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Abstract

In addition to theory and experiment, simulation of reacting flows has become im-
portant in policymaking, industry, and combustion science. However, simulations
of reacting flows can be extremely computationally demanding due to the wide
range of length scales involved in turbulence, the wide range of time scales in-
volved in chemical reactions, and the large number of species in detailed chemical
reaction mechanisms in combustion. To compensate for limited available com-
putational resources, reduced chemistry is used. However, the accuracy of these
reduced chemistry models is usually unknown, which is of great concern in appli-
cations; if the accuracy of a simplified model is unknown, it is risky to rely on the
results of that model for critical decision-making.

To address this issue, this thesis derives bounds on the global error in reduced
chemistry models. First, it is shown that many model reduction methods in com-
bustion are based on projection; all of these methods can be described using the
same equation. After that, methods from the numerical solution of ODEs are used
to derive separate a priori bounds on the global error in the solutions of reduced
chemistry models for both projection-based reduced chemistry models and non-
projection-based reduced chemistry models. The distinguishing feature between
the two sets of bounds is that bounds on projection-based reduced chemistry mod-
els are stronger than those on non-projection-based reduced chemistry models. In
both cases, the bounds are tight, but tend to drastically overestimate the error in
the reduced chemistry. The a priori bounds on the global error in the solutions of
reduced chemistry models demonstrate that if the error in the time derivatives of
the state variables in the reduced model is controlled, then the error in the reduced
model solution is also controlled; this thesis proves that result for the first time.
Source code is included for all results presented.

After presenting these results, the development of more accurate global error
information is discussed. Using the error bounds above, in concert with more
accurate global error information, it should be possible to assess better the accuracy
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and reliability of reduced chemistry models in applications.
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Look at us. Look at what they make

you give.

Jason Bourne, The Bourne

Ultimatum
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Chapter 1

Introduction

Along with theory and experiment, simulations of chemically reacting flows have

become important tools in making policy, business decisions, and scientific discov-

eries. These simulations have been used to develop legislation like the Clean Air

Act [1] and the Montréal Protocol [2]. In business, simulations are used to design

engines, chemical reactors, and manufacturing processes. Simulations have also

been used to explain experimentally observed behavior in homogeneous charge

compression ignition (HCCI) engines, developing better explanations of unburned

hydrocarbons in spark ignition (SI) engines [215], and determining the main cause

of stabilization in a jet-lifted flame, among other applications [33].

However, simulations of chemically reacting flows are extremely computation-

ally demanding. These computational demands can be attributed to a few factors.

Computational fluid dynamics without chemical reactions is already computation-

ally costly for many problems of practical interest (e.g., engine design, atmospheric

modeling, furnace design, etc.) due to the importance of turbulence in many of

these simulations. To simulate turbulence requires sophisticated models of fluid

flow (i.e., averaging or filtering approaches like Reynolds-averaged Navier-Stokes

(RANS) [222] or Large Eddy Simulation (LES) [161, 180, 70, 15], accompanied by

appropriate closure relationships), or resolution of extremely fine length scales (i.e.,

using direct numerical simulation (DNS) [138, 162, 33]), each of which tends to

be used in computationally costly applications. Introducing chemical reactions to
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the fluid flow model only complicates matters further. Many chemical processes

occur at time scales orders of magnitude both slower and faster than the charac-

teristic time scales of fluid flow. In addition, different chemical processes often

occur at time scales that differ by orders of magnitude [130], introducing stiffness

that either requires resolving very small time scales (i.e., using explicit methods),

or sophisticated numerical methods (i.e., implicit methods). In addition to the ve-

locity and density of the fluid flow, each chemical species being modeled requires

the solution of another (generally nonlinear) partial differential equation, requir-

ing additional memory and floating-point operations to solve. The sophisticated

models demanded, the wide range of length and time scales being modeled, and

the multiple partial differential equations being solved all tax existing computa-

tional resources, limiting the number of species and reactions that can be tracked,

even on large parallel computers. As a result, it is difficult to simulate reacting

flows with detailed chemistry, characterized by large numbers (tens, hundreds, or

even thousands) of species and hundreds or thousands of reactions.

Instead, simplified chemistry is used. These simplified models may be devel-

oped empirically, or they may be derived systematically from models of detailed

chemistry. This process is called model reduction. In either model reduction ap-

proach, the goal is to model sufficiently accurately the chemistry and physics of a

reacting flow problem, given resource constraints on computation. Despite meet-

ing constraints on computational resources, these simplified models can some-

times fail to yield sufficiently accurate results. For instance, it is known from ex-

perience that simplified chemistry can fail to predict negative temperature coeffi-

cient (NTC) behavior in the ignition delay of hydrocarbons when low-temperature

chemistry is omitted or oversimplified. Simplified chemistry, sometimes simpli-

fied without any error control, also can fail to yield quantitative predictions of the

measurements (i.e., temperature, species concentrations, etc.) made during experi-

ments, which would be of use to scientists, engineers, and policymakers.

In order to make simplified chemistry models a more useful modeling tool,

methods must be developed to quantify the error in the results of these simplified
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models. In particular, the global error must be quantified, which is the difference at

all times between the results obtained by solving the simplified chemistry model,

and the solution of a more detailed, reference chemistry model, under comparable

initial conditions. If necessary, the solution of the simplified chemistry model is

adjusted in order to make the comparison meaningful (that is, in order to make

sure that the quantities being compared are indeed comparable). A more precise,

technical explanation of the global error will be given in chapters 2, 3, and 4. The

global error is essentially the approximation error in the simplified chemistry cal-

culations at every point in time. Having this error information available informs

scientists, engineers, and policymakers of the accuracy of their numerical results,

enabling them to make more informed decisions.

The main contributions of this these to address this need are as follows:

First, in Chapter 2, the formalism of projection-based model reduction, com-

mon in electrical engineering, control systems, aeronautical engineering, and fluid

mechanics, is used to show that multiple model reduction methods used in com-

bustion are projection-based. This work makes more accessible to a non-specialist

some of the model reduction methods used in combustion, and contains an exten-

sive literature review. Consequently, the literature review and problem introduc-

tion traditionally written in the first chapter of a thesis is deferred here to Chapter

2. This analysis also forms the motivation and background for Chapter 3. By es-

tablishing that many model reduction methods are projection-based, analysis of

the error in model reduction methods can be framed in terms of projection-based

model reduction as a whole, rather than attempting analysis of each method indi-

vidually, which would be much less efficient.

Second, in Chapter 3, traditional theory from the numerical solution of ordinary

differential equations (ODEs) is used to establish an a priori bound on the global

error in projection-based reduced order models. This work extends a previous

similar result by Rathinam and Petzold [165] that applies to orthogonal projection-

based reduced order models. This theoretical result establishes the first a priori

bounds for oblique (i.e., non-orthogonal) projection-based model reduction meth-
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ods; some of the methods used in combustion are oblique, as discussed in Chap-

ter 2. These bounds require quantities that are difficult to calculate for nonlin-

ear chemistry models (more generally, for nonlinear ODEs), and while tight, of-

ten drastically overestimate the true global error. Despite these drawbacks, these

bounds are important because they establish rigorously that controlling the local

error due to model reduction (briefly, the error in the time derivatives of a simpli-

fied chemistry model; a precise technical definition is given in Chapter 3) implies

that the global error due to model reduction is also controlled. Furthermore, this

work establishes a foundation for more accurate methods for estimating or bound-

ing the global error due to model reduction, discussed in Chapter 5.

Third, the work in Chapter 3 is extended further in Chapter 4 to apply to all

model reduction methods. This result is important because some model reduction

methods used in combustion, such as reaction elimination (discussed in Chapter

5), are not projection-based. The implications for this result are similar to those for

the a priori global error bounds on model reduction error due to projection-based

model reduction; this work also has similar drawbacks. The main distinguishing

feature of this result, compared to the one presented in Chapter 3, is that the a

priori bounds presented in Chapter 4 are weaker; the generality of these bounds,

however, makes up for this apparent shortcoming.

Finally, great care is taken to present freely available, modified BSD-licensed

source code [150, 216] that generates all of the figures and results in Chapters 2

through 4 of this thesis in Appendices A through C of this thesis. Both MATLAB

[133] and Python [209] source files are available; each implementation calculates

identical results (to within platform-dependent numerical error). The source code

is presented to document the results of this thesis as completely as possible and en-

sure that they will withstand rigorous and thorough scrutiny. Presentation of the

thoroughly documented source code also enables future students and researchers

to avoid any unnecessary duplication of effort, so that the work in this thesis may

be built upon more easily. A major obstacle in this thesis work was incompletely

documented source code written by previous researchers using poor development
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practices, which required a great deal of effort to correct and overcome. Currently,

a researcher is not judged by the code he writes, but the articles he publishes; bad

code means more time spent programming and less time writing papers. By pub-

lishing the source code, future students will be able to write more papers, and the

work in this thesis has greater impact (e.g., in theory, people should cite it more be-

cause the code will be useful to them). Last, but not least, the purpose of publishing

the source code is to ensure that the results in this thesis are unambiguously repro-

ducible. The reproducible research movement aims to hold computational science

research to the same standard of reproducibility as experimental science research

[110, 196, 65, 197, 157, 158, 134, 68, 111, 198, 50, 71, 45, 88, 182, 210, 44, 91, 47, 173].

If the results of a computational science paper cannot be reproduced, the results

of that paper should be considered suspect or wrong, as is common practice in

the experimental community. It is incumbent upon the authors of a computational

research article to demonstrate reproducibility.

To this end, a modified BSD-licensed, unit-tested Python implementation of re-

action elimination and simultaneous reaction and species elimination is also pro-

vided. Some of the theory behind these model reduction methods is discussed in

Mitsos, et al. [137], and Bhattacharjee, et al. [17], as well as in Chapter 5. Prior

to writing this implementation, no open-source implementation of these methods

existed. It is important to demonstrate their utility through reproducibility and

enable potential future collaborators to use them. The source code for this imple-

mentation is listed in Appendix D.
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Chapter 2

Projection-Based Model Reduction in

Combustion

2.1 Introduction

Many practical problems in combustion involve spatially inhomogeneous phe-

nomena, and therefore require the use of numerical methods that solve large sys-

tems of coupled, nonlinear partial differential equations. Further complicating

matters, the relevant physics of these phenomena involve a wide range of time

and/or length scales, sometimes over ten orders of magnitude. It is not uncom-

mon for simulations in these application areas to require hundreds of thousands

of CPU-hours [33, 215] on the world’s fastest supercomputers. If a researcher is

willing to sacrifice some accuracy in their simulations, use of a model reduction

method [203, 151, 125] may be a viable option to reduce the computational re-

quirements.

Several model reduction methods are available for generating reduced mod-

els from detailed chemical models. However, these different methods originate

from different theoretical backgrounds. A partial listing of major model reduction

methods in combustion includes three major themes: exploiting the reaction-based

structure of the chemical kinetics, exploiting the physics encoded by the chemical
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kinetics, or exploiting mathematical structure.

To exploit the reaction-based structure of the chemical kinetics, some model

reduction methods operate on the chemical reaction mechanism representation

of the source term directly. These methods then eliminate reactions (and usu-

ally species also) from the original, input chemical reaction mechanism to create

a reduced chemical reaction mechanism, which is then converted into a reduced

source term. Examples of this approach include detailed reduction [212], DRG

[126, 127, 121], DRGASA [221], DRGEP [159], SEM-CM [145], integer program-

ming approaches [160, 5, 53, 18, 154, 153, 137], and others.

To exploit the physics of chemical kinetics, some model reduction methods use

arguments from classical thermodynamics to construct a manifold in state space

that contains the dynamics of the reduced source term. Examples of approaches

that construct physical manifolds include ICE-PIC [166, 168], RCCE [97, 96, 94],

MIM [74, 75], and reaction invariants [211, 194, 69]. POD [120, 14, 165] also con-

structs a manifold derived from physical structure, but the physics represented by

this manifold is encoded implicitly through the data points selected as inputs to

this method.

To exploit the mathematical structure of chemical kinetics, some model re-

duction methods employ time-scale arguments to construct a manifold in state

space that approximates well the dynamics of the original system occurring in

the time scale range of interest; this manifold is typically called the “slow mani-

fold”. (Sometimes, it may not include the slowest dynamics.) Although these time

scale arguments may arise due to physical reasoning, these methods can some-

times also be formulated using purely mathematical reasoning so that they are

application-agnostic. Examples of this approach include CSP [103, 104], ILDM

[130, 144], QSSA [28, 19, 21, 172], LQSSA [124, 122], functional iteration methods

[67, 174, 175, 41, 191], and lumping-based approaches [213, 112, 113, 204, 89].

As the preceding discussion indicates, many model reduction methods attempt

to accomplish the same goal through varying means. Despite the proliferation of

these methods, one problem with the current state of model reduction in combus-
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tion is that no standard terminology or framework exists to describe model reduc-

tion methods, making it difficult to communicate about or to compare different

model reduction methods. Due to the lack of standard terminology, model reduc-

tion methods are typically compared pairwise for specific applications [41, 95, 219,

76, 119, 34]; these comparisons cannot be generalized easily. In order to better

understand the workings of model reduction methods, it would be helpful to de-

velop standardized terminology to describe these methods, which would facilitate

broader comparisons of these methods and the development of more general re-

sults. Here, we propose a standardized formalism for projection-based methods in

combustion, building upon previous work done outside the combustion commu-

nity in model reduction and iterative methods in linear algebra [23, 179, 9, 186, 27,

35].

In addition, it is useful to discuss projection-based model reduction in a geo-

metric fashion. Having a geometric interpretation of the objects in model reduction

can leverage the superior capacity of human beings to analyze visual data in com-

parison to numerical and text data. Previous work in this spirit includes the work

done by Fraser and Roussel [67, 174, 175] to interpret the QSSA geometrically, and

work done by Ren et al. both to develop ICE-PIC [166] and to explain effects that

pull trajectories off the slow manifold in reaction-diffusion systems [167]. A better

understanding of the geometry of model reduction helps researchers to under-

stand the implications of using model reduction methods and combining them, as

in [22] and [123].

This article addresses the aforementioned problems as follows. First, a termi-

nology is developed to define what is meant by a projection-based model reduction

method, which will facilitate the discussion and comparison of methods.

After that, the properties of constant projection-based model reduction meth-

ods will also be discussed, using linear algebra and geometry where possible.

One main result of this article will be to elucidate that projection-based model re-

duction methods have three representations: a projector representation, a Petrov-

Galerkin representation (also known as a lumping), and an affine invariant repre-

27



sentation. The mathematical relationships among these representations will pro-

vide researchers with standard, method-agnostic language for the discussion and

comparison of projection-based model reduction methods.

Next, to demonstrate the applicability of the projection-based model reduction

formalism, examples will be given of methods that are classically presented in each

of the three representations of constant projection-based model reduction meth-

ods. In particular, it is shown that POD and MIM are classically presented in the

projector representation; CSP, linear species lumping [113], and reaction invariants

are classically presented in the affine lumping representation; and LQSSA is classi-

cally presented in the affine invariant representation. When presenting examples

of constant projection-based model reduction methods, simplifying assumptions

required for the theoretical development will be discussed. Briefly, this article as-

sumes an underlying linear manifold structure, or equivalently, it assumes that all

of the matrices used in the methods are constant over the entire state space re-

gion of interest. If the manifold constructed by the method is nonlinear, it will

be linearized (by taking the tangent space at a point on the manifold). Adaptive

model reduction is outside the scope of this article, and will not be considered here.

The relationships between the linear manifold structure and the matrices in each

method will be elucidated as the exposition develops.

Finally, the limitations of the linear manifold assumption will be discussed, as

well as how this formalism can be leveraged in future work.

2.2 Defining ”Projection-Based Model Reduction Method”

Projection-based model reduction in combustion typically arises in ODE setting

(e.g., the chemistry ODE obtained by Strang splitting [199] or Godunov splitting

[72] a PDE governing the state variables in a reacting flow; for examples, see [184]

and references therein), where the ODE corresponds to an adiabatic-isobaric batch

reactor:
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ẏ(t) = Γ(y(t)), y(0) = y∗, (2.1)

where y(t) ∈ RNS represents the original state variables, specifying the thermo-

dynamic state of the system, NS is the number of state variables, y∗ ∈ RNS , and

Γ : RNS → RNS is a continuously differentiable function describing changes in the

state variables due to chemistry.

From the full model ODE (2.1), a projection-based model reduction method

constructs a projected reduced model that can be expressed as

ẋ(t) = PΓ(x(t)), x(0) = P(y∗ − y0) + y0. (2.2)

The projected reduced model is defined by the projection matrix P ∈ RNS×NS

and the point in state space y0 ∈ RNS , called the origin of the projected reduced

model. The state variables of the projected reduced model, x(t) ∈ RNS , have the

same physical interpretation as y(t).

Some model reduction methods discuss the concept of projection onto the tan-

gent bundle of a smooth manifold as part of their development (such as CSP [219]

and MIM [74]; for background on smooth manifolds, see [108, 142]). The manifolds

defined by these methods are used to calculate P, which varies with x(t) in these

methods. To simplify the exposition, P (and all related matrices) will be assumed

constant over a region of interest in state space, which is equivalent to assuming

that the corresponding manifold is linear (i.e., an affine subspace) in that region.

Consequently, any nonlinear manifold encountered in this paper will be linearized

at a point by taking the tangent space.

The concept of a smooth manifold inspires the three representations of projection-

based model reduction, although knowledge of manifolds is not necessary to read

this paper. The projector representation of model reduction has already been pre-

sented in (2.2), and corresponds to projection onto a tangent space of the manifold
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at a point (as in POD). The Petrov-Galerkin projection representation of projection-

based model reduction corresponds to the observation that a manifold is locally

diffeomorphic to a Euclidean space of lower dimension (as in CSP, or species lump-

ing). A smooth manifold can also be defined locally by an algebraic equation,

which corresponds to the affine invariant representation of model reduction (as

in LQSSA). These three representations will be discussed in the following sec-

tion along with their geometric properties. It will be shown that the projector and

Petrov-Galerkin projection representations are equivalent, and that both of these

representations can be converted to an affine invariant representation. It will also

be shown that under certain conditions, the affine invariant representation can be

expressed as a projector representation.

2.3 Three Representations of Constant Projection-Based

Model Reduction

From the discussion of manifolds in the previous section, the three representations

of projection-based model reduction can be formulated concretely. First, the pro-

jector representation will be discussed, since it has already been presented, then the

Petrov-Galerkin projection representation, followed by the affine invariant repre-

sentation.

2.3.1 Projector Representation

Before presenting the projector representation, a brief aside is necessary to discuss

notation. For the remainder of this paper, let R(·) and N (·) denote the range and

nullspace of a matrix, respectively. If A,B ⊂ Rn are vector spaces, then A + B =

{u + v : u ∈ A,v ∈ B}; this operation is called the sum of vector spaces A and B.

If in addition, A ∩ B = {0}, then the sum of vector spaces is denoted A ⊕ B and

called the direct sum ofA andB instead. If v ∈ Rn, thenA+v = {u+v : u ∈ A}. If

A is a subspace, then A + v is an affine subspace. The orthogonal complementary
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subspace of A is denoted A⊥ = {v : uTv = 0,∀u ∈ A}. If A is a matrix such

that R(A) = A, then let A⊥ denote a matrix such that R(A⊥) = A⊥. Note that

AT
⊥A = 0, and that the columns of A and A⊥ then form a basis for Rn. Having

stated this notation, we can proceed to discuss the projector representation.

As stated earlier, the projector representation obtained by reducing the full

model ODE (2.1) takes the form in (2.2):

ẋ(t) = PΓ(x(t)), x(0) = P(y∗ − y0) + y0. (2.2)

Here, P is a projection matrix, so by definition, P2 = P. (For background on

projection matrices, see [13, 10].)

A graphical depiction of the projector representation can be seen in Figure 2-1;

results were generated using the ozone mechanism in [132, 189] in an adiabatic-

isobaric batch reactor as a model problem. The point y0 was chosen to be a point

y∗ in the solution of the original model; y0 is the point of tangency between the

dashed line (the original model solution) and the plane. The projector P was cho-

sen so thatR(P) +y0 is contained within the plane defined by the point y0 and the

normal vector (0, 3.552617158102808 ·10−2, 9.993687463257971 ·10−1). This choice of

projector can be seen in the shaded plane contains R(P) + y0. Mass conservation

reduces this plane to a line, so thatR(P)+y0 is a one-dimensional affine subspace.

In more complicated cases, the reduced model solution will be curved because it

will not be restricted to a one-dimensional affine subspace.Note that the solution

of the original model, shown as a dashed line, diverges from that of the reduced

model, shown as a solid line, at the point of tangency between the dashed line and

the plane. The difference between the reduced model solution and the full model

solution is due to approximation error inherent in most reduced models. Also note

that the reduced model is completely contained inR(P)+y0; it will be shown later

that the reduced model solution must always be contained in this linear manifold.

The matrix P also has the property R(P) ⊕ N (P) = RNS , which implies that
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Figure 2-1: Graphical depiction of projector representation for adiabatic O3 decom-
position. Here, the model is reduced from 3 variables to 2 by projecting orthogo-
nally onto the plane shown. The resulting reduced model solution is a line, due to
mass conservation.

any vector w ∈ RNS can be decomposed uniquely into w = Pw + (I − P)w such

that Pw ∈ R(P) and (I−P)w ∈ N (P). Consequently, if w ∈ R(P), then w = Pw.

A graphical depiction of this decomposition can be seen in Figure 2-2.

From this decomposition, it also follows that the solution of (2.2) must be con-

tained in R(P) + y0, which is a linear manifold of dimension NL = tr(P). It also

follows that if the solution y : R → RNS of (2.1) satisfies Γ(y(t)) ∈ R(P) for all t

and y0 = y∗, then y is also a solution of (2.2), and the reduced model ODE (2.2) is

exact (no approximation error).

More commonly, the solution x : R→ RNS of the projected reduced model (2.2)

is not exact. Consider the difference between the right-hand sides of (2.2) and (2.1),

PΓ(x(t))− Γ(y(t)). This right-hand side error can also be decomposed:
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Orthogonal Projection Skew Projection

R(P) R(P)

N(P)N(P)

v v

Pv Pv

(I - P)v (I - P)v

Figure 2-2: Two examples illustrating the decomposition of a vector into compo-
nents along the range and nullspace of a projection matrix P. In the orthogonal
case, P = PT.

PΓ(x(t))− Γ(y(t)) = P(Γ(x(t))− Γ(y(t)))− (I−P)Γ(y(t)). (2.3)

The second term on the right-hand side of (2.3) is the error component inN (P)

due to projecting the right-hand side of (2.1). The first term on the right-hand

side of (2.3) is the error component in R(P) that accumulates because x(t) 6= y(t).

There can also be error associated with projecting the initial conditions onto the

affine subspace R(P) + y0; this error must be in N (P) because this projection is

along that subspace.

Any error control in projection-based model reduction must control both com-

ponents of the right-hand side error. A final consequence of the decomposition

property of projectors is that the solution x of (2.2) must satisfy the affine invariant

(I−P)(x(t)− y0) = 0, ∀t, (2.4)

because x(t) ∈ R(P) +y0 andR(P)∩N (P) = {0}. Differentiating the previous

equation also yields
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(I−P)ẋ(t) = 0,∀t. (2.5)

2.3.2 Affine Lumping/Petrov-Galerkin Projection Representation

An equivalent representation may be obtained by lumping state variables [113];

this approach is common in industrial simulations of chemical kinetics. The basic

idea is to replace (2.1) with k similar-looking autonomous “lumped” equations

˙̃y(t) = f̃(ỹ(t)), (2.6)

where ỹ(t) ∈ Rk, and k < n is the number of lumped state variables. A simple

and common method to relate ỹ(t) to an approximation x(t) ∈ Rn of y(t) ∈ Rn is

affine lumping:

ỹ(t) = WT(x(t)− y0), (2.7)

x(t) = Vỹ(t) + y0, (2.8)

where V,W ∈ Rn×k are full rank. For the definition of the lumping operation

in (2.7) to be a left inverse of the unlumping operation in (2.8), V and W must

satisfy

WTV = I. (2.9)

In the theory of generalized inverses, the rectangular matrices V and WT are

called {1, 2}-inverses of each other [13]. Note that multiple possible choices of V

and W satisfy both the full rank constraint and the biorthogonality constraint in

(2.9) unless k = n.
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Differentiating the definition in (2.8) with respect to t and substituting the def-

inition (2.6) in for ˙̃y(t) shows that

ẋ(t) = Vf̃(ỹ(t)). (2.10)

Defining f̃ : Rk → Rk such that

f̃(ỹ) = f̃(WT(x(t)− y0)) = WTf(x(t)), (2.11)

(2.10) becomes

ẋ(t) = VWTf(x(t)) = Pf(x(t)), (2.12)

equivalent to (2.2), where P = VWT is a projection matrix. With this definition

of f̃ , (2.6) becomes

˙̃y(t) = WTf(Vỹ(t) + y0). (2.13)

One common choice of initial condition for (2.6) and (2.13) is

ỹ(0) = WT(y(0)− y0) (2.14)

under the assumption that x(0) = y(0). However, combining (2.14) with (2.8)

yields the equation
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x(0) = Vỹ(0) + y0 = VWT(y(0)− y0) + y0 = P(y(0)− y0) + y0, (2.15)

which may or may not satisfy the assumption that x(0) = y(0); this potential

inconsistency illustrates that there is some approximation error in the initial condi-

tion of (2.12), and consequently also in the initial condition of (2.6) and (2.13). One

way to avoid such inconsistency is to set y(0) = y0. However, other choices of y0

may be used for the purposes of accuracy, such as choosing y0 so that y(t) decays

ontoR(P) + y0.

Petrov-Galerkin projection and lumping are identical. Petrov-Galerkin projec-

tion seeks an approximate solution of (2.1) that takes the form

x(t) = y0 + Vỹ(t), (2.16)

where ỹ(t) ∈ Rk, k < n, and V ∈ Rn×k is full rank. Differentiating both sides of

(2.16) with respect to t implies that

ẋ(t) = V ˙̃y(t). (2.17)

As is customary in Galerkin-type methods, W ∈ Rn×k is defined so that its

columns are orthogonal to a residual, d(t), defined as

d(t) = ẋ(t)− f(x(t)). (2.18)

Expanding the orthogonality relation
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WTd(t) = 0 (2.19)

in terms of (2.16) and (2.17) yields

WT[V ˙̃y(t)− f(y0 + Vỹ(t))] = 0. (2.20)

The matrix W is also chosen such that WTV = I (as in (2.9)), so that

˙̃y(t) = WTf(y0 + Vỹ(t)) (2.21)

as in (2.13).

The reason this method is also called a “projection” follows from the observa-

tion that the matrix VWT is a projection matrix; similarly, any projection matrix

P can be decomposed into the product of the form VWT using a full rank de-

composition. This decomposition ensures that V and W have properties consis-

tent with Petrov-Galerkin projection; it can also be shown that R(P) = R(V) and

N (P) = N (WT) = R(W)⊥. Using this decomposition, it can be shown that the

Petrov-Galerkin and projector representations are equivalent: Multiplying both

sides of (2.13) by V and plugging in (2.8) yields (2.2), demonstrating that the two

representations correspond exactly.

A graphical depiction of the affine lumping (Petrov-Galerkin projection) repre-

sentation can be seen in Figure 2-3. In this case, the initial conditions, P, and y0

are the same as those for the reduced system shown in Figure 2-1. The point y0

corresponds to the lowermost point of the dashed and solid curves in the lower

left-hand corner of Figure 2-3; note that the x-axis corresponds to a lumped vari-

able. Temperature is not lumped.

The lumping matrices for Figure 2-3 were obtained by singular value decom-
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Figure 2-3: Graphical depiction of Petrov-Galerkin/affine lumping representation
for the same adiabatic O3 decomposition in Figure 2-1. Here, the lumped variable
is on the x-axis, and is an affine combination of the mass fractions of O, O2 and O3;
the coefficients of this relationship are the first column of V in (2.23). Note that y0

is the lowermost point of both curves in the lower left-hand corner; the sharp bend
in the upper left-corner indicates that the mass fraction of O and lumped variable
have both achieved steady state.

position. Here,
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P =


6.5428 · 10−4 1.7751 · 10−2 −1.8405 · 10−2

1.7751 · 10−2 4.8159 · 10−1 −4.9935 · 10−1

−1.8405 · 10−2 −4.9935 · 10−1 5.1775 · 10−1

 , (2.22)

P = VWT =


α

β

γ

[ α β γ
]
, (2.23)

α = 2.5579 · 10−2, (2.24)

β = 6.9397 · 10−1, (2.25)

γ = −7.1955 · 10−1. (2.26)

where V and W are as in (2.13). Since V = W for this example, the associated

P is both symmetric and an orthogonal projector.

In Figures 2-1 and 2-3, the initial conditions y∗ and the value of y0 are:

(y∗O, y
∗
O2
, y∗O3

, T ∗) = (0, 0.15, 0.85, 1000 K), (2.27)

(yO,0, yO2,0, yO3,0, T0) = (9.5669 · 10−3, 6.8325 · 10−1,

3.0718 · 10−1, 2.263 · 103 K), (2.28)

where all calculations are carried out in MATLAB r2012a [133] and Cantera

2.0 [73]; calculations were repeated using Python 2.7.3 [209] and Cantera 2.0 [73].

Details, source code, and input files can be found in Appendix A. In Figure 2-1, the

full model solution is plotted starting from y∗, whereas the reduced model solution

is plotted starting from y0. In Figure 2-3, the solutions of both models are plotted

starting from y0.

It is worth noting that both the computational cost and numerical accuracy of

the reduced model solution are dependent on the representation of the reduced

model. Solving (2.13) requires fewer operations than solving (2.2), neglecting the
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influence of matrix multiplies. For NL sufficiently small, each evaluation of both

the right-hand side and the Jacobian of (2.13) requires fewer matrix multiply op-

erations (for V and WT) than the same quantities for (2.2) (for P). For cases of

Petrov-Galerkin projection and projection without special structure, see [165] for

an analysis of computational cost; although POD is considered, results general-

ize to oblique projectors, and focus primarily on matrix multiplies and function

evaluations. Stiffness may also be a factor in comparing the computational costs of

solving (2.13) and (2.2). Generally, (2.13) is no more stiff than (2.2). If (2.13) is much

less stiff than (2.2), it may be possible to use an explicit method to integrate (2.13),

in which case the computational costs of solving (2.13) are much less than solving

(2.2). For examples of this approach using computational singular perturbation,

see [207, 107]. It is important to note that generalizing the conclusions of this para-

graph to the adaptive case is not straightforward. In particular, in the adaptive

case, NL changes with the current system state, changing the sizes of the matrices

V and W, which complicates the preceding discussion considerably, and will be

deferred to future work.

For NL < NS/2, less memory is required to store the matrix pair (V,W) than

P, and for NL < NS , less memory is required to store values of the solution ỹ to

(2.13) than is required to store the same number of values of the solution x to (2.2).

Therefore, it is likely that solving (2.13) will require less memory than solving (2.2),

which could be valuable in memory-limited applications, such as in 3-D reacting

flow simulations.

When W consists of standard unit vectors in RNS , computational costs de-

crease, as seen in POD-DEIM [30]. For a fixed P, V and WT are not unique;

replacing them with VQ and Q−1WT, where Q ∈ RNS×NS is invertible, works

equally well from an analytical standpoint, though numerical results may differ.

Good choices of Q can reduce the CPU time needed to solve the reduced model

(2.13) and/or the numerical error in the reduced model solution. Theoretically,

R(P) = R(V) and N (P) = N (WT) are the important objects, and are unchanged

by such a transformation; they merely yield different diffeomorphisms on the man-
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ifold R(V) + y0. However, this type of transformation leaves the underlying pro-

jector unchanged, since VQQ−1WT = VWT = P; it cannot convert an orthogonal

projector to an oblique one, or vice versa. Therefore, if the numerical error is neg-

ligible, the same x(t) will be computed for each choice of Q and given t.

However, the numerical error may not be negligible. Given bases forR(P) and

N (P), calculating P, V, and W accurately in floating point arithmetic is highly

nontrivial; care should be taken to preserve numerical accuracy. See [195] for rec-

ommendations on how to calculate P, V, and W. In order to reduce the numerical

error in calculating the projector-vector product Pv in floating point arithmetic for

any vector v ∈ Rn, Stewart [195] recommends calculating Pv as VWTv, and set-

ting V and W such that ‖V‖ = 1. If ‖V‖‖W‖ is greater than ‖P‖, then calculating

Pv in floating point arithmetic using VWTv can lead to a loss in accuracy com-

pared to naı̈vely calculating Pv in floating point arithmetic. Stewart also recom-

mends an alternate method for calculating Pv that is at least as accurate because

it does not involve explicitly forming the matrix P. Under certain technical condi-

tions, this alternate method is more accurate than calculating Pv as VWTv; these

technical conditions are rarely satisfied. Furthermore, the numerical error in calcu-

lating Pv using floating point arithmetic increases as ‖P‖ increases, regardless of

calculation method. Since P is singular, condition number is not a useful metric for

numerical error; instead, it is recommended that modelers treat ‖P‖ for projection

in the way that they treat the condition number for linear systems, and be alert

for potentially error-prone projection operations. For a thorough analysis of nu-

merical errors associated with calculating oblique projectors and projector-vector

products, see [195].

2.3.3 Affine Invariant/Linear Manifold Representation

As noted earlier, a solution x : R → RNS of the reduced model (2.2) satisfies the

overdetermined system
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ẋ(t) = PΓ(x(t)), x(0) = P(y∗ − y0) + y0, (2.29a)

0 = (I−P)(x(t)− y0). (2.29b)

Since I − P is also a projection matrix, a full rank decomposition into I − P =

W⊥VT
⊥ yields a pair of full rank {1, 2}-inverses such that VT

⊥W⊥ = I, V⊥,W⊥ ∈
RNS×(NS−NL). The matrices V and W are the same as in the previous section. Using

this information, an equivalent overdetermined system can be formed by premul-

tiplying (2.29b) by VT
⊥

ẋ(t) = PΓ(x(t)), x(0) = P(y∗ − y0) + y0, (2.30a)

0 = VT
⊥(x(t)− y0). (2.30b)

Since VT
⊥ ∈ R(NS−NL)×NS is a full rank matrix, there exists a permutation matrix

E ∈ RNS×NS such that VT
⊥E can be partitioned into VT

⊥E = [L R] such that R ∈
R(NS−NL)×(NS−NL) is invertible, yielding

ẋ(t) = PΓ(x(t)), x(0) = P(y∗ − y0) + y0, (2.31a)

0 =
[

L R
]

E−1(x(t)− y0). (2.31b)

The entire system can be rewritten by defining

 s(t)

f(t)

 = E−1x(t), (2.32)

where s(t) ∈ RNL represents “slow” state variables (e.g., longer-lived, reactive

species compositions) and f(t) ∈ R(NS−NL) represents algebraically determined
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state variables (e.g., radical species compositions from linearized steady-state like

approximations, inert species compositions, and species compositions from mass

conservation):

ṡ(t) =
[

INL 0
]

E−1PΓ

E

 s(t)

f(t)

 , (2.33a)

ḟ(t) =
[

0 I(NS−NL)

]
E−1PΓ

E

 s(t)

f(t)

 , (2.33b)

0 =
[

L R
] s(t)

f(t)

−
 s(0)

f(0)

 , (2.33c)

 s(0)

f(0)

 = E−1x(0) = E−1[P(y∗ − y0) + y0]. (2.33d)

Since the algebraic equation (2.33c) can be solved explicitly for f(t) in place of

(2.33b), ignoring (2.33b) yields the affine invariant representation:

ṡ(t) =
[

INL 0
]

E−1PΓ

E

 s(t)

f(t)

 , (2.34a)

0 =
[

L R
] s(t)

f(t)

−
 s(0)

f(0)

 , (2.34b)

 s(0)

f(0)

 = E−1x(0). (2.34c)

This representation of the reduced model as a differential-algebraic equation

(DAE) system will be called the affine invariant representation. Since the algebraic

equations are linear and R is invertible, (2.34b) can be solved for f(t) in terms of

s(t):
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f(t) = f(0)−R−1L(s(t)− s(0)). (2.35)

This equation can be substituted into (2.34a) to yield

ṡ(t) =
[

INL 0
]

E−1PΓ

E

 s(t)

f(0)−R−1L(s(t)− s(0))

 , (2.36)

s(0) =
[

INL 0
]

E−1x(0),

so the reduced model can also be solved as a systems of NL ODEs; compare

(2.36) with (2.13). This derivation essentially uses the implicit function theorem

[142, 108].

A graphical depiction of the affine invariant representation can be seen in Fig-

ure 2-4. In this case, the initial conditions and y0 for the affine invariant system are

the same as those for the reduced system shown in Figure 2-1, but the projection is

chosen such that the mass fraction of O2 is held constant at yO2 = 6.83252318 · 10−1.

This type of approximation (which is obviously inexact, because the sum of species

mass fractions no longer equals one) is commonly used in atmospheric chemistry

when O2 is present in great excess. Consequently, only the mass fractions O and

O3 are plotted. The point y0 corresponds to the intersection of the reduced model

solution and the original model solution in the lower right-hand corner of Figure

2-4; the mass fraction of O2 can be found from this point by subtracting the mass

fractions of O and O3 from one. Time increases from right to left.

Reduced models written in this representation, shown in (2.34), are natural if

the modeler knows some conserved or nearly-conserved quantities, e.g., from con-

servation laws or linearized quasi-steady state-like methods. This representation

also gives modelers the option to express their reduced models as DAEs that may

have advantageous structure (such as sparsity, which could make them easier to

solve than (2.2) or (2.13) [183]). However, often, the DAE system is not easy to
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Figure 2-4: Graphical depictions of affine invariant representation for adiabatic O3

decomposition; note that this case is different than those in Figures 2-1 and 2-3 in
order to yield a more illustrative plot. Here, the mass fraction of O2 is held constant
at yO2 = 6.83252318 · 10−1, and the point y0 is the intersection of the two curves,
found lower right. The sharp bend in the plot corresponds to the establishment of
O3 = O2 + O equilibrium.

solve, and the representation (2.34) is a bit unwieldy due to the number of matri-

ces involved. Typically, the modeler has chosen E, L, R, and y0, which specify

the quantities the modeler wishes to treat as conserved. If one is converting from

one of the other two representations, P is known. Otherwise, if a model reduction

method is originally expressed as a DAE, the modeler will see:

ṡ(t) = Γ̃(s(t), f(t)), (2.37a)

0 = g(s(t), f(t)). (2.37b)

If g is affine, if f(t) can be solved in (2.37b) as a function of s(t) for all (s(t), f(t)),

if there exists a permutation matrix E and a projection matrix P such that Γ̃(s(t), f(t)) =

[INL 0]E−1PΓ(E(s(t), f(t)), and if R(P) = {E(s(t), f(t)) : g(s(t), f(t)) = 0} (that is,
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the algebraic equation defines exactly the range of the projection matrix, after per-

muting the variables so that they have the same order and interpretation as x(t)) all

hold, then (2.37) is an affine invariant representation of a projection-based reduced

model. These four conditions implicitly restrict the values that L and R can take,

via the implicit function theorem. Also, these conditions are not easily satisfied

(or easy to check), and may admit multiple projectors and multiple permutation

matrices. Consequently, it is not easy to determine if (2.37) is an affine invariant

representation. However, an important special case is the linearized quasi-steady

state approximation, which is an affine invariant representation because it can be

expressed in the form of (2.34) with

P = E

 INL 0

−R−1L 0

E−1. (2.38)

For more details on the linearized quasi-steady state approximation, see Section

2.4.3.

2.4 Examples of Projection-Based Model Reduction Meth-

ods

Having established three representations of projection-based model reduction, ex-

amples of methods used in combustion will be presented, categorized by their

classical representation in the literature.

2.4.1 Projector Representation

Two projection-based model reduction methods with classical projector represen-

tations are proper orthogonal decomposition (POD) and the method of invariant

manifolds (MIM).
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Proper Orthogonal Decomposition

In the ODE context, POD [120, 165] constructs a projected reduced model for (2.1)

by assembling a collection of data points, classically called snapshots, {yi}Nrefi=1 such

that yi ∈ RNS for all i. These snapshots are assembled into a matrix

Y =
[

(y1 − y0) . . . (yNref − y0)
]
, (2.39)

where y0 is usually chosen so that y0 = 1
Nref

∑Nref
i=1 yi. Snapshots may be data

points from the solution of the original model (2.1), relevant experimental data

points, or other physically realizable points. From this matrix, the SVD (singular

value decomposition; see [200, 205]) of Y = UΣVT is used to construct the reduced

model. (Here, V is used to distinguish the Hermitian matrix that is part of the

output of SVD from the V matrix of the affine invariant representation.) The rank

NL of the projection matrix is chosen to satisfy an error criterion (see [7] for details).

POD defines a projected reduced model as in (2.2) by P = UNLUT
NL

, where UNL

is the submatrix consisting of the first NL columns of U; this result assumes that

the singular values in Σ are arranged in descending order from left to right, which

is the typical convention for numerical calculations. Note also that for POD, V =

W = UNL in (2.8), (2.19), and (2.13), implying that P is an orthogonal projector.

Method of Invariant Manifolds

MIM [74] is motivated by the observation that when (2.1) arises from chemical

kinetics, its solution y : R→ RNS initially passes through a rapid transient before it

appears to be attracted to a lower-dimensional manifoldM⊂ RNS . For sufficiently

large t, the authors of [74] posit that y(t) ∈M.

MIM uses thermodynamic criteria and an iterative procedure to construct an

NL-dimensional approximation ofM calledMMIM . The remainder of the descrip-

tion of this method requires basic familiarity with smooth manifolds, and is inde-

pendent of the rest of the paper. For any point p ∈ MMIM , there exists a local
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neighborhood of p, Up ⊂ RNS , a full rank matrix M ∈ RNS×NL , a neighborhood of

MTp, VMTp ⊂ RNL and a smooth (C∞) function g : VMTp → Up ∩MMIM such that

MT maps points in Up∩MMIM to local coordinates on the manifold (in RNL), and g

locally defines the manifold in terms of these local coordinates. The function g and

the matrix M are both defined by MIM [74]. Using these functions, MIM calculates

a projector using the formula

P(w) = Dg(MTw)MT (2.40)

for w ∈ RNS , where Dg is the function defining the Jacobian matrix of g. Since

linear manifolds are assumed, using this formalism requires that the projector

function be evaluated at some point y0 ∈ MMIM and treated as a constant, in

which case the projector is evaluated at w = y0. To express MIM in a affine lump-

ing (or Petrov-Galerkin projection) representation, set V = Dg(MTy0) and W = M

in (2.8), (2.19), and (2.13). Nothing restricts P to be an orthogonal projector in this

method; it is typically oblique.

2.4.2 Affine Lumping/Petrov-Galerkin Projection Representation

Three projection-based model reduction methods with classical affine lumping (or

Petrov-Galerkin projection) representations are computational singular perturba-

tion (CSP), linear species lumping (LSL), and reaction invariants (RI).

Computational Singular Perturbation

CSP [103, 104] constructs a reduced model by using a set of vectors called the CSP

basis to determine the range and nullspace of a projection matrix. Let ACSP ∈
RNS×NS be the CSP basis matrix. It must be invertible, and is calculated from an

initial guess (typically eigenvectors of the Jacobian of Γ evaluated at a reference

point), followed by optional iterative refinement. Let BCSP = (ACSP )−1 be the CSP

reciprocal basis matrix. The number of reduced state variables, NL, is calculated
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using the error criteria defined by the method. The method also partitions ACSP

and BCSP (again, using the error criteria) in the following way:

ACSP =
[

ACSP
fast ACSP

slow

]
, (2.41)

BCSP =

 BCSP
fast

BCSP
slow

 , (2.42)

where ACSP
slow ∈ RNS×NL and BCSP

slow ∈ RNL×NS . From these matrices, one con-

structs a reduced model using Petrov-Galerkin projection according to (2.8), (2.19),

and (2.13), with V = ACSP
slow and WT = BCSP

slow . A projector representation follows by

taking P = VWT = ACSP
slow BCSP

slow ; this projector is typically oblique. Although ACSP
slow

and BCSP
slow are typically matrix-valued functions over RNS , for this analysis, these

functions would be replaced with their values at a reference point y0 on the CSP

manifold. In practical applications, the CSP matrices are constructed as piecewise

constant functions over RNS .

Linear Species Lumping

Historically, species lumping has been employed to reduce the computational ef-

fort needed to simulate processes that involve large numbers of species. The gen-

eral idea in linear species lumping [213, 112, 113, 114, 115, 116, 117] is to define

“pseudocomponents” or “lumps” that are linear combinations of species compo-

sitions. These lumps are defined either due to their physical significance (such

as grouping together chemically similar species, or species that react on the same

time scale) or due to their favorable mathematical properties (reducing stiffness,

increasing sparsity).

Linear species lumping uses the mapping ỹ(t) = MLSLy(t) to lump species,

and the map x(t) = M̄LSLỹ(t) to unlump species, where MLSL and M̄LSL are a pair

of full rank {1, 2}-inverses such that MLSL ∈ RNL×NS and M̄LSL ∈ RNS×NL . It can

be seen by inspection that linear species lumping is a Petrov-Galerkin projection
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representation as in (2.8), (2.19), and (2.13), where V = M̄LSL, WT = MLSL, and

y0 = 0; as the previous discussion indicates, there is no reason to restrict y0 to be

0. Again, P is probably an oblique projector, since it is unlikely that V and W can

be made equal, even with a change of basis.

Reaction Invariants

The method of reaction invariants has been suggested by [211, 64] as a way to re-

duce the computational requirements of simulating chemical reactor systems with

large numbers of species using a change of variables. This change of variables

yields a new set of state variables that can be partitioned into time-varying quan-

tities called variants and time-invariant quantities called invariants. Only the infor-

mation contained in the variants needs to be preserved to reconstruct the solution

of (2.1).

Reaction invariants assumes that (2.1) models chemical kinetics and has the

form Γ(y(t)) = Nr(y(t)), where N ∈ RNS×NR is the stoichiometry matrix, r :

RNS → RNR is a function returning a vector of reaction rates, NR is the number

of chemical reactions being modeled, and y : R → RNS describes species concen-

trations.

Noting that vectors in N (NT) correspond to conservation relationships that

hold for this reacting system, let (DRI)T ∈ RNS×(NS−NL) be a matrix whose columns

are a basis for N (NT), where NS − NL = dim(N (NT)). To complete the change of

basis transformation, choose a matrix LRI ∈ RNL×NS such that the change-of-basis

matrix BRI ∈ RNS×NS defined by

BRI =

 DRI

LRI

 (2.43)

is invertible. Then the functions v : R → RNL and w : R → RNS−NL such that

v(t) = LRIy(t) and w(t) = DRIy(t) define the variants and invariants of (2.1). Let
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QRI ∈ RNS×(NS−NL) and TRI ∈ RNS×NL be matrices such that

(BRI)−1 =
[

QRI TRI

]
. (2.44)

Setting V = TRI , WT = LRI , and y0 = 0 in (2.8), (2.19), and (2.13) illustrates

how the matrices from reaction invariants can be used to carry out model reduction

through Petrov-Galerkin projection. It can also be shown that V⊥ = (DRI)T, from

which the affine invariant representation

ṡ(t) =
[

INL 0
]

E−1TRILRIΓ

E

 s(t)

f(t)

 , (2.45a)

0 = DRIE

 s(t)

f(t)

−
 s(0)

f(0)

 ,

 s(0)

f(0)

 = E−1y(0), (2.45b)

where

 s(t)

f(t)

 = E−1x(t), (2.46)

and E is an appropriately chosen permutation matrix. It can be shown that

reduced models calculated using reaction invariants are exact, so x(t) = y(t). The

projector P is not necessarily orthogonal, since it is unlikely that V and W can be

set equal in this method, even with a change of basis.

2.4.3 Affine Invariant Representation

A projection-based model reduction method with a classical affine invariant rep-

resentation is the linearized quasi-steady state approximation (LQSSA).

LQSSA was developed by Lu and Law [124] to reduce the computational ex-
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pense of solving nonlinear equations in the quasi-steady state approximation (QSSA)

by replacing them with (quasi-)linear approximations. Assume in (2.1) that y(t)

can be partitioned such that

y(t) =

 ymajor(t),

yQSS(t)

 , (2.47)

where ymajor(t) ∈ RNL is a collection of known major species and yQSS(t) ∈
RNS−NL is a collection of known quasi-steady state (QSS) species. The QSSA of

(2.1) is typically expressed as

ẋmajor(t) =
[

INL 0
]

Γ

 xmajor(t)

xQSS(t)

 , (2.48a)

0 =
[

0 INS−NL

]
Γ

 xmajor(t)

xQSS(t)

 . (2.48b)

The initial conditions are discussed at the end of this subsection. LQSSA re-

places the nonlinear algebraic equation in the QSSA DAE (2.48) with a quasilinear

algebraic equation:

ẋmajor(t) =
[

INL 0
]

Γ

 xmajor(t)

xQSS(t)

 , (2.49a)

0 = CLQSSA
major xmajor(t) + (CLQSSA

QSS −DLQSSA)xQSS(t) + c0, (2.49b)

where CLQSSA
major ∈ R(NS−NL)×NL , CLQSSA

QSS − DLQSSA ∈ R(NS−NL)×(NS−NL) is in-

vertible, and c0 ∈ R(NS−NL). In LQSSA, these quantities are actually functions

defined on RNL (corresponding to the major species), but must be treated as con-

stants here to obtain a linear manifold; these functions are replaced by their values

at ymajor,0 ∈ RNL corresponding to some point y0 defined as
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y0 =

 ymajor,0

yQSS,0

 , (2.50)

chosen by the users such that it is a solution to the LQSSA DAE system. (In

practical numerical computations, these matrices are assumed piecewise constant.)

The quantities CLQSSA
major , CLQSSA

QSS −DLQSSA, and c0 are the coefficients of QSS rela-

tionships linearized (in a manner specific to LQSSA [124], rather than using a Tay-

lor series) at y0. It follows that under these assumptions, the LQSSA DAE system

can be expressed as:

ẋmajor(t) =
[

INL 0
]

Γ

 xmajor(t)

xQSS(t)

 , (2.51a)

0 =
[

CLQSSA
major (CLQSSA

QSS −DLQSSA)
] xmajor(t)

xQSS(t)

−
 xmajor,0

xQSS,0

 , (2.51b)

which is an affine invariant representation where E = I, L = CLQSSA
major , and

R = (CLQSSA
QSS −DLQSSA). Since the product P̃ is of the form [INL 0] E−1, a projector

representation can be constructed explicitly using (2.38). Let P be the projection

matrix corresponding to this projector representation. If the initial condition of

(2.1) is

y(0) = y∗ =

 y∗major

y∗QSS

 , (2.52)

then the corresponding initial condition for (2.51) is
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x(0) =

 xmajor(0)

xQSS(0)

 = P(y∗ − y0) + y0. (2.53)

In this method, P is probably oblique.

2.5 Discussion

Above, it has been shown that many model reduction methods that look super-

ficially very different are all of the same mathematical form given by (2.2). The

accuracy of the reduced models can differ only if they choose different (P,y0). The

numerical efficiency can differ even if P and y0 (and thus, reduced model predic-

tions) are identical, depending in part on which of the three formulations of the

reduced model are used. Depending on the choice of the matrix P (or the pair

of matrices V and W), the solution x of the reduced model (2.2) may not satisfy

conservation laws (such as conservation of elements, mass, or energy). However,

it can still give sufficiently accurate results to be useful over time scales of interest.

The major technical obstacle in developing projection-based model reduction

methods is determining a manifold (and a projector P) that gives an accurate re-

duced model. Many researchers in combustion believe that there exist smooth

nonlinear invariant manifolds that can be used to approximate accurately the dy-

namics of stiff ODE systems that arise in chemical kinetics. From a purely theo-

retical perspective, the theory of geometrical singular perturbation theory (GSPT)

[92, 61, 62, 63, 219, 220] and the stable manifold theorem (see Theorem 1.3.2 in

[78]) are cited as reasons that an invariant manifold should exist. However, each

of these results is local in nature; while stable manifolds can be extended using

the flow of an ODE, it is not necessarily clear that the local invariant manifolds of

Fenichel can be extended globally. Furthermore, both GSPT and the stable man-

ifold theorem requires that certain technical conditions be satisfied (see citations

for details). It is not easy to check these conditions in most problems of practi-
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cal interest. Many systems have some conserved quantities (e.g., number of atoms

in a closed system); these quantities imply exact invariant manifolds. Evidence

suggesting the existence of less obvious invariant manifolds has been observed in

some real-world problems [41, 43, 40, 42, 39] as well as simplified model problems

[67, 66, 174, 175, 176, 171, 206, 208]. Therefore, existence of an invariant manifold

is normally assumed, but not proven.

The manifolds used in model reduction in combustion are generally nonlinear

(whether or not they are invariant) due to the significant curvature of trajectories

in applications. Consequently, the linear manifold assumption in projection-based

model reduction is restrictive for problems in chemical kinetics, despite yielding

tractable analysis and useful conclusions; it is very important to remember this

assumption when using these results. In order to be more useful for rigorous com-

putations, the theory needs to be extended to account for piecewise linear or non-

linear manifolds. It is hoped that the streamlined mathematical notation presented

here for linear manifolds will be helpful in that effort.

Although many model reduction methods have the same mathematical form,

very different projection matrices may be used for different purposes. For example,

most of the methods presented are aimed at projecting onto slow modes along fast-

changing modes, but some methods, such as POD and reaction invariants, project

onto fast modes along slow modes.

2.6 Conclusions

In this work, a class of model reduction methods called “projection-based model

reduction methods” was defined, standardizing the language and mathematics

underlying many different methods. It was shown that there are three represen-

tations of projection-based model reduction methods. Sources of instantaneous

approximation error were described. All methods that calculate the same (P,y0)

pair give the same projected reduced model, and thus, under the same initial con-

ditions, the same reduced model solution. From an analytical standpoint the sub-
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spaces defined by the matrices in the projector and Galerkin representations are

the important objects in determining the accuracy of the reduced model, rather

than the specific matrices themselves. This observation suggests a geometric in-

terpretation of projection-based model reduction. However, clever choices of the

matrices V and W in the affine lumping (or Petrov-Galerkin projection) represen-

tation can reduce the CPU time needed to solve the reduced model, or improve the

numerical accuracy of the reduced model solution. Similarly, clever choices of E,

L, and R in the affine invariant representation could aid in the solution of the DAE

obtained.

Furthermore, it was demonstrated that each of these three representations ap-

pear multiple times in the literature, provided that certain technical assumptions

are made. Where applicable, it was shown how the matrices in each existing

method relate to concepts in projection-based model reduction. The generaliza-

tions about projection-based model reduction methods presented here make it pos-

sible to draw analogies to similar objects in different projection-based model reduc-

tion methods, enabling more systematic comparisons of model reduction methods,

and hopefully spurring more advances in model reduction in combustion.

It would also be useful to develop projection-based model reduction methods

that control error in such a way that it is possible to bound the approximation error

in the reduced model solution relative to the corresponding full model solution.

Observations in this paper, combined with new error bounding results, should aid

in the development of more such methods.
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Chapter 3

State-Space Error Bounds For

Projection-Based Reduced Model

ODEs

3.1 Introduction

Projection-based model reduction is used in a variety of contexts, including fluid

mechanics [14, 98, 128, 109, 129], control theory [101], atmospheric modeling [59,

48, 193], combustion modeling [103, 104, 124, 188, 206], circuit simulation [20, 169,

170], and other applications to reduce the computational requirements of carrying

out CPU-intensive equation solves. In order to be used with confidence in appli-

cations with stringent accuracy requirements, accurate bounds on or estimates of

the approximation error due to model reduction are needed.

Currently, error bounds for nonlinear ODE systems only exist for the case of

orthogonal projection-based model reduction methods [165] such as proper or-

thogonal decomposition [14] and balanced truncation [8, 6, 7], as well as for the

non-projection-based method POD-DEIM [30, 32, 29]. These error bounds are

based on logarithmic norms of the Jacobian matrix of the ODE right-hand side and

have their theoretical roots in Gronwall’s inequality [77] and work by Dahlquist on
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bounding the error in numerical solutions of ODEs [38]. Although these bounds

typically overestimate the approximation error, in both the numerical ODE con-

text [192, 83, 12] and the context of model reduction of ODEs, they have provided

the basis for work on much more accurate a posteriori estimates of error in both

the numerical solution of ODEs [218, 190, 105] and the approximation error due

to solving reduced model ODEs [86]; again, the estimate in [86] only applies to

orthogonal projection-based model reduction methods.

Similar work on bounding the approximation error due to model reduction

has been carried out by Haasdonk and collaborators [81, 79, 217]. In their work on

model reduction of ODEs, Gronwall- and Dahlquist-like bounds are used to bound

the approximation error in the reduced model solution of linear time-varying pa-

rameterized ODEs for both orthogonal and oblique projection-based model reduc-

tion methods. No effort is made to decompose the error into in-subspace and out-

of-subspace components, as in [165].

Rozza, et al. [178] (and references therein) describe how to construct projection-

based reduced models for affinely parameterized elliptic coercive PDEs with bounds

on the energy norm of the error between a desired functional of the reduced model

solution and the same functional evaluated at a solution obtained using a high-

dimensional finite element approximation. Although the results are presented for

one specific class of PDEs, the authors mention generalizations to affinely param-

eterized linear elliptic noncoercive problems, problems with nonaffine parametric

variation, affine linear (stable) parabolic PDEs, and elliptic (or parabolic) PDEs

with polynomial nonlinearities. However, no rigorous bounds of the same type

exist for elliptic (or parabolic) PDEs with nonpolynomial nonlinearities. Using

these methods, it is also possible to calculate bounds on the residual between

the reduced model PDE solution and the PDE solution obtained using a high-

dimensional finite element approximation [148] (and references therein).

Function norm error bounds on the reduced model solution of Navier-Stokes-

like equations in fluid mechanics in two spatial dimensions were obtained in [102],

assuming POD snapshots in space and backward Euler integration in time; the re-
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sults require a number of technical inequalities be satisfied, and does not general-

ize easily.

For oblique projection-based model reduction methods, such as DEIM [30],

computational singular perturbation [103, 104], linearized quasi-steady state ap-

proximation [124], and others [156], neither Dahlquist-like bounds nor accurate

long time a posteriori error estimates exist for the approximation error due to solv-

ing reduced model ODEs with nonlinear right-hand sides. Here, the approach of

Rathinam and Petzold [165] is extended from orthogonal projection-based meth-

ods to include all projection-based methods. Although these bounds will not be

tight, as discussed later, they can be used as the basis for future work on a posteriori

error estimation for oblique projection-based model reduction methods.

3.2 Projection-Based Model Reduction

Here, model reduction will be discussed in the ODE setting. Consider the initial

value problem

ẏ(t) = f(y(t)), y(0) = y∗, (3.1)

where y(t) ∈ Rn represents system state variables, y∗ ∈ Rn, and f : Rn → Rn

with f ∈ C1.

From (3.1), a projection-based model reduction method constructs a projected

reduced model

ẋ(t) = Pf(x(t)), x(0) = P(y∗ − y0) + y0 (3.2)

by calculating a projection matrix P ∈ Rn×n, where x(t) ∈ Rn represents the

state variables of the projected reduced model (which have the same significance

as y(t)), and y0 ∈ Rn.
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An equivalent representation may be obtained through Petrov-Galerkin projec-

tion. In this representation, one seeks a function x : R → Rn approximating the

solution y : R→ Rn of (3.1) that takes the form

x(t) = y0 + Vỹ(t), (3.3)

where V ∈ Rn×k is a full rank matrix, k < n is the number of reduced state

variables, and ỹ(t) ∈ Rk represents the reduced state variables. The original model

solution and the reduced model solution are related by

y(t) = x(t)− e(t), (3.4)

where the function e : R→ Rn is the approximation error in the reduced model

solution. Note that e must be differentiable. If x were identically y, then e =

0, because there would be no errors in the reduced model. In practice, e 6= 0.

Substituting (3.4) into (3.1) and rearranging yields

ẋ(t)− f(x(t)− e(t)) = ė(t); (3.5)

typically, in the argument of f in (3.5), the error term is neglected, which will be

the convention in this document. Replacing x(t) in (3.6) with the definition in (3.3),

neglecting the error term in f , and assuming that V is constant yields the definition

of the residual, d(t), of the Petrov-Galerkin projection:

V ˙̃y(t)− f(Vỹ(t) + y0) = d(t). (3.6)

The residual is also defined orthogonal to the range of a full rank matrix W ∈
Rn×k
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WT(V ˙̃y(t)− f(Vỹ(t) + y0)) = Wd(t) = 0, (3.7)

subject to the biorthogonality constraint

WTV = I. (3.8)

This constraint, along with equations (3.7) and (3.3), implies that

ỹ(t) = WT(x(t)− y0). (3.9)

Differentiating (3.9) yields the lumped reduced model

˙̃y(t) = WTf(Vỹ(t) + y0), ỹ(0) = WT(y∗ − y0). (3.10)

Note that in (3.10), the initial conditions of (3.2) can be used to obtain the proper

initial conditions because P = VWT is the corresponding projection matrix. In the

case where V = W, this process is called Galerkin projection, and the correspond-

ing projector is orthogonal, with P = PT. Otherwise, the corresponding projector

is oblique; the emphasis here will be on the oblique case. For more information

about both of these representations and their equivalence, see [156].

3.3 Mathematical Preliminaries

To bound the state space error in projection-based model reduction, the approach

of this paper will be to bound the norm of a solution to a nonlinear ODE. Following

the presentation of [165], consider the linear system
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ẏ(t) = Ay(t) + r(t), y(0) = y∗, (3.11)

for the purpose of illustration, where A ∈ Rn×n. The solution of (3.11) takes the

form

y(t) = eAty∗ +

∫ t

0

eA(t−τ)r(τ) dτ. (3.12)

From (3.12), bounds on the norm of y(t) may be derived using Gronwall’s

lemma [77] or Dahlquist-like inequalities involving the logarithmic norm of A

[83, 192]. Following the approach of [165], bounds on the norm of the function

y : [0, T ] → Rn are derived instead, where T > 0. In this paper, for any function

g : [0, T ]→ Rn, ‖g(t)‖ is the norm of the point g(t) ∈ Rn, assumed to be the 2-norm

unless otherwise stated. The function norm will be denoted ‖g‖ and will also be

the 2-norm unless otherwise stated. Keeping function norms in mind, (3.12) may

be written as

y = F(T,A)r + G(T,A)y∗,

where F(T,A) : L2([0, T ],Rn)→ L2([0, T ],Rn) and G(T,A) : Rn → L2([0, T ],Rn)

are linear operators. The desired bound on ‖y‖ then takes the form

‖y‖ ≤ ‖F(T,A)‖‖r‖+ ‖G(T,A)‖‖y0‖. (3.13)

Sharp estimates for the operator norms of F(T,A) and G(T,A) are difficult to

obtain. As can be seen from the form of (3.12), these estimates reduce to estimating

the norm of the matrix exponential. The classical approach to this problem [192]
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yields

‖etA‖ ≤ etµ(A), t ≥ 0,

where µ(A) is the logarithmic norm related to the induced 2-norm of the square

matrix A:

µ(A) = lim
h→0+

‖I + hA‖ − 1

h
.

The logarithmic norm may be negative, and has the property

max
i

Reλi ≤ µ(A),

where {λi} are the eigenvalues of A. Bounding the norm of the solution of a

nonlinear ODE follows similar reasoning; for a more detailed explanation of the

nonlinear case, see [83, 192].

3.4 Error Analysis for Projection-Based Model Reduc-

tion

The development of error bounds in this section parallels the presentation in [165].

Consider approximating the solution y : [0, T ] → Rn of (3.1) by the solution x :

[0, T ] → Rn of (3.2) constructed by a projection-based model reduction method. A

bound on the error, e(t) = x(t) − y(t), will be derived. Since Rn = R(P) ⊕ N (P),

e(t) may be decomposed uniquely into e(t) = ec(t)+ei(t), where ei(t) denotes error

within R(P) and ec(t) denotes errors within the complementary subspace N (P).

Unlike the previous work in [165], ec(t) and ei(t) are not necessarily orthogonal
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because P may be an oblique projector. These errors can be expressed as

ec(t) = (I−P)(x(t)− y(t)) = −(I−P)y(t) + (I−P)y0 (3.14)

ei(t) = P(x(t)− y(t)). (3.15)

The component ec(t) is the error between y(t) and its projection onto R(P)

along N (P). It is assumed that P is calculated by a projection-based model reduc-

tion method that bounds ec(t) in some norm to within a specified tolerance; this

assumption will be revisited after error bounds are derived.

Typically, ei(t) is not explicitly bounded by a method; it consists of errors in

R(P) that accumulate over time as ec(t) increases in norm.

An error estimate for ei(t) can be derived in terms of ec(t). Differentiating (3.15)

and substituting (3.1) and (3.2) for the resulting time derivatives and initial condi-

tions yields

ėi(t) = P[f(y(t) + ec(t) + ei(t))− f(y(t))], ei(0) = 0. (3.16)

Note that ei(0) = 0 because the initial conditions of (3.1) are projected onto

R(P) along N (P) in (3.2). Therefore, ei(t) is governed by (3.16), where ec(t) and

y(t) may be treated as forcing terms. For a graphical illustration of the relation-

ships among y, x, ec, ei, and e, see Figure 3-1.

Before presenting error bounding results for the nonlinear ODE case, it is in-

structive to consider error bounding results for the linear case. Suppose that (3.1)

takes the form ẏ(t) = Ay(t) with A ∈ Rn×n. Then (3.16) becomes

ėi(t) = PAei(t) + PAec(t), ei(0) = 0.

It will be useful to define V⊥ and W⊥ as matrices whose columns spanR(V)⊥
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y

ỹ

x

y(0)

x(0) = ỹ(0)

R(P) + y0

e(0)

e(t)

ei(t)

ec(t)

Figure 3-1: Illustrates the relationships among the full model solution y, the pro-
jected solution ŷ (see (3.22)), the reduced model solution x, and the error e. Note
that the error is decomposed into a component in R(P) denoted ei, and a compo-
nent in N (P) denoted ec.

andR(W)⊥, respectively, that also satisfy the relationship

VT
⊥W⊥ = I. (3.17)

These matrices will be used in developing error bounds for reduced order mod-

els. It follows that V⊥,W⊥ ∈ Rn×(n−k); these matrices also satisfy I−P = W⊥VT
⊥,

and can be obtained via full rank decomposition of I − P. This decomposition is

not unique.

For convenience, let Ã = WTAV ∈ Rk×k, and Â = WTAW⊥ ∈ Rk×(n−k). Then,

using the result in (3.13) and a change of coordinates yields the bound

‖ei‖ ≤ ‖F(T, Ã)‖‖Â‖‖V‖‖V⊥‖‖ec‖,
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so the total error is bounded by

‖e‖ ≤
(
‖F(T, Ã)‖‖Â‖‖V‖‖V⊥‖+ 1

)
‖ec‖.

Here, Ã = WTAV ∈ Rk×k, and Â = WTAW⊥ ∈ Rk×(n−k), where V⊥ and W⊥

are matrices whose columns span R(V)⊥ and R(W)⊥, scaled so that VT
⊥W⊥ = I.

Then V⊥,W⊥ ∈ Rn×(n−k); these matrices also satisfy I − P = W⊥VT
⊥, and can be

obtained via full rank decomposition of I−P.

The nonlinear case proceeds in a similar fashion. Write the solution y : [0, T ]→
Rn of (3.1) and the solution x : [0, T ]→ Rn of (3.2) as

y(t) = Vu(t) + W⊥v(t) + y0, (3.18)

x(t) = Vu(t) + Vw(t) + y0 = y(t) + e(t), (3.19)

so that the errors ec(t) and ei(t) and the projected solution ŷ : [0, T ] → Rn are

given by

ec(t) = −W⊥v(t) = ŷ(t)− y(t), (3.20)

ei(t) = Vw(t) = x(t)− ŷ(t), (3.21)

ŷ(t) = y(t) + ec(t) = Vu(t) + y0 = P(y(t)− y0) + y0. (3.22)

Note that u(t) ∈ Rk, w(t) ∈ Rk, v(t) ∈ Rn−k, and k = tr(P). Recalling that

P = VWT is a full rank decomposition of a projection matrix P such that WTV = I,

the linear case can be generalized in the following theorem:

Theorem 3.4.1. Consider solving the initial value problem (3.1) using the projection-

based reduced order model (3.2) in the interval [0, T ]. Let γ ≥ 0 be the Lipschitz constant

of WTf in the directions corresponding to N (P) = N (WT) = R(W)⊥ in a region con-
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taining y([0, T ]) and ŷ([0, T ]). To be precise, suppose

‖WTf(ŷ(t) + W⊥v)−WTf(ŷ(t))‖ ≤ γ‖v‖

for all (v, t) ∈ A ⊂ Rn−k× [0, T ], where the region A is such that the associated region

Ā = {(ŷ(t) + W⊥v, t) : (v, t) ∈ A} contains (ŷ(t), t) and (y(t), t) for all t in [0, T ]. Let

µ(WTDf(y0 + Vz)V) ≤ µ̄ for z ∈ V ⊂ Rk, where {u(t) + λw(t) : t ∈ [0, T ], λ ∈ [0, 1]}
is contained in V , and µ(·) denotes the logarithmic norm related to the 2-norm.

The function ei satisfies

inf{C ≥ 0 : ‖ei(t)‖∞ ≤ C a.e. on [0, T ] } = ‖ei‖∞ ≤

 εγ
(
e2µ̄T−1

2µ̄

)1/2

‖V‖‖VT
⊥‖, µ̄ 6= 0,

εγT 1/2‖V‖‖VT
⊥‖, µ̄ = 0,

(3.23)

and the 2-norm of the function e satisfies

(∫ T

0

‖e(t)‖2 dt

)1/2

= ‖e‖ ≤


ε

(
1 + γ

(
e2µ̄T−1−2µ̄T

4µ̄2

)1/2

‖V‖‖VT
⊥‖
)
, µ̄ 6= 0,

ε(1 + 2−1/2γT‖V‖‖VT
⊥‖), µ̄ = 0,

(3.24)

where

ε = ‖ec‖ =

(∫ T

0

‖ec(t)‖2 dt

)1/2

. (3.25)

Proof. The proof follows the development of Proposition 4.2 in [165]. Since ei(t) =

Vw(t) and WTV = Ik, it follows that WTei(t) = w(t), so
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ẇ(t) = WTėi(t) = WTf(y(t))−WTf(x(t)), (3.26)

and

ẇ(t) = WTf(y0 + Vu(t) + Vw(t))−WTf(y0 + Vu(t) + W⊥v(t)). (3.27)

Applying a Taylor expansion for h > 0, w(t+h) = w(t) +hẇ(t) +O(h2), which

satisfies

‖w(t+ h)‖ = ‖w(t) + hẇ(t) +O(h2)‖,

= ‖w(t) + hWTf(y0 + Vu(t) + Vw(t))− hWTf(y0 + Vu(t) + W⊥v(t)) +O(h2)‖.
(3.28)

Using the triangle inequality on the previous equation (3.28) yields

‖w(t+ h)‖ ≤ ‖w(t) + hWTf(y0 + Vu(t) + Vw(t))− hWTf(y0 + Vu(t))‖

+ h‖WTf(y0 + Vu(t) + W⊥v(t))−WTf(y0 + Vu(t))‖+O(h2).

(3.29)

Let g : Rk → Rk be the function

g(η) = η + hWTf(y0 + Vη). (3.30)

Then
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‖w(t) + hWTf(y0 + Vu(t) + Vw(t))− hWTf(y0 + Vu(t))‖ = ‖g(u(t) + w(t))− g(u(t))‖.
(3.31)

Applying a multivariate mean value theorem (Exercise 2.5 from [52]) to g yields

‖g(u(t) + w(t))− g(u(t))‖ ≤ κ‖w(t)‖, (3.32)

for any κ ∈ R such that

κ ≥ sup
η∈[u(t),u(t)+w(t)]

‖Dg(η)‖ = sup
η∈[u(t),u(t)+w(t)]

‖Ik + hWTDf(y0 + Vη)V‖. (3.33)

Here, for any two vectors η1,η2 ∈ Rk, [η1,η2] denotes the line segment join-

ing the two. (Traditionally, this bracket notation refers to intervals; however, the

convention used by Rathinam and Petzold [165] is followed here.) Since the line

[u(t),u(t) + w(t)] is a compact subset of Rk,

sup
η∈[u(t),u(t)+w(t)]

‖Ik + hWTDf(y0 + Vη)V‖ = max
η∈[u(t),u(t)+w(t)]

‖Ik + hWTDf(y0 + Vη)V‖.

It follows from (3.31), (3.32), (3.33), and (3.29) that

‖w(t+ h)‖ − ‖w(t)‖ ≤
(

max
η∈[u(t),u(t)+w(t)]

‖Ik + hWTDf(y0 + Vη)V‖ − 1

)
‖w(t)‖

+ h‖WTf(y0 + Vu(t) + W⊥v(t))−WTf(y0 + Vu(t))‖+O(h2),

≤
(

max
η∈[u(t),u(t)+w(t)]

‖Ik + hWTDf(y0 + Vη)V‖ − 1

)
‖w(t)‖

+ hγ‖v(t)‖+O(h2), (3.34)
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which implies that

‖w(t+ h)‖ − ‖w(t)‖
h

≤ µ̄‖w(t)‖+ γ‖v(t)‖+O(h), (3.35)

where the O(h) term may be uniformly bounded independent of w(t) (see [83],

Equations 10.17 and 10.18). Then it follows from Theorem 10.6 of [83] that

‖w(t)‖ ≤ γ

∫ t

0

eµ̄(t−τ)‖v(τ)‖ dτ. (3.36)

Since ei(t) = Vw(t), it follows that

‖ei(t)‖ ≤ ‖V‖‖w(t)‖ ≤ ‖V‖γ
∫ t

0

eµ̄(t−τ)‖v(τ)‖ dτ. (3.37)

After applying the Cauchy-Schwarz inequality on the right-hand side, it fol-

lows that

‖ei(t)‖ ≤

 ‖V‖γ
(
e2µ̄t−1

2µ̄

)1/2( ∫ t
0
‖v(τ)‖2 dτ

)1/2

, µ̄ 6= 0,

‖V‖γt1/2
( ∫ t

0
‖v(τ)‖2 dτ

)1/2

, µ̄ = 0.
(3.38)

Since v(t) = −VT
⊥ec(t), it follows that

‖ei(t)‖ ≤

 ‖V‖‖V
T
⊥‖γ

(
e2µ̄t−1

2µ̄

)1/2( ∫ t
0
‖ec(τ)‖2 dτ

)1/2

, µ̄ 6= 0,

‖V‖‖VT
⊥‖γt1/2

( ∫ t
0
‖ec(τ)‖2 dτ

)1/2

, µ̄ = 0,
(3.39)

from which it follows that
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‖ei‖∞ ≤

 εγ
(
e2µ̄t−1

2µ̄

)1/2

‖V‖‖VT
⊥‖, µ̄ 6= 0,

εγT 1/2‖V‖‖VT
⊥‖, µ̄ = 0.

(3.40)

Substituting (3.25) then squaring (3.39), integrating, and taking the square root

to pass to the L2-norm yields the bound

‖ei‖ ≤

 εγ
(
e2µ̄T−1−2µ̄T

4µ̄2

)1/2

‖V‖‖VT
⊥‖, µ̄ 6= 0,

2−1/2εγT‖V‖‖VT
⊥‖, µ̄ = 0.

(3.41)

Applying the triangle inequality yields

‖e‖ ≤ ‖ei‖+ ‖ec‖ ≤


ε

(
1 + γ

(
e2µ̄T−1−2µ̄T

4µ̄2

)1/2

‖V‖‖VT
⊥‖
)
, µ̄ 6= 0,

ε(1 + 2−1/2γT‖V‖‖VT
⊥‖), µ̄ = 0.

(3.42)

Remark 3.4.2. When µ̄ < 0, uniform bounds (independent of T ) can obtained from

Theorem 3.4.1 by noting that

e2µ̄t − 1

µ̄
≤ 1

|µ̄| , (3.43)

in which case

‖ei‖∞ ≤ εγ|2µ̄|−1/2‖V‖‖VT
⊥‖, (3.44)

‖e‖ ≤ ε
(

1 +
γ

2|µ̄|‖V‖‖V
T
⊥‖
)
. (3.45)

Remark 3.4.3. It is worth noting that if Theorem 3.4.1 is applied to an orthogo-
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nal projector, the resulting bounds are weaker than those derived in [165] because

orthogonality is not used in the proof above. Also note that the since full rank de-

compositions of P and I−P are not unique, the error bounds derived in Theorem

3.4.1 are not unique, and depend on these full rank decompositions. Some choice

of these decompositions will yield the tightest possible error bounds. However,

worst-case error bounds may be derived by changing the approach above slightly.

Write instead the solution x : [0, T ] → Rn of (3.2) in terms of the solution y :

[0, T ]→ Rn of (3.1):

x(t) = y(t) + ec(t) + ei(t).

Write the projected solution ŷ : [0, T ]→ Rn as

ŷ(t) = y(t) + ec(t).

Then error bounds can be obtained from the following corollary:

Corollary 3.4.4. Assume the hypotheses of Theorem 3.4.1. Let γ′ ≥ 0 be the Lipschitz

constant of Pf in the directions corresponding to N (P) in a region containing y([0, T ])

and ŷ([0, T ]). To be precise, suppose

‖Pf(ŷ(t) + W⊥v)−Pf(ŷ(t))‖ ≤ γ′‖v‖

for all (v, t) ∈ A′ ⊂ Rn−k×[0, T ], where the regionA′ is such that the associated region

Ā′ = {(ŷ(t) +W⊥v, t) : (v, t) ∈ A′} contains (ŷ(t), t) and (y(t), t) for all t in [0, T ], and

W⊥ is orthonormal.. Let µ(PDf(z)) ≤ µ̄′ for z ∈ V ′ ⊂ Rn, {λŷ(t) + (1 − λ)x(t) : t ∈
[0, T ], λ ∈ [0, 1]} is contained in V ′, and µ(·) denotes the logarithmic norm related to the

2-norm.

The function ei satisfies
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inf{C ≥ 0 : |ei(t)| ≤ C a.e. on [0, T ] } = ‖ei‖∞ ≤

 εγ′
(
e2µ̄

′T−1
2µ̄′

)1/2

, µ̄′ 6= 0,

εγ′T 1/2, µ̄′ = 0,

(3.46)

and the 2-norm of the function e satisfies

(∫ T

0

‖e(t)‖2 dt

)1/2

= ‖e‖ ≤


ε

(
1 + γ′

(
e2µ̄

′T−1−2µ̄′T
4(µ̄′)2

)1/2
)
, µ̄′ 6= 0,

ε(1 + 2−1/2γ′T ), µ̄′ = 0.

(3.47)

Proof. Only a sketch proof will be provided; the proof follows the logic of Theorem

3.4.1, but uses the decomposition

‖ei(t+ h)‖ = ‖ei(t) + hPf(y(t) + ec(t) + ei(t))− hPf(y(t))‖+O(h2)

≤ ‖ei(t) + hPf(y(t) + ec(t) + ei(t))− hPf(y(t) + ec)‖

+ h‖Pf(y(t))− hPf(y(t) + ec)‖+O(h2) (3.48)

instead of (3.29) to derive bounds.

Remark 3.4.5. The bounds in Corollary 3.4.4 do not correspond to the bounds in

Theorem 3.4.1, because µ̄ and µ̄′ cannot be compared directly, since they bound the

logarithmic norm of square matrices of differing size. Coordinate changes cannot

be used to relate the logarithmic norm in the hypotheses of Theorem 3.4.1 to the

logarithmic norm in the hypotheses of Corollary 3.4.4; these coordinate changes

would not be norm-preserving. Bounds corresponding to Corollary 3.4.4 were not

considered in [165]; the likely explanation for not considering this approach in

that work is that ‖P‖ = 1 for the case where P is an orthogonal projector, and V,

W, V⊥, and W⊥ can all be chosen such that their 2-norms are all one. Corollary
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3.4.4 yields worst-case bounds on the error for a projection-based model reduc-

tion method, since these bounds are unique, unlike the bounds in Theorem 3.4.1.

However, these bounds are generally expected to be weaker than Theorem 3.4.1,

because the hypotheses involve taking the logarithmic norm of a larger square

matrix, making it more likely in practice to yield a large logarithmic norm bound,

compared to Theorem 3.4.1.

Remark 3.4.6. By considering in-subspace errors (ei(t), which is in R(P)) and out-

of-subspace errors (ec(t), which is in N (P)) separately, this analysis provides a

bound on the norm of the total error function, e, in terms of ε, a bound on the

norm of the out-of-subspace error function, ec. The value of ε depends on the

solution y : [0, T ] → Rn of (3.1) and on P and y0 in (3.2). In general, ‖ec‖ is not

known precisely unless the solution of (3.1) is calculated; this observation holds

even for the analysis of POD in [165]. Typically, a bound on ‖ec‖ is estimated using

any error control results provided by a model reduction method. If such results are

unavailable, substituting a known solution to (3.1) with different initial conditions

that approximates y is another way to obtain such an estimate. Using an estimate

of ε in Theorem 3.4.1 or Corollary 3.4.4 would only yield estimates of bounds on

the function norm of the total error at best; if the function used in place of y in the

definition of (3.14) differs significantly from y, these estimates may be inaccurate.

Consequently, such estimates must be used with caution.

3.5 Case Study

To illustrate the factors affecting bounds on the norms of ei and e given ec (or

bounds on ‖ec‖2), consider the linear time invariant ODE

ẏ(t) = Ay(t), y(0) = y∗, (3.49)

where A takes the form
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A =

 A1 A12

0 A2

 , (3.50)

with the blocks of A first taking the values

A1 =


−2.1 0 0

0 −2.1732 −2

0 −2 −2.1732

 , (3.51)

A12 =


0.3893 0.5179 −1.543

1.39 1.3 0.8841

0.06293 −0.9078 −1.184

 , (3.52)

A2 =


−3 0 0

0 −3.226 −0.708

0 −0.708 −3.226

 , (3.53)

so that n = 6. Three values of A were considered; modifications of (3.51), (3.52),

and (3.53) will be discussed later in this section. This example is inspired by [165];

the matrix A in this paper differs from the matrix A in that paper by negating

all positive entries of A1 and A2 in [165], then subtracting 2I from the resulting

matrix. These manipulations can be seen in the accompanying MATLAB [133] and

Python [209] code in Appendix B.

Unlike the case of orthogonal projectors, it is impossible to use a norm-preserving

change of basis to decouple the effects of ε, γ, and µ̄, because R(P) is not orthog-

onal to N (P) when P is an oblique projector. Consequently, when changing one

of {ε, γ, µ̄}, at least one other parameter changes. In light of this observation, the

effect of changing γ and ε at constant µ̄, and the effect of changing µ̄ and ε at

constant γ were studied by altering the blocks of A. The parameters γ and µ̄ were

calculated using γ = ‖WTAW⊥‖2 and µ̄ = µ(WTAV); both formulates derive from
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Theorem 3.4.1. The parameters γ′ and µ̄′ were calculated using γ′ = ‖PAW⊥‖2 and

µ̄′ = µ(PA), where W⊥ is orthonormal. The parameter ε and all other function 2-

norms were calculated by approximating definite integrals using the trapezoidal

rule.

Note that A1 and A2 in (3.51) and (3.53), respectively, are symmetric and have

negative real eigenvalues. Furthermore, the spectrum of A is the union of the

spectra of A1 and A2. For each value of A considered, the projector P is chosen so

thatR(P) consists of the three eigenvectors of A that are not contained in the span

of {e1, e2, e3}, where ej is the jth standard Euclidean unit vector; consequently,

the number of reduced variables is k = 3. However, for all three values of A

considered,N (P) will always be spanned by {e4, e5, e6}, where again, ej is the jth

standard Euclidean unit vector. As a result, when A changes, the projector P will

change with it, because the range of the projector changes, even though the null

space of the projector will stay the same.

To illustrate the effect of changing V, W, V⊥, and W⊥ on the error bounds

given by Theorem 3.4.1, two sets of values for these matrices will be considered. In

the first set of values, W and W⊥ will have orthonormal columns so that ‖W‖2 =

‖W⊥‖2 = 1; the remaining matrices are determined so that they satisfy (3.8) and

(3.17). In the second set of values, V and V⊥ have orthonormal columns so that

‖V‖2 = ‖V⊥‖2 = 1; the remaining matrices are determined so that they satisfy

(3.8) and (3.17). The error bounds obtained from Theorem 3.4.1 were compared to

error bounds obtained from Corollary 3.4.4.

The matrices V, W, V⊥, and W⊥were calculated from matrices whose columns

spannedR(P) andN (P), respectively, using the algorithm suggested in equations

(5.1) and (5.2) of [195]. Projector-vector products were also calculated using this

algorithm. While explicit calculation of P is not recommended [195], it was cal-

culated explicitly only to calculate ‖P‖2 to get an idea of numerical errors due

to projector-vector products. The quantity ‖P‖2 plays a role in the calculation

of projector-vector products similar to that of the condition number when solv-

ing systems of linear equations [195]. All ODEs were integrated using an explicit
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Runge-Kutta (4,5) Dormand-Prince pair using a relative tolerance of 10−13 and an

absolute tolerance of 10−25 on each component of the solution. All linear systems

were solved using QR factorization. All random numbers were calculated using a

Mersenne twister algorithm (MT19937). Calculations were implemented on a Mac-

Book Pro 2011 model running Mac OS X 10.7.3 with a 2.7 GHz Intel Core i7 CPU

and 8 GB of 1333 MHz DDR3 RAM. Source code implementations in MATLAB

[133] and Python [209] are included for reproducibility in Appendix B.
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Figure 3-2: First three components of x(t) (dashed) and y(t) (solid) corresponding
to the first choice of A as in (3.49), (3.50), (3.51), (3.52), and (3.53) and its corre-
sponding projector.

For A as in (3.49), (3.50), (3.51), (3.52), and (3.53), if V, W, V⊥, and W⊥ are

chosen such that W and W⊥ are orthonormal, then γ = ‖A12‖2 = 2.4421 and µ̄ =

−2.1323, based on Theorem 3.4.1. The initial condition y∗ for (3.49) was randomly

chosen, and y(t) and x(t) were computed on the interval [0, 5], as inspired by [165].

The first three components of y(t) and x(t) are shown in Figure 3-2, and the second

three components of y(t) and x(t) are shown in Figure 3-3. The solutions y and x

each behave qualitatively similarly for all three values of A considered in this case
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Figure 3-3: Second three components of x(t) (dashed) and y(t) (solid) correspond-
ing to the first choice of A as in (3.49), (3.50), (3.51), (3.52), and (3.53) and its corre-
sponding projector.

study, and will not be plotted for other values of A. The first three components

of ei(t) and e(t) are shown in Figure 3-4; note that ej(t) = eij(t) for j = 1, 2, 3 and

all t on [0, 5]. The second three components of ei(t) and e(t) are shown in Figure

3-5. As with y(t) and x(t), the quantities ei(t) and e(t) each behave qualitatively

similarly for all three values of A considered; no additional plots of ei(t) or e(t) will

be presented. The 2-norm of the component of the error in N (P) was ε = ‖ec‖2 =

2.3423. The sup-norm and 2-norm of the component of the error in R(P) were

‖ei‖∞ = 1.1659 and ‖ei‖2 = 2.3950. The 2-norm of the total error was ‖e‖2 = 1.7180.

The bounds provided by Theorem 3.4.1 when W and W⊥ are orthonormal are

‖ei‖∞ ≤ 1.9937·101, ‖ei‖2 ≤ 4.3524·101, and ‖e‖2 ≤ 4.5866·101. When V and V⊥ are

orthonormal, γ = 1.0727·101 and µ̄ = −2.4588, illustrating that choice of V, W, V⊥,

and W⊥ does affect the error bound provided by Theorem 3.4.1. Using Corollary

3.4.4, γ′ = 6.1365 and µ̄′ = 3.0048; the positive value of µ̄′ indicates that the error

bounds provided by Corollary 3.4.4 would be much worse than the error bounds
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Figure 3-4: First three components of ei(t) (dashed) and e(t) (solid) corresponding
to the first choice of A as in (3.49), (3.50), (3.51), (3.52), and (3.53) and its corre-
sponding projector. Note that for this value of A, the first three components of
ei(t) and e(t) are virtually equal.

provided by Theorem 3.4.1 using either choice of the matrices V, W, V⊥, and W⊥

above. The projector for this choice of A had 2-norm ‖P‖2 = 2.6829, indicating

that numerical errors due to projector-vector multiplication will be small.

The second choice of A was to scale the value of A12 in (3.52) by one-half, keep-

ing A1 and A2 the same (as in (3.51) and (3.53)). As a result, γ decreases, but µ̄

stays the same and ε increases. The initial condition and time interval of integra-

tion were kept the same. Recall thatR(P) changes in response to changes in A, but

N (P) stays the same. If V, W, V⊥, and W⊥ are chosen such that W and W⊥ are

orthonormal, then γ = ‖A12‖ = 1.2210 and µ̄ = −2.1323, based on Theorem 3.4.1.

The 2-norm of the component of the error in N (P) was ε = ‖ec‖2 = 5.3596. The

sup-norm and 2-nrom of the component of the error in R(P) were ‖ei‖∞ = 1.5754

and ‖ei‖2 = 2.8112. The 2-norm of the total error was ‖e‖2 = 3.5945. The er-

ror bounds provided by Theorem 3.4.1 when W and W⊥ are orthonormal were

‖ei‖∞ ≤ 8.1735 · 101, ‖ei‖2 ≤ 1.7843 · 102, and ‖e‖2 ≤ 1.8379 · 102. When V and
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Figure 3-5: Second three components of ei(t) (dashed) and e(t) (solid) correspond-
ing to the first choice of A as in (3.49), (3.50), (3.51), (3.52), and (3.53) and its corre-
sponding projector.

V⊥ are orthonormal, γ = 1.7260 · 101 and µ̄ = −2.5041, according to Theorem

3.4.1. Using Corollary 3.4.4, γ′ = 5.7798 and µ̄′ = 5.8023. This projector for this

choice of A had 2-norm ‖P‖2 = 5.0786, indicating again that numerical errors due

to projector-vector multiplication will be small.

The third and final choice of A was to keep A1 and A12 as in (3.51) and (3.52),

and scale the value of A2 in (3.53) by .715, so that γ stays the same and both µ̄ and

ε increase, relative to the first choice of A. If V, W, V⊥, and W⊥ are chosen such

that W and W⊥ are orthonormal, then γ = ‖A12‖2 = 2.4421 and µ̄ = 4.8194 · 10−1,

based on Theorem 3.4.1. The 2-norm of the component of the error in N (P) was

ε = ‖ec‖2 = 3.4998. The sup-norm and 2-norm of the component of the error in

R(P) were ‖ei‖∞ = 1.6444 and ‖ei‖2 = 3.7803; the 2-norm of the total error is

‖e‖2 = 5.5926. The error bounds provided by Theorem 3.4.1 when W and W⊥ are

orthonormal are ‖ei‖∞ ≤ 9.9526 · 102, ‖ei‖2 ≤ 9.9366 · 102, and ‖e‖2 ≤ 9.9716 · 102.

According to Theorem 3.4.1, when V and V⊥ are orthonormal, γ = 9.3634 and µ̄ =
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−1.2220. Using Corollary 3.4.4, γ′ = 5.0389 and µ̄ = 5.9639; here, ‖P‖2 = 3.2114.

3.6 Discussion

From the error results in Theorem 3.4.1 and Corollary 3.4.4, inferences can be made

about how choices of P, V, W, V⊥, and W⊥ affect the error bounds, as well as the

error, to a first approximation. Discussion will focus on Theorem 3.4.1, though

similar observations also apply to Corollary 3.4.4.

The three primary factors influencing bounds on the error due to model re-

duction are the parameters ε, γ, and µ̄. As noted earlier, ε is controlled by a model

reduction method in the ideal case; if the reduced model is chosen well, using tight

error tolerances, ε will be small.

To interpret γ and µ̄, it will be useful to introduce some additional mathematical

background. Let q : S ⊂ X → X be a nonlinear map, where X ⊂ Rn. The least

upper bound (lub) Lipschitz constant of q, L(q), is defined in [192] as

L(q) = sup
u,v∈S,u6=v

‖q(u)− q(v)‖
‖u− v‖ . (3.54)

It has the property that

‖q(u)− q(v)‖ ≤ L(q) · ‖u− v‖, ∀u,v ∈ S, (3.55)

and if S is convex and q is differentiable, then

L(q) = sup
u∈S
‖Dq(u)‖. (3.56)

In the hypotheses of Theorem 3.4.1, define the function g : Rn−k × Rn → Rk by
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g(v, z) = WTf(z + W⊥v). (3.57)

If the setA is convex, then the best value of the Lipschitz constant γ is sup{L(g(·, z)) :

z ∈ ŷ([0, T ])}.

The extension of the logarithmic norm to nonlinear maps will also be useful for

discussion. The least upper bound logarithmic Lipschitz constant of q, M(q), is

defined in [192] by

M(q) = lim
h→0+

L(I + hDq)− 1

h
. (3.58)

The lub logarithmic Lipschitz constant generalizes the logarithmic norm; for

a square matrix A, M(A) = µ(A). Furthermore, if q is differentiable, and S is

convex,

M(q) = sup
u∈S

µ(Dq(u)). (3.59)

In the hypotheses of Theorem 3.4.1, if the set V is convex, then the best value of

the bound µ̄ on the logarithmic norm is M(h), where h : Rk → Rk is defined by

h(ỹ) = WTf(y0 + Vỹ). (3.60)

The concepts of lub Lipschitz constant and lub logarithmic Lipschitz constant

can be used to a prove a result like Theorem 3.4.1; such an approach was taken

in [29] to prove error bounds on POD-DEIM reduced models, and would yield

bounds that are essentially the same as those in Theorem 3.4.1. Their utility here is

in interpreting the meaning of the bounds stated in Theorem 3.4.1.
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Let eth : ỹ(0) 7→ ỹ(t) be the flow corresponding to the differential equation

˙̃y(t) = h(ỹ(t)) = WTf(y0 + Vỹ(t)), (3.61)

as in (3.10). Then it can be shown [192] that

L(eth) ≤ etM(h) ≤ etµ̄. (3.62)

In other words, µ̄ corresponds to the maximum rate of change of the solution

to (3.10) and (3.61). In the ideal case, if a reduced model is chosen well, k (i.e.,

the rank of the projection matrix, or the number of variables in a Petrov-Galerkin

representation of a reduced model [156]) will be small, and the solution ỹ : [0, T ]→
Rk will change slowly with time, enabling cheap numerical integration of (3.10).

Consequently, in the ideal case, µ̄ will be small.

The constant γ ≥ sup{L(g(·,v)) : v ∈ ŷ([0, T ])} corresponds to the maximum

rate of change of the right-hand side of the lumped system (3.10) in the directions

corresponding to N (P) = R(W)⊥ = R(W⊥). In other words, it is the maximum

rate of change of the right-hand side of (3.10) in directions neglected by the reduced

model. When (3.1) is a stiff system, certain directions in state space are associated

(locally, in the case of nonlinear systems) with fast rates of change in the solution

y : [0, T ]→ Rn and also fast rates of change in the time derivative of y. These direc-

tions associated with fast changes are usually candidates for inclusion in N (P) so

that solution of the resulting lumped system changes slowly; rapid transients are

usually neglected. Consequently, in stiff systems, if µ̄ is small because a good re-

duced model is chosen by cleverly choosing V and W, γ is likely to be large. One

would expect some tradeoff between µ̄ and γ in stiff systems, depending on the

choice of reduced model (i.e., choice of V and W); if directions corresponding to

fast changes are included inR(P), µ̄ is likely to be large, and γ is likely to decrease.

As a result, the bounds in Theorem 3.4.1 are expected to overestimate the error, es-
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pecially for large values of T ; in all likelihood, for stiff systems, they will drastically

overestimate the error due to model reduction, but do provide some insight into

factors affecting error. For researchers designing reduced models, the key insight

is to choose V and W to minimize µ̄; γ is a secondary consideration. Both the

overestimation of error and insight into factors affecting error are in keeping with

the use of the logarithmic norm to bound the error due to numerical integration of

ODEs; the logarithmic norm yields very large bounds for stiff systems, but these

bounds are in terms of the step size h. Typically, h can be chosen sufficiently small

so that stability and error criteria are satisfied, yielding useful bounds for short

times only.

The remaining parameters in the error bounds in Theorem 3.4.1 have less in-

fluence on the error bounds. There is some freedom in choosing the end time,

depending on the needs of the user, but the exponential dependence of the bounds

on time suggests that the result will over estimate the error for long times if µ̄ > 0,

which includes many applications of interest. (It is worth noting that µ̄ > 0 does

not imply that an ODE is unstable, unless the right-hand side of an ODE has a

symmetric Jacobian matrix. (Linear) Stability of an ODE system is dictated by the

eigenvalues of the Jacobian matrix of its right-hand side.) Since full rank decom-

positions of projection matrices are not unique, there is freedom in choosing V and

V⊥; for numerical calculations with the Petrov-Galerkin (lumped) representation,

the product ‖V‖‖W‖ should be as close to ‖P‖ as possible [195]. For a thorough

discussion of the numerical analysis associated with calculating oblique projection

matrices, as well as oblique projector-vector products, consult [195]. Note that

‖P‖ = 1 if and only if P is an orthogonal projector. If P is an oblique projector,

‖P‖ > 1. Choices of V, V⊥, W, and W⊥ will also affect γ and µ̄ indirectly.

3.7 Conclusions and Future Work

In this work, state space error bounds for projection-based model reduction meth-

ods were derived in the nonlinear ODE setting in terms of the function norm of the
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projection error. These are the first such bounds for oblique projection of nonlin-

ear ODE right-hand sides. When the function norm of the projection error is not

known precisely, the bounding result yields an estimate of the state space error.

The analysis also yields insight into what factors influence the error in the reduced

model solution, and indicates that one benefit of using an orthogonal projector is

that stronger error bounds may be derived using the previous work by [165]. Fi-

nally, these error bounds demonstrate that local error control implies global error

control for projection-based model reduction.

However, it is difficult to calculate estimates of state space error bounds us-

ing this result, and the resulting bounds will not be strong in general. To facili-

tate calculation of stronger estimates of error bounds, the small sample statistical

condition estimator (SCE) error estimation method developed by [86] may be ex-

tended from orthogonal projectors to oblique projectors using the analysis above.

These error estimates are easier to calculate, should yield better results, and should

provide users of reduced order models with additional information regarding the

accuracy and validity of their reduced model approximations.
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Chapter 4

State-Space Error Bounds For All

Reduced Model ODEs

4.1 Introduction

Model reduction is used in a number of contexts, including fluid mechanics [14, 98,

128, 109, 129], control theory [101], atmospheric modeling [59, 48, 193], combustion

modeling [103, 104, 124, 188, 206], circuit simulation [20, 169, 170], and others, both

to reduce the computational requirements of computationally demanding simula-

tions and to analyze and interpret physical models. In order to be used to generate

quantitatively accurate approximations for mission-critical applications, accurate

bounds on or estimates of the approximation error due to model reduction are

necessary.

Currently, bounds on the approximation error exist only for projection-based

methods [165, 155] and for the non-projection-based method POD-DEIM [30, 29].

These error bounds are based on logarithmic norms of the Jacobian matrix of the

ODE right-hand side and have their theoretical roots in Gronwall’s inequality [77]

and the seminal work on bounding the norms of solutions of ODEs by Dahlquist

[38]. Although a priori bounds of this type have not been strong in general for the

numerical solution of ODEs [11, 83, 192] or model reduction of ODEs, they have
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been used to develop much more accurate a posteriori estimates of the error in both

contexts (for work on errors in the numerical solutions of ODEs, see [218, 190, 57,

25]; for work on errors in model reduction, see [86, 178, 148, 217, 82, 80, 81, 79, 99]).

However, for non-projection-based methods like manifold learning methods

(such as Isomap [202], locally linear embedding [177], diffusion maps [37, 143, 36],

and others [181, 141, 100, 149, 106, 214, 49]), and methods that exploit application-

specific problem structure (for instance, in combustion chemistry, reaction elimi-

nation [160, 5, 53, 18, 153] or simultaneous reaction and species elimination [137]),

neither bounds of any kind nor estimates of the approximation error exist for ex-

plicit ODEs with nonlinear right-hand sides. The most closely related work is by

Serban, et al. [185], which estimates approximation errors due to a combination of

model reduction and perturbation of parameters. In this work, the approach in

[165] and [155] is extended to include all model reduction methods. As in [155],

although the bounds developed will not be strong, similar to the bounds on the

norms of solutions of ODEs by Gronwall [77] and by Dahlquist [38], they can be

used as inspiration for future work on a posteriori error estimation in model reduc-

tion.

4.2 Model Reduction

Here, model reduction will be discussed in the ODE setting. Consider the initial

value problem

ẏ(t) = f(y(t)), y(0) = y∗, (4.1)

where y(t) ∈ Rn represents system state variables, y∗ ∈ Rn, and f : Rn → Rn

with f ∈ C1. From (4.1), a model reduction method constructs a reduced model
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ẋ(t) = f̂(x(t)), x(0) = x∗, (4.2)

where f̂ : Rn → Rn approximates f , x(t) ∈ Rn represents the state variables of

the reduced model, and x∗ ∈ Rn.

One popular class of methods for constructing f̂ from f uses projection, of

which there are several representatives [165, 30, 8, 7, 14, 32, 29, 34, 74, 75, 87, 103,

104, 112, 114, 113, 211, 219]. Existing theory can be used to calculate a priori state

bounds on reduced models constructed with these methods [165, 155]. Here, the

focus is on methods that are not projection-based.

A common approach is to neglect small terms in f . One such example is re-

action elimination [18, 160, 53, 153, 5], used in combustion applications. Deleting

terms from f avoids the need to estimate parameters associated with those terms.

In chemical kinetics, estimating reaction rate parameters from experiment or quan-

tum mechanics calculations often takes more effort than solving the ODEs that use

those parameters. In the isothermal, isobaric batch reactor case, chosen for sim-

plicity, f takes the form

f(y) =
MNr(y)

ρ(y)
, (4.3)

where in (4.3), M ∈ Rn×n
+ is a diagonal matrix of species molecular weights,

N ∈ Rn×m is the stoichiometry matrix for the reaction mechanism, r : Rn → Rm

is a function that returns the rates of all m reactions in the reaction mechanism at

the system temperature and pressure, ρ : Rn → R is a function that returns the

mass density of the system at the system temperature and pressure, and y ∈ Rn is

a vector of species mass fractions. Reaction elimination constructs f̂ from f in (4.3)

by calculating a diagonal matrix Z ∈ {0, 1}m×m satisfying certain error constraints.

Then
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f̂(y) =
MNZr(y)

ρ(y)
; (4.4)

the reactions corresponding to zeros on the diagonal of Z need not be com-

puted. It can be seen that there is no way to represent this transformation us-

ing projection. Other examples are simultaneous reaction and species elimination

[137] and skeletal mechanism generation ([121] is one representative example).

Again, using (4.3) as a starting point, f̂ is constructed from f by calculating two

diagonal matrices, Z ∈ {0, 1}m×m (that eliminates reactions) and W ∈ {0, 1}n×n

(that renders species nonreactive), together satisfying error constraints imposed

by the method. Then

f̂(y) =
WMNZr(y)

ρ(y)
; (4.5)

again, there is no way to carry out this transformation using projection only.

In order to calculate a priori state bounds on reduced models constructed using

these methods (and other non-projection-based model reduction methods), the ex-

isting state bounding theory for projection-based reduced models [165, 155] must

be extended.

4.3 Mathematical Preliminaries

To bound the state space error in non-projection-based model reduction, the ap-

proach of this paper will be to bound the norm of a solution to a nonlinear ODE.

Following the presentations of [165] and [155], consider the linear system

ẏ(t) = Ay(t) + r(t), y(0) = y∗, (4.6)
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for the purpose of illustration, where A ∈ Rn×n. The solution of (4.6) takes the

form

y(t) = eAty∗ +

∫ t

0

eA(t−τ)r(τ) dτ. (4.7)

From (4.7), bounds on the norm of y(t) may be derived using Gronwall’s lemma

[77] or Dahlquist-like inequalities involving the logarithmic norm of A [83, 192].

Following the approach of [165], bounds on the norm of the function y : [0, T ] →
Rn are derived instead, where T > 0. In this paper, for any function g : [0, T ] →
Rn, ‖g(t)‖ is the norm of the point g(t) ∈ Rn, assumed to be the 2-norm unless

otherwise stated. The function norm will be denoted ‖g‖ and will also be the

2-norm unless otherwise stated. Keeping function norms in mind, (4.7) may be

written as

y = F(T,A)r + G(T,A)y∗,

where F(T,A) : L2([0, T ],Rn)→ L2([0, T ],Rn) and G(T,A) : Rn → L2([0, T ],Rn)

are linear operators. The desired bound on ‖y‖ then takes the form

‖y‖ ≤ ‖F(T,A)‖‖r‖+ ‖G(T,A)‖‖y0‖. (4.8)

Sharp estimates for the operator norms of F(T,A) and G(T,A) are difficult to

obtain. As can be seen from the form of (4.7), these estimates reduce to estimating

the norm of the matrix exponential. The classical approach to this problem [192]

yields

‖etA‖ ≤ etµ(A), t ≥ 0,
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where µ(A) is the logarithmic norm related to the 2-norm of the square matrix

A:

µ(A) = lim
h→0+

‖I + hA‖ − 1

h
.

The logarithmic norm may be negative, and has the property

max
i

Reλi ≤ µ(A),

where {λi} are the eigenvalues of A. Bounding the norm of the solution of a

nonlinear ODE follows similar reasoning; for a more detailed explanation of the

nonlinear case, see [83, 192].

4.4 Error Analysis for Model Reduction

The development of error bounds in this section parallels the presentations in [165]

and [155]. Consider approximating the solution y : [0, T ] → Rn of (4.1) by the

solution x : [0, T ] → Rn of (4.2), constructed using a model reduction method,

where T > 0. A bound on the error e(t) = x(t) − y(t) will be derived. Unlike

the case of projection, however, Rn cannot be decomposed into complementary

subspaces. Rather, the error e(t) will be linearly decomposed into two separate

contributions, neither of which can be restricted to a proper subspace of Rn: et(t),

the error due to “truncating” the right-hand side of (4.1) in mapping it to (4.2), and

ep(t), the error due to propagating the truncation error over time. Truncation error

corresponds to out-of-subspace error in the projection case and is similar to the

idea of local truncation error in the numerical solution of ODEs [83]. Propagation

error corresponds to in-subspace error in the projection case (see [165] and [155]).
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Let

et(t) = x∗ +

∫ t

0

f̂(y(u)) du− y(t), (4.9)

ep(t) = x(t)−
(∫ t

0

f̂(y(u)) du+ x∗

)
, (4.10)

so that e(t) = et(t) + ep(t).

Typically, no attempt is made to bound ep(t) explicitly. However, an a priori

error estimate for ep(t) can be derived in terms of et(t). Differentiating (4.10) and

substituting (4.1) and (4.2) for the resulting time derivatives yields

ėp(t) = f̂(y(t) + ep(t) + et(t))− f̂(y(t)), ep(0) = 0, (4.11)

where the initial condition follows from the definition of ep in (4.10). In (4.11),

et(t) and y(t) will be treated as forcing terms.

Before presenting error bounding results for the nonlinear ODE case, it is in-

structive to consider error bounding results for the linear case. Suppose that (4.1)

takes the form ẏ(t) = Ay(t) with A ∈ Rn×n, and suppose (4.2) takes the form

ẋ(t) = Âx(t), where Â ∈ Rn×n. Then (4.11) becomes

ėp(t) = Âep(t) + Âet(t), ep(0) = 0.

Using the result in (4.8) yields the bound

‖ep‖ ≤ ‖F (T, Â)‖‖Â‖‖et‖,

so the total error is bounded by
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‖e‖ ≤ (‖F (T, Â)‖‖Â‖+ 1)‖et‖.

The nonlinear case proceeds in analogous fashion. Write the solution x : [0, T ]→
Rn of (4.2) in terms of the solution y : [0, T ]→ Rn of (4.1):

x(t) = y(t) + et(t) + ep(t), (4.12)

where T > 0. Write a hypothetical solution ŷ : [0, T ] → Rn with truncation error

only as:

ŷ(t) = y(t) + et(t) = x∗ +

∫ t

0

f̂(y(u)) du. (4.13)

Then the linear case can be generalized in the following theorem:

Theorem 4.4.1. Let γ ≥ 0 be the Lipschitz constant of f̂ in a region containing y([0, T ])

and ŷ([0, T ]). To be precise, suppose

‖f̂(ŷ(t) + v)− f̂(ŷ(t))‖ ≤ γ‖v‖ (4.14)

for all (v, t) ∈ A ⊂ Rn × [0, T ], where the region A is such that the associated region

Ā = {(ŷ(t) + v, t) : (v, t) ∈ A} contains (ŷ(t), t) and (y(t), t) for all t in [0, T ]. Let

µ(Df̂(z)) ≤ µ̄ for z ∈ V ⊂ Rn, where V contains the set {λŷ(t) + (1 − λ)x(t) : t ∈
[0, T ], λ ∈ [0, 1]}, and µ(·) denotes the logarithmic norm related to the 2-norm.

The function ep satisfies

inf{C ≥ 0 : |ep(t)| ≤ C a.e. on [0, T ]} = ‖ep‖∞ ≤

 εγ
(
e2µ̄T−1

2µ̄

)1/2

, µ̄ 6= 0,

εγT 1/2, µ̄ = 0,
(4.15)
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and the 2-norm of the function e satisfies

(∫ T

0

‖e(t)‖2 dt

)1/2

= ‖e‖ ≤


ε

(
1 + γ

(
e2µ̄T−1−2µ̄T

4µ̄2

)1/2
)
, µ̄ 6= 0,

ε(1 + 2−1/2γT ), µ̄ = 0,

(4.16)

where

ε = ‖et‖ =

(∫ T

0

‖et(t)‖2 dt

)1/2

. (4.17)

Proof. The proof follows the development of Proposition 4.2 in [165] and Theorem

4.1 in [155]. Applying a Taylor expansion for h > 0, ep(t+h) = ep(t)+hėp(t)+O(h2),

which satisfies

‖ep(t+ h)‖ = ‖ep(t) + hėp(t) +O(h2)‖,

= ‖ep(t) + hf̂(y(t) + et(t) + ep(t))− hf̂(y(t))‖+O(h2). (4.18)

Using the triangle inequality on the previous equation (4.18) yields

‖ep(t+ h)‖ ≤ ‖ep(t) + hf̂(y(t) + et(t) + ep(t))− hf̂(y(t) + et(t))‖

+ h‖f̂(y(t) + et(t))− f̂(y(t))‖+O(h2). (4.19)

Let g : Rn → Rn be the function

g(η) = η + hf̂(η). (4.20)

Then

‖ep(t) + hf̂(y(t) + ep(t) + et(t))− hf̂(y(t) + et(t))‖ = ‖g(ŷ(t) + ep(t))− g(ŷ(t))‖.
(4.21)

95



Applying a multivariate mean value theorem (Exercise 2.5 from [52]) to g yields

‖g(ŷ(t) + ep(t))− g(ŷ(t)‖ ≤ κ‖ep(t)‖ (4.22)

for any κ ∈ R such that

κ ≥ sup
η∈[ŷ(t),ŷ(t)+ep(t)]

‖Dg(η)‖ = sup
η∈[ŷ(t),ŷ(t)+ep(t)]

‖I + hDf̂(η)‖. (4.23)

Here, for any two vectors η1,η2 ∈ Rn, [η1,η2] denotes the line segment joining

the two. (Traditionally, this bracket notation refers to intervals; however, the con-

vention used by Rathinam and Petzold [165] is followed here.) Since the line

[ŷ(t), ŷ(t) + ep(t)] is a compact subset of Rn,

sup
η∈[ŷ(t),ŷ(t)+ep(t)]

‖I + hDf̂(η)‖ = max
η∈[ŷ(t),ŷ(t)+ep(t)]

‖I + hDf̂(η)‖. (4.24)

It follows from (4.19), (4.21), (4.22), and (4.24), that

‖ep(t+ h)‖ − ‖ep(t)‖ ≤
(

max
η∈[ŷ(t),ŷ(t)+ep(t)]

‖I + hDf̂(η)‖
)
‖ep(t)‖+ h‖f̂(y(t) + et(t))− f̂(y(t))‖,

≤
(

max
η∈[ŷ(t),ŷ(t)+ep(t)]

‖I + hDf̂(η)‖
)
‖ep(t)‖+ hγ‖et(t)‖+O(h2),

(4.25)

which implies that

‖ep(t+ h)‖ − ‖ep(t)‖
h

≤ µ̄‖ep(t)‖+ γ‖et(t)‖+O(h), (4.26)

where the O(h) term may be uniformly bounded independent of ‖ep(t)‖ (using

theory from Taylor series, see [83], Equations 10.17 and 10.18). Then it follows

from Theorem 10.6 of [83] that

‖ep(t)‖ ≤ γ

∫ t

0

eµ̄(t−τ)‖et(τ)‖ dτ. (4.27)
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After applying the Cauchy-Schwarz inequality on the right-hand side, then

‖ep(t)‖ ≤

 γ
(
e2µ̄t−1

2µ̄

)1/2( ∫ t
0
‖et(τ)‖2 dτ

)1/2

, µ̄ 6= 0,

γt1/2
( ∫ t

0
‖et(τ)‖2 dτ

)1/2

, µ̄ = 0,
(4.28)

from which it follows that

‖ep‖∞ ≤

 εγ
(
e2µ̄T−1

2µ̄

)1/2

, µ̄ 6= 0,

εγT 1/2, µ̄ = 0.
(4.29)

Substituting (4.17), then squaring (4.28), integrating, and taking the square root to

pass to the L2-norm yields the bound

‖ep‖ ≤

 εγ
(
e2µ̄T−1−2µ̄T

4µ̄2

)1/2

, µ̄ 6= 0,

2−1/2εγT 1/2, µ̄ = 0.
(4.30)

Applying the triangle inequality yields

‖e‖ ≤ ‖ep‖+ ‖et‖ ≤


ε

(
1 + γ

(
e2µ̄T−1−2µ̄T

4µ̄2

)1/2
)
, µ̄ 6= 0,

ε(1 + 2−1/2γT ), µ̄ = 0.

(4.31)

Remark 4.4.2. As in [155], when µ̄ < 0, uniform bounds, independent of T , can be

obtained from Theorem 4.4.1 from the inequality

e2µ̄t − 1

µ̄
≤ |µ̄|−1,

in which case
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‖ei‖∞ ≤ εγ|2µ̄|−1/2, (4.32)

‖e‖ ≤ ε
(

1 +
γ

2|µ̄|
)
. (4.33)

Remark 4.4.3. If Theorem 4.4.1 is applied to projection-based model reduction, then

the truncation error et is the complementary subspace error ec in [155], and the

propagating error ep is the in-subspace error in [155]. Then Theorem 4.4.1 is equiv-

alent to Corollary 4.4 of [155], aside from hypotheses on the Lipschitz constant γ;

stronger bounds may be obtained by leveraging the structure of projection-based

model reduction, either using Theorem 4.1 of [155] or Corollary 4.4 of [155]. For

projection-based model reduction, Theorem 4.1 of [155] gives stronger bounds than

Corollary 4.4 in that paper.

Remark 4.4.4. By considering truncation (et(t)) and propagation (ep(t)) errors sep-

arately, this analysis yields a bound on the norm of the total error function e in

terms of ε. The value of ε depends on the solution y : [0, T ] → Rn of (4.1), the

function f̂ , and the initial condition x∗. Generally, ‖et‖ is not known exactly unless

the solution of (4.1) is also calculated. Bounds on ‖et‖ may be estimated by using

any error control results provided by a model reduction method, or by substitut-

ing a known solution of (4.1) with different initial conditions that approximates y

into (4.9) and taking the norm. Using an estimate of ε in Theorem 4.4.1 only yields

estimates of bounds on the function norm of the total error at best; such bounding

estimates may be inaccurate if the function used to approximate y in (4.9) is a bad

approximation. Consequently, estimates of ε must be used with caution.

4.5 Case Study

To illustrate the factors affecting ep and e given et (or bounds on ‖et‖2), consider

the linear time invariant ODE

98



ẏ(t) = Ay(t), y(0) = y∗, (4.34)

where A takes the form

A =

 A1 A12

0 A2

 , (4.35)

with the blocks of A first taking the values

A1 =


−0.2 0 0

0 −0.3464 4

0 −4 −0.3464

 , (4.36)

A12 =


0.3893 0.5179 −1.543

1.39 1.3 0.8841

0.06293 −0.9078 −1.184

 , (4.37)

A2 =


−5 0 0

0 −6.13 −3.54

0 3.54 −6.13

 , (4.38)

so that n = 6. This example is related to an example in [165]. Three values of A

were considered; modifications to (4.36), (4.37), and (4.38) will be discussed later

in this section. The reduced model ODE for each value of A will be

ẋ(t) = Âx(t), x(0) = y∗, (4.39)

where
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Â =

 A1 0

0 A2

 . (4.40)

Such a reduced model might occur when neglecting coupling between two sets

of state variables.

The parameters µ̄ and γ were changed independently by scaling A1 or A2. The

parameter ε was kept constant over all three choices of A by scaling A12 to com-

pensate for changes in A1 and A2 so that the effects of changing γ and µ̄ could be

studied independently.

Note that A1 and A2 are normal, and their eigenvalues have negative real parts.

The spectrum of A is the union of the spectra of A1 and A2, and for the values of

A in (4.35), (4.36), (4.37), and (4.38), the eigenvalues of A2 have large negative real

parts compared to the eigenvalues of A1.

Given (4.34) and the corresponding reduced ODE (4.39), the values of γ and µ̄

in Theorem 4.4.1 were calculated as γ = ‖Â‖2 and µ̄ = µ(Â). The ODEs (4.34) and

(4.39) were integrated using an explicit Runge-Kutta (4,5) Dormand-Prince pair

using a relative tolerance of 10−13 and an absolute tolerance of 10−25 on each solu-

tion component. All random numbers were calculated using a Mersenne twister

algorithm (MT19937). For (4.34) and (4.39), using the definition of et in (4.9) yields

et(t) =

∫ t

0

(Â−A)y(u) du. (4.41)

The truncation error et is always calculated by using the trapezoidal rule, given

y. The total error is calculated as

e(t) = x(t)− y(t), (4.42)
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so that the propagating error can be calculated as

ep(t) = e(t)− et(t). (4.43)

The 2-norms of et, ep, and e are also calculated using the trapezoidal rule. Cal-

culations were implemented on a MacBook Pro 2011 model running Mac OS X

10.7.3 with a 2.7 GHz Intel Core i7 and 8 GB of 1333 MHz DDR3 RAM. Source

code for implementations in MATLAB [133] and Python [209] are included for re-

producibility in Appendix C.
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Figure 4-1: First three components of x(t) (dashed) and y(t) (solid) corresponding
to the first choice of A as in (4.34), (4.35), (4.36), (4.37), and (4.38) and its corre-
sponding reduced model. The last three components of x(t) and y(t) are identical,
and are not plotted.

For the first choice of A, taking values given by (4.35), (4.36), (4.37), and (4.38),

it follows from Theorem 4.4.1 that µ̄ = −0.2 and γ = 7.0787. The initial condition

y∗ was chosen randomly and y(t) and x(t) were computed over the interval [0, 5].

Note that the last three components of y(t) and x(t) are equal on [0, 5], from which
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Figure 4-2: First three components of ep(t) (dashed) and e(t) (solid) corresponding
to the first choice of A as in (4.34), (4.35), (4.36), (4.37), and (4.38) and its corre-
sponding reduced model. The last three components of ep(t) and e(t) are zero, and
are not plotted.

it follows (using (4.41)) that the last three components of et(t), ep(t), and e(t) are

all zero on [0, 5]. Consequently, only the first three components of y(t) and x(t) are

plotted in Figure 4-1; this plot will be the only plot of y(t) and x(t), because the

solutions y(t) and x(t) each behave similarly for all three values of A considered

in this section. The first thre components of ep(t) and e(t) are plotted in Figure

4-2; as with y(t) and x(t), the quantities ep(t) and e(t) each behave similarly for all

values of A considered in this section, and no further plots will be presented. The

model reduction truncation error was ε = ‖et‖2 = 9.0197 · 10−1; this value of ε will

be the same for all three values of A considered. The sup-norm and 2-norm of the

propagating error were ‖ep‖∞ = 6.6042 · 10−1 and ‖ep‖2 = 4.0231 · 10−1. The error

bounds provided by Theorem 4.4.1 were one or two orders of magnitude larger:

‖ep‖∞ ≤ 9.3873, ‖ep‖2 ≤ 1.7008 · 101, and ‖e‖2 ≤ 1.7910 · 101.

The second choice of A considered was to keep A1 as in (4.36), scale the value

of A2 in (4.38) by a factor of 2 so that γ increased by a factor of 2, and scale the value
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of A12 in (4.37) by a factor of 1.9745 to keep ε at the same value. The value of µ̄

remained the same, so that µ̄ = −0.2, γ = 1.4157 · 101, and ε = ‖et‖2 = 9.0197 · 10−1.

The sup-norm and 2-norm of the propagating error were ‖ep‖∞ = 6.8930 · 10−1

and ‖ep‖2 = 1.0029; the total error was ‖e‖2 = 4.4784 · 10−1. The error bounds

provided by Theorem 4.4.1 were ‖ep‖ ≤ 1.8775 · 101, ‖ep‖2 ≤ 3.5016 · 101, and

‖e‖2 ≤ 3.4918 · 101.

The third and final choice of A was to keep A12 as in (4.37) and A2 as in (4.38),

and scale the value of A1 in (4.36) by a factor of one-half. This choice of A kept

γ and ε at the same values calculated using the first choice of A, but decreased µ̄

by a factor of one-half. Consequently, for this choice of A, µ̄ = −0.1, γ = 7.0787,

and ε = ‖et‖2 = 9.0197 · 10−1. The sup-norm and 2-norm of the propagating error

were ‖ep‖∞ = 6.9820 · 10−1 and ‖ep‖2 = 1.0838; the 2-norm of the total error in the

reduced model solution was ‖e‖2 = 5.8730 · 10−1. The error bounds provided by

Theorem 4.4.1 were ‖ep‖∞ ≤ 1.1351·101, ‖ep‖2 ≤ 1.9363·101, and ‖e‖2 ≤ 2.0265·101.

4.6 Discussion

Similar to the results in [155], inferences can be made about how the choice of f̂

affects the error bounds. The three primary factors influencing bounds are the

parameters ε, γ, and µ̄. As noted in the previous section, ε is controlled by a model

reduction method in the ideal case; if the reduced model is chosen well, ε will

be small. An interpretation of γ and µ̄ can be made using arguments similar to

those in [155]; such arguments can also be extended to prove an alternate version

of Theorem 4.4.1, similar to the work of [29]. The results of such arguments are

that µ̄ corresponds to the maximum rate of change of the solution to (4.2), and that

γ corresponds to the maximum rate of change of the right-hand side of (4.2). If f̂

is chosen well, µ̄ and γ will be small, but if it is chosen such that ε is small, f̂ must

also faithfully represent the dynamics of (4.1). A common application of model

reduction is to stiff systems. If (4.1) is a stiff system, (4.2) is also likely to be stiff for

small ε, even though one aim of model reduction is to make such stiff systems less
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stiff. As a result, barring fortuitous properties of a specific choice of f̂ , µ̄ and γ are

still likely to be large, yielding a bound that overestimates the approximation error

due to model reduction in most cases of stiff systems. This finding is consistent

with related work by Gronwall and Dahlquist on bounding the norm of solutions

of ODEs.

4.7 Conclusions and Future Work

In this work, state space error bounds for model reduction methods were derived

in the nonlinear ODE setting in terms of the function norm of the truncation error

due to model reduction. These are the first such bounds that are method-agnostic

and do not rely on a projection-based structure. When the function norm of the

truncation error is not known precisely, the bounding result yields an estimate of

the function norm of the total state space error. The analysis also yields insight

into what factors affect the error in the reduced model solution, and shows that

assuming additional structure (such as assuming that the model reduction method

is projection-based) may yield stronger bounds, as in [155].

However, as in the projection-based case, it is difficult to calculate even esti-

mates of state space bounds, and such bounds are likely to be loose. To enable cal-

culation of stronger error estimates, methods from sensitivity analysis and global

error estimates for ODEs should be employed, using ideas from the analysis above.

These error estimates are easier to calculate, should yield better results, and should

provide users of non-projection-based reduced order models with better informa-

tion regarding the accuracy and validity of their reduced model approximations.
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Chapter 5

Contributions and Future Work

The chapter will be divided into two parts. In the first section, the main contribu-

tions of this thesis will be summarized. In the second section, future work will be

suggested, focusing on opportunities to develop new model reduction methods,

as well as extending the error bounding work presented in Chapters 3 and 4.

5.1 Contributions

To recap, the contributions of this thesis are as follows.

First, the formalism of projection-based model reduction, common in fields

other than combustion, is introduced to show that several model reduction meth-

ods developed for combustion applications are projection-based. This formalism

enables analysis of projection-based model reduction methods as a whole, rather

than analysis of each individual model reduction method in isolation.

This formalism motivates the a priori bounding of the global error in projection-

based reduced order models. These bounds are derived using the same theory as

a priori bounds on the global error in the numerical solution of ODEs [38], and

extends a previous similar result by Rathinam and Petzold [165] that bounds the

global error in orthogonal projection-based reduced order model. These bounds

are the first to apply to oblique projection-based model reduction methods; many

model reduction methods used in combustion are oblique projection-based. The
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bounds derived are tight, but often drastically overestimate the global error; their

primary use is to demonstrate that in projection-based model reduction, local error

control implies global error control. Similar conclusions were drawn when these

bounds were derived for the numerical solution of ODEs [38].

This previous result is then extended to all model reduction methods. Many

model reduction methods in combustion, such as reaction elimination [17, 153]

and simultaneous reaction and species elimination [137], are not projection-based,

and require separate theory. Although the global error bounds are typically weak,

they again demonstrate that local error control implies global error control.

Finally, all of the source code used to generate the numerical results in this

thesis is included in appendices. The inclusion of this source code more completely

documents the algorithms used in this work, and also ensures that the results of

this thesis are reproducible. Furthermore, inclusion of the source code prevents

unnecessary duplication of effort, and enables future researchers to more easily

build upon the work in this thesis.

5.2 Future Work

The original proposal for this these was to extend the reaction elimination work

of Bhattacharjee, et al. [17] and Oluwole, et al. [153], and the simultaneous reac-

tion and species elimination work of Mitsos, et al. [137], to interval-constrained

simultaneous reaction and species elimination. In addition, the previous work on

reaction and species elimination was to be extended to point-constrained (similar

to Bhattacharjee, et al. [17], and Mitsos, et al. [137]) and range-constrained (similar

to Oluwole, et al. [153]) formulations. Time permitting, the projection-based ap-

proaches and reaction and species elimination-based approaches were to be com-

bined and used in large-scale case studies (2-D and 3-D simulations of flames re-

quiring parallel computing resources and adaptive model reduction). The mixed-

integer linear programming (MILP, also called mixed-integer programming MIP)

formulations for these approaches are simple to present. For clarity and posterity,
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these approaches will be discussed briefly, along with pertinent background. After

that, extensions to the error bounding work presented in Chapters 3 and 4 will be

discussed.

5.2.1 Opportunities to Develop New Model Reduction Methods

The basic premise of interval-constrained simultaneous reaction and species elim-

ination is to modify the point-constrained simultaneous reaction and species elimi-

nation formulation by Mitsos, et al. [137] in the same fashion as the point-constrained

reaction elimination formulation by Bhattacharjee, et al. [17] was modified to yield

the interval-constrained reaction elimination formulation of Oluwole, et al. [153].

The purpose of such a modification is to ensure that any error control placed on

the time derivatives of the state variables in a reduced model ODE is enforced over

a union of hyperrectangles in the host set (i.e., domain) of the state variables of the

reduced model ODE, as noted by Oluwole, et al. [153]. A formulation for interval-

constrained simultaneous reaction and species elimination will be presented in

two steps. For posterity, an unpublished reformulation of point-constrained si-

multaneous reaction and species elimination by Mitsos [136] will be reproduced

so that it may be documented publicly:
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min
w,z

NS∑
j=1

αjwj +

NR∑
i=1

βizi, (5.1a)

s.t.

∣∣∣∣∣
∑NS

j=1 hj(T`)Mj

∑NR
i=1 νjiri(x`, T`)zi

ρ(x`, T`)CP (x`, T`)
− Γ0(x`, T`)

∣∣∣∣∣ ≤
atol0 + rtol0|Γ0(x`, T`)|, ` = 1, . . . , Nt, (5.1b)∣∣∣∣∣Mj

∑NR
i=1 νjiri(x`, T`)zi
ρ(x`, T`)

− Γj(x`, T`)

∣∣∣∣∣ ≤
atolj + rtolj|Γj(x`, T`)|, j = 1, . . . , NS; ` = 1, . . . , Nt, (5.1c)

wj ≥ zi, j = 1, . . . , NS,∀i : νji 6= 0, (5.1d)

w ∈ [0, 1]NS , (5.1e)

z ∈ {0, 1}NR , (5.1f)

where the nomenclature for this formulation comes from Mitsos, et al. [137]:

• The model being reduced is an ODE governing an adiabatic-isobaric batch

reactor for a given reaction mechanism:

ẏ(t) = Γ(y(t)), (5.2)

where

ẏ0(t) =

∑NS
j=1 hj(y0(t))Mj

∑NR
i=1 νjiri(x(t), y0(t))

ρ(x(t), y0(t))CP (x(t), y0(t))
, (5.3)

ẏj(t) =
Mj

∑NR
i=1 νjiri(x(t), y0(t))

ρ(x(t), y0(t))
, j = 1, . . . , NS, (5.4)

• NS denotes the number of species in the reaction mechanism

• NR denotes the number of reactions in the reaction mechanism
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• Nt denotes the number of reference data points

• y0(t) is the system temperature

• x(t) = [y1(t), . . . ,y(t)]T are the system species mass fractions

• j ∈ {1, . . . , NS} is an index referring to species in the reaction mechanism

• i ∈ {1, . . . , NR} is an index referring to reactions in the reaction mechanism

• ` ∈ {1, . . . , Nt}

• ρ(·, ·) is a function that returns the system mass density

• ri(·, ·) is a function that returns the (volumetric) rate of reaction i

• CP (·, ·) is a function that returns the (mixture) specific heat capacity of the

system (at constant pressure)

• Mj is the molar mass of species j

• νji is the net stoichiometric coefficient of species j in reaction i, using the

usual convention that νji is positive when species j is a net product of reac-

tion i, negative when species j is a net reactant of reaction i, and zero other-

wise.

• hj(·) is the specific enthalpy of species j

• zi = 0 if reaction i is excluded from the reduced mechanism and zi = 1 if

reaction i is included in the reduced mechanism

• wj = 0 if species j is nonreactive in the reduced mechanism, and wj = 1 if

species j is reactive in the reduced mechanism

This nomenclature will be reused later in this section. In the case of the func-

tions mentioned in the list above, the notation will be abused for the interval case

in two specific ways. First, species mass fractions, xj(t), j = 1, . . . , NS , will be
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replaced by species concentrations, cj(t), j = 1, . . . , NS , because species concen-

trations are used in [153] instead of species mass fractions. Second, interval ex-

tensions of the functions in the list above will be denoted by replacing their point

arguments, denoted by lowercase Latin letters, with intervals, denoted by upper-

case Latin letters. (Temperature, denoted by T , is the exception, and will always

be a scalar when written explicitly.) A discussion of interval arithmetic (such as

interval extensions) is outside the scope of this thesis; an interested reader should

consult the brief introduction within the papers of Oluwole, et al. [153], as well as

the books by Moore [140]; Moore, et al. [139]; and Neumaier [147].

Applying the transformations that take the point-constrained reaction elimina-

tion formulation of Bhattacharjee, et al. [17] to the interval-constrained formulation

of Oluwole, et al. [153] to the formulation in 5.1 yields an interval-constrained si-

multaneous reaction and species elimination formulation.

min
w,z

NS∑
j=1

αjwj +

NR∑
i=1

βizi, (5.5a)

s.t.

NR∑
i=1

(1− zi)IL0i(Y`) ≥ −tolU0 (Y`), ` = 1, . . . , Nt, (5.5b)

NR∑
i=1

(1− zi)IU0i(Y`) ≤ tolU0 (Y`), ` = 1, . . . , Nt, (5.5c)

NR∑
i=1

(1− zi)ILji(Y`) ≥ −tolUj (Y`), j = 1, . . . , NS, ` = 1, . . . , Nt, (5.5d)

NR∑
i=1

(1− zi)IUji(Y`) ≤ tolUj (Y`), j = 1, . . . , NS, ` = 1, . . . , Nt, (5.5e)

wj ≥ zi, j = 1, . . . , NS,∀i : νji 6= 0, (5.5f)

w ∈ [0, 1]NS , (5.5g)

z ∈ {0, 1}NR , (5.5h)

where the nomenclature from this formulation is partially borrowed from Olu-

wole, et al. [153]:
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• φ = [T (t), cT(t)]T in Oluwole, et al. [153] is replaced with y = [T (t), cT]T,

where T (t) = y0(t) denotes the system temperature and c(t) denotes the sys-

tem species concentrations. As stated earlier, capital letters denote intervals,

except temperature, which will always be capitalized, so Y` is an interval for

` = 1, . . . , Nt.

• The index k in Oluwole, et al. [153] is replaced with the index i.

• The function Iji is defined by:

Iji(y(t)) =


∑NS
J=1MJνJihJ (y0(t))ri(c(t),y0(t))

ρ(c(t),y0(t))CP (c(t),y0(t))
, j = 0; i = 1, . . . , NR,

Mjνjiri(c(t),y0(t))

ρ(c(t),y0(t))
, j = 1, . . . , NS, i = 1, . . . , NR,

(5.6)

as in Oluwole, et al. [153], with the argument φ = [T, c]T replaced by y =

[T, c]T.

• The superscripts L and U refer to the lower and upper bounds, respectively,

of the interval extension of Iji. This notation replaces the subscripts lo and up

notation in Oluwole, et al. [153].

• The function tolj is defined by

tolj(y) = atolj + rtolj|Γj(y)|, j = 0, . . . , NS, (5.7)

as an abuse of notation. This function defines the error tolerances for model

reduction as a function of the reference data used for model reduction. Again,

the y in this chapter replaces the argument φ in Oluwole, et al. [153].

It is hoped that the comments above clarify the inconsistencies in notation

among Bhattacharjee, et al. [17]; Oluwole, et al. [153]; and Mitsos, et al. [137].
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Based on the presentation in Chapter 2, a natural extension of the point-constrained

reaction elimination formulation of Bhattacharjee, et al. [17] and point-constrained

simultaneous reaction and species elimination formulation of Mitsos, et al. [137] to

projection-based model reduction is

min
P

NS+1∑
j=1

pjj = tr(P), (5.8a)

s.t. |(I−P)Γ(y`)| ≤ [tol0(y`), . . . , tolNS(y`)]
T, ` = 1, . . . , Nt, (5.8b)

P2 = P, (5.8c)

P ∈ R(NS+1)×(NS+1), (5.8d)

where the absolute value and inequality in (5.8b) are both applied element-

wise. The objective function (5.8a) is the number of variables in a Petrov-Galerkin

(or lumped) representation of a projection-based reduced model, analogous to the

objective functions in reaction elimination and simultaneous reaction and species

elimination that each represent a metric for the “size” of the reduced model. Error

control is accomplished via the constraints in (5.8b), analogous to the error control

in both reaction elimination and simultaneous reaction and species elimination.

For the remainder of this section, it will be useful to denote the range and

nullspace of a matrix A byR(A) and N (A), respectively.

Despite its intuitiveness, the formulation in (5.8) is problematic because it is

large, nonlinear, and nonconvex. The problem is large because it has (NS + 1)2

decision variables, and there exist combustion reaction mechanisms in use with

more than NS = 103 species, yielding instances of (5.8) with over 106 decision

variables. Although linear programs with 106 are tractable, nonlinear programs

with so many variables are not necessarily tractable. In addition to being non-

linear, the formulation in (5.8) is also nonconvex, due to the nonlinear equality

constraint (5.8c). Consequently, formulation (5.8) is intractable, except possibly for

sufficiently small test cases. Furthermore, (5.8) could admit undesirable patholog-
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ical solution. For instance, if Nt ≤ NS + 1, then it is always possible to find a

feasible solution to (5.8) with objective function value no greater than Nt by select-

ing P such that R(P) = span({Γ(y`)}Nt`=1), and P = PT (so that P is an orthogonal

projector). This choice of projector will be exact at the Nt reference points selected,

but will not necessarily be physically meaningful, since its range is the right-hand

side of (5.2) evaluated at each of the reference points selected. A proof of this asser-

tion is outside the scope of this thesis. An alternative formulation that is tractable

and does not admit pathological solutions is preferable.

One possible reformulation of (5.8) is to let

P = B diag(w)B−1 (5.9)

for a given invertible matrix B ∈ R(NS+1)×(NS+1) by leveraging the similarity

of projection matrices to binary diagonal matrices. If bj is the jth column of B,

then bj ∈ R(P) = N (I − P) if wj = 1 and bj ∈ N (P) = R(I − P) if wj = 0,

for j = 0, . . . , NS (to abuse notation and start indexing some vectors at zero, for

consistency). For this reason, a natural name of B is “basis matrix”.

It will be convenient to use the following expression:

B diag(w)B−1 =

NS+1∑
j=1

wjbjβ
T
j , (5.10)

where βT
j is the jth row of B−1 (distinct from the usage of β in (5.1)), and define

the function Ij in the spirit of (5.6) by

Ij(y) = bjβ
T
jΓ(y). (5.11)

Using the expressions in (5.9), (5.10), and (5.14) yields the formulation
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min
w

NS+1∑
j=1

wj, (5.12a)

s.t.

NS+1∑
j=1

(1− wj)Ij(y`) ≤ [tol0(y`), . . . , tolNS(y`)]
T, ` = 1, . . . , Nt, (5.12b)

NS+1∑
j=1

(1− wj)Ij(y`) ≥ −[tol0(y`), . . . , tolNS(y`)]
T, ` = 1, . . . , Nt, (5.12c)

w ∈ {0, 1}NS+1. (5.12d)

Equation (5.12a) comes from noting that the trace of a matrix is invariant under

change of basis:

tr(P) = tr(B diag(w)B−1) =

NS+1∑
j=1

wj. (5.13)

The error constraints in (5.12b) and (5.12c) are analogous to similar error con-

straints in point-constrained reaction elimination and point-constrained simulta-

neous reaction and species elimination. It can be shown that (5.12) is a restriction

of (5.8); again, the proof is out of the scope of this thesis.

From (5.12), an interval-constrained formulation can be expressed easily:

min
w

NS+1∑
j=1

wj, (5.14a)

s.t.

NS+1∑
j=1

(1− wj)IUj (Y`) ≤ [tolU0 (Y`), . . . , tol
U
NS

(Y`)]
T, ` = 1, . . . , Nt, (5.14b)

NS+1∑
j=1

(1− wj)ILj (Y`) ≥ −[tolU0 (Y`), . . . , tol
U
NS

(Y`)]
T, ` = 1, . . . , Nt, (5.14c)

w ∈ {0, 1}NS+1; (5.14d)
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this formulation is analogous to interval-constrained reaction elimination and

interval-constrained simultaneous reaction and species elimination.

A difficulty in using (5.12) and (5.14) at present is selection of the basis ma-

trix B. Since B enters the formulation through a mathematical simplification with

no physical explanation, and the simplification itself offers no guidance on the se-

lection of B, external information must be used to select it. Determination of an

“optimal” basis (in some sense) is an open question; based on discussion of patho-

logical solution to (5.8), projector rank is not necessarily the best choice of objec-

tive. Most projection-based model reduction methods calculate a projection matrix

P in such a way that a basis matrix B can be derived from an eigendecomposition.

Such methods couple determination of the basis matrix and determination of the

projector, and could be used to select a basis for (5.12) and (5.14). Since there are

no known methods (to the author’s knowledge) that control the error in the time

derivative of state variables in a reduced model, evaluated at multiple reference

points or intervals, (5.12) and (5.14) could be used to augment existing model re-

duction methods with those types of error control. Projection-based model reduc-

tion methods use physical considerations (such as the quasi-steady state approxi-

mation) or dynamical systems considerations (such as eigendecomposition of the

Jacobian matrix of the right-hand side of an ODE) to calculate a projection matrix;

independent of existing model reduction methods, these considerations may also

be useful in determining a basis matrix. Finally, purely mathematical considera-

tions (ease of solving the formulations (5.12) and (5.14), independent of dynamical

systems or physical concerns) could be used to select a basis matrix, such as an

orthonormal matrix, or an identity matrix. Regardless of the method used to select

B, (5.12) and (5.14) can be used to evaluate the choice of B. Excepting pathological

solutions, the rank of a projector associated with an optimal solution of (5.12) or

(5.14) can be used as one metric for the quality of B at given reference state data

points or intervals. Bad choices of B tend to correspond to optimal solutions of

(5.12) and (5.14) associated with projectors that have large ranks; of course, the

possibility exists that, for a given set of reference data and tolerances, no reduction
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is possible. Some model reduction algorithms and some linear algebra algorithms

operate using iterative methods. Given an initial guess of B, it may be worth

using (5.8) or other means to develop a method for calculating a “better” basis

matrix (however one defines “better”, since rank alone is an insufficient criterion,

due to the pathological solutions to (5.8), and choice of additional criteria is not

obvious). Assuming model reduction is possible for given reference state data and

tolerances, the utilities of (5.8), (5.12), and (5.14) is limited by choice of B; there

is an opportunity for significant advances in projection-based model reduction if

effective choices of B can be found.

One potential interesting choice of B would be one in which the resulting V and

W (from Chapter 2) could be used to evaluate the right-hand side of the lumped

(Petrov-Galerkin) representation of the reduced model ODEs more quickly, reduc-

ing the CPU time required to solve the reduced model ODEs. An example of meth-

ods that choose V and W in this way are DEIM (discrete empirical interpolation

method) and POD-DEIM [32, 31].

5.2.2 Opportunities to Develop Better Error Estimates and Bounds

As noted in Chapters 3 and 4, the a priori error bounds on solutions to reduced

models tend to drastically overestimate the approximation error in the solution

of the reduced model due to model reduction. A similar situation exists for the

methods used to develop a priori error bounds on numerical solutions to ODEs [77,

38, 192]. Two approaches are used to compute more detailed information about the

error in numerical solutions to ODEs.

One approach is to calculate a posteriori estimates of the error. This approach

derives an ODE whose solution approximates the error (be it the error in the nu-

merical solution to an ODE or the approximation error in the solution to a reduced

order model) to leading order (asymptotically). A posteriori estimation has been

used to estimate the error in orthogonal projection-based reduced models [86],

error in reduced models due to perturbations in parameters [185], error due to
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operator decomposition methods for solving ODEs [54, 55] and PDEs [56, 58], er-

ror due to numerical methods used in solving reaction-diffusion PDEs [55], and

global error control of numerical solutions of ODEs [218, 190, 57, 25]. Algorith-

mically, these methods are similar to those used in sensitivity analysis for ODEs

[26, 46, 51, 131, 60, 24, 201], and this similarity can be used to develop multiple

forward methods for a posteriori estimation of the approximation error in oblique

projection-based model reduction methods and other, more general model reduc-

tion methods. Provided that the approximation error is sufficiently small, these

methods provide accurate estimates of this error.

The other major approach is to calculate rigorous bounds on the error using

interval bounding methods. Given the parametric ODE

ẏ(t) = f(t,y(t),p), y(0) = y∗ ∈ Y0 ⊂ Rn, (5.15)

where Y0 is a set of allowable initial conditions, np is the number of parameters,

P is a set of allowable parameters, p ∈ P ⊂ Rnp , the reachable set S(t) is defined

by

S(t) ≡ {y(t) : y(t) satisfies (5.15) on [0, t] for (y∗,p) ∈ Y0 × P}. (5.16)

Interval bounding methods calculate an interval enclosure (i.e., lower and up-

per bounds on each component) of the reachable set S(t).

To calculate rigorous bounds on the approximation error due to model reduc-

tion, an exact equation for the approximation error can be derived. Then, interval

bounding methods can be applied to this equation. The two major approaches in

interval bounding methods are Taylor methods and differential inequalities. Tay-

lor methods use Taylor series expansions in concert with interval arithmetic (or

more sophisticated arithmetics [16, 118]) to calculate validated enclosures of S(t),

meaning that the interval enclosures hold even when computed in finite precision
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[84, 163, 164, 187]. These methods are particularly useful for the computation of

error in reduced order models because they provide the capability to bound rig-

orously both the error due to finite precision numerical methods and error due

to model reduction approximations, even if Y0 × P is a singleton (or a degener-

ate interval) [146]. Differential inequalities use interval arithmetic to derive a set of

ODEs whose solution is an interval enclosure is S(t) [187]. The resulting enclosure,

while rigorous, do not account for numerical errors, and thus do not yield guaran-

teed bounds in finite precision arithmetic, though this limitation can be remedied

at the cost of additional sophistication [163]. Furthermore, for stable ODE systems,

modern implementations of numerical methods for solving ODEs control the nu-

merical error well; it is worth noting that for combustion systems, many problems

of practical interest, such as ignition, or explosion, are not stable for all time. Both

methods for interval bounding tend to calculate extremely conservative bounds on

the reachable set of a parametric ODE, though these bounds can be improved by

increasing the order of the Taylor series used in Taylor methods, or by leveraging

external information to augment the calculated bounds [187]. Differential inequal-

ities methods calculate bounds at a cost comparable to a single simulation; Taylor

methods, in contrast, scale exponentially with the order, number of state variables,

and number of parameters. Both approaches should be useful in bounding the

error, and it is expected that once implementations for both methods are in place,

performance concerns will dominate. In particular, when Y0×P is a singleton (i.e.,

only one initial condition and one parameter are under consideration), rigorous

bounds (or estimates, for that matter) must be computed more quickly than the

exact error; otherwise, an exact error computation will be preferred.
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Appendix A

Implementation of Examples for

Chapter 2

Examples for Chapter 2 were implemented in MATLAB r2012a [133] and twice in

Python 2.7.3 [209]. A Cantera input file for an ozone mechanism is required, and

is also listed below in Cantera CTI format.

A.1 Cantera Ozone CTI file

#
# Generated from file ozone.inp
# by ck2cti on Tue Jul 19 14:32:00 2011
#
units(length = "cm", time = "s", quantity = "mol", act_energy = "kJ/mol")

ideal_gas(name = "ozone",
elements = " O ",
species = """ O O2 O3 """,
reactions = "all",
initial_state = state(temperature = 300.0,

pressure = OneAtm) )

#-------------------------------------------------------------------------------
# Species data
#-------------------------------------------------------------------------------

species(name = "O",
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atoms = " O:1 ",
thermo = (

NASA( [ 300.00, 1000.00], [ 2.946429000E+00, -1.638166000E-03,
2.421032000E-06, -1.602843000E-09, 3.890696000E-13,
2.914764000E+04, 2.963995000E+00] ),

NASA( [ 1000.00, 5000.00], [ 2.542060000E+00, -2.755062000E-05,
-3.102803000E-09, 4.551067000E-12, -4.368052000E-16,
2.923080000E+04, 4.920308000E+00] )

),
note = "120186"

)

species(name = "O2",
atoms = " O:2 ",
thermo = (

NASA( [ 300.00, 1000.00], [ 3.212936000E+00, 1.127486000E-03,
-5.756150000E-07, 1.313877000E-09, -8.768554000E-13,
-1.005249000E+03, 6.034738000E+00] ),

NASA( [ 1000.00, 5000.00], [ 3.697578000E+00, 6.135197000E-04,
-1.258842000E-07, 1.775281000E-11, -1.136435000E-15,
-1.233930000E+03, 3.189166000E+00] )

),
note = "121386"

)

species(name = "O3",
atoms = " O:3 ",
thermo = (

NASA( [ 300.00, 1000.00], [ 2.462609000E+00, 9.582781000E-03,
-7.087359000E-06, 1.363368000E-09, 2.969647000E-13,
1.606152000E+04, 1.214187000E+01] ),

NASA( [ 1000.00, 5000.00], [ 5.429371000E+00, 1.820380000E-03,
-7.705607000E-07, 1.499293000E-10, -1.075563000E-14,
1.523527000E+04, -3.266387000E+00] )

),
note = "121286"

)

#-------------------------------------------------------------------------------
# Reaction data
#-------------------------------------------------------------------------------

# Reaction 1
reaction( "O3 + O => O2 + O + O", [6.76000E+06, 2.5, 101])

# Reaction 2
reaction( "O2 + O + O => O3 + O", [1.18000E+02, 3.5, 0])

# Reaction 3
reaction( "O3 + O2 => O2 + O + O2", [6.76000E+06, 2.5, 101])

# Reaction 4
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reaction( "O2 + O + O2 => O3 + O2", [1.18000E+02, 3.5, 0])

# Reaction 5
reaction( "O3 + O3 => O2 + O + O3", [6.76000E+06, 2.5, 101])

# Reaction 6
reaction( "O2 + O + O3 => O3 + O3", [1.18000E+02, 3.5, 0])

# Reaction 7
reaction( "O + O3 => 2 O2", [4.58000E+06, 2.5, 25.1])

# Reaction 8
reaction( "2 O2 => O + O3", [1.88000E+06, 2.5, 415])

# Reaction 9
reaction( "O2 + O => 2 O + O", [5.71000E+06, 2.5, 491])

# Reaction 10
reaction( "2 O + O => O2 + O", [2.47000E+02, 3.5, 0])

# Reaction 11
reaction( "O2 + O2 => 2 O + O2", [5.71000E+06, 2.5, 491])

# Reaction 12
reaction( "2 O + O2 => O2 + O2", [2.47000E+02, 3.5, 0])

# Reaction 13
reaction( "O2 + O3 => 2 O + O3", [5.71000E+06, 2.5, 491])

# Reaction 14
reaction( "2 O + O3 => O2 + O3", [2.47000E+02, 3.5, 0])

A.2 MATLAB Implementation

The MATLAB r2012a [133] implementation requires the installation of Cantera

2.0.0b3 (or later) [73], the Cantera MATLAB interface, Sundials 2.4 (or later), and

SundialsTB [85].

function OzoneCaseStudy
% Purpose: Calculates the solution to an adiabatic-isobaric batch reactor
% problem using ozone mechanism.

% Close all open figures
close all

% Set up the problem parameters by setting the gas equal to GRIMech

problemData.gas = importPhase(’ozone.cti’);
initialTemperature = 1000;
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set(problemData.gas, ’Temperature’, initialTemperature, ...
’Pressure’, oneatm, ’MassFractions’, ’O:0, O2:0.15, O3:0.85’);

problemData.timePts = linspace(0, 2e-6, 10000);

% Set conditions to stoichiometric flame.
numSpecies = nSpecies(problemData.gas)
numVars = numSpecies + 1;
problemData.initCond = zeros(numVars,1);

problemData.initCond(1) = initialTemperature;
problemData.initCond(2:end) = massFractions(problemData.gas);
problemData.initCond;

% Tolerances
problemData.absTol = 1e-15 * ones(size(problemData.initCond));
problemData.relTol = 1e-12;

% problemData.absTol = 1e-6 * ones(size(problemData.initCond));
% problemData.relTol = 1e-6;

% Start timer
tic;

% Full solution
fullSolution = fullSoln(problemData);

% Stop timer
toc;

cutoffTemp = 2263; %in Kelvin
originDataPt = find(fullSolution(2,:) > cutoffTemp, 1, ’first’) - 1;
rednData.origin = fullSolution(2:end, originDataPt);

firstRangeVector = rhsFn(fullSolution(1, originDataPt), ...
rednData.origin, problemData);

firstRangeVector(1) = 0; %Zero out the temperature component only!
secondRangeVector = [1;0;0;0];
% thirdRangeVector = [0;1;0;0];
% basis = [firstRangeVector, secondRangeVector, thirdRangeVector];
basis = [firstRangeVector, secondRangeVector];

[orthoBasis, ˜] = qr(basis(:,1:2));

% V = orthoBasis(:,1:3);
V = orthoBasis(:,1:2);
V(:,1) = -V(:,1);

projector = V*V’;

% projector = zeros(4,4);
% projector(1,1) = 1;
% projector(2,2) = 1;
% projector(4,4) = 1;
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redProblemData = problemData;
redProblemData.initCond = rednData.origin;
redProblemData.absTol = 1e-15 * ones(size(redProblemData.initCond));
redProblemData.relTol = 1e-12;

rednData.P = projector;

tic;
redSolution = reducedSoln(redProblemData, rednData);
toc;

% Establish proper dimensions of lumped model solution.
redLumpedSolution = zeros(size(V,2) + 1, size(redSolution,2));
% Then recover lumped solution from reduced model solution, since the two
% are equivalent.
redLumpedSolution(1,:) = redSolution(1,:);
redLumpedSolution(2:end, :) = V’ * (redSolution(2:end, :) - ...

repmat(rednData.origin, [1, size(redSolution,2)]));

% Establish proper dimensions of lumped original model solutions.
origLumpedSoln = zeros(size(redLumpedSolution));
% Then lump the original model solution; equivalent to projecting the
% original model solution (after integration!).
origLumpedSoln(1,:) = fullSolution(1,:);
origLumpedSoln(2:end,:) = V’ * (fullSolution(2:end, :) - ...

repmat(rednData.origin, [1, size(redSolution,2)]));

npts = 20;

% Make a vector w/ points from 0 to 1
x = linspace(0, 1, npts);
%Make 2-D grid of points
[X, Y] = meshgrid(x);

% Plot cleanup carries out efficiently this loop, which restricts
% the plotted surface to the positive orthant:
% for i = 1:npts
% for j = 1:npts
% if (Y(i,j) > 1 - X(i,j))
% Y(i,j) = 1 - X(i,j);
% end
% end
% end
Y = Y .* (Y <= 1 - X) + (1 - X) .* (Y > 1 - X);

% Forces plane to be blue or orange; for other colors, search
% "ColorSpec" in Matlab help
orange = [1 .5 0];
blue = [0 0 1];
purple = [.5 0 .5];
green = [0 1 0];

%X + Y + Z = 1 (sum of mass fractions equals 1);
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Z = 1 - X - Y;
%only show positive orthant

x2 = linspace(0, 1, npts);
y2 = linspace(0, .5, npts);
[X2, Y2] = meshgrid(x2, y2);
% Permutation of solution coordinates to plotting coordinates.
permuteSolnToPlotCoord = [3, 4, 2];
% Point at which model is reduced.
planeOrigin = rednData.origin(permuteSolnToPlotCoord);
%Normal vector for plane
% normal = orthoBasis(permuteSolnToPlotCoord,1);
normal2 = [0; -orthoBasis(4,1)/orthoBasis(2,1); 0; 1];
normal = normal2(permuteSolnToPlotCoord);
normal = normal/norm(normal);

%Z intercept
Z2 = planeOrigin(3) - (normal(1)*(X2 - planeOrigin(1))...

+ normal(2)*(Y2 - planeOrigin(2))) / normal(3);

alpha = .4;
alphaData = alpha * ones(size(X));

figure
hold on
hidden on
surf(X2, Y2, Z2, ’EdgeColor’, ’none’, ’FaceColor’, orange, ...

’AlphaData’, .4 * alphaData, ’AlphaDataMapping’, ’none’, ...
’FaceAlpha’, ’interp’);

plot3(fullSolution(4,:), fullSolution(5,:), ...
fullSolution(3,:), ’b--’, ’LineWidth’, 1.5);

plot3(redSolution(4,:), redSolution(5,:), redSolution(3,:), ...
’r-’, ’LineWidth’, 1.5);

quiver3([planeOrigin(1)], [planeOrigin(2)], ...
[planeOrigin(3)], [.05*normal(1)], [.05*normal(2)], ...
[.05*normal(3)], 0.2);

legend(’Original model’, ’Reduced model’, ...
’Reduction plane’, ’Normal vector’, ’Location’, ’Best’);

axis([0 1 0 1 0 .025]);
title(’Projector Representation: Ozone’)
xlabel(’Mass Frac O_2’)
ylabel(’Mass Frac O_3’)
zlabel(’Mass Frac O’)
view([-69, 42])
grid on

figure
hold on
% plot3(lumpedOriginalModel(:,2), ozone.data(refPointIndex:end, 1), ...
% ozone.data(refPointIndex:end,3), ’b--’, ’LineWidth’, 1.15);
% plot3(lumpedReducedModel(:,2), ozone.data(refPointIndex, 1) + ...
% redOzone.data(:, 1), redOzone.data(:,3), ’r-’, ’LineWidth’, 1.75);
plot3(origLumpedSoln(2,originDataPt:end), ...

origLumpedSoln(1,originDataPt:end) ...
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-origLumpedSoln(1,originDataPt),...%Subtract reduced model time offset
fullSolution(3,originDataPt:end),...
’b--’, ’LineWidth’, 1.15);

plot3(redLumpedSolution(2,:), ...
redLumpedSolution(1,:), ...
redSolution(3,:), ...
’r-’, ’LineWidth’, 1.75);

xlabel(...
’\alpha * Mass Frac O + \beta * Mass Frac O_2 + \gamma * Mass Frac O_3’);

% ylabel(’Mass Frac O’);
ylabel(’Time [s]’);
zlabel(’Mass Frac O’);
view([-160 22]);
grid on
% xlabel(’Temperature [K]’);
legend(’Original Model’, ’Reduced Model’, ’Location’, ’Best’);
title(’Lumped Representation: Ozone’);

figure
hold on
plot3(fullSolution(5,originDataPt:end), ...

fullSolution(1,originDataPt:end) ...
- fullSolution(1,originDataPt), ... %Subtract reduced model time offset
fullSolution(3,originDataPt:end), ’b--’, ’LineWidth’, 1.5);

plot3(redSolution(5,:), redSolution(1,:), redSolution(3,:), ...
’r-’, ’LineWidth’, 1.5);

xlabel(’Mass Frac O_3’);
ylabel(’Time [s]’);
zlabel(’Mass Frac O’);
grid on;
% view([11 10]);
legend(’Original Model’, ’Reduced Model’, ’Location’, ’Best’);
title(’Invariant Representation: Ozone’);

% 2-D plots that are time traces of dynamics

figure
plot(fullSolution(1,:), fullSolution(2,:), ’b-’);
hold on
plot(fullSolution(1, originDataPt) + redSolution(1,:), ...

redSolution(2,:), ’r--’);
xlabel(’Time [s]’);
ylabel(’Temperature [K]’)
title(’Cantera simulation: Temperature profile’);
legend(’Original Model’, ’Reduced Model’, ’Location’, ’Best’);

figure
plot(fullSolution(1,:), fullSolution(3,:), ’b-’);
hold on
plot(fullSolution(1, originDataPt) + redSolution(1,:), ...

redSolution(3,:), ’r--’);
xlabel(’Time [s]’);
ylabel(’Mass Fraction O [a.u.]’)
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title(’Cantera simulation: Mass Fraction O profile’);
legend(’Original Model’, ’Reduced Model’, ’Location’, ’Best’);

figure
plot(fullSolution(1,:), fullSolution(4,:), ’b-’);
hold on
plot(fullSolution(1, originDataPt) + redSolution(1,:), ...

redSolution(4,:), ’r--’);
xlabel(’Time [s]’);
ylabel(’Mass Fraction O2 [a.u.]’)
title(’Cantera simulation: Mass Fraction O2 profile’);
legend(’Original Model’, ’Reduced Model’, ’Location’, ’Best’);

figure
plot(fullSolution(1,:), fullSolution(5,:), ’b-’);
hold on
plot(fullSolution(1, originDataPt) + redSolution(1,:), ...

redSolution(5,:), ’r--’);
xlabel(’Time [s]’);
ylabel(’Mass Fraction O3 [a.u.]’)
title(’Cantera simulation: Mass Fraction O3 profile’);
legend(’Original Model’, ’Reduced Model’, ’Location’, ’Best’);

end

function solution = fullSoln(problemData)
% Purpose: Solves adiabatic-isobaric batch reactor problem.
% Inputs: problemData = struct containing problem data.
% problemData.gas = Cantera "Solution" object containing gas phase
% thermodynamic state data.
% problemData.initCond = initial conditions of ODEs in problem;
% column vector (problemData.npts by 1)
% problemData.timePts = times at which the solution should be
% calculated; first time point corresponds to initial conditions!
% problemData.absTol = vector of absolute tolerances for CVODE
% problemData.relTol = scalar relative tolerance for CVODE
% Outputs: solution = solution of Fitzhugh-Nagumo problem.

% Relative and absolute tolerances for integration
% numVars = length(problemData.initCond);
relTol = problemData.relTol;
absTol = problemData.absTol;

% Options for integration using CVODE in sundialsTB
% Hand-coded Jacobian function options
% integrationOptions = CVodeSetOptions(’UserData’,problemData,...
% ’RelTol’,relTol,...
% ’AbsTol’,absTol,...
% ’LinearSolver’,’Dense’,...
% ’JacobianFn’,@jacFn,...
% ’InitialStep’, 1e-9, ...
% ’MaxNumSteps’, 1e7, ...
% ’ErrorMessages’, true, ...
% ’MinStep’, eps, ...
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% ’StopTime’, problemData.timePts(end));

% ’MaxNumSteps’, 1e7, ...

% Difference quotient (DQ; finite difference) Jacobian options
integrationOptions = CVodeSetOptions(’UserData’,problemData,...

’RelTol’,relTol,...
’AbsTol’,absTol,...
’LinearSolver’,’Dense’,...
’InitialStep’, 1e-9, ...
’MaxNumSteps’, 1e7, ...

’ErrorMessages’, true, ...
’StopTime’, problemData.timePts(end));

% ’MaxStep’, 1e-6, ...
% ’MinStep’, eps, ...

% Initialize integrator using BDF method and Newton solver
CVodeInit(@rhsFn, ’BDF’, ’Newton’, ...

problemData.timePts(1), problemData.initCond, integrationOptions);

% Solution time points are columns; time is the first row, and then
% solution(2:end, :) = y(1:end) for each time point
solution = [problemData.timePts(1); problemData.initCond];

% Integration loop for remaining steps
for i=2:length(problemData.timePts)

% Take a time step
[status, t, y] = CVode(problemData.timePts(i), ’Normal’);
solution = horzcat(solution, [problemData.timePts(i); y]);

if status ˜= 0
fprintf(1, ’Status = %d’, status);
break;

end

end

stats = CVodeGetStats

% Free memory
CVodeFree;

end

function ydot = rhs(t, y, data)
% Purpose: Calculates the right-hand side adiabatic-isobaric batch reactor.
% Carries out the calculation for full system, such that it only returns
% the time derivatives.
% Inputs: t = time
% y = vector of state variables (column vector); temperature [K]
% first, followed by species mass fractions
% data = struct containing problem data
% data.gas = Cantera "Solution" object containing gas phase
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% thermodynamic state data.
% Outputs: ydot = vector of time derivatives of state variables; must have
% same dimensions as y
% flag = Used to return error flags
% new_data = Used to update data (otherwise, return empty array if
% there are no changes to avoid recopying)

setTemperature(data.gas, y(1));
setPressure(data.gas, oneatm);
% numSpecies = nSpecies(data.gas);
% I = eye(numSpecies);
% massEnthalpies = zeros(numSpecies,1);
% for i = 1:numSpecies
% setMoleFractions(data.gas, I(:,i));
% massEnthalpies(i) = enthalpy_mass(data.gas);
% end

% Update the thermodynamic state of the gas to be consistent with the
% current thermodynamic state of the system as described by the state
% vector y. Use the ’nonorm’ option to ensure that mass fractions are NOT
% normalized (for calculation of derivatives).

setMassFractions(data.gas, y(2:end), ’nonorm’);

% Ideal gas constant in J/kmole-K
% R = 8314;

% Calculate pure species molar enthalpies
% moleEnthalpies = (enthalpies_RT(data.gas) * R * y(1)).’;

% Set up the time derivative vector
ydot = zeros(size(y));

% Set up the time derivatives of each state variable for an
% adiabatic-isobaric batch reactor, using mass fractions and temperatures
% as the thermodynamic state variables.
one_over_rho = 1.0/density(data.gas);
wdot = netProdRates(data.gas);
ydot(1) = - y(1) * gasconstant * enthalpies_RT(data.gas)’ * ...

wdot * one_over_rho / cp_mass(data.gas);
ydot(2:end) = wdot .* molarMasses(data.gas) * one_over_rho;
% mw = molarMasses(data.gas);
% nsp = nSpecies(data.gas);
% for i = 1:nsp
% ydot(i+1) = one_over_rho * mw(i) * wdot(i);
% end

end

function [ydot, flag, new_data] = rhsFn(t, y, data)
% Purpose: Calculates the right-hand side adiabatic-isobaric batch reactor.
% Carries out the calculation for full system.
% Inputs: t = time
% y = vector of state variables (column vector); temperature [K]
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% first, followed by species mass fractions
% data = struct containing problem data
% data.gas = Cantera "Solution" object containing gas phase
% thermodynamic state data.
% Outputs: ydot = vector of time derivatives of state variables; must have
% same dimensions as y
% flag = Used to return error flags
% new_data = Used to update data (otherwise, return empty array if
% there are no changes to avoid recopying)

ydot = rhs(t, y, data);

% Update the thermodynamic state of the gas to be consistent with the
% current thermodynamic state of the system as described by the state
% vector y.
% set(data.gas, ’Temperature’, y(1), ’MassFractions’, y(2:end), ...
% ’Pressure’, oneatm);

flag = 0;
% new_data = data;
new_data = [];

end

function ydot= rhsForJac(t, y, data)
% Purpose: Calculates the right-hand side adiabatic-isobaric batch reactor.
% Carries out the calculation for full system, such that it only returns
% the time derivatives.
% Inputs: t = time
% y = vector of state variables (column vector); temperature [K]
% first, followed by species mass fractions
% data = struct containing problem data
% data.gas = Cantera "Solution" object containing gas phase
% thermodynamic state data.
% Outputs: ydot = vector of time derivatives of state variables; must have
% same dimensions as y
% flag = Used to return error flags
% new_data = Used to update data (otherwise, return empty array if
% there are no changes to avoid recopying)

setTemperature(data.gas, y(1));
numSpecies = nSpecies(data.gas);
I = eye(numSpecies);
massEnthalpies = zeros(numSpecies,1);
for i = 1:numSpecies

setMoleFractions(data.gas, I(:,i));
massEnthalpies(i) = enthalpy_mass(data.gas);

end

% Update the thermodynamic state of the gas to be consistent with the
% current thermodynamic state of the system as described by the state
% vector y. Use the ’nonorm’ option to ensure that mass fractions are NOT
% normalized (for calculation of derivatives).
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setMassFractions(data.gas, y(2:end), ’nonorm’);

% Ideal gas constant in J/kmole-K
% R = 8314;

% Calculate pure species molar enthalpies
% moleEnthalpies = (enthalpies_RT(data.gas) * R * y(1)).’;

% Set up the time derivative vector
ydot = zeros(size(y));

% Set up the time derivatives of each state variable for an
% adiabatic-isobaric batch reactor, using mass fractions and temperatures
% as the thermodynamic state variables.
ydot(1) = sum(molarMasses(data.gas) .* massEnthalpies .* ...

netProdRates(data.gas), 1) / (cp_mass(data.gas) * density(data.gas));
ydot(2:end) = netProdRates(data.gas) .* molarMasses(data.gas) / ...

density(data.gas);

end

function [J, flag, new_data] = jacFn(t, y, fy, data)
% Purpose: Calculates the Jacobian for the Homescu et al. 20 species
% example for CVODE. Simple nonlinear ODE example.
% Carries out calculation for full system.
% Inputs: t = time
% y = vector of state variables (column vector); temperature [K]
% first, followed by species mass fractions
% ydot = vector of derivatives of state variables wrt time
% data = struct containing problem data
% data.gas = Cantera "Solution" object containing gas phase
% thermodynamic state data.
% Outputs: J = Jacobian matrix; must have dimensions conformal to
% premultiplying y
% flag = Used to return error flags
% new_data = Used to update data (otherwise, return empty array if there
% are no changes to avoid recopying)

% Make the workspaces for the numerical Jacobian matrix global so that the
% workspaces are persistent between calls
% global fac
% atol = 1e-15 * ones(size(y)); %1e-15 is default atol for Cantera
% rtol = 1e-10; %1e-9 is default rtol for Cantera

atol = data.absTol;
rtol = data.relTol;

J = CVodeNumJac(@rhsFn, t, y, fy, data, atol, rtol);

flag = 0;
new_data = [];

end
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function redSoln = reducedSoln(problemData, rednData)
% Purpose: Solves the original (not reduced) Fitzhugh-Nagumo problem and
% returns the solution data (including time points!).
% Inputs: problemData = struct containing problem data.
% problemData.gas = Cantera "Solution" object containing gas phase
% thermodynamic state data.
% problemData.initCond = initial conditions of ODEs in problem;
% column vector (problemData.npts by 1)
% problemData.timePts = times at which the solution should be; first
% time point corresponds to initial conditions!
% reported; column vector
% problemData.absTol = vector of absolute tolerances for CVODE
% problemData.relTol = scalar relative tolerance for CVODE
% rednData.origin = origin of reduced model (column vector same size
% as problemData.initCond; problemData.nPts by 1)
% rednData.P = projection matrix
% Outputs: solution = solution of Fitzhugh-Nagumo problem.

% Calculate the projector
problemData.P = rednData.P;

% Relative and absolute tolerances for integration
relTol = problemData.relTol;
absTol = problemData.absTol;

% Options for integration using CVODE in sundialsTB
% integrationOptions = CVodeSetOptions(’UserData’,problemData,...
% ’RelTol’,relTol,...
% ’AbsTol’,absTol,...
% ’LinearSolver’,’Dense’,...
% ’JacobianFn’,@reducedJacFn,...
% ’StopTime’, problemData.timePts(end));

% Difference quotient (DQ; finite difference) Jacobian options
integrationOptions = CVodeSetOptions(’UserData’,problemData,...

’RelTol’,relTol,...
’AbsTol’,absTol,...
’LinearSolver’,’Dense’,...
’InitialStep’, 1e-9, ...
’MaxNumSteps’, 1e7, ...

’ErrorMessages’, true, ...
’StopTime’, problemData.timePts(end));

% ’MaxStep’, 1e-6, ...
% ’MinStep’, eps, ...

% Reduced model initial conditions must be calculated for original model
% initial conditions
reducedInitCond = problemData.P * ...

(problemData.initCond - rednData.origin) + ...
rednData.origin;

% Initialize integrator using BDF method and Newton solver
CVodeInit(@reducedRhsFn, ’BDF’, ’Newton’, ...
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problemData.timePts(1), reducedInitCond, integrationOptions);

% Solution time points are columns; time is the first row, and then
% v(1:end) corresponds to redSoln(2:2:end, :), and w(1:end) corresponds to
% redSoln(3:2:end, :).
redSoln = [problemData.timePts(1); reducedInitCond];

% Integration loop for remaining steps
for i=2:length(problemData.timePts)

% Take a time step
[status, t, y] = CVode(problemData.timePts(i), ’Normal’);
redSoln = horzcat(redSoln, [problemData.timePts(i); y]);

if status ˜= 0
fprintf(1, ’Status = %d’, status);
break;

end

end

stats = CVodeGetStats

% Free memory
CVodeFree;

end

function [ydot, flag, new_data] = reducedRhsFn(t, y, data)
% Purpose: Calculates the right-hand side for the reduced Fitzhugh-Nagumo
% system for CVODE. This second-order PDE is discretized using central
% differences for the spatial derivatives, and second-order finite
% differences for the two Neumann boundary conditions.
% Carries out the calculation for reduced systems.
% Inputs: t = time
% y = vector of state variables (column vector)
% Remember! y(1:2:end) = v(1:data.nPts); y(2:2:end) = w(1:data.nPts).
% data = struct containing all data
% data.epsilon = epsilon parameter of Fitzhugh-Nagumo equation
% data.L = length of spatial domain
% data.gamma = gamma parameter of Fitzhugh-Nagumo equation
% data.b = b parameter of Fitzhugh-Nagumo equation
% data.c = c parameter of Fitzhugh-Nagumo equation
% data.nPts = number of points in spatial discretization
% data.P = projection matrix; must be a data.nPts by data.nPts matrix
% Outputs: ydot = vector of time derivatives of state variables; must have
% same dimensions as y
% flag = Used to return error flags
% new_data = Used to update data (otherwise, return empty array if
% there are no changes to avoid recopying)

[ydot, flag, new_data] = rhsFn(t, y, data);
ydot = data.P * ydot;
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end

function [J, flag, new_data] = reducedJacFn(t, y, fy, data)
% Purpose: Calculates the Jacobian for the reduced Fitzhugh-Nagumo system
% for CVODE.
% Carries out the calculation for both full and reduced systems
% Inputs: t = time
% y = vector of state variables (column vector)
% Remember! y(1:2:end) = v(1:data.nPts); y(2:2:end) = w(1:data.nPts).
% fy = vector of time derivative of state variables
% data = struct containing all data
% data.epsilon = epsilon parameter of Fitzhugh-Nagumo equation
% data.L = length of spatial domain
% data.gamma = gamma parameter of Fitzhugh-Nagumo equation
% data.b = b parameter of Fitzhugh-Nagumo equation
% data.c = c parameter of Fitzhugh-Nagumo equation
% data.nPts = number of points in spatial discretization
% data.P = projection matrix; must be a data.nPts by data.nPts matrix
% Outputs: J = Jacobian matrix; must have dimensions conformal to
% premultiplying y
% flag = Used to return error flags
% new_data = Used to update data (otherwise, return empty array if there
% are no changes to avoid recopying)

[J, flag, new_data] = jacFn(t, y, fy, data);
J = data.P * J;

end

A.3 Python Implementation

The first Python 2.7.3 [209] implementation requires the installation of Cantera

2.0.0b3 (or later) [73], the Cantera Python interface, NumPy 1.6.2 (or later) [152],

SciPy 0.10.1 (or later) [93], and Matplotlib 1.0.0 (or later) [90]. An attempt was

made to keep the number of dependencies to a minimum. It is likely that the

Python code below will work with Python 2.6 (or later).

#!/usr/bin/env python
# -*- coding: latin-1 -*-

# Dependencies:
# numpy (used version 1.7.0-dev)
# scipy (used version 0.11-dev)
# Cantera (used version 2.0b4)
# matplotlib (used version 1.1.0)

import numpy
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import scipy.linalg
import scipy.integrate
import Cantera
import matplotlib.pyplot
import mpl_toolkits.mplot3d

def adiabaticIsobaricBatch(t, y, data):
"""
Purpose:
Calculates the right-hand side of ODEs governing an adiabatic-
isobaric batch reactor. Carries out the calculation for full system, such
that it only returns the time derivatives.

Arguments:
t (float): time [s]
y (numpy.ndarray, 1-D; or list, 1-D): (row) vector of state variables;

temperature first, followed by species mass fractions
data (dict): emulates C-style (or MATLAB-style) struct with following fields:

data[’gas’] (Cantera.Solution): object containing chemistry and gas
physical properties

Returns:
ydot (numpy.ndarray, 1-D): (row) vector of time derivatives of state

variables; must have same shape as y

"""

# Set gas thermodynamic properties; mass fractions must NOT be normalized
# so that finite-difference Jacobian matrix calculated accurately
data[’gas’].setTemperature(y[0])
data[’gas’].setPressure(Cantera.OneAtm)
data[’gas’].setMassFractions(y[1:], norm=0)

# Preallocate time derivative vector
ydot = numpy.zeros(numpy.asarray(y).shape)

# Precalculate reciprocal density and net molar production rates for reuse
one_over_rho = 1.0 / data[’gas’].density()
wdot = data[’gas’].netProductionRates()

# Calculate time derivatives
ydot[0] = - y[0] * Cantera.GasConstant * \

numpy.dot(data[’gas’].enthalpies_RT(),wdot) * one_over_rho / \
data[’gas’].cp_mass()

# multiplication of numpy arrays = elementwise multiply of the two arrays, like the .* operator in MATLAB
ydot[1:] = wdot * data[’gas’].molarMasses() * one_over_rho
return ydot

def redAdiabaticIsobaricBatch(t, y, data):
"""
Purpose:
Calculates the right-hand side of ODEs governing an adiabatic-
isobaric batch reactor. Carries out the calculation for full system, such
that it only returns the time derivatives.
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Arguments:
t (float): time [s]
y (numpy.ndarray, 1-D; or list, 1-D): (row) vector of state variables;

temperature first, followed by species mass fractions
data (dict): emulates C-style (or MATLAB-style) struct with following fields:

data[’gas’] (Cantera.Solution): object containing chemistry and gas
physical properties

data[’P’] (numpy.ndarray, 2-D, square; or numpy.mat, square;
list, 2-D): projection matrix; must be

conformal for premultiplying numpy.mat(y).transpose()

Returns:
ydot (numpy.ndarray, 1-D): (row) vector of time derivatives of state

variables; must have same shape as y

"""
ydot = adiabaticIsobaricBatch(t, y, data)

# ydot is a row vector, so instead of calculating (P * ydotˆ{T})ˆ{T}, we
# calculate ydot * Pˆ{T}. numpy ndarrays are more efficient than matrices,
# and the latter formulation uses fewer method calls than the former
return numpy.asarray(numpy.dot(ydot, data[’P’].transpose()))

def fullSoln(problemData):
"""
Purpose:
Solves adiabatic-isobaric batch reactor problem using the scipy.integrate
interface to DVODE.

Arguments:
problemData (dict): emulates C-style (or MATLAB-style) struct with

following fields:
problemData[’gas’] (Cantera.Solution): object containing chemistry

and gas physical properties
problemData[’initCond’] (numpy.ndarray, 1-D; or list, 1-D): (row)

vector of state variables
problemData[’timePts’] (numpy.ndarray, 1-D; or list, 1-D): times

at which the solution should be calculated; first time point
corresponds to initial conditions!

problemData[’absTol’] (float; or numpy.ndarray, 1-D, same shape
as problemData[’initCond’]; or list, 1-D, same shape as
problemData[’initCond’]): vector of absolute tolerances

for DVODE.
problemData[’relTol’] (float): scalar relative tolerance for

for DVODE.

Returns:
solution (numpy.ndarray, 2-D, numpy.ndarray.shape[0] ==

len(problemData[’timePts’]), numpy.ndarray.shape[1] ==
(len(problemData[’initCond’]) + 1)): Solution of problem;

each time point is a row, each state variable is a column.

"""
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# Set up the integrator
dvode = scipy.integrate.ode(adiabaticIsobaricBatch)
dvode.set_integrator(’vode’,

method=’bdf’,
with_jacobian=True,
atol=problemData[’absTol’],
rtol=problemData[’relTol’],
first_step=1e-9,
nsteps=1e7)

dvode.set_initial_value(problemData[’initCond’], 0)
dvode.set_f_params(problemData)

# Carry out the main integration loop
solution = numpy.hstack((0, numpy.asarray(problemData[’initCond’],

)))
for t in problemData[’timePts’][1:]:

if not dvode.successful():
raise ArithmeticError(’DVODE step unsuccessful!’)

dvode.integrate(t)
solution = numpy.vstack((solution, numpy.hstack((dvode.t, dvode.y))))

return solution

def redSoln(problemData, rednData):
"""
Purpose:
Solves the reduced adiabatic-isobaric batch reactor problem using the
scipy.integrate interface to DVODE.

Arguments:
problemData (dict): emulates C-style (or MATLAB-style) struct with

following fields:
problemData[’gas’] (Cantera.Solution): object containing chemistry

and gas physical properties
problemData[’initCond’] (numpy.ndarray, 1-D; or list, 1-D): (row)

vector of state variables
problemData[’timePts’] (numpy.ndarray, 1-D; or list, 1-D): times

at which the solution should be calculated; first time point
corresponds to initial conditions!

problemData[’absTol’] (float; or numpy.ndarray, 1-D, same shape
as problemData[’initCond’]; or list, 1-D, same shape as
problemData[’initCond’]): vector of absolute tolerances

for DVODE.
problemData[’relTol’] (float): scalar relative tolerance for

for DVODE.
rednData (dict): emulates C-style (or MATLAB-style) struct with following

fields:
rednData[’P’] (numpy.ndarray, 2-D; or numpy.mat, 2-D; or list, 2-D):

projection matrix used for na\"{i}ve projection-based model reduction
rednData[’origin’] (numpy.ndarray, 1-D, len(rednData[’origin’]) ==

len(problemData[’initCond’]); or list, 1-D,
len(rednData[’origin’]) == len(problemData[’initCond’])):

origin of reduced model
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Returns:
solution (numpy.ndarray, 2-D, numpy.ndarray.shape[0] ==

len(problemData[’timePts’]), numpy.ndarray.shape[1] ==
(len(problemData[’initCond’]) + 1)): Solution of problem;

each time point is a row, each state variable is a column.

"""

# Rebind object passed through rednData to problemData; this
# object isn’t modified within this function call scope (and below),
# but if the script ever changes such that this statement is no longer
# true, expect errors.
problemData[’P’] = rednData[’P’]

# Calculate initial conditions for reduced model based on initial
# conditions for full model. Again, y is a row vector, so instead
# of calculating (P * yˆ{T})ˆ{T}, we calculate y * Pˆ{T}. numpy ndarrays
# are more efficient than matrices, and the latter formulation uses fewer
# method calls than the former.
redInitCond = numpy.asarray(

numpy.dot(numpy.asarray(problemData[’initCond’]) -
numpy.asarray(rednData[’origin’]),
problemData[’P’].transpose())) + \
numpy.asarray(rednData[’origin’])

# Set up the integrator
dvode = scipy.integrate.ode(redAdiabaticIsobaricBatch)
dvode.set_integrator(’vode’,

method=’bdf’,
with_jacobian=True,
atol=problemData[’absTol’],
rtol=problemData[’relTol’],
first_step=1e-9,
nsteps=1e7)

dvode.set_initial_value(redInitCond, 0)
dvode.set_f_params(problemData)

# Carry out the main integration loop

solution = numpy.hstack((0, redInitCond))
for t in problemData[’timePts’][1:]:

if not dvode.successful():
raise ArithmeticError(’DVODE step unsuccessful!’)

dvode.integrate(t)
solution = numpy.vstack((solution, numpy.hstack((dvode.t, dvode.y))))

return solution

def calcRedModelParams(fullSolution, problemData):
"""
Purpose:
Calculate projector based on data from full model solution.
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Arguments:
fullSolution (numpy.ndarray, 2-D; or list, 2-D): solution of full model
problemData (dict): emulates C-style (or MATLAB-style) struct with

following fields:
problemData[’gas’] (Cantera.Solution): object containing chemistry

and gas physical properties

Returns:
origin_index (int): time point index corresponding to origin data point
origin (numpy.ndarray, 1-D, where origin.shape[0] ==

fullSolution.shape[1]):
origin of projection-based reduced model (transposed, for convenience)

projector (numpy.ndarray, 2-D, where projector.shape[0] ==
projector.shape[1] == fullSolution.shape[1]): projection matrix

for projection-based model reduction.
W (numpy.ndarray, 2-D, where W.shape[0] == (fullSolution.shape[1] - 1)):

so-called "lumping matrix"; projection nullspace is perpendicular to
span of this matrix

orthoBasis (numpy.ndarray, 2-D, where orthoBasis.shape[0] ==
orthoBasis.shape[1] == (fullSolution.shape[1] - 1)):

orthonormal basis such that its first two columns correspond to the
range of the projector, and its last two columns correspond to the
nullspace of the projector.

"""

# The philosophy here was to find a nice point in the full model solution
# to serve as the origin. The two basis vectors that span the range space
# were the unit vector [[1,0,0,0]].transpose(), which corresponds to the
# "temperature direction", and the tangent vector of the full model
# solution (i.e., the right-hand side of the full model ODE). These basis
# vectors are used to construct an orthogonal projector.
# IF YOU WANT TO MODIFY THE PROJECTOR, YOU MUST MODIFY THE INTERNALS OF
# THIS FUNCTION!

# The origin will be the point in the solution set calculated immediately
# before the first point in the solution set calculated that exceeds a
# cutoff temperature.
cutoff_temp = 2263 # Kelvin
origin_index = numpy.flatnonzero(fullSolution[:, 1] > cutoff_temp)[0] - 1
origin = fullSolution[origin_index, 1:]

# Reminder:
# In the MATLAB script, the first column of V corresponds to the "lump",
# and the second column corresponds to temperature. In this Python script,
# the first column corresponds to temperature, and the second corresponds
# to the "lump". In order to obtain the proper V matrix in Python, the 2
# input basis vectors must be specified in the reverse order of the 2
# input basis vectors specified in MATLAB.

# Having determined the origin, a basis must be constructed in order to
# calculate a projector. The first basis vector is going to be the
# right-hand side of the full model, evaluated at the origin. The second
# basis vector is going to be [[1,0,0,0]].transpose(). The basis matrix
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# must consist of column vectors in order to carry out the necessary
# linear algebra.
first_range_vec = numpy.asarray([1, 0, 0, 0])
second_range_vec = adiabaticIsobaricBatch(0, origin, problemData)
basis = numpy.vstack((first_range_vec, second_range_vec)).transpose()

# An orthogonal projector is constructed from this basis by
# orthonormalizing it.
[orthoBasis, _] = scipy.linalg.qr(basis)
V = orthoBasis[:, 0:2]
# Sign reversal here carried out here so that more entries in V are
# positive than negative; doesn’t affect results.
#V[:, 0] = -V[:, 0]
W = V
projector = numpy.dot(V, W.transpose())

return origin_index, origin, projector, W, orthoBasis

def lump_soln(soln, W, origin, origin_index):
"""
Purpose:
From a solution in the original state variables, calculate a "lumped"
or "Petrov-Galerkin projected" solution.

Arguments:
soln (numpy.ndarray, 2-D): Solution of adiabatic-isobaric batch reactor

problem; each time point is a row, each state variable is a column.
W (numpy.ndarray, 2-D, where W.shape[0] == (soln.shape[1] - 1)):

so-called "lumping matrix"; projection nullspace is perpendicular to
span of this matrix

origin (numpy.ndarray, 1-D, where origin.shape[0] ==
fullSolution.shape[1]):

origin of projection-based reduced model (transposed, for convenience)
origin_index (int): time point index corresponding to origin data point

Returns:
lumped_soln (numpy.ndarray, 2-D, where lumped_soln.shape[0] ==

soln.shape[0] and lumped_soln.shape[1] == (W.shape[1] + 1)):
lumped version of soln

"""

# Calculate lumped model solution
#Copy time data points
# Since each data point is a row, instead of calculating
# Wˆ{T} * (y - y_{0}), calculate (y - y_{0})ˆ{T} * W.
lumped_soln = numpy.hstack((numpy.asarray([soln[:, 0]]).transpose(),

numpy.dot((soln[:, 1:] - numpy.tile(origin, (soln.shape[0], 1))), W)))

return lumped_soln

def setProblemData():
"""
Purpose:
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Sets problem parameters.

Arguments:
None

Returns:
problemData (dict): emulates C-style (or MATLAB-style) struct with

following fields:
problemData[’gas’] (Cantera.Solution): object containing chemistry

and gas physical properties
problemData[’initCond’] (numpy.ndarray, 1-D; or list, 1-D): (row)

vector of state variables
problemData[’timePts’] (numpy.ndarray, 1-D; or list, 1-D): times

at which the solution should be calculated; first time point
corresponds to initial conditions!

problemData[’absTol’] (float; or numpy.ndarray, 1-D, same shape
as problemData[’initCond’]; or list, 1-D, same shape as
problemData[’initCond’]): vector of absolute tolerances

for DVODE.
problemData[’relTol’] (float): scalar relative tolerance for

for DVODE.

"""

# Set up problem parameters.
# IF YOU WANT TO CHANGE THE FULL MODEL SOLUTION (AND ALL THE OTHERS),
# CHANGE THE PARAMETERS HERE!
problemData = {}
problemData[’gas’] = Cantera.IdealGasMix(’./ozone.cti’)
initialTemperature = 1000
initialMoleFracString = ’O:0, O2:0.15, O3:0.85’
problemData[’gas’].set(T=initialTemperature,

P=Cantera.OneAtm,
Y=initialMoleFracString)

problemData[’timePts’] = numpy.linspace(0, 2e-5, 10000)

# From the problem parameters, repackage the data so that it can be
# passed to ODE solvers.
problemData[’initCond’] = numpy.hstack((

numpy.asarray(initialTemperature),
numpy.asarray(problemData[’gas’].massFractions())))

problemData[’absTol’] = 1e-15
problemData[’relTol’] = 1e-12

return problemData

def CalculateFullRedAndLumpedSolns():
"""
Purpose:
Calculate three different solutions for an ozone flame:
- Full model solution
- Reduced model solution, reduced using projection-based model reduction
- Lumped model solution (or Petrov-Galerkin projection), derived from

reduced model solution.
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The basic idea is to decouple the calculation of solutions from the
plotting of figures so that the functions in this file are of a
manageable size.

Arguments:
None.

Returns:
fullSolution (numpy.ndarray, 2-D): full model solution for ozone flame
redSolution (numpy.ndarray, 2-D): reduced model solution for ozone flame
origLumpedSoln (numpy.ndarray, 2-D): lumped version of full model solution
redLumpedSoln (numpy.ndarray, 2-D): lumped model solution for ozone flame
rednData (dict): emulates C-style (or MATLAB-style) struct with following

fields:
rednData[’P’] (numpy.ndarray, 2-D; or numpy.mat, 2-D; or list, 2-D):

projection matrix used for na\"{i}ve projection-based model reduction
rednData[’origin’] (numpy.ndarray, 1-D, len(rednData[’origin’]) ==

len(problemData[’initCond’]); or list, 1-D,
len(rednData[’origin’]) == len(problemData[’initCond’])):

origin of reduced model
origin_index (int): time point index corresponding to origin data point
orthoBasis (numpy.ndarray, 2-D, where orthoBasis.shape[0] ==

orthoBasis.shape[1] == (fullSolution.shape[1] - 1)):
orthonormal basis such that its first two columns correspond to the
range of the projector, and its last two columns correspond to the
nullspace of the projector.

"""

#Set up problem data
problemData = setProblemData()

# Calculate full model solution
fullSolution = fullSoln(problemData)

# From the full model solution, calculate a projector.
# IF YOU WANT TO CHANGE THE LUMPED AND REDUCED MODEL SOLUTIONS,
# CHANGE THE INTERNALS OF calculateProjector
(origin_index,
origin,
projector,
W, orthoBasis) = calcRedModelParams(fullSolution, problemData)

# Calculate reduced model solution
# Rows are system states at a given time
# Columns are single state variables (or time)
redProblemData = setProblemData()
redProblemData[’initCond’] = origin
rednData = {’origin’: origin, ’P’: projector}
redSolution = redSoln(redProblemData, rednData)

# Calculate "lumping" (or Petrov-Galerkin projection) of original and
# reduced models
origLumpedSoln = lump_soln(fullSolution, W, origin, origin_index)
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redLumpedSoln = lump_soln(redSolution, W, origin, origin_index)

# Correct for the time discrepancy of the full and reduced models
redSolution[:,0] += fullSolution[origin_index, 0]
redLumpedSoln[:,0] += fullSolution[origin_index, 0]

return (fullSolution, redSolution, origLumpedSoln, redLumpedSoln,
rednData, origin_index, orthoBasis)

def plot_temp(fullSolution, redSolution):
"""
Purpose:
Make temperature versus time plots that compare the full and
reduced model solutions.

Arguments:
fullSolution (numpy.ndarray, 2-D): full model solution for ozone flame
redSolution (numpy.ndarray, 2-D): reduced model solution for ozone flame

Returns:
temp_fig (matplotlib.figure.Figure): temperature versus time plot

"""

temp_fig = matplotlib.pyplot.figure()
matplotlib.pyplot.plot(fullSolution[:,0], fullSolution[:,1], ’b-’)
matplotlib.pyplot.plot(redSolution[:, 0], redSolution[:, 1], ’r--’)
matplotlib.pyplot.ticklabel_format(axis=’both’, scilimits=(-2,3))
matplotlib.pyplot.xlabel(’Time [s]’)
matplotlib.pyplot.ylabel(’Temperature [K]’)
matplotlib.pyplot.title(’Cantera simulation: Temperature profile’)
matplotlib.pyplot.legend( (’Original model’, ’Reduced model’), loc=’best’)

return temp_fig

def plot_o(fullSolution, redSolution):
"""
Purpose:
Make mass fraction oxygen atoms versus time plots that compare the full and
reduced model solutions.

Arguments:
fullSolution (numpy.ndarray, 2-D): full model solution for ozone flame
redSolution (numpy.ndarray, 2-D): reduced model solution for ozone flame

Returns:
o_fig (matplotlib.figure.Figure): mass fraction O atoms versus time plot

"""
o_fig = matplotlib.pyplot.figure()
matplotlib.pyplot.plot(fullSolution[:, 0], fullSolution[:, 2], ’b-’)
matplotlib.pyplot.plot(redSolution[:, 0], redSolution[:, 2], ’r--’)
matplotlib.pyplot.ticklabel_format(axis=’both’, scilimits=(-2,3))
matplotlib.pyplot.xlabel(’Time [s]’)
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matplotlib.pyplot.ylabel(’Mass Fraction O [a.u.]’)
matplotlib.pyplot.title(’Cantera simulation: Mass Fraction O profile’)
matplotlib.pyplot.legend( (’Original model’, ’Reduced model’), loc=’best’)

return o_fig

def plot_o2(fullSolution, redSolution):
"""
Purpose:
Make mass fraction O2 versus time plots that compare the full and
reduced model solutions.

Arguments:
fullSolution (numpy.ndarray, 2-D): full model solution for ozone flame
redSolution (numpy.ndarray, 2-D): reduced model solution for ozone flame

Returns:
o2_fig (matplotlib.figure.Figure): mass fraction O2 versus time plot

"""

o2_fig = matplotlib.pyplot.figure()
matplotlib.pyplot.plot(fullSolution[:, 0], fullSolution[:, 3], ’b-’)
matplotlib.pyplot.plot(redSolution[:, 0], redSolution[:, 3], ’r--’)
matplotlib.pyplot.ticklabel_format(axis=’both’, scilimits=(-2,3))
matplotlib.pyplot.xlabel(’Time [s]’)
matplotlib.pyplot.ylabel(’Mass Fraction O2 [a.u.]’)
matplotlib.pyplot.title(’Cantera simulation: Mass Fraction O2 profile’)
matplotlib.pyplot.legend( (’Original model’, ’Reduced model’), loc=’best’)

return o2_fig

def plot_o3(fullSolution, redSolution):
"""
Purpose:
Make mass fraction O3 versus time plots that compare the full and
reduced model solutions.

Arguments:
fullSolution (numpy.ndarray, 2-D): full model solution for ozone flame
redSolution (numpy.ndarray, 2-D): reduced model solution for ozone flame

Returns:
o3_fig (matplotlib.figure.Figure): mass fraction O3 versus time plot

"""

o3_fig = matplotlib.pyplot.figure()
matplotlib.pyplot.plot(fullSolution[:, 0], fullSolution[:, 4], ’b-’)
matplotlib.pyplot.plot(redSolution[:, 0], redSolution[:, 4], ’r--’)
matplotlib.pyplot.ticklabel_format(axis=’both’, scilimits=(-2,3))
matplotlib.pyplot.xlabel(’Time [s]’)
matplotlib.pyplot.ylabel(’Mass Fraction O3 [a.u.]’)
matplotlib.pyplot.title(’Cantera simulation: Mass Fraction O3 profile’)
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matplotlib.pyplot.legend( (’Original model’, ’Reduced model’), loc=’best’)

return o3_fig

def plot_projector_rep(fullSolution, redSolution, orthoBasis, origin):
"""
Purpose:
Make phase plot that compares the full and reduced model solutions using
the projector representation.

Arguments:
fullSolution (numpy.ndarray, 2-D): full model solution for ozone flame
redSolution (numpy.ndarray, 2-D): reduced model solution for ozone flame
orthoBasis (numpy.ndarray, 2-D, where orthoBasis.shape[0] ==

orthoBasis.shape[1] == (fullSolution.shape[1] - 1)):
orthonormal basis such that its first two columns correspond to the
range of the projector, and its last two columns correspond to the
nullspace of the projector

origin (numpy.ndarray, 1-D, where origin.shape[0] ==
fullSolution.shape[1]):

origin of projection-based reduced model (transposed, for convenience)

Returns:
proj_rep_fig (matplotlib.figure.Figure): phase plot (O_2, O_3, O)

comparing solutions of full model and projector representation of
reduced model

"""
# Phase plot of the solutions of the full and reduced models
proj_rep_fig = matplotlib.pyplot.figure()
axes = proj_rep_fig.gca(projection=’3d’)
axes.plot(fullSolution[:,3], fullSolution[:,4], fullSolution[:,2], ’b--’)
axes.plot(redSolution[:,3], redSolution[:,4], redSolution[:,2], ’r-’)

# Set up the grid of (x,y) points for a plane to guide the eye
n_pts = 20
x = numpy.linspace(0, 1, n_pts)
y = numpy.linspace(0, .5, n_pts)
X, Y = numpy.meshgrid(x, y)

# Set up the color of the plane
plane_color = ’orange’
plane_face_colors = numpy.empty(X.shape, dtype=’|S’+str(len(plane_color)))
plane_face_colors.fill(plane_color)

# Since the plots permute the order of the solution matrix entries,
# the basis entries and origin entries must also be permuted in a
# consistent manner
axis_permutation = [2, 3, 1]
plane_origin = origin[axis_permutation]

# The basis_index column of orthoBasis corresponds to the important
# "lumping" direction. This column is used to determine the normal
# vector of the plane in this figure that guides the eye.

144



basis_index = 1
normal = numpy.asarray([0,

-orthoBasis[3, basis_index]/orthoBasis[1, basis_index],
0,
1])

normal = normal[axis_permutation]
normal = normal / numpy.linalg.norm(normal, 2)

# Once the origin of the plane and the normal of the plane are determined,
# the z coordinates of the plane are determined using analytic geometry.
Z = plane_origin [2] - (normal[0] * (X - plane_origin[0]) +

normal[1] * (Y - plane_origin[1])) / normal[2]

# Plot the (x,y,z) coordinates of the plane that guides the eye
plane = axes.plot_surface(X, Y, Z, facecolors=plane_face_colors,

shade=0, alpha=.4)
plane.set_edgecolors(’none’)

# Add legend, axis labels, title, etc.
axes.set_title(’Projector Representation: Ozone’)
axes.legend( (’Original model’, ’Reduced model’), loc=’best’)
axes.set_xlabel(r’Mass Frac O$_2$’)
axes.set_xlim(0, 1)
axes.set_ylabel(r’Mass Frac O$_3$’)
axes.set_ylim(0, 1)
axes.set_zlabel(r’Mass Frac O’)
axes.set_zlim(0, .025)
#axes.view_init(elev=-69, azim=42)
axes.grid()

return proj_rep_fig

def plot_lumped_rep(fullSolution, redSolution, origLumpedSoln,
redLumpedSoln, origin_index):

"""
Purpose:
Make phase plot that compares the full and reduced model solutions using
the lumped representation.

Arguments:
fullSolution (numpy.ndarray, 2-D): full model solution for ozone flame
redSolution (numpy.ndarray, 2-D): reduced model solution for ozone flame
origLumpedSoln (numpy.ndarray, 2-D): lumped full model solution for ozone

flame
redLumpedSoln (numpy.ndarray, 2-D): lumped reduced model solution for ozone

flame
origin_index (float): value of first index of fullSolution[:,:]

corresponding to the origin of the reduced model

Returns:
lumped_rep_fig (matplotlib.figure.Figure): phase plot comparing solutions

of lumped full model and lumped representation of reduced model
"""
lumped_rep_fig = matplotlib.pyplot.figure()
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axes = lumped_rep_fig.gca(projection=’3d’)

# Reminder:
# In the MATLAB script, the first column of V corresponds to the "lump",
# and the second column corresponds to temperature. In this Python script,
# the first column corresponds to temperature, and the second corresponds
# to the "lump".

# Note: Time zero now corresponds to origin for both solutions in this plot
axes.plot(origLumpedSoln[origin_index:,2],

origLumpedSoln[origin_index:,0] - origLumpedSoln[origin_index,0],
fullSolution[origin_index:,2],
’b--’)

axes.plot(redLumpedSoln[:,2],
redLumpedSoln[:,0] - redLumpedSoln[0,0],
redSolution[:,2],
’r-’)

axes.set_title(’Lumped Representation: Ozone’)
axes.legend( (’Original Model’, ’Reduced Model’), loc=’best’)
axes.set_xlabel(r’$\alpha \cdot$ Mass Frac O ’ +

r’$+ \beta \cdot$ Mass Frac O$_2$ ’+
r’$+ \gamma \cdot$ Mass Frac O$_3$’)

axes.set_ylabel(’Time [s]’)
axes.set_zlabel(’Mass Frac O’)
#axes.view_init(elev=-160, azim=22)
axes.grid()

return lumped_rep_fig

def plot_invariant_rep(fullSolution, redSolution, origin_index):
"""
Purpose:
Make phase plot that compares the full and reduced model solutions using
the invariant representation.

Arguments:
fullSolution (numpy.ndarray, 2-D): full model solution for ozone flame
redSolution (numpy.ndarray, 2-D): reduced model solution for ozone flame
origin_index (float): value of first index fullSolution[:,:]

corresponding to the origin of the reduced model

Returns:
invariant_rep_fig (matplotlib.figure.Figure): phase plot comparing

solutions of invariant representations of full and reduced models
"""
invariant_rep_fig = matplotlib.pyplot.figure()
axes = invariant_rep_fig.gca(projection=’3d’)
# Note: Time zero now corresponds to origin for both solutions in this plot
axes.plot(fullSolution[origin_index:,4],

fullSolution[origin_index:,0] - fullSolution[origin_index, 0],
fullSolution[origin_index:,2],
’b--’)

axes.plot(redSolution[:,4],
redSolution[:,0] - redSolution[0,0],
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redSolution[:,2],
’r-’)

axes.set_title(’Invariant Representation: Ozone’)
axes.legend( (’Original Model’, ’Reduced Model’), loc=’best’)
axes.set_xlabel(r’Mass Frac O$_3$’)
axes.set_ylabel(r’Time [s]’)
axes.set_zlabel(r’Mass Frac O’)
#axes.view_init(elev=11, azim=10)
axes.grid()

return invariant_rep_fig

# Main program:

(fullSolution,
redSolution,
origLumpedSoln,
redLumpedSoln,
rednData,
origin_index, orthoBasis) = CalculateFullRedAndLumpedSolns()

temp_fig = plot_temp(fullSolution, redSolution)
o_fig = plot_o(fullSolution, redSolution)
o2_fig = plot_o2(fullSolution, redSolution)
o3_fig = plot_o3(fullSolution, redSolution)
proj_rep_fig = plot_projector_rep(fullSolution, redSolution, orthoBasis,

rednData[’origin’])
lumped_rep_fig = plot_lumped_rep(fullSolution, redSolution, origLumpedSoln,

redLumpedSoln, origin_index)
invariant_rep_fig = plot_invariant_rep(fullSolution, redSolution,

origin_index)

matplotlib.pyplot.show()

The second Python 2.7.3 implementation requires, in addition to the depen-

dencies of the first implementation, PyDASSL 0.0.1 [4], and Assimulo 2.2 [3]. This

example implements multiple numerical integrators in order to validate the nu-

merical results.

#!/usr/bin/env python
# -*- coding: latin-1 -*-

# Dependencies:
# numpy (used version 1.7.0-dev)
# scipy (used version 0.11-dev)
# pydas (used version 0.1.0)
# Assimulo (used trunk version after version 2.1.1, version 2.1.2-dev?)
# Cantera (used version 2.0b4)
# matplotlib (used version 1.1.0)

import numpy
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import scipy.linalg
import scipy.integrate
import pydas
import assimulo.problem
import assimulo.solvers
import Cantera
import matplotlib.pyplot
import mpl_toolkits.mplot3d
import copy

def adiabaticIsobaricBatch(t, y, data):
"""
Purpose:
Calculates the right-hand side of ODEs governing an adiabatic-
isobaric batch reactor. Carries out the calculation for full system, such
that it only returns the time derivatives.

Arguments:
t (float): time [s]
y (numpy.ndarray, 1-D; or list, 1-D): (row) vector of state variables;

temperature first, followed by species mass fractions
data (dict): emulates C-style (or MATLAB-style) struct with following fields:

data[’gas’] (Cantera.Solution): object containing chemistry and gas
physical properties

Returns:
ydot (numpy.ndarray, 1-D): (row) vector of time derivatives of state

variables; must have same shape as y

"""

# Set gas thermodynamic properties; mass fractions must NOT be normalized
# so that finite-difference Jacobian matrix calculated accurately
data[’gas’].setTemperature(y[0])
data[’gas’].setPressure(Cantera.OneAtm)
data[’gas’].setMassFractions(y[1:], norm=0)

# Preallocate time derivative vector
ydot = numpy.zeros(numpy.asarray(y).shape)

# Precalculate reciprocal density and net molar production rates for reuse
one_over_rho = 1.0 / data[’gas’].density()
wdot = data[’gas’].netProductionRates()

# Calculate time derivatives
ydot[0] = - y[0] * Cantera.GasConstant * \

numpy.dot(data[’gas’].enthalpies_RT(),wdot) * one_over_rho / \
data[’gas’].cp_mass()

# multiplication of numpy arrays = elementwise multiply of the two arrays, like the .* operator in MATLAB
ydot[1:] = wdot * data[’gas’].molarMasses() * one_over_rho
return ydot

def redAdiabaticIsobaricBatch(t, y, data):
"""
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Purpose:
Calculates the right-hand side of ODEs governing an adiabatic-
isobaric batch reactor. Carries out the calculation for full system, such
that it only returns the time derivatives.

Arguments:
t (float): time [s]
y (numpy.ndarray, 1-D; or list, 1-D): (row) vector of state variables;

temperature first, followed by species mass fractions
data (dict): emulates C-style (or MATLAB-style) struct with following fields:

data[’gas’] (Cantera.Solution): object containing chemistry and gas
physical properties

data[’P’] (numpy.ndarray, 2-D, square; or numpy.mat, square;
list, 2-D): projection matrix; must be

conformal for premultiplying numpy.mat(y).transpose()

Returns:
ydot (numpy.ndarray, 1-D): (row) vector of time derivatives of state

variables; must have same shape as y

"""
ydot = adiabaticIsobaricBatch(t, y, data)

return numpy.dot(data[’P’], ydot)

def fullSoln(problemData):
return fullSoln_cvode(problemData)

def redSoln(problemData, rednData):
return redSoln_cvode(problemData, rednData)

def fullSoln_dvode(problemData):
"""
Purpose:
Solves adiabatic-isobaric batch reactor problem using the scipy.integrate
interface to DVODE. Note: DVODE is a variable-order, variable step-size
BDF method.

Arguments:
problemData (dict): emulates C-style (or MATLAB-style) struct with

following fields:
problemData[’gas’] (Cantera.Solution): object containing chemistry

and gas physical properties
problemData[’initCond’] (numpy.ndarray, 1-D; or list, 1-D): (row)

vector of state variables
problemData[’timePts’] (numpy.ndarray, 1-D; or list, 1-D): times

at which the solution should be calculated; first time point
corresponds to initial conditions!

problemData[’absTol’] (float; or numpy.ndarray, 1-D, same shape
as problemData[’initCond’]; or list, 1-D, same shape as
problemData[’initCond’]): vector of absolute tolerances

for DVODE.
problemData[’relTol’] (float): scalar relative tolerance for

for DVODE.
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Returns:
solution (numpy.ndarray, 2-D, numpy.ndarray.shape[0] ==

len(problemData[’timePts’]), numpy.ndarray.shape[1] ==
(len(problemData[’initCond’]) + 1)): Solution of problem;

each time point is a row, each state variable is a column.

"""

# Set up the integrator
dvode = scipy.integrate.ode(adiabaticIsobaricBatch)
dvode.set_integrator(’vode’,

method=’bdf’,
with_jacobian=True,
atol=problemData[’absTol’],
rtol=problemData[’relTol’],
first_step=1e-9,
nsteps=1e7)

dvode.set_initial_value(problemData[’initCond’], 0)
dvode.set_f_params(problemData)

# Carry out the main integration loop
solution = numpy.hstack((0, numpy.asarray(problemData[’initCond’],

)))
for t in problemData[’timePts’][1:]:

if not dvode.successful():
raise ArithmeticError(’DVODE step unsuccessful!’)

dvode.integrate(t)
solution = numpy.vstack((solution, numpy.hstack((dvode.t, dvode.y))))

return solution

def redSoln_dvode(problemData, rednData):
"""
Purpose:
Solves the reduced adiabatic-isobaric batch reactor problem using the
scipy.integrate interface to DVODE. Note: DVODE is a variable-order,
variable step-size BDF method.

Arguments:
problemData (dict): emulates C-style (or MATLAB-style) struct with

following fields:
problemData[’gas’] (Cantera.Solution): object containing chemistry

and gas physical properties
problemData[’initCond’] (numpy.ndarray, 1-D; or list, 1-D): (row)

vector of state variables
problemData[’timePts’] (numpy.ndarray, 1-D; or list, 1-D): times

at which the solution should be calculated; first time point
corresponds to initial conditions!

problemData[’absTol’] (float; or numpy.ndarray, 1-D, same shape
as problemData[’initCond’]; or list, 1-D, same shape as
problemData[’initCond’]): vector of absolute tolerances

for DVODE.
problemData[’relTol’] (float): scalar relative tolerance for
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for DVODE.
rednData (dict): emulates C-style (or MATLAB-style) struct with following

fields:
rednData[’P’] (numpy.ndarray, 2-D; or numpy.mat, 2-D; or list, 2-D):

projection matrix used for na\"{i}ve projection-based model reduction
rednData[’origin’] (numpy.ndarray, 1-D, len(rednData[’origin’]) ==

len(problemData[’initCond’]); or list, 1-D,
len(rednData[’origin’]) == len(problemData[’initCond’])):

origin of reduced model

Returns:
solution (numpy.ndarray, 2-D, numpy.ndarray.shape[0] ==

len(problemData[’timePts’]), numpy.ndarray.shape[1] ==
(len(problemData[’initCond’]) + 1)): Solution of problem;

each time point is a row, each state variable is a column.

"""

# Rebind object passed through rednData to problemData; this
# object isn’t modified within this function call scope (and below),
# but if the script ever changes such that this statement is no longer
# true, expect errors.
problemData[’P’] = rednData[’P’]

# Calculate initial conditions for reduced model based on initial
# conditions for full model. Remember that 1-D numpy.ndarrays can be
# treated as row or column vectors (depending on context).
redInitCond = numpy.dot(problemData[’P’],

numpy.asarray(problemData[’initCond’]) -
numpy.asarray(rednData[’origin’])) + \
numpy.asarray(rednData[’origin’])

# Set up the integrator
dvode = scipy.integrate.ode(redAdiabaticIsobaricBatch)
dvode.set_integrator(’vode’,

method=’bdf’,
with_jacobian=True,
atol=problemData[’absTol’],
rtol=problemData[’relTol’],
first_step=1e-9,
nsteps=1e7)

dvode.set_initial_value(redInitCond, 0)
dvode.set_f_params(problemData)

# Carry out the main integration loop

solution = numpy.hstack((0, redInitCond))
for t in problemData[’timePts’][1:]:

if not dvode.successful():
raise ArithmeticError(’DVODE step unsuccessful!’)

dvode.integrate(t)
solution = numpy.vstack((solution, numpy.hstack((dvode.t, dvode.y))))

return solution
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def fullSoln_dassl(problemData):
"""
Purpose:
Solves adiabatic-isobaric batch reactor problem using the pydas
interface to DASSL. Note: DASSL is a variable-order, variable step-size
BDF method.

Arguments:
problemData (dict): emulates C-style (or MATLAB-style) struct with

following fields:
problemData[’gas’] (Cantera.Solution): object containing chemistry

and gas physical properties
problemData[’initCond’] (numpy.ndarray, 1-D; or list, 1-D): (row)

vector of state variables
problemData[’timePts’] (numpy.ndarray, 1-D; or list, 1-D): times

at which the solution should be calculated; first time point
corresponds to initial conditions!

problemData[’absTol’] (float; or numpy.ndarray, 1-D, same shape
as problemData[’initCond’]; or list, 1-D, same shape as
problemData[’initCond’]): vector of absolute tolerances

for DASSL.
problemData[’relTol’] (float): scalar relative tolerance for

for DASSL.

Returns:
solution (numpy.ndarray, 2-D, numpy.ndarray.shape[0] ==

len(problemData[’timePts’]), numpy.ndarray.shape[1] ==
(len(problemData[’initCond’]) + 1)): Solution of problem;

each time point is a row, each state variable is a column.

"""

# Define the residual and optional Jacobian matrix
class Problem(pydas.DASSL):

def residual(self, t, y, dydt):
res = numpy.asarray(dydt) - \

adiabaticIsobaricBatch(t,y,problemData)
return res, 0

# Set up the integrator
dassl = Problem()
dassl.initialize(0, problemData[’initCond’],

adiabaticIsobaricBatch(0, problemData[’initCond’], problemData),
atol=problemData[’absTol’], rtol=problemData[’relTol’])

# Carry out the main integration loop
solution = numpy.hstack((0, numpy.asarray(problemData[’initCond’],

)))
t_max = problemData[’timePts’][-1]
#while dassl.t < t_max:
# dassl.step(t_max)
# solution = numpy.vstack((solution, numpy.hstack((dassl.t, dassl.y))))
for t in problemData[’timePts’][1:]:
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dassl.advance(t)
solution = numpy.vstack((solution, numpy.hstack((dassl.t, dassl.y))))

return solution

def redSoln_dassl(problemData, rednData):
"""
Purpose:
Solves the reduced adiabatic-isobaric batch reactor problem using the
pydas interface to DASSL. Note: DASSL is a variable-order, variable
step-size BDF method.

Arguments:
problemData (dict): emulates C-style (or MATLAB-style) struct with

following fields:
problemData[’gas’] (Cantera.Solution): object containing chemistry

and gas physical properties
problemData[’initCond’] (numpy.ndarray, 1-D; or list, 1-D): (row)

vector of state variables
problemData[’timePts’] (numpy.ndarray, 1-D; or list, 1-D): times

at which the solution should be calculated; first time point
corresponds to initial conditions!

problemData[’absTol’] (float; or numpy.ndarray, 1-D, same shape
as problemData[’initCond’]; or list, 1-D, same shape as
problemData[’initCond’]): vector of absolute tolerances

for DASSL.
problemData[’relTol’] (float): scalar relative tolerance for

for DASSL.
rednData (dict): emulates C-style (or MATLAB-style) struct with following

fields:
rednData[’P’] (numpy.ndarray, 2-D; or numpy.mat, 2-D; or list, 2-D):

projection matrix used for na\"{i}ve projection-based model reduction
rednData[’origin’] (numpy.ndarray, 1-D, len(rednData[’origin’]) ==

len(problemData[’initCond’]); or list, 1-D,
len(rednData[’origin’]) == len(problemData[’initCond’])):

origin of reduced model

Returns:
solution (numpy.ndarray, 2-D, numpy.ndarray.shape[0] ==

len(problemData[’timePts’]), numpy.ndarray.shape[1] ==
(len(problemData[’initCond’]) + 1)): Solution of problem;

each time point is a row, each state variable is a column.

"""

# Rebind object passed through rednData to problemData; this
# object isn’t modified within this function call scope (and below),
# but if the script ever changes such that this statement is no longer
# true, expect errors.
problemData[’P’] = rednData[’P’]

# Calculate initial conditions for reduced model based on initial
# conditions for full model. Remember that 1-D numpy.ndarrays can be
# treated as row or column vectors (depending on context).
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redInitCond = numpy.dot(problemData[’P’],
numpy.asarray(problemData[’initCond’]) -
numpy.asarray(rednData[’origin’])) + \
numpy.asarray(rednData[’origin’])

# Define the residual and optional Jacobian matrix
class Problem(pydas.DASSL):

def residual(self, t, y, dydt):
res = numpy.asarray(dydt) - \

redAdiabaticIsobaricBatch(t,y,problemData)
return res, 0

# Set up the integrator
dassl = Problem()
dassl.initialize(0, redInitCond,

redAdiabaticIsobaricBatch(0, redInitCond, problemData),
atol=problemData[’absTol’], rtol=problemData[’relTol’])

# Carry out the main integration loop
solution = numpy.hstack((0, redInitCond))
t_max = problemData[’timePts’][-1]
#while dassl.t < t_max:
# dassl.step(t_max)
# solution = numpy.vstack((solution, numpy.hstack((dassl.t, dassl.y))))
for t in problemData[’timePts’][1:]:

dassl.advance(t)
solution = numpy.vstack((solution, numpy.hstack((dassl.t, dassl.y))))

return solution

def fullSoln_cvode(problemData):
"""
Purpose:
Solves adiabatic-isobaric batch reactor problem using the Assimulo
interface to CVODE. Note: CVODE is a variable-order, variable
step-size BDF method.

Arguments:
problemData (dict): emulates C-style (or MATLAB-style) struct with

following fields:
problemData[’gas’] (Cantera.Solution): object containing chemistry

and gas physical properties
problemData[’initCond’] (numpy.ndarray, 1-D; or list, 1-D): (row)

vector of state variables
problemData[’timePts’] (numpy.ndarray, 1-D; or list, 1-D): times

at which the solution should be calculated; first time point
corresponds to initial conditions!

problemData[’absTol’] (float; or numpy.ndarray, 1-D, same shape
as problemData[’initCond’]; or list, 1-D, same shape as
problemData[’initCond’]): vector of absolute tolerances

for CVODE.
problemData[’relTol’] (float): scalar relative tolerance for

for CVODE.
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Returns:
solution (numpy.ndarray, 2-D, numpy.ndarray.shape[0] ==

len(problemData[’timePts’]), numpy.ndarray.shape[1] ==
(len(problemData[’initCond’]) + 1)): Solution of problem;

each time point is a row, each state variable is a column.

"""

# Define right-hand side that incorporates problemData because Assimulo
# assumes parameters are floats (or numpy.ndarray of floats)
def rhs(t, y):

ydot = adiabaticIsobaricBatch(t,y,problemData)
return ydot

# Set up the integrator
batchProblem = assimulo.problem.Explicit_Problem(rhs,

problemData[’initCond’],
0)

cvode = assimulo.solvers.CVode(batchProblem)
cvode.atol = problemData[’absTol’]
cvode.rtol = problemData[’relTol’]
cvode.maxsteps = 10000000
cvode.inith = 1e-9
cvode.discr = ’BDF’
cvode.iter = ’Newton’

# Carry out the main integration loop
t_max = problemData[’timePts’][-1]
n_pts = len(problemData[’timePts’])
cvode_t, cvode_y = cvode.simulate(t_max, n_pts)
solution = numpy.hstack((

numpy.asarray([cvode_t]).transpose(),
numpy.asarray(cvode_y)))

return solution

def redSoln_cvode(problemData, rednData):
"""
Purpose:
Solves the reduced adiabatic-isobaric batch reactor problem using the
Assimulo interface to CVODE. Note: CVODE is a variable-order, variable
step-size BDF method.

Arguments:
problemData (dict): emulates C-style (or MATLAB-style) struct with

following fields:
problemData[’gas’] (Cantera.Solution): object containing chemistry

and gas physical properties
problemData[’initCond’] (numpy.ndarray, 1-D; or list, 1-D): (row)

vector of state variables
problemData[’timePts’] (numpy.ndarray, 1-D; or list, 1-D): times

at which the solution should be calculated; first time point
corresponds to initial conditions!

problemData[’absTol’] (float; or numpy.ndarray, 1-D, same shape
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as problemData[’initCond’]; or list, 1-D, same shape as
problemData[’initCond’]): vector of absolute tolerances

for CVODE.
problemData[’relTol’] (float): scalar relative tolerance for

for CVODE.
rednData (dict): emulates C-style (or MATLAB-style) struct with following

fields:
rednData[’P’] (numpy.ndarray, 2-D; or numpy.mat, 2-D; or list, 2-D):

projection matrix used for na\"{i}ve projection-based model reduction
rednData[’origin’] (numpy.ndarray, 1-D, len(rednData[’origin’]) ==

len(problemData[’initCond’]); or list, 1-D,
len(rednData[’origin’]) == len(problemData[’initCond’])):

origin of reduced model

Returns:
solution (numpy.ndarray, 2-D, numpy.ndarray.shape[0] ==

len(problemData[’timePts’]), numpy.ndarray.shape[1] ==
(len(problemData[’initCond’]) + 1)): Solution of problem;

each time point is a row, each state variable is a column.

"""

# Rebind object passed through rednData to problemData; this
# object isn’t modified within this function call scope (and below),
# but if the script ever changes such that this statement is no longer
# true, expect errors.
problemData[’P’] = rednData[’P’]

# Calculate initial conditions for reduced model based on initial
# conditions for full model. Remember that 1-D numpy.ndarrays can be
# treated as row or column vectors (depending on context).
redInitCond = numpy.dot(problemData[’P’],

numpy.asarray(problemData[’initCond’]) -
numpy.asarray(rednData[’origin’])) + \
numpy.asarray(rednData[’origin’])

# Define right-hand side that incorporates problemData because Assimulo
# assumes parameters are floats (or numpy.ndarray of floats)
def rhs(t, y):

ydot = redAdiabaticIsobaricBatch(t,y,problemData)
return ydot

# Set up the integrator
batchProblem = assimulo.problem.Explicit_Problem(rhs,

problemData[’initCond’],
0)

cvode = assimulo.solvers.CVode(batchProblem)
cvode.atol = problemData[’absTol’]
cvode.rtol = problemData[’relTol’]
cvode.maxsteps = 10000000
cvode.inith = 1e-9
cvode.discr = ’BDF’
cvode.iter = ’Newton’
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# Carry out the main integration loop
t_max = problemData[’timePts’][-1]
n_pts = len(problemData[’timePts’])
cvode_t, cvode_y = cvode.simulate(t_max, n_pts)
solution = numpy.hstack(

(numpy.asarray([cvode_t]).transpose(),
numpy.asarray(cvode_y)))

return solution

def fullSoln_radau5(problemData):
"""
Purpose:
Solves adiabatic-isobaric batch reactor problem using the Assimulo
interface to RADAU5. Note: RADAU5 is a fifth-order, three-stage
implicit Runge-Kutta method based on Radau IIA quadrature, with
variable step-size control.

Arguments:
problemData (dict): emulates C-style (or MATLAB-style) struct with

following fields:
problemData[’gas’] (Cantera.Solution): object containing chemistry

and gas physical properties
problemData[’initCond’] (numpy.ndarray, 1-D; or list, 1-D): (row)

vector of state variables
problemData[’timePts’] (numpy.ndarray, 1-D; or list, 1-D): times

at which the solution should be calculated; first time point
corresponds to initial conditions!

problemData[’absTol’] (float; or numpy.ndarray, 1-D, same shape
as problemData[’initCond’]; or list, 1-D, same shape as
problemData[’initCond’]): vector of absolute tolerances

for RADAU5.
problemData[’relTol’] (float): scalar relative tolerance for

for RADAU5.

Returns:
solution (numpy.ndarray, 2-D, numpy.ndarray.shape[0] ==

len(problemData[’timePts’]), numpy.ndarray.shape[1] ==
(len(problemData[’initCond’]) + 1)): Solution of problem;

each time point is a row, each state variable is a column.

"""

# Define right-hand side that incorporates problemData because Assimulo
# assumes parameters are floats (or numpy.ndarray of floats)
def rhs(t, y):

ydot = adiabaticIsobaricBatch(t,y,problemData)
return ydot

# Set up the integrator
batchProblem = assimulo.problem.Explicit_Problem(rhs,

problemData[’initCond’],
0)

radau5 = assimulo.solvers.Radau5ODE(batchProblem)
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radau5.atol = problemData[’absTol’]
radau5.rtol = problemData[’relTol’]
radau5.maxsteps = 10000000
radau5.inith = 1e-9
radau5.discr = ’BDF’
radau5.iter = ’Newton’

# Carry out the main integration loop
t_max = problemData[’timePts’][-1]
n_pts = len(problemData[’timePts’])
radau5_t, radau5_y = radau5.simulate(t_max, n_pts)
solution = numpy.hstack((

numpy.asarray([radau5_t]).transpose(),
numpy.asarray(radau5_y)))

return solution

def redSoln_radau5(problemData, rednData):
"""
Purpose:
Solves the reduced adiabatic-isobaric batch reactor problem using the
Assimulo interface to RADAU5. Note: RADAU5 is a fifth-order,
three-stage implicit Runge-Kutta method based on Radau IIA quadrature,
with variable step-size control.

Arguments:
problemData (dict): emulates C-style (or MATLAB-style) struct with

following fields:
problemData[’gas’] (Cantera.Solution): object containing chemistry

and gas physical properties
problemData[’initCond’] (numpy.ndarray, 1-D; or list, 1-D): (row)

vector of state variables
problemData[’timePts’] (numpy.ndarray, 1-D; or list, 1-D): times

at which the solution should be calculated; first time point
corresponds to initial conditions!

problemData[’absTol’] (float; or numpy.ndarray, 1-D, same shape
as problemData[’initCond’]; or list, 1-D, same shape as
problemData[’initCond’]): vector of absolute tolerances

for RADAU5.
problemData[’relTol’] (float): scalar relative tolerance for

for RADAU5.
rednData (dict): emulates C-style (or MATLAB-style) struct with following

fields:
rednData[’P’] (numpy.ndarray, 2-D; or numpy.mat, 2-D; or list, 2-D):

projection matrix used for na\"{i}ve projection-based model reduction
rednData[’origin’] (numpy.ndarray, 1-D, len(rednData[’origin’]) ==

len(problemData[’initCond’]); or list, 1-D,
len(rednData[’origin’]) == len(problemData[’initCond’])):

origin of reduced model

Returns:
solution (numpy.ndarray, 2-D, numpy.ndarray.shape[0] ==

len(problemData[’timePts’]), numpy.ndarray.shape[1] ==
(len(problemData[’initCond’]) + 1)): Solution of problem;
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each time point is a row, each state variable is a column.

"""

# Rebind object passed through rednData to problemData; this
# object isn’t modified within this function call scope (and below),
# but if the script ever changes such that this statement is no longer
# true, expect errors.
problemData[’P’] = rednData[’P’]

# Calculate initial conditions for reduced model based on initial
# conditions for full model. Remember that 1-D numpy.ndarrays can be
# treated as row or column vectors (depending on context).
redInitCond = numpy.dot(problemData[’P’],

numpy.asarray(problemData[’initCond’]) -
numpy.asarray(rednData[’origin’])) + \
numpy.asarray(rednData[’origin’])

# Define right-hand side that incorporates problemData because Assimulo
# assumes parameters are floats (or numpy.ndarray of floats)
def rhs(t, y):

ydot = redAdiabaticIsobaricBatch(t,y,problemData)
return ydot

# Set up the integrator
batchProblem = assimulo.problem.Explicit_Problem(rhs,

problemData[’initCond’],
0)

radau5 = assimulo.solvers.Radau5ODE(batchProblem)
radau5.atol = problemData[’absTol’]
radau5.rtol = problemData[’relTol’]
radau5.maxsteps = 10000000
radau5.inith = 1e-9
radau5.discr = ’BDF’
radau5.iter = ’Newton’

# Carry out the main integration loop
t_max = problemData[’timePts’][-1]
n_pts = len(problemData[’timePts’])
radau5_t, radau5_y = radau5.simulate(t_max, n_pts)
solution = numpy.hstack(

(numpy.asarray([radau5_t]).transpose(),
numpy.asarray(radau5_y)))

return solution

def fullSoln_rodas(problemData):
"""
Purpose:
Solves adiabatic-isobaric batch reactor problem using the Assimulo
interface to RODAS. Note: RODAS is a third-order Rosenbrock method
(diagonally implicit Runge-Kutta) with variable step-size control.

Arguments:
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problemData (dict): emulates C-style (or MATLAB-style) struct with
following fields:

problemData[’gas’] (Cantera.Solution): object containing chemistry
and gas physical properties

problemData[’initCond’] (numpy.ndarray, 1-D; or list, 1-D): (row)
vector of state variables

problemData[’timePts’] (numpy.ndarray, 1-D; or list, 1-D): times
at which the solution should be calculated; first time point
corresponds to initial conditions!

problemData[’absTol’] (float; or numpy.ndarray, 1-D, same shape
as problemData[’initCond’]; or list, 1-D, same shape as
problemData[’initCond’]): vector of absolute tolerances

for RODAS.
problemData[’relTol’] (float): scalar relative tolerance for

for RODAS.

Returns:
solution (numpy.ndarray, 2-D, numpy.ndarray.shape[0] ==

len(problemData[’timePts’]), numpy.ndarray.shape[1] ==
(len(problemData[’initCond’]) + 1)): Solution of problem;

each time point is a row, each state variable is a column.

"""

# Define right-hand side that incorporates problemData because Assimulo
# assumes parameters are floats (or numpy.ndarray of floats)
def rhs(t, y):

ydot = adiabaticIsobaricBatch(t,y,problemData)
return ydot

# Set up the integrator
batchProblem = assimulo.problem.Explicit_Problem(rhs,

problemData[’initCond’],
0)

rodas = assimulo.solvers.RodasODE(batchProblem)
rodas.atol = problemData[’absTol’]
rodas.rtol = problemData[’relTol’]
rodas.maxsteps = 10000000
rodas.inith = 1e-9
rodas.discr = ’BDF’
rodas.iter = ’Newton’

# Carry out the main integration loop
t_max = problemData[’timePts’][-1]
n_pts = len(problemData[’timePts’])
rodas_t, rodas_y = rodas.simulate(t_max, n_pts)
solution = numpy.hstack((

numpy.asarray([rodas_t]).transpose(),
numpy.asarray(rodas_y)))

return solution

def redSoln_rodas(problemData, rednData):
"""

160



Purpose:
Solves the reduced adiabatic-isobaric batch reactor problem using the
Assimulo interface to RODAS. Note: RODAS is a third-order Rosenbrock
method (diagonally implicit Runge-Kutta) with variable step-size control.

Arguments:
problemData (dict): emulates C-style (or MATLAB-style) struct with

following fields:
problemData[’gas’] (Cantera.Solution): object containing chemistry

and gas physical properties
problemData[’initCond’] (numpy.ndarray, 1-D; or list, 1-D): (row)

vector of state variables
problemData[’timePts’] (numpy.ndarray, 1-D; or list, 1-D): times

at which the solution should be calculated; first time point
corresponds to initial conditions!

problemData[’absTol’] (float; or numpy.ndarray, 1-D, same shape
as problemData[’initCond’]; or list, 1-D, same shape as
problemData[’initCond’]): vector of absolute tolerances

for RODAS.
problemData[’relTol’] (float): scalar relative tolerance for

for RODAS.
rednData (dict): emulates C-style (or MATLAB-style) struct with following

fields:
rednData[’P’] (numpy.ndarray, 2-D; or numpy.mat, 2-D; or list, 2-D):

projection matrix used for na\"{i}ve projection-based model reduction
rednData[’origin’] (numpy.ndarray, 1-D, len(rednData[’origin’]) ==

len(problemData[’initCond’]); or list, 1-D,
len(rednData[’origin’]) == len(problemData[’initCond’])):

origin of reduced model

Returns:
solution (numpy.ndarray, 2-D, numpy.ndarray.shape[0] ==

len(problemData[’timePts’]), numpy.ndarray.shape[1] ==
(len(problemData[’initCond’]) + 1)): Solution of problem;

each time point is a row, each state variable is a column.

"""

# Rebind object passed through rednData to problemData; this
# object isn’t modified within this function call scope (and below),
# but if the script ever changes such that this statement is no longer
# true, expect errors.
problemData[’P’] = rednData[’P’]

# Calculate initial conditions for reduced model based on initial
# conditions for full model. Remember that 1-D numpy.ndarrays can be
# treated as row or column vectors (depending on context).
redInitCond = numpy.dot(problemData[’P’],

numpy.asarray(problemData[’initCond’]) -
numpy.asarray(rednData[’origin’])) + \
numpy.asarray(rednData[’origin’])

# Define right-hand side that incorporates problemData because Assimulo
# assumes parameters are floats (or numpy.ndarray of floats)
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def rhs(t, y):
ydot = redAdiabaticIsobaricBatch(t,y,problemData)
return ydot

# Set up the integrator
batchProblem = assimulo.problem.Explicit_Problem(rhs,

problemData[’initCond’],
0)

rodas = assimulo.solvers.RodasODE(batchProblem)
rodas.atol = problemData[’absTol’]
rodas.rtol = problemData[’relTol’]
rodas.maxsteps = 10000000
rodas.inith = 1e-9
rodas.discr = ’BDF’
rodas.iter = ’Newton’

# Carry out the main integration loop
t_max = problemData[’timePts’][-1]
n_pts = len(problemData[’timePts’])
rodas_t, rodas_y = rodas.simulate(t_max, n_pts)
solution = numpy.hstack(

(numpy.asarray([rodas_t]).transpose(),
numpy.asarray(rodas_y)))

return solution

def calcRedModelParams(fullSolution, problemData):
"""
Purpose:
Calculate projector based on data from full model solution.

Arguments:
fullSolution (numpy.ndarray, 2-D; or list, 2-D): solution of full model
problemData (dict): emulates C-style (or MATLAB-style) struct with

following fields:
problemData[’gas’] (Cantera.Solution): object containing chemistry

and gas physical properties

Returns:
origin_index (int): time point index corresponding to origin data point
origin (numpy.ndarray, 1-D, where origin.shape[0] ==

fullSolution.shape[1]):
origin of projection-based reduced model (transposed, for convenience)

projector (numpy.ndarray, 2-D, where projector.shape[0] ==
projector.shape[1] == fullSolution.shape[1]): projection matrix

for projection-based model reduction.
W (numpy.ndarray, 2-D, where W.shape[0] == (fullSolution.shape[1] - 1)):

so-called "lumping matrix"; projection nullspace is perpendicular to
span of this matrix

orthoBasis (numpy.ndarray, 2-D, where orthoBasis.shape[0] ==
orthoBasis.shape[1] == (fullSolution.shape[1] - 1)):

orthonormal basis such that its first two columns correspond to the
range of the projector, and its last two columns correspond to the
nullspace of the projector.
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"""

# The philosophy here was to find a nice point in the full model solution
# to serve as the origin. The two basis vectors that span the range space
# were the unit vector [[1,0,0,0]].transpose(), which corresponds to the
# "temperature direction", and the tangent vector of the full model
# solution (i.e., the right-hand side of the full model ODE). These basis
# vectors are used to construct an orthogonal projector.
# IF YOU WANT TO MODIFY THE PROJECTOR, YOU MUST MODIFY THE INTERNALS OF
# THIS FUNCTION!

# The origin will be the point in the solution set calculated immediately
# before the first point in the solution set calculated that exceeds a
# cutoff temperature.
cutoff_temp = 2263 # Kelvin
origin_index = numpy.flatnonzero(fullSolution[:, 1] > cutoff_temp)[0] - 1
origin = fullSolution[origin_index, 1:]

# Reminder:
# In the MATLAB script, the first column of V corresponds to the "lump",
# and the second column corresponds to temperature. In this Python script,
# the first column corresponds to temperature, and the second corresponds
# to the "lump". In order to obtain the proper V matrix in Python, the 2
# input basis vectors must be specified in the reverse order of the 2
# input basis vectors specified in MATLAB.

# Having determined the origin, a basis must be constructed in order to
# calculate a projector. The first basis vector is going to be the
# right-hand side of the full model, evaluated at the origin. The second
# basis vector is going to be [[1,0,0,0]].transpose(). The basis matrix
# must consist of column vectors in order to carry out the necessary
# linear algebra.
first_range_vec = numpy.asarray([1, 0, 0, 0])
second_range_vec = adiabaticIsobaricBatch(0, origin, problemData)
basis = numpy.vstack((first_range_vec, second_range_vec)).transpose()

# An orthogonal projector is constructed from this basis by
# orthonormalizing it.
[orthoBasis, _] = scipy.linalg.qr(basis)
V = orthoBasis[:, 0:2]
W = copy.copy(V)
projector = numpy.dot(V, W.transpose())

return origin_index, origin, projector, W, orthoBasis

def lump_soln(soln, W, origin, origin_index):
"""
Purpose:
From a solution in the original state variables, calculate a "lumped"
or "Petrov-Galerkin projected" solution.

Arguments:
soln (numpy.ndarray, 2-D): Solution of adiabatic-isobaric batch reactor
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problem; each time point is a row, each state variable is a column.
W (numpy.ndarray, 2-D, where W.shape[0] == (soln.shape[1] - 1)):

so-called "lumping matrix"; projection nullspace is perpendicular to
span of this matrix

origin (numpy.ndarray, 1-D, where origin.shape[0] ==
fullSolution.shape[1]):

origin of projection-based reduced model (transposed, for convenience)
origin_index (int): time point index corresponding to origin data point

Returns:
lumped_soln (numpy.ndarray, 2-D, where lumped_soln.shape[0] ==

soln.shape[0] and lumped_soln.shape[1] == (W.shape[1] + 1)):
lumped version of soln

"""

# Calculate lumped model solution
#Copy time data points
# Since each data point is a row, instead of calculating
# Wˆ{T} * (y - y_{0}), calculate (y - y_{0})ˆ{T} * W.
lumped_soln = numpy.hstack((numpy.asarray([soln[:, 0]]).transpose(),

numpy.dot((soln[:, 1:] - numpy.tile(origin, (soln.shape[0], 1))), W)))

return lumped_soln

def setProblemData():
"""
Purpose:
Sets problem parameters.

Arguments:
None

Returns:
problemData (dict): emulates C-style (or MATLAB-style) struct with

following fields:
problemData[’gas’] (Cantera.Solution): object containing chemistry

and gas physical properties
problemData[’initCond’] (numpy.ndarray, 1-D; or list, 1-D): (row)

vector of state variables
problemData[’timePts’] (numpy.ndarray, 1-D; or list, 1-D): times

at which the solution should be calculated; first time point
corresponds to initial conditions!

problemData[’absTol’] (float; or numpy.ndarray, 1-D, same shape
as problemData[’initCond’]; or list, 1-D, same shape as
problemData[’initCond’]): vector of absolute tolerances

for DVODE.
problemData[’relTol’] (float): scalar relative tolerance for

for DVODE.

"""

# Set up problem parameters.
# IF YOU WANT TO CHANGE THE FULL MODEL SOLUTION (AND ALL THE OTHERS),
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# CHANGE THE PARAMETERS HERE!
problemData = {}
problemData[’gas’] = Cantera.IdealGasMix(’ozone.cti’)
initialTemperature = 1000
initialMoleFracString = ’O:0, O2:0.15, O3:0.85’
problemData[’gas’].set(T=initialTemperature,

P=Cantera.OneAtm,
Y=initialMoleFracString)

problemData[’timePts’] = numpy.linspace(0, 2e-5, 10000)

# From the problem parameters, repackage the data so that it can be
# passed to ODE solvers.
problemData[’initCond’] = numpy.hstack((

numpy.asarray(initialTemperature),
numpy.asarray(problemData[’gas’].massFractions())))

# Appropriate error tolerances for ODE solvers like DVODE, CVODE,
# RADAU5, and RODAS
#problemData[’absTol’] = 1e-15
#problemData[’relTol’] = 1e-12

# Appropriate error tolerances for DAE solvers like DASSL
problemData[’absTol’] = 1e-7
problemData[’relTol’] = 1e-7

return problemData

def CalculateFullRedAndLumpedSolns():
"""
Purpose:
Calculate three different solutions for an ozone flame:
- Full model solution
- Reduced model solution, reduced using projection-based model reduction
- Lumped model solution (or Petrov-Galerkin projection), derived from

reduced model solution.

The basic idea is to decouple the calculation of solutions from the
plotting of figures so that the functions in this file are of a
manageable size.

Arguments:
None.

Returns:
fullSolution (numpy.ndarray, 2-D): full model solution for ozone flame
redSolution (numpy.ndarray, 2-D): reduced model solution for ozone flame
origLumpedSoln (numpy.ndarray, 2-D): lumped version of full model solution
redLumpedSoln (numpy.ndarray, 2-D): lumped model solution for ozone flame
rednData (dict): emulates C-style (or MATLAB-style) struct with following

fields:
rednData[’P’] (numpy.ndarray, 2-D; or numpy.mat, 2-D; or list, 2-D):

projection matrix used for na\"{i}ve projection-based model reduction
rednData[’origin’] (numpy.ndarray, 1-D, len(rednData[’origin’]) ==

len(problemData[’initCond’]); or list, 1-D,
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len(rednData[’origin’]) == len(problemData[’initCond’])):
origin of reduced model

origin_index (int): time point index corresponding to origin data point
orthoBasis (numpy.ndarray, 2-D, where orthoBasis.shape[0] ==

orthoBasis.shape[1] == (fullSolution.shape[1] - 1)):
orthonormal basis such that its first two columns correspond to the
range of the projector, and its last two columns correspond to the
nullspace of the projector.

"""

#Set up problem data
problemData = setProblemData()

# Calculate full model solution
fullSolution = fullSoln(problemData)

# From the full model solution, calculate a projector.
# IF YOU WANT TO CHANGE THE LUMPED AND REDUCED MODEL SOLUTIONS,
# CHANGE THE INTERNALS OF calculateProjector
(origin_index,
origin,
projector,
W, orthoBasis) = calcRedModelParams(fullSolution, problemData)

# Calculate reduced model solution
# Rows are system states at a given time
# Columns are single state variables (or time)
redProblemData = setProblemData()
redProblemData[’initCond’] = origin
rednData = {’origin’: origin, ’P’: projector}
redSolution = redSoln(redProblemData, rednData)

# Calculate "lumping" (or Petrov-Galerkin projection) of original and
# reduced models
origLumpedSoln = lump_soln(fullSolution, W, origin, origin_index)
redLumpedSoln = lump_soln(redSolution, W, origin, origin_index)

# Correct for the time discrepancy of the full and reduced models
redSolution[:,0] += fullSolution[origin_index, 0]
redLumpedSoln[:,0] += fullSolution[origin_index, 0]

return (fullSolution, redSolution, origLumpedSoln, redLumpedSoln,
rednData, origin_index, orthoBasis)

def plot_temp(fullSolution, redSolution):
"""
Purpose:
Make temperature versus time plots that compare the full and
reduced model solutions.

Arguments:
fullSolution (numpy.ndarray, 2-D): full model solution for ozone flame
redSolution (numpy.ndarray, 2-D): reduced model solution for ozone flame
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Returns:
temp_fig (matplotlib.figure.Figure): temperature versus time plot

"""

temp_fig = matplotlib.pyplot.figure()
matplotlib.pyplot.plot(fullSolution[:,0], fullSolution[:,1], ’b-’)
matplotlib.pyplot.plot(redSolution[:, 0], redSolution[:, 1], ’r--’)
matplotlib.pyplot.ticklabel_format(axis=’both’, scilimits=(-2,3))
matplotlib.pyplot.xlabel(’Time [s]’)
matplotlib.pyplot.ylabel(’Temperature [K]’)
matplotlib.pyplot.title(’Cantera simulation: Temperature profile’)
matplotlib.pyplot.legend( (’Original model’, ’Reduced model’), loc=’best’)

return temp_fig

def plot_o(fullSolution, redSolution):
"""
Purpose:
Make mass fraction oxygen atoms versus time plots that compare the full and
reduced model solutions.

Arguments:
fullSolution (numpy.ndarray, 2-D): full model solution for ozone flame
redSolution (numpy.ndarray, 2-D): reduced model solution for ozone flame

Returns:
o_fig (matplotlib.figure.Figure): mass fraction O atoms versus time plot

"""
o_fig = matplotlib.pyplot.figure()
matplotlib.pyplot.plot(fullSolution[:, 0], fullSolution[:, 2], ’b-’)
matplotlib.pyplot.plot(redSolution[:, 0], redSolution[:, 2], ’r--’)
matplotlib.pyplot.ticklabel_format(axis=’both’, scilimits=(-2,3))
matplotlib.pyplot.xlabel(’Time [s]’)
matplotlib.pyplot.ylabel(’Mass Fraction O [a.u.]’)
matplotlib.pyplot.title(’Cantera simulation: Mass Fraction O profile’)
matplotlib.pyplot.legend( (’Original model’, ’Reduced model’), loc=’best’)

return o_fig

def plot_o2(fullSolution, redSolution):
"""
Purpose:
Make mass fraction O2 versus time plots that compare the full and
reduced model solutions.

Arguments:
fullSolution (numpy.ndarray, 2-D): full model solution for ozone flame
redSolution (numpy.ndarray, 2-D): reduced model solution for ozone flame

Returns:
o2_fig (matplotlib.figure.Figure): mass fraction O2 versus time plot
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"""

o2_fig = matplotlib.pyplot.figure()
matplotlib.pyplot.plot(fullSolution[:, 0], fullSolution[:, 3], ’b-’)
matplotlib.pyplot.plot(redSolution[:, 0], redSolution[:, 3], ’r--’)
matplotlib.pyplot.ticklabel_format(axis=’both’, scilimits=(-2,3))
matplotlib.pyplot.xlabel(’Time [s]’)
matplotlib.pyplot.ylabel(’Mass Fraction O2 [a.u.]’)
matplotlib.pyplot.title(’Cantera simulation: Mass Fraction O2 profile’)
matplotlib.pyplot.legend( (’Original model’, ’Reduced model’), loc=’best’)

return o2_fig

def plot_o3(fullSolution, redSolution):
"""
Purpose:
Make mass fraction O3 versus time plots that compare the full and
reduced model solutions.

Arguments:
fullSolution (numpy.ndarray, 2-D): full model solution for ozone flame
redSolution (numpy.ndarray, 2-D): reduced model solution for ozone flame

Returns:
o3_fig (matplotlib.figure.Figure): mass fraction O3 versus time plot

"""

o3_fig = matplotlib.pyplot.figure()
matplotlib.pyplot.plot(fullSolution[:, 0], fullSolution[:, 4], ’b-’)
matplotlib.pyplot.plot(redSolution[:, 0], redSolution[:, 4], ’r--’)
matplotlib.pyplot.ticklabel_format(axis=’both’, scilimits=(-2,3))
matplotlib.pyplot.xlabel(’Time [s]’)
matplotlib.pyplot.ylabel(’Mass Fraction O3 [a.u.]’)
matplotlib.pyplot.title(’Cantera simulation: Mass Fraction O3 profile’)
matplotlib.pyplot.legend( (’Original model’, ’Reduced model’), loc=’best’)

return o3_fig

def plot_projector_rep(fullSolution, redSolution, orthoBasis, origin):
"""
Purpose:
Make phase plot that compares the full and reduced model solutions using
the projector representation.

Arguments:
fullSolution (numpy.ndarray, 2-D): full model solution for ozone flame
redSolution (numpy.ndarray, 2-D): reduced model solution for ozone flame
orthoBasis (numpy.ndarray, 2-D, where orthoBasis.shape[0] ==

orthoBasis.shape[1] == (fullSolution.shape[1] - 1)):
orthonormal basis such that its first two columns correspond to the
range of the projector, and its last two columns correspond to the
nullspace of the projector

origin (numpy.ndarray, 1-D, where origin.shape[0] ==
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fullSolution.shape[1]):
origin of projection-based reduced model (transposed, for convenience)

Returns:
proj_rep_fig (matplotlib.figure.Figure): phase plot (O_2, O_3, O)

comparing solutions of full model and projector representation of
reduced model

"""
# Phase plot of the solutions of the full and reduced models
proj_rep_fig = matplotlib.pyplot.figure()
axes = proj_rep_fig.gca(projection=’3d’)
axes.plot(fullSolution[:,3], fullSolution[:,4], fullSolution[:,2], ’b--’)
axes.plot(redSolution[:,3], redSolution[:,4], redSolution[:,2], ’r-’)

# Set up the grid of (x,y) points for a plane to guide the eye
n_pts = 20
x = numpy.linspace(0, 1, n_pts)
y = numpy.linspace(0, .5, n_pts)
X, Y = numpy.meshgrid(x, y)

# Set up the color of the plane
plane_color = ’orange’
plane_face_colors = numpy.empty(X.shape, dtype=’|S’+str(len(plane_color)))
plane_face_colors.fill(plane_color)

# Since the plots permute the order of the solution matrix entries,
# the basis entries and origin entries must also be permuted in a
# consistent manner
axis_permutation = [2, 3, 1]
plane_origin = origin[axis_permutation]

# The basis_index column of orthoBasis corresponds to the important
# "lumping" direction. This column is used to determine the normal
# vector of the plane in this figure that guides the eye.
basis_index = 1
normal = numpy.asarray([0,

-orthoBasis[3, basis_index]/orthoBasis[1, basis_index],
0,
1])

normal = normal[axis_permutation]
normal = normal / numpy.linalg.norm(normal, 2)

# Once the origin of the plane and the normal of the plane are determined,
# the z coordinates of the plane are determined using analytic geometry.
Z = plane_origin [2] - (normal[0] * (X - plane_origin[0]) +

normal[1] * (Y - plane_origin[1])) / normal[2]

# Plot the (x,y,z) coordinates of the plane that guides the eye
plane = axes.plot_surface(X, Y, Z, facecolors=plane_face_colors,

shade=0, alpha=.4)
plane.set_edgecolors(’none’)

# Add legend, axis labels, title, etc.
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axes.set_title(’Projector Representation: Ozone’)
axes.legend( (’Original model’, ’Reduced model’), loc=’best’)
axes.set_xlabel(r’Mass Frac O$_2$’)
axes.set_xlim(0, 1)
axes.set_ylabel(r’Mass Frac O$_3$’)
axes.set_ylim(0, 1)
axes.set_zlabel(r’Mass Frac O’)
axes.set_zlim(0, .025)
#axes.view_init(elev=-69, azim=42)
axes.grid()

return proj_rep_fig

def plot_lumped_rep(fullSolution, redSolution, origLumpedSoln,
redLumpedSoln, origin_index):

"""
Purpose:
Make phase plot that compares the full and reduced model solutions using
the lumped representation.

Arguments:
fullSolution (numpy.ndarray, 2-D): full model solution for ozone flame
redSolution (numpy.ndarray, 2-D): reduced model solution for ozone flame
origLumpedSoln (numpy.ndarray, 2-D): lumped full model solution for ozone

flame
redLumpedSoln (numpy.ndarray, 2-D): lumped reduced model solution for ozone

flame
origin_index (float): value of first index of fullSolution[:,:]

corresponding to the origin of the reduced model

Returns:
lumped_rep_fig (matplotlib.figure.Figure): phase plot comparing solutions

of lumped full model and lumped representation of reduced model
"""
lumped_rep_fig = matplotlib.pyplot.figure()
axes = lumped_rep_fig.gca(projection=’3d’)

# Reminder:
# In the MATLAB script, the first column of V corresponds to the "lump",
# and the second column corresponds to temperature. In this Python script,
# the first column corresponds to temperature, and the second corresponds
# to the "lump".

# Note: Time zero now corresponds to origin for both solutions in this plot
axes.plot(origLumpedSoln[origin_index:,2],

origLumpedSoln[origin_index:,0] - origLumpedSoln[origin_index,0],
fullSolution[origin_index:,2],
’b--’)

axes.plot(redLumpedSoln[:,2],
redLumpedSoln[:,0] - redLumpedSoln[0,0],
redSolution[:,2],
’r-’)

axes.set_title(’Lumped Representation: Ozone’)
axes.legend( (’Original Model’, ’Reduced Model’), loc=’best’)
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axes.set_xlabel(r’$\alpha \cdot$ Mass Frac O ’ +
r’$+ \beta \cdot$ Mass Frac O$_2$ ’+
r’$+ \gamma \cdot$ Mass Frac O$_3$’)

axes.set_ylabel(’Time [s]’)
axes.set_zlabel(’Mass Frac O’)
#axes.view_init(elev=-160, azim=22)
axes.grid()

return lumped_rep_fig

def plot_invariant_rep(fullSolution, redSolution, origin_index):
"""
Purpose:
Make phase plot that compares the full and reduced model solutions using
the invariant representation.

Arguments:
fullSolution (numpy.ndarray, 2-D): full model solution for ozone flame
redSolution (numpy.ndarray, 2-D): reduced model solution for ozone flame
origin_index (float): value of first index fullSolution[:,:]

corresponding to the origin of the reduced model

Returns:
invariant_rep_fig (matplotlib.figure.Figure): phase plot comparing

solutions of invariant representations of full and reduced models
"""
invariant_rep_fig = matplotlib.pyplot.figure()
axes = invariant_rep_fig.gca(projection=’3d’)
# Note: Time zero now corresponds to origin for both solutions in this plot
axes.plot(fullSolution[origin_index:,4],

fullSolution[origin_index:,0] - fullSolution[origin_index, 0],
fullSolution[origin_index:,2],
’b--’)

axes.plot(redSolution[:,4],
redSolution[:,0] - redSolution[0,0],
redSolution[:,2],
’r-’)

axes.set_title(’Invariant Representation: Ozone’)
axes.legend( (’Original Model’, ’Reduced Model’), loc=’best’)
axes.set_xlabel(r’Mass Frac O$_3$’)
axes.set_ylabel(r’Time [s]’)
axes.set_zlabel(r’Mass Frac O’)
#axes.view_init(elev=11, azim=10)
axes.grid()

return invariant_rep_fig

def main_function():
"""
Purpose:
Main driver function.

Arguments:
None.
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Returns:
None.

"""

# Main program:

(fullSolution,
redSolution,
origLumpedSoln,
redLumpedSoln,
rednData,
origin_index, orthoBasis) = CalculateFullRedAndLumpedSolns()

temp_fig = plot_temp(fullSolution, redSolution)
o_fig = plot_o(fullSolution, redSolution)
o2_fig = plot_o2(fullSolution, redSolution)
o3_fig = plot_o3(fullSolution, redSolution)
proj_rep_fig = plot_projector_rep(fullSolution, redSolution, orthoBasis,

rednData[’origin’])
lumped_rep_fig = plot_lumped_rep(fullSolution, redSolution, origLumpedSoln,

redLumpedSoln, origin_index)
invariant_rep_fig = plot_invariant_rep(fullSolution, redSolution,

origin_index)

matplotlib.pyplot.show()

return

if __name__ == "__main__":
main_function()
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Appendix B

Implementation of Examples for

Chapter 3

Examples for Chapter 3 were implemented in MATLAB r2012a [133] and in Python

2.7.3 [209].

B.1 MATLAB Implementation

The MATLAB r2012a [133] implementation requires the installation of Sundials 2.4

(or later), and SundialsTB [85].

function IllustrativeCaseStudy()
% Purpose: Case study that attempts to re-engineer Linda Petzold’s example.
% Inputs: None.
% Outputs: None.
% Assertion checks: None.

% TODO(goxberry@gmail.com): Add unit tests.

% Close all plots
close all;

% Get the default random number generation stream in MATLAB, and reset it
% for reproducibility. See "Loren on the Art of MATLAB", November 5, 2008,
% http://blogs.mathworks.com/loren/2008/11/05/ (continued on next line)
% new-ways-with-random-numbers-part-i/
stream0 = RandStream(’mt19937ar’,’Seed’,0);
RandStream.setDefaultStream(stream0);

% "A" matrix from Rathinam and Petzold, "A New Look at Proper Orthogonal
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% Decomposition", SINUM, Vol. 41, No. 5, pp. 1893-1925 (2004).
petzoldA1 = [-0.1, 0, 0;

0, -0.1732, 2;
0, -2.0, -0.1732;];

petzoldA2 = [-1.0, 0, 0;
0, -1.226, -0.7080;
0, 0.7080, -1.226;];

petzoldA12 = [0.3893, 0.5179, -1.543;
1.390, 1.3, 0.8841;
0.06293, -0.9078, -1.184;];

petzoldA = [petzoldA1, petzoldA12;
zeros(3,3), petzoldA2];

% Use symmetrized Petzold matrix with spectrum shifted downward, so that
% spectrum is real, and its logarithmic 2-norm is negative. Set range basis
% to last three eigenvectors (which have nonzero entries in their last
% three components). Set nullspace equal to the first three standard
% Euclidean basis vectors.
symmA = petzoldA;
symmA(2,3) = -2;
symmA(6,5) = -0.7080;
symmA = symmA - 2 * eye(6,6);
[eigenVec, eigenVal] = eig(symmA);
rangeBasis = eigenVec(:,4:6);
nullBasis = [zeros(3,3); eye(3,3)];

% Generate random initial condition.
% initCond = rand(1,6);
initCond = ones(1,6);

% Run case study on this coefficient matrix and choice of bases
comparisonOfModels(symmA, rangeBasis, nullBasis, initCond);

% Scale the upper right block of the symmetrized, shifted Petzold matrix,
% which corresponds to halving gamma in our bounds.
lowerGammaA = symmA;
lowerGammaA(1:3,4:6) = .5 * symmA(1:3,4:6);
[eigenVec, eigenVal] = eig(lowerGammaA);
rangeBasis = eigenVec(:,4:6);
comparisonOfModels(lowerGammaA, rangeBasis, nullBasis, ...

initCond);

% Scale the upper right block of the symmetrized, shifted Petzold matrix,
% which corresponds to halving gamma in our bounds.
higherMuA = symmA;
higherMuA(4:6,4:6) = .715 * symmA(4:6,4:6);
[eigenVec, eigenVal] = eig(higherMuA);
rangeBasis = eigenVec(:,4:6);
comparisonOfModels(higherMuA, rangeBasis, nullBasis, ...

initCond);
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end

function dy = linSys(t,y,A)
% Purpose: Function encoding linear ordinary differential equation system
% for numerical integration.
% Inputs: t = time
% y = state vector, n by 1
% A = coefficient matrix, n by n, for linear ordinary differential
% equation \dot{y}(t) = A*y(t)
% Outputs: dy = right-hand side of differential equation \dot{y}(t) = ...
% A*y(t)
% Assertion checks: None; check for conformality of A and y.
dy = A * y;
end

function comparisonOfModels(coeffMatrix, rangeBasis, nullBasis, initCond)
% Purpose: Integrates the linear system \dot{\mathbf{x}} = coeffMatrix *
% \mathbf{x}, and also integrates the projected system
% \dot{\hat{\mathbf{x}}} = \mathbf{P} * coeffMatrix * \hat{\mathbf{x}}.
% \mathbf{P} is a projection matrix that has range equal to the space
% spanned by the columns of rangeBasis, and null space equal to the space
% spanned by the columns of nullBasis.
% Input: coeffMatrix = n by n, coefficient matrix of linear ODE system; n
% should be consistent with rangeBasis
% rangeBasis = n by k, columns determine range space of projection
% matrix; n and k are determined by size of matrix
% nullBasis = n by (n-k), columns determine null space of projection
% matrix; n-k should be consistent with values
% determined by previous two arguments
% initCond = 1 by n, initial condition for integration; row vector
% due to peculiarities of MATLAB syntax
% Output: None to scope outside of call. Will output information relevant
% to error bounds to terminal, either as text, or as plots.
% Assertion checks: None! Doesn’t check for consistency, although error
% checks could be added later. NOTE: Many plots assume that n = 6; these
% can be generalized.

n = size(rangeBasis,1);
k = size(rangeBasis,2);

% Calculate Petrov-Galerkin matrices and projector. Use G. W. (Pete)
% Stewart’s "On the Numerical Analysis of Oblique Projectors", SIMAX,
% Vol. 32, No. 1, pp. 309-348 (2011), to guide algorithms.
[X, Y, N, Xperp, Yperp, Nc] = CalcXQRYRep(rangeBasis, nullBasis);

% Stewart warns against calculating projection matrices directly, due
% to possible numerical error, but here, it is needed for some performance
% metrics (the norm of P).
P = CalcExplicitProjectors(X, Y, N);

% Calculate V, W, Vperp, Wperp where norm(W) = norm(Wperp) = 1.
[V, W, Vperp, Wperp] = CalcNorm1WRep(X, Y, N, Xperp, Yperp, Nc);
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% Calculate V, W, Vperp, Wperp where norm(V) = norm(Vperp) = 1;
[Vprime, Wprime, VprimePerp, WprimePerp] = ...

CalcNorm1VRep(X, Y, N, Xperp, Yperp, Nc);

% Calculate constants in Theorem 4.1 and Corollary 4.4:
% Original choice of V, W, Vperp, Wperp
[gamma, muBar] = CalcThm4_1Consts(coeffMatrix, V, W, Wperp);

% Constants after change of basis for V, W, Vperp, and Wperp
[gammaPrime, muBarPrime] = CalcThm4_1Consts(coeffMatrix, Vprime, ...

Wprime, WprimePerp);

% Cor. 4.4: Constants using projection matrix instead
[gammaProj, muBarProj] = CalcThm4_4Consts(coeffMatrix, X, Y, Wperp);

% Now, to simulate full and reduced system, emulating Rathinam and Petzold,
% "A New Look at Proper Orthogonal Decomposition", SINUM, Vol. 41, No. 5,
% pp. 1893-1925 (2004).
T = 5;
[epsilon, inSubSupNorm, inSub2Norm, totErr2Norm] = ...

CalcErrors(T, initCond, coeffMatrix, X, Y, Xperp, Yperp);

% Calculate error bounds
[inSubSupNormBound, inSub2NormBound, totErr2NormBound] = ...

CalculateErrorBoundsThm4_1(epsilon, gamma, muBar, T, V, Vperp);

% Results.
fprintf(1, ’-----------------------------------------------------------\n’)
fprintf(1, ’Size of matrix A (n by n), n = %e\n’, n)
fprintf(1, ’Size of reduced order model, k = %e\n’, k)
fprintf(1, ’gamma = %e\n’, gamma);
fprintf(1, ’muBar = %e\n’, muBar);
fprintf(1, ’2-norm of P = %e\n’, norm(P));
fprintf(1, ’2-norm of V (should be 1) = %e\n’, norm(V));
fprintf(1, ’2-norm of W = %e\n’, norm(W));
fprintf(1, ’gammaPrime (gamma under change of basis) = %e\n’, gammaPrime);
fprintf(1, ’muBarPrime (muBar under change of basis) = %e\n’, muBarPrime);
fprintf(1, ’2-norm of Vprime = %e\n’, norm(Vprime));
fprintf(1, ’2-norm of Wprime = %e\n’, norm(Wprime));
fprintf(1, ’2-norm of VprimePerp = %e\n’, norm(VprimePerp));
fprintf(1, ’gammaProj (gamma using P) = %e\n’, gammaProj);
fprintf(1, ’muBarProj (muBar using P) = %e\n’, muBarProj);
fprintf(1, ’condition number of N = %e\n’, cond(N));
fprintf(1, ’Using gamma and muBar for orthonormal V, Vperp:\n’)
fprintf(1, ’2-norm of out-of-subspace error, epsilon = %e\n’, epsilon);
fprintf(1, ’2-norm of in-subspace error = %e\n’, inSub2Norm);
fprintf(1, ’Bound on 2-norm of in-subspace error = %e\n’, inSub2NormBound);
fprintf(1, ’Sup-norm of in-subspace error = %e\n’, inSubSupNorm);
fprintf(1, ’Bound on Sup-norm of in-subspace error = %e\n’, ...

inSubSupNormBound);
fprintf(1, ’2-norm of total error = %e\n’, totErr2Norm);
fprintf(1, ’Bound on 2-norm of total error = %e\n’, totErr2NormBound);
fprintf(1, ’-----------------------------------------------------------\n’)
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end

function [inSubSupNormBound, inSub2NormBound, totErr2NormBound] = ...
CalculateErrorBoundsThm4_1(epsilon, gamma, muBar, T, V, Vperp)

% Purpose: Calculate the error bounds given in Theorem 4.1.
% Inputs: epsilon = \varepsilon in Theorem 4.1, bound on function 2-norm of
% out-of-subspace error, \|\mathbf{e}_{c}\|_{2}
% gamma = \gamma in Theorem 4.1, bound on Lipschitz constant of
% W’*A in directions corresponding to W_{\perp}, where \dot{y}(t)
% = A*y(t)
% muBar = \bar{\mu} in Theorem 4.1, bound on logarithmic norm of
% W’*A*V, where \dot{y}(t) = A*y(t)
% T = end time of integration
% V = \mathbf{V} matrix in Theorem 4.1, basis for range of
% projector
% Vperp = \mathbf{V}_{\perp} matrix in Theorem 4.1, basis for
% orthogonal complement of range of projector
% Outputs: inSubSupNormBound = bound on the function sup-norm of the
% in-subspace error, \|\mathbf{e}_{i}\|_{\infty} in Theorem 4.1
% inSub2NormBound = bound on the function 2-norm
% totErr2NormBound =
% Assertion checks: None; need to make sure that V and Vperp have the same
% number of rows.

inSubSupNormBound = epsilon * gamma * ...
sqrt( (exp(2 * muBar * T) - 1) / (2 * muBar) ) * ...
norm(V) * norm(Vperp);

% Convenience variable used to hold intermediate result common to two later
% expressions
twoNormScalingFactor = gamma * norm(V) * norm(Vperp) *...

sqrt( (exp(2 * muBar * T) - 1 - 2 * muBar * T) / (4 * muBarˆ2));

inSub2NormBound = epsilon * twoNormScalingFactor ;
totErr2NormBound = epsilon * (1 + twoNormScalingFactor );

end

function [X, Y, N, Xperp, Yperp, Nc] = ...
CalcXQRYRep(rangeBasis, nullBasis)

% Purpose: Calculates the XQRY representation of a projection matrix and
% its complementary projection matrix, given a basis for the range and null
% space of the projection matrix. See G. W. (Pete)
% Stewart’s "On the Numerical Analysis of Oblique Projectors", SIMAX, 2011
% for additional details
% Inputs: rangeBasis = basis for range space of projection matrix
% nullBasis = basis for null space of projection matrix
% Outputs: X = orthonormal basis for range of projector
% Y = orthonormal basis for range of transpose of projector
% N = inv(Y’*X)
% Xperp = orthonormal basis whose span is orthogonal to span(X)
% Yperp = orthonormal basis whose span is orthogonal to span(Y)
% Nc = inv(Xperp’*Yperp)
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% Assertion checks: None. Should check for consistency of matrix
% dimensions.

n = size(rangeBasis, 1);
k = size(rangeBasis, 2);

% Calculate Petrov-Galerkin matrices and projector. Use G. W. (Pete)
% Stewart’s "On the Numerical Analysis of Oblique Projectors", SIMAX, 2011
% to guide algorithms; in this case, the algorithms being used is
% equation (5.1).

% Q and R will be temporary variables used for the result of QR
% factorizations.

% First, use QR factorization to find orthogonal matrices whose columns
% span the desired subspaces. Use Stewart’s nomenclature.
[Q,˜] = qr(rangeBasis);
X = Q(:,1:k);
Xperp = Q(:, k+1:n);

% Yperp is a basis for the nullspace; Y is a basis for the range of P’.
[Q,˜] = qr(nullBasis);
Yperp = Q(:,1:k);
Y = Q(:,k+1:n);

% Calculate intermediate matrices for Stewart’s XQRY representation.
M = Y’*X;
[Q,R] = qr(M);
N = R\Q’;

Mc = Xperp’*Yperp;
[Q,R] = qr(Mc);
Nc = R\Q’;

end

function P = CalcExplicitProjectors(X, Y, N)
% Purpose: From their respective XQRY representations, calculate the
% projection matrix with range equal to span(X) and whose transpose has
% range span(Y).
% Inputs: X = orthonormal basis for range of projector
% Y = orthonormal basis for range of transpose of projector
% N = inv(Y’*X)
% Outputs: P = projection matrix
% Assertion checks: None; should check for consistency of matrix
% dimensions.

% Stewart warns against calculating projection matrices directly, due
% to possible numerical error, but it is needed for some performance
% metrics (like the norm of P).
P = X*N*Y’;

end
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function [V, W, Vperp, Wperp] = CalcNorm1WRep(X, Y, N, Xperp, Yperp, Nc)
% Purpose: From their respective XQRY representations, calculate the V and
% W corresponding to the projection matrix with range equal to span(X) and
% whose transpose has range span(Y), such that the columns of W are
% orthonormal (i.e., norm(W, 2) = 1). Also calculate Wperp and Vperp,
% corresponding to the complementary projection matrix, such that the
% columns of Wperp are orthonormal (i.e., norm(Wperp, 2) = 1).
% Inputs: X = orthonormal basis for range of projector
% Y = orthonormal basis for range of transpose of projector
% N = inv(Y’*X)
% Xperp = orthonormal basis whose span is orthogonal to span(X)
% Yperp = orthonormal basis whose span is orthogonal to span(Y)
% Nc = inv(Xperp’*Yperp)
% Outputs: V = basis for range of projector
% W = orthonormal matrix such that ker(W’) is nullspace of
% projector; V*W’ = projector
% Wperp = basis for range of complementary projector, orthonormal
% matrix
% Vperp = matrix such that ker(Vperp’) is nullspace of
% complementary projector; Wperp*Vperp’ = complementary projector
% Assertion checks: None; should make sure that matrix dimensions are
% consistent, and that X, Y and N are consistent, etc.

% XY representation of projector calculated using algorithm suggested at
% bottom of p. 323 in G. W. (Pete) Stewart’s "On the Numerical Analysis of
% Oblique Projectors", SIMAX, 2011.

V = X*N;
W = Y;
Vperp = Xperp*Nc’;
Wperp = Yperp;

end

function [V, W, Vperp, Wperp] = CalcNorm1VRep(X, Y, N, Xperp, Yperp, Nc)
% Purpose: From their respective XQRY representations, calculate the V and
% W corresponding to the projection matrix with range equal to span(X) and
% whose transpose has range span(Y), such that the columns of V are
% orthonormal (i.e., norm(V, 2) = 1). Also calculate Wperp and Vperp,
% corresponding to the complementary projection matrix, such that the
% columns of Vperp are orthonormal (i.e., norm(Vperp, 2) = 1).
% Inputs: X = orthonormal basis for range of projector
% Y = orthonormal basis for range of transpose of projector
% N = inv(Y’*X)
% Xperp = orthonormal basis whose span is orthogonal to span(X)
% Yperp = orthonormal basis whose span is orthogonal to span(Y)
% Nc = inv(Xperp’*Yperp)
% Outputs: V = orthonormal matrix, basis for range of projector
% W = matrix such that ker(W’) is nullspace of
% projector; V*W’ = projector
% Wperp = basis for range of complementary projector
% Vperp = orthonormal matrix such that ker(Vperp’) is nullspace of
% complementary projector; Wperp*Vperp’ = complementary projector
% Assertion checks: None; should make sure that matrix dimensions are
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% consistent, and that X, Y and N are consistent, etc.

% XY representation of projector calculated using algorithm suggested at
% bottom of p. 323 in G. W. (Pete) Stewart’s "On the Numerical Analysis of
% Oblique Projectors", SIMAX, 2011.

V = X;
W = (N*Y’)’;
Wperp = Yperp*Nc;
Vperp = Xperp’;

end

function [gamma, muBar] = CalcThm4_1Consts(coeffMatrix, V, W, Wperp)
% Purpose: Calculate the constants that determine the error bounds in
% Theorem 4.1.
% Inputs: coeffMatrix = A matrix in \dot{y}(t) = A*y(t)
% V = basis for range of projector
% W = matrix such that ker(W’) is the null space of the projector;
% V*W’ = projector
% Wperp = basis for range of complementary projector
% Outputs: gamma = \gamma in Theorem 4.1, bound on Lipschitz constant of
% W’*A in directions corresponding to W_{\perp}, where \dot{y}(t)
% = A*y(t)
% muBar = \bar{\mu} in Theorem 4.1, bound on logarithmic norm of
% W’*A*V, where \dot{y}(t) = A*y(t)
% Assertion checks: None; should be consistency of dimensions of V, W,
% Wperp.

gamma = norm(W’*coeffMatrix*Wperp);
muBar = max(real(eig(W’*coeffMatrix*V + (W’*coeffMatrix*V)’)))/2;

end

function [product] = ProjVecProdStewart(X, Y, v)
% Purpose: Calculate projector-vector product from an XQRY representation
% of a projector using algorithm (5.2) in G. W. (Pete)
% Stewart’s "On the Numerical Analysis of Oblique Projectors", SIMAX, 2011.
% Inputs: X = orthonormal basis for range of projector
% Y = orthonormal basis for range of transpose of projector
% v = vector to be projected
% Outputs: product = P*v = projected vector
% Assertion checks: None.

[Q,R] = qr(Y’*X);
c1 = Y’*v;
c2 = Q’*c1;
c3 = R\c2;
product = X*c3;

end

function [gamma, muBar] = CalcThm4_4Consts(coeffMatrix, X, Y, Wperp)
% Purpose: Calculate the constants that determine the error bounds in
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% Theorem 4.4.
% Inputs: coeffMatrix = A matrix in \dot{y}(t) = A*y(t)
% X = orthonormal basis for range of projector
% Y = orthonormal basis for range of transpose of projector
% Wperp = orthonormal basis for range of complementary projector
% Outputs: gamma = \gamma in Theorem 4.4, bound on Lipschitz constant of
% P*A in directions corresponding to W_{\perp}, where \dot{y}(t)
% = A*y(t)
% muBar = \bar{\mu} in Theorem 4.1, bound on logarithmic norm of
% P*A, where \dot{y}(t) = A*y(t)
% Assertion checks: None; should check consistency of dimensions of
% coeffMatrix, X, Y, Wperp; check orthogonality of Wperp (should have
% 2-norm of 1).

% Calculate product projCoeffMatrix = P*coeffMatrix
projCoeffMatrix = ProjVecProdStewart(X, Y, coeffMatrix);

gamma = norm(projCoeffMatrix*Wperp);
muBar = max(real(eig(projCoeffMatrix + (projCoeffMatrix)’)))/2;

end

function [epsilon, inSubSupNorm, inSub2Norm, totErr2Norm] = ...
CalcErrors(T, initCond, coeffMatrix, X, Y, Xperp, Yperp)

% Purpose: Calculate solutions to the full and reduced models, plot these
% solutions, and then calculate various errors in the reduced model.
% Inputs: T = end time for numerical integration
% initCond = initial condition for numerical integration
% coeffMatrix = coefficient (A) matrix for linear system,
% \dot{y}(t) = A*y(t), n by n
% X = orthonormal basis for range of projector
% Y = orthonormal basis for range of transpose of projector
% Xperp = orthonormal basis whose span is orthogonal to span(X)
% Yperp = orthonormal basis whose span is orthogonal to span(Y)
% Outputs: epsilon = function 2-norm of component of error in reduced model
% solution in null space of projection matrix.
% inSubSupNorm = function sup-norm of component of error in
% reduced model solution in range of projection matrix
% inSub2Norm = function 2-norm of component of error in reduced
% model solution in range of projection matrix
% totErr2Norm = function 2-norm of total error in reduced model
% solution
% Assertion checks: None; check consistency of matrix dimensions.

n = size(coeffMatrix, 1);

% Now, to simulate system, emulating Rathinam and Petzold, SINUM, 2004.
tSpan = [0,T];

% Calculate product projCoeffMatrix = P*coeffMatrix
projCoeffMatrix = ProjVecProdStewart(X, Y, coeffMatrix);

% Note that error tolerances set very tightly to decrease numerical error
% due to integration. Use 4th-order Runge-Kutta integration because system
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% is not stiff.
options = odeset(’RelTol’,1e-13,’AbsTol’,ones(1,n)*1e-25);
[tPts, fullSoln] = ode45(@linSys, tSpan, initCond, options, coeffMatrix);
[˜,redSoln] = ode45(@linSys, tPts, initCond, options, projCoeffMatrix);

% Calculate error in reduced model solution
errSoln = redSoln - fullSoln;

% Calculate product inSubErrSoln = P*errSoln’
inSubErrSoln = ProjVecProdStewart(X, Y, errSoln’);

% Calculate product outSubErrSoln = (I-P)*errSoln’
outSubErrSoln = ProjVecProdStewart(Yperp, Xperp, errSoln’);

% Trapezoidal rule approximation to epsilon, which seems to work well.
epsilon = sqrt(trapz(tPts, sum(outSubErrSoln.ˆ2,1)));

% Calculate sup-norm of in-subspace error.
inSubSupNorm = max(max(abs(inSubErrSoln)));
inSub2Norm = sqrt(trapz(tPts, sum(inSubErrSoln.ˆ2,1)));
totErr2Norm = sqrt(trapz(tPts, sum((errSoln’).ˆ2,1)));

% Plots comparing full and reduced model solutions
figure;
plot(tPts, fullSoln(:,1), ’r-’);
hold on;
plot(tPts, fullSoln(:,2), ’b-’);
plot(tPts, fullSoln(:,3), ’k-’);
plot(tPts, redSoln(:,1), ’r--’);
plot(tPts, redSoln(:,2), ’b--’);
plot(tPts, redSoln(:,3), ’k--’);
title(’Comparison of full and reduced model solutions’);
xlabel(’Time (t) [a.u.]’);
ylabel(’State variable (x_j) [a.u.]’);
legend(’full, 1’, ’full, 2’, ’full, 3’, ’reduced, 1’, ’reduced, 2’, ...

’reduced, 3’, ’Location’, ’Best’);

figure;
plot(tPts, fullSoln(:,4), ’r-’);
hold on;
plot(tPts, fullSoln(:,5), ’b-’);
plot(tPts, fullSoln(:,6), ’k-’);
plot(tPts, redSoln(:,4), ’r--’);
plot(tPts, redSoln(:,5), ’b--’);
plot(tPts, redSoln(:,6), ’k--’);
title(’Comparison of full and reduced model solutions’);
xlabel(’Time (t) [a.u.]’);
ylabel(’State variable (x_j) [a.u.]’);
legend(’full, 4’, ’full, 5’, ’full, 6’, ’reduced, 4’, ’reduced, 5’, ...

’reduced, 6’, ’Location’, ’Best’);

% Plots of errors
figure;
plot(tPts, errSoln(:,1), ’r-’);
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hold on;
plot(tPts, errSoln(:,2), ’b-’);
plot(tPts, errSoln(:,3), ’k-’);
plot(tPts, inSubErrSoln(1,:), ’r--’);
plot(tPts, inSubErrSoln(2,:), ’b--’);
plot(tPts, inSubErrSoln(3,:), ’k--’);
title(’Error in reduced model solution’);
xlabel(’Time (t) [a.u.]’);
ylabel(’Error in state variable (e_j) [a.u.]’);
legend(’j=1’, ’j=2’, ’j=3’, ’j=1, in-subspace’,...

’j=2, in-subspace’, ’j=3, in-subspace’,’Location’, ’Best’);

figure;
plot(tPts, errSoln(:,4), ’r-’);
hold on;
plot(tPts, errSoln(:,5), ’b-’);
plot(tPts, errSoln(:,6), ’k-’);
plot(tPts, inSubErrSoln(4,:), ’r--’);
plot(tPts, inSubErrSoln(5,:), ’b--’);
plot(tPts, inSubErrSoln(6,:), ’k--’);
title(’Error in reduced model solution’);
xlabel(’Time (t) [a.u.]’);
ylabel(’Error in state variable (e_j) [a.u.]’);
legend(’j=4’, ’j=5’, ’j=6’, ’j=4, in-subspace’,...

’j=5, in-subspace’, ’j=6, in-subspace’, ’Location’, ’Best’);

end

B.2 Python Implementation

The Python 2.7.3 [209] implementation requires the installation of NumPy 1.6.2

(or later) [152], SciPy 0.10.1 (or later) [93], and Matplotlib 1.0.0 (or later) [90]. An

attempt was made to keep the number of dependencies to a minimum. It is likely

that the Python code below will work with Python 2.6 (or later).

#!/usr/bin/env python

import numpy
import scipy.integrate
import scipy.linalg
import matplotlib.pyplot
import math
import copy

def lin_sys(t, y, A):
"""
Purpose:
Auxiliary function encoding a linear ODE system for numerical integration.
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Arguments:
t (float): time
y (1-D numpy.ndarray): states
A (2-D numpy.ndarray): square coefficient array, where A.shape[1] == len(y)

Returns:
f (1-D numpy.ndarray): right-hand side of ODE

"""

# If y were a column vector, we would calculate the right-hand side as
# A * y. Instead, y is a row vector (by default in numpy), so we calculate
# y * Aˆ{T} (as if we took the previous case, where y is a column vector,
# and used (A * y)ˆ{T} = yˆ{T} * Aˆ{T}.
f = numpy.dot(A, y)
return f

def calc_err_bounds_thm_4_1(epsilon, gamma, mu_bar, T, V, V_perp):
"""
Purpose:
Calculate the error bounds given in Theorem 4.1.

Arguments:
epsilon (float): \varepsilon in Theorem 4.1, bound on function 2-norm of

out-of-subspace error, \|\mathbf{e}_{c}\|_{2}
gamma (float): \gamma in Theorem 4.1, bound on Lipschitz constant of

Wˆ{T} * A in directions corresponding to W_{\perp}, where \dot{y}(t)
= A * y(t)

mu_bar (float): \bar{\mu} in Theorem 4.1, bound on logarithmic norm of
Wˆ{T} * A * V, where \dot{y}(t) = A*y(t)

T (float): end time of integration
V (2-D numpy.ndarray of floats): \mathbf{V} matrix in Theorem 4.1, basis

for range of projector
V_perp (2-D numpy.ndarray of floats): \mathbf{V}_{\perp} matrix in

Theorem 4.1, basis for orthogonal complement of range of projector

Returns:
in_sub_sup_norm_bound (float): bound on the function sup-norm of the in-

subspace error, \|\mathbf{e}_{i}\|_{\infty} in Theorem 4.1
in_sub_2_norm_bound (float): bound on the function 2-norm of the in-

subspace error, \|\mathbf{e}_{i}\|_{2}
tot_err_2_norm_bound (flooat): bound on the function 2-norm of the total

error, \|\mathbf{e}\|_{2}

"""

in_sub_sup_norm_bound = (epsilon * gamma *
math.sqrt((math.exp(2 * mu_bar * T) - 1) / (2 * mu_bar)) *
numpy.linalg.norm(V, 2) * numpy.linalg.norm(V_perp, 2))

# Convenience variable used to hold intermediate result common to two
# later expressions
two_norm_scaling_factor = (gamma * numpy.linalg.norm(V, 2) *
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numpy.linalg.norm(V_perp, 2) * math.sqrt(
(math.exp(2 * mu_bar * T) - 1 - 2 * mu_bar * T) / (4 * mu_bar ** 2)))

in_sub_2_norm_bound = epsilon * two_norm_scaling_factor
tot_err_2_norm_bound = epsilon * (1 + two_norm_scaling_factor)

return (in_sub_sup_norm_bound, in_sub_2_norm_bound, tot_err_2_norm_bound)

def calc_XQRY_rep(range_basis, null_basis):
"""
Purpose:
Calculates the XQRY representation of a projection matrix and its
complementary projection matrix, given a basis for the range and null
space of the projection matrix. See G. W. (Pete) Stewart’s "On the
Numerical Analysis of Oblique Projectors", SIMAX, 2011 for additional
details.

Arguments:
range_basis (2-D numpy.ndarray of floats): basis for range space of

projection matrix
null_basis (2-D numpy.ndarray of floats): basis for null space of

projection matrix

Returns:
X (2-D numpy.ndarray of floats): orthonormal basis for range of projector
Y (2-D numpy.ndarray of floats): orthonormal basis for range of transpose

of projector
N (2-D numpy.ndarray of floats): inv(Yˆ{T} * X)
X_perp (2-D numpy.ndarray of floats): orthonormal basis whose span is

orthogonal to span(X)
Y_perp (2-D numpy.ndarray of floats): orthonormal basis whose span is

orthogonal to span(Y)
N_c (2-D numpy.ndarray of floats): inv(X_perpˆ{T} * Y_perp)

Assertion checks:
None. Should check for consistency of matrix dimensions.

"""

(n, k) = range_basis.shape

# Calculate Petrov-Galerkin matrices and projector. Use G. W. (Pete)
# Stewart’s "On the Numerical Analysis of Oblique Projectors", SIMAX, 2011
# to guide algorithms; in this case, the algorithms being used is (5.1).

# Q and R will be temporary variables used for the results of QR
# factorizations.

# First, use QR factorization to find orthogonal matrices whose columns
# span the desired subspaces. Use Stewart’s nomenclature.
(Q, _) = scipy.linalg.qr(range_basis)
X = Q[:, 0:k]
X_perp = Q[:, k:]
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# Y_perp is a basis for the null space; Y is a basis for the range of Pˆ{T}
(Q, _) = scipy.linalg.qr(null_basis)
Y_perp = Q[:, 0:k]
Y = Q[:, k:]

# Calculate intermediate matrices for Stewart’s XQRY representation.
M = numpy.dot(Y.transpose(), X)
(Q, R) = scipy.linalg.qr(M)
N = numpy.linalg.solve(R, Q.transpose())

M_c = numpy.dot(X_perp.transpose(), Y_perp)
(Q, R) = scipy.linalg.qr(M_c)
N_c = numpy.linalg.solve(R, Q.transpose())

return (X, Y, N, X_perp, Y_perp, N_c)

def calc_explicit_projector(X, Y, N):
"""
Purpose:
From their respective XQRY representations, calculate the projection
matrix with range equal to span(X) and whose transpose has range span(Y).

Arguments:
X (2-D numpy.ndarray of floats): orthonormal basis for range of projector
Y (2-D numpy.ndarray of floats): orthonormal basis for range of transpose

of projector
N (2-D numpy.ndarray of floats): inv(Yˆ{T} * X)

Returns:
P (2-D numpy.ndarray of floats): projection matrix

Assertion checks:
None. Should check for consistency of matrix dimensions.

"""

# Stewart warns against calculating projection matrices directly, due to
# possible numerical error, but it is needed for some performance metrics,
# (like the norm of P).
P = numpy.dot(X, numpy.dot(N, Y.transpose()))

return P

def calc_norm_1_W_rep(X, Y, N, X_perp, Y_perp, N_c):
"""
Purpose:
From their respective XQRY representations, calculate the V and
W corresponding to the projection matrix with range equal to
span(X) and whose transpose has range span(Y), such that the columns
of W are orthonormal (i.e., numpy.linalg.norm(W, 2) = 1). Also calculate
W_perp and V_perp, corresponding to the complementary projection matrix,
such that the columns of W_perp are orthonormal (i.e.,
numpy.linalg.norm(W_perp, 2) = 1).
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Arguments:
X (2-D numpy.ndarray of floats): orthonormal basis for range of projector
Y (2-D numpy.ndarray of floats): orthonormal basis for range of transpose

of projector
N (2-D numpy.ndarray of floats): inv(Yˆ{T} * X)
X_perp (2-D numpy.ndarray of floats): orthonormal basis whose span is

orthogonal to span(X)
Y_perp (2-D numpy.ndarray of floats): orthonormal basis whose span is

orthogonal to span(Y)
N_c (2-D numpy.ndarray of floats): inv(X_perpˆ{T} * Y_perp)

Returns:
V (2-D numpy.ndarray of floats): basis for range of projector
W (2-D numpy.ndarray of floats): orthonormal matrix such that ker(Wˆ{T})

is null space of projector; V * Wˆ{T} = projector
W_perp (2-D numpy.ndarray of floats): basis for rnage of complementary

projector, orthonormal matrix
V_perp (2-D numpy.ndarray of floats): matrix such that ker(V_perpˆ{T}) is

null space of complemntary projector; W_perp * V_perpˆ{T} =
complementary projector

Assertion checks:
None; should make sure that matrix dimensions are
consistent, and that X, Y, and N are consistent, etc.

"""

# XY representation of projector calculated using algorithm suggested at
# bottom of p. 323 in G. W. (Pete) Stewart’s "On the Numerical Analysis of
# Oblique Projectors", SIMAX, 2011.

V = numpy.dot(X, N)
W = Y
V_perp = numpy.dot(X_perp, N_c.transpose())
W_perp = Y_perp

return (V, W, V_perp, W_perp)

def calc_norm_1_V_rep(X, Y, N, X_perp, Y_perp, N_c):
"""
Purpose:
From their respective XQRY representations, calculate the V and W
corresponding to the projection matrix with range equal to span(X) and
whose transpose has range span(Y), such that the columns of V are
orthonormal (i.e., numpy.linalg.norm(V, 2) = 1). Also calculate W_perp and
V_perp, corresponding to the complementary projection matrix, such that
the columns of V_perp are orthonormal (i.e.,
numpy.linalg.norm(V_perp, 2) = 1).

Arguments:
X (2-D numpy.ndarray of floats): orthonormal basis for range of projector
Y (2-D numpy.ndarray of floats): orthonormal basis for range of transpose

of projector
N (2-D numpy.ndarray of floats): inv(Yˆ{T} * X)
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X_perp (2-D numpy.ndarray of floats): orthonormal basis whose span is
orthogonal to span(X)

Y_perp (2-D numpy.ndarray of floats): orthonormal basis whose span is
orthogonal to span(Y)

N_c (2-D numpy.ndarray of floats): inv(X_perpˆ{T} * Y_perp)

Returns:
V (2-D numpy.ndarray of floats): orthonormal matrix, basis for range of

projector
W (2-D numpy.ndarray of floats): matrix such that ker(Wˆ{T}) is null

space of projector; V * Wˆ{T} = projector
W_perp (2-D numpy.ndarray of floats): basis for range of complementary

projector
V_perp (2-D numpy.ndarray of floats): orthonormal matrix such that

ker(V_perpˆ{T}) is null space of complementary projector;
W_perp * V_perpˆ{T} = projector

Assertion checks:
None; should make sure that matrix dimensions are consistent, and that
X, Y, and N are consistent, etc.

"""

# XY representation of projector calculated using algorithm suggested at
# bottom of p. 323 in G. W. (Pete) Stewart’s "On the Numerical Analysis of
# Oblique Projectors", SIMAX, 2011.

V = X
W = numpy.dot(N, Y.transpose()).transpose()
W_perp = numpy.dot(Y_perp, N_c)
V_perp = X_perp.transpose()

return (V, W, V_perp, W_perp)

def calc_thm_4_1_consts(coeff_matrix, V, W, W_perp):
"""
Purpose:
Calculate the constants that determine the error bounds in Theorem 4.1.

Arguments:
coeff_matrix (2-D numpy.ndarray of floats): A matrix in

\dot{y}(t) = A*y(t)
V (2-D numpy.ndarray of floats): basis for range of projector
W (2-D numpy.ndarray of floats): matrix such that ker(Wˆ{T}) is the null

space of the projector; V * Wˆ{T} = projector
W_perp (2-D numpy.ndarray of floats): basis for range of complementary

projector

Returns:
gamma (float): \gamma in Theorem 4.1, bound on Lipschitz constant of

Wˆ{T} * A in directions corresponding to W_{\perp}, where \dot{y}(t)
= A * y(t)

mu_bar (float): \bar{\mu} in Theorem 4.1, bound on logarithmic norm of
Wˆ{T} * A * V, where \dot{y}(t) = A * y(t)
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Assertion checks:
None; should be consistency of dimensions of V, W, W_perp.

"""

gamma = numpy.linalg.norm(numpy.dot(W.transpose(),
numpy.dot(coeff_matrix, W_perp)), 2)

matrix = numpy.dot(W.transpose(), numpy.dot(coeff_matrix,V))
mu_bar = numpy.max(numpy.real(numpy.linalg.eigvals(

matrix + matrix.transpose()))) / 2

return gamma, mu_bar

def calc_thm_4_4_consts(coeff_matrix, X, Y, W_perp):
"""
Purpose: Calculate the constants that determine the error bounds in
Theorem 4.4.

Arguments:
coeff_matrix (2-D numpy.ndarray of floats): A matrix in

\dot{y}(t) = A*y(t)
X (2-D numpy.ndarray of floats): orthonormal basis for range of projector
Y (2-D numpy.ndarray of floats): orthonormal basis for range of transpose

of projector
W_perp (2-D numpy.ndarray of floats): basis for range of complementary

projector

Returns:
gamma (float): \gamma in Theorem 4.4, bound on Lipschitz constant of

P * A in directions corresponding to W_{\perp}, where \dot{y}(t)
= A * y(t)

mu_bar (float): \bar{\mu} in Theorem 4.1, bound on logarithmic norm of
P * A, where \dot{y}(t) = A * y(t)

Assertion checks:
None; should check consistency of dimensions of coeff_matrix, X, Y,
W_perp; check orthogonality of W_perp (should have 2-norm of 1).

"""

proj_coeff_matrix = proj_vec_prod_stewart(X, Y, coeff_matrix)

gamma = numpy.linalg.norm(numpy.dot(proj_coeff_matrix, W_perp))
mu_bar = numpy.max(numpy.real(numpy.linalg.eigvals(

proj_coeff_matrix + proj_coeff_matrix.transpose()))) / 2

return gamma, mu_bar

def proj_vec_prod_stewart(X, Y, v):
"""
Purpose:
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Calculate projector-vector product from an XQRY representation of a
projector using algorithm (5.2) in G. W. (Pete) Stewart’s "On the
Numerical Analysis of Oblique Projectors", SIMAX, 2011.

Arguments:
X (2-D numpy.ndarray of floats): orthonormal basis for range of projector
Y (2-D numpy.ndarray of floats): orthonormal basis for range of transpose

of projector
v (1-D numpy.ndarray of floats): vector to be projected

Returns:
product (1-D numpy.ndarray of floats): P*v = projected vector

Assertion checks: None.

"""

(Q, R) = scipy.linalg.qr(numpy.dot(Y.transpose(), X))
c1 = numpy.dot(Y.transpose(), v)
c2 = numpy.dot(Q.transpose(), c1)
c3 = numpy.linalg.solve(R, c2)
product = numpy.dot(X, c3)

return product

def calc_errors(T, init_cond, coeff_matrix, X, Y, X_perp, Y_perp):
"""
Purpose:
Calculate solutions to the full and reduced models, plot these
solutions, and then calculate various errors in the reduced model.

Arguments:
T (float): end time for numerical integration
init_cond (1-D numpy.ndarray of floats): initial condition for

numerical integration
coeff_matrix (2-D numpy.ndarray of floats): coefficient (A) matrix for

linear system, \dot{y}(t) = A * y(t), n by n
X (2-D numpy.ndarray of floats): orthonormal basis for range of projector
Y (2-D numpy.ndarray of floats): orthonormal basis for range of transpose

of projector
X_perp (2-D numpy.ndarray of floats): orthonormal basis whose span is

orthogonal to span(X)
Y_perp (2-D numpy.ndarray of floats): orthonormal basis whose span is

orthogonal to span(Y)

Returns:
epsilon (float): function 2-norm of component of error in reduced model

solution in null space of projection matrix
in_sub_sup_norm (float): function sup-norm of component of error in

reduced model solution in range of projection matrix
in_sub_2_norm (float): function 2-norm of component of error in reduced

model solution in range of projection matrix
tot_err_2_norm (float): function 2-norm of total error in reduced model

solution
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soln_fig_1, soln_fig_2 (matplotlib.pyplot.Figure): plots of full and
reduced model solutions

err_fig_1, err_fig_2 (matplotlib.pyplot.Figure): plots of in-subspace and
total error

Assertion checks:
None; check consistency of matrix dimensions.

"""

# Simulate system, emulating Rathinam and Petzold, SINUM, 2004.
t_begin = 0
t_end = T
n_time_pts = 1000
t = numpy.linspace(t_begin, t_end, n_time_pts)

# Calculate product proj_coeff_matrix = P * coeff_matrix
proj_coeff_matrix = proj_vec_prod_stewart(X, Y, coeff_matrix)

# Set up numerical integrators. Note that the error tolerances are set
# very tightly to decrease numerical error due to integration. Use 7th-order
# explicit Runge-Kutta integration because systems are not stiff.
full_sys = scipy.integrate.ode(lin_sys)
full_sys.set_integrator(’dop853’, atol=1e-25, rtol=1e-13, nsteps=10000000)
full_sys.set_initial_value(init_cond, 0)
full_sys.set_f_params(coeff_matrix)

red_sys = scipy.integrate.ode(lin_sys)
red_sys.set_integrator(’dop853’, atol=1e-25, rtol=1e-3, nsteps=10000000)
red_sys.set_initial_value(init_cond, 0)
red_sys.set_f_params(proj_coeff_matrix)

# Run integration loops; use numpy.vstack to avoid the need for copying
# state of integrators.
full_soln = init_cond
for point in t[1:]:

if not full_sys.successful(): break
full_sys.integrate(point)
full_soln = numpy.vstack((full_soln, full_sys.y))

red_soln = init_cond
for point in t[1:]:

if not red_sys.successful(): break
red_sys.integrate(point)
red_soln = numpy.vstack((red_soln, red_sys.y))

# Calculate error in reduced model solution
err_soln = red_soln - full_soln

# Calculate product in_sub_err_soln = P * err_solnˆ{T}
in_sub_err_soln = proj_vec_prod_stewart(X, Y, err_soln.transpose())

# Calculate product out_sub_err_soln = (I - P) * err_solnˆ{T}
out_sub_err_soln = proj_vec_prod_stewart(Y_perp, X_perp,
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err_soln.transpose())

# Trapezoidal rule approximation to epsilon, which seems to work well.
epsilon = numpy.sqrt(numpy.trapz(

numpy.sum(out_sub_err_soln ** 2, axis=0), t))

# Calculate remaining norms
in_sub_sup_norm = numpy.max(numpy.abs(in_sub_err_soln))
in_sub_2_norm = numpy.sqrt(numpy.trapz(

numpy.sum(in_sub_err_soln ** 2, axis=0), t))
tot_err_2_norm = numpy.sqrt(numpy.trapz(

numpy.sum(err_soln.transpose() ** 2, axis=0), t))

# Plots comparing full and reduced model solutions
soln_fig_1 = matplotlib.pyplot.figure()
matplotlib.pyplot.plot(t, full_soln[:, 0], ’r-’)
matplotlib.pyplot.plot(t, full_soln[:, 1], ’b-’)
matplotlib.pyplot.plot(t, full_soln[:, 2], ’k-’)
matplotlib.pyplot.plot(t, red_soln[:, 0], ’r--’)
matplotlib.pyplot.plot(t, red_soln[:, 1], ’b--’)
matplotlib.pyplot.plot(t, red_soln[:, 2], ’k--’)
matplotlib.pyplot.title(’Comparison of full and reduced model solutions’)
matplotlib.pyplot.xlabel(’Time (t) [a.u.]’)
matplotlib.pyplot.ylabel(’State variable (x_j) [a.u.]’)
matplotlib.pyplot.legend( (’full, 1’, ’full, 2’, ’full, 3’,

’reduced, 1’, ’reduced, 2’, ’reduced, 3’), loc=’best’)

soln_fig_2 = matplotlib.pyplot.figure()
matplotlib.pyplot.plot(t, full_soln[:, 3], ’r-’)
matplotlib.pyplot.plot(t, full_soln[:, 4], ’b-’)
matplotlib.pyplot.plot(t, full_soln[:, 5], ’k-’)
matplotlib.pyplot.plot(t, red_soln[:, 3], ’r--’)
matplotlib.pyplot.plot(t, red_soln[:, 4], ’b--’)
matplotlib.pyplot.plot(t, red_soln[:, 5], ’k--’)
matplotlib.pyplot.title(’Comparison of full and reduced model solutions’)
matplotlib.pyplot.xlabel(’Time (t) [a.u.]’)
matplotlib.pyplot.ylabel(’State variable (x_j) [a.u.]’)
matplotlib.pyplot.legend( (’full, 4’, ’full, 5’, ’full, 6’,

’reduced, 4’, ’reduced, 5’, ’reduced, 6’), loc=’best’)

err_fig_1 = matplotlib.pyplot.figure()
matplotlib.pyplot.plot(t, err_soln[:, 0], ’r-’)
matplotlib.pyplot.plot(t, err_soln[:, 1], ’b-’)
matplotlib.pyplot.plot(t, err_soln[:, 2], ’k-’)
matplotlib.pyplot.plot(t, in_sub_err_soln[0, :], ’r--’)
matplotlib.pyplot.plot(t, in_sub_err_soln[1, :], ’b--’)
matplotlib.pyplot.plot(t, in_sub_err_soln[2, :], ’k--’)
matplotlib.pyplot.title(’Error in reduced model solution’)
matplotlib.pyplot.xlabel(’Time (t) [a.u.]’)
matplotlib.pyplot.ylabel(’Error in state variable (e_j) [a.u.]’)
matplotlib.pyplot.legend( (’total, 1’, ’total, 2’, ’total, 3’,

’in-subspace, 1’, ’in-subspace, 2’, ’in-subspace, 3’), loc=’best’)

err_fig_2 = matplotlib.pyplot.figure()
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matplotlib.pyplot.plot(t, err_soln[:, 3], ’r-’)
matplotlib.pyplot.plot(t, err_soln[:, 4], ’b-’)
matplotlib.pyplot.plot(t, err_soln[:, 5], ’k-’)
matplotlib.pyplot.plot(t, in_sub_err_soln[3, :], ’r--’)
matplotlib.pyplot.plot(t, in_sub_err_soln[4, :], ’b--’)
matplotlib.pyplot.plot(t, in_sub_err_soln[5, :], ’k--’)
matplotlib.pyplot.title(’Error in reduced model solution’)
matplotlib.pyplot.xlabel(’Time (t) [a.u.]’)
matplotlib.pyplot.ylabel(’Error in state variable (e_j) [a.u.]’)
matplotlib.pyplot.legend( (’total, 4’, ’total, 5’, ’total, 6’,

’in-subspace, 4’, ’in-subspace, 5’, ’in-subspace, 6’), loc=’best’)

return (epsilon, in_sub_sup_norm, in_sub_2_norm, tot_err_2_norm,
soln_fig_1, soln_fig_2, err_fig_1, err_fig_2)

def comparison_of_models(coeff_matrix, range_basis, null_basis, init_cond):
"""
Purpose:
Integrates the linear system \dot{\mathbf{x}} = coeff_matrix * \mathbf{x},
and also integrates the projected system \dot{\hat{\mathbf{x}}} =
\mathbf{P} * coeff_matrix * \hat{\mathbf{x}}. \mathbf{P} is a projection
matrix that has range equal to the space spanned by the columns of
range_basis, and null space equal to the space spanned by null_basis.

Arguments:
coeff_matrix (2-D numpy.ndarray of floats): square coefficient matrix of

linear ODE system; coeff_matrix.shape[0] == len(init_cond)
range_basis (2-D numpy.ndarray of floats): columns determine range space

of projection matrix; coeff_matrix.shape[0] == range_basis.shape[0]
null_basis (2-D numpy.ndarray of floats): columns determine null space of

projection matrix; coeff_matrix.shape[0] == null_basis.shape[0], and
coeff.matrix.shape[1] == (null_basis.shape[1] + range_basis.shape[1])

init_cond (1-D numpy.ndarray of floats): initial condition for integration

Returns:
soln_fig_1, soln_fig_2 (matplotlib.pyplot.Figure): plots of full and

reduced model solutions
err_fig_1, err_fig_2 (matplotlib.pyplot.Figure): plots of in-subspace and

total error

Assertion checks:
None; doesn’t check for consistency, although error checks could be added
later. NOTE: Many plots assume that n = 6 (# of variables); these can be
generalized.

"""

# Get size of problem and number of range basis vectors
(n, k) = range_basis.shape

# Calculate Petrov-Galerkin matrices and projector. Use G. W. (Pete)
# Stewart’s "On the Numerical Analysis of Oblique Projectors", SIMAX,
# Vol. 32, No. 1, pp. 309-348 (2011), to guide algorithms.
(X, Y, N, X_perp, Y_perp, N_c) = calc_XQRY_rep(range_basis, null_basis)
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# Stewart warns against calculating projection matrices directly, due to
# possible numerical error, but here, it is needed for some performance
# metrics (the norm of P).
P = calc_explicit_projector(X, Y, N)

# Calculate V, W, V_perp, W_perp where numpy.linalg.norm(W, 2) =
# numpy.linalg.norm(W_perp, 2) = 1.
(V, W, V_perp, W_perp) = calc_norm_1_W_rep(X, Y, N, X_perp, Y_perp, N_c)

# Calculate V, W, V_perp, W_perp where numpy.linalg.norm(V, 2) =
# numpy.linalg.norm(V_perp, 2) = 1.
(V_prime,
W_prime,
V_prime_perp,
W_prime_perp) = calc_norm_1_V_rep(X, Y, N, X_perp, Y_perp, N_c)

# Calculate constant in Theorem 4.1 and Corollary 4.4:
# Original choice of V, W, V_perp, W_perp
(gamma, mu_bar) = calc_thm_4_1_consts(coeff_matrix, V, W, W_perp)

# Constants after change of basis for V, W, V_perp, and W_perp
(gamma_prime,
mu_bar_prime) = calc_thm_4_1_consts(coeff_matrix, V_prime,

W_prime, W_prime_perp)

# Corollary 4.4: Constants using projection matrix instead
(gamma_proj,
mu_bar_proj) = calc_thm_4_4_consts(coeff_matrix, X, Y, W_perp)

# Now, to simulate full and reduced system, emulating Rathinam and
# Petzold, "A New Look at Proper Orthogonal Decomposition", SINUM,
# Vol. 41, No. 5, pp. 1893-1925 (2004).
T = 5
(epsilon, in_sub_sup_norm, in_sub_2_norm, tot_err_2_norm,
soln_fig_1, soln_fig_2,
err_fig_1,
err_fig_2) = calc_errors(T, init_cond, coeff_matrix,

X, Y, X_perp, Y_perp)

# Calculate error bounds
(in_sub_sup_norm_bound,
in_sub_2_norm_bound,
tot_err_2_norm_bound) = calc_err_bounds_thm_4_1(epsilon, gamma,

mu_bar, T, V, V_perp)

# Results.
print ’-----------------------------------------------------------’
print ’Size of matrix A (n by n), n = {}’.format(n)
print ’Size of reduced order model, k = {}’.format(k)
print ’gamma = {}’.format(gamma)
print ’mu_bar = {}’.format(mu_bar)
print ’2-norm of P = {}’.format(numpy.linalg.norm(P, 2))
print ’2-norm of V = {}’.format(numpy.linalg.norm(V, 2))
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print ’2-norm of W = {}’.format(numpy.linalg.norm(W, 2))
print ’gamma_prime (gamma under change of basis) = {}’.format(gamma_prime)
print ’mu_bar_prime (mu_bar under change of basis) = {}’.format(

mu_bar_prime)
print ’2-norm of V_prime = {}’.format(numpy.linalg.norm(V_prime, 2))
print ’2-norm of W_prime = {}’.format(numpy.linalg.norm(W_prime, 2))
print ’2-norm of V_prime_perp = {}’.format(numpy.linalg.norm(

V_prime_perp, 2))
print ’gamma_proj (gamma using P) = {}’.format(gamma_proj)
print ’mu_bar_proj (mu_bar using P) = {}’.format(mu_bar_proj)
print ’Condition number of N = {}’.format(numpy.linalg.cond(N))
print ’Using gamma and mu_bar:’
print ’2-norm of out-of-subspace error, epsilon = {}’.format(epsilon)
print ’2-norm of in-subspace error = {}’.format(in_sub_2_norm)
print ’Bound on 2-norm of in-subspace error = {}’.format(

in_sub_2_norm_bound)
print ’Sup-norm of in-subspace error = {}’.format(in_sub_sup_norm)
print ’Bound on sup-norm of in-subspace error = {}’.format(

in_sub_sup_norm_bound)
print ’2-norm of total error = {}’.format(tot_err_2_norm)
print ’Bound on 2-norm of total error = {}’.format(tot_err_2_norm_bound)
print ’-----------------------------------------------------------’

return (soln_fig_1, soln_fig_2, err_fig_1, err_fig_2)

def main_function():
"""
Purpose:
Main driver function.

Arguments:
None.

Returns:
None.

"""

# Set problem size
n = 6

# Set the seed of the random number generator for reproducibility.
numpy.random.seed(0)
numpy.random.rand(n)

# "A" matrix from Rathinam and Petzold, "A New Look at Proper Orthogonal
# Decomposition", SINUM, Vol. 41, No. 5, pp. 1893-1925 (2004).
petzold_A_1 = numpy.asarray([[-0.1, 0, 0],

[0, -0.1732, 2],
[0, -2, -0.1732]])

petzold_A_2 = numpy.asarray([[-1.0, 0, 0],
[0, -1.226, -0.7080],
[0, 0.7080, -1.226]])

petzold_A_12 = numpy.asarray([[0.3893, 0.5179, -1.543],

195



[1.390, 1.3, 0.8841],
[0.06293, -0.9078, -1.184]])

petzold_A = numpy.vstack(
(numpy.hstack((petzold_A_1, petzold_A_12)),
numpy.hstack((numpy.zeros((3, 3)), petzold_A_2))))

# Use symmetrized Petzold matrix with spectrum shifted downward, so that
# spectrum is real, and its logarithmic 2-norm is negative. Set range
# basis to last three eigenvectors (which have nonzero entries in their
# last three components). Set null space equal to the first three standard
# Euclidean basis vectors.
symm_A = copy.copy(petzold_A)
symm_A[1, 2] = -2
symm_A[5, 4] = -0.7080
symm_A = symm_A - 2 * numpy.eye(n)
(eigen_val, eigen_vec) = numpy.linalg.eig(symm_A)
range_basis = eigen_vec[:, 3:6]
null_basis = numpy.vstack((numpy.zeros((3,3)), numpy.eye(3)))

# Generate random initial condition
#init_cond = numpy.random.rand(n)
init_cond = numpy.ones(n)

# Run case study on this coefficient matrix and choice of bases
(example_1_soln_1, example_1_soln_2, example_1_err_1,
example_1_err_2) = comparison_of_models(symm_A,

range_basis, null_basis, init_cond)

# Scale the upper right block of the symmetrized, shifted Petzold matrix,
# which corresonds to halving gamma in our bounds.
lower_gamma_A = copy.copy(symm_A)
lower_gamma_A[0:3, 3:6] = .5 * symm_A[0:3, 3:6]
(eigen_val, eigen_vec) = numpy.linalg.eig(lower_gamma_A)
range_basis = eigen_vec[:, 3:6]

# Run case study on coefficient matrix for second example
(example_2_soln_1, example_2_soln_2, example_2_err_1,
example_2_err_2) = comparison_of_models(lower_gamma_A,

range_basis, null_basis, init_cond)

# Scale the lower right block of the symmetrized, shifted Petzold matrix
# which corresponds to increasing mu in our bounds.
higher_mu_A = copy.copy(symm_A)
higher_mu_A[3:6, 3:6] = .715 * symm_A[3:6, 3:6]
(eigen_val, eigen_vec) = numpy.linalg.eig(higher_mu_A)
range_basis = eigen_vec[:, 3:6]

# Run case study on coefficient matrix for third example
(example_3_soln_1, example_3_soln_2, example_3_err_1,
example_3_err_2) = comparison_of_models(higher_mu_A,

range_basis, null_basis, init_cond)

matplotlib.pyplot.show()
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return

if __name__ == "__main__":
main_function()
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Appendix C

Implementation of Examples for

Chapter 4

Examples for Chapter 4 were implemented in both MATLAB r2012a [133] and in

Python 2.7.3 [209].

C.1 MATLAB Implementation

The MATLAB r2012a [133] implementation requires the installation of Sundials 2.4

(or later), and SundialsTB [85].

function IllustrativeCaseStudy()
% Case study that uses Petzold and Rathinam’s example in SINUM, 2004, but
% uses a different reduced model to illustrate a more general result.

% Close all plots
close all;
format long e;

% Get the default random number generation stream in MATLAB, and reset it
% for reproducibility. See "Loren on the Art of MATLAB", November 5, 2008,
% http://blogs.mathworks.com/loren/2008/11/05/ (continued on next line)
% new-ways-with-random-numbers-part-i/
stream0 = RandStream(’mt19937ar’,’Seed’,0);
RandStream.setDefaultStream(stream0);

% Size of matrices
n = 6;

% "A" matrix from Rathinam and Petzold, SINUM, 2004.

199



petzoldA1 = [-0.1, 0, 0;
0, -0.1732, 2;
0, -2.0, -0.1732;];

petzoldA2 = [-1.0, 0, 0;
0, -1.226, -0.7080;
0, 0.7080, -1.226;];

petzoldA12 = [0.3893, 0.5179, -1.543;
1.390, 1.3, 0.8841;
0.06293, -0.9078, -1.184;];

petzoldA = [petzoldA1, petzoldA12;
zeros(3,3), petzoldA2];

% Block factors, used to make it so that gamma is determined by the upper
% block and muBar is determined by the lower block.
upperBlockFactor = 2;
lowerBlockFactor = 5;

% Modification of Petzold’s coefficient matrix in order to make the example
% more presentable.
model1 = [upperBlockFactor * petzoldA1, petzoldA12;

zeros(3,3), lowerBlockFactor * petzoldA2];

% Create reduced model by zeroing out the upper right 3 by 3 block of the
% full model coefficient matrix.
redModel1 = model1;
redModel1(1:3,4:6) = zeros(3,3);

% Random initial condition.
% initCond = rand(1,n);
initCond = ones(1,6);

upperBlockFactor = 2;
lowerBlockFactor = 10;

% Scaling factor for A12 block so that epsilon is unchanged in model2.
couplingFactor = 1.974500693397877;

% Modification of Petzold’s coefficient matrix in order to make the example
% more presentable.
model2 = [upperBlockFactor * petzoldA1, couplingFactor * petzoldA12;

zeros(3,3), lowerBlockFactor * petzoldA2];

% Create reduced model by zeroing out the upper right 3 by 3 block of the
% full model coefficient matrix.
redModel2 = model2;
redModel2(1:3,4:6) = zeros(3,3);

upperBlockFactor = 1;
lowerBlockFactor = 5;

% Modification of Petzold’s coefficient matrix in order to make the example
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% more presentable.
model3 = [upperBlockFactor * petzoldA1, petzoldA12;

zeros(3,3), lowerBlockFactor * petzoldA2];

% Create reduced model by zeroing out the upper right 3 by 3 block of the
% full model coefficient matrix.
redModel3 = model3;
redModel3(1:3,4:6) = zeros(3,3);

comparisonOfModels(model1, redModel1, initCond);
comparisonOfModels(model2, redModel2, initCond);
comparisonOfModels(model3, redModel3, initCond);

end

% Auxiliary function encoding a linear system for numerical integration;
% here, A is the coefficient matrix, y is the state vector, and t is time.
function dy = linSys(t,y,A)
dy = A * y;
end

function comparisonOfModels(fullMatrix, redMatrix, initCond)
% Purpose: Integrates the linear system \dot{\mathbf{x}} = fullMatrix *
% \mathbf{x}, and also integrates the projected system
% \dot{\hat{\mathbf{x}}} = \mathbf{P} * fullMatrix * \hat{\mathbf{x}}.
% \mathbf{P} is a projection matrix that has range equal to the space
% spanned by the columns of rangeBasis, and null space equal to the space
% spanned by the columns of nullBasis.
% Input: fullMatrix = n by n, coefficient matrix of linear ODE system; n
% is determined by size of matrix
% redMatrix = n by n, coefficient matrix of reduced model linear ODE
% system
% initCond = 1 by n, initial condition for integration; row vector
% due to peculiarities of MATLAB syntax
% Output: None to scope outside of call. Will output information relevant
% to error bounds to terminal, either as text, or as plots.
% Assertion checks: None! Doesn’t check for consistency, although error
% checks could be added later. NOTE: Many plots assume that n = 6; these
% can be generalized.

n = size(fullMatrix, 1);

% Calculate constants in Theorem 4.1 and Corollary 4.4:
% Original choice of V, W, Vperp, Wperp
gamma = norm(redMatrix);
muBar = max(real(eig(redMatrix + redMatrix’)))/2;

% Now, to simulate system, emulating Rathinam and Petzold, SINUM, 2004.
tSpan = [0,5];
T = tSpan(2);

% Note that error tolerances set very tightly to decrease numerical error
% due to integration. Use 4th-order Runge-Kutta integration because system
% is not stiff.
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options = odeset(’RelTol’,1e-13,’AbsTol’,ones(1,n)*1e-25);
[tPts, fullSoln] = ode45(@linSys, tSpan, initCond, options, fullMatrix);
[˜,redSoln] = ode45(@linSys, tPts, initCond, options, redMatrix);

% Calculate error in reduced model solution
errSoln = redSoln - fullSoln;

% Calculate both components of error.
outSubErrSoln = cumtrapz(tPts, (redMatrix - fullMatrix)*fullSoln’, 2)’;
inSubErrSoln = errSoln - outSubErrSoln;

% Trapezoidal rule approximation to epsilon, which seems to work well.
epsilon = sqrt(trapz(tPts, sum(outSubErrSoln.ˆ2,2)));

% Calculate infinity norm of in-subspace error and compare to its predicted
% bound.
inSubInfNormBound = epsilon * gamma * ...

sqrt( (exp(2 * muBar * T) - 1) / (2 * muBar) );
inSubInfNorm = max(max(abs(inSubErrSoln)));

inSub2NormBound = epsilon * gamma * ...
sqrt( (exp(2 * muBar * T) - 1 - 2 * muBar * T) / (4 * muBarˆ2));

inSub2Norm = sqrt(trapz(tPts, sum(inSubErrSoln.ˆ2,2)));

% Calculate 2-norm of total error and compare to its predicted bound.
% 2-norm of total error approximated using trapezoidal rule.
totErr2NormBound = epsilon * (1 + gamma * ...

sqrt( (exp(2 * muBar * T) - 1 - 2 * muBar * T) / (4 * muBarˆ2)) );
totErr2Norm = sqrt(trapz(tPts, sum((errSoln’).ˆ2,1)));

% Statements to check code, and results.
fprintf(1, ’-----------------------------------------------------------\n’)
fprintf(1, ’Size of matrix A (n by n), n = %e\n’, n)
fprintf(1, ’gamma = %e\n’, gamma);
fprintf(1, ’muBar = %e\n’, muBar);
fprintf(1, ’2-norm of truncating error, epsilon = %e\n’, epsilon);
fprintf(1, ’2-norm of propagating error = %e\n’, inSub2Norm);
fprintf(1, ’Bound on 2-norm of propagating error = %e\n’, inSub2NormBound);
fprintf(1, ’Sup-norm of propagating error = %e\n’, inSubInfNorm);
fprintf(1, ’Bound on Sup-norm of propagating error = %e\n’, ...

inSubInfNormBound);
fprintf(1, ’2-norm of total error = %e\n’, totErr2Norm);
fprintf(1, ’Bound on 2-norm of total error = %e\n’, totErr2NormBound)
fprintf(1, ’-----------------------------------------------------------\n’)

% Plots:
% First, note that x_1, x_2, and x_3 should be different between the two
% models. Also, note that the only nonzero components of the error should
% be e_1, e_2, and e_3.

figure;
plot(tPts, fullSoln(:,1), ’r-’);
hold on;
plot(tPts, fullSoln(:,2), ’b-’);
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plot(tPts, fullSoln(:,3), ’k-’);
plot(tPts, redSoln(:,1), ’r--’);
plot(tPts, redSoln(:,2), ’b--’);
plot(tPts, redSoln(:,3), ’k--’);
title(’Comparison of full and reduced model solutions’);
xlabel(’Time (t) [a.u.]’);
ylabel(’State variable (x_j) [a.u.]’);
legend(’full, 1’, ’full, 2’, ’full, 3’, ’reduced, 1’, ’reduced, 2’, ...

’reduced, 3’, ’Location’, ’Best’);

figure;
plot(tPts, errSoln(:,1), ’r-’);
hold on;
plot(tPts, errSoln(:,2), ’b-’);
plot(tPts, errSoln(:,3), ’k-’);
plot(tPts, inSubErrSoln(:,1), ’r--’);
plot(tPts, inSubErrSoln(:,2), ’b--’);
plot(tPts, inSubErrSoln(:,3), ’k--’);
title(’Error in reduced model solution’);
xlabel(’Time (t) [a.u.]’);
ylabel(’Error in state variable (e_j) [a.u.]’);
legend(’total, 1’, ’total, 2’, ’total, 3’, ’propagating, 1’, ...

’propagating, 2’, ’propagating, 3’, ’Location’, ’Best’);

end

C.2 Python Implementation

The Python 2.7.3 [209] implementation requires the installation of NumPy 1.6.2

(or later) [152], SciPy 0.10.1 (or later) [93], and Matplotlib 1.0.0 (or later) [90]. An

attempt was made to keep the number of dependencies to a minimum. It is likely

that the Python code below will work with Python 2.6 (or later).

#!/usr/bin/env python

import numpy
import scipy.integrate
import matplotlib.pyplot
import math
import copy

def lin_sys(t, y, A):
"""
Purpose:
Auxiliary function encoding a linear ODE system for numerical integration.

Arguments:
t (float): time
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y (1-D numpy.ndarray): states
A (2-D numpy.ndarray): square coefficient array, where A.shape[1] == len(y)

Returns:
f (1-D numpy.ndarray): right-hand side of ODE

"""

f = numpy.dot(A, y)
return f

def comparison_of_models(full_matrix, red_matrix, init_cond):
"""
Purpose:
Integrates the linear system \dot{\mathbf{x}} = full_matrix * \mathbf{x},
and also integrates the reduced system \dot{\hat{\mathbf{x}}} =
red_matrix * \hat{\mathbf{x}}.

Arguments:
full_matrix (2-D numpy.ndarray of floats): coefficient matrix of "full"
linear ODE system, square array
red_matrix (2-D numpy.ndarray of floats): coefficient matrix of "reduced"
linear ODE system, square array, red_matrix.shape == full_matrix.shape
init_cond (1-D numpy.ndarray of floats): initial condition for integration,
row vector due to numpy syntax; len(init_cond) == full_matrix.shape[1]

Returns:
soln_fig (matplotlib.pyplot.Figure): figure containing plots of full and
reduced solution
err_fig (matplotlib.pyplot.Figure): figure containing plots of total
error and propagating error

Assertion checks:
None; doesn’t check for consistency, though error checks could be added later.
Many plots assume that len(init_cond) == 6; these could be generalized

"""

# Calculate constants in Theorem 4.1 and Corollary 4.4:
gamma = numpy.linalg.norm(red_matrix, 2)
mu_bar = numpy.max(numpy.real(

numpy.linalg.eigvals(red_matrix + red_matrix.transpose())))/2

# Simulate system, emulating Rathinam and Petzold, SINUM, 2004.
t_begin = 0
t_end = 5
n_time_pts = 1000
t = numpy.linspace(t_begin, t_end, n_time_pts)

# Set up numerical integrators. Note that the error tolerances are set
# very tightly to decrease numerical error due to integration. Use 7th-order
# explicit Runge-Kutta integration because systems are not stiff.
full_sys = scipy.integrate.ode(lin_sys)
full_sys.set_integrator(’dop853’, atol=1e-25, rtol=1e-13, nsteps=10000000)
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full_sys.set_initial_value(init_cond, 0)
full_sys.set_f_params(full_matrix)

red_sys = scipy.integrate.ode(lin_sys)
red_sys.set_integrator(’dop853’, atol=1e-25, rtol=1e-3, nsteps=10000000)
red_sys.set_initial_value(init_cond, 0)
red_sys.set_f_params(red_matrix)

# Run integration loops; use numpy.vstack to avoid the need for copying
# state of integrators.
full_soln = init_cond
for point in t[1:]:

if not full_sys.successful(): break
full_sys.integrate(point)
full_soln = numpy.vstack((full_soln, full_sys.y))

red_soln = init_cond
for point in t[1:]:

if not red_sys.successful(): break
red_sys.integrate(point)
red_soln = numpy.vstack((red_soln, red_sys.y))

# Calculate error in reduced model solution
err_soln = red_soln - full_soln

# Calculate both components of error
#out_sub_err_soln = scipy.integrate.cumtrapz(
# numpy.dot((red_matrix - full_matrix), full_soln.transpose()),
# t, axis=1).transpose()
t_matrix = numpy.tile(t, (len(init_cond), 1)).transpose()
out_sub_err_soln = scipy.integrate.cumtrapz(

numpy.dot(full_soln, (red_matrix - full_matrix).transpose()),
t_matrix, axis=0)

out_sub_err_soln = numpy.vstack((numpy.zeros(len(init_cond)),
out_sub_err_soln))

in_sub_err_soln = err_soln - out_sub_err_soln

# Trapezoidal rule approximation to epsilon, which seems to work well.
epsilon = numpy.sqrt(numpy.trapz(

numpy.sum(out_sub_err_soln ** 2, axis=1), t))

# Calculate infinity norm of in-subspace error and compare to its
# predicted bound.
T = t_end
in_sub_inf_norm_bound = (epsilon * gamma * math.sqrt(

(math.exp(2 * mu_bar * T) - 1) / (2 * mu_bar)))
in_sub_inf_norm = numpy.max(numpy.abs(in_sub_err_soln))

in_sub_2_norm_bound = (epsilon * gamma * math.sqrt(
(math.exp(2 * mu_bar * T) - 1 - 2 * mu_bar * T) / (4 * mu_bar ** 2)))

in_sub_2_norm = math.sqrt(numpy.trapz(
numpy.sum(in_sub_err_soln ** 2, axis=1), t))

# Calculate 2-norm of total error and compare to its predicted bound.
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# 2-norm of total error approximated using trapezoidal rule.
tot_err_2_norm_bound = (epsilon * (1 + gamma * math.sqrt(

(math.exp(2 * mu_bar * T) - 1 - 2 * mu_bar * T) / (4 * mu_bar ** 2))))
tot_err_2_norm = numpy.sqrt(numpy.trapz(

numpy.sum(err_soln ** 2, axis=1), t))

# Statements to check code, and results
print ’-----------------------------------------------------------’
print ’Size of matrix A (n by n), n = {}’.format(full_matrix.shape[0])
print ’gamma = {}’.format(gamma)
print ’mu_bar = {}’.format(mu_bar)
print ’2-norm of truncating error, epsilon = {}’.format(epsilon)
print ’2-norm of propagating error = {}’.format(in_sub_2_norm)
print ’Bound on 2-norm of propagating error = {}’.format(

in_sub_2_norm_bound)
print ’Sup-norm of propagating error = {}’.format(in_sub_inf_norm)
print ’Bound on Sup-norm of propagating error = {}’.format(

in_sub_inf_norm_bound)
print ’2-norm of total error = {}’.format(tot_err_2_norm)
print ’Bound on 2-norm of total error = {}’.format(tot_err_2_norm_bound)
print ’-----------------------------------------------------------’

# Plots:
# For the inputs given, x_1, x_2, and x_3 should be different between the
# two models. Also, note that the only nonzero error components for these
# inputs should be e_1, e_2, and e_3.
soln_fig = matplotlib.pyplot.figure()
matplotlib.pyplot.plot(t, full_soln[:, 0], ’r-’)
matplotlib.pyplot.plot(t, full_soln[:, 1], ’b-’)
matplotlib.pyplot.plot(t, full_soln[:, 2], ’k-’)
matplotlib.pyplot.plot(t, red_soln[:, 0], ’r--’)
matplotlib.pyplot.plot(t, red_soln[:, 1], ’b--’)
matplotlib.pyplot.plot(t, red_soln[:, 2], ’k--’)
matplotlib.pyplot.title(’Comparison of full and reduced model solutions’)
matplotlib.pyplot.xlabel(’Time (t) [a.u.]’)
matplotlib.pyplot.ylabel(’State variable (x_j) [a.u.]’)
matplotlib.pyplot.legend( (’full, 1’, ’full, 2’, ’full, 3’,

’reduced, 1’, ’reduced, 2’, ’reduced, 3’), loc=’best’)

err_fig = matplotlib.pyplot.figure()
matplotlib.pyplot.plot(t, err_soln[:, 0], ’r-’)
matplotlib.pyplot.plot(t, err_soln[:, 1], ’b-’)
matplotlib.pyplot.plot(t, err_soln[:, 2], ’k-’)
matplotlib.pyplot.plot(t, in_sub_err_soln[:, 0], ’r--’)
matplotlib.pyplot.plot(t, in_sub_err_soln[:, 1], ’b--’)
matplotlib.pyplot.plot(t, in_sub_err_soln[:, 2], ’k--’)
matplotlib.pyplot.title(’Error in reduced model solution’)
matplotlib.pyplot.xlabel(’Time (t) [a.u.]’)
matplotlib.pyplot.ylabel(’Error in state variable (e_j) [a.u.]’)
matplotlib.pyplot.legend( (’total, 1’, ’total, 2’, ’total, 3’,

’propagating, 1’, ’propagating, 2’, ’propagating, 3’), loc=’best’)

return soln_fig, err_fig
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def main_function():
"""
Purpose:
Main driver function.

Arguments:
None

Returns:
None.

"""

# Set problem size
n = 6

# Set the seed of the random number generator for reproducibility.
numpy.random.seed(0)
numpy.random.rand(n)

# "A" matrix from Rathinam and Petzold, "A New Look at Proper Orthogonal
# Decomposition", SINUM, Vol. 41, No. 5, pp. 1893-1925 (2004).
petzold_A_1 = numpy.asarray([[-0.1, 0, 0],

[0, -0.1732, 2],
[0, -2, -0.1732]])

petzold_A_2 = numpy.asarray([[-1.0, 0, 0],
[0, -1.226, -0.7080],
[0, 0.7080, -1.226]])

petzold_A_12 = numpy.asarray([[0.3893, 0.5179, -1.543],
[1.390, 1.3, 0.8841],
[0.06293, -0.9078, -1.184]])

petzold_A = numpy.vstack(
(numpy.hstack((petzold_A_1, petzold_A_12)),
numpy.hstack((numpy.zeros((3, 3)), petzold_A_2))))

# Block factors, used to make it so that gamma is determined by the upper
# block and mu_bar is determined by the lower block.
upper_block_factor_1 = 2
lower_block_factor_1 = 5

# Modification of Petzold and Rathinam’s coefficient matrix in order to
# make the example more presentable.
model_1 = numpy.vstack(

(numpy.hstack((upper_block_factor_1 * petzold_A_1, petzold_A_12)),
numpy.hstack((numpy.zeros((3, 3)),
lower_block_factor_1 * petzold_A_2)))
)

# Create reduced model by zeroing out the upper right 3 by 3 block of the
# full model coefficient matrix
red_model_1 = copy.copy(model_1)
red_model_1[0:3,3:6] = numpy.zeros((3,3))
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# Random initial condition
#init_cond = numpy.random.rand(n)
init_cond = numpy.ones(n)

# Second set of block factors, used to make it so that gamma is determined
# by the upper block and mu_bar and is determined by the lower block.
# Gamma is doubled from the previous example. The coupling_factor,
# which is a scaling factor for the A_12 block, is applied so that epsilon
# is unchanged from the first example.
upper_block_factor_2 = 2
lower_block_factor_2 = 10
coupling_factor_2 = 1.974500693397877

# Second example matrix
model_2 = numpy.vstack(

(numpy.hstack((upper_block_factor_2 * petzold_A_1,
coupling_factor_2 * petzold_A_12)),
numpy.hstack((numpy.zeros((3, 3)), lower_block_factor_2 * petzold_A_2)))
)

# Create reduced model from second example matrix by zeroing out the upper
# right 3 by 3 block of the full model coefficient matrix
red_model_2 = copy.copy(model_2)
red_model_2[0:3, 3:6] = numpy.zeros((3,3))

# Third set of block factors
upper_block_factor_3 = 1
lower_block_factor_3 = 5

# Third set of block factors to make the third example
model_3 = numpy.vstack(

(numpy.hstack((upper_block_factor_3 * petzold_A_1, petzold_A_12)),
numpy.hstack((numpy.zeros((3, 3)),
lower_block_factor_3 * petzold_A_2)))
)

# Create reduced model by zeroing out the upper right 3 by 3 block of the
# full model coefficient matrix
red_model_3 = copy.copy(model_3)
red_model_3[0:3, 3:6] = numpy.zeros((3,3))

(soln_fig_1,
err_fig_1) = comparison_of_models(model_1, red_model_1, init_cond)

(soln_fig_2,
err_fig_2) = comparison_of_models(model_2, red_model_2, init_cond)

(soln_fig_3,
err_fig_3) = comparison_of_models(model_3, red_model_3, init_cond)

matplotlib.pyplot.show()

return

if __name__ == "__main__":
main_function()
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Appendix D

Implementation of Point-Constrained

Reaction Elimination and

Point-Constrained Simultaneous

Reaction and Species Elimination

Formulations in Chapter 5

A reference implementation of point-constrained reaction elimination and point-

constrained simultaneous reaction and species elimination is given in Python so

that it may be used as a basis for future reproducible research. In addition, unit

tests are also given to ensure that

D.1 Python Implementation

The Python 2.7.3 [209] implementation requires the installation of Cantera 2.0.0b3

(or later) [73], the Cantera Python interface, NumPy 1.6.2 (or later) [152], and PuLP

1.4.9 (or later) [135]. The PuLP package includes interfaces to multiple open-source

and proprietary solvers (including CPLEX and Gurobi). An attempt was made to
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keep the number of dependencies to a minimum. It is likely that the Python code

below will work with Python 2.6 (or later).

#/usr/bin/env python

# Requirements:
# NumPy
# Cantera
# PuLP

import numpy
import Cantera
import pulp

# Optional:
# Installed LP solvers (Gurobi, CPLEX, CBC, COIN)

def calc_cond_indep_data(ideal_gas):
"""
Purpose: Calculate the condition-independent data needed for reaction
elimination: the molar mass-stoichiometric matrix product

Arguments:
ideal_gas (Cantera.Solution): Cantera.Solution object specifying
a chemical reaction mechanism and the thermodynamic properties of
its constituent species

Returns:
mass_stoich_prod (2-D numpy.ndarray of floats): product of diagonal
matrix of molar masses and stoichiometry matrix
"""

molar_mass = ideal_gas.molarMasses()
stoich_matrix = (ideal_gas.productStoichCoeffs() -

ideal_gas.reactantStoichCoeffs())
mass_stoich_prod = numpy.dot(numpy.diag(molar_mass), stoich_matrix)

return stoich_matrix, mass_stoich_prod

def calc_cond_dep_data(state, ideal_gas):
"""
Purpose: Calculate the condition-dependent data needed for reaction
elimination:
- species mass enthalpies
- reaction rates
- mass-based constant pressure heat capacity
- mass density

Arguments:
state (list of floats, or 1-D numpy.ndarray of floats): Reaction
conditions consisting of temperature and species mass fractions
(in the order that they are specified in the Cantera mechanism).
Temperature must be the first element in the system state list
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(or 1-D numpy.ndarray); subsequent elements must be species mass
fractions, in the order that they are specified in the Cantera
mechanism.
ideal_gas (Cantera.Solution): Cantera.Solution object specifying a
chemical reaction mechanism and the thermodynamic properties of its
constituent species; uses state of ideal_gas to calculate properties

Returns:
rxn_rate (1-D numpy.ndarray of floats): (row) vector of reaction rates
cp_mass (float): mass-based constant pressure heat capacity
enthalpy_mass (1-D numpy.ndarray of floats): (row) vector of species

mass (or specific) enthalpies
rho (float): mass density

"""

ideal_gas.setTemperature(state[0])
ideal_gas.setMassFractions(state[1:])

rxn_rate = ideal_gas.netRatesOfProgress()
cp_mass = ideal_gas.cp_mass()
enthalpy_mass = (ideal_gas.enthalpies_RT() *

ideal_gas.temperature() * Cantera.GasConstant)
rho = ideal_gas.density()

return (rxn_rate, cp_mass, enthalpy_mass, rho)

def error_constraint_data(state, ideal_gas, mass_stoich_prod, atol, rtol):
"""
Purpose: Calculates all of the coefficients for the error constraints
in the point-constrained reaction and species elimination integer
linear programming formulations.

Arguments:
state (list of floats, or 1-D numpy.ndarray of floats): Reaction
conditions consisting of temperature and species mass fractions
(in the order that they are specified in the Cantera mechanism).
Temperature must be the first element in the system state list
(or 1-D numpy.ndarray); subsequent elements must be species mass
fractions, in the order that they are specified in the Cantera
mechanism.
ideal_gas (Cantera.Solution): Cantera.Solution object specifying a
chemical reaction mechanism and the thermodynamic properties of its
constituent species; uses state of ideal_gas to calculate properties
atol (1-D numpy.ndarray of floats): list of absolute tolerances;
len(atol) == states.shape[1] == ideal_gas.nSpecies() + 1
rtol (1-D numpy.ndarray of floats): list of relative tolerances;
len(rtol) == states.shape[1] == ideal_gas.nSpecies() + 1
mass_stoich_prod (2-D numpy.ndarray of floats): product of diagonal
matrix of molar masses and stoichiometry matrix

Returns:
coeffs_temp (1-D numpy.ndarray of floats): coefficients for constraints

on error in time derivative of temperature
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coeffs_y (2-D numpy.ndarray of floats): coefficients for constraints on
on error in time derivatives of species mass fractions

rhs_temp (float): right-hand side of constraints on error in time
derivative of temperature

rhs_y (1-D numpy.ndarray of floats): right-hand side of constraints on
error in time derivatives of species mass fractions

Comments:
Could refactor this function to use the internal state of ideal_gas,
but the additional state argument was chosen to make the dependency
much more explicit.

"""

(rxn_rate,
cp_mass,
enthalpy_mass,
rho) = calc_cond_dep_data(state, ideal_gas)

coeffs_temp = numpy.dot(enthalpy_mass, numpy.dot(mass_stoich_prod,
numpy.diag(rxn_rate))) / (rho * cp_mass)

temp_dot = numpy.dot(coeffs_temp, rxn_rate)
rhs_temp = atol[0] + rtol[0] * abs(temp_dot)

ydot = numpy.dot(mass_stoich_prod, rxn_rate) / rho
coeffs_y = numpy.dot(mass_stoich_prod, numpy.diag(rxn_rate)) / rho
rhs_y = atol[1:] + numpy.dot(abs(ydot), numpy.diag(rtol[1:]))

return coeffs_temp, coeffs_y, rhs_temp, rhs_y

def reaction_elim(states, ideal_gas, atol, rtol,
lpsolver=pulp.solvers.GLPK_CMD()):

"""
Purpose: Carries out reaction elimination (Bhattacharjee, et al.,
Comb Flame, 2003) on the mechanism specified in ideal_gas at the
conditions specified in states, using the absolute tolerances
specified in atol, and relative tolerances specified in rtol.

Arguments:
states (list of list of floats, or 2-D numpy.ndarray of floats):
each element of the outer list (or each row of the 2-D
numpy.ndarray) corresponds to a system state (or condition).
Conditions consist of temperature and species mass fractions
(in the order that they are specified in the Cantera mechanism).
Temperature must be the first element in the system state list
(or 1-D numpy.ndarray); subsequent elements must be species mass
fractions, in the order that they are specified in the Cantera
mechanism.
ideal_gas (Cantera.Solution): Cantera.Solution object specifying
a chemical reaction mechanism and the thermodynamic properties of
its constituent species
atol (list of floats or 1-D numpy.ndarray of floats): list of
absolute tolerances; len(atol) == states.shape[1] ==
ideal_gas.nSpecies() + 1
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rtol (list of floats or 1-D numpy.ndarray of floats): list of
relative tolerances; len(rtol) == states.shape[1] ==
ideal_gas.nSpecies() + 1
lpsolver (pulp solver command): One of the solver commands listed
when running pulp.pulpTestAll(), such as:

pulp.solvers.PULP_CBC_CMD()
pulp.solvers.CPLEX_DLL()
pulp.solvers.CPLEX_CMD()
pulp.solvers.CPLEX_PY()
pulp.solvers.COIN_CMD()
pulp.solvers.COINMP_DLL()
pulp.solvers.GLPK_CMD()
pulp.solvers.XPRESS()
pulp.solvers.GUROBI()
pulp.solvers.GUROBI_CMD()
pulp.solvers.PYGLPK()
pulp.solvers.YAPOSIB()

These solvers also have optional arguments; see the PuLP documentation
for details. This argument allows one to change the solver and solver
options in the API call.

Returns:
z (list of ints, or 1-D numpy.ndarray of ints): binary variables
indicating which reactions should be kept, and which should be
eliminated
status (str): indicates the LP solver status; is one of "Not
Solved", "Infeasible", "Unbounded", "Undefined", "Optimal"

Warnings:
This function alters the state of ideal_gas. If the state of that
object prior to calling this function needs to be preserved,
copy the object.

"""

# Convert lists to numpy.ndarrays because the data structure is useful
# for the operators.
atol = numpy.asarray(atol)
rtol = numpy.asarray(rtol)

# Set up the lists needed for indexing
rxn_list = range(0, ideal_gas.nReactions())
rxn_strings = [str(n+1) for n in rxn_list]

# Instantiate binary variables for integer linear program
z_var = pulp.LpVariable.dicts(’rxn_’, rxn_strings, 0, 1, ’Integer’)

# Instantiate integer linear program and objective function
rxn_elim_ILP = pulp.LpProblem("Reaction Elimination", pulp.LpMinimize)
rxn_elim_ILP += pulp.lpSum([z_var[s] for s

in rxn_strings]), "Number of reactions"
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# Calculate condition-independent data and store
(stoich_matrix, mass_stoich_prod) = calc_cond_indep_data(ideal_gas)
ideal_gas.setPressure(Cantera.OneAtm)

# Add constraints: loop over data points
for k in range(0, len(states)):

# Calculate condition-dependent data
(coeffs_temp, coeffs_y, rhs_temp,
rhs_y) = error_constraint_data(states[k],

ideal_gas, mass_stoich_prod, atol, rtol)

# Add two temperature error constraints (lower, upper bounds)
rxn_elim_ILP += pulp.lpSum([coeffs_temp[i] *

(1 - z_var[rxn_strings[i]]) for i in rxn_list]) >= -rhs_temp, \
"Temperature Error Lower Bound for Data Point " + str(k+1)

rxn_elim_ILP += pulp.lpSum([coeffs_temp[i] *
(1 - z_var[rxn_strings[i]]) for i in rxn_list]) <= rhs_temp, \
"Temperature Error Upper Bound for Data Point " + str(k+1)

# Add constraints: Loop over species mass fractions
for j in range(0, ideal_gas.nSpecies()):

# Add two species mass fraction error constraints (lower, upper
# bounds)
rxn_elim_ILP += pulp.lpSum([coeffs_y[j, i] *

(1 - z_var[rxn_strings[i]]) for i in rxn_list]) >= -rhs_y[j], \
"Mass Fraction Species " + str(j+1) + \
" Error Lower Bound for Data Point " + str(k+1)

rxn_elim_ILP += pulp.lpSum([coeffs_y[j, i] *
(1 - z_var[rxn_strings[i]]) for i in rxn_list]) <= rhs_y[j], \
"Mass Fraction Species " + str(j+1) + \
" Error Upper Bound for Data Point " + str(k+1)

# Solve integer linear program
rxn_elim_ILP.solve(solver=lpsolver)

# Return list of binary variables, solver status
z = [int(z_var[i].value()) for i in rxn_strings]
#z = [int(v.value()) for v in rxn_elim_ILP.variables()]
return z, pulp.LpStatus[rxn_elim_ILP.status]

def reaction_and_species_elim(states, ideal_gas, atol, rtol,
lpsolver=pulp.solvers.GLPK_CMD()):

"""
Purpose: Carries out simultaneous reaction and species
elimination (Mitsos, et al.,Comb Flame, 2008;
Mitsos, 2008, unpublished) on the mechanism specified in
ideal_gas at the conditions specified in states, using the
absolute tolerances specified in atol, and relative tolerances
specified in rtol. Mitsos’ unpublished formulation is used here,
which decreases the number of integer variables in the mixed-integer
linear programming formulation, which decreases its run time compared
to the original formulation in Combustion and Flame.
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Arguments:
states (list of list of floats, or 2-D numpy.ndarray of floats):
each element of the outer list (or each row of the 2-D
numpy.ndarray) corresponds to a system state (or condition).
Conditions consist of temperature and species mass fractions
(in the order that they are specified in the Cantera mechanism).
Temperature must be the first element in the system state list
(or 1-D numpy.ndarray); subsequent elements must be species mass
fractions, in the order that they are specified in the Cantera
mechanism.
ideal_gas (Cantera.Solution): Cantera.Solution object specifying
a chemical reaction mechanism and the thermodynamic properties of
its constituent species
atol (list of floats or 1-D numpy.ndarray of floats): list of
absolute tolerances; len(atol) == states.shape[1] ==
ideal_gas.nSpecies() + 1
rtol (list of floats or 1-D numpy.ndarray of floats): list of
relative tolerances; len(rtol) == states.shape[1] ==
ideal_gas.nSpecies() + 1
lpsolver (pulp solver command): One of the solver commands listed
when running pulp.pulpTestAll(), such as:

pulp.solvers.PULP_CBC_CMD()
pulp.solvers.CPLEX_DLL()
pulp.solvers.CPLEX_CMD()
pulp.solvers.CPLEX_PY()
pulp.solvers.COIN_CMD()
pulp.solvers.COINMP_DLL()
pulp.solvers.GLPK_CMD()
pulp.solvers.XPRESS()
pulp.solvers.GUROBI()
pulp.solvers.GUROBI_CMD()
pulp.solvers.PYGLPK()
pulp.solvers.YAPOSIB()

These solvers also have optional arguments; see the PuLP documentation
for details. This argument allows one to change the solver and solver
options in the API call.

Returns:
z (list of ints, or 1-D numpy.ndarray of ints): binary variables
indicating which reactions should be kept, and which should be
eliminated
w (list of ints, or 1-D numpy.ndarray of ints): binary variables
indicating which species should be kept, and which should be
eliminated
status (str): indicates the LP solver status; is one of "Not
Solved", "Infeasible", "Unbounded", "Undefined", "Optimal"

Warnings:
This function alters the state of ideal_gas. If the state of that
object prior to calling this function needs to be preserved,
copy the object.
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"""

# Convert lists to numpy.ndarrays because the data structure is useful
# for the operators.
atol = numpy.asarray(atol)
rtol = numpy.asarray(rtol)

# Set up the lists needed for indexing
rxn_list = range(0, ideal_gas.nReactions())
rxn_strings = [str(n+1) for n in rxn_list]

species_list = range(0, ideal_gas.nSpecies())
species_strings = [str(n+1) for n in species_list]

# Instantiate binary variables for integer linear program
z_var = pulp.LpVariable.dicts(’rxn_’, rxn_strings, 0, 1, ’Integer’)
w_var = pulp.LpVariable.dicts(’species_’, species_strings, 0, 1,

’Continuous’)

# Instantiate integer linear program and objective function
rxn_elim_ILP = pulp.LpProblem("Reaction Elimination", pulp.LpMinimize)
rxn_elim_ILP += pulp.lpSum([w_var[s] for s

in species_strings]), "Number of species"

# Calculate condition-independent data and store
(stoich_matrix, mass_stoich_prod) = calc_cond_indep_data(ideal_gas)
ideal_gas.setPressure(Cantera.OneAtm)

# Add participation constraints from alternative Mitsos formulation
for j in range(0, ideal_gas.nSpecies()):

for i in range(0, ideal_gas.nReactions()):
if stoich_matrix[j, i] != 0:

rxn_elim_ILP += \
w_var[species_strings[j]] - z_var[rxn_strings[i]] >= 0, \
"Participation of species " + str(j+1) + \
" and reaction " + str(i+1)

# Add error constraints: loop over data points
for k in range(0, len(states)):

# Calculate condition-dependent data
(coeffs_temp, coeffs_y, rhs_temp,
rhs_y) = error_constraint_data(states[k],

ideal_gas, mass_stoich_prod, atol, rtol)

# Add two temperature error constraints (lower, upper bounds)
rxn_elim_ILP += pulp.lpSum([coeffs_temp[i] *

(1 - z_var[rxn_strings[i]]) for i in rxn_list]) >= -rhs_temp, \
"Temperature Error Lower Bound for Data Point " + str(k+1)

rxn_elim_ILP += pulp.lpSum([coeffs_temp[i] *
(1 - z_var[rxn_strings[i]]) for i in rxn_list]) <= rhs_temp, \
"Temperature Error Upper Bound for Data Point " + str(k+1)

216



# Add constraints: Loop over species mass fractions
for j in range(0, ideal_gas.nSpecies()):

# Add two species mass fraction error constraints (lower, upper
# bounds)
rxn_elim_ILP += pulp.lpSum([coeffs_y[j, i] *

(1 - z_var[rxn_strings[i]]) for i in rxn_list]) >= -rhs_y[j], \
"Mass Fraction Species " + str(j+1) + \
" Error Lower Bound for Data Point " + str(k+1)

rxn_elim_ILP += pulp.lpSum([coeffs_y[j, i] *
(1 - z_var[rxn_strings[i]]) for i in rxn_list]) <= rhs_y[j], \
"Mass Fraction Species " + str(j+1) + \
" Error Upper Bound for Data Point " + str(k+1)

# Solve integer linear program
rxn_elim_ILP.solve(solver=lpsolver)

# Return list of binary variables, solver status
z = [int(z_var[i].value()) for i in rxn_strings]
w = [int(w_var[j].value()) for j in species_strings]
return z, w, pulp.LpStatus[rxn_elim_ILP.status]

D.2 Python Unit Tests

Unit tests are provided here to ensure that any modifications to the code do not

break existing functionality, and to guard against errors in the Python implemen-

tation above.

import chemReduce
import Cantera
import unittest
import numpy

class TestCoeffIdentities(unittest.TestCase):
def setUp(self):

#methodName=’runTest’, file_name=’gri30.cti’, temp=1000,
#press=Cantera.OneAtm, mass_frac=’CH4:.05, O2:.075, N2:.9’, atol=1e-6,
#rtol=1e-6):

file_name = ’gri30.cti’
temp = 1000
press = Cantera.OneAtm
mass_frac = ’CH4:.05, O2:.075, N2:.9"’
atol = 1e-6
rtol = 1e-6

# Initialize thermodynamic and kinetic data and set state
self.gas=Cantera.IdealGasMix(’gri30.cti’)
self.gas.set(T=temp, P=press, Y=mass_frac)
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self.state = numpy.zeros(self.gas.nSpecies() + 1)
self.state[0] = self.gas.temperature()
self.state[1:] = self.gas.massFractions()

# Calculate condition-independent data and store
(self.stoich_matrix,
self.mass_stoich_prod) = chemReduce.calc_cond_indep_data(self.gas)

# Calculate condition-dependent data and store
(self.rxn_rate,
self.cp_mass,
self.enthalpy_mass,
self.rho) = chemReduce.calc_cond_dep_data(self.state, self.gas)

self.atol = numpy.ones(self.gas.nSpecies() + 1) * atol
self.rtol = numpy.ones(self.gas.nSpecies() + 1) * rtol

self.float_tol = 1e-6

def test_row_sums(self):
"""
Purpose: The sum of the entries in coeffs_temp should equal temp_dot.
The sum of the entries in each row of coeffs_y should equal
numpy.asarray([ydot]).transpose().

Arguments:
None

Returns:
None

"""
(coeffs_temp,
coeffs_y,
rhs_temp,
rhs_y) = chemReduce.error_constraint_data(self.state,

self.gas, self.mass_stoich_prod, self.atol, self.rtol)

# Test identity for temperature
rhs_temp_test = self.atol[0] + self.rtol[0] * numpy.sum(coeffs_temp)
self.assertAlmostEqual(numpy.max(abs(rhs_temp_test - rhs_temp)), 0,

delta=self.float_tol)

# Test identity for each species
rhs_y_test = numpy.zeros(self.gas.nSpecies())
for j in range(0, self.gas.nSpecies()):

rhs_y_test[j] = (self.atol[j + 1] + self.rtol[j + 1] *
numpy.sum(coeffs_y[j,:]))

self.assertAlmostEqual(numpy.max(abs(rhs_y_test - rhs_y)), 0,
delta=self.float_tol)

def test_col_sums(self):
"""
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Purpose: The sum of over each column in coeffs_y, where each row is
scaled by enthalpy_mass[j] / cp_mass, should equal coeffs_t.

Arguments:
None

Returns:
None
"""
(coeffs_temp,
coeffs_y,
_,
_) = chemReduce.error_constraint_data(self.state,

self.gas, self.mass_stoich_prod, self.atol, self.rtol)

row_total = numpy.zeros(self.gas.nReactions())
for j in range(0, self.gas.nSpecies()):

row_total += self.enthalpy_mass[j] * coeffs_y[j] / self.cp_mass

self.assertAlmostEqual(numpy.max(abs(row_total - coeffs_temp)), 0,
delta = self.float_tol)

def test_naive_summation(self):
"""
Purpose: Calculate the entries of coeffs_temp, coeffs_y, rhs_temp,
rhs_y using loops instead of vectorizing. Will be slow, but should
yield same answer.

Arguments:
None

Returns:
None
"""

molarMass = self.gas.molarMasses()
stoichMatrix = (self.gas.productStoichCoeffs() -

self.gas.reactantStoichCoeffs())

coeffs_y_loop = numpy.zeros((self.gas.nSpecies(),
self.gas.nReactions()))

coeffs_temp_loop = numpy.zeros(self.gas.nReactions())

for i in range(0, self.gas.nReactions()):
coeffs_temp_loop[i] = numpy.sum(

[self.enthalpy_mass[j] * molarMass[j] * stoichMatrix[j,i] *
self.rxn_rate[i] / (self.cp_mass * self.rho)
for j in range(0, self.gas.nSpecies())])

for j in range(0, self.gas.nSpecies()):
coeffs_y_loop[j,i] = (molarMass[j] * stoichMatrix[j,i] *

self.rxn_rate[i] / self.rho)

temp_dot = numpy.sum(coeffs_temp_loop)
y_dot = numpy.sum(coeffs_y_loop, axis=1)
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rhs_temp_loop = self.atol[0] + self.rtol[0] * abs(temp_dot)
rhs_y_loop = numpy.zeros(self.gas.nSpecies())
for j in range(0, self.gas.nSpecies()):

rhs_y_loop[j] = self.atol[j+1] + self.rtol[j+1] * abs(y_dot[j])

(coeffs_temp,
coeffs_y,
rhs_temp,
rhs_y) = chemReduce.error_constraint_data(self.state,

self.gas, self.mass_stoich_prod, self.atol, self.rtol)

self.assertAlmostEqual(rhs_temp, rhs_temp_loop, delta=self.float_tol)

self.assertAlmostEqual(numpy.max(abs(rhs_y - rhs_y_loop)), 0,
delta=self.float_tol)

self.assertAlmostEqual(numpy.max(abs(coeffs_temp - coeffs_temp)), 0,
delta=self.float_tol)

self.assertAlmostEqual(numpy.max(abs(coeffs_y - coeffs_y_loop)), 0,
delta=self.float_tol)

def test_run_reaction_elim(self):
"""
Purpose: Just run reaction_elim on a simple test case to make sure
there are no syntax errors.

Arguments:
None

Returns:
None

"""
chemReduce.reaction_elim([self.state], self.gas, self.atol, self.rtol)

def test_run_reaction_and_species_elim(self):
"""
Purpose: Just run reaction_and_species_elim on a simple test case
to make sure there are no syntax errors.

Arguments:
None

Returns:
None

"""

chemReduce.reaction_and_species_elim([self.state], self.gas,
self.atol, self.rtol)
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if __name__ == ’__main__’:
unittest.main()
#suite = unittest.TestSuite()
#suite.addTest(TestCoeffIdentities(’test_naive_summation’))
#suite.addTest(TestCoeffIdentities(’test_col_sums’))
#suite.addTest(TestCoeffIdentities(’test_row_sums’))
#suite.addTest(TestCoeffIdentities(’test_run_reaction_elim’))
#suite.addTest(TestCoeffIdentities(’test_run_reaction_and_species_elim’))
#suite.debug()
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[141] K R Müller, S Mika, G Rätsch, K Tsuda, and B Schölkopf. An introduction
to kernel-based learning algorithms. IEEE transactions on neural networks / a
publication of the IEEE Neural Networks Council, 12(2):181–201, January 2001.

[142] J Munkres. Analysis on Manifolds. Westview Press, 1st edition, 1990.

[143] B Nadler, S Lafon, R Coifman, and I Kevrekidis. Diffusion maps, spectral
clustering and reaction coordinates of dynamical systems. Applied and Com-
putational Harmonic Analysis, 21(1):113–127, July 2006.

[144] J. Nafe and U. Maas. A general algorithm for improving ILDMs. Combustion
Theory and Modelling, 6(4):697–709, 2002.
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