
Global Optimization of Hybrid Systems

by

Cha Kun Lee

Submitted to the Department of Chemical Engineering
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Chemical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2006

c© Massachusetts Institute of Technology 2006. All rights reserved.

Author .
Department of Chemical Engineering

July 12, 2006

Certified by. .
Paul I. Barton

Professor
Thesis Supervisor

Accepted by .
William M. Deen

Chairman, Department Committee on Graduate Students

2

Global Optimization of Hybrid Systems

by

Cha Kun Lee

Submitted to the Department of Chemical Engineering
on July 12, 2006, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Chemical Engineering

Abstract

Systems that exhibit both discrete state and continuous state dynamics are called
hybrid systems. In most nontrivial cases, these two aspects of system behavior in-
teract to such a significant extent that they cannot be decoupled effectively by any
kind of abstraction and must be analyzed simultaneously. Hybrid system models are
important in many areas of science and engineering, including flip-flops and latching
relays, manufacturing systems, air-traffic management systems, controller synthesis,
switched systems, chemical process systems, signaling and decision making mecha-
nisms in (biological) cells, robotic systems, safety interlock systems, and embedded
systems.

The primary focus of this thesis is to explore deterministic methods for the global
optimization of hybrid systems. While the areas of modeling, simulation and sen-
sitivity analysis of hybrid systems have received much attention, there are many
challenging difficulties associated with the optimization of such systems. The con-
tents of this thesis represent the first steps toward deterministic global optimization of
hybrid systems in the continuous time domain. There are various reasons for wanting
to solve optimization problems globally. In particular, there are many applications
which demand that the global solution be found, for example, formal safety verifica-
tion problems and parameter estimation problems. In the former case, a suboptimal
local solution could falsely indicate that all safety specifications are met, leading
to disastrous consequences if, in actuality, a global solution exists which provides a
counter example that violates some safety specification. In the latter case, a subop-
timal local solution could falsely indicate that a proposed model structure did not
match experimental data in a statistically significant manner, leading to the false
rejection of a valid model structure. In addition, for many optimization problems
in engineering, the presence of nonlinear equality constraints makes the optimization
problem nonconvex such that local optimization methods can often fail to produce a
single feasible point, even though the problem is indeed feasible.

The control parameterization framework is employed for the solution of the opti-
mization problem with continuous time hybrid systems embedded. A major difficulty
of such a framework lies in the fact that the mode sequence of the embedded hybrid

3

system changes in the space of the optimization decision variables for most nontriv-
ial problems. This makes the resulting optimization problem nonsmooth because the
parametric sensitivities of the hybrid system do not exist everywhere, thus invalidating
efficient gradient based optimization solvers. In this thesis, the general optimization
problem is decomposed into three subproblems, and tackled individually: (a) when
the mode sequence is fixed, and the transition times are fixed; (b) when the mode
sequence is allowed to vary, and the transition times are fixed; and (c) when the mode
sequence is fixed, and the transition times are allowed to vary. Because even these
subproblems are nontrivial to solve, this thesis focuses on hybrid systems with linear
time varying ordinary differential equations describing the continuous dynamics, and
proposes various methods to exploit the linear structure. However, in the course of
solving the last subproblem, a convexity theory for general, nonlinear hybrid systems
is developed, which can be easily extended for general, nonlinear hybrid systems.

Subproblem (a) is the easiest to solve. A convexity theory is presented that allows
convex relaxations of general, nonconvex Bolza type functions to be constructed for
the optimization problem. This allows a deterministic branch-and-bound framework
to be employed for the global optimization of the subproblem. Subproblems (b) and
(c) are much more difficult to solve, and require the exploitation of structure. For
subproblem (b), a hybrid superstructure is proposed that enables the linear structure
to be retained. A branch-and-cut framework with a novel dynamic bounds tighten-
ing heuristic is proposed, and it is shown that the generation of cuts from dynamic
bounds tightening can have a dramatic impact on the solution of the problem. For
subproblem (c), a time transformation is employed to transform the problem into
one with fixed transition times, but nonlinear dynamics. A convexity theory is devel-
oped for constructing convex relaxations of general, nonconvex Bolza type functions
with the nonlinear hybrid system embedded, along with the development of bounding
methods, based on the theory of differential inequalities. A novel bounding technique
that exploits the time transformation is also introduced, which can provide much
tighter bounds than that furnished utilizing differential inequalities.

Thesis Supervisor: Paul I. Barton
Title: Professor

4

Acknowledgments

First and foremost, I would like to thank my advisor, Paul Barton, for inspiration,

help, and guidance, for without him, this thesis would not have been possible. I would

also like to thank my thesis committee, Klavs Jensen and Gregory McRae, for their

helpful comments and encouragement over the duration of my doctoral studies.

As Newton famously said, “If I have seen further, it is by standing on the shoulder

of giants.” I am indebted to my good friend, Adam Singer, who has helped me so

much in my work. It is his work that forms the basis for my work, and I owe him

many thanks. I would also like to thank the many outstanding researchers that I

have had the utmost pleasure of working with in the Process Systems Engineering

Laboratory at MIT: Bambang Adiwijaya, Ingrid Berkelmans, Binita Bhattacharjee,

Benoit Chachuat, Jerry Clabaugh, David Collins, Edward Gatzke, Panayiotis Lemoni-

dis, Alexander Mitsos, Bahy Noureldin, Derya Ozyurt, Ignacio Palou-Rivera, Patri-

cio Ramirez, Gunther Reisig, Ajay Selot, Kirill Titievsky, John Tolsma, Katharina

Wilkins, Mehmet Yunt. I would also like to thank my many friends from outside the

PSEL, who have been so important to me in so many ways: Hiroyo Kawai, I-Chieh

Chou, Lino Gonzalez, Ivy Lee, Yinthai Chan, Tseh-Hwan Yong, YongHwee Chua,

Jujin An, Jijon Sit, Paige Koh.

Adam, I’ll miss all the basketball sessions, and watching the Superbowl/NBA

finals together. John, thank you for writing DAEPACK, and treating me to pizza

and guiding me home that infamous night. Binita, thanks for the encouragement

and companionship. Benoit, thanks for being my badminton partner. Someday, we’ll

have to play table tennis, although you’ll always crush me in squash. Derya, thank

you for being such a great and wonderful guy, I’ll always remember Trondheim and

San Franciso. Alexander, thank you for being so helpful, reliable and dependable. It

has really been a pleasure. Ajay, thank you for putting up with all of my ramblings

and always having a willing ear. And, of course, the food. Panos, thank you for all

the soccer. And remember, “Pull it Down!”. I-Chieh, thank you for all the beautiful

memories. And Hiroyo, arigato for being Hirochan, yesterday, today and tomorrow.

5

Finally, I would like to thank my family. Words cannot adequately express the

gratitude I owe them, for they have always been there for me, without fail, whenever

I have needed them. They remain the most important part of my life, and always

will.

6

To My Family

7

8

Contents

1 Hybrid Systems 19

1.1 Modeling . 21

1.1.1 Definition of a Transition . 24

1.1.2 Determinism and Competing Transitions 31

1.1.3 Zeno Phenomena . 37

1.1.4 Tangential Events and Transversality 38

1.1.5 Modeling Reversible Discontinuities 49

1.1.6 A Hybrid Automaton Model 53

1.2 Simulation . 59

1.2.1 State Event Location . 63

1.2.2 Consistent Reinitialization . 65

1.3 Sensitivity Analysis . 72

1.3.1 Calculation of Sensitivity Trajectories 73

1.3.2 Examples of ODE Hybrid Systems 76

1.4 Optimization . 80

1.4.1 Optimization Formulation . 82

1.4.2 Problem Classification . 84

2 Fixed Mode Sequence and Transition Times 91

2.1 Deterministic Global Optimization 92

2.1.1 Branch-and-Bound Algorithm 96

2.1.2 Nonconvex Outer Approximation Algorithm 99

2.2 Linear vs. Nonlinear Dynamics . 102

9

2.3 The Linear Hybrid System . 103

2.4 Problem Formulation . 105

2.5 Solution Strategy . 106

2.6 Constructing Convex Relaxations . 112

2.7 Implied State Bounds for LTV Hybrid Systems 114

2.8 Illustrative Examples . 117

3 Determining the Optimal Mode Sequence 123

3.1 Problem Formulation . 124

3.1.1 An Illustrative Example: Catalyst Loading in a PFR 128

3.2 Dynamic Programming Approaches 130

3.2.1 Discrete Time Linear Dynamical Systems 133

3.2.2 Optimal State-feedback Quadratic Regulation of Linear Hybrid

Automata . 137

3.2.3 Application to Global Optimization of Continuous State and

Time Linear Hybrid Systems 139

3.2.4 Elimination of Regions that are Linearly Bounded 159

3.3 A Hybrid Superstructure - Mixed-Integer Reformulation 164

3.3.1 Constructing Convex Relaxations 169

3.4 Bounding Strategies for Hybrid Systems with Varying Mode Sequences 177

3.4.1 Extended Affine Bounding . 177

3.4.2 Relaxed LP Bounding . 179

3.4.3 Harrison’s Method and its Extension 182

3.4.4 A Comparison of the Different Strategies 197

3.5 Branch-and-Cut Algorithm . 199

3.5.1 Dynamic Bounds Tightening 208

3.6 Examples and Discussion . 209

4 Determining the Optimal Transition Times 219

4.1 Problem Formulation . 222

4.1.1 Nonsmooth Examples . 227

10

4.2 Time Transformation . 231

4.3 Bounding Strategies for Time Transformed Hybrid Systems 241

4.3.1 Nonlinear Differential Inequalities 241

4.3.2 Exploiting the Time Transformation 266

4.3.3 Monotonic Bounding Hybrid Systems 274

4.3.4 Tight Bounding Hybrid Systems 289

4.3.5 A Comparison of the Different Strategies 309

4.4 Constructing Convex Relaxations . 323

4.5 Examples and Discussion . 327

5 Conclusions and Future Work 333

11

12

List of Figures

1-1 Physical systems modeled as hybrid systems. 20

1-2 Graphical representation of linear hybrid system with nondeterministic

transition. 31

1-3 Types of discontinuity functions. 42

1-4 Example of a nonsmooth discontinuity function. 43

1-5 Plot of x(p, 2) against p. 47

1-6 Tank with a weir. 50

1-7 Schematic of pressure vessel: (a) Process flowsheet (b) Mole fraction

space. 56

1-8 Hybrid dynamic model of pressure vessel. 58

1-9 Discontinuity locking, × denotes a time mesh point. 64

1-10 Schematic of two rotating masses. 69

1-11 Sensitivity analysis for ODE example, (1.21)–(1.22). Note x(p, ·) is

monotonically increasing. 78

1-12 Graphical representation for ODE example, (1.3)–(1.5) 79

1-13 Control parameterization. 87

2-1 Outer approximation for nonconvex MINLPs. 101

2-2 Implied state bounds for Example 2.19. 118

2-3 Implied state bounds, objective function and convex relaxations for

Example 2.20. 121

3-1 Chemical reaction scheme and kinetics for PFR example 129

3-2 Shortest path problem from A to B 131

13

3-3 Tree for shortest path form of catalyst loading problem 139

3-4 Time horizon for Example 3.8 (ne = 2) 142

3-5 Enumerated tree for Example 3.8 . 143

3-6 State space of x1(0.5) and x3(0.5) for V2(x(0.5)) 153

3-7 State space of x1(0) and x3(0) for V1(x(0)), assuming
nx
∑

i=1

xi(t) = 1000. 155

3-8 State space of x1(0) and x3(0) for Tµ = 1, 3 157

3-9 State space of x1(0) and x3(0) for m∗
2 = 3 158

3-10 State space of x1(0) and x3(0) . 158

3-11 Illustration of state discretization and continuous dynamic program-

ming approaches . 160

3-12 Algorithm for continuous dynamic programming approach 161

3-13 Superstructure for Problem 3.17. 169

3-14 Algorithm for calculating the exact bounds for xi(τ) 189

3-15 Flowsheet of Algorithm 3.37 (branch-and-cut). 206

3-16 Computation times for Example 3.39 212

3-17 Well-mixed tank with reaction kinetics for Example 3.40 215

3-18 Computation times for Example 3.40 218

4-1 Nonconvex objective function for Example 4.1. 221

4-2 Sensitivity trajectories for Example 4.7. 228

4-3 Objective function for Example 4.7. 229

4-4 Objective function for Example 4.8. 230

4-5 Objective function for Example 4.9. 232

4-6 Objective function and feasible region. 240

4-7 Different time varying functions, ui(t). 251

4-8 Bounds obtained using Theorem 4.21 and state trajectories for x1(t)

for time invariant U(t). 252

4-9 Different control functions, ui(t) . 254

4-10 Bounds obtained using Theorem 4.21 and state trajectories for x1(t)

for time varying U(t). 255

14

4-11 Bounding trajectories (dashed lines) and random state trajectories

(solid lines) with P = [0, 1]2, ∆ = [0, 1]2 for (a) x̂1(s), and (b) x̂2(s). . 266

4-12 Bounding trajectories (dashed lines) and random state trajectories

(solid lines) with P = [0, 0.25] × [0.25, 0.5], ∆ = [0.5, 0.75] × [0.75, 1]

for (a) x̂1(s), and (b) x̂2(s). 267

4-13 Bounding trajectories with P = ∆ = Z2, where Z is given by (a) [0,1],

(b) [0.1,0.9], (c) [0.2,0.8], (d) [0.3, 0.7], (e) [0.4, 0.6], and (f) [0.5, 0.5].

The plot on the left is for x̂1(s), while the one on the right is for x̂2(s). 267

4-14 Trajectory of x1(t). 273

4-15 Trajectories of y1(s) for τ ∈ {0.5, 1.25, 2.0}. 273

4-16 Comparison of monotonic hybrid bounds versus nonlinear bounds for

y1(τ, s). 310

4-17 Monotonic hybrid bounds for y1(τ, s) with 20 random trajectories of

τ ∈ [0.5, 2]. 311

4-18 Monotonic hybrid bounds for y1(τ, s) with 20 random trajectories of

τ ∈ [0.5, 20]. 312

4-19 Nonlinear bounds for τ ∈ [0.5, 20]. 312

4-20 Nonlinear bounds with a priori bounding set information for τ ∈ [0.5, 20].313

4-21 Nonlinear bounds with a priori bounding set information for τ ∈

[19.9999, 20]. 315

4-22 Tight hybrid bounds for y1(τ, s) with 20 random trajectories of τ ∈

[0.5, 2]. 315

4-23 Tight hybrid bounds for y1(τ, s) with 20 random trajectories of τ ∈

[18.0, 20.0]. 316

4-24 Tight hybrid bounds with y(τL, s) = q(s) and y(τU , s) = u(s) for

τ ∈ [10, 12]. 317

4-25 Zoomed in portion of Figure 4-24. 317

4-26 Tight hybrid bounds with with 20 random trajectories for τ ∈ [10, 12]. 318

4-27 Zoomed in portion of Figure 4-26. 318

4-28 Nonlinear bounds for (4.58). 320

15

4-29 Comparison of nonlinear and exact hybrid bounding strategies. 321

4-30 Nonlinear bounds for element y1 of transformed system of (4.59). . . 322

4-31 Bounds for element y1 of transformed system of (4.59) using Algorithm

4.36 with Theorem 4.44, and 20 random trajectories of δ ∈ ∆. 322

16

List of Tables

1.1 Comparison of modeling frameworks: Thesis refers to this thesis, “sens”

refers to parametric sensitivities, and “trans” refers to transversality. 55

3.1 Bounds for z8 where ne = 15. 199

3.2 Bounds for z15 where ne = 15. 200

3.3 Upper bound for W1 (ne = 10). 200

3.4 Upper bound for W1 at l = 1. 200

3.5 CPU times (s). 200

3.6 Solution times (s) for Example 3.39. 213

3.7 Solution times (s) for Example 3.39. 213

3.8 Optimal solutions for Example 3.40. 217

3.9 Solution times (s) and regression results for Example 3.40. 218

17

18

Chapter 1

Hybrid Systems

Systems that exhibit both discrete state and continuous state dynamics are called

hybrid systems. Commonly, a hybrid system is denoted as a discrete/continuous

system. In most nontrivial cases, these two aspects of system behavior interact to

such a significant extent that they cannot be decoupled effectively by any kind of

abstraction and must be analyzed simultaneously. The partitioning into discrete and

continuous states is most often a modeling convenience or an effective tool to make

a problem tractable, e.g., to avoid modeling phenomena on wildly differing time

scales in which fast, often nonlinear dynamics are simplified by replacing them with

discrete transitions (it is also worth recalling that the continuum hypothesis itself

is only an approximation for the behavior of large collections of discrete particles).

On the other hand, sometimes it may be impossible to avoid discrete phenomena by

introducing more sophisticated models. An example of this is a tank initially full of

liquid that at some later time becomes empty. As soon as the amount of liquid in

the vessel becomes zero the intensive properties (temperature, composition) of the

liquid become undefined. These intensive variables either have to be removed from

the model, or assigned dummy values. In either case, a discrete change to the model

is unavoidable.

Hybrid system models are important in many areas of science and engineering,

including flip-flops and latching relays [136], manufacturing systems [38], air-traffic

management systems [131], controller synthesis [132, 25], switched autonomous sys-

19

Figure 1-1: Physical systems modeled as hybrid systems.

tems [138], chemical process systems [18, 46], signaling and decision making mecha-

nisms in (biological) cells, robotic systems, safety interlock systems, embedded sys-

tems, etc. Figure 1-1 shows some simple examples commonly found in chemical

engineering. It is thus not surprising that a lot of work has been done in the areas

of modeling [4, 13, 30, 105] and simulation [40, 18, 28] of hybrid systems to date,

such that the modeling and simulation of hybrid systems has achieved a high degree

of robustness. What is perhaps surprising is that the theory for sensitivity analysis

of hybrid systems has only recently been established in [63], extending and gener-

alizing the work first done in [114]. In close relation, it is very desirable to utilize

this knowledge and technology to develop a theory for the numerical optimization

of hybrid systems [89, 62, 12, 19]. This area remains very exciting, challenging and

largely unexplored. Thus, the primary focus of this thesis is to explore deterministic

methods for the global optimization of hybrid systems.

An extensive taxonomy of models has been proposed in recent years for the de-

scription of hybrid systems (see e.g., [30]). Indeed, it is difficult to make progress

without appealing to some form of model formulation. Generally, hybrid systems

may be defined on either a continuous or discrete time domain. For example, discrete

time formulations have recently been employed in the design of model predictive con-

trollers for systems embedding interlock logic and qualitative descriptions [24] and

for numerical optimization [89]. A continuous time formulation assumes that the

20

continuous state of the hybrid system is differentiable almost everywhere on the time

interval of interest. In this thesis we will restrict our attention to continuous time

formulations, while noting that most of the observations made have their analogy in

the (simpler to analyze) discrete time case, and that continuous time systems are

most often approximated by discrete time systems for numerical solution.

A hybrid system can be described by a (collection of) discrete state subsystem(s),

a (collection of) continuous state subsystem(s), and the possible interactions between

these subsystems. The continuous time formulation admits a (potentially hetero-

geneous) variety of embedded differential subsystems including ordinary differential

equations (ODEs), differential-algebraic equations (DAEs), partial differential equa-

tions (PDEs), and even multi-domain integro partial differential-algebraic equations.

Again, we will limit ourselves to ODEs and DAEs, while noting that hybrid systems

embedded with PDEs represent an unexplored and potentially rich field of study.

Similarly, the discrete state subsystems may be heterogeneous and conform to a vari-

ety of formalisms, such as finite state machines, Petri nets, sequential logic systems,

etc.

This chapter is organized as follows: Section 1.1 will review the concepts behind

the modeling of hybrid systems, and present the modeling framework which we will

adopt for the sequel. In Section 1.2, we discuss issues concerning the robust simulation

of hybrid systems, while in Section 1.3 we present a concise summary of the theory

and equations that have been developed for the sensitivity analysis of hybrid systems.

Finally, Section 1.4 will describe the early work done and some of the challenges that

lie ahead in the numerical optimization of hybrid systems, which sets the stage for

the rest of the chapters of this thesis.

1.1 Modeling

The pioneering work on modeling of hybrid systems were the papers of Witsenhausen

[136] and Fahrland [53]. In recent years, several mathematical formalisms have been

proposed to model hybrid systems. They include hybrid automata [4, 90], hybrid Petri

21

nets [45], the general abstract dynamical model [30], the state-transition network

representation [12], the bond graph representation [101], etc. From the point of

view of mathematical and numerical analysis, we have found the hybrid automaton

representation most useful [4, 13, 62]. In this section, we will present, based on

the concept of hybrid automata, a clear and intuitive modeling framework that is

amenable for the analysis of hybrid systems.

Roughly speaking, the evolution of a hybrid system through time consists of the

following: starting with some fixed time and initial condition for the discrete and

continuous state, the continuous state of the hybrid system evolves according to the

differential equations attributed to the initial discrete state of the hybrid system.

At some point in time, a transition may occur. If a transition occurs, the discrete

state of the hybrid system switches to another (not necessarily different) state, the

continuous state of the hybrid system is reset to some point in its Euclidean space,

following which it then evolves according to the differential equations attributed to

the new discrete state of the hybrid system after the transition. At some point in

time, a transition may occur. And the cycle repeats indefinitely.

The above description seems deceptively simple to model. However, in our efforts

to develop a modeling framework for the evolution of the hybrid system described

above, we have encountered the following (interconnected) issues and questions:

1. What is a transition, and how does one define the semantics of a transition?

2. How does one define a deterministic evolution of a hybrid system for a given

initial time and condition?

3. Are instantaneous, and/or multiple, transitions allowed?

4. How does one resolve the issue of modeling reversible discontinuities?

In particular, we will be illustrating these issues contrasted against the modeling

frameworks of [136, 90, 30, 5, 63]. While these references may have addressed some

of these issues, none of them have addressed all of these issues completely in a satis-

22

factory manner. We will now lay the skeleton of our proposed modeling framework,

based on that in [63].

We shall call the continuous time axis the time horizon, which is split into con-

tiguous time intervals called epochs. The discrete and continuous subsystems only

interact via instantaneous discrete transitions at distinct points in time called events.

Similar to [90], we will define a hybrid time trajectory Tτ as a sequence of epochs

{Ii} such that each epoch is a closed time interval Ii = [σi, τi] ⊂ R, σi+1 = τi and

τi ≤ τi+1 for all i = 1, 2, 3, . . . with the initial time t0 = σ1. For the epoch Ii = [σi, τi],

the system evolves continuously by allowing time to pass if σi < τi, and it evolves

discretely by making an instantaneous transition if σi = τi. Loosely speaking, the

evolution of the hybrid system over the time horizon will be called the execution of

the hybrid system; this term will defined rigorously in Section 1.1.6. For the sequel,

we will only consider finite sequences Tτ terminating with epoch Ine
where ne is the

total number of epochs, and the final time tf = τne
.

The hybrid system can be viewed as a directed graph whose vertices represent the

continuous state subsystems, called modes, and whose edges represent the transitions

between the modes. We introduce the following elements:

1. An finite index set M for the modes, M = {1, 2, . . . , nm}, where nm is the total

number of modes in the system. The corresponding sequence of modes for Tτ

is called the hybrid mode trajectory and is denoted by Tµ = {mi},mi ∈ M .

Note that mi denotes the mode of the system in epoch Ii, and hence can be

represented by the pair (m, Ii), where m ∈M , if desired. However, we will use

mi for notational simplicity.

2. A set of variables, V (m), for each mode m ∈ M . The dependent variables that

we are concerned with are the state variables x(m)(p, t) ∈ R
n

(m)
x . The time

invariant parameters p ∈ R
np and time, t ∈ R are the independent variables.

Clearly V (m) = {x(m),p, t}. Also, for t ∈ Ii, the real value of the continuous

state is given by x(mi)(p, t).

3. A finite set of equations for each mode m ∈M . The state of the hybrid system

23

evolves according to the dynamics of the system, which are represented by ODEs

or DAEs given by

f (m)
(

ẋ(m),x(m),p, t
)

= 0 (1.1)

where f (m) : R
n

(m)
x × R

n
(m)
x × R

np × R → R
n

(m)
x .

4. A set of initial conditions for the hybrid system, for any initial mode m1 ∈M ,

T(m1,0)
(

ẋ(m1),x(m1),p, t0
)

= 0.

where T(m1,0) : R
n

(m1)
x × R

n
(m1)
x × R

np × R → R
r(m1)

, where r(m1) is the dynamic

degrees of freedom for the DAE system f (m1) = 0. We will assume that the

set of initial conditions specified by T(m1,0) is consistent with the differential

equations specified by f (m1) = 0 for all m1 ∈M . See Section 1.2 for a discussion

on consistent initialization.

Henceforth, we shall use the superscript (m) to refer to any mode in M , while (mi)

refers to the active mode in epoch Ii. We will also make the following assumption

concerning the dynamics of the hybrid system in each mode given by the differential

equations (1.1): for any m∗ ∈ M , and any p∗ ∈ P , we assume that a solution x(m∗)

exists, is unique, and is continuous (though it may be nonsmooth, e.g., when f (m∗) is

discontinuous) for the initial value problem (IVP) given by (1.1), any arbitrary con-

sistent initial condition x0(σ) ∈ R
n

(m)
x , for any time interval [σ, τ] ⊂ [t0, tf] (see Section

1.2 for a discussion on consistent initial conditions for DAE systems). Obviously, this

assumption implies that the continuous states of the hybrid system are also bounded

on [t0, tf], provided that the solution of the hybrid system exists on [t0, tf] (see Section

1.1.3 for examples where the solution of the hybrid system may not exist on the time

domain of interest).

1.1.1 Definition of a Transition

There are two broad classes of transitions that are possible: a switch (impulse) occurs

when the transition ends in a different (the same) mode. Informally, we can think of

24

switching as a change in the functional form of the embedded differential equations,

while impulses are jumps that cause discontinuities in the state variables with no

change in the equations. However, it is important to note that with an embedded

DAE, a switch or even nonsmoothness in the controls may cause both discontinuities

and even Dirac functions to appear in the state variable trajectories. This issue will

be discussed further in Section 1.2. It is clear that the state of the discrete subsys-

tems, described uniquely by the mode mi, changes only at switches (autonomous or

controlled), which can be as simple as the deletion of one equation and its replacement

with a new equation, or as complex as the deletion and/or insertion of a number of

active agents each described by their own individual system of differential equations,

e.g., vehicles in a traffic management system. The latter phenomenon is also seen in

variable structure systems [52, 105].

Branicky et al. [30] further classified transitions into two types: autonomous tran-

sitions, which occur naturally without a choice, and controlled transitions, which

occur in response to a control command. Controlled changes can also be effected

by introducing control variables u, where u belongs to some appropriate function

space, and treating the controlled transitions as autonomous ones whose transition

conditions (see below) are expressed as a function of u.

We shall introduce the following definitions. Consider any transition from mode

mi to mode mi+1. We shall call mode mi+1 a successor of mode mi, which we call

the predecessor. For impulses, both the predecessor and successor modes are the

same. We say that the transition is enabled when the transition can be made and

the transition is taken when the transition actually occurs at an event. In [4, 5], if

a transition is enabled, the transition must be taken before an exception occurs, if it

exists. This concept incorporates a random element in the timing of the transition,

as transitions can, but not necessarily must, be taken when enabled. This implies

that the exact timings of the transitions are not known, which makes deterministic

simulation impossible. Note that this nondeterministic behavior can be incorporated

in the framework of Branicky et al. [30] by introducing said transitions as controlled

transitions. In our framework, which is a special case of the more general frameworks

25

described above, all transitions have enabling and exception conditions that coincide

at exactly the point where the transition is to be taken, i.e., the transition is taken

instantaneously once it becomes enabled. We shall call this the transition condition.

We shall have more to say about the determinism of transitions below. Note that in

essence, we have formulated the question “When is a transition taken from mode mi

to mi+1?”, to which the answer is “A transition is taken when the transition condition

becomes true.”

To define a transition from mode mi, we need to define uniquely a time, called the

transition time, at which the transition is to be taken, i.e., at which the transition

condition becomes true. We also need to define uniquely a successor mode, as well

as a unique initial condition for the continuous state in the successor mode. The

modeling frameworks of [136, 30, 90] (which all consider ODEs as the continuous

dynamics) do this by defining a subset of the Euclidean state space of the continuous

state of the hybrid system, G(mi) ⊂ R
n

(mi)
x . This set is called the departure set in

[136], the (autonomous) jump set in [30], and is formed by the guard conditions in

[90]. Whenever the continuous state of the hybrid system in mode mi enters the set

G(mi), the transition condition is satisfied, and a transition is taken. In order to define

a unique earliest time, they make the assumption that G(mi) is a closed set. After

defining this set, the rest is relatively easy. In [136], the successor mode is defined

by the departure set, and an identity mapping sets the initial value of the continuous

state in the successor mode to be equal to the value of the continuous state in the

predecessor mode at the transition time. In [30], the (autonomous) jump transition

map determines the successor mode, as well as the initial value of the continuous

state in the successor mode. In [90], the set of edges determines the successor mode,

and the reset map determines the initial conditions of the continuous state in the

successor mode.

What these modeling frameworks have done is to say effectively that the transition

condition becomes true when the continuous state of the hybrid system in mode

mi enters the closed set G(mi). From the assumption of continuity of x(mi), there

will thus be a unique earliest transition time that can be determined. This makes

26

the hybrid system deterministic in the sense that the transition time is always well

defined. However, for the following reasons, this definition of a transition is not

entirely satisfactory:

1. How does one characterize the set G(mi), especially for the case where there

may be several pending transitions from mode mi? The type of characteriza-

tion used could potentially raise problems for the simulation of hybrid systems,

in which autonomous events have to be detected in strict time order. Also,

what happens in the boundaries between two pending transitions? In addition,

each mode could have many competing, pending transitions to other modes,

and whose transition conditions could also depend on the system parameters,

p. Visualizing these pending transitions becomes complicated with a single,

lumped set G(mi).

2. The treatment of reversible discontinuities is problematic. See Section 1.1.5

below for a detailed discussion.

Note that the modeling frameworks in [5] and [63] allow the use of strict inequal-

ities while defining (elements of) a transition condition. This implies that no unique,

earliest transition time can be determined for the transition. To mitigate the above

issues, we propose the following definition of a transition, based on a modification

of the framework in [63]. While this does not treat the difficulties with reversible

discontinuities, it does explicitly characterize the closed set G(mi).

Each modem ∈M has associated with it a finite index set of transitions emanating

from it, J (m) = {1, 2, . . . , n
(m)
τ }, where n

(m)
τ is the total number of transitions with

predecessor mode m. Note that there may be several transitions to the same successor

mode, there could be impulsive transition(s) back to the predecessor mode or J (m)

could be the empty set (n
(m)
τ = 0). We introduce a mapping S(m) : J (m) → M such

that S(m)(j) represents the successor mode corresponding to the jth transition, i.e.,

S(m) keeps track of the successor modes for the set J (m). Each transition j ∈ J (m)

has associated with it:

27

1. A logical, or Boolean, transition condition, which is represented by the following

mapping,

L
(m)
j (ẋ(m),x(m),p, t),

where L
(m)
j : R

n
(m)
x ×R

n
(m)
x ×R

np×R → {TRUE, FALSE}. This condition is formed

by logical operators (AND,OR) connecting a finite number of atomic propositions

(relational expressions) composed of valid real functions and the relational op-

erators {≤,≥}. We will assume further that the real functions are continuous

on R
n

(m)
x × R

n
(m)
x × R

np × R. See [107] for a discussion motivating the use of

logical expressions. Note that we have removed the use of the NOT operator and

strict relational operators {<,>} compared to the framework in [63], see below

for a discussion.

2. A system of transition functions that maps the final values of the variables

in the predecessor mode m = mi to the initial values in the successor mode

S(m)(j) = mi+1 at time τi = σi+1 where the transition is made between epochs

Ii and Ii+1:

T
(m)
j

(

ẋ(m)(p, τi),x
(m)(p, τi), ẋ

(S(m)(j))(p, σi+1),

x(S(m)(j))(p, σi+1),p, τi

)

= 0, (1.2)

where T
(m)
j : R

n
(m)
x ×R

n
(m)
x ×R

n
(S(m)(j))
x ×R

n
(S(m)(j))
x ×R

np ×R → R
r(S

(m)(j))
, where

r(S(m)(j)) is the dynamic degrees of freedom for the DAE system f (S(m)(j)) = 0.

We will assume that the set of initial conditions for the successor mode specified

by T
(m)
j is consistent with the differential equations specified by f (S(m)(j)) = 0.

See Section 1.2 for a discussion on consistent initialization.

Note that in order to define a unique, earliest time for the transition, the mapping

L
(m)
j (ẋ(m),x(m),p∗, t) associated with each pending transition j ∈ J (m) of mode m

must define a closed set in its domain, R
n

(m)
x × R

n
(m)
x × R, for which the condition

becomes TRUE, for each fixed p∗ ∈ P . The use of only regular or weak inequalities, the

assumption of continuity of the real functions comprising the atomic propositions, and

28

the use of only the logical operators (AND,OR) ensures that this will always be true. To

illustrate this, note that an atomic proposition composed of continuous real functions

and the relational operators {≤,≥} will define a closed set in R
n

(m)
x × R

n
(m)
x × R by

construction. In addition, the AND and OR operators can be viewed as intersection

and union operators. Since any finite intersection and/or union of closed sets is

also closed, the logical condition must define a closed set in its domain. This is

formalized in the following propositions. Note that in this framework, it is also

possible to include atomic propositions formed by strict inequalities, operated on by

NOT. However, it is always possible to convert such propositions to ones involving only

regular inequalities.

Proposition 1.1. For any p∗ ∈ P , an atomic proposition composed of continuous

real functions on the domain R
n

(m)
x × R

n
(m)
x × R and the relational operators {≤,≥}

defines a closed set in R
n

(m)
x × R

n
(m)
x × R for which the proposition becomes TRUE.

Proof. Without loss of generality, let the atomic proposition be given by

{g(ẋ(m),x(m),p∗, t) ≤ 0} ⇐⇒ TRUE

where g : R
n

(m)
x ×R

n
(m)
x ×R

np ×R → R is continuous. Clearly, it suffices to show that

the following set is closed,

G ≡ {(ẋ(m),x(m), t) ∈ R
n

(m)
x × R

n
(m)
x × R | g(ẋ(m),x(m),p∗, t) ≤ 0}.

Assume, for contradiction, that the set G is not closed. Then, there exists a limit

point of G that is not in G. Let such a point be (ẋ(m),x(m), t). By assumption,

g(ẋ(m),x(m), t) = ε > 0.

Since it is a limit point, every neighborhood of the point contains a point

(ẋ(m)†,x(m)†, t†) 6= (ẋ(m),x(m), t)

29

such that (ẋ(m)†,x(m)†, t†) ∈ G. However, by continuity of g, there exists some δ > 0

such that

|g(ẋ(m)†,x(m)†,p∗, t†) − g(ẋ(m),x(m),p∗, t)| ≤ ε/2

for all (ẋ(m)†,x(m)†, t†) such that

|(ẋ(m)†,x(m)†, t†) − (ẋ(m),x(m), t)| ≤ δ.

Clearly, this is a contradiction. Hence, every limit point of G must be in G, and it is

a closed set.

Proposition 1.2. The transition condition L
(m)
j (ẋ(m),x(m),p∗, t) associated with each

pending transition j ∈ J (m) of mode m defines a closed set in its domain, R
n

(m)
x ×

R
n

(m)
x × R, for which the condition becomes TRUE, for all fixed p∗ ∈ P .

Proof. From Proposition 1.1, each atomic proposition defines a closed set in R
n

(m)
x ×

R
n

(m)
x × R for which the proposition becomes TRUE. The transition condition L

(m)
j is

composed of the logical operators AND and OR, which are the intersection and union

operators respectively, connecting a finite number of atomic propositions. Since the

intersection and union of a finite collection of closed sets is also closed [116, Theorem

2.24], we have the desired result.

Hence, under this framework, the transition condition for the pending transition

j ∈ J (m) in mode m is simply given by L
(m)
j (ẋ(m),x(m),p, t). For example, in the

pressure vessel shown in Figure 1-1(a), we have M = {1, 2} where mode 1 denotes

the Intact mode and mode 2 the Ruptured mode. We have J (1) = {1}, S(1)(1) = 2

and J (2) = ∅, with the transition condition L
(1)
1 := (P ≥ Pburst), and the transition

function T
(1)
1 = x(1)(p, τi)−x(2)(p, σi+1) . This is an example of a switching transition.

As another example, consider the buffer tank shown in Figure 1-1(b) where we

have M = {1}, J (1) = {1}, S(1)(1) = 1 and L
(1)
1 := (t ≥ tm) ∧ (t ≤ tm). Here, tm is

a known time event where we add material to the tank and the transition function

is given by T
(1)
1 = x(1)(p, τ1) + ∆x− x(1)(p, σ2), where ∆x is the amount of material

added, and tm = τ1 = σ2. This is an example of an impulsive transition. Note that

30

Figure 1-2: Graphical representation of linear hybrid system with nondeterministic
transition.

although τ1 = σ2, this does not imply that ∆x = 0, because the transition function

between the two epochs I1 and I2 is implicit and the state variables are allowed to

take multiple values at the same instant in time provided the epoch is incremented

(this also allows the phenomena of multiple instantaneous transitions to occur). In

other words, the notion of an active epoch allows the state variables to take multiple

values at the same point in time. Note that this is also the case in the framework of

[90], whereas in [136], multiple instantaneous transitions are forbidden by requiring

that some minimum duration be spent in each mode (this is achieved by assuming

some positive distance between the departure and arrival sets, see [136] for the details

and definitions).

1.1.2 Determinism and Competing Transitions

Thus far, we have effectively constrained our modeling framework to only consider

hybrid systems with deterministic transition times, i.e., when a transition is to be

taken, the timing of the transition can be determined uniquely. This allows one to

simulate such hybrid systems. As mentioned above, in the framework of [4, 5], transi-

tions take on a stochastic or nondeterministic nature in the sense that a transition can

be taken at any time the enabling conditions are satisfied, and before the continuous

state leaves the invariant set. For example, consider the first example of Alur et al.

[4], where a linear hybrid system is considered (see Figure 1-2 reproduced from [4]).

The conditions immediately below the mode labels L1 and L2 are the invariant

conditions, which are the complement of the exception conditions (recall that a transi-

tion must be taken before an exception occurs). In mode L1, the value of x decreases

31

at a constant rate of 1. The transition from L1 to L2 may be taken at any time after

the value of x has fallen below 6 (the enabling conditions are on top of the transition

arrows in Figure 1), and it must be taken before the value of x falls below 5 (the

invariant condition). When the transition is taken, the value of x is instantaneously

decreased by 1. In other words, the state can remain in mode 1 (stay invariant) as

long as 5 ≤ x. If x falls below 5, the exception occurs, and the transition must be

taken. However, no guidance is provided as to when the transition is taken, since it

can be taken any time when 5 ≤ x < 6. This illustrates the nondeterministic nature

of the transitions allowed in the framework of [4, 5].

It is unreasonable to expect a simulator to be able to handle this kind of nonde-

terministic transition phenomena, since it does not know when to take the transition.

However, it might be possible to incorporate such behavior (in a limited way) when

we consider optimization problems with hybrid systems embedded. Consider the

following hybrid system,

Mode 1 :



















f (1) = ẋ+ 1, J (1) = {1},

S(1)(1) = 2, L
(1)
1 := (x ≤ 5 + p),

T
(1)
1 = x(σi+1) − x(τi) + 1,

Mode 2 :



















f (2) = ẋ− 2, J (2) = {1},

S(2)(1) = 1, L
(2)
1 := (x ≥ 10),

T
(2)
1 = x(σi+1) − x(τi),

where p ∈ [0, 1]. It is clear that a given value of p corresponds to a stochastic

transition from mode 1 to mode 2. Given an optimization problem, we can include

p as an optimization decision variable, and let the optimizer select the best value

of p that would minimize the objective, i.e., the optimizer searches over all possible

timings for the stochastic transition. The disadvantage to this approach, is that we

will have to introduce another variable, pi, for every possible transition from mode

1 to 2, since there is no reason that the transition will be taken at exactly the same

value of p for each transition. Hence, this approach only works if we know, a priori,

32

the number (or an upper bound for this number) of stochastic transitions that are

taken (or are allowed).

We will now describe another form of nondeterminism in hybrid systems, even

when the transition times are deterministic. In our framework, for any predecessor

mode, there are n
(m)
τ pending transitions where n

(m)
τ might be greater than 1. The

event time which determines the correct transition from that mode is governed by

which of the transition conditions, L
(m)
j , becomes true first. For deterministic models,

in which the successor mode for any transition can be uniquely determined with a

unique transition time, and which we are concerned with, there is usually only one

transition that satisfies the above said condition, i.e., there is never a case where there

exists more than one transition condition becoming true at the same (earliest) time.

For situations in which that is true, a set of precedence relations or rules have to be

stipulated that uniquely determines the successor mode for all possible combinations

of multiple transition conditions becoming true at the same time, in order to define

a deterministic execution of the hybrid system. If such a precedence rule set is

not defined, or if a successor cannot be uniquely determined, we shall call such a

hybrid system nondeterministic (even though all transition times can be uniquely

determined). It can also be seen that the set J (m) may not be uniquely defined as

transitions with the same transition function to the same successor mode could be

grouped together by means of the Boolean operator OR. To remove this ambiguity,

we shall always set J (m) as the minimal transition set, where T
(m)
j 6= T

(m)
l , ∀j, l ∈

J (m) such that j 6= l, for all m ∈M .

Consider any mode m ∈ M . Let the power set of J (m) (the set of all subsets

of J (m)) be represented by P(J (m)). Then, the precedence relation function, K(m) :

P(J (m)) → J (m) will define a set of precedence relations for mode m. Obviously, the

precedence relation function can map the empty set to any index in J (m) because it

will not be needed. Also, it is obvious that the precedence relation function will map

singleton sets to their singleton. A very simple precedence relation function would be

K(m) : Z 7→ inf Z, i.e., the set J (m) is arranged in descending order of priority, with

transition 1 having the highest priority, followed by transition 2, etc.

33

Consider now Example 1 from [136]. A second order system, x = (x1, x2), with

two latching relays is considered. The hybrid system is in mode 1 when both relays

are open, mode 2 with only the first relay closed, mode 3 with only the second relay

closed, and mode 4 with both relays closed. It is assumed that the first relay closes

when x1 ≥ 0, and the second relay when x2 ≥ 0, so that the conditions for the closure

of one relay are independent of the position of the other relay.

From mode one, Witsenhausen defines the following transition set (defined in

[136]):

T12 = {x | x1 ≥ 0, x2 < 0}

T13 = {x | x1 < 0, x2 ≥ 0}

T14 = {x | x1 ≥ 0, x2 ≥ 0}

where Tij denotes the transition set from mode i to mode j. The departure set is

defined as the union of these transition sets,

T
−
1 =

⋃

j 6=i

T1j = {x | (x1 ≥ 0) ∨ (x2 ≥ 0)}.

Note that the departure set is closed, although the individual transition sets that make

up this set are not necessarily closed. The reason for this is that Witsenhausen makes

the assumption that for any 3 distinct indexes i, j, k in M , the sets Tij and Tik are

disjoint in R
n

(i)
x . And the reason that he makes this assumption is because no unique

evolution of the state could be defined when the conditions for transition to two or

more different modes are fulfilled at the same time, i.e., the hybrid system becomes

nondeterministic. For modes 2 and 3, the following transition sets are defined,

T24 = {x | x2 ≥ 0}

T34 = {x | x1 ≥ 0}.

Note that in the framework of Witsenhausen [136], the use of strict inequalities to

34

define transition conditions is allowed, as long as the departure set is guaranteed to

be closed. Furthermore, the need for strict inequalities arises from the need to specify

that the individual transition sets are disjoint. In addition, a burden is placed on

the modeler to (a) verify that the departure set is indeed closed, and (b) verify that

the transition sets are disjoint. The use of precedence relations as proposed mitigates

all of the above issues. In the proposed framework, we would have the following

transitions for the hybrid system,

Mode 1 :































J (1) = {1, 2, 3},

S(1)(1) = 2, L
(1)
1 := (x1 ≥ 0) ∧ (x2 ≤ 0),

S(1)(2) = 3, L
(1)
2 := (x1 ≤ 0) ∧ (x2 ≥ 0),

S(1)(3) = 4, L
(1)
3 := (x1 ≥ 0) ∧ (x2 ≥ 0),

Mode 2 :







J (2) = {1},

S(2)(1) = 4, L
(2)
1 := (x2 ≥ 0),

Mode 3 :







J (3) = {1},

S(3)(1) = 4, L
(3)
1 := (x1 ≥ 0),

and for m ∈M , the precedence relation function K(m) : Z 7→ supZ.

Another area where establishing a precedence relation is extremely helpful is when

considering optimization problems with hybrid systems embedded, especially when

the optimization decision variables are incorporated into the transition conditions.

For example, consider the following hybrid system from [17],

Mode 1 :































f (1) = ẋ− 1, J (1) = {1, 2},

S(1)(1) = 2, L
(1)
1 := (x− p ≥ 0),

S(1)(2) = 3, L
(1)
2 := (x+ p > 6),

T
(1)
1 = T

(1)
2 = x(p, σi+1) − x(p, τi),

(1.3)

Mode 2 : f (2) = ẋ+ 1, J (2) = ∅, (1.4)

35

Mode 3 : f (3) = ẋ− 2, J (3) = ∅. (1.5)

Suppose we start with x(p, 0) = 0 in mode 1, and wish to end at tf = 4, with p ∈ [2, 4].

There are two pending transitions from mode 1, and it is easy to see that for values

of p ≤ 3, transition 1 to mode 2 will be taken, whereas for p > 3, transition 2 to

mode 3 will be taken (see also Figure 1-12(a)). Note that the critical value of p at

which Tµ changes from 1, 2 to 1, 3 is p = 3. At this value, the discontinuity functions

(defined in Section 1.2) for both pending transitions will cross zero at the same time

t = 3. If the transition condition L
(1)
2 is redefined as x+p ≥ 6, both transitions would

become true at the same time, making the system nondeterministic. In [17], the strict

inequality is used in (1.3) for the transition condition between mode 1 and 3, so that

the transition to mode 2 should be taken at p = 3, much in the spirit of Witsenhausen

[136] as discussed in the previous example above. However, the difficulty in this is

that for values of p < 3, the transition to mode 3 should be taken, and the use of the

strict inequality then poses the difficulty of determining a unique transition time for

which the transition condition becomes true.

Note that the specification of a precedence relation function resolves this situation

in a much more satisfactory manner. We simply set L
(1)
2 as x + p ≥ 6, and the

precedence relation function K(m) : Z 7→ inf Z for m ∈ M . This stipulates that the

transition to mode 2 is given priority over that to mode 3, and defines a deterministic

execution of the hybrid system for any p ∈ [2, 4]. This simple example will also

highlight interesting issues for the parametric sensitivity analysis and optimization of

hybrid systems which will be presented later in this Chapter.

Clearly, for general optimization problems, it is also possible to have more than 2

transitions whose timings converge at some critical value of the parameters, as long as

one uniquely determined transition is allowed to be taken at that value. Again, this

situation is handled easily by specifying the appropriate precedence relation function.

36

1.1.3 Zeno Phenomena

As mentioned previously, we will only consider deterministic hybrid systems with

finite sequences Tτ terminating with epoch Ine
. However, we note that the phenomena

of having an infinite number of transitions occurring in a finite amount of time has

also been studied extensively. In this case, Tτ is an infinite sequence. Sometimes

called “chattering” behavior, this phenomena of having infinitely fast mode switches

is also called sliding in variable structure systems and relay control systems [133, 92].

The term Zeno was used to describe a physical model of a bouncing ball in which the

ball covers a finite distance in a finite time but with an infinite number of transitions

[62]. Zeno phenomena arise due to modeling abstractions, since it is clear that no

physical system in reality can be Zeno (after all, time never stops). For an overview

on the theory and applications of Zeno phenomena, see [79], where the term Zeno

hybrid automata was formally characterized.

For example, consider the following hybrid system,

Mode 1 :



















f (1) = ẋ− 1, J (1) = {1},

S(1)(1) = 2, L
(1)
1 := (x ≥ 1),

T
(1)
1 = x(σi+1) − x(τi),

Mode 2 :



















f (2) = ẋ+ 1, J (2) = {1},

S(2)(1) = 1, L
(2)
1 := (x ≤ 1),

T
(2)
1 = x(σi+1) − x(τi),

where t ∈ [0, 2], and x(0) = 0 with initial mode 1. For t ∈ [0, 1], the value of x will

be given by x(t) = t. At t = 1, the transition condition to mode 2 becomes true, and

so a transition is taken to mode 2. Since we have continuity of the state variable as

the transition function, the value of x in mode 2 at time t = 1 for epoch 2 is given by

x(σ2 = 1) = 1. Since we allow instantaneous transitions within our framework, the

transition condition for the transition from mode 2 to mode 1 becomes true at σ2 = 1,

and so an instantaneous transition is taken back to mode 1. And the cycle repeats,

because the transition condition for the transition from mode 1 to mode 2 becomes

37

true at σ3 = 1. In essence, the hybrid system becomes “stuck” at the point t = 1,

and will exhibit an infinite number of transitions at t = 1. The transitions between

the discrete modes of the hybrid system dominate, and the continuous state is not

allowed to evolve past the point t = 1. Hence, for this Zeno system, the solution of

the hybrid system is not well defined for t > 1.

As mentioned previously, physical systems are clearly not Zeno in the sense that

time does not get “stuck.” Thus, when modeling physical systems, the onus is on

the modeler to ensure that the hybrid system model does not exhibit Zeno behavior.

Still, special care has to be taken, especially when reversible discontinuities are to be

modeled, see Section 1.1.5 for a discussion.

One possible, practical way to prevent the solution of the hybrid system from

getting “stuck” at a critical point in time is to impose a constraint on the evolution of

the hybrid system that there must be a minimum duration to be spent in each epoch

before a transition can be taken. While this does not prevent chattering between

modes, it does ensure that there will never be an infinite number of transitions. The

disadvantages of implementing such an approach is the following: (a) it automatically

precludes instantaneous transitions from happening; and (b) no matter what value of

the minimum duration is chosen, there could be a legitimate transition that should

be taken to another mode before this duration is exceeded. This could potentially

alter the execution of the hybrid system drastically.

1.1.4 Tangential Events and Transversality

The aim of this section is to discuss what we mean by a “well-behaved” execution

of a hybrid system. Roughly speaking, an execution of a hybrid system is well-

behaved when, given a small perturbation in the system parameters p, the hybrid

mode trajectory does not change, while the hybrid time trajectory and the trajectory

of the continuous state variables change smoothly with respect to the perturbation.

Thus, if a particular reference execution of a hybrid system is well-behaved, then

one can expect to be able to predict the execution of the system within some small

neighborhood or region of the reference system parameters. We shall give a more

38

precise definition of a well-behaved execution later in this section, after we have

highlighted the many issues surrounding such a characterization.

For an idea of why such a characterization is important, consider the many efforts

in the literature to define well-behaved executions. In [136], necessary optimality

conditions for the optimal control problem posed are only developed for well-behaved

solutions of the hybrid system (see the reference for the conditions for a well-behaved

solution and a statement of the optimal control problem). In [30], assumptions are

made on the form of the general unified model of the hybrid system for the hybrid

control problem. In [90], conditions are developed to ensure continuity of the hy-

brid system (see the reference for the definition of a continuous hybrid system) with

respect to the initial conditions of the hybrid system. A common observation that

can be made is if the execution of a hybrid system is not well-behaved, then prob-

lems will arise with its analysis. Another common thread is the presence, in some

form or other, of a transversality condition that is sufficient to make the execution

well-behaved. Roughly speaking, in the words of Witsenhausen [136], an event is

transversal if the impact of the trajectory (of the continuous state variables) on the

transition surface (defined by the boundary of the set G(mi) described in Section 1.1.1)

is nontangential. In [124], functions (in C∞) are introduced which describe switching

manifolds of the hybrid automaton (analogous to the discontinuity functions in our

proposed framework which will be introduced below), and the transversality condi-

tion is imposed on these manifold functions: an event is transversal if the manifold

function that triggers the transition changes sign at the event, and its first derivative

does not vanish there. In [90, Theorem III.2], sufficient conditions, based on a con-

dition on the Lie derivative of the function describing the invariant set (in the spirit

of Tavernini [124]), are proposed to ensure continuity of the hybrid system. Effec-

tively, all of these conditions described above can be seen as variants of transversality

conditions.

We shall now discuss how transversality conditions can be developed for our pro-

posed modeling framework, as well as the difficulties in doing so. As will be seen

shortly, we will abandon the idea of solely developing transversality conditions; in-

39

stead, we will characterize a well-behaved execution of a hybrid system as an exe-

cution for which the parametric sensitivities exist and are unique (for a discussion

of parametric sensitivities, see Section 1.3). The reasons for doing this will become

apparent, and can be summarized by the following: (a) transversality is just one of

many conditions which need to be satisified, and is somewhat cumbersome to analyze

within the proposed modeling framework, and (b) conditions for the existence and

uniqueness of parametric sensitivities of hybrid systems have been developed in [63],

and are a more intuitive and elegant way to characterize well-behaved executions.

Due to the flexibility of specifying transition conditions using atomic logical propo-

sitions connected by the AND and/or OR operators in our proposed modeling frame-

work, transversality conditions are difficult to define and visualize without some addi-

tional work. First, we shall transform the atomic logical propositions into functions.

Consider the transition condition L
(m)
j , for j ∈ J (m),m ∈ M . The relational atoms

that make up the condition can be rearranged to:

g
(m)
j,l

(

ẋ(m),x(m),p, t
)

≤ 0, l = 1, . . . , n
(m)
j (1.6)

in order to define atomic discontinuity functions, where n
(m)
j is the total number of

separate relational atoms making up the transition condition. Viewed this way, the

transition condition becomes true whenever the atomic discontinuity functions are

satisfied according to the logic of the transition condition. For example, consider the

following transition condition,

L
(1)
1 := (x1 ≥ 0) ∨ (x2 ≤ 0).

The atomic discontinuity functions are then given by

g
(1)
1,1 = −x1, g

(1)
1,2 = x2.

The transition condition thus becomes true when either one of the discontinuity func-

tions becomes nonpositive. Roughly speaking, each atomic logical proposition changes

40

its value when its associated discontinuity function crosses the zero axis (the time

axis). Henceforth, we will assume that all atomic discontinuity functions, g
(m)
j,l , are

continuous on R
n

(m)
x × R

n
(m)
x × P × [t0, tf] for all m ∈M, j ∈ J (m), l ∈ {1, . . . , n

(m)
j }.

Now, we are in a position to describe what we mean by a tangential and transversal

event for a transition condition with a single atomic logical proposition. Consider any

arbitrary p∗ ∈ P , epoch Ii, i ∈ {1, . . . , ne} and current mode mi ∈ M . In this case,

we have J (mi) = {1} and n
(mi)
1 = 1, with g

(mi)
1,1 as the discontinuity function. Consider

now a transition that is taken to mode S(mi)(1) at time t∗ ≥ σi. There are only two

possibilities, either

g
(mi)
1,1 (ẋ(mi)(p∗, t∗),x(mi)(p∗, t∗),p∗, t∗) < 0 (1.7)

or

g
(mi)
1,1 (ẋ(mi)(p∗, t∗),x(mi)(p∗, t∗),p∗, t∗) = 0. (1.8)

Condition (1.7) can be true only when t∗ = σi, i.e., there is an instantaneous tran-

sition for the epoch Ii. This can happen, for example, when an impulsive transition

function maps the final value of x(mi−1)(p∗, τi−1) in epoch Ii−1 such that the initial

conditions for epoch Ii, x(mi)(p∗, σi), automatically satisfies the transition condition

(when considering the closed set G(mi) described by the transition condition, the tran-

sition function maps the final value of x(mi−1)(p∗, τi−1) in epoch Ii−1 to a point in the

interior of G(mi)). For the case where (1.7) is true, we will consider it a transversal

(instantaneous) event.

Consider now the case where (1.8) is true. If t∗ = σi, we have an instantaneous

event, and we will consider it a tangential (instantaneous) event (typically, such events

correspond to critical values of p∗ such that the mode sequence of the hybrid system

changes qualitatively in a neighborhood around p∗). Note that if t∗ = tf , we have a

tangential instantaneous event at the final time. If σi < t∗ < tf , then we will consider

the event transversal if the following condition is satisfied,

∃ε > 0 s.t. g
(mi)
1,1 (ẋ(mi)(p∗, α),x(mi)(p∗, α),p∗, α) < 0, ∀α ∈ (t∗, t∗ + ε) (1.9)

41

(a) (b) (c)

(d) (f)(e)

Figure 1-3: Types of discontinuity functions.

otherwise, the event is tangential. In order to use the above condition, we have to

define the quantities ẋ(mi)(p∗, α) and x(mi)(p∗, α), ∀α ∈ (t∗, t∗+ε). To do this, we will

use the concept of discontinuity locking, which will be described in detail in Section

1.2. The idea is to “lock” the dynamics of the current mode, mi, up to the time t∗+ε,

and effectively ignore any pending transitions. By assumption, if t∗ < tf , there will

exist some ε such that t∗ + ε < tf , where the solution of the ODE system in mode mi

exists and is unique, and thus ẋ(mi)(p∗, α) and x(mi)(p∗, α) are uniquely defined for

all α ∈ (t∗, t∗ + ε).

Figure 1-3 shows some examples of discontinuity functions for the case where

t∗ > σi. Note that for all cases, the event occurs at the time t∗ as indicated. According

to the definition above, cases (a), (b) and (c) in Figure 1-3 are transversal events,

while cases (d), (e) and (f) are tangential events. What is perhaps controversial is

the classification of case (c) as a transversal event, even though the trajectory of the

discontinuity function is tangent to the zero time axis at the point of the event. This

is because such an event can still possibly lead to a well behaved execution of the

hybrid system, as a small perturbation of the system parameters will not lead to a

qualitatively different mode sequence.

42

1

0 1 2

Figure 1-4: Example of a nonsmooth discontinuity function.

Note that even though the discontinuity function is continuous (indeed, even if we

assume that the discontinuity function is continuously differentiable on its domain),

there is no guarantee that it will be smooth, because there are no guarantees that the

continuous state of the hybrid system will be smooth in time. For example, consider

the following ODE hybrid system with piecewise constant right hand sides,

Mode 1 :



































f (1) =











ẋ+ 1 if t < 1

ẋ− 1 if t ≥ 1

, J (1) = {1},

S(1)(1) = 2, L
(1)
1 := (x ≤ 0),

T
(1)
1 = x(σi+1) − x(τi),

Mode 2 : f (2) = ẋ, J (2) = ∅.

where t ∈ [0, 2], and x(0) = 1 with initial mode 1. Then, the discontinuity function

g
(1)
1,1 = x, and is shown in Figure 1-4, which corresponds to case (d) of Figure 1-3.

Of course, one way to mitigate this problem is to treat the points of discontinu-

ities of the dynamics as time events. For the above example, one can construct the

43

following equivalent hybrid system,

Mode 1 :











































f (1) = ẋ+ 1, J (1) = {1, 2},

S(1)(1) = 2, L
(1)
1 := (t ≥ 1),

S(1)(2) = 3, L
(1)
2 := (x ≤ 0),

T
(1)
1 = x(σi+1) − x(τi),

T
(1)
2 = x(σi+1) − x(τi),

Mode 2 :



















f (2) = ẋ− 1, J (2) = {1},

S(2)(1) = 3, L
(2)
1 := (x ≤ 0),

T
(2)
1 = x(σi+1) − x(τi),

Mode 3 : f (3) = ẋ, J (3) = ∅.

where t ∈ [0, 2], and x(0) = 1 with initial mode 1, and the precedence relation

K(1) : Z 7→ inf Z. Note that at t = 1, there will be a transition from Mode 1 to

Mode 2 because of the precedence relation, followed by an instantaneous transition

from Mode 2 to Mode 3. If the precedence relation K(1) : Z 7→ supZ was used

instead, then there will be a transition from Mode 1 to Mode 3 at t = 1 instead.

In either case, there will be a qualitative change in the mode sequence if there is

a small perturbation in the initial conditions of the hybrid system, which implies

that the execution of the hybrid system is not well behaved. Thus, reformulating

the hybrid system into one where the discontinuity functions are smooth will not

make the execution of the hybrid system well behaved, because the original points of

nonsmoothness of the discontinuity functions will often correspond to points at which

competing transitions of the reformulated hybrid system coincide.

Nevertheless, it will be useful to examine situations where one can be sure that

the discontinuity functions are smooth with respect to time. In these cases, we will

replace (1.9) with the following condition:

ġ
(mi)
1,1 (ẍ(mi), ẋ(mi),x(mi),p∗, t∗) < 0, (1.10)

44

in the spirit of Tavernini [124]. Note that (1.10) is not equivalent to (1.9). To see

this, consider Figure 1-3. According to (1.10), case (a) is transversal, while cases (c)

and (f) are tangential. In other words, (1.10) is a stronger transversality condition.

On the other hand, it seems easier to implement as an additional atomic proposition

to be added to the current transition condition via the AND operator. However, we

meet with a technical difficulty here. Notice the form of (1.10) involves the use of a

strict inequality. To add the condition within our proposed modeling framework, we

have to add the logical condition corresponding to the following condition instead,

ġ
(mi)
1,1 (ẍ(mi), ẋ(mi),x(mi),p∗, t∗) ≤ 0. (1.11)

Of course, the moment we do this, cases (a), (c) and (f) in Figure 1-3 become transver-

sal. What this means is that although one can verify whether an event is transversal,

one cannot simply add a condition that will ensure that an event is transversal.

However, we will see where the addition of such a condition will become useful for

modeling reversible discontinuities in the next section.

In addition, a word of caution has to be said about enforcing transversality through

the addition of (1.11) as another atomic logical proposition that has to be satisfied.

Since the modeling framework allows instantaneous transitions, adding (1.11) to a

transition condition may wrongly prevent a transversal instantaneous transition from

occurring. In addition, the situation becomes more complicated to analyze when

considering transition conditions involving multiple atomic logical propositions. One

can easily come up with examples for atomic logical propositions joined together by

the AND operator. If (1.11) were to be added for each atomic logical proposition,

there is no guarantee that the original logic will be preserved, because any atomic

discontinuity functions which satisfy (1.7) should not have to satisfy (1.11) at the

same time.

Hence, while one can verify whether transversality holds for a particular execution

of the hybrid system, it is very difficult to impose conditions, a priori, on a hybrid

system such that transversality will always hold. Thus, it is argued that it would be

45

better to characterize a well behaved execution of a hybrid system as one in which the

parametric sensitivities of the hybrid system exist and are unique (see Section 1.3).

Note that this automatically encompasses the “continuous” dependence on the initial

conditions of the hybrid system as described in [90], since additional parameters can

be introduced to serve as the initial conditions of the hybrid system.

Note that sufficient conditions for the existence and uniqueness of the parametric

sensitivities of hybrid systems have been developed in [63]. Two of the key assump-

tions that are made are smoothness in the neighborhood of the transition times, and

that for any transition, only one relational expression (atomic logical proposition)

activates. Note that transversality conditions would fall under the category of the

first assumption. Indeed, for an event whose discontinuity function is tangent to the

time axis (case (f) for Figure 1-3), there can be a nonsmoothness in the event time

if the discontinuity function depends on the system parameters, see e.g., the ODE

example (1.21) - (1.22) presented later.

The second key assumption that only one relational expression activates is im-

portant, especially in our proposed modeling framework where transitions can have

multiple atomic logical propositions linked together by AND and OR. To see this, con-

sider the following hybrid system,

Mode 1 :



















f (1) = ẋ− 1, J (1) = {1},

S(1)(1) = 2, L
(1)
1 := (x2 ≤ p) ∨ (x ≥ p),

T
(1)
1 = x(p, σi+1) − x(p, τi),

Mode 2 : f (2) = ẋ, J (2) = ∅.

where p ∈ [−0.5, 0.5], t ∈ [0, 2], and x(0) = −1 with initial mode 1. Note that for this

hybrid system, the mode sequence is 1, 2 for all p ∈ [−0.5, 0.5], and that the atomic

proposition x ≥ p is transversal according to condition (1.9) for any p ∈ [−0.5, 0.5].

Since the transition condition involves an OR, one might expect that the system would

be well behaved for all values of p ∈ [−0.5, 0.5]. However, this is not the case.

Note that for p < 0, the atomic logical proposition (x ≥ p) is satisfied first, and

46

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

-0.4 -0.2 0 0.2 0.4

Figure 1-5: Plot of x(p, 2) against p.

is transversal, while for p > 0, the atomic logical proposition (x2 ≤ p) is satisfied

first, and is also transversal. At p = 0, both atomic logical propositions are satisfied

at the same time, however, only (x ≥ p) is transversal. Figure 1-5 shows the plot of

x(p, 2) against p, and it can be seen that there is a point of nonsmoothness at p = 0.

Obviously, the parametric sensitivities of the hybrid system do not exist at that

critical point. This example does not contradict the sufficient conditions proposed in

[63] because at the critical point of p = 0, there is not just one relational expression

that becomes true.

The example above highlights the difficulties involved in deciding on transversality

conditions for transition conditions involving multiple logical propositions. However,

even when transversality is satisfied for all atomic logical propositions, the parametric

sensitivities may not exist, as the following example will show. Consider the following

hybrid system,

Mode 1 :



















f (1) = ẋ+ 1, J (1) = {1},

S(1)(1) = 2, L
(1)
1 := (x ≤ p) ∨ (x ≤ 0),

T
(1)
1 = x(p, σi+1) − x(p, τi),

Mode 2 : f (2) = ẋ, J (2) = ∅.

47

where p ∈ [−0.5, 0.5], t ∈ [0, 2], and x(0) = 1 with initial mode 1. Note that both

atomic propositions are transversal according to condition (1.9) or (1.10) or (1.11) for

any p ∈ [−0.5, 0.5]. Also, note that the mode sequence is 1, 2 for all p ∈ [−0.5, 0.5].

The value of x(p, 2) is given by the following equation,

x(p, 2) =











0 if −0.5 ≤ p < 0,

p if 0 ≤ p ≤ 0.5.

Clearly, there is a point of nonsmoothness at p = 0 where the parametric sensitivities

do not exist. Of course, this behavior is not solely restricted to transition conditions

involving the OR operator. For example, consider the following hybrid system,

Mode 1 :



















f (1) = ẋ+ 1, J (1) = {1},

S(1)(1) = 2, L
(1)
1 := (t ≥ 1) ∧ (x ≤ 0),

T
(1)
1 = x(p, σi+1) − x(p, τi),

Mode 2 : f (2) = ẋ− 1, J (2) = ∅.

where p ∈ [0.5, 1.5], t ∈ [0, 2], and x(0) = p with initial mode 1. Again, note that both

atomic propositions are transversal according to condition (1.9) or (1.10) or (1.11)

for any p ∈ [0.5, 1.5]. Also, note that the mode sequence is 1, 2 for all p ∈ [0.5, 1.5].

The value of x(p, 2) is given by the following equation,

x(p, 2) =











p if 0.5 ≤ p < 1,

2 − p if 1 ≤ p ≤ 1.5.

There is clearly a point of nonsmoothness at p = 1 where the parametric sensitivities

do not exist. Again, this is because at p = 1, both atomic logical propositions

become true at the same time, which violates the assumption made in [63]. These

examples illustrate that, within our proposed modeling framework, transversality is

not sufficient to guarantee the existence of the parametric sensitivities, and thus a

well behaved execution of the hybrid system.

48

Another important point to note about the theory developed in [63] is that it

does not apply for transversal instantaneous transitions that satisfy (1.7), because it

is assumed that (1.8) holds at all events. On the other hand, tangential instantaneous

transitions will most likely violate the key smoothness assumption made. Thus, within

our modeling framework, instantaneous transitions will, in general, not lead to well

behaved executions of hybrid systems.

Finally, we note that even though an execution of a hybrid system may not be

well behaved, it does not mean that the solution of the hybrid system does not exist.

For example, consider the last example with the value of p = 0. The execution of the

hybrid system exists and is unique for that value of p = 0. It merely means that the

solution of the hybrid system does not change smoothly with a small perturbation in

the value of p.

1.1.5 Modeling Reversible Discontinuities

Reversible discontinuities occur when we have switching behavior between two modes,

A and B, where the transition condition for the transition between mode A and B

is the negation of the transition condition for the transition between mode B and A.

This is commonly represented by the IF .. THEN .. ELSE .. END structure in

modeling languages for describing the dynamic system, e.g., the EQUATION section of

an ABACUSS II [41] input file, or the res0.f input file using DAEPACK [130].

In this section, we will highlight some of the difficulties with modeling reversible

discontinuities within the proposed modeling framework. Note that the same diffi-

culties exist within the frameworks of [136, 30, 90]. Indeed, within the framework

of [136], reversible discontinuities cannot be modeled because it is assumed that the

arrival and departure sets are disjoint; we shall see shortly that this assumption can

never be satisfied.

There are many instances where it is useful to model reversible discontinuities in

physical processes. Reversible discontinuities occur naturally when modeling physico-

chemical mechanisms. This has been discussed in detail in [15, 18]. Here, we shall

provide a simple example of a physico-chemical discontinuity: that of a tank with a

49

FLOWNO_FLOW

Level > Weir_Height

NOT {Level > Weir_Height}

Figure 1-6: Tank with a weir.

weir. Consider a vessel containing an overflow weir that regulates the flow of liquid

from it. During normal operation, this device will maintain a relatively constant

holdup of material, but if, for any reason, the level of liquid in the vessel drops to or

below the height of the weir, flow from the vessel will cease until the level rises above

that of the weir again. This can be modeled conveniently as a hybrid system with

two modes, FLOW and NO FLOW respectively, with the transition condition between the

two modes expressed as a function of the level of liquid in the vessel. Figure 1-6

depicts a typical tank with a weir, as well as the associated hybrid automaton model.

Clearly, the transition condition for one transition is the negation of the condition for

the other.

Another example of reversible discontinuities arises in the modeling of min and

max operations. Consider the following dynamic system,

ẋ1 = min(x1, x2),

ẋ2 = x1.

Consider the term z = min(x1, x2). Clearly, we must have

z =











x1 if x1 < x2 ,

x2 if x1 ≥ x2 .

This can also be expressed as the following logical structure,

if (x1 < x2) then z = x1 else z = x2 endif.

50

The equivalent hybrid system for the dynamic system above would be the following,

Mode 1 :



















f
(1)
1 = ẋ1 − x1, f

(1)
2 = ẋ2 − x1 J (1) = {1},

S(1)(1) = 2, L
(1)
1 := (x1 < x2),

T
(1)
1 = x(σi+1) − x(τi),

Mode 2 :



















f
(2)
1 = ẋ1 − x2, f

(2)
2 = ẋ2 − x1 J (2) = {1},

S(2)(1) = 1, L
(2)
1 := (x1 ≥ x2),

T
(2)
1 = x(σi+1) − x(τi),

where the transition condition L
(1)
1 is the negation of the transition condition L

(2)
1 .

Immediately, we see the problem. Due to the fact that one condition is the negation

of the other, one of the conditions will not define a closed set. In this example, a strict

inequality is used to define L
(1)
1 which is not allowed within our proposed modeling

framework, as no unique, earliest time can be determined when the condition first

becomes true, and thus, when the transition is to be made.

Of course, one way to eliminate this problem is to force the transition condition

to define a closed set, by replacing the strict inequality with a weak inequality, i.e.,

replace L
(1)
1 with the following,

L
(1)
1 := (x1 ≤ x2).

This way, the form of the hybrid system satisfies the conditions of the proposed

modeling framework. However, there is again a major problem with this model of a

reversible discontinuity: the system is inherently Zeno. To see this, assume that we

are in Mode 1, and epoch Ii, and a transition is made at time t∗ to Mode 2. At the

transition time, we have

x1(t
∗) = x2(t

∗).

Since we have state continuity, we have x1(σi+1) = x2(σi+1) = x1(t
∗). This satisfies

the transition condition L
(2)
1 , which means an instantaneous transition is taken back

to Mode 1. And the cycle repeats.

51

Note that this Zeno behavior will persist for any kind of discontinuity function

shown in Figure 1-3, even the transversal case (a). This behavior is inherent for the

model proposed for reversible discontinuities above, and will be the default behavior

for any of the modeling frameworks proposed to date. It is outside the scope of

this thesis to devise a theoretical modeling framework that can handle this issue

satisfactorily; that is left for future work.

Instead, we will propose a fix for modeling reversible discontinuities by adding a

transversality condition, (1.11), to the transition conditions. Of course, this assumes

that the original discontinuity functions derived from the reversible discontinuity are

smooth in time. For the example above, this means replacing L
(1)
1 and L

(2)
1 with the

following,

L
(1)
1 := (x1 ≤ x2) ∧ (ẋ1 − ẋ2 ≤ 0),

L
(2)
1 := (x1 ≥ x2) ∧ (ẋ2 − ẋ1 ≤ 0).

It is clear that the addition of such a transversality condition will prevent Zeno be-

havior for discontinuity functions which were transversal such as case (a) in Figure

1-3, as discussed in the previous section. However, Zeno behavior will still occur for

tangential discontinuity functions such as cases (c) and (f) in Figure 1-3. What this

means is that, within the current modeling framework, there is no effective way to

model reversible discontinuities without preventing Zeno behavior (theoretically) for

tangential events, even if transversality conditions are employed. It appears that a to-

tally new definition of a transition has to be devised in order to establish a theoretical

modeling framework that prevents Zeno behavior for reversible discontinuities.

Finally, we note that in practice, the simulation of reversible discontinuities does

not pose problems for a vast majority of physical systems. This is because of the

practicalities of algorithms for event detection and reinitialization after every event,

and the mechanisms devised to prevent discontinuity sticking (see Section 1.2 for a

discussion on the simulation of hybrid systems). Roughly speaking, after reinitializa-

tion, the value of the active discontinuity function is guaranteed to be negative, which

52

means that an instantaneous transition will not be taken back into the predecessor

mode for reversible discontinuities. On the other hand, chattering behavior might

still be observed, where the simulator takes very small steps while switching between

two modes. It has been our experience that when this occurs, it is very likely that a

modeling error has been made, and such behavior can usually be remedied by fixing

the model appropriately, or, (presumably) the rapid switching actually reflects the

behavior of the physical system.

1.1.6 A Hybrid Automaton Model

We will now summarize the hybrid automaton model. A hybrid automaton is given

by H = (M,V ,F , T 0,J ,L, T ,S,K) where

• M is the index set of modes.

• V is a mapping that maps the index set of modes to a finite set of variables,

V(m) = V (m) for any m ∈M .

• F is a mapping that maps the index set of modes to a system of differential

equations, F(m) = f (m) for any m ∈M .

• T 0 is a mapping that maps the index set of modes to a system of consistent

initial conditions, T 0(m) = T(m,0) for any m ∈M .

• J is a mapping that maps the index set of modes to a finite set of pending

transitions, J (m) = J (m) for any m ∈M .

• L is a mapping that maps the index set of modes and the index set of pending

transitions to a logical transition condition, L(m, j) = L
(m)
j for any m ∈ M ,

j ∈ J (m).

• T is a mapping that maps the index set of modes and the index set of pending

transitions to system of transition functions, T (m, j) = T
(m)
j for any m ∈ M ,

j ∈ J (m).

53

• S is a mapping that maps the index set of modes to a mapping of successor

modes, S(m) = S(m) for any m ∈M .

• K is a mapping that maps the index set of modes to a precedence relation

function, K(m) = K(m) for any m ∈M .

A finite, deterministic, non-Zeno execution of a hybrid automaton H is given by

E(H) = (Tµ, Tτ ,p), such that the following conditions are satisfied,

1. Tµ and Tτ are finite sequences.

2. T 0(m1) provides a consistent set of initial conditions for mode m1.

3. For the transition between mode mi in epoch Ii to mode mi+1 in epoch Ii+1 for

any i ∈ {1, . . . , ne − 1},

(a) If τi > σi, there does not exist a time t∗ ∈ [σi, τi), such that any pending

transition condition L(mi, j) is TRUE at t∗, for any j ∈ J (mi).

(b) At τi, at least one pending transition condition L(mi, j) is TRUE, where

j ∈ J (mi).

(c) The successor mode mi+1 = S(mi)(K(mi)(Z)) where Z is a set that con-

tains the indices of transition conditions which are TRUE at τi.

(d) T (mi,K(mi)(Z)) provides a consistent set of initial conditions for mode

mi+1, where Z is a set that contains the indices of the transition conditions

which are TRUE at τi.

4. For each mode mi in epoch Ii, for any i ∈ {1, . . . , ne}, the values of x(m)(p, t)

are given by the solution of the IVP whose dynamics are given by F(mi) with

initial conditions x(mi)(p, σi) given by T 0(m1) for i = 1, and T (mi,K(mi)(Z))

for i = 2, . . . , ne, where Z is a set that contains the indices of the transition

conditions which are TRUE at τi.

Note that condition 1 automatically makes the execution of the hybrid system finite

and non-Zeno. By specifying Tµ, Tτ and p, the initial mode, initial time, final time

54

Table 1.1: Comparison of modeling frameworks: Thesis refers to this thesis, “sens”
refers to parametric sensitivities, and “trans” refers to transversality.
Feature Thesis [136] [90] [62] [30] [5]
Deterministic formulation yes yes yes yes yes no
Can determine a unique transition time yes yes yes no yes no
Can determine a unique successor for
competing transitions

yes no no no no no

Can model reversible discontinuities partially no no no no no
Use of logical propositions in transition
conditions

yes no no yes no no

Characterization of well-behaved exe-
cutions

sens trans trans no trans no

and system parameters are specified. Hence, the solution of the hybrid system can

be uniquely determined, because our proposed modeling framework is deterministic

as discussed in the preceding sections.

A well behaved execution E(H) is defined as a finite, deterministic, non-Zeno

execution of a hybrid system for which the parametric sensitivities of the hybrid

system exist and are unique. Table 1.1 summarizes the features of various modeling

frameworks in the literature against the many modeling issues raised in the preceding

sections.

The time evolution, or execution, of a hybrid system may then be viewed in the

following manner. Starting from consistent initial conditions in some specified initial

mode, the continuous state evolves according to the relevant differential equations

until an event occurs, at which point the discrete subsystem influences the continuous

subsystem, for example, if this is a switching event, the system switches to a new

mode, and the continuous state evolves in the new mode until another such event,

etc. One important facet of hybrid system behavior is thus the sequence of modes that

is visited during a particular execution, encapsulated in the hybrid mode trajectory,

Tµ, which has a one to one correspondence with the hybrid time trajectory Tτ . Tµ

is characterized by specific parameter values, the initial mode and initial conditions

(an individual mode may be visited many times along a time trajectory).

As a practical example of a hybrid system, consider the hybrid dynamic model

of a pressure vessel located in a chemical plant [19]. The tank may be supplied with

55

(a)

CH4(P1)

Feasible
N2

O2 CH4

(b)

Explosive

(P4)N2(P2)

O2(P3)

Path

Region

Figure 1-7: Schematic of pressure vessel: (a) Process flowsheet (b) Mole fraction
space.

oxygen, nitrogen and/or methane via three separate lines, and gas mixtures may be

withdrawn from the vessel through a fourth line. The flow in each line is regulated

by an open/close non-return valve as shown in Figure 1-7. Discontinuities in the

flow through the lines appear because the non-return valves are modeled using three

distinct modes: zero flow, laminar/turbulent and choked flow regimes. It is evident

that the equations describing the flow/pressure relationships will differ in each mode.

While the modeling framework presented above is particularly suitable for the

analysis and understanding of the interactions between the continuous and discrete

subsystems, it poses a practical problem for the design of simulation software, because

many applications require a combinatorial number of modes for their description. For

example, suppose that we wish to create a plant model with 100 instances of this valve

model. Since each valve could independently be in any flow regime at any point in

time, this would imply 3100 modes for the plant model. Enumeration of these modes

by a software system or algorithm is clearly not practical. This problem has been

noted as early as [72].

Indeed, a lot of ingenuity in designing software and numerical algorithms for the

analysis of hybrid systems goes into avoiding enumeration of the modes while still

retaining a flexible modeling framework for the user. It should be noted that the

most convenient representation is usually dictated by the class of application, and

thus many different modeling languages have been proposed over the years (see [104]

56

and [40] for early reviews, and [69], [8], [6], [9], and [10]). Our efforts in the Process

Systems Engineering Laboratory (PSEL) are embodied in the software systems ABA-

CUSS II [41] and JACOBIANTM[87] (for chemical engineering applications), and

DAEPACK [130, 128] (for general user supplied FORTRAN code), where each in-

stance of the flow-pressure equation, or each IF statement in a FORTRAN code,

records its own mode (e.g., zero flow, laminar/turbulent or choked). Subsequently,

when, for example, a function evaluation is required, the simulation executive can

query the set of equations currently active as those contributed by each of these

individual modes; this avoids exhaustive enumeration of all possible modes.

An implementation of this methodology is illustrated in Figure 1-8. Assuming

isothermal conditions, a hybrid dynamic model of the pressure vessel in Figure 1-7

is represented by the equations shown, where I = {1, 2, 3} is the index set for the

chemical species present, K = {1, 2, 3, 4} is the index set for the valves, the constant

V is the volume of the tank, yi∈I(t) are the mole fractions in the vessel, yk∈K,i∈I(t)

are the mole fractions in the flow through each line, Pk∈K(t) are the known supply

and discharge pressures, and the controls uk∈K(t) ∈ {0, 1} are known time profiles

for the on/off signals to the respective valves. We have 5 submodels in the overall

model, where submodels 1 to 4 represent the four non-return valves with 3 modes in

each submodel, and submodel 5 represents the system of equations (dynamic mass

balances and the ideal gas equation of state) that are invariant to the system.

It is worth noting that we do not have a direct transition from the mode Zero

Flow to the mode Choked Flow. Instead, if the valve signal is on, and the pres-

sure drop across the valve is high enough, we would have a transition from mode

Zero Flow to mode Laminar/Turbulent, followed by an instantaneous transition

from mode Laminar/Turbulent to mode Choked Flow. This is an example where an

instantaneous epoch would appear (multiple transitions at a given time). A possi-

ble alternative way to model the system is to include an explicit transition between

the said modes with a transition condition of (uk ≥ 0.5) ∧ (Pout/Pin ≤ 0.53) where

Pin and Pout are the respective inlet and outlet valve pressures, and specify a prece-

dence rule that states that whenever transitions to mode Laminar/Turbulent and

57

Figure 1-8: Hybrid dynamic model of pressure vessel.

Choked Flow are active at the same time, the transition to mode Choked Flow is

always taken. Also, note that we have reversible discontinuities while modeling the

transitions between the Choked Flow mode and the Laminar/Turbulent mode. As

discussed in the previous section, we would add the relevant transversality conditions

for these reversible discontinuities, which have not been shown in Figure 1-8 due to

space constraints.

It can easily be shown that this methodology of tracking the modes of the indi-

vidual components can be expressed in the hybrid automaton framework, and vice

versa. Clearly, the only difference is in the way that the discrete state of the hybrid

system is described and partitioned. In the hybrid automaton framework, there is a

single index enumerating all possible discrete states of the system, whilst in practice,

each component of the system has an associated index tracking the active mode of

the component. Consider the pressure tank example. We have M = {1, 2, . . . , 81},

whereas in practice, we have three modes for each valve, Vk ∈ N = {1, 2, 3}, ∀ k ∈ K.

It is thus trivial to obtain a bijective mapping, f : N4 →M that maps the system in

58

practice to the hybrid automaton framework. It is clear that transitions are effected

in the same way in both forms with a one to one correspondence between them.

Therefore, we will use the hybrid automaton framework as the basis for the analysis

of hybrid systems because it has a cleaner and simpler structure.

1.2 Simulation

The importance of the applications of simulation has motivated the development of

many software packages (see [102] for a recent review of the packages). The great

majority of them have been built from an understanding of the simulation of purely

continuous systems. In fact, continuous systems can be seen as a special case of

hybrid systems where there are no discrete transitions. Numerical methods for solving

systems of ODEs and DAEs for a purely continuous system (see [11] for an overview)

are well established and a number of robust codes are widely available in the public

domain, e.g., RKSUITE [31], ODEPACK [74], VODE [33], DASSL [108]. Today, any

simulator worth its salt must be able to pass the test of simulating a purely continuous

system robustly (and with flying colors) before even attempting hybrid systems. In

general purpose simulators, implicit linear multi-step methods, particularly Gear’s

BDF method [65], and implicit Runge-Kutta methods based on collocation, e.g.,

Radau methods [11], are favored because they can robustly solve a very broad range

of problems that the user may pose.

The incorporation of discrete dynamics into continuous system simulation started

with [39]. Subsequently, in the early 1990’s, there emerged a growing interest in the

modeling and simulation of large-scale hybrid systems [15, 52, 7] as the limitations of

continuous system modeling methodology became more apparent. It is now widely

accepted that all but the most trivial engineering models of dynamic systems contain

discontinuities.

We will concentrate the remaining discussion in this section on the numerical

treatment of transitions as these are the additional complications introduced by mov-

ing from continuous system simulation to hybrid system simulation. Events can be

59

either time events or state events. Note that this classification of events is an alterna-

tive form of classification, as opposed to controlled or autonomous transitions. Time

events occur at a specified future time that is known when the event is scheduled, and

present few problems for simulation. Thus, time events can either be controlled or

autonomous, provided that the time of transition is known beforehand. The numer-

ical integration procedure is simply asked to step exactly to the time event. On the

other hand, state events are the mechanism whereby the state of the continuous sub-

system influences the discrete subsystem. A state event occurs (and the discrete state

potentially changes) when some condition on the continuous state is satisfied (e.g., a

negative pressure drop across a non-return valve forces the valve to close). Thus the

timing of state events is a function of the solution of the differential equations, tran-

sition conditions and transition functions governing the current and previous modes

visited along Tµ. Indeed, in a particular mode, a number of different events may be

pending, each implying a switch to a different mode (e.g., transition to the choked

flow or no flow regime while in the laminar/turbulent flow regime).

The relational atoms that make up a currently pending transition condition are

rearranged to form discontinuity functions according to (1.6) as described in Section

1.1.4. As stated above, the next (and correct) event is defined as the earliest time

at which one of the currently pending transition conditions becomes true. During

the course of a simulation, the actual mode switching that occurs depends on which

transition condition is satisfied first, which in turn depends on the parameters and/or

initial conditions. Once the system is in one of these new modes, it may evolve in a

radically different way from that if it had switched to another of the pending modes.

Thus, both Tτ and Tµ can be extremely sensitive to parameters (as mentioned before,

we can treat the initial conditions as parameters by adding auxiliary parameters to

represent these conditions).

In their seminal paper, Hay and Griffin [72] present a thoughtful treatment of the

subject, in which they propose the use of discontinuity functions to track and detect

discontinuities (leading to the method of “discontinuity locking”) and recognize the

role and effects of error in the numerical integrator among other issues. Many methods

60

have been proposed to deal with state event location and detection (see [107] for a

detailed discussion). A description of how hybrid simulators work in general follows:

1. The model is compiled and validated. With modern DAE solvers such as DASSL

[108] there is no need to determine computational causality, which was necessary

in earlier simulators, particularly those based on the CSSL (Continuous System

Simulation Language) standard [123].

2. The current mode is set to the initial mode.

3. A number of structural1 diagnoses may be applied to the DAEs in the current

mode. First, the DAEs may be checked for structural consistency [106]. If

this check fails, the corrector iteration of any implicit integration method will

be singular, so it is impossible to proceed. DAEs are characterized by various

indices, see [32] and [36] (all indices are equivalent in the linear time invariant

(LTI) case). The differentiation index is the commonly used index for general,

nonlinear DAEs. Explicit and implicit ODEs are differentiation index 0 DAEs.

Standard integration codes can usually handle differentiation index ≤ 1 DAEs.

However, if the differentiation index ≥ 2, specialized codes only applicable to

special equation structures are necessary. On the other hand, differentiation

index ≥ 2 systems can be reduced to differentiation index ≤ 1 systems via a

process of repeatedly differentiating subsets of the DAEs. The resulting index

≤ 1 system may then be solved using standard codes. For example, a struc-

tural algorithm for this purpose is described by [95]. Alternatively, a structural

check for differentiation index ≤ 1 may be made, and if this check fails, the

user is asked to reformulate his or her model (e.g., Pantelides’ [106] algorithm

can be applied; if it performs zero iterations, the structural check is passed).

It should be noted that none of these structural analyses bear any connection

to the actual differentiation index [111], even in the LTI case. However, it

has been our experience in the PSEL that these structural checks almost al-

1Here, structural analysis is used to refer to algorithms that operate on the incidence matrices of

the relevant equations and variables.

61

ways catch any problems with the formulation of physical models, and provide

adequate information for a numerically well-behaved reformulation. Moreover,

these structural checks are practical to implement and apply in large-scale mod-

eling environments.

4. A consistent initialization calculation [106], usually obtained by solving a sys-

tem of nonlinear algebraic equations (NLEs), is performed to determine a set

of consistent initial values for the continuous state variables. The number of

additional equations required (in addition to the DAEs and possibly their first

and higher order time derivatives) is determined by the dynamic degrees of free-

dom, r(mi), of the DAE (= n
(mi)
x for an ODE). For many (but not all) index

1 DAEs, first and higher order time derivatives of the DAEs do not constrain

the initial values of the continuous state variables. These additional equations

either come from the initial condition (in the initial mode) or from the relevant

transition function (in all subsequent modes). A structural analysis [49] may

be used to permute this NLE to block lower triangular (BLT) form, hence pre-

senting a sequence of smaller subproblems, which yields a more robust solution

procedure.

5. The continuous state variables are integrated forward from the consistent initial

values according to the DAEs that govern the current mode until the earliest

event, either time or state, occurs. For sparse large-scale systems, the correc-

tor matrix employed in an implicit integration method may also permute to a

BLT form. This can be exploited at the level of the DAE, the NLEs compris-

ing the corrector iteration, or the linear solve at each corrector iteration. In

DSL48S/DSL48E/DSL48SE [57, 129] this is exploited at the level of the linear

solve via use of MA48 [48]. This approach yields large computational savings

without the error control complications inherent to applying it at the DAE level.

6. State events must be dealt with carefully since their timing is not known a

priori. At an event, either the simulation has reached its termination condition,

or a transition to the successor mode occurs. In the latter case, update the

62

current mode and go to Step 3.

1.2.1 State Event Location

State events pose particular problems for simulation. Time evolution in a mode is

approximated by numerical solution of an IVP in the relevant differential equations.

This numerical procedure in turn implies some form of time stepping, and there is

no reason that the time steps chosen by (for example) a variable step size variable

order method will coincide with the points in time at which the state conditions first

become satisfied. On the other hand, due to the sensitivity mentioned above, it is

extremely important to locate the state events in strict time order and implement

the correct mode changes (i.e., events must not be missed by stepping over them

completely). Similarly, just flipping the equations when they are evaluated at a point

at which a state condition is satisfied (e.g., an IF statement in a residual evaluator

code), and thus presenting the IVP solver with a discontinuous vector field, can cause

severe inefficiency, and even simulation failures or incorrect sequences to be generated

[39, 72], because this nonsmoothness violates the theoretical assumptions on which

IVP solvers are founded.

These difficulties can be overcome via the notion of discontinuity locking. The idea

is to ‘lock’ the function evaluator for the IVP solver so that the functional form of the

equations evaluated cannot change while a time step is being taken, thus presenting a

smooth vector field. Once a successful time step has been taken, it is then necessary

to determine if event(s) have occurred during the time step just taken, and if so, to

backtrack to the earliest event in order to implement the requisite transition. This

is illustrated in Figure 1-9. Most modern algorithms do this by searching for zero

crossings in the discontinuity functions. Note that according to our proposed modeling

framework in the previous section, algorithms should search, instead, for roots of the

discontinuity function, or points at which the discontinuity function touches zero.

Thus, it is extremely important that the discontinuity functions be known with high

accuracy over the entire step. One way to guarantee this is to introduce a discontinuity

63

��

(a) Without Discontinuity Locking (b) With Discontinuity Locking

t∗ t∗ t

xk xk

t

Original trajectory

before discontinuity

Original trajectory

before discontinuity

New trajectory
after discontinuity

New trajectory
after discontinuity

State event detected
and consistent reinitialization
performed

Successful step with
discontinuity locked model

Repeated integration step
attempts each resulting in a
corrector or truncation error failure
and subsequent stepsize reduction

Figure 1-9: Discontinuity locking, × denotes a time mesh point.

variable, z
(mi)
j,l , for each discontinuity function, and append the algebraic equations:

z
(mi)
j,l = g

(mi)
j,l

(

ẋ(mi),x(mi),p, t
)

, l = 1, . . . , n
(mi)
j , j ∈ J (mi), (1.12)

to the differential equations describing the current mode. The fact that these equa-

tions are explicit in z
(mi)
j,l can be exploited by a modern DAE code, so that, although

there may be many discontinuity functions (indeed > n
(mi)
x), the computational cost

per step hardly increases [107]. On the other hand, the need to control the integration

error in the discontinuity functions in addition to the states may increase the number

of steps taken. However, this is the unavoidable price of locating the zero crossings

accurately and thus getting the correct sequence of events.

The more reliable algorithms for locating zero crossings in the discontinuity func-

tions search for roots of the interpolation polynomials for the discontinuity vari-

ables extracted from the IVP solver. Again, there are a number of ways this search

can be performed, with different degrees of reliability. In [107], a one dimensional

interval-Newton method is applied to the interpolating polynomials that guarantees

all roots will be found in strict time order. However, if applied näıvely, this approach

can be extremely expensive because an interval-Newton search has to be applied for

each discontinuity function at each step. To mitigate this cost, a root exclusion test

(also based on interval arithmetic) is employed before applying the interval-Newton

64

method. This provides an extremely cheap test of nonexistence of a root in the cur-

rent step. Since most discontinuity functions in most steps do not touch or cross

the zero time axis, this is an effective way of avoiding the expensive interval-Newton

search unless it is really needed.

All of the above discussion assumes that it is possible to extend the solution of

the embedded differential system beyond the event time. Classical theory has shown

that sometimes, solutions cannot be extended uniquely beyond a finite limit in time

(e.g., a lack of Lipschitz continuity for ODEs, or impasse points for DAEs [110]).

Sometimes, events are employed to switch the vector field at these limits and thus

continue simulation. However, the solution does not extend uniquely past the limit, so

the aforementioned state event location algorithms do not apply. A practical solution

is to move the event slightly to the left of the limit, but even this can have a dramatic

effect on the error control and step size as the integrator attempts to locate a point

beyond the event. An opportunity exists to develop state event location algorithms

that can better deal with these “limit events.”

1.2.2 Consistent Reinitialization

Another, still somewhat controversial issue, is the consistent reinitialization of the

continuous state at mode switching events [34, 91, 68, 16, 112]. In the absence of

an explicit specification of transition functions (1.2) by the user, we desire to obtain

consistent initial values for the successor mode, (x(mi+1)(p, σi+1), ẋ(mi+1)(p, σi+1)),

in order to restart numerical integration immediately following the event. In other

words, are there “natural” transition functions that must hold unless purposely over-

ridden by a user specification? The simplest case for this is that of an ODE embedded

system described by the same variables (but different vector fields) in each mode. In

this situation, a jump in the continuous state has an unambiguous interpretation

as an impulsive forcing of one or more of the state variables, and can therefore be

considered as a separate and distinct hybrid phenomenon to switching. Hence, it is

not enough to pick arbitrary initial conditions for the successor mode; the said ini-

tial conditions must be defined in terms of the final state of the predecessor mode,

65

x(mi)(p, τi). In this case, in the absence of impulsive forcing, the “natural” transition

function to use would be state continuity, which is to assume that the state variables

remain unchanged at the mode switching, i.e.,

x(mi)(p, σi+1) − x(mi)(p, τi) = 0.

The number of transition functions needed (in addition to the embedded DAE and

possibly its first and higher order derivatives) is determined by r(mi+1), the dynamic

degrees of freedom of the DAE in the successor mode. For example, impulsive forcing

of an ODE is modeled with the transition function:

x(mi+1)(p, σi+1) − x(mi)(p, τi) − ∆x = 0,

where ∆x 6= 0 is the desired increment of the state variables and mi+1 = mi because

the mode remains unchanged (although the epoch increments from Ii to Ii+1). As

mentioned above, in the absence of the explicit specification of impulsive forcing, it

is natural to assume state continuity at a mode switching. In general, it appears

that current software for modeling hybrid systems provides weak support for the

specification of transition functions, with most software implicitly assuming some

natural transition functions such as state continuity. The notion of state continuity

in a subset of the continuous state variables can be extended to certain index 1 DAEs

[91], although all other state variables may jump at a mode switching.

However, for more general DAE systems, this requires the modeler to recognize

the potential exceptions that might arise and intervene with the explicit specification

of transition functions when the assumption of state continuity in the absence of

impulsive forcing is wrong. For example, consider a DAE embedded hybrid system.

Even a LTI index 1 DAE subject to step changes in the forcing functions (which

can be interpreted as the simplest form of mode switch) may exhibit jumps in all

the continuous state variables, as shown by the following LTI DAE in a predecessor

66

mode:




1 2

0 0



 ẋ +





0 0

1 1



x =





0

f(t)



 , (1.13)

which is index 1 and has r(m) = 1. How should the state be transferred if a step

change in f(t) is implemented at an event? Assuming state continuity for x1 implies

a jump in x2, and vice versa. In fact, neither continuity assumption is correct. An

analysis of the canonical form of this DAE [16] shows that the linear combination of

the state variables x1 + 2x2 should be treated as continuous, so that a step change

in f(t) will cause both states to jump. Thus it is incorrect to associate jumps in the

state exclusively with impulsive forcing if the index is 1 or greater. In general, it is

possible to obtain the r(mi+1) additional natural transition functions needed for LTI

DAEs of arbitrary index and dimension by appealing to the canonical form. However,

as stated in [16], this is hampered in practice for large-scale systems by the inherent

density of the matrices required to transform a matrix pencil to generalized upper

triangular form.

A method has recently been developed to compute consistent initial values of the

continuous state variables in the successor mode for hybrid systems described by a

collection of (uniquely solvable) LTI DAEs,

A(m)ẋ + B(m)x = f̄ (m)(p, t), m ∈M,

in which the number of variables, nx, does not change between modes. This is done

by solving the linear system:

T2ν(mi+1)(A(mi+1),B(mi+1))y = z, (1.14)

characterized by A(mi+1),B(mi+1), derivatives of f̄ (mi+1) at transition time σi+1, x(p, τi)

and ν(mi+1), which is the index of the DAE in the successor, provided that ν(m) can

be calculated explicitly for all required modes m ∈ M [112][Theorem II.2]. Here,

67

Tα(A,B) is the α · nx × α · nx matrix defined by

Tα(A,B) =

















A

B A

.

B A

















.

When y = [y1, ...,y2ν(mi+1)]T, yβ ∈ R
nx ∀β ∈ {1, ..., 2ν(mi+1)}, and z = [0, ...,0,

A(mi+1)x(p, τi), f̄
(mi+1)(p, σi+1), f̄ ′(mi+1)(p, σi+1), . . . , f̄

(ν(mi+1)−1)(mi+1)(p, σi+1)]
T, then

y
ν(mi+1) = x(p, σi+1). As pointed out by [112], this problem of obtaining a family of

mappings,

x(p, τi) → x(p, σi+1),

has been the subject of much research. The importance of the work by Reißig et al.

[112] is that they provide a justification of this choice to satisfy the above equation

which is elementary and physically reasonable compared to previous justifications,

and provide a practical way of implementing the solution, (1.14), using sparse LU

factorization.

For example, consider again the problem described by (1.13). Let M = {1, 2},

A(1) = A(2) = A, B(1) = B(2) = B, f (1)(t) = t and f (2)(t) = t + 1. Suppose we start

with m1 = 1, and we have a time event, τ1, at which we switch from mode 1 to mode

2. Applying Theorem II.2 from [112], we have

T2(A,B)y =

















1 2 0 0

0 0 0 0

0 0 1 2

1 1 0 0





















y1

y2



 =

















x1(τ1) + 2x2(τ1)

0

0

σ2 + 1

















= z,

from which it is clear that the consistent initial values are given by:

[

1 2
]

y1 = x1(σ2) + 2x2(σ2) = x1(τ1) + 2x2(τ1), (1.15)
[

1 1
]

y1 = x1(σ2) + x2(σ2) = σ2 + 1. (1.16)

68

Figure 1-10: Schematic of two rotating masses.

Note that (1.15) is exactly the natural transition function as described above, and

(1.16) would have been satisfied by solving a consistent initialization problem with

(1.15) to satisfy the dynamic degrees of freedom.

A nice physical example to illustrate the utility of (1.14) is a simple model of two

rotating masses that may be switched between a slip coupling (mode 1), described by

equations (S1 - S4), and a rigid coupling (mode 2) described by equations (R1 - R4)

[94] (see Figure 1-10). ω1 and ω2 represent the angular velocities of the two bodies,

J1, J2 and d are parameters, and the torques Ql1 and Qr2 are known functions of

time. When connected by a slip coupling the model is index 1 with r(1) = 2, and

when connected with a rigid coupling the model is index 2 with r(2) = 1. From

physical considerations, one can argue that the transition functions needed for the

switch ‘rigid’ to ‘slip’ should be continuity of the two angular velocities, whereas for

the switch ‘slip’ to ‘rigid’ the transition function needed should be conservation of

angular momentum. Applying Theorem II.2 in [112], we will obtain consistent initial

values for both switching transitions, as shown below.

Consider Tµ = 1, 2, 1 with two separate time events τ1 < τ2 respectively. At τ1,

69

the successor is an index 2 DAE (ν(2) = 2, assuming that J1 + J2 6= 0 [94]) with

A(2) =

















J1 0 0 0

0 J2 0 0

0 0 0 0

0 0 0 0

















, B(2) =

















0 0 0 −1

0 0 −1 0

0 0 1 1

1 −1 0 0

















, f̄ (2) =

















Ql1(t)

Qr2(t)

0

0

















,

where x = [ω1(t) ω2(t) Ql2(t) Qr1(t)]
T. Constructing the relevant form of Equation

(1.14), we get

T4(A
(2),B(2))y =

















A(2)

B(2) A(2)

B(2) A(2)

B(2) A(2)

































y1

y2

y3

y4

















=

















0

A(2)x(τ1)

f̄ (2)(σ2)

f̄ ′(2)(σ2)

















= z.

Denoting y1 = [y11 y12 y13 y14]
T and keeping in mind that y2 = x(σ2), we obtain,

after some algebra,

y13 + y14 = 0,

−y13 + J2ω2(σ2) = J2ω2(τ1),

−y14 + J1ω1(σ2) = J1ω1(τ1),

ω1(σ2) − ω2(σ2) = 0,

from which it is easy to see that the solution of these equations will satisfy

J1ω1(τ1) + J2ω2(τ1) = (J1 + J2)ω1(σ2),

which is exactly the mathematical statement of conservation of angular momentum.

Note that since we have a high index DAE in this mode, we may have to reformulate

the problem before the simulation can proceed (e.g., [95]). Similarly, applying the

same analysis to the second transition at τ2, where we switch back to the slip coupling

70

mode, we can show that solving (1.14) will give us the same consistent initial values

as the natural transition functions, i.e., continuity of ω1 and ω2.

It appears that such natural transition functions also exist for many linear time

varying (LTV) cases and even nonlinear DAEs, but derivation of the relevant continu-

ity conditions appears very difficult except in very simple cases [34, 16]. On the other

hand, if the natural transition functions of a system of equations do not conform to

physical expectations, this suggests that the model should be reformulated.

As another example, consider a variable structure hybrid system described by a

collection of agents, each described by the same ODE. Deletion of an agent presents

no problems, but insertion of a new agent implies the need to specify explicitly the

initial conditions for the new agent (possibly in terms of the current state of the other

currently active agents). In this situation, it appears impossible to use a mathemat-

ical analysis to reveal natural transition functions. Instead, the transition functions

must be explicitly stated as part of the model formulation. An interesting area for

further research is thus the development of rigorous methods to obtain and express

the transition functions for LTV, nonlinear and variable structure hybrid systems.

Before we end this section, we will briefly discuss the phenomena of discontinuity

sticking (for a more detailed discussion, see [107]). The consistent initialization cal-

culation for the successor mode is carried out based on the values of the continuous

state variables, xmi(p, τi). If the event time does not occur at the mesh points of

the DAE solver (note that this does not apply for instantaneous transitions), and the

values of xmi(p, τi) have been located by interpolation, the converged initialization

calculation may indicate that the state event detected has actually not quite been

triggered. This situation occurs because the BDF method [65] provides no guaran-

tees for the consistency of differential and algebraic variables between mesh points.

This numerical phenomenon is termed discontinuity sticking.

The consistent event location phase in [107] determines the consistent state event

time t∗l at which consistency between the differential and algebraic variables is re-

tained, and consequently eliminates discontinuity sticking problems. The consistent

event location problem is formulated as a system of nonlinear equations, within which

71

the discontinuity function that triggers the transition is set to −εg, where εg is a small

positive tolerance. This mitigates the effect of discontinuity sticking. Note that this

also prevents Zeno behavior for reversible discontinuities in practice.

1.3 Sensitivity Analysis

Parametric sensitivity analysis is concerned with the sensitivity of the model pre-

diction to infinitesimal perturbations in parameters appearing in the model and/or

initial conditions, and is important in many engineering and scientific applications.

The information contained in the parametric sensitivity trajectories is useful for model

reduction, control system design, parameter estimation, process sensitivity studies,

experimental design and numerical optimal control. For example, the control parame-

terization approach for the numerical solution of optimal control problems [126] can

require sensitivity information with respect to hundreds of parameters. The theory

for systems with continuous dynamics is well established [61], while a closely related

perturbation analysis theory has been developed for discrete event dynamic systems

[76].

The traditional method to compute the sensitivity trajectories of stiff ODEs or

DAEs has been to handle the combined ODE/DAE and sensitivity system using a

staggered direct scheme in which the linear systems for the sensitivity corrector steps

are solved directly after convergence of the nonlinear corrector step [37]. Maly and

Petzold [93] proposed a simultaneous corrector method that substantially reduced the

cost of parametric sensitivity analysis relative to earlier efforts, following which Fee-

hery et al. [57] developed and demonstrated a staggered corrector method (DSL48S)

for solving stiff ODES (or DAEs) and sensitivities that was shown to have a number

of advantages over that of the simultaneous corrector algorithm described in [93].

In this section we consider an extension to this classical sensitivity theory that

defines the parametric sensitivity trajectories of hybrid systems represented by the

hybrid automaton framework described in Section 1.1. Rozenvasser [114] first pre-

sented the general sensitivity equations, with respect to a parameter, for discontin-

72

uous systems of ODEs. Galán et al. [63] further extended these results to include

DAEs, generalized the discrete aspects of the system model, and presented, for the

first time, existence and uniqueness theorems for the sensitivity functions of hybrid

systems. Hiskens and Pai [75] present what is in essence an extension of Rozenvasser’s

approach to a class of hybrid models.

Again, we will be focusing on the effect of transitions on the sensitivity analysis

of hybrid systems. This is closely tied to detecting and locating state events cor-

rectly. It is crucial that the correct state event is located, or the related sensitivity

trajectories will be complete nonsense. For example, as will be seen later, the para-

metric sensitivities will often jump at transitions, and if the numerical integration is

not stopped and the jump computed explicitly, the computed sensitivity trajectories

will generally be incorrect. This point is illustrated in detail by [129], in which the

detection of hidden discontinuities and parametric sensitivities is handled rigorously

and robustly by the software library DAEPACK with minimal user intervention.

1.3.1 Calculation of Sensitivity Trajectories

Let the set of continuous state variables be partitioned into:

x(m) =





v(m)

y(m)



 ,

where v(m) are the differential state variables and y(m) are the algebraic state vari-

ables. The DAE of the current mode, f (mi), is augmented with the discontinuity

functions associated with the mode’s pending transition conditions, L
(mi)
j , j ∈ J (mi),

given by

F(mi)
(

v̇(mi),v(mi),y(mi), z(mi),p, t
)

=





f (mi)

z(mi) − g(mi)



 ,

where g(mi) denotes the vector for the discontinuity functions of all transition con-

ditions in the current mode and z(mi) is the vector of discontinuity variables. The

dependencies of the right hand side are omitted for readability and can be inferred

73

from (1.1), (1.6) and (1.12). Augmenting the original DAE with these additional

explicit equations (referred to as discontinuity equations) places the discontinuity

functions under integration error control. The additional variables added for the

discontinuity equations, z(mi), are algebraic variables and may be appended to the

original algebraic variable vector:

w(mi) ≡





y(mi)

z(mi)



 .

For the sequel, we will only consider the case where

rank

(

∂F(mi)

∂v̇(mi)

∂F(mi)

∂w(mi)

)

= n(mi)
v + n(mi)

w ,

for all mi ∈M and t, where n
(mi)
v and n

(mi)
w are the number of elements of v(mi) and

w(mi) respectively. This is sufficient for a differentiation index less than or equal to 1.

Although the size of the model increases, very little additional computational effort

is required to integrate the system because it block decomposes.

The augmented DAE and sensitivity equations form an (n
(mi)
v + n

(mi)
w)(np + 1)

system given by

F(mi)
(

v̇(mi),v(mi),w(mi),p, t
)

= 0,

∂F(mi)

∂v̇(mi)
Ṡ(mi)

v +
∂F(mi)

∂v(mi)
S(mi)

v +
∂F(mi)

∂w(mi)
S(mi)

w = −
∂F(mi)

∂p
, (1.17)

where S
(mi)
v ≡ ∂v(mi)

∂p
, S

(mi)
w ≡ ∂w(mi)

∂p
and Ṡ

(mi)
v = ∂S

(mi)
v

∂t
= ∂v̇(mi)

∂p
. Although this

system may be quite large, the algorithms described in [93] and [57] can be used to

exploit the special structure for efficient solution. In between mode switching events,

the sensitivity trajectories ∂v
∂p

and ∂w
∂p

are given by (1.17), which are derived via dif-

ferentiation of the DAE with respect to the parameters p. Initial conditions for the

sensitivities in the initial mode are determined via differentiation of the initial condi-

tions with respect to the parameters. The sensitivities will then evolve according to

(1.17) until the first event. At this event, we have a system of transition functions in

74

the form of (1.2). Consider the general case where we have a transition from prede-

cessor mi in epoch Ii to successor mi+1 in epoch Ii+1. We will assume smoothness in

the neighborhood of the transition time, and that only one atomic logical proposition

becomes true at that moment. Let ̃ ∈ J (mi) be the transition that is taken at the

event. Differentiation of the transition functions with respect to the parameters and

some rearrangement yields:





∂T
(mi)
̃

∂v̇(mi+1)

∂T
(mi)
̃

∂v(mi+1)

∂T
(mi)
̃

∂w(mi+1)

∂F(mi+1)

∂v̇(mi+1)
∂F(mi+1)

∂v(mi+1)
∂F(mi+1)

∂w(mi+1)















∂v̇(mi+1)

∂p

∂v(mi+1)

∂p

∂w(mi+1)

∂p











=

−





∂T
(mi)
̃

∂v̇(mi+1)

∂T
(mi)
̃

∂v(mi+1)

∂T
(mi)
̃

∂w(mi+1)

∂F(mi+1)

∂v̇(mi+1)
∂F(mi+1)

∂v(mi+1)
∂F(mi+1)

∂w(mi+1)















∂v̇(mi+1)

∂σi+1

∂v(mi+1)

∂σi+1

∂w(mi+1)

∂σi+1











∂σi+1

∂p

−





∂T
(mi)
̃

∂v̇(mi)

∂T
(mi)
̃

∂v(mi)

∂T
(mi)
̃

∂w(mi)

∂T
(mi)
̃

∂p

∂T
(mi)
̃

∂σi+1

0 0 0 ∂F(mi+1)

∂p
∂F(mi+1)

∂σi+1



























∂v̇(mi)

∂p
+ ∂v̇(mi)

∂τi

∂τi
∂p

∂v(mi)

∂p
+ ∂v(mi)

∂τi

∂τi
∂p

∂w(mi)

∂p
+ ∂w(mi)

∂τi

∂τi
∂p

I

∂σi+1

∂p























(1.18)

where ∂σi+1

∂p
= ∂τi

∂p
(since τi = σi+1) represents the sensitivity of the event time with

respect to the parameters. The jump in sensitivities can then be computed by solving

the above linear equation, which provides transition functions for the sensitivities that

are implied by the transition functions for the states. However, in order to compute

the initial conditions for the sensitivities in the new mode, it is necessary to know

∂τi
∂p

, which can be obtained by differentiating the discontinuity function defining the

event time, (1.6), with respect to the parameters p:

∂g
(mi)

̃,l̃

∂v̇(mi)

(

Ṡ(mi)
v + v̈(mi)

∂τi

∂p

)

+
∂g

(mi)

̃,l̃

∂v(mi)

(

S(mi)
v + v̇(mi)

∂τi

∂p

)

+

∂g
(mi)

̃,l̃

∂w(mi)

(

S(mi)
w + ẇ(mi)

∂τi

∂p

)

+
∂g

(mi)

̃,l̃

∂p
+

∂g
(mi)

̃,l̃

∂τi

∂τi

∂p
= 0, (1.19)

75

where ̃ ∈ J (mi), l̃ ∈ {1, . . . , n
(mi)
̃ }, and g

(mi)

̃,l̃
is the discontinuity function that triggers

the event. Provided these linear equations can be solved for a unique ∂τi
∂p

, initial

conditions for the sensitivities in the successor mode can be determined via (1.18) (the

required elements of ẇ(mi) and v̈(mi) can be computed from the first order derivatives

of the DAE). The sensitivities will then evolve according to (1.17) for the successor

mode until the next event. This process repeats until the end of the simulation,

defining a unique sensitivity trajectory. Note that (1.18) and (1.19) are evaluated at

a fixed value of the parameters, p ∈ P , i.e., the parametric sensitivities are evaluated

for a nominal value of p.

1.3.2 Examples of ODE Hybrid Systems

Consider an ODE embedded hybrid system in which the set of continuous variables

does not change between modes. For a single parameter p, the sensitivity trajectories

∂x
∂p

between events are governed by the following differential equations, which are

derived via (1.17):
∂

∂t

(

∂x

∂p

)

=
∂f (mi)

∂x

∂x

∂p
+
∂f (mi)

∂p
.

Now, consider an event between epochs Ii and Ii+1 where state continuity is employed

as the transition function:

x(p, σi+1) = x(p, τi).

Differentiation of this transition function with respect to the parameter and some

rearrangement yields, via (1.18):

s(p, σi+1) = s(p, τi) + (ẋ(p, τi) − ẋ(p, σi+1))
dτi
dp

∣

∣

∣

∣

p,t

, (1.20)

where s ≡ ∂x
∂p

. Equation (1.20) is instructive because it reveals the qualitative be-

havior of the sensitivities at an event. This equation indicates that the sensitivities

will jump at an event provided two conditions are both satisfied: a) the vector field

is discontinuous (which is often the case with a switch) and b) the event time is sen-

sitive to the parameter. Otherwise, the sensitivities will be continuous at the event.

76

Condition b) will be satisfied when there is a state event whose timing is sensitive

to the parameter value (which is usually the case), or there is a time event and the

parameter is the time of the event itself (dτi
dp

∣

∣

∣

p,t
= 1). Thus, for simulations during

which sequences of state events occur, qualitatively, one can expect piecewise contin-

uous sensitivity trajectories containing jumps coinciding with state events, even if it

is an ODE embedded hybrid system with state continuity employed as the transition

function(s).

In [63], a detailed theory is developed governing sufficient conditions for the ex-

istence and uniqueness of these (discontinuous) sensitivity trajectories of the hybrid

automaton. From these results, it appears that the set of parameter values for which

sensitivity trajectories exist and are unique will usually be dense in the parameter

space. In particular, the sensitivities cease to exist or be unique for the critical pa-

rameter values at which the sequence of events along the solution trajectory changes

qualitatively. Consider the following example with two modes [63]:

Mode 1 :































f (1) = ẋ+ x− 4,

J (1) = {1} , S(1)(1) = 2,

L
(1)
1 := (−x3 + 5x2 − 7x+ p ≤ 0) ∧ (−3x2ẋ+ 10xẋ− 7ẋ ≤ 0),

T
(1)
1 = x(p, σi+1) − x(p, τi).

(1.21)

Mode 2 :































f (2) = ẋ+ 2x− 10,

J (2) = {1} , S(2)(1) = 1,

L
(2)
1 := (−x3 + 5x2 − 7x+ p ≥ 0) ∧ (−3x2ẋ+ 10xẋ− 7ẋ ≥ 0),

T
(2)
1 = x(p, σi+1) − x(p, τi).

(1.22)

Note the addition of the transversality conditions to the transition conditions derived

from the reversible discontinuity. The initial mode is 1 with initial condition T (1,0) =

x(0) = 0. The (discontinuous) sensitivity trajectories exist for all p ∈ [2, 4], except for

p = 3. Given a sufficiently long simulation time, for 2 ≤ p < 3 there is a sequence of

3 state events, corresponding to Tµ = 1, 2, 1, 2 and for 3 < p ≤ 4 there is just 1 state

event corresponding to Tµ = 1, 2. p = 3 is the critical value at which a qualitative

77

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3 3.5

−3

−2

−1

0

1

2

3

4

5

0 1 2 3 4 5 6

Time

ABACUSS II Sensitivity Analysis

−1

0

1

2

3

4

5

0 1 2 3 4 5 6

Time

ABACUSS II Sensitivity Analysis

p = 3.0
p = 2.9
p = 3.1

(a) Discontinuity Function

(b) State and Sensitivity Trajectories

V
al

u
es

V
al

u
es

g
(p

,x
)

x

xx

∂x
∂p

∂x
∂p

p = 2.9 p = 3.1

Figure 1-11: Sensitivity analysis for ODE example, (1.21)–(1.22). Note x(p, ·) is
monotonically increasing.

change from 3 events to 1 event occurs. For this parameter value, it is not possible to

determine dτ1
dp

∣

∣

∣

p,t
using (1.19) at the first event. The state and sensitivity trajectories

obtained using ABACUSS II for p = 2.9 and p = 3.1 are shown in Figure 1-11, where

the qualitative change in the sensitivity trajectories is clear.

As another example, consider the hybrid system described in (1.3) to (1.5) with

L
(1)
2 as x+ p ≥ 6, and the precedence relation function K(m) : Z 7→ inf Z for m ∈M .

Again, suppose we start with x(p, 0) = 0 in mode 1 and wish to end at tf = 4.

In addition, the parameter set of interest is p ∈ [2, 4]. The timings of the pending

transitions change in the parameter space, and eventually cross at p = 3 (see Figure

78

0 1 2 3 4

1

4

3

2

(c) Final State Value, x(p, tf = 4)

2

3

1

(b) Event Time, t1

0 1 2 3 4

1

4

3

2

Transition to
mode 2

Transition to
mode 3

increasing p

increasing p

(a) Pending Transitions

t

x(p, t) x(p, 4)

p

5

6

0
1 2 3 4 p

t1

Figure 1-12: Graphical representation for ODE example, (1.3)–(1.5)

1-12(a)). For 2 ≤ p ≤ 3, Tµ = 1, 2, while for 3 < p ≤ 4, Tµ = 1, 3. In other

words, p = 3 is the critical value at which a qualitative change in the sequence of

modes occurs (although there remains a single transition). At this parameter value,

the value of dτ1
dp

∣

∣

∣

p,t
is not defined (see Figure 1-12(b)), and the sensitivity trajectory

does not exist. This situation is excluded in [63] by the assumption of smoothness

of transition conditions in a neighborhood of the transition time. An interesting

unresolved question is what degree of smoothness is necessary for existence of the

sensitivity trajectories.

As mentioned above, it is possible to develop efficient numerical algorithms for

the simultaneous computation of the state and sensitivity trajectories of a hybrid

automaton. These algorithms are able to exploit the inherent similarities between

the state and sensitivity equations in an extremely efficient fashion [57, 63, 129]. An

interesting point here is that state event location must be performed as described

above [129]. With many legacy model codes containing IF-THEN-ELSE statements,

MIN/MAX functions, look-up tables, etc., it is common practice to rely on the error con-

trol mechanism of the numerical integrator to deal with these hidden discontinuities.

This often works for simulation, even if it is somewhat inefficient. On the other hand,

for sensitivity analysis, if the event is not located explicitly and the jump (1.19) not

computed, the resulting sensitivity trajectories will not be qualitatively correct. An

automated code analysis technique that identifies hidden discontinuities for correct

79

sensitivity analysis is described in [129].

This theory also has profound implications for the optimization of hybrid sys-

tems, and the numerical approximation of hybrid optimal control problems as finite

dimensional optimization problems, which will be introduced in Section 1.4. In the

case of a small number of functions dependent on the state at fixed times, and a

large number of parameters, there exists another possibly more efficient method for

calculating derivative information for hybrid systems, the method of adjoints [115].

The development of an existence and uniqueness theory, and efficient numerical al-

gorithms for hybrid adjoints present potentially interesting and rewarding areas for

future research.

1.4 Optimization

Most real physical systems experience transitions whose timing and sequence cannot

be determined a priori, e.g., the autonomous transitions (which become state events)

corresponding to the changes in the flow regime as described in the non-return valve

model in Figure 1-8. Clearly, changes in the controls to the system will result in a

huge (combinatorial) number of possible hybrid mode trajectories, Tµ, and an infinite

dimensional problem with the hybrid time trajectories, Tτ , in the continuous time

domain. The search for the optimal control profile that maximizes a given objective

function is further complicated by the fact that transitions which occur in hybrid

systems often cause nonsmoothness and/or discontinuities in the continuous state

variables.

In this thesis, we will only concern ourselves with the open loop optimal con-

trol problem, since a large number of engineering tasks can be formulated as such

problems. In an open loop optimal control problem, we search a priori for the con-

trol profiles and/or continuous parameters for a dynamic system that will optimize

a given performance measure over a finite time interval. We note that there is ac-

tive research in the area of closed loop optimal control for hybrid systems to obtain

the optimal feedback control law. In his pioneering work, Bellman generalized the

80

Hamilton-Jacobi theory to include multi-stage systems and combinatorial problems

and he called this theory dynamic programming [23]. We will have more to say about

dynamic programming in Chapter 3, where we explore the problem of determining the

optimal mode sequence. Recent work for hybrid systems include [29] and [30], where

the optimal control framework results in a generalized set of Bellman-like equations

and several algorithms, among these a boundary-value method and generalized value

iterations, are proposed, and [73], where an extended version of Bellman’s inequal-

ity was discretized to compute a lower bound on the optimal cost function, using

linear programming to derive an approximation of the optimal control feedback law.

However, dealing with the Hamilton-Jacobi-Bellman equations makes the numerical

solution of such problems very difficult in practice, especially for large-scale problems.

While continuous time optimal control problems have received extensive theoreti-

cal and numerical treatment in the literature (e.g., [35] and [126]), optimal control of

hybrid systems has remained a very difficult problem to solve. The treatments for the

continuous case extend, in principle, to problems in which there are discontinuities

due to bounds on the control profiles, or sequences of inequality path constraint ac-

tivations and/or deactivations along the optimal trajectory. Furthermore, [35][pages

106-108] state necessary optimality conditions for an ODE embedded hybrid system

with a known sequence of modes, Tµ. However, this classical theory provides no

guidance as to how to determine the optimal sequence of modes.

Optimal control of hybrid systems where the continuous state evolves according to

difference equations is presented in [89] where the inherent nonsmoothness is noted

and a heuristic algorithm is developed. [62] present a quite general mathematical

formulation for open loop optimal control and parameter optimization of continuous

time hybrid systems based on the hybrid automaton (see Section 1.4.1). They also

employ the results for existence and uniqueness of parametric sensitivities mentioned

in Section 1.3 to classify when parameter optimization problems with hybrid systems

embedded will be smooth or nonsmooth. In [12], a mathematical formulation for

the dynamic optimization of hybrid systems described by state-transition networks

is presented. The infinite dimensional dynamic optimization problem is solved using

81

a complete (i.e., control and state) discretization approach, resulting in a large-scale

mixed integer nonlinear programming (MINLP) problem. The major difficulty with

this formulation is in the size of the problem that can be solved practically. This is

compounded by the fact that integer optimization variables are introduced to repre-

sent all possible sequences of modes. Although the original authors were not aware of

this, the introduction of binary variables eliminates the aforementioned nonsmooth-

ness. Once the binary variables are fixed, defining a mode sequence Tµ, the resulting

nonlinear programming (NLP) Master problem in control parameterization (see Sec-

tion 1.4.2) is smooth. However, with a possibly combinatorial number of modes, a

possibly combinatorial number of binary variables may be required in the worst case.

Furthermore, the standard methods employed for the solution of MINLPs by [12]

rely on the assumption that the participating functions and constraints are convex.

If these conditions are not satisfied, standard MINLP algorithms will most likely

converge to arbitrary suboptimal points [60]. Deterministic global optimization algo-

rithms for MINLPs have begun to emerge in recent years [117, 2, 81]. However, the

size of problem that can be solved is still quite small, so that only very small hybrid

optimal control problems can be solved via a complete discretization approach.

In the rest of this section, we present a systematic approach to tackling the op-

timization problem, building on the concepts and results discussed in the preceding

sections. In particular, we focus on the implications of the sensitivity analysis of

hybrid systems, since many optimization methods are gradient based.

1.4.1 Optimization Formulation

In addition to the equations describing the hybrid system presented in Section 1.1,

with the controls u(t) introduced as extra arguments, we may impose the following

two classes of constraints:

1. Path constraints. These must be satisfied along the entire hybrid time trajectory

in a particular mode:

82

(a) Inequality path constraints:

h(m)
(

ẋ(m),x(m),u,p, t
)

≤ 0.

(b) Equality path constraints. These can be treated as another equation of

the DAE [56] effectively reducing the number of independent controls in

that mode.

Note that the path constraints enforced may be completely different from one

mode to the next, so that certain path constraints may only hold over some

epochs in Tτ .

2. Point constraints. These must be satisfied only at specific times:

(a) Inequality point constraints:

c(m)
r

(

ẋ(m)(tr),x
(m)(tr),u(tr),p, tr

)

≤ 0, r ∈ {1, . . . , n(m)
r }.

(b) Equality point constraints, which include the initial and final conditions:

c(m)
s

(

ẋ(m)(ts),x
(m)(ts),u(ts),p, ts

)

= 0, s ∈ {1, . . . , n(m)
s }.

Again, the point constraints enforced may differ from one mode to the next.

The compact expression of an objective function is complicated by the possibility

of different sets of continuous variables characterizing each mode in variable structure

models, and the fact that the optimal sequence of modes, and thus the active mode at

the final time, are not known a priori. One solution to this problem [19] is to introduce

a dummy terminal mode, labeled nm+1, to occupy the dummy instantaneous terminal

epoch, Ine+1 = [σne+1, tf] where τne
= σne+1 = tf , and require a terminal transition

with the appropriate transition function from every other mode to this terminal mode

83

at the final time, tf . This allows the formulation of a Mayer type objective function:

min
u(t),p,tf

φ
(

ẋ(mnm+1)(tf),x
(mnm+1)(tf),u(tf),p, tf

)

.

This can be made equivalent to Lagrange or Bolza type objective functions through

the introduction of additional state variables. Furthermore, terms related to the cost

of transitions or the values of states and/or controls at the final time in each mode can

be incorporated by introducing additional state variables whose values are modified

by the transition functions.

1.4.2 Problem Classification

Here, we shall categorize the optimization problem with hybrid systems embedded

into different categories according to the existence and uniqueness of the sensitivity

trajectories of the hybrid systems, as we will be focusing on the application of deter-

ministic, gradient based optimization techniques to solve these problems. Incidentally,

the classification of problems presented here forms the basis for the organization of

this thesis.

To start off, consider the design of a safe changeover operation for a pressure vessel

in a chemical process as shown in Figure 1-7 [19]. We wish to move safely in minimum

time from an initial state in which methane is flowing through the system to a final

state in which oxygen is flowing. The objective function can be expressed as:

min
u(t),tf

tf .

The model equations are summarized in Figure 1-8, with all transition functions (ex-

cept the initial conditions, T(0)) enforcing continuity of the molar holdups Mi∈{1,2,3}.

The point and path constraints define the changeover policy required:

y3(0) = 0, y1(0) = 1, P (0) = P0, (1.23)

y3(tf) ≥ 0.999, (1.24)

84

where (1.23) describes the initial conditions and (1.24) describes the final target

composition requirement. The key safety consideration is to avoid the formation of an

explosive mixture in the vessel at any time during the changeover. If a curve bounding

the explosive region of O2/N2/CH4 mixtures in composition space is constructed (see

Figure 1-7(b)), this curve can be used to formulate an inequality path constraint:

h(y1, y3) ≤ 0

that must hold throughout Tµ. Other path constraints, such as the equipment limits,

e.g., design pressure, can be easily incorporated.

An operating procedure would be defined by the control profiles, uk∈K(t), which

specify the sequence of openings/closings of the four valves along a particular Tµ.

Since these are open/close valves, the signals are binary variables, and the problem as

stated above might be termed a mixed-integer optimal control (MIOC) problem. This

factor further complicates the variational analysis of such problems, which motivates

the study of parameter optimization of hybrid systems, in which the set of decision

variables is reduced to time invariant parameters p, making the problem a finite

dimensional optimization problem with a hybrid system embedded, rather than an

infinite dimensional optimal control problem.

The most widely used methods for numerical optimal control of large-scale and/or

highly constrained problems rely on approximation of the infinite dimensional problem

by a finite dimensional parameter optimization problem, either via discretization of

the controls or discretization of both controls and states [126]. For example, control

parameterization [126] approximates the controls with a finite set of basis functions,

e.g., Lagrange polynomials on finite elements (see [134] for a discussion), and thus the

controls in the above formulation become dependent variables u(p, t). As an example,

consider the one-dimensional control u(t) over the time horizon t ∈ [t0, tf]. Suppose

that we wish to parameterize the control over Nu finite elements (stages). Let each

stage be denoted by the contiguous time intervals, [θi, ωi] for i = 1, . . . , Nu such that

ωi > θi for i = 1, . . . , Nu, θ1 = t0, ωNu
= tf , and θi+1 = ωi for i = 2, . . . , Nu−1. Then,

85

over the stage k ∈ {1, . . . , Nu}, the control is given by

u(k)(t) =
no
∑

i=1

pikφ
(no)
i (ν(k)(t)), t ∈ [θi, ωi],

where pik represent the real valued control parameters to be determined, ν(k)(t) rep-

resents normalized time over stage k given by

ν(k)(t) =
t− θk
ωk − θk

,

the superscripts on u and ν indicate the stage, no represents the order of the La-

grangian polynomial approximation, and the Lagrangian polynomials of order no,

φ
(no)
i , i = 1, . . . , no, are defined in the standard manner,

φ
(no)
i (ν) = 1 if no = 1,

φ
(no)
i (ν) =

no
∏

j=1
j 6=i

ν − νj
νi − νj

if no ≥ 2,

where νi, i = 1, . . . , no are the set of normalized time points used for the construction

of the approximating polynomial. Note that, as discussed in [134], the choice of

the set of normalized time points does not affect the solution obtained from control

parameterization. However, a judicious choice of the set of normalized time points

may be useful in enforcing bounds on the control, e.g., choosing ν1 = 0 and ν2 = 1

for piecewise constant (no = 1) and piecewise linear (no = 2) approximations.

As an example, consider the one-dimensional control u(t) over the time horizon

t ∈ [0, 2]. To implement a piecewise constant control parameterization over two equal

finite elements, we simple set

u(p, t) =











p1 for 0 ≤ t ≤ 1

p2 for 1 ≤ t ≤ 2

.

Note that the value of u(p, t) can take on two different values at t = 1. The notion

86

State

Variables

Figure 1-13: Control parameterization.

of the current stage of control parameterization allows this to happen, similar to the

way the notion of the current epoch allows the continuous state of the hybrid system

can take on multiple values at the boundaries of the epochs.

For numerical solution of the resulting parameter optimization problem, this dis-

cretization yields a decomposition into two subproblems, as shown in Figure 1-13:

1. An initial value (IVP) subproblem in which the hybrid system model is solved

for given values of p using the simulation technology described in Section 1.2.

2. An NLP Master problem that searches in the finite parameter space using func-

tion and constraint information furnished by the IVP subproblem. If the Master

NLP is to be solved using an efficient gradient-based search, gradient informa-

tion must be extracted in some manner from the embedded hybrid dynamic

system. Although there are a number of ways of doing this, probably the most

efficient method at present is to compute the parametric sensitivities described

in Section 1.3, and then apply the chain rule to the dependent functions to use

these sensitivities to deliver the gradients.

Clearly, the utility of such a method hinges on the existence and uniqueness of

87

the parametric sensitivities of the hybrid system. The discontinuous nature of the

hybrid models might suggest that gradient based methods are inappropriate for these

problems. Sufficient conditions for the existence and uniqueness of these sensitivities

are proved in [63], and provide an important classification of problems for which these

gradient based methods can be applied [62]. Surprisingly, these results indicate that

the sensitivity trajectories of a hybrid system will usually exist almost everywhere in

the parameter space. This enables us to distinguish the following classes of problems,

at least provided that there are no inequality path constraints:

1. Problems where the sequence of modes, Tµ, does not change in the parameter

space of interest, and the parametric sensitivities do not jump at events. For

example, this occurs in ODE embedded systems whenever the state is continu-

ous and the vector field is continuous at any transition. This class of problems

can be solved by a gradient based method.

2. Problems where Tµ does not change in the parameter space of interest, but the

parametric sensitivities exhibit discontinuities at some events. Galán and Bar-

ton [62] present a theorem in which sufficient conditions for the smoothness of

the objective function of the Master NLP problem for control parameterization

are derived. In this case, this class of problems can be solved by a gradient

based method.

3. Problems where Tµ changes in the parameter space of interest. We have found

that the critical parameter values at which the sequence of events changes typi-

cally correspond to points of discontinuity or nondifferentiability in the objective

function [62]. Hence, conventional gradient based optimization methods will fail

due to the inherent nonsmoothness of the objective function. Unfortunately,

these are also the most interesting and complex class of problems.

Roughly speaking, methods to solve problems which fall into categories 1 and 2 are

presented in Chapter 2, while problems which fall into category 3 have to be decom-

posed into smaller subproblems, and our efforts to tackle these challenging problems

88

are presented in Chapters 3 and 4. To deal with the problem of including inequality

path constraints, several numerical methods have been proposed [35, 88, 126, 55],

but none is completely satisfactory. There is scope for further improving this area of

dynamic optimization problems; however, this will not be addressed in this thesis.

Note that the classification of the problems presented above is a rough rule of

thumb to describe most problems which we have encountered in practice. As discussed

in Section 1.1.4, it is possible to construct problems in which the mode sequence does

not change anywhere in the parameter space of interest, but in which the parametric

sensitivities do not exist at critical points. On the other hand, it is also possible to

construct problems in which the mode sequence changes in the parameter space of

interest, but for which the parametric sensitivities exist for all parameter values. For

example, consider the following trivial hybrid system,

Mode 1 :



















f (1) = ẋ− p, J (1) = {1},

S(1)(1) = 2, L
(1)
1 := (t ≥ p),

T
(1)
1 = x(σi+1) − x(τi),

Mode 2 : f (2) = ẋ− p, J (2) = ∅.

where p ∈ [0.5, 1.5], t ∈ [0, 1], and x(0) = 0 with initial mode 1. Note that the

sequence of modes is Tµ = 1, 2 for 0.5 ≤ p ≤ 1 and Tµ = 1 for 1 < p ≤ 1.5.

However, one can verify that the parametric sensitivities exist and are unique for

all p ∈ [0.5, 1.5]. Note that this is a pathological example because the transition

has no effect on the behavior of the continuous state of the hybrid system. Having

said this, the above classification of problems is still a very useful guide to think

about optimization problems with hybrid systems embedded, because most nontrivial

optimization problems will fall within the classification.

The optimization problem for the tank changeover example falls into the third

class of problems as Tµ clearly changes in the parameter space of interest. This has

motivated Barton et al. [19] to solve the problem using a direct search stochastic

procedure that is relatively insensitive to nonsmoothness and nonconvexity of the

89

Master NLP. We note that with this approach, the optimization procedure implic-

itly infers, from the existence of the path constraint the need for a N2 purge before

introducing O2. The purpose of this example is to demonstrate that given a hybrid

dynamic model, and the point and path constraints representing safety and opera-

tional goals/constraints, a hybrid dynamic optimization procedure can, in principle,

design the changeover policy automatically.

Consider next the following optimization problem:

min
p

x(p, tf),

where x(p, tf) is given by the solution of the hybrid system described by Equations

(1.3) - (1.5), x(p, 0) = 0 in mode 1, tf = 4, and p ∈ [2, 4]. In Section 1.3, we have

seen how Tµ changes in the parameter space. From Figure 1-12(c), it is clear that

the objective function is nonsmooth (and discontinuous) at the critical point p = 3,

and this is another example of a problem that falls into the last class of problems

described above.

90

Chapter 2

Fixed Mode Sequence and

Transition Times

In this chapter, we will discuss how to solve optimization problems with embedded

LTV ODE hybrid systems, and whose transitions are known a priori, i.e., the hybrid

mode and time trajectories Tµ and Tτ are fixed (see Section 2.3 for a formal definition

of the hybrid systems considered). This class of problems corresponds to categories

1 and 2 in the classification presented in Section 1.4.2, which are smooth in the

control parameterization framework, because Tµ is fixed. The application of control

parameterization to this class of multi-stage problems and the use of local gradient

based algorithms have previously been studied [100, 134]. The material described in

this chapter makes the following contributions:

1. The computation of parametric sensitivities is treated rigorously using the ex-

istence and uniqueness theorems presented in [63]. The correct computation

of the parametric sensitivities, especially at the transitions, is crucial to the

application of efficient gradient based algorithms;

2. A method for constructing convex relaxations of a Bolza type objective function

with a linear hybrid system embedded is presented. This is a natural and direct

extension of the theory described in [120]. A deterministic algorithm to find the

global solution is then possible when branch-and-bound (BB) methods [96, 117]

91

are applied.

For related work on linear switched systems with quadratic objective functions, see

[137], where the sequence of modes is fixed, the timings of the transitions are para-

meterized, and the gradients to the local NLP solver are obtained by solving the HJB

equations using the dynamic programming approach.

This chapter is organized as follows. First, in Section 2.1, we introduce determin-

istic methods for global optimization of regular optimization problems, which form

the foundation for algorithms for global dynamic optimization with hybrid systems

embedded. These concepts will be revisited again and again throughout the rest of

this thesis. In Section 2.2, we will explain the rationale behind only focussing on LTV

systems instead of general nonlinear systems. The LTV hybrid system of interest is

defined in Section 2.3 using the modeling framework presented in Chapter 1. This

is followed by formulation of the optimization problem in Section 2.4. Section 2.5

contains a discussion on the solution strategy employed, calculation of the paramet-

ric sensitivities at transitions, and the existence of a minimum. A simple example of

how practical solvers behave when given a nonsmooth problem is also shown here.

Convex relaxations of the Bolza type objective function are constructed in Section

2.6, and the branch-and-bound (BB) method utilizing these underestimators is shown

to be infinitely convergent when the implied state bounds presented in Section 2.7 are

employed. Finally, Section 2.8 contains two illustrative examples where the proposed

methods are applied.

2.1 Deterministic Global Optimization

Global optimization methods can be divided into two main categories: stochastic

methods and deterministic methods. Deterministic methods utilize gradient based

optimization algorithms to guarantee a global solution to the problem within some

user specified ε tolerance, with a finite number of iterations. In essence, deterministic

methods provide a certificate of optimality, i.e., they can guarantee that the global

solution value of the problem cannot be better than ε of the objective function value

92

at the feasible point that has been obtained on termination. To illustrate, given the

optimization problem:

min
x∈D

f(x)

where D ⊂ R
n is a nonempty, compact set and f : D → R is a continuous function,

a deterministic global optimization algorithm furnishes a point x∗ ∈ D such that

f(x∗) ≤ f ∗ + ε

in a finite number of iterations, where f ∗ ≡ min
x∈D

f(x).

This property makes deterministic global optimization methods particularly well

suited for applications which demand that the global solution be found, e.g., formal

safety verification problems and parameter estimation problems. In the former case,

a suboptimal local solution could falsely indicate that all safety specifications are

met, leading to disastrous consequences if, in actuality, a global solution exists which

provides a counter example that violates some safety specification. In the latter case,

a suboptimal local solution could falsely indicate that a proposed model structure

did not match experimental data in a statistically significant manner, leading to the

false rejection of a valid model structure [122]. In addition, for certain engineering

problems, the optimization problem is so horribly nonconvex (this is especially true

of nonlinear equality constraints) that local optimization methods can often fail to

even produce a single feasible point, even though the problem is clearly feasible.

While stochastic methods, such as random direct search methods, simulated an-

nealing, genetic algorithms, etc. are generally much easier to implement than de-

terministic methods, they are unable to provide a guarantee of global optimality

within a finite number of iterations (while many of these methods have provisions

and heuristics for avoiding getting “stuck” at local minima, in the best case they

can only guarantee global optimality as the number of iterations approaches infinity

and they have no way of measuring how close they are to the global solution after

a finite number of iterations). Thus, for problems in which a lower bound on the

optimal solution value is not known a priori, it is impossible to know whether a so-

93

lution is “good enough” solely using a stochastic method and without appealing, in

some form, to the theory of deterministic global optimization methods. This thesis

focuses solely on the deterministic approach, because one of the goals of this thesis

is to lay the foundations for the theory and algorithms needed to solve formal safety

verification problems with hybrid systems embedded. While stochastic optimization

methods have previously been applied for the optimization of hybrid systems [19], the

work in this thesis represents the first attempt at deterministic global optimization

of hybrid systems.

Many modern, general methods for deterministic global optimization in Euclidean

spaces rely on the notion of a convex relaxation of a nonconvex function [96, 1].

This is a convex function which underestimates a nonconvex function on the set of

interest, i.e., a convex relaxation of a function f on a convex set C is a convex

function u : C → R such that u(x) ≤ f(x),∀x ∈ C. The convex programs that

result from convex relaxation of all nonconvex objective and constraint functions in

a nonconvex program can (in principle) be solved to guaranteed global optimality,

which, for example, can be used to generate rigorous lower bounds on the solution

value of the nonconvex problem for a BB algorithm [77]. In BB, the feasible set is first

relaxed and subsequently split into partitions (branching) over which rigorous lower

and upper bounds on the solution value of the nonconvex problem can be determined

(bounding). If the lower bound on a partition of the feasible space is greater than the

current best upper bound, or if the lower bounding convex problem is infeasible on

that partition, the partition is removed from the search space since the minimum can

never be attained there (fathomed).

It should be noted that BB algorithms involving real valued decision variables do

not in general terminate finitely. On the other hand, ε optimality can be achieved in

a finite number of iterations. In general, BB algorithms exhibit exponential running

time with the number of optimization variables, i.e., in the worst case the running

times for these algorithms grow exponentially with the number of optimization vari-

ables. However, it is worth noting the BB algorithm can be naively viewed as a

multi-start algorithm employing local optimization methods to generate many dif-

94

ferent feasible solutions, while also providing a rigorous lower bound on the global

solution. If the BB algorithm is taking too many iterations, the user can terminate

after a specified iteration limit to obtain the current best solution (best upper bound)

and a rigorous estimate of how far this best solution is from the global solution (gap

between the best upper bound and the current lower bound).

Before we introduce two well established algorithms for solving nonconvex NLPs

and nonconvex MINLPs (BB and nonconvex Outer Approximation (OA) respec-

tively), we will briefly comment on the process of obtaining convex relaxations for

nonconvex functionals on Euclidean spaces. This process of obtaining rigorous convex

relaxations is key to applying deterministic global optimization. There are two main

results which enable this to be done for regular nonconvex problems: McCormick’s

composition theorem [96] and αBB and derivatives [1, 2].

Theorem 2.1 (McCormick’s Composition Theorem). Let X ⊂ R
n be a nonempty

convex set. Consider the function T ◦ t where t : X → R is continuous, and let

X ⊂ {x : t(x) ∈ [a, b]}. Suppose that a convex function ut and a concave function ot

satisfying

ut(x) ≤ t(x) ≤ ot(x), ∀x ∈ X

are known. Let uT be a convex relaxation of T on [a, b], let oT be a concave relaxation

of T on [a, b], let zmin be a point at which uT attains its infimum on [a, b], and let

zmax be a point at which oT attains its supremum on [a, b]. If the above conditions

are satisfied, then

uT ◦t(x) = uT
[

mid{ut(x), ot(x), zmin}
]

is a convex relaxation of T ◦ t on X, and

oT ◦t(x) = oT
[

mid{ut(x), ot(x), zmax}
]

is a concave relaxation of T ◦ t on X, where the mid function selects the middle value

of three scalars.

Note that Theorem 2.1 is not the original formulation in [96], but the modified for-

95

mulation by Barton [20] which fixes a number of bugs (the theorem is stated without

proof, found in [20]). Due to the presence of the mid function, the constructed convex

relaxations from applying Theorem 2.1 are not guaranteed to be smooth. However,

it is possible to generate smooth relaxations from the McCormick relaxations by lin-

earizing (i.e., constructing supporting hyperplanes) the nonsmooth relaxations at user

specified points, and utilizing the linearized relaxations instead.

The methods of αBB and its derivatives guarantee that the constructed convex

relaxations are twice-continuously differentiable. However, we have found in practice

that the McCormick relaxations tend to produce tighter relaxations. The measure of

“tightness” of a convex relaxation can be quantified by the maximum distance between

the convex relaxation and the original function in the set on which the relaxation is

constructed. The smaller this distance is, the tighter the convex relaxation. When

using the BB algorithm, one would like to utilize the tightest convex relaxations

possible, as this usually accelerates the convergence of the BB algorithm.

In [96], a factorization scheme was developed to deal with functions defined as

compositions of finite sequences of elementary operations. In general, this factoriza-

tion scheme will generate nonsmooth convex relaxations. Tolsma and Barton [128]

shows how a smooth convex relaxation of the factorable function can be constructed

through the introduction of extra constraints and variables. Gatzke et al. [64] demon-

strated how the aforementioned methods can be combined and automated.

2.1.1 Branch-and-Bound Algorithm

Consider the following NLP:

min
p∈P

f(p)

(o-NLP(P))
s.t. g(p) ≤ 0

where P ⊂ R
np is a nonempty, compact, convex set, f : P → R and g : P → R

ng

are continuous on P . We will assume that a convex relaxation of o-NLP(P) can be

96

constructed, and is given by the following NLP:

min
p∈P

u(p;P)

(c-NLP(P))
s.t. h(p;P) ≤ 0

where u is a convex relaxation of f on P , and h is a convex relaxation of g on P . We

also assume that given a convex NLP, c-NLP(P), we have a NLP solver, (CNLPS),

that terminates finitely with the following output:

1. Return +∞ if c-NLP(P) is infeasible.

2. Return objective function value u(p∗;P) and a global solution p∗ ∈ P if c-

NLP(P) is feasible.

Without loss of generality, let the set P be represented by known bounds on p, i.e.,

P = [pL,pU]. We will now define what we mean by a partition of a set.

Definition 2.2. Call RP a partition of P when

RP = {Pk |
⋃

k

Pk = P, int(Pk) ∩ int(Pj 6=k) = ∅}.

The following is a spatial BB algorithm, taken from [20], for solving o-NLP(P)

with input ε > 0 as the convergence tolerance:

Algorithm 2.3.

1. (Initialization) P0 := P , I = {P0}, LBD0 := −∞, UBD := +∞, k = 1.

2. (Termination Test) Delete from I all nodes Pi with LBDi ≥ UBD. Set

LBD := min
Pi∈I

LBDi.

If UBD − LBD ≤ ε or I = ∅ terminate. If UBD = +∞, then o-NLP(P) is

infeasible. Otherwise, UBD is an ε-optimal estimate for the solution value and

p∗ is a feasible point at which UBD is attained.

97

3. (Node Selection) Select and delete a node Pi from I according to a node

selection heuristic.

4. (Lower Bounding) Solve c-NLP(Pi) using CNLPS. Then,

(a) If CNLPS returns +∞, set LBDi := +∞.

(b) Else, set LBDi to be the optimal solution value and set p̂ to be an optimal

solution.

If p̂ is feasible for o-NLP(P) and f(p̂) < UBD then set

UBD := f(p̂),p∗ := p̂.

5. (Fathoming) If LBDi = +∞ or LBDi ≥ UBD then goto 2.

6. (Optional Upper Bounding) Solve o-NLP(Pi) locally using CNLPS. If a

feasible point is located, let p̂ be the point and if f(p̂) < UBD then set

UBD := f(p̂),p∗ := p̂.

7. (Branching) Partition the set Pi into sets Pk and Pk+1 according to some

partitioning rule. Set LBDk, LBDk+1 := LBDi. Add nodes Pk and Pk+1 to I.

Set k = k + 2. Goto 2.

A BB algorithm is at least infinitely convergent if the selection operation is bound

improving and the bounding operation is consistent [77, Theorem IV.3]. Since fath-

oming of a particular partition of the parameter search space occurs only when its

lower bound is greater than the best current upper bound, or the lower bounding

problem on that partition is infeasible, the selection operation in Step 3 is bound

improving by definition. Hence, in order for Algorithm 2.3 to be infinitely conver-

gent, the convex relaxations in c-NLP(Pi) have to become tighter as the optimization

parameter set Pi becomes smaller upon branching, and they have to converge to the

original functions f and g in the limit as Pi shrinks to degeneracy (this implies that

98

the bounding operation is consistent). This is true for both McCormick’s method for

constructing convex relaxations and αBB. This ensures that for feasible o-NLP(P),

the incumbent lower bound, LBD, will eventually approach the upper bound, UBD,

as the number of iterations increases. If o-NLP(P) is feasible, then Algorithm 2.3

terminates finitely with (p∗, UBD), where the global solution value of o-NLP(P) is

bounded by UBD − ε and UBD. If o-NLP(P) is infeasible, then Algorithm 2.3

terminates finitely with an indication that o-NLP(P) is infeasible. A simple way to

see this is to consider a problem for which o-NLP(P) is feasible. Suppose that P is

partitioned into P1 and P2 such that o-NLP(P1) is feasible, but for which o-NLP(P2)

is infeasible. Then, in order for Algorithm 2.3 to terminate finitely with the solution

when applied to o-NLP(P), it will have to terminate finitely with an indication of

infeasibility when applied to o-NLP(P2).

Algorithm 2.3 follows closely the work of [54, 96, 77]. It is also possible to add

pre-processing and post-processing steps to accelerate convergence using a branch-

and-reduce algorithm [117].

2.1.2 Nonconvex Outer Approximation Algorithm

Consider the following MINLP:

min
p∈P,y∈Y b

f(p,y)

(o-MINLP(P, Y b))
s.t. g(p,y) ≤ 0

where P ⊂ R
np is a nonempty, compact, convex set, Y b = {0, 1}ny , Y = [0, 1]ny ,

f : P × Y → R and g : P × Y → R
ng . We will assume that a convex relaxation of

o-MINLP(P, Y b) can be constructed, and is given by the following MINLP:

min
p∈P,y∈Y b

u(p,y;P, Y)

(c-MINLP(P, Y))
s.t. h(p,y;P, Y) ≤ 0

99

where u is a convex relaxation of f on P × Y , and h is a convex relaxation of g on

P × Y .

Outer approximation as a decomposition approach has been employed very suc-

cessfully for convex MINLPs [50, 59] (those MINLPs in which the participating func-

tions are convex, e.g., c-MINLP(P, Y)). The extension to nonconvex MINLPs hinges

on the ability to construct convex relaxations of the objective function and constraints

to form the lower bounding convex c-MINLP(P, Y) [82, 83]. Note that any general

mixed-integer problem can be reformulated into mixed-binary problem, hence we will

only consider problems where Y b = {0, 1}ny . By relaxing Y b into Y = [0, 1]ny , c-

MINLP(P, Y) can be constructed using the standard methods for convex relaxations

described above. In the context of the OA algorithm for the global solution of non-

convex MINLPs described in [83], we introduce the Primal Problem as a nonconvex

NLP with y∗ fixed in o-MINLP(P, Y b):

min
p∈P

f(p,y∗)

(NLP(y∗))
s.t. g(p,y∗) ≤ 0,

and the corresponding Primal Bounding Problem as a convex NLP with y∗ fixed in

c-MINLP(P, Y):

min
p∈P

u(p,y∗;P, Y)

(NLPB(y∗))
s.t. h(p,y∗;P, Y) ≤ 0.

The OA algorithm solves for the global solution by alternating finitely between

the primal problem, the primal bounding problem, and relaxations of the Master

problem (which is not described here, see [83] for a description), as shown in Figure

2-1. Because the solution of the relaxed master problem provides a non-decreasing

sequence of rigorous lower bounds, and the solution of the primal problem provides

a sequence of upper bounds, the algorithm terminates finitely either when the lower

100

Figure 2-1: Outer approximation for nonconvex MINLPs.

bound crosses the best upper bound, or the relaxed Master problem becomes infea-

sible. The primal bounding problem provides a valid and tighter lower bound to the

primal problem for each binary realization, yk, then that provided by the current re-

laxed Master problem. Hence if the solution to the primal bounding problem is greater

than the current best upper bound, its corresponding primal problem need not be

solved for iteration k. This is important, since the convex primal bounding problem

is usually the least expensive to solve, followed by the relaxed Master problem, while

the nonconvex primal problem, which requires global deterministic methods to solve,

is usually the most expensive, unless a special structure is exhibited once the binary

variables are fixed.

We note that the OA algorithm will terminate finitely, even when certain binary

realizations of o-MINLP(P, Y b) may not be feasible. This is because the nonconvex

101

OA algorithm terminates with a finite number of major iterations (in the worst pos-

sible case, all possible combinations of y are exhaustively generated by the relaxed

master problem) [83, Corollary 3.3.1]. The solution of the relaxed master problem

(MILP) is accomplished in finite time [103], as is the solution of each primal bounding

problem (convex NLP) by the assumption on CNLPS. Finally, Algorithm 2.3 termi-

nates in finite time for each primal problem as discussed above. This implies that

the global solution to o-MINLP(P, Y b) is obtained within ε optimality [83, Corollary

3.3.1], or the OA algorithm will terminate with an indication that o-MINLP(P, Y b)

is infeasible.

2.2 Linear vs. Nonlinear Dynamics

For the rest of this chapter, we will focus on solving problems with LTV hybrid systems

embedded. There are a number of reasons for examining linear hybrid systems instead

of the general nonlinear case:

1. Linear systems are easier to analyze, and often provide much insight to strategies

for solving the general, nonlinear problem.

2. The structure of linear systems lends itself to specialized and tailored algorithms

which exploit said structure, leading to efficient solution strategies.

3. One cannot hope to solve problems with general, nonlinear hybrid systems

embedded if problems with linear hybrid systems cannot be solved.

Hence, the focus throughout this thesis will be on linear hybrid systems, since it

represents fundamental work for the deterministic, global solution of dynamic opti-

mization problems with linear hybrid systems embedded. It is noted, however, that

in the course of developing the theory and algorithms in Chapter 4, the same theory

and algorithms can be easily extended to handle nonlinear hybrid systems. For more

on this, see Chapter 4.

102

2.3 The Linear Hybrid System

Here, we shall define the linear hybrid system of interest, based on the modeling

framework presented in Section 1.1. We say that a transition is explicit when its

timing, predecessor and successor modes are known a priori.

Definition 2.4. The LTV ODE hybrid system of interest is defined by the following:

1. A fixed Tµ = m1, . . . ,mne
, with mi ∈ M , and a fixed Tτ with fixed initial and

final time, σ1 and τne
, and explicit transition times, τ1, . . . , τne−1.

2. An invariant structure system where the number of real valued state and control

variables are constant in each mode, V = {x,u,p, t}, where p ∈ P ⊂ R
np ,

x(p, t) ∈ R
nx and u(p, t) ∈ U ⊂ R

nu for all (p, t) ∈ P × Ii, i = 1, . . . , ne.

3. The parameterization of the bounded real valued controls

u(p, t) = S(t)p + v(t), (2.1)

uL(t) ≤ u(p, t) ≤ uU(t), ∀t ∈ [σ1, τne
],

where uL(t) and uU(t) are known lower and upper bounds on the controls u(p, t)

that define the set U , S(t) and v(t) are piecewise continuous on [σ1, τne
] and

defined at any point of discontinuity.

4. The LTV ODE system in each mode m ∈M , which is described by

ẋ(p, t) = A(m)(t)x(p, t) + B̃(m)(t)u(p, t) + C(m)(t)p + q̃(m)(t),

where A(m)(t) is continuous on [σ1, τne
]; B̃(m)(t), C(m)(t) and q̃(m)(t) are piece-

wise continuous on [σ1, τne
], and defined at any point of discontinuity, for all

m ∈M . After control parameterization (substitute Equation (2.1)), we have

ẋ(p, t) = A(m)(t)x(p, t) + B(m)(t)p + q(m)(t), (2.2)

103

where B(m)(t) ≡ B̃(m)(t)S(t) + C(m)(t) and q(m)(t) ≡ B̃(m)(t)v(t) + q̃(m)(t) are

piecewise continuous on [σ1, τne
], and defined at any point of discontinuity, for

all m ∈M .

5. The transition conditions for the transitions between epochs Ii and Ii+1, for all

i = 1, . . . , ne − 1, which are trivial since all events are explicit time events:

L(mi) := (t ≥ τi),

indicating the transition from mode mi in epoch Ii to mode mi+1 in epoch Ii+1

at time τi.

6. The collection of transition functions, which is given by the following equation,

x(p, σi+1) = Dix(p, τi) + Eip + ki, ∀i = 1, . . . , ne − 1, (2.3)

for the transition from mode mi in epoch Ii to mode mi+1 in epoch Ii+1.

7. A given initial condition for mode m1,

x(p, σ1) = E0p + k0. (2.4)

A solution, x(p, t), t ∈ Ii, i = 1, . . . , ne, will exist and be unique for all p ∈ P ,

at least in the weak or extended sense (this follows from [42], see e.g., Theorem

4.4). Note that the control parameterization in (2.1) can be used to approximate

the controls with piecewise Lagrange polynomials of arbitrary order, which includes

piecewise constant and piecewise linear controls. The advantage of using Lagrange

polynomials as the basis functions lies in the straightforward translation of the natural

bounds on the controls, u, to bounds on the parameters, p, since the coefficients of

the Lagrange polynomials correspond to values of the controls at specific points in

time. In most cases, this results in the Euclidean parameter space P being a hyper-

rectangle, ensuring its compactness.

104

Definition 2.5. Let P be a nonempty compact convex subset of R
np . We define the

following sets for all i = 1, . . . , ne:

X (i)(t;P) ≡
{

x(p, t) | p ∈ P
}

, ∀t ∈ Ii, X (i)(P) ≡
⋃

t∈Ii

X (i)(t;P),

Ẋ (i)(t;P) ≡
{

ẋ(p, t) | p ∈ P
}

, ∀t ∈ Ii, Ẋ (i)(P) ≡
⋃

t∈Ii

Ẋ (i)(t;P).

Before we proceed, for convenience, we will reproduce the definition of a stationary

simple discontinuity in an integrable function [120, Definition 2.1]:

Definition 2.6. Let Z ⊂ R
d and f : [t0, tf] × Z → R be an integrable function.

Then, f is said to have a finite number of stationary simple discontinuities in t if the

following conditions hold:

1. For each t fixed in [t0, tf], f(t, z) is continuous on Z.

2. For each z fixed in Z, f(t, z) possesses at most a finite number of simple dis-

continuities. Additionally, f(t, z) must be defined at any point of discontinuity.

2.4 Problem Formulation

Problem 2.7. Consider the following problem:

min
p∈P

F (p) ≡
ne
∑

i=1

{

nφi
∑

j=1

φij

(

ẋ(p, t̂ij),x(p, t̂ij),p
)

+

∫ τi

σi

fi
(

ẋ(p, t),x(p, t),p, t
)

dt

}

,

subject to the following point and isoperimetric constraints,

G(p) ≡
ne
∑

i=1

{

nηi
∑

j=1

ηij

(

ẋ(p, ťij),x(p, ťij),p
)

+

∫ τi

σi

gi
(

ẋ(p, t),x(p, t),p, t
)

dt

}

≤ 0,

where x(p, t) is given by the solution of the embedded LTV ODE hybrid system

(Definitions 2.4 and 2.5); fi : Ẋ (i)(P) × X (i)(P) × P × Ii → R and gi : Ẋ (i)(P) ×

X (i)(P)×P×Ii → R
nc are piecewise continuous for all i = 1, . . . , ne, where only a finite

105

number of stationary simple discontinuities are allowed; nφi is an arbitrary number

of point objectives in epoch Ii, t̂ij ∈ Ii and φij : Ẋ (i)(t̂ij;P)×X (i)(t̂ij;P)× P → R is

continuous for all j = 1, . . . , nφi and i = 1, . . . , ne; and nηi is an arbitrary number of

point functions in epoch Ii, ťij ∈ Ii and ηij : Ẋ (i)(ťij;P) × X (i)(ťij;P) × P → R
nc is

continuous for all j = 1, . . . , nηi and i = 1, . . . , ne. Additionally, we require that the

set G = {p ∈ P | G(p) ≤ 0} is nonempty.

In general, testing feasibility for the set G for an arbitrary dynamic optimization

problem is a non-trivial problem. However, for most well-posed engineering problems,

the existence of a feasible solution is often known a priori, so the assumption is not a

strong one. This assumption allows one to write min in the problem statement, as is

the convention for optimization problems, instead of inf. It is interesting to note that

given some optimality tolerance, the application of Algorithm 2.3 guarantees that

either a solution will be found, or the algorithm will terminate with an indication

that the problem is infeasible. In that case, the requirement that G 6= ∅ can be

relaxed.

2.5 Solution Strategy

The BB algorithm presented in Algorithm 2.3 will be employed to obtain a global solu-

tion, within ε tolerance, of Problem 2.7 with a finite number of iterations. The hybrid

system described in Definition 2.4 is embedded in the optimization problem, reduc-

ing the otherwise infinite dimensional search space (containing x ∈ (Ĉ1[σi, τi])
nx , i =

1, . . . , ne) to a finite dimensional one on the parameter set P . The upper bounding

problem is solved using any local gradient based method, utilizing the parametric

sensitivities of the hybrid system.

Theorem 2.8. The parametric sensitivities of the LTV ODE hybrid system (Def-

inition 2.4) exist (at least in the weak sense), S(p, t) ≡ ∂x
∂p

∣

∣

∣

p,t
∈ R

nx×np, t ∈ Ii,

106

i = 1, . . . , ne for all p ∈ P , and are given by the solution of the following equations:

Ṡ = A(mi)(t)S + B(mi)(t), ∀t ∈ (σi, τi], i = 1, . . . , ne, (2.5)

S(p, σ0) = E0, (2.6)

S(p, σi+1) = DiS(p, τi) + Ei, i = 1, . . . , ne − 1. (2.7)

Proof. Consider an arbitrary epoch i ∈ {1, . . . , ne}, where σi < τi. We have a finite

number of discontinuities (in time) in B(mi)(t) and q(mi)(t). Let there be k such

discontinuities in (σi, τi) each found at points t = λj where λj ∈ (σi, τi) for j ∈

{1, . . . , k}. Construct a sequence of sub-epochs [θ1, λ1], [θ2, λ2], . . . , [θk+1, λk+1] where

θ1 = σi, λk+1 = τi; θj < λj for j = 1, . . . , k+1 and λj = θj+1 for j = 1, . . . , k. Extend

the functions B(mi)(t) and q(mi)(t) to be continuous on [θj, λj] for all j = 1, . . . , k+1:

B(mi)(θj) ≡ lim
t→θ+j

B(mi)(t); q(mi)(θj) ≡ lim
t→θ+j

q(mi)(t),

B(mi)(λj) ≡ lim
t→λ−j

B(mi)(t); q(mi)(λj) ≡ lim
t→λ−j

q(mi)(t).

At the transitions between sub-epochs, impose state continuity as the system of tran-

sition functions. In this way, we have defined a hybrid system within the chosen

epoch. The form of the LTV ODE system in each sub-epoch is given by (2.2). Let

F(mi) = ẋ, and consider an arbitrary sub-epoch, [θj, λj]. It is clear that the partial

derivatives ∂F(mi)

∂x
= A(mi) and ∂F(mi)

∂p
= B(mi) exist and are continuous. Without loss

of generality, assume that P ⊂ R
np is a closed hyper-rectangle. It follows that we can

construct an extended, bounded, open set P o ⊂ R
np such that P ⊂ P o by subtracting

and adding some small ε > 0 to the bounds on P . At the transition λj, consider the

following system of equations,

h
(

x(p, λj), ẋ(p, λj),x(p, θj+1), ẋ(p, θj+1);p
)

= 0,

107

where h : R
nx × R

nx × R
nx × R

nx × P o → R
4nx is described by























x(p, λj) − x(p, θj) −

∫ λj

θj

A(mi)(t)x(p, t) + B(mi)(t)p + q(mi)(t) dt

ẋ(p, λj) − A(mi)(λj)x(p, λj) − B(mi)(λj)p − q(mi)(λj)

x(p, λj) − x(p, θj+1)

ẋ(p, θj+1) − A(mi)(θj+1)x(p, θj+1) − B(mi)(θj+1)p − q(mi)(θj+1)























.

It is clear that the set E = R
4nx ×P o is an open set such that E ⊂ R

4nx+np . Consider

the following 4nx × 4nx submatrix of the Jacobian matrix of h corresponding to the

variables x(p, λj), ẋ(p, λj),x(p, θj+1), and ẋ(p, θj+1):

J =

















I 0 0 0

−A(mi)(λj) I 0 0

I 0 −I 0

0 0 −A(mi)(θj+1) I

















.

J is clearly invertible. We can then apply [63, Theorem 1] to obtain the existence

result. Since the transitions between the sub-epochs do not depend on p, and we have

state continuity, it follows from [63, Eq. (57)] that the parametric sensitivities are

continuous across the sub-epochs. Equation (2.5) then follows from [63, Eq. (48)].

For the parametric sensitivities at the epoch boundaries, (2.7) follows from a direct

application of [63, Eq. (55)]. To complete the proof, we only have to consider the

case where we have an instantaneous epoch (i.e., σi = τi). In that case, [63, Theorem

1] is trivially satisfied and the parametric sensitivities will be given by (2.7).

Note that the sensitivities can be nonsmooth in time due to the presence of the

piecewise continuous term B(mi)(t), but are continuous internal to an epoch. At the

transitions, the sensitivities of the predecessor and successor modes are related by

(2.7). Hence, if Di = I and Ei = 0 (of which state continuity is a common case with

ki = 0 in (2.3)), the sensitivities are continuous across the transitions. In addition, in

order to use a gradient based algorithm, we require the following sufficient conditions

108

on the smoothness of the objective function:

Theorem 2.9. Let P o ⊃ P , X (i)o(t̂ij) ⊃ X (i)(t̂ij;P
o), X (i)o ⊃ X (i)(P o), Ẋ (i)o(t̂ij) ⊃

Ẋ (i)(t̂ij;P
o) and Ẋ (i)o ⊃ Ẋ (i)(P o) be open subsets of R

np, R
nx, R

nx, R
nx and R

nx

respectively, for all j = 1, . . . , nφi, i = 1, . . . , ne. If the following conditions are

satisfied, then the objective function F (p) in Problem 2.7 is continuously differentiable

on P o.

1.
∂φij

∂ẋ
,
∂φij

∂x
and

∂φij

∂p
exist, and are continuous on Ẋ (i)o(t̂ij) × X (i)o(t̂ij) × P o for

all j = 1, . . . , nφi, i = 1, . . . , ne.

2. ∂fi

∂ẋ
, ∂fi

∂x
and ∂fi

∂p
are piecewise continuous on Ẋ (i)o × X (i)o × P o × Ii for all

i = 1, . . . , ne where only a finite number of stationary simple discontinuities are

allowed.

Proof. Consider any arbitrary epoch Ii, and any arbitrary k ∈ {1, . . . , np}. First,

consider the point objectives. Taking the partial derivative with respect to pk and

applying the chain rule, we have

nφi
∑

j=1

∂φij
∂pk

=

nφi
∑

j=1

{

∂φij
∂ẋ

∂ẋ

∂pk
+
∂φij
∂x

∂x

∂pk
+
∂φij
∂pk

}

,

which clearly exists and is continuous on P by Theorem 2.8 and condition 1. Next,

consider the integral objectives. We have a finite number of discontinuities (in time)

in fi, B(m), q(m), the parametric sensitivities (2.5) and the partial derivatives in

condition 2. Let there be l such discontinuities each found at points t = λj where

λj ∈ (σi, τi) for j ∈ {1, . . . , l} and σi < τi, since there is nothing to prove if the epoch

is instantaneous. Construct a sequence of sub-epochs [θ1, λ1], [θ2, λ2], . . . , [θl+1, λl+1]

where θ1 = σi, λl+1 = τi; θj < λj for j = 1, . . . , l + 1 and λj = θj+1 for j = 1, . . . , l.

109

Partition the integral into the following:

Fi(p) =

∫ τi

σi

fi
(

ẋ(p, t),x(p, t),p, t
)

dt =
l+1
∑

j=1

Fij(p)

=
l+1
∑

j=1

∫ λj

θj

fi
(

ẋ(p, t),x(p, t),p, t
)

dt. (2.8)

Now, choose any arbitrary j ∈ {1, . . . , l + 1}. Extend fi,
∂fi

∂ẋ
, ∂fi

∂x
and ∂fi

∂p
to be

continuous on Ẋ (i)o × X (i)o × P o × [θj, λj], and ∂ẋ
∂p

, ∂x
∂p

, ẋ and x to be continuous on

P o × [θj, λj]. At most, these functions are discontinuous at their endpoints in time.

Removing these discontinuities does not alter the value of the integral because the

endpoints comprise a set of measure zero. Applying the chain rule, we have

∂fi
∂pk

=
∂fi
∂ẋ

∂ẋ

∂pk
+
∂fi
∂x

∂x

∂pk
+
∂fi
∂pk

,

which is continuous on Ẋ (i)o×X (i)o×P o× [θj, λj]. These continuity conditions enable

us to differentiate under the integral sign [43, Page 308] to obtain

∂Fij
∂pk

=

∫ λj

θj

∂fi
∂pk

dt.

We can then apply [120, Proposition 2.1] to yield
∂Fij

∂pk
continuous on P o. Since j was

arbitrary, ∂Fi

∂pk
is continuous on P o as the sum of continuous functions is continuous.

Since i was arbitrary, ∂F
∂pk

is continuous on P o. Since k was arbitrary, ∂F
∂pk

is continuous

for all k ∈ {1, . . . , np} and it follows that F is continuously differentiable on P o.

The next theorem shows that there exists a global minimum to Problem 2.7.

Theorem 2.10. If the sufficient conditions in Theorem 2.9 are satisfied, then a min-

imum exists for Problem 2.7.

Proof. From Theorem 2.9, F is continuous on P . The existence of the minimum then

follows from [120, Corollary 2.1].

To generate rigorous lower bounds in a BB algorithm such as Algorithm 2.3, we

110

need convex relaxations for the Bolza type objective F (p), which will be constructed

as an extension of the theory developed in [120] in the following section. Once we have

obtained the convex relaxation for the objective, we can solve the resulting convex

underestimating problem globally to obtain a lower bound on the solution using any

suitable gradient based algorithm which is also subject to Theorem 2.9 and Theorem

2.10.

Before we end this section, we shall illustrate what happens to a NLP solver in

practice when it is given a nonsmooth problem.

Problem 2.11. Consider the following problem,

min
p∈[−10,10]2

max(0.01(p1 − p2), 3p1 + 5p2).

Note that this problem is convex because the maximum of two convex functions is

also convex (in this case, we have the maximum of two hyperplanes). If we feed this

problem with initial guess of p = (0, 0) to the solver SNOPT version 6.1 with default

settings [66], the solver returns p = (0, 0) for an objective value of 0 with a message

that the current point cannot be improved. If we feed a different initial guess of (5,-5),

the solver again returns p = (0, 0) for an objective value of 0 with a message that the

current point cannot be improved. As can be seen, the solver is having problems with

a convex objective function when it is nonsmooth. The problem can be reformulated

into the following smooth problem,

min
p∈[−10,10]2,z∈[−1020,1020]

z

s.t. z ≥ 0.01(p1 − p2),

z ≥ 3p1 + 5p2.

When this smooth problem is solved with the same solver with an initial guess of

p = (0, 0) and z = 0, the solver returns the correct optimal solution of z = −0.1597

at p = (−10, 5.97). This simple example illustrates that even with a convex prob-

lem, gradient based NLP solvers cannot perform robustly when the problem involves

111

nonsmooth functions.

2.6 Constructing Convex Relaxations

In this section, we will show how the aforementioned methods for constructing convex

relaxations of functionals on Euclidean spaces can be harnessed to construct convex

relaxations of the Bolza type functionals F (p) introduced in the problem formulation

of Section 2.4.

Theorem 2.12. Consider the function F as defined by Problem 2.7. If fi(·, t) is

convex on Ẋ (i)(t;P) × X (i)(t;P) × P for all t ∈ [σi, τi], i = 1, . . . , ne, and φij is

convex on Ẋ (i)(t̂ij;P) × X (i)(t̂ij;P) × P for all j = 1, . . . , nφi, i = 1, . . . , ne, then F

is convex on P .

Proof. As explained in [120, Equation (3)], the structural form of the solution to the

LTV ODE in the first mode m1 is an affine function of p:

x(p, t) = M1(t)p + n1(t), t ∈ [σ1, τ1].

Applying the appropriate transition functions at τ1, we obtain the initial conditions

for mode m2 as

x(p, σ2) =
(

D1M1(τ1) + E1

)

p + D1n1(τ1) + k1,

which is an affine function of p satisfying the condition in [120, Theorem 3.1]. By

induction, we have

x(p, t) = Mi(t)p + ni(t), t ∈ [σi, τi], ∀i = 1, . . . , ne, (2.9)

x(p, σi+1) =
(

DiMi(τi) + Ei

)

p + Dini(τi) + ki, ∀i = 1, . . . , ne − 1. (2.10)

From (2.9), [113, Theorems 3.1, 3.4, 3.5] and Definition 2.5, it follows that the set

Ẋ (i)(t;P) × X (i)(t;P) × P is convex for all t ∈ [σi, τi] , i = 1, . . . , ne. Hence, we

112

can apply [120, Lemma 3.1] to obtain φij is convex on P for all j = 1, . . . , nφi,

i = 1, . . . , ne. Next, consider any arbitrary epoch Ii, for any i ∈ {1, . . . , ne}, and its

integral objective function with initial condition given by (2.10). We can apply [120,

Theorem 3.1] to obtain Fi (defined in (2.8)) convex on P . Since i was arbitrary, we

have Fi is convex on P for all i = 1, . . . , ne, from which it follows that F is convex on

P .

Corollary 2.13. Consider the following function:

U(p) =
ne
∑

i=1

{

nφi
∑

j=1

ψij

(

ẋ(p, t̂ij),x(p, t̂ij),p
)

+

∫ τi

σi

ui
(

ẋ(p, t),x(p, t),p, t
)

dt

}

subject to the conditions of Problem 2.7, where ui is a piecewise continuous mapping

ui : Ẋ (i)(P)×X (i)(P)×P×[σi, τi] → R for all i = 1, . . . , ne where only a finite number

of stationary simple discontinuities are allowed, and ψij is a continuous mapping

ψij : Ẋ (i)(t̂ij;P)×X (i)(t̂ij;P)×P → R for all j = 1, . . . , nφi, i = 1, . . . , ne. If, for all

j = 1, . . . , nφi, i = 1, . . . , ne, we have

ψij

(

ẋ(p, t̂ij),x(p, t̂ij),p
)

≤ φij

(

ẋ(p, t̂ij),x(p, t̂ij),p
)

, ∀p ∈ P, (2.11)

ui
(

ẋ(p, t),x(p, t),p, t
)

≤ fi
(

ẋ(p, t),x(p, t),p, t
)

, ∀(p, t) ∈ P × [σi, τi], (2.12)

ui
(

·, t
)

is convex on Ẋ (i)(t;P) × X (i)(t;P) × P ∀t ∈ [σi, τi], and ψij is convex on

Ẋ (i)(t̂ij;P)×X (i)(t̂ij;P)×P , then U is convex on P such that U(p) ≤ F (p),∀p ∈ P .

Proof. The proof is clear from Theorem 2.12 and [120, Lemma 3.2].

Differentiation of (2.9) with respect to p reveals that Mi are the parametric sen-

sitivities of the hybrid system, which are important in obtaining the implied state

bounds of the embedded linear hybrid system (see below). Corollary 2.13 is espe-

cially useful because the aforementioned methods for constructing convex relaxations

on Euclidean spaces [96, 1] can be harnessed to construct the relevant convex relax-

ations, ψij from φij in (2.11) and ui(·, t) from fi(·, t) for all t ∈ T in (2.12). This

then allows Algorithm 2.3 to be applied to solve Problem 2.7. The next step is to

113

show the convergence properties of the algorithm when employing convex relaxations

constructed from Corollary 2.13.

As mentioned in Section 2.1.1, the selection operation in Algorithm 2.9 is bound

improving by definition. Hence, in order to show that it will be infinitely convergent

(from [77, Theorem IV.3]), we will have to show that the bounding operation is

consistent when Corollary 2.13 is used to construct the convex relaxation of Problem

2.7. This is what we will seek to establish in the following section.

2.7 Implied State Bounds for LTV Hybrid Sys-

tems

In order to establish the consistency of the bounding operation, we first have to bound

the solution of the embedded linear hybrid system. The results in this section are

important, and will be revisited in subsequent chapters.

Theorem 2.14. Consider Problem 2.7. If p ∈ P = [pL,pU], then the implied state

bounds for the real valued state variables are given pointwise in time by the following

natural interval extension [99] of (2.9):

[x]([p], t) = Mi(t)[p] + ni(t), ∀t ∈ [σi, τi], ∀i = 1, . . . , ne. (2.13)

Further, the implied bounds for ẋ(p, t) are given pointwise in time by the following

interval equation:

[ẋ]([p], t) =
(

A(mi)(t)Mi(t) + B(mi)(t)
)

[p] + A(mi)(t)ni(t) + q(mi)(t),

∀t ∈ [σi, τi], ∀i = 1, . . . , ne. (2.14)

Proof. Apply [120, Theorem 4.1 and Corollary 4.1] to each mode mi for i = 1, . . . , ne.

Applying interval arithmetic [99] to (2.13) and (2.14), the following equations are

114

obtained for all t ∈ [σi, τi], j = 1, . . . , nx, i = 1, . . . , ne,

xLj (t) = nij(t) +

np
∑

k=1

min
{

mi
jk(t)p

L
k ,m

i
jk(t)p

U
k

}

,

xUj (t) = nij(t) +

np
∑

k=1

max
{

mi
jk(t)p

L
k ,m

i
jk(t)p

U
k

}

,

ẋLj (t) = q
(mi)
j (t) +

nx
∑

k=1

a
(mi)
jk (t)nij(t) +

np
∑

k=1

min
{

z
(mi)
jk (t)pLk , z

(mi)
jk (t)pUk

}

,

ẋUj (t) = q
(mi)
j (t) +

nx
∑

k=1

a
(mi)
jk (t)nij(t) +

np
∑

k=1

max
{

z
(mi)
jk (t)pLk , z

(mi)
jk (t)pUk

}

,

where mi
jk(t) is the (j, k)th element of Mi(t), n

i
j(t) is the jth element of ni(t), and

Z(mi)(t) = A(mi)(t)Mi(t) + B(mi)(t). From (2.2), (2.5), (2.4), (2.9) and (2.10), the

vector ni(t) is given by the following equations,

ṅi(t) = A(mi)(t)ni(t) + q(mi)(t), ∀t ∈ (σi, τi], i = 1, . . . , ne, (2.15)

n1(σ1) = k0,

ni+1(σi+1) = Dini(τi) + ki, ∀i = 1, . . . , ne − 1.

Theorem 2.15. The implied state bounds xL(t), xU(t), ẋL(t) and ẋU(t) as deter-

mined from Theorem 2.14 are piecewise continuous on [σ1, τne
], and defined at any

point of discontinuity.

Proof. The proof follows from [120, Proposition 4.1 and Remark 4.1] and the fact

that we have a finite number of epochs.

Theorem 2.16. The implied state bounds xL(t) and xU(t) as determined from The-

orem 2.14 are exact in the following sense: For any i ∈ {1, . . . , ne}, j ∈ {1, . . . , nx},

t ∈ [σi, τi], the following relationship holds,

xj(p
∗, t) = xLj (t) ≤ xj(p, t) ≤ xUj (t) = xj(p

†, t), ∀p ∈ P,

for some p∗,p† ∈ P .

115

Proof. The proof is elementary from the application of interval arithmetic on the

interval equation (2.13).

Theorem 2.17. Consider the function F and convex relaxation U as defined by

Corollary 2.13 with implied state bounds defined by Theorem 2.14 subject to the con-

ditions of Problem 2.7. If the constructed convex underestimators ui and ψij possess

consistent bounding operations with monotonic convergence to fi and φij respectively,

and the interval in any partition of P approaches degeneracy, then the lower bound

in this partition converges pointwise to the upper bound of this same partition.

Proof. Choose any partition and any fixed t ∈ [σi, τi] for any i ∈ {1, . . . , ne}. As

the interval [pL,pU] approaches the degenerate value of p∗, it follows from (2.13) and

(2.14) that the intervals [xL(t),xU(t)] and [ẋL(t), ẋU(t)] respectively approach implied

degenerate values x∗(t) and ẋ∗(t). Since ψij is convex on Ẋ (i)(t̂ij;P) ×X (i)(t̂ij;P) ×

P , it is generated in the partition by the intervals [pL,pU], [xL(t̂ij),x
U(t̂ij)] and

[ẋL(t̂ij), ẋ
U(t̂ij)]. Suppose that at each step k, the interval [pL,pU]k is bisected (or

partitioned in some other manner) such that as k → ∞, [pL,pU]k → p∗, which in

turn implies [xL(t̂ij),x
U(t̂ij)]k → x∗(t̂ij) and [ẋL(t̂ij), ẋ

U(t̂ij)]k → ẋ∗(t̂ij). Since this

holds for arbitrary t̂ij ∈ [σi, τi] for any i ∈ {1, . . . , ne}, we have the following sequence:

(ψij)k ↑ φij as k → ∞, ∀j = 1, . . . , nφi, i = 1, . . . , ne

where the convergence arises because the bounds on ψij are all approaching degener-

acy and the underestimator (ψij)k for each step k is assumed to possess a consistent

bounding operation with monotonic convergence to φij. Since the partition was arbi-

trary, the convergence result is applicable to any partition. Applying [116, Theorem

3.3(a)], it is evident that

ne
∑

i=1

nφi
∑

j=1

φij

(

ẋ(p∗, t̂ij),x(p∗, t̂ij),p
∗
)

= lim
k→∞

ne
∑

i=1

nφi
∑

j=1

ψij

(

ẋ(p∗, t̂ij),x(p∗, t̂ij),p
∗
)

k
.

The convergence of the integral term can be shown by considering the integral objec-

116

tive function in each epoch Ii with the following convex underestimator:

Ui(p)k =

∫ τi

σi

ui
(

ẋ(p, t),x(p, t),p, t
)

k
dt, (2.16)

and applying [120, Theorem 5.6], from which it follows that F (p∗) = limk→∞ U(p)k.

Theorem 2.18. A BB algorithm such as Algorithm 2.3 utilizing the convex underes-

timators defined by Corollary 2.13 with implied state bounds defined by Theorem 2.14

is infinitely convergent.

Proof. From Theorem 2.17, we have shown that the bounding operation is consis-

tent. Since the selection operation is bound improving by definition, the algorithm is

infinitely convergent by applying [77, Theorem IV.3].

Thus far, we have focused on constructing convex underestimators for the objective

function. The exact same technique can be applied for the point and isoperimetric

inequality constraints to construct convex relaxations of the feasible region. This

will enable rigorous lower bounds to be obtained in the bounding step of the BB

algorithm. The added advantage of expressing the constraints in their canonical form

[126] is that the objective and all the constraint functions are treated the same way

in as far as the computations of their values, relaxations and respective gradients are

concerned in the numerical solution of the mathematical programming problem.

2.8 Illustrative Examples

Example 2.19. In this example, the implied state bounds [xL(t),xU(t)] for the fol-

lowing hybrid system are obtained for p ∈ [−2, 2]2 and t ∈ [0, 20],

Mode 1 :











ẋ1 = 0.1x1 − x2 + p1

ẋ2 = x1 + 0.1x2 − p2

,

117

-15

-10

-5

0

5

10

15

0 5 10 15 20

-15

-10

-5

0

5

10

15

0 5 10 15 20

V
a
lu
e

V
a
lu
e

Figure 2-2: Implied state bounds for Example 2.19.

Mode 2 :











ẋ1 = −0.1x1 − x2 + p2

ẋ2 = x1 − 0.1x2 − p1

,

where x(0) = (1, 0), Tµ = 1, 2 and the transition functions at τ1 = 10 are given by

x1(p, σ2) = x2(p, τ1),

x2(p, σ2) = x1(p, τ1).

The implied state bounds, shown in Figure 2-2, are easily obtained from Theorem

2.14, where Mi(t) are obtained from the solution of (2.5), and ni(t) from the solution

of (2.15).

Example 2.20. Consider the following problem

min
u,x

F (u, x) ≡

∫ 3

0

−x2 dt,

where −4 ≤ u(t) ≤ 4, subject to the following hybrid system

Mode 1 : ẋ = x+ u, Mode 2 : ẋ = −x− 2u,

with x(0) = 1, Tµ = 1, 2, 1, and state continuity enforced at the explicit transitions

at τ1 = 1 and τ2 = 2. The control parameterization employed is a piecewise constant

118

profile over two equal finite elements, where

u(p, t) =











p1 for 0 ≤ t ≤ 1.5

p2 for 1.5 ≤ t ≤ 3

.

This problem can be solved using a BB algorithm such as Algorithm 2.3 utilizing

the theory developed in this chapter. The resulting control parameterized problem

is:

min
p

F (p) ≡

∫ 3

0

−x(p, t)2 dt,

where p ∈ [−4, 4]2, subject to the following hybrid system

Mode 1 : ẋ(p, t) = x(p, t) + s(t)Tp, Mode 2 : ẋ(p, t) = −x(p, t) − 2s(t)Tp,

s2(t) = 1 − s1(t) and

s1(t) =











1 for 0 ≤ t < 1.5

0 for 1.5 ≤ t ≤ 3

,

with x(p, 0) = 1, Tµ = 1, 2, 1, and state continuity enforced at the explicit transitions

at τ1 = 1 and τ2 = 2. Since the integrand is a univariate concave function, the natural

convex underestimator to use is its convex envelope:

U(p) ≡

∫ 3

0

(

xU(t) + xL(t)
)(

xL(t) − x(p, t)
)

− xL(t)2 dt. (2.17)

The implied state bounds constructed from Theorem 2.14, xL(t) and xU(t), are shown

in Figure 2-3(a). The nonconvex objective function, F (p), and its constructed convex

underestimator, U(p), over the entire feasible region P are shown in Figure 2-3(b).

The lower bound at the first iteration will be obtained at p = (4,−4). The upper

bound obtained at the first iteration will depend on the initial guess for p. Suppose

that the feasible region is partitioned along the lines p1 = 0 and p2 = 0 into 4

quadrants. Each of these partitions imply new state bounds, which update the convex

119

relaxation in (2.17). The constructed convex relaxation for the quadrant [−4, 0]×[0, 4]

is shown in Figure 2-3(c). In this example, the algorithm terminates with at most 4

iterations utilizing the bisection heuristic described above, with a global solution of

F = −82.04, p∗ = (4,−4). However, in general, only ε convergence can be achieved

in a finite number of iterations.

120

10

5

0

-5

0 0.5 1 1.5 2 2.5 3

0

-20

-40

-60

-80

4

2

0

-2

-4
4

2

0

-2

-4

-2

-4

-6

-8

-10

-4
-3

-2
-1

0
0

1

2

3

4

(a) Implied state bounds for

(b) Objective function and

 convex relaxation

(c) Branching and bounding

 on

Figure 2-3: Implied state bounds, objective function and convex relaxations for
Example 2.20.

121

122

Chapter 3

Determining the Optimal Mode

Sequence

In this chapter, we shall examine the class of optimization problems with hybrid

systems embedded where the mode sequence of the embedded hybrid system is to be

determined by the optimization procedure, i.e., Tµ is also an optimization variable in

the problem. To keep the analysis simple, we shall make the timings of the transitions

fixed. It turns out that even with this restriction, the problem is very difficult to solve,

as reflected by the length of this chapter.

This chapter is organized as follows. Section 3.1 introduces the general formu-

lation of the optimal control problem, and defines the linear hybrid systems under

consideration in this chapter. In Section 3.2, we explore the use of dynamic pro-

gramming as a possible tool for solving this problem, and show that the extension

of dynamic programming techniques to determining the optimal mode sequences for

continuous time linear hybrid systems has considerable technical hurdles to overcome.

In Section 3.3, a hybrid superstructure is postulated for the problem, and the problem

is reformulated via the introduction of binary variables, while Section 3.4 describes

various bounding strategies that we have developed for linear hybrid systems whose

mode sequences are allowed to vary. Section 3.5 describes a branch-and-cut (BC)

algorithm for solving the reformulated problem, where we have devised a dynamic

bounds tightening heuristic, based on the bounding strategies presented, that can

123

greatly accelerate the convergence of the BC algorithm. Section 3.6 discusses the

illustrative example problems that are solved with the BC algorithm, and highlights

the effect of the dynamic bounds tightening heuristic.

3.1 Problem Formulation

First, we shall define the linear hybrid system of interest, based on the modeling

framework presented in Section 1.1.

Definition 3.1. The LTV ODE hybrid system of interest is defined by the following.

1. An index set M of modes potentially visited along Tµ, M = {1, . . . , nm}, and a

fixed Tτ with given time events (i.e., explicit transition times) σ1, τ1, τ2, . . . , τne
.

2. An invariant structure system where the number of continuous state variables

is constant between modes, V = {x,u,p, t}, where p ∈ P ⊂ R
np , u(p, t) ∈

U(t) ⊂ R
nu for all (p, t) ∈ P × Ii, i = 1, . . . , ne, and x(p, Tµ, t) ∈ R

nx for all

(p, Tµ, t) ∈ P ×Mne × Ii, i = 1, . . . , ne.

3. The parameterization of the bounded real valued controls,

u(p, t) = S(t)p + v(t), (3.1)

uL(t) ≤ u(p, t) ≤ uU(t), ∀t ∈ [σ1, τne
],

where uL(t) and uU(t) are known lower and upper bounds on the controls u(p, t)

that define the set U(t), S(t) and v(t) are piecewise continuous on [σ1, τne
] and

defined at any point of discontinuity.

4. The LTV ODE system for each mode m ∈M , which is given by

ẋ(p, Tµ, t) = A(m)(t)x(p, Tµ, t) + B̃(m)(t)u(p, t) + C(m)(t)p + q̃(m)(t),

where A(m)(t) is continuous on [σ1, τne
], B̃(m)(t), C(m)(t) and q̃(m)(t) are piece-

wise continuous on [σ1, τne
] and defined at any point of discontinuity, for all

124

m ∈M . After control parameterization (substitute Equation (3.1)), we have

ẋ(p, Tµ, t) = A(m)(t)x(p, Tµ, t) + B(m)(t)p + q(m)(t), (3.2)

where B(m)(t) ≡ B̃(m)(t)S(t) + C(m)(t) and q(m)(t) ≡ B̃(m)(t)v(t) + q̃(m)(t) are

piecewise continuous on [σ1, τne
] and defined at any point of discontinuity, for

all m ∈M .

5. The transition conditions for the transitions between epochs Ii and Ii+1, i =

1, . . . , ne − 1, which are explicit time events:

L(mi) := (t ≥ τi), (3.3)

indicating the transition from mode mi in epoch Ii to mode mi+1 in epoch Ii+1

at time τi.

6. The collection of transition functions, which is given by the following equation,

x(p, Tµ, σi+1) = Di(mi,mi+1)x(p, Tµ, τi)

+ Ei(mi,mi+1)p + ki(mi,mi+1), ∀i = 1, . . . , ne − 1, (3.4)

for the transition from mode mi in epoch Ii to mode mi+1 in epoch Ii+1, where

Di(mi,mi+1), Ei(mi,mi+1) and ki(mi,mi+1) are known for all (mi,mi+1) ∈M2,

∀i = 1, . . . , ne − 1.

7. A given initial condition for mode m1,

x(p, Tµ, σ1) = E0p + k0. (3.5)

A solution, x(p, Tµ, t), t ∈ Ii, ∀i = 1, . . . , ne, will exist and be unique for all

(p, Tµ) ∈ P ×Mne , at least in the weak or extended sense (this follows from [42], see

e.g., Theorem 4.4). Since the transitions occur at known time events, Zeno behavior

[79, 139] will not occur for the hybrid systems considered. In addition, the same

125

observations for control parameterization in Section 2.3 apply here. We now introduce

the general problem that we are interested in solving.

Definition 3.2. Let P be a nonempty compact convex subset of R
np . Define the

following sets for all i = 1, . . . , ne:

X
(i)(t;P) ≡

{

x(p, Tµ, t) | p ∈ P, Tµ ∈Mne
}

, ∀t ∈ Ii,

Ẋ
(i)(t;P) ≡

{

ẋ(p, Tµ, t) | p ∈ P, Tµ ∈Mne
}

, ∀t ∈ Ii,

X
(i)(P) ≡

⋃

t∈Ii

X
(i)(t;P), Ẋ

(i)(P) ≡
⋃

t∈Ii

Ẋ
(i)(t;P).

These sets represent the various images of the parameter space under the solution

of the linear hybrid system. When Tµ is fixed, we can define the following sets.

Definition 3.3. Let P be a nonempty compact convex subset of R
np . Define the

following sets for all i = 1, . . . , ne where Tµ = T ∗
µ = {m∗

j}
ne

j=1 is a fixed mode sequence:

X
∗(i)(T ∗

µ , t;P) ≡
{

x(p, T ∗
µ , t) | p ∈ P

}

, ∀t ∈ Ii,

Ẋ
∗(i)(T ∗

µ , t;P) ≡
{

ẋ(p, T ∗
µ , t) | p ∈ P

}

, ∀t ∈ Ii,

X
∗(i)(T ∗

µ ;P) ≡
⋃

t∈Ii

X
∗(i)(T ∗

µ , t;P), Ẋ
∗(i)(T ∗

µ ;P) ≡
⋃

t∈Ii

Ẋ
∗(i)(T ∗

µ , t;P).

Problem 3.4. Consider the following problem,

min
p∈P,Tµ∈Mne

F (p, Tµ) ≡
ne
∑

i=1

(

φi
(

ẋ(p, Tµ, τi),x(p, Tµ, τi),p
)

+

∫ τi

σi

fi
(

ẋ(p, Tµ, t),x(p, Tµ, t),p, t
)

dt
)

, (3.6)

s.t. G(p, Tµ) ≡
ne
∑

i=1

(

ηi
(

ẋ(p, Tµ, τi),x(p, Tµ, τi),p
)

+

∫ τi

σi

gi
(

ẋ(p, Tµ, t),x(p, Tµ, t),p, t
)

dt
)

≤ 0, (3.7)

where x(p, Tµ, t) is given by the solution of the embedded LTV ODE hybrid system

126

(Definitions 3.1); fi and gi are piecewise continuous mappings with a finite number of

stationary simple discontinuities in time [120, Def. 2.1], fi : R
nx ×R

nx × P × Ii → R

and gi : R
nx × R

nx × P × Ii → R
nc , for all i = 1, . . . , ne; φi and ηi are continuous

mappings φi : R
nx × R

nx × P → R, and ηi : R
nx × R

nx × P → R
nc , for all i =

1, . . . , ne; and nc is the number of constraints in (3.7). Additionally, for the set

G = {p, Tµ | G(p, Tµ) ≤ 0}, we require that (P ×Mne) ∩ G 6= ∅, i.e., the feasible

region is non-empty.

The objective function in (3.6) and the inequality constraints in (3.7) are written

in the form of Bolza type functionals. As explained in the previous chapter, the

advantage of expressing them in this canonical form [126] is that they are all treated

in the same way in as far as the computations of their values, convex relaxations,

and respective gradients are concerned in the numerical solution of the optimization

problem. In addition, there exist constraint transcriptions [126] that will transform

general constraints, e.g., equality or inequality path constraints, into the canonical

form in (3.7).

We will end this section by establishing the existence of a minimum to Problem

3.4, which will be assumed for the rest of this chapter.

Theorem 3.5. Let T ∗
µ ∈Mne be fixed. Also, let P o ⊃ P , X∗(i)o(τi) ⊃ X∗(i)(T ∗

µ , τi;P
o),

X∗(i)o ⊃ X∗(i)(T ∗
µ ;P o), Ẋ∗(i)o(τi) ⊃ Ẋ∗(i)(T ∗

µ , τi;P
o) and Ẋ∗(i)o ⊃ Ẋ∗(i)(T ∗

µ ;P o) be open

subsets of R
np, R

nx, R
nx, R

nx and R
nx respectively, for all i = 1, . . . , ne. If the

following conditions are satisfied, then the objective function F (·, T ∗
µ) is continuously

differentiable on P o.

1. ∂φi

∂ẋ
, ∂φi

∂x
and ∂φi

∂p
exist, and are continuous on Ẋ∗(i)o(τi) × X∗(i)o(τi) × P o for all

i = 1, . . . , ne.

2. ∂fi

∂ẋ
, ∂fi

∂x
and ∂fi

∂p
are piecewise continuous on Ẋ∗(i)o × X∗(i)o × P o × Ii for all

i = 1, . . . , ne where only a finite number of stationary simple discontinuities are

allowed.

Proof. Since T ∗
µ is fixed, we can apply Theorem 2.9 to obtain the desired result.

127

Theorem 3.6. If the sufficient conditions in Theorem 3.5 are satisfied for all Tµ ∈

Mne, then a minimum exists for Problem 3.4.

Proof. Since the number of modes and epochs, nm and ne, are finite integers, Mne is a

finite discrete set. Define the following (possibly empty) set for some fixed T ∗
µ ∈Mne ,

G(T ∗
µ) = {p | G(p, T ∗

µ) ≤ 0}.

Partition the set Mne into the following disjoint sets,

Q0 = {T ∗
µ | G(T ∗

µ) ∩ P = ∅}, Q1 = {T ∗
µ | G(T ∗

µ) ∩ P 6= ∅}

where Mne = Q0 +Q1. By assumption in Problem 3.4, Q1 6= ∅. For every fixed T ∗
µ ∈

Q1, Theorem 2.10 shows that a minimum exists for Problem 3.4 with fixed Tµ = T ∗
µ

if the sufficient conditions in Theorem 3.5 are satisfied for T ∗
µ . Since Q1 ⊂ Mne is a

finite discrete set, a minimum exists for Problem 3.4.

3.1.1 An Illustrative Example: Catalyst Loading in a PFR

Here, we present a simple example problem inspired from chemical reaction engineer-

ing, which will be a common case study for the rest of this thesis.

Example 3.7. Consider an isothermal plug flow reactor (PFR) operating at steady

state, and 3 possible choices of catalyst. The reaction scheme, initial conditions and

associated rate constants are shown in Figure 3-1, where xi represents the molar

concentration of species i (mol m−3) and kj represents the rate constant of reaction

j (min−1). The PFR has a uniform cross-sectional area of 0.05 m2, and a constant

volumetric flow rate of 0.05 m3 min−1. In this example, the independent variable t is

the length, l (m), of the reactor.

Note that the choice of catalyst corresponds to the choice of the sequence of modes

in a linear hybrid system with 3 modes (each mode corresponds to the choice of a

different catalyst) and ne epochs (each epoch corresponds to a section of the reactor),

128

Figure 3-1: Chemical reaction scheme and kinetics for PFR example

with state continuity at the transitions. The initial feed to the reactor comprises a

stream of pure component A, with an inlet molar concentration of 1000 mol m−3.

The objective function is to maximize the profit from the process, which is expressed

as a scaled function of the anticipated sales of the product P, as well as the treatment

costs of the by-products, W1 and W2,

max
Tµ

xP(1) − 0.01xW1(1) − 0.1xW2(1).

In terms of the notation of Section 3.1, the problem can be stated as the following:

min
Tµ∈Mne

x5(Tµ, 1) − 0.01x2(Tµ, 1) − 0.1x4(Tµ, 1)

where x(Tµ, t) ≡ (xA, xW1 , xI, xW2 , xP) ≡ (x1, x2, x3, x4, x5) is given by the solution of

129

the following hybrid system with M = {1, 2, 3}:

Mode 1:























































ẋ1 = −3.415x1

ẋ2 = 1.317x1

ẋ3 = 2.098x1 − 0.054x3

ẋ4 = 0.033x3

ẋ5 = 0.021x3

,

Mode 2:























































ẋ1 = −139.73x1

ẋ2 = 110.2x1

ẋ3 = 29.53x1 − 0.374x3

ẋ4 = 0.079x3

ẋ5 = 0.295x3

,

Mode 3:























































ẋ1 = −2507.6x1

ẋ2 = 2325x1

ẋ3 = 182.6x1 − 1.969x3

ẋ4 = 0.143x3

ẋ5 = 1.826x3

,

x(Tµ, 0) = (1000, 0, 0, 0, 0), Tτ = {Ii}, i = 1, . . . , ne, σ1 = 0 and τi = i/ne for all

i = 1, . . . , ne. The transition functions for all transitions are given by state continuity.

3.2 Dynamic Programming Approaches

In this section, we shall examine the use of dynamic programming [23] techniques

for the solution of Problem 3.4. First, we shall introduce dynamic programming,

which concept is best illustrated through examples. For example, consider the simple

shortest path problem shown in Figure 3-2. The figure represents one-way streets in

130

H

B

L

O

E

C

A

I

J

K

N

MF

G

D P

1

5

2

7

1

3

3

2

2

5

2

2

4

1

4

8 1

425

4

3

0

2

Figure 3-2: Shortest path problem from A to B

a city, and the numbers shown on the figure represent the effort (this could be time,

cost or distance) required to traverse from point to point. Starting from A, we wish

to reach B with minimum total effort.

There are a total of 20 paths from A to B, and so a total enumeration of all

possible paths from A to B would involve 100 additions and 19 comparisons to solve

the problem. A more efficient way to solve the problem would be to apply the dynamic

programming method, which is based almost entirely on two key ideas, described

below in the context of the problem stated above:

1. The best path from A to B has the property that, whatever the initial decision

at A, the remaining path to B, starting from the next point after A, say Z, must

be the best path from that point to B. This is also known as the principle of

optimality, attributed to Bellman. The proof is simple. Let the best path from

A to B be PQ, where P is the path from A to Z, and Q is the path from Z to B.

Assume that Q is not the optimal path from Z to B, and that Q’ is a different,

optimal path from Z to B. Clearly, this means that the optimal path from A

to B is PQ’, which is a contradiction. Note that this arises from the addictive

131

contributions of each arc to the overall cost.

2. Starting from A, we do not know whether to go from A to C, or A to D, but if

we knew two additional numbers, namely, the total effort required to get from

C to B by the best path, and the total effort required to get from D to B by the

best path, we could make the choice easily at A. Denoting the minimum effort

from i to B by Si, the minimum effort to get from A to B can be calculated as

SA = min(1 + SC, 0 + SD)

While the numbers SC and SD are not known, we could compute them recur-

sively if we knew SE, SF and SG:

SC = min(5 + SE, 4 + SF)

SD = min(7 + SF, 3 + SG)

These numbers in turn depend on SH, SI, SJ and SK, which in turn depend on

SL, SM. SN, which in turn depend on SO and SP. However, note that SO = 2

and SP = 1 are trivial to obtain, and so, we can compute the lengths of the

minimum-effort paths by considering starting points further and further away

from B, finally working our way back to A.

The cost of performing dynamic programming on the above problem involves 24

additions and 9 comparisons (which is clearly superior to explicit enumeration), and

gives the optimal solution as SA = 13 with the optimal path of ACFJMOB.

Forward Dynamic Programming

Now, we shall describe a variation on the dynamic programming procedure described

above, which was to calculate the optimal paths backward from B. The subproblems

solved in the backward dynamic programming procedure produced optimal paths

from any stage to B. The forward dynamic programming approach is essentially a

reverse procedure, based on the same optimality principle: the best path from A to

132

B has the property that, whatever the vertex before B, say Z, the same path starting

from A to Z must be the best path from A to Z. In this case, we can set up the

appropriate recurrence relations for the new optimal value functions, Si, to denote

the minimum effort from A to i. Hence, the minimum effort to get from A to B can

be calculated as

SB = min(SO + 2, SP + 1)

While the numbers SO and SP are not known, we could compute them recursively if

we knew SL, SM and SN:

SO = min(SL + 5, SM + 2)

SP = min(SM + 8, SN + 4)

These numbers in turn depend on SH, SI, SJ and SK, which in turn depend on SE,

SF. SG, which in turn depend on SC and SD. Again, SC = 1 and SD = 0 are

trivial to obtain, and so, we can compute the lengths of the minimum-effort paths

by considering starting points further and further away from A, finally working our

way forward to B. The subproblems solved in the forward dynamic programming

procedure produce optimal paths from A to any stage. For this shortest path problem,

the computational effort for the forward dynamic programming approach is the same

as the backward dynamic programming approach.

It is interesting to note that according to Dreyfus and Law [47], there are no

further key ideas in dynamic programming. We will now summarize some known

results concerning dynamic programming in the literature.

3.2.1 Discrete Time Linear Dynamical Systems

Let x(i) denote the state at stage i and let u(i) denote the decision or control variable.

Then we assume that the state at stage i+ 1 is given by

x(i+ 1) = g(i)x(i) + h(i)u(i), (3.8)

133

where g(i) and h(i), i = 0, . . . , N − 1 are known constants. This is called a linear

dynamical system because the rule giving the new state is linear in the old state and

the decision. Here, we assume that x(i) and u(i) are continuous variables that can

assume any real values. For simplicity, we are going to abuse notation by following

that used in Dreyfus and Law [47], where x(i) and x are used interchangeably, and

similarly for u(i) and u, when the stage i can be inferred from the context.

The objective function is a summation of costs over N stages plus a terminal cost

depending on x(N), where the cost of each stage is a quadratic function of x(i) and

u(i). We assume that the objective function is given by

J = lx2(N) +
N−1
∑

i=0

(

a(i)x2(i) + c(i)u2(i)
)

. (3.9)

Given the state at stage zero, x(0), the problem is to choose u(0), u(1), . . . , u(N − 1)

so as to minimize J given by (3.9) where the states x(i) evolve by the rule (3.8).

Notice that this is formulated as a typical Quadratic Programming (QP) problem

with linear constraints and a quadratic objective function [21]. This problem can also

be solved using modified simplex or interior point methods, e.g., with the commercial

solver CPLEX [78]. Another way to solve the problem is to first solve for x in terms

of u, and substitute the constraints into the objective function to obtain a quadratic

function of u. Finally, we could solve the problem using the Karush-Kuhn-Tucker

(KKT) optimality conditions (solving a linear system of equations) [21]. According

to Dreyfus and Law [47], the dynamic programming approach is easier and more

systematic. We will describe the dynamic programming approach next as it will be

useful in understanding how these techniques can be applied to solving Problem 3.4.

First, we begin by defining the optimal value function Vi(x) for the problem given

by (3.8) and (3.9) as

Vi(x) = the minimum cost of the remaining process if it starts stage i in state x.

134

Then, by the principle of optimality, for i = 0, 1, . . . , N − 1,

Vi(x) = min
u

[

a(i)x2 + c(i)u2 + Vi+1(g(i)x+ h(i)u)
]

(3.10)

with the boundary condition

VN(x) = lx2. (3.11)

We can then solve the problem in two ways: (a) a discretization of the state space;

and (b) solving for Vi(x) using optimality conditions. The former approach proceeds

as follows. Evaluate VN(x) at a discrete grid of points taken between some arbitrary

upper and lower bounds that we are sure will include the optimal solution for the

given initial condition. For example, if x(0) = 2, we might use a grid consisting of

−5,−4.9,−4.8, . . . , 0, 0.1, 0.2, . . . , 4.9, 5. Then, we could determine VN−1(x) at these

same points by either considering only those values of u(N − 1), given x(N − 1), that

lead to the grid points at which VN(x) has been computed or else by using a fixed

grid of reasonable decisions for u (say u = −5,−4.9, . . . , 0, . . . , 4.9, 5) and when we

need to know VN(x) at a point not actually computed, use an interpolation formula.

Having determined VN−1(x), we apply the same procedure to determine VN−2(x), and

so on.

Next, we consider the approach utilizing optimality conditions. From (3.10) and

(3.11), we have

VN−1(x) = min
u

(

a(N − 1)x2 + c(N − 1)u2 + VN(g(N − 1)x+ h(N − 1)u)
)

= min
u

(

a(N − 1)x2 + c(N − 1)u2 + lg2(N − 1)x2

+ 2lg(N − 1)h(N − 1)xu+ lh2(N − 1)u2
)

. (3.12)

From the first order optimality conditions, we have

∂VN−1(x)

∂u
= 0 = 2c(N − 1)u+ 2lg(N − 1)h(N − 1)x+ 2lh2(N − 1)u

⇒ u = −
lg(N − 1)h(N − 1)x

c(N − 1) + lh2(N − 1)
.

135

From the second order conditions, we know that this value of u yields the minimum

if

c(N − 1) + lh2(N − 1) > 0, (3.13)

otherwise the problem has no solution. Henceforth, we assume that (3.13) holds.

Substituting for u back into (3.12), we obtain

VN−1(x) = a(N − 1)x2 + c(N − 1)

(

−
lg(N − 1)h(N − 1)x

c(N − 1) + lh2(N − 1)

)2

+ lg2(N − 1)x2

+ 2lg(N − 1)h(N − 1)x

(

−
lg(N − 1)h(N − 1)x

c(N − 1) + lh2(N − 1)

)

+ lh2(N − 1)

(

−
lg(N − 1)h(N − 1)x

c(N − 1) + lh2(N − 1)

)2

=

[

a(N − 1) + lg2(N − 1) −
lg2(N − 1)h2(N − 1)

c(N − 1) + lh2(N − 1)

]

x2 = p(N − 1)x2. (3.14)

Note that the coefficient of x2 can easily be computed from the given data, by p(N−1),

and that the optimal value function for the process starting at stage N − 1 is a

quadratic function of the state x.

Now, we can repeat the same procedure to compute VN−2(x) from (3.10). We will

obtain the same equation as (3.12) except that l is replaced by p(N − 1). Hence, we

obtain u at stage N − 2 as follows,

u = −
p(N − 1)g(N − 2)h(N − 2)x

c(N − 2) + p(N − 1)h2(N − 2)

and from (3.14) we deduce that VN−2(x) is given by VN−2(x) = p(N − 2)x2 where

p(N − 2) = a(N − 2) + p(N − 1)g2(N − 2) −
p2(N − 1)g2(N − 2)h2(N − 2)

c(N − 2) + p(N − 1)h2(N − 2)
.

By induction, Vi(x) is given by Vi(x) = p(i)x2, where p(i) is determined recursively

from p(i+ 1) by

p(i) = a(i) + p(i+ 1)g2(i) −
p2(i+ 1)g2(i)h2(i)

c(i) + p(i+ 1)h2(i)

136

and the boundary condition p(N) = l. The optimal u at stage i, for a given x(i), is

determined by

u(i) = −
p(i+ 1)g(i)h(i)x(i)

c(i) + p(i+ 1)h2(i)
.

Note that we have not mentioned how constraints can be handled in the dynamic

programming approach. Although it is possible to incorporate constraints, e.g., spec-

ifying a terminal condition of the form x(N) = t, it appears that the treatment

of general constraints such as bounded controls is complicated using dynamic pro-

gramming, and is a topic that the traditional texts on dynamic programming do not

provide guidance on. The constraints will have to be incorporated in some form in

either the expression of the optimal value function (from the principle of optimality)

or in the boundary conditions of the problem. Indeed, it appears that the difficulties

with incorporating general constraints into dynamic programming approaches is a

major drawback with using these approaches in the solution of Problem 3.4, as we

shall see later in this section.

3.2.2 Optimal State-feedback Quadratic Regulation of Lin-

ear Hybrid Automata

In the hybrid systems literature, dynamic programming has been used in [26] to obtain

a state-feedback control law for solving certain classes of optimal control problems,

where the hybrid systems considered are discrete time linear hybrid systems with a

quadratic objective function. An optimal control law is obtained for the optimization

problem that takes the form of a state-feedback, i.e., it is only necessary to look at the

current system state x in order to determine if a switch should occur. This is done

by computing tables which determine whether or not a switch should occur, and the

tables are formed by total discretization of the state space. There are elaborate rules

in [26] that govern how each table should be calculated, which will not be presented

here. However, it is worth noting the computational cost of solving the problem using

the proposed approach:

1. Cost of gridding: If the state space is R
n and r samples are taken along each

137

direction, then the computational complexity for constructing each table is

O(rn−1) if all switching costs are null (because the table contains two regions

that can be determined by solving a one-parameter optimization problem for

each vector y on the unitary semi-sphere). Otherwise, if not all switching costs

are null, the complexity is O(rn) because it is necessary to grid all the state

space.

2. Cost of switching: There are N switches, and so the corresponding complexities

become O(Nrn−1) and O(Nrn) because for each switch a new table must be

determined.

3. Cost for each mode: For each switch, it is necessary to compute s tables, one

for each discrete mode. Furthermore, the complexity of computing the tables is

equal to O((si−1)rn−1) and O((si−1)rn) respectively, since each table contains

si regions, where si is the number of possible successor modes. Because si ≤ s,

we have, for the case where there are no switching costs,

O(Nrn−1

s
∑

i=1

(si − 1)) ≤ O(Nrn−1s2).

Hence, the complexity of solving the problem is O(Nrn−1s2) and O(Nrns2) re-

spectively. Note that because this is a closed-loop problem, the inevitable curse of

dimensionality kicks in for the state discretization (gridding). Thus, this approach

would not be attractive in solving Problem 3.4, not to mention the deficiencies of the

approach towards handling constraints (3.7). In the next section, we shall discuss

this in more detail, including whether it is possible to use dynamic programming

approaches within a continuous time formulation, without having to discretize the

continuous state space at the transitions (epoch boundaries).

138

.
.
.
.
.
.

......

.

.

.

.

.

.

.

.

.

.

.

.

BA

Figure 3-3: Tree for shortest path form of catalyst loading problem

3.2.3 Application to Global Optimization of Continuous State

and Time Linear Hybrid Systems

In this section, we discuss the feasibility of employing dynamic programming tech-

niques for the global optimization of continuous state hybrid systems in the continuous

time domain. First, consider the catalyst loading problem presented Example 3.7. A

naive way to transcribe that problem into a shortest path problem (see Figure 3-3)

would require exponential complexity (O(nne
m)) starting forward from l = 0, i.e., the

path would look like the following tree-like structure shown in Figure 3-3, tracing

each possible mode selection for each epoch, before collapsing to the end point B at

the final mode.

This is essentially the explicit enumeration approach. Note that in this approach,

there are no costs associated with the intermediate paths, and the costs only appear

at the final nne
m nodes before the final destination node. This will be shown with

a simple example (see Example 3.8 below). On the other hand, it is possible to

introduce intermediate costs in the tree by transforming the objective function into

an integral with the respective derivatives of the states as integrands. In this way,

the integral can be split according to the epochs into intermediate costs at each node

139

in the tree. However, this does not change the fact that an exponential number of

nodes exist in the tree.

Although the primary concepts of dynamic programming are easy to understand,

not all problems exhibit a structure that can be solved effectively using the principle

of optimality. Much ingenuity (and effort) has to go into formulating a suitable

optimal value function that will enable the structure of the problem to be solved

efficiently. It is noted here that so far, the dynamic programming approaches have

relied on the discrete time formulation to reduce the costs associated with calculating

the tables, assumed no (or simple terminal) constraints in the problem, and assumed

quadratic (convex) objective functions. We expect that it will be very difficult to

treat general problems in the form of Problem 3.4, which is nonconvex, and contains

arbitrary Bolza type objective function and constraints, using dynamic programming

approaches. Nevertheless, we shall try to see what types of problems can be solved

in this section.

The main attraction in using dynamic programming approaches for solving the

optimal control problem in Bemporad et al. [26] is that its complexity is O(ner
nxn2

m)

compared to O(ner
nxnne

m). In my opinion, these are the disadvantages of the method:

1. The curse of dimensionality in constructing the tables: rnx . Note that open

loop approaches do not involve the construction of tables, but instead, relies on

deterministic global optimization algorithms (see Section 2.1.1 and 2.1.2) which

do not suffer from the curse of dimensionality which arises from discretizing the

state space. Consider the catalyst loading problem. We have nx = 5, and if

we assume that we take 1000 points for sampling (this does not guarantee ε

convergence; perhaps some form of adaptive meshing (no clear form of global

guarantees) could help here, but one still needs to take a coarse enough grid

at the first iteration) since x1(0) = 1000. The complexity of constructing the

tables would then involve the evaluation of at least 10005 = 1015 integrations

or function evaluations, depending on whether the continuous time or discrete

time formulation is used. It is thus not feasible to employ integration in the

calculation of the tables, as we will demonstrate. Suppose that the integration

140

of a mode in an epoch takes 10−3 seconds. This would still require, for our

example, 1012 seconds > 30 thousand years. This was not possible within the

time scale of this thesis. Clearly, this cost becomes prohibitively large as r and

nx increases. Consider a system with nx = 10 and r = 1000. This would require

at least 1030 function evaluations, and even if we employ a supercomputer of

1014 flops per second and only require a single function evaluation for each

discretized point, we would need at least 1016 seconds > 300 million years. We

have also not considered the costs of storing the tables here.

2. The limitations of the dynamic programming approach, as discussed above, i.e.,

the assumptions of a quadratic objective function and simple (if any) constraints

only.

3. The discrete time formulation is required to compute the required tables, since

the integration of dynamic systems could be computationally prohibitive.

4. It is difficult to place a bound on how many sampling points, r, are needed to

achieve ε optimality, especially for the case of stiff LTV systems.

5. It is not clear how to incorporate controls, u(t), into the optimal control prob-

lem. We suspect that the gridding of the parameter space would be needed (i.e.,

a total discretization approach), thus adding to the complexity of the approach.

Discretization of the state (and parameter) space is necessary as discussed above,

because the principle of optimality cannot be otherwise applied at each epoch, as

the state variables x are given by the solution of the embedded dynamic systems,

and could take values anywhere in the state space. An alternative method to avoid

the construction of the tables via discretization of the state (and parameter) space

could be to solve the optimality conditions for each epoch directly, as demonstrated in

Section 3.2.1. However, this approach is complicated by the fact that the optimization

variables in this case are integer variables. As such, traditional approaches for deriving

first or second order optimality conditions based on calculus and convex analysis

141

Figure 3-4: Time horizon for Example 3.8 (ne = 2)

cannot be used. It is nontrivial to derive necessary and sufficient conditions for the

optimality of such problems.

Consider the following open loop optimal control problem,

Example 3.8.

min
Tµ

x(τne
)

where x(t) is given by the solution of the following hybrid system,

Mode 1 : ẋ = x(t), Mode 2 : ẋ = −x(t),

x(0) = 100, τne
= 1, and Tµ ∈Mne , where ne is the fixed number of epochs.

For epoch Ii = [σi, τi], x(σi) = x0, the analytical solution of the differential equa-

tions is given by

Mode 1 : x(τi) = x0e
∆t, (3.15)

Mode 2 : x(τi) = x0e
−∆t, (3.16)

where ∆t = τi − σi.

Consider the case where ne = 2, shown in Figure 3-4. Assume that σ1 = 0,

τ1 = 0.5 and τ2 = 1. In order to apply the dynamic programming approach, we have

to break the problem into stages, formulate a suitable optimal value function, and

apply the principle of optimality.

For this problem, it is natural to treat the epochs as stages. Note that this is

different from the standard shortest path problem because the value of the state

142

0

0

0

0

0

0
()=100 ()

271.8

100

100

36.8

()=164.9

()=60.7

()=271.8

()=100

()=100

()=36.8

Figure 3-5: Enumerated tree for Example 3.8

variable x is not defined a priori at time τ1. In general, x can take any real value

at τ1, depending on the form of the embedded hybrid system, and more importantly,

depending on the choice of modes in epoch/stage 1. One way to fix the values of x is

to derive an equivalent tree structure for a shortest path problem, as shown in Figure

3-5.

Because ∆t = 0.5 is fixed, we can enumerate the values of x(ti) for all the nodes

(epochs/stages) i = 1, 2 forward from the initial condition using (3.15) and (3.16), as

shown in Figure 3-5. At τ2, we have four nodes, and these are joined to the end node

B. The value of x(τ2) is assigned to the cost of these end paths, while all other paths

have null costs. Once this problem has been formulated as a shortest path problem,

the application of the principle of optimality to the problem is straightforward and

standard dynamic programming approaches can be applied to this problem. However,

this is clearly not an attractive way to solve the problem, because in deriving the

tree, we have to enumerate all the nodes of the tree, starting from the given initial

143

condition, in order to obtain the cost of terminal paths. This is essentially a brute

force search which suffers from exponential complexity (O(nne
m)), and does not exploit

the technique of dynamic programming to solve the problem.

An alternative dynamic programming formulation

To apply dynamic programming ideas without explicit enumeration of the tree, we

have to come up with an alternative formulation of the problem. Consider the fol-

lowing general problem:

Problem 3.9 (DP (1,x(0))).

min
Tµ∈Mne

ne
∑

i=1

Fi,

s.t. Fi = φi

(

ẋ(Tµ, τi),x(Tµ, τi), τi

)

+

∫ τi

σi

fi

(

ẋ(Tµ, t),x(Tµ, t), t
)

dt,

where x(Tµ, t) is given by the solution of the embedded hybrid system, and x(σ1 = 0)

is given.

For simplicity and ease of presentation, we will assume state continuity for all

transitions. It is straightforward to incorporate jumps in the values of the continuous

state variables at the transitions provided that the systems of transition functions for

such jumps are known a priori. Let us define the following optimal value function:

Vi(u) = the minimum cost of the remaining process if it starts in epoch i with initial

condition x(σi) = u. In other words, Vi(u) is the optimal solution value of the

following subproblem DP (i,u).

Problem 3.10 (DP (i,u)).

min
Tµ∈Mne−i+1

ne
∑

j=i

Fj,

s.t. Fj = φj

(

ẋ(Tµ, τj),x(Tµ, τj), τj

)

+

∫ τj

σj

fj

(

ẋ(Tµ, t),x(Tµ, t), t
)

dt,

x(σi) = u,

144

where x(Tµ, t) is given by the solution of the embedded hybrid system from x(σi) = u.

We can then state the principle of optimality as follows.

Theorem 3.11. Let the optimal solution value of DP (1,x(0)) be attained at T ∗
µ =

m∗
1,m

∗
2, . . . ,m

∗
ne

. Consider any arbitrary epoch i > 1. Let x∗(τi−1) be the state vari-

ables after i − 1 epochs have evolved along the mode trajectory m∗
1, . . . ,m

∗
i−1. Then,

the solution of the subproblem DP (i,x∗(τi−1)) is Tµ = m∗
i , . . . ,m

∗
ne

.

Proof. Let the optimal solution value for DP (1,x(0)) be G∗. We can write

G∗ = G1 +G2,

where

G1(m
∗
1, . . . ,m

∗
i−1) =

i−1
∑

j=1

Fj, G2(x
∗(ti−1),m

∗
i , . . . ,m

∗
ne

) =
ne
∑

j=i

Fj.

It is then clear that G2 is also the solution to subproblem DP (i,x∗(ti−1)) at Tµ =

m∗
i , . . . ,m

∗
ne

. Assume, for contradiction, that there exists a mode trajectory, T †
µ 6=

m∗
i , . . . ,m

∗
ne

that provides a better solution, say G†
2, than G2, i.e.,

G†
2(x

∗(ti−1), T
†
µ) < G2(x

∗(ti−1),m
∗
i , . . . ,m

∗
ne

).

It follows that the value of DP (1,x(0)) attained at m∗
1, . . . ,m

∗
i−1, T

†
µ is given by

G† = G1 +G†
2 < G1 +G2 = G∗,

which is a contradiction that G∗ is the optimal solution to DP (1,x(0)).

Corollary 3.12. Consider any arbitrary epoch i > 1. If x∗(τi−1) is the value of the

state variables after i − 1 epochs have evolved along the optimal mode trajectory T ∗
µ

for DP (1,x(0)), and the solution value of the subproblem DP (i,x∗(τi−1)) is attained

at Tµ = m∗
i , . . . ,m

∗
ne

, then the last ne − i+ 1 modes of T ∗
µ are given by m∗

i , . . . ,m
∗
ne

.

145

Proof. The proof is elementary from Theorem 3.11.

From Corollary 3.12, we have a suitable principle of optimality that can be applied

to the problem. Working backwards from x(τne
), we can apply the principles of

dynamic programming. Consider the last epoch. Let us assume that x(τne−1) is

known. Then, the solution to subproblem DP (ne,x(τne−1)) is given by

Vne
(x(τne−1)) = min

mne∈M
Fne

. (3.17)

Given x(τne−1), (3.17) can be solved easily to yield m∗
ne

. Let us now consider the

penultimate epoch. Again, let us assume that x(τne−2) is known. Then, the solution

to subproblem DP (ne − 1,x(τne−2)) is given by

Vne−1(x(τne−2)) = min
mne−1∈M

{Fne−1 + Vne
(x(τne−1))} . (3.18)

We can repeat this procedure to obtain the recursive formula (for i = 1, . . . , ne − 1),

Vi(x(τi−1)) = min
mi∈M

{Fi + Vi+1(x(τi))} . (3.19)

V1(x(0)) is clearly the optimal solution value of DP (1,x(0)). While the solution

can be obtained from (3.19) via solving a sequence of ne single-epoch optimization

problems, this approach is different from simply making local decisions at each epoch

due to the inclusion of the optimal value function Vi in (3.19). Indeed, obtaining Vi

is the key to applying this approach effectively.

To obtain Vi, we can apply the backward dynamic programming approach, i.e.,

calculate Vi for i = ne, . . . , 1. Consider (3.17). If mne
was a continuous variable, we

could apply the optimality conditions from calculus (subject to suitable conditions,

e.g., when Fne
is convex) to obtain an explicit expression for Vne

(x(τne−1)). Following

that, we could do the same to (3.18), where Vne
(x(τne−1)) is treated as an end point

objective added to Fne−1. This procedure can then be repeated (subject to suitable

conditions, e.g., if mne−1 was continuous, Fne−1 and Vne
were convex, and so on)

backward in time to obtain all Vi. Then, we can integrate the system forward in time

146

from x(σ1) to obtain T ∗
µ , i.e., starting from x(σ1), we determine V1, m

∗
1, and x(τ1),

from which we can determine V2, m
∗
2, and x(τ2), and so on.

Note that this is exactly the approach that is presented in Section 3.2. The

key point is to obtain Vi(x(τi−1)) as an explicit function of x(τi−1), which is not

known a priori. This requires constructing explicitly the parametric solution of an

optimization problem, which in general can be constrained and nonconvex. However,

for the problems considered, mi are integer variables, and so the method of applying

optimality conditions and solving for the values of x(τi−1) cannot be used. A possible

way around the problem is to simply discretize the state space at the beginning of

each epoch, and calculate the values of Vi(yk) at the discretized points yk. This is the

approach that is presented in Bemporad et al. [26]. However, it appears that without

appealing to discretization, the problem has to exhibit some form of special structure

for the dynamic programming approach to be useful. It would perhaps be useful at

this point to apply the method to some examples.

Consider again Example 3.8 with ne = 2, σ1 = 0, τ1 = 0.5 and τ2 = 1. We can

calculate

V2(x(0.5)) = min
m2∈{1,2}

x(1)

= min
m2∈{1,2}

{

x(0.5)e0.5, x(0.5)e−0.5
}

= min
m2∈{1,2}

{1.649x(0.5), 0.607x(0.5)} .

It is clear that

V2(x(0.5)) =











0.607x(0.5),m2 = 2 if x(0.5) ≥ 0,

1.649x(0.5),m2 = 1 if x(0.5) < 0.

(3.20)

147

Working backwards, we can calculate V1(x(0)) as follows.

V1(x(0)) = min
m1∈{1,2}

V2(x(0.5))

V1(x(0)) = min
m1∈{1,2}

{

min
m2∈{1,2}

{1.649x(0.5), 0.607x(0.5)}

}

.

The brute force way to solve the nested minimization problem is to enumerate the

tree as in Figure 3-5 to determine the values of x(0.5). However, this approach is

equivalent to enumerating the full tree and thus is unattractive. For this problem, we

can perform the following analysis. Suppose that x(0.5) ≥ 0. Then, we have

V1(x(0)) = min
m1∈{1,2}

0.607x(0.5)

= min
m1∈{1,2}

{

x(0)e0, x(0)e−1
}

= min
m1∈{1,2}

{x(0), 0.368x(0)} .

It is clear that

V1(x(0)) =











0.368x(0),m1 = 2 if x(0) ≥ 0 and x(0.5) ≥ 0,

x(0),m1 = 1 if x(0) < 0 and x(0.5) ≥ 0.

(3.21)

The appearance of x(0.5) in the conditional statement is undesirable because we do

not know what x(0.5) is at the point where we are making the decision based on

V1(x(0)). Hence, we have to examine which cases are valid for our assumption of

x(0.5) ≥ 0. For this example, if x(0) ≥ 0 and m2 = 2, we will satisfy the assumption.

However, if x(0) < 0 and m1 = 1, we have x(0.5) < 0 which violates the assumption.

Hence, only the first case is valid in (3.21). We can repeat for the assumption that

x(0.5) < 0 and obtain

V1(x(0)) =











x(0),m1 = 2 if x(0) ≥ 0 and x(0.5) < 0,

2.718x(0),m1 = 1 if x(0) < 0 and x(0.5) < 0.

148

Again, testing our assumptions, we find that only the second case is valid, resulting

in the following optimal solution to the problem,

V1(x(0)) =











0.368x(0),m1 = 2 if x(0) ≥ 0,

2.718x(0),m1 = 1 if x(0) < 0.

(3.22)

Equations (3.22) and (3.20) provide the optimal mode trajectory as we move forward

in time.

In general, calculating Vi for ne, . . . , 1 would require solving ne nested parametric

minimization problems (in discrete variables), which is difficult. For the problem

considered above, we have avoided enumerating all possible cases of the tree (Figure 3-

5) by effectively eliminating possible regions from the state space using the arguments

made to obtain (3.22). The situation becomes harder to analyze as nx increases,

because it is not clear that the number of regions in the state space R
nx corresponding

to the optimal choice of mode at each epoch can be bounded by nm. What is perhaps

more devastating is that, in the general case, there does not seem to be a way to

systematically and automatically remove “dead” regions in the state space from the

list of all possible regions which is exponential in the number of epochs, hence limiting

the application of dynamic programming principles in a continuous setting.

As will be described in Section 3.3, it is possible to formulate the problem of

obtaining the optimal mode sequence into a mixed-integer framework by introducing

binary decision variables to represent Tµ. Viewed in this framework, these regions

of the state space, Vi, are in essence a description of the parametric solution of the

integer programming (IP) problem. It is beyond the scope of this thesis to elaborate

on the properties and methods for solving multiparametric optimization problems.

For a review on the multiparametric 0-1 integer linear programming problem (ILP),

see [44]. Note that the parameters considered in [44] are assumed to be integers. For

a review and discussion on algorithms and solution of multiparametric MILPs, see

[97].

If we assume a linear cost function for the problem, state continuity at the tran-

149

sitions and no constraints, the problem of obtaining the regions Vne
is given by the

following problem,

min
y∈{0,1}nm

cTx(τne
)

s.t.
nm
∑

i=1

yi = 1,

x(τne
) =

nm
∑

i=1

yi
(

M(i)x(τne−1) + n(i)
)

.

where c, and M(i) and n(i) for all i = 1, . . . , nm are known. If we eliminate the last

constraint, we have the following, equivalent problem,

min
y∈{0,1}nm

cT

(

nm
∑

i=1

yi
(

M(i)x(τne−1) + n(i)
)

)

s.t.
nm
∑

i=1

yi = 1.

Treating x(τne−1) as a vector of continuous parameters, the above problem is a ILP in

the integer (binary) variables y ∈ {0, 1}nm . Hence, the problem of determining Vne
is

equivalent to solving a multiparametric ILP with an affine dependence of parameters

on the objective function. In [97], a tailored algorithm was developed for solving

exactly such a multiparametric problem. The algorithm involves solving at least as

many MILPs as there are possible optimality regions. Note that this is potentially a

very large number of optimality regions; see [97] for a discussion on the number and

properties of the optimality regions and complexity of parametric optimization.

Clearly, in the general case, the number of regions for this multiparametric ILP

is given by nm. Propagating backward to epoch ne − 1, we will have to formulate

an ILP for every region that was obtained in epoch ne (the multiparametric ILP

solved above). Thus, in the worst case, the number of regions in the state space

could increase exponentially as we move backward in time. This clearly makes such

an approach unattractive. This will be illustrated and discussed in the following

example.

150

Dynamic Programming on Example 3.7

Consider Example 3.7. For epoch Ii = [σi, τi], x(σi) = x0, and ∆t = σi − τi, it is

possible to obtain the analytical solution of the hybrid system for each mode, because

the dynamics of the system in each mode is LTI. Let us consider the case where ne = 2

and t1 = 0.5. The analytical solution is given by the following, where the index set

for x is given by { A, W1, I, W2, P },

Mode 1 :























































x1(ti) = 0.181x01

x2(ti) = 0.316x01 + x02

x3(ti) = 0.494x01 + 0.973x03

x4(ti) = 0.00530x01 + 0.0165x03 + x04

x5(ti) = 0.00332x01 + 0.0103x03 + x05

(3.23)

Mode 2 :























































x1(ti) ≈ 0

x2(ti) = 0.788x01 + x02

x3(ti) = 0.176x01 + 0.829x03

x4(ti) = 0.00753x01 + 0.0361x03 + x04

x5(ti) = 0.0281x01 + 0.135x03 + x05

(3.24)

Mode 3 :























































x1(ti) ≈ 0

x2(ti) = 0.927x01 + x02

x3(ti) = 0.0272x01 + 0.374x03

x4(ti) = 0.00332x01 + 0.0456x03 + x04

x5(ti) = 0.0423x01 + 0.581x03 + x05.

(3.25)

At the last epoch, we can calculate

V2(x(0.5)) = min
m2∈{1,2,3}

0.01x2(1) + 0.1x4(1) − x5(1) = min
m2∈{1,2,3}

Fne
(m2)

151

where

Fne
(1) = 0.000365x1(0.5) + 0.01x2(0.5) − 0.0087x3(0.5) + 0.1x4(0.5) − x5(0.5),

Fne
(2) = −0.0195x1(0.5) + 0.01x2(0.5) − 0.131x3(0.5) + 0.1x4(0.5) − x5(0.5),

Fne
(3) = −0.0327x1(0.5) + 0.01x2(0.5) − 0.576x3(0.5) + 0.1x4(0.5) − x5(0.5).

To obtain V2(x(0.5)) as an explicit function of x(0.5), we have to divide the state

space of x(0.5) ∈ R
5 into regions in which we know what the optimal mode m∗

2 should

be. Consider the following functions,

gne,1 = Fne
(1) − Fne

(2) = 0.019865x1(0.5) + 0.1223x3(0.5),

gne,2 = Fne
(1) − Fne

(3) = 0.033065x1(0.5) + 0.5673x3(0.5),

gne,3 = Fne
(2) − Fne

(3) = 0.0132x1(0.5) + 0.445x3(0.5).

It is clear that the following conditional statements are equivalent:

If Fne
(1) ≤ Fne

(2) and Fne
(1) ≤ Fne

(3), then m∗
2 = 1,

If gne,1 ≤ 0 and gne,2 ≤ 0, then m∗
2 = 1.

Hence, the feasible region for m∗
2 = 1 is defined by the conditional statement gne,1 ≤ 0

and gne,2 ≤ 0. Similar conditional statements can be obtained for m∗
2 = 2 (gne,1 ≥ 0

and gne,3 ≤ 0) and m∗
2 = 3 (gne,2 ≥ 0 and gne,3 ≥ 0). Figure 3-6 shows how the

regions of the state space of x1(0.5) and x3(0.5) are partitioned according to the

modes and their corresponding conditional statements. Note that we have excluded

x2(0.5), x4(0.5) and x5(0.5) because they do not participate in gne,1, gne,2 and gne,3

(note that this is a special feature of this particular problem). We can see that if

x1(0.5) ≥ 0 and x3(0.5) ≥ 0, m∗
2 = 3, and this is easily confirmed by inspection of

gne,1, gne,2 and gne,2. Note that at the boundaries of each region, there may be more

than a single choice of an optimal mode, i.e., the set arg minm2∈{1,2,3} is no longer a

singleton.

152

–1000

–800

–600

–400

–200

0

200

400

600

800

1000

–800 –600 –400 –200 0 200 400 600 800 1000�1000

Figure 3-6: State space of x1(0.5) and x3(0.5) for V2(x(0.5))

153

From an overall mass balance, we know that
5
∑

i=1

xi(t) = 1000, and that xi(t) ≥

0, ∀i = 1, . . . , nx, and so we can focus on the positive quadrant in Figure 3-6. Hence,

m∗
2 = 3, and we can calculate

V1(x(0)) = min
m1∈{1,2,3}

V2(x(0.5)) = min
m1∈{1,2,3}

Fne
(3) = min

m1∈{1,2,3}
F1(m1)

where

F1(1) = −0.290x1(0) + 0.01x2(0) − 0.569x3(0) + 0.1x4(0) − x5(0), (3.26)

F1(2) = −0.121x1(0) + 0.01x2(0) − 0.609x3(0) + 0.1x4(0) − x5(0),

F1(3) = −0.0483x1(0) + 0.01x2(0) − 0.791x3(0) + 0.1x4(0) − x5(0).

Again, we can construct the following functions,

g1,1 = F1(1) − F1(2) = −0.170x1(0) + 0.0395x3(0),

g1,2 = F1(1) − F1(3) = −0.242x1(0) + 0.222x3(0),

g1,3 = F1(2) − F1(3) = −0.0723x1(0) + 0.183x3(0).

Figure 3-7 shows how the regions of the state space of x1(0) and x3(0) are partitioned

according to the optimal modes. From an initial condition of x(0) = (1000, 0, 0, 0, 0),

it is clear that m∗
1 = 1, and from F1(1), the optimal solution to the problem is -290.

To obtain m∗
2, we integrate forward in time from x(0) with m∗

1 = 1, and obtain m∗
2 = 3

from V2(x(0.5)) (see Figure 3-6).

Note that Figure 3-7 is only valid assuming that
nx
∑

i=1

xi(t) = 1000, and so obtaining

the regions was straightforward since we knew that m∗
2 = 3. It would be instructive to

obtain the total state space without making that assumption. Consider V2(x(0.5)).

It is clear that it has nm = 3 regions corresponding to the different choices of m2

as seen in Figure 3-6. The functional form of V2(x(0.5)) itself depends on m2, and

can be either Fne
(1), Fne

(2) or Fne
(3). Let us first consider the case where m∗

2 = 3.

We have already worked out the functions above for gne,1, gne,2 and gne,3. However,

154

m1
*=1 m1

*=2 m1
*=3

–1000

–800

–600

–400

–200

0

200

400

600

800

1000

–800 –600 –400 –200 0 200 400 600 800 1000�1000

x1(0)

x3(0)

Figure 3-7: State space of x1(0) and x3(0) for V1(x(0)), assuming
nx
∑

i=1

xi(t) = 1000.

155

the conditional statements will have to be changed to incorporate the condition of

m∗
2 = 3, i.e.,

If g1,1 ≤ 0 and g1,2 ≤ 0, and m∗
2 = 3, then m∗

1 = 1

If g1,1 ≥ 0 and g1,3 ≤ 0, and m∗
2 = 3, then m∗

1 = 2

If g1,2 ≥ 0 and g1,3 ≥ 0, and m∗
2 = 3, then m∗

1 = 3

The condition of m∗
2 = 3 is given by gne,2 ≥ 0 and gne,3 ≥ 0, and given m∗

1, we can

express it as a function of x(0). For example, consider when m∗
1 = 1, then

gne,2 = 0.033065x1(0.5) + 0.5673x3(0.5) = 0.286x1(0) + 0.552x3(0),

gne,3 = 0.0132x1(0.5) + 0.445x3(0.5) = 0.222x1(0) + 0.433x3(0),

and V1(x(0)) is given by (3.26). The feasible region for Tµ = 1, 3 in the state space

of x1(0) and x3(0) is then given by Figure 3-8. The superscript (i) denotes that the

function is calculated based on the assumption of mode i being active in the current

epoch. It can be seen that the conditions gne,2 ≥ 0 and gne,3 ≥ 0 reduce the size of

the feasible region of m∗
1 = 1 compared to that in Figure 3-7.

We can repeat the procedure for m∗
1 = 1 and m∗

1 = 2 to obtain the state space

given by Figure 3-9. It can be seen that there is no feasible region for Tµ = 2, 3.

Although it is easy to see from Figure 3-9 that this region is excluded for future

consideration (e.g., if ne > 2), it is not trivial to obtain rules or criteria for the

exclusion of such regions in general.

We can perform the same analysis for m∗
2 = 2 and m∗

2 = 1 to obtain the overall

state space shown in Figure 3-10, where the values of V1(x(0)) have been included

as well. Note that there are now 5 regions of the state space. Although it would

seem that the regions could be combined into just two where m∗
1 = 1 and m∗

1 = 3

(thus reducing the number of regions in the state space), we cannot do so because

the optimal value function V1(x(0)) is different between the regions, e.g., between the

region Tµ = 1, 3 and Tµ = 1, 2. In the worst case, the number of regions will grow

156

-1000

-500

 0

 500

 1000

-1000 -500 0 500 1000

Figure 3-8: State space of x1(0) and x3(0) for Tµ = 1, 3

exponentially as we propagate backward in time. In other words, we are growing the

exponential tree backward in time, where we will have nne
m possible regions at time

t0. In this example, we have 9 possible regions, out of which 4 regions have been

ruled out in Figure 3-10 (although we would not have known this without plotting

the graph).

This exponential complexity in the number of epochs does not arise in the dis-

cretized case [26] because there is no concept of “regions” in the discretized case as

there are only discretized grid points. Alternatively, one can think of the nnx

d (where

nd is the number of discretization points per state variable) discrete elements (or dif-

ferences) to be nnx

d separate “regions”, and this number of regions stays constant for

each table that is constructed at each epoch. For each discrete point, or “region”, one

has to record the optimal mode for the epoch, as well as the optimal value function.

This is illustrated in Figure 3-11, and summarized in the following:

157

-1000

-500

 0

 500

 1000

-1000 -500 0 500 1000

Figure 3-9: State space of x1(0) and x3(0) for m∗
2 = 3

-1000

-500

 0

 500

 1000

-1000 -500 0 500 1000

Figure 3-10: State space of x1(0) and x3(0)

1. The continuous approach:

(a) The number of regions per table increases exponentially as the number of

epochs increases.

158

(b) Associated with each region is a (distinct) optimal value function (e.g.,

V1(x(0)) for Tµ = 1, 3 is different from V1(x(0)) for Tµ = 3, 1).

2. The state discretization approach:

(a) The number of regions per table stays the same, and increases exponen-

tially as the number of state variables increases.

(b) Associated with each region is an optimal value function which is obtained

by taking the minimum over all successor modes (a finite number of modes,

bounded by nm).

(c) Could potentially lead to qualitatively wrong sequences when a discretized

region includes a boundary between two regions in the continuous case.

An algorithm for the continuous approach based on the backward propagation

of the tree is shown in Figure 3-12. Note that steps 1 and 2 in the main program

are redundant, but are included to illustrate the idea of working backwards in time

using the dynamic programming approach. The exponential complexity cannot be

avoided because the optimal value function Vi(x) changes according to all possible

mode trajectories that come after the current epoch i (that make up all possible

discrete combinations).

In the case of the reactor example, applying the algorithm shown in Figure 3-14

is equivalent to a brute force enumeration of the tree in the forward direction. The

fact that we know all states are bounded below by zero will not help in reducing the

complexity of the execution of the algorithm (neither does the fact that mass must

be conserved at all times).

3.2.4 Elimination of Regions that are Linearly Bounded

In this section, we discuss how “dead” regions can potentially be identified and elimi-

nated from the dynamic programming tree as we propagate backward in time, at the

expense of solving infeasibility problems as LPs. First, we define a “dead” region to

be one that can be removed from consideration when calculating the optimal value

159

-1
00
0

-5
00

0

50
0

10
00

-1
00
0

-5
00

0

50
0

10
00

-1
00
0

-5
00

0

50
0

10
00

-1
00
0

-5
00

0

50
0

10
00

-1
00
0

-5
00

0

50
0

10
00

-1
00
0

-5
00

0

50
0

10
00

-1
00
0

-5
00

0

50
0

10
00

-1
00
0

-5
00

0

50
0

10
00

Variable number of regions

Fixed number of regions

Figure 3-11: Illustration of state discretization and continuous dynamic programming
approaches

160

Main

1. Set i = ne.

2. Do while i ≥ 1.

(a) Construct subroutine Si(x0) that returns m∗
i and Vi(x0).

(b) Set i = i− 1.

3. Run subroutine S1(x(0)). The optimal mode trajectory is given by T ∗
µ = {m∗

i },
and the optimal solution is given by V1(x(0)).

Subroutine Si(x0)

1. Set m∗
i = j = 1, Vi(x0) = +∞.

2. Do while j ≤ nm

(a) Calculate

F
(j)
i = φi

(

ẋ(τi; j),x(τi; j), τi

)

+

∫ τi

σi

fi

(

ẋ(t; j),x(t; j), t
)

dt

by integrating forward in time in epoch i according to the dynamics of
mode j with initial conditions x0.

(b) If i < ne, call subroutine Si+1(x(τi; j)).

(c) If i < ne, set Z = F
(j)
i + Vi+1(x(τi; j)), else Z = F

(j)
i .

(d) If Z < Vi(x0), set m∗
i := j and Vi(x0) := Z.

(e) Set j = j + 1.

3. Return m∗
i and Vi(x0).

Figure 3-12: Algorithm for continuous dynamic programming approach

161

functions Vi in the continuous setting. For example, in Figure 3-10, the regions cor-

responding to the trajectories Tµ = 2, 1; 2, 2; 2, 3; 3, 2 are “dead” and can removed

from further consideration when calculating the optimal value function for the pre-

ceding epochs. Note that this does not mean that the said trajectories are infeasible

(although it might be tempting to think of it that way for verification purposes), as

it only means that these trajectories will not produce optimal solutions anywhere in

the state space of interest. As another example, consider Figure 3-6. The regions

m∗
2 = 1 and m∗

2 = 2 would be considered “dead” regions if the constraints xi ≥ 0 are

considered as the state space of interest.

The proposed method comes naturally from posing the following feasibility ques-

tion: Is the region formed by a given set of inequality constraints an empty set? Let

us illustrate this by revisiting the examples shown in the previous section. Consider

again Example 3.7 with ne = 2 and τ1 = 0.5. We have already obtained the feasible

region for m∗
2 = 1 in the previous section. We can pose the feasibility question as the

following LP.

Problem 3.13.

min
x∈R5

x1

s.t. 0.019865x1 + 0.1223x3 ≤ 0 (3.27)

0.033065x1 + 0.5673x3 ≤ 0 (3.28)

x ≥ 0 (3.29)

Note that the objective function is arbitrary since we are only interested in whether

the LP has a feasible solution or not. Alternatively, one can simply carry out the

Phase I algorithm of the simplex method [27, page 116] to determine the feasibility

of the region. However, when we solve this problem using CPLEX [78], we get a

solution at x = (0, 0, 0, 0, 1000), and so we cannot eliminate the region. It appears

that the problem here is that the origin x1 = 0, x3 = 0 is the only feasible solution to

the problem. One way to mitigate this problem is to replace (3.29) with the following

162

constraints for some small ε > 0,

xi ≥ ε, ∀i = 1, . . . , 5.

Note that here, we actually have to make use of the fact that we know xi ≥ 0. To

attempt to exclude only a small region around the origin with the constraints |xi| ≥ ε

will not eliminate the region as xi will then be allowed to take on negative values.

When we solve this problem again in CPLEX with a value of ε = 10−4, it tells us

that the presolve stage determines that the problem is infeasible or unbounded, which

does not really help us in eliminating the region.

We then have to directly use the Phase I algorithm mentioned above. To do this,

we first convert the inequality constraints to equality constraints through adding

auxiliary variables y ≥ 0 into (3.27) and (3.28),

0.019865x1 + 0.1223x3 + y1 = 0,

0.033065x1 + 0.5673x3 + y2 = 0.

Next, we introduce auxiliary variables z ≥ 0 into (3.27) and (3.28),

0.019865x1 + 0.1223x3 + y1 + z1 = 0,

0.033065x1 + 0.5673x3 + y2 + z2 = 0,

and replace the objective function with

z1 + z2.

Finally, when we solve this problem in CPLEX, it again returns the information that

presolve stage determines that the problem is infeasible or unbounded. However, now

that we know the optimal solution is non-zero, we can safely eliminate the region

from consideration.

It is clear that this method can be applied to any of the other regions to be

163

considered, as long as the regions are linearly bounded. As we propagate backwards

in time, the number of inequality constraints in the feasibility problem increases with

O(nmne). We will end this section with the following remarks:

1. This method only works for regions bounded by linear inequality constraints.

Although outer approximation type techniques could theoretically be applied

for regions defined by nonlinear or nonconvex constraints, it is hypothesized

that very few dead regions could potentially be identified to justify the cost of

solving those outer approximation problems, as the relaxation of these nonlinear

regions would most likely overlap in some region of state space.

2. Thus far, we have only considered the case where the regions are excluded based

on optimality of the objective function (optimal value function). It is not clear at

present how this can be extended to handle constraints, although it seems that

linear constraints can be incorporated into the feasibility subproblems easily.

3.3 A Hybrid Superstructure - Mixed-Integer Re-

formulation

Problem 3.4 is combinatorial in Tµ. A possible approach to solve the problem is to

fix Tµ = T ∗
µ and apply Algorithm 2.3 to the smooth subproblem in order to obtain

the global solution for T ∗
µ ; this is then repeated for all possible nne

m mode sequences

to determine the global minimum to Problem 3.4. Conventional wisdom dictates

that this explicit enumeration approach greatly limits the size of problems that can

be handled, and should be avoided. We will discuss the performance of the explicit

enumeration approaches in greater detail in Section 3.6.

The application of mathematical programming techniques for mixed-integer non-

linear programming problems (MINLPs) [50, 59, 60, 117, 83] is proposed as a much

more attractive approach for solving Problem 3.4. Although the worst case perfor-

mance of any such algorithm will approach explicit enumeration of all possible mode

sequences, it should outperform explicit enumeration in many instances due to the

164

ability to exclude entire classes of mode sequences rigorously, thus reducing the num-

ber of subproblems that needs to be solved.

We start with the introduction of binary decision variables to represent Tµ. In

particular, we introduce nmne binary variables ymi,m = 1, . . . , nm, i = 1, . . . , ne. By

adding the following logical constraints, we ensure that exactly one mode is active in

each epoch,
nm
∑

m=1

ymi = 1, ∀i = 1, . . . , ne.

Hence, if m∗
i is the active mode in epoch Ii, then ym∗

i ,i
= 1 and ym6=m∗

i ,i
= 0, for all

i = 1, . . . , ne. This transforms Problem 3.4 into the following mixed-integer dynamic

optimization (MIDO) problem.

Problem 3.14.

min
p∈P,Y∈Y b

F (p,Y) ≡
ne
∑

i=1

(

φi
(

ẋ(p,Y, τi),x(p,Y, τi),p
)

+

∫ τi

σi

fi
(

ẋ(p,Y, t),x(p,Y, t),p, t
)

dt
)

, (3.30)

s.t. G(p,Y) ≡
ne
∑

i=1

(

ηi
(

ẋ(p,Y, τi),x(p,Y, τi),p
)

+

∫ τi

σi

gi
(

ẋ(p,Y, t),x(p,Y, t),p, t
)

dt
)

≤ 0, (3.31)

nm
∑

m=1

ymi = 1, ∀i = 1, . . . , ne, (3.32)

where x(p,Y, t) is given by the solution of the embedded LTV ODE hybrid system

(Definition 3.1) with (3.2), (3.4) and (3.5) replaced by the following equations,

ẋ(p,Y, t) =
nm
∑

m=1

ymi

(

A(m)(t)x(p,Y, t)

+ B(m)(t)p + q(m)(t)
)

, ∀t ∈ (σi, τi], i = 1, . . . , ne, (3.33)

165

x(p,Y, σi+1) =
nm
∑

j=1

nm
∑

k=1

yjiyki+1

(

Di(j, k)x(p,Y, τi)

+ Ei(j, k)p + ki(j, k)
)

, ∀i = 1, . . . , ne − 1, (3.34)

x(p,Y, σ1) = E0p + k0, (3.35)

Y b ≡ {0, 1}nm×ne ⊂ Y ≡ [0, 1]nm×ne ; fi, gi, φi and ηi are mappings as defined in

Problem 3.4. Additionally, we require that the set G = {(p,Y) ∈ P×Y b | G(p,Y) ≤

0} is nonempty.

Equations (3.32), (3.33), (3.34) and (3.35) clearly establish the following proposi-

tion.

Proposition 3.15. Problem 3.4 has the solution (p∗, T ∗
µ) if and only if (p†,Y†) is a

solution to Problem 3.14, where p∗ = p† and T ∗
µ = {mi | y

†
mii

= 1}.

Having established a MINLP formulation in Problem 3.14, the aforementioned

algorithms for solving MINLPs can be applied. However, the following issues need to

be addressed. When the objective (3.30) and constraint functionals (3.31) are non-

convex on P × Y , rigorous global optimization algorithms have to be employed, e.g.,

[117, 83], because conventional algorithms which rely on convexity of the participating

functions on P × Y can potentially generate arbitrary suboptimal solutions. These

global optimization algorithms rely on the ability to construct convex relaxations of

the objective and constraint functionals. Note that because bilinear terms appear

in (3.33) this would require a theory for the construction of such convex relaxations

with nonlinear hybrid systems embedded. The LTV structure of the embedded hy-

brid system, (3.2), in Problem 3.4 has been lost in the reformulation into the bilinear

form, (3.33), of Problem 3.14, whereas it would be highly desirable to exploit the LTV

structure of Problem 3.4, as in Chapter 2. These considerations motivate the follow-

ing reformulation of Problem 3.14 that retains the LTV structure of Problem 3.4, and

transfers the nonlinearity of Problem 3.14 from the embedded dynamic system into

the objective and constraint functionals.

166

Before we proceed, we will have to define the following sets, based on the sets

defined in Definition 3.2.

Definition 3.16. Define the following sets for all i = 1, . . . , ne:

X
a(i)(t;P) = [v,w] | v ≤ z ≤ w, ∀z ∈ X

(i)(t;P), ∀t ∈ Ii,

Ẋ
a(i)(t;P) = [v,w] | v ≤ z ≤ w, ∀z ∈ Ẋ

(i)(t;P), ∀t ∈ Ii.

Note that these sets are nonempty, compact and convex because they are defined to

be interval vectors, while the sets defined in Definition 3.2 are not necessarily convex

because they may be disjoint. While the sets defined in Definition 3.2 characterize

the exact image of (p, Tµ, t) ∈ P ×Mne × Ii under the solution of the hybrid system

for all i = 1, . . . , ne, the sets defined in Definition 3.16 represent a convex relaxation

of the sets in Definition 3.2, i.e., they represent a conservative estimate of the exact

image under the solution of the hybrid system. These convex sets are important,

because they enable a convex, compact set, Z, to be constructed for the auxiliary

variables that will be introduced in the reformulation to be presented. This in turn

enables a convex relaxation to be constructed for each linear dynamic system that will

be introduced, because the set Z contains bounds for the initial conditions for each

dynamic system, and will thus allow a convex relaxation to be constructed according

to the theory presented in Section 2.6.

Problem 3.17.

min
p∈P,Y∈Y b, Z∈Z

F (p,Y,Z) ≡
nm
∑

m=1

ne
∑

i=1

ymi

(

φi

(

ẋmi(p,Z, τi),xmi(p,Z, τi),p
)

+

∫ τi

σi

fi

(

ẋmi(p,Z, t),xmi(p,Z, t),p, t
)

dt

)

, (3.36)

167

s.t. G(p,Y,Z) ≡
nm
∑

m=1

ne
∑

i=1

ymi

(

ηi

(

ẋmi(p,Z, τi),xmi(p,Z, τi),p
)

+

∫ τi

σi

gi

(

ẋmi(p,Z, t),xmi(p,Z, t),p, t
)

dt

)

≤ 0, (3.37)

nm
∑

m=1

ymi = 1, ∀i = 1, . . . , ne, (3.32)

zi+1 =
nm
∑

j=1

nm
∑

k=1

yjiyki+1

(

Di(j, k)xji(p,Z, τi)

+ Ei(j, k)p + ki(j, k)
)

, ∀i = 1, . . . , ne − 1, (3.38)

where Z ≡ Xa(1)(σ1;P)×Xa(2)(σ2;P)×· · ·×Xa(ne)(σne
;P) ⊂ R

nx×ne and xmi(p,Z, t)

are given by the solutions of the following embedded LTV ODE systems,

ẋmi(p,Z, t) = A(m)(t)xmi(p,Z, t)

+ B(m)(t)p + q(m)(t), ∀t ∈ (σi, τi], m ∈M, i = 1, . . . , ne, (3.39)

xmi(p,Z, σi) = zi, ∀m ∈M, i = 1, . . . , ne, (3.40)

z1 = E0p + k0. (3.41)

fi, gi, φi and ηi are mappings as defined in Problem 3.4. Additionally, we require

that the set G = {(p,Y,Z) ∈ P × Y b × Z | G(p,Y, Z) ≤ 0} is nonempty.

Remark. When state continuity is enforced for all transition functions in (3.4), (3.38)

simplifies to

zi+1 =
nm
∑

j=1

ymixmi(p,Z, τi), ∀i = 1, . . . , ne − 1. (3.42)

The key step in the reformulation of Problem 3.14 into Problem 3.17 is the in-

troduction of additional continuous parameters Z = (z1, . . . , zne
) to serve as initial

conditions for each epoch, enabling the transformation of the nonlinear hybrid sys-

168

Figure 3-13: Superstructure for Problem 3.17.

tem into nmne equivalent LTV dynamic systems. Equation (3.38) then assigns the

correct values for the initial conditions of epoch Ii+1, depending on the predecessor

mode mi that is active, which is enforced by (3.32). As discussed above, the set Z is

constructed to be a convex relaxation of the image of P ×Mme under the solution

of the hybrid system, and thus (3.38) is always guaranteed to be feasible. This su-

perstructure is illustrated in Figure 3-13. Equations (3.32), (3.38), (3.39), (3.40) and

(3.41) clearly establish the equivalence of Problem 3.14 and Problem 3.17, expressed

as the following proposition.

Proposition 3.18. (p∗,Y∗,Z∗) is a solution to Problem 3.17 if and only if (p†,Y†)

is a solution to Problem 3.14, where p∗ = p† and Y∗ = Y†.

Henceforth, we will concentrate on solving Problem 3.17.

3.3.1 Constructing Convex Relaxations

In order to solve Problem 3.17 using the aforementioned deterministic global optimiza-

tion algorithms for nonconvex MINLPs, the ability to construct convex relaxations

169

of (3.36) and (3.37) subject to the embedded system (3.38), (3.40) and (3.41) is key.

Consider the following subproblem.

Problem 3.19.

min
p∈P,ỹ∈Ỹ ,z̃∈Z̃

F (p, ỹ, z̃) ≡ φ
(

ẋ(p, z̃, τ),x(p, z̃, τ),p, ỹ
)

+

∫ τ

σ

f
(

ẋ(p, z̃, t),x(p, z̃, t),p, ỹ, t
)

dt, (3.43)

s.t. ẋ(p, z̃, t) = A(m)(t)x(p, z̃, t) + B(m)(t)p + q(m)(t), ∀t ∈ (σ, τ] (3.44)

x(p, z̃, σ) = z̃, (3.45)

for some m ∈ M , where σ < τ, T ≡ [σ, τ], P ⊂ R
np , Ỹ ≡ [0, 1], Z̃ ⊂ R

nx ; f is a

piecewise continuous mapping with a finite number of stationary simple discontinuities

in time, f : R
nx ×R

nx ×P × Ỹ × T → R; φ is a continuous mapping φ : R
nx ×R

nx ×

P × Ỹ → R.

Definition 3.20. Let P be a nonempty compact convex subset of R
np , and Z̃ be a

nonempty compact convex subset of R
nx . Define the following sets:

X
b(t;P, Z̃) ≡

{

x(p, z̃, t) | p ∈ P, z̃ ∈ Z̃
}

, ∀t ∈ T,

Ẋ
b(t;P, Z̃) ≡

{

ẋ(p, z̃, t) | p ∈ P, z̃ ∈ Z̃
}

, ∀t ∈ T,

X
b(P, Z̃) ≡

⋃

t∈T

X
b(t;P, Z̃), Ẋ

b(P, Z̃) ≡
⋃

t∈T

Ẋ
b(t;P, Z̃).

The following results demonstrate how the convexity theory presented in Section

2.6 can be used to establish a convexity theory for Problem 3.19.

Theorem 3.21. Consider the function F in Problem 3.19. If f(·, t) is convex on

Ẋb(t;P, Z̃) × Xb(t;P, Z̃) × P × Ỹ for each t ∈ T , and φ is convex on Ẋb(τ ;P, Z̃) ×

Xb(τ ;P, Z̃) × P × Ỹ , then F is convex on P × Ỹ × Z̃.

Proof. Let w = (p, ỹ, z̃). The embedded LTV system in (3.44) and (3.45) can then

170

be written as the following equivalent system,

ẋ(w, t) = A(m)(t)x(w, t) + H(m)(t)w + q(m)(t), ∀t ∈ (σ, τ], (3.46)

x(w, σ) = Ew, (3.47)

where H(m)(t) = [B(m)(t) 0], E = [0 I], and I is the identity matrix of rank nx;

w ∈ W ≡ P × Ỹ × Z̃. The system (3.46) and (3.47) is a trivial example of the

LTV hybrid systems considered in Section 2.6, hence Theorem 2.12 can be applied to

obtain the desired result.

Remark. The set Ẋb(t;P, Z̃)×Xb(t;P, Z̃)×P × Ỹ is convex for each t ∈ T (see proof

of Theorem 2.12).

Corollary 3.22. Consider the following function:

U(p, ỹ, z̃;P, Z̃) = ψ
(

ẋ(p, z̃, τ),x(p, z̃, τ),p, ỹ
)

+

∫ τ

σ

u
(

ẋ(p, z̃, t),x(p, z̃, t),p, ỹ, t
)

dt, (3.48)

subject to the constraints of Problem 3.19, u is a piecewise continuous mapping with a

finite number of stationary simple discontinuities in time, u : Ẋb(P, Z̃)×Xb(P, Z̃)×P×

Ỹ ×T → R; and ψ is a continuous mapping ψ : Ẋb(τ ;P, Z̃)×Xb(τ ;P, Z̃)×P×Ỹ → R.

If the following conditions are satisfied, then U is convex on P × Ỹ × Z̃ such that

U(p, ỹ, z̃;P, Z̃) ≤ F (p, ỹ, z̃), ∀(p, ỹ, z̃) ∈ P × Ỹ × Z̃ .

(D1) ψ
(

ẋ(p, z̃, τ),x(p, z̃, τ),p, ỹ
)

≤ φ
(

ẋ(p, z̃, τ),x(p, z̃, τ),p, ỹ
)

, ∀(p, ỹ, z̃) ∈ P ×

Ỹ × Z̃,

(D2) u
(

ẋ(p, z̃, t),x(p, z̃, t),p, ỹ, t
)

≤ f
(

ẋ(p, z̃, t),x(p, z̃, t),p, ỹ, t
)

, ∀(p, ỹ, z̃) ∈ P ×

Ỹ × Z̃, for each t ∈ T ,

(D3) ψ is convex on Ẋb(τ ;P, Z̃) × Xb(τ ;P, Z̃) × P × Ỹ ,

(D4) u(·, t) is convex on Ẋb(t;P, Z̃) × Xb(t;P, Z̃) × P × Ỹ for each t ∈ T .

171

Proof. See Corollary 2.13.

Remark. Corollary 3.22 allows convex relaxations of (3.43) to be constructed, by

harnessing McCormick’s composition theorem and αBB [96, 1] to build the required

convex relaxations, ψ from φ, and u(·, t) from f(·, t) for all t ∈ T in (3.43). Note also

that the functional form of U includes a dependence on the parameter set, P × Z̃,

which is used for its construction.

Remark. Problem 3.19 is a subproblem obtained by considering one of the nmne

embedded systems in Problem 3.17, i.e., by fixing some m ∈ M and i ∈ {1, . . . , ne}.

Thus, the repeated application of Corollary 3.22 for all nmne embedded systems

allows convex relaxations of (3.36) and (3.37) to be constructed, i.e., the construction

of a lower bounding convex MINLP to Problem 3.17. This is important as it allows

the deterministic global optimization algorithm described later in this chapter to be

applied for the solution of Problem 3.17.

For Corollary 3.22, the sets P , Ỹ and T are known exactly. Next, we show how

the sets Ẋb(t;P, Z̃) and Xb(t;P, Z̃), t ∈ T , can be calculated from some given interval

vector Z̃. Recall that the interval notation a ∈ [aL, aU] indicates that aL ≤ a ≤ aU .

Theorem 3.23. Consider Problem 3.19. Given intervals P ≡ [pL,pU] and Z̃ ≡

[z̃L, z̃U], the convex set Xb(t;P, Z̃) ≡ [xL(t),xU(t)] for t ∈ T can be calculated point-

wise in time from the following interval equation,

[x](t) = M(t)[w] + n(t), (3.49)

where w = (p, ỹ, z̃), w ∈ W ≡ [wL,wU], wL = (pL, 0, z̃L), wU = (pU , 1, z̃U), and

M(t), n(t) are given by the solution of the following LTV systems,

Ṁ(t) = A(m)(t)M(t) + H(m)(t), ∀t ∈ (σ, τ], (3.50)

ṅ(t) = A(m)(t)n(t) + q(m)(t), ∀t ∈ (σ, τ], (3.51)

M(σ) = L, (3.52)

n(σ) = 0, (3.53)

172

where H(m)(t) = [B(m)(t) 0], L = [0 I], and I is the identity matrix of rank nx.

Proof. The embedded LTV system in Problem 3.19 can be written as the equivalent

system in (3.46) and (3.47). The desired result is then obtained by applying the

theory in [120].

Corollary 3.24. Consider Theorem 3.23. Then, the convex set Ẋb(t;P, Z̃) ≡

[ẋL(t), ẋU(t)] for t ∈ T can be calculated pointwise in time from the following in-

terval equation,

[ẋ](t) =
(

A(m)(t)M(t) + H(m)(t)
)

[w] + A(m)(t)n(t) + q(m)(t), ∀t ∈ T. (3.54)

Proof. See Theorem 2.14.

Remark. The functional form of the solution of the equivalent LTV system, (3.46)

and (3.47), is affine in the parameters w,

x(w, t) = M(t)w + n(t). (3.55)

The entries in M are clearly the parametric sensitivities of the dynamic system, ∂x
∂w

.

Hence, (3.50) and (3.52) are simply the forward sensitivity equations of the embedded

dynamic system in Problem 3.19. For problems where the number of parameters is

much greater than the state variables, it might be more attractive to employ adjoint

methods to calculate the required parametric sensitivities at the specified final time,

i.e., calculating M(τ) to construct the sets Xb(τ ;P, Z̃) and Ẋb(τ ;P, Z̃). However,

adjoint methods cannot be applied for constructing the bounding trajectories xL(t),

xU(t), ẋL(t) and ẋU(t), i.e., the sets Xb(t;P, Z̃) and Ẋb(t;P, Z̃) ∀t ∈ [σ, τ] (which

are needed for constructing convex relaxations of the integral term, see e.g., (D4),

since they cannot provide the sensitivity trajectories pointwise in time). Hence, the

forward sensitivities must be used whenever there are integral terms in the objective

or constraint functionals, and efficient methods exist for computing these sensitivities

[57].

173

Remark. The bounds xL(t) and xU(t) from (3.49) are exact in the following sense.

For any i ∈ {1, . . . , nx}, and any t ∈ T , the following relationship holds,

xi(w
∗, t) = xLi (t) ≤ xi(w, t) ≤ xUi (t) = xi(w

†, t), ∀w ∈W,

for some w∗,w† ∈ W .

The final prerequisite for utilizing Corollary 3.22 lies in the construction, or esti-

mation, of the set Z in Problem 3.17. From Figure 3-13, we see that Z is simply an

estimate of the set of bounds for the state variables x at the start of each epoch, over

all possible Tµ. For each epoch Ii, where zi are the initial conditions, it is desirable to

have a good estimate for the bounds [zLi , z
U
i], because the constructed convex relax-

ations become tighter (more accurate) as the bounds become tighter. Consequently,

the solution of the lower bounding convex MINLP constructed becomes a better lower

bound as Z becomes smaller, increasing the efficiency of the global optimization algo-

rithm. We will discuss how the set Z can be estimated in the next Section. Note that

the estimation of the set Z can have a dramatic effect on algorithms for the solution

of Problem 3.17, as will be shown later. However, given a set Z, the nonconvex OA

algorithm described in Section 2.1.2 will still terminate finitely when applied to Prob-

lem 3.17. Another thing to note is the solution of the primal problem. This occurs

with Y∗ fixed, which implies that T ∗
µ is fixed. Clearly, the auxiliary variables Z can

then be eliminated from the primal problem, which can be solved as an optimization

problem involving only the set P .

Having shown how to construct convex relaxations for (3.36) and (3.37), we now

construct relaxations for the remaining nonconvex constraints, (3.38). Consider the

trilinear term, s = y1y2v with the following bounds, 0 ≤ y1, y2 ≤ 1, vL ≤ v ≤ vU ,

where s,v ∈ R
nx . By applying the exact linearization methods in [67], we can obtain

an exact linear representation of the trilinear term. For notational convenience, let

〈s, y1, y2,v〉trilin denote the following collection of linear constraints for all elements

i = 1, . . . , nx,

174

if vLi ≥ 0 :

vUi (y1 + y2 − 2) + vi

vLi (y1 + y2 − 1)

0























≤ si ≤



































vLi (y1 − 1) + vi

vLi (y2 − 1) + vi

vUi y1

vUi y2

,

if vUi ≤ 0 :

vUi (y1 − 1) + vi

vUi (y2 − 1) + vi

vLi y1

vLi y2



































≤ si ≤























vLi (y1 + y2 − 2) + vi

vUi (y1 + y2 − 1)

0

,

if vLi < 0 < vUi :

vUi (y1 + y2 − 2) + vi

vi − vUi

vLi y1

vLi y2



































≤ si ≤



































vLi (y1 + y2 − 2) + vi

vi − vLi

vUi y1

vUi y2

.

Then, the following constraints are the exact linearizations for (3.38):

zi+1 =
nm
∑

j=1

nm
∑

k=1

sjki, ∀i = 1, . . . , ne − 1, (3.56)

〈sjki, yji, yk,i+1,vjki〉trilin, ∀j, k = 1, . . . , nm, i = 1, . . . , ne − 1, (3.57)

vjki =
(

Di(j, k)M
(j)
i (τi) + Ei(j, k)

)

wi

+ Di(j, k)n
(j)
i (τi) + ki(j, k), ∀j, k = 1, . . . , nm, i = 1, . . . , ne − 1, (3.58)

wi = (p, 0, zi), ∀i = 1, . . . , ne − 1, (3.59)

where V ∈ V ⊂ R
nx×nm×nm×(ne−1), W ∈ R

(np+nx+1)×(ne−1), S ∈ R
nx×nm×nm×(ne−1);

and M
(j)
i and n

(j)
i are the quantities in Theorem 3.23 for mode j and epoch i. The

175

bounds on the auxiliary variables, V , can be calculated from the natural interval

extensions of (3.58) and (3.59) once the set Z has been estimated,

[vLjki,v
U
jki] =

(

Di(j, k)M
(j)
i (τi) + Ei(j, k)

)

[wL
i ,w

U
i]

+ Di(j, k)n
(j)
i (τi) + ki(j, k), ∀j, k = 1, . . . , nm, i = 1, . . . , ne − 1,

[wL
i ,w

U
i] = [(pL, 0, zLi), (pU , 1, zUi)], ∀i = 1, . . . , ne − 1.

Before we end this section, we establish conditions for which the constructed

convex relaxations are continuously differentiable on an open set containing P as a

corollary of Theorem 3.5, which is important since a gradient based NLP solver will

be used to solve the lower bounding problems.

Corollary 3.25. Consider Corollary 3.22. Let P o ⊃ P , Ỹ o ⊃ Ỹ , Z̃o ⊃ Z̃, Xbo(τ) ⊃

Xb(τ ;P o, Z̃o), Xbo ⊃ Xb(P o, Z̃o), Ẋbo(τ) ⊃ Ẋb(τ ;P o, Z̃o) and Ẋbo ⊃ Ẋb(P o, Z̃o) be open

subsets of R
np, R, R

nx, R
nx, R

nx, R
nx and R

nx respectively. If the following conditions

are satisfied, then the function U is continuously differentiable on P o × Ỹ o × Z̃o.

1. ∂ψ

∂ẋ
, ∂ψ

∂x
, ∂ψ

∂p
and ∂ψ

∂ỹ
exist, and are continuous on Ẋbo(τ) × Xbo(τ) × P o × Ỹ o.

2. ∂u
∂ẋ

, ∂u
∂x

, ∂u
∂p

and ∂u
∂ỹ

are piecewise continuous on Ẋbo × Xbo × P o × Ỹ o × T where

only a finite number of stationary simple discontinuities are allowed.

Proof. The embedded LTV system in Problem 3.19 can be written as the equivalent

system in (3.46) and (3.47). The proof is then elementary from the proof of Theorem

2.9 by treating ỹ and z̃ as additional optimization decision variables.

McCormick’s composition theorem [96] will most often produce smooth convex

relaxations; however, if the factorable representation is employed, the convex relax-

ations constructed have no guarantee of smoothness, as discussed in Section 2.1. For

point objectives and constraints, this nonsmoothness can be easily eliminated by

introducing additional variables and constraints (see e.g., [125, Chapter 4]. For gen-

eral terms which include the isoperimetric (integral) term, the αBB method [1] for

constructing convex relaxations can be used to guarantee smoothness. This method

176

is applicable to a broad class of twice-differentiable functions, and the constructed

convex relaxations are also guaranteed to be twice-differentiable. Thus, the use of

Corollary 3.22 in conjunction with the aforementioned methods guarantees that if

Theorem 3.5 holds, Corollary 3.25 also holds, and both the original functions and

their constructed convex relaxations are at least continuously differentiable on some

open set containing P × Ỹ × Z̃. We will assume that this is true for the rest of this

Chapter.

3.4 Bounding Strategies for Hybrid Systems with

Varying Mode Sequences

In this section, we shall present different bounding strategies for estimating the set

Z in Problem 3.17. In general, more computational effort has to be expended in

order to obtain tighter estimates for the set Z. However, it is interesting to note that

with the development of the dynamic bounds tightening heuristic (see Section 3.5.1),

that cheap (in terms of computational time) bounding strategies can also make a big

difference in the convergence rate of global deterministic algorithms.

3.4.1 Extended Affine Bounding

From the previous section, we know that exact bounds for x(τ) can be constructed

for Problem 3.19 once the bounds for z̃ are known. This can be further extended to

problems with multiple epochs by simply stepping through each epoch sequentially.

This motivates the following algorithm for estimating the set Z, where A is a (possibly

empty) set of tuples (m, i) indicating mode m is fixed in epoch i,

A ≡ { (m, i) | mode m is active in epoch i }.

For example, A = {(1, 1), (3, 5)} denotes mode 1 is fixed in epoch 1, mode 3 is fixed

in epoch 5, and the mode is free in all other epochs. Each epoch can appear in at

most one element of A. The bounds on z1 are given by the natural interval extension

177

[99] of (3.41),

[zL1 , z
U
1] = E0[p

L,pU] + k0.

Algorithm 3.26 (A1(A)).

1. (Preprocessing) For m = 1 to nm do:

(a) For i = 1 to (ne − 1) do:

i. Integrate the system (3.50), (3.51), (3.52) and (3.53) from σ = σi to

τ = τi, and store M
(m)
i (τi) := M(τ) and n

(m)
i (τi) := n(τ).

2. (Initialization) Set a1 = a2 = 0, bi = FALSE, ci = 0 ∀i = 1, . . . , ne. Set

bounds x(m,k)L(σi+1) = +∞,x(m,k)U(σi+1) = −∞ for all m, k = 1, . . . , nm, and

i = 1, . . . , ne − 1.

3. (Active Mode Inclusion) For each (m, i) ∈ A, set bi := TRUE, ci := m.

4. (Calculate Bounds) For i = 1 to (ne − 1) do:

(a) If (bi) set a1 = 1, else set a1 = nm. If (bi+1) set a2 = 1, else set a2 = nm.

(b) For j = 1 to a1 do:

i. If (bi) set m = ci, else set m = j.

ii. For l = 1 to a2 do:

A. If (bi+1) set k = ci+1, else set k = l.

B. Calculate and store [x(m,k)L(σi+1),x
(m,k)U(σi+1)] from

[x(m,k)](σi+1) =
(

Di(m, k)M
(m)
i (τi) + Li(m, k)

)

[w]

+ Di(m, k)n
(m)
i (τi) + ki(m, k).

where wL = (pL, 0, zLi), wU = (pU , 1, zUi), and Li(m, k) =

[Ei(m, k) 0].

(c) For j = 1 to nx do:

178

i. Calculate and store the jth element of [zLi+1, z
U
i+1] from

zLj,i+1 = min
m,k

x
(m,k)
j

L
(σi+1), zUj,i+1 = max

m,k
x

(m,k)
j

U
(σi+1).

Remark. The system (3.50), (3.51), (3.52) and (3.53) is independent of the parameters

w, hence the values of M(τ) and n(τ) are also independent of w. Hence, if the epochs

are of equal duration, i.e., τi−σi is constant for all i, and we have a LTI hybrid system,

step (1a) only needs to be executed once for i = 1.

Although Theorem 3.23 guarantees exact bounds for Problem 3.19, the bounds

obtained from implementing Algorithm 3.26 have no guarantee of exactness for Prob-

lem 3.17 past the first epoch. This is not surprising, as bounds for different elements

of [zLi , z
U
i], i > 2, could come from different predecessor modes mi−1, i.e., (3.32) is not

enforced in any of the preceding modes for Step 4) in (A1). One way to enforce (3.32)

is to obtain the bounds for all possible combinations of Tµ, i.e., solving the bounding

equations in Theorem 2.14 through explicit enumeration. This would provide ex-

act bounds for Problem 3.17; however, this method clearly suffers from exponential

complexity.

3.4.2 Relaxed LP Bounding

Consider the following problem.

Problem 3.27 (LPB1(α,β)).

min
p∈P,Y∈Y b,Z

eT
β zα+1

s.t.
nm
∑

m=1

ymi = 1, ∀i = 1, . . . , α,

zi+1 =
nm
∑

j=1

nm
∑

k=1

yjiyki+1

(

Di(j, k)xji(p,Z, τi)

+ Ei(j, k)p + ki(j, k)
)

, ∀i = 1, . . . , α, (3.60)

179

z1 = E0p + k0,

where Y b ≡ {0, 1}nm×α ⊂ Y ≡ [0, 1]nm×α, Z ∈ R
nx×(α+1), and the unit vector eβ is

the βth column of the rank nx identity matrix; xmi(p,Z, t) are given by the solution

of the following embedded LTV ODE systems for all m ∈M , i = 1, . . . , α,

ẋmi(p,Z, t) = A(m)(t)xmi(p,Z, t) + B(m)(t)p + q(m)(t), ∀t ∈ (σi, τi],

xmi(p,Z, σi) = zi.

Problem LPB1(α, β) determines the exact lower bound for the βth component of

x(p, Tµ, σα+1) = zα+1. We can construct an exact linear reformulation for LPB1(α, β)

by treating the trilinear terms in (3.60) using the exact linearizations described above

for (3.38). We can then formulate the following, equivalent, MILP.

Problem 3.28 (LPB2(α,β)).

min
p,Y,Z,V,W,S

eT
β zα+1

s.t.
nm
∑

m=1

ymi = 1, ∀i = 1, . . . , α,

zi+1 =
nm
∑

j=1

nm
∑

k=1

sjki, ∀i = 1, . . . , α,

〈sjki, yji, yk,i+1,vjki〉trilin, ∀j, k = 1, . . . , nm, i = 1, . . . , α,

vjki =
(

Di(j, k)M
(j)
i (τi) + Ei(j, k)

)

wi

+ Di(j, k)n
(j)
i (τi) + ki(j, k), ∀j, k = 1, . . . , nm, i = 1, . . . , α,

wi = (p, 0, zi), ∀i = 1, . . . , α,

where Y ∈ Y b ≡ {0, 1}nm×α ⊂ Y ≡ [0, 1]nm×α, Z ∈ R
nx×(α+1), V ∈ V ⊂ R

nx×nm×nm×α,

W ∈ R
(np+nx+1)×α, S ∈ R

nx×nm×nm×α, and the unit vector eβ is the βth column of

180

a rank nx identity matrix; and M
(j)
i (τi) and n

(j)
i (τi) are given by the solution of the

system (3.50), (3.51), (3.52) and (3.53) from σ = σi to τ = τi, for j ∈M , i = 1, . . . , α.

The required bounds on the auxiliary variables V constitute the set V , and can be

determined sequentially for each epoch (see Algorithm 3.29 below). The variables Z,

W, S are left as free or unrestricted variables. While it is impractical to solve a family

of MILPs (LPB2(α, β)) to obtain the tightest bounds for Z, it is much cheaper to

solve (LPB2(α, β)) on the relaxed set Y ∈ Y , resulting in solving a family of relaxed

LPs to provide valid (but not exact) bounds for Z. This constitutes the following

algorithm.

Algorithm 3.29 (A2).

1. (Preprocessing) For m = 1 to nm do:

(a) For i = 1 to (ne − 1) do:

i. Integrate the system (3.50), (3.51), (3.52) and (3.53) from σ = σi to

τ = τi, and store M
(m)
i (τi) := M(τ) and n

(m)
i (τi) := n(τ).

2. (Initialization) Set bounds x̂(m,k)L(σi+1) = x(m,k)L(σi+1) =

+∞, x̂(m,k)U(σi+1) = x(m,k)U(σi+1) = −∞ for all m, k = 1, . . . , nm, and

i = 1, . . . , ne − 1.

3. (Calculate Bounds) For i = 1 to (ne − 1) do:

(a) For j = 1 to nm do:

i. For k = 1 to nm do:

A. Calculate and store [x̂(j,k)L(σi+1), x̂
(j,k)U(σi+1)] from

[x̂(j,k)](σi+1) =
(

Di(j, k)M
(j)
i (τi) + Li(j, k)

)

[w]

+ Di(j, k)n
(j)
i (τi) + ki(j, k).

where wL = (pL, 0, zLi), wU = (pU , 1, zUi), and Li(j, k) =

[Ei(j, k) 0].

181

(b) For j = 1 to nm do:

i. For k = 1 to nm do:

A. For l = 1 to nx do:

• Solve LPB2(i, l), with [vjkθ] = [x(j,k)(σθ+1)], θ = 1, . . . , i−1, and

[vjki] = [x̂(j,k)(σi+1)] for all (j, k) ∈ M2, on the relaxed set Y ,

with the following constraint, yji = 1, and store x
(j,k)
l

L
(σi+1) :=

optimal solution value.

• Repeat the step above as a maximization problem, and store

x
(j,k)
l

U
(σi+1) := optimal solution value.

(c) For j = 1 to nx do:

i. Calculate and store the jth element of [zLi+1, z
U
i+1] from

zLj,i+1 = min
m,k

x
(m,k)
j

L
(σi+1), zUj,i+1 = max

m,k
x

(m,k)
j

U
(σi+1).

Note that an attractive feature of the algorithm is the ability to easily incorpo-

rate information gained from physical insight into the problem as constraints in the

relaxed LPs. Although the LP relaxation can be solved in polynomial time, it is still

significantly slower than Algorithm 3.26, which will be the algorithm of choice for the

dynamic bounds tightening heuristic introduced in Section 3.5.1. Also, it is possible

to incorporate the active mode inclusion step into Algorithm 3.29 similar to Step

3 of Algorithm 3.26, where the appropriate modifications to LPB2(α, β) are made

through the removal of the auxiliary variables which are not needed, and the addition

of constraints to enforce the active modes.

3.4.3 Harrison’s Method and its Extension

In this section, we will consider the application of Harrison’s method [71] to obtain

estimates for the set Z as applied to Example 3.7. The reason that we have applied

it specifically to Example 3.7 is that Harrison’s method requires some assumptions

and conditions to be met before it can be applied. We shall also discuss some simple

182

extensions to the method that could make it more widely applicable. For the example

considered, Harrison’s method scales quite nicely with the number of epochs consid-

ered, although the bounds obtained are not very tight, as will be discussed in Section

3.4.4.

In [71] Harrison introduced a method to compute upper and lower bounds for

the flow rates in linear compartmental models. One of the main assumptions made is

that the values of the state variables are nonnegative. In this section, we will describe

a trivial extension to Harrison’s theorem to deal with state variables that can take

negative values. The extension is based on the assumption that valid lower bounds

can be obtained for all state variables, however it does not guarantee exact bounds

(and hence its usefulness is questionable). In addition, we will also trivially generalize

Harrison’s results to include time varying bounds on the rate coefficients aij and ri.

First, we shall describe Harrison’s method.

Consider the following linear ODE system (linear compartmental model),

ẋ = Ax + r, (3.61)

where xi is the concentration of material in compartment i, ri is the flow rate into

compartment i from outside the system, and, for i 6= j, aijxj is the flow rate from

compartment j into compartment i. The term aiixi is the total flow rate out of

compartment i, hence we have

aii = −a0i −
∑

k 6=i

aki, (3.62)

where a0ixi is the flow rate from compartment i to outside the system.

Harrison was interested in applications where it was extremely difficult to deter-

mine the rate coefficients aij and ri, due to uncertainty, incomplete knowledge of the

process controlling the flow rates, and/or the inability to measure the flow rates pre-

cisely. He dealt with the uncertainty by assuming that a priori bounds were known

183

for A and r of the following form,

aLij ≤ aij(t) ≤a
U
ij, for i 6= j, i = 0, . . . , nx, j = 1, . . . , nx, (3.63)

rLi ≤ ri(t) ≤ rUi , for i = 1, . . . , nx, (3.64)

and developed the following results for computing the (exact) intervals [xLi (t), xUi (t)]

which contain the elements xi(t) of the solution to (3.61), subject to (3.62), (3.63) and

(3.64). He noted that while traditional methods for differential inequalities [22, 135]

could be used to obtain the desired bounds, these methods tended to produce weak

bounds when (a) the entries of the matrix A are not independent, as in (3.62); or (b)

when the system is not quasimonotone as defined in [135, 84]. In the latter case, some

improvement is obtained by using Moore’s [98] correction for the wrapping effect [70],

but there is still no guarantee that the bounds are exact. It is assumed throughout

that x(t) ≥ 0 is met by any realistic compartmental model. Note that the coefficients

of A and r are actually allowed to take on any functional form over the time horizon,

and are not restricted to assume constant real values over time. Thus, intuitively,

the state bounds obtained from applying Harrison’s method will naturally be weaker

than the exact bounds obtained for a system in which the coefficients are restricted to

constant real values. This is also the reason why the extension to Harrison’s method

proposed below does not give the exact state bounds when applied to LTI or hybrid

systems.

Harrison’s theorem

Consider the following system,

ẋ(t) = A(u(t))x(t) + r(t), (3.65)

where A is a function of the parameter vector u(t) ∈ R
nu satisfying

uL ≤ u(t) ≤ uU , (3.66)

184

and r(t) is a vector of inputs satisfying

rL ≤ r(t) ≤ rU . (3.67)

Theorem 3.30 (Harrison [71]). Let λ(t) be the solution of the adjoint equations

λ̇(t) = −A(u∗(t))Tλ(t), (3.68)

where u∗(t) satisfies

λ(t)T[A(u(t)) − A(u∗(t))]x(t) ≤ 0, (3.69)

for all x(t) ≥ 0 and all u(t) satisfying (3.66), and let r∗(t) satisfy

λ(t)Tr(t) ≤ λ(t)Tr∗(t) (3.70)

for all r(t) satisfying (3.67). If x∗(t) is a solution of (3.65) with u(t) = u∗(t) and

r(t) = r∗(t), and x(t) is a nonnegative solution of (3.65) with

λ(0)Tx(0) ≤ λ(0)Tx∗(0), (3.71)

then for all t ≥ 0

λ(t)Tx(t) ≤ λ(t)Tx∗(t). (3.72)

Proof. First we adjoin the state variables, λTx, and take the time derivative,

v(t) = λ̇(t)Tx(t) + λ(t)Tẋ(t)

= −λ(t)TA(u∗(t))x(t) + λ(t)T(A(u(t))x(t) + r(t))

= λ(t)T[A(u(t)) − A(u∗(t))]x(t) + λ(t)Tr(t), (3.73)

where v ≡ d(λTx)
dt

. Combining (3.69) and (3.73), we have

v(t) ≤ λ(t)Tr(t). (3.74)

185

From (3.73), it is clear that the following equation holds

v(t)|x(t)=x∗(t) = λ(t)Tr∗(t),

which together with (3.70) and (3.74) implies

v(t) ≤ v(t)|x(t)=x∗(t) .

Applying [116, Thm. 6.12(b)], we have

∫ t

0

d(λTx)

dt
dt ≤

∫ t

0

d(λTx)

dt

∣

∣

∣

∣

x(t)=x∗(t)

dt.

From the fundamental theorem of calculus, we have

λ(t)Tx(t) − λ(0)Tx(0) ≤ λ(t)Tx∗(t) − λ(0)Tx∗(0)

which, together with (3.71), clearly implies (3.72).

Remark. Harrison does not impose any further restrictions in stating his theorem.

Equation (3.66) clearly accommodates piecewise continuous functions of u(t), pro-

vided that u(t) is defined and bounded by (3.66) at points of discontinuity (stationary

simple discontinuities in time). Harrison does not discuss the existence or uniqueness

of solutions, although the usual restrictions on A(t) and r(t) would apply.

Harrison’s theorem shows that (3.68), (3.69) and (3.70) can be viewed as the

sufficient1 conditions for bounding the adjoint of the states, (3.72). The connection

to the linear compartmental models described above is made through the following

corollary.

Corollary 3.31. Let

ẋ(t) = A(t)x(t) + r(t), (3.75)

where the diagonal entries aii(t) of A(t) are given by (3.62), and where ri(t) and

1and necessary as remarked by Harrison, although not formally proven or stated as such

186

aij(t) for i 6= j, i = 0, . . . , nx, j = 1, . . . , nx, satisfy the bounds given in (3.63) and

(3.64). Let λ(t) be the solution of

λ̇(t) = −A∗(t)Tλ(t), (3.76)

where

a∗0i(t) =











aL0i, if λi(t) ≥ 0,

aU0i, if λi(t) < 0,

(3.77)

a∗ij(t) =











aUij, if λi(t) − λj(t) ≥ 0,

aLij, if λi(t) − λj(t) < 0,

for i 6= 0, i 6= j, (3.78)

and a∗ii is computed from (3.62),

a∗ii(t) = −a∗0i(t) −
∑

k 6=i

a∗ki(t).

If x∗(t) is a solution of

ẋ∗(t) = A∗(t)x∗(t) + r∗(t), (3.79)

where

r∗i (t) =











rUi , if λi(t) ≥ 0,

rLi , if λi(t) < 0,

(3.80)

then any nonnegative solution of (3.75) subject to (3.62), (3.63) and (3.64) with

λ(0)Tx(0) ≤ λ(0)Tx∗(0) (3.71)

satisfies, for all t ≥ 0,

λ(t)Tx(t) ≤ λ(t)Tx∗(t). (3.81)

Proof. It suffices to show that (3.77), (3.78) and (3.80) imply the conditions (3.69)

and (3.70) in Harrison’s theorem with the parameters u(t) being the rate coefficients

aij(t) for i 6= j, i = 0, . . . , nx, j = 1, . . . , nx. First, (3.80) clearly implies (3.70). Next,

187

note that

λ(t)T[A(t) − A∗(t)]x(t) =
∑

i

(a∗0i(t) − a0i(t))λi(t)xi(t)

+
∑

i

∑

k 6=i

(aki(t) − a∗ki(t))(λk(t) − λi(t))xi(t),

where the choice of (3.77) and (3.78) ensures that (3.69) holds for all x(t) ≥ 0.

Remark. The adjoint system is clearly a hybrid system due to the state conditions in

(3.77), (3.78) and (3.80), which are reversible discontinuities. Note that the direction

of the strict and regular (or weak) inequalities is arbitrary as long as the conditions

are suitably defined, e.g., the following equation could replace (3.80),

r∗i (t) =











rUi , if λi(t) > 0,

rLi , if λi(t) ≤ 0.

(3.82)

In either case, the treatment of reversible discontinuities discussed in Section 1.1.5

applies. Note that all but one of the adjoint variables will have zero values at the

start of the backward integration phase of the algorithm (described below), and so

the simulator must be able to recognize correctly which branch of the state condition

is active at the start of the simulation.

Note that thus far, nothing has been mentioned about the initial conditions of the

original ODE system. In fact, the theorem and corollary only requires that (3.71) be

satisfied. For problems with a set of fixed initial conditions, (3.71) is automatically

satisfied, and so x∗(0) can be set to the given fixed initial conditions. For problems

where the initial conditions belong to a range of values, say an interval vector,

x(0) ∈ [xL(0),xU(0)],

188

1. Initialize λ(τ) = ei where the unit vector ei is the ith column of the identity
matrix.

2. Initialize the discontinuity functions by taking one integration step backwards
from τ .

3. Integrate (3.76), (3.77), (3.78) and (3.80) backward in time from τ to 0, and
store the timings of the events, as well as the state condition that triggers the
event. This can be done, e.g., by storing the triple (t, i, j) for each event, where
t stores the event time triggered by a zero crossing of λi(t) when j = 0, and a
zero crossing of λi(t) − λj(t) otherwise.

4. Integrate (3.79), (3.77), (3.78) and (3.80) forward in time from 0 to τ with
initial conditions x∗(0) given either by fixed initial conditions or (3.83).

5. The upper bound for xi(τ) is then given by x∗i (τ).

6. To obtain the lower bound, re-initialize with λ(τ) = −ei and repeat Steps 2, 3
and 4. The lower bound for xi(τ) is then given by x∗i (τ).

Figure 3-14: Algorithm for calculating the exact bounds for xi(τ)

these conditions can be satisfied if x∗(0) is computed by the following equations,

x∗i (0) =











xLi (0), if λi(0) < 0

xUi (0), if λi(0) ≥ 0

, ∀i = 1, . . . , nx (3.83)

for some given value of λ(0), which is obtained from performing interval analysis.

Also, note that the initial time is given by 0, without loss of generality. Clearly, the

same results would hold if 0 was replaced by some fixed initial time σ.

The bounds for element xi(τ) at a specified time τ , where 0 < τ < ∞, can be

computed by the algorithm shown in Figure 3-14. We now show the correctness of

the algorithm. Since we have chosen λ(τ) = ei, (3.81) reduces to xi(τ) ≤ x∗i (τ) where

x∗i (τ) is clearly a valid upper bound for xi(τ). The exactness of the upper bound

follows from the fact that x∗i (τ) itself is a solution to (3.79), and hence is a valid

solution for (3.75) for some A(t) and r(t) satisfying (3.62), (3.63) and (3.64). The

same argument holds true for the lower bound.

189

Remark. This algorithm is useful when the bounds are needed at specified times. Sim-

ilar to adjoint methods for calculating sensitivities, which do not deliver the sensitivity

trajectories but rather the end time sensitivities, this method does not produce the

bounding trajectories. To calculate the bounds at intermediate times to some speci-

fied final time tf , the algorithm will have to be repeated for each intermediate time

point.

We will now describe some extensions to Harrison’s theorem.

An Extension to Harrison’s theorem - Time Varying Bounds

Since Harrison was interested in models with fixed rate coefficients, aij and ri, that

possibly varied between some known a priori bounds, the bounds in (3.63), (3.64),

(3.66), (3.67), (3.77), (3.78) and (3.80) are all time invariant.

Theorem 3.32. Theorem 3.30 and Corollary 3.31 presented above are valid when

(3.63), (3.64), (3.66), (3.67), (3.77), (3.78) and (3.80) are replaced by the following

equations respectively,

aLij(t) ≤ aij(t) ≤a
U
ij(t), for i 6= j, i = 0, . . . , nx, j = 1, . . . , nx, (3.84)

rLi (t) ≤ ri(t) ≤ rUi (t), for i = 1, . . . , nx,

uL(t) ≤ u(t) ≤ uU(t),

rL(t) ≤ r(t) ≤ rU(t).

a∗0i(t) =











aL0i(t), if λi(t) ≥ 0,

aU0i(t), if λi(t) < 0,

a∗ij(t) =











aUij(t), if λi(t) − λj(t) ≥ 0,

aLij(t), if λi(t) − λj(t) < 0,

for i 6= 0, i 6= j,

r∗i (t) =











rUi (t), if λi(t) ≥ 0,

rLi (t), if λi(t) < 0,

190

Proof. The proof is trivial through substitution.

This trivial extension is useful when we want to acquire tighter bounds for the

case where we know the time varying bounds for A(t) and r(t). As discussed earlier,

this is also why Harrison’s bounds are weak, because they are valid for all functions

between the bounds, not just scalar values between the bounds.

An Extension to Harrison’s Theorem - Allowing Negative Trajectories

We are interested in removing the restriction x ≥ 0 for Harrison’s theorem. The

extension described here provides valid bounds for the system, however, there cannot

be any guarantee of exactness, as will be shown below. Let us also restrict our interest

to a finite time domain, t ∈ [0, tf]. Assume that a valid lower bound is known a priori

for the states, x(t) for t ∈ [0, tf],

v ≤ x(t).

where vi > −∞ for all i. Let element zi of the vector z be such that zi = min{0, vi}

for all i = 1, . . . , nx. It follows that

y(t) ≡ x(t) − z ≥ 0.

First, we show how application of Harrison’s theorem to the variable y(t) will not

work to produce the exact bounds for x(t), even though y(t) is now a nonnegative

state variable. We have

ẏ(t) = ẋ(t) = A(t)x(t) + r(t) = A(t)y(t) + A(t)z + r(t) (3.85)

If we let λ(t) be the solution of the adjoint equations as in (3.68), the sufficient

conditions (3.69) and (3.70) become, respectively,

λ(t)T[A(u(t)) − A(u∗(t))]y(t) ≤ 0, (3.86)

λ(t)TA(u(t))z + λ(t)Tr(t) ≤ λ(t)TA(u∗(t))z + λ(t)Tr∗(t). (3.87)

191

If we now consider the choice of u∗(t) in (3.77), (3.78) and (3.80), it is clear that

λ(t)Tr(t) ≤ λ(t)Tr∗(t). (3.88)

However, together with (3.88), we must also have

λ(t)T[A(u(t)) − A(u∗(t))]z ≤ 0 (3.89)

to satisfy (3.87), which is impossible since z ≤ 0 and u∗(t) was chosen to satisfy

(3.86) for y(t) ≥ 0. In other words, these sufficient conditions have very limited

applicability because there is no choice of u∗(t) that can satisfy (3.86), (3.88) and

(3.89) simultaneously.

One way to obtain the bounds, however, is to work with (3.85). We introduce

q(t) = A(t)z + r(t),

where we have the following bounds on q(t),

qLi (t) = rLi (t) +

(

aL0i(t) +
∑

k 6=i

aLki(t)

)

zi +
∑

k 6=i

aUik(t)zk, (3.90)

qUi (t) = rUi (t) +

(

aU0i(t) +
∑

k 6=i

aUki(t)

)

zi +
∑

k 6=i

aLik(t)zk. (3.91)

Consider now the system

ẏ = A(t)y(t) + q(t)

where the bounds on A(t) are given by (3.84), and the bounds on q(t) are given by

(3.90) and (3.91). We can then apply Harrison’s theorem to this relaxed system to

compute the (exact) bounds for this system (y(τ)) at any specified time, τ ∈ [0, tf],

yL(τ) ≤ y(τ) ≤ yU(τ).

192

We can then extract valid bounds on x(τ) by adding z,

yL(τ) + z ≤ x(τ) ≤ yU(τ) + z.

The fact that the bounds on q(t) are valid for any A(u∗(t)) and r∗(t) shows that the

bounds on x(τ) are valid. However, it is not possible to show exactness of the bounds

(x(τ)) for the original system.

Applying Harrison’s Method

It is easy to verify that for the general case where (3.62) does not hold, and (3.63) is

replaced by the following equation,

aLij(t) ≤ aij(t) ≤ aUij(t), for i = 1, . . . , nx, j = 1, . . . , nx, (3.92)

that (3.77) and (3.78) reduce to the following state conditions,

a∗ij(t) =











aLij(t) if λj(t) ≥ 0,

aUij(t) if λj(t) < 0,

for i = 1, . . . , nx, j = 1, . . . , nx. (3.93)

As noted by Harrison [71], an application of Corollary 3.31 to calculate the bounds

for the system at time τ is to start a backward integration of the adjoint system from

τ to σ with an appropriate final condition to obtain the values of A∗(t) and r∗(t) on

[σ, τ], and then to integrate the original system forward in time from σ to τ using

A∗(t) and r∗(t). Clearly, the backward sweep of the algorithm requires rigorous state

event detection. When there are multiple transitions becoming true at the same time,

we assume that the integrator is able to: (a) detect the timing of such transitions;

and (b) record all multiple transitions that have been taken.

Before we present the algorithm based on Harrison’s method, we need to transcribe

the hybrid system into the form of (3.61), or vice versa. For the sequel, we will only

consider transitions with state continuity for simplicity.

193

Remark. It is possible to handle transition conditions of the following form:

x(p, Tµ, σi+1) = Dix(p, Tµ, τi) + Eip + ki, ∀i = 1, . . . , ne − 1, (3.94)

where Di, Ei and ki are known, provided that nonnegativity of the state variables is

preserved. These transition functions will not affect the solution of the adjoint system

in the backward sweep, and Corollary 3.31 will still apply. If the transition functions

cannot guarantee nonnegativity of the states, the extension of Harrison’s theorem

to nonnegative variables presented below can be applied. However, if the transition

functions are expressed as a function of the predecessor or successor modes, as is the

case for Problem 3.17, then the proof of Corollary 3.31 need not hold and Harrison’s

method cannot be applied directly.

Theorem 3.33. Consider the hybrid system in Definition 3.1 with state continuity

as the transition functions, where it is known that the continuous states of the hybrid

system are nonnegative. Consider next the following system

˙̃x(t) = Ã(t)x̃(t) + r̃(t), (3.95)

where

ãLij(t) ≤ ãij(t) ≤ ãUij(t), for i = 1, . . . , nx, j = 1, . . . , nx, (3.96)

r̃Li (t) ≤ r̃i(t) ≤ r̃Ui (t), for i = 1, . . . , nx, (3.97)

ãLij(t) = min
m∈M

a
(m)
ij (t)

ãUij(t) = max
m∈M

a
(m)
ij (t)











for i = 1, . . . , nx, j = 1, . . . , nx, (3.98)

r̃Li (t) = min
m∈M

r
(m)
i

L
(t)

r̃Ui (t) = max
m∈M

r
(m)
i

U
(t)











for i = 1, . . . , nx, (3.99)

[r(m)](t) = B(m)(t)[p] + q(m)(t), (3.100)

194

[x̃](σ1) = E0[p] + k0. (3.101)

Let the bounds obtained from the application of Corollary 3.31 (with (3.63) replaced by

(3.92), and (3.77) and (3.78) replaced by (3.93)) on (3.95) at the fixed time τ ∈ [t0, tf]

be given by [x̃L(τ), x̃U(τ)]. Then,

x̃L(τ) ≤ x(p, Tµ, τ) ≤ x̃U(τ), ∀(p, Tµ) ∈ P ×Mne .

Proof. Let (T ∗
µ ,p

∗) be an arbitrary choice of mode trajectory and parameters for the

hybrid system. This particular execution of the hybrid system can be represented by

the following execution of the dynamic system in (3.95),

Ã(t) = A(m∗
i)(t)

r̃(t) = B(m∗
i)(t)p∗ + q(m∗

i)(t)







for t ∈ Ii, i = 1, . . . , ne,

with the initial condition x̃(σ1) = E0p
∗ + k0. Note that this satisfies the constraints

in (3.96) – (3.101). Since the choice of (T ∗
µ ,p

∗) was arbitrary, any arbitrary execution

of the hybrid system can be represented by an equivalent execution of (3.95) subject

to (3.96) – (3.101). Applying Corollary 3.31 with the appropriate substitutions, we

obtain the desired result.

Note that Theorem 3.33 can be extended easily for the case when the diagonal

entries of A(m) are given by the hybrid extension to (3.62),

a
(m)
ii (t) = −a

(m)
0i (t) −

∑

k 6=i

a
(m)
ki (t), ∀m ∈M.

We are now in position to present the following algorithm:

Algorithm 3.34 (A3).

1. For j = 1 to nx do:

(a) For i = 2 to ne do:

195

i. Initialize λ̃(τi−1) = ej where the unit vector ej is the jth column of

the identity matrix of rank nx.

ii. Take a small step backwards from τi−1 for the adjoint system (3.76)

and (3.93) of the relaxed ODE system in Theorem 3.33, and store the

initial values of (3.93).

iii. Integrate the adjoint system backwards in time from τi−1 to σ1 us-

ing rigorous state event detection, and store the following triple

(tevent, nd,np) at each event, where tevent records the event time, nd

records the number of adjoint variables which experience a zero cross-

ing at the event, and np records the indices of the adjoint variables

which have zero crossings.

iv. Reconstruct the matrices Ã∗ and r̃∗ for the relaxed ODE system in

Theorem 3.33 backwards in time from τi−1 to σ1.

v. Integrate the following system forward in time from σ1 to τi−1,

˙̃x∗(t) = Ã∗(t)x̃∗(t) + r̃∗(t),

with the initial condition x̃∗(σ1) given by (3.83).

vi. Store zUji := x̃∗j(τi−1).

2. Repeat Step 1 with the following changes: λ̃(τne
) = −ej in Step 1.a.i, zLji :=

x̃∗j(τi−1) in Step 1.a.vi.

Remark. This algorithm can be easily extended for the case where the diagonal entries

of Ã(t) are given by (3.62). In that case, np in Step 1.a.iii stores the indices of the

discontinuity functions instead of the adjoint variables.

Consider now Example 3.7. Note that the choice of catalyst corresponds to the

choice of the sequence of modes in a linear hybrid system with 3 modes (each mode

corresponds to the choice of a different catalyst) and ne epochs (each epoch corre-

sponds to a section of the reactor), with state continuity at the transitions.

196

The linear time invariant hybrid system can be written as the following,

ẋ(t) =























−(k
(m)
1 + k

(m)
2) 0 0 0 0

k
(m)
2 0 0 0 0

k
(m)
1 0 −(k

(m)
3 + k

(m)
4) 0 0

0 0 k
(m)
4 0 0

0 0 k
(m)
3 0 0























x(t),

in which case it is more appropriate to use (3.62) (and hence (3.77) and (3.78) as

opposed to (3.93)) as conservation of molar species is automatically enforced while

calculating the bounds. In this case, we have the following nonzero bounds on Ã(t),

1.317 ≤ ã21(t) ≤ 2325,

2.098 ≤ ã31(t) ≤ 182.3,

0.033 ≤ ã43(t) ≤ 0.143,

0.021 ≤ ã53(t) ≤ 1.826.

The results of applying Harrison’s method to this example will be presented in Section

3.4.4.

3.4.4 A Comparison of the Different Strategies

In this section, we apply the algorithms (A1)(∅) (Algorithm 3.26), (A2) (Algorithm

3.29) and (A3) (Algorithm 3.34) to the problem of obtaining estimates for the set Z

for Example 3.7. We also apply the method of explicit enumeration (EE) to obtain

the exact bounds for the set Z for comparison. When physical information from the

problem can be used, e.g., conservation of mass, we can add the following additional

constraints to Problem 3.28,

nx
∑

j=1

(smi)j = 1000ymi, ∀m ∈M, i = 1, . . . , α, (3.102)

197

noting that because the transition functions are state continuity, the number of aux-

iliary variables V and S can be reduced appropriately. We will label this (A2pi).

Tables 3.1 and 3.2 show the bounds obtained for z8 and z15 when ne = 15. As

can be seen, (A2) produces tighter bounds than (A1(∅)). When physical insight is

employed, it can be seen that the bounds obtained from (A2) with (3.102) produces

tighter bounds than using (A2) alone. The reason why (A2) itself does not produce

bounds which obey this conservation law is that the exact linearizations of the trilinear

(bilinear in this case where transition functions do not depend on the predecessor and

successor modes, as in (3.94)) terms in (3.57) are only exact on the set Y b, and not

on the set Y . Hence, we have to enforce the law with (3.102). Note that there is

no way to incorporate additional constraints within (A1(∅)). For further illustration,

the upper bounds computed for species W1 at the beginning of each section when

ne = 10 are shown in Table 3.3.

For this example, there are no events detected for (A3) during the backward sweep.

It is interesting to note that when the relaxed ODE is transcribed as in Theorem 3.33,

Harrison’s method automatically chooses the “best” rate constants when minimizing

or maximizing a particular species. For example, in order to maximize the formation

of the product P, (A3) would pick the highest values of k1 (ã31) and k3 (ã53) with the

lowest values of k2 (ã21) and k4 (ã43). Intuitively, this makes sense when considering

the reaction scheme in Figure 3-1. Unfortunately, the way that the problem is tran-

scribed leads to the algorithm being able to choose different reaction rate constants

belonging to different types of catalysts. This results in the bounds being weak as

shown.

Table 3.4 shows the bounds obtained for W1 when the algorithms are trivially

extended to calculate the bounds at l = 1 for increasing numbers of epochs. It

can be seen that the bounds obtained from (A1) and (A2) deteriorate significantly

from the exact bounds as ne increases. When physical insight (3.102) is employed in

conjunction with (A2), much tighter bounds are obtained. Also, the bounds described

by (A3) are pretty weak compared to that produced by (A2) with (3.102). The reason

that they seem time invariant is because the system considered is very stiff, so that

198

Table 3.1: Bounds for z8 where ne = 15.
Species (EE) (A1) (A2)

zL8 zU8 zL8 zU8 zL8 zU8
A 0.00 203.18 0.00 203.18 0.00 203.18
W1 307.30 927.18 78.52 3628.49 230.54 1734.62
I 29.08 493.23 29.08 735.13 29.08 493.23
W2 1.48 12.68 0.76 29.59 1.19 16.16
P 2.98 139.37 0.49 373.51 1.26 190.19

Species (A2pi) (A3)
zL8 zU8 zL8 zU8

A 0.00 203.18 0.00 203.18
W1 307.30 959.02 7.16 999.10
I 29.08 493.23 0.36 968.42
W2 1.19 16.16 0.01 63.07
P 1.28 180.97 0.01 561.46

almost all the reactions are completed from the “optimal” choices of the reaction

rates by (A3) in a very short length at the beginning of the reactor.

All calculations were performed on an AMD 1.2 GHz, 1 GB RAM machine using

CPLEX 7.5 [78] as the LP solver with default settings. All LPs were started cold,

and we note that the computational times for (A2) would improve if the LPs were

warm started where possible. The computation times for the algorithms are shown in

Table 3.5, from which the exponential explosion of (EE) is clear. From these results,

it appears that (A2) with physical insight is the best algorithm to use to produce the

tightest estimates of the set Z in Example 3.7.

3.5 Branch-and-Cut Algorithm

The branch-and-cut (BC) algorithm proposed in this section has its roots in the

Outer Approximation (OA) algorithm, which is a decomposition framework for the

solution of convex MINLPs [50, 59]. The extension of OA to nonconvex MINLPs

was developed in [82, 83], and hinges on the ability to construct convex relaxations

of the objective function and constraints to form a lower bounding convex MINLP.

For the nonconvex MINLP in Problem 3.17, we have shown, in the previous sec-

tions, how convex relaxations of the objective function and the constraints can be

199

Table 3.2: Bounds for z15 where ne = 15.
Species (EE) (A1) (A2)

zL15 zU15 zL15 zU15 zL15 zU15
A 0.00 41.28 0.00 41.28 0.00 41.28
W1 369.73 927.18 78.52 4365.72 230.54 2030.39
I 11.60 567.77 11.60 815.88 11.60 567.77
W2 2.43 27.87 1.08 79.06 1.54 44.77
P 7.34 293.77 0.69 1005.21 1.51 544.39

Species (A2pi) (A3)
zL15 zU15 zL15 zU15

A 0.00 41.28 0.00 41.28
W1 321.03 981.59 7.16 999.10
I 11.60 567.77 0.14 944.32
W2 1.54 44.77 0.01 122.20
P 1.53 451.06 0.02 801.44

Table 3.3: Upper bound for W1 (ne = 10).
Section (EE) (A1) (A2) (A2pi) (A3)
1 0.00 0.00 0.00 0.00 0.00
2 927.18 927.18 927.18 927.18 999.10
3 927.18 1586.13 927.18 927.18 999.10
4 927.18 2054.45 1161.34 932.50 999.10
5 927.18 2387.29 1245.91 945.55 999.10
6 927.18 2623.83 1356.05 954.30 999.10
7 927.18 2791.95 1401.19 961.80 999.10
8 927.18 2911.43 1461.41 967.78 999.10
9 927.18 2996.34 1482.13 972.70 999.10
10 927.18 3056.69 1516.14 976.73 999.10

Table 3.4: Upper bound for W1 at l = 1.
ne (EE) (A1) (A2) (A2pi) (A3)
5 927.18 1811.88 1094.46 967.02 999.10
10 927.18 3099.58 1523.92 980.04 999.10
15 927.18 4404.00 2052.69 983.43 999.10
20 927.18 5712.63 2605.73 984.89 999.10

Table 3.5: CPU times (s).
ne (EE) (A1) (A2) (A2pi) (A3)
5 0.04 0.04 1.6 2.3 0.83
10 0.4 0.04 8.3 12.8 1.63
15 135 0.04 27.1 45.7 2.46
20 44227 0.04 50.7 86.7 3.25

200

constructed (using Corollary 3.22 and exact linearization of trilinear terms) to form

a lower bounding convex MINLP.

In the context of the algorithm for the global solution of nonconvex MINLPs

described in [83], we introduce the following abstraction of a subproblem of Problem

3.17 as the Primal Problem:

Problem 3.35 (NLP(Y∗)).

min
p∈P,Z∈Z

F (p,Y∗,Z) (3.103)

s.t. G(p,Y∗,Z) ≤ 0, (3.104)

and the corresponding abstraction of a subproblem of the lower bounding convex

MINLP as the Primal Bounding Problem:

Problem 3.36 (NLPB(Y∗)).

min
p∈P,Z∈Z

U(p,Y∗,Z;P,Z) (3.105)

s.t. H(p,Y∗,Z;P,Z) ≤ 0, (3.106)

where P ⊂ R
np , Y∗ ∈ Y b ≡ {0, 1}nm×ne ⊂ Y ≡ [0, 1]nm×ne , Z ∈ Z ⊂ R

nx×ne , U is the

convex relaxation constructed for F , and H is the convex relaxation constructed for

G, according to the theory presented in Section 3.3.1.

The primal and primal bounding problems are formed by fixing Y∗ to a particular

binary realization. Since (3.32) is always satisfied in the solution of the relaxed

Master problem (the relaxation of the equivalent MILP Master problem for the lower

bounding convex MINLP), fixing Y∗ corresponds to fixing T ∗
µ for some sequence of

modes. For problems with state continuity as the transition functions, this implies

that Z∗ is also fixed. As a result, the primal and primal bounding problems are simply

201

nonconvex and convex NLPs for p ∈ P respectively. For this class of problems, this is

advantageous as it means that the sizes of the primal and primal bounding problems

are not affected by the reformulation from Problem 3.4 into Problem 3.17.

The reformulation also introduces a substantial number of additional variables

and linear constraints via the exact linearizations (3.56)–(3.57). As these constraints

are linear, they are added directly to the relaxed Master problem at the first iteration.

For problems with a small number of original constraints (3.31), this could possibly

make the cost of solving the relaxed Master problem significant compared to the cost

of solving the primal problem. In that case, the application of nonconvex OA would

not be attractive.

To mitigate this problem, we propose a BC algorithm based on the BC algorithm

for MILPs [14] and the concepts of the primal and primal bounding problems from

nonconvex OA that reduces the number of relaxed Master problems solved. As the

nonconvex OA algorithm can be viewed as a particular set of heuristics in the gen-

eralized BC framework proposed in [81], the following algorithm can be viewed as

another set of heuristics within the framework, where the refathoming heuristic of

the nonconvex OA algorithm (resolving of the relaxed Master problems) is replaced

with the branching heuristic.

Algorithm 3.37 (A4).

1. (Initialization) Set I = J = A0 = OAC = ∅, D = {0}, LBDRMP 0 = −∞,

UBD = UBDPB = +∞, k = 1, l = 1.

2. (Initial Guess) Given Y1 that satisfies (3.32), set Y∗ = Y1.

3. (Primal Bounding) Solve primal bounding problem NLPB(Y∗). Then,

(a) if NLPB(Y∗) is feasible, let zNLPB be the optimal solution value. De-

rive the necessary cuts to be added to the relaxed Master problem as

in nonconvex OA, and add them to OAC. If zNLPB < UBD, then set

LBDPBl = zNLPB, Yl
PR = Y∗, add node l to J and set l = l + 1. If

202

zNLPB < UBDPB then set UBDPB = zNLPB, and delete from I all

nodes i where LBDRMP i > UBDPB and move them into D.

(b) if NLPB(Y∗) is infeasible, derive the necessary cuts to be added to the

relaxed Master problem as in nonconvex OA, and add them to OAC.

4. (Construct Relaxed Master Problem) Construct the relaxed Master prob-

lem (RMP) as in nonconvex OA. Let RMPLP 1 denote the LP relaxation of

RMP.

5. (Outer Loop) While D is not empty do:

(a) Set I = D, D = ∅, UBDPB = UBD.

(b) (OA Cuts) For each node i ∈ I, add the cuts accumulated in OAC to

RMPLP i. Set OAC = ∅.

(c) (Inner Relaxed Master Loop) While I is not empty do:

i. (Node Selection) Select and delete a node i from I. Set δ to false.

ii. (Dynamic Bounds Tightening) Apply Algorithm A1(Ai) to ob-

tain the set Z. Update the bounds on Z for RMPLP i.

iii. (Cut Generation) Should valid cutting planes be generated? If yes,

add the generated cuts to the LP relaxation, RMPLP i.

iv. (Lower Bounding) Solve RMPLP i to an optimal extreme point.

Then,

A. if RMPLP i is infeasible, then set zRMPLP = +∞.

B. if RMPLP i has an optimal solution, then let zRMPLP be the op-

timal solution value, and Y∗ be the values of the optimal solution

corresponding to the binary variables.

v. (Fathoming)

A. (Infeasibility) If zRMPLP = +∞ then goto vii).

B. (Value Dominance of Primal) If zRMPLP ≥ UBD then goto

vii).

203

C. (Integrality) If Y∗ ∈ Y b, then solve the primal bounding problem

in Step 3) and goto vii).

D. (Value Dominance of Primal Bounding) If zRMPLP ≥

UBDPB, set δ to true.

vi. (Branching) Select from the epochs in Ai an epoch α ∈ {1, . . . , ne}

with no active modes to branch on. Create nm nodes with

Ak = Ai ∪ (1, α),Ak+1 = Ai ∪ (2, α), . . . ,Ak+nm−1 = Ai ∪

(nm, α). Set LBDRMP k, . . . , LBDRMP k+nm−1 = zRMPLP , and

RMPLP k, . . . , RMPLP k+nm−1 = RMPLP i. Add nodes k, . . . , k +

nm−1 to D if δ is true, otherwise add the nodes to I. Set k = k+nm.

vii. Continue.

(d) (Inner Primal Loop) While J is not empty do:

i. (Node Selection) Select and delete node j from J , where j ∈

arg min
l∈J

LBDPBl.

ii. (Primal) Solve the primal problem NLP(Yj
PR) globally, e.g., us-

ing Algorithm 2.3. If NLP(Yj
PR) is feasible, let zNLP be the opti-

mal solution value, and pj be the values of the optimal solution. If

zNLP < UBD, then

A. set UBD = zNLPB, Y∗
PR = Y

j
PR, p∗ = pj.

B. delete from J all nodes j such that LBDPBj > UBD.

C. delete from D all nodes i such that LBDRMP i > UBD.

6. (Solution) If UBD = +∞ the problem is infeasible, else the optimal solution

is given by Y∗
PR, p∗, and the solution value is given by UBD.

Remark. It is straightforward to incorporate absolute and relative tolerances for con-

trolling the accuracy to which the solution is found (adjusting the gap between the

lower bounds and the upper bound) by suitably modifying the steps 3.a, 5.c.v, and

5.d.ii.

204

The proposed algorithm solves for the global solution by alternating finitely be-

tween the primal problem, the primal bounding problem, and LP relaxations of the

relaxed Master Problem. A flowsheet of the algorithm is shown in Figure 3-15. The

inner relaxed Master loop explores the BB tree for the MINLP. Note that the branch-

ing step automatically satisfies (3.32), thus exploiting the special structure of the

problem, instead of branching on the binary set Y b. If the solution of the LP re-

laxation is infeasible or greater than the incumbent solution, the node is fathomed,

as the true solution can never be attained at that node or its children. If the so-

lution of the LP relaxation satisfies integrality, the corresponding primal bounding

problem is solved, and the upper bound for the inner loop updated if required. Since

the primal bounding problem provides a valid and tighter lower bound to the primal

problem for each binary realization, Yk, than that provided by the LP relaxation of

the relaxed Master problem, the corresponding primal problem is added to the list of

primal problems to solve, J , only when the solution of the primal bounding problem

is greater than the incumbent upper bound, UBD. This is important, since the non-

convex primal problem, which requires deterministic global optimization methods to

solve, is usually the most expensive subproblem to solve.

On the other hand, if the solution of the LP relaxation is greater than the upper

bound for the inner loop (UBDPB), the node is branched upon and added to the

deferred list of nodes D where they will be added to the list of nodes for the inner

loop I upon completion of the inner primal loop. The inner primal loop solves for the

primal problems in the list J , and updates the incumbent solution when applicable. If

a new incumbent solution is found, the nodes in the deferred listD whose lower bounds

are greater than the incumbent solution are fathomed, because the true solution

can never be attained in those nodes or their children. And the cycle repeats until

the solution is found. Since A1(A) provides valid bounds for the LP relaxation of

the relaxed Master problem given the mode exclusion set A, the dynamic bounds

tightening step is valid. Similarly, the addition of the OA cuts occurs after they have

been accumulated from the solution of the primal bounding problems. For proof that

this is valid, the reader is directed to [82, 83]. Finally, to show that the algorithm

205

Yes

Solve Feasibility

Problem

Solve Primal

Bounding Problem

NLPB(Y*)

No

Yes

Derive OA cuts

and add to OAC

Is Primal

Bounding

Infeasible?

Is solution

< UBD?

Set LBDPB
n
 = solution,

Y
n

PR
=Y*. Add node n to J

Yes

Is k = 1?

Construct LP relaxation

of relaxed Master Problem

RMPLP
0

Yes

No

Is D empty?

Yes No
Set I = D, D = ∅.

Set UBDPB = UBD

For each node i in I, add

cuts from OAC to RMPLP
i
.

Set OAC = ∅

Is I empty?

No

Is J empty?

Yes

Yes

Dynamic Bounds

Tightening: Update Z

Select and delete a node

i from I

Cut Generation:

Add valid cutting planes to

RMPLP
i

Solve RMPLP
i

Is RMPLP
i

Feasible?

No

Set Y* = binary

solution variables.

Is solution

> UBD?

Yes

Is Y* in Y
b

(satisfy integrality)?

No Yes

Branching: Select from A
i

an epoch with no

active modes to branch on.

Create α = k,...,k+n
m

-1 nodes

with RMPLP
α
 = RMPLP

i
,

LBDRMP
α
 = solution, and

corresponding A
α
.

If solution > UBDPB, add

nodes to D, else add nodes to I

Select and delete a node

j from J where j is in

arg min LBDPB
n

J

Solve Primal Problem

NLP(Y
j

PR
)

Is Primal Problem

Feasible?

Is solution < UBD?

No

Update UBD = solution.

Set (Y*
PR

, p*
PR

) =

optimal solution variables.

Delete from J all nodes j

where LBDPB
j
 > UBD.

Delete from D all nodes i

where LBDRMP
i
 > UBD.

No

Yes

No

Yes

n = n+1

k = k+n
m

Is solution

< UBDPB?

Set UBDPB = solution.

Delete from I all nodes

i where LBDPB
i
 > UBDPB

and move them into D

No

Yes

No

Global Solution = UBD

Variables = (Y*
PR

, p*
PR

)

No

Set I = J = A
0
 = OAC = ∅,

D = {0}, LBDRMP
0
 = -∞ ,

UBD = UBDPB = +∞,

k = n = 1,

Initial Y*

Figure 3-15: Flowsheet of Algorithm 3.37 (branch-and-cut).

206

finds the true solution and terminates finitely, consider the following

Theorem 3.38. Assume that the solutions to the LP relaxations of the relaxed Mas-

ter, the primal bounding and primal problems can be obtained finitely. Then, Algo-

rithm 3.37 terminates with a finite number of iterations, and provides the solution to

Problem 3.17.

Proof. Consider the inner relaxed Master loop. Since we have a finite number of

modes and epochs, the BB tree has a finite number of nodes, say nmax. Since any

solution of the LP relaxation that satisfies integrality is no longer branched upon, at

most nmax nodes can be generated. By assumption, the solution of the LP relaxation

and primal bounding problems are obtained finitely, and thus, the inner relaxed

Master loop must terminate finitely. Consider now the inner primal loop. Since there

are at most nmax primal bounding problems that can be solved from above, there can

also only be at most nmax primal problems that can be solved. By assumption, the

solution to the primal problem terminates finitely, and thus, the inner primal loop

must terminate finitely. Finally, consider the outer loop. If a node is deleted from I

in the node selection step within the inner relaxed Master loop, it can no longer be

added to the deferred node list D. It follows that there are at most nmax nodes that

can be added to D. Hence, the outer loop (and the algorithm) terminates finitely.

To show that the algorithm provides the solution to Problem 3.17, it suffices to

show that the primal problem corresponding to the optimal Y∗ is solved within the

inner primal loop. A node is not added to the primal node list J only under any

of the following circumstances: (a) the LP relaxation of a parent node is greater

than the incumbent upper bound UBD; (b) the LP relaxation of a parent node is

infeasible; and (c) the primal bounding solution corresponding to the particular binary

realization is greater than the incumbent upper bound UBD. Since the solutions of

the LP relaxation and primal bounding problems provide valid lower bounds for the

solution of the corresponding primal problem, any node that satisfies any one of the

conditions described above cannot contain a primal problem whose solution is better

than the incumbent solution. Hence, the node containing the solution to Problem 3.17

207

must always be added to the primal node list J , and hence, the algorithm provides

the solution to Problem 3.17.

3.5.1 Dynamic Bounds Tightening

There are points within the BC algorithm where difference choices, or algorithmic

heuristics, could be made. These do not alter the theoretical convergence of the algo-

rithm, but they may accelerate the convergence for certain classes of problems, hence

the term “heuristic”. For node selection within the inner relaxed Master loop, a good

heuristic would be to choose the node i ∈ I with the lowest LBDRMP i (best bound).

For branching within the same loop, two common heuristics would be forward (choos-

ing epochs 1 to ne) and reverse (choosing epochs ne to 1) chronological order. As will

be illustrated later, the choice of branching heuristic can have a significant impact on

the solution time of the problem, as will dynamic bounds tightening. The importance

of dynamic bounds tightening cannot be understated, especially for problems which

have point objective and/or constraints, as these are directly impacted by the bounds

on Z; it has been demonstrated, e.g., for the solution of nonconvex NLPs in [117],

that the tightening of bounds for convex relaxations can accelerate the solution of

problems using deterministic BB frameworks. Similarly, the ability to tighten bounds

for each node of the inner relaxed Master loop can lead to a dramatic reduction in

solution time. In order for dynamic bounds tightening to be effective, the algorithm

for updating the set Z has to be cheap compared to the solution of the other subprob-

lems. In this respect, Algorithm 3.26 is an excellent choice, as its preprocessing step

need only be performed once at the root node, and subsequently, for all other nodes,

the cost of updating Z can be performed cheaply as a series of function evaluations.

Finally, in the cut generation step, valid cutting planes can be generated for ad-

dition to the LP relaxations of the relaxed Master problem. If the problem contains

nonconvex point objectives and constraints, the convex relaxations are updated with

the information from dynamic bounds tightening. If the problem contains isoperi-

metric objectives and constraints, then their corresponding convex relaxations can be

updated by updating the lower and upper bounding trajectories. The latter requires

208

integration of the bounding systems which will be expensive, so the choice of whether

to generate cutting planes in this case will depend on the problem.

3.6 Examples and Discussion

All calculations in this section were performed on an Intel Pentium 4 3.4 Ghz machine

with 1GB RAM running SuSE 9.2 using CPLEX 9.1 [78] as the LP solver. The default

settings were used in CPLEX, unless otherwise stated.

Example 3.39. The example considered is Example 3.7.

We can formulate this problem in the form of Problem 3.4 by considering the

space-time kinetics of the PFR, and noting that the choice of catalyst corresponds

to the choice of the sequence of modes in an LTI hybrid system with 3 modes (each

mode corresponds to the choice of a different catalyst) and ne epochs (each epoch

corresponds to a section of the reactor into which catalyst is loaded), with state

continuity at the transition. After reformulation into the form of Problem 3.17, and

employing exact linearizations for the nonconvex bilinear terms in (3.42), the resulting

master problem can be solved as a MILP directly, since the objective function is linear

in the point objectives xW1(1), xW2(1) and xP(1).

From the point of view of Algorithm 3.37 (A4), this means that the solution of the

primal bounding and primal problems for fixed Y∗ becomes the same as the solution

of the LP relaxation at that node. The problem has been solved with the following

algorithms:

1. (EE) Explicit enumeration of all possible Tµ. This is implemented with a pre-

processing stage similar to that in (A4), where the relevant sensitivities are

calculated and stored. This eliminates the need for integration to be carried

out for each leaf node (fixed Tµ) which would be expensive.

2. (A4DF) Algorithm (A4) with dynamic bounds tightening, forward chronological

branching heuristic, best bound node selection.

209

3. (A4DR) Algorithm (A4) with dynamic bounds tightening, reverse chronological

branching heuristic, best bound node selection.

4. (A4NF) Algorithm (A4) with no bounds tightening, forward chronological branch-

ing heuristic, best bound node selection, initial Z calculated by (A1(∅)).

5. (A4NR) Algorithm (A4) with no bounds tightening, reverse chronological branch-

ing heuristic, best bound node selection, initial Z calculated by (A1(∅)).

6. (C1) CPLEX MILP solver with initial Z calculated by (A2) with (3.102).

7. (C2) CPLEX MILP solver with initial Z calculated by (A1(∅)).

The sensitivity coefficients were calculated using a relative and absolute tolerance

for the integrator (DAEPACK [128]) of 1E-8. For the algorithms employing (A4), an

initial guess of T ∗
µ = 1, . . . , 1 was used. No initial guess was supplied to the CPLEX

solver as it contains advanced heuristics for generating feasible initial guesses in its

MILP engine. Because this is a stiff system (which is exacerbated by the possibility of

multiple mode changes within a particular Tµ), the following adjustments have been

made to improve the conditioning of the problem while solving the LP subproblems /

MILPs: sensitivity coefficients with absolute values less than 1E-5 are rounded down

to 0; any upper bounds which are less than 1E-3 are set to 1E-3, and any lower bounds

which are less than 1E-3 are set to 0. This is particularly important for (C1) and

(C2), as the presolve mode (turned on by default) in the MILP engine for CPLEX

can potentially cut off the solution when the problem is ill-conditioned. For both

algorithms (A4) and CPLEX, the relative and absolute MILP optimality tolerances

(gap tolerances) were set to 1E-3.

Figure 3-16 shows a log plot of computational time versus the number of epochs,

while Table 3.6 lists the solution times for selected epochs (for column (C1), the time

listed is the total solution time, inclusive of the time taken to calculate the bounds

with (A2), which is listed in brackets). Table 3.7 lists the optimal mode sequence

obtained. The best algorithm to use for this example is (A4DF), which is orders of

magnitude better than (EE), when ne ≥ 17. The effect of using bounds tightening in

210

conjunction with the forward branching heuristic is dramatic, especially compared to

the other methods, which are 1-2 orders of magnitude worse than (EE). The reason

that (EE) does so well here is that each leaf node of the BB tree requires simply a

table lookup; in comparison, for the other algorithms, the cost of solving an interior

node in the BB tree is that of solving an LP, which is significantly more costly.

The choice of branching heuristic determines how effective dynamic bounds tight-

ening can be. From Figure 3-16, the computational times for (A4NR) and (A4DR)

are very close. From Table 3.6, we can see in fact that (A4NR) always performs better

than (A4DR). When the branching heuristic is performed with reverse chronological

order, the bounds obtained from dynamic bounds tightening provide only incremental

improvements. This arises because the problem is very stiff and the greatest changes

to the bounds occur in the first epoch. Hence, the same number of nodes is visited

for both algorithms and the extra cost incurred by (A4DR) comes in the form of

the bounds tightening step when (A1) is called for each node. This also explains

why (A4DF) is so effective for this problem. When dynamic bounds tightening is

employed with forward chronological branching, there is a big improvement in the

bounds for the subproblems after the first branching, and large portions of the BB

tree are fathomed.

The effect of calculating tighter bounds for the set Z is illustrated by the com-

putation times of the algorithms (C1) and (C2). For ne < 10, (C2) performs better

than (C1) due to the cost of computing bounds with (A2). However, for ne ≥ 10,

it can be seen that (C1) performs much better than (C2). In addition, from Table

3.6, the cost of computing bounds with (A2) becomes small compared to the solution

of the MILP as the number of epochs increases. Comparing the solution times for

(C2) with (A4NR) and (A4NF), it can be seen that the MILP engine for CPLEX is

much more efficient than the performance of (A4) without bounds tightening. This

is not surprising, because CPLEX is a commercial implementation of the BC algo-

rithm for MILPs with better heuristics and the incorporation of various cutting plane

methods. Comparing the plots of (C1) with (EE) in Figure 3-16, it can be seen that

asymptotically, one would expect that (C1) would outperform (EE) as the number of

211

1E-2

1E-1

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

5 10 15 20 25

C
P
U
T
im
e
(s
)

Epochs

A4DF
EE
C1
C2
A4NR
A4DR
A4NF

Figure 3-16: Computation times for Example 3.39

epochs increases. However, that would likely take many more epochs and much more

computational time than is reasonable to study here.

Example 3.40. Consider the isothermal, well-mixed reactor shown in Figure 3-17.

It is desired to design a batch recipe for the production of P given the following

production rules. At the beginning of each batch, the reactor contains a large excess

volume of solvent (1 m3). The reactants are fed through their respective valves, and

the pumps handling these pure liquid feeds can only be programmed with molar

flowrates (kmol d−1) between the following bounds,

1 ≤ FA, FB ≤ 5.

The reactions exhibit elementary kinetics with the following rate constants (d−1),

k1f = 2, k1r = 4 and k2 = 1. For safety considerations, both reactants cannot be

fed into the tank at the same time, so the dynamic behavior of the reactor can be

212

Table 3.6: Solution times (s) for Example 3.39.
ne F (A4DF) (EE) (C1) [(A2)] (C2) (A4NR) (A4DR) (A4NF)
5 296.6 0.05 0.01 0.64 [0.60] 0.08 0.10 0.11 0.24
8 295.0 0.13 0.01 3.47 [2.35] 1.40 2.08 2.61 12.6
10 296.6 0.29 0.06 15.3 [4.3] 9.90 23.4 25.6 181
12 300.5 0.69 0.58 95.2 [7.3] 121 258 280 2249
15 304.5 2.76 17.9 902 [14] 2888 11600 12800 -
17 306.4 6.93 182 - - - - -
20 308.6 28.6 5740 - - - - -
22 309.5 77.0 56600 - - - - -

Table 3.7: Solution times (s) for Example 3.39.
ne Optimal mode sequence
5 1,1,3,3,3
8 1,1,1,3,3,3,3,3
10 1,1,1,1,3,3,3,3,3,3
12 1,1,1,1,2,3,3,3,3,3,3,3
15 1,1,1,1,1,2,3,3,3,3,3,3,3,3,3
17 1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3
20 1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,3
22 1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,3,3

represented by the following 3 modes of action: mode 1 where valve A is open, pump

A is on, valve B is closed and pump B is off; mode 2 where valve B is open, pump B

is on, valve A is closed, and pump A is off; and mode 3 where both valves are closed

and both pumps are off. This is represented by the following hybrid system where Ni

represents the number of moles of species i in the reactor:

M1 :



























ṄA = 4NB − 2NA + FA

ṄB = 2NA − 5NB

ṄP = NB

M2 :



























ṄA = 4NB − 2NA

ṄB = 2NA − 5NB + FB

ṄP = NB

,

M3 :



























ṄA = 4NB − 2NA

ṄB = 2NA − 5NB

ṄP = NB

.

213

The reaction stage has a fixed duration of 1 d, after which the reactions are quenched

and the contents of the reactor sent for further processing. Let the fixed time horizon

be partitioned into ne contiguous epochs. The decision variables in this optimization

problem are thus the sequence of modes, Tµ, as well as the real valued feed flow rates,

FA(t) and FB(t). The control profiles for FA and FB are to be piecewise constant

with ne stages. Let ymi, m ∈ {1, 2, 3}, i ∈ {1, . . . , ne} be the binary decision variables

representing Tµ. Due to inventory restrictions, the amount of B used during the

operation must not exceed 2 kmol,

ne
∑

i=1

y2iFB ≤ 2ne. (3.107)

Also, the minimum amount of product produced at the end of this reaction stage

must be at least 0.6 kmol,

NP(1) ≥ 0.6. (3.108)

Due to the need to post process the raw materials A and B, the following cost con-

straint has to be satisfied,

log(NA(1) +NB(1) + 1) ≤ 1.2. (3.109)

Finally, the desired objective function is to maximize the selectivity of the product P

with respect to the raw materials,

max
Tµ,FA,FB

S =
NP(1)

NA(1) +NB(1) + 1
. (3.110)

For this problem, the lower bounding MINLP constructed is a MILP as all the

convex relaxations of the nonconvex objective and constraints are linear. This implies

that the solution of the primal bounding problem is the same as the corresponding LP

relaxation of the relaxed Master problem that contains the primal bounding problem.

Compared to the previous problem, which had large changes in the homogenous part

of the ODE system between modes, the changes between modes for this example

214

Figure 3-17: Well-mixed tank with reaction kinetics for Example 3.40

are reflected in the forcing terms. Since the problem is non-stiff, the resulting LP

relaxations are well conditioned. As before, the sensitivity coefficients were calculated

using a relative and absolute tolerance for the integrator of 1E-8.

In addition, because a nonconvex NLP has to be solved to global optimality, the

primal subproblem is the most expensive to solve. Algorithm 2.3 (with an absolute

and relative tolerance of 1E-3) has been used to solve the primal problems, with

SNOPT 6.1 [66] (on default settings) used as the solver for the lower and upper

bounding problems. As the problem involves only point objectives and constraints,

the parametric sensitivities are calculated once in a preprocessing step for each primal

problem, similar to that in (A1). This eliminates the need to call the integrator for

each function and derivative call in the upper and lower subproblems, thus reducing

the cost of the primal problem. As the number of epochs increases, the total compu-

tation time for the problem increases exponentially. This arises due to the following

reasons: (a) the number of nodes in the BB tree increases exponentially; and (b) the

number of control parameters to solve for in the primal problem increases propor-

tionally with the number of epochs. The problem has been solved with the following

algorithms, in addition to (A4DF), (A4DR), (A4NF) and (A4NR) as in Example 3.39

(with relative and absolute tolerances of 1E-3, and an initial guess of Tµ = 1, . . . , 1).

215

1. (EES) Explicit enumeration of all possible primal problems in Tµ, starting from

1, . . . , 1, 1, . . . , 1, 2, to 3, . . . , 3. This is implemented with an incumbent UBD

so that the spatial BB algorithm for each primal problem is started with the

incumbent upper bound from the solution of all previous primal problems. This

greatly accelerates the performance of explicit enumeration.

2. (EEB) Explicit enumeration with an initial guess of the optimal solution T ∗
µ .

This is implemented as (EES) with the incumbent UBD set as the optimal

solution from the initial guess T ∗
µ . This represents the best possible performance

for explicit enumeration.

3. (EER) Explicit enumeration with a random sequence of all possible Tµ. This is

implemented with a small sample size of 100 randomly generated sequences, to

have an idea of the computational time taken compared to (EES) and (EEB).

Due to the exponential increase in time, this was only implemented for ne ≤ 8.

Table 3.8 shows the optimal solutions obtained, as well as the optimal control

profiles for FA and FB. The column FA in Table 3.8 shows the values of FA for the

active modes in the optimal mode sequence which belong to Mode 1, and the same

applies for the column FB. For example, for ne = 8, the optimal mode sequence is

2, 2, 2, 1, 2, 3, 3, 3, and with the profiles given in the Table, this translates to the

following recipe: Turn valve FA off, turn valve FB on with FB = 5 for 3 epochs. Then,

turn FB off, turn FA on with FA = 1 for 1 epoch. Then, turn FA off, turn FB on with

FB = 1 for 1 epoch. Finally, turn FB off for the remaining 3 epochs.

Table 3.9 shows the computation times for solving the problem with the various

algorithms. The column (EER) lists the mean computational time, with the standard

deviation in square brackets. Figure 3-18 shows the log plot for selected algorithms.

The best algorithm to use for this example is (A4DR), which is significantly bet-

ter than (EEB). Comparing the solution times for the pairs {(A4DR),(A4NR)} and

{(A4DF),(A4NF)} in Table 3.9, it can be seen that dynamic bounds tightening does

reduce the solution time appreciably for this example given a particular branching

heuristic. The improvement is not as dramatic as the previous example because the

216

Table 3.8: Optimal solutions for Example 3.40.
ne S Optimal mode sequence FA profile FB profile
5 0.238 2,2,1,3,3 {1} {5,5}
6 0.236 2,2,2,1,3,3 {1} {5,5,2}
7 0.240 2,2,2,1,3,3,3 {1} {5,5,4}
8 0.240 2,2,2,1,2,3,3,3 {1} {5,5,5,1}
9 0.241 2,2,2,2,1,3,3,3,3 {1} {5,5,5,3}
10 0.243 2,2,2,2,1,3,3,3,3,3 {1} {5,5,5,5}
11 0.242 2,2,2,2,2,1,3,3,3,3,3 {1} {5,5,5,5,2}
12 0.243 2,2,2,2,2,1,3,3,3,3,3,3 {1} {5,5,5,5,4}

problem is not as stiff as the previous one. Thus, the bounds tightening step does

not fathom as large a portion of the BB tree compared to the previous example.

The solution times for (EER) are better than (EES) and approach (EEB). This

suggests that a random sampling of possible sequences of Tµ would perform better

than the ascending ordered sequence that (EES) employs. Table 3.9 also shows the

exponential coefficients and R2 values for the various algorithms when the solution

times are regressed to an exponential function. All of the algorithms show a very

good fit. As can be seen, the exponential coefficient of (A4DR) is 1.22 which is better

than that of (EEB) which is 1.30. For this example, this strongly suggests that as the

number of epochs increases, (A4DR) is going to systematically perform better than

(EEB).

217

Table 3.9: Solution times (s) and regression results for Example 3.40.
ne (A4DR) (A4NR) (A4DF) (A4NF)
5 1.41 1.30 1.32 1.43
6 5.10 4.60 4.67 5.58
7 17.5 15.6 16.4 19.3
8 59.0 59.0 56.8 74.8
9 193 201 195 268
10 665 677 671 905
11 2180 2300 2240 3220
12 7390 7700 8160 11300
Exp. Coef. 1.2182 1.2431 1.2423 1.2788
R2 value 0.9999 0.9999 1.0000 0.9998

ne (EEB) (EES) (EER)[Std. Dev.]
5 2.93 3.70 3.35 [0.02]
6 12.1 14.8 13.4 [0.05]
7 43.8 55.2 47.3 [0.12]
8 167 207 170 [4.98]
9 619 801 -
10 2200 2830 -
11 8050 10200 -
12 27200 34900 -
Exp. Coef. 1.3038 1.3084 -
R2 value 0.9997 0.9997 -

1E-2

1E-1

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

2 4 6 8 10 12

C
P
U
T
im
e
(s
)

Epochs

A4DR
A4NF
EEB
EER

Figure 3-18: Computation times for Example 3.40

218

Chapter 4

Determining the Optimal

Transition Times

In this chapter, we shall examine the class of optimization problems with hybrid

systems embedded where the timings of some or all of the transitions are to be de-

termined by the optimization procedure, given a fixed mode sequence. There has

been recent research in the hybrid systems community on this class of problems. In

[137], the timings of the transitions are parameterized, and the gradients to the local

NLP solver are obtained by solving the Hamilton-Jacobi-Bellman (HJB) equations

using a dynamic programming approach. This problem (of determining the optimal

switching times) constitutes the Stage 1 subproblem of a two stage optimization algo-

rithm described in [138]. One of the methods presented in [138] involves obtaining the

gradients of the participating functionals through formulating the co-state equations,

and this is further expanded upon by a different group of authors in [51], in which

they derive the gradient of the cost functional for an especially simple form (special

structure on the costate equations; the problem considered has no controls and has

only the switching times as variables). However, this body of research has only fo-

cused on obtaining local solutions to the optimization problem (with no guarantees

to the global optimality of the transition times), in this respect proving very similar

in vein to previous approaches for multi-stage dynamic optimization [100, 134].

We shall present a deterministic global optimization framework for solving such

219

problems. This class of problems is difficult because it is inherently nonconvex, even

if the embedded dynamic system is a LTI parameter dependent ODE, as the following

simple single-stage example shows.

Example 4.1. Consider the following problem

min
p,τ

x(p, τ)

where x(p, τ) is given by the solution to the following linear system,

ẋ = −2x+ p,

x(p, 0) = 1,

p ∈ P = [−4, 4], τ ∈ T = [0, 2],

and the time horizon is given by t ∈ [0, τ].

Figure 4-1 shows that the objective function is not convex on the set P ×T . Since

we have a LTV ODE system, in general, we would expect the problem to be nonconvex

on T even if we have p fixed. In order to use a BB algorithm such as Algorithm 2.3 to

obtain a global solution of Example 4.1, we need a method to construct rigorous lower

bounds for the objective function F (p, τ) on partitions of the optimization variable

set P × T .

Currently, no suitable theory exists for constructing convex relaxations of arbi-

trary Bolza type objective functionals with embedded multi-stage systems when the

transition or switching times are allowed to vary. The approach that we are taking

in this chapter is to transform the problem with variable transition times into one

with fixed transition times, and then to develop a convexity theory for the time trans-

formed system. The control parametrization enhancing transform (CPET) [85] is a

natural transform to use for this purpose. Unfortunately, this transformation comes

with an associated difficulty: the right hand sides of the differential equations become

multiplied by the enhancing control. Thus, the resulting dynamic system no longer

has the special structure exploited by methods specific to linear systems. While this

220

-4 -2
0

2 4

0
0.5

1

1.5
2

-1

0

1

2

-2

Figure 4-1: Nonconvex objective function for Example 4.1.

is not significant for local optimization, it poses a considerable obstacle for global op-

timization because global optimization of nonlinear dynamic systems is much harder

than that for linear systems. We will thus develop a relaxation theory for the global

optimization of general, nonlinear hybrid systems with a fixed sequence of modes and

fixed transition times, i.e., nonlinear multi-stage systems with fixed switching times.

This chapter is organized as follows. Section 4.1 presents the general formulation

of the problem, and also includes a discussion on nonsmoothness of the problem when

the objective function or constraints are evaluated at fixed points in time, which has

profound implications on the type of discontinuities permitted in the dynamics of

each mode. The time transformation method is introduced in Section 4.2, along with

sufficient conditions for the objective function or constraints to be smooth within

the control parameterization framework. Section 4.3 presents bounding strategies

for time transformed hybrid systems, and includes methods for constructing hybrid

bounding systems based on exploiting the properties of the time transformation, and

the convex relaxation theory that is developed is presented in Section 4.4. Finally,

Section 4.5 contains some examples illustrating the theory that is developed in this

chapter.

221

4.1 Problem Formulation

First, we shall define the linear hybrid system of interest, based on the modeling

framework presented in Section 1.1. We shall also introduce additional notation

for the durations of the epochs, represented by the vector δ = (δ1, . . . , δne
), where

δi = τi − σi for all i = 1, . . . , ne. Without loss of generality, we will assume that σ1 is

fixed (see below).

Definition 4.2. Consider the epoch Ii = [σi, τi] and its corresponding scaled time

interval Îi = [σ̂i, τ̂i] = [i − 1, i]. A scaled simple discontinuity, scaled point objective

or scaled point constraint, occurring at time t ∈ Ii is one that occurs at a fixed

(stationary) point s ∈ Îi such that

s− σ̂i
τ̂i − σ̂i

= s− i+ 1 =
t− σi
τi − σi

.

It is clear from Definition 4.2 that there is a stationary simple discontinuity (De-

finition 2.6), point objective or point constraint at s∗ in Îi iff there is a scaled simple

discontinuity, point objective or point constraint at t∗ in Ii.

Definition 4.3. The LTV ODE hybrid system of interest is defined by:

1. An index set M for the modes visited along Tµ, M = {1, . . . , nm}, and a Tτ =

{Ii} that is allowed to vary. The mode trajectory is known a priori, i.e., Tµ =

{m∗
i }, where m∗

i ∈M is fixed for all i = 1, . . . , ne.

2. An invariant structure system where the number of continuous state variables

is constant between modes, V = {x,u,p, δ, t}, where p ∈ P ⊂ R
np , δ ∈ ∆ ⊂

R
ne , u(p, δ, t) ∈ U ⊂ R

nu for all (p, δ, t) ∈ P × ∆ × Ii, i = 1, . . . , ne, and

x(p, δ, t) ∈ R
nx for all (p, δ, t) ∈ P × ∆ × Ii, i = 1, . . . , ne. The optimization

parameter sets P and ∆ are nondegenerate interval vectors (and hence compact

and convex), P = [pL,pU], ∆ = [δL, δU]. The lower bounds on ∆ must satisfy

the following constraint: δL ≥ 0, because durations cannot be negative in the

modeling framework.

222

3. The parameterization of the bounded real valued controls,

u(p, δ, t) ≡ S(δ, t)p + v(δ, t),

uL(t) ≤ u(p, δ, t) ≤ uU(t), ∀t ∈ [σ1, σ1 +
ne
∑

j=1

δUj],

where uL(t) and uU(t) are known lower and upper bounds on the controls

u(p, δ, t) that define the set U , and S(δ, t), v(δ, t) are piecewise continuous

with a finite number of scaled simple discontinuities for each epoch Ii, and

defined at any point of discontinuity.

4. The LTV ODE system for each mode m∗
i ∈M , which is given by

ẋ(p, δ, t) = A(m∗
i)(δ, t)x(p, δ, t) + B̃(m∗

i)(δ, t)p

+ C̃(m∗
i)(δ, t)u(p, δ, t) + q̃(m∗

i)(δ, t),

where A(m∗
i)(δ, t) , B̃(m∗

i)(δ, t), C̃(m∗
i)(δ, t), and q̃(m∗

i)(δ, t) are piecewise con-

tinuous with a finite number of scaled simple discontinuities for each epoch

Ii, and defined at any point of discontinuity, for all m∗
i ∈ M . After control

parameterization, we have

ẋ(p, δ, t) = A(m∗
i)(δ, t)x(p, δ, t) + B(m∗

i)(δ, t)p + q(m∗
i)(δ, t), (4.1)

where B(m∗
i)(δ, t) ≡ B̃(m∗

i)(δ, t)+C̃(δ, t)S(δ, t), and q(m∗
i)(δ, t) ≡ C̃(δ, t)v(δ, t)+

q̃(m∗
i)(δ, t) are piecewise continuous with a finite number of scaled simple dis-

continuities for each epoch Ii, and defined at any point of discontinuity, for all

m∗
i ∈M .

5. The transition conditions for the transitions between epochs Ii and Ii+1, i =

1, . . . , ne − 1, which are variable time events, L(m∗
i) := (t ≥ τi), indicating the

transition from mode m∗
i in epoch Ii to mode m∗

i+1 in epoch Ii+1 at time τi.

223

6. The collection of transition functions, which is given by the following equation,

x(p, δ, σi+1) = Dix(p, δ, τi) + Eip + Jiδ + ki, ∀i = 1, . . . , ne − 1, (4.2)

for the transition from mode m∗
i in epoch Ii to mode m∗

i+1 in epoch Ii+1 at time

τi.

7. A given initial condition for mode m∗
1:

x(p, δ, σ1) = E0p + J0δ + k0.

Theorem 4.4. A solution x(p, δ, t), t ∈ Ii, i = 1, . . . , ne to the LTV ODE hybrid

system exists and is unique for each (p, δ) ∈ P × ∆.

Proof. Consider any arbitrary (p∗, δ∗) ∈ P×∆, and the first epoch I1. Since (p∗, δ∗) is

fixed, the form of the LTV ODE system in the first epoch satisfies the nonhomogenous

linear system in [42, Chp. 3, pg 74]. Hence, there exists a unique solution of the hybrid

system in the first epoch. At the transition to the second epoch, the initial conditions

for the second epoch are clearly bounded by (4.2). Thus, the form of the LTV ODE

system in the second epoch satisfies the nonhomogenous linear system in [42, Chp.

3, pg 74]. Therefore, a unique solution of the hybrid system in the second epoch

exists. By induction, a unique solution of the hybrid system exists for all epochs

i = 1, . . . , ne. Since (p∗, δ∗) was arbitrary, we obtain the desired result.

Remark. It is possible to transcribe a problem in which σ1 is a decision variable

bounded by the interval [σL1 , σ
U
1] into one where the initial time is fixed by prepending

an additional mode to the hybrid system:

1. Introduce a new mode m∗
0.

2. Increase the number of durations (and epochs) by one, δ† = (δ0, δ), where

δ0 ∈ [0, σU1 − σL1].

3. The new mode trajectory becomes T †
µ = m∗

0, Tµ.

224

4. The dynamics of the initial mode m∗
0 are given by ẋ(t) = 0 with initial condition

x(p, δ†, σL1) = E0p + J0δ + k0.

5. The transition condition from mode m∗
0 to m∗

1 occurs at the time event L(m∗
0) :=

(t = σL1 + δ0) with state continuity as the transition function, x(p, δ†, σ1) =

x(p, δ†, σL1 + δ0).

In general, it is very difficult to characterize the exact image of P × ∆ under the

solution of the hybrid system (the implied state bounds first introduced in Section

2.7) when the transition times are varying, thus we will work with relaxations of the

image set:

Definition 4.5. Define the following convex sets for all i = 1, . . . , ne where Ti ≡

[σ1 +
i
∑

j=1

δLj , σ1 +
i
∑

j=1

δUj]. For any fixed t ∈ Ti,

X(i)(t;P,∆) ≡ [xL(t),xU(t)] | xL(t) ≤ x(p, δ, t) ≤ xU(t), ∀(p, δ) ∈ P × ∆.

In addition, X(i)(P,∆) ≡ [xL,xU] | X(i)(t;P,∆) ⊂ [xL,xU], ∀t ∈ Ti.

We are now in position to present the problem that we are interested in solving.

Problem 4.6. Consider the following problem,

min
p∈P,δ∈∆

F (p, δ) ≡
ne
∑

i=1

{

nφi
∑

j=1

φij

(

x(p, δ, αij(δ)),p, δ
)

+

∫ τi(δ)

σi(δ)

fi
(

x,p, δ, t
)

dt

}

,

subject to the following point and isoperimetric constraints,

G(p, δ) ≡
ne
∑

i=1

{

nηi
∑

j=1

ηij

(

x(p, δ, βij(δ)),p, δ
)

+

∫ τi(δ)

σi(δ)

gi
(

x,p, δ, t
)

dt

}

≤ 0,

where x(p, δ, t) is given by the solution of the embedded LTV ODE hybrid system in

Definition 4.3; fi and gi are piecewise continuous mappings fi : X(i)(P,∆)×P ×∆×

Ti → R and gi : X(i)(P,∆) × P × ∆ × Ti → R
nc for all i = 1, . . . , ne, where only a

finite number of scaled simple discontinuities are allowed; nφi is an arbitrary number

225

of scaled point objectives in epoch Ii, αij(δ) ∈ Ii such that αij(δ) = σi+δi(α̂ij− i+1)

for some fixed α̂ij ∈ Îi, and φij is a continuous mapping φij : X(i)(P,∆)×P ×∆ → R

for all j = 1, . . . , nφi and i = 1, . . . , ne; and nηi is an arbitrary number of scaled point

constraints in epoch Ii, βij(δ) ∈ Ii such that βij(δ) = σi + δi(β̂ij − i + 1) for some

fixed β̂ij ∈ Îi, and ηij is a continuous mapping ηij : X(i)(P,∆)×P ×∆ → R
nc for all

j = 1, . . . , nηi and i = 1, . . . , ne. Additionally, we require that the set G = {(p, δ) ∈

P × ∆ | G(p, δ) ≤ 0} is nonempty.

Remark. It is possible to cast the optimization decision variables as the transition

times τ instead of the epoch durations δ. The equivalence between the two is estab-

lished by the following equations,

σi = σ1 +
i−1
∑

j=1

δj, ∀i = 1, . . . , ne,

τi = σ1 +
i
∑

j=1

δj, ∀i = 1, . . . , ne.

However, it is advantageous to work in terms of the epoch durations for the following

reasons: (a) it is the natural formulation that facilitates the application of the CPET;

and (b) the implicit constraints for feasible simulation trajectories using transition

times,

τi−1 ≤ τi, ∀i = 2, . . . , ne

need to be added explicitly to the master NLP problem in the control parameterization

framework, whereas the same constraints with the duration formulation are handled

by the simple bound constraints δL ≥ 0. This subtle difference is important in the

control parametrization framework, as the decision variables passed to the IVP solver

have to effect feasible simulations. For the majority of NLP solvers, this is handled

much more robustly as simple bound constraints rather than as explicit constraints

(i.e., simple bound constraints are satisfied throughout the solution process).

Comparing this problem formulation with that in Sections 2.4 and 3.1, we have

the following main differences:

226

1. The type of discontinuities allowed: the participating functionals and hybrid

system now include scaled simple discontinuities rather than stationary simple

discontinuities. The following section will illustrate how fixed-time point objec-

tives, stationary simple discontinuities in the integrand of the objective function

and stationary simple discontinuities in the dynamics of the hybrid system can

cause nonsmoothness in the problem. A discussion of sufficient conditions for

the smoothness of the problem is deferred to the next Section.

2. The removal of the functional dependence on the state derivatives, ẋ, from the

objective and constraint functionals. Again, the reason for this is that the ap-

plication of bounding techniques for time transformed hybrid systems produces

bounds for only the state variables, and not their time derivatives. Note that

the time derivatives of any constructed bounding system do not produce rigor-

ous bounds for ẋ. This is not a strong concern, because interval extensions of

the right hand sides of the differential equations would give valid estimates for

the bounds on the state derivatives. However, this is outside the scope of this

Chapter and will not be discussed further.

4.1.1 Nonsmooth Examples

Example 4.7 (Fixed point objective). Consider the following problem

min
δ1∈[0.5,1.5]

F (δ1) ≡ x(δ1, 1) + x(δ1, 2), (4.3)

subject to the following hybrid system

Mode 1 : ẋ(t) = 0, Mode 2 : ẋ(t) = 1,

with σ1 = 0, x(δ1, 0) = 0, δ2 = 2 − δ1, t ∈ [0, 2], Tµ = 1, 2, the transition condition

L
(1)
1 := (t = τ1) and state continuity as the transition function, x(δ1, σ2) = x(δ1, τ1).

The sequence of modes for this hybrid system is fixed, and the optimization pa-

rameter is the timing of the transition from the initial mode 1 to the final mode 2.

227

Figure 4-2: Sensitivity trajectories for Example 4.7.

Let the parametric sensitivity for this hybrid system be given by s ≡ ∂x
∂δ1

. Then, the

parametric sensitivity exists, and is given by

s(δ∗1, t) =











0, if t ∈ I1,

1, if t ∈ I2.

for any δ∗1 ∈ [0.5, 1.5]. Note that just as the continuous state can take on two values at

the epoch boundaries, the parametric sensitivity can take on two values at t = τ1 = σ2,

i.e., s(δ∗1, τ1) = 0 and s(δ∗1, σ2) = 1. The notion of the current epoch makes it clear

which value of the parametric sensitivity we are referring to.

Figure 4-2 shows the sensitivity trajectories for various values of δ∗1. Let y ≡

x(δ1, 1) and z ≡ x(δ1, 2). Note that the partial derivatives of the objective func-

tion, ∂F
∂y

and ∂F
∂z

exist and are continuous. However, the objective function is not

continuously differentiable with respect to δ1 on (0.5,1.5), as can be seen from Fig-

ure 4-3, which shows the objective function against δ1. There is clearly a point of

nonsmoothness at δ1 = 1, and the objective function is given by

F (δ1) =











3 − 2δ1, if δ1 < 1,

2 − δ1, if δ1 ≥ 1.

Hence, for fixed-time point objectives in the interior of the time horizon, a simple

228

Figure 4-3: Objective function for Example 4.7.

extension of the sufficient conditions proposed in Theorem 2.9 and [62] is not possible.

In fact, the source of the nonsmoothness in the objective function arises due to the

sequence of modes changing for the fixed-time interior point objectives (e.g., if the

objective function for Example 4.7 was F (δ1) = x(δ1, 1), then the sequence of modes

changes at the fixed time t = 1).

Example 4.8 (Integrand with simple stationary discontinuity). Consider the follow-

ing problem

min
δ1∈[0.5,1.5]

F (δ1) ≡

∫ τ2(δ1)

σ1

f(x(t)) dt,

where

f(x(t)) =











0, if t < 1,

x(t) + 1, if t ≥ 1,

subject to the following hybrid system,

Mode 1 : ẋ(t) = 0,

with σ1 = 0, x(δ1, 0) = 0, δ2 = 2 − δ1, t ∈ [0, 2], Tµ = 1, 1, the transition condition

229

1

2

3

2.5

2.5

1.5

Figure 4-4: Objective function for Example 4.8.

L
(1)
1 := (t = τ1) and the following transition function,

x(δ1, σ2) = x(δ1, τ1) + 1.

In this example, we have a hybrid system in which there is only one mode, and a

unit jump in the value of the state variable is enforced at the transition. The integrand

is piecewise continuous with a simple stationary discontinuity. The objective function

is not continuously differentiable with respect to δ1 on (0.5,1.5), as can be seen from

Figure 4-4, which shows the objective function against δ1. There is clearly a point of

nonsmoothness at δ1 = 1, and the objective function is given by

F (δ1) =











2, if δ1 < 1,

4 − 2δ1, if δ1 ≥ 1.

Hence, even simple stationary discontinuities within the integral type objective

function causes nonsmoothness of the objective function. This is somewhat surprising,

for one would expect the smoothing effect of the integral to mitigate and remove the

effect of a simple stationary discontinuity which is of measure zero. Again, one can

view the source of the nonsmoothness in the objective function as arising due to the

230

sequence of modes changing at the point of the simple stationary discontinuity.

Example 4.9 (Piecewise continuous dynamic system). Consider the following prob-

lem

min
δ1∈[0.5,1.5]

F (δ1) ≡ x(δ1, 2),

subject to the following hybrid system

Mode 1 : ẋ(t) =











0, if t < 1,

1, if t ≥ 1,

Mode 2 : ẋ(t) = 0,

with σ1 = 0, x(δ1, 0) = 0, δ2 = 2 − δ1, t ∈ [0, 2], Tµ = 1, 2, the transition condition

L
(1)
1 := (t = τ1) and state continuity as the transition function, x(δ1, σ2) = x(δ1, τ1).

The right hand side of the ODE in mode 1 is piecewise continuously differentiable.

However, the objective function is not continuously differentiable on δ1 on (0.5,1.5),

as can be seen from Figure 4-5, which shows the objective function against δ1. There

is clearly a point of nonsmoothness at δ1 = 1. In fact, the analytical expression for

the objective function is given by

F (δ1) =











0, if δ1 < 1,

δ1 − 1, if δ1 ≥ 1.

Again, we see the effect of stationary discontinuities, this time in the form of the

embedded hybrid system.

4.2 Time Transformation

The CPET (see e.g., [85, 127, 86] for details) is implemented as follows. Consider

the original independent variable time (t) in Problem 4.6. We now wish to construct

a new time scale in which the varying epoch durations (transition times) are fixed,

s ∈ [0, ne]. The transformation (CPET) from t ∈ [σ1, σ1 +
ne
∑

i=1

δUi] to s ∈ [0, ne] is

231

Figure 4-5: Objective function for Example 4.9.

defined by
dt

ds
= v(δ, s), t(δ, 0) = σ1, (4.4)

where the function v : ∆ × [0, ne] → R is called the enhancing control. It is a

piecewise constant function with possible simple discontinuities at the prefixed knots

s = 1, . . . , ne − 1,

v(δ, s) =
ne
∑

i=1

δiχi(s),

where χi(s) is the indicator function defined by

χi(s) =







1 if s ∈ [i− 1, i],

0 otherwise.

Clearly,

t(δ, s) = σ1 +

∫ s

0

v(δ, z) dz = σ1 + δi(s− (i− 1)) +
i−1
∑

j=1

δj = (s− i+ 1)δi + σi (4.5)

for s ∈ [i− 1, i], i = 1, . . . , ne, where the value of the enhancing control on the trans-

formed time interval (i− 1, i) corresponds to the value of the duration of epoch Ii in

the original time scale. In addition, the scaled simple discontinuities, point objectives

232

and point constraints in Problem 4.6 become stationary simple discontinuities, point

objectives and point constraints in the new time scale, according to Definition 4.2.

Finally, let x′ ≡ dx
ds

. It follows from the CPET that

x′(p, δ, t(δ, s))

v(δ, s)
=
(

A(m∗
i)(δ, t(δ, s))x(p, δ, t(δ, s))

+ B(m∗
i)(δ, t(δ, s))p + q(m∗

i)(δ, t(δ, s))
)

,

where t is an additional differential state variable that has to satisfy (4.4). We can

substitute for the explicit form of t(δ, s) to obtain

x̂′(p, δ, s) = v(δ, s)
(

Â(m∗
i)(δ, s)x̂(p, δ, s) + B̂(m∗

i)(δ, s)p + q̂(m∗
i)(δ, s)

)

, (4.6)

where x̂(p, δ, s) ≡ x(p, δ, t(δ, s)), x̂′ ≡ dx̂
ds

, Â(m∗
i)(δ, s) ≡ A(m∗

i)(δ, t(δ, s)),

B̂(m∗
i)(δ, s) ≡ B(m∗

i)(δ, t(δ, s)), q̂(m∗
i)(δ, s) ≡ q(m∗

i)(δ, t(δ, s)), and t(δ, s) is given by

(4.5).

Consider now any i ∈ {1, . . . , ne}. It is clear that v(δ, s) = δi is continuous on

∆ × (i − 1, i), and defined at the points of discontinuity s = i − 1 and s = i. Also,

t(δ, s) is continuous on ∆ × [i − 1, i] from (4.5). Let the epoch Ii be split into a

finite number of contiguous intervals (subepochs) where A(m∗
i)(δ, t), B(m∗

i)(δ, t) and

q(m∗
i)(δ, t) are continuous internal to each subepoch.

From Definition 4.2, the scaled simple discontinuities (in t) for A(m∗
i)(δ, t),

B(m∗
i)(δ, t) and q(m∗

i)(δ, t) become stationary simple discontinuities (in s) for

Â(m∗
i)(δ, s), B̂(m∗

i)(δ, s) and q̂(m∗
i)(δ, s). Internal to any arbitrary, transformed sube-

poch in Îi, Â(m∗
i)(δ, s), B̂(m∗

i)(δ, s) and q̂(m∗
i)(δ, s) are continuous (this follows from

the fact that the composition of continuous functions is also continuous [116, The-

orems 9.15 and 4.7]). The right hand side of (4.6) is thus piecewise continuous in

s with a finite number of stationary simple discontinuities, defined at each point of

233

discontinuity. The objective function and constraints after the CPET are given by

F̂ (p, δ) ≡
ne
∑

i=1

{

nφi
∑

j=1

φij

(

x̂(p, δ, α̂ij),p, δ
)

+

∫ i

i−1

fi

(

x̂,p, δ, t(δ, s)
)

v(δ, s) ds

}

,

(4.7)

Ĝ(p, δ) ≡
ne
∑

i=1

{

nηi
∑

j=1

ηij

(

x̂(p, δ, β̂ij),p, δ
)

+

∫ i

i−1

gi

(

x̂,p, δ, t(δ, s)
)

v(δ, s) ds

}

.

(4.8)

Note that α̂ij and β̂ij are no longer a function of δ. Henceforth, we shall use the

superscript prime notation to denote the transformed time derivative, i.e., ′ ≡ d
ds

. We

are now able to formally state the transformed hybrid system and problem:

Definition 4.10. The transformed nonlinear hybrid system is given by the following:

1. An index set M for the modes visited along Tµ, M = {1, . . . , nm}, with a

fixed Tµ = {m∗
i } and a fixed Tτ = {Îi}, where Îi = [σ̂i, τ̂i] = [i − 1, i] for all

i = 1, . . . , ne.

2. An invariant structure system where the number of continuous state variables

is constant between modes, V = {x̂,p, δ, s}, where p ∈ P ⊂ R
np , δ ∈ ∆ ⊂ R

ne ,

and x̂(p, δ, s) ∈ R
nx for all (p, δ, s) ∈ P×∆×Îi, i = 1, . . . , ne. The optimization

parameter sets P and ∆ are interval vectors (and hence compact and convex),

P = [pL,pU], ∆ = [δL, δU], where the lower bounds on ∆ must satisfy the

following constraint: δL ≥ 0.

3. The nonlinear ODE system for each mode m∗
i ∈ M , which is given by (4.6).

This will be represented, for convenience, as the following differential equations,

x̂′ = F
(m∗

i)(x̂,p, δ, s), (4.9)

for all m∗
i ∈ M . For each mode m∗

i ∈ M , F
(m∗

i) is piecewise continuous with a

finite number of stationary simple discontinuities in s, defined at any point of

discontinuity.

234

4. The transition conditions for the transitions between epochs Îi and Îi+1, i =

1, . . . , ne− 1, which are explicit (fixed) time events, L(m∗
i) := (s ≥ i), indicating

the transition from mode m∗
i in epoch Îi to mode m∗

i+1 in epoch Îi+1 at time τ̂i.

5. The collection of transition functions, which is given by the following equation,

x̂(p, δ, σ̂i+1) = Dix̂(p, δ, τ̂i) + Eip + Jiδ + ki, ∀i = 1, . . . , ne − 1. (4.10)

for the transition from mode m∗
i in epoch Îi to mode m∗

i+1 in epoch Îi+1 at time

τ̂i.

6. A given initial condition for mode m∗
1:

x̂(p, δ, 0) = E0p + J0δ + k0.

The corresponding relaxations for the image set under the solution of the trans-

formed hybrid system are given by the following:

Definition 4.11. Define the following convex sets for all i = 1, . . . , ne. For any fixed

s ∈ Îi:

X̂(i)(s;P,∆) ≡ [x̂L(s), x̂U(s)] | x̂L(s) ≤ x̂(p, δ, s) ≤ x̂U(s),∀(p, δ) ∈ P × ∆.

In addition, X̂(i)(P,∆) ≡ [x̂L, x̂U] | X̂(i)(s;P,∆) ⊂ [x̂L, x̂U],∀s ∈ Îi.

Problem 4.12. The transformed problem is given by the following,

min
p∈P,δ∈∆

F̂ (p, δ)

s.t. Ĝ(p, δ) ≤ 0,

where x̂(p, δ, s) is given by the solution of the embedded nonlinear hybrid system

in Definition 4.10; F̂ (p, δ) and Ĝ(p, δ) are given by (4.7) and (4.8) respectively; f̂i

and ĝi are piecewise continuous mappings f̂i : X̂(i)(P,∆) × P × ∆ × Îi → R and

235

ĝi : X̂(i)(P,∆) × P × ∆ × Îi → R
nc , for all i = 1, . . . , ne, with a finite number of

stationary simple discontinuities; nφi is the number of fixed point objectives in epoch

Îi, α̂ij ∈ Îi and φ̂ij is a continuous mapping φ̂ij : X̂(i)(α̂ij;P,∆) × P × ∆ → R for all

j = 1, . . . , nφi and i = 1, . . . , ne; and nηi is the number of fixed point constraints in

epoch Ii, β̂ij ∈ Îi and η̂ij is a continuous mapping η̂ij : X̂(i)(β̂ij;P,∆)×P ×∆ → R
nc

for all j = 1, . . . , nηi and i = 1, . . . , ne. Additionally, we require that the set Ĝ =

{(p, δ) ∈ P × ∆ | Ĝ(p, δ) ≤ 0} is nonempty.

Lemma 4.13. Consider the hybrid systems defined in Definitions 4.3 and 4.10. Let

x be the solution of the hybrid system in Definition 4.3, and x̂ be the solution of the

hybrid system in Definition 4.10. Then, for any (p, δ, s) ∈ P × ∆ × Îi, x̂(p, δ, s) =

x(p, δ, t(δ, s)) for all i ∈ {1, . . . , ne}, where t(δ, s) is given by (4.5).

Proof. Consider any arbitrary (p∗, δ∗) ∈ P×∆, and the first epoch in the transformed

time scale, Î1. From (4.5), t(δ∗, σ̂1) = σ1. Hence, from the initial conditions in

Definitions 4.3 and 4.10, x̂(p∗, δ∗, σ̂1) = x(p∗, δ∗, σ1). Integrating (4.6), we obtain

∫ s

0

x̂′(z) dz =

∫ s

0

(

Â(m∗
1)(δ, z)x̂(p, δ, z) + B̂(m∗

1)(δ, z)p + q̂(m∗
1)(δ, z)

)

v(δ, z) dz

and with the change of variables t(δ∗, s) given by (4.5),

∫ s

0

x̂′(z) dz =

∫ t(δ∗,s)

σ1

(

A(m∗
1)(w)x(p, δ, w) + B(m∗

1)(w)p + q̂(m∗
1)(w)

)

dw,

or

x̂(p∗, δ∗, s) − x̂(p∗, δ∗, σ̂1) = x(p∗, δ∗, t(δ∗, s)) − x(p∗, δ∗, σ1).

Therefore, for all s ∈ Î1, x̂(p∗, δ∗, s) = x(p∗, δ∗, t(δ∗, s)). At the transition to epoch

2, from (4.5), t(δ∗, τ̂1) = τ1, thus x̂(p∗, δ∗, τ̂1) = x(p∗, δ∗, τ1). Applying the tran-

sition functions in Definitions 4.3 and 4.10, we obtain x̂(p∗, δ∗, σ̂2) = x(p∗, δ∗, σ2).

Since the choice of (p∗, δ∗) was arbitrary, induction on all epochs gives x̂(p, δ, s) =

x(p, δ, t(δ, s)) for all i ∈ {1, . . . , ne}, for any (p, δ, s) ∈ P × ∆ × Îi.

236

Remark. A solution, x̂(p, δ, s), s ∈ Îi, i = 1, . . . , ne, will exist and be unique for all

(p, δ) ∈ P × ∆. This follows directly from Theorem 4.4 and Lemma 4.13.

Theorem 4.14. Problem 4.6 has the solution (p∗, δ∗) iff (p∗, δ∗) is a solution of

Problem 4.12.

Proof. Consider any arbitrary (p∗, δ∗) ∈ P×∆, and any arbitrary epoch i ∈ {1, . . . , ne}.

For any j ∈ {1, . . . , nφi}, from Lemma 4.13 and (4.5), we have

φij

(

x̂(p∗, δ∗, α̂ij),p
∗, δ∗

)

= φij

(

x(p∗, δ∗, αij(δ
∗)),p∗, δ∗

)

.

Similarly,

∫ τ̂i

σ̂i

fi

(

x̂(p∗, δ∗, s),p∗, δ∗, t(δ∗, s)
)

v(δ∗, s) ds =

∫ τi(δ
∗)

σi(δ∗)

fi

(

x(p∗, δ∗, t),p∗, δ∗, t
)

dt.

Hence, we have F̂ (p∗, δ∗) = F (p∗, δ∗). Applying the same analysis to the constraints,

we have Ĝ(p∗, δ∗) = G(p∗, δ∗). Since (p∗, δ∗) was arbitrary, we have shown the

equivalence of Problems 4.6 and 4.12.

Remark. A consequence of the CPET transform is the destruction of the linear struc-

ture of the original hybrid system.

The following theorem presents sufficient conditions for the objective function

(and analogously the constraints) to be smooth, and will be assumed to hold for the

transformed problem.

Theorem 4.15. Let P o ⊃ P , ∆o ⊃ ∆, X̂(i)o(α̂ij) ⊃ X̂(i)(α̂ij;P
o,∆o) and X̂(i)o ⊃

X̂(i)(P o,∆o) be open subsets of R
np, R

ne, R
nx and R

nx respectively, for all j =

1, . . . , nφi, i = 1, . . . , ne. If the following conditions are satisfied, then the objective

function F̂ is continuously differentiable on P o × ∆o.

C1.
∂φij

∂x̂
,
∂φij

∂p
and

∂φij

∂δ
exist, and are continuous on X̂(i)o(α̂ij) × P o × ∆o for all

j = 1, . . . , nφi, i = 1, . . . , ne;

237

C2. ∂fi

∂x̂
, ∂fi

∂p
and ∂fi

∂δ
exist, and are piecewise continuous on X̂(i)o × P o × ∆o × Îi for

all i = 1, . . . , ne where only a finite number of stationary simple discontinuities

in s are allowed.

Proof. Consider an arbitrary epoch Îi. First, we show that the parametric sensitivities

exist and are unique. We have a finite number of stationary discontinuities (in s) in

(4.9). Let there be k such discontinuities in Îi found at points s = ζl, l = 1, . . . , k.

Construct a sequence of k+1 subepochs [ξ1, ζ1], . . . , [ξk+1, ζk+1] where ξ1 = σ̂i, ζk+1 =

τ̂i and ξl+1 = ζl, l = 1, . . . , k. Extend the function F
(m∗

i) to be continuous on all

subepochs,

F
(m∗

i)(·, ξl) ≡ lim
s→ξ+

l

F
(m∗

i)(·, s), F
(m∗

i)(·, ζl) ≡ lim
s→ζ−

l

F
(m∗

i)(·, s),

for l = 1, . . . , k+1 and impose state continuity for each transition between sub-epochs.

A hybrid system is thus defined within the epoch Îi. Now consider an arbitrary sub-

epoch [ξl, ζl]. From (4.6), it is clear that the partial derivatives ∂F
(m∗

i)

∂x̂
, ∂F

(m∗
i)

∂p
and

∂F
(m∗

i)

∂δ
exist and are continuous internal to this subepoch. At the transition ζl, it is

easy to verify that the remaining assumptions of [63, Thm. 1] are satisfied, which

provides the existence and uniqueness result (for an example of this, see the proof

of Theorem 2.8). Since the discontinuities are stationary, the transition times in the

interior of the epoch are independent of the parameters, and the sensitivities are

continuous everywhere interior to the epoch.

Consider now an arbitrary v ∈ {1, . . . , np} and w ∈ {1, . . . , ne}. For the point

objectives, since P o and ∆o are open sets, the parametric sensitivities exist and

condition C1 holds, the summation terms
∑nφi

j=1
∂φij

∂pv
and

∑nφi

j=1
∂φij

∂δw
exist and are

continuous on P o×∆o by the chain rule and linearity of the derivative operator. Next,

consider the integral objectives. We have a finite number of stationary discontinuities

(in s) in the integrand fi, F
(m∗

i), the parametric sensitivities and the derivatives in

condition C2. Let there be k̂ such discontinuities found at points s = ζ̂l̂, l̂ = 1, . . . , k̂.

238

Partition the integral into the following:

F̂i(p, δ) =
k̂
∑

l̂=0

F̂il̂(p, δ) =
k̂
∑

l̂=0

∫ ζ
l̂+1

ζ
l̂

fi
(

x̂,p, δ, s
)

ds,

where ζ0 = σ̂i and ζk̂+1 = τ̂i. Now, consider an arbitrary l̂ ∈ {1, . . . , k̂}. Extend fi,

∂fi

∂x̂
, ∂fi

∂p
and ∂fi

∂δ
to be continuous on X̂(i)o × P o × ∆o × [ζl̂, ζl̂+1], and ∂x̂

∂p
, ∂x̂
∂δ

, and x

to be continuous on P o × ∆o × [ζl̂, ζl̂+1]. At most, these functions are discontinuous

at their endpoints in time. Removing these discontinuities does not alter the value

of the integral because the endpoints comprise a set of measure zero. As above,

applying the chain rule on the partial derivatives ∂fi

∂pv
and ∂fi

∂δw
, we obtain continuity

of said derivatives on P o × ∆o × [ζl̂, ζl̂+1]. These continuity conditions enable us to

differentiate under the integral sign [43, Page 308] to obtain

∂F̂il̂
∂pv

=

∫ ζ
l̂+1

ζ
l̂

∂fi
∂pv

ds,
∂F̂il̂
∂δw

=

∫ ζ
l̂+1

ζ
l̂

∂fi
∂δw

ds.

We can then apply [120, Proposition 2.1] to yield
∂F̂

il̂

∂pv
and

∂F̂
il̂

∂δw
continuous on P o×∆o.

Since l̂ was arbitrary, ∂F̂i

∂pv
and ∂F̂i

∂δw
are continuous on P o×∆o as the sum of continuous

functions is continuous. Since i was arbitrary, ∂F̂
∂pv

and ∂F̂
∂δw

are continuous on P o ×

∆o. Since v and w were arbitrary, it follows that F̂ is continuously differentiable on

P o × ∆o.

Note that the differentiation with respect to δ and p is to develop conditions

under which the resulting finite-dimensional problem is continuously differentiable. It

is not related to obtaining a solution of the finite-dimensional problem. For example,

consider the following problem:

min
p∈[−1,1],δ∈[0,2]

x(p, δ)

s.t. x(p, δ) + 1 ≥ 0

239

5

4

3

2

1

0

-1

-2

-3

-4

-1

-0.5

0

0.5

1

0

0.5

1.0

1.5

2.0

Figure 4-6: Objective function and feasible region.

where x(p, δ) is given by the solution of the following dynamic system,

ẋ(p, t) = p,

x(p, 0) = p,

where the time horizon is given by t ∈ [0, δ]. The objective function and constraint

functionals are linear in x(p, δ). Figure 4-6 shows the objective function surface

on the set [−1, 1] × [0, 2]. The solid lines that are projected onto the p × δ plane

represent contours of the objective function, and the shaded portion represents the

feasible space of the problem. The global solution to this problem occurs at p∗ =

−0.333 and δ∗ = 2.0. Note that the solution to the problem does not occur on the

boundaries of p ∈ [−1, 1]. In general, the solution for such problems will not lie

on the boundaries of either p or δ, because the presence of constraints may cause

the feasible region to become nonconvex as illustrated. In addition, when applying

240

transformation methods, e.g., the CPET, the embedded dynamic system becomes

nonlinear.

4.3 Bounding Strategies for Time Transformed Hy-

brid Systems

In order to solve the transformed Problem 4.12 using a BB framework such as Al-

gorithm 2.3, we have to develop a theory for constructing convex relaxations of the

objective and constraint functionals (4.7) and (4.8) subject to the embedded nonlinear

hybrid system in Definition 4.10. The steps for constructing such convex relaxations

are outlined below:

1. Estimate the implied state bounds, X̂(i)(s;P,∆) in Definition 4.11.

2. Construct convex and concave relaxations for the states.

3. Apply convex relaxation techniques on subsets of Euclidean spaces to construct

the required convex relaxations.

In this section, we shall examine various strategies for estimating the implied state

bounds, before we present the convexity theory in the next section.

4.3.1 Nonlinear Differential Inequalities

We shall present some bounding theorems for single-stage nonlinear ODE systems,

before extending these to multi-stage nonlinear ODE systems. First, we shall present

a very simple bounding theorem for single-stage nonlinear ODE systems:

Consider the following nonlinear ODE system with bounded time varying controls,

u,

ẋ = f(x,u, t), x(u(t0), t0) = x0(u(t0)) (4.11)

where u : [t0, tf] → R
nu , u(t) ∈ U(t) ⊂ R

nu , ∀t ∈ [t0, tf], U(t) is a nonempty compact

set for each t ∈ [t0, tf], f is a continuous mapping f : X × U × [t0, tf] → R
nx that is

241

bounded, x0 is a continuous mapping x0 : U(t0) → R
nx , and the sets X and U are

given by the following:

X ⊃ {x(u(t), t) | t ∈ [t0, tf],u(t) ∈ U(t)},

U ⊃ {u(t) | t ∈ [t0, tf]}.

As in [121], we will make the following assumptions concerning the solution of

(4.11). First, we assume that a solution exists and is unique for each u such that

u(t) ∈ U(t) for all t ∈ [t0, tf]. This assumption permits the use of regular (weak)

inequalities rather than strict inequalities in the results below. This is needed for

the application of the theorems below for general, nonlinear, hybrid systems. For

the time transformed hybrid system in Definition 4.10, the solution to (4.9) exists

and is unique from Theorem 4.4, so this assumption is always satisfied. Next, we

assume that (4.11) possesses a solution in the sense of Carathéodory. That is, an

admissible solution is one that satisfies (4.11) almost everywhere (a.e.). Therefore,

this assumption immediately implies that the derivative of the state variables exists

everywhere except possibly on a set of measure zero. By assumption, since a solution

exists and is unique for each u such that u(t) ∈ U(t) for all t ∈ [t0, tf], it follows that

the solution of (4.11) will be bounded for any such control function u. We can then

define the following sets:

Definition 4.16. Let x(u(t), t) be a solution of (4.11). For each fixed t ∈ [t0, tf] and

all i = 1, . . . , nx, let the set Xc
i(t) be represented by the following,

X
c
i(t) = {xi(u(t), t) | u(t) ∈ U(t)}.

Furthermore, let the set Xc(t) be defined pointwise in time, for all t ∈ [t0, tf], by

X
c(t) = [zL, zU] | zLi = inf X

c
i(t), z

U
i = sup X

c
i(t), ∀i = 1, . . . , nx.

Note that, by definition of the infimum and supremum, the set Xc(t) represents

the best possible, or exact, bounds on the value of the solution of the nonlinear system

242

for any fixed time t ∈ [t0, tf], i.e., for any t ∈ [t0, tf], if

v ≤ x(u(t), t) ≤ w, ∀u(t) ∈ U(t),

then v ≤ zL and zU ≤ w where Xc(t) ≡ [zL, zU]. In addition, although we may not

know what the set Xc(t) is, we know that such an exact bounding set exists because

the solution of (4.11) is bounded for any control function u such that u(t) ∈ U(t) for

all t ∈ [t0, tf] as discussed above.

Theorem 4.17. Consider the ODE system in (4.11). If the following conditions are

satisfied for i = 1, . . . , nx

(i) vi(t0) ≤ min
q∈U(t0)

xi(q, t0)

(ii) wi(t0) ≥ max
q∈U(t0)

xi(q, t0)

(iii) v̇i = hi(t) ≤ min
z∈Xc(t),q∈U(t)

fi(z,q, t)

(iv) ẇi = hi(t) ≥ max
z∈Xc(t),q∈U(t)

fi(z,q, t)

where hi and hi are continuous mappings, then

v(t) ≤ x(u(t), t) ≤ w(t), ∀u(t) ∈ U(t), t ∈ [t0, tf].

Proof. Since U(t0) is a nonempty compact set and xi(q, t0) is continuous on U(t0) for

all i = 1, . . . , nx, the extrema in conditions (i) and (ii) exist. For each fixed t, the

set Xc(t) is nonempty and compact by definition. Also, since fi(·, t) is continuous for

each fixed t for all i = 1, . . . , nx, the extrema in conditions (iii) and (iv) exist.

We will now consider the lower bounding system, v(t). By construction, for each

i = 1, . . . , nx and u(t) ∈ U(t), we have

v̇i(t) ≤ min
z∈Xc(t),q∈U(t)

fi(z,q, t) ≤ fi(x(u(t), t),u(t), t) = ẋi(t).

243

By the property of the integral [116, Theorem 6.12(b)], we have

∫ t∗

t0

v̇i dt ≤

∫ t∗

t0

ẋi dt,

for any t∗ ∈ [t0, tf]. From condition (i), we have

vi(t0) ≤ xi(q, t0)

for any q ∈ U(t0). Thus, from the fundamental theorem of calculus,

vi(t) ≤ xi(u(t), t), ∀u(t) ∈ U(t), t ∈ [t0, tf].

An analogous proof holds for the upper bounding system, w(t).

Note that the requirements for hi and hi to be continuous mappings for i =

1, . . . , nx are a technical condition needed for the application of the fundamental

theorem of calculus. However, these are not strong conditions in the sense that in the

practical application of the theorem, one would typically utilize inclusion monotonic

and continuous interval extensions to obtain estimates of the minimum and maximum,

which would ensure that these functions are indeed continuous. These conditions

on the interval extensions are also needed to prove convergence of the bounding

technique, which will be presented below. On its own, Theorem 4.17 is hard to apply,

because the exact bounds for the nonlinear system given by the set Xc(t),∀t ∈ [t0, tf]

is difficult to obtain. We have seen that it is possible to obtain the exact state bounds

(implied state bounds) when the embedded dynamic system is a LTV ODE system

with real valued parameters p ∈ P , as shown in Chapter 2. However, the same cannot

be said when the embedded system is nonlinear with an arbitrary bounded control

function, u(t) ∈ U(t). On the other hand, if we had some means of obtaining the exact

bounds, we wouldn’t need Theorem 4.17 in the first place. The following (stronger)

result, proved as a corollary of Theorem 4.17, seeks to provide a more practical way

of estimating the state bounds without having to know the set Xc(t),∀t ∈ [t0, tf] a

priori.

244

Definition 4.18. Let x(u(t), t) be a solution of (4.11), and let xi(u(t), t) ∈ Xd
i (u(t), t)

for each u(t) ∈ U(t), i = 1, . . . , nx, where Xd
i (u(t), t) ⊂ R is a closed bounding set

that is known independently from the solution of (4.11). For each fixed t ∈ [t0, tf],

let αi(q, t) = inf Xd
i (q, t) and βi(q, t) = sup Xd

i (q, t) for each q ∈ U(t), i = 1, . . . , nx.

Furthermore, let the set Xd(t) be defined pointwise in time by

X
d(t) = [zL, zU] | zLi = inf

q∈U(t)
αi(q, t), z

U
i = sup

q∈U(t)

βi(q, t), ∀i = 1, . . . , nx,

where zLi and zUi are in the extended real number system [116, Definition 1.23].

Corollary 4.19. Consider the ODE system in (4.11). If the following conditions are

satisfied for i = 1, . . . , nx

(i) vi(t0) ≤ min
q∈U(t0)

xi(q, t0)

(ii) wi(t0) ≥ max
q∈U(t0)

xi(q, t0)

(iii) v̇i = hi(v,w, t) ≤ min
z∈Xd(t)∩H(t),q∈U(t)

fi(z,q, t)

(iv) ẇi = hi(v,w, t) ≥ max
z∈Xd(t)∩H(t),q∈U(t)

fi(z,q, t)

where H(t) = {z | v(t) ≤ z ≤ w(t)}, and hi and hi are continuous mappings, then

v(t) ≤ x(u(t), t) ≤ w(t), ∀u(t) ∈ U(t), t ∈ [t0, tf].

Proof. First, we apply Theorem 4.17 to the differential system v and w that obeys

the following conditions, for all i = 1, . . . , nx,

(i) vi(t0) ≤ min
q∈U(t0)

xi(q, t0)

(ii) wi(t0) ≥ max
q∈U(t0)

xi(q, t0)

(iii) v̇i = hi(t) ≤ min
z∈Xc(t),q∈U(t)

fi(z,q, t)

(iv) ẇi = hi(t) ≥ max
z∈Xc(t),q∈U(t)

fi(z,q, t)

245

where hi and hi are continuous mappings, to obtain

v(t) ≤ x(u(t), t) ≤ w(t), ∀u(t) ∈ U(t), t ∈ [t0, tf].

Now, for each fixed t ∈ [t0, tf], let H(t) = {z | v(t) ≤ z ≤ w(t)}. Then, by Definition

4.16, for each t ∈ [t0, tf], we must have

X
c(t) ⊂ X

d(t) ∩H(t),

because Xc(t) is the exact bounding set. Note that the intersection of the nonempty

and closed bounding set Xd(t) and the nonempty and compact set H(t) is itself a

nonempty (because Xc(t) is nonempty) and compact set. Clearly,

min
z∈Xd(t)∩H(t),q∈U(t)

fi(z,q, t) ≤ min
z∈Xc(t),q∈U(t)

fi(z,q, t)

for any fixed t ∈ [t0, tf], i = 1, . . . , nx. Thus, we can replace conditions (iii) and (iv)

above with the following (stronger) conditions,

(v) v̇i = hi(v,w, t) ≤ min
z∈Xd(t)∩H(t),q∈U(t)

fi(z,q, t)

(vi) ẇi = hi(v,w, t) ≥ max
z∈Xd(t)∩H(t),q∈U(t)

fi(z,q, t)

which will always satisfy the original (weaker) conditions, i.e., any differential system

v and w that satisfies conditions (i), (ii), (v), (vi) will also satisfy conditions (i), (ii),

(iii) and (iv).

In Definition 4.18, we have defined a known, closed bounding set Xd(t) for all

t ∈ [t0, tf]. As explained in [121], differential equations of practical interest to scientists

and engineers are derived from physical systems for which more information is known

about the behavior of the system dynamics than the information embodied by the

differential equations alone. For example, for a system undergoing decay, the state

never exceeds its initial condition. In another example, differential equations modeling

mass and heat transfer obey conservation principles. The purpose of this bounding

246

set is thus to accommodate the incorporation of such additional information. Clearly,

in order for this information to be useful practically, the set Xd(t) must be relatively

cheap to obtain for all t ∈ [t0, tf].

Now that we have presented the “naive” version of a bounding technique based

on differential inequalities, we present a stronger result that is based on the theory

developed originally in the field of differential inequalities [135]. To prove the result,

we need the following lemma:

Lemma 4.20. Suppose the vector functions ϕ(t) and ψ(t) are differentiable a.e. in

(t0, tf]. For some index i and fixed t ∈ (t0, tf], if ϕ̇i(t) < ψ̇i(t) when ϕ(t) ≤ ψ(t),

ϕi(t) = ψi(t) then we have precisely one of the following two cases:

(i) ϕ < ψ in (t0, tf]

(ii) ϕ(t0+) < ψ(t0+) does not hold, i.e., there exists an arbitrary small t ∈ (t0, tf]

such that ϕi(t) ≥ ψ(t) for at least one index i.

Proof. See proof of [135, Lemma 12.I].

We are now in position to present a stronger form of Corollary 4.19, which is essen-

tially a weaker form of [121, Corollary 2.6] extended to handle the control functions

u instead of real valued parameters p:

Theorem 4.21. Consider the ODE system in (4.11). If the following conditions are

satisfied for i = 1, . . . , nx

(i) vi(t0) < min
q∈U(t0)

xi(q, t0)

(ii) wi(t0) > max
q∈U(t0)

xi(q, t0)

and if ∀v(t),w(t) ∈ H(t)

(iii) v̇i = hi(v,w, t) < inf
z∈Xd(t)∩H(t),q∈U(t)

zi=vi(t)

fi(z,q, t)

(iv) ẇi = hi(v,w, t) > sup
z∈Xd(t)∩H(t),q∈U(t)

zi=wi(t)

fi(z,q, t)

247

where H(t) = {z | v(t) ≤ z ≤ w(t)}, then

v(t) < x(u(t), t) < w(t), ∀u(t) ∈ U(t), t ∈ [t0, tf].

It is also assumed that the solutions, in the sense of Carathéodory, to the differential

systems in v and w exist and are unique.

Proof. The same analysis presented in the proof of Corollary 4.19 regarding the exis-

tence of the extrema in conditions (i) and (ii) applies here. Note that the minimum

and maximum are not guaranteed to exist in conditions (iii) and (iv) due to the

presence of the additional constraint. We will now consider the lower bounding sys-

tem, v(t). Condition (iii) ensures that if there exists some t ∈ (t0, tf] such that

v(t) ≤ x(t) ≤ w(t), vi(t) = xi(t) for some index i, the following inequality must hold,

for any u(t) ∈ U(t):

v̇i(t) = hi(v,w, t) < min
z∈Xd(t)∩H(t),q∈U(t)

zi=vi(t)

fi(z,q, t) ≤ fi(x(u(t), t),u(t), t) = ẋi(t).

Thus, treating v(t) as ϕ(t) and x(t) as ψ(t), the conditions for Lemma 4.20 are

satisfied, and so we must have precisely one of the following two cases:

(a) v < x in (t0, tf]

(b) v(t0+) < x(t0+) does not hold.

Clearly, condition (i) excludes case (b), and so case (a) must hold, i.e.,

v(t) < x(u(t), t), ∀u(t) ∈ U(t), t ∈ [t0, tf].

An analogous proof holds for the upper bounding system, w(t).

Note that by asserting uniqueness of the solution of the differential equations

∀u(t) ∈ U(t), t ∈ [t0, tf], the conditions of the above theorem may be relaxed to

(i) vi(t0) ≤ min
q∈U(t0)

xi(q, t0),

248

(ii) wi(t0) ≥ max
q∈U(t0)

xi(q, t0),

(iii) v̇i = hi(v,w, t) ≤ inf
z∈Xd(t)∩H(t),q∈U(t)

zi=vi(t)

fi(z,q, t),

(iv) ẇi = hi(v,w, t) ≥ sup
z∈Xd(t)∩H(t),q∈U(t)

zi=wi(t)

fi(z,q, t),

i.e., replacing the strict inequalities with regular inequalities (see [135, Remark 12.X]).

Furthermore, by asserting regular inequalities above, the result of the theorem also

permits

v(t) ≤ x(u(t), t) ≤ w(t), ∀u(t) ∈ U(t), t ∈ [t0, tf].

For the remainder of this chapter, we will assume that uniqueness of the constructed

bounding differential equations holds ∀u(t) ∈ U(t), t ∈ [t0, tf], and so it is understood

that reference to Theorem 4.21 refers also to the regular inequalities just described.

As explained in [121], an interesting aspect of formulating the bounding differential

equations as constrained optimization problems is that these optimization problems

may have no feasible point (and thus the use of inf and sup rather than min and

max in conditions (iii) and (iv)). Assume that such an infeasibility occurs in the

bounding problem for the ith variable. Such infeasibilities usually arise from the

equality constraint on the ith variable. This situation immediately implies that the

ith bound lies outside the bounding set Xd(t). In this case, any finite value for the

right-hand side of the differential equation is valid, for any finite instantaneous rate

of change in the ith bounding variable ensures that the bound remains outside Xd(t).

In practice, when employing interval techniques to estimate the solution of these

optimization problems (as will be described later), the interval computation provides

a finite value for the right-hand side of the differential equation, regardless of the

feasibility of the optimization problem.

Note that Theorem 4.21 is identical to Corollary 4.19, except for conditions (iii)

and (iv), where an additional constraint, zi = vi(t) and zi = wi(t) is added respectively

to the optimization problems. Because of these additional constraints, the same proof

for Corollary 4.19 can no longer be applied for Theorem 4.21. However, one can see

249

that because the optimization problems in Theorem 4.21 are more constrained than

those in Corollary 4.19, the bounds obtained in Theorem 4.21 will always be tighter

(no worse) than those obtained from Corollary 4.19.

Now, consider the lower bounding system, and any i ∈ {1, . . . , nx}. The following

inequality is always true:

min
z∈Xd(t)∩H(t),q∈U(t)

fi(z,q, t) ≤ inf
z∈Xd(t)∩H(t),q∈U(t)

zi=vi(t)

fi(z,q, t).

However, the following inequality is not true for all u(t) ∈ U(t), t ∈ [t0, tf]:

inf
z∈Xd(t)∩H(t),q∈U(t)

zi=vi(t)

fi(z,q, t) ≤ fi(x(u(t), t),u(t), t) = ẋi(t).

This is the reason why the simple proof for Corollary 4.19 will not work, as it is not

always guaranteed that v̇i(t) ≤ ẋi(t) for all t ∈ [t0, tf]. Thus, the argument that v̇i(t)

is always less than ẋi(t) cannot be used. The application of Lemma 4.20 ensures that

whenever vi(t) = xi(t), then v̇i(t) is always less than ẋi(t). Hence, as t increases, vi can

approach xi, but can never cross it and be greater than xi because of this condition.

In other words, by imposing the constraint zi = vi(t), Theorem 4.21 ensures that vi(t)

can never be greater than xi(t) for any t ∈ [t0, tf], even though v̇i(t) can possibly be

greater than ẋi(t) when vi(t) < xi(t).

Before we extend Theorem 4.21 to multi-stage systems, we will present some

examples of its application. Consider the following nonlinear ODE system:

ẋ1 = u(x2 − x1)

ẋ2 = ux1

where t ∈ [0, 1] and x(0) = (1,−1). We will also assume that we have no prior

information about bounds on the state variables, and so Xd(t) = R
2, ∀t ∈ [0, 1]. All of

the examples presented for the above system have been coded using the JACOBIAN

Dynamic Modeling and Optimization Software [87] release 2.1A with the default

250

Figure 4-7: Different time varying functions, ui(t).

options.

First, we consider the case where the bounding set for U(t) is time invariant, i.e.,

we have U(t) = [−1, 1], ∀t ∈ [0, 1]. Figure 4-7 shows 4 different time varying function

profiles u1(t), u2(t), u3(t), u4(t) ∈ U(t), ∀t ∈ [0, 1]:

u1(t) = 2t− 1,

u2(t) = 1 − 2t,

u3(t) =
2(t− 0.5)2

0.52
− 1,

u4(t) =























































1 if t ∈ [0, 0.2)

−1 if t ∈ [0.2, 0.4)

0.213 if t ∈ [0.4, 0.6)

0.831 if t ∈ [0.6, 0.8)

−0.612 if t ∈ [0.8, 1.0]

.

Applying Theorem 4.21, and using natural interval extensions to under(over)estimate

251

Figure 4-8: Bounds obtained using Theorem 4.21 and state trajectories for x1(t) for
time invariant U(t).

the infimum(supremum), we obtain the following bounding systems,

v̇1 = min(−(w2 − v1), (w2 − v1),−(v2 − v1), (v2 − v1)),

v̇2 = min(−v1, v1,−w1, w1),

ẇ1 = max(−(w2 − w1), (w2 − w1),−(v2 − w1), (v2 − w1)),

ẇ2 = max(−v1, v1,−w1, w1).

where v(0) = w(0) = (1,−1).

Figure 4-8 shows the bounds obtained for x1(t), as well as the four different state

trajectories for x1(t) using the time varying profiles for u1(t), u2(t), u3(t) and u4(t)

shown in Figure 4-7. It can be seen that the bounds obtained from Theorem 4.21

indeed bound these state trajectories.

Next, we demonstrate the case where the bounding set for the control function

252

U(t) varies with time. Consider U(t) = [uL(t), uU(t)], ∀t ∈ [0, 1], where

uL(t) =
2(t− 0.5)2

0.52
+ 0.5,

uU(t) = −
2(t− 0.5)2

0.52
− 0.5.

Figure 4-9 shows 4 different time varying profiles u1(t), u2(t), u3(t), u4(t) ∈ U(t), ∀t ∈

[0, 1], where the two grey parabolic curves represent uL(t) and uU(t):

u1(t) = 4t− 2,

u2(t) = 2 − 4t,

u3(t) = 0.8 sin(9.5t) + 0.35,

u4(t) =























































uL(t) if t ∈ [0, 0.2)

uU(t) if t ∈ [0.2, 0.4)

uL(t) if t ∈ [0.4, 0.6)

uU(t) if t ∈ [0.6, 0.8)

uL(t) if t ∈ [0.8, 1.0]

.

Applying Theorem 4.21, and using natural interval extensions to under(over)estimate

the infimum(supremum), we obtain the following bounding systems,

v̇1 = min(uL(w2 − v1), u
U(w2 − v1), u

L(v2 − v1), u
U(v2 − v1)),

v̇2 = min(uLv1, u
Uv1, u

Lw1, u
Uw1),

ẇ1 = max(uL(w2 − w1), u
U(w2 − w1), u

L(v2 − w1), u
U(v2 − w1)),

ẇ2 = max(uLv1, u
Uv1, u

Lw1, u
Uw1).

where v(0) = w(0) = (1,−1).

Figure 4-10 shows the bounds obtained for x1(t), as well as the four different state

trajectories for x1(t) using the time varying function profiles for u1(t), u2(t), u3(t) and

u4(t) shown in Figure 4-9. Again, it is clear that the bounds obtained from Theorem

253

Figure 4-9: Different control functions, ui(t)

4.21 indeed bound these state trajectories.

Note that Theorem 4.21 clearly encompasses systems which have time invariant

parameters, i.e., when u(t) = p, ∀t ∈ [t0, tf] in (4.11). In fact, because the bounds

obtained from Theorem 4.21 must take into consideration all possible bounded para-

meter functions u, the bounds obtained are, in general, weak when systems with time

invariant parameters p are considered. This is illustrated with a simple example in

Section 4.3.5 below.

We will now present an extension of Theorem 4.21 to the transformed nonlinear

hybrid system in Definition 4.10.

Definition 4.22. Let x̂(p, δ, s) be the solution of the embedded nonlinear hybrid

system in Definition 4.10, and let x̂i(p, δ, s) ∈ X̂
(j)
i (p, δ, s) for each (p, δ) ∈ P × ∆,

i = 1, . . . , nx, j = 1, . . . , ne where X̂
(j)
i (p, δ, s) ⊂ R is a bounding set that is known

independently. For each fixed s ∈ Îj, j = 1, . . . , ne, let α
(j)
i (q, r, s) = inf X̂

(j)
i (q, r, s)

and β
(j)
i (q, r, s) = sup X̂

(j)
i (q, r, s) for each (q, r) ∈ P × ∆, i = 1, . . . , nx. Further-

more, let X̂(j)(s) be defined pointwise in (transformed) time for each j = 1, . . . , ne by

254

Figure 4-10: Bounds obtained using Theorem 4.21 and state trajectories for x1(t) for
time varying U(t).

X̂(j)(s) = [zL, zU] such that

zLi = inf
q∈P,r∈∆

α
(j)
i (q, r, s), zUi = sup

q∈P,r∈∆
β

(j)
i (q, r, s), ∀i = 1, . . . , nx

where zLi and zUi are in the extended real number system.

Corollary 4.23. Consider the embedded nonlinear hybrid system in Definition 4.10.

If the following conditions are satisfied for all i = 1, . . . , nx and j = 1, . . . , ne,

(i) vi(σ̂j) < min
q∈P,r∈∆

x̂i(q, r, σ̂j)

(ii) wi(σ̂j) > max
q∈P,r∈∆

x̂i(q, r, σ̂j)

and additionally for all v(s),w(s) ∈ H(s), s ∈ [i− 1, i],

(iii) v′i = h
(m∗

j)

i (v,w, s;P,∆) < inf
z∈X̂(j)(s)∩H(s),q∈P,r∈∆

zi=vi(s)

F
(m∗

j)

i (z,q, r, s)

(iv) w′
i = h

(m∗
j)

i (v,w, s;P,∆) > sup
z∈X̂(j)(s)∩H(s),q∈P,r∈∆

zi=wi(s)

F
(m∗

j)

i (z,q, r, s)

255

where H(s) ≡ {z | v(s) ≤ z ≤ w(s)}, then

v(s) < x̂(p, δ, s) < w(s), ∀(p, δ, s) ∈ P × ∆ × Îi, i = 1, . . . , ne.

It is also assumed that the solutions, in the sense of Carathéodory, to the differential

systems in v and w exist and are unique, for all j = 1, . . . , ne.

Proof. From the initial conditions of the hybrid system, Theorem 4.15 (treating

x̂(·, τ̂i) as the objective function) and the form of (4.10), x̂(·, σ̂i) is continuous on

P × ∆ for all i = 1, . . . , ne. Hence, the extrema in conditions (i) and (ii) exist.

Consider now the first epoch Î1. From Definition 4.10, F
(m∗

1) is piecewise continu-

ous with a finite number of stationary simple discontinuities in s. Let γ be the number

of discontinuities occurring at τ̌i ∈ Î1, i = 1, . . . , γ. Then, the first epoch can be fur-

ther subdivided into γ+1 contiguous subepochs, for which we have explicit time events

at the subepoch boundaries, state continuity at each event, and F
(m∗

1) is continuous

for each subepoch. Let the sequence of subepochs be given by {Ǐj}, j = 1, . . . , γ + 1

where Ǐj = [σ̌j, τ̌j], σ̌1 = 0, τ̌γ+1 = τ̂1, and σ̌j+1 = τ̌j for j = 1, . . . , γ. Consider

now the first subepoch Ǐ1. The initial condition at time s = 0 given by Definition

4.10 is clearly continuous on P × ∆. The form of the nonlinear ODE system in the

first subepoch, and conditions (i)–(iv) clearly satisfy the conditions of Theorem 4.21,

which gives

v(s) < x̂(p, δ, s) < w(s), (4.12)

for all (p, δ, s) ∈ P × ∆ × Ǐ1. At the transition τ̌1, state continuity ensures

v(σ̌2) = v(τ̌1) < x̂(p, δ, σ̌2) < w(τ̌1) = w(σ̌2), ∀(p, δ) ∈ P × ∆. (4.13)

From Theorem 4.15, x̂(·, σ̌2) is continuous on P × ∆ (simply treat x̂(·, σ̌2) as the

objective function). The form of the nonlinear ODE system in the second subepoch,

(4.13) and conditions (iii) and (iv) thus satisfy the conditions of Theorem 4.21, which

implies that (4.12) holds for all (p, δ, s) ∈ P ×∆× Ǐ2. By induction on all subepochs,

(4.12) holds for all (p, δ, s) ∈ P × ∆ × Î1. Consider now the second epoch Î2. From

256

Theorem 4.15 and (4.10), x̂(·, σ̂2) is continuous on P × ∆. The analysis carried out

for the first epoch is thus valid for the second. By induction on all epochs, we have

the desired result.

As with Theorem 4.21, by asserting the uniqueness of the solution of the embedded

nonlinear hybrid systems (multi-stage systems), the conditions of Corollary 4.23 may

be relaxed by replacing the strict inequalities with regular inequalities, and the result

of the corollary also permits

v(s) ≤ x̂(p, δ, s) ≤ w(s), ∀(p, δ, s) ∈ P × ∆ × Îi, i = 1, . . . , ne.

Again, we will assume that uniqueness of the constructed bounding differential equa-

tions holds, and so it is understood that reference to Corollary 4.23 refers also to the

regular inequalities just described.

Remark. The bounding set X̂
(j)
i (p, δ, s) for variable i and epoch j makes it possible

to tighten the implied state bounds obtained when physical insight from the problem

in the form of invariants (e.g., conservation laws) and bounds is available.

Corollary 4.23 enables a bounding hybrid system of differential equations to be

constructed to obtain the following set for all i = 1, . . . , ne,

X̂(i)(s;P,∆) ≡ {z | v(s) ≤ z ≤ w(s)}. (4.14)

The most difficult aspect of applying the theorem lies in obtaining the extrema in

conditions (i) – (iv). As stated in [121], while computing the exact solution to the

optimization problems would yield the tightest bounds possible from the theorem,

actually solving the optimization problems at each integration step in a numerical

integration would typically be a prohibitively expensive task. Hence, in practice,

the solutions to the optimization problems are estimated by interval arithmetic [99]

pointwise in time. Before we proceed, we will briefly introduce the metric topology

for the set of intervals (see [99] for more details). By an interval we mean a compact

set of real numbers [xL, xU] = {x | xL ≤ x ≤ xU}. As in [99], we will not distinguish

257

between the degenerate interval [a, a] and the real number a. Define the distance

d(X,Y) = max(|xL − yL|, |xU − yU |) for the intervals X ≡ [xL, xU], Y ≡ [yL, yU].

The absolute value of an interval X ≡ [xL, xU] is given by |X| = max(|xL|, |xU |).

The vector norm ‖Z‖ = max(|Z1|, . . . , |Zn|) is used for interval vectors. An interval

valued function F : Z → IR, Z ⊂ IR
n, is said to be continuous in the usual ε − δ

fashion with the metric d(X,Y), where IR is the set of all intervals. We say that an

interval valued function F of the interval variables X1, . . . , Xn is inclusion monotonic

if Yi ⊂ Xi, i = 1, . . . , n implies F (Y1, . . . , Yn) ⊂ F (X1, . . . , Xn). Let f be a real

valued function of n real variables x1, . . . , xn. By an interval extension of f , we mean

an interval valued function F of n interval variables X1, . . . , Xn with the property

F (x1, . . . , xn) = f(x1, . . . , xn) for real arguments, i.e., an interval extension of f is

an interval valued function which has real values when the arguments are all real

(degenerate intervals) and coincides with f .

Consider now the vector z ∈ R
n. We will introduce the following notation: for

any fixed j ∈ {1, . . . , n}, let zk 6=j denote the vector z̃ ∈ R
n−1 where

z̃k =











zk if k < j,

zk+1 if k ≥ j.

For convenience, we will also introduce the following (element wise) maximization and

minimization operations: consider the n-dimensional vectors x and y whose elements

are in the extended real number system. Let the vector valued operation cmin(x,y)

return the n-dimensional vector z whose elements are in the extended real number

system where

zi = min(xi, yi), ∀i = 1, . . . , n.

Similarly, let cmax(x,y) return the n-dimensional vector z in the extended real num-

ber system where

zi = max(xi, yi), ∀i = 1, . . . , n.

Corollary 4.24. Let x̂(p, δ, s) be the solution of the embedded nonlinear hybrid sys-

258

tem in Definition 4.10. Define the following interval valued functions,

Y (σ̂1) = [yL(σ̂1),y
U(σ̂1)] = E0P + J0∆ + k0, (4.15)

Y (σ̂l+1) = [yL(σ̂l+1),y
U(σ̂l+1)] = Dl[v(τ̂l),w(τ̂l)]

+ ElP + Jl∆ + kl, ∀l = 1, . . . , ne − 1, (4.16)

and let Γ
(m∗

j)

i (vi, Z(i, j, s), P,∆, s) = [γ
(m∗

j)L

i ,γ
(m∗

j)U

i] and Λ
(m∗

j)

i (wi, Z(i, j, s), P,∆, s) =

[λ
(m∗

j)L

i ,λ
(m∗

j)U

i] be inclusion monotonic interval extensions of F
(m∗

j)

i (x̂i, x̂k 6=i,p, δ, s)

for all i = 1, . . . , nx, j = 1, . . . , ne, where

Z(i, j, s) = {zk 6=i | cmax(vk 6=i(s),α
(j)
k 6=i(s)) ≤ zk 6=i ≤ cmin(wk 6=i(s),β

(j)
k 6=i(s))}

and X̂(j)(s;P,∆) = [α(j)(s),β(j)(s)] is defined in (4.14), and obtained from Corollary

4.23. Then, for all i = 1, . . . , nx, s ∈ [j − 1, j] and j = 1, . . . , ne, the following hybrid

system

v′i = γ
(m∗

j)L

i (v,w,pL,pU , δL, δU , s), vi(σ̂j) = yLi (σ̂j), (4.17)

w′
i = λ

(m∗
j)U

i (v,w,pL,pU , δL, δU , s), wi(σ̂j) = yUi (σ̂j), (4.18)

bounds the transformed hybrid system,

v(s) ≤ x̂(p, δ, s) ≤ w(s), ∀(p, δ, s) ∈ P × ∆ × Îj, j = 1, . . . , ne.

Proof. The rational interval functions (4.15) and (4.16) are inclusion monotonic [99,

Page 21]. Together with the inclusion monotonicity of the interval extensions of F
(m∗

i)
j ,

(4.17) and (4.18) thus satisfy conditions (i) – (iv) of Corollary 4.23.

It is important to note that the implied state bounds are obtained given particular

parameter sets P and ∆; in order to ensure convergence of the BB framework, these

bounds must converge as P and ∆ become degenerate in the limit.

259

Lemma 4.25. Let H(X1, . . . , Xn) = [hL, hU] be an interval valued function, where

Xi = [xLi ,x
U
i] are nxi

-dimensional interval vectors for all i = 1, . . . , n. Consider the

following real valued functions,

g1(x
L
1 , . . . ,x

L
n ,x

U
1 , . . . ,x

U
n) = hL, g2(x

L
1 , . . . ,x

L
n ,x

U
1 , . . . ,x

U
n) = hU .

If H is continuous on Y = Y1 × · · · × Yn, where Yi = [yLi ,y
U
i] ⊂ IR

nxi for all

i = 1, . . . , n, then g1 and g2 are continuous on Y × Y , and bounded by a constant M

there.

Proof. It suffices to prove the result for g1 since the proof for g2 is similar. Let the

interval vector Z = [zL, zU] = (X1, . . . , Xn) = [(xL1 , . . . ,x
L
n), (xU1 , . . . ,x

U
n)] and nz =

n
∑

i=1

nxi
. Then, H(·) ≡ H(Z) and g1(·) ≡ g1(z

L, zU). Let H(A) = [hLa , h
U
a] and H(B) =

[hLb , h
U
b], where A = (A1, . . . , Anz

) and B = (B1, . . . , Bnz
), Ai = [aLi , a

U
i], Bi = [bLi , b

U
i]

for all i = 1, . . . , nz. Consider now any arbitrary ε > 0 and A ∈ Y . Since H is

continuous at A, there exists some δ > 0 such that

max(|hLa − hLb |, |h
U
a − hUb |) < ε (4.19)

for any B ∈ Y when max
1≤i≤nz

d(Ai, Bi) < δ, or

max
(

max
1≤i≤nz

|aLi − bLi |, max
1≤i≤nz

|aUi − bUi |
)

< δ. (4.20)

Since (4.19) implies that |g1(a
L, aU) − g1(b

L,bU)| < ε, and (4.20) implies that

‖(aL, aU) − (bL,bU)‖∞ < δ, we have shown that g1 is continuous at (aL, aU). Since

the choice of A was arbitrary, g1 is continuous on Y × Y . Since Y × Y is a compact

set, and g1 is continuous, the minimum and maximum of g1 on Y × Y exists, and so

g1 is bounded.

Recall the definition of the set X̂(i)(P,∆) from Definition 4.11. Let X̂(i)(P,∆) =

[x̂L, x̂U]. For convenience, for all i = 1, . . . , ne, j = 1, . . . , nx, let X̂
(i)
j (P,∆) de-

note the jth element of X̂(i)(P,∆), i.e., X̂
(i)
j (P,∆) = [x̂Lj , x̂

L
j], and let X̂

(i)
n6=j(P,∆) =

260

[x̂Ln6=j, x̂
U
n6=j].

Theorem 4.26. Let {(Pk,∆k)} be a convergent sequence of interval vectors such that

lim
k→∞

(Pk,∆k) = (P ∗,∆∗) ≡ [(p∗, δ∗), (p∗, δ∗)], (4.21)

where (P ∗,∆∗) ∈ P × ∆. Let Corollary 4.24 be used to construct (4.14). For all

i = 1, . . . , ne, let the epoch Îi be split into a finite number (γi) of contiguous subepochs

Ǐl = [σ̌l, τ̌l], where σ̌1 = i − 1, τ̌γi
= i, and σ̌l+1 = τ̌l for all l = 1, . . . , γi − 1. If the

interval extensions Γ
(m∗

i)
j and Λ

(m∗
i)

j are continuous on X̂
(i)
j (P,∆)× X̂

(i)
n6=j(P,∆)×P ×

∆ × [σ̌l, τ̌l] for all i = 1, . . . , ne, j = 1, . . . , nx, and l = 1, . . . , γi, then

lim
k→∞

X̂
(m∗

i)

k (s;Pk,∆k) = [x̂(p∗, δ∗, s), x̂(p∗, δ∗, s)], ∀s ∈ Îi, i = 1, . . . , ne.

Proof. Consider the first subepoch of the first epoch, Ǐ1. By definition, interval

extensions have real values when their arguments are all real (degenerate interval

vectors). Hence, with the degenerate interval vector (P ∗,∆∗) as argument, the natural

interval extension (4.15) becomes Y (σ̂1) = [x̂(p∗, δ∗, σ̂1), x̂(p∗, δ∗, σ̂1)]. Thus, the

initial conditions for the bounding hybrid system becomes

v(σ̌1) = x̂(p∗, δ∗, σ̂1) = w(σ̌1).

This implies that the interval vector Z(j, 1, s) defined in Corollary 4.24 is degenerate

at s = σ̌1, which implies

v′j(σ̌1) = γ
(m∗

1)L
j (v,w,p∗,p∗, δ∗, δ∗, σ̌1) = F

(m∗
1)

j (x̂(p∗, δ∗, σ̌1),p
∗, δ∗, σ̌1),

w′
j(σ̌1) = λ

(m∗
1)U

j (v,w,p∗,p∗, δ∗, δ∗, σ̌1) = F
(m∗

1)
j (x̂(p∗, δ∗, σ̌1),p

∗, δ∗, σ̌1),

for all j = 1, . . . , nx. We have thus defined an initial value problem in v(s) and w(s).

Since the solution trajectory x̂(p∗, δ∗, s) is unique (see Remark following Lemma

4.13), this implies that the interval vector Z(j, 1, s) is degenerate for all j = 1, . . . , nx,

261

s ∈ Ǐ1, and equal to the value x̂(p∗, δ∗, s). Hence, (4.17) and (4.18) become

v′(s) = F
(m∗

1)(x̂(p∗, δ∗, s),p∗, δ∗, s) = w′(s), v(σ̌1) = x̂(p∗, δ∗, σ̂1) = w(σ̌1).

(4.22)

For convenience, let z(s) = (v(s),w(s)) and y = (pL,pU , δL, δU). The system of

ODEs in (4.17) and (4.18) can then be expressed as

z′ = f(z,y, s),

where a solution z(y∗, s) exists and is unique for y∗ = (p∗,p∗, δ∗, δ∗) (because the

solution x̂(p∗, δ∗, s) exists and is unique). Since the interval extensions Γ
(m∗

1)
j and

Λ
(m∗

1)
j are continuous for all j = 1, . . . , nx, an application of Lemma 4.25 (treating xj

and s as degenerate intervals) gives f continuous on X̂(1)(P,∆)2 × P 2 × ∆2 × Ǐ1 and

bounded by a constant M there. With z(y∗, s) as the unique trajectory, we can then

apply [42, Chp. 2,Theorem 4.3] to obtain z(s) → (x̂(p∗, δ∗, s), x̂(p∗, δ∗, s)) uniformly

over Ǐ1 as pL → p∗, pU → p∗, δL → δ∗, δU → δ∗ (or Pk → P ∗, ∆k → ∆∗). Consider

now the transition at τ̌1. Clearly, state continuity preserves the form of (4.22),

v′ = F
(m∗

1)(x̂(p∗, δ∗, s),p∗, δ∗, s) = w′, v(σ̌2) = x̂(p∗, δ∗, σ̌2) = w(σ̌2).

We can then perform the same analysis to obtain uniform convergence of the bounds

over the second sub-epoch. By induction on all sub-epochs, we obtain uniform con-

vergence over the first epoch. Consider now the transition to the second epoch

at τ̂1. With the degenerate interval vector (P ∗,∆∗) as argument, it is clear from

the preceding analysis that the natural interval extension (4.16) becomes Y (σ̂2) =

[x̂(p∗, δ∗, σ̂2), x̂(p∗, δ∗, σ̂2)]. The same analysis made for Ǐ1 in Î1 thus applies, and

(4.22) becomes

v′ = F
(m∗

2)(x̂(p∗, δ∗, s),p∗, δ∗, s) = w′, v(σ̂2) = x̂(p∗, δ∗, σ̂2) = w(σ̂2).

The analysis carried out for the first epoch is thus valid for the second. By induction

262

on all epochs, we have the desired result.

Remark. Note that the requirement for Γ
(m∗

i)
j and Λ

(m∗
i)

j to be inclusion monotonic

and continuous for all i = 1, . . . , ne and j = 1, . . . , nx is not a strong one. For lin-

ear time invariant hybrid systems, it is automatically satisfied since (4.6) becomes a

rational function (in the sense of interval analysis [99]). For time varying hybrid sys-

tems, inclusion monotonic interval extensions of the time varying matrices in (4.6) can

be constructed for most functions in computing provided no division by an interval

containing zero occurs (see e.g., [99, Chapter 3 and 4] and [109, Chapter 1]). In addi-

tion, since the functions of interest are continuous in each subepoch, the constructed

interval extensions will also be continuous (see e.g., [3, Theorem 4 and Corollary 5]).

Before we end this section, we will walk through a procedure for bounding the

solution of the transformed hybrid system using Corollary 4.24.

Example 4.27. Consider the following linear hybrid system,

Mode 1:











ẋ1 = 0.5x1 + x2 + p1,

ẋ2 = −x1 + x2 + p1,

Mode 2:











ẋ1 = x1 + x2 − p2,

ẋ2 = −x1 + p2,

ne = 2, Tµ = 1, 2, Tτ = {Ii} where I1 = [0, δ1], I2 = [δ1, δ1 + δ2], P = [0, 1]2,

∆ = [0, 1]2, and we have state continuity as the transition functions with initial

condition x(p, δ, 0) = (0, 2).

Applying the CPET, we obtain the following transformed nonlinear hybrid system,

Mode 1:











x̂′1 = δ1
(

0.5x̂1 + x̂2 + p1

)

,

x̂′2 = δ1
(

− x̂1 + x̂2 + p1

)

,

Mode 2:











x̂′1 = δ2
(

x̂1 + x̂2 − p2

)

,

x̂′2 = δ2
(

− x̂1 + p2

)

,

263

ne = 2, Tµ = 1, 2, Tτ = {Îi} where Î1 = [0, 1], Î2 = [1, 2], P = [0, 1]2, ∆ = [0, 1]2, and

we have state continuity as the transition functions with initial condition x̂(p, δ, 0) =

(0, 2).

We now apply Corollary 4.24 to obtain bounds for the transformed hybrid system.

For this example, we assume that we do not have additional bounding information,

and so the user defined set X̂
(j)
i (p, δ, s) is set to R for all i = 1, . . . , nx, j = 1, . . . , ne,

(p, δ) ∈ P × ∆. From (4.15), Y (0) = [k0,k0] where k0 = (0, 2) since E0 and J0 are

zero matrices. Expanding the right hand sides of the nonlinear ODEs in mode 1, and

taking the natural interval extensions, we obtain the following forms for Γ(1) and Λ(1)

in Corollary 4.24,

Γ
(1)
1 (v,w,pL,pU , δL, δU , s) = [δL1 , δ

U
1] ·

(

0.5v1(s) + [v2(s), w2(s)] + [pL1 , p
U
1]
)

,

Γ
(1)
2 (v,w,pL,pU , δL, δU , s) = [δL1 , δ

U
1] ·

(

− [v1(s), w1(s)] + v2(s) + [pL1 , p
U
1]
)

,

Λ
(1)
1 (v,w,pL,pU , δL, δU , s) = [δL1 , δ

U
1] ·

(

0.5w1(s) + [v2(s), w2(s)] + [pL1 , p
U
1]
)

,

Λ
(1)
2 (v,w,pL,pU , δL, δU , s) = [δL1 , δ

U
1] ·

(

− [v1(s), w1(s)] + w2(s) + [pL1 , p
U
1]
)

.

At the transition, state continuity gives Y (1) = [v(1),w(1)] for (4.16) since D1 is the

identity matrix, E1 and J1 are zero matrices and k1 is a zero vector. Similarly, ex-

panding and taking the natural interval extensions of right hand sides of the nonlinear

ODEs in mode 2, we obtain

Γ
(2)
1 (v,w,pL,pU , δL, δU , s) = [δL2 , δ

U
2] ·

(

v1(s) + [v2(s), w2(s)] − [pL2 , p
U
2]
)

,

Γ
(2)
2 (v,w,pL,pU , δL, δU , s) = [δL2 , δ

U
2] ·

(

− [v1(s), w1(s)] + [pL2 , p
U
2]
)

,

Λ
(2)
1 (v,w,pL,pU , δL, δU , s) = [δL2 , δ

U
2] ·

(

w1(s) + [v2(s), w2(s)] − [pL2 , p
U
2]
)

,

Λ
(2)
2 (v,w,pL,pU , δL, δU , s) = [δL2 , δ

U
2] ·

(

− [v1(s), w1(s)] + [pL2 , p
U
2]
)

.

Applying Corollary 4.24, the following nonlinear hybrid system bounds the trans-

264

formed hybrid system, v(s) ≤ x(s) ≤ w(s):

Mode 1:



















































































v′1(s) = min
(

δL1 (0.5v1(s) + v2(s) + pL1), δL1 (0.5v1(s) + w2(s) + pU1),

δU1 (0.5v1(s) + v2(s) + pL1), δU1 (0.5v1(s) + w2(s) + pU1)
)

,

v′2(s) = min
(

δL1 (−w1(s) + v2(s) + pL1), δL1 (−v1(s) + v2(s) + pU1),

δU1 (−w1(s) + v2(s) + pL1), δU1 (−v1(s) + v2(s) + pU1)
)

,

w′
1(s) = max

(

δL1 (0.5w1(s) + v2(s) + pL1), δL1 (0.5w1(s) + w2(s) + pU1),

δU1 (0.5w1(s) + v2(s) + pL1), δU1 (0.5w1(s) + w2(s) + pU1)
)

,

w′
2(s) = max

(

δL1 (−w1(s) + w2(s) + pL1), δL1 (−v1(s) + w2(s) + pU1),

δU1 (−w1(s) + w2(s) + pL1), δU1 (−v1(s) + w2(s) + pU1)
)

,

Mode 2:



















































































v′1(s) = min
(

δL2 (v1(s) + v2(s) − pU2), δL2 (v1(s) + w2(s) − pL2),

δU2 (v1(s) + v2(s) − pU2), δU2 (v1(s) + w2(s) − pL2)
)

,

v′2(s) = min
(

δL2 (−w1(s) + pL2), δL2 (−v1(s) + pU2),

δU2 (−w1(s) + pL2), δU2 (−v1(s) + pU2)
)

,

w′
1(s) = max

(

δL2 (w1(s) + v2(s) − pU2), δL2 (w1(s) + w2(s) − pL2),

δU2 (w1(s) + v2(s) − pU2), δU2 (w1(s) + w2(s) − pL2)
)

,

w′
2(s) = max

(

δL2 (−w1(s) + pL2), δL2 (−v1(s) + pU2),

δU2 (−w1(s) + pL2), δU2 (−v1(s) + pU2)
)

,

ne = 2, Tµ = 1, 2, Tτ = {Îi} where Î1 = [0, 1], Î2 = [1, 2], P = [0, 1]2, ∆ = [0, 1]2,

and we have state continuity as the transition functions with initial condition v(0) =

w(0) = (0, 2).

This bounding hybrid system can be integrated efficiently with an integrator that

supports the rigorous detection of events, due to the min and max functions in the

right hand sides. The following results are obtained using the JACOBIAN Dynamic

Modeling and Optimization Software [87] release 2.1A with the default options.

Figure 4-11 shows the bounding trajectories obtained for P = [0, 1]2 and ∆ =

[0, 1]2. To illustrate that the trajectories actually bound the transformed system, 20

265

-10

-5

 0

 5

 10

 15

 20

 25

 30

 35

 0 0.5 1 1.5 2

V
a

l
u

e

(a)

-20

-15

-10

-5

 0

 5

 10

 15

 0 0.5 1 1.5 2

V
a

l
u

e

(b)

Figure 4-11: Bounding trajectories (dashed lines) and random state trajectories (solid
lines) with P = [0, 1]2, ∆ = [0, 1]2 for (a) x̂1(s), and (b) x̂2(s).

random points were generated in P ×∆, and the state trajectories of the transformed

system were plotted alongside the bounding trajectories. It can be seen that the

bounds indeed enclose the solution of the transformed system, as should be expected

on application of Corollary 4.24. Figure 4-12 shows what happens when the bounds

on (p, δ) are changed to P = [0, 0.25] × [0.25, 0.5], ∆ = [0.5, 0.75] × [0.75, 1]. Again,

20 random points of (p, δ) were generated in P × ∆ and plotted together with the

new bounding trajectories. Besides bounding the state trajectories, it can be seen

from the scales of the vertical axis that the bounding trajectories are closer together

than those in Figure 4-11. Finally, Figure 4-13 illustrates the convergence of the

bounding trajectories in Theorem 4.26 as P and ∆ become degenerate. Note that

for the degenerate intervals P = ∆ = [0.5, 0.5]2 (case (f)), the bounding trajectories

become the same, i.e., v(s) = w(s) = x̂(0.5, 0.5, s).

4.3.2 Exploiting the Time Transformation

In the previous section, we have developed a method to bound the transformed hybrid

system based on the theory of differential inequalities. As previously mentioned, there

are no guarantees to the exactness of the generated bounds. In fact, as we shall see, for

some simple systems, the bounds that are generated are very weak, and can possess

very weak convergence properties.

Thus, there is a need to devise methods for constructing tighter bounds on the

266

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.5 1 1.5 2

V
a

l
u

e

(a)

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0 0.5 1 1.5 2

V
a

l
u

e

(b)

Figure 4-12: Bounding trajectories (dashed lines) and random state trajectories (solid
lines) with P = [0, 0.25] × [0.25, 0.5], ∆ = [0.5, 0.75] × [0.75, 1] for (a) x̂1(s), and (b)
x̂2(s).

-10

-5

 0

 5

 10

 15

 20

 25

 30

 35

 0 0.5 1 1.5 2

V
a

l
u

e

(a)

(a)

(b)

(b)

(c)

(c)

(d)

(d)

(e)

(e)

(f)

-20

-15

-10

-5

 0

 5

 10

 15

 0 0.5 1 1.5 2

V
a

l
u

e

(a)

(a)

(b)

(b)

(c)

(c)

(d)

(d)

(e)

(e)

(f)

Figure 4-13: Bounding trajectories with P = ∆ = Z2, where Z is given by (a) [0,1],
(b) [0.1,0.9], (c) [0.2,0.8], (d) [0.3, 0.7], (e) [0.4, 0.6], and (f) [0.5, 0.5]. The plot on
the left is for x̂1(s), while the one on the right is for x̂2(s).

267

state trajectories. As these bounds are utilized in the construction of convex relax-

ations, the tighter these bounds are, the tighter the relaxations that are constructed,

thus accelerating the convergence of the global optimization algorithm. There is an

obvious caveat: this is true provided that the cost of obtaining tighter bounds is

cheaper than the savings gained from the tighter relaxations. Of course, one can also

implement heuristics such as the following hybrid method: use an expensive method

for large partitions in the BB tree, but as the partitions shrink, switch to a cheaper

method.

In the subsequent sections, we will be presenting new techniques for bounding

time transformed dynamic systems, that exploit properties of the time transforma-

tion. These methods will not be applicable to the general form of the hybrid system

presented in Definition 4.3. Specifically, these methods will be applicable to:

1. Single-stage systems with nonlinear dynamics, in which only stationary simple

discontinuities are allowed, as long as a method exists to compute bounds for

the original system before the time transformation. In the case of LTV single-

stage systems with real-valued parameters, this implies that the exact bounds

for the time transformed system can be computed, because the exact bounding

trajectories for the original system can be computed.

2. Multi-stage systems with LTI dynamics. The bounds obtained for these systems

will have no guarantee of exactness beyond the first stage (epoch).

We shall begin by constructing bounds for a single stage problem whose duration is

allowed to vary, and then show how these techniques can be extended to multi-stage

systems with LTI dynamics. The impact of these techniques for the single-stage case

is that the exact bounding trajectories for a time transformed LTV dynamic system

can be obtained.

Consider the following (single-stage) system of ODEs:

ẋ = f(x, t), x(σ) = x0 (4.23)

268

where the time horizon is given by t ∈ [σ, τ], σ ∈ R is fixed (constant), τ ∈ [τL, τU] ⊂

R, σ ≤ τL ≤ τU , x(t) ∈ X ⊂ R
nx for all t ∈ [σ, τU], and f : X × [σ, τU] → R

nx is

piecewise continuous on X × [σ, τU] where only a finite number of stationary simple

discontinuities in t are allowed, and f is defined at each point of discontinuity. We

will assume that a solution exists and is unique for (4.23), at least in the sense of

Carothéodory. This assumption automatically implies that the state trajectories x(t)

are continuous in time (see [42, Chp. 2, Theorem 4.2]).

We now apply the CPET to the system described above (from t ∈ [σ, τ] to s ∈

[0, 1]):

t′ = τ − σ, t(τ, 0) = σ. (4.24)

Clearly, the solution of (4.24) gives

t(τ, s) = σ + s(τ − σ). (4.25)

Further, let y(τ, s) denote the solution of the transformed system:

y′(τ, s) = (τ − σ)f(y(τ, s), σ + s(τ − σ)), y(τ, 0) = x0. (4.26)

Lemma 4.28. Let y be the solution of the transformed system (4.26), and x be the

solution of the original system (4.23). Then, for any (τ ∗, s∗) ∈ [τL, τU] × [0, 1], the

transformed solution y(τ ∗, s∗) corresponds to the original solution x(σ + s∗(τ ∗ − σ))

of the original system (4.23), i.e., y(τ ∗, s∗) = x(σ + s∗(τ ∗ − σ)).

Proof. The lemma is trivial by construction: for any fixed τ ∗ ∈ [τL, τU], the time

transformation is simply a change of variables from t to s, where t = σ + s(τ ∗ − σ).

Clearly, we have dt = (τ ∗−σ) ds. Note that this is the same statement as (4.24) and

(4.25). The original ODE system is given by (4.23). Substituting for t (or changing

the independent variable), we obtain

x′(σ + s(τ ∗ − σ)) = (τ ∗ − σ)f(x(σ + s(τ ∗ − σ)), σ + s(τ ∗ − σ)).

269

Let y(τ ∗, s) ≡ x(σ + s(τ ∗ − σ)). Then, the above equation becomes

y′(τ ∗, s) = (τ ∗ − σ)f(y(τ ∗, s), σ + s(τ ∗ − σ)),

with initial condition

y(τ ∗, 0) = x(σ) = x0.

Hence, by construction, y(τ ∗, s) = x(σ + s(τ ∗ − σ)), ∀s ∈ [0, 1].

Remark. Note that the kind of discontinuities allowed in (4.23) are stationary sim-

ple ones. Scaled simple discontinuities as defined in Definition 4.2 are not allowed,

because then, Lemma 4.28 will not be applicable. This arises because τ would need

to be an argument of f in (4.23), as any scaled simple discontinuities in f will vary

depending on the value of τ . Hence, the value of the state variable x(t) would no

longer only be a function of t, but would also depend on τ as well. In other words,

the techniques discussed in this section will only apply when the values of the state

trajectories at any specified point in (original) time are the same regardless of the

duration of the (original) time horizon.

Lemma 4.29. Consider the original system (4.23). For any t∗ ∈ [σ, τU], let B(t∗) de-

note the set of transformed time points s∗ such that the transformed solution y(τ ∗, s∗)

of (4.26) is equal to x(t∗) for some τ ∗ ∈ [τL, τU], i.e., y(τ ∗, s∗) = x(t∗). Then, the

set B(t∗) is given by

B(t∗) = {s∗ | α ≤ s∗ ≤ β},

where α = t∗−σ
τU−σ

, β = t∗−σ
γ−σ

and γ = max(τL, t∗).

Proof. Consider any arbitrary t∗ ∈ [σ, τU]. From Lemma 4.28, any s∗ ∈ B(t∗) must

satisfy (4.25). Hence, to find the lower (upper) bound on s∗, one can pose the following

270

minimization (maximization) problem:

min
τ,s

s

s.t. t∗ = σ + s(τ − σ)

τ ∈ [τL, τU], s ∈ [0, 1].

Substituting s with the equality constraint, we obtain the following equivalent prob-

lem:

min
τ∈[τL,τU]

t∗ − σ

τ − σ

s.t. 0 ≤
t∗ − σ

τ − σ
≤ 1.

Since t∗ ∈ [σ, τU], the constraint is always satisfied for all τ ∈ [τL, τU]. Clearly,

the minimum exists and is attained at τU . The corresponding value of s for the

original problem is thus t∗−σ
τU−σ

. On the other hand, consider the maximization problem.

After substituting s with the equality constraint, we obtain the following equivalent

problem:

max
τ∈[τL,τU]

t∗ − σ

τ − σ

s.t. 0 ≤
t∗ − σ

τ − σ
≤ 1.

If t∗ ≤ τL, the constraint is always satisfied for all τ ∈ [τL, τU]. In this case, the

maximum exists and is attained at τL. The corresponding value of s for the original

maximization problem is thus t∗−σ
τL−σ

. If t∗ > τL, then the constraint is only satisfied for

τ ∈ [t∗, τU]. In this case, the maximum exists and is attained at t∗. The corresponding

value of s for the original maximization problem is thus t∗−σ
t∗−σ

= 1. Next, we consider

the case where α < s∗ < β. This implies that

σ +
t∗ − σ

β
< σ +

t∗ − σ

s∗
< σ +

t∗ − σ

α

271

or

τL ≤ γ < τ ∗ < τU ,

which implies that τ ∗ is feasible. Hence, s∗ ∈ B(t∗). To complete the proof, we have

to show that

y(τ ∗, s∗) = x(t∗), ∀s∗ ∈ B(t∗),

which clearly follows from Lemma 4.28.

Lemma 4.29 can be explained with a geometric illustration. Consider the following

system of ODEs,

ẋ1 = −x2, ẋ2 = x1, x(σ = 0) = (1,−1),

where τ ∈ [0.5, 2.0]. Figure 4-14 shows the trajectory of x1(t) for t ∈ [0, 2]. After

applying the time transformation, Figure 4-15 shows the trajectories of y1(s) for

s ∈ [0, 1], for the values of τ = τL = 0.5, τ = τU = 2.0 and τ = 1.25. As can

be seen, the trajectory for τ = τU can be thought of as a squeezing of the original

trajectory in Figure 4-14 to fit in the transformed time scale s ∈ [0, 1]. Consequently,

once the trajectory for τU has been established, all other trajectories in the range

τ ∈ [τL, τU] can be thought of as a stretching of the trajectory for τU . To illustrate

Lemma 4.29, consider the point on Figure 4-14 indicated by the dot at t = 0.228.

The points corresponding to the set B(0.228) is illustrated by the arrows through the

dots on Figure 4-15, where it can be seen that the lower bound on s for B(0.228) is

given by τ = 2.0 at s = 0.228/2.0 = 0.114, while the upper bound on s is given by

τ = max(0.228, 0.5) = 0.5 at s = 0.228/0.5 = 0.456. The same analysis holds true of

the point on Figure 4-14 indicated by the cross at t = 1.031. The points corresponding

to the set B(1.031) is illustrated by the arrows through the crosses on Figure 4-15,

where the lower bound on s is given by τ = 2.0 at s = 1.031/2.0 = 0.5155, while the

upper bound is given by γ = max(1.031, 0.5) = 1.031 at s = 1.031/1.031 = 1.

Although Lemma 4.29 is simple, it provides us with the basic mechanism (and

motivation) to prove the algorithms presented in the following sections. The basic

272

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0 0.5 1 1.5 2

 0.228 1.031

Figure 4-14: Trajectory of x1(t).

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0 0.2 0.4 0.6 0.8 1

 0.114 0.456 0.5155

Figure 4-15: Trajectories of y1(s) for τ ∈ {0.5, 1.25, 2.0}.

273

idea is as follows: we are going to track the trajectory, in the transformed time scale

s, of τ = τU . Consider now any fixed point s∗ of this trajectory. Lemma 4.29 assures

us that any point of any trajectory in the range τ ∈ [τL, τU] that corresponds to

the same original solution x(σ + s∗(τU − σ)) must lie to the right of s∗, and can

continue at most to the point of the trajectory with τ = τL, or to the end of the

transformed time horizon s = 1, whichever occurs first. The proof of the bounding

algorithms will then involve showing that the algorithm will bound, at every point in

time, the point of the trajectory τ = τU , along with all the associated points of all

the other trajectories, which must lie to the right of this original point. Since Lemma

4.28 assures us that any point on any trajectory on the transformed time scale has

a corresponding point on the original time scale (and thus, a corresponding point on

the trajectory τ = τU), this suffices to show correctness of the bounding algorithms.

4.3.3 Monotonic Bounding Hybrid Systems

In this section, we will describe a bounding strategy that produces monotonically in-

creasing(decreasing) upper(lower) bounds. Consider the following system that tracks

τ = τU in the transformed time scale,

u′(s) = (τU − σ)f(u(s), σ + s(τU − σ)), u(0) = x0.

We can then construct the following (lower bounding) hybrid system with state vari-

ables v(s) ∈ R
nx , where each element of v(s) is in one of the following modes:

Mode 1: v′i(s) = u′i(s), switch to Mode 2 if u′i(s) ≥ 0, (4.27)

Mode 2: v′i(s) = 0, switch to Mode 1 if ui(s) ≤ vi(s) − εs, (4.28)

for all i = 1, . . . , nx, εs > 0 is some fixed tolerance, v(0) = u(0), and the following

transition function is enforced at all transitions,

vi(σj+1) = ui(τj),

274

at the transition time τj = σj+1 for the transition between some arbitrary epoch Ij

and Ij+1, i.e., the value of vi for the successor mode is set to the value of ui for the

predecessor mode at the transition, for all i = 1, . . . , nx. Similarly, we can construct

the following (upper bounding) hybrid system with state variables w(s) ∈ R
nx , where

each element of w(s) is in one of the following modes:

Mode 1: w′
i(s) = u′i(s), switch to Mode 2 if u′i(s) ≤ 0, (4.29)

Mode 2: w′
i(s) = 0, switch to Mode 1 if ui(s) ≥ wi(s) + εs, (4.30)

for all i = 1, . . . , nx, w(0) = u(0), and the following transition function is enforced at

all transitions,

wi(σj+1) = ui(τj),

at the transition time τj = σj+1 for the transition between some arbitrary epoch Ij

and Ij+1, for all i = 1, . . . , nx. Note that the initial modes for the bounding hybrid

systems can be determined for any element i ∈ {1, . . . , nx} as follows:

vi











Mode 1 if u′i(0) < 0

Mode 2 otherwise.

wi











Mode 1 if u′i(0) > 0

Mode 2 otherwise.

Lemma 4.30. Consider any arbitrary i ∈ {1, . . . , nx}. Suppose that vi is in Mode 1

for the transformed time interval s ∈ [θ, λ], where 0 ≤ θ ≤ λ ≤ 1, and the following

condition holds

vi(θ) ≤ yi(τ, θ), ∀τ ∈ [τL, τU]. (4.31)

Then,

vi(s) ≤ yi(τ, s), ∀(τ, s) ∈ [τL, τU] × [θ, λ]. (4.32)

Proof. Since vi is in Mode 1, v′i < 0 for all s ∈ [θ, λ), otherwise a transition would

have been taken to Mode 2. This clearly implies that vi(s) is (strictly) monotonically

275

decreasing in s ∈ [θ, λ], or, for any fixed s∗ ∈ [θ, λ],

vi(s
∗) ≤ vi(s), ∀s ∈ [θ, s∗]. (4.33)

Note that v′i may be zero at s = λ, however, since the point comprises a set of measure

zero, it does not affect the above result. Assume, for contradiction, that there exists

some (τ ∗, s∗) ∈ [τL, τU] × [θ, λ] such that

vi(s
∗) > yi(τ

∗, s∗).

From Lemma 4.29, there exists some pair (τU , α), α ≤ s∗, such that yi(τ
U , α) =

yi(τ
∗, s∗). Consider first the case where α < θ. Since α < θ ≤ s∗, Lemma 4.29 ensures

that there exists some pair (τ †, θ), τ † ∈ [τL, τU], such that yi(τ
†, θ) = yi(τ

∗, s∗). This

implies

yi(τ
†, θ) = yi(τ

∗, s∗) < vi(s
∗) ≤ vi(θ) ≤ yi(τ

†, θ)

where the last two inequalities come from (4.33) and (4.31), which is clearly a con-

tradiction. Consider now the remaining case where θ ≤ α ≤ s∗. Then,

yi(τ
U , α) = yi(τ

∗, s∗) < vi(s
∗) ≤ vi(α),

where the last inequality comes from (4.33). Since vi is in Mode 1, v′i(s) = u′i(s) for

all s ∈ [θ, λ]. Also, since vi(θ) ≤ yi(τ
U , θ) = ui(θ) from (4.31), this implies that

vi(α) ≤ yi(τ
U , α).

The last two equations clearly form a contradiction. Hence, (4.32) must hold.

Lemma 4.31. Consider any arbitrary i ∈ {1, . . . , nx}. Suppose that wi is in Mode 1

for the transformed time interval s ∈ [θ, λ], where 0 ≤ θ ≤ λ ≤ 1, and the following

condition holds

wi(θ) ≥ yi(τ, θ), ∀τ ∈ [τL, τU].

276

Then,

wi(s) ≥ yi(τ, s), ∀(τ, s) ∈ [τL, τU] × [θ, λ].

Proof. The proof is straightforward, and mirrors that of Lemma 4.30.

Lemma 4.32. Consider any arbitrary i ∈ {1, . . . , nx}. Suppose that vi is in Mode 2

for the transformed time interval s ∈ [θ, λ], where 0 ≤ θ ≤ λ ≤ 1, and the following

condition holds

vi(θ) ≤ yi(τ, θ) + εs, ∀τ ∈ [τL, τU]. (4.34)

Then,

vi(s) ≤ yi(τ, s) + εs, ∀(τ, s) ∈ [τL, τU] × [θ, λ]. (4.35)

Proof. Since vi is in Mode 2, vi(s) < ui(s) + εs ∀s ∈ [θ, λ], otherwise a transition

would have been taken to Mode 1. This implies that

vi(θ) = vi(s) < ui(s) + εs, ∀s ∈ [θ, λ], (4.36)

since v′i(s) = 0 for all s ∈ [θ, λ]. Assume, for contradiction, that there exists some

(τ ∗, s∗) ∈ [τL, τU] × [θ, λ] such that

vi(s
∗) > yi(τ

∗, s∗) + εs.

From Lemma 4.29, there exists some pair (τU , α), α ≤ s∗, such that yi(τ
U , α) =

yi(τ
∗, s∗). Consider first the case where α < θ. Since α < θ ≤ s∗, Lemma 4.29 ensures

that there exists some pair (τ †, θ), τ † ∈ [τL, τU], such that yi(τ
†, θ) = yi(τ

∗, s∗). This

implies

yi(τ
†, θ) = yi(τ

∗, s∗) < vi(s
∗) − εs = vi(θ) − εs ≤ yi(τ

†, θ)

where the second equality comes from (4.36) and the second inequality from (4.34),

which is clearly a contradiction. Consider now the remaining case where θ ≤ α ≤ s∗.

Then,

yi(τ
U , α) = yi(τ

∗, s∗) < vi(s
∗) − εs = vi(α) − εs < ui(α) = yi(τ

U , α),

277

where the second inequality comes from (4.36), which is clearly a contradiction.

Hence, (4.35) must hold.

Lemma 4.33. Consider any arbitrary i ∈ {1, . . . , nx}. Suppose that wi is in Mode 2

for the transformed time interval s ∈ [θ, λ], where 0 ≤ θ ≤ λ ≤ 1, and the following

condition holds

wi(θ) ≥ yi(τ, θ) − εs, ∀τ ∈ [τL, τU].

Then,

wi(s) ≥ yi(τ, s) − εs, ∀(τ, s) ∈ [τL, τU] × [θ, λ].

Proof. The proof is straightforward and mirrors that of Lemma 4.32.

We are now in position to present the bounding theorem:

Theorem 4.34. Assume that there are a finite number of events (transitions taken)

for the bounding hybrid systems (4.27), (4.28), (4.29) and (4.30). Then, they bound

the transformed system (4.26) for all τ ∈ [τL, τU], i.e.,

v(s) − εs ≤ y(τ, s) ≤ w(s) + εs, ∀(τ, s) ∈ [τL, τU] × [0, 1],

where εs = (εs, . . . , εs).

Proof. Consider any arbitrary element i ∈ {1, . . . , nx}. Consider next the case of the

lower bounding hybrid system, v. Suppose that vi starts in Mode 1 at s = 0. Say

that a transition occurs to Mode 2 at some time s1 ∈ [0, 1]. Since vi(0) = ui(0), and

vi(0) = yi(τ, 0) ∀τ ∈ [τL, τU], we can apply Lemma 4.30 to obtain

vi(s) ≤ yi(τ, s) + εs, ∀(τ, s) ∈ [τL, τU] × [0, s1].

Let s−1 and s+
1 represent the time s1 at the epoch boundary for the predecessor and

successor mode respectively. Since vi(0) = ui(0) and v′i(s) = u′i(s) for all s ∈ [0, s1],

we have vi(s
−
1) = ui(s

−
1). At s = s1, we are now in Mode 2. From the transition

function, we have vi(s
+
1) = ui(s

−
1) = vi(s

−
1), which implies vi(s

+
1) ≤ yi(τ, s

+
1) + εs for

278

all τ ∈ [τL, τU] from the equation above. Suppose that a transition occurs to Mode 1

at some time s2 ∈ [s1, 1]. We can then apply Lemma 4.32 to obtain

vi(s) ≤ yi(τ, s) + εs, ∀(τ, s) ∈ [τL, τU] × [s1, s2].

As above, let s−2 and s+
2 represent the time s2 at the epoch boundary for the predeces-

sor and successor mode respectively. At s2, the transition occurs when the transition

condition ui(s) ≤ vi(s)−εs is satisfied, so we have vi(s
−
2)−εs = ui(s

−
2). From the tran-

sition function, we have vi(s
+
2) = ui(s

−
1), which implies that vi(s

+
2) ≤ yi(τ, s

+
2), ∀τ ∈

[τL, τU], from the above equation. Thus, we can repeat the procedure, and apply

Lemma 4.30 to the epoch with Mode 1 starting at s = s2. By assumption, there can

only be a finite number of transitions within s ∈ [0, 1]. Thus, by finite mathematical

induction, we obtain

vi(s) − εs ≤ yi(τ, s), ∀(τ, s) ∈ [τL, τU] × [0, 1].

Next, we consider the remaining case where vi starts in Mode 2 at s = 0. We can

apply the same analysis presented above to arrive at the same result after finite

mathematical induction.

Consider now the case of the upper bounding hybrid system, wi(s). It is straight-

forward to show that a similar induction argument as that presented above holds,

with Lemma 4.31 and 4.33 used in place of Lemma 4.30 and 4.32, to obtain

wi(s) + εs ≥ yi(τ, s), ∀(τ, s) ∈ [τL, τU] × [0, 1].

Since the choice of i was arbitrary, we have

v(s) − εs ≤ y(τ, s) ≤ w(s) + εs, ∀(τ, s) ∈ [τL, τU] × [0, 1].

We will now discuss the steps taken to implement Theorem 4.34. Monotonic

279

bounding is easily implemented on any integrator that is capable of robustly and

reliably detecting zero event points. Here, we will illustrate how this is done us-

ing DAEPACK and DSL48SE [128]. First, the system u(s) is constructed from y(τ, s).

Next, the lower and upper bounding systems v(s) and w(s) are constructed using the

IF-THEN-ELSE conditional statements in FORTRAN to represent the transition condi-

tions. This is described by the following:
Pseudo Code Block: Monotonic res0 File

do i=1,nx

! lower bounding system

rhs = udot(i)

if (udot(i) .ge. 0d0) then

rhs = 0d0

elseif (u(i) .gt. v(i) - eps) then

rhs = 0d0

endif

vdot(i) = rhs

! upper bounding system

rhs = udot(i)

if (udot(i) .le. 0d0) then

rhs = 0d0

elseif (u(i) .lt. w(i) + eps) then

rhs = 0d0

endif

wdot(i) = rhs

enddo

Here, udot(i) ≡ u′i, vdot(i) ≡ v′i, wdot(i) ≡ w′
i, u(i) ≡ ui(s), v(i) ≡ vi(s),

w(i) ≡ wi(s), and eps ≡ εs. Note that we have made use of the special structure

of the bounding hybrid systems to write the above residual file. No additional mod-

ifications have to be made to the event detection algorithm, other than the simple

280

implementation of the transition functions after each event has been detected. To

see that the above residual file is correct, consider the ith element of lower bounding

system, vi. First, we set v′i = u′i, i.e., the default mode for vi is Mode 1. Next, the

conditional statements force v′i = 0, i.e., they describe conditions under which vi is

in Mode 2. The first if condition is the transition condition from Mode 1 to Mode

2. The second elseif condition simply describes the condition for which vi stays in

Mode 2, i.e., the negation of the transition condition from Mode 2 to Mode 1.

For the examples presented in Section 4.3.5, εs was set to the value of the absolute

tolerance of the integrator. Besides preventing chattering or Zeno behavior between

the modes of the bounding hybrid system, it also helps to prevent spurious events

from being detected in the way that the code has been set up, because the integrator

(DSL48SE) calculates the trajectories of u, v and w within some specified tolerances.

While any of the bounding trajectories for element i are in Mode 1, they track the

value of ui(s). However, due to the presence of (possible) events and their consistent

re-initialization calculations, these trajectories will not be exactly the same numer-

ically for every epoch in which the active mode is 1. Thus, having εs > 0 helps to

prevent these spurious events from being detected.

Before we end this section, we shall extend Theorem 4.34 to handle parameter

dependent ODEs and multi-stage LTI systems. Consider the single-stage ODE system

in (4.11). We will make the following assumption: there exists some method to bound

the states, x(u(t), t), provided by the following (possibly hybrid) bounding system,

v̇ = h(v,w, z, t), v(t0) = v0, (4.37)

ẇ = h(v,w, z, t), w(t0) = w0, (4.38)

ż = h̃(z, t), z(t0) = z0, (4.39)

where v(t),w(t) ∈ R
nx and z(t) ∈ R

nz for all t ∈ [t0, tf], nz ≥ 0 is the size of the

auxiliary state variables z(t), such that

v(t) ≤ x(u(t), t) ≤ w(t), ∀u(t) ∈ U(t), t ∈ [t0, tf].

281

In addition, we will assume that h, h and h̃ are piecewise continuous on their re-

spective domains, where only a finite number of stationary simple discontinuities are

allowed. We will also assume that a solution exists and is unique for the bounding

system. In addition, we will assume that the state trajectories x(t) are continuous

in time, although they may be nonsmooth (note that if the bounding systems are

hybrid, this assumption implies that state continuity holds for all transitions).

Note that the inclusion of the auxiliary variables z(t) encompasses the use of time

invariant parameters in the bounding systems, e.g., to incorporate pL,pU , δL, δU in

Corollary 4.24 into the framework above, one can simply force z(t) = (pL,pU , δL, δU)

for all t ∈ [t0, tf] by setting h̃ = 0 and setting z0 = (pL,pU , δL, δU).

Let us now assume that we wish to apply the time transformation to (4.11).

Without loss of generality, we will set σ = t0 and τU = tf . Then, the form of

the bounding system (4.37), (4.38) and (4.39) can be cast in the form of (4.23) by

considering x̃(t) = (v(t),w(t), z(t)). Hence, we can apply Theorem 4.34 to obtain

the following bounds,

ṽ(s) − εs ≤ ỹ(τ, s) ≤ w̃(s) + εs, ∀(τ, s) ∈ [τL, τU] × [0, 1],

where ṽ(s) and w̃(s) are the lower and upper bounds for the transformed system

respectively. Clearly, in terms of implementation, we only need to track the lower

bounds for x̃1, . . . , x̃nx
and the upper bounds for x̃nx+1, . . . , x̃2nx

. Let v̂(τ, s), ŵ(τ, s)

and y(u(σ + s(τ − σ)), τ, s) represent the transformed solution of v(t), w(t) and

x(u(t), t) respectively under the CPET. Then, it follows from the CPET, Lemma

4.28 and Theorem 4.34 that the following holds,

ṽ(s) − εs ≤ v̂(τ, s) ≤ y(u(σ + s(τ − σ)), τ, s) ≤ ŵ(τ, s) ≤ w̃(s) + εs,

∀u(σ + s(τ − σ)) ∈ U(σ + s(τ − σ)), τ ∈ [τL, τU], s ∈ [0, 1], (4.40)

which shows that we have obtained rigorous bounds for the transformed system of

(4.11).

282

It is clear from the form of Corollary 4.24 that it satisfies the assumptions made

for the bounding system (4.37), (4.38) and (4.39). We will now consider the special

case where we have a single-stage LTV ODE system with a finite number of stationary

simple discontinuities. First, we note that we have a method of calculating the implied

state bounds for LTV ODE system with time invariant, real valued parameters (see

Section 2.7). Let the system be given by

ẋ = A(t)x + B(t)p + q(t), x(σ) = E0p + k0.

Then, the implied state bounds are given by the single-stage version of (2.13),

xLi (t) = ni(t) +

np
∑

j=1

λLij(t), xUi (t) = ni(t) +

np
∑

j=1

λUij(t),

for all i = 1, . . . , nx where λLij(t) and λUij(t) are given by the following for all j =

1, . . . , np,

λLij(t) =











mij(t)p
L
j if mij(t) ≥ 0,

mij(t)p
U
j otherwise,

λUij(t) =











mij(t)p
U
j if mij(t) ≥ 0,

mij(t)p
L
j otherwise,

and M(t) and n(t) are given by the solution to the following ODE system,

Ṁ = A(t)M + B(t) M(σ) = E0, (4.41)

ṅ = A(t)n + q(t) n(σ) = k0. (4.42)

Note the reformulation of the min and max in (2.13) into a reversible transition condi-

tion, which should be treated as described in Chapter 1. The implied state bounds are

continuous (see [120, Proposition 4.1]). We can clearly transform the algebraic equa-

tions above by differentiating with respect to t into the following equivalent (hybrid)

283

differential equations,

ẋLi (t) = ṅi(t) +

np
∑

j=1

λ̂Lij(t), ẋUi (t) = ṅi(t) +

np
∑

j=1

λ̂Uij(t), (4.43)

for all i = 1, . . . , nx where λ̂Lij(t) and λ̂Uij(t) are given by the following for all j =

1, . . . , np,

λ̂Lij(t) =











ṁij(t)p
L
j if mij(t) ≥ 0,

ṁij(t)p
U
j otherwise,

λ̂Uij(t) =











ṁij(t)p
U
j if mij(t) ≥ 0,

ṁij(t)p
L
j otherwise,

with state continuity holding for each transition, and the initial condition

xLi (σ) = k0i +

np
∑

j=1

λ̃Lij, xUi (σ) = k0i +

np
∑

j=1

λ̃Uij,

for all i = 1, . . . , nx where λ̃Lij and λ̃Uij are given by the following for all j = 1, . . . , np,

λ̃Lij =











e0ijp
L
j if e0ij ≥ 0,

e0ijp
U
j otherwise,

λ̃Uij =











e0ijp
U
j if e0ij ≥ 0,

e0ijp
L
j otherwise,

for all i = 1, . . . , nx. We have thus formulated the implied state bounds in the form

of the bounding system (4.37), (4.38) and (4.39), since we can set v(t) = xL(t),

w(t) = xU(t), and z(t) = (M1(t), . . . ,Mnx
(t),n(t)) where Mi(t) is the i-th column

of M(t). Thus, the analysis performed above is valid, and (4.40) holds.

Finally, we consider the case where we have multi-stage LTI systems.

Definition 4.35. Consider the hybrid system defined in Definition 4.3 with points 3

and 4 replaced by the following,

284

3. The parameterization of the bounded real valued controls,

u(p, δ, t) = S(m∗
i)p + W(m∗

i)δ + v(m∗
i),

uL(t) ≤ u(p, δ, t) ≤ uU(t), ∀t ∈ [σ1, σ1 +
ne
∑

j=1

δUj],

where uL(t) and uU(t) are known lower and upper bounds on the controls

u(p, δ, t), and S(m∗
i), W(m∗

i) and v(m∗
i) are known for all i = 1, . . . , ne.

4. The LTV ODE system for each mode m∗
i ∈M , which is given by

ẋ(p, δ, t) = A(m∗
i)x(p, δ, t) + B̃(m∗

i)p + C̃(m∗
i)δ + D̃(m∗

i)u(p, δ, t) + q̃(m∗
i),

where A(m∗
i) , B̃(m∗

i), C̃(m∗
i), D̃(m∗

i) and q̃(m∗
i) are known for all i = 1, . . . , ne.

After control parameterization, we have

ẋ(p, δ, t) = A(m∗
i)x(p, δ, t) + B(m∗

i)p + C(m∗
i)δ + q(m∗

i), (4.44)

where B(m∗
i) ≡ B̃(m∗

i) + D̃(m∗
i)S(m∗

i), C(m∗
i) ≡ C̃(m∗

i) + D̃(m∗
i)W(m∗

i) and q(m∗
i) ≡

D̃(m∗
i)v(m∗

i) + q̃(m∗
i) are known for all i = 1, . . . , ne.

Note that this formulation clearly supports the use of piecewise constant control

profiles in the control parameterization framework, where there is a constant control

element in each epoch (simply introduce a parameter pi for each desired constant

control element). It is straightforward to incorporate more than one control element in

an epoch by splitting the epoch into more epochs as needed, enforcing state continuity

at the newly introduced transitions, and adding more optimization parameters as

needed. It is also possible to handle or “simulate” scaled discontinuities within the

dynamics by increasing the number of modes, epochs and optimization variables

suitably. For example, consider the following scenario. We have a hybrid system

with 3 epochs, 3 modes M = {1, 2, 3}, Tµ = 1, 2, 3 and the dynamics for the LTI

285

system in epoch 2 is given by

ẋ(p, δ, t) = A(2)x(p, δ, t) + B(2)p + C(2)δ + q(2).

Suppose we wished to incorporate a scaled discontinuity in (the middle of) epoch 2,

such that for t ≤ σ2 + (τ2 − σ2)/2, the dynamics are given by

ẋ(p, δ, t) = A(α)x(p, δ, t) + B(α)p + C(α)δ + q(α),

while for t > σ2 + (τ2 − σ2)/2, the dynamics are given by

ẋ(p, δ, t) = A(β)x(p, δ, t) + B(β)p + C(β)δ + q(β).

Then, we could reformulate the original hybrid system into the following equivalent

hybrid system with 4 epochs, 4 modes M = {1, α, β, 3}, Tµ = 1, α, β, 3, state conti-

nuity for the transition between mode α and β, and the following linear constraint

δ2 = δ3.

Clearly, the lower and upper bounds for the durations of epochs 2 and 3 of the

reformulated hybrid system would be given by δL2o/2 and δUδ2o
/2 respectively, where

δL2o and δU2o are the lower and upper bounds respectively for the second epoch of the

original hybrid system.

We will now present the algorithm for computing bounds for the transformed sys-

tem (under the CPET) of the multi-stage hybrid system in Definition 4.35. The idea

is to compute the bounds for the first (transformed) epoch, estimate the bounds for

the initial conditions for the second (transformed) epoch, treat the initial conditions

as parameters for the second (transformed) epoch, and repeat. This is very similar

in structure as Algorithm 3.26 presented in Section 3.4.1. It should be clear from the

description of the algorithm and the discussion above, that the algorithm does indeed

produce rigorous bounds for the hybrid system in Definition 4.35.

286

Algorithm 4.36.

1. (First epoch) Extract the exact bounding system ẋL, ẋU , Ṁ and ṅ as de-

scribed above in (4.41), (4.42) and (4.43) for the LTI dynamic system in the

first epoch given by

ẋ(p, δ, t) = A(m∗
1)x(p, δ, t) + B(m∗

1)p + C(m∗
1)δ + q(m∗

1),

x(p, δ, σ) = E0p + J0δ + k0,

where the real valued parameters are given by (p, δ) ∈ P × ∆.

2. Apply Theorem 4.34 with σ = 0, τL = δL1 , τU = δU1 to the extracted bounding

system, where v(t) = xL(t), w(t) = xU(t), and z(t) = (M1(t), . . . ,Mnx
(t),n(t))

where Mi(t) is the i-th column of M(t) for the system (4.37), (4.38) and (4.39),

to obtain the following form of (4.40),

ṽ(s) − εs ≤ x̂(p, δ, s) ≤ w̃(s) + εs, ∀(p, δ, s) ∈ P × ∆ × [0, 1],

where x̂(p, δ, s) is the solution of the transformed hybrid system under the

CPET, and ṽ(s)− εs and w̃(s) + εs are the generated lower and upper bounds

respectively.

3. (Subsequent epochs) For i = 2 to ne do:

(a) Calculate the following interval vector [θ,λ] from the natural interval ex-

tension of (4.2),

[θ,λ] = Di[ṽ(i− 1), w̃(i− 1)] + Ei[p
L,pU] + Ji[δ

L, δU] + ki.

(b) Augment the LTI dynamic system in epoch Ii by introducing the auxiliary

real valued parameters ζ ∈ [θ,λ] ⊂ R
nx to serve as the initial conditions

287

for the epoch,

ẋ(p, δ, ζ, t) = A(m∗
i)x(p, δ, ζ, t) + B(m∗

i)p + C(m∗
i)δ + q(m∗

i),

x(p, δ, ζ, σ) = ζ.

Extract the exact bounding system ẋL, ẋU , Ṁ and ṅ as described above

in (4.41), (4.42) and (4.43) for this augmented LTI dynamic system where

the real valued parameters are given by (p, δ, ζ) ∈ P × ∆ × [θ,λ].

(c) Apply Theorem 4.34 with σ = 0, τL = δL1 , τU = δU1 to the ex-

tracted bounding system, where v(t) = xL(t), w(t) = xU(t), and z(t) =

(M1(t), . . . ,Mnx
(t),n(t)) where Mi(t) is the i-th column of M(t) for the

system (4.37), (4.38) and (4.39), to obtain the following form of (4.40),

ṽ(s) − εs ≤ x̂(p, δ, s) ≤ w̃(s) + εs, ∀(p, δ, s) ∈ P × ∆ × [i− 1, i].

Note that Steps 2 and 3(c) in Algorithm 4.36 work because we are considering

LTI dynamic systems. The form of (4.41) and (4.42) becomes time invariant,

Ṁ = A(m∗
i)M + B(m∗

i) M(σ = 0) = E0,

ṅ = A(m∗
i)n + q(m∗

i) n(σ = 0) = k0,

which allows the bounding system of each epoch to be extracted without having to

take into account the durations of previous epochs, i.e., the above system can be

integrated under Theorem 4.34 with σ = 0, τL = δLi , and τU = δUi because the

differential equations are time invariant. The algorithm cannot be easily extended to

the LTV case because it is not trivial to extract a suitable bounding system for the

application of Theorem 4.34 when the form of (4.41) and (4.42) is a function of time

(and thus depends on the durations of any previous epochs).

288

4.3.4 Tight Bounding Hybrid Systems

In this section, we will describe a bounding strategy that produces exact bounds,

within some εs > 0 tolerance, for the system (4.23) under the CPET. Consider the

following system that tracks τ = τU in the transformed time scale,

u′(s) = (τU − σ)f(u(s), σ + s(τU − σ)), u(0) = x0, (4.45)

and the following system that tracks τ = τL in the transformed time scale,

q′(s) = (τL − σ)f(q(s), σ + s(τL − σ)), q(0) = x0. (4.46)

Next, we introduce the following definition of zero event points:

Definition 4.37 (Zero Event Points). Consider the function g : R → R. We say that

s∗ ∈ R is an ascending zero event point of g at s∗ if there exists some ε > 0 such

that

g(s) < 0 for all s ∈ (s∗, s∗ + ε), and g(s) ≥ 0 for all s ∈ (s∗ − ε, s∗).

Similarly, we say that s∗ ∈ R is a descending zero event point of g at s∗ if there

exists some ε > 0 such that

g(s) > 0 for all s ∈ (s∗, s∗ + ε), and g(s) ≤ 0 for all s ∈ (s∗ − ε, s∗).

Note that these zero event points are essentially the points at which the function

g first touches the zero axis, and they essentially represent the times at which the

events occur for the bounding hybrid systems defined below.

289

We can then introduce the following sets, for all i ∈ {1, . . . , nx},

AU
i ≡ {(s, j) | s is the jth ascending zero event point of g = u′i},

AL
i ≡ {(s, j) | s is the jth ascending zero event point of g = q′i},

BUi ≡ {(s, j) | s is the jth descending zero event point of g = u′i},

BLi ≡ {(s, j) | s is the jth descending zero event point of g = q′i}.

The index j in the pair (s, j) imposes order for the zero event points. For example,

suppose that there are 3 descending zero event points for g = u′2 at the points s =

0.2, 0.3 and 0.55. Then, the set AU
2 = {(0.2, 1), (0.3, 2), (0.55, 3)}. Similar to the

assumption that there are a finite number of events for the bounding hybrid systems

in Theorem 4.34, we will assume that there are a finite number of zero event points

for u′i and q′i for all i ∈ {1, . . . , nx} over the finite time horizon of interest, s ∈ [0, 1].

Based on the sets above, we can define the following sets, for all i ∈ {1, . . . , nx},

s ∈ [0, 1],

CUi (s) ≡ {(s∗, j) | (s∗, j) ∈ AU
i for any j, s∗ ≤ s},

CLi (s) ≡ {(s∗, j) | (s∗, j) ∈ AL
i for any j, s∗ ≤ s},

DU
i (s) ≡ {(s∗, j) | (s∗, j) ∈ BUi for any j, s∗ ≤ s},

DL
i (s) ≡ {(s∗, j) | (s∗, j) ∈ BLi for any j, s∗ ≤ s},

Gi(s) ≡ {(s, j) | (s, j) ∈ CUi (s), (s∗, j) 6∈ CLi (s) for any s∗},

Hi(s) ≡ {(s, j) | (s, j) ∈ DU
i (s), (s∗, j) 6∈ DL

i (s) for any s∗}.

For the lower bounding system, for any i ∈ {1, . . . , nx}, s
∗ ∈ [0, 1], consider the

following optimization problem,

inf
s∈[0,1],j∈Z

ui(s)

(P1a)
s.t. (s, j) ∈ Gi(s

∗).

290

Let ηi(s
∗) be the solution value, and ZL(s∗) be the set arg inf of the problem. Fur-

thermore, let γUi (s∗) be the solution value of the following problem,

inf
j∈Z

j

(P1b)
s.t. (s, j) ∈ ZL(s∗).

If the set Gi(s
∗) is empty, then the minimum to (P1a) and minimum to (P1b) does

not exist, ηi(s
∗) is set to +∞, and γUi (s∗) is set to +∞. Otherwise, since it is assumed

that there is a finite number of zero event points, the set Gi(s
∗) has finite cardinality,

and the extrema will exist for (P1a) and (P1b).

Similarly, for the upper bounding system, we introduce the following optimization

problem, for any i ∈ {1, . . . , nx}, s
∗ ∈ [0, 1],

sup
s∈[0,1],j∈Z

ui(s)

(P2a)
s.t. (s, j) ∈ Hi(s

∗).

Let µi(s
∗) be the solution value, and ZU(s∗) be the set arg sup of the problem. Fur-

thermore, let ρUi (s∗) be the solution value of the following problem,

inf
j∈Z

j

(P2b)
s.t. (s, j) ∈ ZU(s∗).

If the set Hi(s
∗) is empty, then the maximum to (P2a) and minimum to (P2b) does

not exist, µi(s
∗) is set to −∞, and ρUi (s∗) is set to +∞. Otherwise, since it is assumed

that there is a finite number of zero event points, the set Hi(s
∗) has finite cardinality,

and the extrema will exist for (P2a) and (P2b).

Finally, for any i ∈ {1, . . . , nx}, s
∗ ∈ [0, 1], consider the following optimization

291

problem,

sup
s∈[0,1],j∈Z

j

(P3)
s.t. (s, j) ∈ CLi (s∗).

Let γLi (s∗) be the solution value of (P3). If the set CLi (s∗) is empty, then the maximum

to (P3) does not exist and γLi (s∗) is set to −∞. Otherwise, since it is assumed that

there is a finite number of zero event points, the set CLi (s∗) has finite cardinality,

and the maximum exists for (P3). Similarly, we have the corresponding optimization

problem,

sup
s∈[0,1],j∈Z

j

(P4)
s.t. (s, j) ∈ DL

i (s∗).

Let ρLi (s∗) be the solution value of (P4). If the set DL
i (s∗) is empty, then the maximum

to (P4) does not exist and ρLi (s∗) is set to −∞. Otherwise, since it is assumed that

there is a finite number of zero event points, the set DL
i (s∗) has finite cardinality, and

the maximum exists for (P4).

To illustrate these sets and trajectories, consider the example given above where

AU
2 = {(0.2, 1), (0.3, 2), (0.55, 3)}, and u2(0.15) = 15, u2(0.35) = 5 and u2(0.78) = 10.

Suppose that τU − σ = 2(τL − σ). Then, we have AL
2 = {(0.4, 1), (0.6, 2)}. The sets

CL2 (s), CU2 (s), G2(s), and the trajectories η2(s), γ
U
2 (s), γL2 (s) are then given by the

following,

CU2 (s) =







































∅ for s ∈ [0, 0.2]

{(0.2, 1)} for s ∈ [0.2, 0.3]

{(0.2, 1), (0.3, 2)} for s ∈ [0.3, 0.55]

{(0.2, 1), (0.3, 2), (0.55, 3)} for s ∈ [0.55, 1]

292

CL2 (s) =



























∅ for s ∈ [0, 0.4]

{(0.4, 1)} for s ∈ [0.4, 0.6]

{(0.4, 1), (0.6, 2)} for s ∈ [0.6, 1]

G2(s) =







































































∅ for s ∈ [0, 0.2]

{(0.2, 1)} for s ∈ [0.2, 0.3]

{(0.2, 1), (0.3, 2)} for s ∈ [0.3, 0.4]

{(0.3, 2)} for s ∈ [0.4, 0.55]

{(0.3, 2), (0.55, 3)} for s ∈ [0.55, 0.6]

{(0.55, 3)} for s ∈ [0.6, 1]

η2(s) =







































∅ for s ∈ [0, 0.2]

15 for s ∈ [0.2, 0.4]

5 for s ∈ [0.4, 0.55]

10 for s ∈ [0.55, 1]

γU2 (s) =







































+∞ for s ∈ [0, 0.2]

1 for s ∈ [0.2, 0.4]

2 for s ∈ [0.4, 0.55]

3 for s ∈ [0.55, 1]

γL2 (s) =



























−∞ for s ∈ [0, 0.4]

1 for s ∈ [0.4, 0.6]

2 for s ∈ [0.6, 1]

.

Note that we have used the convention of closed intervals for each epoch (the

bounding systems are hybrid systems, as will be seen later). These sets and (hybrid)

trajectories look complicated, but they are easy to compute and store, and only

depend upon the ability to rigorously detect the zero event points of u′i and q′i for

all i ∈ {1, . . . , nx}. Once each zero event point has been detected, the sets and

trajectories can be constructed appropriately.

We are now in position to construct the following (lower bounding) hybrid system

with state variables v(s) ∈ R
nx , where each element of v(s) is in one of the following

293

modes:

Mode 1: v′i(s) = u′i(s), switch to Mode 2 if u′i(s) ≥ 0, (4.47)

Mode 2: v′i(s) = 0,











switch to Mode 1 if ui(s) ≤ vi(s) − εs,

switch to Mode 3 if q′i(s) ≥ 0 and γUi (s†−) = γLi (s†+),

(4.48)

Mode 3: v′i(s) = q′i(s),











switch to Mode 1 if ui(s) ≤ vi(s) − εs,

switch to Mode 2 if ηi(s) ≤ vi(s),

(4.49)

for all i = 1, . . . , nx, v(0) = u(0), the following transition function is enforced for all

transitions to the successor mode 1, i.e., for the transition from Mode 2 to Mode 1

and the transition from Mode 3 to Mode 1,

vi(σj+1) = ui(τj),

at the transition time τj = σj+1 for the transition between some arbitrary epoch Ij

and Ij+1, for all i = 1, . . . , nx, state continuity is enforced at all other transitions, and

the condition γUi (s†−) = γLi (s†+) is explained by the following: s† is the transition time

when the condition q′i(s) ≥ 0 becomes true, γUi (s†−) = lims↑s† γ
U
i (s), and γLi (s†+) =

lims↓s† γ
L
i (s). Essentially, the transition from Mode 2 to Mode 3 is taken if the

transition condition q′i(s) ≥ 0 becomes true, and the value of γUi (s) at the end of

Mode 2 (the predecessor mode) is equal to the value of γLi (s) at the beginning of

Mode 3 (the successor mode). This ensures that the correct zero event point of

qi(s) is followed that corresponds to the zero event point of ui(s) that started the

incumbent Mode 2. Note that the condition γUi (s†−) = γLi (s†+) should not be treated

as a conventional transition condition by the integrator, i.e., it does not need to

become a discontinuity function to be tracked by the integrator; instead, it should be

thought of as a supplementary condition that is checked after event detection of the

transition condition q′i(s) ≥ 0. This is illustrated by the algorithm presented later in

this section.

294

Similarly, we can construct the following (upper bounding) hybrid system with

state variables w(s) ∈ R
nx , where each element of w(s) is in one of the following

modes:

Mode 1: w′
i(s) = u′i(s), switch to Mode 2 if u′i(s) ≤ 0, (4.50)

Mode 2: w′
i(s) = 0,











switch to Mode 1 if ui(s) ≥ wi(s) + εs,

switch to Mode 3 if q′i(s) ≤ 0 and ρUi (s†−) = ρLi (s†+),

(4.51)

Mode 3: w′
i(s) = q′i(s),











switch to Mode 1 if ui(s) ≥ wi(s) + εs,

switch to Mode 2 if µi(s) ≥ wi(s),

(4.52)

for all i = 1, . . . , nx, w(0) = u(0), the following transition function is enforced for all

transitions to the successor mode 1, i.e., for the transition from Mode 2 to Mode 1

and the transition from Mode 3 to Mode 1,

wi(σj+1) = ui(τj),

at the transition time τj = σj+1 for the transition between some arbitrary epoch Ij

and Ij+1, for all i = 1, . . . , nx, state continuity is enforced at all other transitions,

and the condition ρUi (s†−) = ρLi (s†+) is explained by the following: s† is the transition

time when the transition condition q′i(s) ≤ 0 becomes true, ρUi (s†−) = lims↑s† ρ
U
i (s),

and ρLi (s†+) = lims↓s† ρ
L
i (s). The same comments made about the condition γUi (s†−) =

γLi (s†+) above applies here. Note that the initial modes for the bounding hybrid

systems can be determined for any element i ∈ {1, . . . , nx} as follows:

vi











Mode 1 if u′i(0) < 0

Mode 3 otherwise,

wi











Mode 1 if u′i(0) > 0

Mode 3 otherwise.

295

Also note that in both hybrid systems, there are two possible pending transitions

in Modes 2 and 3, for each element i. To define a deterministic execution of the

hybrid system, if the earliest transition times for both pending transitions are the

same, then preference is given to the transition to Mode 1, i.e., the transition to

Mode 1 has priority over those to other modes. This precedence relation defines a

deterministic execution of the bounding hybrid systems.

Lemma 4.38. Consider any arbitrary i ∈ {1, . . . , nx}. Suppose that vi is in Mode 1

for the transformed time interval s ∈ [θ, λ], where 0 ≤ θ ≤ λ ≤ 1, and the following

condition holds

vi(θ) ≤ yi(τ, θ), ∀τ ∈ [τL, τU].

Then,

vi(s) ≤ yi(τ, s), ∀(τ, s) ∈ [τL, τU] × [θ, λ].

Proof. The proof is identical to that of Lemma 4.30.

Lemma 4.39. Consider any arbitrary i ∈ {1, . . . , nx}. Suppose that wi is in Mode 1

for the transformed time interval s ∈ [θ, λ], where 0 ≤ θ ≤ λ ≤ 1, and the following

condition holds

wi(θ) ≥ yi(τ, θ), ∀τ ∈ [τL, τU].

Then,

wi(s) ≥ yi(τ, s), ∀(τ, s) ∈ [τL, τU] × [θ, λ].

Proof. The proof is identical to that of Lemma 4.31.

Lemma 4.40. Consider any arbitrary i ∈ {1, . . . , nx}. Suppose that vi is in Mode 2

for the transformed time interval s ∈ [θ, λ], where 0 ≤ θ ≤ λ ≤ 1, and the following

condition holds

vi(θ) ≤ yi(τ, θ) + εs, ∀τ ∈ [τL, τU].

Then,

vi(s) ≤ yi(τ, s) + εs, ∀(τ, s) ∈ [τL, τU] × [θ, λ]. (4.53)

296

Proof. The proof for Lemma 4.32 applies here, since the same transition to Mode 1

is pending. The presence of the other pending transition to Mode 3 may reduce the

time spent in the current Mode 2, but will not change the desired result (4.53).

Lemma 4.41. Consider any arbitrary i ∈ {1, . . . , nx}. Suppose that wi is in Mode 2

for the transformed time interval s ∈ [θ, λ], where 0 ≤ θ ≤ λ ≤ 1, and the following

condition holds

wi(θ) ≥ yi(τ, θ) − εs, ∀τ ∈ [τL, τU].

Then,

wi(s) ≥ yi(τ, s) − εs, ∀(τ, s) ∈ [τL, τU] × [θ, λ]. (4.54)

Proof. The proof for Lemma 4.33 applies here, since the same transition to Mode 1

is pending. The presence of the other pending transition to Mode 3 may reduce the

time spent in the current Mode 2, but will not change the desired result (4.54).

Lemma 4.42. Consider any arbitrary i ∈ {1, . . . , nx}. Suppose that vi is in Mode 3

for the transformed time interval s ∈ [θ, λ], where 0 ≤ θ ≤ λ ≤ 1, and the following

condition holds

vi(θ) ≤ yi(τ, θ) + εs, ∀τ ∈ [τL, τU]. (4.55)

Then,

vi(s) ≤ yi(τ, s) + εs, ∀(τ, s) ∈ [τL, τU] × [θ, λ]. (4.56)

Proof. From (4.55), vi(θ) ≤ yi(τ
L, θ)+εs = qi(θ)+εs. Since the dynamics are given by

Mode 3, v′i(s) = q′i(s) for all s ∈ [θ, λ], and thus vi(s) ≤ qi(s)+εs = yi(τ
L, s)+εs ∀s ∈

[θ, λ]. Assume, for contradiction, that there exists some (τ ∗, s∗) ∈ [τL, τU] × [θ, λ]

such that

vi(s
∗) > yi(τ

∗, s∗) + εs.

From Lemma 4.29, there exists some pair (τU , α), α ≤ s∗, such that yi(τ
U , α) =

ui(α) = yi(τ
∗, s∗). Also, there exists some pair (τU , β), β ≤ s∗, such that yi(τ

U , β) =

ui(β) = yi(τ
L, s∗) = qi(s

∗). Since qi(s
∗) ≥ vi(s

∗) − εs > yi(τ
∗, s∗), we have τ ∗ > τL.

Let yi(τ
∗, s†) = yi(τ

L, s∗), where α ≤ s† < s∗. Thus, it follows from Lemma 4.29 that

β < α since s† < s∗.

297

Now, consider yi(τ
U , s∗) = ui(s

∗). We must have ui(s
∗) > vi(s

∗) − εs, for if

ui(s
∗) ≤ vi(s

∗)− εs, then a transition to Mode 1 is taken. We thus have the following

points that lie on the trajectory of ui(s): ui(α), ui(β) and ui(s
∗), where β < α < s∗,

ui(β) > ui(α) < ui(s
∗). Consider the interval (β, α). Since ui(s) is continuous by

assumption, in order for ui(β) > ui(α), there must exist some non-degenerate interval

within (β, α) such that u′i(s) < 0 (for otherwise ui will be monotonically increasing).

Similarly, consider the interval (α, s∗). Since ui(s) is continuous by assumption, in

order for ui(α) < ui(s
∗), there must exist some non-degenerate interval within (α, s∗)

such that u′i(s) > 0. Thus, there must exist an ascending zero event point for u′i, ŝ,

within the interval (β, s∗) such that ui(ŝ) ≤ ui(α), for ui(s) is continuous. Clearly,

this implies that the value of ηi(ŝ) ≤ ui(ŝ) ≤ ui(α). Since ŝ > β, this implies that

the corresponding zero event point for q′i must occur at some time s‡ > s∗. Hence, we

must have ηi(s
∗) ≤ ηi(ŝ) ≤ ui(α) = yi(τ

∗, s∗) < vi(s
∗) − εs, which is a contradiction,

since ηi(s
∗) < vi(s

∗) − εs means that a transition to Mode 2 would have occurred.

Thus, (4.56) must hold.

Lemma 4.43. Consider any arbitrary i ∈ {1, . . . , nx}. Suppose that wi is in Mode 2

for the transformed time interval s ∈ [θ, λ], where 0 ≤ θ ≤ λ ≤ 1, and the following

condition holds

wi(θ) ≥ yi(τ, θ), ∀τ ∈ [τL, τU].

Then,

wi(s) ≥ yi(τ, s), ∀(τ, s) ∈ [τL, τU] × [θ, λ].

Proof. The proof is straightforward and mirrors that of Lemma 4.42.

We are now in position to present the bounding theorem:

Theorem 4.44. Assume that there are a finite number of events (transitions taken)

for the bounding hybrid systems (4.47), (4.48), (4.49), (4.50), (4.51) and (4.52).

Then, they bound the transformed system (4.26) for all τ ∈ [τL, τU], i.e.,

v(s) − εs ≤ y(τ, s) ≤ w(s) + εs, ∀(τ, s) ∈ [τL, τU] × [0, 1].

298

Proof. Consider any arbitrary element i ∈ {1, . . . , nx}. Consider next the case of the

lower bounding hybrid system, v(s). Suppose that vi(s) starts in Mode 1 at s = 0.

Suppose further that a transition occurs to Mode 2 at some time s1 ∈ [0, 1]. Since

vi(0) = ui(0), and vi(0) = yi(τ, 0) ∀τ ∈ [τL, τU], we can apply Lemma 4.38 to obtain

vi(s) ≤ yi(τ, s) + εs, ∀(τ, s) ∈ [τL, τU] × [0, s1].

Let s−1 and s+
1 represent the time s1 at the epoch boundary for the predecessor and

successor mode respectively. Since vi(0) = ui(0) and v′i(s) = u′i(s) for all s ∈ [0, s1], we

have vi(s
−
1) = ui(s

−
1). At s = s1, we are now in Mode 2. From the transition function

which is state continuity, we have vi(s
+
1) = vi(s

−
1), which implies vi(s

+
1) ≤ yi(τ, s

+
1)+εs

for all τ ∈ [τL, τU] from the equation above. Suppose that a transition occurs to either

Mode 1 or Mode 3 at some time s2 ∈ [s1, 1]. We can then apply Lemma 4.40 to obtain

vi(s) ≤ yi(τ, s) + εs, ∀(τ, s) ∈ [τL, τU] × [s1, s2].

As above, let s−2 and s+
2 represent the time s2 at the epoch boundary for the predeces-

sor and successor mode respectively. First, we consider the case where the transition

is to Mode 1. This transition occurs when the transition condition ui(s) ≤ vi(s)− εs

is satisfied, so we have vi(s
−
2) − εs = ui(s

−
2). From the transition function, we have

vi(s
+
2) = ui(s

−
2), which implies that vi(s

+
2) ≤ yi(τ, s

+
2), ∀τ ∈ [τL, τU], from the above

equation. Thus, we can repeat the procedure, and apply Lemma 4.38 to the epoch

with Mode 1 starting at s = s2.

Next, we consider the case where the transition is to Mode 3. This transition

occurs with state continuity as the transition function, and so we have vi(s
+
2) = vi(s

−
2),

which implies vi(s
+
2) ≤ yi(τ, s

+
2)+εs for all τ ∈ [τL, τU] from the equation above. Now,

suppose that a transition occurs to either Mode 1 or Mode 2 at some time s3 ∈ [s2, 1].

We can then apply Lemma 4.42 to obtain

vi(s) ≤ yi(τ, s) + εs, ∀(τ, s) ∈ [τL, τU] × [s2, s3].

299

First, we consider the case where the transition is to Mode 1. This transition occurs

when the transition condition ui(s) ≤ vi(s)− εs is satisfied, so we have vi(s
−
3)− εs =

ui(s
−
3). From the transition function, we have vi(s

+
3) = ui(s

−
3), which implies that

vi(s
+
3) ≤ yi(τ, s

+
3), ∀τ ∈ [τL, τU], from the above equation. Thus, we can repeat the

procedure, and apply Lemma 4.38 to the epoch with Mode 1 starting at s = s3.

Next, we consider the case where the transition is to Mode 2. This transition

occurs with state continuity as the transition function, and so we have vi(s
+
3) = vi(s

−
3),

which implies vi(s
+
3) ≤ yi(τ, s

+
3) + εs for all τ ∈ [τL, τU] from the equation above.

Thus, we can repeat the procedure, and apply Lemma 4.40 to the epoch with Mode

2 starting at s = s3.

By assumption, there can only be a finite number of transitions within s ∈ [0, 1].

Thus, by finite mathematical induction, we obtain

vi(s) ≤ yi(τ, s) + εs, ∀(τ, s) ∈ [τL, τU] × [0, 1].

Next, we consider the remaining case where vi(s) starts in Mode 3 at s = 0. We

can apply the same analysis presented above to arrive at the same result after finite

mathematical induction.

Consider now the case of the upper bounding hybrid system, wi(s). It is straight-

forward to show that a similar induction argument as that presented above holds,

with Lemmas 4.39, 4.41 and 4.43 used in place of Lemmas 4.38, 4.40 and 4.42, to

obtain

wi(s) ≥ yi(τ, s) − εs, ∀(τ, s) ∈ [τL, τU] × [0, 1].

Since the choice of i was arbitrary, we have

v(s) − εs ≤ y(τ, s) ≤ w(s) + εs, ∀(τ, s) ∈ [τL, τU] × [0, 1].

Theorem 4.45. Consider Theorem 4.44. The bounds obtained from the bounding

300

hybrid systems are exact in the following sense: for any i ∈ {1, . . . , nx}, s
∗ ∈ [0, 1],

yi(τ
†, s∗) ≤ vi(s

∗),∀τ ∈ [τL, τU]

wi(s
∗) ≤ yi(τ̂ , s

∗),∀τ ∈ [τL, τU]

for some τ †, τ̂ ∈ [τL, τU].

Proof. Consider the lower bounding hybrid system for any i ∈ {1, . . . , nx}, vi(s).

For any s ∈ [0, 1], vi is in either one of Modes 1, 2 or 3. Consider now any epoch

for which vi(s) is in Mode 1. Let this epoch be [θ, λ] ⊂ [0, 1]. If this is the first

epoch, then vi(θ) = yi(τ
U , θ) = ui(θ) by construction. Otherwise, the transition to

the epoch can either be from Mode 2 or Mode 3, with the transition function setting

vi(θ) = ui(θ). Thus, in both cases, we have vi(θ) = yi(τ
U , θ) = ui(θ). For the epoch

under consideration, the dynamics of vi is given by v′i(s) = u′i(s). Hence, we have

shown that whenever vi(s) is in Mode 1, it is equivalent to yi(τ
U , s).

Now, consider any epoch for which vi is in Mode 2, and let this epoch be [θ, λ] ⊂

[0, 1]. The transition to this mode can be either from Mode 1 or Mode 3. Suppose

that the predecessor mode is Mode 1. At the transition, state continuity is preserved,

and so vi(θ) = ui(θ). Since the dynamics of vi in Mode 2 is given by v′i(s) = 0, we

have vi(s) = vi(θ) = ui(θ) for all s ∈ [θ, λ]. Consider now the other case where the

predecessor mode is Mode 3. At the transition, state continuity is preserved, and so

vi(θ) = ηi(θ), where ηi(θ) = ui(α) for some α ≤ θ, by construction of ηi(s). Since

the dynamics of vi in Mode 2 is given by v′i(s) = 0, we have vi(s) = vi(θ) = ui(α)

for all s ∈ [θ, λ]. In either case, the value of vi(s) in the epoch [θ, λ] is equal to the

value of ui(β) where β ≤ θ. From Lemma 4.29, there exists some τ ∈ [τL, τU] such

that yi(τ, s) = yi(τ
U , β) = yi(τ

L, γ) for any s ∈ [β, γ]. The transition from Mode 2 at

s = λ can be to either Mode 1 or Mode 3. By construction, the transition condition

from Mode 2 to Mode 3, q′i(s) ≤ 0 and γUi (s†−) = γLi (s†+), ensures that λ ≤ γ. The

transition condition to Mode 1 is given by ui(s) ≤ vi(s) − εs, hence either ui(s
∗) =

yi(τ
U , s∗) ≤ vi(s

∗) or there exists some τ ∈ [τL, τU] such that vi(s
∗) = yi(τ, s

∗) for

any s∗ ∈ [θ, λ].

301

Finally, consider any epoch for which vi is in Mode 3, and let this epoch be

[θ, λ] ⊂ [0, 1]. If this is the first epoch, then vi(θ) = yi(τ
L, θ) = qi(θ) by construction.

Otherwise, the transition to the epoch must be from Mode 2. At the transition,

state continuity is preserved, so vi(θ) = ui(β) for some β ≤ θ. By construction, the

transition condition from Mode 2 to Mode 3, q′i(s) ≤ 0 and γUi (s†−) = γLi (s†+), ensures

that θ is the zero event point for yi(τ
L, θ) corresponding to the same zero event point

for yi(τ
U , β) = ui(β). Thus, we have vi(θ) = yi(τ

L, θ) = qi(θ). For the epoch under

consideration, the dynamics of vi is given by v′i(s) = q′i(s). Hence, we have shown

that whenever vi is in Mode 3, it is equivalent to yi(τ
L, s).

We have thus shown that for any i ∈ {1, . . . , nx}, s
∗ ∈ [0, 1],

yi(τ
†, s∗) ≤ vi(s

∗), ∀τ ∈ [τL, τU],

for some τ † ∈ [τL, τU]. The same analysis can be applied for the upper bounding

hybrid system to obtain the desired result.

Clearly, the above theorem shows that the bounds v(s) − εs and w(s) + εs are

at most εs away from the exact bounds. Theorem 4.44 is slightly more complicated

to set up within the DAEPACK and DSL48SE framework, compared to Theorem 4.34.

The presence of the transition conditions to Mode 3, and the form of the conditions

(which requires the construction of the various sets and trajectories presented above)

necessitates some additional post-processing following the detection of each event.

First, the systems u(s) and q(s) are constructed from y(τ, s). Next, the lower

and upper bounding systems v(s) and w(s) are constructed in the FORTRAN residual

file for DAEPACK with the appropriate transition conditions. This is illustrated by the

following pseudo code:
Pseudo Code Block: Exact res0 File

do i=1,nx

rhs(i,1) = udot(i)

rhs(i,2) = 0.0

rhs(i,3) = qdot(i)

302

if (udot(i) .le. 0.0) then

phi(i) = 1

else

phi(i) = 0

endif

if (qdot(i) .le. 0.0) then

psi(i) = 1

else

psi(i) = 0

endif

if (u(i) .le. v(i) - eps) then

theta(i) = 1

else

theta(i) = 0

endif

if (u(i) .ge. w(i) + eps) then

lambda(i) = 1

else

lambda(i) = 0

endif

if (v(i) .ge. eta(i)) then

alpha(i) = 1

else

alpha(i) = 0

endif

303

if (w(i) .le. mu(i)) then

beta(i) = 1

else

beta(i) = 0

endif

vdot(i) = rhs(i,modeL(i))

wdot(i) = rhs(i,modeU(i))

enddo

Here, udot(i) ≡ u′i, qdot(i) ≡ q′i, vdot(i) ≡ v′i, wdot(i) ≡ w′
i, u(i) ≡ ui(s),

q(i) ≡ qi(s), v(i) ≡ vi(s), w(i) ≡ wi(s), phi(i) ≡ φi(s), psi(i) ≡ ψi(s), theta(i)

≡ θi(s), lambda(i) ≡ λi(s), alpha(i) ≡ αi(s), beta(i) ≡ βi(s), eta(i) ≡ ηi(s),

mu(i) ≡ µi(s), modeL(i) ≡ mL
i (s), modeU(i) ≡ mU

i (s) and eps ≡ εs. The value of

εs is the same as that described above for the implementation of Theorem 4.34. The

role of the if-then-else equations are to define the transition conditions for event

detection.

The algorithm for integrating the exact bounding hybrid systems is described by

the following:

Algorithm 4.46.

1. (Initialization) Determine the starting modes mL
i and mU

i based on the values

of u′i(0), for all i = 1, . . . , nx. Perform a consistent initialization calculation for

q(0),u(0),v(0),w(0) and their derivatives. Set ηi = +∞ and µi = −∞ for all

i = 1, . . . , nx. Store the values of φSi , ψ
S
i , by calling the res0 file with φSi , ψ

S
i ,

in place of φi, ψi, for all i = 1, . . . , nx. Set s = 0. Set the values of the counters

γLi = γCi = ρLi = ρCi = 0, γUi = γSi = ρUi = ρSi = −∞ for all i = 1, . . . , nx.

Initialize the (dynamically allocated) arrays vSi and wSi to be empty for all

i = 1, . . . , nx.

304

2. (Integration) Integrate the hybrid system until an event has been detected,

or until s = 1. In the latter case, terminate.

3. (Event Detection) Let the polished time event be s∗. Set s = s∗. Perform

a consistent re-initialization calculation for q(s∗),u(s∗),v(s∗),w(s∗) and their

derivatives. Update the values of φi, ψi, θi, λi for all i = 1, . . . , nx by calling

the res0 file.

4. (Update Zero Event Counters) For i = 1, . . . , nx do:

(a) if (ψSi 6= ψi)

if (ψi = 1) set ρLi = ρLi + 1 else set γLi = γLi + 1 endif

endif

(b) if (φSi 6= φi)

if (φi = 1) set ρCi = ρCi + 1, and wSi (ρCi) = ui(s
∗)

else set γCi = γCi + 1, and vSi (γCi) = ui(s
∗) endif

endif

5. (Update η and µ) For i = 1, . . . , nx do:

(a) Set dz = +∞, iz = −∞.

(b) if (γCi > 0) and (γCi 6= γLi)

for j = γLi + 1, . . . , γCi do:

if (vSi (j) ≤ dz) set dz = vSi (j), and iz = j endif

endif

(c) Set ηi := dz and γSi := iz.

(d) Set dz = −∞, iz = −∞.

(e) if (ρCi > 0) and (ρCi 6= ρLi)

for j = ρLi + 1, . . . , ρCi do:

if (wSi (j) ≥ dz) set dz = wSi (j), and iz = j endif

endif

(f) Set µi := dz and ρSi := iz.

305

6. (Update α and β) Update the values of αi, βi for all i = 1, . . . , nx by calling

the res0 file.

7. (Determine transitions) For i = 1, . . . , nx do:

(a) if (mL
i = 2)

i. if (ψi 6= ψSi) and (ψi = 0) and (γUi = γLi) set mL
i := 3 endif

ii. if (θi = 1) set mL
i := 1 endif

else if (mL
i = 3)

i. if (αi = 1) set mL
i := 2 endif

ii. if (θi = 1)

if (u′i ≥ 0) set mL
i := 2 else set mL

i := 1 endif

endif

endif

(b) if (mL
i = 1) and (φi 6= φSi) and (φi = 0) set mL

i := 2 endif

(c) if (mU
i = 2)

i. if (ψi 6= ψSi) and (ψi = 1) and (ρUi = ρLi) set mU
i := 3 endif

ii. if (λi = 1) set mU
i := 1 endif

else if (mU
i = 3)

i. if (βi = 1) set mU
i := 2 endif

ii. if (λi = 1)

if (u′i ≤ 0) set mU
i := 2 else set mU

i := 1 endif

endif

endif

(d) if (mU
i = 1) and (φi 6= φSi) and (φi = 1) set mU

i := 2 endif

8. (Transition functions) For i = 1, . . . , nx do:

(a) if (mL
i = 1) set vi(s

∗) := ui(s
∗) endif

306

(b) if (mU
i = 1) set wi(s

∗) := ui(s
∗) endif

9. (Update storage and counters) Set γUi := γSi , ρUi := ρSi , φ
S
i := φi, ψ

S
i := ψi

for all i = 1, . . . , nx. Goto Step 2.

Algorithm 4.46 will provide the exact bounds for Theorem 4.44 subject to nu-

merical tolerance in the algorithms for integration and event detection (discontinuity

handling). Note that step 7. in Algorithm 4.46 contains provisions for handling mul-

tiple (and instantaneous) transitions after event detection. This is needed because

there is the possibility that multiple transitions are triggered (these could be in any

time order) in the event time polishing step. This is particularly relevant for the

algorithm, because the determination of the wrong mode after event detection will

produce qualitatively invalid bounds.

Consider the lower or upper bounding system. For any i ∈ {1, . . . , nx}, there are

8 possible scenarios for multiple transitions. Consider the possible mode sequences

2, 1, 2 and 3, 1, 2 where there is an instantaneous transition (or an epoch with a

very short duration such that it appears to be instantaneous after event polishing)

from Mode 1 to Mode 2. This scenario is accounted for by placing the test for Mode

1 after the tests for Modes 2 and 3 in step 7(b). This detects any instantaneous

events from Mode 1 to Mode 2 that occur during event polishing. In addition, for the

sequence 3, 1, 2, an additional test on u′i is added in steps 7.a and 7.c to ensure that

the correct instantaneous transition to Mode 2 is taken depending on the value of u′i

at the transition. Such a condition is not needed for the sequence 2, 1, 2 because the

first transition from Mode 2 to Mode 1 requires that the aforementioned test on u′i is

always satisfied.

Consider now the possible mode sequences 3, 2, 1 and 2, 3, 1 where there is an

instantaneous transition (or an epoch with a very short duration such that it appears

to be instantaneous after event polishing) from Mode 2 to Mode 1 and Mode 3 to

Mode 1 respectively. This scenario is accounted for by the precedence relations stating

that Mode 1 has priority over the other modes in the event that multiple transitions

become true at the same time, and implemented in step 7.a.ii.

307

Consider next the possible mode sequences 2, 3, 2 and 3, 2, 3 where there is an

instantaneous transition (or an epoch with a very short duration such that it appears

to be instantaneous after event polishing) from Mode 3 to Mode 2 and Mode 2 to

Mode 3 respectively. This scenario is accounted for by construction; because the zero

event counters are updated in step 4 before the transitions are determined in step

7, the second mode in the sequences (Modes 3 and 2 respectively) effectively gets

ignored during step 7, which is the desired behavior.

Finally, consider the possible mode sequences 1, 2, 1 and 1, 2, 3 where there is an

instantaneous transition (or an epoch with a very short duration such that it appears

to be instantaneous after event polishing) from Mode 2 to Mode 1 and Mode 2 to

Mode 3 respectively. This situation does not happen unless (i) the interval [τL, τU]

for (4.23) is degenerate, or (ii) the width of the interval [τL, τU] for (4.23) is so small

that the duration of Mode 2 is so small such that it occurs within the event polishing

time step. In the former case, the algorithm cannot be expected to perform correctly

due to numerical integration and event handling tolerances; however, the algorithm

is redundant for a problem with a degenerate interval [τL, τU] in the first place. In

the latter case, the algorithm will fail, again due to numerical integration and event

handling tolerances. This can be mitigated by reducing said tolerances. We can

calculate the smallest possible duration in the latter case as follows: let the earliest

zero event point (excluding possible points at s = 0) of u′i for all i = 1, . . . , nx occur

at time sU where sU > 0. From Lemma 4.28, the point in (original) time that this

occurs at is given by t∗ = σ + sU(τU − σ). The corresponding zero event point for

q′i is then given by t∗ = σ + sL(τL − σ), thus the minimum duration for Mode 2 is

given by sL − sU = sU(τU − τL)/(τL − σ) if τL > σ (this scenario poses no problem

for the algorithm if τL = σ). The algorithm will very likely produce incorrect results

if this value of sU(τU − τL)/(τL − σ) is less than the integration and event detection

tolerances (in general, a rough recommendation would be to ensure that the said

tolerances are at least an order of magnitude smaller than this minimum duration

quantity). In any practical implementation of Algorithm 4.46, this condition can be

detected, and the user alerted to the possible failure of the algorithm. It is worth

308

noting that Algorithm 4.46 will not have any problems with this scenario given the

ability to integrate and detect events with infinite precision. However, as we will

illustrate in the examples below, Algorithm 4.46 can produce reliable results even

with finite precision algorithms. In addition, for any practical implementation of

Algorithm 4.46, it is easy to detect whether ui or qi crosses the calculated bounds of

vi and wi for all i = 1, . . . , nx, and inform the user of failure should that occur.

Clearly, the extension of Algorithm 4.46 to LTI multi-stage systems is simply given

by Alrogithm 4.36 with Theorem 4.34 replaced with Theorem 4.44.

4.3.5 A Comparison of the Different Strategies

In this section, we will illustrate the application of Corollary 4.24, Theorem 4.34 and

Algorithm 4.46 to a few illustrative examples. The integrator used in this section was

DAEPACK with DSL48SE with the value of the absolute and relative tolerance of the

integrator and εs set to 10−8. Consider first the following illustrative example from

the previous section (and used in Figures 4-14 and 4-15):

ẋ1 = −x2, ẋ2 = x1, x(σ = 0) = (1,−1),

where τ ∈ [τL, τU]. The transformed system then becomes

y′1 = −τy2, y′2 = τy1, y(τ, σ = 0) = (1,−1),

where τ ∈ [τL, τU] and s ∈ [0, 1]. If we were to apply Corollary 4.24 derived from

the theory of differential inequalities to bound the transformed system, with X̂1(s) =

X̂2(s) = R for all s ∈ [0, 1], we would obtain the following nonlinear bounding system,

ṽ′1 = min(−τLṽ2,−τ
U ṽ2,−τ

Lw̃2,−τ
U w̃2),

ṽ′2 = min(τLṽ1, τ
U ṽ1, τ

Lw̃1, τ
U w̃1),

w̃′
1 = max(−τLṽ2,−τ

U ṽ2,−τ
Lw̃2,−τ

U w̃2),

w̃′
2 = max(τLṽ1, τ

U ṽ1, τ
Lw̃1, τ

U w̃1),

309

Figure 4-16: Comparison of monotonic hybrid bounds versus nonlinear bounds for
y1(τ, s).

ṽ(0) = w̃(0) = (−1, 1). These nonlinear bounds will bound the transformed system,

ṽ(s) ≤ y(τ, s) ≤ w̃(s), ∀τ ∈ [τL, τU], s ∈ [0, 1].

Applying Theorem 4.34, we can also construct our monotonic bounding hybrid sys-

tems, such that

v(s) − εs ≤ y(τ, s) ≤ w(s) + εs, ∀τ ∈ [τL, τU], s ∈ [0, 1].

Figure 4-16 shows the comparison between the two bounds, for [τL, τU] = [0.5, 2.0].

As can be seen, the upper bound from the monotonic hybrid bounds is tighter than the

nonlinear bounds, whereas the lower bound is tighter for a portion of the transformed

time horizon. To illustrate that the monotonic hybrid bounds actually bound, Figure

4-17 shows the bounds with 20 random trajectories of τ ∈ [0.5, 2].

Next, we examine how the situation changes when τU is increased to 20. Figure

4-18 shows the monotonic hybrid bounds with 20 random trajectories of τ ∈ [0.5, 20].

310

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4-17: Monotonic hybrid bounds for y1(τ, s) with 20 random trajectories of
τ ∈ [0.5, 2].

Note that these monotonic hybrid bounds are really quite tight. For comparison,

Figure 4-19 shows the nonlinear bounds for τ ∈ [0.5, 20]. Note that the bounds

obviously explode.

If no additional insight is given to bound the system, eventually, as τU increases,

there reaches a point where the integrator gives up and fails because of the explosion of

the bounds. This explosion of the bounds arises due to the fact that the differential

inequalities from Corollary 4.23 do not provide tight bounds for general nonlinear

systems. Note that the use of the natural interval extensions in applying Corollary

4.24 provides the exact minimum and maximum for conditions (i), (ii), (iii) and (iv)

in Corollary 4.23 for this example, thus the loose bounds arise solely due to the nature

of differential inequalities. This effect should not be confused with the wrapping effect

associated with the use of interval methods (often utilizing Taylor series expansions)

for the enclosure of the solution of ordinary differential equations, which was first

coined by Moore [98].

For comparison, suppose that we knew, a priori, that y(τ, s) ∈ [−1.5, 1.5] ∀τ ∈

[τL, τU], s ∈ [0, 1], we can then set X̂(1)(s) = X̂(2)(s) = [−1.5, 1.5] for all s ∈ [0, 1].

311

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4-18: Monotonic hybrid bounds for y1(τ, s) with 20 random trajectories of
τ ∈ [0.5, 20].

Figure 4-19: Nonlinear bounds for τ ∈ [0.5, 20].

312

Figure 4-20: Nonlinear bounds with a priori bounding set information for τ ∈ [0.5, 20].

Figure 4-20 shows the nonlinear bounds obtained when this information is given. As

can be seen, the additional information prevents the bounds from exploding (expo-

nentially), however, these bounds are still quite loose, especially compared to the

monotonic hybrid bounds shown in Figure 4-18. Of course, in practice, one would

cut off the lower and upper bounds at -1.5 and 1.5 respectively due to information

from the bounding set obtained a priori. Figure 4-20 illustrates that the bounds pro-

duced from Corollary 4.24 do not improve on what was already known for most of

the (transformed) time horizon s ∈ [0, 1].

It is worth noting that although the monotonic hybrid bounding technique from

Theorem 4.34 provides valid bounds for the transformed system, it does not possess

the same theoretical convergence properties as the nonlinear bounds from Corollary

4.24 (proof of convergence was shown in Theorem 4.26). In particular, since it does

not utilize any information from τL, the bounds shown in Figure 4-18 will remain the

same, when τL is changed, whether it is 0.5 or 19.9999. In other words, it would not be

applicable for use in global optimization algorithms, since the bounds do not actually

converge to a single trajectory when the partition on τ approaches degeneracy. Due

313

to this reason, we will no longer consider the use of Theorem 4.34 for the rest of

this thesis. However, it is worth noting that these monotonic hybrid bounds are

relatively easy to set up, and relatively cheap to obtain, so they can actually serve as

the bounding set X̂(i)(s) for the nonlinear bounding systems in Corollary 4.24 in the

absence of bounding sets known a priori. It is also interesting to note that the final

values of the monotonic bounds at s = 1 also provide the minimum and maximum

values that the state trajectories of the original system have attained respectively.

It is interesting to observe how the nonlinear bounds with information from the

supplied bounding set would behave when the interval [τL, τU] is small. Figure 4-

21 shows the bounds obtained for τ ∈ [19.9999, 20]. This is a very small interval

(or partition, within the BB framework) for τ . Note that the bounds still diverge

appreciably when s > 0.6. This implies that even with the invariant sets X̂1(s) and

X̂2(s), a global optimization procedure employing these nonlinear bounds will likely

be doomed when the original parameter set is τ ∈ [0.5, 20], because the convergence

rate of these nonlinear bounds requires a partitioning of the parameter set beyond a

reasonable integration tolerance (and maybe even machine precision). Clearly, there

is a need for a better bounding procedure.

We will now consider applying Algorithm 4.46 to construct the exact bounding

hybrid systems, such that

v(s) − εs ≤ y(τ, s) ≤ w(s) + εs, ∀τ ∈ [τL, τU], s ∈ [0, 1].

Figure 4-22 shows the exact bounding hybrid systems together with the same 20

random trajectories found in Figure 4-17, for the range τ ∈ [0.5, 2.0]. As can be

seen, the exact bounds for y1(τ, s) are obtained. Figure 4-23 shows the exact bounds

obtained for the range τ ∈ [18.0, 20.0]. Clearly, since the system considered is LTI,

these bounds obtained from Algorithm 4.46 are the tightest possible bounds within

εs (as proved in Theorem 4.45).

To further illustrate the application of Algorithm 4.46, consider the following time

314

Figure 4-21: Nonlinear bounds with a priori bounding set information for τ ∈
[19.9999, 20].

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4-22: Tight hybrid bounds for y1(τ, s) with 20 random trajectories of τ ∈
[0.5, 2].

315

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4-23: Tight hybrid bounds for y1(τ, s) with 20 random trajectories of τ ∈
[18.0, 20.0].

varying ODE,

ẋ = sin(50t)x+ cos(3t) + 0.1, (4.57)

where x(0) = −1, τ ∈ [10, 12]. In this case, (4.25) gives t = τs since σ = 0. The

transformed systems are then given by

q′ = 10 sin(500s)q + 10 cos(30s) + 1,

u′ = 12 sin(600s)u+ 12 cos(36s) + 1.2,

where q(0) = u(0) = −1. Figure 4-24 shows the trajectories of the exact bounding

hybrid systems, together with q(s) and u(s), while Figure 4-25 show the same trajec-

tories zoomed in on a portion of the plot. This is to illustrate the interactions between

the zero event points for q′ and u′, and their influence on the mode sequences of v

and w. To test the validity of Algorithm 4.46, Figure 4-26 and 4-27 show the exact

bounding trajectories together with 20 random trajectories for τ ∈ [10, 12]. As can

be seen, v and w are indeed valid bounds.

316

����

����

��

����

���	

����

����

�

���

���

��	

�
���
���
���
���
���
��	
��

���
���
�

Figure 4-24: Tight hybrid bounds with y(τL, s) = q(s) and y(τU , s) = u(s) for
τ ∈ [10, 12].

����

�����

����

�����

���� ����� ����	 ����
 �����

Figure 4-25: Zoomed in portion of Figure 4-24.

317

����

����

��

����

���	

����

����

�

���

���

��	

�
���
���
���
���
���
��	
��

���
���
�

Figure 4-26: Tight hybrid bounds with with 20 random trajectories for τ ∈ [10, 12].

-1.2

-1.15

-1.1

-1.05

 0.1 0.12 0.14 0.16 0.18

Figure 4-27: Zoomed in portion of Figure 4-26.

318

For comparison, we will also apply Corollary 4.24 to the system in (4.57). The

transformed system (after CPET) is given by

y′ = τ(sin(50τs)y + cos(5τs) + 0.1), (4.58)

where y(τ, 0) = −1 and τ ∈ [10, 12]. Let the inclusion monotonic interval extension

of sin([500s, 600s]) and cos([30s, 36s]) be given by [αL(s), αU(s)] and [βL(s), βU(s)]

respectively, where

sin([500s, 600s]) ⊂ [αL(s), αU(s)],

cos([30s, 36s]) ⊂ [βL(s), βU(s)],

for all s ∈ [0, 1]. Then, the nonlinear bounding system is given by the following,

ṽ′ = min(10(min(αL(s)ṽ, αU(s)ṽ) + βL(s) + 0.1),

10(max(αL(s)ṽ, αU(s)ṽ) + βU(s) + 0.1),

12(min(αL(s)ṽ, αU(s)ṽ) + βL(s) + 0.1),

12(max(αL(s)ṽ, αU(s)ṽ) + βU(s) + 0.1))

w̃′ = max(10(min(αL(s)w̃, αU(s)ṽ) + βL(s) + 0.1),

10(max(αL(s)ṽ, αU(s)w̃) + βU(s) + 0.1),

12(min(αL(s)ṽ, αU(s)w̃) + βL(s) + 0.1),

12(max(αL(s)ṽ, αU(s)w̃) + βU(s) + 0.1))

where ṽ(0) = w̃(0) = −1. To integrate this nonlinear system, the interval extensions

of sin and cos were calculated using the INTLIB library [80], and implemented using

DAEPACK and DSL48S in black box mode. Figure 4-28 shows the bounds obtained

for the transformed system (4.58). It can be seen that the bounds are orders of

magnitude worse than the exact bounds provided by Algorithm 4.46. Figure 4-29

shows the bounds provided by the two strategies together on a zoomed portion of the

319

-140000

-120000

-100000

-80000

-60000

-40000

-20000

 0

 20000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4-28: Nonlinear bounds for (4.58).

transformed time scale.

Finally, consider the following LTI multi-stage system,

Mode 1:











ẋ1 = −x2,

ẋ2 = x1,

Mode 2:











ẋ1 = x1 − x2 + 1,

ẋ2 = −x1 + x2 − 1,

(4.59)

where x(0) = (1,−1), the mode sequence is fixed and given by Tµ = 1, 2, 1, the

transition functions are given by state continuity, and ∆ = [10, 12] × [1, 2] × [10, 12].

After CPET and applying Corollary 4.24, the nonlinear bounding systems are given

by the following,

Mode 1:







































ṽ′1 = min(−δLi v2,−δ
U
i v2,−δ

L
i w2,−δ

U
i w2)

ṽ′2 = min(δLi v1, δ
U
i v1, δ

L
i w1, δ

U
i w1)

w̃′
1 = max(−δLi v2,−δ

U
i v2,−δ

L
i w2,−δ

U
i w2)

w̃′
2 = max(δLi v1, δ

U
i v1, δ

L
i w1, δ

U
i w1)

, i = 1, 3,

320

-16

-14

-12

-10

-8

-6

-4

-2

 0

 2

 0 0.05 0.1 0.15 0.2 0.25

Figure 4-29: Comparison of nonlinear and exact hybrid bounding strategies.

Mode 2:















































































ṽ′1 =
min(δL2 (v1 − w2 + 1), δL2 (v1 − v2 + 1),

δU2 (v1 − w2 + 1), δU2 (v1 − v2 + 1))

ṽ′2 =
min(δL2 (v2 − w1 − 1), δL2 (v2 − v1 − 1),

δU2 (v2 − w1 − 1), δU2 (v2 − v1 − 1))

w̃′
1 =

max(δL2 (w1 − w2 + 1), δL2 (w1 − v2 + 1),

δU2 (w1 − w2 + 1), δU2 (w1 − v2 + 1))

w̃′
2 =

max(δL2 (w2 − w1 − 1), δL2 (w2 − v1 − 1),

δU2 (w2 − w1 − 1), δU2 (w2 − v1 − 1))

,

where ṽ(0) = w̃(0) = (1,−1), the mode sequence is fixed and given by Tµ = 1, 2, 1,

the transition functions are given by state continuity, and ∆ = [10, 12]×[1, 2]×[10, 12].

Figure 4-30 shows the nonlinear bounds for y1 of (4.59) after the CPET. It can be

seen that the bounds explode, as expected. On the other hand, Figure 4-31 shows the

bounds for y1 of (4.59) after the CPET, obtained by applying Algorithm 4.36 with

Theorem 4.44 (labeled as v1(s) and w1(s)), together with 20 random trajectories of

the transformed system of (4.59) in ∆. As can be seen, the bounds obtained are

orders of magnitude tighter than those shown in Figure 4-30.

321

-1e11

-8e10

-6e10

-4e10

-2e10

 0

 2e10

 4e10

 6e10

 8e10

 1e11

 0 0.5 1 1.5 2 2.5 3

Figure 4-30: Nonlinear bounds for element y1 of transformed system of (4.59).

-150

-100

-50

 0

 50

 100

 150

 0 0.5 1 1.5 2 2.5 3

Figure 4-31: Bounds for element y1 of transformed system of (4.59) using Algorithm
4.36 with Theorem 4.44, and 20 random trajectories of δ ∈ ∆.

322

4.4 Constructing Convex Relaxations

In this section, we will present the theory required for constructing convex relaxations

of Problem 4.12. This theory is an extension of that developed in [118, Chapter 6]

and [121] for (single-stage) nonlinear dynamic systems. The main idea behind the

theorems presented below will consist of breaking down the multi-stage hybrid system

into contiguous intervals in time, verifying that the hypotheses of the theorems in

[118, Chapter 6] and [121] hold for each of these intervals, and applying the theorems

sequentially for each interval via finite induction.

The ultimate goal of this section is condensed into constructing a convex relaxation

for the objective function (4.7), subject to the transformed nonlinear hybrid system.

The exact same theory is applied for the point and isoperimetric constraints in (4.8).

The ability to construct convex relaxations for the objective function and constraints

then enables a convex relaxation of the problem to be solved. Finally, it is shown that

the constructed convex relaxations possess the same consistent bounding properties of

the convex relaxation techniques used in their construction, so that their incorporation

into a BB framework such as Algorithm 2.3 leads to an infinitely convergent algorithm

[77]. This implies ε global optimality within a finite number of iterations. We will

now show how convex and concave relaxations for the states of the transformed hybrid

system in Definition 4.10 can be constructed.

Definition 4.47. Consider the following functions, f : Z × P × ∆ × S → R and

z : S → Z, where Z ⊂ R
nx , P ⊂ R

np , ∆ ⊂ R
ne , S ⊂ R and f(·, s) is differentiable

on some suitable open set containing Z × P × ∆ for each s ∈ S. Define the function

Lf |ζ∗(s) : Z × P × ∆ × S → R to be a linearization of f at the point ζ∗(s) =

(z∗(s),p∗, δ∗) where (z∗(s),p∗, δ∗) ∈ Z × P × ∆ , and given by the following:

Lf |ζ∗(s) (z,p, δ, s) = f(z∗,p∗, δ∗, s) +
nx
∑

k=1

∂f

∂zk

∣

∣

∣

∣

∣

(ζ∗(s),s)

(

zk(s) − z∗k(s)
)

+

np
∑

k=1

∂f

∂pk

∣

∣

∣

∣

∣

(ζ∗(s),s)

(

pk − p∗k
)

+

np
∑

k=1

∂f

∂δk

∣

∣

∣

∣

∣

(ζ∗(s),s)

(

δk − δ∗k
)

.

323

Theorem 4.48. For i = 1, . . . , ne and j = 1, . . . , nx, define the functions u
(m∗

i)
j (·, s) :

X̂(i)(s;P,∆) × P × ∆ → R and o
(m∗

i)
j (·, s) : X̂(i)(s;P,∆) × P × ∆ → R for each fixed

s ∈ Îi. Let the following conditions be satisfied for all i = 1, . . . , ne, j = 1, . . . , nx,

and each fixed s ∈ Îi,

1. u
(m∗

i)
j (·, s) is a convex underestimator and o

(m∗
i)

j (·, s) is a concave overestimator

for F
(m∗

i)
j (·, s) on X̂(i)(s;P,∆) × P × ∆,

2. u
(m∗

i)
j (·, s) and o

(m∗
i)

j (·, s) are differentiable on some suitable open set containing

X̂(i)(s;P,∆) × P × ∆ along some reference trajectory ζ∗(s) = (z∗(s),p∗, δ∗) ∈

X̂(i)(s;P,∆) × P × ∆,

and the following hybrid system be constructed,

c′j = h
(m∗

i)
c,j (c,C,p, δ, s) = inf

z∈C(p,δ,s)

zj=cj(s)

L
u
(m∗

i
)

j

∣

∣

∣

∣

(ζ∗(s),s)

(z,p, δ, s), s ∈ [i− 1, i],

C ′
j = h

(m∗
i)

C,j (c,C,p, δ, s) = sup
z∈C(p,δ,s)

zj=Cj(s)

L
o
(m∗

i
)

j

∣

∣

∣

∣

(ζ∗(s),s)

(z,p, δ, s), s ∈ [i− 1, i],

with initial conditions

c(p, δ, 0) = C(p, δ, 0) = E0p + J0δ + k0, (4.60)

and transition functions given by the following interval equation,

[c(p, δ, σ̂l+1),C(p, δ, σ̂l+1)] = Dl[c(p, δ, τ̂l),C(p, δ, τ̂l)]+Elp+Jlδ+kl, (4.61)

for l = 1, . . . , ne − 1, where C(p, δ, s) = {z | c(p, δ, s) ≤ z ≤ C(p, δ, s)}. Then,

for each fixed s ∈ Îi, c(·, s) is a convex underestimator and C(·, s) is a concave

overestimator for x̂(·, s) on P × ∆, for all i = 1, . . . , ne.

Proof. We proceed as in the proof of Theorem 4.21 by subdividing the epochs into

contiguous subepochs. Consider now the first subepoch Ǐ1. The initial condition given

by (4.60) is clearly affine on P × ∆ and satisfies c(p, δ, 0) ≤ x̂(p, δ, 0) ≤ C(p, δ, 0).

324

The conditions for [118, Theorem 6.16] are thus satisfied, and applying said theorem,

c(·, s) is a convex underestimator and C(·, s) is a concave overestimator for x̂(·, s) for

each fixed s ∈ Ǐ1. At the transition τ̌1, state continuity of the hybrid system gives

x̂(p, δ, σ̌2) = x̂(p, δ, τ̌1), which implies that

c(p, δ, σ̌2) = c(p, δ, τ̌1) ≤ x̂(p, δ, σ̌2) ≤ C(p, δ, τ̌1) = C(p, δ, σ̌2), ∀(p, δ) ∈ P × ∆.

From [118, Theorem 6.16], we know that c(·, σ̌2) and C(·, σ̌2) are affine in (p, δ). The

conditions for [118, Theorem 6.16] are thus satisfied for the second subepoch. By

induction on all subepochs, the desired result holds for each fixed s ∈ Î1. Consider

now the second epoch Î2. From (4.61),

c(p, δ, σ̂2) ≤ x̂(p, δ, σ̂2) ≤ C(p, δ, σ̂2)∀(p, δ) ∈ P × ∆,

where c(·, σ̂2) and C(·, σ̂2) are clearly affine in (p, δ). The conditions for [118, Theo-

rem 6.16] are thus satisfied for the second epoch, and by induction on all epochs, we

obtain the desired result.

Note that the infima and suprema in Theorem 4.48 are attained at the vertices of

the set C(p, δ, s) due to the properties of the linearizations, and are easily computed,

see [118, Theorem 6.16]. The next theorem demonstrates the convergence properties

of the convex relaxations constructed using the relaxation techniques presented in

this section.

Theorem 4.49. Consider the following convex relaxation of (4.7),

Û(p, δ;P,∆) =
ne
∑

i=1

{

nφi
∑

j=1

ψ̂ij

(

c(p, δ, α̂ij),C(p, δ, α̂ij),p, δ; X̂
(i)(α̂ij;P,∆), P,∆

)

+

∫ i

i−1

ûi

(

c,C,p, δ, s; X̂(i)(s;P,∆), P,∆
)

ds

}

, (4.62)

where ψ̂ij and ûi are constructed using any relaxation technique that possesses a con-

sistent bounding operation [77, Definition IV.4, pg. 128], the convex and concave

325

relaxations for the state and derivatives are constructed using Theorem 4.48, and

the estimation of the state bounds constructed using Corollary 4.24. If the inter-

val vector (Pk,∆k) in any partition on P × ∆ approaches degeneracy (P ∗,∆∗) =

([p∗,p∗], [δ∗, δ∗]) ∈ P × ∆, then the lower bound on this partition Û(p, δ;Pk,∆k)

converges pointwise to the objective function value F̂ (p∗, δ∗) in this same partition.

Proof. Choose any arbitrary partition and any fixed s in any epoch Îi. From Corollary

4.24, as (Pk,∆k) → (P ∗,∆∗), the interval vector X̂
(m∗

i)

k (s;Pk,∆k) approaches the

degenerate value of x̂∗(p∗, δ∗, s). To be valid, the convex and concave overestimators

(u
(m∗

i)
j and o

(m∗
i)

j) from Theorem 4.48 must themselves possess a consistent bounding

operation. Hence, as X̂
(m∗

i)

k (s;Pk,∆k) × Pk × ∆k shrinks to degeneracy, u
(m∗

i)
j (·, s) ↑

F
(m∗

i)
j (·, s) and o

(m∗
i)

j (·, s) ↓ F
(m∗

i)
j (·, s) for j = 1, . . . , nx. The right hand sides of the

equations defining c′i and C ′
i are linearizations on u

(m∗
i)

j and o
(m∗

i)
j respectively. Since

u
(m∗

i)
j (·, s) and o

(m∗
i)

j (·, s) are each approaching F
(m∗

i)
j (·, s), h

(m∗
i)

c,j (·, s) ↑ F
(m∗

i)
j (·, s) and

h
(m∗

i)
C,j (·, s) ↓ F

(m∗
i)

j (·, s) because the linearization approaches the value of the function

it approximates at the point of linearization. Thus, as k → ∞,

ψ̂ij

(

c(p, δ, α̂ij),C(p, δ, α̂ij),p, δ; X̂
(i)(α̂ij;Pk,∆k), Pk,∆k

)

↑ φij
(

x̂(p, δ, α̂ij),p, δ
)

,

(4.63)

for all j = 1, . . . , nφi, and ûi

(

c,C, δ, s; X̂(i)(s;Pk,∆k),p, Pk,∆k

)

↑ fi(x̂,p, δ, s), for

all s ∈ Îi, where the convergence arises because the convex relaxations ψ̂ij and ûi

possess consistent bounding operations as (Pk,∆k) approaches degeneracy. Because

s is fixed arbitrarily, the convergence for the integrand is true for all s ∈ Îi. An ap-

plication of the monotone convergence theorem [116, Theorem 11.28] for the integral

term then gives

lim
k→∞

∫ i

i−1

ûi

(

c,C,p, δ, s; X̂(i)(s;Pk,∆k), Pk,∆k

)

ds =

∫ i

i−1

fi

(

x̂,p∗, δ∗, s
)

ds. (4.64)

Since the partition and epoch was arbitrarily chosen, (4.63) and (4.64) imply

lim
k→∞

Û(p, δ;Pk,∆k) = F̂ (p∗, δ∗)

326

which is the desired result.

4.5 Examples and Discussion

All of the results in this section were obtained using a Pentium 4 3.4 GHz machine

with 1 GB RAM running SuSE Linux 9.2.

Example 4.50. Consider Example 3.7. It has now been determined that catalyst 1,

2 and 3 will be loaded in that order into the reactor. The optimization problem is

now to determine the optimal lengths of the 3 catalyst sections to maximize the same

objective function as in Example 3.7.

Clearly, we now have a problem where the mode sequence is fixed, but the transi-

tion times are allowed to vary. The optimization problem is to determine the optimal

transition times (the independent variable in the example above is the length of the

reactor). After applying the CPET, the transformed problem is given by

min
δ∈∆

0.01x̂2(δ, 3) + 0.1x̂4(δ, 3) − x̂5(δ, 3),

subject to the following point constraint,

δ1 + δ2 + δ3 = 1, (4.65)

where x̂(δ, s) is given by the solution of the following nonlinear hybrid system,

Mode i:















































x̂′1(s) = δi

(

− (k
(i)
1 + k

(i)
2)x̂1(δ, s)

)

x̂′2(s) = δi

(

k
(i)
2 x̂1(δ, s)

)

x̂′3(s) = δi

(

k
(i)
1 x̂1(δ, s) − (k

(i)
3 + k

(i)
4)x̂3(δ, s)

)

x̂′4(s) = δi

(

k
(i)
4 x̂3(δ, s)

)

x̂′5(s) = δi

(

k
(i)
3 x̂3(δ, s)

)















































i = 1, 2, 3,

ne = 3, Tµ = 1, 2, 3, Tτ = {Îi} where Îi = [i − 1, i] for i = 1, 2, 3, ∆ ≡ [0, 1]3, k
(i)
j is

327

the rate constant kj for catalyst i in Figure 3-1, and we have state continuity as the

transition functions with initial condition x̂(δ, 0) = (1000, 0, 0, 0, 0).

The convex relaxations for this example are constructed directly using Theorem

4.48 as the original objective function comprises an affine function of the state vari-

ables at the final time. Since the right hand sides of the nonlinear hybrid system

exhibit a bilinear structure, the convex and concave relaxations in Theorem 4.48

can be calculated from the convex envelope of a bilinear term [54]. However, since

the convex envelope is composed of two intersecting hyperplanes and thus not con-

tinuously differentiable everywhere, there is no guarantee that condition C2 will be

satisfied for a particular choice of a reference trajectory. Fortunately, it is clear that

the condition can be relaxed to accommodate the nonsmoothness in the intersection

of the two hyperplanes by constructing the linearizations using any subgradient at

the point of nonsmoothness. In practice, we have implemented a heuristic that ei-

ther chooses one or the other hyperplane (which are both valid convex relaxations

and supply valid subgradients), where the effects of any possible chattering in the

numerical integration can be mitigated, see [118, Chapter 7].

It is also possible to remove a degree of freedom, δ3, from the optimization problem

by substituting it with 1−δ1−δ2 and eliminating the constraint (4.65) from the prob-

lem. This is attractive because it reduces the dimension of the parameter space in the

branch-and-bound framework. The numerical implementation used for solving this

problem is as follows: the convex relaxations constructed using Theorem 4.48 and the

natural interval extensions of Corollary 4.24 were generated automatically based on

an operator-overloading approach using C++; the local dynamic optimizations were

performed using the code DYNO [58], which implements the control parametrization

approach; and the branch-and-bound framework used was libBandB 3.2 [119]. Using

a reference trajectory of (x̂, δ)k = (x̂L, δL)k, a relative tolerance for libBandB of 10−3,

relative and absolute tolerances for the numerical integrator in DYNO of 10−7, and

an optimality tolerance for the NLP solver in DYNO of 10−5, an optimal solution

value of 314.2 was obtained, at the point δ∗ = (0.3626, 0.0196, 0.6178). There was

a total of 483 nodes visited in the branch-and-bound tree, with a total CPU time

328

of 315s. For comparison, if the problem just involved two sections with the mode

sequence Tµ = 1, 3, an optimal solution value of 296.9 was obtained, at the point

δ∗ = (0.4181, 0.5819), with a total of 17 nodes and a total CPU time of 4.5s.

Comparing these results to those obtained in Example 3.39 in Section 3.6 when

the mode sequence was allowed to vary with fixed transition times, algorithm (BCDF)

was used to solve the problem with 27 epochs. The solution obtained was F = 311.3

with a total CPU time of 857s. Eventually, as ne increases, the solution obtained

using the varying mode sequence approach is expected to asymptotically approach

the solution of F = 314.2 obtained here. However, that would likely take up much

more computational resources. Hence, for this stiff example, these results suggest that

better solutions can be found faster by considering a continuous time formulation with

varying event times on a coarse event grid as opposed to a discrete time formulation

on a very fine uniform event grid.

Example 4.51. Consider the following problem,

min
δ∈[0.5,20]

x1(δ)

s.t. δ ≤ x1(δ),

where x(t) is given by the solution of the following LTI ODE system,

ẋ1 = x1 − x2 + 0.1,

ẋ2 = x1 + 1.0,

where x(0) = (1,−1), and t ∈ [0, δ].

Note that we have what seems to be a simple, reasonable optimization problem

to solve in that it only involves a single decision variable, and a well scaled LTI

ODE system. However, this problem contains multiple local minima due to the point

constraint. To solve it globally, we apply the CPET to obtain the following, equivalent

329

problem,

min
δ∈[0.5,20]

x̂1(1)

s.t. δ ≤ x̂1(1),

where x̂(s) is given by the solution of the following nonlinear ODE system,

x̂′1 = δ(x̂1 − x̂2 + 0.1),

x̂′2 = δ(x̂1 + 1.0),

where x̂(0) = (1,−1), and s ∈ [0, 1].

First, we shall try to solve the transformed problem utilizing Theorem 4.48 with

bounds obtained from Corollary 4.24. We note that in deriving the linearizations

of Theorem 4.48, we can exploit the bilinear structure of the transformed problem

above. We know that the convex envelope of a bilinear term vw for vL ≤ v ≤ vU and

wL ≤ w ≤ wU is given by the following,

vw ≥ vwU + vUw − vUwU , (4.66)

vw ≥ vwL + vLw − vLwL, (4.67)

vw ≤ vwL + vUw − vUwL, (4.68)

vw ≤ vwU + vLw − vLwU . (4.69)

Thus, the linearization for x̂1 can be obtained by substituting v ≡ δ and w ≡ x̂1−x̂2+

0.1 into the formulas above. For this problem, we have chosen the underestimating

linearization to be (4.67) and the overestimating linearization to be (4.69). The

integrator used was DAEPACK and DSL48SE with an absolute and relative tolerance

of 10−8, and an in-house implementation of the BB algorithm (Algorithm 2.3) was

implemented in C++. The relative tolerance of the BB algorithm was set to 10−3, while

the absolute tolerance was not used. The NLP solver used was SNOPT 6.1 [66] with

the default settings, and an optimality tolerance of 10−6. The finite difference option

330

was used for this example to estimate the required Jacobian, rather than using the

sensitivity option from DSL48SE because finite differences solved each subproblem in

the BB algorithm faster in this example involving one optimization decision variable.

For this example, the bounds obtained from Corollary 4.24 explode. This causes

many problems for the NLP solver. For the first group of nodes (up to 140) of the BB

tree employing a best bound node selection heuristic, the NLP solver returns an error

message saying that the problem is either infeasible or badly scaled. To mitigate this

problem, whenever this error occurs, we have set the lower bound to −1020 and set

the lower bounding problem to be feasible (so that the algorithm is forced to branch

on that partition corresponding to the node). The first lower bound is obtained after

140 nodes with the value of −1.9 × 1011. This is an extremely bad lower bound

for this problem. For this problem, the BB algorithm does not terminate with the

global solution. This is because we terminate the BB algorithm when the width of

a node being explored is less than the optimality tolerance of the NLP solver, 10−6.

This occurs after 28594 nodes, 2630 CPU seconds, with an incumbent lower bound

of −1.5 × 105 and a local solution of 6.25. This implies that the BB algorithm will

not converge with the tolerances used. What is particularly discouraging about this

example is that it only involves a single decision variable to be branched upon for the

BB algorithm.

Next, we examine the effect of using the exact bounds for Theorem 4.48 from

Theorem 4.44. The cost per node increases significantly when using this method,

because of the cost of obtaining the exact bounds. For this example, it is particularly

expensive because the cost of integration is the major component of the cost for the

NLP subproblems. What is somewhat surprising is that although the exact bounds

improve the values of the lower bounds, the values of the lower bounds are still very

weak, suggesting that the convex relaxations constructed from Theorem 4.48 can

still be weak even with the exact state bounds. For example, after 2000 nodes, the

incumbent lower bound from before was −2.6 × 107 using 190 CPU seconds, while

after 2000 nodes with the exact bounds, the incumbent lower bound was −1.1 × 106

using 3240 CPU seconds. The trade off is better lower bounds with more time spent

331

per node. The algorithm was terminated after an hour of CPU time, with the BB

algorithm not having converged, and an incumbent upper bound of 9.68.

Finally, we note that the exact bounds from Theorem 4.44 can be used as convex

relaxations, c and C, in place of Theorem 4.48. This way, the lower bounding problem

will no longer require a call to the NLP solver, but simply an integration of the

exact bounding hybrid system. Implementing this, the BB algorithm converges in

95 nodes with the global solution of δ = x̂1(1) = 1.8975, in 21 CPU seconds. The

incumbent lower bound after the root node was −3.34 × 104. Clearly, this is orders

of magnitude better than the aforementioned methods. This example illustrates the

utility of the developed bounding theory, at least for solving single-stage problems

with a varying time horizon to global optimality. The further application of these

bounding techniques will be very interesting for future work.

332

Chapter 5

Conclusions and Future Work

Chapter 1 discusses the literature to date on the modeling, simulation, sensitivity

analysis and optimization of hybrid systems. A clear and concise framework, based

on the concept of the hybrid automaton, is presented for the modeling and analysis of

hybrid systems. The importance of defining a deterministic execution of the hybrid

system is discussed, with emphasis on the semantics of a transition condition to

define a unique transition time, as well as a unique successor mode. The latter is

accomplished through the introduction of precedence rules for pending transitions. It

is shown that transversality of the discontinuity functions is not sufficient to define

a well-behaved execution of a hybrid system. Instead, it is proposed that a well-

behaved execution be defined as one in which the parametric sensitivities of the

hybrid system exist and are unique. An important difficulty is highlighted regarding

the modeling of reversible discontinuities within the current modeling frameworks.

While this difficulty can be mitigated, to some extent, by introducing appropriate

transversality conditions, its satisfactory resolution requires much more work and

inspiration.

Simulation techniques for the robust simulation of hybrid systems are discussed,

including the importance of rigorous state event location and issues regarding the

consistent reinitialization at events. In particular, a recently developed method for the

automatic determination of natural transition functions for LTI DAEs is highlighted.

There remains a need to develop a corresponding theory for LTV and nonlinear DAEs.

333

Another area that needs to be addressed is the development of better practically

implementable algorithms for the diagnosis and reformulation of high index DAEs.

The theory for the parametric sensitivity analysis of hybrid systems is also pre-

sented, together with efficient ways of calculating these sensitivities robustly and

correctly. In particular, the sensitivity trajectories have to be handled carefully at

transitions, and this reiterates the point that rigorous detection of all state events in

strict time order is pivotal. The potential of a more efficient method for calculating

derivative information in certain situations through the use of adjoints is noted. A

control parameterization approach to the open loop dynamic optimization of hybrid

systems is also discussed. Such an approach hinges on the existence and uniqueness

of the parametric sensitivities of the embedded hybrid system, that is, it requires all

executions of the hybrid system to be well-behaved for all values of the optimization

decision variables. A classification of problems is proposed as a general guide to which

gradient based optimization techniques can be brought to bear, based on whether the

sequence of modes of the hybrid system changes depending on the values of the opti-

mization decision variables. Unfortunately, the most intriguing class of problems are

those in which the sequence of modes does change in the parameter space.

In Chapter 2, the deterministic, global optimization algorithms branch-and-bound

and nonconvex outer approximation are introduced. A method to construct convex

relaxations for general, nonlinear Bolza type functions subject to an embedded linear

hybrid system with explicit time events is presented. The method relies on existing

methods to construct convex underestimators of factorable and twice differentiable

functions on compact Euclidean sets. A major requirement of the method is to obtain

bounding trajectories of the embedded hybrid system. It is shown how the implied

state bounds, which are also the tightest possible bounds, of the embedded hybrid

system can be obtained. The constructed convex relaxations are shown to possess

consistent bounding properties, and hence, a branch-and-bound algorithm employing

these relaxations will be infinitely convergent. Additionally, it is shown that the

parametric sensitivities of the embedded hybrid system under consideration exist.

Sufficient conditions for the smoothness of the objective function in the parameter

334

set are also presented, which allows efficient, gradient based optimization algorithms

to be utilized within the branch-and-bound framework to obtain an ε-optimal estimate

for the global solution to the optimization problem.

The problem of obtaining the optimal mode sequence for a continuous time linear

time varying hybrid system with fixed time transitions is considered in Chapter 3.

Dynamic programming approaches are discussed, but ultimately abandoned due to

the need to discretize the continuous state space (and the inevitable curse of dimen-

sionality), as well as difficulties in handling (possibly nonconvex) constraints. Instead,

binary decision variables are introduced to represent the mode sequence, and a su-

perstructure of the hybrid system is proposed, where the linearity of the embedded

dynamic system is retained by introducing auxiliary continuous variables, and shifting

the nonlinearities and nonconvexities into additional constraints. This exploitation of

the linear structure of the embedded hybrid system is important, because nonlinear

approaches can suffer from very weak relaxations, as shown in Chapter 4.

An important component of constructing a convex relaxation of the reformulated

problem lies in the estimation of bounds for the hybrid system at the epoch bound-

aries, which bound the auxiliary variables acting as the initial conditions for the

decomposed system. Various bounding strategies are presented for this purpose. It

is shown that a simple and efficient decomposition approach based on calculating the

exact state bounds for the subproblems of the hybrid superstructure produces weak

bounds which deteriorate as the number of epochs increases. A novel algorithm is

proposed based on the solution of families of MILPs as relaxed LPs. This algorithm is

able to incorporate physical insight as additional constraints in the LPs, and produces

significantly tighter bounds than the decomposition algorithm.

The convexity theory developed in Chapter 2 is applied to construct convex relax-

ations for the reformulated problem that can handle arbitrary point and isoperimetric

constraints. The resulting nonconvex MINLP with its convex relaxation is then solved

using a branch-and-cut algorithm with a novel dynamic bounds tightening heuristic.

This heuristic utilizes the simple decomposition approach based on calculating the

implied state bounds for the subproblems of the hybrid superstructure mentioned

335

above, which ultimately proves extremely useful due to its efficiency. It is illustrated

through examples that dynamic bounds tightening can be very effective in acceler-

ating the convergence of the proposed algorithm, which allows it to systematically

outperform explicit enumeration of all possible mode sequences.

In Chapter 4, the global optimization problem with continuous time linear hybrid

systems embedded has been considered where the embedded systems have varying

time transitions and a fixed mode sequence. This problem is shown to be inherently

nonconvex, and it is shown that special care has to be taken with respect to the type

of discontinuities allowed in the problem for the resulting optimization problem to be

smooth. The control parametrization enhancing transform has been utilized to trans-

form the problem into a global optimization problem with nonlinear hybrid systems

embedded where the transitions are now fixed in time. Sufficient conditions have been

proposed for these problems to be smooth in the control parametrization framework.

A method of constructing convex relaxations for the transformed problem has been

developed that is shown to be convergent within a branch-and-bound framework. A

very important requirement for utilizing this convexity theory for nonlinear hybrid

systems is the ability to construct bounding trajectories for the states of the nonlin-

ear hybrid system. The theory of differential inequalities is utilized for this purpose,

where it is possible for additional information about the system to be exploited in

the form of bounding sets which are known independently from the solution of the

hybrid system. However, it is shown, with simple examples, that this theory might

not produce satisfactory bounds when the differential system is non-quasimonotone.

An algorithm is proposed to exploit the time transformation, that guarantees the ex-

actness of the bounding trajectories for single stage linear time varying systems. It is

shown that this proposed algorithm can solve simple problems for which the method

employing differential inequalities fails.

While it is hoped that the material in this thesis will make a significant impact

upon the field of global optimization of hybrid systems, there remains a lot of exciting

and significant opportunities for future research. Obviously, an immediate area of

research is to consider optimization problems where both the sequence of modes and

336

transition times are allowed to vary. In addition, it is very desirable for methods to be

developed for the optimization of general, nonlinear hybrid systems, and even hybrid

systems with differential algebraic equations, which requires the formal development

of the required convexity theory for Bolza type functions with differential algebraic

equations embedded. In particular, there exists a tremendous scope of research on

providing better bounding techniques, and developing methods to construct convex

relaxations of Bolza type functions with nonlinear systems embedded, as the current

methods are not entirely satisfactory. These very challenging problems will likely

require some inspiration, and the exploitation of problem structure wherever possible.

337

338

Bibliography

[1] C. S. Adjiman, C. S. Dallwig, C. A. Floudas, and A. Neumaier. A global

optimization method, αBB, for general twice-differentiable constrained NLPs -

I. Theoretical advances. Computers & Chemical Engineering, 22(9):1137–1158,

1998.

[2] C. S. Adjiman, I. P. Androulakis, and C. A. Floudas. Global optimization of

mixed-integer nonlinear problems. AICHE Journal, 46(9):1769–1797, 2000.

[3] G. Alefeld and J. Herzberger. Introduction to Interval Computations. Academic

Press, New York, 1983.

[4] R. Alur, C. Courcoubetis, T. A. Henzinger, and P. Ho. Hybrid automata: An

algorithmic approach to the specification and verification of hybrid systems. In

[69], pages 209–229. 1993.

[5] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin,

A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.

Theoretical Computer Science, 138:3–34, 1995.

[6] R. Alur, T. A. Henzinger, and E. D. Sontag, editors. Hybrid Systems III, volume

1066 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1996.

[7] M. Andersson. Object-Oriented Modeling and Simulation of Hybrid Systems.

PhD thesis, Lund Institute of Technology, Sweden, 1994.

[8] P. Antsaklis, W. Kohn, and A. Nerode, editors. Hybrid Systems II, volume 999

of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1995.

339

[9] P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, editors. Hybrid Systems IV,

volume 1273 of Lecture Notes in Computer Science. Springer-Verlag, Berlin,

1997.

[10] P. Antsaklis, W. Kohn, M. Lemmon, A. Nerode, and S. Sastry, editors. Hybrid

Systems V, volume 1567 of Lecture Notes in Computer Science. Springer-Verlag,

Berlin, 1999.

[11] U. M. Ascher and L. R. Petzold. Computer Methods for Ordinary Differential

Equations and Differential-Algebraic Equations. SIAM, Philadelphia, 1998.

[12] M. P. Avraam, N. Shah, and C. C. Pantelides. Modelling and optimisation of

general hybrid systems in the continuous time domain. Computers & Chemical

Engineering, 22(S):S221–S228, 1998.

[13] A. Back, J. Guckenheimer, and M. Myers. A dynamical simulation facility for

hybrid systems. In [69], pages 255–267. 1993.

[14] E. Balas, S. Ceria, and G. Cornuejols. Mixed 0-1 programming by lift-and-

project in a branch-and-cut framework. Management Science, 42:1229–1246,

1996.

[15] P. I. Barton. The Modelling and Simulation of Combined Discrete/Continuous

Processes. PhD thesis, University of London, 1992.

[16] P. I. Barton and S. Galán. Linear DAEs with nonsmooth forcing. Tech-

nical report, Department of Chemical Engineering, MIT, available from

http://yoric.mit.edu/reports.html, 26 Jan 2000.

[17] P. I. Barton and C. K. Lee. Modeling, simulation, sensitivity analysis and

optimization of hybrid systems. ACM Transactions on Modeling and Computer

Simulation, 12(4):1–34, 2002.

[18] P. I. Barton and C. C. Pantelides. Modeling of combined discrete/continuous

processes. AICHE Journal, 40:966–979, 1994.

340

[19] P. I. Barton, J. R. Banga, and S. Galán. Optimization of hybrid dis-

crete/continuous dynamic systems. Computers & Chemical Engineering, 24

(9-10):2171–2182, 2000.

[20] Paul I. Barton. Mixed-Integer and Nonconvex Optimization. Massachusetts

Institute of Technology, Cambridge, USA, 2006.

[21] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty. Nonlinear Programming. Theory

and Algorithms. John Wiley & Sons, Inc., Canada, second edition, 1993.

[22] E. F. Beckenbach and R. Bellman. Inequalities. Springer-Verlag, New York,

1965.

[23] R. E. Bellman and R. E. Kalaba. Dynamic Programming and Modern Control

Theory. Academic Press, New York, 1965.

[24] A. Bemporad and M. Morari. Control of systems integrating logic, dynamics

and constraints. Automatica, 35(3):407–427, 1999.

[25] A. Bemporad, G. Ferrari-Trecate, and M. Morari. Observability and controlla-

bility of piecewise affine and hybrid systems. IEEE Transactions on Automatic

Control, 45(10):1864–1876, October 2000.

[26] A. Bemporad, D. Corona, A. Giua, and C. Seatzu. Optimal state-feedback

quadratic regulation of linear hybrid automata. In Proceedings of the IFAC

Conference on Analysis and Design of Hybrid Systems, pages 407–412, 2003.

[27] D. Bertsimas and J. N. Tsitsiklis. Introduction to Linear Optimization. Athena

Scientific, Massachusetts, 1997.

[28] M. S. Branicky and S. E. Mattsson. Simulation of hybrid systems. In [9], pages

31–56. 1997.

[29] M. S. Branicky and S. K. Mitter. Algorithms for optimal hybrid control. In

Proceedings of the 34th IEEE Conference on Decision and Control, volume 3,

pages 2661–2666, 1995.

341

[30] M. S. Branicky, V. S. Borkar, and S. K. Mitter. A unified framework for hybrid

control: Model and optimal control theory. IEEE Transactions on Automatic

Control, 43(1):31–45, 1998.

[31] R. W. Brankin, I. Gladwell, and L. F. Shampine. RKSUITE: A suite of Runge-

Kutta codes for the initial value problem for ODEs. Softreport 92-S1, Depart-

ment of Mathematics, Southern Methodist University, Dallas, Texas, U.S.A,

1992.

[32] K. E. Brenan, S. L. Campbell, and L. R. Petzold. Numerical Solution of Initial

Value Problems in Differential-Algebraic Equations. North-Holland, New York,

1989.

[33] P. N. Brown, G. D. Byrne, and A. C. Hindmarsh. VODE: A variable-coefficient

ODE solver. SIAM Journal on Scientific and Statistical Computing, 10(5):

1038–1051, 1989.

[34] L. Brüll and U. Pallaske. On differential algebraic equations with discontinuities.

Zeitschrift für angewandte Mathematik und Physik, 43:319–327, 1992.

[35] A. E. Bryson and Y. Ho. Applied Optimal Control. Hemisphere, New York,

1975.

[36] S. L. Campbell and C. W. Gear. The index of general nonlinear DAEs. Nu-

merische Mathematik, 72(2):173–196, 1995.

[37] M. Caracotsios and W. E. Stewart. Sensitivity analysis of initial value problems

with mixed ODEs and algebraic constraints. Computers & Chemical Engineer-

ing, 9:359–365, 1985.

[38] C. G. Cassandras, D. L. Pepyne, and Y. Wardi. Optimal control of a class

of hybrid systems. IEEE Transactions on Automatic Control, 46(3):398–415,

March 2001.

342

[39] F. E. Cellier. Combined Continuous/Discrete System Simulation by Use of

Digital Computers: Techniques and Tools. PhD thesis, Swiss Federal Institute

of Technology, Zurich, 1979.

[40] F. E. Cellier. Combined continuous/discrete simulation applications, techniques

and tools. In J. Wilson, J. Henriken, and S. Roberts, editors, Proceedings of

the 1986 Winter Simulation Conference, pages 24–33. 1986.

[41] J. A. Clabaugh, J. E. Tolsma, and P. I. Barton. ABACUSS

II: Advanced modeling environment and embedded simulator.

http://yoric.mit.edu/abacuss2/abacuss2.html, 1999.

[42] E. A. Coddington and N. Levinson. Theory of Ordinary Differential Equations.

McGraw Hill, 1955.

[43] L. J. Corwin and R. H. Szczarba. Multivariable Calculus. Marcel Dekker, Inc.,

New York, 1982.

[44] A. Crema. The multiparametric 0-1-integer linear programming problem: A

unified approach. European Journal of Operational Research, 139:511–520, 2002.

[45] R. David and H. Alla. On hybrid Petri nets. Discrete Event Dynamic Systems,

11:9–40, 2001.

[46] V. D. Dimitriadis, N. Shah, and C. C. Pantelides. Modeling and safety ver-

ification of discrete/continuous processing systems. AICHE Journal, 43(4):

1041–1059, April 1997.

[47] S. E. Dreyfus and A. M. Law. The Art and Theory of Dynamic Programming.

Academic Press, London, 1977.

[48] I. S. Duff and J. K. Reid. MA48, a FORTRAN code for direct solution of

sparse unsymmetric linear systems of equations. Technical report, RAL-93-072;

Rutherford Appleton Laboratory, Oxon, UK, 1993.

343

[49] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices.

Clarendon Press, Oxford, 1986.

[50] M. A. Duran and I. E. Grossmann. An outer-approximation algorithm for

a class of mixed-integer nonlinear programs. Mathematical Programming, 36:

307–339, 1986.

[51] M. Egerstedt, Y. Wardi, and F. Delmotte. Optimal control of switching times

in switched dynamical systems. In Proceedings of the 42th IEEE Conference on

Decision and Control, pages 2138–2143, 2003.

[52] H. Elmqvist, F. E. Cellier, and M. Otter. Object-oriented modeling of hybrid

systems. In Proceedings of ESS’93, European Simulation Symposium, pages

xxxi–xli, 1993.

[53] D. A. Fahrland. Combined discrete event continuous systems simulation. Sim-

ulation, 14:61–72, 1970.

[54] J. E. Falk and R. M. Soland. An algorithm for separable nonconvex program-

ming problems. Management Science, 15(9):550–569, 1969.

[55] W. F. Feehery. Dynamic Optimization with Path Constraints. PhD thesis,

Massachusetts Institute of Technology, Cambridge, 1998.

[56] W. F. Feehery and P. I. Barton. Dynamic optimization with equality path

constraints. Industrial & Engineering Chemistry Research, 38(6):2350–2363,

1999.

[57] W. F. Feehery, J. E. Tolsma, and P. I. Barton. Efficient sensitivity analysis of

large-scale differential-algebraic systems. Applied Numerical Mathematics, 25

(1):41–54, 1997.

[58] M. Fikar and M. A. Latifi. User’s guide for Fortran dynamic optimisation code

DYNO. Technical report, Nancy, France: LSGC-CNRS and Bratislava, Slovak

Republic: Slovak Technical University Bratislava, 2002.

344

[59] R. Fletcher and S. Leyffer. Solving mixed integer nonlinear programs by outer

approximation. Mathematical Programming, 66:327–349, 1994.

[60] C. A. Floudas. Nonlinear and Mixed-Integer Optimization: Fundamentals and

Applications. Oxford University Press, Oxford, 1995.

[61] P. M. Frank. Introduction to System Sensitivity Theory. Academic Press, New

York, 1978.

[62] S. Galán and P. I. Barton. Dynamic optimization of hybrid systems. Computers

& Chemical Engineering, 22(Suppl.):S183–S190, 1998.

[63] S. Galán, W. F. Feehery, and P. I. Barton. Parametric sensitivity functions

for hybrid discrete/continuous systems. Applied Numerical Mathematics, 31

(1):17–48, 1999.

[64] E. P. Gatzke, J. E. Tolsma, and P. I. Barton. Construction of convex func-

tion relaxations using automated code generation techniques. Optimization &

Engineering, 3:305–326, 2002.

[65] C. W. Gear. Numerical Initial Value Problems in Ordinary Differential Equa-

tions. Prentice-Hall, Englewood Cliffs, NJ, 1973.

[66] P. E. Gill, W. Murray, and M. A. Saunders. SNOPT: An SQP algorithm for

large-scale constrained optimization. SIAM Journal on Optimization, 12:979–

1006, 2002.

[67] F. Glover. Improved linear integer programming formulations of nonlinear in-

teger problems. Management Science, 22(4):455–460, 1975.

[68] V. Gopal and L. T. Biegler. A successive linear programming approach for

initialization and reinitialization after discontinuities of differential-algebraic

equations. SIAM Journal on Scientific Computing, 20(2):447–467, 1999.

345

[69] R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, editors. Hybrid

Systems, volume 736 of Lecture Notes in Computer Science. Springer-Verlag,

Berlin, 1993.

[70] G. W. Harrison. Dynamic models with uncertain parameters. In X. J. R. Avula,

editor, Proceedings of the First International Conference on Mathematical Mod-

eling, volume 1, pages 295–304, University of Missouri, Rolla, 1977.

[71] G. W. Harrison. Compartmental models with uncertain flow rates. Mathemat-

ical Biosciences, 43:131–139, 1979.

[72] J. L. Hay and A. W. J. Griffin. Simulation of discontinuous dynamical systems.

In L. Dekker, G. Savastano, and G. C. Vansteenkiste, editors, Simulation of

Systems ’79. North-Holland, 1980.

[73] S. Hedlund and A. Rantzer. Optimal control of hybrid systems. In Proceedings

of the 38th IEEE Conference on Decision and Control, volume 4, pages 3972–

3977, 1999.

[74] A. C. Hindmarsh. ODEPACK, a systematized collection of ODE solvers. In

R. S. Stepleman, editor, Scientific Computing, pages 55–64. North-Holland,

Amsterdam, 1983.

[75] I. A. Hiskens and M. A. Pai. Trajectory sensitivity analysis of hybrid systems.

IEEE Transactions on Circuits and Systems-I, 47(2):204–220, 2000.

[76] Y. C. Ho and X. R. Cao. Perturbation Analysis of Discrete Event Dynamic

Systems. Kluwer Academic Publishers, Boston, 1991.

[77] R. Horst and H. Tuy. Global Optimization. Springer-Verlag, Berlin, 3rd edition,

1996.

[78] ILOG Inc. ILOG CPLEX 9.1 documentation, 2005. URL http://www.ilog.

com/products/cplex/.

346

[79] K. H. Johansson, M. Egerstedt, J. Lygeros, and S. Sastry. On the regularization

of Zeno hybrid automata. Systems & Control Letters, 38:141–150, 1999.

[80] R. B. Kearfott, M. Dawande, K. Du, and C. Hu. Algorithm 737: INTLIB: A

portable Fortran 77 interval standard-function library. ACM Transactions on

Mathematical Software, 20(4):447–459, 1994.

[81] P. Kesavan and P. I. Barton. Generalized branch-and-cut framework for mixed-

integer nonlinear optimization problems. Computers & Chemical Engineering,

24(2-7):1361–1366, 2000.

[82] P. Kesavan and P. I. Barton. Decomposition algorithms for nonconvex mixed-

integer nonlinear programs. AIChE Symposium Series, 96(323):458–461, 2000.

[83] P. Kesavan, R. J. Allgor, E. P. Gatzke, and P. I. Barton. Outer approximation

algorithms for separable nonconvex mixed-integer nonlinear programs. Mathe-

matical Programming Series A, 100(3):517–535, 2004.

[84] V. Lakshmikantham and S. Leela. Differential and Integral Inequalities, vol-

ume 1. Academic, New York, 1969.

[85] H. W. J. Lee, K. L. Teo, V. Rehbock, and L. S. Jennings. Control parametriza-

tion enhancing technique for time optimal control problems. Dynamic Systems

and Applications, 6:243–262, 1997.

[86] H. W. J. Lee, K. L. Teo, V. Rehbock, and L. S. Jennings. Control para-

metrization enhancing technique for optimal discrete-valued control problems.

Automatica, 35:1401–1407, 1999.

[87] Numerica Technology LLC. JACOBIAN User Guide. Numerica Technology,

Cambridge, MA, 2005. www.numericatech.com.

[88] J. Logsdon and L. T. Biegler. Accurate solution of differential-algebraic op-

timization problems. Industrial & Engineering Chemistry Research, 28:1628–

1639, 1989.

347

[89] J. Lu, L. Liao, A. Nerode, and J. H. Taylor. Optimal control of systems with

continuous and discrete states. In Proceedings of the 32nd IEEE Conference on

Decision and Control, volume 3, pages 2292–2297, 1993.

[90] J. Lygeros, K. H. Johansson, S. N. Simić, J. Zhang, and S. S. Sastry. Dynamical

properties of hybrid automata. IEEE Transactions on Automatic Control, 48

(1):2–17, January 2003.

[91] C. Majer, W. Marquardt, and E. D. Gilles. Reinitialization of DAEs after dis-

continuities. Computers & Chemical Engineering, 19(suppl.):S507–S512, 1995.

[92] J. Malmborg and B. Bernhardsson. Control and simulation of hybrid systems.

Nonlinear Analysis: Theory, Methods & Applications, 30(1):337–347, 1997.

[93] T. Maly and L. R. Petzold. Numerical methods and software for sensitivity

analysis of differential-algebraic systems. Applied Numerical Mathematics, 20:

57–79, 1996.

[94] S. E. Mattsson. On modelling and differential/algebraic systems. Simulation,

52:24–32, 1989.

[95] S. E. Mattsson and G. Söderlind. Index reduction in differential-algebraic equa-

tions using dummy derivatives. SIAM Journal on Scientific Computing, 14(3):

677–692, 1993.

[96] G. P. McCormick. Computability of global solutions to factorable nonconvex

programs: Part I - convex underestimating problems. Mathematical Program-

ming, 10:147–175, 1976.

[97] A. Mitsos. Man-Portable Power Generation Devices: Product Design and Sup-

porting Algorithms. PhD thesis, MIT, Cambridge, MA, USA, 2006. Available

from http://yoric.mit.edu/reports.html.

[98] R. E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, N.J., 1966.

348

[99] R. E. Moore. Methods and Applications of Interval Analysis. SIAM, Philadel-

phia, 1979.

[100] K. R. Morison and R. W. H. Sargent. Optimization of multistage processes

described by differential-algebraic equations. In J. P. Hennart, editor, Numerical

Analysis: Proceedings of the 4th IIMAS Workshop, volume 1230 of Lecture Notes

in Mathematics, pages 86–102. Springer-Verlag, Berlin, 1986.

[101] P. J. Mosterman. Hybrid Dynamic Systems: A Hybrid Bond Graph Modeling

Paradigm and its Application in Diagnosis. PhD thesis, Vanderbilt University,

Tennessee, 1997.

[102] P. J. Mosterman. An overview of hybrid simulation phenomena and their sup-

port by simulation packages. In F. W. Vaandrager and J. H. Van Schuppen,

editors, Hybrid Systems: Computation and Control, volume 1569 of Lecture

Notes in Computer Science, pages 165–177. Springer-Verlag, Berlin, 1999.

[103] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization.

Wiley, New York, 1988.

[104] T. I. Oren. Software for the simulation of combined continuous and discrete

systems: A state-of-the-art review. Simulation, 28:33–45, 1977.

[105] M. Otter, H. Elmqvist, and S. E. Mattsson. Hybrid modeling in Modelica based

on synchronous data flow principle. In Proceedings of the 1999 IEEE Symposium

on Computer-Aided Control System Design, CACSD’99, pages 151–157. IEEE

Control Systems Society, 1999.

[106] C. C. Pantelides. The consistent initialization of differential-algebraic systems.

SIAM Journal on Scientific and Statistical Computing, 9(2):213–231, 1988.

[107] T. Park and P. I. Barton. State event location in differential-algebraic models.

ACM Transactions on Modeling and Computer Simulation, 6(2):137–165, 1996.

349

[108] L. R. Petzold. A description of DASSL: A differential/algebraic system solver.

In R. S. Stepleman, editor, Scientific Computing, pages 65–68. North-Holland,

Amsterdam, 1983.

[109] H. Ratschek and J. Rokne. Computer methods for the range of functions. Ellis

Horwood Limited, England, 1984.

[110] G. Reißig. Differential-algebraic equations and impasse points. IEEE Transac-

tions on Circuits and Systems-I, 43:122–133, 1996.

[111] G. Reißig, W. S. Martinson, and P. I. Barton. Differential-algebraic equations

of index 1 may have an arbitrarily high structural index. SIAM Journal on

Scientific Computing, 21(6):1987–1990, 2000.

[112] G. Reißig, H. Boche, and P. I. Barton. On inconsistent initial conditions for

linear time-invariant differential-algebraic equations. IEEE Transactions on

Circuits and Systems-I, 49(11):1646–1648, 2002.

[113] R. T. Rockafellar. Convex Analysis. Princeton University Press, New Jersey,

1970.

[114] E. N. Rozenvasser. General sensitivity equations of discontinuous systems. Au-

tomation and Remote Control, pages 400–404, 1967.

[115] A. I. Ruban. Sensitivity coefficients for discontinuous dynamic systems. Journal

of Computer and System Sciences International, 36(4):536–542, 1997.

[116] W. Rudin. Principles of Mathematical Analysis. McGraw-Hill Inc., New York,

third edition, 1976.

[117] H. S. Ryoo and N. V. Sahinidis. A branch-and-reduce approach to global opti-

mization. Journal of Global Optimization, 8(2):107–139, 1996.

[118] A. B. Singer. Global Dynamic Optimization. PhD thesis, MIT, Cambridge, MA,

USA, 2004. Available from http://yoric.mit.edu/reports.html.

350

[119] A. B. Singer. LibBandB.a version 3.2 manual. Technical report, Massachusetts

Institute of Technology, Cambridge, MA, 2004.

[120] A. B. Singer and P. I. Barton. Global solution of optimization problems with

parameter-embedded linear dynamic systems. Journal of Optimization Theory

and Applications, 121(3):613–646, 2004.

[121] A. B. Singer and P. I. Barton. Bounding the solutions of parameter dependent

nonlinear ordinary differential equations. SIAM Journal on Scientific Comput-

ing, 27(6):2167–2182, 2006.

[122] A. B. Singer, J. W. Taylor, P. I. Barton, and W. H. Green. Global dynamic

optimization for parameter estimation in chemical kinetics. Journal of Physical

Chemistry A, 110(3):971–976, 2006.

[123] J. C. Strauss, D. C. Augustin, M. S. Fineberg, B. B. Johnson, R. N. Linebarger,

and F. J. Sanson. The SCi continuous system simulation language (CSSL).

Simulation, 9:281–303, 1967.

[124] L. Tavernini. Differential automata and their discrete simulators. Nonlinear

Analysis, Theory, Methods & Applications, 11(6):665–683, 1987.

[125] M. Tawarmalani and N. V. Sahinidis. Convexification and Global Optimization

in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms,

Software, and Applications. Nonconvex Optimization And Its Applications.

Kluwer Academic Publishers, Dordrecht, 2002.

[126] K. Teo, G. Goh, and K. Wong. A Unified Computational Approach to Opti-

mal Control Problems. Pitman Monographs and Surveys in Pure and Applied

Mathematics. Wiley, New York, 1991.

[127] K. L. Teo, L. S. Jennings, H. W. J. Lee, and V. Rehbock. The control parame-

trization enhancing transform for constrained optimal control problems. Journal

of the Australian Mathematical Society Series B, 40:314–335, 1999.

351

[128] J. E. Tolsma and P. I. Barton. DAEPACK: An open modeling environment for

legacy models. Industrial & Engineering Chemistry Research, 39(6):1826–1839,

2000.

[129] J. E. Tolsma and P. I. Barton. Hidden discontinuities and parametric sensitivity

calculations. SIAM Journal on Scientific Computing, 23(6):1861–1874, 2002.

[130] J. E. Tolsma and P. I. Barton. DAEPACK: A symbolic and numeric library for

open modeling. http://yoric.mit.edu/daepack/daepack.html, 1999.

[131] C. Tomlin, G. J. Pappas, and S. Sastry. Conflict resolution for air traffic man-

agement: A case study in multi-agent hybrid systems. IEEE Transactions on

Automatic Control, 43(4):509–521, April 1998.

[132] C. Tomlin, J. Lygeros, and S. Sastry. A game theoretic approach to controller

design for hybrid systems. Proceedings of the IEEE, 88(7):949–970, July 2000.

[133] V. I. Utkin. Sliding Modes in Control and Optimization. Springer-Verlag, Berlin,

1992.

[134] V. S. Vassiliadis, R. W. H. Sargent, and C. C. Pantelides. Solution of a class

of multistage dynamic optimization problems. 1. Problems without path con-

straints. Industrial & Engineering Chemistry Research, 33:2111–2122, 1994.

[135] W. Walter. Differential and Integral Inequalities. Springer-Verlag, New York,

1970.

[136] H. S. Witsenhausen. A class of hybrid-state continuous-time dynamic systems.

IEEE Transactions on Automatic Control, 11(2):161–167, April 1966.

[137] X. Xu and P. J. Antsaklis. An approach for solving general switched linear

quadratic optimal control problems. In Proceedings of the 40th IEEE Conference

on Decision and Control, pages 2478–2483, 2001.

352

[138] X. Xu and P. J. Antsaklis. Optimal control of switched systems based on

parameterization of the switching instants. IEEE Transactions on Automatic

Control, 49(1):2–16, January 2004.

[139] J. Zhang, K. H. Johansson, J. Lygeros, and S. Sastry. Zeno hybrid systems.

International Journal of Robust and Nonlinear Control, 11(5):435–451, 2001.

353

