorable func-

tions. 𝒫𝒞1-factored representations are constructed in Examples A.5.2 and A.5.3.

Given a 𝒫𝒞1-factored representation of a function, if matrices (or vectors) A(i)

are defined for each i ∈ {0, . . . , `} so that each has the same number of columns,

then [A(i)]i≺j denotes the matrix (or vector) constructed by stacking the elements

of {A(i) : i ≺ j} vertically in order of increasing i.
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Remark A.2.7. The class of 𝒫𝒞1-factorable functions is evidently closed under composi-

tion. Moreover, Property 3 in Lemma A.1.8 implies that each 𝒫𝒞1-factorable function is

itself 𝒫𝒞1.

In practice, the elemental 𝒫𝒞1 functions employed would be chosen from an

implementation-dependent library. Such a library would typically contain the stan-

dard elemental 𝒞1 functions used in automatic differentiation, the abs function,

and the max and min functions on R2. Nevertheless, depending on the particu-

lar application, it may be convenient to add further elemental 𝒫𝒞1 functions to

the library. In principle, this could include any 𝒫𝒞1 function whose directional

derivatives and active normal sets have been computed.

The following example demonstrates that many 𝒫𝒞1 functions described by

if..then..else statements can be represented as 𝒫𝒞1-factorable functions without

adding further elemental 𝒫𝒞1 functions to the library. When this approach is in-

convenient or impossible, the subsequent example demonstrates how to construct

active normal sets for a broad subclass of if..then..else-type functions.

Example A.2.8. Given 𝒫𝒞1-factorable functions fA, fB : X ⊂ Rn → Rm and g : X →

R, suppose that fA(x) = fB(x) whenever g(x) = 0. Then the function

f : X → Rm : x ↦→
{

fA(x) if g(x) ≥ 0,
fB(x) if g(x) < 0

is 𝒫𝒞1. Moreover, if there exists a 𝒫𝒞1-factorable function h : X → Rm such that

g(x)h(x) = fA(x)− fB(x), ∀x ∈ X, (A.6)

then

f(x) = fB(x) + max(g(x), 0) h(x), ∀x ∈ X,

and so f is 𝒫𝒞1-factorable.

Example A.2.9. Given elemental 𝒫𝒞1 functions fA, fB : X ⊂ Rn → Rm, suppose that

for some a ∈ Rn and some c ∈ R, fA(x) = fB(x) whenever ⟨a, x⟩ = c. Then the function
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f : X → Rm : x ↦→
{

fA(x) if ⟨a, x⟩ ≥ c,
fB(x) if ⟨a, x⟩ < c

is 𝒫𝒞1. Using the definition of the directional derivative, it is readily verified that for any

x ∈ X and any d ∈ Rn,

f′(x; d) =
{

fA
′(x; d) if ⟨a, x⟩ > c, or if ⟨a, x⟩ = c and ⟨a, d⟩ ≥ 0,

fB
′(x; d) if ⟨a, x⟩ < c, or if ⟨a, x⟩ = c and ⟨a, d⟩ < 0. (A.7)

An active normal set for f at any x ∈ X is then

Hf(x) =


HfA(x) if ⟨a, x⟩ > c,
HfB(x) if ⟨a, x⟩ < c,
HfA(x) ∪ HfB(x) ∪ {a} if ⟨a, x⟩ = c.

In the following example, the approach of Example A.2.9 is used to construct

active normal sets for a particular 𝒫𝒞1 function.

Example A.2.10. For any fixed ε ∈ (0, π
2 ), consider the sets S := (−ε, 2π + ε) ⊂ R

and P := {(x, y) ∈ S2 : x < y}. Then P is open. Consider the function:

f : P→ R : (x, y) ↦→ sup
z∈[x,y]

sin z,

which can be expressed as follows for any (x, y) ∈ P:

f (x, y) =


1 if y ≥ π

2 and x < π
2 ,

sin x if x ≥ π
2 and x + y < 3π

2 ,
sin y otherwise.

This representation demonstrates that f is 𝒫𝒞1. There is no (x, y) ∈ P which satisfies

more than one of the statements x = π
2 , y = π

2 , and x + y = 3π
2 simultaneously. It

follows that since f is only nondifferentiable on the three hyperplanes described by these

statements, f can be represented as three nested if..then..else–type functions of the form

described in Example A.2.9.

Alternatively, in the spirit of Example A.2.9, f can be represented as an elemental 𝒫𝒞1

function directly. Directional derivatives for f can be evaluated analogously to (A.7), and

an active normal set for f at any (x, y) ∈ P is as follows:
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H f (x, y) =


{e(2)} if y = π

2 ,
{e(1)} if x = π

2 ,
{(1, 1)} if x + y = 3π

2 ,
{0} otherwise.

A.2.3 Automatic differentiation

The forward mode of automatic differentiation (AD) is a fully automatable tech-

nique for computing directional derivatives of composite 𝒞1 functions [34]. The

following definition of the forward mode of AD for 𝒫𝒞1-factorable functions is

analogous to the smooth case.

Definition A.2.11. Given an open set X ⊂ Rn, a 𝒫𝒞1-factorable function f as described
in Definition A.2.6, some x ∈ X and a direction vector d ∈ Rn, the forward mode of AD
for 𝒫𝒞1-factorable functions generates a vector ḟ(x; d) ∈ Rm according to the following
procedure:

Set v̇(0) ← d
for j = 1 to ` do

Set u̇(j) ← [v̇(i)]i≺j, and set v̇(j) ← 𝜓(j)
′(u(j); u̇(j))

end for
Set ḟ(x; d)← v̇(`)

Remark A.2.12. Given a 𝒫𝒞1-factorable function f, the intermediate variables v(j), u(j),

v̇(j), and u̇(j) described in Definitions A.2.6 and A.2.11 are uniquely specified for each

x ∈ X and each d ∈ Rn. Hence, there exist mappings v(j) : X → Y(j), u(j) : X → X(j),

v̇(j) : X × Rn → Rnj , and u̇(j) : X × Rn → Rmj which produce the values of these

intermediate variables for each x ∈ X and each d ∈ Rn.

Generalizing a similar result in [32], the following lemma shows that the for-

ward mode of AD produces directional derivatives for 𝒫𝒞1-factorable functions.

Lemma A.2.13. Given a 𝒫𝒞1-factored representation of a 𝒫𝒞1-factorable function f :

X → Rn, the vectors v̇(j)(x; d) and u̇(j)(x; d) generated by the forward mode of AD for

each j ∈ {1, . . . , `} are, respectively, the directional derivatives v(j)
′(x; d) and u(j)

′(x; d).

In particular, ḟ(x; d) is the directional derivative f′(x; d).
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Proof. Consider any fixed x ∈ X and d ∈ Rn. By Property 3 in Lemma A.1.8, the

mappings v(j) and u(j) are 𝒫𝒞1, and are therefore directionally differentiable. The

lemma is proved by strong induction on j ∈ {0, 1, . . . , `} as follows.

Base case: Since v(0)(y) = y for each y ∈ X, it follows that v(0)
′(x; d) = d =

v̇(0)(x; d).

Strong inductive step: Suppose that for some j ∈ {0, 1, . . . , `− 1}, for each i ≤ j,

v(i)
′(x; d) = v̇(i)(x; d). Since u(j+1)(y) = [v(i)(y)]i≺j+1 for each y ∈ X, the defini-

tion of the directional derivative can be applied to yield u(j+1)
′(x; d) = [v(i)

′(x; d)]i≺j+1.

The strong inductive assumption then implies that

u(j+1)
′(x; d) = [v̇(i)(x; d)]i≺j+1 = u̇(j+1)(x; d).

Combining this result with (A.4) yields:

v(j+1)
′(x; d) = 𝜓(j+1)

′(u(j+1)(x); u(j+1)
′(x; d))

= 𝜓(j+1)
′(u(j+1)(x); u̇(j+1)(x; d))

= v̇(j+1)(x; d),

which completes the strong induction. Since f ≡ v(`) by construction, it follows

that ḟ(x; d) = f′(x; d).

A.3 Generalized Jacobian element evaluation

As discussed in [53], if any essentially active selection function in ℰf(x) is known

a priori for a 𝒫𝒞1-factorable function f : X ⊂ Rn → Rm at x ∈ X, then an element

of ∂Bf(x) ⊂ ∂f(x) can be evaluated using Property 3 in Lemma A.1.10. However,

if little is known about f a priori beyond a 𝒫𝒞1-factored representation, then essen-

tially active selection functions for f at x can be difficult to obtain. In particular,

composing essentially active selection functions of the elemental 𝒫𝒞1 functions

describing f does not necessarily yield an essentially active selection function of f

[53]. Similarly, active conical subdivisions for f are nontrivial to construct.
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Nevertheless, the results in Section A.2.3 show that directional derivatives are

computable for 𝒫𝒞1-factorable functions, and Lemma A.1.10 shows that these di-

rectional derivatives provide information regarding generalized Jacobian elements.

Therefore, in this section, numerical methods are developed to evaluate a gener-

alized Jacobian element for a 𝒫𝒞1-factorable function f : X ⊂ Rn → Rm at any

x ∈ X, by determining the Jacobian of a conically active selection function of f at x

according to Lemma A.1.11. Section A.3.1 covers the special case in which n = 1,

and Section A.3.2 covers the general case.

A.3.1 PC1-factorable functions of a single variable

As the following theorem demonstrates, generalized Jacobian elements are readily

obtained for 𝒫𝒞1-factorable functions of a single variable using the forward AD

mode.

Theorem A.3.1. Given a 𝒫𝒞1-factorable function f : X ⊂ R→ Rm,

∂f(x) = conv {f′(x; 1),−f′(x;−1)}, ∀x ∈ X. (A.8)

In particular, a single application of the forward mode of AD to f is sufficient to evaluate

an element of ∂f(x).

Proof. The result is an immediate consequence of Remark A.2.3 and Lemma A.1.11.

In a sense, the above result depends on the fact that any neighborhood of x ∈ R

only extends in finitely many directions away from x: the positive direction and the

negative direction. This property clearly does not extend to higher-dimensional

Euclidean spaces. Moreover, [16, Example 2.5.2] shows that when n > 1, obtain-

ing a generalized Jacobian element for a 𝒫𝒞1-factorable function f : Rn → Rm is

not a simple matter of concatenating elements of partial generalized Jacobians ∂if(x)

obtained using Theorem A.3.1.
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A.3.2 PC1-factorable functions of multiple variables

In this section, it is shown that if Algorithm 12 is applied to a 𝒫𝒞1-factorable func-

tion f : X ⊂ Rn → Rm at x ∈ X, then an element of ∂f(x) is returned. The proof

of this result depends on several intermediate results which are stated and proved

in the appendix of this article. The performance of Algorithm 12 is discussed in

Section A.4, along with methods for improving the efficiency of the algorithm.

An outline of Algorithm 12 is as follows. The algorithm evaluates directional

derivatives of the given function f : X ⊂ Rn → Rm along the n unit coordinate

directions using the forward AD mode. These basis directions are then perturbed

until for each elemental 𝒫𝒞1 function in the 𝒫𝒞1-factored representation of f, the

directions in which the directional derivatives of these elemental 𝒫𝒞1 functions

are evaluated all lie in the same active cone of the elemental 𝒫𝒞1 function. Each

perturbation of the basis directions involves addition of a positive scalar multiple

of one basis direction to another, so as to maintain the linear independence of the

basis. The generalized Jacobian element returned by the algorithm is the Jacobian

of the composition of the corresponding conically active selection functions of each

elemental function. Though the algorithm contains three nested for–loops, if the

only permitted elemental 𝒫𝒞1 functions are 𝒞1 functions, abs, min on R2, and max

on R2, then the constructions in Section A.2.1 imply that at most one iteration of

the middle for–loop is carried out during each iteration of the outermost for–loop.

Theorem A.3.2. Given an open set X ⊂ Rn, a 𝒫𝒞1-factorable function f : X → Rm,

and a vector x ∈ X, suppose that a matrix B ∈ Rm×n is constructed according to Algo-

rithm 12. B is then well-defined, and is an element of both ∂Bf(x) and ∂f(x).

Proof. By Lemma A.6.2, the matrix
[
q(1) · · · q(n)

]
is invertible when Line 23 of

the algorithm is reached. Consequently, the linear equation system in Line 23 has

a unique solution, and so B is well-defined.

Since f ≡ v(`) on X, Lemma A.6.6 implies that when Line 23 is reached, there

exists some f* ∈ ℰf(x) such that f′(x; q(k)) = Jf*(x) q(k) for each k ∈ {1, . . . , n}. It

follows that
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Algorithm 12 Computes an element of ∂f(x) for a 𝒫𝒞1-factorable function f
Require: f : X → Rm is 𝒫𝒞1-factorable, x ∈ X

1: Set q(k) ← e(k) ∈ Rn for each k ∈ {1, . . . , n}
2: Use the 𝒫𝒞1-factored representation of f to evaluate the intermediate variable v(j)(x)

for each j ∈ {1, . . . , `}
3: For each k ∈ {1, . . . , n}, use the forward mode of AD to evaluate f′(x; q(k)),

and set u̇(j,k) ← u̇(j)(x; q(k)) for each j ∈ {1, . . . , `}
4: for j = 1 to ` do
5: if ζ𝜓(j)

(
u(j)(x)

)
= false then

6: for r = 1 to |H𝜓(j)

(
u(j)(x)

)
| do

7: Set c* ← 0
8: for k = 1 to n do
9: Set c← ⟨a(r)𝜓(j)

(u(j)(x)), u̇(j,k)⟩ ∈ R

10: if c ̸= 0 then
11: if c* = 0 then
12: Set c* ← c and k* ← k
13: else if cc* < 0 then
14: Set α← − c

c* ∈ R+

15: Set q(k) ← q(k) + αq(k*)
16: Use the forward mode of AD to evaluate f′(x; q(k)),

and set u̇(i,k) ← u̇(i)(x; q(k)) for each i ∈ {1, . . . , `}
17: end if
18: end if
19: end for
20: end for
21: end if
22: end for
23: Solve the following linear system for B ∈ Rm×n:

B
[
q(1) · · · q(n)

]
=
[
f′(x; q(1)) · · · f′(x; q(n))

]
24: return B
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Jf*(x)
[
q(1) · · · q(n)

]
=
[
f′(x; q(1)) · · · f′(x; q(n))

]
.

Since
[
q(1) · · · q(n)

]
is invertible, Jf*(x) is the matrix B that is returned by Algo-

rithm 12. Property 3 in Lemma A.1.10 then yields B = Jf*(x) ∈ ∂Bf(x) ⊂ ∂f(x).

Corollary A.3.3. Given a 𝒫𝒞1-factorable function f : X → Rm, Algorithm 12 produces

Jf(x) if f is 𝒞1 at x, and produces a subgradient of f at x if f is convex.

Proof. If a 𝒫𝒞1 function f : X → Rm is 𝒞1 at x ∈ X, then ∂f(x) = {Jf(x)}, which

yields the first result. The subdifferential of a locally Lipschitz continuous and con-

vex function is identical to its generalized Jacobian [16], which yields the second

result.

Note that for the results of Corollary A.3.3 to hold, the elemental 𝒫𝒞1 functions

used to represent f need not be 𝒞1 or satisfy rules for convex composite functions

such as in [12, Sections 3.2.4 and 3.6.2].

The following corollary shows that when Algorithm 12 is applied to a function

of a single variable, the algorithm produces a result that is consistent with Theo-

rem A.3.1. In this case, it is nevertheless more computationally efficient to apply

Theorem A.3.1 than to apply Algorithm 12.

Corollary A.3.4. Given a 𝒫𝒞1-factorable function f : X ⊂ R → Rm and some x ∈ X,

Algorithm 12 produces f′(x; 1) ∈ ∂f(x).

Proof. During execution of the algorithm, q(1) is never altered after its initial as-

signment to e(1). Since X ⊂ R in this case, e(1) = 1, and so the final linear system

in the algorithm reduces to B = f′(x; 1). The algorithm therefore returns f′(x; 1),

which is an element of ∂f(x) according to Theorem A.3.1.

Theorem 2 in our previous work [53] follows as a corollary to Theorem A.3.2

above, since with Habs(x) given for each x ∈ R as in Example A.2.4, it follows

that ζ abs(x) = false if and only if x = 0, in which case Habs(x) = {1}. Thus,

the method in [53, Theorem 2] is the special case of Algorithm 12 in which each

elemental 𝒫𝒞1 function 𝜓(j) is chosen from the class 𝒞1 ∪ {abs}.
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A.3.3 Modifications to Algorithm 12

Algorithm 13 is a variant of Algorithm 12 which is intended to improve compu-

tational performance. As discussed in Section A.4, if nonsmooth elemental 𝒫𝒞1

functions other than abs, min, and max are employed, then Algorithm 13 demands

fewer applications of the forward AD mode than Algorithm 12 in the worst case.

The following theorem demonstrates that, given the same input, Algorithms 12

and 13 produce the same result. The proof of this theorem describes the motiva-

tion behind the modifications to Algorithm 12 which produce Algorithm 13. The

performance of Algorithm 13 is discussed in Section A.4.

Theorem A.3.5. Given a 𝒫𝒞1-factorable function f : X → Rm and a vector x ∈ X,

Algorithms 12 and 13 produce the same matrix B ∈ ∂Bf(x) ⊂ ∂f(x) when applied to f

at x.

Proof. Algorithm 13 is a modified version of Algorithm 12, and so it suffices to

show that each modification made to Algorithm 12 does not alter the values of the

basis vectors q(k) at the end of each iteration of the outermost for–loop.

Firstly, for each j ∈ {0, 1, . . . , `− 1}, once the jth iteration of the outermost for–

loop in Algorithm 12 has been performed, the values of u̇(i,1), . . . , u̇(i,n) are never

used in the remainder of the algorithm unless i > j and ζ𝜓(i)

(
u(i)(x)

)
= false.

Except in this case, there is no need to store each u̇(i,k).

Secondly, the values of u̇(i,k) are not used during the jth iteration of the out-

ermost for–loop if i ̸= j. Moreover, setting j ← j* in (A.15) shows that Line 16

of Algorithm 13 produces the same change in u̇(j,k) as Line 16 of Algorithm 12.

Hence, rather than carrying out the forward AD mode in the innermost for–loop

of Algorithm 12, it suffices to update u̇(j,k) using (A.15) in the innermost loop, and

only carry out the forward AD mode at the end of each iteration of the outermost

for–loop.

Lastly, it follows from the above discussion that when the `th iteration of the

outermost for-loop is reached, the remainder of the algorithm does not make use

of u̇(i,k) whenever i ̸= `. Since (A.4) implies that
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Algorithm 13 Computes an element of ∂f(x) for a 𝒫𝒞1-factorable function f
Require: f : X → Rm is 𝒫𝒞1-factorable, x ∈ X

1: Set q(k) ← e(k) ∈ Rn for each k ∈ {1, . . . , n}
2: Use the 𝒫𝒞1-factored representation of f to evaluate the intermediate variable v(j)(x)

for each j ∈ {1, . . . , `}
3: For each k ∈ {1, . . . , n}, use the forward mode of AD to evaluate f′(x; q(k)),

and set u̇(j,k) ← u̇(j)(x; q(k)) for each j ∈ {1, . . . , `} such that ζ𝜓(j)

(
u(j)(x)

)
= false

4: for j = 1 to ` do
5: if ζ𝜓(j)

(
u(j)(x)

)
= false then

6: Set a Boolean variable qUpdated(k)← false for each k ∈ {1, . . . , n}
7: for r = 1 to |H𝜓(j)

(
u(j)(x)

)
| do

8: Set c* ← 0
9: for k = 1 to n do

10: Set c← ⟨a(r)𝜓(j)
(u(j)(x)), u̇(j,k)⟩ ∈ R

11: if c ̸= 0 then
12: if c* = 0 then
13: Set c* ← c and k* ← k
14: else if cc* < 0 then
15: Set α← − c

c* ∈ R+

16: Set q(k) ← q(k) + αq(k*) and u̇(j,k) ← u̇(j,k) + αu̇(j,k*)
17: Set qUpdated(k)← true

18: end if
19: end if
20: end for
21: end for
22: if j = ` then
23: Evaluate f′(x; q(k)) = 𝜓(`)

′(u(`)(x); u̇(`,k)) for each k ∈ {1, . . . , n} such that
qUpdated(k) = true

24: else
25: for all k ∈ {1, . . . , n} such that qUpdated(k) = true do
26: Use the forward mode of AD to evaluate f′(x; q(k)), and set u̇(i,k) ←

u̇(i)(x; q(k)) for each i ∈ {j + 1, . . . , `} such that ζ𝜓(i)

(
u(i)(x)

)
= false

27: end for
28: end if
29: end if
30: end for
31: Solve the following linear system for B ∈ Rm×n:

B
[
q(1) · · · q(n)

]
=
[
f′(x; q(1)) · · · f′(x; q(n))

]
32: return B
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f′(x; q(k)) = 𝜓(`)
′(u(`)(x); u̇(`,k))

as well, there is no need to carry out the forward AD mode once the `th iteration

of the outermost loop has been reached.

A.4 Computational performance

In this section, a worst-case complexity analysis is applied to Algorithms 12 and 13,

to demonstrate the computational tractability of the algorithms relative to the cost

of a function evaluation. Since semismooth Newton methods for solving nons-

mooth equations demand evaluation of a generalized Jacobian element during

each iteration [23], computationally tractable generalized Jacobian element eval-

uation is necessary for these methods to be practical.

Useful potential variations of these algorithms are also discussed.

A.4.1 Complexity analysis

Given a 𝒫𝒞1-factorable function f : X ⊂ Rn → Rm and some x ∈ X, the compu-

tational cost of applying Algorithms 13 and 12 to f at x is evidently dominated by

the costs of applying the forward mode of AD, solving the final linear system in

each algorithm, computing inner products, and carrying out AXPY (“Alpha X Plus

Y”) operations of the form y← y + αx with α ∈ R.

To this end, a worst-case complexity analysis will be conducted for these algo-

rithms by describing the worst-case computational effort involved in each of the

above operations in terms of the following parameters:

∙ the domain dimension n and the range dimension m of f,

∙ ρ := max
{∣∣∣H𝜓(j)

(
u(j)(x)

)∣∣∣ : j ∈ {1, . . . , `}
}

,

∙ γ :=
∣∣∣{j ∈ {1, . . . , `} : 𝜓(j) is not 𝒞1 at u(j)(x)

}∣∣∣, and
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∙ the maximum domain dimension ν of the nonsmooth elemental 𝒫𝒞1 func-

tions 𝜓(j).

Note that γ is no greater than
∣∣∣{j ∈ {1, . . . , `} : 𝜓(j) is nonsmooth}

∣∣∣, which is com-

puted easily from a 𝒫𝒞1-factored representation of f, and which is in turn no

greater than `.

The employed library ℒ of elemental 𝒫𝒞1 functions places an upper bound on

ρ, with

ρ ≤ sup{|H𝜓*(y)| : 𝜓* ∈ ℒ, y ∈ dom𝜓*}.

In particular, if ℒ consists only of 𝒞1 functions, max and min on R2, and abs, then

Examples A.2.4 and A.2.5 imply that ρ ≤ 1. The employed library similarly places

an upper bound on ν; when min and max on R2 and abs are the only nonsmooth

elemental 𝒫𝒞1 functions permitted, then ν = 2.

Let Q f denote the coefficient matrix of the final linear systems in Algorithms 13

and 12. Lemma A.6.2 shows that Q f is guaranteed to be unit upper triangular.

Now, Q f is constructed from the identity matrix in each algorithm by applying

operations in which a scalar multiple of the (k*)th column is added to another

column successively. By inspection, k* can take no more than γρ distinct values

in either algorithm. It follows that no more than γρ of the rows of Q f can contain

nonzero off-diagonal elements, and so since Q f is unit upper triangular, the final

linear system in each algorithm requires only 𝒪(nmργ) FLOPs to solve.

With this observation, Algorithm 12 requires no more than:

∙ n + (n− 1)ργ applications of the forward AD mode to f,

∙ 𝒪(nmργ) FLOPs to solve the final linear system,

∙ nργ inner products of vectors of dimension no greater than ν, and

∙ (n− 1)ργ AXPY operations on vectors of dimension n.

Similarly, Algorithm 13 requires no more than:
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∙ (nγ + n− γ) applications of the forward AD mode to f,

∙ 𝒪(nmργ) FLOPs to solve the final linear system,

∙ nργ inner products of vectors of dimension no greater than ν, and

∙ (n− 1)ργ AXPY operations on vectors of dimension no greater than (n + ν).

The computational cost of applying the forward mode of AD is typically a small

constant multiple of the cost of a function evaluation [34], where the value of the

constant depends on the library of elemental functions employed. As a result,

Algorithms 12 and 13 are both computationally tractable relative to the cost of a

function evaluation.

Remark A.4.1. Since it is in some sense improbable for an inner product of two vectors

to be zero, it is expected that throughout most executions of either algorithm, k* will only

take the value 1 whenever it is assigned a value. This would simplify the structure of Q f ,

but is not considered in the worst-case analyses above.

The worst-case number of forward AD mode applications in Algorithm 13 is

evidently independent of ρ. Thus, if ρ is significantly greater than unity, if n > 1,

and if γ > 0, then Algorithm 13 demands fewer applications of the forward AD

mode than Algorithm 12 in the worst case. As discussed above, however, ρ > 1

only if nonsmooth elemental 𝒫𝒞1 functions other than abs, min on R2, and max

on R2 are employed.

In the special case where ζ𝜓(j)

(
u(j)(x)

)
= true for each j ∈ {1, 2, . . . , `}, Al-

gorithms 12 and 13 each require n applications of the forward AD mode to f, no

evaluation of inner products, and no AXPY operations. Since the basis vectors q(k)

are never altered in this case, the coefficient matrix in the final linear system in

each algorithm is the identity matrix, and so the linear system does not require

any operations to solve. The computational cost of either algorithm is therefore

comparable to the cost of evaluating the Jacobian of an analogous smooth function

using the forward mode of AD.
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A.4.2 Further potential modifications

In this subsection, further potential modifications to the algorithms are discussed

that would either change the generalized Jacobian element produced, or would

improve the computational performance of the algorithms.

Since q(1) is not altered during either algorithm, these methods are guaranteed

to produce the Jacobian of a conically active selection function for f at x whose

active cone contains e(1). In fact, the methods can be altered to produce the Jaco-

bian of some conically active selection function whose active cone overlaps with

any given set cone s(1), . . . , s(n) ⊂ Rn with nonempty interior. This can be accom-

plished by setting q(k) ← s(k) initially instead of setting q(k) ← e(k). If the matrix[
s(1) · · · s(n)

]
is not (unit) upper triangular, however, then the coefficient matrix

in the final linear system will likely not be (unit) upper triangular either.

It is evident from the statements of the algorithms that not all of the evalu-

ated quantities are actually used, and that some are not used after certain points

in the procedures. If available memory is limited, or if n or ` is particularly large,

then overwriting could be used to reduce the memory footprint of the algorithms.

Moreover, at the cost of introducing additional overhead, unused intermediate

quantities need not be evaluated in the first place. Rather than carrying out the full

forward AD mode, it may be advantageous to carry out each step of the forward

mode only when the corresponding intermediate variable is required. To further

reduce the work involved in carrying out the forward AD mode, Lemma A.6.6 im-

plies that during the (j*)th iteration of the outermost for–loop in either algorithm,

for each j < j*, the intermediate values v̇(j)(x; q(k)) can be updated using AXPY

operations analogous to (A.15) instead of using the forward AD mode explicitly. If

this idea is applied to Algorithm 13, then these AXPY updates should be carried

out whenever q(k) is updated, rather than when the forward AD mode is carried

out.

As described in [34, Section 4.5], the vector forward mode of AD effectively carries

out the forward AD mode in several directions simultaneously, with less compu-
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tational burden than sequentially carrying out the forward AD mode in each di-

rection. A similar approach could reduce the computational cost of Algorithm 13,

since this algorithm typically demands evaluation of directional derivatives in sev-

eral directions in one step.

Lastly, given a𝒫𝒞1-factorable function f : X ⊂ Rn → Rm, when n and/or m are

large, but each output f1, . . . , fm depends on few of the input variables x1, . . . , xn,

then this sparsity of the computational graph of f can be exploited in order to

reduce the computational cost of performing AD [34, Chapter 7]. This option is not

explored in the present work, but would likely be useful for large-scale practical

problems.

A.5 Implementation and examples

In this section, an implementation of Algorithm 12 is discussed, and the methods

developed in this paper are applied to several examples for illustration.

A.5.1 Implementation in C++

An implementation of Algorithm 12 was developed in C++. The implementation

requires a 𝒫𝒞1-factorable function to be entered as a template function which is

written as though all input, output, and intermediate variables are of double pre-

cision type. If–statements and while–loops are not permitted; for–loops are per-

mitted only if the number of iterations performed is independent of the values

of the input variables. The standard arithmetic and trigonometric functions are

permitted, along with abs, min, and max. Branching functions of the form of Ex-

ample A.2.9 are supported in the special case where n = 1 and a = 1. Further el-

emental 𝒫𝒞1 functions can be added to the library, provided that their directional

derivatives and active normal sets can be computed.

Given a point x in the function’s domain, fully-automated computation of a

generalized Jacobian element of the function at x proceeds as follows. Operator
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overloading is used to construct a 𝒫𝒞1-factored representation of the function,

which is stored in the form of several arrays, in the spirit of the reverse AD mode

implementation discussed in [34, Chapter 6]. Using the notation of Sections A.2.2

and A.2.3, for each j ∈ {1, 2, . . . , `}, the identities of the elemental 𝒫𝒞1 functions

𝜓(j) are stored in an operation trace array, and the indices {i : i ≺ j} are stored in

an index trace array. The values v(j)(x) are computed using the operation and in-

dex traces, and are stored in a value trace array. The basis vectors q(1), . . . , q(n) are

stored, and are used in conjunction with the various traces to compute the values

v̇(j)(x; q(k)) using the forward AD mode. These v̇(j)(x; q(k)) values are stored in a

tangent trace array. Noting that each u̇(j)(x; q(k)) can be constructed using the tan-

gent and index traces, the various traces are then used to carry out Algorithm 12

as written, with elements of the traces overwritten as necessary.

Linear algebra was performed using the Boost library uBLAS [117].

A.5.2 Examples

In this subsection, key features of the developed methods are illustrated through

various example problems. Wherever generalized Jacobian elements were com-

puted in Examples A.5.1 to A.5.4, this was accomplished both by hand and by

using the implementation described in Section A.5.1. The generalized Jacobian

elements obtained using these two approaches agreed in every case.

In the following three examples, Algorithm 12 is used to obtain generalized

Jacobian elements for various 𝒫𝒞1 functions.

Example A.5.1. Consider the functions f : R → R : x ↦→ |x| − |x| and g : R → R :

x ↦→ max(x, 0) + min(x, 0), which have been used in [23] and [32] to illustrate the lack

of sharp calculus rules for the generalized Jacobian.

Suppose that elements of ∂ f (0) and ∂g(0) are desired. Since f and g are each functions

of single variables, Corollary A.3.4 implies that performing Algorithm 12 on f and g at

0 in their above representations yields f ′(0; 1) = 0 ∈ ∂ f (0) and g′(0; 1) = 1 ∈ ∂g(0),

respectively.
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Table A.1: 𝒫𝒞1-factored representation of f in Example A.5.2

j Algebraic expression for v(j) v(j)(0) ζ𝜓(j)

(
u(j)(0)

)
0 v(0) = x 0 –
1 v(1) = v(0),1 0 true

2 v(2) = −v(0),2 0 true

3 v(3) = min(v(1), v(2)) 0 false

4 v(4) = v(0),2 − v(0),1 0 true

5 v(5) = max(v(3), v(4)) 0 false

In this case, analytical generalized Jacobians for f and g are trivial to compute, since

f is the zero mapping on R and g is the identity mapping on R. As a result, for each

x ∈ R, ∂ f (x) = {0} and ∂g(x) = {1}, which is consistent with the result obtained from

Algorithm 12.

Example A.5.2. Consider the following function from [16, Example 2.5.2], which was

used as an example in our previous work:

f : R2 → R : (x, y) ↦→ max(min(x,−y), y− x).

Suppose that an element of ∂ f (0) is desired. A 𝒫𝒞1-factored representation of f is given

in Table A.1. Unlike in [53], there is no longer any need to express max and min in terms

of the absolute value function.

To carry out Line 2 of Algorithm 12, a function evaluation was carried out to deter-

mine the values of f (0) = v(5)(0), all intermediate variables v(j)(0), and the values of

ζ𝜓(j)

(
u(j)(0)

)
for each j ∈ {1, . . . , 5}. These are shown in the rightmost two columns

of Table A.1. Note that ζ𝜓(j)

(
u(j)(0)

)
= false only for j ∈ {3, 5}, and that the 𝒫𝒞1-

factored representation of f implies that u(3) ≡ (v(1), v(2)) and u(5) ≡ (v(3), v(4)). Thus,

u(3)(0) = u(5)(0) = (0, 0).

To carry out Line 3 of the algorithm, the forward mode of AD was applied to f at 0 in

the directions q(1) = e(1) = (1, 0) and q(2) = e(2) = (0, 1). The results are shown in

Table A.2, along with algebraic instructions for carrying out the forward mode of AD. The

directional derivatives of max and min were evaluated as in Example A.2.5.

Continuing with the procedure, key iterations of the innermost for–loop in Algo-
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Table A.2: Intermediate quantities used to evaluate ∂ f (0) in Example A.5.2
j Algebraic expression for v̇(j) v̇(j)(0; (1, 0)) v̇(j)(0; (0, 1)) v̇(j)(0; (2, 1))
0 v̇(0) = d (1, 0) (0, 1) (2, 1)
1 v̇(1) = v̇(0),1 1 0 2
2 v̇(2) = −v̇(0),2 0 −1 −1
3 v̇(3) = min′((v(1), v(2)); (v̇(1), v̇(2))) 0 −1 −1
4 v̇(4) = v̇(0),2 − v̇(0),1 −1 1 −1
5 v̇(5) = max′((v(3), v(4)); (v̇(3), v̇(4))) 0 1 −1

rithm 12 were as follows:

∙ At (j, r, k) = (3, 1, 1), u̇(j,k) = u̇(3)(0; (1, 0)) = (1, 0). Thus,

c← ⟨a, u̇(j,k)⟩ = ⟨(1,−1), (1, 0)⟩ = 1 ̸= 0,

so c* was set to 1, and k* was set to 1.

∙ At (j, r, k) = (3, 1, 2), u̇(j,k) = u̇(3)(0; (0, 1)) = (0,−1). Thus,

c← ⟨a, u̇(j,k)⟩ = ⟨(1,−1), (0,−1)⟩ = 1.

Since cc* = 1 ≥ 0, q(2) was left unchanged.

∙ At (j, r, k) = (5, 1, 1), u̇(j,k) = u̇(5)(0; (1, 0)) = (0,−1). Thus,

c← ⟨a, u̇(j,k)⟩ = ⟨(1,−1), (0,−1)⟩ = 1 ̸= 0,

so c* was set to 1, and k* was set to 1.

∙ At (j, r, k) = (5, 1, 2), u̇(j,k) = u̇(5)(0; (0, 1)) = (−1, 1). Thus,

c← ⟨a, u̇(j,k)⟩ = ⟨(1,−1), (−1, 1)⟩ = −2.

Since cc* = −2 < 0, q(2) was updated according to:

q(2) ← q(2) +
(
−(−2)

1

)
q(1) = (0, 1) + 2(1, 0) = (2, 1).
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f ′(0; (2, 1)) was then evaluated using the forward mode of AD, and is shown in the

rightmost column of Table A.2.

In this case, the single basis vector update was the same as the single update performed in

[53, Example 3]. It is nevertheless possible for different 𝒫𝒞1-factored representations of

the same function to yield different sequences of basis vector updates.

Thus, exactly as in [53, Example 3], the matrix B was then defined so as to solve the

linear system:

B
[

1 2
0 1

]
=
[
0 −1

]
.

It follows that B =
[
0 −1

]
, which is an element of ∂ f (0) according to Theorem A.3.2.

This example is simple enough that its generalized Jacobians can be evaluated analyti-

cally, as follows. Note that f can be expressed in terms of 𝒞1 selection functions as:

f : R2 → R : (x, y) ↦→


x if y ≤ −x and y ≤ 2x,
−y if − x ≤ y ≤ 1

2 x,
y− x otherwise.

(A.9)

It is readily verified that the three selection functions above are each essentially active for f

at 0. Property 3 in Lemma A.1.10 then yields ∂ f (0) = conv {[1 0], [0 −1], [−1 1]} ∋ B,

which confirms the result obtained from Algorithm 12.

This example additionally illustrates a phenomenon which is absent in the smooth case.

Equation (A.9) demonstrates that f is 𝒫ℒ, and is therefore positively homogeneous. It

follows that for each d ∈ R2 and each ε > 0,

∆ε f (0; d) :=
f (εd)− f (0)

ε
= lim

t→0+

f (0 + td)− f (0)
t

= f ′(0; d),

and so forward finite differencing provides exact directional derivatives for f at 0. If the

nonsmoothness of f were ignored, and if forward finite differencing were used to approx-

imate the (actually nonexistent) Jacobian of f at 0, then this approach would yield the

following for some ε > 0:
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Table A.3: 𝒫𝒞1-factored representation of f in Example A.5.3

j Algebraic expression for v(j) v(j)(0) ζ𝜓(j)

(
u(j)(0)

)
0 v(0) = x 0 –
1 v(1) = v(0),1 − v(0),2 0 true

2 v(2) = |v(1)| 0 false

3 v(3) = 1 + v(2) 1 true

4 v(4) = v(1)v(3) 0 true

Table A.4: Intermediate quantities used to evaluate ∂ f (0) in Example A.5.3
j Algebraic expression for v̇(j) v̇(j)(0; (1, 0)) v̇(j)(0; (0, 1)) v̇(j)(0; (1, 1))
0 v̇(0) = d (1, 0) (0, 1) (1, 1)
1 v̇(1) = v̇(0),1 − v̇(0),2 1 −1 0
2 v̇(2) = abs′(v(1); v̇(1)) 1 1 0
3 v̇(3) = v̇(2) 1 1 0
4 v̇(4) = v(1)v̇(3) + v(3)v̇(1) 1 −1 0

J f (0) ?
=
[
∆ε f (0; (1, 0)) ∆ε f (0; (0, 1))

]
=
[

f ′(0; (1, 0)) f ′(0; (0, 1))
]
=
[
0 1

]
/∈ ∂ f (0).

Thus, in the limit ε→ 0+, the above approximation does not tend to an element of ∂ f (0).

Centered finite differencing similarly fails to provide an element of ∂ f (0), since

lim
ε→0+

1
2ε

[
( f (ε, 0)− f (−ε, 0)) ( f (0, ε)− f (0,−ε))

]
= 1

2

[
1 1

]
/∈ ∂ f (0).

It follows that if the active cones of a nonsmooth function are not known a priori, then

finite differencing does not necessarily approximate elements of the generalized Jacobian.

Example A.5.3. Consider the 𝒫𝒞1 function f : R2 → R : (x, y) ↦→ (1 + |x− y|)(x−

y). A 𝒫𝒞1-factored representation of f is given in Table A.3, and Table A.4 shows the

result of applying the forward AD mode to f at 0 in certain directions.

Though f is expressed in terms of the nonsmooth absolute value function, it is in fact

𝒞1 on its domain. If this is known a priori, then J f (0) may be evaluated using two

applications of the forward mode of AD, since (A.1) implies that
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J f (0) = J f (0) I =
[

f ′(0; (1, 0)) f ′(0; (0, 1))
]
=
[
1 −1

]
. (A.10)

Suppose it is not known a priori that f is 𝒞1, and that an element of ∂ f (0) is desired.

If Algorithm 12 is applied, then only one basis vector update is carried out. This update

occurs during the iteration of the innermost for–loop at which (j, r, k) = (2, 1, 2), and is

as follows:

q(2) ← q(2) +
(
−(−1)

1

)
q(1) = (0, 1) + (1, 0) = (1, 1).

f ′(0; (1, 1)) was therefore evaluated using the forward mode of AD, and is shown in Ta-

ble A.4.

Algorithm 12 therefore returns a matrix B for which

B
[

1 1
0 1

]
=
[
1 0

]
.

Thus B =
[
1 −1

]
, which agrees with (A.10). Algorithm 12 therefore returns the Jaco-

bian of f in this case, which is consistent with Corollary A.3.3.

In the following example, a semismooth Newton method is used to determine

a root of a 𝒫𝒞1 function. In this case, if the initial guess is chosen from a certain

set of nonzero (Lebesgue) measure, then the Newton method visits domain points

at which the function is nondifferentiable. Thus, even though Rademacher’s The-

orem implies that 𝒫𝒞1 functions can only be nondifferentiable on a set of measure

zero, these points of nondifferentiability are still reachable in practice.

Example A.5.4. Consider the following function:

f : R2 → R2 :

(x, y) ↦→


(x, y) if x ≤ −4,
(max[1

2 x− 2,−xy− 1
2 x− 4y− 6], y− 1

2 x− 2) if − 4 ≤ x ≤ −2,
(max[x− 1, 2x− 2y− 1], y− 1) if − 2 ≤ x ≤ 2,
(max[1, 3− 2y], y− 1) if 2 ≤ x.

It is readily verified that f is continuous on R2, and is therefore 𝒫𝒞1. Suppose that a root of

f is desired, and so a semismooth Newton method [92] is applied. Now, Lemma A.1.10 and
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Theorem A.3.2 imply that the generalized Jacobian elements computed by Algorithm 12

are each Jacobians of essentially active selection functions. When only these generalized

Jacobian elements are used, the semismooth Newton method reduces to the nonsmooth

Newton method described in [65]. Suppose that the initial guess x(0) ∈ R2 satisfies x(0)1 <

−4.

Since ∂f(x(0)) = {Jf(x(0))} = {I}, the result of the first Newton step is

x(1) ← x(0) − I−1f(x(0)) = x(0) − x(0) = 0.

Now,

∂f(x(1)) = ∂f(0) = conv
{[

1 0
0 1

]
,
[

2 −2
0 1

]}
=

{[
1 + λ −2λ

0 1

]
: λ ∈ [0, 1]

}
Noting that for each λ ∈ [0, 1],

[
1 + λ −2λ

0 1

]−1

=
1

1 + λ

[
1 2λ
0 1 + λ

]
,

the second Newton step is as follows, for some λ ∈ [0, 1]:

x(2) ← 0− 1
1 + λ

[
1 2λ
0 1 + λ

] [
−1
−1

]
= (2− 1

1+λ , 1) ∈ conv
{
(1, 1), (3

2 , 1)
}

.

(In this case, the C++ implementation of Algorithm 12 produced the result corresponding

to λ = 1.) Now, f(y) = y− (1, 1) for each y near x(2). Thus ∂f(x(2)) = {I}, and so the

third Newton step is:

x(3) ← x(2) − I(x(2) − (1, 1)) = (1, 1).

Since f(1, 1) = 0, the semismooth Newton method is successful, and terminates.

For illustration, suppose that, instead of evaluating an element of ∂f(0), the method

for evaluating Jacobians of smooth functions were applied naïvely. In this case, the second

Newton step in the above procedure becomes:
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x(2) ← 0−
[
f′(0; (1, 0)) f′(0; (0, 1))

]−1
[
−1
−1

]
= −

[
1 −2
0 1

]−1 [−1
−1

]
= (3, 1).

Now,

∂f(3, 1) =
{[

0 −2
0 1

]}
,

and so each element of ∂f(3, 1) is singular. The semismooth Newton method therefore

cannot proceed after the incorrect second step, and terminates without finding a solution.

In the following example, the C++ implementation of Algorithm 12 is applied

to a problem in pinch analysis in [21]. This problem is sufficiently complicated that

an analytical generalized Jacobian is nontrivial to obtain.

Example A.5.5. Algorithm 14, adapted from [21], is a procedure for conducting a pinch

analysis of a chemical process at the design stage. This procedure computes the minimum

heating QH and cooling QC demanded by the process, in terms of the following process

parameters.

Algorithm 14 Returns the minimum heating QH and cooling QC required by a
process

1: for all j ∈ ℋ do
2: Set Tin

j ← Tin
j − ∆T

3: Set Tout
j ← Tout

j − ∆T
4: end for
5: Set QH ← 0
6: for all i ∈ ℋ ∪ 𝒞 do
7: Set zP ← 0
8: for all j ∈ ℋ ∪ 𝒞 do
9: Set zP ←P + f jcP

j [max(0, Tout
j − Tin

i )−max(0, Tin
j − Tin

i )]

10: end for
11: Set QH ← max(QH, zP)
12: end for
13: Set Ω← 0
14: for all j ∈ ℐ do
15: Set Ω← Ω + f jcP

j (T
in
j − Tout

j )

16: end for
17: Set QC ← QH + Ω
18: return QH, QC
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Suppose that the process contains N process streams, which are indexed by ℐ :=

{1, 2, . . . , N}. For each j ∈ ℐ , f j [kg/s] denotes the material flow rate of stream j, cP
j

[kJ/(kg·∘C)] denotes the specific heat capacity of this material, and Tin
j and Tout

j [∘C] de-

note the desired inlet and outlet stream temperatures. ℋ := {j ∈ ℐ : Tin
j > Tout

j } denotes

the indices of “hot” streams which require cooling, and 𝒞 := {j ∈ ℐ : Tin
j < Tout

j } de-

notes the indices of “cold” streams which require heating. ∆T [∘C] denotes the minimum

temperature approach permitted in a heat integration scheme for the process. It is assumed

that a hot utility is available at a temperature TH, and that a cold utility is available at a

temperature TC, where

TH > max{Tout
j + ∆T : j ∈ 𝒞} and TC < min{Tout

j − ∆T : j ∈ ℋ}.

Suppose that all process parameters mentioned above are held constant, except for the

inlet and outlet stream temperatures T := (Tin
1 , Tout

1 , Tin
2 , . . . , Tout

N ). Under the assump-

tion that there is no j ∈ ℐ for which Tin
j = Tout

j , sufficiently small perturbations of T

will not alter ℋ. In this case, unrolling the for–loops in Algorithm 14 shows that this

algorithm is essentially a 𝒫𝒞1-factored representation of 𝜒 := (QH, QC), expressed as

a function of T. By inspection, this representation involves N(2N + 1) computations of

max functions on R2, and it is unclear at the outset whether nondifferentiable domain

points of the max function in Line 11 of the algorithm are reached.

Consider a variation of Example 1 in [21, Appendix B], in which a chemical process

has four process streams, with f jcP
j -values given by the second column in Table A.5. Let

T0 ∈ R8 denote the vector (Tin
1 , Tout

1 , Tin
2 , . . . , Tout

4 ), with the values of each Tin
j and Tout

j

given by the rightmost two columns of Table A.5. Suppose that an element of ∂𝜒(T0) is re-

quired, assuming a minimum temperature approach of ∆T = 10∘C. To obtain this ∂𝜒(T0)

element, the C++ implementation of Algorithm 12 was applied to the 𝒫𝒞1-factored repre-

sentation presented in Algorithm 14. To verify that Algorithm 14 was entered correctly, the

results in Example 1 in [21, Appendix B] were replicated, and several smaller toy examples

were tested in the same way.

Given these parameter values, the minimum heating and cooling demanded by the pro-
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Table A.5: Stream parameters used in Example A.5.5
Stream index j f jcP

j [kW/∘C] Tin
j [∘C] Tout

j [∘C]

1 8.79 160 93

2 10.55 170 126

3 7.62 60 160

4 6.08 116 260

cess were found to be QH = 639.5 kW and QC = 55.11 kW. Application of Algorithm 12

produced:

[
−3.15 0 −10.55 0 0 7.62 0 6.08
5.64 −8.79 0 −10.55 7.62 0 6.08 0

]
∈ ∂𝜒(T0),

where each element has units [kW/∘C]. During this application of Algorithm 12, the

following two basis vector updates were performed:

q(6) ← (0, 0, 1, 0, 0, 1, 0, 0) and q(7) ← (0, 0, 0, 1, 0, 0, 1, 0).

A.6 Intermediate results

This appendix provides several intermediate results which are used in the proof of

Theorem A.3.2.

Lemma A.6.1. Consider a conical subdivision Λ of Rn and a corresponding hyperplane

normal set ℋ = {a(1), . . . , a(p)}. For any s̄ ∈ {−1, 1}p, let σ̄ =
⋂p

r=1{x ∈ Rn :

s̄r⟨a(r), x⟩ ≤ 0}. There exists a cone σ ∈ Λ for which σ̄ ⊂ σ.

Proof. For each r ∈ {1, . . . , p} and each d ∈ σ̄, s̄r⟨a(r), d⟩ ≤ 0. It follows that for

each r ∈ {1, . . . , p}, either s̄r⟨a(r), d⟩ = 0 = ⟨a(r), d⟩ for all d ∈ σ̄, or there exists

some d ∈ σ̄ such that s̄r⟨a(r), d⟩ < 0. Thus, {1, . . . , p} can be partitioned into sets ℐ

and 𝒥 , where
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ℐ := {r ∈ {1, . . . , p} : ⟨a(r), d⟩ = 0, ∀d ∈ σ̄}, and

𝒥 := {r ∈ {1, . . . , p} : ∃d ∈ σ̄ such that s̄r⟨a(r), d⟩ < 0}.

The cases in which 𝒥 is either empty or nonempty will be considered separately.

If 𝒥 is empty, then for each r ∈ ℐ = {1, . . . , p} and each d ∈ σ̄, for any s ∈

{−1, 0, 1}p, sr⟨a(r), d⟩ = 0 ≤ 0, and so d ∈ ⋂p
r=1{x ∈ Rn : sr⟨a(r), x⟩ ≤ 0}. Using

the definition of ℋ, it follows that d ∈ σ for every σ ∈ Λ and every d ∈ σ̄, which

implies that σ̄ ⊂ σ for every σ ∈ Λ.

If 𝒥 is nonempty, then for each r ∈ 𝒥 , choose d(r) ∈ σ̄ such that s̄r⟨a(r), d(r)⟩ <

0. Consider the vector d* := ∑r∈𝒥 d(r). Since σ̄ is a convex cone by inspection,

d* ∈ σ̄. Moreover, for each r ∈ 𝒥 ,

s̄r⟨a(r), d*⟩ = ∑
ρ∈𝒥

s̄r⟨a(r), d(ρ)⟩ = s̄r⟨a(r), d(r)⟩+ ∑
ρ∈𝒥 ∖{r}

s̄r⟨a(r), d(ρ)⟩ < 0, (A.11)

where the strict inequality above follows from the construction of d(r) and the

definition of σ̄. Since Λ is a partition of Rn, there exists some σ ∈ Λ such that

d* ∈ σ, and some s ∈ {−1, 0, 1}p such that σ =
⋂p

r=1{x ∈ Rn : sr⟨a(r), x⟩ ≤ 0}. To

complete this proof, it will be shown that σ̄ ⊂ σ. It suffices to show that for each

r ∈ {1, . . . , p},

σ̄ ⊂ {x ∈ Rn : sr⟨a(r), x⟩ ≤ 0}. (A.12)

The cases in which r ∈ ℐ and r ∈ 𝒥 will be considered separately.

If r ∈ ℐ , then the definition of ℐ implies that, regardless of the value of sr,

σ̄ ⊂ {x ∈ Rn : ⟨a(r), x⟩ = 0} ⊂ {x ∈ Rn : sr⟨a(r), x⟩ ≤ 0}.

If r ∈ 𝒥 , then suppose, to obtain a contradiction, that sr = −s̄r. Since d* ∈

σ, it follows that 0 ≥ sr⟨a(r), d*⟩ = −s̄r⟨a(r), d*⟩, which contradicts (A.11). Thus

sr = −s̄r cannot be true, and so either sr = 0 or sr = s̄r. If sr = 0, then {x ∈ Rn :

sr⟨a(r), x⟩ ≤ 0} = Rn, and so (A.12) is trivial. If sr = s̄r, then the definition of σ̄
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yields

σ̄ ⊂ {x ∈ Rn : s̄r⟨a(r), x⟩ ≤ 0} = {x ∈ Rn : sr⟨a(r), x⟩ ≤ 0}.

Since (A.12) has now been demonstrated for each r ∈ {1, . . . , p}, it follows that

σ̄ ⊂ σ.

Lemma A.6.2. At every point in Algorithm 12, the matrix Q ≡
[
q(1) · · · q(n)

]
is

unit upper triangular, and is therefore nonsingular.

Proof. Noting that Q = I initially, and that Q is only altered during Line 15 of the

algorithm, it suffices to show that execution of Line 15 preserves the unit upper

triangularity of Q.

In Line 15, a scalar multiple of the (k*)th column of Q is added to the kth column,

where k > k*. Moreover, if Q is unit upper triangular immediately before Line 15

is carried out, then the (k*)th column of Q contains only zeroes below its (k*)th

entry. The unit upper triangularity of Q is therefore unaffected by execution of

Line 15.

Corollary A.6.3. At every point in Algorithm 12, the set σq := cone {q(1), . . . , q(n)}

has nonempty interior.

Proof. By Lemma A.6.2, Q is nonsingular throughout Algorithm 12, and so its

columns comprise a basis of Rn. Consider the vector q* := ∑n
k=1 q(k) ∈ σq. For

any y ∈ Rn,

q* + y = q* + Q(Q−1y) =
n

∑
k=1

(
1 + (Q−1y)k

)
q(k). (A.13)

Let ‖ · ‖ denote the Euclidean norm on Rn. For sufficiently small δ > 0, any y ∈

Rn with ‖y‖ < δ satisfies ‖Q−1y‖ < 1. In this case, (Q−1y)k > −1 for each

k ∈ {1, . . . , n}. It follows from (A.13) that (q* + y) ∈ σq whenever ‖y‖ < δ, and so

q* ∈ int(σq).

Lemma A.6.4. Given a set S ⊂ Rn with nonempty interior and a conical subdivision Λ

of Rn, there exists a polyhedral cone σ ∈ Λ for which int(S) ∩ int(σ) is nonempty.
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Proof. Consider some x ∈ int(S). There exists a neighborhood N ⊂ Rn of x such

that N ⊂ S. Since Λ is a partition of Rn, there exists some σ ∈ Λ such that x ∈ σ.

By definition of Λ, there exists some y ∈ int(σ). Since σ is convex, x ∈ σ, and

y ∈ int(σ), it follows that z(λ) := (λy + (1− λ)x) ∈ int(σ) for each λ ∈ (0, 1).

Moreover, z(λ) ∈ N ⊂ int(S) when λ > 0 is sufficiently small, in which case

z(λ) ∈ int(S) ∩ int(σ).

Lemma A.6.5. Given a finite set of vectors s(1), . . . , s(p) ∈ Rn and a vector a ∈ Rn,
suppose that the following procedure is carried out:

Set c* ← 0
for k = 1 to p do

Set c← ⟨a, s(k)⟩ ∈ R

if c ̸= 0 then
if c* = 0 then

Set c* ← c and k* ← k
else if cc* < 0 then

Set s(k) ← s(k) −
( c

c*
)

s(k*)
end if

end if
end for

At the end of this procedure, there is some s ∈ {−1, 1} such that for each k ∈

{1, . . . , p}, s⟨a, s(k)⟩ ≤ 0. Moreover, this relationship is invariant under further oper-

ations of the form s(k1)
← s(k1)

+ βs(k2) with k1, k2 ∈ {1, . . . , p} and β > 0.

Proof. If k* is never assigned a value during the procedure, then ⟨a, s(k)⟩ = 0 for

each k ∈ {1, . . . , p}, and so s may be arbitrarily set to 1. Otherwise, suppose that

k* is assigned by the procedure to some q ∈ {1, . . . , p}. By construction of k*, there

is some s* ∈ {−1, 1} such that s*⟨a, s(q)⟩ < 0.

Now, for each k ̸= q in {1, . . . , p}, if k < q, then s(k) remains unchanged during

the procedure and s*⟨a, s(k)⟩ = 0.

If k > q and if s*⟨a, s(k)⟩ ≤ 0 initially, then ⟨a, s(k)⟩⟨a, s(q)⟩ ≥ 0, and so s(k) re-

mains unchanged during the procedure. Otherwise, if s*⟨a, s(k)⟩ > 0 initially, then

⟨a, s(k)⟩⟨a, s(q)⟩ < 0 initially, and so s(k) is updated by the procedure to s(k)new
:=

s(k) −
(
⟨a,s(k)⟩
⟨a,s(q)⟩

)
s(q). Thus,
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⟨a, s(k)new
⟩ = ⟨a, s(k)⟩ −

(
⟨a, s(k)⟩
⟨a, s(q)⟩

)
⟨a, s(q)⟩ = 0,

and so s*⟨a, s(k)⟩ = 0 at the end of the procedure.

Combining the above cases, it follows that s*⟨a, s(k)⟩ ≤ 0 for each k ∈ {1, . . . , p}

at the end of the procedure. Setting s to s* then yields the first result of the lemma.

To obtain the remaining result of the lemma, it suffices to note that the set {y ∈

Rn : s⟨a, y⟩ ≤ 0} is a convex cone, and is therefore closed under nonnegative

combinations of its elements.

Lemma A.6.6. For each j ∈ {0, 1, . . . , `}, at each point in Algorithm 12 after the jth

iteration of the outermost for–loop, the basis vectors q(1), . . . , q(n) satisfy:

∀i ∈ {0, 1, . . . , j}, ∃v*(i) ∈ ℰv(i)(x) such that

∀d ∈ cone {q(1), . . . , q(n)}, v(i)
′(x; d) = Jv*(i)(x) d, (A.14)

where ℰv(i)(x) denotes some sufficient collection of essentially active selection functions for

v(i) at x.

Proof. This proof proceeds by induction on j ∈ {0, 1, . . . , `}. For notational sim-

plicity, let Q denote the set {q(1), . . . , q(n)}.

Base case: Since v(0)(y) = y for all y ∈ X, it follows that {v(0)} is a sufficient

collection of essentially active selection functions for v(0) at x, and that v(0)
′(x; d) =

d = Jv(0)(x) d for each d ∈ Rn.

Inductive step: Suppose that for some particular j* ∈ {1, 2, . . . , `}, (A.14) holds

with j = j* − 1 once the (j* − 1)th iteration of the outermost for–loop has been

completed.

Let Λ denote a particular active conical subdivision of 𝜓(j*) at u(j*)(x) to which

H𝜓(j*)

(
u(j*)(x)

)
corresponds. As an intermediate result, it will be shown that im-

mediately after the (j*)th iteration of the outermost for–loop, there exists some

σ* ∈ Λ such that u̇(j*,k) := u̇(j*)(x; q(k)) ∈ σ* for each k ∈ {1, . . . , n}. If

ζ𝜓(j*)

(
u(j*)(x)

)
= true,
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then R
nj* ∈ Λ, and so the result is trivial. Thus, it will be assumed that ζ𝜓(j*)

(
u(j*)(x)

)
=

false. It follows from Lemma A.2.13 and the inductive assumption that immedi-

ately after the (j*)th iteration of the outermost for–loop,

u̇(j*)(x; d) = [v̇(i)(x; d)]i≺j* = [Jv*(i)(x)]i≺j*d, ∀d ∈ cone Q.

Hence, u̇(j*)(x; ·) is linear on cone Q, and so Lines 15 and 16 of the algorithm pro-

duce the following change in u̇(j*,k):

u̇(j*,k) ← u̇(j*,k) + αu̇(j*,k*). (A.15)

Lemmas A.6.1 and A.6.5 then imply that immediately after the (j*)th iteration of

the outermost for–loop, u̇(j*,1), . . . , u̇(j*,n) all lie in a single cone σ* ∈ Λ. This

completes the proof of the intermediate result.

With σ* ∈ Λ chosen as in the statement of the intermediate result, let 𝜓* de-

note the conically active selection function for 𝜓(j*) at u(j*)(x) corresponding to

σ*. Immediately after the (j*)th iteration of the outermost for–loop, the inductive

assumption and Property 3 in Lemma A.1.8 imply that for each d ∈ cone Q,

v(j*)
′(x; d) = 𝜓(j*)

′(u(j*)(x); u̇(j*)(x; d)) = J𝜓*(u(j*)(x))[Jv*(i)(x)]i≺j*d. (A.16)

This relationship continues to hold for the remainder of the algorithm, since α :=

− c
c* > 0 whenever cc* < 0, and so Line 15 transforms cone Q into a subset of itself.

Thus, v(j*)
′(x; ·) is linear on cone Q at each point in the algorithm after the (j*)th

iteration of the outermost for–loop.

Consider any active conical subdivision Λv(j*)(x) of v(j*) at x. At each point in

the algorithm after the (j*)th iteration of the outermost for–loop, Corollary A.6.3

and Lemma A.6.4 imply that there is some σ ∈ Λv(j*)(x) such that N := int(σ) ∩

int(cone Q) is nonempty. Moreover, by Lemma A.1.11, there is some v*(j*) ∈ ℰv(j*)(x)

such that v(j*)
′(x; d) = Jv*(j*)(x) d for each d ∈ σ. Thus, by construction of N,

(A.16) implies that
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J𝜓*(u(j*)(x))[Jv*(i)(x)]i≺j*d = Jv*(j*)(x) d, ∀d ∈ N. (A.17)

Since N is nonempty, there exists some d* ∈ N. Since N is open, for some suf-

ficiently small ε > 0, (d* + εe(k)) ∈ N for each k ∈ {1, . . . , n}. Thus, (A.17) is

satisfied when d = d*, and when d = d* + εe(k) for any k ∈ {1, . . . , n}. Since both

sides of (A.17) are linear in d, it follows that

J𝜓*(u(j*)(x))[Jv*(i)(x)]i≺j*e(k) = Jv*(j*)(x) e(k), ∀k ∈ {1, . . . , n},

and so

J𝜓*(u(j*)(x))[Jv*(i)(x)]i≺j* = Jv*(j*)(x).

Substituting this result into (A.16) completes the inductive step.
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