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Abstract

Technologies for dynamic simulation of chemical process flowsheets, as implemented
in equation-based dynamic simulators, allow solution of fairly sophisticated process
models, that include detailed descriptions of physical phenomena along with oper-
ating policies and discrete events. Simulation of flowsheet models with this level of
detail forms the basis for a wide variety of activities, such as process optimization,
startup and shutdown studies, process design, batch policy synthesis, safety interlock
validation, and operator training. Technologies that make these activities possible
for plant-scale models include sparse linear algebra routines, robust backward differ-
ence formula time integration methods, guaranteed state event location algorithms,
generation of analytical Jacobian information via automatic differentiation, efficient
algorithms for consistent initialization that may also be used to analyze the index
of the model equations, automatic index reduction algorithms, and path-constrained
dynamic optimization methods.

An equation-based dynamic process simulator takes as input the model equa-
tions that describe process behavior, along with a description of the operating policy.
The input language allows for model decomposition, inheritance, and reuse, which
facilitates construction of plant-scale dynamic models. Technologies like the ones
mentioned above allow the simulator to then analyze the model for inconsistencies
and perform calculations based on dynamic simulation, with a minimum of interven-
tion from the engineer. This reduces both the time and numerical expertise required
to perform simulation-based activities. Results, in some cases made possible or eco-
nomically feasible only by the modeling support provided by a simulator, have been
impressive.

However, these capabilities apply to flowsheet models that consist only of differ-
ential-algebraic, or lumped, unit models. Sometimes behavior in a particular unit
cannot be adequately described by a lumped formulation, when variation with other
independent variables like distance along a PFTR, film coordinate, or polymer chain
length are important. In this case, behavior is most naturally modeled with partial
differential, or distributed, unit models.



Partial differential equations in network flow simulations bring an additional set
of mathematical and numerical issues. For a distributed model to be mathemati-
cally well-posed, proper initial and boundary conditions must be specified. Boundary
condition requirements for nonlinear unit models may change during the course of a
dynamic simulation, even in the absence of discrete events. Some distributed models,
due to improper formulation or simple transcription errors, may be ill-posed because
they do not have a mathematical property called continuous dependence on data.
Finally, the model equations must be discretized in the proper manner.

This thesis contributes two new analyses of distributed unit models. The first relies
on the definition of a differentiation index for partial differential equations developed
in this thesis. It is by design a very natural generalization of the differentiation index
of differential-algebraic equations. As such, and in contrast with other indices defined
very recently for partial differential equations, it allows algorithms that are already
used by process simulators to automatically analyze lumped unit models to be applied
in a very straightforward manner to distributed unit models as well.

This index analysis provides insight into the equations that constrain consistent
Cauchy data, which is the multidimensional analogue of initial data for differential-
algebraic equations. It also provides an indication of the expected index of the
differential-algebraic equations that result from method of lines semidiscretizations.

The second contribution of this thesis is an analysis of the mathematical well-
posedness of distributed unit models provided by the engineer. This analysis relies
on a generalization of the classical characteristic analysis of hyperbolic systems to
more general nonhyperbolic systems, also developed in this thesis. It depends on
the generalized eigenvalues and eigenvectors of a matrix pair, or alternatively on
the (stably computable) transformation of a matrix pair to its generalized upper-
triangular form. Because those quantities may be readily computed, this analysis
may also be performed by a process simulator.

The analysis provides detailed information about the boundary conditions re-
quired to guarantee existence and uniqueness of the solution. It provides information
about the smoothness required of forcing functions and data in order to guarantee
a smooth solution to a linear system, or that is necessary for existence of a smooth
solution to a nonlinear system. It also identifies systems that are ill-posed because
they do not depend continuously on their data.

The ultimate goal for distributed models in dynamic process simulators is the
level of support currently available for lumped models, where an engineer can provide
an arbitrary model and expect the simulator to return a solution that is accurate
to within a specified tolerance. It is unreasonable to expect a simulator to return
a meaningful result if a distributed model is not mathematically well-posed. By
identifying such models and offering information on how to make them well-posed,
the analyses developed in this thesis allow a simulator to reduce the time and expertise
required to set up and perform dynamic simulations involving distributed models.

Thesis Supervisor: Paul I. Barton
Title: Associate Professor of Chemical Engineering
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Chapter 1

Dynamic Systems Modeling

1.1 Introduction

A chemical process flowsheet may be viewed as a network of unit operations, or

units. Classical unit operations include distillation, continuously stirred tank reactors

(CSTRs), plug-flow tubular reactors (PFTRs), and heat exchangers. The abstraction

of a wide variety of industrial processes to a smaller set of basic unit operations

marked a significant change in the chemical engineering profession.

A dynamic model of a process flowsheet is typically built from this unit operation

paradigm. The engineer describes the behavior of each unit in the flowsheet with a

particular model. Coupling the inputs and outputs of the individual unit models then

produces the overall flowsheet model. For example, setting the exit stream from a

reactor model equal to one of the input streams to a heat exchanger model reflects a

plant structure in which the reactor effluent is fed to a heat exchanger.

The operating policy forms another layer of the flowsheet model. Specific con-

ditions may trigger discrete events, such as the rupture of a bursting disk when the

pressure in a vessel exceeds a critical level, or the injection of catalyst into a batch

reactor at a certain time. A chemical process flowsheet is therefore most naturally

modeled as such a hybrid discrete-continuous system [5].

Dynamic simulation of chemical plants forms the basis for a wide variety of ac-

tivities [5, 53] such as process optimization [26], startup and shutdown studies [75],
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process design [53], batch policy synthesis [2], safety interlock validation [65], and

operator training [83]. However, dynamic simulation of a chemical process flowsheet

also presents significant challenges, which arise due to the size and complexity of the

behavior that the dynamic model must capture.

Construction of the model requires significant effort. The size of the overall model

contributes to this, because development of good models for each unit in the flowsheet

demands good quantitative understanding of each unit’s behavior. Additional work

is required to couple the unit models together and specify degrees of freedom and

forcing functions for the differential equations in such a way that the resulting dynamic

simulation problem is mathematically well-posed. These conditions may need to be

altered or revised during the course of a simulation. Finally, a great deal of numerical

expertise is required to set up and debug a dynamic simulation involving large, sparse

systems of differential-algebraic equations.

Modern chemical process simulators attempt to address these issues in several

ways. First, they reduce the time required to create the flowsheet model through

model decomposition, inheritance, and reuse. This means that an engineer may

leverage models of behavior that are shared by several units. For example, a basic

CSTR model might include overall material and species balance equations. A jacketed

CSTR might use the same material and species balance equations, but also include a

description of a steam jacket. A modern simulator allows the jacketed CSTR model

to inherit the properties of the simple CSTR, so that the only additional modeling

work required to create the jacketed CSTR model is description of the steam jacket.

Second, process simulators reduce the level of numerical expertise required to

set up and debug a dynamic simulation through the use of advanced robust solu-

tion algorithms, which can be applied to general flowsheet models that consist of

differential-algebraic equations. Examples of such solution algorithms include im-

plicit, or backward difference formula (BDF), adaptive time step integration routines

[28, 39, 68], automatic generation of Jacobian information via automatic differentia-

tion [84], and guaranteed state event location via interval arithmetic [64]. The goal

is to solve any mathematically well-posed flowsheet model automatically, without
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intervention by the engineer.

Third, they provide some automated analysis of the model equations. Examples

include degree of freedom analysis to determine whether the number of equations

matches the number of unknowns, structural analysis to detect ill-posed algebraic

systems [23] and decompose their solution [82], structural index analysis to help

specify consistent initial conditions [63, 71], reinitialization after discrete events [45,

57], and automatic reformulation of high index problems [25, 26, 27, 56]. For example,

consider a flowsheet model that consists of 100,000 equations but is missing a single

initial condition. One can imagine how identification, by the simulator, of a subset

of five variables from which one initial condition will form a well-posed problem can

greatly reduce the amount of time required to get the simulation working.

Process simulators thus have a fairly sophisticated and effective set of capabilities

that reduce the time, effort, and numerical expertise required to perform simulation-

based activities. Results, in some cases made possible or economically feasible only by

the modeling support provided by these tools, have been impressive [16, 34, 51, 75].

However, these capabilities apply to flowsheet models that consist of differential-

algebraic, or lumped, unit models. Sometimes behavior in a particular unit cannot be

adequately described by a lumped formulation, when variation with other independent

variables like distance along a PFTR, film coordinate, or polymer chain length are

important. In such a case, behavior is most naturally modeled with partial differential,

or distributed, unit models.

Partial differential equations in network flow simulations bring an additional set of

mathematical and numerical issues. For a distributed model to be well-posed, proper

initial and boundary conditions and forcing functions must be specified. Due to the

connections with other units, boundary condition requirements for nonlinear unit

models may change during the course of a dynamic simulation, even in the absence

of discrete events. The model equations must be discretized in the proper manner, in

order to generate a numerical solution.

The problem of proper discretization of a particular unit model has been the

subject of an immense volume of research, which will be discussed in more detail in
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the next section. Comparatively little research has been directed toward development

of automatable model analysis tools, however. Efforts of which this author is aware

are also discussed in the next section.

The contribution of this thesis is two analyses of distributed unit models. The first

is an index analysis, inspired by index analysis of lumped models, that provides insight

into consistent initial and boundary conditions, as well as the index of semidiscretiza-

tions of distributed models. The second is a generalization of classical characteristic

analysis of hyperbolic equations to nonhyperbolic systems, which provides insight

into whether or not a given distributed model and its initial and boundary conditions

form a well-posed problem. Both of these analyses may be performed automatically

by a chemical process simulator.

1.2 Technology review

A significant body of research has been devoted to developing discretization methods

that are tailored to particular models (see, for example, [19, 32, 47, 72, 73, 79, 87]).

These methods are ideally suited to many repeated simulations of a single unit, where

the mathematical properties of the model are very well understood. They tend to be

inflexible, however, in that a scheme tailored for use with one set of equations may

not be readily applicable to a different set of equations.

Support for simulations involving general distributed models falls into several

categories. Most are again built for the applied mathematician or engineer interested

in a single domain. These tools may be further divided into two types - library routines

for discretization and integration, and high-level modeling languages. There are also

the process simulators designed for systems engineers. Support for distributed unit

models in these process simulators is still very limited.

1.2.1 Library routines for general PDEs

Many PDE packages for single-domain models consist of library routines. These

typically consist of pieces of FORTRAN code and documentation for interfacing them
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with user supplied routines.

One of the earliest of these packages was PDECOL [52]. This was a collection

of 19 FORTRAN subroutines, designed to solve a system of N equations over one

spatial dimension of the form

∂u

∂t
= f(t, x,u,ux,uxx) (1.1)

where

u = (u1, u2, . . . , uN)

ux = (
∂u1

∂x
,
∂u2

∂x
, . . . ,

∂uN
∂x

) (1.2)

uxx = (
∂2u1

∂x2
,
∂2u2

∂x2
, . . . ,

∂2uN
∂x2

)

The user supplied FORTRAN routines that defined f , boundary conditions, and initial

conditions. PDECOL transformed (1.1) into a system of ODEs using collocation on

finite elements, and then integrated these ODEs forward in time using an implicit

backward differentiation routine for stiff systems. The user provided an array of

element boundaries, and specified the polynomial order used for the elements. Initial

and boundary conditions were supplied by the user. It was the user’s responsibility

to define a mathematically meaningful PDE problem.

EPDECOL [42] is a version of PDECOL that uses sparse linear algebra routines.

These routines are faster than the solvers implemented in PDECOL. The authors

report savings of 50 percent or more in total execution time using the sparse routines.

It does not include any changes to the form of PDEs that can be solved using the

package.

Another library of routines for the solution of PDEs is FIDISOL [77]. This package

is designed for nonlinear elliptic or parabolic equations of the form

P (t, x, y, z, u, ut, ux, uy, uz, uxx, uyy, uzz) = 0 (1.3)

on a rectangular domain. The user must supply boundary and initial conditions.

The package then uses variable order finite difference approximations for all spatial

derivative terms. The selection of rectangular domains and finite differences were
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required to vectorize the algorithms. Again, the user is responsible for supplying a

properly posed mathematical formulation.

SPRINT [6] is a collection of routines for solution of mixed systems of time depen-

dent algebraic, ordinary differential, and partial differential equations. The partial

differential equations are provided by the user in terms of a master equation format

given by

N∑
p=1

Cj,p(x, t,u,ux,v)
∂up
∂t

+ Qj(x, t,u,ux,v,vt) =

x−m ∂

∂x
(xmRj(x, t,u,ux,v)), j = 1, . . . , N

(1.4)

where m is an integer which denotes the space geometry type. SPRINT provides rou-

tines for lumped finite element or collocation on finite element spatial discretization.

The resulting ODEs are then considered together with the rest of the differential-

algebraic equations, and integrated in time. Four time integration routines are pro-

vided in the package. The user must select the spatial and temporal discretization

schemes. It is again up to the user to provide a well posed problem.

PDE/Protran [76] is a finite element-based package designed to solve PDEs on a

single domain over two independent variables. It admits up to nine partial differential

equations, given in the form

∂

∂x
Ai

(
ui,

∂ui
∂x

,
∂ui
∂y

, β

)
+

∂

∂y
Bi

(
ui,

∂ui
∂x

,
∂ui
∂y

, β

)
+ Fi(ui, β) = 0 (1.5)

Here A, B, and F are possibly nonlinear functions, and ui and β are an eigenvector and

eigenvalue of the problem. The software calculates these eigenvalues and eigenvectors,

and the values of the functions A and B. Applications for specific models, such as

anisotropic waveguides [20], have been built using this package.

1.2.2 Dynamic process simulators

All of the packages described so far provide routines for discretization of the spatial

domain and integration of the resulting differential-algebraic equations in time. They

deal with a single domain. The engineer must provide only FORTRAN code for
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the model equations themselves. This reduces the expertise in numerical methods

required to perform dynamic simulations. The mathematical form of the equations,

initial conditions, and boundary conditions must be checked for consistency by the

modeler.

The systems engineer models a network of coupled units. Each unit is described

by a collection of equations. The unit connectivities are described by another set of

equations. Provision of FORTRAN routines describing all units and all connections

is very time consuming, so high level simulation languages have been developed that

provide much greater flexibility and allow much more rapid model development, and

are interfaced with solution algorithms.

One of the first high level equation-based simulation packages was COSY [13].

This simulator transforms the engineer’s model of a combined discrete-continuous

process into a set of FORTRAN calls to the GASP-V combined discrete-continuous

simulation library [14]. COSY handles partial differential equations with a method of

lines approach based on finite difference approximations to spatial derivatives, which

are generated automatically.

Another early high level simulation packages was SpeedUp [66]. This language

began as a FORTRAN program, and developed into a high level dynamic simulation

package. Support for PDEs is not built into the package; all discretizations and

boundary conditions must be formulated manually. There are no checks on boundary

condition consistency. The system model may be decomposed into unit models.

Two other packages for dynamic simulation of systems models are DYMOLA

[24] and its successor OMOLA [3]. These packages do not have built in support for

PDEs, but do have a powerful connection and terminal concept. Information leaving

or entering a unit is declared explicitly. This allows for consistency checks when the

flowsheet is built from the submodels. However, the direction for that flow must also

be declared explicitly, because it is part of the consistency checks. This can, as noted

by the author, pose problems during a simulation, since this direction can vary with

time.

Like COSY, gPROMS [5] is a high level simulation package that incorporates
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support for PDE semidiscretization into the modeling language itself. It will auto-

matically generate discrete equations from PDEs as directed by the user [61, 62].

The choice of discretizations is expanded to include both simple finite differences and

collocation on finite elements using regular grids, and the architecture is extensible

to include other techniques. Boundary conditions must still be declared explicitly by

the engineer, and no consistency checks are provided for these conditions.

1.2.3 Semidiscretization analysis tools

None of these high level packages assist with the tasks of selecting a suitable semidis-

cretization technique or picking the values like mesh spacing that are associated with

a particular semidiscretization. Two approaches to this problem have been explored.

One approach involves creation of tools that facilitate rapid construction (and

thus evaluation) of many different semidiscretizations. While COSY and gPROMS

provide some capability in this area, both are limited to the schemes coded into the

packages.

A more general tool for semidiscretization evaluation is TRIFIT [86]. This package

defines a symbolic grid generation language for partial differential equations in one

or two spatial dimensions. TRIFIT provides discretization operators, and the user

defines spatial derivative terms and mesh refinements using these operators. The

stability of the semidiscretization is then tested by performing a simulation using

direct linear algebra and ODE integration routines that are built into the package

(but are not described in the paper).

The GRIDOP package [49, 50] provides similar tools for generation of conservative

finite difference schemes on logically rectangular domains in an arbitrary number

of independent variables. The package takes as input a user-supplied definition of

function spaces and associated scalar products, together with user-supplied definitions

of grid operators as finite difference schemes. The user may then provide partial

differential equations in terms of the defined grid operators or the adjoints of those

operators, and the package returns the finite difference equations.

Somewhere between code libraries and semidiscretization analysis tools lies Diff-
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pack [46]. Diffpack is a development framework for PDE-based computer simulation.

This code library is fully object-oriented, with a well documented application pro-

gramming interface. It contains a very wide variety of routines, including linear and

nonlinear solvers, grid generation and refinement tools, finite element routines, and vi-

sualization support. The entire package is coded using C++ rather than FORTRAN,

and is currently under very active development.

Another approach is to perform a formal analysis of a particular semidiscretization

prior to using it in a simulation. PDEDIS [70] allows the user to symbolically specify

a PDAE system of the form

n + A
∂2x

∂z2
+ D

∂x

∂z
+ E

∂x

∂t
+ f(x) + g(z, t) = 0 (1.6)

with boundary and initial conditions. In general, the matrices A,D,E can be singular

and may show functional dependencies of the form

A = A(
∂x

∂z
,x, z, t) (1.7)

D = D(x, z, t) (1.8)

E = E(x, z, t) (1.9)

The nonlinear function n collects all terms not matching the functional form of any

other term. PDEDIS then symbolically manipulates the equations into a standard

form and characterizes it. This theoretically allows consistency and well-posedness

of the model to be checked, although only basic consistency checks are implemented.

These checks are not detailed in the paper.

The package also provides provides some analysis tools for spatial discretizations

based on either finite differences or orthogonal collocation over the entire spatial

domain using polynomial trial functions. It symbolically semidiscretizes the equations

(1.6), and then linearizes the resulting DAE system about a reference state provided

by the user, if it is not already linear. PDEDIS then specifies a set of grid points

and produces a file for submission to MATLAB, where the eigenvalue spectrum is

calculated. The user examines this spectrum to determine whether the behavior of

the DAE system is acceptable. For example, if the user knows in advance that the
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system should decay over time, the eigenvalues of the discrete system should have

real components less than zero. A scheme with a positive real eigenvalue could then

be rejected in the preprocessing stage.

1.3 Motivating Examples

None of the libraries, simulators, or semidiscretization analysis tools discussed in the

previous section are able to perform anything beyond a very rudimentary analysis of

an engineer’s distributed model itself. This section will introduce several cases that

illustrate how the automatable model analysis tools developed in this thesis may be

used to help a systems engineer perform dynamic simulations involving distributed

unit models.

1.3.1 Larry’s problem: pressure-swing adsorption

Larry works on greenhouse gas removal from a nitrogen gas stream by a two-column

pressure swing adsorption process. The process flowsheet appears in figure 1-1. A

continuous high pressure feed to the system is directed through one of the columns,

where greenhouse gases are removed from the nitrogen stream by adsorption onto a

zeolite packing. At the same time, a low pressure nitrogen stream is blown through

the other column to remove the adsorbed species and carry them to another treatment

unit. When the packing in the high pressure column approaches saturation, the high

pressure feed is switched over to the second column, and the low pressure stream is

switched to the first column. The process is repeated.

Larry’s task is to improve the operating policy for the process. He plans to make

use of dynamic simulation for as much preliminary work as possible, because the

system cannot be taken offline without major expense. The lab has given him good

values for the parameters in the Kikkinides and Yang model of pressure-swing adsorp-

tion processes [43], which describes column behavior under assumptions of isother-

mal operation, negligible axial dispersion and pressure drop, plug flow, instantaneous

solid-gas phase equilibrium, and perfect gas behavior, all of which he judges to be
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Figure 1-1: PSA flowsheet

reasonable for his process.

Under this model, the adsorbate concentration on the solid qi=1...3, mole fractions

in the gas phase of adsorbate yi=1...3 and inert y4, and flow velocity u are related by

the following system of equations over time t and axial position in the absorber z.

Pressure P , pressurization rate Pt, temperature T , bed void fraction ε, bed density

ρB, gas constant R, saturation loadings qsati=1...3, and load relation correlation constants

ni=1...3 and Bi=1...3 are constant parameters. The values of these parameters have been

experimentally verified for Larry’s process.

ρBRT

P

3∑
i=1

qit +
ε

P
Pt + uz = 0

εyit +
ρBRT

P
qit +

εyi
P

Pt + (uyi)z = 0, i = 1 . . . 3

4∑
i=1

yi = 1

qi −
qsati Bi(yiP )

1
ni

1 +
∑3

j=1 Bj(yjP )
1

nj

= 0, i = 1 . . . 3

(1.10)

The first equation is the total material balance. The second equation is the mate-

rial balances for the adsorbed species. The third equation forces the mole fractions in
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Figure 1-2: Simulation results for Larry’s PSA problem

the gas phase to sum to unity. The fourth equation is the loading ratio correlations

that give the equilibrium loading of each adsorbed component.

Larry needs to perform a dynamic simulation of the system from a cold start.

Initial conditions for the six differential variables are

yi(0, z) = 1.0× 10−6, i = 1 . . . 3

qi(0, z) = 0, i = 1 . . . 3
(1.11)

while boundary conditions at startup are given by the feed compositions yf,i=1...3 and

velocity uf = 0.

yi(t, 0) = yf,i, i = 1 . . . 3

u(t, 0) = uf

(1.12)

He uses a first order upwind finite difference scheme for spatial derivatives, and

an implicit BDF integration method to advance the solution forward with t. The

disappointing results appear in figure 1-2. The simulation fails after a simulated

time of 30 seconds, when the reinitialization calculation required after the first valve

position change does not converge.

What is wrong? The task facing Larry is to figure out what is wrong, and do it

as quickly as possible.
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Figure 1-3: Vessel depressurization flowsheet

1.3.2 Moe’s problem: compressible flow

Moe wants to simulate a vessel depressurization. The simplified flowsheet that he

plans to use consists of two pressure vessels, two valves, and the process piping, and

appears in figure 1-3. The gas is compressible, and if friction losses and gravity are

ignored, radial variations are ignored, and the gas is assumed ideal, flow is described

by the Euler equations [40, 72].

ρt + (ρu)x = 0

(ρu)t +

(
p +

1

2
ρu2

)
x

= 0

(ρh)t + (up− ρuh)x = 0

p = (γ − 1)ρi

h = i +
1

2
u2

(1.13)

Here ρ is the fluid density, u is the flow velocity, p is pressure, h is the specific total

energy, and i is the specific internal energy. The first three model equations are

conservation of mass, momentum, and energy respectively. The fourth is the ideal

gas law, with a constant fluid heat capacity ratio of γ. The final equation relates

total, internal, and kinetic energy.

The pipe segment under consideration is ten meters in length, so 0 ≤ x ≤ 10, and
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Figure 1-4: Pipe pressure profile

also let t ≥ 0. The initial and boundary conditions are

ρ(0, x) = 79.6 kg/m3

u(0, x) = 0.0 m/s

p(0, x) = 2.76 MPa

p(t, 0) = fvalve1(t)

p(t, 10) = fvalve2(t)

(1.14)

The first scenario of interest to Moe is a case where the pressure in the pipe is

initially slightly higher than the pressure in both vessels. The pressure in one vessel

is significantly higher than the other.

Moe plans to solve the problem numerically using a first order upwind finite differ-

ence scheme [81]. He expects to initially see flow out of both ends of the pipe, followed

by establishment of a steady pressure gradient and flow from the high pressure vessel

to the low pressure vessel.

Simulation results, specifically the pressure profile along the pipe, appear in figure

1-4. Clearly, something is wrong. The calculated pressure profile blows up at the right

endpoint. One would expect a rarefaction to enter the pipe from both ends, followed

by establishment of a steady pressure gradient between the two ends. Instead, the

calculated solution is blowing up after less than 0.3 simulated seconds.

Possible problems include improper boundary conditions, an improper discretiza-
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tion scheme, a time step or mesh spacing that is too large, and simple code bugs.

Moe is faced with the task of uncovering the root of the problem and correcting it.

1.3.3 Curly’s problem: electric power transmission

Curly works for a European power company. He needs to perform several simula-

tions of 420kV power transmission lines. Current flow I and voltage with respect to

ground u over a transmission line are described by the following simple system of two

equations, which are known as the telegrapher’s equations.
0 L

C 0





u
I



t

+


1 0

0 1





u
I



x

+


0 R

G 0





u
I


 = 0 (1.15)

Here L, C, R, and G are the inductance, capacitance, resistance, and conductance of

the line per unit length.

The first scenario that Curly will simulate is a 1% increase in current demand

occurring over 0.5 seconds, to be delivered over a 10 km line. For this particular line,

L = 0.0046 Ω·s/km, C = 6.5 nF/km, G = 33.3 1/Ω·km, and R = 0.030 Ω/km.

Measured values at the substation for AC power are 380 kV at 50 Hz, with a

typical current demand of 3160 A. These values will be used for boundary conditions.

The current demand will be given as a sinusoid increase from 3160 to 3192 over 0.5

seconds.

u(0, t) = 190000 ∗ sin(50πt)

I(0, t) = (1.0 + 0.005(1.0 + sin(π(2t + 1.5))))3160
(1.16)

The domain is a ten kilometer line, and the simulation will cover the surge in demand,

so 0 ≤ x ≤ 10 and 0 ≤ t ≤ 0.5.

Curly wants to build the complexity of the simulation slowly, so he begins with a

simplified form [55] of the telegrapher’s equations, that neglects the line inductance,

resistance, and conductance.
0 0

C 0





u
I



t

+


1 0

0 1





u
I



x

= 0 (1.17)
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Figure 1-5: Simulation results for simplified electrical current model

While these assumptions behind this simplification are not valid for his system, ex-

perience with chemical process simulations has taught him to start with simplified

models, and move to simulations based on more rigorous models once the simulation

based on a simplified model is working.

He discretizes the partial derivative terms in x using centered finite differences,

and initializes the line voltage to 190 kV. Simulation results for the simplified model

appear in figure 1-5. The results look good, so he proceeds to the full model.

The partial derivative of current with respect to time, while absent from the

simplified model, is present in the full model. Curly initializes the current in the line

to its nominal demand of 3160 A. Results for the full current delivery model appear

in figure 1-6. The simulation fails immediately.

1.3.4 Shemp’s problem: combustion kinetics

Shemp works on combustion kinetics models for premixed diffusion flame propagation.

His model of flame propagation uses four primary species, and assumes constant

pressure, negligible radial gradients, and ideal gas behavior, and is based on a mole
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Figure 1-6: Simulation results for full electrical current model

balance formulation of the approach used by Miller et al [58].

cit + (uci)z + (civi)z = ωi

vi = −Di

xi
xiz

xi =
ci
ρ

ωi = fi(T, cj)

Di = hi(yi, T, xj)

yiρm = wici

ρm = ρwmean

ρ =
P

RT

T = g(z)

wmean =
1∑4
i=1

yi

wi

u =
M

ρmA

(1.18)
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The variables are the molar species concentrations ci, diffusion velocities vi, mole

fractions xi, net molar reaction rates ωi, diffusion coefficients Di, mass fractions yi,

mass density ρm, molar density ρ, temperature T , mean molecular weight wmean, and

flow velocity u. There are 6n + 5 equations and variables. Parameters in the model

are the flame cross-sectional area A, pressure P , gas constant R, mass flow rate M ,

and molecular weights wi.

The first equation is a material balance on each species. The second gives the

diffusion velocities. The fourth is the rate kinetics expression that gives the net molar

production or consumption of each species per unit volume per unit time. The fifth

gives a mixture-averaged diffusion coefficient based on binary diffusion coefficients.

Other equations that relate the dependent variables should be self-explanatory.

Shemp plans to use dynamic simulation to fit parameters in his kinetic model.

He plans to first provide the measured temperature profile and guesses for kinetic

parameters, then calculate the steady-state solution to the model, and finally compare

the calculated concentration profiles to measured profiles.

There are two basic approaches to obtaining a steady solution. One is to set the

time derivatives immediately to zero, and employ a shooting method in z [38]. Other

approaches have focused on integrating an implicit finite difference scheme for the

time-dependent model to a steady state [67] or using finite differences to solve the

steady boundary value problem directly [88].

Given recent advances in solution algorithms for DAEs discussed earlier in this

chapter, including codes for efficient solution of large, sparse systems with BDF time

integration, Shemp plans to revisit shooting methods for solution of the steady-state

model. He starts at the cold end of the flame, using the following composition bound-
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ary conditions as initial conditions, and wants to integrate forward in z.

y1(0) = 0.9979

y2(0) = 0.0001

y3(0) = 0.0010

y4(0) = 1.0− y1(0)− y2(0)− y3(0)

v1(0) = 0.0

v2(0) = 0.0

v3(0) = 0.0

v4(0) = 0.0

(1.19)

There are a total of 13 differential variables in z, so Shemp calculates the following

additional values to be used as part of the boundary condition.

x1(0) = 0.9543

x2(0) = 0.0075

x3(0) = 0.0010

x4(0) = 1.0− x1(0)− x2(0)− x3(0)

u(0) = 15.412

(1.20)

The boundary conditions to be matched by shooting at the other end of the flame

are

vz(L) = 0 (1.21)

However, the simulation fails because the simulator cannot solve the consistent

initialization problem. What is wrong?

1.4 Outline

The automatable model analysis tools developed in this thesis allow a process simula-

tor to examine a distributed unit model automatically and help the engineer determine

proper initial and boundary conditions, in order to form a mathematically well-posed
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problem. These tools also provide some insight into the expected smoothness of the

solution and the index of a semidiscretization of the model. They can furthermore

identify some models that will be ill-posed regardless of what initial and boundary

conditions are provided, and thus cannot be solved as part of a dynamic simulation.

The next chapter provides a review of some of the mathematics on which these

analyses are built. While most of the material is fairly basic, it is drawn from several

very different areas, including linear algebra, abstract algebra, differential-algebraic

equations, and partial differential equations. The presentation of this review material

is designed to be approachable and easy to understand, rather than comprehensive,

detailed, or completely rigorous. References listed at the beginning of the review

chapter should be consulted for a more thorough treatment.

The following two chapters describe the two analyses developed during the project.

The first is a differentiation index for partial differential equations. This index, unlike

others that have been proposed for PDEs, is suitable for analysis of general distributed

models by a process simulator. The second is a generalized characteristic analysis

for nonhyperbolic systems. This analysis helps identify proper initial and boundary

conditions for a distributed model, and identifies models that cannot be solved as

part of a dynamic simulation.

The following chapter describes how these analyses may be performed by a process

simulator. They will be applied to the problems facing Larry, Moe, Curly, and Shemp.

The final chapter discusses the work so far, and examines what future efforts are

needed.
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Chapter 2

Math Review

This chapter contains a basic review of topics in linear algebra, abstract algebra,

differential-algebraic equations, and partial differential equations. The linear algebra

review is taken primarily from Strang [80] and Gantmacher [30]. The abstract algebra

section is based on Fraleigh [29] and Aleksandrov et al. [1]. The basic material in

the differential-algebraic equation section comes from Grossman [35], Campbell [10],

and Brenan et al. [8]. The partial differential equation review is primarily taken from

Courant and Hilbert [18], Jeffrey [40], and Lieberstein [48].

2.1 Linear Algebra

Linear algebra is the mathematics of linear systems of equations. Algebra begins with

solution of a single equation for a single unknown, such as finding the value of x that

satisfies

3x = 6 (2.1)

The solution is found most simply by multiplying both sides by the inverse of the

coefficient.

(3−1)3x = (3−1)6

x = 2
(2.2)
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In general, the solution to an equation of the form

ax = b (2.3)

is given by

x = a−1b (2.4)

This solution exists and is unique1 only if a−1 exists; that is, if a �= 0.

Linear algebra considers systems of equations in several unknowns, such as

3u + v + w = 7

2u + 2v + 4w = 12

u + 3v + 2w = 12

(2.5)

This system consists of only three equations in three unknowns, and already it takes

considerably more space to write down than a single equation. Imagine writing a

system of fifty, or a hundred, or 250,000 such equations!

2.1.1 Notation and operations

Clearly, linear algebra requires an efficient shorthand for writing systems of equations.

The notation of linear algebra expresses a linear system (2.5) as the product of a

matrix of coefficients A and a vector of unknowns x.

Ax = b (2.6)

A system of any size may be written in this manner.

Matrices and vectors will be written in boldface type in this text. Matrices will

be denoted by capital letters, while vectors will be lowercase letters. Other notations

include underscores for matrices and vectors (A, x), and overscored arrows for vectors

-x.

1If b = 0, then any x satisfies the equation; if b �= 0, no value for x can satisfy the equation.
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The matrix A in the linear system (2.5) is an array of coefficients.

A =




3 1 1

2 2 4

1 3 2


 (2.7)

An individual element of a matrix is identified by its row, counted from the top,

followed by its column, counted from the left. For example, A23 = 4. Notice also that

A23 is a single number, or a scalar, so it is not written in boldface.

The vector x contains the unknowns.

x =



u

v

w


 (2.8)

This vector may be thought of as a matrix that consists of three rows and one column.

Such a vector, consisting of a single column, is sometimes called a column vector.

A vector that consists instead of a single row is referred to as a row vector. In either

case, an element of a vector is identified by its row or column, counted in the same

way as a matrix. For example, x2 = v.

Matrix-vector multiplication continues the convention of row-then-column. The

first row of A is multiplied by the first (and only) column of x. Let a1 be a row vector

equal to the first row of A.

a1 =
[
3 1 1

]
(2.9)

The dot product or inner product of two vectors is defined by adding the products

of all corresponding elements of the two vectors.

a1 · x = 3u + v + w (2.10)

Notice that the dot product of two vectors is a scalar.

Matrix-vector multiplication simply takes the dot product of the first row with

the column vector, followed by the second row with the column vector, and so on.
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The resulting scalars themselves form a column vector.

Ax =



− a1 −
− a2 −
− a3 −






|
x

|


 =



a1 · x
a2 · x
a3 · x


 =




3u + v + w

2u + 2v + 4w

u + 3v + 2w


 (2.11)

The righthand side b is also a column vector.

b =




7

12

12


 (2.12)

Setting this column vector equal to Ax is clearly just another way of writing the

original system of equations (2.5):

Ax =




3u + v + w

2u + 2v + 4w

u + 3v + 2w


 =




7

12

12


 = b (2.13)

Of course, the goal is to solve this linear system of equations. The similarity of

the notation for the linear system (2.6) and a single equation (2.1) suggests that the

solution should be given by multiplication of both sides of the system by the inverse

of A.

A−1Ax = A−1b

x = A−1b
(2.14)

Consideration of this inverse will be taken up later.

2.1.2 Solving a linear system

A system of equations is solved by transforming it into a set of individual equations,

each in only one unknown, which may be solved like the first equation of this chapter

(2.1). This approach of transforming a complicated problem into one or more simpler

problems will be a continuing theme throughout this thesis.
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As a demonstration of how a system of equations may be transformed into a set

of individual equations in a single unknown, consider the following system.

2x + 3y = 8

4x + 11y = 26
(2.15)

Solving systems like this one relies on two simple operations: adding equations to-

gether, and multiplying an equation by a scalar. Performing these two operations in

the proper way transforms this linear system to a set of two equations, one involving

only x and the other in only y.

The first step is multiplying both sides of the first equation by −2 to produce

−4x− 6y = −16 (2.16)

and adding it to the second equation, which gives

5y = 10 (2.17)

Already, multiplying an equation by a scalar and adding equations together has elim-

inated x from the second equation, producing a new equation in only one unknown.

This may be solved by multiplying both sides by 5−1, to produce

y = 2 (2.18)

This equation (2.18) may be multiplied by −3 and added to the first equation in

the original system (2.15), which gives

2x = 2 (2.19)

Again, the solution is found by multiplying both sides of the equation by 2−1.

x = 1 (2.20)

Alternatively, once it is known that y = 2, one can simply substitute this back

into the first equation, which gives

−4x− 6(2) = −16

−4x = −4
(2.21)
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This equation again gives the solution, which is x = 1.

The systematic process of repeatedly adding a multiple of one equation to a second

equation in order to eliminate a variable from the second equation, ultimately produc-

ing a set of equations that each involve only one variable, is called Gauss-Jordan

elimination. The process of systematically eliminating variables from equations

until it is possible to solve the system through back substitution is called Gauss

elimination.

2.1.3 Matrices and vectors

Addition of two matrices or two vectors is defined only if they are conforming, or

of the same size. Let x and y be two conforming vectors. Each element in the sum

z = x + y is the sum of the corresponding elements of x and y; zi = xi + yi. The

same approach holds for the sum of two matrices.

Multiplication of two matrices is the same as multiplication of a matrix and a

series of vectors. If the columns of a matrix Z are thought of as individual column

vectors, the product AZ may be thought of as successive products of the matrix A

and the columns of Z:

AZ = A



| |
z1 . . . zn

| |


 =



| |

Az1 . . . Azn

| |


 (2.22)

Note that, in general, AZ �= ZA.

The identity matrix I has unity on the diagonal and zero everywhere else:

I =




1

1
. . .

1




(2.23)

I has the property that

IA = AI = A (2.24)

39



and also

Ix = x (2.25)

The transpose of a matrix A, denoted AT , is formed by transposing the row and

column index of each entry, so AT
ij = Aji. The transpose of the coefficient matrix A

(2.7) of section 2.1.1 is

AT =




3 2 1

1 2 3

1 4 2


 (2.26)

Let x and y be two vectors of the same length. The projection of x onto y is

given by

x · y
y · yy (2.27)

If the projection of x onto y is zero, then x and y are said to be orthogonal.

A collection of vectors is said to be linearly independent if

a1x1 + a2x2 + · · · = 0 ⇒ ai = 0 (2.28)

for all i. If the vectors are not linearly independent, then one or more of them are

simply a linear combination of the others.

A set of vectors defines a subspace, which consists of all vectors that may be

formed by linear combinations of the vectors in the set. A set of independent vectors

is called a basis for the subspace.

2.1.4 The determinant

Consider the coefficient a from the simple equation (2.3) given earlier. The solution

x (2.4) exists and is unique iff a �= 0. Now, let the determinant of a, written2 as |a|,
be simply the value of a. If the determinant is nonzero, clearly a may be inverted to

2|a| refers to the determinant of a scalar a only in this section (2.1.4); elsewhere it will denote

the magnitude (absolute value) of a.
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determine a unique solution; if the determinant is zero, one cannot invert a, and no

x satisfies the original equation (unless b = 0, in which case all x satisfy the original

equation).

Now, move up from a scalar a to a square matrix A, and define |A|, the determi-

nant of A, recursively as follows: Pick some row i of A, and multiply each element

Aij in the chosen row by the product of (−1)i+j and the determinant of the matrix

formed by all elements of A not in row i or column j. The determinant of this smaller

matrix is called the cofactor of Aij.

For a 2× 2 matrix, choose the first row. The determinant is then calculated using

the above technique as

|A| =

∣∣∣∣∣∣
a11 a12

a21 a22

∣∣∣∣∣∣ = a11|a22| − a12|a21| (2.29)

Because |aij| = aij, the value of the determinant of a 2 × 2 matrix clearly does not

depend on which row is chosen. This is also true for the determinant of matrices of

any larger size.

Moving up to a 3× 3 matrix, choose the first row again. Then |A| is given by∣∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣∣
= a11

∣∣∣∣∣∣
a22 a23

a32 a33

∣∣∣∣∣∣− a12

∣∣∣∣∣∣
a21 a23

a31 a33

∣∣∣∣∣∣ + a13

∣∣∣∣∣∣
a21 a22

a31 a32

∣∣∣∣∣∣ (2.30)

For example, consider the coefficient matrix (2.7) from section 2.1.1.∣∣∣∣∣∣∣∣∣
3 1 1

2 2 4

1 3 2

∣∣∣∣∣∣∣∣∣
= 3

∣∣∣∣∣∣
2 4

3 2

∣∣∣∣∣∣− 1

∣∣∣∣∣∣
2 4

1 2

∣∣∣∣∣∣ + 1

∣∣∣∣∣∣
2 2

1 3

∣∣∣∣∣∣
= 3(−8)− 1(0) + 1(4)

= −20

(2.31)

If |A| �= 0, then A is called invertible or regular. This means that it has an

inverse A−1, and the associated system of equations (2.13) has a unique solution

(2.14). If, however, |A| = 0 is zero, then A is called singular, and it does not
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have an inverse. The parallel to the case of a single equation (2.3) and its solution

(2.4) should be clear. Actual calculation of A−1 must wait a little longer; it will be

considered in the next section.

If A is singular, there exists at least one vector y �= 0 such that

Ay = 0 (2.32)

What is the significance of a square, singular matrix? Well, suppose x satisfies the

system of equations given by

Ax = b (2.33)

Because of the existence of y, we know that x is not a unique solution, because x+y

also satisfies the equations:

A(x + y) = Ax + Ay = Ax + 0 = b (2.34)

Suppose that there are p linearly independent vectors yi that satisfy (2.32). The

subspace generated by these vectors is called the nullspace of A. If A is an n × n

matrix, the rank of A is n− p.

If A is invertible, then the value of x that satisfies Ax = b is unique. Therefore

Ax = 0 ⇒ x = 0 (2.35)

No nonzero vector satisfies (2.32), and the square matrix A is said to have full rank.

The determinant of the product of two matrices equals the product of the deter-

minants.

|AB| = |A| |B| (2.36)

However, the same does not hold true for addition; the determinant of the sum of

two matrices is not equal to the sum of the determinants.

|A + B| �= |A|+ |B| (2.37)
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2.1.5 Solution of linear systems revisited

Solving a system of equations via Gauss or Gauss-Jordan elimination relies on the

operations of multiplying an equation by a scalar, and adding equations together.

These operations may themselves be represented by matrices! Furthermore, these

matrices are related to the inverse of the coefficient matrix A.

Consider, for example, the simple system that was previously solved.
2 3

4 11





x
y


 =


 8

26




Az = b

(2.38)

Now, examine what happens when both sides of this equation are multiplied on

the left by a special matrix R1.

R1Az = R1b
 1 0

−2 1





2 3

4 11





x
y


 =


 1 0

−2 1





 8

26





2 3

0 5





x
y


 =


 8

10




(2.39)

The first row of R1A is formed by the product of the row vector [1 0] and A, which

does not change the first row. The second row of R1A is the product of the row

vector [−2 1] and A. In words, the second row of the new matrix R1A is −2 times

the first row of A plus the second row of A. The net effect of multiplying the system

on the left by R1 is that the first row of A remains unchanged, and the second row

becomes the difference of the original second row and twice the first row.

Similarly, the other steps in the solution of the system may also be represented as
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matrices.
1

2
0

0 1





1 −3

0 1





1 0

0 1
5





2 3

0 5





x
y


 =


1

2
0

0 1





1 −3

0 1





1 0

0 1
5





 8

10





1

2
0

0 1





1 −3

0 1





2 3

0 1





x
y


 =


1

2
0

0 1





1 −3

0 1





8

2





1

2
0

0 1





2 0

0 1





x
y


 =


1

2
0

0 1





2

2





1 0

0 1





x
y


 =


1

2




(2.40)

As before, row operations have solved the system. The only difference is that the row

operations have been expressed here as matrices:

R4R3R2R1Az = Iz = R4R3R2R1b (2.41)

Now, recall that the inverse of A is a matrix A−1 that, when multiplied on the

right by A, produces the identity:

A−1A = I (2.42)

The matrices that represent Gauss-Jordan elimination are this inverse! Let R =

R4R3R2R1. Then, because

RA = I (2.43)

it is clear that R = A−1.

2.1.6 Matrix norms

The absolute value of a scalar x is a measure of its size.

|x| = (x · x)
1
2 (2.44)

The positive root is always chosen, so |x| ≥ 0.
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A norm is a measure of the “size” of a vector or matrix [33, 80]. Perhaps the

most common is called the 2-norm or Euclidean norm; for a vector, it is given by

||x||2 = (x · x)
1
2 (2.45)

This norm satisfies the Cauchy-Schwarz inequality

|x · y| ≤ ||x|| ||y|| (2.46)

and the triangle inequality

||x + y|| ≤ ||x||+ ||y|| (2.47)

Also, for any scalar a,

||ax|| ≤ |a| ||x|| (2.48)

A more general norm is the p-norm which, for a vector x with n elements, is

given by

||x||p =

(
n∑
i=1

xpi

) 1
p

(2.49)

When a norm is written as simply ||x||, the 2-norm is often assumed.

The 2-norm of a matrix is defined using the 2-norm of a vector.

||A|| = maxx�=0
||Ax||
||x|| (2.50)

Because ||A|| is always greater than or equal to ||Ax||/||x|| under this definition, it

must be true that

||A|| ||x|| ≥ ||Ax|| (2.51)

The 2-norm satisfies the submultiplicative property

||AB|| ≤ ||A|| ||B|| (2.52)

and also

||A + B|| ≤ ||A||+ ||B|| (2.53)

and finally, for a square n× n matrix A,

maxi,j|aij| ≤ ||A|| ≤ n maxi,j|aij| (2.54)
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2.1.7 Eigenvalues and eigenvectors

Every square matrix A has at least one special vector y that has the following prop-

erty:

Ay = λy (2.55)

Multiplying this special vector y by A has the effect of simply scaling every element

of y by the same constant factor λ. Such a vector is called an eigenvector of A, and

the scaling factor λ is called an eigenvalue.

Finding these eigenvectors and eigenvalues is a bit more complicated than simply

solving a system Ax = b, because the righthand side is also unknown. One approach

might be to move the righthand side over to the left. Then the system is

Ay − λy = [A− λI]y = 0 (2.56)

and the new righthand side is now known. Clearly, y = 0 is a solution to this system,

for any value of λ, but it is the nonzero eigenvectors and the associated eigenvalues

that are of interest.

Recall that if a matrix M is singular, there will be at least one nonzero vector y

that satisfies My = 0. For each value of λ such that (A− λI) is singular, there will

thus be at least one associated nonzero eigenvector.

A matrix is singular iff its determinant is zero, so what are needed are values of λ

that give

|A− λI| = 0 (2.57)

This determinant is a polynomial in λ, and the roots of this polynomial are the

eigenvalues of A. Once the eigenvalues are known, the associated eigenvectors are

simply the nonzero solutions of the original system (2.56).

An n × n matrix produces a polynomial of order n in λ, which will have exactly

n roots. These roots are the eigenvalues of A. Some of these roots may be zero. If

the roots are all distinct (have different values), then all eigenvectors are linearly

independent. In the case of n linearly independent eigenvectors, the matrix is said to
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have a complete set of eigenvectors. If a particular root λi is repeated j times,

that eigenvalue has algebraic multiplicity j. If there are fewer than j linearly

independent, nonzero eigenvectors that satisfy (2.56) for that particular root λi, then

the matrix is said to be deficient.

As an example, consider the following 2× 2 matrix.

A =


1 3

2 2


 (2.58)

The eigenvalues are the roots of the polynomial given by

|A− λI| =

∣∣∣∣∣∣
1− λ 3

2 2− λ

∣∣∣∣∣∣
= (1− λ)(2− λ)− (2)(3)

= λ2 − 3λ− 4

(2.59)

Factoring this polynomial and setting it equal to zero gives the eigenvalues.

λ2 − 3λ− 4 = (λ− 4)(λ + 1) = 0 ⇒ λ1 = 4, λ2 = −1 (2.60)

The eigenvectors satisfy (A− λiI)yi = 0. The first eigenvector

y1 =


a
b


 (2.61)

must satisfy 
1− λ1 3

2 2− λ1





a
b


 =


−3 3

2 −2





a
b


 =


0

0


 ⇒ a = b (2.62)

Any nonzero choice may be made that satisfies a = b, so let

y1 =


1

1


 (2.63)

A similar calculation for λ2 gives

y2 =


 3

−2


 (2.64)
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Because such an eigenvector y is given by a system where the matrix is multiplied

by y on its righthand side, it is sometimes called a right eigenvector. A left

eigenvector is a row vector that satisfies

zA = λz (2.65)

Each eigenvalue λ is associated with an equal number of left and right eigenvectors.

Unless otherwise noted, the term eigenvector will always refer to right eigenvectors.

2.1.8 Diagonalization and the Jordan form

Suppose that an n × n matrix A has a complete set of eigenvectors, and let the

columns of S be those eigenvectors. Then

S−1AS = ΛΛΛ (2.66)

where ΛΛΛ is a matrix with the eigenvalues of A on its diagonal and zero everywhere

else. The eigenvectors diagonalize the matrix A, and A is called diagonalizable3.

One obvious application is calculating repeated powers of A.

Ap =
(
SΛΛΛS−1

)p
=

(
SΛΛΛS−1

) (
SΛΛΛS−1

)
. . .

(
SΛΛΛS−1

)
= S (ΛΛΛ)p S−1 (2.67)

Calculating the pth power of a diagonal matrix simply requires the pth power of each

diagonal element, so this calculation is much easier than repeatedly multiplying A by

itself.

Obviously it is not possible to diagonalize a matrix that does not have a complete

set of eigenvectors. However, it is always possible to find an invertible matrix M for

which

M−1AM = J (2.68)

Here J is a Jordan matrix, and is called the Jordan canonical form, or simply

the Jordan form, of A. It is a block diagonal matrix. Each block on the diagonal

3Also, the rows of S−1 contain the complete set of left eigenvectors for the matrix.
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has the form 


λi

1 λi
. . . . . .

1 λi




(2.69)

and is called a Jordan block. If every block has dimension 1, then J = ΛΛΛ. A

lower Jordan matrix is a matrix in this Jordan form; it is also possible to define

the Jordan form as having the ones above the diagonal, which is called an upper

Jordan matrix.

The columns of M are the generalized eigenvectors of A. Every such eigen-

vector li satisfies either

Ali = λili (2.70)

or

Ali = λili + li+1 (2.71)

Every square matrix has a complete set of these generalized eigenvectors, which are

sometimes called a chain of eigenvectors. The number of eigenvectors in the chain

is the geometric multiplicity of the corresponding eigenvalue. For a repeated

root, the sum of the geometric multiplicities of the eigenvalue equals the algebraic

multiplicity of the eigenvalue. For example, an eigenvalue of algebraic multiplicity 5

may have geometric multiplicities of 2 and 3, or 1 and 4, or 1 and 1 and 3, or 5, and

so on.

2.1.9 Nilpotent matrices

A matrix N is nilpotent, or has nilpotency k, if

Nk = 0, Nk−1 �= 0 (2.72)

Any upper triangular or lower triangular matrix where every diagonal element is zero

is nilpotent. Also, every nilpotent matrix is singular.
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If a particular eigenvalue λi of a matrix is zero, the corresponding Jordan block

(2.69) is nilpotent and has the form

N =




0

1 0
. . . . . .

1 0




(2.73)

The nilpotency of such a block is equal to the dimension of the block. Note, however,

that the nilpotency of a particular block is not necessarily the nilpotency of the

original matrix. The original matrix is only nilpotent if every block in its Jordan

form is nilpotent.

2.1.10 The Drazin inverse

If the blocks in the Jordan form of a matrix A are ordered so that all blocks with

λi �= 0 appear above and to the left of all blocks with λi = 0, it has the form

J =


C

N


 (2.74)

Here C is invertible, while N is singular and nilpotent. Note that if A is invertible,

the nilpotent block N disappears, while if A is nilpotent, the invertible block C

disappears.

Because every square matrix A is equivalent to one in Jordan form, one can write

A in terms of its Jordan form and generalized eigenvector matrix M.

A = MJM−1 = M


C

N


M−1 (2.75)

The Drazin inverse of A is then defined [10] as follows.

AD = M


C−1


M−1 (2.76)

It has several important properties, including the fact that it commutes with A:

AAD = ADA. Also, if 0 is an eigenvalue of A of algebraic multiplicity k, then 0
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is also an eigenvalue of AD of algebraic multiplicity k. Similarly if λi �= 0 is an

eigenvalue of A of algebraic multiplicity ki, then 1/λi is an eigenvalue of AD of

algebraic multiplicity ki.

Finally, note that the actual value of AD is given here as the product of three

matrices: M, M−1, and the block diagonal matrix involving C−1 (2.76). Different

choices of M may be employed to put A in a block diagonal form (2.75) with a

different invertible C in the upper lefthand block and a different nilpotent N in the

lower righthand block. These different choices produce different Drazin inverses. Once

M is selected, however, the corresponding Drazin inverse is unique.

2.1.11 Matrix pairs and pencils

The set of all linear combinations of two matrices (assumed to be conforming) is

called a pencil. A pencil is typically written as

B− λA (2.77)

although λ is sometimes taken to be the ratio of two scalars τ and ρ, with τ/ρ = λ:

ρB− τA (2.78)

The latter expression allows “infinite” values of λ.

If every member of a particular pencil of square matrices is singular, the pair of

matrices is said to be singular. The pencil is also called singular. If there is at least

one combination of A and B that is invertible, the pair of matrices and the pencil

are said to be regular.

2.1.12 Generalized eigenvectors and the Weierstrass form

A regular pencil of n×n matrices will have up to n singular members. These singular

members are given by the pairs of scalars (ρi, τi) that are solutions of

|ρiB− τiA| = 0 (2.79)
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Let (ρj, τj) be a pair of such scalars. Then, because ρjB− τjA is singular, there is a

nonzero vector xj such that

(ρjB− τjA)xj = 0 (2.80)

This vector and scalar pair are in a sense analogous to an eigenvector and eigenvalue

of a single matrix, because

ρjBxj = τjAxj (2.81)

and are (somewhat confusingly) also called a generalized eigenvector and gen-

eralized eigenvalue of the matrix pair. A matrix pair may or may not possess a

complete set of these generalized eigenvectors.

For every regular pair of matrices, there exist conforming invertible matrices P

and Q such that

PAQ =


I

N


 PBQ =


J

I


 (2.82)

Here J is a lower Jordan matrix, and N is a lower Jordan nilpotent matrix. This is

the Weierstrass canonical form of the matrix pair.

From this form, we define doubly generalized eigenvectors for the matrix pair,

which are analogous to the generalized eigenvectors of a single matrix (2.70 - 2.71).

Lemma 2.1.1 For every real-valued regular pencil of dimension n, there exist n gen-

eralized left eigenvectors li and eigenvalue pairs (ρi, τi) such that either τiliA = ρiliB,

or li−1A + τiliA = ρiliB with ρi �= 0, or τiliA = ρiliB + li−1B with τi �= 0.

Proof. Let P and Q be the matrices that transform (A,B) to their Weierstrass

canonical form. Let li = pi, where pi is the ith row of P, and let ρi = (PAQ)ii and

τi = (PBQ)ii. Then, by inspection, for every equation that corresponds to the first

equation in a Jordan block of either J or N,

liAQ =
[
. . . 0 ρi 0 . . .

]
and liBQ =

[
. . . 0 τi 0 . . .

]

By inspection τiliAQ = ρiliBQ, so τiliA = ρiliB.
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For any other equation in the first block row, clearly ρi �= 0, and

liAQ =
[
. . . 0 ρi 0 . . .

]
and liBQ =

[
. . . 1 τi 0 . . .

]

Note also that

li−1AQ =
[
. . . ρi 0 0 . . .

]

By inspection li−1AQ + τiliAQ = ρiliBQ, so li−1A + τiliA = ρiliB.

For any other equation in the second block row, τi �= 0, and

liAQ =
[
. . . 1 ρi 0 . . .

]
and liBQ =

[
. . . 0 τi 0 . . .

]

Note also that

li−1BQ =
[
. . . τi 0 0 . . .

]

By inspection τiliAQ = ρiliBQ + li−1BQ, so τiliA = ρiliB + li−1B.

Corollary 2.1.2 For every real-valued regular pencil of dimension n, there exist n

generalized right eigenvectors ri and eigenvalue pairs (ρi, τi) such that either τiAri =

ρiBri, or Ari+1 + τiAri = ρiBri with ρi �= 0, or τiAri = ρiBri + Bri+1 with τi �= 0.

So, the rows of P and the columns of Q act in a manner that is analogous to the left

and right generalized eigenvectors of a single matrix, respectively.

2.2 Abstract Algebra

A scalar and a matrix are related but different. Addition and multiplication are

defined differently for the two, but yet there are some similarities, such as solution

of an equation requiring invertibility of the coefficient, that are surely more than

mere coincidence. Abstract algebra is the study of the precise definitions of the way

calculations are performed on different types of mathematical objects.
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2.2.1 Sets and binary operations

A collection of objects is called a set. Some authors take the concept of a set as a

primitive concept, upon which other ideas are built, and so do not attempt to make

the definition more precise [29]. Others may attempt to define a set based on simple

physical examples like three apples, two oranges, and so forth [1]. Here the concept

of set will be treated as a primitive.

The members of a set are called its elements; the set with no elements is called

the empty set and is denoted by ∅. A set will be denoted by an italicized capital

letter, such as S. Elements of a set will be denoted by italicized lower case letters.

The notation a ∈ S means that “a is an element of S”. Important sets [29] include

R, the set of all real numbers, C, the set of all complex numbers, Z (also denoted

N), the set of all integers, Z
+, the set of all positive integers, and N0, the set of all

nonnegative integers. R
n×n is the set of all real-valued n× n matrices.

A set may be given as a rule that identifies its members. Let S be the set of all

even integers. It may be written as S = {n | n/2 ∈ Z}, which is read as “S is the set

of all elements n such that n/2 is an element of the integers”.

A binary operation ∗ on a set S is a rule that assigns each ordered pair of

elements of S to some element of S . The definition [29] incorporates the requirement

that a binary operation on two elements of the set on which it is defined produces

another element of that same set. This is called the closure condition; an operation

is by definition not a binary operation on S if it does not meet this condition.

For example, let S be the set of all integers. Then addition is a binary operation

on S, because the sum of any two integers is again an integer. Division is not a binary

operation on S, because the ratio of two integers is not necessarily again an integer.

A binary operation ∗ on S is said to be commutative if and only if a ∗ b = b ∗ a
for all a, b ∈ S. The operation is called associative iff (a ∗ b) ∗ c = a ∗ (b ∗ c) for all

a, b, c ∈ S.
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2.2.2 Groups

Upon the basic ideas of a set and of a binary operation defined on a set are built

successively more complex concepts. The first of these is a group. A group 〈G, ∗〉 is

a set G together with a binary operation ∗ on G for which

1. The binary operation ∗ is associative.

2. There is an element e ∈ G (called the identity element, or simply the iden-

tity) such that e ∗ x = x ∗ e = x for all x ∈ G.

3. For every a ∈ G, there is an element a′ ∈ G (called the inverse of a with

respect to ∗) such that a′ ∗ a = a ∗ a′ = e.

A group is called abelian iff its binary operation is commutative.

2.2.3 Rings

The second concept or structure is called a ring. A ring 〈R,+,×〉 is a set R together

with two binary operations + and × defined on R for which the following is true.

1. 〈R,+〉 is an abelian group (the identity element of this group is called zero,

and the operation is called addition).

2. The operation × is associative.

3. For all a, b, c ∈ R the left distributive law, a × (b + c) = a × b + a × c, and

the right distributive law, (a + b)× c = a× c + b× c, hold.

If 〈R,+,×〉 is a ring and Mn(R) is the set of all n× n matrices on which the binary

operations + and × from 〈R,+,×〉 are used to define corresponding operations on

Mn(R) (in the same manner as in section 2.1), it can be shown that 〈Mn(R),+,×〉
is also a ring.

Note that a ring does not have a multiplicative inverse. Specifically, 〈Mn(R),+,×〉
has an additive inverse but no multiplicative inverse. This means that it is possible
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to calculate determinants and perform Gauss elimination in 〈Mn(R),+,×〉 using ad-

ditive inverses to produce zeros, but it is not possible to reduce a diagonal matrix to

a matrix with a multiplicative identity along the diagonal - there is no multiplicative

identity!

2.2.4 Fields

The third structure is a field. A field 〈F,+,×〉 is a set F together with two binary

operations + and × defined on F for which the following is true.

1. 〈F,+,×〉 is a ring.

2. The operation × is commutative (〈F,+,×〉 is then called a commutative ring;

also × is called multiplication).

3. There is a multiplicative identity 1 ∈ F such that 1× x = x× 1 = x for all

x ∈ F (this identity element is called unity).

4. There is a multiplicative inverse in F for every nonzero element of F .

5. The operation × is commutative.

The real numbers, together with standard addition and multiplication, form a field,

and unity refers to the number 1. Complex numbers also form a field with standard

addition and multiplication.

Defining corresponding binary operations on the set Mn(F ) of n × n matrices

whose elements belong to a field does not produce a field, but it does allow for

(noncommutative) inverses over multiplication. Matrices of elements of a field, along

with the corresponding matrix binary operations defined from the binary operations

of that field, allow for matrix inverses, albeit ones that do not commute [29]. For

example, the matrix R in section 2.1.5 is the left inverse of A, because RA = I. The

two matrices do not commute over multiplication, however, so AR �= I.
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2.2.5 Functions

Let D and C be any two sets. A function is a rule that matches elements of one set

to elements of another. If a function f takes each element x of D and matches it to

exactly one element y in C, then D is called the domain of f , and C is called the

codomain. The function itself is written f(x) = y or f : D → C. The set R of all

elements of C to which f matches one or more elements of D is called the range of

f .

If, for every x1, x2 ∈ D such that x1 �= x2, f(x1) �= f(x2), then f is said to be

one-to-one, or an injection. If for every y ∈ C there exists an x ∈ D such that

f(x) = y, then f is said to be onto, or a surjection, and also the codomain is the

same as the range (C = R).

If 〈D,×〉 and 〈C, ·〉 are groups, a function f : D → C is called a homomorphism

if

f(a× b) = f(a) · f(b) (2.83)

for every a, b ∈ D. The function is an isomorphism if it is one-to-one and onto,

and 〈D,×〉 and 〈C, ·〉 are said to be isomorphic. Two groups that are isomorphic

are completely equivalent; they are different notations for exactly the same algebraic

structure.

The inverse of a function f is some other function f−1 such that, if f(a) = b,

then f−1(b) = a. This means that the composition of a function and its inverse return

the original argument of the function; in other words, f(f−1(x)) = f−1(f(x)) = x. If

a function is one-to-one and onto from D to R, that function has an inverse from R

to D, and is called a bijection.

The parallel with matrices should be clear. If Ax = b and A has an inverse, then

A−1b = x, and also A−1Ax = x. Matrices are thus often though of as functions.

An odd function is one for which f(−x) = −f(x). An even function is one

for which f(−x) = f(x). A function is said to be monotonically increasing if

f(x + ε) ≥ f(x) whenever ε > 0, or monotonically decreasing if f(x + ε) ≤ f(x)

whenever ε > 0. In either case, the function is said to be monotonic. A periodic
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Figure 2-1: The unit circle

function is one for which f(x+ np) = f(x) for every integer n and some constant p.

The period of the function is p.

2.2.6 Common functions

A polynomial is a function that matches a number to some combination of powers

of that number. The order of a polynomial is the highest power that appears in

that polynomial. For example, the function f(x) given by

f(x) = x3 + 6x2 − 2x− 9 (2.84)

is a third-order polynomial.

A rational function is a ratio of two polynomials. An example is

f(x) =
x4 − x2 + 5

x3 + 7x− 2
(2.85)

The trigonometric functions include cosine, sine, and tangent, and are de-

fined in terms of right triangles or the unit circle (a circle of radius 1 centered at the

origin), which appears in figure 2-1. Let θ be the angle measured counterclockwise

from the x axis to a line segment with one endpoint at the origin (0, 0), as shown
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in the figure. This line segment intersects the unit circle at some point (a, b). The

cosine of θ, written cos(θ), is simply a, while the sine of θ, written sin(θ), is b. The

tangent of θ, written tan(θ), is b/a. Note that −1 ≤ cos(θ) ≤ 1 and −1 ≤ sin(θ) ≤ 1

for all θ.

The cosine and sine of θ give the lengths of two sides of a right triangle. The

hypoteneuse of the triangle goes from the origin to the circle, so it always has length

1. By the Pythagorean Theorem, the square of the length of the hypoteneuse of a

right triangle is equal to the sum of the squares of the lengths of the other two sides.

This means that, for every θ,

cos2(θ) + sin2(θ) = 1 (2.86)

The angle θ is typically given, not in degrees, but in radians. There are 2π

radians in 360◦. The trigonometric functions are periodic with period 2π, because

any angle θ + n(2π) is in the same direction as θ; it just involves n extra rotations

around the origin.

The factorial is a function defined only for positive integers. For any positive

integer n, n factorial is written as n! and is defined as follows.

n! = n× (n− 1)× (n− 2) · · · × 2× 1 (2.87)

Note that

n!

n
= (n− 1)! (2.88)

The exponential function is the value of a special number e raised to any power.

It may be written as a polynomial.

ea = 1 + a +
1

2!
a2 +

1

3!
a3 + . . . (2.89)

This polynomial expression allows the exponential of a to be evaluated even when a

is not an integer. The number e is called Euler’s constant; its value is given by the

following limit.

e = lim
n→∞

(
1 +

1

n

)n

≈ 2.7183 (2.90)
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The exponential of a matrix, written eA, is itself a matrix, and may also be written

as a polynomial.

eA = I + A +
1

2!
A2 +

1

3!
A3 + . . . (2.91)

One important property of the matrix exponential is that it commutes with its expo-

nent. This may be shown most easily by its polynomial representation.

AeA = AI + AA + A
1

2!
A2 + A

1

3!
A3 + . . .

= IA + AA +
1

2!
A2A +

1

3!
A3A + . . .

= eAA

(2.92)

Diagonalization of a matrix, or transformation to its Jordan form, also simplifies

calculation of the exponential of that matrix. Let a matrix A have a complete set of

eigenvectors S, so that A = SΛΛΛS−1. Then

eA = eSΛΛΛS−1

= I + S−1ΛΛΛS +
1

2!

(
SΛΛΛS−1

)2
+

1

3!

(
SΛΛΛS−1

)3
+ . . .

= S

(
I + ΛΛΛ +

1

2!
ΛΛΛ2 +

1

3!
ΛΛΛ3 + . . .

)
S−1

= SeΛΛΛS−1

(2.93)

2.2.7 Complex numbers

The imaginary number i is defined as the square root of −1.

i =
√
−1 ⇔ i2 = −1 (2.94)

A complex number is any sum of a real number and a real multiple of i. If some

number x is a member of the set of all complex numbers (usually written as simply

x ∈ C), it has the form

x = a + bi (2.95)

where a is called the real part, and bi is called the complex part.
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Figure 2-2: A number a + bi in the complex plane

Addition and multiplication of two complex numbers x = a + bi and y = c + di

are given by

x + y = (a + b) + (c + d)i

x× y = (ac− bd) + (ad + bc)i
(2.96)

It is fairly easy to show that 〈C,+,×〉 is a field.

The magnitude of a complex number x is the analogue of the absolute value of a

real number, and is given by

|x| =
√
a2 + b2 (2.97)

The set of all complex numbers C is often thought of as a plane, with the x axis

giving the real part and the y axis giving the complex part of each complex number.

This is called the complex plane, and the number a + bi is shown in the complex

plane in figure 2-2.

Another way of expressing a complex number x is in terms of its magnitude r

and phase angle θ, again as shown in figure 2-2. The magnitude and phase angle
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(often called simply the phase) are related to the real and complex parts by

r =
√
a2 + b2

θ = cos−1

(
a√

a2 + b2

)

= sin−1

(
b√

a2 + b2

) (2.98)

while the real and complex parts are given in terms of the magnitude and phase by

a = r cos(θ)

b = r sin(θ)
(2.99)

The square root of a complex number is most easily calculated using the magnitude

and phase.

√
a + bi =

√
r (cos(θ) + i sin(θ)) =

√
r

(
cos

(
θ

2

)
+ i sin

(
θ

2

))
(2.100)

A complex number a + bi for which a = 0 is called pure imaginary or strictly

imaginary. The exponential of a pure imaginary number is given by Euler’s for-

mula.

eib = cos(b) + i sin(b) (2.101)

The exponential of a pure imaginary number is itself a complex number. Its real part

is cos(b), and its imaginary part is sin(b). Note that the magnitude of the exponential

of a pure imaginary number is always one.

|eib| =
√

cos2(b) + sin2(b) = 1 (2.102)

The exponential of a pure imaginary number therefore lies on a circle of radius 1

centered at the origin of the complex plane.

2.3 Differential and Algebraic Equations

The unknowns in a system of algebraic equations are variables that take on a single

value, so “solving the system” means calculating these unknown values. In differential
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equations, the unknowns are functions, rather than values, which introduces new

issues that are not encountered in linear algebraic systems. For example, infinitely

many functions satisfy a set of differential equations, so initial conditions are required

in order to determine a unique solution. Coupling algebraic and differential equations

adds yet another set of issues.

2.3.1 Differentiation and integration

Unless otherwise stated, the domain of a function will be assumed to be the real

numbers, or an interval of the real numbers. Whenever f(t) is written, it will be

assumed that t ∈ R.

A function is said to be continuous at t if

limε→0 (u(t + ε)− u(t− ε)) = 0 (2.103)

If this is true for all t, than the function is simply called continuous.

Given a function u(t), the derivative of u is the instantaneous rate of change of

u(t) at a particular value of t, and is denoted by du
dt

, or u′, or u̇.

du

dt
= u′ = u̇ = lim

h→0

u(t + h)− u(t)

h
(2.104)

Note that u̇(t) is itself a function, and so it may have a derivative itself. The deriva-

tive of the derivative of u is the second derivative of u, and so forth. Repeated

derivatives may be denoted in several ways; for example, the third derivative of u

may be written using any of the following equivalent notations.(
d

dt

)3

u = u′′′ = ˙̈u = u(3) (2.105)

The derivative of u is only defined at a particular value of t if the limit is the same

regardless of which side of u(t) the difference is taken; in other words, it must be true

that

lim
h→0

u(t + h)− u(t)

h
= lim

h→0

u(t)− u(t− h)

h
(2.106)

for the derivative to exist at u(t).
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Ci is the set of all functions u(t) for which the ith derivative exists for all t. If

ü(t) is uniquely defined for all t, then u ∈ C2. This may be restricted to a particular

interval in t, so if the second derivative of u exists only for t ∈ I, then u is an element

of C2 on I. A common shorthand notation is “u is C2 on I”. A function that is C0

is continuous.

There are two types of integrals, definite and indefinite. The indefinite integral

of u is in some sense the inverse of the derivative.

d

dt

∫
u(t)dt = u(t) (2.107)

A function U(t) that is an indefinite integral of u(t)

U(t) =

∫
u(t)dt (2.108)

is called an antiderivative of u, because U ′(t) = u(t), which may be shown by simply

differentiating both sides of the definition of U(t).

dU

dt
=

d

dt

∫
u(t)dt

U ′(t) = u(t)

(2.109)

The indefinite integral, like the derivative, is itself a function of t.

While the derivative of the integral of u is simply u, the reverse is not true. This

is because by definition (2.104) the derivative of a constant is zero. Therefore, adding

any constant c to U(t) produces another antiderivative of u.

d

dt
(U(t) + c) = U ′(t) + 0 = U ′(t) (2.110)

The definite integral is a function of an interval of t, and is defined as follows.

Suppose U(t) is an antiderivative of u(t), and t is further restricted to an interval of

R given by a ≤ t ≤ b. Then the definite integral of u(t) from t = a to t = b is defined

as ∫ b

a

u(t)dt = U(b)− U(a) (2.111)

This definition is called the Fundamental Theorem of Calculus.
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If the derivative of a function is known, the function itself is known up to a constant

of integration, and may be expressed as either a definite or indefinite integral. If

u̇ = f(t) (2.112)

then, by the Fundamental Theorem of Calculus,

u(t) =

∫ t

0

f(τ)dτ + u(0) (2.113)

It is important to contrast an equation involving the derivative of a function

(2.112) with a linear algebraic equation (2.3). The solution to a linear algebraic

equation is a constant, and if a solution exists, it is unique. The solution to an

equation like the one above (2.112) is a function, and if a solution exists, there are

infinitely many other solutions as well. All of these solutions that satisfy the equation

differ by an arbitrary constant, which here is u(0).

2.3.2 Rules of differentiation

There are three simple rules of differentiation that arise again and again. The first is

called the chain rule. It gives the derivative of a function that is a composition of

two or more functions.

d

dt
(f(g(t))) = f ′(g(t))g′(t) (2.114)

The second is the product rule for differentiating the product of two functions.

d

dt
(f(t)g(t)) = f ′(t)g(t) + f(t)g′(t) (2.115)

Third is the power rule for differentiating a number raised to a power.

d

dt
tn = ntn−1 (2.116)

The power rule is particularly useful for differentiating polynomials. For example,

d

dt

(
x3 + 4x2 + 9x

)
= 3x2 + 8x + 9 (2.117)
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Recall that the exponential function is a polynomial. The power rule allows its

derivative to be calculated very easily.

d

dt
et =

d

dt

(
1 + t +

1

2!
t2 +

1

3!
t3 + . . .

)

=

(
0 + 1 +

2

2!
t +

3

3!
t2 + . . .

)

=

(
0 + 1 +

1

1!
t +

1

2!
t2 + . . .

)

= et

(2.118)

So, the exponential function is its own derivative!

2.3.3 Norms of functions

For a function of one variable, say u(t), defined4 on some interval a ≤ t ≤ b, the L2

norm of u is defined as follows.

||u|| =
(∫ b

a

u2dt

) 1
2

(2.119)

The interval may also be infinite, in which case a = −∞ and b =∞. For a vector of

functions u(t), the L2 norm is defined as

||u|| =
(∫ b

a

(u · u)dt

) 1
2

(2.120)

For a function of several variables, say u(t, x), on the domain Ω = {(t, x) : a ≤
t ≤ b, c ≤ x ≤ d}, ||u(t, ·)|| is defined as

||u(t, ·)|| =
(∫ d

c

u2(t, x)dx

) 1
2

(2.121)

while

||u(·)|| =
(∫ b

a

∫ d

c

u2(t, x)dxdt

) 1
2

(2.122)

4The value of u(t) is assumed to be real, not complex, for all t. If u(t) is allowed to be complex,

then the norms must be defined slightly differently.
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This is sometimes written using a more compact notation. Let

z =


t

x


 (2.123)

Then the same norm may be written as

||u(·)|| =
(∫

Ω

u2dz

) 1
2

(2.124)

Using the same notation, the norm of a vector of functions that depend on multiple

independent variables u(z) over a domain Ω is

||u(·)|| =
(∫

Ω

(u · u)dz

) 1
2

(2.125)

2.3.4 Scalar ordinary differential equations

Differential equations involve both u and its derivatives. Possibly the simplest ordi-

nary differential equation, or ODE, is

u̇ + au = 0 (2.126)

where a ∈ R is a constant. The equation is called homogeneous because the right-

hand side is identically zero; if it were instead some function of t, it would be called

inhomogeneous, and f(t) would be called the forcing function.

This equation may be solved immediately by inspection. Recall that the expo-

nential function is its own derivative. Using the chain rule,

d

dt
ekt = kekt (2.127)

so any function u(t) of the form

u(t) = c0e
−at (2.128)

where c0 is an arbitrary constant, will satisfy the equation. An initial condition

determines a unique solution from this family of solutions. If

u(0) = u0 (2.129)
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then the unique solution that passes through (u, t) = (u0, 0) and satisfies the original

ordinary differential equation is

u(t) = u0e
−at (2.130)

The solution to a homogeneous differential equation is a homogeneous solution.

The solution of the related inhomogeneous equation

u̇ + au = f(t) (2.131)

is given by

u(t) = u0e
−at + e−at

∫ t

0

eaτf(τ)dτ (2.132)

The second term on the righthand side matches the forcing function and is called the

particular solution. The solution to an inhomogeneous differential equation will

consist of a homogeneous solution and a particular solution.

Another way of looking at the solution of an inhomogeneous equation of this form

(at a particular value of t) is as the solution of the related homogeneous equation,

but with a different initial condition. Let

u∗
0 =

∫ t

0

eaτf(τ)dτ (2.133)

Then

u(t) = (u0 + u∗
0)e

−at (2.134)

This is called Duhamel’s principle. Note that u∗
0 is different at different values of

t.

For a more general differential equation of the form

u̇ = f(u, t) (2.135)

a differentiable solution is guaranteed to exist and be unique if f(u, t) is Lipschitz

continuous [37]. A function f(u, t) is Lipschitz continuous iff

|f(u1, t)− f(u2, t)| ≤ L|u1 − u2| (2.136)

for some finite scalar L.
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2.3.5 Systems of ordinary differential equations

A system of ordinary differential equations is itself often called an ODE. Consider a

homogeneous ODE the form

u̇ + Au = 0 (2.137)

This system is called linear, because A is constant.

The solution is given by

u(t) = e−Atu0 (2.138)

if the initial conditions are

u(0) = u0 (2.139)

Clearly, the number of initial conditions must equal the number of dependent vari-

ables.

The solution to the related inhomogeneous linear system

u̇ + Au = f(t) (2.140)

for the same initial conditions is given by

u(t) = e−Atu0 + e−At

∫ t

0

eAτ f(τ)dτ (2.141)

2.3.6 Consistent initialization

Determination of a unique solution to a linear ODE system requires specification of n

initial conditions, which often consist of the n values of u at time t = 0. Sometimes,

however, one may wish to specify values of u̇ at t = 0; for example, specifying u̇(0) = 0

means that the system is starting from a steady state.

Consistent initial conditions are initial conditions that uniquely determine the

solution to a system of differential equations. For a linear ODE, a unique solution

u(t) is determined when all values of u̇(0) and u(0) are known.
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The problems of finding u(t) and consistent values of u̇(0) and u(0) differ in

fundamental ways5. The former problem involves finding a family of functions of t

that satisfy the ODE system, and was the subject of the previous section. The latter

problem involves finding a set of values of the functions and their derivatives at a

particular value of t, and is an algebraic problem like those covered in the first part

of this chapter. Another significant difference is that, in the ODE problem, there

are n unknowns, which are the functions u(t), while in the consistent initialization

problem, there are 2n unknowns, which are the values of u(0) and u̇(0).

Suppose the equations are homogeneous and the initial conditions are u(0) = b.

Once these are provided, the ODE gives the values of u̇(0). The overall consistent

initialization problem is

u̇(0) + Au(0) = 0

u(0) = b
(2.142)

which has the solution

u(0) = b

u̇(0) = −Ab
(2.143)

This system has a unique solution, so the initial conditions are consistent.

Now, suppose that the initial conditions are instead u̇(0) = b. The ODE must

then be used to determine the values of u(0). The overall consistent initialization

problem is now

u̇(0) + Au(0) = 0

u̇(0) = b
(2.144)

and the solution

u(0) = −A−1b

u̇(0) = b
(2.145)

5Unfortunately, the ODE problem and its associated consistent initialization problem are often

written using identical notation, where both the unknown functions u(t) and their derivatives u̇(t),

and the unknown values u(0) and u̇(0), are denoted simply as u and u̇.
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exists and is unique iff A is invertible. If A does not have an inverse, then the initial

conditions do not uniquely determine all u(0) and therefore are not consistent.

Because obtaining u̇(0) from u(0) for an ODE is always possible, one is typically

concerned only with obtaining u(0). However, many numerical integrators require

a consistent u̇(0) to start efficiently. For this reason, u̇(0) is sometimes considered

to be a purely a numerical consideration. For an ODE, once u(0) is known, u̇(0) is

always uniquely determined.

2.3.7 Differential-algebraic systems

Consider a system of the form

Au̇ + Bu = 0 (2.146)

If A is invertible, multiplication on the left by A−1 produces an ODE. The solution

may be found as in the previous section.

If, however, A is singular, this is a mixed system of differential-algebraic equa-

tions, or a DAE. Because A and B are constant matrices, the DAE (2.146) is called

linear time invariant. If A or B instead vary with t, the DAE is called linear

time varying. The most general DAE is a system of nonlinear functions of u̇ and

u, and is called a nonlinear DAE:

f(u̇,u, t) = 0 (2.147)

DAEs have many properties for which there is no analogy among ODEs. It is pos-

sible for a DAE to have a unique solution before specification of any initial conditions.

Sometimes specifying values for u(0) as initial conditions may be inconsistent with a

particular DAE, and thus no solution can satisfy both the equations and those initial

conditions. Existence of a solution to an inhomogeneous DAE may require existence

of derivatives of the forcing functions.

A linear time invariant DAE is called solvable iff the coefficient matrix pair

(A,B) forms a regular pencil and the forcing functions are sufficiently differentiable

[8]. Solvability is a necessary condition for existence and uniqueness of a solution.
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Further conditions involving consistency of the initial conditions must be met in order

to guarantee existence and uniqueness of the solution to a solvable system.

The general form of a solution to an (assumed solvable) homogeneous, linear time

invariant DAE may be constructed as follows [10]. First, multiply the system on

the left by the inverse of any invertible member of the coefficient matrix pencil. For

example, let λ be some scalar for which (B+λA) is invertible. Let Âλ = (B+λA)−1A

and B̂λ = (B+λA)−1B. In general two arbitrary matrices A and B do not commute,

but Âλ and B̂λ commute; that is, ÂλB̂λ = B̂λÂλ.

Dropping the subscript λ, the solution to the DAE (2.146) is given by

u(t) = e−ÂDB̂tÂÂDu0 (2.148)

where u0 is a set of consistent initial conditions.

For an inhomogeneous linear time invariant DAE, the solution is the sum of the

homogeneous solution (2.148) and a particular solution, and is given by

u(t) = e−ÂDB̂t

∫ t

0

eÂ
DB̂τÂD f̂(τ)dτ +

(
I− ÂÂD

) k−1∑
i=0

(−1)i
(
ÂB̂D

)i
B̂D f̂ (i)(t)

(2.149)

where k is the nilpotency of N in the Jordan form of Â.

Note that the inhomogeneous solution depends on some elements of f̂ (k−1)(t), the

(k− 1)th derivative of the forcing functions. Wherever particular elements of f̂(t) are

not sufficiently differentiable, the solution does not exist.

The subscript λ was dropped because these expressions for the solution (2.148 -

2.149) are independent of the particular value of λ chosen. If µ is some other scalar

for which (B + µA) is invertible, the following properties hold.

ÂλÂ
D
λ =ÂµÂ

D
µ

ÂD
λ B̂λ =ÂD

µ B̂µ

ÂD
λ f̂λ =ÂD

µ f̂µ

B̂D
λ f̂λ =B̂D

µ f̂µ

(2.150)
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The solution may also be constructed using a change of variables [30, 89]. Again

assume that the DAE is solvable, which implies that the coefficient matrices form a

regular pencil. Let P and Q be the invertible matrices that take the coefficient matrix

pair to its Weierstrass canonical form. Multiplying the system on the left by P and

introducing new variables v = Q−1u and forcing terms g = Pf produces a system of

the form 
I

N





v̇1

v̇2


 +


J

I





v1

v2


 =


g1(t)

g2(t)


 (2.151)

The two block rows are decoupled and so may be solved independently. The first

block row is called the differential subsystem. It is an ODE of the form considered

earlier (2.140), and so has a unique solution for any initial condition v1(0) = v10.

The second block row is the algebraic subsystem. If N is nonzero, it will

contain differential equations, but it is nevertheless equivalent to a system of algebraic

equations. To see this, write the algebraic subsystem as(
N

d

dt
+ I

)
v2 = g2(t) (2.152)

and let (
N

d

dt
+ I

)∗
= I +

k−1∑
i=1

(−1)iNi

(
d

dt

)i

(2.153)

where k is the nilpotency of N. Applying this operator to the algebraic subsystem

gives v2 as a unique function of the forcing functions and their derivatives; no arbitrary

constants appear in the solution.(
N

d

dt
+ I

)∗ (
N

d

dt
+ I

)
v2 = v2 =

(
N

d

dt
+ I

)∗
g2(t) (2.154)

From the definition of
(
N d

dt
+ I

)∗
, it is clear that v2(t) depends on up to k − 1

derivatives of the forcing functions g2. Wherever these derivatives fail to exist, v2

will also fail to exist.

2.3.8 The index of a linear DAE

The index, typically denoted ν, of a solvable, linear time invariant DAE is defined

as equal to the nilpotency k of N in the Weierstrass canonical form of the coefficient
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matrix pair. A DAE of index zero is an ODE. A DAE of index 2 or greater is

considered to be high index.

What is the significance of having a high index? High index DAEs can have hidden

algebraic relationships between the dependent variables and/or their derivatives. This

complicates the problem of providing proper initial conditions for the system, and also

of integrating the problem numerically6.

For a linear ODE (which is an index-0 DAE) that consists of n differential equa-

tions, specification of all n values of u(0) always produces a solvable consistent ini-

tialization problem. For a DAE, let p be the number of differential equations or

differential variables, whichever is less7. For an index-1 DAE, p initial conditions are

typically required to produce a solvable consistent initialization problem. For a high

index DAE, however, fewer than p initial conditions must be given. In fact, it is

possible that no initial conditions may be arbitrarily specified for a high index DAE.

For example, consider a derivative chain of length 3 [8].

u̇1 + u2 = f1(t)

u̇2 + u3 = f2(t)

u1 = f3(t)

(2.155)

The index of this system is 3, so it is high index. Although there are two differential

equations, the solution is algebraic.

u1 = f3(t)

u2 = f1(t)− ḟ3(t)

u3 = f2(t)− ḟ1(t) + f̈3(t)

(2.156)

6See Petzold [69] or Sincovec et al [78] for an exploration of the issues surrounding numerical

solution of high index DAEs. Loosely speaking, if the system is low index, standard methods for

stiff ODEs may be applied. If the system is high index, such codes can only be applied in special

cases and with great caution.
7Here a differential equation is one that contains a derivative term, and a differential variable is

one for which a derivative appears in one or more equation. In general these may be different from

the differential and algebraic subsystems defined in the previous section - note that there may be

differential equations in the algebraic subsystem, for example.
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Although p = 2, no arbitrary constants appear anywhere in the solution, so no initial

conditions may be specified.

An interpretation of a high index DAE is that it is a system that contains implicit

constraints on the derivatives of the variables. These implicit constraints take up some

of the degrees of freedom in the consistent initialization problem. For the derivative

chain above, the initialization problem starts with the equations themselves.


1 0 0

0 1 0

0 0 0


 u̇(0) +




0 1 0

0 0 1

1 0 0


u(0) = f(t) (2.157)

There are two differential variables, so it is reasonable to expect that two initial

conditions are required in order to determine u̇1(0), u1(0), u̇2(0), u2(0), and u3(0).

However, differentiating the third equation produces a new equation independent

of the first three.

u̇1(0) = ḟ3(0) (2.158)

This equation takes the place of one arbitrarily specified initial condition in the con-

sistent initialization problem.

Differentiating the first equation, and differentiating the third equation a second

time, produces two new equations in only one new variable (ü1(0)).

ü1(0) + u̇2(0) = ḟ1(0)

ü1(0) = f̈3(0)
(2.159)

Taken together, these two new equations in the one new variable ü1(0) form a second

constraint, that was again “hidden” or implicit in the original equations. After using

one of these equations to eliminate the new variable from the other, the resulting

constraint takes the place of another equation in the consistent initialization problem,

for a total of five equations in the five unknowns u̇1(0), u1(0), u̇2(0), u2(0), and

u3(0). These five equations are nonsingular, so no initial conditions may be specified

arbitrarily.

Suppose that an initial condition, perhaps u1(0) = k, had been arbitrarily spec-

ified. Because u1(0) must equal f3(0) in order to satisfy the equations, no solution
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can satisfy both the initial condition on u1(0) and the equations for an arbitrary k.

In other words, u1(0) = k is not a consistent initial condition. In general, variables

u(0) or their derivatives u̇(0) which can be assigned arbitrary values and still allow

solution of the original system are called dynamic degrees of freedom. For lin-

ear time invariant DAEs, the number of dynamic degrees of freedom is equal to the

dimension of the differential subsystem.

An ODE to which are appended a set of algebraic functions of the differential

variables forms an index-1 DAE. Such a system has the form

u̇ + Bu = f1(t)

Cy + Du = f2(t)
(2.160)

with C invertible. Here u are called the differential variables, and are given as

the solution to the ODE. y are called the algebraic variables, which are uniquely

determined by the forcing function f2(t) and the values of the differential variables.

Some linear index-1 DAEs cannot be written in such a form. For example, the

following system [63] is index-1.

u̇1 + u̇2 = f1(t)

u1 + 3u2 = f2(t)
(2.161)

Although it is index-1, this system has an implicit constraint found by differentiating

the second equation. This constraint and the original equations together comprise

three equations in the four unknowns u̇1(0), u1(0), u̇2(0), and u2(0), so only one initial

condition is needed. Systems of index 1 that have one or more implicit constraints

on the differential variables are sometimes called special index-1 systems.

2.3.9 Nonlinear DAEs and the derivative array equations

For nonlinear DAEs,

f(u̇,u, t) = 0 (2.162)

the index can no longer be defined in terms of coefficient matrices. Different ap-

proaches have been taken [11]. The differentiation index is defined as the mini-
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mum number of times some or all of the equations must be differentiated in order to

uniquely determine u̇ as a continuous function of u and t.

Writing ( d
dt

)if(u̇,u, t) as f[i](u̇,u, t) and defining

u[i] =




d
dt
u(

d
dt

)2
u

...(
d
dt

)i
u




(2.163)

repeated differentiation of the DAE produces the following system of equations.

f[0](u[1],u, t) = 0

f[1](u[2],u, t) = 0

f[2](u[3],u, t) = 0

...

(2.164)

Let the first k + 1 block rows be written as

F[k](u[k+1],u, t) = 0 (2.165)

These are the kth derivative array equations [31]. The differentiation index νD is

thus the smallest k such that F[k] uniquely determines u̇ as a continuous function of

u and t.

Linear time varying systems have the form

A(t)u̇ + B(t)u = f(t) (2.166)

For such systems, the derivative array equations are themselves a linear time varying

system. For example, F[2] is given by


A(0)

(A(1) + B(0)) A(0)

(A(2) + 2B(1)) (2A(1) + B(0)) A(0)






u̇

ü

˙̈u


 +



B(0)

B(1)

B(2)


u−



f (0)

f (1)

f (2)


 = 0 (2.167)

or more simply

A3u[3] = −B3u + f[3] (2.168)
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Larger systems may be generated quickly by recursion. For the first column of a

new row i, the (i, 1)th element is the sum of B(i−2) and the derivative of the (i−1, j)th

element. The (i, j)th element of Ak is the sum of the (i− 1, j − 1)th element and the

derivative of the (i − 1, j)th element. Note that, for linear time invariant systems,

A(i) = B(i) = 0 for i �= 0.

Let u ∈ R
n. Then the matrix Ak is called smoothly 1-full if there is a smooth

nonsingular R(t) such that

RAk =


I 0

0 H


 (2.169)

where I ∈ R
n×n. The differentiation index νD is the smallest integer such that AνD+1

is smoothly 1-full and has constant rank.

Now, consider the following simple nonlinear system.

u̇1 + u2 = f1(t)

u3
2 = 0

(2.170)

This DAE consists of an ordinary differential equation involving the differential vari-

able u1, to which is appended an algebraic equation that uniquely defines the algebraic

variable u2. However, unlike linear systems of this description, the index is not 1.

The next three block rows of the derivative array equations are as follows.

ü1 + u̇2 = f ′
1(t)

3u2
2u̇2 = 0

(2.171)

˙̈u1 + ü2 = f ′′
1 (t)

6u2u̇
2
2 + 3u2

2ü2 = 0
(2.172)

¨̈u1 + ˙̈u2 = f ′′′
1 (t)

6u̇3
2 + 18u2u̇2ü2 + 3u2

2
˙̈u2 = 0

(2.173)

The first equation in each new block row of the derivative array includes successively

higher derivatives of u1 and does not give u̇2 as a function of u and t only. Because
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u3
2 = 0, u2 = 0 and the second equation in each block row is identically 0 = 0

for one (2.171) and two (2.172) differentiations of the original system. Only after

three differentiations is u̇2 given as a unique function of u and t (not surprisingly, it is

identically zero). Because three differentiations were required, the index of this system

is 3. This example demonstrates that a nonlinear system may have an arbitrarily high

index, even when it is simply a fully determined ODE coupled to an algebraic equation

that uniquely determines the algebraic variable.

The perturbation index [11] of the DAE (2.162) is defined as the smallest integer

νP such that if

f(v̇,v, t) = g(t) (2.174)

for sufficiently smooth g, then there is an estimate

||v(t)− u(t)|| ≤ C(||v(0)− u(0)||+ ||g||TνP−1) (2.175)

for sufficiently small g and finite scalar C that may depend on t. The norm ||g||Tp is

the norm of the first p derivatives of g over the interval (0, T ). More precisely, it is

the sum of the maximum norm of g, of g(1), and of all successive derivatives up to

maximum order p, over (0, T ).

||g||tm =
m∑
i=0

max
t∈(0,T )

||g(i)|| (2.176)

The perturbation index is a property of the solution, rather than of the equations.

The differentiation and perturbation index are equal for linear time invariant DAEs,

but may differ for nonlinear problems. A system with a high differentiation index is

one that has some implicit constraints. Just as with linear systems, these constraints

reduce the number of initial conditions that must be specified in order to determine

a unique solution.

Index analysis provides a wealth of information about the mathematical properties

of a DAE; in particular, it gives the number of initial conditions required to determine

a unique solution and the maximum order of derivatives of forcing functions that

appear in the solution. Because the perturbation and differentiation indices are equal
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for linear systems, both are given by the index of nilpotency of N in the algebraic

subsystem.

2.3.10 Automated index analysis

For nonlinear systems, and even for large linear systems, calculation of the index

by transformation to the canonical form is impossible or impractical, respectively.

Because the differentiation index is a property of the equations, while the perturbation

index is a property of the analytical solution (which is usually unknown for dynamic

flowsheet models), algorithms that allow a process simulator to attempt to perform

index analysis on large or nonlinear systems are typically based on the differentiation

index. In particular, Pantelides’ algorithm [63], although designed to identify the

number of dynamic degrees of freedom, has been employed successfully in dynamic

process simulators to analyze the differentiation index of lumped flowsheet models.

Pantelides’ algorithm works by identifying subsets of k equations, called minimal

structurally singular subsets, that upon differentiation will produce fewer than

k new variables. Here a “new variable” is meant in the context of a consistent

initialization problem, where u̇(0) and u(0) are considered to be distinct variables.

The algorithm differentiates such a subset of equations and performs the analysis

again, until no more minimal structurally singular subsets can be located.

The algorithm examines the structure of the system, which is given by the in-

cidence matrix. The incidence matrix is determined simply by the occurrences of

variables and their derivatives, and may be constructed very easily, even for nonlinear

systems. Consider, for example, the derivative chain example (2.155). The incidence

matrix for this system is

u̇1 u̇2 u1 u2 u3

Equation 1

Equation 2

Equation 3



× ×

× ×
×




(2.177)

The third equation may be differentiated without producing a new variable (u̇1 al-
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ready appears in the first equation), so equation 3 forms the first minimal structurally

singular subset. Differentiating it produces a system with the following incidence ma-

trix.

u̇1 u̇2 u1 u2 u3

Equation 1

Equation 2

Equation 3



× ×

× ×
×




(2.178)

Now, the first and third equations together form a minimal structurally singular

subset, because differentiation produces only one new variable (ü1). Differentiating

these two equations and replacing u̇1 with ü1 again gives a new system with a new

incidence matrix.

ü1 u̇2 u1 u2 u3

Equation 1

Equation 2

Equation 3



× ×

× ×
×




(2.179)

At this point, no more structurally singular subsets of equations exist. Every

subset of k equations produces k new variables upon differentiation. Starting from

the original three equations and five variables, the algorithm produced a total of three

new equations through differentiation, along with one new variable (ü1), for a total

of six equations in six unknowns. This means that no dynamic degrees of freedom

exist for this system.

Because it works only with the occurrence of variables and their derivatives, this

algorithm may be applied just as easily to nonlinear systems. As an example, consider

the simple nonlinear system introduced earlier (2.170). The incidence matrix for this

system is

u̇1 u1 u2

Equation 1

Equation 2


× ×

×


 (2.180)
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No structurally singular subsets of equations exist in this system, so the algorithm

terminates without performing any differentiations. The original two equations relate

the three unknowns u̇1, u1, and u2, so there is one dynamic degree of freedom.

The information provided by Pantelides’ algorithm, namely the number of times

that each equation has been differentiated, has been used to estimate the differentia-

tion index. If the derivative of every variable appears in the final system of equations

produced by the algorithm, the index should equal the maximum number of times

any equation was differentiated; otherwise, the index should be one greater than the

maximum number of differentiations8.

As noted in the original paper [63], systems with numerical singularity may not

be differentiated a sufficient number of times. For example, consider the following

simple, linear system.

u̇1 + u̇2 + u1 = 5

u̇1 + u̇2 + u2 = 3
(2.181)

The incidence matrix for this system is

u̇1 u̇2 u1 u2

Equation 1

Equation 2


× × ×
× × ×


 (2.182)

Because there are no structurally singular subsets of equations, the algorithm

again does not perform any differentiations, and indicates that there are two dynamic

degrees of freedom. However, the canonical form of the system
1 0

0 0





v1

v2



t

+


1

2
0

0 1





v1

v2


 =


4

2


 (2.183)

consists of a differential subsystem of dimension one. Therefore, only one dynamic

degree of freedom exists for this system.

The problem lies in the fact that, even though both u̇1 and u̇2 appear in each of

the two equations, it is impossible to solve them uniquely for u̇1 and u̇2 in terms of u1

8This is not always the case; it is possible for the index to equal the number of differentiations

even when the derivatives of some variables do not appear in the final system.
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and u2. Elimination of u̇1 from an equation also eliminates u̇2, and vice versa. This

singularity is numerical, because precisely the same combination of the two variables

of interest (u̇1 and u̇2) appears in both equations.

The algorithm may thus also fail to correctly determine the differentiation index in

the presence of such numerical singularities. In the chemical engineering community,

the number of differentiations returned by the algorithm was for a time assumed

to be a lower bound on the true differentiation index. However, it was not widely

appreciated that, in the presence of numerical singularities, the algorithm may also

perform a greater number of differentiations than the true differentiation index, so in

fact the algorithm does not provide a bound on the index [71].

As an example where Pantelides’ algorithm overestimates the differentiation index,

consider the following simple system.

u̇2 + u̇3 + u1 = 0

u̇2 + u̇3 + u2 = 0

u̇4 + u̇5 + u3 = 0

u̇4 + u̇5 + u4 = 0

u5 = 0

(2.184)

Pantelides’ algorithm differentiates the final equation in its first iteration. It then

differentiates the final three equations on its second iteration. At this point, the algo-

rithm terminates, and no algebraic equations or variables are present, so the expected

index is two. However, one differentiation of the last four equations immediately gives

u̇ as a continuous function of u and t, so the true differentiation index is only one.

Despite the fact that, in the presence of numerical singularities, Pantelides’ al-

gorithm may not return the true differentiation index, the fact that it is capable of

analyzing nonlinear systems and may be applied efficiently to large DAEs has led to

its continued use in dynamic process simulators. For chemical engineering models,

such numerical singularities appear to be uncommon, although examples have been

reported.
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2.4 Partial Differential Equations

ODE and DAE systems relate unknown functions of a single variable. If the unknowns

are instead functions of more than one variable, the equations are called partial dif-

ferential equations. Just as differential equations introduce a new set of issues that

do not occur with strictly algebraic systems, partial differential equations give rise to

rich geometric analyses and to new issues not encountered in differential-algebraic or

ordinary differential equations.

2.4.1 Notation and classification

Partial differential equations, or PDEs, relate functions of more than one inde-

pendent variable. Consider a single dependent variable u that is a function of two

independent variables t and x. The partial derivative of u with respect to x is most

often written in one of the following two ways, both of which are equivalent.

∂u

∂x
= ux (2.185)

The notation on the right is more compact, and will be used wherever possible, so

for example uxx is the second partial derivative of u with respect to x. utx is also a

second partial derivative, called a mixed partial derivative.

ux denotes a vector containing the partial derivatives of the elements of u with

respect to x.

ux =




u1x

u2x

...

unx




(2.186)

Similarly At is a matrix formed by differentiating each element of A once with respect

to t.

When the partial derivative of u with respect to x is to be expressed as a differential

operator acting on u, it will be written as

∂

∂x
u (2.187)
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The partial differential operator is a linear operator, so for a constant parameter

a, two dependent variables v and w, and two independent variables x and y, the

following properties hold.

∂

∂x
(v + w) =

∂

∂x
v +

∂

∂x
w

∂

∂x
(av) = a

∂

∂x
v

∂

∂x

∂

∂y
v =

∂

∂y

∂

∂x
v

(2.188)

Consider a general second order partial differential equation in the dependent

variable u and two independent variables x and y.

f(u, ux, uy, uxx, uxy, uyy, x, y) = 0 (2.189)

If the highest order partial derivatives occur linearly, so that the equation can be

rewritten in the form

a(u, ux, uy, x, y)uxx + 2b(u, ux, uy, x, y)uxy +

c(u, ux, uy, x, y)uyy = d(u, ux, uy, x, y)
(2.190)

then it is called quasilinear. If a, b, and c depend only on the independent variables,

so that the equation may be written as

a(x, y)uxx + 2b(x, y)uxy + c(x, y)uyy = h(u, ux, uy, x, y) (2.191)

it is called semilinear. If a, b, and c are constants, the equation is called linear.

Analogous classifications apply for a first order equation, where a and c are the

coefficients of ux and uy.

The equation is classified as one of three types based on a discriminant, which

is b2 − ac.

b2 − ac > 0 hyperbolic

b2 − ac = 0 parabolic

b2 − ac < 0 elliptic
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A higher order system may always be expressed as a larger first order system,

through the introduction of new variables for the higher order terms [40].

Several specific partial differential operators that allow balance equations to be

expressed in a very compact form are are often used in fluid dynamics literature [4].

The gradient operator ∇ raises the dimensionality of its operand, taking scalars to

vectors and vectors to matrices. For the scalar p on a two-dimensional domain,

∇p =


px
py


 (2.192)

while for the vector9 v,

∇v =


v1x v1y

v2x v2y


 (2.193)

Just as the gradient increases the order of its argument by one (taking scalars to

vectors and vectors to matrices), the divergence operator ∇· decreases the dimen-

sionality of its argument. Again considering a vector v,

∇ · v = v1x + v2y (2.194)

Similarly,

∇ ·A =


A11x + A12y

A21x + A22y


 (2.195)

The Laplacian operator ∇2 is a composition of the gradient and divergence op-

erators. It does not alter the dimensionality of its argument. For the scalar p, recall

(2.192) and (2.194); thus by expanding the Laplacian,

∇2p = ∇ · (∇p) (2.196)

= pxx + pyy (2.197)

9Different authors define the gradient in different ways. The notation presented here [4] is typ-

ically used in the fluid dynamics community, with (∇v)ij = ∂vi

∂xj
. Other authors [7] instead define

(∇v)ij = ∂vj

∂xi
. The divergence operator is defined to match the gradient operator, so that the

Laplacian operator is universally defined in the manner shown in this section.
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For v, using (2.193) and (2.195) gives us

∇2v = ∇ · (∇v) (2.198)

=


v1xx + v1yy

v2xx + v2yy


 (2.199)

The case of a matrix is similar.

The notion of a directional derivative is related to coordinate changes. Consider

a partial differential equation over the independent variables x and y. To rewrite the

equation in terms of new independent variables ξ and η, the chain rule may be used

to convert partial differential operators in x and y to equivalent operators in ξ and η.

ξ = ξ (x, y) (2.200)

η = η (x, y) (2.201)

so

∂

∂ξ
=

∂x

∂ξ

∂

∂x
+

∂y

∂ξ

∂

∂y
(2.202)

This gives the directional derivative along ξ, which is a partial derivative in the

new coordinate system, in terms of the derivatives in the x and y directions in the

old coordinate system. The first term on the righthand side is the x component of

the derivative in the ξ direction, and the second term is the y component.

Directional derivatives are related to interior and exterior derivatives. Con-

sider a surface defined at a point by its normal vector. The n−1 dimensional tangent

hyperplane to the surface at that point will be spanned by n−1 linearly independent

vectors in n-space, called the basis vectors for that surface. Each of these basis vec-

tors is by definition orthogonal to the normal to the surface. The case of a surface in

3-dimensional space, with normal vector p, appears in figure 2-3. Derivatives taken

in the direction of the basis vectors for the surface are the interior derivatives on that

surface. Differentiation along the normal gives the exterior derivative.

Given a vector of m independent variables x ∈ R
m and a vector of n dependent

variables u(x) : R
m → R

n, the Jacobian of u with respect to x, written J(u,x), is
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Figure 2-3: Normal and basis vectors for a plane

a matrix containing the partial derivatives of each element of u with respect to each

independent variable xj.

J(u,x)i,j =
∂ui
∂xj

(2.203)

or

J(u,x) =




∂u1

∂x1

∂u1

∂x2
. . . ∂u1

∂xm

∂u2

∂x1

∂u2

∂x2
. . . ∂u2

∂xm

...
...

. . .
...

∂un

∂x1

∂un

∂x2
. . . ∂un

∂xm




(2.204)

2.4.2 Superposition and linear systems

Consider a first order homogeneous linear partial differential equation.

aut + bux = 0 (2.205)

Suppose that there are two functions v and w that satisfy this equation. Then,

because partial differentiation is a linear operator, any linear combination of v and w

also satisfies the equation.

a(v + w)t + b(v + w)x = 0 (2.206)

Combining two or more different solutions to form another solution is called super-

position. It applies to inhomogeneous equations as well. If there are two or more

solutions to the corresponding homogeneous equation, a superposition of the partic-

ular solution and the homogeneous solutions will also satisfy the equation.
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2.4.3 Separation of Variables

A common solution technique for linear partial differential equations is separation

of variables. An assumption is made about the form of the solution; typically, that

it is the product of a function of t only with a function of x only.

u(x, t) = f(t)g(x) (2.207)

This expression is then substituted into the partial differential equation, and terms

are rearranged so that a function of x only appears on one side of the equation and a

function of t only appears on the other. As an example, consider the heat equation

ut − uxx = 0 (2.208)

and substitute in the expression above (2.207), which yields

f ′(t)g(x)− f(t)g′′(x) = 0

⇒ f ′(t)

f(t)
=

g′′(x)

g(x)
= −λ

(2.209)

for a constant λ. This is because a function of t can equal a function of x for all

values of independent variables t and x only if both functions are constants.

The functions f(t) and g(x) are the solutions of the following two ordinary differ-

ential equations.

g′′(x)

g(x)
= −λ

g′′(x) = −λg(x)

g(x) = a cos(
√
λx) + b sin(

√
λx)

(2.210)

f ′(t)

f(t)
= −λ

f ′(t) = −λf(t)

f(t) = e−λt

(2.211)

A unique solution of this form (2.207) is of course determined by initial and

boundary conditions. For example, consider the domain 0 ≤ x ≤ π and 0 ≤ t, and
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boundary conditions u(0, t) = u(π, t) = 0 and u(x, 0) = f(x). In order for the solution

to always satisfy the boundary conditions, a = 0 and λ = n2 in the expression for g

(2.210), where n is any integer.

At this point b is still undetermined, but u(t, x) will be a superposition of functions

of the form

un(x, t) = bne
−n2t sin(nx) (2.212)

If these functions are evaluated at t = 0, the superposition must equal the initial

condition, so10

∞∑
n=−∞

bn sin(nx) = f(x) (2.213)

Assuming that f(x) can be represented by an infinite sine series, this will determine

unique values for all bn [18].

2.4.4 Solution via Fourier transform

The Fourier transform in x of a function u(t, x), denoted by û(t, ω), is defined as

follows.

û(t, ω) =
1

2π

∫ ∞

−∞
u(t, x)e−iωxdx (2.214)

The Fourier transform is a function of the wavenumber (or frequency) ω. If u(t, x)

is considered to be a superposition of waves, û(t, ω) gives the amplitude of the wave

with wavenumber ω.

The inverse Fourier transform in x is

u(t, x) =

∫ ∞

−∞
û(t, ω)eiωxdω (2.215)

If this expression is substituted into a partial differential equation, partial derivatives

with respect to x are given by multiples of iω. For example, substitution of this

10Because sin(−x) = − sin(x), the coefficients bn for the sin(−x) and sin(x) terms are sometimes

combined, and only positive integers n are considered.
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expression into the heat equation gives∫ ∞

−∞
ût(t, ω)eiωxdω −

∫ ∞

−∞
−ω2û(t, ω)eiωxdω = 0∫ ∞

−∞

(
ût(t, ω) + ω2û(t, ω)

)
eiωxdω = 0

(2.216)

so

ût(t, ω) + ω2û(t, ω) = 0

û(t, ω) = û(0, ω)e−ω
2t

(2.217)

One could then use the inverse Fourier transform to obtain the solution in (t, x)

space. However, the solution in Fourier space (t, ω), (also called the frequency

domain), provides useful information. Here, the solution in Fourier space shows

that, for an initial condition that is a superposition of waves, the highest frequency

components of the superposition decay the fastest in t. Every component decays, at

a rate proportional to the square of the frequency.

The L2 norm of a function is equal to that of its Fourier transform.

||f(t, ·)|| = ||f̂(t, ·)|| (2.218)

This is known as Parseval’s equation.

2.4.5 Linear stability analysis

The concept behind the term linear stability starts with the idea of a perturbation.

A perturbation is a small change. If ε is a perturbation of a, then ε is assumed to be

small when compared to a, so that a + ε ≈ a.

For an ordinary differential equation, an initial condition is a scalar constant u0.

Stability analysis of the solution of an ordinary differential equation asks the question

“what happens to the solution if the initial condition is perturbed?”

The solution to an ordinary differential equation is uniquely determined by an

initial condition. Perturbing that initial condition produces a different solution. The

original solution is said to be stable if the difference between the solution determined

by the perturbed initial condition and the original solution is never greater than a
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linear function of the size of the perturbation. This is also called stability in the

sense of Lyapunov; another type of stability employed frequently in process control

applications is the stronger notion of asymptotic stability, which requires that the

difference between any perturbed solution and the original solution must decay to

zero.

More precisely, let u(t) be the solution determined by an initial condition u0, and

let u∗(t) be the solution determined by the initial condition u0 +ε. Then u(t) is stable

if there exists some constant k such that

|u(t)− u∗(t)| ≤ k|ε| (2.219)

for all t ≥ t0.

For example, if u(t) = u0e
ct and u∗(t) = (u0 + ε)ect, then

|u(t)− u∗(t)| = |εect| = |ε| |ect| (2.220)

Now, if c ≤ 0, then for all t ≥ 0, |ect| ≤ 1, so

|u(t)− u∗(t)| ≤ |ε| (2.221)

and the stability condition (2.219) is met for any k ≥ 1. However, if c > 0, there is no

constant k for which |ect| ≤ k for all t ≥ 0. The solution is therefore stable iff c ≤ 0.

For a partial differential equation in t and x, an initial condition is now a function

of x rather than simply a scalar; u(0, x) = f(x). A perturbation in this initial

condition is also a scalar function of x. One can ask the same question about stability,

“what happens to the solution u(t, x) if the initial condition f(x) is perturbed?”

One could perform a stability analysis that is similar to that for an ordinary dif-

ferential equation, and look at how the solution depends on the size of a perturbation

g(x) in the initial condition f(x). A measure of the size of a function is its L2 norm. If

u(t, x) is the solution determined by the initial condition u(0, x) = f(x), and u∗(t, x)

is the solution determined by u(0, x) = f(x) + g(x), then u(t, x) is considered to be

stable if there exists some constant k such that

||u(t, ·)− u∗(t, ·)|| ≤ k||g(·)|| (2.222)

for all t ≥ 0.
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2.4.6 Well posed initial-boundary value problems

Let a problem be defined as a set of partial differential equations together with the

specification of a domain and initial and boundary conditions. Initial and boundary

conditions are considered to be data if they are used to fix the values of constants in

a solution; they are not considered to be data if they are used to select a subset of

functions from which a superposition is constructed.

For example, in the heat equation example above (2.208 - 2.212), if the solution is

to be built as a superposition of sines and cosines, the boundary conditions are used

to eliminate all cosines, and all sines for which the domain length is not an integer

multiple of its half-period, and so the boundary conditions are not considered to be

data. The initial condition is used to fix the values of arbitrary constants, and so

is considered to be data. A different solution method for the same problem might

use the initial and boundary conditions in a different manner, so the classification of

some initial and boundary conditions as data is specific to each problem and solution

method.

A problem is said to be well-posed if a solution exists, that solution is unique,

and the solution depends continuously on its data. Existence and uniqueness will be

considered later, and their meaning is intuitively clear. Continuous dependence on

data has no analogue in the study of differential equations, and will be examined in

more detail in the next section.

2.4.7 Continuous dependence on data

The unspoken rule of a perturbation ε to another quantity a is that ε and a are of

the same type. If a ∈ R, then ε ∈ R. A perturbation p of a vector v is itself a vector

of the same size; v ∈ R
n ⇒ p ∈ R

n. A function f(t) may be perturbed by another

function g(t).

Because the initial condition is now a function, rather than a scalar, there is

more to a perturbation of the initial condition than simply its magnitude. Consider,

for example, two perturbations g1(x) = sin(x) and g2(x) = sin(2x), and an infinite
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domain in x. Clearly

||g1(·)|| = ||g2(·)|| (2.223)

In fact, the magnitudes of any two sine waves are identical, regardless of frequency.

Linear stability analysis examines the dependence of the solution on the magnitude

of a perturbation in the initial condition. Analysis of continuous dependence on

data looks instead at the dependence of the solution on the frequency of a perturba-

tion in the initial condition. If the change in a solution can be bounded independently

of the frequency of a perturbation, it is said to depend continuously on its data. It

does not need to be stable in order to depend continuously on its data. The reverse

is not true, however; if it is not possible to bound the change in the solution indepen-

dently of the frequency of a small perturbation to the initial data, then the solution

is unstable for at least some perturbations of arbitrarily small magnitude.

An evolution problem (in t) depends continuously on its initial data if small

changes in that data produce bounded (but not necessarily small!) changes in the

solution at later times. If

||u(t, ·)|| ≤ Ct||u(0, ·)|| (2.224)

holds for all u(0, x) in some norm, such as the L2 norm, and for some function11 Ct

that is independent of the solution but may depend on t, then the solution depends

continuously on its data [81].

If proper initial and boundary conditions are provided for the system, but the

dependence of the solution on the initial data only satisfies an estimate of the form

||u(t, ·)|| ≤ Ct||u(0, ·)||Hq (2.225)

where the Hq norm is the L2 norm of a function and its derivatives in x of order q or

lower, given by

||f ||2Hq =
∑

0≤ν≤q
||

(
∂

∂x

)ν

f ||2 (2.226)

11The literature refers to this function of t as a “contant that may depend on t” [81]. The

notation chosen here is consistent with the literature; Ct is a function f(t), not a constant or a

partial derivative with respect to t.
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then the system is said to be weakly well-posed. Because the solution to a weakly

well-posed system depends on derivatives of the initial conditions, higher order meth-

ods are sometimes recommended for weakly well-posed problems [44]. Briefly, this

is because a given finite difference or finite element mesh can resolve a finite max-

imum frequency perturbation, and this frequency increases as the mesh is refined.

The discretization must force the error to zero faster than the increasing frequency

perturbations distort the solution. Note that a weakly well-posed system is a special

type of ill-posed, rather than well-posed, system. An ill-posed system that is not

weakly well-posed may be referred to as strongly ill-posed.

The primary tool for examining continuous dependence on data is the Fourier

transform, together with Parseval’s equation. Consider, for example, the heat equa-

tion.

ut − cuxx = 0 (2.227)

The solution u(t, x) depends continuously on its initial data iff there is a bounded Ct

that is independent of the solution, that bounds u(t, x) in terms of u(0, x) as above

(2.224).

The Fourier transform produces

ût + cω2û = 0 (2.228)

for which the solution is

û(t, ω) = û(0, ω)e−cω
2t (2.229)

Taking the norm of both sides,

||û(t, ·)|| = ||û(0, ·)e−cω2t|| ≤ |e−cω2t| ||û(0, ·)|| (2.230)

If c ≥ 0, note that e−cω
2t ≤ 1 for all ω ∈ R and all t > 0, so if Ct = 1,

|e−cω2t| ||û(0, ·)|| ≤ Ct||û(0, ·)|| (2.231)

Substituting this result back into the original inequality,

||û(t, ·)|| ≤ Ct||û(0, ·)|| (2.232)
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and by Parseval’s equation

||u(t, ·)|| ≤ Ct||u(0, ·)|| (2.233)

so if c ≥ 0, the solution depends continuously on its data.

This approach may also be used to analyze the dependence on data of the solution

to more general systems of partial differential equations. First, the Fourier transform

is used to obtain a system of the form

ût(t, ω) + P(t, ω)û(t, ω) = 0 (2.234)

for which the solution is

û(t, ω) = e−P(t,ω)tû(0, ω) (2.235)

If there exists some function of t, again written Ct and given by Ct = Keαt with

constants K and α, for which

||eP(t,ω)t|| ≤ Ct = Keαt (2.236)

holds for all possible values of ω and for t ≥ 0, then Parseval’s equation may be used

as above to show that the solution depends continuously on its initial data. If no such

Ct can be found, but there exist constants K,α and positive constant q such that

||eP(t,ω)t|| ≤ Keαt(1 + ωq) (2.237)

holds for all ω and for t ≥ 0, the system does not depend continuously on its data

and is instead weakly well-posed [44].

As an example of this analysis, consider a system of the form

ut + Bux = 0 (2.238)

Taking the Fourier transform produces

ût + iωBû = 0 (2.239)
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No further manipulation is required to produce a system of the form under consider-

ation (2.234), with

P(t, ω) = iωB (2.240)

The original system (2.238) is called hyperbolic iff all eigenvalues of B are strictly

real and distinct. If this is true, there exists a constant matrix S such that B = SΛΛΛS−1.

Then

||e−iωBt|| = ||Se−iωΛΛΛtS−1||

≤ ||S|| ||e−iωΛΛΛt|| ||S−1||

≤ k||e−iωΛΛΛt||

(2.241)

Because all eigenvalues of B are strictly real, all elements of the diagonal matrix

−iωΛΛΛt are purely imaginary, and

e−iωΛΛΛt =



e−iωλ1t

. . .

e−iωλnt


 (2.242)

Because the norm of a matrix is bounded from above by the magnitude of its largest

element (2.54), and the magnitude of the exponential of any pure imaginary number

(2.102) is always one,

||e−iωΛΛΛt|| ≤ n (2.243)

for all values of t or ω. Therefore, the system depends continuously on its initial data,

because for K = kn and α = 0,

||e−iωBt|| ≤ kn ≤ Keαt = Ct (2.244)

for all ω.

Now, if all eigenvalues of B are strictly real, but one or more has geometric

multiplicity greater than unity, then the system does not depend continuously on its

data and is weakly well-posed. If any eigenvalue of B has a nonzero imaginary part,

the solution also fails to depend continuously on its data, but is strongly ill-posed.
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So in summary, the stability of a solution that depends continuously on its data

has a “worst case”. That worst case may be very unstable, but there is a “worst”

perturbation. A solution that does not depend continuously on its data has no worst

case; for every frequency of perturbation that causes the difference from the original

solution to grow quickly, there is another one that grows even more quickly.

2.4.8 Semilinear and quasilinear systems

The previous section considered only linear systems. It said nothing about quasilinear

or nonlinear systems, such as

ut + B(u)ux = 0 (2.245)

Because the system is not linear, its properties may change with different values of

u, t, and x. A general approach to analyzing quasilinear and nonlinear problems

is to linearize the system at a nominal value of interest u0, and then examine the

properties of the resulting (linear) system in the manner described in the previous

section. The original system is then said to depend continuously on its data at u0 if

it can be shown that the problems that are obtained by linearizing at all functions

near u0 depend continuously on their data.

For a quasilinear system, one approach is to simply evaluate B(u) at the nominal

value of interest u = u0. For the example system under consideration, this gives

ut + B(u0)ux = 0 (2.246)

This resulting system is called the frozen coefficient system.

A more rigorous approach, that may also be applied to nonlinear systems, is

formal linearization. Under this approach, each dependent variable is assumed to

have the form of a small unknown perturbation to a function with a known value.

Substitution then gives the system that governs the behavior of the solution near the

nominal (known) value.

The formal linearization of a quasilinear system may differ from the frozen co-

efficient system, because formal linearization may introduce lower order terms. To
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illustrate this, consider the following example [44]. Suppose the solution u to Burger’s

equation

ut − uux − εuxx = 0, ε > 0 (2.247)

is the sum of a known smooth function U(t, x) and a small correction v(t, x). Substi-

tution of

u(t, x) = U(t, x) + v(t, x) (2.248)

into the original equation produces the formal linearization at U

vt − Uvx − εvxx − Uxv − vvx = F (2.249)

where F is a known function of t and x, given by

F = UUx + εUxx − Ut (2.250)

Because v is considered to be a small correction to U , the quadratic term vvx may

be dropped from (U + v)vx. The equation that governs small perturbations v about

the nominal operating value U is then

vt − Uvx − εvxx − Uxv = F (2.251)

which is the same as the frozen coefficient system at U , perturbed by the additional

linear term Uxv. Note that F = 0 if U solves the original equation exactly.

If it can be shown that a particular class of linear systems depends continuously

on its data in the presence of arbitrary lower-order forcing terms, well-posedness of

the frozen coefficient system implies well-posedness of the formal linearization. For

example, it has been shown [81] that a system of the form

ut + Bux + Cu = f(t, x) (2.252)

depends continuously on its data iff it is hyperbolic, which is true iff all eigenvalues

of B are real and distinct. This means that a system of the form

ut + B(u)ux + Cu = f(t, x) (2.253)
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depends continuously on its data at u0 iff the corresponding frozen coefficient sys-

tem depends continuously on is data. In other words, the dependence of the formal

linearization on its data is not sensitive to the lower order terms introduced by the

linearization, and so it is sufficient to analyze the eigenvalues of B evaluated at u0

in order to determine whether or not the solution to the original system depends

continuously on its data at u0.

Weakly well-posed systems are not insensitive to the introduction of lower order

terms. Consider, for example, the following simple system [44].

ut +


1 0

1 1


ux = 0 (2.254)

The coefficient matrix has a single strictly real eigenvalue (unity) of geometric multi-

plicity 2, and so is weakly well-posed. However, upon introduction of a single linear

term, the resulting system may be strongly ill-posed. Consider

ut +


1 0

1 1


ux +


0 ε

0 0


u = 0 (2.255)

The Fourier transform of the system is

ût +


iω ε

iω iω


 û = 0 (2.256)

The eigenvalues λ of the coefficient matrix are given by

λ = iω ±
√
iεω (2.257)

which have a nonzero imaginary part. Incorporation of a linear term has produced a

strongly ill-posed system from a system that was weakly well-posed.

2.4.9 The characteristic form of a hyperbolic equation

A hyperbolic partial differential equation in two independent variables t and x is

equivalent to an ODE along special curves in the t, x plane. The transformation to,

and interpretation of, this ODE is called characteristic analysis.
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Consider the one-way wave equation on a finite domain.

ut + cux = 0, a ≤ x ≤ b, t ≥ 0 (2.258)

Suppose that the solution to the one-way wave equation is carried forward in time

along specific curves in the (t, x) plane. Along these curves, x and t vary with distance

along the curve (call this distance s). Because x and t now depend on s, u is now a

function of only one variable: u = u(x(s), t(s)). Therefore by the chain rule

du

ds
= ut

dt

ds
+ ux

dx

ds
(2.259)

This may be thought of as the directional derivative of u in the s direction. Rear-

ranging terms just slightly gives

du

ds
=

dt

ds
ut +

dx

ds
ux (2.260)

By inspection, the one-way wave equation (2.258) is equivalent to an ODE in s

du

ds
= 0 (2.261)

where the curve s is defined by

dt

ds
= 1,

dx

ds
= c (2.262)

Proceeding one final step, one can eliminate s from the ordinary differential equa-

tion (2.261) and characteristic curve definition (2.262), and write the one-way wave

equation as an ODE along a direction in the (t, x) plane.

du

dt
= 0 along dx = c dt (2.263)

This is the characteristic form of the equation.

The original partial differential equation is thus equivalent to an ordinary differ-

ential equation when one follows the solution in the s-direction. As such, given an

initial condition at some point, one can advance the solution from that point in the

direction of s. The solution is simple; integrating the characteristic form (2.263) once

gives

u(t) = k1 along x = ct + k2 (2.264)
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with k1 an arbitrary constant determined by an initial condition on u, and k2 deter-

mined by the location in the (x, t) plane where that initial condition is enforced. This

solution propagates unchanged in the s-direction.

For constant c, the s-direction is a straight line in the (x, t) plane. From the

characteristic form of the one-way wave equation, clearly

dx

dt
= c (2.265)

This is the characteristic direction in the (x, t) plane. The characteristic direction,

or more simply the characteristic, of the equation is the direction in which information

travels. It gives the path of a signal, which for the one-way wave equation is the value

of the dependent variable u.

This interpretation of characteristics as signal trajectories gives some insight

into the question of determining appropriate boundary conditions for partial differ-

ential equations. Suppose c = 1. The characteristics are then straight lines, with

slope of one. The situation appears graphically in figure 2-4. The value of u given by

the initial condition travels along the characteristics, so that if the initial condition

is given by

u(x, 0) = f(x), a ≤ x ≤ b (2.266)

then

u(x, t) = f(x− t), a ≤ x− t ≤ b (2.267)

In other words, the initial solution travels to the right with a speed of 1. The area in

grey is the region in which the solution is determined solely by the initial condition,

and is called the domain of influence of the initial condition.

Since the solution is carried along the characteristics, the solution at x = b in the

grey region is given by

u(b, t) = f(b− t), t ≤ b (2.268)

This means that a boundary condition cannot independently set the value of u at b;

characteristics already carry enough information to b from the interior of the domain

to fully determine the solution there.
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Figure 2-4: Plot of characteristics for one-way wave equation

The case is different at x = a. Here, the solution is not determined by the initial

condition, because the characteristics carry information away from the boundary and

into the domain. A boundary condition is thus required at a in order to fully determine

the solution over the whole domain for all time. This boundary condition will set the

solution in the white region of figure 2-4. Calling the boundary condition g,

u(a, t) = g(t), t > 0 (2.269)

one can trace the solution at any point in the white region back along a characteristic

to a. This gives

u(x, t) = g(t− (x− a)) x− t < a (2.270)

This requirement, that a boundary condition must be specified wherever a char-

acteristic enters the domain from the boundary, is a general result [18]. For systems

of equations, where there are families of characteristics at every point, one bound-

ary condition is required for every characteristic directed from the boundary into the

domain, as will be seen in the next section.

2.4.10 The characteristic form of a hyperbolic system

The signal trajectory interpretation of characteristics becomes more interesting when

applied to systems of equations. Consider a linear first order system of n partial
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x

Figure 2-5: Solution at a point determined by characteristics

differential equations of the following form.

ut + Bux = 0 (2.271)

The system is assumed to be hyperbolic, which means that B has a complete set of

left eigenvectors li and that all eigenvalues λi are strictly real.

If the system is multiplied on the left by a left eigenvector li, making the substi-

tution liB = λili produces

li(ut + λiux) = 0 (2.272)

Now let vi = liu, which gives

vit + λivix = 0 (2.273)

This is a one-way wave, which is equivalent to

dvi
dt

= 0 along dx = λidt (2.274)

Performing the same steps for each left eigenvector produces a set of n ODEs along

n directions in the (t, x) plane. Taken together, these ODEs are the characteristic

form of the original hyperbolic system.

The solution at point S is determined by the information carried to it along the

characteristics, as shown in figure 2-5. The solution for a single wave is simply

vi(xS, tS) = vi(xi, t0) (2.275)
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Figure 2-6: Solution at a point partially determined by characteristics

Let ṽ be a vector that consists of the values of v at the feet of the characteristics;

in other words, ṽi = vi(xi, t0). Then v(xS, tS) is given by

v(xS, tS) = ṽ (2.276)

This may be written in terms of the original variables u. Let L be the matrix of left

eigenvectors of B, so that v = Lu. Then

Lu = ṽ

u(xS, tS) = L−1ṽ
(2.277)

Now, what if S is a point on a domain boundary? For example, consider the

situation shown in figure 2-6. It is in general not possible to determine the value of

u(xn, t0) outside the domain, so only the characteristics with non-negative slope in

the (x, t) plane carry a known signal to S.

The characteristics with non-negative slope partially determine the values of the

dependent variables at S, however, and this places restrictions on possible boundary

conditions that may be enforced there. If, in figure 2-6, there are p non-negative

characteristics, then the rows of (2.277) that correspond to those characteristics will
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partially determine u(b, tS).


l1

l2
...

lp




u(xS, tS) =




ṽ1

ṽ2

...

ṽp




=




l1u(x1, t0)

l2u(x2, t0)
...

lpu(xp, t0)




(2.278)

Rewritten using more compact notation, the equations become

CuS = g (2.279)

The coefficients of this system have been assembled into the p × n element matrix

C, and g is a p element vector constructed from the values of u at the feet of the

non-inward directed characteristics.

If p < n, the system (2.279) is underdetermined. In order to uniquely determine

u(xS, tS), n − p boundary conditions must be specified. These boundary conditions

must be independent of the information carried to S along characteristics (2.279) and

of each other. If the boundary conditions have the form

GuS = h (2.280)

then they determine a unique solution iff∣∣∣∣∣∣
C

G

∣∣∣∣∣∣ �= 0 (2.281)

2.4.11 Characteristics as discontinuity traces

In addition to their interpretation as signal trajectories, characteristics may also be

viewed as discontinuity traces. A discontinuity in the solution, whether in the

value of a dependent variable or one of its derivatives, may only propagate with

special velocities across the domain. One can think of a discontinuity as a special

signal, that travels along characteristics but that has special mathematical properties
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that assist calculation. This interpretation of characteristics is important for analysis

in multiple spatial dimensions.

A two dimensional dynamic system such as (2.271) is one in which the independent

variables are time t and one other variable x, called the spatial variable. The values

of the dependent variables are distributed over the domain in x and change with time,

governed by a system of partial differential equations. Typically, initial conditions

are set for the equations by specifying u along x at some time to. The equations are

then solved for ut using the known values of u and ux, and integrated to advance the

solution in time. If, however, the equations cannot be solved, then ut is undefined

at x = xo, and there may be a discontinuity in u across the line x = xo in the (x, t)

plane.

The generalization of the concept of initial conditions from domains in one inde-

pendent variable to multiple independent variables is Cauchy data. Rather than

giving the value of u along the line x = xo, u may be specified on some arbitrary

curve in the (x, t) plane. The derivative of u is also known in the direction of the

curve, and the equations must be used to determine the value of the derivative across

the curve. This result is integrated to advance the solution away from the curve [48].

For example, suppose one has a system of two partial differential equations in two

unknowns, u and v, as shown below.

ut + b11ux + b12vx = h1

vt + b21ux + b22vx = h2

(2.282)

Now, define a curve L in the (x, t) plane by

x = L(t) (2.283)

dx

dt
= L′ = λ(t) (2.284)

and suppose that Cauchy data for u and v is given on this curve, so that the first total

differentials of u and v are known along L. Now u = u(x(t), t) and v = v(x(t), t), so
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by the definition of the total differential,

du

dt
= ut + λux (2.285)

dv

dt
= vt + λvx (2.286)

Using these equations to eliminate ut and vt from the system gives conditions on λ

under which it is impossible to determine the partial derivatives with respect to x. If

those conditions are met, a discontinuity may exist across L.

Solving (2.285) and (2.286) for partial derivatives with respect to t

ut =
du

dt
− λux (2.287)

vt =
dv

dt
− λvx (2.288)

and substituting the result into the original PDE system (2.282) yields a system of

two equations in two unknowns ux and vx

(b11 − λ)ux + b12vx = h1 −
du

dt
(2.289)

b21ux + (b22 − λ)vx = h2 −
dv

dt
(2.290)

that does not uniquely determine ux and vx if and only if∣∣∣∣∣∣
b11 − λ b12

b21 b22 − λ

∣∣∣∣∣∣ = 0 (2.291)

This equation is called the characteristic condition. The directions λ that are

characteristic are the solutions to this equation. For equations in more than two

dependent variables, of the form

ut + Bux = f (2.292)

the characteristics λ are the eigenvalues of B.∣∣∣B− λI

∣∣∣ = 0 (2.293)

Had L been defined instead as

t = L(x) (2.294)
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Figure 2-7: C0 discontinuous solution in one dimension

the characteristic condition would have been

∣∣∣I− λB

∣∣∣ = 0 (2.295)

Characteristics that have infinite slope under the first definition (2.293) will have zero

slope when defined in this manner.

If a discontinuity exists, it can only move with speeds given by the characteristics.

This calculation thus “uncovers” some property of the system. Specifically, it reveals

the directions in which information about the solution travels over time. As before,

a bit of information travels along each characteristic; here that information is that a

discontinuity might exist.

2.4.12 Discontinuity traces in more spatial dimensions

Suppose now that the dependent variables are distributed over more than one spatial

dimension. If a discontinuity exists in a solution that is distributed over n dimensions,

it will be across a surface of at most n − 1 dimensions. In figure 2-7, the domain is

a line and the discontinuity, here in the first derivative of the solution with respect

to x, exists across a point. In figure 2-8, the domain is a plane and the discontinuity,

here in the value of the solution itself, exists across a line.

The multidimensional analog of discontinuity traces is very straightforward. Con-

sider a system of partial differential equations in n spatial dimensions.

Aut + B1ux1 + B2ux2 + · · ·+ Bnuxn = f (2.296)
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Figure 2-8: Discontinuous solution in two dimensions

and assume that Cauchy data for the system is known on some surface in n−1 spatial

dimensions and time. At any (smooth) point, the surface will be defined by its normal

at that point, and will have n− 1 basis vectors tangent to it at that point. Since u is

known over the entire surface, all interior partial derivatives are also known at that

point. The problem is again to determine the conditions under which a discontinuity

might exist across the surface at that point.

The first step is to split the partial differential operators of the original system

(2.296) into their interior and exterior components. If x̄ is the coordinate along p,

the normal or exterior direction, then

∂

∂xi
=

∂x̄

∂xi

∂

∂x̄
+ interior components (2.297)

xi is the distance along the ith coordinate vector xi, which is a vector z with zi = 1

and zj �=i = 0. x̄ is then related to xi by the projection of xi onto p.

x̄ (xi) =
xi · p
p · p (2.298)

so, for unit p,

∂x̄

∂xi
= pi (2.299)

Next, one can use the transformed derivatives (2.297) to replace all partial deriva-

tives in the original equations (2.296) with their interior and exterior components.

Since all interior components of the derivatives are known, they may be moved to the

righthand side of the equation and included in a new forcing term g. This leaves

Aut +

[
B1

∂x̄

∂x1

+ B2
∂x̄

∂x2

+ · · ·+ Bn
∂x̄

∂xn

]
ux̄ = g (2.300)
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which, by using (2.299), reduces to

ut + Bux̄ = g (2.301)

where

B =
n∑
i=1

piBi (2.302)

This (2.301) is called the projected system [17].

Now, for a discontinuity to exist across the surface at the point under consider-

ation, this system of equations must be insufficient to determine the derivatives in

the x̄ direction. Proceeding in precisely the same manner as in the one dimensional

case, let λ be the speed in the (x̄, t) plane with which the Cauchy data travels. A

discontinuity can exist only if the projected system (2.301) does not uniquely deter-

mine the exterior partial derivatives ux̄. This means that the speed λ must satisfy

the characteristic condition

∣∣∣B− λI

∣∣∣ = 0 (2.303)

A projected system allows one to determine proper boundary conditions for par-

tial differential equations on multidimensional domains. If p is chosen as the unit

outward normal to the domain at some point of interest, then the characteristics of

the projected system will determine how many boundary conditions are required.

Every negative eigenvalue of the characteristic condition for the projected system

corresponds to a characteristic directed into the domain. As before, for every such

characteristic travelling into the domain, a boundary condition will be required [18].

One can then transform the projected equations to their characteristic form as in the

one-dimensional case, and identify the subspace that the boundary conditions must

span.
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Chapter 3

The Differentiation Index of a PDE

3.1 Introduction

Automated index analysis of general DAEs has proven extremely useful in process

simulators [26]. In particular, Pantelides’ algorithm allows a process simulator to

efficiently estimate the differentiation index of large, nonlinear dynamic models. Using

the information provided by Pantelides’ algorithm, a process simulator can go one step

further and generate a mathematically equivalent low-index reformulation [56] that is

suitable for numeric solution. This allows an engineer who has no knowledge of index

analysis to formulate a high index process model and use it for dynamic simulation.

It is also required for automatic solution of a broad class of constrained dynamic

optimizations [26].

No comparable analysis exists for dynamic flowsheet simulations that are based

on distributed unit models, because no definition of an index for partial differential

equations upon which such an analysis may be constructed has previously been devel-

oped. This chapter will present a new approach to index analysis of partial differential

equations that is built from a very natural generalization of the differentiation index

of differential-algebraic systems. As such, it allows many of the algorithms and analy-

ses that have proven valuable in the case of lumped model formulations to be applied

with minimal modification to distributed model formulations as well.

Previous approaches to index analysis of partial differential equations have focused
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on a perturbation and an algebraic index. Campbell and Marszalek [12] have defined

a perturbation index for parabolic linear systems of the form

Aut + Buxx + Cux + Du = f(t, x)

0 ≤ x ≤ L, 0 ≤ t ≤ T

u(0, t) = 0 u(L, t) = 0

u(x, 0) = u0(x)

(3.1)

They consider only solutions that identically satisfy the boundary data, specifically

sine series.

u(x, t) = L− 1
2

∞∑
j=1

uj(t) sin(
jπx

L
) (3.2)

It is assumed that the data u0(x) and forcing functions f(t, x) may also be repre-

sented as sine series, so

u0(x) = L− 1
2

∞∑
j=1

u0j sin(
jπx

L
) (3.3)

f(t, x) = L− 1
2

∞∑
j=1

fj(t) sin(
jπx

L
) (3.4)

If || · || is the Euclidean norm on R
n and || · ||2 is the L2 norm in the x variable,

||c(t, x)||∞ is defined as

||c(t, x)||∞ = max
0≤t≤T

(∫ L

0

||c(t, x)||2dx
) 1

2

= max
0≤t≤T

||c(t, x)||2 (3.5)

Then || · ||(p,q) is defined as

||c(t, x)||(p,q) =

p∑
i=0

q∑
k=0

|| ∂i+k

∂ti∂xk
c(t, x)||∞ (3.6)

Let the solution u(t, x) satisfy (3.1) for some f(t, x) and associated consistent

u0(x). The infinite perturbation index ν∞
p is defined as

ν∞
p = 1 + min

(
max(p1+q1, q2) :

||û− u|| ≤ C1||f̂ − f ||(p1,q1) + C2||û0 − u0||(0,q2)

) (3.7)
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where û(t, x) is some other solution that satisfies (3.1) for some f̂(t, x) in a neig-

borhood of f(t, x) and associated consistent û0(x). The maximum perturbation

index ν∞
P is then defined as the maximum of ν∞

p over a neighborhood of u.

The perturbation index is calculated from the solution to the original problem,

given a decision on what data (if any) is used to restrict the solution and the analytic

form of that solution in terms of the remaining data. It may be defined for nonlinear

systems in a similar manner. Here it is assumed that all boundary conditions are

used to restrict the solution, so they are not included in the index.

Günther and Wagner [36] consider instead solutions of linear hyperbolic systems

of first or second order. This necessitates modification of the definition of the pertur-

bation index. They define an infinite perturbation index that includes perturbations

of the boundary data s(t).

ν∞
p = 1 + min

(
max(p1 + q1, p2, q2) :

||û− u|| ≤ C1||f̂ − f ||(p1,q1) + C2||û0 − u0||(0,q2) + C3||ŝ− s||(p2,0)
) (3.8)

Similarly, the (maximum) perturbation index ν∞
P is then defined as the maximum of

ν∞
p in a neighborhood of u.

These perturbation indices capture the dependence of a solution to a PDE on

derivatives of both the forcing functions and data. This dependence on derivatives of

the data may be function of how the data is specified [12].

For application in a process simulator, the perturbation index approach has several

shortcomings. First, the perturbation index is a property of the analytical solution.

As such, it is unsuitable for a priori analysis of general models for which the analytical

solution may not be available. Second, it assumes that proper initial and boundary

data are known, and therefore cannot be used to guide the user in specification of

data. Third, it requires a decision regarding whether or not each datum is to be used

to restrict the function space from which the solution is constructed.

Several algebraic indices of a linear PDE are defined by Campbell and Marszalek

[12] for the algebraic system that results from solving the original PDE in the Laplace

114



domain. For example, given a system of the form

Aut + Duxx + Bux −Cu = f(t, x) (3.9)

with A,B,C,D ∈ R
n×n, the resolvent R(s, z) is

R(s, z) = (sA + z2D + zB−C)−1 (3.10)

R is a matrix of rational functions in the real variables s, z. Recall that a quotient

r(s, z) of two real polynomials in the real variables s, z is said to be s-proper if

lim|s|→∞ r(s, z) = 0 for almost all z, and that a matrix is s-proper if every one of its

entries is s-proper. The algebraic t-index is then defined as the smallest integer n1

such that s−n1R(s, z) is s-proper, and the algebraic x-index is similarly defined as

the smallest integer n2 such that z−n2R(s, z) is z-proper.

A quotient r(s, z) is said to be proper if it is both s-proper and z-proper. The

algebraic index ν∞
A is then defined as

ν∞
A = max

i,j

(
min

n1,n2≥0
(n1 + n2 : sn1zn2Rij(s, z) is proper)

)
(3.11)

The algebraic index is a property of the governing equations themselves, and not

of specific values of data or domain geometry. It is therefore independent of whether

the solution is restricted or unrestricted, and thus closer to the type of analysis that

would be suitable for a process simulator. However, it is not defined for general

nonlinear systems.

In order to address the issue of guiding the user in the specification of data in

both the linear and nonlinear case, this work develops an index by focusing instead

on Cauchy data. Recall that Cauchy data are the values of the dependent variables

and the exterior derivatives of the variables over an entire hyperplane. Cauchy data

represents the generalization of initial data for DAEs to the multidimensional case.

3.2 Defining the differentiation index of a PDE

Consider a first order PDE system over R
n. Call the independent variables x ∈ R

n,

let the dependent variables be u ∈ R
m, and suppose the following PDE holds over
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the rectangular domain xi ∈ Ii, i = 1 . . . n.

F (uxi=1...n
,u,x) = 0 (3.12)

Here uxi
= ∂u

∂xi
∈ R

m,u ∈ R
m,x ∈ R

n, F : R
2m+n → R

m, and Ii is a subinterval of R,

for i = 1 . . . n; each interval has the form ai ≤ xi ≤ bi for some real constants ai and

bi. Existence of the solution u is assumed.

In order to make the parallel with the DAE case more clear, denote the partial

derivative of u with respect to xj by a dot, so uxj
= u̇. For all other i �= j, partial

differentiation will still be denoted by a subscripted independent variable. The dot

denotes differentiation with respect to the direction exterior to the hyperplane xj =

constant; all other partial derivatives are interior on that hyperplane. Using this

notation, the general system (3.12) is written as

F
(
u̇,uxi=1...n,i�=j

,u,x
)

= 0 (3.13)

Note that J(F, u̇), the Jacobian of F with respect to u̇, may be singular. Under

the assumptions that a solution u exists and that F is sufficiently differentiable, the

differentiation index of this PDE may be defined as follows.

Definition 3.2.1 The differentiation index with respect to xj, or νxj
, is the

smallest number of times that some or all of the elements of F must be differentiated

with respect to xj in order to determine u̇ as a continuous function of uxi�=j
, u, and

x.

A formal index analysis built on the concept of a derivative array for PDEs may

be most easily constructed for linear systems. Such an analysis is not as straightfor-

ward as that for linear DAEs, however, because one must consider operator-valued

coefficient matrices. This analysis may be extended fairly readily to a particular class

of semilinear systems, of which linear systems are a special case, so this formal index

analysis will be presented only once, for the more general class of systems.

Consider a PDE system of the following form.

F
(
u̇,uxi=1...n,i�=j

,u,x
)

=
n∑
i=1

Ai(xj)uxi
+ C(xj)u− f(x) = 0 (3.14)
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Ai(xj),C(xj) : R
1 → R

m×m, and all other quantities are defined as in the general

case (3.12). Such a system will hereafter be referred to as a linear xj-varying PDE.

The system may be rewritten as

A(xj)u̇ + B(xj)u− f(x) = 0 (3.15)

where

A(xj) = Aj(xj)

u̇ = uxj

B(xj) = C(xj) +
∑
i�=j

Ai(xj)Dxi

Dxi
=

∂

∂xi

This system (3.15) has the same form as a linear time-varying DAE.

However, here B ∈ Pm×m
Ij , the set of all m by m matrices whose elements belong

to PIj. PIj = {L | Lu =
∑

τττ lτττ (xj)Dτττu, u ∈ R}, where τττ ∈ Z
n is a multi-index with

τi ∈ Z
+n

and τj = 0; lτττ (xj) : R
1 → R

1 and is analytic for xj ∈ Ij, Ij is a closed interval

in R, and Dτττ =
∏n

i=1

(
∂
∂xi

)τi
. PIj is the set of all interior partial differential operators

on any hyperplane φ orthogonal to xj given by xj = c, c ∈ Ij, with coefficients that

vary smoothly in xj over Ij. Any p ∈ PIj is a linear operator on φ.

The operators + and × are defined as follows, for any two operators a, b ∈ PIj.

a + b =
∑
ννν

aνννDννν +
∑
ννν

bνννDννν =
∑
ννν

(aννν + bννν)Dννν

a× b =

(∑
ννν

aνννDννν

) (∑
γγγ

bγγγDγγγ

)
=

∑
ννν

∑
γγγ

aνννbγγγDννν+γγγ

Lemma 3.2.2
〈
Pm×m
Ij ,+,×

〉
is a ring.

Proof. 〈PIj,+〉 is an abelian group. × is associative on PIj and is left and right

distributive with +. Therefore 〈PIj,+,×〉 is a ring. The set Pm×m
Ij of all square

matrices whose elements belong to PIj forms a ring with the same operators [29];

thus
〈
Pm×m
Ij ,+,×

〉
is a ring.
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Thus, many results from standard matrix algebra also hold for Pm×m
Ij . For exam-

ple, row operations may be used to permute rows, scale or add rows together, perform

Gauss elimination, and evaluate determinants.

Lemma 3.2.3 For A ∈ Pm×m
Ij , if |A| �= 0, then ∃ R ∈ Pm×m

Ij such that RA = D,

where D ∈ Pm×m
Ij is a diagonal matrix with dii �= 0.

Proof. Because
〈
Pm×m
Ij ,+,×

〉
is a ring, Gauss elimination may be used to produce

first an upper triangular and then a diagonal matrix through row operations alone.

Therefore, Gauss elimination gives a sequence of row operations R ∈ Pm×m
Ij for which

RA = D. If |A| �= 0, the elements of the diagonal matrix D will be strictly nonzero.

Example 1 Consider a matrix A ∈ P 2×2
I4 , with n = 4 and Ij = {xj | 1 ≤ xj ≤ 10}.

A =


 3x2

4
∂2

∂x1∂x2

2 ∂
∂x1

+ 5 ∂
∂x3

7x4


 (3.16)

A is nonsingular, because

|A| = 21x3
4 − 2

∂3

∂x2
1∂x2

− 5
∂3

∂x1∂x2∂x3

�= 0 (3.17)

If a series of row operations defined as a matrix R ∈ P 2×2
I4 are given by

R =


 −21x3

4 3x2
4

∂2

∂x1∂x2

2 ∂
∂x1

+ 5 ∂
∂x3

−3x2
4


 (3.18)

then RA is a diagonal matrix.

RA =


−63x5

4 + 6x2
4

∂3

∂x2
1∂x2

+ 15x2
4

∂3

∂x1∂x2∂x3
0

0 21x3
4 + 2 ∂3

∂x2
1∂x2

+ 5 ∂3

∂x1∂x2∂x3


 (3.19)

In analogy with DAEs, the derivative array equations for the PDE (3.15) may be

derived up to any order of differentiation with respect to xj, as long as A(xj), B(xj),

f , and u are sufficiently differentiable. In the linear case, A(l) = B(l) = 0 if l > 0, so
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the derivative array equations with respect to xj are


A 0 0 . . .

B A 0 . . .

0 B A . . .
...

...
...

. . .







u(1)

·
·

u(k)




= −




B

0

·
·




u +




f (0)

·
·

fk−1




(3.20)

or

Akuk = −Bku + fk (3.21)

The following result for linear PDEs (3.14) will be useful later.

Theorem 3.2.4 νxi
≥ 1 iff |Ai| = 0.

Proof. If νxi
≥ 1, then by the definition of the differentiation index, the system

does not uniquely determine uxi
, and thus |J (F,uxi

) | = 0. Since J (F,uxi
) = Ai,

then |Ai| = 0 . Similarly, if |Ai| = 0, then |J (F,uxi
) | = 0 and the system cannot be

solved for unique uxi
, and by definition νxi

≥ 1.

In the linear xj-varying case, the first k derivative array equations with respect to

xj are


A(0) 0 . . . 0

A(1) + B(0) A(0) . . . 0

A(2) + 2B(1) 2A(1) + B(0) . . . 0
...

... A(0)







u(1)

u(2)

...

u(k)




= −




B(0)

B(1)

...

B(k−1)




u +




f (0)

f (1)

...

f (k−1)




(3.22)

While the derivative array equations have the same form as given for linear time-

varying DAEs, A(i) =
(

∂
∂xj

)i
A ∈ Pm×m

Ij and B(i) =
(

∂
∂xj

)i
B ∈ Pm×m

Ij .

The ring property of Pm×m
Ij allows the following definition.

Definition 3.2.5 The matrix Ak is smoothly 1-full on φIj if there is a smooth non-

singular R(xj) such that

RAk =


D(xj) 0

0 H(xj)



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where D(xj) ∈ Pm×m
j is a nonsingular diagonal matrix and φIj is the set of hy-

perrectangles orthogonal to the xj coordinate direction given by {x | xj = c, c ∈
Ij;xi=1...n,i�=j ∈ Ii}.

When Ak is smoothly 1-full on φIj, the k − 1 differentiations with respect to xj

that generate the derivative array equations give u̇ as a continuous function of u and

x over φ ∈ φIj. As with DAEs, the solution of an index νxj
linear or linear xj-varying

PDE will depend explicitly on up to νxj
−1 derivatives with respect to xj of the forcing

functions over φIj. As will be shown later, there may also be implicit dependence on

derivatives of the forcing functions .

Theorem 3.2.6 For a linear xj-varying system, if k is the smallest integer such that

Ak is smoothly 1-full over Ij, the maximum index νxj
on φIj is k − 1.

Proof. Suppose that, on some hyperrectangle xj = c, c ∈ Ij, the index νxj
is

greater than k − 1. Then k − 1 differentiations do not determine u̇. But Ak is

smoothly 1-full on Ij, so it does determine u̇ as a continuous function at xj = c, and

the index cannot be greater than k − 1.

For more general semilinear and nonlinear systems, the derivative array equations

may still be defined, again provided that the original system is sufficiently differen-

tiable. However, they may not have the convenient matrix structure that exists for

linear and linear xj-varying systems. Even for simple linear systems, the full derivative

array equations are often not calculated, as only a subset of the equations constrain

Cauchy data when differentiated1. Furthermore, nonlinear systems may develop dis-

continuous solutions even given smooth data and forcing functions. For such systems,

the index is therefore a local property in (u,x)-space, just as the differentiation index

is a local property for nonlinear DAEs.

1In the following examples, typically only this subset of the equations will be differentiated.
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3.3 Consistent Cauchy data and the differentiation

index

Suppose Cauchy data is to be specified on a hyperplane orthogonal to the xj coor-

dinate direction given by xj = xj0 ∈ Ij. Cauchy data on this surface is the values

of u̇0 and u0 over the entire surface. In order for this data to be consistent with the

original equation (3.12), clearly it must satisfy

F
(
u̇0,u0xi�=j

,u0, xi�=j, xj0
)

= 0 (3.23)

Determination of νxj
will derive any other equations that restrict consistent Cauchy

data, in a manner similar to how determination of the index of a DAE uncovers the

complete set of equations that must be satisfied by consistent initial conditions.

Example 2 Consider the following system.

ux1 − vx2 = 0

vx1 − ux2 = 0
(3.24)

over 0 ≤ x1, a ≤ x2 ≤ b. Suppose one wants to specify Cauchy data on the hyperplane

given by x1 = 0. Clearly such data must satisfy the original equations, rewritten using

a dot to again denote differentiation along the exterior direction.

u̇− vx2 = 0

v̇ − ux2 = 0
(3.25)

on (x1 = 0). No additional independent equations relating u̇ and v̇ may be derived

through differentiation with respect to x1; the system determines u̇ and v̇, so its index

with respect to x1 is 0. Two degrees of freedom exist for specification of Cauchy data

on (x1 = 0).

This system is the wave equation, written as a first order system. The question

of Cauchy data on (x1 = 0) corresponds to the initial conditions. For the wave

equation, initial conditions are typically provided as values of u and v over the initial

hyperplane. Alternative specifications of Cauchy data, involving ordinary differential

or partial differential equations, will be considered in the next section.
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Example 3 Consider the following system.

ux1 − v = 0

ux2 = f1(x1)
(3.26)

Suppose one wishes to specify Cauchy data on (x1 = 0). Such data must of course

satisfy

u̇− v = 0

ux2 = f1(x1)
(3.27)

Differentiating the second equation with respect to x1 produces another independent

equation involving u̇.

u̇x2 =
d

dx1

f1(x1) (3.28)

Differentiating this new equation and the first equation in (3.27) gives two additional

equations in the two new unknowns ü and v̇.

ü− v̇ = 0

üx2 =
d2

dx2
1

f1(x1)
(3.29)

Assuming that f1(x1) is twice continuously differentiable, two differentiations with

respect to x1 give ux1 and vx1 as continuous functions of u, v, and x; thus νx1,

the index of this system with respect to x1, is 2. The system (3.27 - 3.29) is fully

determined in the variables ü, u̇, u, v̇, and v; no degrees of freedom are available for

the specification of Cauchy data on the hyperplane (x1 = 0).

Now, suppose one wishes instead to specify Cauchy data on (x2 = 0). The exterior

direction to this hyperplane is x2 and the system may be rewritten for clarity as

ux1 − v = 0

u̇ = f1(x1)
(3.30)

Differentiation of the first equation yields

u̇x1 − v̇ = 0 (3.31)
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which gives u̇ and v̇ as functions of u, v, and x. No additional independent equa-

tions may be derived that relate the variables u̇, u, v̇, and v. Therefore νx2 = 1 and

there is one degree of freedom available for specification of Cauchy data on the hyper-

plane. Note, however, that neither u̇ nor v̇ may be specified; only u or v may be set

independently on the hyperplane.

To verify the preceding results, note that the solution of the PDE system above

on the semi-infinite domain 0 ≤ x1,−a ≤ x2 ≤ a is determined by a single function

g(x1) specified at some point c on the interval −a ≤ c ≤ a:

u(x1, x2) = x2f1(x1) + g(x1)

v(x1, x2) = x2
d

dx1

(f1(x1) + g(x1))
(3.32)

Thus the solution on the hyperplane (x1 = 0) is given by f(0) and g(0); no other

degrees of freedom remain (as indicated by the index analysis). The conditions for

consistency with the equations fully determine all Cauchy data on that hyperplane.

Example 4 The hyperplane on which Cauchy data is analyzed for consistency with

the equations need not be orthogonal to one of the original coordinate axes. If the

index with respect to a non-coordinate direction is needed, the coordinates may be

transformed so that one of the new coordinate vectors lies along the direction of in-

terest, and all other coordinate vectors are orthogonal to the direction of interest.

Consider the index of the one-way wave equation

cux1 + ux2 = 0 (3.33)

with respect to the direction (x1, x2) = (1,−1). Define a new coordinate system by
y
z


 =


1 −1

1 1





x1

x2


 (3.34)

so that the direction of interest is now in the y direction, and the z direction is

orthogonal to the y direction. Transforming to the new coordinate system, the equation

becomes

(c− 1)u̇ + (c + 1)uz = 0 (3.35)
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The index with respect to y is zero, unless c = 1. In this case, the index becomes 1,

and Cauchy data on y = y0 must also satisfy

u̇z = 0 (3.36)

When c �= 1, the index is zero and either u̇ or u may be specified arbitrarily on the

hyperplane. In the case c = 1, neither may be specified independently. However, there

is a lower dimensionality degree of freedom. That is, the system (3.35-3.36)

constrains both u̇ and u over the hyperplane (y = y0), so that neither may be specified

arbitrarily over the entire surface. The value of each may be given arbitrarily at a

single point on the surface, and that value determines the Cauchy data.

Note that the surface (y = y0) is a characteristic surface of the one-way wave

equation when c = 0. The differentiation index and characteristics are related by the

following theorem.

Theorem 3.3.1 A hyperplane φ(x) = 0 is a characteristic surface of a linear, first

order PDE system iff ν∇φ ≥ 1.

Proof. Consider a general linear PDE system of first order

n∑
i=1

Aiuxi
= f(u,x) (3.37)

and a hyperplane given by

φ (x) = 0, φx = [φx1 φx2 . . . φxn ] �= 0 (3.38)

Consider a coordinate change from x to z, where zn = φ(x), and zi, i = 1 . . . (n−1),

denotes distance in the direction of basis vector bi. Let the basis vectors for the new

coordinate system be orthogonal, so that bi · ∇φ = bi · bj �=i = 0. In the new

coordinates, the system becomes

Bnuzn +
n−1∑
i=1

Biuzi
= f(u,x(z)) (3.39)
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where

Bn =
n∑
j=1

Aiφxi

Bi =
n∑
j=1

Aj
∂zi
∂xj

, i = 1 . . . n− 1

(3.40)

Note that uzn is the exterior derivative, and all other derivatives are interior on the

surface.

If the system has ν∇φ ≥ 1, then by theorem 3.2.4 |Bn| = 0. If |Bn| = 0, the

surface is a characteristic surface [59]. Conversely, if the surface is characteristic,

then by definition |Bn| = 0 and thus ν∇φ ≥ 1.

Remark: For a system that includes one or more algebraic equations, every hy-

perplane is a characteristic surface.

3.4 Dynamic degrees of freedom

Index analysis of PDEs with respect to a direction xj requires derivation of all indepen-

dent equations that constrain allowable Cauchy data on a hyperplane φ orthogonal to

that direction. The consistent Cauchy data problem for the original first-order PDE

(3.13) consists in part of these m equations in the 2m variables u̇ and u. Again note

that interior derivatives of u on φ and the value of u itself over φ are not independent;

the interior derivatives of u are simply functions of u on φ.

For a linear system (3.15) with constant coefficient matrices, assume that (A,B)

form a regular pencil, so that [A : B] has full rank. This implies that the coefficients

in the derivative array equations [Ak : Bk] have full rank for any k. Because

Akuk = Bku + Fk (3.41)

has the form 


A

B A
. . . . . .

B A







u̇

ü

˙̈u
...




=




B

0

0
...




u +




f

f ′

f ′′

...




(3.42)

125



then [Ak : Bk], which is simply


A : B

B A :
. . . . . . :

B A :




(3.43)

has full row rank.

Now suppose that the index of the system with respect to xj is k−1, so that Ak is

smoothly 1-full. This means that there exists a set of operator-valued row operations

R1 that perform Gauss elimination on [Ak : Bk] to produce

R1[Ak : Bk] =


D 0 : B1

0 H : B2


 (3.44)

where D,B1 ∈ P
m×m, H ∈ P

(k−1)m×(k−1)m, and B2 ∈ P
(k−1)m×m.

Gauss elimination does not alter the rank of a matrix, so R1[Ak : Bk] also has

full rank. It is possible, however, that Ak alone does not have full rank. Let the

dimension of the nullspace of Ak be η, so that further Gauss elimination operations

R2 produce η identically zero rows along the bottom of Ak.

R2R1[Ak : Bk] =



D 0 : B1

0 G : B3

0 0 : B4


 (3.45)

Here G ∈ P
(k−1)m−η×(k−1)m, B3 ∈ P

(k−1)m−η×m, and B4 ∈ P
η×m. Again because Gauss

elimination does not alter the rank of the matrix, B4 must have full row rank.

Going back to the derivative array equations that correspond to the first and third

block rows of the matrix produced by Gauss elimination (3.45), it is clear that the

values of u̇ and u are partially determined by the n equations of the first block row

Du̇ = B1u + g1 (3.46)

and the η equations of the last block row

0 = B4u + g2 (3.47)
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where g1 and g2 are the first m and last η elements of R2R1Fk, respectively. These

m + η equations in the m + m variables u̇ and u are underspecified if η < m.

For a semilinear, quasilinear, or nonlinear system, algebraic manipulation of all or

a subset of the derivative array equations may be employed on a case-by-case basis to

determine what variables are determined by algebraic or interior partial differential

equations over φ. Note that this analysis does not provide any information regarding

the well-posedness of the resulting interior partial differential equations.

For a linear or linear xj-varying system, let r = m− η. The definition of dynamic

degrees of freedom for DAEs [85] then generalizes naturally to PDAEs.

Definition 3.4.1 Variables u or their exterior derivatives u̇ which can be assigned

arbitrary distributions over φ and still allow solution of (3.13) are called dynamic

degrees of freedom on φ; r dynamic degrees of freedom on φ must be specified to

fully determine Cauchy data on φ.

For nonlinear systems, r may also be determined from the derivative array equations

by examining the degrees of freedom available in the set of all dependent variables

and their exterior partial derivatives.

3.5 Consistent Cauchy data subproblems

A DAE initialization problem always produces an algebraic system. However, with

PDEs, a consistent Cauchy data problem may itself be another PDE, in more de-

pendent variables over one fewer independent variable than the original system. De-

termination of a unique solution may require additional data in the form of side or

boundary conditions.

In the following examples, all equations, forcing functions, and dependent variables

are assumed to possess all required partial derivatives.

Example 5 Consider the equations that consistent Cauchy data must obey on a char-

acteristic manifold of the one-way wave equation (3.35 - 3.36). With two equations

in u and u̇, there are no dynamic degrees of freedom on (y = y0).
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Let p = u and q = u̇, so that the consistent Cauchy data problem is written as

pz = 0

qz = 0
(3.48)

For the original system of one dependent variable over two independent variables, our

consistent Cauchy data problem is a system of two dependent variables over a single

independent variable.

It is a simple, index-0 DAE, which has no implicit constraints that relate p and q.

Two dynamic degrees of freedom on (y = y0, z = z0) are required in order to specify a

unique solution. Thus determination of consistent Cauchy data requires no dynamic

degrees of freedom over the initial hyperplane (y = y0), but requires a total of two side

conditions on lower dimensional hyperplanes of the form (y = y0, z = z0).

Example 6 Consider again the simple system (3.26) presented earlier. Recall that,

for Cauchy data on the hyperplane (x2 = 0), a value of either v(x1, 0) or u(x1, 0)

completely determined the data. Let us consider each case in more detail. The exterior

direction is x2, so ux2 = u̇ and vx2 = v̇. The equations that must be satisfied over the

hyperplane include the original equations

ux1 − v = 0

u̇ = f1(x1)
(3.49)

and the additional independent equation derived during index analysis

u̇x1 − v̇ = 0 (3.50)

Here r = 1; one dynamic degree of freedom on (x2 = 0) is required to determine

unique Cauchy data.

First, consider specification of v over the hyperplane, so that

v = h1(x1) (3.51)

is appended to the system (3.49-3.50). These four equations in the four variables u̇,

u, v̇, and v form the PDE (here a DAE) that will be used to determine the Cauchy

data on (x2 = 0).
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Because Cauchy data on the 1-dimensional hyperplane in R
2 is determined by a

DAE, additional 0-dimensional Cauchy data may be required for specification of a

unique solution. It is thus necessary to perform index analysis on this interior system

(3.49-3.51) to determine what restrictions exist on 0-dimensional Cauchy data.

For clarity, let a = u, b = v, c = u̇ = ux2, and d = v̇ = vx2, so that the equations

(3.49 - 3.51) become

ax1 − b = 0

cx1 − d = 0

c = f1(x1)

b = h1(x1)

(3.52)

Now consider a 0-dimensional subsurface (x2 = 0, x1 = k1) on which additional

data is to be specified. Using the standard notation for DAEs, the system is

ȧ− b = 0

ċ− d = 0

c = f1(x1)

b = h1(x1)

(3.53)

Differentiation of the last three equations gives

c̈− ḋ = 0

ċ =
d

dx1

f1(x1)

ḃ =
d

dx1

h1(x1)

(3.54)

The second equation above may be differentiated again without producing any new

variables, so also

c̈ =
d2

dx2
1

f1(x1) (3.55)

Two differentiations were required to derive these eight equations in the nine unknowns

ȧ, a, ḃ, b, c̈, ċ, c, ḋ, and d. The index of the DAE is two, and under the assumption

that h1(x1) is once differentiable and f1(x1) is twice differentiable with respect to x1,
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one dynamic degree of freedom on (x2 = 0, x1 = k1) is required to determine uniquely

consistent Cauchy data on (x2 = 0).

The case is different if u rather than v is specified. Appending

u = h2(x1) (3.56)

as the dynamic degree of freedom on (x2 = 0) to the system (3.49) produces a different

DAE on the hyperplane. Using the same new variables a, b, c, and d, the data must

now satisfy

ȧ− b = 0

ċ− d = 0

c = f1(x1)

a = h2(x1)

(3.57)

Differentiating the entire system yields

ä− ḃ = 0

c̈− ḋ = 0

ċ =
d

dx1

f1(x1)

ȧ =
d

dx1

h2(x1)

(3.58)

Differentiating the last two equations again produces two new equations without in-

troducing any new unknowns.

c̈ =
d2

dx2
1

f1(x1)

ä =
d2

dx2
1

h2(x1)

(3.59)

Two differentiations were required to derive these ten equations in the ten un-

knowns ä, ȧ, a, c̈, ċ, c, ḃ, b, ḋ, and d. The index of the consistent Cauchy data prob-

lem that resulted from specifying u rather than v over the hyperplane (x2 = 0) is again

two, but in this case r = 0 and no dynamic degrees of freedom on (x2 = 0, x1 = k1), or

lower-dimensional data, are required to determine unique Cauchy data on (x2 = 0).

Here both f1(x1) and h2(x1) must be twice differentiable with respect to x1.
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This result makes sense, when one considers the original system. If v is specified

over (x2 = 0), the first equation in the original system (3.49) then determines u up to

a constant of integration. The value of u at some point on (x2 = 0) fixes this constant

of integration and fully specifies unique Cauchy data on that surface. If u is specified

instead, the first equation gives v directly and no additional information is required.

Determination of consistent Cauchy data on (x2 = 0) thus requires specification of

one dynamic degree of freedom on (x2 = 0). If v is specified, an additional dynamic

degree of freedom on (x2 = 0, x1 = k1) is required to fully determine Cauchy data

on (x2 = 0). If u is specified, no dynamic degrees of freedom are needed on lower

dimensional hyperplanes.

Now, consider the equations that Cauchy data on the hyperplane (x1 = 0) must

satisfy. Again using a dot to denote exterior derivatives, the system is

u̇− v = 0

ux2 = f1(x1)
(3.60)

Differentiating the second equation produces no new variables, but produces an inde-

pendent equation:

u̇x2 =
d

dx1

f1(x1) (3.61)

Differentiating the first equation and the second one more time produces two new

equations in two new variables, which include v̇:

ü− v̇ = 0

üx2 =
d2

dx2
1

f1(x1)
(3.62)

Again under the assumption that all required derivatives exist, the index of the sys-

tem with respect to x1 is 2. There are five equations that relate the five unknowns

u, u̇, ü, v, v̇, so no dynamic degrees of freedom on (x1 = 0) may be specified arbitrarily.

The consistent Cauchy data problem is again not strictly algebraic, so lower di-

mensional data may be required to determine a unique solution. Let a = u, b = v,

c = u̇ = ux1, d = ü = ux1x1, and e = v̇ = vx1, and consider the hyperplane
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(x1 = 0, x2 = k2). Using a dot to now denote differentiation in the x2 direction,

the system under consideration (3.60 - 3.62) is

c− b = 0

ȧ = f1(x1)

d− e = 0

ċ =
d

dx1

f1(x1)

ḋ =
d2

dx2
1

f1(x1)

(3.63)

Differentiating the algebraic equations produces two additional equations.

ċ− ḃ = 0

ḋ− ė = 0
(3.64)

Thus there are seven equations in ten unknowns, and three dynamic degrees of

freedom on (x1 = 0, x2 = k2) are required. Five equations determine the values of

ȧ, ḃ, ċ, ḋ, and ė. Feasible specification is a, and either b or c, and either d or e.

However, note that specification of d or e is used to determine ux1x1 and vx1,

neither of which occur in the original equations. Three dynamic degrees of freedom

on (x1 = 0, x2 = k2) must be specified to determine unique Cauchy for the system

(3.60 - 3.62) derived during index analysis on (x1 = 0), but only two are required to

determine unique Cauchy data for the original variables u, ux1, and v.

Unique Cauchy data on (x1 = 0) for the original variables requires specification of

u and either ux1 or v at a single point (x1 = 0, x2 = k2). This result again makes sense

when one considers the original system. The second equation in (3.60) determines

u up to a constant of integration over (x1 = 0). Equation (3.61) specifies ux1 up to

another constant of integration over (x1 = 0), and the first equation in (3.60) relates

ux1 and v on that same hyperplane. Specification of u fixes the first constant, and

specification of either ux1 or v fixes the second.

This does not contradict the known solution (3.32). Rather, it highlights the fact

that the Cauchy data subproblems are defined only on a particular hyperplane. While

u and ux1 are independent over x1 = c1, they are related on x2 = c2. A single
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boundary condition on u, specified over x2 = c2, may therefore provide both of the

lower-dimensional specifications needed to determine unique Cauchy data on x1 = c1.

3.6 The Navier-Stokes equations

For a larger example of this analysis, consider the two-dimensional, incompressible

formulation of the Navier-Stokes equations.

ut + uux1 + px1 + vux2 − νux1x1 − νux2x2 = 0

vt + uvx1 + vvx2 + px2 − νvx1x1 − νvx2x2 = 0

ux1 + vx2 = 0

(3.65)

Consider the initial hyperplane, orthogonal to t at t = 0. The exterior direction

is along the t axis; x1 and x2 are interior directions. The system may be rewritten as

u̇ + uux1 + px1 + vux2 − νux1x1 − νux2x2 = 0

v̇ + uvx1 + vvx2 + px2 − νvx1x1 − νvx2x2 = 0

ux1 + vx2 = 0

(3.66)

Differentiating the third equation with respect to the exterior direction produces

another independent equation:

u̇x1 + v̇x2 = 0 (3.67)

The first two equations in the original system, and the differentiated continuity

equation, may be differentiated again to produce three independent equations in three

new variables (which include ṗ).

ü + u̇ux1 + uu̇x1 + ṗx1 + v̇ux2 + vu̇x2 − ν (u̇x1x1 + u̇x2x2) = 0

v̈ + u̇vx1 + uv̇x1 + ṗx2 + v̇vx2 + vv̇x2 − ν (v̇x1x1 + v̇x2x2) = 0

üx1 + v̈x2 = 0

(3.68)

Two differentiations with respect to t were required to uniquely determine the

exterior derivatives of all variables, so the index of the Navier-Stokes equations with
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respect to time is 2. On the initial hyperplane, there are seven independent equations

(3.66 - 3.68) that relate the eight variables ü, u̇, u, v̈, v̇, v, ṗ, p, so r = 1 and only one

dynamic degree of freedom on (t = 0) exists for the specification of Cauchy data.

Typical initial conditions for the Navier-Stokes equations include specification of

both u and v as dynamic degrees of freedom on t = 0, often u = v = 0 [22]. It is

easy to verify that the second specification is redundant, as indicated by the index

analysis. Consider the original equations (3.66) and the implicit constraint (3.67),

which involve only the original variables, together with algebraic specification of u on

the initial hyperplane.

u̇ + uux1 + px1 + vux2 − νux1x1 − νux2x2 = 0

v̇ + uvx1 + vvx2 + px2 − νvx1x1 − νvx2x2 = 0

ux1 + vx2 = 0

u̇x1 + v̇x2 = 0

u = 0

(3.69)

Consistent Cauchy data, which are values of u, u̇, v, v̇, and p over the entire domain at

t = 0, are a solution to this 5×5 elliptic system. The solution is uniquely determined

when boundary conditions for the elliptic system are specified.

Algebraic manipulation produces the following simplified system.

u̇ + px1 = 0

v̇ + px2 − νvx1x1 = 0

vx2 = 0

px1x1 + px2x2 = 0

u = 0

(3.70)

This system is not strictly algebraic, so as in the previous examples, lower dimension-

ality degrees of freedom may be explored. Let a = u, b = ut, c = v, d = vt, e = p,

and consider now the hyperplane (t = 0, x1 = c1). The exterior direction is now x1,
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so the system may be written as

b + ė = 0 (3.71)

d + ex2 − νc̈ = 0 (3.72)

cx2 = 0 (3.73)

ë + ex2x2 = 0 (3.74)

a = 0 (3.75)

Proceeding with determination of the index of this system with respect to x1, dif-

ferentiation of all equations save the fourth produces four additional independent

equations.

ḃ + ë = 0 (3.76)

ḋ + ėx2 − ν ˙̈c = 0 (3.77)

ċx2 = 0 (3.78)

ȧ = 0 (3.79)

The third equation may be differentiated twice more without introducing any new

variables, so consistent data on (t = 0, x1 = c1) must also satisfy

c̈x2 = 0 (3.80)

and

˙̈cx2 = 0 (3.81)

Three differentiations were required to produce these 11 independent equations in the

thirteen variables a, ȧ, b, ḃ, c, ċ, c̈, ˙̈c, d, ḋ, e, ė, ë, so the index with respect to x1 of this

system (not of the original Navier-Stokes equations) is three. Two dynamic degrees

of freedom are required on (t = 0, x1 = c1).

Block decomposition of the system shows that six equations (3.75, 3.79, 3.73,

3.78, 3.80, 3.81) may be solved for the six unknowns a, ȧ, c, ċ, c̈, ˙̈c; two equations

(3.71, 3.77) relate b, ḋ, ė; and three equations (3.72, 3.74, 3.76) relate ḃ, d, e, ë. One
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specification of either b, ḋ, or ė, and another of either ḃ, d, e, or ë, is required to

determine unique Cauchy data if all specifications are to be made on a single surface

orthogonal to x1 and t. None of the variables a, ȧ, c, ċ, d̈, and ˙̈c may be specified

independently on (t = 0, x1 = c1).

The first set of two equations, plus a dynamic degree of freedom assignment from

the first group of three variables, is used to determine ė. This corresponds to a

Neumann condition on pressure for Laplace’s equation in (3.70). The second group

is used to determine e, which corresponds to a Dirichlet condition on pressure.

It is well-known that specification of p (here e) and px1 (here ė) on the same

line (x1 = c1), together with Laplace’s equation for p, produces an ill-posed problem

[18]. Rather, either p or px1 are required on two separate hyperplanes orthogonal to

the x1 axis. Clearly, then, our index analysis provides only restrictions on allowable

Cauchy data on a given surface, rather than complete information on proper boundary

conditions for all problems.

Consider now the subsurface (t = 0, x2 = c2). The exterior direction of interest is

now x2, so the system is

b + ex1 = 0

d + ė− νcx1x1 = 0

ċ = 0

ex1x1 + ë = 0

a = 0

(3.82)

The first, second, and last equations may be differentiated without producing any

new variables, so we must also have

ḃ + ėx1 = 0

ḋ + ë− νċx1x1 = 0

ȧ = 0

(3.83)

on (t = 0, x2 = c2).

This is a system of eight equations in the eleven unknowns a, ȧ, b, ḃ, c, ċ, d, ḋ, e, ė,

ë. Three equations give the values of a, ȧ, and c. Three equations relate the variables
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b, ḋ, e, ë, and two equations relate ḃ, c, d, ė. Feasible specification is thus one variable

from the second group, and two from the third. Again, the first group corresponds to

a Dirichlet condition on pressure. The second group includes a condition on v (here

c) and a Neumann condition on pressure.

Index analysis rules out some specifications as infeasible, and in general provides

only an upper bound on the number of degrees of freedom available on a particular

surface. Consider planes of the form (t = 0, x2 = ci). If v is specified over one such

plane, it cannot be specified on any others. The third equation in (3.70) fixes it on

all other parallel planes. Physically, this is due to the incompressibility condition and

specification of u = 0 over the initial hypersurface. Because the fluid is incompressible

and flow in the x1 direction (u) at t = 0 is zero, flow in the x2 direction (v) must be

constant along lines x1 = constant.

Mathematically, this appears as the third equation in the simplified original sys-

tem (3.70) that says that, at t = 0, v does not vary with x2. So, while index analysis

indicates that three dynamic degrees of freedom are available on two parallel hyper-

planes (t = 0, x2 = ci) and (t = 0, x2 = cj), specification of v on one takes up that

degree of freedom on both.

Index analysis of the incompressible Navier-Stokes equations demonstrates that

only one dependent variable may be independently specified over (t = 0). If that spec-

ification is u = 0, added information on 1-dimensional hyperplanes within (t = 0) is

required to determine unique, consistent Cauchy data on (t = 0). On hyperplanes of

the form (t = 0, x1 = c1), the only allowable dynamic degrees of freedom are combina-

tions of p and px1 , while on hyperplanes of the form (t = 0, x2 = c2), the only allowable

dynamic degrees of freedom are combinations of p, px2 , and v. Depending on how

these degrees of freedom are specified, additional data on 0-dimensional hyperplanes

may be required to complete determination of unique Cauchy data on (t = 0). The

example also demonstrates that, while index analysis can provide useful information

about allowable boundary conditions for an elliptic Cauchy data problem, it does not

provide all the information needed to form a well-posed problem.
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3.7 Relating the differentiation and algebraic in-

dices

The differentiation index with respect to t and the algebraic t-index for linear systems

are equivalent.

Theorem 3.7.1 The differentiation index with respect to t and the algebraic t-index

of a linear system of first order in t are equal.

Proof. Let the differentiation index with respect to t be νDt . Then the small-

est smoothly 1-full derivative array is AνD
t +1, so ut depends explicitly on up to νDt

derivatives with respect to t of an arbitrary forcing function f(x, t). Therefore u de-

pends explicitly on up to νDt − 1 partial derivatives with respect to t of f , and R(s, z)

must contain at least one rational function in s with highest powers s(j+νD
t −1)

sj , so the

algebraic t-index νAt must be νAt = (νDt − 1) + 1 = νDt .

As noted earlier, the differentiation index captures only explicit dependence of the

solution on derivatives of the forcing functions. For a linear system for which the

algebraic index may be defined, the algebraic index will also have the same property.

The question of smoothness requirements on forcing functions will be taken up in the

next chapter.

3.8 Higher order systems

Any higher order equation may be written as an equivalent system of first order

equations [40]. However, here “equivalent” means only that the solution in the original

variables is identical to that of the higher order system. It does not mean that the

index of the first order system is equal to the index of the original system.

Consider first the index with respect to xj of a system that is first order in xj, but

higher order in xi�=j. Index analysis of linear and linear xj-varying systems based on

the derivative array equations applies directly to such systems, because the interior

partial differential operators included in PIj may be of any order. Reducing the order
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of such a system is therefore not necessary to determine the index with respect to xj,

and may in fact increase the index, as shown by the following simple example.

Example 7 Consider the heat equation.

ut − uxx = 0 (3.84)

The index of this system with respect to t is 0, while the index with respect to t of the

first order form of the heat equation

ut − vx = 0

ux = v
(3.85)

is 1.

Consider next a general system of m equations, some of which are second order

in the variable of interest t.

F(utt,ut,ux,u, t, x) = 0 (3.86)

Divide the dependent variables into two groups w and y, where w consists of all

dependent variables for which a second partial derivative with respect to t appears in

the system, and y consists of all other dependent variables. Let the dimension of w

be p and of y be q, so that p + q = m. Written in terms of these new variables, the

system is

F(wtt,wt,wx,w,yt,yx,y, t, x) = 0 (3.87)

Reducing the order in t by introducing new variables and equations produces the

following system.

wt = v

F(vt,v,wx,w,yt,yx,y, t, x) = 0
(3.88)

Let the index of the first system (3.87) with respect to t be defined as the minimum

number of differentiations with respect to t required in order to determine yt as a

continuous function of y, w, t, and x, and wtt as a continuous function of wt, w, y,

t, and x. The index of the reduced order system (3.88) with respect to t is already

well-defined.
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Theorem 3.8.1 The index of a second order system in t with respect to t and of the

equivalent first order system in t are equal.

Proof. Compare the derivative array equations in t for the second order system

F(wtt,wt,wx,w,yt,yx,y, t, x) = 0

∂

∂t
F(wtt,wt,wx,w,yt,yx,y, t, x) = 0(

∂

∂t

)2

F(wtt,wt,wx,w,yt,yx,y, t, x) = 0

...

(3.89)

to the derivative array equations for the equivalent first order system formed by

differentiating F only. 
 wt − v

F(vt,v,wx,w,yt,yx,y, t, x)


 = 0

∂

∂t
F(vt,v,wx,w,yt,yx,y, t, x) = 0(

∂

∂t

)2

F(vt,v,wx,w,yt,yx,y, t, x) = 0

...

(3.90)

Clearly the derivative arrays in t for the two systems are the equivalent; the only

difference is the change of variables wtt = vt and wt = v and the augmented first

row. If k is the smallest integer such that the first k + 1 rows of the derivative array

for the second order system determine yt as a continuous function of y, w, t, and x,

and wtt as a continuous function of wt, w, y, t, and x, it must also be the smallest

integer such that the first k+ 1 rows of the derivative array for the first order system

determine yt as a continuous function of y, w, t, and x, and vt as a continuous

function of v, w, y, t, and x. wt is given as a continuous function of v for k = 0.

The index of both systems with respect to t is therefore k.

So, reducing the order in xi is unnecessary for determination of, and may in fact

alter, the index with respect to xj �=i. Reducing the order in xj will not alter the index

with respect to xj.
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Chapter 4

Generalized Characteristic

Analysis

4.1 Introduction

The differentiation index analysis presented in the previous chapter provides valuable

information about distributed unit models. In particular, it gives the number of

dynamic degrees of freedom, as well as providing insight into what specifications of

initial data are consistent with the equations. However, it does not directly address

the question of whether or not a solution exists, is unique, or depends continuously

on its data. These issues of well-posedness are unique to distributed unit models.

This chapter will present methods of analysis that address these questions, based

on a generalization of classical characteristic analysis of hyperbolic systems to more

general nonhyperbolic models.

Before talking about the existence and uniqueness of a solution, and the depen-

dence of the solution on its data, it is necessary to specify more precisely what is

meant by the term solution. The analysis in this chapter assumes that the term so-

lution refers to strong solutions. A strong solution to a partial differential system

is a function that satisfies the governing equations pointwise everywhere. For a first

order system, this implies C1 continuity in all directions. Initial and boundary data

is typically used either to build the functional form of the solution, or to restrict the
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space of basis functions from which the solution is constructed. A solution built in

the former manner will be called an unrestricted solution; if data is used to restrict

the function space from which the solution is drawn, that solution will be called a

restricted solution.

Linear, first order systems over two independent variables t and x will be consid-

ered. Higher order systems may always be transformed to a larger but equivalent first

order system through introduction of new variables for higher order terms [40]. All

required Fourier and Laplace transforms are assumed to be well defined. Unless oth-

erwise stated, the term index refers to the differentiation index defined in the previous

chapter.

4.2 Systems with simple forcing

Consider a linear, two-dimensional system with simple forcing

Aut + Bux = f(t, x) (4.1)

where A,B ∈ R
n×n, u ∈ R

n, and f : R
2 → R

n. A system of this form is regular

[12] iff the coefficient matrices form a regular pencil; that is, there exist some real

constants s, z such that |sA + zB| �= 0.

Under the assumption that the coefficient matrices form a regular pencil, every

linear system with simple forcing is equivalent to one of the following form, which

will be referred to as both its canonical form and its generalized characteristic

form. 

J

N1

I






v1

v2

v3



t

+



I

I

N2






v1

v2

v3



x

=



f1(t, x)

f2(t, x)

f3(t, x)


 (4.2)

Here J is an invertible lower Jordan matrix, and N1 and N2 are lower Jordan nilpotent

matrices. The first block row will be called the hyperbolic part, the second the

parabolic part, and the third the differential part, of dimension nh, np, and nd

respectively. Let νi be the nilpotency of Ni. The canonical form is constructed in
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the same manner as the canonical form of a DAE, with the generalized eigenvalues

ordered to produce the three desired block rows. Finally, let the degeneracy of a

Jordan block be defined as one less than the dimension of the block; let the degeneracy

of the system be defined as the maximum degeneracy of any Jordan block.

Theorem 4.2.1 The differentiation index with respect to t, νt, of a linear system

with simple forcing is equal to ν1.

Proof. The hyperbolic and differential parts of the system give v1t and v3t as

continuous functions of vx, t, and x. The smallest derivative array with respect to

t [54] for the parabolic part that is 1-full has ν1 + 1 block rows, so the index of the

system with respect to t is ν1.

Corollary 4.2.2 The differentiation index with respect to x, νx, of a linear system

with simple forcing is equal to ν2.

Remark 1 A linear PDE with simple forcing may have arbitrary index with respect

to any coordinate direction.

Remark 2 All systems with a parabolic part have νt ≥ 1, and all systems with a

differential part have νx ≥ 1.

Remark 3 Only systems that consist strictly of a hyperbolic part may have both

indices equal to zero.

The differentiation index of a linear DAE provides an upper bound on the order

of derivatives of the forcing functions that appear in the solution. This is not true for

PDEs. Because PDEs may be coupled through derivative terms, forcing functions that

appear in the solution for one dependent variable may appear via a partial derivative

of that variable in the solution for another dependent variable. Consider a single

block of the hyperbolic subsystem of a linear PDE with simple forcing. Substituting

143



t

x

r

s

τ

ρ

0

0 τ

Figure 4-1: Unit r and s vectors mapped into the (t, x) plane

for the subdiagonal partial derivatives with respect to t gives a system of the form

kv̄1t = −v̄1x + f1

kv̄2t = −v̄2x + f2 − (−v̄1x + f1)

kv̄3t = −v̄3x + f3 − (−v̄2x + f2 − (−v̄1x + f1))

...

(4.3)

where k ∈ R, k �= 0, and v̄ ⊂ v1.

Consider the Cauchy problem for this block on an infinite domain in x, with

analytic initial data v̄(0, x). The smoothness of v̄1(t, x) is then one greater than the

smoothness of f1(t, x). The smoothness of v̄2 depends not only on the smoothness

of f2(t, x), but also on the smoothness of v̄1x(t, x), which is one greater than the

smoothness of f1x(t, x). For a degenerate hyperbolic block of dimension 3, v̄(t, x) ∈ C1

requires that f1(t, x) be C2, f2(t, x) be C1, and f3(t, x) be C0 in x. The canonical

form could instead be defined with the J block of the hyperbolic part appearing in

the second coefficient matrix; the corresponding Cauchy problem in t would show

analogous explicit smoothness requirements on f in t.

This implicit dependence of the solution on derivatives of the forcing functions is

made explicit by a change to a different coordinate system. Let the transformation

from (t, x)-space to (r, s)-space for a single Jordan block Ji of the hyperbolic part be
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given by 
τi ρi

0 τi





ri
si


 =


t

x


 (4.4)

where ρi is the value on the diagonal of Ji and τi = 1. In these independent variables,

the equations have the same general form shared by blocks in the differential and

parabolic subsystems, which is simply

Nv̄a + Iv̄b = f̄(a, b) (4.5)

Here f̄ : R
2 → R

m, and N ∈ R
m×m is a matrix of nilpotency m, with unity on

the first subdiagonal and zeros everywhere else. Also note that f̄ ⊂ fj and v̄ ⊂ vj,

j ∈ {1, 2, 3}.
The solution to a system of this general form is built recursively, and is a polyno-

mial in b with coefficients that, in general, may be functions of a. Integrating each

equation with respect to b and substituting the result into the subsequent equation

yields

v̄1 = c1(a) +

∫
f̄1db

v̄2 = −bc′1(a) + c2(a) +

∫ [
f̄2 −

∫
f̄1adb

]
db

v̄3 =
b2

2
c′′1(a)− bc′2(a) + c3(a) +

∫ [
f̄3 −

∫ [
f̄2a −

∫
f̄1aadb

]
db

]
db

...

(4.6)

This representation makes explicit the dependence of the smoothness of v̄ on the

data c and forcing functions f̄ . For example, the degree of smoothness of v̄1 in the b

direction is one greater than the degree of smoothness of f̄1 in b, while the degree of

smoothness of v̄1 in a is equal to the lesser of the degree of smoothness in a of the

data c1 and forcing function f̄1. For v̄m to be C1 in a, the forcing function f̄i must

be at least Cm−i+1 in a, and the data ci must be at least Cm−i+1. For v̄m to be C1 in

b, f̄i≤m must be continuous.

Putting a block of the hyperbolic subsystem into this form (4.5) required a coor-

dinate change. Because a = r and

∂

∂r
=

1

τ

∂

∂t
− ρ

τ 2

∂

∂x
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f̄i must be at least Cm−i+1 in both x and t in order for v̄m to be C1 in r.

Theorem 4.2.3 The maximum order of derivatives of forcing functions and data

that appear in the solution of a two-dimensional, linear PDE with simple forcing is

equal to ν, the degeneracy of the coefficient matrix pair.

Proof. The solution for a Jordan block of dimension m depends on up to m −
1 exterior partial derivatives of the data and forcing functions, and by definition

max(mi) = ν + 1.

This result shows that it is the degeneracy, rather than the index, that gives suf-

ficient conditions for the forcing function and data smoothness required for existence

of a continuous or a smooth solution. A system that consists strictly of a hyperbolic

subsystem will have index 0 with respect to both t and x, yet derivatives of the forcing

functions may appear in the solution. Because the forcing terms fi in the canonical

form are linear combinations of the original forcing functions f , if every element of

f is ν-times differentiable with respect to both t and x, then every f̄j will possess

all partial derivatives required for existence of a continuous solution. Similarly, if all

arbitrarily specified data is ν-times differentiable, then all required derivatives of data

will exist. Increasing these sufficient differentiability requirements by one guarantees

a smooth solution.

A system of this generic form (4.5) is equivalent to an ODE in b. Applying the

partial differential operator (NDa+ IDb)
∗ =

∑m−1
i=0 (−1)iNiDi

aD
(m−i)
b , where Da = ∂

∂a

and Db = ∂
∂b

, to the system produces

(NDa + IDb)
∗(Nv̄a + Iv̄b) = IDm+1

b v̄ = (NDa + IDb)
∗f̄(a, b) (4.7)

Because it is equivalent to an interior partial differential system along lines of constant

a, a block of this form may be viewed as a generalization of the characteristic form

of a one-way wave. The exterior partial derivatives are governed entirely by the data

and the forcing functions. Furthermore, the degeneracy of the wave means that one

or more exterior partial derivatives of a particular dependent variable must exist in

order for subsequent dependent variables to exist.
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The canonical form may thus be viewed as a generalization of the characteristic

form of a hyperbolic system. Because each Jordan block is equivalent to a fully

determined ODE along a particular direction b in the (t, x) plane, it provides a set

of compatibility conditions that restrict Cauchy data on surfaces of the form a =

constant. For example, Cauchy data for the parabolic part on t = k1 is uniquely

determined by data specified on some point (t = k1, x0), and the forcing function

f2. Therefore, the number of dynamic degrees of freedom that may be arbitrarily

specified on t = 0 is equal to nh + nd.

Under the assumption that the problem will be solved as an evolution problem

in t, data cannot be specified at a later time and used to determine a solution at

an earlier time. Data for the hyperbolic blocks consist of arbitrary functions of r,

which is along either the t or x coordinate directions depending on the coordinate

transformation employed, must be prescribed on (x = x1) for hyperbolic blocks with

τi/ρi > 0, or on (x = x2) for blocks with τi/ρi < 0, and on t = t0 in either case. Data

for the differential blocks consist of arbitrary functions of x, which must be specified

on the initial line x = x0. Because there is no righthand side dependence on u, data

may be specified on (x = x1) or (x = x2) for the parabolic part.

The dependence of solutions to first order linear systems of the form

ut + Bux = f(t, x) (4.8)

on their initial data is well-studied [44, 81]. If B is not diagonalizable, but all eigenval-

ues of B are real, the solution involves derivatives of the data and is weakly well-posed.

If any characteristic direction contains a nonzero imaginary component, the system

will show exponential dependence on the frequency of perturbations to data and will

thus be ill-posed, regardless of the degeneracy of that characteristic.

Systems of the form under consideration here (4.1) do not necessarily have the

form of a hyperbolic or weakly hyperbolic system (4.8). As formulated here, the

“initial data” for blocks of both the parabolic and hyperbolic subsystems are really

boundary conditions (arbitrary functions of t). Note that one may reformulate the

canonical form by moving J to the second coefficient matrix and inverting its diagonal
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entries; in this case the coordinate system in which a block is an interior PDE has ri

parallel to the x axis. Such a reformulation demonstrates that the dependence of the

unrestricted solution of the hyperbolic subsystem on its initial data is the same as on

its boundary data.

The dependence of the unrestricted solution on its data is governed by the gener-

alized eigenvalues of the coefficient matrix pair, in an analogous manner to the case of

a weakly hyperbolic system. This will be shown in the following theorem. The proof1

employs the analytical solution [10] of the DAE that results from Fourier transforms

in either t or x.

Lemma 4.2.4 The unrestricted solution to a regular, first order system with simple

forcing depends continuously on its initial data iff the differential and hyperbolic parts

of the coefficient matrix pencil are of degeneracy zero with strictly real eigenvalues.

Proof. Because the coefficient matrices form a regular pencil, the homogeneous

system is equivalent to one which, in Fourier space, has the form
I

N


 v̂t + iω


J

I


 v̂ = 0

Ãv̂t + B̃v̂ = 0

The solution to this DAE, as described in section 2.3.7, is given by

v̂(t, ω) = e−ÃDB̃tÃÃDv̂(0, ω)

where

ÃDB̃ =


iωJ

0


 ÃÃD =


I

0




Taking the norm of both sides gives

||v̂(t, ω)|| = ||e−ÃDB̃tÃÃDv̂(0, ω)||
1An alternate method of proof that considers each of the (decoupled) parts of the canonical form

separately could also have been employed.
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By the definition of the norm,

||e−ÃDB̃tÃÃDv̂(0, ω)|| ≤ ||e−ÃDB̃t|| ||ÃÃD|| ||v̂(0, ω)||

Finally, note that ||ÃÃD|| = 1, so

||e−ÃDB̃t|| ||ÃÃD|| ||v̂(0, ω)|| = ||e−ÃDB̃t|| ||v̂(0, ω)||

First assume that all eigenvalues are strictly real and nondegenerate. Then, J = ΛΛΛ

with Λjj ∈ R so ||e−iωΛΛΛt|| = 1 and there exists a Ct independent of ω such that

||e−ÃDB̃t|| ||v̂(0, ω)|| ≤ Ct||v̂(0, ω)||

Gathering all of these inequalities together,

||v(t, ω)|| ≤ Ct||v̂(0, ω)||

By Parseval’s equation the result holds in (t, x) space as well, and by Duhamel’s

principle the result holds for simple forcing.

For the converse, assume that the system depends continuously on its initial data.

Then there exists a finite Ct independent of ω such that

||v(t, ω)|| ≤ Ct||v̂(0, ω)||

so

Ct ≥ ||e−ÃDB̃t||

for all ω ∈ R.

Recall that the magnitude of a complex number a + bi, with a, b ∈ R, is given by

|a + bi| =
√
a2 + b2 (4.9)

and also Euler’s formula

ebi = cos(b) + i sin(b) (4.10)

149



Finally, recall that the magnitude of a matrix of dimension n is bounded from below

by the maximum magnitude of a single element.

||A|| ≥ max
i,j
|Aij| (4.11)

Now, suppose that there is an eigenvalue λ that corresponds to a Jordan block J

of dimension 2 or greater, and let λ be strictly real. The exponential matrix e−ÃDB̃t

has a block of the form

e−iωtJ =




e−iωtλ

(−iωtλ)e−iωtλ e−iωtλ

1
2
(−iωtλ)2e−iωtλ (−iωtλ)e−iωtλ e−iωtλ

...
. . . . . . . . . . . .




(4.12)

Each term in the matrix exponential block has the form

cij(−iωtλ)kije−iωtλ (4.13)

so, assuming that the use of i as the imaginary number or an index of summation is

clear from context,

||e−iωtJ|| ≤ nmax
i,j
|e−iωtJij | = nmax

i,j
|cij(−iωtλ)kije−iωtλ| (4.14)

Note that, by Euler’s formula and the definition of the magnitude of a complex

number,

|cij(−iωtλ)kije−iωtλ| = |cij(−iωtλ)kij(cos(−ωtλ) + i sin(−ωtλ))|

= |cij(−ωtλ)kij |

= |cij(ωtλ)kij |

(4.15)

Now, let i and j be the indices that maximize the above expression (4.14); then

let c = n|cij(λ)kij |, k = kij, and note that t > 0. Clearly

|cij(ωtλ)kij | = c|ω|ktk (4.16)

and therefore

||e−iωtJ|| ≥ c|ω|ktk (4.17)
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for some c ∈ R, in contradiction to the bound independent of ω.

Similarly, if there is an eigenvalue λ = a + bi with a nonzero complex part b �= 0,

then

||e−ÃDB̃t|| ≥ |e−iωλt| = |e−iωateωbt|

in contradiction to the bound independent of ω.

Taking the Fourier transform in t rather than x gives the analogous result for the

parabolic part.

Corollary 4.2.5 The unrestricted solution to a regular, first order system with simple

forcing depends continuously on its boundary data iff the hyperbolic and parabolic parts

of the coefficient matrix pencil are of degeneracy zero with strictly real eigenvalues.

Taken together, this lemma and its corollary give the desired result.

Theorem 4.2.6 The unrestricted solution to a regular, first order system with simple

forcing depends continuously on its data iff the coefficient matrix pencil is of degen-

eracy zero with strictly real eigenvalues.

Note that systems of nonzero degeneracy but with strictly real eigenvalues are

ill-posed in the strict sense but are considered weakly well-posed, given proper initial

and boundary data. For linear systems with simple forcing, weakly well-posed and

strongly ill-posed problems may be easily distinguished from each other; if any gen-

eralized eigenvalue of the coefficient matrix pair has a nonzero imaginary part, the

system is strongly ill-posed, while if all generalized eigenvalues are strictly real but

one or more has nonzero degeneracy, the system is weakly well-posed.

4.3 Systems with linear forcing

Introduction of forcing functions that include a linear function of the dependent vari-

ables slightly complicates the analyses of the previous section. Such a system has the

form

Aut + Bux = f(t, x)−Cu (4.18)

151



with A,B,C ∈ R
n×n, u ∈ R

n, and f : R
2 → R

n. Transforming the coefficient matrices

to their Weierstrass canonical form does not in general produce decoupled subsystems,

so the index results of the previous section no longer hold. Also, singularity of the

coefficient matrix pencil no longer precludes well-posedness; here the system is regular

iff ∃s, z ∈ R such that |sA + zB + C| �= 0 [12]. Finally, introduction of the lower

order term Cu may make weakly well-posed systems strongly ill-posed.

Under the assumption that (A,B) form a regular pencil, the canonical form of

the system is

J

N1

I






v1

v2

v3



t

+



I

I

N2






v1

v2

v3



x

+ C∗u =



f1(t, x)

f2(t, x)

f3(t, x)


 (4.19)

where again J is a lower Jordan matrix, and N1 and N2 are lower Jordan matrices of

nilpotencies ν1 and ν2 respectively.

Although it is in general not true, if C∗ is lower triangular, one can still get the

index by inspection of the canonical form. A system in canonical form for which

C∗ lower triangular is in some sense analogous to a DAE in Hessenberg form [8]. In

particular, theorem 4.2.1 and corollary 4.2.2 still hold, and may be restated as follows.

Theorem 4.3.1 The differentiation index with respect to t, νt, of a linear system in

canonical form, with linear forcing and C∗ lower triangular, is equal to ν1.

Proof. The hyperbolic and differential parts of the system give v1t and v3t as

continuous functions of vx, t, and x. The smallest derivative array with respect to

t [54] for the parabolic part that is 1-full has ν1 + 1 block rows, so the index of the

system with respect to t is ν1.

Corollary 4.3.2 The differentiation index with respect to x, νx, of a linear system

in canonical form, with linear forcing and C∗ lower triangular, is equal to ν2.

Assuming a regular system, decoupled subsystems may be obtained by handling

only the interior partial derivatives in the Laplace domain. Taking the system to the

152



Laplace domain for x gives

Aũt + Dũ = f̃(t, z) (4.20)

where ũ = L(u, x), f̃ = L(f , x), and D = (zB + C). Because P , the set of all

rational functions in the complex variable z, forms a field over standard addition

and multiplication, there exist square, invertible matrices P,Q ∈ P n×n that take

D,A ∈ P n×n to their Weierstrass canonical form.

Multiplying the system on the left by this P and introducing new variables

ṽ(t, z) = Q−1ũ(t, z) produces a canonical form that again consists of two decoupled

subsystems. 
I

N





ṽ1

ṽ2



t

+


J

I





ṽ1

ṽ2


 =


g̃1(t, z)

g̃2(t, z)


 (4.21)

J is a lower Jordan matrix, and N is a lower Jordan matrix of nilpotency ν. The

index of this system with respect to t is ν, and r = dim(ṽ1) dynamic degrees of

freedom must be specified on t = 0 in order to determine a unique trajectory in t.

The first block row is a fully determined differential system with respect to t. In

analogy with the analysis of a DAE, call this the t-differential part. The second block

row may be solved directly. Let it be called the t-algebraic part. The solution to the

t-algebraic part, given by

ṽ2 =
ν−1∑
i=0

(−1)iNi

(
∂

∂t

)i

g̃2(t, z) (4.22)

depends on up to ν − 1 partial derivatives of the forcing functions with respect to

t. No data is needed over surfaces of the form t = constant to determine a unique

solution of the t-algebraic part, although data may be required on surfaces of lower

dimensionality upon transformation back from the Laplace domain [54].

Example 8 Consider the following system.
0 0

1 0





u1

u2



t

+


1 0

0 1





u1

u2



x

+


0 1

0 0





u1

u2


 =


f1

f2


 (4.23)
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Taking x to the Laplace domain, multiplication on the left by

P =


−z 1

1 0




and introduction of new variables

v̂ =


1 0

z 1


 û

produces 
1 0

0 0





v̂1

v̂2



t

+


−z2 0

0 1





v̂1

v̂2


 =


f̂2 − zf̂1

f̂1


 (4.24)

Here J = [−z2] and N = [0]. The nilpotency of N is one, so the index of this system

with respect to t is one. There is one dynamic degree of freedom on t = 0.

One might be tempted to view the polynomial-valued coefficient matrices of the

system in the Laplace domain as parameterized coefficient matrices, and ask how

specific numerical values of z and/or s might alter the canonical form. That view

does not apply here, however. The polynomials in the coefficient matrices represent

operators; they are not functions to be evaluated. All arithmetic operations such as

calculation of the canonical form are performed on the polynomials themselves, rather

than on the result of evaluating the polynomials at specific numeric values of s or z.

A characteristic interpretation of the system after partial transformation to the

Laplace domain does not provide the same information on boundary condition re-

quirements that it does in the (t, x) domain. In the linear forcing case, then, the

characteristic and index analyses must diverge.

Consider again our original system with linear forcing (4.18). If the coefficient

matrices form a regular pencil, the canonical form of the system is

J

N1

I






v1

v2

v3



t

+



I

I

N2






v1

v2

v3



x

=



g1(v) + f1(t, x)

g2(v) + f2(t, x)

g3(v) + f3(t, x)


 (4.25)

Here the block rows may be coupled through the forcing functions.
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Lemma 4.3.3 For a linear, first order system over two independent variables t and

x, if νt = 0 or νx = 0, then the coefficient matrices form a regular pencil.

Proof. If νt = 0, then by definition the Jacobian of the system with respect to ut,

or J(F,ut), has full rank. Since J(F,ut) = A, |A| = |A + 0B| �= 0 and the pencil is

regular. The analogous argument holds for B when νx = 0.

As in the simple forcing case, every set of equations that corresponds to a single

Jordan block is equivalent to one of the form

Nv̄a + Iv̄b = ḡ(v) + f̄(a, b) (4.26)

Integrating each equation in turn with respect to b produces an underdetermined set

of integral equations, that are implicit in v, of the form

v̄1 = c1(a) +

∫ [
ḡ1 + f̄1

]
db

v̄2 = −bc′1(a) + c2(a) +

∫ [
ḡ2 + f̄2 −

∫ [
ḡ1a + f̄1a

]
db

]
db

v̄3 =
b2

2
c′′1(a)− bc′2(a) + c3(a)

+

∫ [
ḡ3 + f̄3 −

∫ [
ḡ2a + f̄2a −

∫ [
ḡ1aa + f̄1aa

]
db

]
db

]
db

...

(4.27)

Gathering the equations for all Jordan blocks forms a fully determined, implicit set

of integral equations in v.

Consider the following system with linear forcing.
1 0

0 1





u
v



t

+


0 0

1 0





u
v


 =


0 0

1 0





u
v


 +


f1

f2




The solution is

u(t, x) = u(0, x) +

∫
f1(t, x)dt

v(t, x) = −tu′(0, x) + v(0, x)

+

∫ (∫
f1(t, x)dt + u(0, x) + f2(t, x)−

∫
f1x(t, x)dt

)
dt
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As expected, existence of a continuous solution to this νtot = 1 system requires no

more than one partial derivative of a forcing function or datum.

For a solution v to exist pointwise everywhere, each term must exist pointwise

everywhere. Because the unrestricted solution is constructed from the functional

forms of the forcing functions and data, partial derivatives of a g term represent partial

derivatives of the forcing functions and data that make up the dependent variables

in that term. The equations and blocks may be coupled through g terms or partial

derivative terms in J and Ni. In either case, the total degeneracy νtot bounds the

number of times an additional order of partial derivative may be implicitly introduced

into the solution.

Due to the coupling between different Jordan blocks, the maximum smoothness of

f that may be required for existence of a continuous solution is now equal to νtot, the

sum of the degeneracies of all Jordan blocks. Because the elements of fi=1,2,3 are linear

combinations of the original forcing functions f , a sufficient condition for existence

of all required derivatives is that each element of f be νtot-times differentiable with

respect to both t and x. This sufficient smoothness condition is unrelated to the index

of the system with respect to any direction in the independent variable space. Again,

increasing these sufficient differentiability requirements by one guarantees a smooth

solution.

The lower order terms Cu in the forcing function do not influence the well-

posedness of the system. Because the linear forcing term couples the three subsystems

of the generalized characteristic form, all three must be considered together.

Theorem 4.3.4 Assuming that (A,B) forms a regular pencil, the unrestricted solu-

tion to Aut + Bux + Cu = 0 depends continuously on its data iff the unrestricted

solution to Aut + Bux = 0 depends continuously on its data.

Proof. Assume the systems are already in canonical form, and consider solution

of a single block row of one of the three subsystems for the variables v(t, x) assigned

to it, in terms of the remaining variables w(t, x). The equations that correspond to
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this single Jordan block have the form

vb(a, b) + Nva(a, b) + Cv(a, b) + C′w(a, b) = f(a, b)

At this point, C′w(a, b) is simply a vector of unknown functions of a and b, so let

g(a, b) = f(a, b)−C′w(a, b). Taking the Fourier transform of the system produces

v̂b(b, ω) + (iωN + C) v̂(b, ω) = ĝ(b, ω)

The solution is given by

v̂(b, ω) = e−(iωN+C)bv̂(0, ω) + e−(iωN+C)b

∫ b

0

e(iωN+C)sĝ(s, ω)ds

By Duhamel’s principle, the forced solution may be thought of as a superposition

of solutions to the corresponding homogeneous problem, with

v̂∗(0, ω) =

∫ b

0

e(iωN+C)sĝ(s, ω)ds

For the homogeneous problem, it then remains to be shown that

||e−(iωN+C)b|| ≤ Cb ⇔ ||e−(iωN)b|| ≤ C∗
b

for bounded constants Cb and C∗
b independent of ω.

First, assume that ||e−(iωN)b|| ≤ C∗
b . Then

||e−(iωN+C)b|| = ||e−iωNbe−Cb|| ≤ ||e−iωNb|| ||e−Cb|| ≤ C∗
b ||e−Cb||

Now let C•
b = ||e−Cb|| and let Cb = C∗

bC
•
b . Then

C∗
b ||e−Cb|| = Cb

Because C is a constant matrix, C•
b and thus C∗

bC
•
b = Cb is a function of b only.

For the converse, assume that ||e−(iωN+C)b|| ≤ Cb. Then

||e−iωNbe−Cb|| ≤ Cb

||e−iωNbe−Cb|| ||eCb|| ≤ Cb||eCb||
||e−iωNb|| ≤ Cb||eCb||
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and, by an argument similar to the one presented above, the function C♦
b given by

C♦
b = ||eCb|| depends only on b, and thus C∗

b = CbC
♦
b is a function of b only.

Because the selection of this first block to be solved is arbitrary, bounds on the

unrestricted solution independent of ω hold for every block of Aut+Bux+Cu = f(t, x)

iff they hold for every block of Aut + Bux = f(t, x).

So well-posed systems with simple forcing always remain well-posed upon addition

of linear forcing terms, and ill-posed systems similarly remain ill-posed. The addition

of linear forcing terms to a system with simple forcing that is weakly well-posed may

make the system strongly ill-posed, however. Consider the following example of such

a situation. 
1 0

0 1





u
v



t

+


0 0

1 0





u
v



x

+


0 ε

0 0





u
v


 =


0

0


 (4.28)

The eigenvalues of the coefficient matrix in Fourier space are ±(iεω)1/2. Recall that
√
ib =

√
2b
2

(1 + i), so here the real part of the eigenvalues of the coefficient matrix are

±
√

2εω
2

. The system is therefore strongly ill-posed, while the unforced system (ε = 0)

is weakly well-posed.

Assuming the unrestricted solution depends continuously on its data, and given

a dynamic simulation based on a time evolution method, the same arguments for

boundary condition location made in the simple forcing case apply here as well. Data

must be specified for hyperbolic blocks with τi/ρi < 0 on x = x2 and t = t0. Data

for the remaining hyperbolic blocks must be specified on x = x1 and t = t0. Data for

the differential blocks must be specified on t = t0. Data for an individual parabolic

block may be specified on either x = x1 or on x = x2.

4.4 Restricted solutions

Up to this point, only unrestricted solutions have been considered. These unrestricted

solutions may depend continuously on their data, or they may be weakly well-posed

or strongly ill-posed.
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For a restricted solution, some data is used to restrict the space of functions from

which the solution is drawn2, rather than to select a unique member of a space of

functions. A perturbation in this data alters the composition of the function space,

rather than specifying another unique function that may or may not be near the

unique solution to the unperturbed problem. It does not make sense to consider

continuous dependence on boundary conditions that contribute to the solution in

this manner.

These ideas will be examined in detail here only for the important special case of

a 2× 2 parabolic block.
0 0

1 0


ut +


1 0

0 1


ux +


c11 c12

c21 c22


u = 0 (4.29)

Note that νx = 0.

Lemma 4.4.1 A system with linear forcing that consists of a single parabolic block

of dimension 2 with νt = 1 is ill-posed as an evolution problem in x.

Proof. Because νt = 1, one differentiation with respect to t gives ut as a continuous

function of u, ux, t, and x, and by definition the second derivative array equations

with respect to t are 1-full. This means that Gauss elimination may be used on the

coefficient matrix A2 of the derivative array equations to produce the form
D 0

0 H




where D is a 2× 2 diagonal matrix.

For this system,

A2 =




0 0 0 0

1 0 0 0

∂
∂x

+ c11 c12 0 0

c21
∂
∂x

+ c22 1 0




2Classically, the term data is not even used for any information (initial and/or boundary condi-

tions) that is used in this fashion - see section 2.4.5. In this thesis, however, the term data refers

to all initial and boundary conditions, because the analyses developed here make no assumptions

about how information is used to construct the solution.
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Elimination of the first column produces

A∗
2 =




1 0 0 0

0 0 0 0

0 c12 0 0

0 ∂
∂x

+ c22 1 0




At this point it is clear that the matrix is 1-full if and only if c12 �= 0; if c12 = 0, it is

impossible to produce both a 2× 2 diagonal matrix in the upper lefthand corner and

a 2 × 2 zero matrix in the upper righthand corner. Therefore, since A2 is 1-full, c12

must be nonzero.

Now, take the Fourier transform of the system in t to produce

ûx + (iωA + C) û = 0

The eigenvalues of the coefficient matrix are given by∣∣∣∣∣∣
c11 − λ c12

iω + c21 c22 − λ

∣∣∣∣∣∣ = (c11 − λ)(c22 − λ)− c12(iω + c21)

= λ2 − (c11 + c22)λ + c11c22 − c12c21 − iωc12 = 0

so, by the Quadratic Formula,

λ =
(c11 + c22)±

√
(c11 + c22)2 − 4(c11c22 − c12c21 − iωc12)

2

For simplicity, rewrite this expression as

λ = a±
√
b + iωc

where c = 4c12, and let d = b + iωc. This complex number d may be given as

a magnitude r and phase angle φ through the expression d = r(cos(φ) + i sin(φ)),

where r =
√
b2 + ω2c2 and φ = tan−1(ωc

b
). The square root of d is then given by

√
r(cos(φ

2
) + i sin(φ

2
)). Note that

lim
ω→±∞

tan−1
(ωc

b

)
= ±π

2

and

lim
ω→±∞

√
b2 + ω2c2 = ωc
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Keeping in mind the fact that c = 4c12 �= 0, consider what happens in the limit

of infinite frequency ω.

lim
ω→±∞

Re(λ) = lim
ω→±∞

Re(a +
√
d)

= lim
ω→±∞

a +

√√
b2 + ω2c2 cos(

1

2
tan−1(

ωc

b
))

=
√
ωc cos(±π

4
)

= ±
√

2c

2

√
ω

∝
√
ω

(4.30)

Because the real part of the eigenvalues λ have unbounded dependence on ω, the

unrestricted solution does not depend continuously on its data.

Corollary 4.4.2 A system with linear forcing that consists of a single parabolic block

of dimension 2 with νt = 2 is weakly well-posed as an evolution problem in x.

So for a system that consists only of a 2× 2 parabolic block, if νt = 2, there are

no dynamic degrees of freedom on t = 0, and the problem is weakly well-posed; for

νt = 1, there is one dynamic degree of freedom on t = 0, and the problem is strongly

ill-posed. High index in t indicates a weakly well-posed problem in x, while low index

in t indicates a strongly ill-posed problem in x.

In either case, νx = 0, so specifying two dynamic degrees of freedom on x = x1

determines a unique solution (that may or may not exhibit continuous dependence

on that data). However, if c12 �= 0, there is a dynamic degree of freedom on t = 0.

This apparent contradiction in the number of degrees of freedom on t = 0, and the

problem of well-posedness, may be resolved by specifying one degree of freedom on

x = x1 and the other on x = x2. This restricts the solution to a superposition of sine

waves with wavelengths related to the distance x2− x1, which can together represent

an arbitrary degree of freedom on t = 0, as illustrated in the following example.

Example 9 The heat equation, written as a first order system, is
0 0

1 0





u1

u2



t

+


1 0

0 1





u1

u2



x

+


0 1

0 0





u1

u2


 = 0 (4.31)
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Consider solutions of the form

u(t, x) = w(t)φ(x) (4.32)

Substitution into the equations gives

w1 = eλ
2t

w2 = λeλ
2t

φ = c0e
−λx

(4.33)

Now consider specification of Dirichlet boundary conditions at x = 0 and x = π,

so φ(0) = φ(π) = 0. In this case, we have restricted the solution to a superposition

of sines of frequency n/π, where n is any integer, so

φ(x) =
∞∑

k=−∞
cksin(kx)

=
−i
2

∞∑
k=−∞

cke
ikx +

i

2

∞∑
k=−∞

cke
−ikx

(4.34)

and therefore λ = ±ik, k ∈ N.

Any reasonable initial condition w1(0, x) may be represented as an infinite sine

series, and will uniquely determine the coefficients ck.

This restricted solution may be advanced forward in t if it depends continuously

on its initial data, which is used to select a unique member of the (restricted) solution

space.

Example 10 Consider the Fourier transform of the heat equation, written as a first

order system of the form Aût + Bû = 0.
0 0

1 0


 ût +


iω 1

0 iω


 û = 0

The solution to this DAE system may be constructed using the analytical solution

presented in chapter 2.3.7.
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First, the coefficient matrices A and B must be multiplied on the left by a matrix

of the form (B− λA)−1. Because B is invertible, the simplest choice is to let λ = 0

so that (B− λA)−1 = B−1.

Â = B−1A =


− i

ω
1
ω2

0 − i
ω





0 0

1 0


 =


 1

ω2 0

− i
ω

0




B̂ = B−1B =


1 0

0 1




Now, note that the eigenvectors of Â that correspond to nonzero eigenvalues, fol-

lowed by eigenvectors that correspond to zero eigenvalues, form a matrix T that takes

both Â and B̂ to their desired diagonal forms. The eigenvalues of Â are given by∣∣∣∣∣∣
1
ω2 − λ 0

− i
ω

−λ

∣∣∣∣∣∣ = λ2 − 1

ω2
λ = 0 ⇒ λ =

1

ω2
, 0

so the eigenvectors are given by

Âx1 =
1

ω2
x1 ⇒ x1 =


 1

−iω




Âx2 = 0 ⇒ x2 =


0

1




and finally T and T−1 are

T =


 1 0

−iω 1


 T−1 =


 1 0

iω 1




Now, ÂD can be calculated from T−1ÂT. First,

T−1ÂT =


 1 0

iω 1





 1

ω2 0

− i
ω

0





 1 0

−iω 1


 =


 1
ω2 0

0 0





 1 0

−iω 1


 =


 1
ω2 0

0 0




so by the definition of ÂD,

T−1ÂDT =


ω2 0

0 0




163



Multiplication on the left by T and on the right by T−1 then gives ÂD directly.

ÂD = T
(
T−1ÂT

)
T−1

=


 1 0

−iω 1





ω2 0

0 0





 1 0

iω 1


 =


 ω2 0

−iω3 0





 1 0

iω 1


 =


 ω2 0

−iω3 0




The products ÂDB̂ and ÂÂD appear in the analytical solution, and are given by

ÂDB̂ =


 ω2 0

−iω3 0





1 0

0 1


 =


 ω2 0

−iω3 0




ÂÂD =


 1

ω2 0

− i
ω

0





 ω2 0

−iω3 0


 =


 1 0

−iω 0




The solution is then

û(t, ω) = e−ÂDB̂tÂÂDû(0, ω)

Now, the question is whether or not the norm of the solution at some later t can

be bounded by a function Ct independent of ω and the norm of the initial data. In

other words, is there a Ct such that

||û(t, ω)|| ≤ Ct||û(0, ω)||

for all ω ∈ R and t > 0?

Taking the norm of both sides of the solution, it is clear that

||û(t, ω)|| = ||e−ÂDB̂tÂÂDû(0, ω)|| ≤ ||e−ÂDB̂tÂÂD|| ||û(0, ω)||

and the solution will depend continuously on its data if there exists some bounded

function Ct that depends only on t for which

||e−ÂDB̂tÂÂD|| ≤ Ct

for all ω ∈ R.
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First, by the series definition of the exponential of a matrix,

e−ÂDB̂t = I + (−ÂDB̂t) +
1

2!
(−ÂDB̂t)2 +

1

3!
(−ÂDB̂t)3 + . . .

=


1 0

0 1


 +


−ω2t 0

iω3t 0


 +


 1

2
ω4t2 0

−1
2
iω5t2 0


 +


−1

6
ω6t3 0

1
6
iω7t3 0


 + . . .

=


1 +

∑∞
j=1

1
j!
(−ω2t)j 0

−iω
∑∞

j=1
1
j!
(−ω2t)j 1




Recall that

ex = 1 + x +
1

2!
x2 +

1

3!
x3 + · · · = 1 +

∞∑
j=1

1

j!
xj

so clearly the upper lefthand element of e−ÂDB̂t is simply an exponential:

1 +
∞∑
j=1

1

j!
(−ω2t)j = e−ω

2t

Adding zero, in the form iω − iω, to the lower left entry of the matrix allows that

entry to also be written as an exponential.

iω − iω − iω

∞∑
j=1

1

j!
(−ω2t)j = −iω(−1 + e−ω

2t) = iω(1− e−ω
2t)

Therefore,

e−ÂDB̂t =


 e−ω

2t 0

iω(1− e−ω
2t) 1




and the product e−ÂDB̂tÂÂD may be calculated as follows.

e−ÂDB̂tÂÂD =


 e−ω

2t 0

iω(1− e−ω
2t) 1





 1 0

−iω 0


 =


 e−ω

2t 0

−iωe−ω2t 0




Can the norm of this matrix be shown to be less than some function of t only for all

values of ω?

Recall that the norm of a matrix M is equal to the square root of the eigenvalue

of largest magnitude of MTM. Let

M =


 e−ω

2t 0

−iωe−ω2t 0



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so

MTM =


e−ω2t −iωe−ω2t

0 0





 e−ω

2t 0

−iωe−ω2t 0


 =


(1− ω2)e−2ω2t 0

0 0




and the eigenvalue of largest magnitude is clearly λmax = (1−ω2)e−2ω2t, so
√
λmax =

(1− ω2)1/2e−ω
2t.

For −1 ≤ ω ≤ 1, λmax is positive or zero, so
√
λmax is a real number. Therefore

|
√
λmax| = (1− ω2)1/2e−ω

2t for − 1 ≤ ω ≤ 1

Because (1−ω2)1/2 ≤ 1 and e−ω
2t ≤ 1 for −1 ≤ ω ≤ 1 and t > 0, the maximum value

of the product of these two terms is also one, and thus

||e−ÂDB̂tÂÂD|| = |
√
λmax| ≤ 1 for − 1 ≤ ω ≤ 1

For ω < −1 or ω > 1, λmax is negative and real, so
√
λmax is a pure imaginary

number. For b > 0, because
√
−b = i

√
b and |i

√
b| =

√
b, clearly |

√
−b| =

√
b so

|
√
λmax| = (ω2 − 1)1/2e−ω

2t for ω < −1, ω > 1

In the limit ω → ±∞, this quantity goes to zero for all t > 0. Also, as ω approaches

±1, the quantity goes to zero. It is a continuous function; its derivative with respect

to ω is given by

∂

∂ω
|
√
λmax| =

(
(ω2 − 1)−1/2 − 2t(ω2 − 1)1/2

)
ωe−ω

2t

and exists for all ω < −1 and ω > 1 with t > 0. The maximum value of |
√
λmax| will

occur at the value of ω where the derivative vanishes, given by

0 =
(
(ω2 − 1)−1/2 − 2t(ω2 − 1)1/2

)
ωe−ω

2t

(ω2 − 1)−1/2 = 2t(ω2 − 1)1/2

ω2 = 1 +
1

2t

Substituting this value into the expression for |
√
λmax| gives

||e−ÂDB̂tÂÂD|| = |
√
λmax| ≤

((
1 +

1

2t

)
− 1

)1/2

e−(1+ 1
2t

)t =
1√
2t
e−(t+1/2)
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for all ω < −1 and ω > 1 with t > 0.

Because the bounds given by

||e−ÂDB̂tÂÂD|| ≤ 1 for − 1 ≤ ω ≤ 1

≤ 1√
2t
e−t+1/2 for ω < −1, ω > 1

are finite and independent of ω for all t > 0 and all ω ∈ R, the restricted solution

depends continuously on its data.

So, while the unrestricted solution to a parabolic block of dimension 2 may be

strongly ill-posed because it does not depend continuously on its initial data in x,

there may still be a restricted solution that is well-posed as an evolution problem in

t.

The same arguments may be applied to a degenerate differential block. By lemma

4.4.1, a degenerate differential block of dimension 2 with νx = 2 depends continuously

on its initial data. By the same lemma, if νx = 1, it is ill-posed as an evolution

problem in t. However, because the overall solution method for a dynamic simulation

is assumed to be evolutionary in t, it is in general not permissible to enforce data

simultaneously at two different values of t.

4.5 Systems with a singular coefficient matrix pen-

cil

A system for which the coefficient matrix pair (A,B) does not form a regular pen-

cil, but that is equivalent to an algebraic system coupled to a PDE with a regular

coefficient matrix pencil
A11 0

A21 0





u1

u2



t

+


B11 0

B21 0





u1

u2



x

=


C11 0

C21 C22





u1

u2


 +


f1

f2


 (4.35)

where dim(C22) = n − r, r = maxλ∈R(rank(A + λB)), with (A11,B11) regular and

C22 invertible, may be handled in the same manner as one with a regular pencil.

Because the first block row involves only u1, it may be considered independently of
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the second block row. Again assuming a dynamic simulation based on a time evolution

method, the first block row provides the same information regarding dependence on

and location of data given by characteristic analysis in the regular coefficient matrix

pencil case. Once the first block row is solved for u1, no additional data is required to

uniquely determine u2. Therefore let the second block row be called the algebraic

part of the system.

Lemma 4.5.1 u2 depends on at most νtot + 1 partial derivatives of f1, where νtot is

the total of the degeneracies of all of the blocks in the canonical form of the first block

row.

Proof. The algebraic variables u2 are given by

u2 = C−1
22 [A21u1t + B21u1x −C21u1 − f2] (4.36)

Because u1 is the solution to a system with linear forcing, it depends on at most

νtot partial derivatives of f1. By inspection u2 depends on at most νtot + 1 partial

derivatives of f1.

A differential system that is equivalent to an algebraic system may also be coupled

to a regular PDE and handled in the same way. Let N1 and N2 be two conforming

nonzero nilpotent matrices, both either strictly upper triangular or strictly lower

triangular.
A11 0

A21 N1





u1

u2



t

+


B11 0

B21 N2





u1

u2



x

=


C11 0

C21 I





u1

u2


 +


f1

f2


 (4.37)

Because the algebraic subsystem includes coupling via partial derivatives of the alge-

braic variables u2, there may be additional dependence on derivatives of the forcing

functions. Let ν1 and ν2 be the nilpotencies of N1 and N2, respectively.

Lemma 4.5.2 u2 depends on at most νtot + ν1 + 1 partial derivatives of f1 and ν1

partial derivatives of f2 with respect to t, and on at most νtot+ν2+1 partial derivatives

of f1 and ν2 partial derivatives of f2 with respect to x.
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Proof. Let k = max(ν1, ν2) and N = N1
∂
∂t

+N2
∂
∂x

. The algebraic variables u2 are

given by

u2 =

(
k∑
i=0

Ni

)
(A21u1t + B21u1x −C21u1 − f2) (4.38)

Because u1 is the solution to a system with linear forcing, it depends on at most νtot

partial derivatives of f1. The lemma follows by inspection.

The importance of eliminating the algebraic variables u2 from the first block row

prior to characteristic analysis is illustrated by the following simple example.

Example 11 Consider the question of proper data for the following simple system.

ux + 3v = 0

ut + v = 0
(4.39)

Clearly only one equation will give rise to a constant of integration. Suppose the

second equation is assigned to v. The first equation then apparently determines u up

to a constant of integration that may depend on t. However, the occurrence of the

algebraic variable v in the first equation introduces another partial derivative of u, so

upon elimination of v it becomes clear that u is a one-way wave travelling with speed

−1/3:

ut −
1

3
ux = 0 (4.40)

An important special case is systems that contain one or more strictly algebraic

equations. An algebraic equation constrains the dependent variables on every surface

in the independent variable space, so a system that contains an algebraic equation

may be viewed as one for which every surface is characteristic. This corresponds to

A21 = B21 = 0 in the form considered above (4.35). In such a case, elimination of

the algebraic variables from the first block row will not produce additional derivative

terms, and so is not necessary.

If an algebraic equation is differentiated once with respect to time, it becomes

an ordinary differential equation. This is an interior partial differential equation on

surfaces of the form x = constant, such as the domain boundaries. In other words,

169



differentiation with respect to t transforms an algebraic equation, which constrains

the solution on all surfaces, to one that constrains the solution on domain boundaries

of the form x = constant. If one is interested in the equations that partially deter-

mine the solution u on a domain boundary, the original and differentiated algebraic

equations are equivalent.

Definition 4.5.3 A variable u is x-algebraic iff no partial derivative of u with

respect to x appears in the system.

Definition 4.5.4 A variable u is x-differential iff it is not x-algebraic.

Definition 4.5.5 An equation f(u) = 0 is x-algebraic iff no partial derivatives with

respect to x appear in it.

Definition 4.5.6 An equation f(u) = 0 is x-differential iff it is not x-algebraic.

Lemma 4.5.7





A

0


 ,


B

C





 regular ⇒





A

C


 ,


B

0





 regular.

Proof.





A

0


 ,


B

C





 regular ⇒ ∃ λ ∈ R such that

∣∣∣∣∣∣
A + λB

λC

∣∣∣∣∣∣ �= 0. Clearly

λ �= 0. Let C ∈ R
m×n. Multiply the last m rows of

∣∣∣∣∣∣
A + λB

λC

∣∣∣∣∣∣ by 1
λ
. Then

∣∣∣∣∣∣
A + λB

C

∣∣∣∣∣∣ =

(
1
λ

)m ∣∣∣∣∣∣
A + λB

λC

∣∣∣∣∣∣ �= 0 ⇒





A

C


 ,


B

0





 is regular.

Let V (Dt) and V (At) be the set of t-differential and t-algebraic variables respectively,

and let V (Dx) and V (Ax) be the sets of x-differential and x-algebraic variables. Let

E(Dt) and E(At) be the sets of t-differential and t-algebraic equations, and let E(Dx)

and E(Ax) be the sets of x-differential and x-algebraic equations.

Theorem 4.5.8 If νt = 1, J(E(Dt), V (Dt)) and J(E(At), V (At)) have full row rank,

and E(At) ∩ E(Dx) = φ, then differentiating the algebraic equations once with respect

to t produces a first order system with a regular coefficient matrix pencil.
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Proof. Because E(At)∩E(Dx) = φ, differentiating every member of E(At) once with

respect to time produces a first order system. Since νt = 1 and both J(E(Dt), V (Dt))

and J(E(At), V (At)) have full rank, differentiating the t-algebraic equations once pro-

duces a system for which νt = 0, and by lemma 4.3.3, the coefficient matrix pencil

must be regular.

Corollary 4.5.9 If νx = 1, both J(E(Dx), V (Dx)) and J(E(Ax), V (Ax)) have full row

rank, and E(Ax) ∩ E(Dt) = φ, then differentiating the algebraic equations once with

respect to t produces a first order system with a regular coefficient matrix pencil.

Proof. One differentiation with respect to x produces a regular pencil, by an

argument identical to that for differentiation by t in the proof of theorem 4.5.8.

Lemma 4.5.7 guarantees that differentiation by t rather than x also produces a regular

pencil.

4.6 Quasilinear systems

While the analyses and automation methods presented in this chapter deal strictly

with linear systems, an important issue is their applicability to semilinear and quasi-

linear systems. The index of a quasilinear system is a local property in (t, x,u)-space

[54]. Index analysis based on structural algorithms may be applied to quasilinear

and nonlinear systems, subject to the considerations involving numerical singularities

mentioned above, which in the quasilinear case may occur only locally. Structural

algorithms have enjoyed some success when applied to nonlinear DAEs in chemical

engineering literature [27], although examples where they fail are also well known

[71].

Characteristic analysis of semilinear and quasilinear systems may be automated

by freezing the coefficients at some nominal value (u0, x0, t0) of interest. For quasilin-

ear hyperbolic systems, the boundary condition requirements for the frozen system

will be valid only locally [18], and one expects the same to hold for systems that con-

tain hyperbolic and differential subsystems. For problems that contain a parabolic
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subsystem, additional assumptions on the variables associated with the infinite speed

characteristics will undoubtedly be required, because the boundary condition problem

for these systems is inherently nonlocal.

An important question is whether continuous dependence of a frozen coefficient

linearization on its data implies the same property in the original system. A formal

linearization produces the system that governs small perturbations about a nominal

value; this typically introduces lower-order terms [44]. Quasilinear hyperbolic sys-

tems for which the frozen coefficient system depends continuously on its data may be

perturbed by lower order terms and retain continuous dependence; formal lineariza-

tions that describe small perturbations about the same nominal value at which the

system was frozen thus also depend continuously on their data, and so the original

system is said to be continuously dependent on its data at that point [44]. By analogy

using theorem 4.3.4, continuous dependence of a frozen coefficient system on its data

should imply the same property in all formal linearizations of the original system

around (u0, x0, t0), and given proper initial and boundary conditions, the original

quasilinear system might then be considered well-posed at (u0, x0, t0).

4.7 The degeneracy and perturbation index

Campbell and Marszalek deal primarily with restricted solutions, where all boundary

conditions are used to determine the function space, and initial data is used to select

a unique solution. The perturbation index is by definition the highest order derivative

of either initial data or forcing functions that appears in the restricted solution.

The approach presented here deals primarily with unrestricted solutions, built on

a characteristic interpretation of fairly general linear, first order systems. The degen-

eracy of the system is shown to provide an upper bound on the order of derivatives of

data and forcing functions that can appear in the unrestricted solutions. Restricted

solutions are considered only for degenerate parabolic parts of first order systems.

The consistent Cauchy data problem is a (typically underdetermined) interior par-

tial differential system in the dependent variables and their exterior partial deriva-
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tives; e.g., for a system of first order in t, the consistent Cauchy data problem on

(t = t0) is some underdetermined PDE in the 2n quantities ut(0, x) and u(0, x). A

unique solution may require specification of some of those quantities over the en-

tire initial surface t = 0; these arbitrary specifications are called dynamic degrees

of freedom on t = 0. Because in general it is an interior partial differential sys-

tem, depending on what dynamic degrees of freedom are specified, additional data on

lower dimensional subsurfaces within t = 0 may be required in order to determine a

unique solution to the consistent initialization problem. Also, the initial and bound-

ary data must agree at all points of intersection, or a corner singularity will produce

a discontinuity.

Example 12 Consider the following problem [12].

ut + vxx = f1(t, x)

vxx − w = f2(t, x)

wt = f3(t, x)

(4.41)

Let the domain be 0 ≤ x ≤ L, t ≥ 0, and let the initial and boundary conditions be

v(t, 0) = v(t, L) = 0

u(0, x) = u0(x)
(4.42)

along with either

v(0, x) = v0(x) (4.43)

or

w(0, x) = w0(x) (4.44)

The differentiation index with respect to t of this system is 1. There are no implicit

constraints on Cauchy data on t = 0. Let y = ut and z = wt. The equations that

constrain consistent Cauchy data are

y + vxx = f1(t, x)

vxx − w = f2(t, x)

z = f3(t, x)

(4.45)
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so there are two dynamic degrees of freedom.

Consider the two specifications presented in [12]. Case I will be

u(0, x) = u0(x)

w(0, x) = w0(x)
(4.46)

and Case II will be

u(0, x) = u0(x)

v(0, x) = v0(x)
(4.47)

Both consistent Cauchy problems are interior PDEs on t = 0. Specifically they

form a DAE in x. The differentiation index of Case I with respect to x is 1. It has

two dynamic degrees of freedom that may be specified on a point within t = 0. All

variables except for v and vx are uniquely determined. The boundary data for the

original problem provides the two dynamic degrees of freedom needed for this second

lower dimensional consistent Cauchy data problem.

The differentiation index of Case II with respect to x is 3. No dynamic degrees of

freedom exist on surfaces of the form t = 0, x = k, so there is no lower dimensional

consistent Cauchy data problem for Case II. The consistent Cauchy data problem for

Case I or Case II would have been a strictly algebraic system anyway.

In Case II, the second derivative of the data v0(x) is clearly used to determine

w(0, x), so the perturbation index of the original problem is 3. In Case I, no deriva-

tives of data appear in the solution, so the perturbation index is 1.

This example highlights a fundamental difference between the differentiation and

perturbation index analyses. The former approach performs differentiation index

analysis with respect to the normal direction to the initial hyperplane, in order to de-

termine the number of dynamic degrees of freedom over the entire initial hyperplane.

Specification of those dynamic degrees of freedom yields a new problem in one fewer

independent variables. Different specifications lead to different new problems.

The new problem is treated as distinct. Index analysis may again be used to de-

termine the number of dynamic degrees of freedom on a particular hyperplane within
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this new, lower dimensionality independent variable space. Repeated application of

differentiation index analysis on consistent Cauchy data problems and subproblems

can thus capture the different smoothness requirements that appear at different stages

of the solution.

The latter approach considers all such lower dimensional problems together with

the original. The perturbation index reflects the derivatives of data that appear in the

solution of the original consistent Cauchy data problem together with any derivatives

that appear in consistent Cauchy data subproblems.

Contrast these approaches with the calculation of the degeneracy for this example.

The degeneracy of a linear system gives an upper bound on the order of derivatives

and forcing functions that appear in the solution. The system may be reduced to first

order by introducing a new variable s = vx to produce a linear system with linear

forcing.


1 0 0 0

0 0 0 0

0 0 0 0

0 0 1 0







u

v

w

s



t

+




0 0 0 1

0 1 0 0

0 0 0 1

0 0 0 0







u

v

w

s



x

+




0 0 0 0

0 0 0 −1

0 0 −1 0

0 0 0 0







u

v

w

s




=




f1(t, x)

0

f2(t, x)

f3(t, x)




(4.48)
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The canonical form of the system is


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0







u

w

v

s



t

+




0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1







u

w

v

s



x

+




0 1 0 0

0 0 0 0

0 0 0 −1

0 −1 0 0







u

w

v

s




=




f1(t, x)− f2(t, x)

f3(t, x)

0

f2(t, x)




(4.49)

The degeneracy of the system is therefore zero, which implies that no derivatives of

data or forcing functions occur in the solution.

This result may be reconciled with the differentiation and perturbation index

analyses by recalling that the degeneracy assumes an unrestricted, characteristic-like

solution. Indeed, if data u and w are given on t = 0, and for v and s on x = 0, the

solution does not depend on any derivatives of that data or the forcing functions.

w(t, x) =

∫ t

0

f3(τ, x)dτ + w(0, x)

u(t, x) =

∫ t

0

[
f1(τ, x)− f2(τ, x)−

∫ τ

0

f3(η, x)dη + w(0, x)

]
dτ + u(0, x)

s(t, x) =

∫ x

0

[
f2(t, χ) +

∫ t

0

f3(τ, χ)dτ + w(0, χ)

]
dχ + s(t, 0)

v(t, x) =

∫ x

0

[∫ χ

0

[
f2(t, ψ) +

∫ t

0

f3(τ, ψ)dτ + w(0, ψ)

]
dψ

]
dχ + v(t, 0)

(4.50)

Specifically, the degeneracy analysis inherently assumes that the initial conditions will

be given for u and w. With this specification, the index analyses reflect the bound

given by the degeneracy. The combined application of degeneracy and the recursive

Cauchy analysis does, however, yield the same information as the perturbation index.

Note the subtle problem with the specification used in Case II. Specifically, in this

consistent Cauchy data subproblem, no dynamic degrees of freedom exist on points

within t = 0. The boundary conditions for the original problem are therefore either

inconsistent or redundant with this second consistent Cauchy data problem.

176



Chapter 5

Implementation and Examples

5.1 Implementation

The goal of this work is to automate the analyses of the previous chapters as much as

possible. In particular, determination of the index, degeneracy, characteristic direc-

tions, and variables associated with the subsystems of the canonical form will allow

a simulator to verify initial and boundary conditions, identify systems of high index

with respect to the evolution variable t, and detect some ill-posed systems.

Difficulties with direct calculation of the canonical form of a DAE [9] and a de-

sire to develop methods that may be used for nonlinear problems have led to the

development of structural index algorithms [45, 63]. These algorithms work with the

occurrence information to determine the minimum number of differentiations required

to produce a low index (zero or one) system. It is well known that DAEs of high index

due to numerical singularities may escape detection by structural algorithms. Recent

work [71] has highlighted the fact that structural algorithms may also overestimate

the number of differentiations required to produce a low index system. However, the

low computational cost of these algorithms and their applicability to nonlinear and

large, sparse systems allows them to be used with considerable success in practical

applications1.

1If new algorithms emerge that provably perform this analysis properly, then they can be applied

directly and the answer will be unambiguous.
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A second algorithm, called the method of dummy derivatives [56] has been used

successfully in conjunction with Pantelides’ algorithm to automatically generate a low

index system that is mathematically equivalent to the original system and explicitly

preserves all constraints. From this dummy reformulation of the original system,

one may obtain the dynamic degrees of freedom, which is equal to the number of

differential variables. Note that this number may be correct even in the case where

the number of differentiations has been overstated by the structural algorithm.

Both algorithms may be applied in an extremely straightforward manner to PDEs.

The index with respect to t, for example, is determined by considering all interior

partial differential operators together with algebraic operators. Whether the calcula-

tions would be done using Laplace transforms or operator-valued coefficient matrices,

the incidence matrix for t-algebraic occurrences of the dependent variables is formed

by simply merging the incidence matrices for ux and u. Once this has been done, the

two algorithms will (in the absence of numerical singularities) produce an equivalent

system of index 0 or 1 with respect to t that reflects the true number of t-differential

variables. The number of initial conditions required in order to determine a unique

solution is equal to the number of t-differential variables in the t-dummy reformula-

tion.

The most basic necessary condition for well-posedness of a linear system is the

regularity condition of Campbell and Marszalek [12]. In order for it to satisfy the

regularity condition, the system must be an output set. In order for the system to

have an output set, it must have a transversal with respect to all occurrences of the

dependent variables and their partial derivatives. This chain of implications reveals

that existence of a transversal is a necessary condition for well-posedness. Pantelides’

algorithm checks for this transversal as a preprocessing step that guarantees the algo-

rithm has finite termination. A numerical, rather than structural, check of regularity

for systems with simple forcing will be presented below.

Routines that calculate the generalized eigenvalues and their degeneracies for regu-

lar coefficient matrix pairs are readily available [33, 21]. If any generalized eigenvalues

are complex, the system is ill-posed. Otherwise, if the degeneracy of the system is
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zero, theorems 4.2.6 and 4.3.4 guarantee that the solution depends continuously on its

data. If the degeneracy of the system is nonzero but the forcing is simple, the system

is weakly well-posed. For linear forcing and nonzero degeneracy, it is not in general

possible at present to distinguish between weakly well-posed and strongly ill-posed

systems.

Index analysis may be used to identify the total number of boundary conditions

required to determine a unique solution. Just as index analysis with respect to t gives

the number of dynamic degrees of freedom on surfaces of the form t = const, index

analysis with respect to x gives the number of dynamic degrees of freedom on surfaces

of the form x = const. In a dynamic simulation with t as the evolution variable, all

such degrees of freedom on surfaces of the form t = const must be specified as initial

conditions, while dynamic degrees of freedom on surfaces of the form x = const may

be specified on either x = x1 or x = x2.

The distribution of these boundary conditions between the boundaries x = x1

and x = x2 may be ascertained from the generalized eigenvalues. Each block in

the hyperbolic subsystem was shown to be equivalent to an ODE along a particular

direction in the (x, t) plane, given by dx/dt = τi/ρi. Because a dynamic simulation

in t is assumed, data provided at t2 may not be used to specify a unique solution at

t1 < t2, so initial conditions for these ODEs must be provided as boundary conditions

on x = a for ODEs along dx/dt > 0, and as boundary conditions on x = b for ODEs

along dx/dt < 0.

Blocks in the parabolic subsystem are equivalent to ODEs in x, or along the

direction dt/dx = 0. An initial condition for such an ODE may in general be given at

either domain boundary in x. In particular, a parabolic block of dimension 1 requires

a boundary condition at either x = a or x = b.

If the only blocks with nonzero degeneracy are part of the parabolic subsystem

and of dimension 2, and the index of the system with respect to t is 1, lemma 4.4.1

guarantees that the solution to the parabolic blocks will not depend continuously

on their data if that data is enforced at a single end of the domain boundary in x.

Example 10 shows that such a problem may still be well-posed as an evolution problem
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in t if one boundary condition is enforced at each end of the domain boundary in x

for every parabolic block of degeneracy 1.

By the same approach but with the roles of t and x reversed, if the only blocks

with nonzero degeneracy are part of the differential subsystem and the index of the

system with respect to x is 1, lemma 4.4.1 guarantees that the solution will not depend

continuously on its data if that data is enforced at a single surface. As an evolution

problem in t, the problem is therefore ill-posed.

It is possible to move beyond simply counting the number of required bound-

ary conditions and to identify the information that those boundary conditions must

provide. The matrices P and Q that transform the system to its generalized charac-

teristic form may be computed stably only when the degeneracy of the system is zero;

when the degeneracy is nonzero, stable similarity transforms exist that take both A

and B to upper triangular matrices [21]. While not the characteristic form of the

system, this generalized upper triangular form may be used in the same manner as

the characteristic form for a more detailed boundary condition analysis.

Consider now a linear system in generalized upper triangular form (the generalized

characteristic form may be used instead if available).

PAQvt + PBQvx = −PCQv + Pf(t, x) (5.1)

Let ρi = (PAQ)ii and τi = (PBQ)ii. Because the coefficient matrix pencil is assumed

regular, it is not possible for ρi = τi = 0, and thus an output set assignment of vi to

equation i is implied. Given this output set assignment, each dependent variable is

given as the solution to a (possibly degenerate) one-way wave.

A dynamic simulation implies advancing a solution forward in t. The values of

the dependent variables vi for which the associated characteristic direction ρi/τi is

nonpositive are determined at x = a by the outward-directed characteristics. Simi-

larly, values associated with characteristics that have speeds greater than or equal to

0 are determined at x = b. Once the value of a dependent variable associated with

an infinite speed characteristic is specified at one domain boundary, it is determined

at the other as well. Initial conditions on t = 0 determine the variables associated
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with characteristics of speed 0 on the boundaries at all later times.

Let vp, vr, vl, and vd be the variables associated with infinite, positive, negative,

and zero speed characteristics respectively. The values of the dependent variables that

are determined by characteristics at each boundary may be written as the solution

to a system of the following form.




Ip 0 0 0 Ip 0 0 0

0 Il 0 0

0 0 0 Id

0 0 Ir 0

0 0 0 Id







vp(a, t)

vl(a, t)

vr(a, t)

vd(a, t)

vp(b, t)

vl(b, t)

vr(b, t)

vd(b, t)




= g(t, x) (5.2)

This system represents the parts of the solution that are fully determined at x = a

and x = b by characteristics; it is not in general possible to give the righthand side

analytically. It can, however, be used to evaluate the information contained in the

boundary conditions specified by the engineer. Each dependent variable vi in the

generalized upper triangular form is a linear combination of the original variables u.

Transforming back to these original variables, the system becomes


Cp Cp

Cl

Cd

Cr

Cd





u(a, t)

u(b, t)


 = f(t, x) (5.3)

Suppose the boundary conditions to be enforced at x = a are given by Gau =

h1(t), and at x = b by Gbu = h2(t). The boundary conditions determine a unique
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solution if ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Cp Cp

Cl

Cd

Cr

Cd

Ga

Gb

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

�= 0 (5.4)

If the boundary conditions are Dirichlet conditions, then Ga and Gb are real matrices,

and this determinant may be evaluated numerically. For Neumann and Robin con-

ditions, the coefficient matrix for the boundary conditions is operator valued, which

makes evaluation of the determinant a symbolic calculation.

Finally, consider systems with a singular coefficient matrix pencil. The cost of

verifying the conditions given by theorem 4.5.8 and corollary 4.5.9 under which dif-

ferentiation of algebraic equations with respect to t is guaranteed to produce a regular

coefficient matrix pencil is greater than the cost of simply performing the necessary

differentiations. After differentiation, the generalized upper triangular form will re-

veal whether or not the differentiations produced a regular pencil.

This analysis and implementation may be summarized as follows.

1. Use Pantelides’ algorithm to obtain an estimate of the index of the system with

respect to both t and x. In the absence of numerical singularities of the relevant

matrices, the algorithm will return the true indices.

2. Use the information returned by Pantelides’ algorithm with the method of

dummy derivatives to produce two reformulated systems that are low index

with respect to t and with respect to x.

3. Differentiate any algebraic equations once with respect to t. Calculate the gen-

eralized eigenvalues of this new coefficient matrix pair. Calculate the matrices

P and Q that transform the coefficient matrix pair to either its canonical form

or its generalized upper triangular form.
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The results of the above three calculations provides a great deal of information

regarding the index and well-posedness of a particular unit model. In the absence

of numerical singularities, Pantelides’ algorithm returns the index of the system with

respect to t directly. If νt ≥ 2, any reasonable method of lines semidiscretization in t

will produce a high index DAE.

Well-posedness information based on the results of these three calculations may

be summarized as follows.

1. If Pantelides’ algorithm terminates because it is unable to generate a transversal,

a unique solution does not exist and the problem is ill-posed.

2. If the number of initial conditions is less than to the number of t-differential

variables in the t-dummy reformulation, the solution is not unique, and the

problem is ill-posed. If the number of initial conditions is greater than to the

number of t-differential variables in the t-dummy reformulation, the problem

is overdetermined. It may be redundant or inconsistent; in the latter case no

solution exists and the problem is ill-posed.

3. If the total number of boundary conditions is less than to the number of x-

differential variables in the x-dummy reformulation, the solution is not unique,

and the problem is ill-posed. If the number of boundary conditions is greater

than the number of x-differential variables in the x-dummy reformulation, the

problem is overdetermined. It may be redundant or inconsistent; in the latter

case no solution exists and the problem is ill-posed.

4. If the number of boundary conditions at x = a is less than the number of

positive generalized eigenvalues, or the number of boundary conditions at x = b

is less than the number of negative generalized eigenvalues, the solution is not

unique, and the problem is ill-posed.

5. If any generalized eigenvalues of the coefficient matrix pair are complex, the

solution does not depend continuously on its data, and the problem is ill-posed.
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6. If C = 0 and any generalized eigenvalues of the coefficient matrix pair are given

by 0/0, the system fails the regularity condition numerically, so the solution is

not unique and the problem is ill-posed.

7. If any eigenvalue given by τ/ρ, ρ �= 0 has degeneracy 1, and νx < 2, the solution

does not depend continuously on its data, and the problem is ill-posed.

Again note that this analysis applies rigorously only to linear systems. Extensions

based on local values may be made to semilinear and quasilinear systems, but very

few general statements may be made about truly nonlinear distributed unit models.

5.2 Examples

5.2.1 Larry’s problem: pressure-swing adsorption

Could the analyses outlined in the previous section enable a simulator to provide

some insight into the cause of Larry’s difficulties with the pressure-swing adsorption

simulation? The first step is estimation of the index. Pantelides’ algorithm differen-

tiates the isotherm once before terminating, indicating that the index of the system

with respect to t is 2, and thus immediately pointing to the underlying cause of the

simulation failure. The original system had a high index with respect to t, which

was preserved by the method-of-lines semidiscretization in t to produce a high index

DAE.

The simulator could provide an equivalent dummy reformulation of the original

PDE that has index 1 with respect to t. There are two possible dummy reformulations;
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one is

ρBRT

P

3∑
i=1

q′i +
ε

P
Pt + uz = 0

εyit +
ρBRT

P
q′i +

εyi
P

Pt + (uyi)z = 0, i = 1 . . . 3

4∑
i=1

yi = 1

qi −
qsati Bi(yiP )

1
ni

1 +
∑3

j=1 Bj(yjP )
1

nj

= 0, i = 1 . . . 3

(
1 +

3∑
j=1

Bj(yjP )
1

nj

)
q′i +

(
qi

3∑
j=1

BjP
1

nj − qsati BiP
1

ni

)(
1

ni

)
y

(
1

ni−1

)
i yit = 0, i = 1 . . . 3

(5.5)

By item 3 in the analysis of the equations, only three initial conditions should be

enforced.

Discretizing this system using the same upwind finite difference scheme and em-

ploying the same BDF integrator in time produces a low index DAE. Once the (re-

dundant) initial conditions on qi=1...3 are eliminated, the solution proceeds normally.

Results for the first few operating cycles appear in figure 5-1.

In this case automated model analysis is able to immediately identify the root

cause of the simulation failure. Furthermore, a simulator would be able to correct the

underlying problem automatically, with no intervention on Larry’s part.

5.2.2 Moe’s problem: compressible flow

What about Moe’s difficulties with his compressible flow simulation? Can a process

simulator use these tools to help get the simulation working?
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Figure 5-1: Simulation results for reformulated problem

In quasilinear form, the model equations are


1 0 0 0 0

u ρ 0 0 0

h 0 0 ρ 0

0 0 0 0 0

0 0 0 0 0







ρ

u

p

h

i



t

+




u ρ 0 0 0

u2 2ρu 1 0 0

uh ρh− p −u ρu 0

0 0 0 0 0

0 0 0 0 0







ρ

u

p

h

i



x

=




0

0

0

p− (γ − 1) ρi

i− h + 1
2
u2



(5.6)

Pantelides’ algorithm, applied to determine the index with respect to t, locates no

minimally structural subsets of equations. The index with respect to t is in fact 1. No

dummy reformulation is necessary, and the number of dynamic degrees of freedom on

t = 0 is three. Also, the system does not fail to meet the regularity condition based

on structural criteria.

The coefficient matrices do not form a regular pencil. Because νt = 1, E(At) ∩
E(Dx) = φ, and both J(E(Dt), V (Dt)) and J(E(At), V (At)) have full row rank for all

physical values of ρ, theorem 4.5.8 guarantees that differentiating E(At) once with
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respect to t will produce a system with a regular coefficient matrix pencil.


1 0 0 0 0

u ρ 0 0 0

h 0 0 ρ 0

(1− γ) i 0 1 0 (1− γ) ρ

0 u 0 −1 1







ρ

u

p

h

i



t

+




u ρ 0 0 0

u2 2ρu 1 0 0

uh ρh + p u ρu 0

0 0 0 0 0

0 0 0 0 0







ρ

u

p

h

i



x

=




0

0

0

0

0



(5.7)

The system is quasilinear, so the coefficient matrices must be frozen at a point of

interest. Consider the domain boundary at x = 10, and let conditions at x = 10 be

ρ = 79.6
kg
m3 , u = 0.00 m

s , p = 2.76 MPa, h = 86.6 kJ, and i = 86.6 kJ. The frozen

coefficient matrices are submitted to an eigensolver, such as the LAPACK routine dgegv.

The result is three characteristic directions parallel to the t coordinate axis and two

complex characteristic directions. The system is thus ill-posed in a neighborhood

of these nominal values, and cannot be solved by a simulator as part of a dynamic

simulation.

A process simulator could thus advise Moe that the equations, as he has entered

them, are ill-posed. On review of the input, the sign error made in the energy balance

(1.13) should be corrected.

(ρh)t + (ρuh + up)x = 0 (5.8)

The analysis may then be repeated for the corrected system. Now, the degeneracy

is found to be zero, with two characteristic directions parallel to the t coordinate

axis and three with slopes −170.32, 50.00, and 270.32 m/s in the (t, x) plane. The

corrected problem is therefore well-posed
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Figure 5-2: Corrected pipe pressure profile

Simulation results for the corrected problem appear in figure 5-2. As expected,

a rarefaction enters the pipe from both ends. This time, the simulation failure was

the result of a simple sign error on Moe’s part. This sign error produced a strongly

ill-posed system, which can be detected by a process simulator through the use of the

analyses developed in this thesis.

5.2.3 Curly’s problem: electric power transmission

Could the automatable analyses developed in this thesis help uncover the cause of

Curly’s electric power line simulation failure? The index of the system with respect to

both t and x is zero; Pantelides’ algorithm would correctly return no differentiations.

Therefore, no reformulation is necessary. The coefficient matrices are linear and have

two generalized eigenvalues ±182, 879. The corresponding transformation matrices P

and Q are

P =


−1.19E − 3 1.00

1.19E − 3 1.00


 Q =


−4.21E + 2 4.21E + 2

5.00E − 1 5.00E − 1


 (5.9)

The canonical form of the system is
−5.47E − 6

5.47E − 6


vt +


1

1


vx +


−1.40E + 4 1.40E + 4

−1.40E + 4 1.40E + 4


v = 0

(5.10)
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Several things are apparent from the canonical form. First, one boundary condi-

tion must be enforced at each end of the domain. The problem, as Curly has defined

it, is ill-posed because the two boundary conditions enforced at the substation do

not determine a unique solution. In this case, it means that he must obtain data

from another substation at the other end of the line, in order to provide the required

boundary condition at that end of the domain.

Also, once these measurements have been taken, the characteristic speeds give a

time step size restriction. For a finite difference scheme, the time step must be limited

by a CFL condition [81]. Here, that restriction is ∆t ≤ ∆x/182, 879.

Why, then, did the simplified model work so well? Analysis of the simplified

model shows that the index with respect to t is 2. No initial conditions may be

arbitrarily specified. Initializing u at an inconsistent value caused the small initial

jump in current shown in the simulation results. So, there was in fact a problem with

the simplified model, but it was less serious than the outright failure that befell the

simulation based on the full model. Also, the canonical form of the simplified system

consists of a single degenerate parabolic block with simple forcing. Two boundary

conditions at the same domain endpoint therefore do determine a unique solution of

the simplified model. Finally, there is no CFL condition limiting the time step.

In this case, the mathematical properties of the simplified model are very different

from those of the full model. The analyses developed in this thesis uncover these

differences, and may be used to provide very understandable feedback to the engineer;

specifically, that he needs to remove a boundary condition at the left domain endpoint,

and enforce one at the right. This means, for Curly, going out into the field and

obtaining a new set of measurements at a new location, or inferring new information

from existing data.

5.2.4 Shemp’s problem: combustion kinetics

What about Shemp’s difficulties with his combustion kinetics model? Can the tools

developed in this thesis help diagnose the cause of the problem?

Pantelides’ algorithm, applied to determine the index with respect to z, differen-
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tiates the third and seventh through eleventh equations a single time before termi-

nating, thereby indicating that the index with respect to z is 2.

A dummy reformulation of the problem consists of the following modifications to

the original equations

cit + u′ciz + (civi)z = ωi

vi = −Di

xi
x′
i

(5.11)

together with the following new equations

ρ′xi + ρx′
i = ciz

Rρ′T + RρT ′ = 0

T ′ =
∂

∂z
g(z)

ρ′m = ρ′wmean + ρw′
mean

w′
mean

4∑
j=1

yj
wj

+ wmean

4∑
j=1

y′j
wj

= 0

u′ρm + uρ′m = 0

y′iρm + yiρ
′
m = wiciz

(5.12)

However, after removing the conditions on u(0) and xi(0), the simulation still fails

during the initialization calculation. With cit set to zero, the system is a DAE in z,

so the characteristic analysis offers no further insight.

So what is wrong? It turns out that there is a problem with this particular model

formulation. Consider equations 6 through 10 in the original model 1.18. Equation 9

must be assigned to T , because no other dependent variables appear in it. Equation

8 must then be solved for ρ, because only ρ and T appear in it, and equation 9 is

solved for T .

Equations 6, 7, and 10 must then be assigned to some combination of c, y, ρm,

and wmean. However, they cannot be used to solve for y, ρm, and wmean. To see

this, first use equation 7 to eliminate ρm, and rearrange the terms in the remaining
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equations to

wmean
yi
wi

=
ci
ρ

wmean

∑ yi
wi

= 1
(5.13)

and then examine the Jacobian of these equations with respect to wmean and y.


y1
w1

wmean

w1
0 0 0

y2
w2

0 wmean

w2
0 0

y3
w3

0 0 wmean

w3
0

y4
w4

0 0 0 wmean

w4∑ yi

wi

wmean

w1

wmean

w2

wmean

w3

wmean

w4




(5.14)

Clearly the Jacobian is singular, so the equations cannot be solved for ρm, y, and

wmean.

Therefore, at least one of these equations must be solved for a concentration ci.

Because all ci are differential variables, one of the differential equations involving ciz

must then be assigned to an algebraic variable. Differentiating that equation once

with respect to z then gives the derivative of that variable with respect to z as a

function of cizz ; the equation assigned to ci must be differentiated twice to eliminate

it, and therefore the dummy reformulation is still high index.

What if a dummy reformulation in which ci was an algebraic variable (i.e. a

new dummy derivative c′ had been introduced) was chosen instead of the one shown

above? In this case, the differential variables would be v and x. However, not all

of the elements of x may be set independently; there is an implicit constraint that

relates the xi.

To see this constraint, one can rearrange the terms of equation 6 to yi/wi = ci/ρm

and then sum to obtain

∑ yi
wi

=
1

ρm

∑
ci (5.15)

Similarly, rearrange equation 3 to ρxi = ci and sum to produce

ρ
∑

xi =
∑

ci (5.16)
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Using this result to eliminate
∑

ci from above gives

∑ yi
wi

=
ρ

ρm

∑
xi (5.17)

Now, from equation 7,

ρ

ρm
=

1

wmean

(5.18)

which may be used to eliminate ρ/ρm from above to obtain

∑ yi
wi

=
1

wmean

∑
xi (5.19)

Finally, inverting both sides and switching them produces

wmean
1∑
xi

=
1∑ yi

wi

(5.20)

Any solution must satisfy the above relationship. It must also satisfy equation 10,

which is

wmean =
1∑ yi

wi

(5.21)

This is only possible if
∑

xi = 1, so not all xi are independent.

This motivates the inclusion of the “correction factor” into the diffusion velocity

equations found in some formulations [15]. In fact, if a new variable vc is added to

the righthand side of equation 2, and a new equation for the mass fractions yi

∑
yi = 1 (5.22)

and their dummy derivatives

∑
y′i = 0 (5.23)

are appended to the system, the dummy reformulation becomes well-behaved. The

fourth initial condition on yi is no longer needed. Concentration profiles calculated

for this formulation appear in figure 5-3.

This example, beyond being interesting in its own right, also highlights the fact

that the automated analyses developed in this thesis are not capable of detecting and
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Figure 5-3: Concentration profiles for reformulated combustion model

dealing with every mathematical property of every possible distributed unit model.

Here, a numerical singularity that goes undetected by structural analysis prevents the

initialization calculation from succeeding, and manual reformulation of the model is

required.

5.2.5 Moe’s problem revisited: adaptive boundary condi-

tions

The boundary condition evaluation method described earlier (5.4) may be modified

slightly to create a method by which a simulator could automatically adapt boundary

conditions as required to form a well-posed problem.

The Courant-Isaacson-Rees (CIR) scheme [19] solves hyperbolic partial differential

equations using a linear finite difference approximation to the characteristic form of

the model equations. Consider a quasilinear hyperbolic system in t and x over the

domain 0 ≤ x ≤ 1, t ≥ 0.

ut + B(u, t, x)ux = f(u, t, x) (5.24)

Let the domain be discretized into a set X of equispaced points, and let xi ∈ X be a

particular point in that set. Initial data gives the values of the dependent variables

u(xi, 0).
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This scheme evaluates the coefficient matrix B at each node. For example, consider

the ith node in figure 5-4. The frozen coefficient system is

ut + B(u(0, xi), 0, xi)ux = f(u(0, xi), 0, xi) (5.25)

Now, let L and ΛΛΛ contain the left eigenvectors and the eigenvalues of the frozen coef-

ficient matrix B(u(0, xi), 0, xi), respectively, so the characteristic form of the frozen

coefficient system is

L
du

dt
= Lf(u(0, xi), 0, xi) along diag(Idx) = diag(ΛΛΛdt) (5.26)

This system (5.26) is then used as an approximation to the system after a small

increment h in time t. Using the explicit Euler finite difference approximation to the

directional derivative along each characteristic gives equations of the form

li

(
u(h, xi)− u∗

i

h

)
= lif(u(0, xi), 0, xi) (5.27)

where u∗
i is the vector of values of u at the foot of the ith characteristics of the frozen

coefficient system, calculated by interpolation between values at grid points on t = 0.

For example, in figure 5-4, u∗
a = u(xa, 0) is the value at the foot of characteristic a.

Let vi = liu
∗
i and gi = lifi(u

∗
i , 0, xi). Then the equations that give the value of

u(xi, h) are

Lu(xi, h) = v + hg (5.28)
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This is the CIR scheme. For linear systems with simple or linear forcing, the coeffi-

cients on the left and righthand sides are constant, so calculating new values after a

time step at each node only requires solving the same system with multiple righthand

sides.

Performing the same approximation at a boundary node, but retaining only the

outward-directed characteristics, produces the system that partially determines the

solution at that boundary (5.4). If the characteristics associated with each line in that

system is traced back from the next time t+h to the current time t, and interpolation

is used to determine the values at the feet of those characteristics, the righthand side

is given in the same manner as in the CIR scheme, and is depicted graphically in

figure 5-5.

Performing Gauss elimination with row and column pivoting on this (possibly

underdetermined) system gives a number of pivot variables that are determined by

the characteristic information. The simulator could take this information, together

with the flowsheet topology and a specification of what variables refer to the same

quantities in different unit models (for example, ρ in the pipe model refers to the same

quantity as ρA in the model for valve 1), and attempt to set Dirichlet conditions on

the remaining variables by equating values at the boundary to those in the adjacent

unit, in order to form a fully determined system.
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Figure 5-6: Pressure profile
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Figure 5-7: Characteristics and boundary condition requirements for Euler equations

of compressible flow

For Moe’s problem, consider use of this adaptive boundary condition scheme at

the pipe ends, together with a Godunov scheme [32] using Roe’s Riemann solver [72]

on the domain interior. Using the LAPACK routine rgg to solve the generalized

eigenvalue problem, and allowing the quantities that appear in both the pipe and the

valve models to be u, ρ, p, and i, the method described is able to adapt the boundary

conditions as needed to maintain a well-posed problem.

Possible characteristic directions at the endpoints of the domain and correspond-

ing boundary condition regimes appear in figure 5-7. Three characteristics directed

into the domain correspond to supersonic flow into the pipe at that end, and three

boundary conditions are required. Two characteristics directed inward and one out-
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ward occurs when flow enters the pipe at subsonic conditions, and two boundary

conditions are required. One characteristic directed inward corresponds to subsonic

flow out of the pipe, which requires one boundary condition. Finally, no inward char-

acteristics represents supersonic (or choked) flow out of the pipe, and no boundary

conditions are required. The conditions at the two ends of the pipe may occur in any

combination. Because it is based on the characteristics, the modified CIR scheme at

the boundary together with the boundary condition selection method can correctly

adapt to any combination of these flow regimes.

The pressure profile appears in figure 5-6. The dual rarefaction shown earlier

in the short-time profile is replaced quickly by the evolving quasi-steady pressure

gradient.

The boundary condition changes at the left end (x = 0) appear in figure 5-8. The

short time results appear in the bottom frame, and results for the entire simulation

appear in the upper frame. The method correctly adapts from one (ρ) to two (ρ and

i) boundary conditions after the flow reversal. It correctly adjusts again when a sonic

transition occurs, and enforces a third (p) boundary condition.

Boundary conditions changes enforced by the method at the right end (x = 10)

appear in figure 5-9. No flow reversal occurs, and the method correctly enforces a

single boundary condition on ρ until the sonic transition at approximately 0.1 seconds.

The method removes this boundary condition when it is no longer needed, and obtains

the solution at the boundary entirely from characteristic information after the sonic

transition.

Without any intervention from Moe, or even any knowledge of the mathematical

changes in the boundary condition requirements for well-posedness that occur at flow

reversals and sonic transitions, a simulator employing this method could successfully

adapt the boundary conditions. Moe needed only provide information regarding what

variables refer to the same physical quantities in the different unit models.
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Figure 5-8: Velocity and Boundary Conditions at Left End of Pipe
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Chapter 6

Conclusions and Discussion

6.1 Project summary

A generalization of the differentiation index of a DAE that applies to PDEs is pre-

sented. This generalized index is calculated with respect to a direction in the in-

dependent variable space of the equations. The index with respect to an arbitrary

direction may be calculated by transforming the independent variables to a new coor-

dinate system. Classical PDEs, such as the Navier-Stokes equations, as well as more

general PDEs may have a high index with respect to one or more directions in the

independent variable space.

This index analysis makes explicit all equations that must be satisfied by Cauchy

data on a hyperplane orthogonal to the direction of interest. These equations may be

simple algebraic, differential-algebraic, or partial differential-algebraic equations. In

either of the latter two cases, additional data or side conditions may be required on

subsurfaces of the original hyperplane. This index analysis may be used to determine

restrictions on this additional data.

The most obvious application of this analysis is to consistent initialization problem

for PDEs in a dynamic simulation. In this case the PDE is assumed to be an evolution

problem. Marching solution techniques for such problems, whether built using the

method of lines or the Rothe method, require consistent data on the initial hyperplane

xj = xj0, where xj is the evolution variable.
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The index with respect to time also has applications in numerical solution using

the method of lines, in the same way that the differentiation index of DAEs is used

in construction of robust, automated integration methods that preserve all solution

invariants [8, 25, 56]. One of the strengths of the differentiation index of a PDE as

developed in this work is that it is a very natural generalization of the differentiation

index of a DAE. As such, it allows algorithms like the Pantelides’ algorithm [63] and

the dummy derivative method [56], that are based on the DAE differentiation index,

to be applied to PDEs as well, in a very straightforward manner.

This project also contributes a characteristic-like analysis of general first order

systems. This analysis is applicable to a much broader class of equations than classical

characteristic analysis, which applies only to strictly hyperbolic systems. This new

characteristic-like analysis is built on a canonical form for first order systems, which

is analogous to the characteristic form of a strictly hyperbolic system, but may be

obtained for a much larger class of systems.

A property of the canonical form, the degeneracy, is defined. For partial dif-

ferential equations, it is the degeneracy, rather than the index, that gives sufficient

conditions on forcing function and data differentiability that guarantee existence of

a smooth solution. The canonical form also provides requirements on location of

boundary conditions that are necessary for existence and uniqueness of solutions.

The unrestricted solution to a first order system is proven to depend continuously

on its data iff the generalized eigenvalues of the coefficient matrix pair are strictly real

and of degeneracy zero. By proving this result, localization and linearization results

used in the classical analysis of strictly hyperbolic systems are shown to be applicable

to the broader class of systems considered in this thesis. Continuous dependence on

data is also shown for the limited but important special class of restricted solutions

that arise for equations with a diffusion term.

All of the information provided by this characteristic-like analysis comes from

the generalized eigenvalues and eigenvectors of the coefficient matrix pair. These

generalized eigenvalues and eigenvectors may be calculated using public domain code,

which means that these analyses may also be performed automatically by a dynamic
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process simulator.

6.2 Future work

6.2.1 Improvements in the analyses

Several gaps in the analysis of even linear systems do exist. First, better identification

of ill-posed linear problems with linear forcing as either weakly well-posed or strongly

ill-posed would be useful. Because the former may often be solved successfully by

a high order numerical method, and the latter may arise very easily via simple sign

errors, a simulator should have the ability to distinguish between the two cases.

Second is reliance on structural algorithms as part of the index analysis. In prac-

tice for chemical engineering systems, these algorithms have proven very effective, but

electric circuit simulations frequently produce systems with numerical singularities.

Given a linear system, it may be possible to construct an algorithm that is numerical

in nature and can handle singularities; however, such an algorithm might need to

include symbolic operations or be significantly redesigned in order to deal with linear

forcing.

Also, a better analysis of restricted solutions is needed. For example, the general-

ized characteristic analysis developed in this project can determine that a boundary

condition must be given at each end of a one dimensional domain for both the forward

and backward heat equations, and that a restricted solution must be used. It cannot

then say which restricted solution is strongly ill-posed, and which is well-posed. It

can only determine that the unrestricted solution determined by specification of two

boundary conditions at the same domain endpoint is strongly ill-posed.

Consideration of semilinear and quasilinear systems requires additional attention.

While analogy with known results for linear time varying DAEs and strictly hyperbolic

and parabolic systems provides insight into how the analysis of linear systems might

be expected to change upon consideration of quasilinear systems, formal consideration

of such problems must still be performed.
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6.2.2 The relationship between discretization and index

Also, there is the question of whether or not the index of a given method of lines

discretization is equal to the index of the original PDE with respect to the evolution

variable. Let the jth independent variable be the evolution variable. In most method

of lines discretization schemes, each of the dependent variables ui on a (typically

bounded) surface of the form xj = c is described by a finite set of parameters ũi, such

as the values of u at a set of nodes or the coefficients of a series. Let P be the set

of all interior partial differential operators on surfaces of the form xj = c, and let P̃

be the set of all real-valued matrices. Then, define a method-of-lines discretization

scheme g as a function that maps P → P̃ . An interior partial differential operator

Lk ∈ P is then represented by a relation g(Lk) = Lk ∈ P̃ between parameters; Lkui
is approximated by Lkũi.

When all interior partial differential operators and dependent variables have been

represented in this manner, the result is a DAE in the evolution variable xj. Values

of or relationships between subsets of these discretized variables are then specified in

order to enforce the boundary conditions. The resulting DAE is the discretization.

The solution is typically advanced in the evolution variable using a numerical DAE

solver.

Definition 6.2.1 An xj method of lines discretization of a PDE is a DAE in xj that

approximates the solution of that PDE.

Definition 6.2.2 An xj method of lines discretization is called index-preserving iff

its differentiation index is equal to the index with respect to xj of the original PDE.

It is difficult to make any broad a priori statements about which discretizations

are index-preserving. Consider a linear, two dimensional, first order system of the

following form, which will be solved numerically using an x1 method of lines dis-

cretization, with the goal of identifying conditions on the discretization under which

index preservation may be guaranteed.

Aux1 + Bu = f(x1, x2) (6.1)
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Here A ∈ R
n×n ⊂ P n×n, B ∈ P n×n, where P = {L|L =

∑
τ cτ (

∂
∂x2

)τ , cτ ∈ R, τ ∈ N}.
Observe that, in the case of a first order system, τ ≥ 2 ⇒ cτ = 0. Also recall that

〈P,+,×〉 and thus 〈P n×n,+,×〉 are both rings [54].

Now, consider an x1 method of lines discretization of the system, where each

dependent variable ui is represented by a set of k parameters ũi, and the partial

derivative ∂
∂x2

is represented by the relationship between parameters given by the

matrix D; in other words, ∂ui

∂x2
is approximated in the discrete system by Dui. The

discretized system is then

Ãũx1 + B̃ũ = f̃(x1, x2) (6.2)

where Ã, B̃ ∈ P̃ n×n. Here P̃ = {L|L =
∑

τ cτD
τ , cτ ∈ R, τ ∈ N,D ∈ R

k×k}. The

discretization maps each continuous interior partial differential operator cτ (
∂
∂x2

)τ to

a discrete operator cτD
τ . Examples of such discretizations include finite differences,

finite elements, and spectral approximations on a single grid.

Theorem 6.2.3 If D is invertible and Dν = Dτ ⇔ ν = τ , then P and P̃ are

isomorphic.

Proof. Noting that addition is defined on P̃ as simply

a + b =
∑
τ

aτD
τ +

∑
τ

bτD
τ =

∑
τ

(aτ + bτ )D
τ

it is easy to verify that
〈
P̃ ,+

〉
is an abelian group. Defining multiplication in the

usual way,

a× b =

(∑
τ

aτD
τ

) (∑
ν

bνD
ν

)
=

∑
τ

∑
ν

aτbνD
τ+ν

clearly multiplication is associative, and both left and right distributive over addition.

Therefore
〈
P̃ ,+,×

〉
is a ring.

Let the discretization φ : P → P̃ be the mapping defined by

φ

(
L =

∑
τ

cτ

(
∂

∂x

)τ
)

=
∑
τ

cτD
τ
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Clearly φ(a + b) = φ(a) + φ(b) and φ(a × b) = φ(a) × φ(b), so φ : P → P̃ is a

homomorphism. Furthermore, because D is invertible and Dν = Dτ iff ν = τ , φ is

one-to-one and onto. Thus P and P̃ are isomorphic.

If P and P̃ are isomorphic and Aj is 1-full according to the definition given in

[54], then there will exist a set of row operations R̃ in P̃ such that Ãj has the form

R̃Ãj =


D̃ 0

0 H̃


 (6.3)

where D̃ is a diagonal matrix with nonzero entries on the diagonal.

However, even with isomorphism, it is impossible to guarantee that every member

of P̃ is invertible. Thus, 1-fullness of the jth derivative array equations is not necessar-

ily equivalent to 1-fullness of the discretization. It only implies that the jth derivative

array equations of the discretization may be transformed by a series of row operations

to a system with the structure given above (6.3); the individual blocks may or may

not be invertible. If a diagonal element of D̃ is a singular matrix, the jth derivative

array equations for the discretization will not be 1-full, and the discretization will not

be index preserving.

The problem is compounded when more than one interior direction is considered.

The difficulty lies in the fact that the operator-valued original system is fundamen-

tally different from the block matrix-valued discretized system. In the original system,

operators commute over multiplication but do not possess multiplicative inverses. In

the discretized system, block matrices do not in general commute, but matrices may

possess multiplicative inverses. In the one-dimensional case, with a single discrete

representation of the interior partial differential operator, isomorphism with the orig-

inal system is possible because every matrix commutes over multiplication with itself.

Due to the aforementioned differences in the algebraic structures of more general

PDEs and discretizations of PDEs, a priori guarantees of index preserving properties

of a particular scheme will be extremely difficult to prove. A structural analysis may

be more tractable; for example, it may be possible to show that a discretization g

that maps every hard zero to a zero block and every indeterminate entry to a square

block with a transversal preserves the index in some structural sense.
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The method chosen to enforce boundary conditions can influence whether or not

a given discretization preserves the index. Two different methods of enforcing the

same boundary conditions, used with the same scheme, can produce discretizations of

differing index. Also, two different schemes used with the same method for enforcing

boundary conditions can also produce discretizations of differing index.

Example 13 Consider the heat equation, with evolution variable x1.

ux1 − ux2x2 = 0 (6.4)

on the domain 0 ≤ x1, 0 ≤ x2 ≤ 1, with u given at the boundaries by u(0, x1) = f1(x1)

and u(1, x1) = f2(x1). The index of the model equation with respect to x1 is zero.

Now, discretize the system by the Galerkin finite element method with linear ele-

ments. For K elements and K + 1 nodes, the x1 method of lines discretization is

∆x2 ·




1
3

1
6

1
6

1
3

1
6

. . . . . . . . .

1
6

1
3

1
6

1
6

1
3







u0

u1

...

uK



x1

+

1

∆x2

·




1 −1

−1 2 −1
. . . . . . . . .

−1 2 −1

−1 1







u0

u1

...

uK




= 0

(6.5)

Here u ∈ R
K+1 is the values of u at each of the K + 1 nodes. The index of this

system is zero, so the scheme is index-preserving. However, the system does not yet

incorporate the boundary conditions, which may be implemented in one of several

ways.

Consider first the penalty or “big number” approach. A suitably large number 1
ε

is added to the diagonal elements of the stiffness matrix that correspond to u0 and

uK, and the product of that large number and either f1(t) or f2(t) is added to the
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righthand side in the same row. If 1
ε

is much larger than the other elements of the

system matrix, then u0 → f1(t) and uK → f2(t). The system becomes

∆x2·




1
3

1
6

1
6

1
3

1
6

. . . . . . . . .

1
6

1
3

1
6

1
6

1
3







u0

u1

...

uK



x1

+

1

∆x2

·




1 + 1
ε
−1

−1 2 −1
. . . . . . . . .

−1 2 −1

−1 1 + 1
ε







u0

u1

...

uK




=




1
ε
f1(t)

0
...

1
ε
f2(t)




(6.6)

This method of enforcing the boundary conditions, together with the linear Galerkin

finite element formulation, does not alter the index of the system. The discretization

is therefore index-preserving.

However, this approach in general worsens the condition number of the system to

be solved during numerical integration. An alternative approach is to simply replace

the finite element equations for u0 and uk with the boundary condition equations.

Under such an approach, the discrete system is

∆x2 ·




0 0

1
6

1
3

1
6

. . . . . . . . .

1
6

1
3

1
6

0 0







u0

u1

...

uK



x1

+

1

∆x2

·




1

−1 2 −1
. . . . . . . . .

−1 2 −1

1







u0

u1

...

uK




=




f1(t)

0
...

f2(t)




(6.7)
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While this approach may be used to avoid conditioning problems, the index of the

system has increased from zero to one. In fact, the system is special index-1. This

discretization is not index-preserving.

Now, consider the same boundary condition implementation, but with a discrete

system formulated using a lumped mass matrix. In one dimension, the mass matrix

is lumped by simply summing off-diagonal elements and adding them to the diagonal.

Again this is an index-preserving discretization; the system after enforcing boundary

conditions as above is

∆x2 ·




0

2
3

. . .

2
3

0







u0

u1

...

uK



x1

+

1

∆x2

·




1

−1 2 −1
. . . . . . . . .

−1 2 −1

1







u0

u1

...

uK




=




f1(t)

0
...

f2(t)




(6.8)

Under such a discretization, direct replacement of two finite element equations with

boundary conditions does not alter the index of the discrete system, and the discretiza-

tion is index-preserving.

Analysis of method of lines discretizations must therefore consider both the scheme

and the boundary condition enforcement method together. The interaction of these

two parts of a discretization can determine whether or not the overall discretization

is index-preserving.

6.2.3 New network solution techniques

The generalized characteristic analysis developed in this thesis also provides informa-

tion that may be used not only to analyze, but also to more effectively solve flowsheets
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that include distributed unit models. Two general areas are apparent: selection of

an appropriate discretization scheme for each particular distributed model, and con-

struction of new solution methods that are more efficient in a network context.

For linear systems1, the characteristics are constant. One approach to using the

characteristic analysis presented here would be as follows: for the hyperbolic part

identified by the analysis, the generalized characteristic form may be used to derive

a finite difference stencil that provides proper upwinding, in the same manner as

the classical CIR scheme [19] for strictly hyperbolic systems, and then calculate the

associated maximum time step. An implicit finite difference scheme may be derived

for the algebraic, differential, and parabolic parts. More generally, one might simply

assign variables associated with the parabolic, differential, or algebraic parts to the

implicit part, and assign the remaining variables to the explicit part of a mixed

implicit-explicit discretization.

Because the solution to weakly-well posed systems depends on derivatives of the

forcing functions and data, this analysis could select a higher-order scheme that more

accurately resolves interior partial derivatives whenever such a system is detected. For

nondegenerate systems, a cheaper low order discretization might be more appropriate.

Similarly, a system that consists of only a hyperbolic part might be best solved by an

explicit scheme, while one that includes a parabolic or differential part might be best

solved using an implicit scheme. This information could either be provided to the

engineer to assist with generation of an appropriate discretization, or perhaps used

by the simulator to select a discretization scheme. In either case, the choice would be

motivated by the mathematical properties of the system itself.

For systems with a hyperbolic part, the CIR-like scheme employed in Moe’s prob-

lem at the domain boundaries may be taken one step further. It might be possible

to decouple the time steps taken by the BDF time integrator for adjacent lumped

blocks from the time step taken by the discretization used in the distributed unit,

1Here the term “linear system” refers to constant coefficient partial differential equations; forcing

functions and algebraic equations may be nonlinear, so long as the system is equivalent to the

systems with singular coefficient matrix pencils considered in the previous chapter.
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and employ waveform relaxation [41, 60, 74] to match the variables at the boundary.

This would free the BDF integrator from the generally more restrictive time step

requirements of the distributed unit discretization, and might therefore reduce the

overall computational time required to perform a simulation.

For systems like the simplified telegrapher’s equations that consist only of a de-

generate parabolic block, this may be taken a step further. Because the solution

of such a block does not depend on t, it is equivalent to an ODE in x. The BDF

integrator for the remaining lumped units in the flowsheet can then take whatever

time steps it needs to maintain error control, and simply calculate the solution on the

transmission line at each step. In fact, a second BDF integrator may be used to start

from boundary conditions at one end of the line, and advance them over the line to

the other end. This has the effect of generating an adaptive grid automatically, as

the integrator selects intervals (“steps” in x) as needed to maintain the error below

a specified level.
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2-norm, 47

abelian group, 58

absolute value, 47

addition, 59

algebraic index

equivalence with differentiation in-

dex, 151

of linear systems, 126

algebraic multiplicity, 49

algebraic part, 185

algebraic subsystem, 79

antiderivative, 68

associative operation, 58

asymptotic stability, 100

basis, 42

bijection, 61

binary operation, 58

canonical form of a linear system, 156

Cauchy data, 117

and recursive index analysis, 140–

146, 190–193

consistency of, 132

dynamic degrees of freedom, 137–

139

for the Navier-Stokes equations, 146–

151

Cauchy-Schwarz inequality, 47

chain rule, 69

characteristic condition, 118

characteristic form

of a hyperbolic system, 114

of a single equation, 111

closure condition, 58

codomain, 60

commutative operation, 58

commutative ring, 59

complete set of eigenvectors, 49

complex number, 64–66

complex plane, 65

consistent initial conditions

for differential equations, 75

for differential-algebraic equations,

80

continuous dependence on data, 102

and nonhyperbolic systems, 162–166,

172

expectations for nonlinear systems,

188

continuous function, 67
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cosine, 62

COSY, 20

definite integral, 69

degeneracy, 157

and continuous dependence on data,

166

and forcing function smoothness, 160,

171, 185–186

and perturbation index, 189

derivative, 67

derivative array equations, 83

for partial differential equations, 130

derivative chain, 80

determinant, 42–45

diagonalization, 51

differential part, 157

differential subsystem, 78

differentiation index

and canonical forms, 86, 157, 167

and characteristic surfaces, 136

and derivative array equations, 84,

131

and forcing function smoothness, 157

and order reduction, 152–154

and semidiscretization, 221–227

equivalence with algebraic index, 151

of differential-algebraic equations, 83

of partial differential systems, 127

recursive index analysis, 190–193

Diffpack, 22

directional derivative, 94

discontinuity traces, 116, 119

divergence, 93

domain, 60

domain of influence, 112

dot product, 38

Drazin inverse, 54

Duhamel’s principle, 73

DYMOLA, 20

dynamic degrees of freedom

for differential-algebraic systems, 82

for partial differential equations, 139

eigenvalue, 48–51

eigenvector, 48–51

generalized, 52, 55

element

of a matrix, 37

of a set, 57

of a vector, 37

empty set, 57

EPDECOL, 18

Euclidean norm, 47

Euler’s formula, 66

even function, 61

existence and uniqueness

and boundary condition placement,

113–116

of solution to a differential equa-

tion, 72
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of solution to a linear algebraic sys-

tem, 43–44

of solution to a single linear equa-

tion, 36

exponential

derivative of, 70

function, 63

of a matrix, 63

exterior partial derivative, 95

factorial, 63

feet of characteristics, 114

FIDISOL, 18

field, 59

forcing function, 72

formal linearization, 107

Fourier transform, 98

frozen coefficients, 107, 188

function, 60

Fundamental Theorem of Calculus, 69

GASP-V, 20

Gauss elimination, 39–40, 45, 59, 129

Gauss-Jordan elimination, 39–40, 45

generalized characteristic form, 156

generalized eigenvalue, 55

generalized eigenvectors

of a matrix, 52

of a matrix pencil, 55, 56

geometric multiplicity, 52

gPROMS, 21

gradient, 93

GRIDOP, 21

group, 58

homogeneous, 72

homomorphism, 60

hyperbolic

equation, 93

system, 105, 113

hyperbolic part, 156

i, 64

identity

of a group, 58

of a matrix, 41

imaginary number, 64

incidence matrix, 87

indefinite integral, 68

index, 79

index-preserving semidiscretization, 221

inhomogeneous, 72

initial condition, 72

injection, 60

integral, 68–69

definite, 69

indefinite, 68

interior partial derivative, 95

interval, 69

inverse

Drazin, 53

Fourier transform, 98
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multiplicative, 60

of a binary operation, 58

of a function, 61

of a matrix, 39

invertible, 43

isomorphism, 61

Jacobian, 95

Jordan canonical form, 51

Laplacian, 94

left distributive law, 59

left eigenvector, 50

linear independence, 42

linear stability, 99

linear time invariant system, 76

linear time varying system, 76

Lipschitz continuous, 74

Lyapunov stability, 100

matrix

addition, 41

conforming, 40

deficient, 49

determinant of, 42

diagonalizable, 51

Drazin inverse of, 54

element of, 37

identity, 41

inverse of, 39

invertible, 43

Jordan, 51

multiplication, 37, 41

nilpotent, 53

notation, 37

nullspace of, 44

pencil, 54

regular, 43

singular, 43

transpose of, 41

mixed partial derivative, 91

monotonic function, 61

multiplication, 59

multiplicative identity, 59

multiplicative inverse, 60

nilpotency, 53

norm

of a function, 71

of a matrix, 48

of a vector, 47

nullspace, 44

odd function, 61

ODE, 72

OMOLA, 20

one-to-one, 60

onto, 60

ordinary differential equation, 72

p-norm, 47

parabolic part, 156

Parseval’s equation, 99

partial derivative, 91
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particular solution, 73

PDE/Protran, 19

PDECOL, 18

PDEDIS, 22

pencil, 54

period, 61

periodic function, 61

perturbation, 99, 102

perturbation index

and recursive differentiation index

analysis, 190–193

of differential-algebraic equations, 85

of hyperbolic systems, 125

of parabolic systems, 124

phase angle, 65

polynomial, 61

power rule, 70

product rule, 70

projected system, 121

quasilinear, 92

radians, 62

range, 60

rank, 44

rational function, 61

regular

matrix, 43

pencil, 55

restricted solutions, 156, 174–184

right distributive law, 59

right eigenvector, 50

ring, 59

semilinear, 92

separation of variables, 96

set, 57

signal trajectories, 111

sine, 62

singular pencil, 55

smoothly 1-full, 84, 131

solvable, 77

special index-1 systems, 82

SpeedUp, 20

SPRINT, 19

strong solution, 155

submultiplicative property, 48

subspace, 42

superposition, 96

surjection, 60

tangent, 62

triangle inequality, 47

TRIFIT, 21

trigonometric functions, 62

unit circle, 62

unity, 59

unrestricted solutions, 156

vector

addition, 41

conforming, 40
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element of, 37

linearly independent set of, 42

notation, 37

projection of, 42

space, 42

Weierstrass canonical form, 56

well-posedness

local well-posedness of nonlinear sys-

tems, 188

of partial differential equations, 101

weak vs. strong, 103

zero, 59
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