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Abstract

Self-assembled nanoscale structures are the basis for various technological advance-
ments in functional materials, sensors, and molecular circuits and factories. With
significant progress in self-assembly of periodic nanostructures (such as monolayers),
the focus is now shifting towards non-periodic structures. Control of various inter-
action force fields (electrostatic, Van der Waals, etc.) between the nanoparticles and
external controls can result in the formation of nanostructures with desired geome-
try. The aim is to design the nanoparticles and the external actuators such that the
desired structure can be self-assembled rapidly with high reliability and avoiding any
kinetic trapping that an ill-designed energy landscape might cause.

Deterministic dynamic modeling of such self-assembled nanostructures, directed
by external fields, through a Master Equation approach, leads to a set of differential
equations of such large size that even the most efficient solution algorithms are over-
whelmed. Thus, model reduction is a key necessity. This thesis presents a method-
ological approach and specific algorithms, which generate time-varying, reduced-order
models for the description of directed self-assembly of nanoparticles by external fields.
The approach is based on Finite State Projection and is adaptive, i.e., it generates
reduced-order models that vary over time. The algorithm uses event-detection con-
cepts to determine automatically, during simulation, suitable time points at which
the projection space and thus the structure of the reduced-order model change, in
such a way that the computational load remains low while the upper bound on the
simulation error, resulting from model reduction, is lower than a prescribed maximum
limit.

The thesis also presents an optimal control strategy that can guide any initial
random configuration of nanoparticles to a final structure of desired geometry, in
minimum time. It employs a multi-resolution view of the dynamically evolving con-
figurations of nanoparticles, which are described through the simulation methodology
described before. External charges, attracting or repelling the nanoparticles, are the
controls, whose location and intensity are determined by the optimality conditions
of the optimal control strategy. To ensure analytic consistency of the parametric
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sensitivities, during the computation of the optimal controls, and thus guarantee the
optimality of the resulting control policy, a priori determination of enlarged constant
projection spaces is shown to be essential.

The thesis also presents a series of case studies, which illustrate how the proposed
methods can be used to simulate effectively directed self-assembly of an appreciable
number of nanoparticles, and reach the desired geometry. These case studies also
illuminate several of its features, such as: superiority over a static optimal solution;
evasion of kinetic traps; and effective handling of combinatorial complications arising
for systems with large-size domains and many particles.

Thesis Supervisor: George Stephanopoulos
Title: Arthur D. Little Professor of Chemical Engineering

Thesis Supervisor: Paul I. Barton
Title: Lammot du Pont Professor of Chemical Engineering
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Chapter 1

Introduction

1.1 Motivation

Chemical engineers are now exploring nanoscale systems as a very promising techno-

logical platform for new materials, devices, and processes. The potential applications

are many and can make a significant impact on human lives. Nanoscale systems pro-

vide the basis for technological advancements in various fields such as nanoelectronic

devices and sensors, consumer products, multi-functional materials, biodiagnostic

tools for detection of proteins and DNA, molecular computing, molecular-scale facto-

ries, and nanoscale chemical plants [65, 37, 57]. However, fabricating these complex

structures is a significant challenge. The current applications employ only relatively

simple or periodic and dense structures, and methods to create complex and non-

periodic nanostructures have not yet been developed.

Fabrication of complex nanostructures requires fabrication of components such as

nanoelectrodes, nanowires, nanoreactors and nanoscaffolding, which serve as building

blocks. Molecular machinery [15] was earlier proposed, where atoms are judiciously

inserted into nanoscale configurations. However, due to the lack of direct control over

atoms at such a small scale, this option is not commercially viable.

For larger scales, arbitrary 2d patterns at resolutions of order 20-90 nm can be

created on surfaces using techniques such as photolithography, scanning beam lithog-

raphy, interferometric lithography and nanoimprinting [18]. Although these top-down
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fabrication techniques work well, they have several limitations such as high cost, slow

pattering rates, and most importantly, lower resolution than the desired nanostruc-

tures [65, 18, 44].

In order to fabricate the nanostructures at smaller scales, an alternate approach is

to utilize the intermolecular forces between the nanoparticles to create a self-assembly

process. Self-assembly [74, 75] is a spontaneous or directed process that offers fabri-

cation routes towards nanoscale structures with unprecedented resolution. Nanoscale

building blocks such as functionalized inorganic nanoparticles or fragments of DNA

can bind with each other, forming nanoscale structures. This bottom-up technique is

used in a wide range of structures such as nanowires and nanoreactors, with a high

resolution of 1 nm.

Significant progress has been made on self-assembly of dense nanoscale struc-

tures (i.e., structures with a very large number of particles, theoretically tending to

infinity, extending over theoretically infinite domains), with periodic structural pat-

terns, through the judicious design of building blocks to induce the desired short-

and long-range orderings [44]. Fabrication of nanosurfaces such as monolayers using

self-assembly is an example of this methodology. Nanosurfaces with periodic patterns

of dimensions 10-100 nm can be created with this technique. Such approaches fail

to construct nanostructures with relatively small numbers of nanoparticles, within

confined domains, and with non-periodic structural features, as required by a number

of applications, e.g., nanoelectronics.

Furthermore, even for systems with dense and periodic structures, fabrication

techniques produce defects, i.e., failures in achieving the desired structure. However,

occasional defects in the fabrication techniques do not affect their functionality. Un-

like dense and periodic structures, non-periodic structures can lose their functionality

with even a small number of defects.

DNA “smart tiles", which are small, functionalized nanoparticles (5-20 nm widths),

has been demonstrated as a building block, allowing self-assembly into large nanos-

tructures [60, 77, 76, 51]. DNA tiles are formed by first chemically synthesizing

single-stranded DNA oligonucleotides, which are then self-assembled into a junction
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Figure 1-1: Figure showing the different kinds of nanostructures for self-assembly.
The structure in (a) is a dense periodic one and the structure in (b) is more complex
and non-periodic in nature [65].

Figure 1-2: Figure of a DNA tile, illustrating the junction formed by single-stranded
DNA oligonucleotides through base pairing. The figure has been reproduced from
[60].

through appropriate base paring. An example of a DNA tile is shown in Figure 1-2,
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which can been reproduced from [60]. DNA tiles can have functionalized edges that

can preferentially attach to the functionalized edges of other particular DNA tiles.

The DNA bases are negatively charged, and hence repulsive electrostatic forces will

be experienced between the tiles at relatively long distances. At short distances, the

tiles are aggregated due to strong hydrogen bonding that exist at the edges of these

tiles because of the functionalization with specific DNA sequences.

Figure 1-3: A complex nanostructure can be fabricated by placing nanoscale com-
ponents onto a nanoscoffolding structure. The nanoscale components are fabricated
by a self-assembly process. The nanoscaffolding is fabricated through the directed
self-assembly of DNA tiles, which are formed by DNA origami.

DNA tiles can be used to create nanoscaffolds, thus providing the foundation for

creating complex, non-periodic nanostructures, as shown in Figure 1-3. This forms

the basis of this thesis. Some of these DNA tiles have ligands with binding affinities

for certain nanoscale components such as nanotubes and nanospheres.

1.2 Research Objectives

Spontaneous self-assembly leads to free-energy structures only for systems with very

large numbers of particles and unbounded domains. For systems with relatively small

numbers of particles, bounded domains, and non-periodic desired structural features,

external fields directing the self-assembling process are needed, such as: shear [11],
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magnetic [7, 66], or electric [11, 38, 45, 3, 1, 14, 43, 39, 33]. Electric fields are of

particular interest due to the tunable strength and direction [73, 72, 71, 32, 34]. The

key questions that need to be answered are: (a) what are the design parameters of

the nanoparticles (shape, size, distribution of surface functionality), (b) the proper-

ties of the medium in which the self-assembly is taking place, and (c) the location

and intensity of external fields, so that the nanoparticles assemble, with very high

probability, to a structure that possesses the desired geometry?

In this thesis, we have attempted to answer this question by focusing first on item

(c) of the question, i.e., what are the locations and time-dependent intensities of the

external charges, so that any initial arrangement of the nanoparticles will evolve to a

final structure with desired geometry.

Figure 1-4: Figure showing sample energy landscapes for a self-assembly system. The
desired nanostructure corresponds to the globally minimum energy level in the land-
scape, but the pathway towards reaching this desired nanostructure is very important.
The structure in (a) is an undesired pathway leading to a metastable state and (b) is
the desired pathway leading to the desired state.

In the first paper by Solis et al. [63], the authors addressed the static problem

associated with the controlled formation of nanostructures. They were able to guar-

antee a statistically robust desired structure by solving the energy-gap maximization
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problem (EMP). They showed that they could reduce the phase space combinatorics

and include only the neighboring competing states, while still guaranteeing a robust

desired final structure. The work done by Solis et al. [63] can be visualized using

energy landscapes. The energy landscape, or the potential energy surface, is the

mapping of all possible configurations that the nanoparticles can take and their cor-

responding energy levels. Note that this energy landscape correspond to constant

intensities for the external charges. For any arbitrary initial configuration, the dy-

namic path of self-assembly corresponds to a "path" in the energy landscape, which

may lead to the configuration that has the globally minimum energy level. In the first

paper, Solis et al. [63] calculated the optimum strengths and locations of the exter-

nal charges such that the global minimum of the energy landscape for these charges

lie at the desired configuration. However, as illustrated in Figure 1-4, the "path"

for self-assembly from any initial configuration to the desired configuration may not

directly lead to the globally minimum energy level, but rather lead to a suboptimal

locally minimum energy level. These locally minimum energy levels are called kinetic

traps, and it becomes very difficult for such a system to move out of the kinetic

traps in a reasonable time scale. In other words, starting from an arbitrary distribu-

tion of particles in the complete phase space, the probability of reaching the desired

nanostructure in a reasonable time scale, under the influence of the static controls

determined by the solution of the static problem in [63], can be unacceptably low and

variable, since the system can be trapped in different metastable states, which are

determined by the dynamic path of the self-assembly process. Thus, in their second

paper, Solis et al. [64] developed a methodology that overcomes the above restriction

and allows the dynamically self-assembled particles to reach the desired final geome-

try from any initial configuration with a pre-specified high probability, i.e., generate

robust self-assembly paths. This methodology was based on the progressive reduction

of the system phase space into subsets with progressively smaller numbers of locally

allowable configurational states. In other words, it was based on a judicious pro-

gressive transition from ergodic to nonergodic subsystems. The subsets of allowable

configurations in phase space were modeled by a spatial multi-resolution view of the
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desired structure (in terms of the number of particles) and the static optimal control

was computed using the methodologies of the first paper. This approach produces a

sequential psuedo-steady state prescription for the optimal control, but not a truly

optimal control policy, based on the dynamics of the evolving assembly process.

Therefore, the focus of this thesis is to find the dynamic profile for the strengths

and locations of the external charges such that final desired structure is not only

robust, but also the dynamic path for self-assembly from any initial configuration of

nanoparticles does not lead to any kinetic traps.

1.3 Methods in the Literature

The analysis of energy landscapes in order to find the dynamic path has been studied

in the protein folding literature. Thus, following the literature on protein folding and

macromolecules, we can broadly classify the simulation methods used into two kinds

of approaches - energy landscape approach and master equations approach.

1.3.1 Energy Landscape Approach

In this approach, the energy landscape of the system is explored and pathways with

low energy are obtained from any initial state to the final state. One of the pro-

posed approaches is dimensionality reduction of the energy landscape. The ISOMAP

algorithm is a nonlinear dimensionality reduction technique which defines a low-

dimensional embedding that tries to preserve all pairwise distances between the states

[67]. Das et al. [12] developed a new method called Scalable ISOMAP (ScIMAP) which

is computationally scalable and hence can analyze large data sets. However low-

dimensional projections are deceptive, as they shrink the distances between points,

and hence can make energy barriers disappear. Removal of barriers can result in a

relatively smooth energy surface, making kinetic traps disappear too [40]. Such an

approach does not represent the real dynamics of the system.

Noé et al. [49] discussed various methods with respect to conformational changes

in macromolecules. In their paper, a pathway connecting the start (initial state) and
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the end states is created using a continuous chain of segments. This chain is then

path optimized using different techniques such as conjugate peak refinement (CPR)

[16] or the nudged elastic band method (NEB) [31]. Another method developed by

Noé et al. [50] is based on an adaptive approach using graph theory. In this method,

only those connections are considered that go over energy barriers that contribute

to the network properties. Although the above mentioned methods are effective in

reducing the energy landscape, they are not efficient and cannot handle the size of

the system under study in this thesis.

1.3.2 Master Equation Approach

In this approach, the dynamics of self-assembly are described using a system of master

equations. Master equations enable us to describe time-dependent continuous-time

Markov processes. Each state in the master equations represent the probability of

being in a particular configuration of the system.

In the case of macromolecules, Noé et al. [49] explain how molecular dynamics sim-

ulations are useful in generating the master equations. The master equation based

approach is very popular in a variety of systems as it helps to identify the kinetic

traps [46, 8, 35, 78]. Molecular dynamics simulations help in finding the rates (or

propensities) involved in movement from one configuration to another [62, 61]. These

master equations can be sampled using Monte Carlo based methods such as Gille-

spie’s stochastic simulation algorithm [20, 23]. The Gillespie algorithm samples only

a portion of the possible dynamic pathways, and thus samples the probability distri-

bution given by the master equation. There are also approximations to Gillespie’s

algorithm, such as time-leaping [22] and system partitioning methods [55]. However,

these Monte Carlo based methods rely on the computation of large numbers of path-

ways to estimate certain statistical properties. Though this may seem advantageous

as one does not need to solve stiff ODEs, it becomes a disadvantage when the system

is too large to explore all connections. Also, because these methods cannot provide

gradients with respect to parameters, the parametric sensitivities need to be approx-

imated using finite differences for Monte Carlo based methods [24, 56], which can be
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a problem when the model structure can change due to a change in the model pa-

rameters [69]. The existing optimization algorithms for Monte Carlo based methods

are mostly limited to black-box strategies, such as Nelder-Mead, Divided Rectangles,

multi-level coordinate search, differential evolution, and kriging techniques [13].

Lakerveld et al. [42] derived a dynamic model, involving master equations, to ac-

count explicitly for any kinetic traps in the course of a dynamic directed self-assembly

process. The master equations describe a probability-based continuous-time Markov

processes that capture the stochasticity of the system. Continuous-time models are

essential for this system as discrete-time models would require very fine discretization

to accurately model the stiffness of the system. Moreover, empirical discrete-time

models require data from full simulations of the system, which are difficult to obtain

as the system size increases. The master equation based model accounts for all possi-

ble configurations of the self-assembled nanoparticles and simulates the probabilities

of observing the system in each specific configuration as a function of time, for given

values of the control parameters. It also produces sensitivities of the dynamic profiles

with respect to the values of the parameters, which play a very important role in com-

puting optimal control policies. Although the favorable computational complexity of

their method allows for the dynamic simulation of systems with fairly large num-

bers of configurations, it inevitably reaches its limits, as the number of configurations

increases. Model-reduction techniques are needed to proceed.

An alternate model for a continuous-time Markov process is via the Langevin

equations [21], which are stochastic differential equations with real-valued states [27].

There are various model reduction techniques used for Langevin equations, such as

dividing the equations into fast and slow dynamics [10], and the method of adiabatic

elimination [68].

Reduction of models involving master equations has received considerable atten-

tion. The potential energy surface (PES) of the system can be simplified by aggregat-

ing configurations into shared basins of attraction, which in turn can form the basis

for a reduced set of master equations, describing only the rates of rare events within a

time scale of interest [4, 2]. However, for optimal control problems, separation of time
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scales is complicated since the features of the PES are a function of the unknown,

as yet, optimal control policies. Other methods for model reduction include wavelets

[28, 30, 29], decomposition of ergodicity [63, 64], diffusion maps [9, 41], and finite

state projection (FSP) [47, 48, 53]. In the case of FSP methods, only those states

which make a significant contribution to the dynamics of the system, known as the

state projection space, are simulated. An FSP-based approach provides a bound on

the maximum error that is being generated from the reduction of the state space, as

a function of time. The advantage of using an FSP-based approach is that the math-

ematical structure of the model is preserved after model reduction, which permits

exploitation of the favorable computational complexity, demonstrated by Lakerveld

et al. [42].

1.4 Thesis Overview

The thesis has six chapters. In Chapter 2, dynamic modeling of self-assembled

nanoparticles through master equations is discussed. The model consists of ODEs

for the probabilities of the system being in any configuration. The propensity rates

for the system to go from one configuration to another configuration to which it is

connected are obtained using the theory of transition states. In addition to that, the

Finite State Projection method for solving large system of master equations is also

explained, along with its shortcomings.

In Chapter 3, a simulation strategy for the master equations is developed. This

strategy uses the FSP method and makes it adaptive in order to tackle the need for

different reduced models along a trajectory and the stiffness of the ODEs. This is

followed by a case study that illustrates deployment of the adaptive FSP algorithm

and demonstrates the benefits from its use in dynamic simulations of complex self-

assembled systems.

In Chapter 4, the multi-resolution approach of decomposing the system is pro-

posed, where the external charges are moved in space to enable this strategy. A case

study demonstrates the multi-resolution deployment of the adaptive FSP algorithm
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within the scope of a control strategy for the manufacturing of desired nanostructures.

In Chapter 5, the theoretical generation and numerical implementation of optimal

control strategies for self-assembled systems are presented. This strategy combines

the adaptive FSP algorithm and multi-resolution approach to find an optimal control

policy. This is demostrated through a case study.

In Chapter 6, nanoparticles with functionalized edges are used as building blocks

for the nanostructures, where edge binding is enabled. A case study identifies the

important factors that play a role in the rotational orientation of the nanoparticles.

Chapter 7 discusses the scope for future work in optimal control.
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Chapter 2

Dynamic Modeling

2.1 Master Equations

The model for directed self-assembly is based on an Ising lattice model and the dynam-

ics are described by a discrete-state continuous-time Markov process. The probability

of observing the particles in a particular configuration 𝛼 as a function of time is given

by the master equation [70]:

𝑑𝑝𝛼
𝑑𝑡

(𝑡) = −
∑︁
𝛽 ̸=𝛼

𝜖𝛽←𝛼(𝑡)𝑝𝛼(𝑡) +
∑︁
𝛽 ̸=𝛼

𝜖𝛼←𝛽(𝑡)𝑝𝛽(𝑡), ∀𝑡 ∈ (𝑡0, 𝑡𝑓 ], 𝑝𝛼(𝑡0) = 𝑝𝛼,0, (2.1)

where 𝑝𝛼 is the probability of observing the system in configuration 𝛼 and 𝜖𝛽←𝛼 is a

propensity factor, which is the rate of transitions from configuration 𝛼 to 𝛽. Equation

(2.1) can be written in matrix form as

𝑑p

𝑑𝑡
(𝑡) = A(𝑡)p(𝑡), ∀𝑡 ∈ (𝑡0, 𝑡𝑓 ], p(𝑡0) = p0, (2.2)

where p is a vector with probabilities for each configuration and A(𝑡) is a propensity

matrix with elements

𝑥𝛼𝛽(𝑡) = 𝜖𝛼←𝛽(𝑡) if 𝛼 ̸= 𝛽, 𝑥𝛼𝛼 = −
∑︁
𝛽 ̸=𝛼

𝜖𝛽←𝛼(𝑡). (2.3)

35



A propensity factor 𝜖𝛽←𝛼 is obtained via transition-state-theory from the differ-

ence in potential energy between configuration 𝛼 and 𝛽 and normalizing it with an

appropriate reciprocal time constant:

𝜖𝛼←𝛽 = exp

(︂
−∆𝐸𝐵,𝛼←𝛽(𝑡)

𝑘𝐵𝑇 (𝑡)

)︂
, (2.4)

where ∆𝐸𝐵,𝛼←𝛽 represents the height of the potential energy barrier encountered

when the system moves from configuration 𝛽 to 𝛼. The potential energy wells around

the configurations 𝛼 and 𝛽 are assumed to be parabolic with the following form:

𝐸𝛽(𝑡, 𝜉) = 𝑘𝐹 𝜉
2/2 + 𝐸0,𝛽(𝑡),

𝐸𝛼(𝑡, 𝜉) = 𝑘𝐹 (𝜉 − 𝑑)2/2 + 𝐸0,𝛼(𝑡), (2.5)

where 𝑘𝐹 is a force constant, 𝜉 is the surface diffusion coordinate, 𝑑 is the lattice

constant, and 𝐸0 is the minimum of the energy well. The potential energy barrier is

obtained as follows:

∆𝐸𝐵,𝛼←𝛽 = 𝐸𝐴,𝛼↔𝛽(𝑡) − 𝐸0,𝛽(𝑡), (2.6)

where 𝐸𝐴,𝛼↔𝛽 is the energy at the intersection of the two energy wells,

𝜉* ∈ (0, 𝑑) : 𝐸𝐴,𝛼↔𝛽(𝑡) = 𝐸𝛽(𝑡, 𝜉*) = 𝐸𝛼(𝑡, 𝜉*). (2.7)

The Hamiltonian of the system is constructed assuming only pair-wise interactions

between the particles and interactions between the particles and the external controls.

The pair-wise interactions between the particles are calculated by the long-range

repulsive electrostatic forces and short-range attractive forces such as Van der Waals.

The external potential energy field is caused by the electrstatic point charges (or

controls) on the grid:

ℋ𝛼 =
𝑉∑︁
𝑖=1

𝑁𝑐𝑝∑︁
𝑘=1

𝑞𝑘𝑞𝑝
|𝑟𝑖,𝑘|

𝑧𝛼,𝑖 +
𝑉∑︁
𝑖=1

𝑉∑︁
𝑗 ̸=𝑖

𝑧𝛼,𝑖

(︂
𝑞2𝑝
|𝑟𝑖,𝑗|

− 𝑎

|𝑟𝑖,𝑗|6

)︂
𝑧𝛼,𝑗, (2.8)
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where 𝛼 indicates a particular configuration, 𝑁𝑐𝑝 is the number of external controls,

𝑞𝑘 is the strength of external control 𝑘, 𝑞𝑝 is the strength of the coloumb charge of each

nanoparticle, 𝑎 is a parameter which lumps the effects of the close-range interactions,

𝑧𝛼,𝑖 is a binary variable which takes values 0 or 1 based on the abscence or presence of

a particle in cell 𝑖 of the configuration 𝛼, |𝑟𝑖,𝑗| is the distance between nanoparticles 𝑖

and 𝑗, and |𝑟𝑖,𝑘| is the distance from the centre of cell 𝑖 to point charge 𝑘. The model

is a phenomenological one, which captures the inherent randomness in the movement

of the nanoparticles, and can be extended to more complicated cases.

The structure of the model and an algorithm to simulate large instances of this

model are described in more detail by Lakerveld et al. [42]. The algorithm used by

Lakerveld et al. consists of two steps. In the first step, the structure of the matrix

A is determined by looking at all the possible configurations and their connections.

In the second step, the variable-coefficient ODE solver DVODPK [6] is used to solve

this large system of sparse and stiff ODEs. DVODPK uses the preconditioned Krylov

method based GMRES [59] to solve the linear system. This methodology exhibits a

favorable computational complexity for the master equation model.

2.1.1 Finite State Projection

In Chapter 1, various methods for solving master equations are discussed. One of

the possible methods discussed is the Finite State Projection (FSP) method. The

advantage of using a FSP-based method is that the mathematical structure of the

model, explained in Section 2.1 is preserved and hence, the methodology used by

Lakerveld at al. to solve the ODEs remain valid.

Munsky et al. [47] had developed the Finite State Projection algorithm (FSP) to

solve a large system of master equation. The finite state projection method uses

the fact that only a certain subset of equations (called the projection space), which

correspond to configurations in this case, are enough to find the dynamic profiles

for the probabilities. This projection space is formulated in the same manner as

the original space, i.e. using the master equation. It was shown by Munsky et al.

[47] that for a suitable subset of configurations, the sum of the probabilities of the
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configurations lie within an acceptable tolerance. If the original system is of the form

ṗ(X; 𝑡) = Ap(X; 𝑡), (2.9)

then it can be written as⎡⎣ ṗ(X𝑅; 𝑡)

ṗ(X𝑅′ ; 𝑡)

⎤⎦ =

⎡⎣ A𝑅 A𝑅𝑅′

A𝑅′𝑅 A𝑅′

⎤⎦⎡⎣ p(X𝑅; 𝑡)

p(X𝑅′ ; 𝑡)

⎤⎦ , (2.10)

where the subscript 𝑅 denotes the configurations in the projection space and 𝑅′

denotes the remaining configurations. Here the configuration space has been divided

into 𝑅 and 𝑅′. The solution to the above equation can be approximated as:

p(X𝑅; 𝑡𝑓 ) = exp(A𝑅𝑡𝑓 )p(X𝑅; 0). (2.11)

This solution satisfies the equation

1T exp(A𝑅𝑡𝑓 )p(X𝑅; 0) ≥ 1 − 𝜖, (2.12)

for 𝜖 > 0. 1 indicates a column vector of ones. For a particular value of 𝜖, the

configuration in the projection space are chosen such that Equation (2.12) is satisfied.

The configurations in 𝑅 are selected based on their reachability from the initial

configuration. The term reachability needs to be quantified, and this will be done for

our case in Chapter 3. The probability of the configurations in the unreachable space

(called truncated configurations) are assumed to be zero as they are small enough to

be neglected. This generates an error in the reduced model prediction which grows as

the system is simulated. This is because in the projection matrix A𝑅, all the outgoing

connections to the truncated configurations are included, i.e. the diagonal terms, but

the incoming connections from truncated configurations to the projection space are

not included. This is illustrated in Figure 2-1, which has been reproduced from the

paper by Munsky et al. [47]. Therefore, there is a continuous leakage of probability
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Figure 2-1: Figure showing the projection space of the large system to a subset of
states in the Finite State Projection method [47]. In the FSP method, only the
connections from projection space to the unreachable space are retained. This causes
the sum of the probabilities of the configurations in the projection to deviate from
one.

from the projection space. However Munsky et al. [47] proved two theorems: (a)

as the size of the projection space increases, the error in the solution, which is the

deviation of the sum of the probabilities of configurations in the projection space

from 1, monotonically decreases and (b) the approximate solution can be brought

arbitrarily close to the true solution based on the number of configurations in the

projected space. These theorems help keep a check on the error. This technique forms

a strong foundation on which model reduction of large systems of master equations

can be based.

In their next paper, Munsky et al. [48] showed how the projection space can be

expanded as time progresses and hence new configurations were included as they be-

came important with time. The authors divided the time horizon into equal intervals

(time steps) and fix a bound on the error for each time step based on the number

of time steps and the total allowable error. For each time step, the projection space

is chosen by iterating until the error requirement is met. The projection space is

simulated multiple times in each iteration and every choice of the projection space

is expanded based on the direction of the leakage of the probability measure. The

39



theorems in [47] are used to justify the method.

Although the favorable computational complexity of Lakerveld et al.’s method

[42] allows for the dynamic simulation of systems with fairly large numbers of con-

figurations, it inevitably reaches its limits, as the number of configurations increases.

Model-reduction techniques are needed to proceed. In this thesis, we will focus on

using the Finite State Projection method to solve the large system of ODEs modeled

in Section 2.1. In the interval FSP method developed by Munsky et al. [48], the sim-

ulations are repeated multiple times and the projection space is always expanded. In

the next Chapter, the Adaptive Finite State Projection (AFSP) method is proposed

to overcome these shortcomings, and in the process, a reduced system of ODEs in the

self-assembly of nanostructures is successfully simulated.
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Chapter 3

Simulation through Adaptive Finite

State Projection

In the previous chapter, the master equation based model for simulation of directed

self-assembly was discussed. The method of Finite State Projection was also ex-

plored as a viable option to solve a large system of master equations. An FSP-based

algorithm has two important properties that are essential for our purposes:

(i) As we will show in this thesis, it can be made to be adaptive, by changing the

projection space in time.

(ii) The logic of an adaptive FSP-based algorithm aligns well with the multi-resolution

approach developed by Solis et al. [64], which uses a systematic decomposition

of the system’s ergodicity.

It should be noted though that dynamic models for self-assembly are known to

be stiff, which could call for fast necessary changes in the projection space in only

a small fraction of the total simulated time, when using FSP. Furthermore, in order

to minimize total CPU time, one would like to anticipate when the maximum er-

ror, resulting from model reduction, grows too large, rather than taking a posteriori

corrective action, through iterations backwards in time. In this regard, the combina-

tion of an FSP-based algorithm and event detection [52] is of significant potential to

improve algorithms that simulate dynamic directed self-assembly processes.
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Consequently, an adaptive FSP-based algorithm is well suited for the needs of our

problem and the key questions that need to be answered are:

(a) When should the projection space be adapted, and what is the logic for its

adaptation?

(b) How should the projection space be adapted, i.e., what configurations should

exit the projection space, and what configurations should enter?

The answer to these two questions forms the essential scope and content of this

Chapter with the following elements:

1. The dynamic evolution of directed self-assembly of nanoparticles is modeled by

master equations, describing the dynamic evolution of the probability of each

configuration in projection space, i.e., the space of selected configurations.

2. A variable-step ODE solver is used to integrate the master equations in time.

3. An event detection logic is employed to signal the need for adaptation of the

projection space. This event-detection logic is integrated with the adaptive

ODE solver.

4. The event detection logic employs an algorithm, which computes an upper

bound on the error that is being generated, as a function of time, simulta-

neously with the probability of all configurations. Once this upper bound on

the error crosses a certain pre-specified threshold, the algorithm will precisely

locate the point in time at which the threshold was crossed and, subsequently,

adjust the projection space to reduce the rate at which the upper bound on the

error is increasing so that the threshhold is not crossed.

The resulting methodology modifies the projection space only when necessary,

maintains control over the error in dynamic simulation, and allows the dynamic sim-

ulation of self-assembled nanoparticles at various spatial scales (resolutions), as will

be described in subsequent sections of this Chapter.
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3.1 Modified Model

Simulation of the system via FSP will result in a reduced model given by

𝑑𝑝𝛼
𝑑𝑡

(𝑡) = −
∑︁

𝛽∈A(𝑡):𝛽 ̸=𝛼

𝜖𝛽←𝛼(𝑡)𝑝𝛼(𝑡) +
∑︁

𝛽∈A(𝑡):𝛽 ̸=𝛼

𝜖𝛼←𝛽(𝑡)𝑝𝛽(𝑡), ∀𝛼 ∈ A(𝑡),

𝑝𝛼(𝑡0) = 𝑝𝛼,0, ∀𝛼 ∈ A(𝑡0). (3.1)

This reduced model will inevitably result in an error compared to a simulation of

the full system, because the probability of observing unlikely configurations will be

neglected. An upper bound on the total error as a result of model reduction is given

by [47]

𝜀(𝑡) = 1 − 𝑝T(𝑡), (3.2)

where 𝑝T is the sum of the probabilities of all the configurations in the projection

space A(𝑡), described by

𝑑

𝑑𝑡
𝑝T =

∑︁
𝛼∈A(𝑡)

𝑑𝑝𝛼(𝑡)

𝑑𝑡
, ∀𝑡 ∈ (𝑡0, 𝑡𝑓 ], 𝑝T(𝑡0) =

∑︁
𝛼∈A(𝑡0)

𝑝𝛼,0. (3.3)

The projection space A(𝑡) contains the likely configurations of the system at time 𝑡.

Note that this reduced model contains the connections that result in the out flux of

probability from the projection space to the rest of the configuration space, but does

not contain any connections that result in the influx of probability to the projection

space. Therefore, detailed balance is not satisfied by the FSP model. There is no

“steady state” in the reduced model and the error keeps increasing. In the next section,

an adaptive algorithm will be presented to modify the projection space A(𝑡) during

the simulation of directed self-assembly, whenever 𝜀(𝑡) reaches an undesirable value.

The aim is to include in the projection space the most relevant configurations (i.e.,

configurations of high probability), and thus approximate the dynamic behavior of

the whole system with the lowest possible error, while avoiding the need to predefine

suitable time-points at which the projection space should be modified; a task that is

very difficult to complete a priori for directed self-assembly.
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3.2 Algorithm

The key challenge for the design of an adaptive FSP-based algorithm is to define

rules that identify the suitable time points during a simulation, at which points the

structure of the projection space A(𝑡) should be changed. A trade-off exists between

frequent changes in projection space to lower 𝜀(𝑡) and avoiding a large computational

load associated with each reformulation of Equation (3.1), whenever the projection

space has been changed. Therefore, time varying maximum and minimum allowed

values for 𝜀(𝑡) are introduced:

𝜀𝑀𝐼𝑁(𝑡) ≤ 𝜀(𝑡) ≤ 𝜀𝑀𝐴𝑋(𝑡), 𝜀𝑀𝐼𝑁(𝑡) < 𝜀𝑀𝐴𝑋(𝑡). (3.4)

During a simulation, the upper bound on the error generated will be monitored and

an algorithm will be designed such that Equation (3.4) holds. A minimum value

for the error generated allows for configurations, which can be truncated without

sacrificing significant accuracy, to be removed from the projection space to reduce

computational load. Furthermore, a maximum value for the upper bound on the

error generated ensures that relevant configurations will be added to the projection

space to achieve sufficient accuracy of the reduced model. The points in time at which

the error threshholds described by Equation (3.4) are crossed have to be identified

and rules have to be defined to change the projection space at those times. The

former requirement is addressed by implementation of an event detection scheme [52]

and the latter requirement is addressed by implementation of the following rules:

1. Configuration 𝛼 will be removed from the projection space A(𝑡) if and only if

the following two conditions are met: 1) 𝑝𝛼(𝑡) < 𝑝𝑡𝑟𝑢𝑛𝑐 and, 2)
𝑑𝑝𝛼
𝑑𝑡

(𝑡) < 𝑓𝑡𝑟𝑢𝑛𝑐.

These two conditions will assure that only configurations with a low probability

and low increase in probability will be removed.

2. Candidate configuration 𝛽 will be added to the projection space A(𝑡) if and only

if
∑︀

𝛼∈A(𝑡) 𝜖𝛽←𝛼(𝑡)𝑝𝛼(𝑡) > 𝑓𝑎𝑑𝑑, where 𝛼 refers to all configurations that are part

of the projection space and 𝛽 refers to a single candidate configuration. This
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condition will add those configurations to the projection space that are likely

to be important in the near future.

The resulting mechanism for addition and removal of configurations is schematically

illustrated in Figure 5-1.

Figure 3-1: Illustration of the criteria for projection space adjustment in the proposed
Adaptive Finite State Projection method. Configurations outside the projection space
receiving high transition rates will be added in the next time step. Similarly, config-
urations inside the projection space with low probability value and transition rates
are removed at the projection space adjustment event.

The application of the proposed algorithm is illustrated in Figure 3-2. The max-

imum and minimum allowed values for the upper bound on the error generated

(𝜀𝑀𝐴𝑋(𝑡), 𝜀𝑀𝐼𝑁(𝑡) respectively) are chosen to increase linearly with time so that

an error budget at the final time is not exceeded. In this case, the initial probabil-

ity distribution is assumed to be known and completely included in the projection

space. As time progresses, the upper bound on the error generated by the simulation

increases until it surpasses the imposed maximum value 𝜀𝑀𝐴𝑋(𝑡). Event detection

[52] will locate the point A where 𝜀(𝑡) = 𝜀𝑀𝐴𝑋(𝑡). Subsequently, configurations will

be added to the projection to reduce the rate at which the upper bound on the error

generated increases. After re-initialization of the system, the simulation of directed

self-assembly proceeds until, in this case, the minimum allowed value is crossed. This

indicates that configurations may be truncated to reduce computational load while

still achieving an acceptable accuracy. Again, an event detection scheme precisely
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locates the crossing (point B in Figure 3-2). The truncation of configurations will

result instantaneously in an increased upper bound on the error (point C) due to the

non-zero value of the probabilities of the configurations removed from the projection

space. Again, after re-initialization, the simulation proceeds until the upper bound

on the error hits the limits again (point D in the figure), and the process is repeated.

The simulation provides the probability of observing self-assembled structures and a

bound on the error resulting from model reduction, which is readily achieved without

the need of repeating (part of the) the simulation or an arbitrary a priori discretiza-

tion of the time interval.

Figure 3-2: Example of simulation of directed self-assembly using an adaptive algo-
rithm for finite state projection and event detection. The upper dashed line represents
the maximum value allowed for the upper bound on the error resulting from model
reduction (𝜀𝑀𝐴𝑋(𝑡)) and the lower dashed line represents the minimum value allowed
for the upper bound on the error (𝜀𝑀𝐼𝑁(𝑡)). The solid line represents the upper
bound on the error during simulation of a case study of directed self-assembly. The
points A, B, and D are determined by event detection and indicate those points where
the projection space is adjusted. The point C is the upper bound on the error after
re-initialization of the model with the reduced projection space compared to point B.

The full algorithm proceeds as follows:

Step 0. Set 𝑘 = 1 and set 𝑡𝑘 = 0. Choose an initial projection space A(0) that

incorporates the initial probability distribution for the FSP.

Step 1. Solve Equation (2.2) for one step with a variable-step ODE solver. Let that
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time interval be (𝑡𝑘, 𝑡𝑘+1].

Step 2. Compute 𝜀(𝑡𝑘+1) = 1 −
∑︀

𝛼 𝑝𝛼(𝑡𝑘+1).

Step 3. If 𝜀(𝑡𝑘+1) > 𝜀𝑀𝐴𝑋(𝑡𝑘+1)

(a) Find the coefficients of the polynomial fit of the data points computed by

the ODE solver.

(b) Use Newton’s method to locate the time 𝑡′𝑘+1 of the crossing of the allowable

limits on the error between 𝑡𝑘 and 𝑡𝑘+1 via interpolation.

(c) If
∑︀

𝛼∈A(𝑡′𝑘+1)
𝜖𝛽←𝛼(𝑡′𝑘+1)𝑝𝛼(𝑡′𝑘+1) > 𝑓𝑎𝑑𝑑, then add configuration 𝛽. Repeat

this procedure for all candidate configurations. A candidate configuration

𝛽 is obtained by exploring all possible one-step transitions that lead to a

new configuration outside the projection space.

(d) Augment A(𝑡′𝑘+1) with the configurations added under step 3(c).

(e) Calculate 𝑑𝜀
𝑑𝑡

(𝑡′𝑘+1) = 1 −
∑︀

𝛼∈A(𝑡′𝑘+1)
𝑑𝑝𝛼
𝑑𝑡

(𝑡′𝑘+1).

(f) If 𝑑𝜀
𝑑𝑡

(𝑡′𝑘+1) >
𝑑𝜀𝑀𝐴𝑋

𝑑𝑡
(𝑡′𝑘+1), reduce 𝑓𝑎𝑑𝑑 and go back to step 3(c).

Step 4. If 𝜀(𝑡𝑘+1) < 𝜀𝑀𝐼𝑁(𝑡𝑘+1)

(a) Find the polynomial coefficients of the BDF method used by the ODE

solver.

(b) Use Newton’s method to locate the time 𝑡′𝑘+1 of the crossing of the allowable

limits on the error between 𝑡𝑘 and 𝑡𝑘+1 via interpolation.

(c) For all configurations in the projection space A(𝑡′𝑘+1): truncate configura-

tion 𝛼 if 𝑝𝛼(𝑡′𝑘+1) < 𝑝𝑡𝑟𝑢𝑛𝑐 and
𝑑𝑝𝛼
𝑑𝑡

(𝑡′𝑘+1) < 𝑓𝑡𝑟𝑢𝑛𝑐.

(d) If
∑︀

𝛼∈A(𝑡′𝑘+1)
𝜖𝛽←𝛼(𝑡′𝑘+1)𝑝𝛼(𝑡′𝑘+1) > 𝑓𝑎𝑑𝑑, then add configuration 𝛽. Repeat

this procedure for all candidate configurations. A candidate configuration

𝛽 is obtained by exploring all possible one-step transitions that lead to a

new configuration outside the projection space.
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(e) Delete from A(𝑡′𝑘+1) all configurations identified under step 3(c) and aug-

ment A(𝑡′𝑘+1) with the configurations added under step 3(d).

(f) Calculate 𝜀(𝑡′𝑘+1) = 1 −
∑︀

𝛼∈A(𝑡′𝑘+1)
𝑝𝛼(𝑡′𝑘+1).

(g) If 𝜀 is not within the error limits, go to (c) after adjusting 𝑝𝑡𝑟𝑢𝑛𝑐, 𝑓𝑡𝑟𝑢𝑛𝑐 and

𝑓𝑎𝑑𝑑.

Step 5. Set 𝑡𝑘 = 𝑡′𝑘+1 and go to step 1 if 𝑡𝑘 < 𝑡𝑓 .

This algorithm is different from the one by Park et al. [52]. In this algorithm,

intermediate crossings of the allowable error limits after 𝑡𝑘 are ignored if the upper

bound on the error is within the error limits at 𝑡𝑘+1. This is because the algorithm

aims to keep the upper bound on the error within the error budget only at the final

time. Also, the final adjusted values of 𝑓𝑎𝑑𝑑, 𝑝𝑡𝑟𝑢𝑛𝑐 and 𝑓𝑡𝑟𝑢𝑛𝑐 depend on the error

limits, and are determined automatically by the algorithm. The number of iterations

required to include all the important configurations depends on the initial values of

𝑓𝑎𝑑𝑑, 𝑝𝑡𝑟𝑢𝑛𝑐 and 𝑓𝑡𝑟𝑢𝑛𝑐.

An important point to note is that the inclusion of any configuration depends on

the time constant of dynamic change in its probability value. A missing configuration

that achieves a significant increase in its probability values within the time horizon

of simulation will cause the upper bound on the error to increase rapidly, thus hit-

ting the maximum allowed value and this will result in the addition of that missing

configuration. Hence, no important configurations can be missed in the proposed

method.

Figure 3-3 illustrates schematically how the proposed algorithm responds to typi-

cal features of the potential energy surface over which the dynamics of self-assembly

evolve. Suppose a system is initially trapped in a metastable state and the projec-

tion space of the reduced model involves configurations that have a common point

of attraction (i.e., point A in Figure 3-3). The error as a result of model reduction

in that case is caused by all transitions towards configurations that are not part of

the projection space. Depending on the time interval of interest and the desired ac-

curacy of the simulation, sufficient configurations may be added to include transition
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Figure 3-3: Schematic illustration of the proposed method, where the projection
space (red dotted line) initially contains the configurations in (meta)stable state A.
Eventually due to the transitions towards other (meta)stable states, the projection
space expands to include the transition configurations and the stable configurations.
However, as the probability evolves, the (meta)stable states lower their probability
values and the projection space has only the configurations of B.

configurations between metastable state A to stable state B (i.e., Figure 3-3b,c). As

the simulation proceeds in time, the probability of observing the system in a config-

uration with common attractor A will decrease and the algorithm will remove the

configurations that enable the transition from A to B. Note that at this point the

simulated system will not be ergodic anymore. In the next section, a case study

will be presented in which the features of the potential energy surface are changed

dynamically.
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3.3 Case Study

Dynamic simulation through Adaptive Finite State Projection

The system under study consists of a 2D square domain with 36 lattice cells and

6 negatively charged nanoparticles. Self-assembly is driven by interactions between

particles and interactions of the particles with an external electrostatic field shaped

by various point charges. The total number of potential configurations for this system

is 1,947,792. This total number of potential configurations is calculated by consider-

ing all possible ways in which 6 nanoparticles can be distributed on 36 lattice cells.

The aim of the proposed algorithm is to simulate only a portion of those 1,947,792

configurations while maintaining sufficient accuracy in the dynamic evolution of the

self-assembled system. The point charges are modified over time in such a way that

the nanoparticles are directed from the top-right corner of the domain and eventu-

ally self-assemble with high probability into a structure with the nanoparticles in the

bottom-left corner of the domain. During this transition, the majority of possible con-

figurations will be kinetically restricted. The AFSP algorithm for simulation of this

process will automatically take advantage of these kinetic restrictions, by modifying

the projection space in time during the simulation.

The conditions for the simulation of the case study are given in Table 3.1. Note

that a high value of (𝑞𝑘/𝑞𝑝) was used, which ensures that the electrostatic interactions

with the external field are dominant.

Table 3.1: Parameter values for the simulation in the case study. 𝑁𝑡 is the number
of configurations in the projection space.

Strength of external charges ((𝑞𝑘)/(𝑞𝑝)) +50 or -50
𝑘𝐶𝑞

2
𝑝 [kcal mol−1nm] 1

𝑘𝐵𝑇 [kcal mol−1] 0.7
𝑎 [kcal mol−1nm6] 105

𝑓𝑎𝑑𝑑 or 𝑓𝑡𝑟𝑢𝑛𝑐 [𝜈]
𝑃𝑡(𝑡)
𝑁𝑡(𝑡)

× 10−3

𝑝𝑡𝑟𝑢𝑛𝑐
𝑃𝑡(𝑡)
𝑁𝑡(𝑡)

× 10−3
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The parameter values of 𝑓𝑎𝑑𝑑, 𝑝𝑡𝑟𝑢𝑛𝑐 and 𝑓𝑡𝑟𝑢𝑛𝑐 are provided in Table 3.1 as well.

For each iteration in Steps 3 and 4 of the algorithm (see the section on the algorithm

of AFSP), the values of 𝑓𝑎𝑑𝑑, 𝑝𝑡𝑟𝑢𝑛𝑐 and 𝑓𝑡𝑟𝑢𝑛𝑐 were reduced or increased by 50%,

as required by the algorithm. Reasonable initial estimates were chosen for these

parameters.

Figure 3-4: Snapshot of the dynamic evolution of self-assembly in the simulation at
various times. The rectangle at the bottom of each grid is the progress bar which
indicates the simulation time. The rectangle at the right of the grids shows the
scale measuring the expected number of nanoparticles in a particular cell. (a) shows
the initial probability distribution in each grid cell along with the external charges
used. After 𝑡 = 2.8 × 106𝜈−1, the probability distribution is as shown in (b). At
that instant, the external charges are changed as shown in (c). (d) shows the final
probability distribution of the nanoparticles at 𝑡 = 6.1 × 106𝜈−1.
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The initial probability distribution of the studied case, for illustrative purposes,

consists of 6 configurations with equal probability, while the probability of observing

the system in any other configuration is initially zero. The expected number of

particles per lattice cell corresponding to the initial distribution is illustrated in Figure

3-4(a). The gray scale to the right of the physical domain indicates the expected

number of particles that will occupy a cell in the domain. This number varies from 0

to 1, where 0 (white) indicates a particle will not occupy that grid cell and 1 (black)

indicates a particle will occupy that grid cell with 100% probability. The expected

number of particles in each cell is calculated by the sum of the probabilities of all the

configurations that have a particle in that cell. Furthermore, Figure 3-4(a) illustrates

the initial arrangement of the external charges. Note that this arrangement of the

external charges will direct the nanoparticles to the bottom-right part of the domain

as illustrated in Figure 3-4(b). At 𝑡 = 1.0 × 105𝜈−1, the strengths of the external

charges are changed instantaneously as illustrated in Figure 3-4c, which in turn will

direct the nanoparticles towards the bottom-left corner of the domain. At the end of

the simulation, a steady state is approached in which self-assembled structures with

nanoparticles in the bottom-left corner of the domain have a high probability (Figure

3-4(d)).

The dynamics of the directed self-assembly process, as described above, clearly

indicate the need to change the projection space during the simulation. Suitable time

points to change the projection space are informed by the upper bound on the error

resulting from model reduction, as explained in the section on the algorithm of AFSP.

Figure 3-5 illustrates the upper bound on the error as a function of time, including the

chosen maximum and minimum values allowed. The initial projection space contains

only those 6 configurations for which 𝑝𝛼(𝑡0) > 0 holds. The upper bound on the

error initially increases rapidly and hits the maximum value allowed after a short

time interval. Event detection locates the point in time where the upper bound on

the error hits the maximum value and, subsequently, additional configurations are

added after which the simulation proceeds. Around 𝑡 = 0.9 × 105𝜈−1 the minimum

allowed value is crossed, which indicates that configurations may be removed from the
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Figure 3-5: Graphs showing the performance of the proposed method for a case study.
The probability of finding nanoparticles in various parts of the domain as a function
of time is shown in (a). The upper bound on the error resulting from model reduction
is shown in (b), where initially events are detected due to the upper bound on the
error hitting the maximum value allowed. Reaching steady state results in event
detection on the minimum value allowed. After sometime, the upper bound on the
error increases rapidly due to the change in the arrangement of external charges and
the same procedure as before is repeated. The size of the projection space is shown
in (c), which shows that around 1% of the total configurations need to be simulated.

projection space. After the update of the projection space, only a small number (500)

configurations are left, which are configurations with nanoparticles in the bottom-

right part of the domain (Figure 3-4(c)). Simulation is continued until time 𝑡 =

1.0 × 105𝜈−1. At this point, the external charges are changed instantaneously to

direct the nanoparticles to the bottom-left part of the domain. The modified external

field causes the upper bound on the error to increase rapidly with the prevalent

projection space and the maximum value is crossed rapidly (Figure 3-5(b)). Again,
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event detection locates the point of intersection and the projection space is modified

subsequently to add new configurations based on the analysis of the propensity rates

as described in the section on the AFSP algorithm. For the studied case, the sequence

of event detection and expansion of the projection space is repeated until eventually,

the added configurations reduce significantly the rate at which the upper bound on

the error increases. This can be seen in the magnification of a small region of Figure

3-5(b), where A,B,...,F show the time points when the upper bound on the error

crosses the maximum value repeatedly. Figure 3-5(a) shows that simulation of the

reduced model is indeed a close approximation of a simulation of the full system with

all possible configurations and transitions.

In summary, the presented case study demonstrates the effectiveness of the pro-

posed algorithm to simulate directed self-assembly by using an adaptive version of

FSP for model reduction with event detection. Automated identification of a chang-

ing and limited number of relevant configurations and transitions (approximately 1%

compared to the full system) is sufficient to obtain a desired accuracy on the maxi-

mum error resulting from model reduction. In the presented case, the time scales of

desired changes in the state projection vary significantly, which does not pose restric-

tions since the approach does not require a priori information on desired changes of

the state projection. It is expected that tuning of the parameters that quantitatively

determine which configurations to add or truncate (i.e., 𝑓𝑎𝑑𝑑, 𝑝𝑡𝑟𝑢𝑛𝑐, 𝑓𝑡𝑟𝑢𝑛𝑐) can further

enhance the performance of the algorithm for the studied case. Finally, it is expected

that the proposed algorithm is particularly effective for systems where the potential

energy surface is strongly rugged, which is typical for directed self-assembly. Such

systems can be much more complicated compared to the illustrated case. However,

the automated nature of the algorithm allows such systems to be approached as well.
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Chapter 4

The Multi-Resolution Approach

In Chaper 3, the dynamic modeling and simulation of directed self-assembly of nanopar-

ticles was addressed. External point charges were used to move the nanoparticles and

guide the self-assembly process. The dynamics of guided self-assembly were modeled

by master equations, denoting the time-evolution of the probability of each configu-

ration of nanoparticles. An adaptive version of the finite state projection approach

[47, 48, 53] was developed, as an adaptive model reduction technique, and it was

shown to be very effective in handling the combinatorial explosion in the number of

configurations, as the size of the problem increased, by retaining a small number of

configurations with significant levels of probabilistic presence. Event-detection logic

was used to determine the points in time, when the projection space required modi-

fication (adaptation). The approach was shown to be especially effective in handling

dynamic self-assembly systems with varying stiffness, since the time scales for the

adaptation of the projection space perfectly conform to the varying time scale of the

dynamic evolution of the system.

However, when the system size grows, the AFSP method may not be sufficient

in reducing the system size. When optimal control is implemented for this process

to find the optimal dynamic profile for the strengths of the externel charges, the

number of potential locations for the external charges increases combinatorially. Since

effectiveness of the AFSP method strongly depends on the locations of the external

charges, the reduction in the system size may not be sufficient. For such a case, a
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multi-resolution decomposition of the system, proposed by Solis et al. [64], allows us

to produce tractable computational approaches.

The multi-resolution approach is used to tame the complexities arising during the

dynamic simulation of self-assembly processes with large domains and many particles.

In this approach, a desired nanostructure can be developed in phases, where at each

phase the nanoparticles are arranged with progressively increasing resolution.

For example, in Figure 4-1, the self-assembly process starts with 32 nanoparticles

which occupy any randomly selected initial configuration. In Phase 1, the external

charges are positioned at appropriate points, and their intensities are selected in

such a way as to maximize the probability of finding 17 and 15 nanoparticles in the

top and bottom halves of the domain, respectively. Once this distribution has been

achieved, transitions between the domains are restricted by strong repulsive external

charges along their boundary. Subsequently, each of the domains of Phase 1 is treated

independently in Phase 2. Each domain of Phase 2 is treated the same way as Phase 1

itself and further divided in Phase 3. This process continues until the final structure

is reached. This is an illustrative example and the method can be extended to a

system of any size.

There is no unique strategy for positioning the external charges and selecting

their strengths, in order to achieve the progressive multi-resolution distribution of

the particles in the domain, as shown in Figure 4-1. In the next Chapter, we will

develop an optimal control policy, which achieves the multi-resolution objectives, by

minimizing the required total time. For the dynamic simulation purposes of the

present Chapter, in order to achieve the desired number of nanoparticles in each half,

the locations of the external charges need to be suitably chosen and changed with

time in such a way that the system does not get trapped in any kinetic traps. This

will be demonstrated in the next section.
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Figure 4-1: Illustration of the multi-resolution approach used for self-assembly of
nanoparticles. At every phase, the domain is divided into halves and subsets of the
nanoparticles are isolated in various parts of the domain. Self-assembly progressing
through these multi-resolution phases enables simulation of large domains.

4.1 Designing the energy landscape for the multi-

resolution decomposition of the state space

During the self-assembly process, the nanoparticles can be prevented from getting

stuck in kinetic traps by suitably shaping the energy landscape of the system. Form-
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ing large energy wells in the energy landscape close to the desired location of the

nanoparticles causes the nanoparticles to move towards these wells. These nanopar-

ticles can then be moved to different locations of the domain by slowly moving the

energy wells. Moving these wells slowly with time forms the basis of the proposed

strategy. The energy wells are moved by progressively modifying the locations and

strengths of the external charges and hence attract the nanoparticles along with them.

This strategy is applied in combination with the AFSP method.

Figure 4-2: Illustation of the various steps of the proposed strategy for self-assembly
in a particular step of the multi-resolution approach. Each arrangement of external
charges corresponds to an energy landscape, which gives an insight into the path
the nanoparticles will follow. The first step, shown in (a), has a strong attractive
charge in the center that attracts the nanoparticles towards it. The subsequent steps,
shown in (b), (c) and (d), two additional charges are introduced, on either side of
the charge in the center, that slowly increases in strength, while the strength of the
center decreases. The net result is a progressive weakening of the center well and
strengthening of two new wells, which move towards the edges of the domain, pulling
along the corresponding number of particles, thus creating two distinct and weakly
interacting sets of particles.

The dynamic simulation of the system, to achieve the first phase of the multi-

resolution approach, is started from an initial state where all the particles are near

the center of the grid. This arrangement of nanoparticles is quite simple to achieve

in practice - by placing a large attractive external charge in the center of the grid,
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as shown in Figure 4-2(a). Once the probability of observing nanoparticles near the

center of the grid is high, the arrangement of external charges is slightly modified.

Two more external charges are added on either side of the charge in the center (left

and right side in this case). These two external charges have a small attractive

strength and the strength of the charge in the center is reduced by a small amount.

This step creates two small energy wells on either side of the large energy well at

the center (Figure 4-2(b)) and hence the probability of the desired separation of the

nanoparticles will increase (for example, 17 particles above and 15 particle below in

Phase 1 of Figure 4-1). After simulating the system for a fixed time, the two additional

attractive external charges will be moved further away from the center, on either side

of the charge in the center, with their strengths increased while the strength of the

charge in the center is further reduced (Figure 4-2(c)). The simulation continues with

this setup for a fixed time. This step causes the two energy wells on either side of the

center well to deepen, with the energy well in the center becoming less deep, further

increasing the probability of separation of the nanoparticles. This process will be

continued until the additional external charges reach the edge of the grid, at which

point, the arrangement of the external charges will be that given by the static solution

(Minimum Tiling Approach) proposed by Solis et al.[63]. This solution is computed

for a sample configuration of nanoparticles with the desired separation between them.

The implementation of the static solution towards the end of the strategy will ensure

that the probability of the desired separation of nanoparticles is quite high. The

strengths of the external charges at the center will eventually go to zero or become

negative (Figure 4-2(d)).

The above strategy of changing the locations and strengths of external charges is

used at all phases of the multi-resolution approach. Charges located at the boundary

may be used to enhance or inhibit movement of particles to the boundary of the do-

main. As the multi-resolution strategy decomposes the state space into non-ergodic

subsets of configurations, the effectiveness of the AFSP-based algorithm, described in

the section on the algorithm, increases significantly and makes feasible the dynamic

simulation of guided self-assembly processes with large-sized domains and large num-
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bers of nanoparticles.

In the system used here for illustrative purposes, there are no energy wells in the

energy landscape other than the ones specifically formed by the attractive external

charges. This is due to the fact that the external charges used have high strengths

compared to the strengths of interactions between particles. Since kinetic trapping

occurs when the number of nanoparticles trapped in a particular energy well is dif-

ferent than the desired, this can be avoided by suitably choosing the strengths of

the external charges and monitoring the probability of the desired separation of the

nanoparticles with time. During dynamic simulation, if the system is in a kinetic trap

the rate of increase of the desired probability is very low, and the configurations in

the projection space do not possess the desired final geometries. In such cases, the

locations and intensities of the external charges must be changed in order to generate

favorable energy landscapes that allow further evolution of the system towards the

desired state. How to achieve this goal in an optimal manner, through the expanded

capabilities of AFSP for the dynamic simulation of large systems, will be shown in

Chapter 5 of this thesis.

4.2 Case Study

Control strategy for self-assembly

This case study consists of a 2D square domain with 64 lattice cells and 8 negatively

charged nanoparticles. As in the previous case, self-assembly is driven by interactions

between particles and interactions of the particles with an external electrostatic field

shaped by the various point charges. The total number of configurations for this

system is 4,426,165,368 and it’s not practical to simulate the full system with the

algorithm of Lakerveld et al. [42]. The aim of the proposed algorithm is to move

the point charges and vary their strengths with time to facilitate self-assembly to a

structure with desired geometry, while avoiding kinetic traps. Only a fraction of the

4,426,165,368 configurations need to be simulated. The control of the dynamic self-
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assembly process towards the desired final configuration will be studied through the

multi-resolution approach, described in the section on designing the energy landscape.

Phase 1

Figure 4-3: Figure illustrating the location of the external charges in the various steps
for Phase 1 of the multi-resolution approach. The locations of nanoparticles at the
end of each step are also shown in the figure. The gray scale of each cell indicates the
expected number of particles that will occupy that cell, which varies from 0 (white)
to 1 (black).

The general strategy for selecting the positions and intensities of external charges

to ensure a high probability of having 5 nanoparticles in the top half and 3 nanopar-

ticles in the bottom half of the domain was described in the section on designing the

energy landscape. As shown in Figure 4-3, the first Phase is divided into five steps,

where the positions and strengths of the external charges change at every step. In the

zeroth step, a strong attractive charge is placed in the center of the grid, causing a

deep potential well attracting all the nanoparticles. The simulation starts at the end

of the zeroth step. The subsequent steps follow the proposed strategy, described in

the section on designing the energy landscape: two point charges are introduced on
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either side of the center charge; new charges move away from the center and their in-

tensities increase; the center charge’s intensity decreases with time. In the final step,

the external charges in the corner are decomposed into two in order to implement the

static solution [63], which stabilizes the steady state configurations and maximizes

the probability of the desired arrangement of nanoparticles. Table 4.1 contains the

strengths of the attractive external charges used during each stage.

Table 4.1: Parameter values for the simulation of Phase 1 of the multi-resolution
approach. The strengths of the repulsive charges used are -300 in all the steps. Other
parameters used in the simulation are 𝑘𝐶𝑞

2
𝑝 = 1 kcal mol−1nm, 𝑘𝐵𝑇 = 0.7 kcal mol−1

and 𝑎 = 105 kcal mol−1nm6.
Step Strength of attractive external

charges ((𝑞𝑘)/(𝑞𝑝)) (clockwise)
0 200
1 24, 160, 20
2 48, 120, 40
3 72, 80, 60
4 18.2, 100, 40, 86.5, 39.9
5 18.2, 100, 86.5, 39.9

The probability of observing the system in the desired multi-resolution Phase,

from the simulations is shown in Figure 4-4. The simulation starts with the initial

configuration of particles as shown in step 0 of Figure 4-3 and the structure of ex-

ternal charges as shown in Step 1. The probability of the desired arrangement of

nanoparticles (5 in the top domain and 3 in the bottom domain) increases slowly

during the simulation of Steps 1 and 2, and hence, the system is quickly moved to

Step 3 of the control strategy. This is shown as a magnification in the same figure.

In Step 3, a more rapid increase in probability is observed. The simulation at each

step is continued until the rate of increase in probability becomes low, after which

point the structure of external charges is changed and all the unimportant configura-

tions from the projection space are removed. Note that the removal of unimportant

configurations occurs each time the structure of external charges changes. This is

in addition to the case when the upper bound on the error of the system hits the

minimum allowed value. The probability of the desired arrangement of nanoparticles
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Figure 4-4: Graphs showing the performance of the proposed strategy for self-
assembly in Phase 1 of the multi-resolution approach. (a) The blue solid line shows
the probability of observing 5 nanoparticles in the top half and 3 nanoparticles in the
bottom half of the domain. The red dotted line is the probability of the system if we
used the control structure of step 5 at time 𝑡 = 0, indicating that a time-dependent
strategy is essential for reaching the desired decomposition with high probability. The
black dotted line shows the number of configurations simulated (projection space size)
by the AFSP at every instant (secondary axis). (b) Shows the graph of the upper
bound on the error of the system.

is shown by a blue line in the graphs and the number of configurations simulated is

shown by the black dotted line. The discrete steps in the size of the projection space

correspond to the various steps, i.e., the changes in charge structure. Figure 4-4(b)

contains the upper bound on the error of the system that results from the use of the

adaptive finite state projection method while performing the simulation, which stays

within its limits.

In order to demonstrate the main advantage of this proposed control strategy, an

additional simulation was done, where the external charges were directly changed to

those of Step 5 from Step 0. The probability of the desired arrangement of nanopar-

ticles for that case is plotted as a red dotted line in Figure 4-4(a). As seen in the

graph, this procedure yields a self-assembly process with much slower dynamics, and

underlines the strength of the proposed control strategy to simulate the dynamics of

directed self-assembly in an efficient way.
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Figure 4-5: Figure illustrating the location of the external charges in the various steps
for Phase 2 of the multi-resolution approach. The locations of nanoparticles at the
end of each step are also shown in the figure. A horizontal line of repulsive charges is
added along the middle of the domain to separate the top and bottom halves of the
domain, and thus the two parts are simulated independently.

Phase 2

The aim of this phase is to achieve, with a high probability, an arrangement of 3

nanoparticles on the top-left part of the grid, 2 nanoparticles on the top-right part

of the grid and 3 nanoparticles in the bottom-right part of the grid. At the end of

the first Phase of the multi-resolution approach, repulsive charges are placed at the

center of the domain, dividing the top and bottom domains (Figure 4-5). This is

done to create an energy barrier to prevent transitions from the top domain to the

bottom domain, and thus break the ergodicity of the system over the whole domain.

This allows the two domains to be simulated independently. Similarly as for Step

0 of Phase 1, strong attractive charges are added in the center of each domain (top

and bottom half) and simulations are carried from the end of the Step 0, when all

the nanoparticles have reached the center of the domain. From Step 1 onwards, the

proposed control strategy is used to facilitate self-assembly. The strengths of the

attractive external charges can be found in Table 4.2. The strengths of the external
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charges, when they reach the boundary of the domain, are determined by the static

solution [63].

Table 4.2: Parameter values for the simulation Phase 2 of the multi-resolution ap-
proach. The strengths of the repulsive external charges used are -100 in all the steps.
Other parameters used in the simulation are 𝑘𝐶𝑞

2
𝑝 = 1 kcal mol−1nm, 𝑘𝐵𝑇 = 0.7 kcal

mol−1 and 𝑎 = 105 kcal mol−1nm6.
Step Strength of attractive external

charges ((𝑞𝑘)/(𝑞𝑝)) (clockwise)
0 150, 100
1 24, 120, 10, 20, 80
2 30, 110, 15, 40, 60
3 40, 100, 20, 60, 40
4 120, 30, 57.1, 60, 40
5 120, 30, 57.1, 100, 20
6 120, 30, 57.1, 100
7 120, 57.1, 100

Figure 4-6: Graphs showing the performance of Phase 2 of the multi-resolution ap-
proach for the case study. (a) Probabilities of finding 3 particles and 2 particles on
the left and right sides of the top half of the domain respectively. The green vertical
lines indicate the time points when the external charges switch to the arrangements
shown in Steps 2, 3, 4 and 7, respectively. (b) Probability of finding 3 particles on
the bottom-right quadrant of the domain. The green vertical lines indicate the time
points when the external charges switch to the arrangements shown in Steps 2, 3, 5
and 6, respectively.

The probability of observing the system in the desired multi-resolution Phase,

from the simulation is shown in Figure 4-6. The blue line shows the probability of
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the desired arrangement of nanoparticles and the green vertical lines in Figure 4-6(a)

are indicative of the various steps in the control strategy. Note that the charges in

the top domain from Steps 1 to 4 (Figure 4-5) move rapidly, because of the slow

rate of increase in probability of the desired arrangement of nanoparticles (3 and 2

particles in the top left and right parts). Since this movement of external charges is

rapid, the time points of these changes in steps are very close (Figure 4-6(a)). The

magnified time points of these step changes are shown as an inset in the same figure.

These step changes seem farther apart in Figure 4-6(b) because of the difference in

time scale. The step changes shown in Figure 4-6(a) correspond to Steps 2, 3, 4 and

7, respectively, and Steps 2, 3, 5 and 6, respectively, in Figure 4-6(b). As in the

previous Phase, the red dotted lines in the plot are the probabilities of the desired

arrangements of nanoparticles in the top and bottom halves, when the controls of

Step 7 are applied after Step 0, an indication of faster self-assembly through the

multi-resolution control strategy.

The implementation of various steps in the top half of the grid is done by including

all the configurations of the top half of the domain (201376 configurations). Similarly,

the bottom half of the domain is assumed to be an independent system and the

simulation is done by considering all possible configurations (4960 configurations).

Phase 3

The final desired configuration of the nanoparticles is obtained with high probability

through the implementation of the steps shown in Figure 4-7. At the end of Phase

2, repulsive external charges are added in the middle of the grid to create an en-

ergy barrier and restrict the system’s ergodicity in their respective parts of the grid.

Therefore, this creates four 4x4 grids that can be simulated independently. Each of

these grids are small enough to be simulated with the full model without having to

use the AFSP method. The strengths of the various external charges used in all the

steps can be found in Table 4.3.

The probability of observing the system in the desired multi-resolution Phase,

from the simulations is shown in Figure 4-8. The probability indicated in the graphs
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Figure 4-7: Figure illustrating the location of the external controls in the various
steps for Phase 3 of multi-resolution approach. The locations of nanoparticles at the
end of each step are also shown in the figure. A vertical line of repulsive charges is
now added along the middle of the domain to separate the domain in to four parts,
and thus each one is simulated independently.

Table 4.3: Parameter values for the simulation of Phase 3 of the multi-resolution
approach. The strengths of the repulsive external charges used are -50 in all the steps.
Other parameters used in the simulation are 𝑘𝐶𝑞

2
𝑝 = 1 kcal mol−1nm, 𝑘𝐵𝑇 = 0.7 kcal

mol−1 and 𝑎 = 105 kcal mol−1nm6.
Step Strength of attractive external

charges ((𝑞𝑘)/(𝑞𝑝)) (clockwise)
0 150, 150, 150
1 45, 40, 100, 150, 75, 75
2 45, 100, 150, 75, 75

are that of the desired configuration of the nanoparticles in each quadrant. The

simulation is started from the end of Step 0, where there is an attractive charge in

each quadrant of the system. In Step 1, two attractive charges are added to the

top-left quadrant and two attractive charges replace the one attractive charge in

the bottom-right quadrant. These locations of the attractive external charges are

determined based on the positions of the final external charges (Step 2 of Figure 4-7).

This final external charge structure can be determined using the Minimum Tiling

Approach proposed by Solis et al. [63] As the simulation begins, the system quickly

changes to Step 2 of the arrangement of charges, due to the slow rate of increase

in the probability of the desired configuration in the top-left quadrant. The green

vertical lines in Figure 4-8(a) indicate the times when the system changes to Step 2.
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Figure 4-8: Graphs showing the performance of Phase 3 of the multi-resolution ap-
proach for the case study. (a) and (b) show the probability of the desired configuration
of nanoparticles in the top-left and bottom-right quadrants of the domain. This de-
sired configuration is shown in Step 2 of this Phase. The green vertical line in (a)
indicates the time the external charges switch to the arrangement shown in Step 2.

In summary, a control strategy based on multi-resolution approach of self-assembly

is presented in this Chapter. The strategy decomposes the space into non-ergodic

subspace by creating and shifting energy wells. The strategy not only provides a

dynamic path for the nanoparticles towards self-assembly avoiding any kinetic traps,

but also integrates well with the AFSP method of Chapter 3 by helping it reduce

the model size. This was demostrated through a case study. However, the resulting

policy is not optimal, as the strengths of the charges used were determined by trial

and error. In the next Chapter, we will present an optimal control strategy, where

optimum time profile for the locations and strengths of the external charges will be

calculated. This will overcome the lack of optimality used in this case study, and

allows the fabrication of the desired final structure in minimum time.
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Chapter 5

Multi-Resolution Based Optimal

Control

In Chapter 4 we studied the dynamic modeling and simulation of guided self-assembly

under the influence of a control strategy that was based on a multi-resolution view

of the evolving system. The multi-resolution view modeled the various configura-

tions by allocating the nanoparticles into spatial regions of varying resolution. For

example, initially the configurations were modeled by allocating the particles in the

entire domain of the 2-d space, and then progressively to the two halves of the do-

main, the four quadrants of the domain and so on. At each phase the position and

intensity of the external controls formed potential wells that guided the movement of

the nanoparticles to the desired spatial sub-regions of the 2-d domain [54]. As the

resolution of the spatial sub-regions and consequently of the description of the con-

figurations increased, the repositioning of external controls with the potential wells

they created guided the nanoparticles to finer and finer resolution structures, until

the desired one was achieved. Furthermore, at every phase of the multi-resolution ap-

proach, the time domain was divided into multiple steps, where each step represented

a different arrangement of the external control charges. The time duration and the

strengths of the external charges for each time step were chosen in such a way that

the probability of the system reaching that multi-resolution structure approached a

pre-specified high value.
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The control strategy employed in Chapter 4 was an ad hoc strategy, possessing no

specific attributes. In this chapter, the control strategy will be designed to possess

certain optimality properties. Although the approach is applicable for a variety of

optimization objectives, in this chapter we will focus the attention to minimum time

optimal control strategies, i.e. control strategies which guide the self-assembly of

nanoparticles from any initial random (and unknown) configuration to a configuration

of desired geometry in minimum time. The mathematically rigorous optimal control

strategy will determine the positioning and strength of the external charges at each

time step.

5.1 Formulation of the Optimal Control Problem

Selecting a control strategy that leads the nanoparticles from any initial distribution

to the structure of desired geometry in minimum time, is an objective that conforms

to the needs of efficient manufacturing. In addition, it ensures that the nanoparticles

will avoid kinetic traps, where they are expected to stay for a long time, before they

can gradually escape from the unwanted local minimum potential well and continue

on to the globally minimum one of the desired structure. In addition, there are

also technological limitations that constrain the placement of external charges on a

physical domain. These limitations are an artifact of the various top-down approaches

used for the creation of these external charges. Thus, the continuous-time optimal

control problem is formulated, at every phase of the multi-resolution strategy, as
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follows:

min
q,r,𝑡𝑓

𝑡𝑓

s.t.
𝑑p

𝑑𝑡
(𝑡) = A(q(𝑡), r(𝑡))p(𝑡), ∀𝑡 ∈ (0, 𝑡𝑓 ], p(0) = p0,

𝑝𝑑(𝑡𝑓 ) ≥ 𝑝𝑚𝑖𝑛 = 𝑝𝑠𝑠 − 𝛿,

q𝑚 ≤ q(𝑡) ≤ q𝑀 , ∀𝑡 ∈ [0, 𝑡𝑓 ],

r(𝑡) ∈ 𝑅, ∀𝑡 ∈ [0, 𝑡𝑓 ],

q(𝑡𝑓 ) = q𝑓 ; r(𝑡𝑓 ) = r𝑓 . (5.1)

q is the vector of controls representing the ratio of the strengths of the external charges

to the strength of the charge of a nanoparticle, q𝑠/𝑞𝑝. r is the vector containing the

locations of all controls, i.e. of the external charges. q𝑚 and q𝑀 are the lower and

upper bounds, respectively, on the controls. 𝑅 is a discrete set of locations on the

domain where the external charges can be placed.

The second constraint provides the termination criterion for the optimal control

policy, where 𝑝𝑑 is the probability of the desired configuration of the nanoparticles.

The value of 𝑝𝑚𝑖𝑛 is determined by using the locations and strengths of the external

charges determined by the static solution found by Solis et al. [63], which are captured

by the last two equality constraints. The static solution produced by Solis et al. [63],

ensures robustness of the desired configuration at the steady-state, i.e. it ensures a

high probability that the steady-state configuration remains at the structure with the

desired geometry for a long time. As a consequence, Solis et al. showed that the static

solution produces a very narrow probability distribution for the configurations, and

this steady-state probability, say 𝑝𝑠𝑠, can be easily estimated from samples generated

by Metropolis Monte Carlo simulations. Fixing the locations and strengths of the

charges at the final time to the static solution values ensures that the probability

of the system being in the desired configuration approaches 𝑝𝑠𝑠 with time, and thus

ensures feasibility of the optimal control policy. This is analogous to the use of steady-

state constraints on the state (or, output), during the computation of the open-loop
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optimal control over the prediction horizon, within the Model Predictive Control

framework, in order to ensure stability of the feedback control law [36].

For numerical solution, the controls can then be discretized in time, keeping the

locations and strengths of the external charges constant within a time interval. Note,

however, that the state variables, i.e. the probabilities, remain continuous in time.

Each of these discretized time intervals corresponds to a step of the control strategy,

as described in Chapter 4. The new formulation is as follows:

min
q𝑘,r𝑘,𝑡𝑘

𝑡𝑁

s.t.
𝑑p

𝑑𝑡
(𝑡) = A(q𝑘, r𝑘)p(𝑡), ∀𝑡𝑘−1 < 𝑡 ≤ 𝑡𝑘, ∀𝑘 = 1, 2, ..., 𝑁, 𝑡0 = 0,

p(0) = p0,

𝑡𝑘−1 ≤ 𝑡𝑘, ∀𝑘 = 1, 2, ..., 𝑁,

𝑝𝑑(𝑡𝑁) ≥ 𝑝𝑚𝑖𝑛,

q𝑚 ≤ q𝑘 ≤ q𝑀 , ∀𝑘 = 1, 2, ..., 𝑁 − 1,

r𝑘 ∈ 𝑅, ∀𝑘 = 1, 2, ..., 𝑁 − 1,

q𝑁 = q𝑓 ; r𝑁 = r𝑓 , (5.2)

where 𝑁 is the number of steps in the control strategy.

The solution of the above control problem would produce the optimum dynamic

profile for the external charges for the guided (controlled) self-assembly process. How-

ever, it should be noted that, as the size of the physical 2-d domain increases, the

number of potential locations for the external charges and the number of configura-

tions increases combinatorially, and the solution of problem (5.2) becomes intractable.

The Multi-Resolution Decomposition of the configuration space allows us to produce

tractable computational solutions to problem (5.2), as will be shown in the next

paragraph.
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5.1.1 Multi-Resolution Decomposition of the Configuration Space

In Chaper 3, the Adaptive Finite State Projection (AFSP) method was developed

in order to provide an effective dynamic model-reduction technique for handling the

large sets of differential equations describing the probabilities of all configurations in

an evolving nanostructure. However, it should be noted that the AFSP approach

could fail in maintaining a manageable small number of necessary configurations in

the projection space. For example, inappropriately positioned controls could lead

to a potential energy landscape that is relatively flat with a very large number of

local minima distributed throughout the 2-d domain. In such case, the system is

essentially ergodic over the whole space of configurations and we need to include in

the projection space a very large number of configurations in order to model the self-

assembly system with high accuracy. To overcome this difficulty, in Chapter 4 we

introduced a multi-resolution decomposition of the configuration space. In Phase-1,

the physical domain was decomposed into two halves with the corresponding desired

numbers of particles. In Phase-2 each half is further decomposed into two halves, thus

further decomposing the corresponding configuration spaces (see Chapter 4 and [54]).

In early phases of the multi-resolution strategy, such as Phase-1 and Phase-2, the

clustering of particles around deep potential wells effectively reduces the number of

configurations that need to be included in the projection space and AFSP works very

well in taming the number of configurations that need to be considered during the

simulation of the self-assembling system. In later phases, the size of the independent

physical domains and the number of particles in them has been significantly reduced,

so that AFSP works very effectively. Actually, these reductions may allow complete

enumeration of all configurations in the master equation, as it was demonstrated in

an example in Chapter 4.

This multistep process constrains the movement of external charges in a way such

that the basins of attractions in the energy landscape are well-defined. The optimal

control problem is now formulated for every phase of the multi-resolution approach,

and the positions of the external charges are no longer optimization variables in the
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control problem (5.2), thus making it more tractable. The resulting formulation of

the optimal control problem for an arbitrary phase 𝑗 is given by (5.3):

min
q𝑘,𝑡𝑘

𝑡𝑁

s.t.
𝑑p

𝑑𝑡
(𝑡) = A(q𝑘)p(𝑡), ∀𝑡𝑘−1 < 𝑡 ≤ 𝑡𝑘, ∀𝑘 = 1, 2, ..., 𝑁, 𝑡0 = 0,

p(0) = p0,

𝑡𝑘−1 ≤ 𝑡𝑘, ∀𝑘 = 1, 2, ..., 𝑁,∑︁
𝑖∈Ω𝑗

𝑝𝑖(𝑡𝑁) ≥ 𝑝𝑚𝑖𝑛,

q𝑚 ≤ q𝑘 ≤ q𝑀 , ∀𝑘 = 1, 2, ..., 𝑁 − 1,

q𝑁 = q𝑓 . (5.3)

Here Ω𝑗 is the set of goal configurations for the nanoparticles in multi-resolution phase

𝑗, among all possible configurations of the domain under consideration in phase 𝑗.

The value of 𝑝𝑚𝑖𝑛 is determined by implementation of the static solution at the final

step of the multi-resolution phase, which is determined using Solis et al.’s work [63].

This solution is calculated for an arbitrarily chosen configuration, among the set of

goal configurations for the multi-resolution phase 𝑗.

As described in Chapter 4 and in [54], every phase of the multi-resolution approach

starts with the placement of a strong attractive charge at the center of the domain

under consideration and repulsive charges at the boundaries of this domain. This

procedure attracts the nanoparticles towards the center of the domain. The time is

initialized to zero at the end of this procedure, and the initial probability vector p0 is

calculated by Metropolis Monte Carlo simulations. It will be later shown in the case

study that the time duration of this initial step is much less than the total time of

self-assembly in that phase.

This optimal control formulation in (5.3) is modified into the following equivalent
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formulation (5.4):

min
q𝑘,𝑤𝑘,𝑡𝑁

𝑡𝑁

s.t.
𝑑p

𝑑𝑡
(𝑡) = A(q𝑘)p(𝑡), ∀𝑡𝑁𝑤𝑘−1 < 𝑡 ≤ 𝑡𝑁𝑤𝑘, ∀𝑘 = 1, 2, ..., 𝑁, 𝑤0 = 0, 𝑤𝑁 = 1,

p(0) = p0,

𝑤𝑘−1 ≤ 𝑤𝑘, 𝑤𝑘 ∈ [0, 1], ∀𝑘 = 1, 2, ..., 𝑁,∑︁
𝑖∈Ω𝑗

𝑝𝑖(𝑡𝑁) ≥ 𝑝𝑚𝑖𝑛,

q𝑚 ≤ q𝑘 ≤ q𝑀 , ∀𝑘 = 1, 2, ..., 𝑁 − 1,

q𝑁 = q𝑓 , (5.4)

where 𝑤𝑘 are the ratios of the simulation times of all steps in the control strategy to

the final time, i.e. 𝑤𝑘 ≡ 𝑡𝑘/𝑡𝑁 . Formulation (5.4) can be made dimensionless in time

by scaling it with 𝑡𝑁 .

min
q𝑘,𝑤𝑘,𝑡𝑁

𝑡𝑁

s.t.
𝑑p

𝑑𝜏
(𝜏) = 𝑡𝑁A(q𝑘)p(𝜏), ∀𝑤𝑘−1 ≤ 𝜏 ≤ 𝑤𝑘, ∀𝑘 = 1, 2, ..., 𝑁, 𝑤0 = 0, 𝑤𝑁 = 1,

p(0) = p0,

𝑤𝑘−1 ≤ 𝑤𝑘, 𝑤𝑘 ∈ [0, 1], ∀𝑘 = 1, 2, ..., 𝑁,∑︁
𝑖∈Ω𝑗

𝑝𝑖(1) ≥ 𝑝𝑚𝑖𝑛,

q𝑚 ≤ q𝑘 ≤ q𝑀 , ∀𝑘 = 1, 2, ..., 𝑁 − 1,

q𝑁 = q𝑓 . (5.5)

5.2 Implementation

The optimal control problem (5.5) can be solved using SNOPT [19], a sequential

quadratic programming solver. The SNOPT algorithm requires derivatives of the

objective function and the constraint;
∑︀

𝑖∈Ω𝑗
𝑝𝑖(1) ≥ 𝑝𝑚𝑖𝑛.
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5.2.1 Examining the differentiability of the formulation

In Equation (2.2), under the AFSP method, the vector p is defined such that it

contains the probabilities of all possible configurations, and the probability values

of the configurations not included in the current projection space are set to zero.

Similarly, A(𝑡) is a full-sized matrix, where only the block diagonal submatrix cor-

responding to the configurations included in the current projection space is nonzero:

𝜖𝛽←𝛼(𝑡) ̸= 0,∀𝛼 ∈ A(𝑡), 𝛽 ̸= 𝛼. However, during any simulation of the problem, only

the configurations in the current projection space are simulated in order to reduce

the computational time, yielding a system that varies in size during the course of a

simulation.

When the upper bound on the error hits the maximum or minimum allowed values,

the AFSP method modifies the subset of configurations that are included in the

reduced model of the system. If it hits the maximum allowed value, the subset

of configurations expands with new configurations, and when it hits the minimum

allowed value, it eliminates certain configurations from the projection space. In these

instances, the state projection space changes, leading to a change in the structure of

matrix A(𝑡) in Equation (2.2).

Note that the error crosses the maximum allowed value when the sum of the

probabilities of the configurations included in the projection space falls below a certain

level, or equivalently, when the difference of the sum from 1 exceeds a maximum

value. Similarly, the error crosses the minimum allowed value when the sum of the

probabilities of the configurations included in the projection space exceeds a certain

level, or equivalently, when the difference of the sum from 1 falls below a minimum

value. In other words, the structure of the matrix, A(𝑡), is effectively a function of

the probabilities of the configurations in the projection space, leading to the following

modification of the master equations:

𝑑p

𝑑𝑡
(𝑡) = A(q𝑘,p(𝑡))p(𝑡) = f(q𝑘,p(𝑡)). (5.6)

To compute the optimal control strategy using SNOPT we need the sensitivities
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(i.e. the derivatives) of the objective function and of the state variables (i.e. the

probabilities in the master equations) with respect to the control parameters. In

addition, these sensitivities need to be continuous functions of the control paramters.

As can be seen from Equations (5.11), the derivatives of the probabilities with respect

to the control (optimization) parameters are calculated by differentiating the ordinary

differential equations. The classical result for existence of sensitivities requires f to be

continuously differentiable with respect to its arguments (see Theorem 3.1, Chapter

V [25]). However, whenever the error hits the maximum or minimum allowed values,

the state projection space changes and so does the structure of the matrix, A(𝑡),

potentially leading to the state variables not being differentiable with respect to the

control parameters. Specifically, while simulating the dynamic system with particular

values of q𝑘, if the error crosses the maximum allowed value, a configuration is added

if the 𝑑𝑝/𝑑𝑡 value of that configuration is above a cutoff value and a configuration is

removed if its 𝑑𝑝/𝑑𝑡 value is lower than another cutoff value. When the simulation

is repeated with a small change in the value of q𝑘, as the error hits its bounds,

the change in the 𝑑𝑝/𝑑𝑡 value may not result in the addition/removal of the same

configurations that were added/removed for the previous value of q𝑘. This is due to

the fact that the addition/removal of configurations depends on how far the 𝑑𝑝/𝑑𝑡

values are from the cutoff value.

To illustrate diagrammatically this point, consider Figure 5-1. At the time point

𝑡 = 𝑡*, a change from q𝑘 to q𝑘 + 𝛿q does not change the way the projection space

changes in time. However a change from q𝑘 + 𝛿q to q𝑘 + 2𝛿q increases the value

of 𝑑𝑝/𝑑𝑡 beyond the cutoff value and hence the projection space is modified in a

different manner. Therefore, for small changes in the value of q𝑘, one cannot guarantee

the same sequence of projection spaces during the dynamic simulation. Since the

structure of A(𝑡) changes based on the projection space, A(𝑡) is not a continuous

function. Thus, f in Equation (5.6) is not continuous in its arguments, potentially

making the sensitivities undefined as well.

Galán et al. [17] have dealt with sensitivity analysis in the case when the right-

hand side function of a system of ordinary differential equations is discontinuous, by
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Figure 5-1: Figure illustrates the discontinuity in the right-hand side function of the
ODE. At some time 𝑡 = 𝑡*, (a) shows the graph of 𝑑𝑝/𝑑𝑡 vs q𝑘 for any configuration,
and the corresponding change in the projection space that results from different values
of q𝑘 is shown in (b).

calculating a jump in the sensitivities resulting from the discontinuities. However,

their result is valid only when the sequence of discontinuities in the time domain is

invariant with respect to the control parameters. Unfortunately, these requirements

are not always satisfied by the AFSP strategy; the number and nature of disconti-

nuities varies with q𝑘. Furthermore, the method of Galan et al. [17], requires that

the error does not hit the error bounds tangentially, but the AFSP imposes no such

restrictions on the evolution of the error in time.

It is clear from the above discussion, that the AFSP, as presented in Chapter 3,

cannot be used as is for the computation of optimal control strategies, with provably

correct optimality properties, and needs to be modified. The modified AFSP for the

computation of optimal control strategies is based on the following requirements:
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1. To ensure that f is continuously differentiable with respect to its arguments

during every step of the control strategy, the projection space for every step

is kept constant. The set of important configurations for the projection space

is obtained by a one-time simulation of the system, using the AFSP method,

for particular values for the strengths of the external charges. The potential

variation in the projection space for when the strengths of the external charges

are varied by the optimization procedure can be mitigated by having additional

constraints on those strengths. The strengths used to determine this fixed

projection space are chosen from the above additional constraints.

2. For any strengths of the external charges, the ratio of the simulation time of

any step in the control strategy to the final time is kept constant. This is done

for two reasons:

(a) When time is non-dimensionalized in the formulation, this feature will force

any particular step of the control strategy to start at the same time point

in the scaled time domain for different values of q𝑘. Hence, it ensures that

the right-hand side of the differential equation becomes continuous in q𝑘.

(b) The constant projection space to be used in the optimization will remain

valid. This is because the optimization would then adjust the values of q𝑘

such that the simulation reaches a similar physical state at the end of any

particular step of the control strategy across different iterations.

In other words, 𝑤𝑘 is selected a priori and kept constant in the optimization

problem. The new optimization problem formulation incorporating the above features

is given by:

79



min
q𝑘,𝑡𝑁

𝑡𝑁

s.t.
𝑑p

𝑑𝜏
(𝜏) = 𝑡𝑁A(q𝑘)p(𝜏), ∀𝑤𝑘−1 < 𝜏 ≤ 𝑤𝑘, ∀𝑘 = 1, 2, ..., 𝑁, 𝑤0 = 0, 𝑤𝑁 = 1,

p(0) = p0,∑︁
𝑖∈Ω𝑗

𝑝𝑖(1) ≥ 𝑝𝑚𝑖𝑛,

q𝑘𝑚𝑖𝑛 ≤ q𝑘 ≤ q𝑘𝑚𝑎𝑥, ∀𝑘 = 1, 2, ..., 𝑁 − 1; q𝑁 = q𝑓 . (5.7)

Additional constraints are added to the problem formulation in order to help keep

the a priori determined projection space valid. Note that since the projection space

is determined a priori for each step, A(q𝑘) no longer depends on p(𝑡). The validity of

the projection space can be easily tested a posteriori, by calculating the upper bound

on the error resulting from using the projection space. This error should be less than

some desired threshold.

The right-hand side of the differential equations becomes:

𝑑p

𝑑𝜏
(𝜏) = 𝑡𝑁A(q𝑘)p(𝜏) = f(𝑡𝑁 ,q𝑘,p(𝜏)), ∀𝜏 ∈ (𝑤𝑘−1, 𝑤𝑘]. (5.8)

In this new formulation, the dynamic simulation during any particular step in the

control strategy starts at the same time point for all values of q𝑘. In addition, the

structure of A(𝑡) remains constant and its entries are continuously differentiable with

respect to q𝑘. Hence, f is continuously differentiable with respect to its arguments.

Furthermore, in the new formulation the only potential discontinuities occur at

the transition times between the various steps in the control strategy, i.e. at 𝜏 = 𝑤𝑘.

Moreover, the number of discontinuities remains fixed and they always occur in the

same order. At any of the transition times, all new configurations added to the

projection space start with probability values of zero, which are same as their values

prior to being added to the projection space. Therefore, for all the new configurations,

and the configurations that continue in the projection space, their probabilities, and
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hence their sensitivities, remain continuous at the transition times. This is because

the time points of the discontinuities are independent of the optimization parameters,

as pointed out by Galán et al. [17]. However, the probabilities of the configurations

that are removed from the projection space at the transition times jump to zero, thus

causing their sensitivities to jump to zero as well, as can be shown by applying the

results of Galán et al. [17].

For the sake of simplicity, it can be assumed that the transitions between various

steps in the control strategy occur at equal intervals in the scaled time domain. Hence,

the final formulation becomes:

min
q𝑘,𝑡𝑁

𝑡𝑁

s.t.
𝑑p

𝑑𝑡
(𝜏) = 𝑡𝑁A(q𝑘)p(𝜏), ∀𝑘 − 1

𝑁
< 𝜏 ≤ 𝑘

𝑁
, ∀𝑘 = 1, 2, ..., 𝑁,

p(0) = p0,∑︁
𝑖∈Ω𝑗

𝑝𝑖(1) ≥ 𝑝𝑚𝑖𝑛,

q𝑘𝑚𝑖𝑛 ≤ q𝑘 ≤ q𝑘𝑚𝑎𝑥, ∀𝑘 = 1, 2, ..., 𝑁 − 1; q𝑁 = q𝑓 . (5.9)

Let q̂ be the vector of optimization variables. Hence the objective function deriva-

tives and the derivatives of the state variables are:

q̂ = [q1 · · · q𝑁 𝑡𝑁 ] ,

𝜕𝑡𝑁
𝜕q̂

=

[︂
𝜕𝑡𝑁
𝜕q1

· · · 𝜕𝑡𝑁
𝜕q𝑁

𝜕𝑡𝑁
𝜕𝑡𝑁

]︂
=

[︀
0T · · · 0T 1

]︀
, (5.10)

𝜕

𝜕q̂

∑︁
𝑖∈Ω𝑗

𝑝𝑖(1) =
∑︁
𝑖∈Ω𝑗

𝜕𝑝𝑖(1)

𝜕q̂
=

⎡⎣∑︁
𝑖∈Ω𝑗

𝜕𝑝𝑖(1)

𝜕q1

· · ·
∑︁
𝑖∈Ω𝑗

𝜕𝑝𝑖(1)

𝜕q𝑁

∑︁
𝑖∈Ω𝑗

𝜕𝑝𝑖(1)

𝜕𝑡𝑁

⎤⎦ .
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The sensitivities, shown in Equation (5.10), can be calculated in the following manner.

𝑑

𝑑𝜏

(︂
𝜕p

𝜕q𝑘

)︂
(𝜏) = 𝑡𝑁A(q𝑘)

(︂
𝜕p

𝜕q𝑘

(𝜏)

)︂
+ 𝑡𝑁

𝜕A

𝜕q𝑘

(q𝑘)p(𝜏), when 𝑤𝑘−1 < 𝜏 ≤ 𝑤𝑘,

𝑑

𝑑𝜏

(︂
𝜕p

𝜕q𝑘

)︂
(𝜏) = 𝑡𝑁A(q𝑘′)

(︂
𝜕p

𝜕q𝑘

(𝜏)

)︂
, when 𝑤𝑘′−1 < 𝜏 ≤ 𝑤𝑘′ , ∀𝑘′ ̸= 𝑘,

𝑑

𝑑𝜏

(︂
𝜕p

𝜕𝑡𝑁

)︂
(𝜏) = 𝑡𝑁A(q𝑘)

(︂
𝜕p

𝜕𝑡𝑁
(𝜏)

)︂
+ A(q𝑘)p(𝜏). (5.11)

Equations (5.11) are obtained by differentiating the master equations, 𝑑p
𝑑𝜏

(𝜏) = 𝑡𝑁A(q𝑘)p(𝜏),

with respect to the optimization (control) variables. Equations (5.11) are then ap-

pended to the state equations to create a larger system of ODEs, which are then

solved using DVOPK [6], as shown by Lakerveld et al. [42]. Also, only sensitivities

corresponding to the configurations in the current projection space can be non-zero.

So only those sensitivity equations are simulated, as done for the probabilities of the

configurations in the current projection space.

5.3 Case Study

The case study used in this section to compute the optimal control strategy is the

same as the one used in Chapter 4: a 2-d square physical domain with 64 lattice cells

and 8 negatively charged nanoparticles. The total number of possible configurations

for this system is 4,426,165,368. The objective is to compute the minimum-time

optimal control strategy that brings any initial distribution of the 8 nanoparticles to

a structure with desired geometry.

Phase-1

For Phase-1 of the multi-resolution approach, the aim is to have 5 nanoparticles in

the top half and 3 nanoparticles in the bottom half of the domain, as prescribed by

the desired final geometry. As shown in Figure 5-2, directed self-assembly is achieved

via the optimal control strategy in five time periods (steps). The gray scale to the

right of the figure indicates the expected number of particles that occupy any cell in
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Figure 5-2: Locations and strengths of the external charges in the various steps for
Phase-1 of the multi-resolution strategy. The expected locations of nanoparticles at
the end of each step are also shown in the figure.

the domain. This number varies from 0 to 1, where 0 (white) indicates a particle will

not occupy that grid cell and 1 (black) indicates a particle will occupy that grid cell

with 100% probability. The expected number of particles in any cell is obtained by

calculating the sum of the probabilities of all the configurations that have a particle

in that cell. In Step 0, a high strength attractive external charge is placed in the

center, which attracts all the nanoparticles towards the center. The simulation is

then started with the arrangement of external charges shown in Step 1 of Figure 5-2.

The strengths of all the external charges are indicated with the help of blue dashed

arrows; 𝑞1, 𝑞2, ..., 𝑞10 are the optimization variables and 𝑁 = 5.

The strengths of the boundary charges in Step 4 and Step 5 are fixed a priori and

correspond to the optimal static solution computed by Solis et al. [63] in their first

paper, for the configuration shown in Step 5. The configuration in Step 5 is chosen

arbitrarily among the desired possible configurations for the multi-resolution phase.
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The steady-state probability (𝑝𝑠𝑠) is estimated to be 0.99, using the samples generated

by Metropolis Monte Carlo simulations. Hence, a desired probability (𝑝𝑚𝑖𝑛) of 0.95

is used as the termination criterion.

Since there is no prior information on 𝑤𝑘, equally spaced steps are used, i.e.

Formulation (5.9) is used. The problem has 11 optimization variables: 𝑞1, 𝑞2, ..., 𝑞10

and 𝑡𝑁 . Table 5.1 shows the value obtained from the optimization. It also contains

the constraints used for each of the charges (control variables). During Step 1 of the

simulation, only 𝑞1, 𝑞2 and 𝑞3 are active, and the remaining variables are assigned

zero. Similarly during Step 2, the only active variables are 𝑞4, 𝑞5 and 𝑞6, and so on.

The value of 𝑡𝑁 obtained from the optimization was 5,394,902 𝜈−1.

Table 5.1: Parameter values from optimization of Phase-1 of the multi-resolution
approach. The strengths of the repulsive charges used are -300 in all the steps. Other
parameters used in the simulation are 𝑘𝐶𝑞

2
𝑝 = 1 kcal mol−1nm, 𝑘𝐵𝑇 = 0.7 kcal mol−1

and 𝑎 = 105 kcal mol−1nm6.
Step 1 Step 2 Step 3 Step 4 Step 5

Value 200 (𝑞1) 173.85 (𝑞4) 88.61 (𝑞7) 43.06 (𝑞10) -
Range 100 ≤ 𝑞1 ≤ 200 100 ≤ 𝑞4 ≤ 200 50 ≤ 𝑞7 ≤ 100 0 ≤ 𝑞10 ≤ 50 -
Value 50 (𝑞2) 70.97 (𝑞5) 139.90 (𝑞8) 18.2, 100 18.2, 100
Range 0 ≤ 𝑞2 ≤ 50 50 ≤ 𝑞5 ≤ 100 100 ≤ 𝑞8 ≤ 150 - -
Value 50 (𝑞3) 66.14 (𝑞6) 100 (𝑞9) 39.9, 86.5 39.9, 86.5
Range 0 ≤ 𝑞3 ≤ 50 50 ≤ 𝑞6 ≤ 100 100 ≤ 𝑞9 ≤ 150 - -

Figure 5-3 shows the simulation results, using the optimal values obtained from

the optimal control problem. In Figure 5-3(a), the blue line shows the probability of

the desired arrangement of the nanoparticles, i.e. finding 5 nanoparticles in the top

half and 3 nanoparticles in the bottom half, produced by the optimal control policy.

The red dashed line shows the probability of the desired arrangement of nanoparticles,

when the external charges were assigned the steady-state values at the 𝑡 = 0, i.e. a

non-optimal policy. As seen from the plot, at 𝑡 = 5,394,902 𝜈−1, the probability of

the desired arrangement due to the optimal control policy reaches 0.95, whereas the

static solution yields a probability for the desired arrangement of only around 0.75.

This is due to the fact that the static solution, imposed at the 𝑡 = 0 and maintained

for all times, has led the system into a kinetic trap, a situation that the optimal
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Figure 5-3: Graphs showing the simulation results of Phase-1 of the multi-resolution
approach using the values obtained from the optimal control. (a) Probability of the
desired arrangement of nanoparticles in blue line and red dashed line. Black dotted
lines show the size of the projection space. (b) Upper bound on the error from the
dynamic simulation of the assembly process, due to the use of the projection space.

control policy has evaded.

The black dotted line indicates the size of the projection space in each step,

determined a priori, using simulations with AFSP approximation of the system. The

projection size plot shows that the simulation does not need to simulate more than

80,000 configurations at any point in time. The error resulting from the projection

space is not more than 0.008, as shown in Figure 5-3(b), which was less than the

maximum allowed value used while generating the projection space, indicating that

the chosen constant projection spaces for all steps of Phase-1 are sufficiently accurate.

Phase-2

At the end of Phase-1, a horizontal line of repulsive external charges is placed in the

middle of the domain, dividing the domain into two halves. The high repulsive charges

form an energy barrier, not allowing the nanoparticles to pass, and thus allowing the

two halves to be modeled and simulated independently. In addition to those charges,
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repulsive external charges are also added on the top and bottom boundary of the

domains, thus concentrating the nanoparticles in the middle of each half domain.

This reduces the projection space obtained from AFSP.

Figure 5-4: Figure illustrating the locations of the external charges in the top half of
the domain, in the various steps for Phase-2 of the multi-resolution control strategy.
The expected locations of nanoparticles at the end of each step are also shown in the
figure. A horizontal line of repulsive charges is added along the middle of the domain
to separate the top and bottom halves of the domain, and thus the two parts are
simulated independently.

For Phase-2 of the control strategy, Figure 5-4 shows the control strategy for

finding the optimal external charge strengths in the top half of the domain. In this

phase, the aim is to have 3 nanoparticles in the top left part of the domain and 2

nanoparticles in the top-right half of the domain. The steps here are similar to the

ones shown in Phase-1, above. The steady-state probability (𝑝𝑠𝑠) for the external

charges shown in Step 5 is estimated to be 0.98 using the samples generated by

Metropolis Monte Carlo simulations. Hence, a desired probability (𝑝𝑚𝑖𝑛) of 0.95 is

used as the termination criterion.

Table 5.2 shows the values obtained for the optimal control. It also contains the

constraints used for each of the control variables (external charges). As in the previous
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phase, only 𝑞1, 𝑞2 and 𝑞3 are active in Step 1, 𝑞4, 𝑞5 and 𝑞6 are active in Step 2, and

so on. The optimal value of 𝑡𝑁 was 987,973 𝜈−1.

Table 5.2: Parameter values from the optimization of the top half of the domain in the
Phase-2 of the multi-resolution control strategy. The strengths of the repulsive exter-
nal charges used are -100 in all the steps. Other parameters used in the simulation
are 𝑘𝐶𝑞

2
𝑝 = 1 kcal mol−1nm, 𝑘𝐵𝑇 = 0.7 kcal mol−1 and 𝑎 = 105 kcal mol−1nm6.

Step 1 Step 2 Step 3 Step 4 Step 5
Value 149.42 (𝑞1) 137.26 (𝑞4) 41.27 (𝑞7) 29.53 (𝑞10) -
Range 100 ≤ 𝑞1 ≤ 150 100 ≤ 𝑞4 ≤ 150 0 ≤ 𝑞7 ≤ 100 0 ≤ 𝑞10 ≤ 100 -
Value 24.93 (𝑞2) 25.11 (𝑞5) 40 (𝑞8) 120 120
Range 0 ≤ 𝑞2 ≤ 25 25 ≤ 𝑞5 ≤ 40 40 ≤ 𝑞8 ≤ 100 - -
Value 20 (𝑞3) 39.63 (𝑞6) 55 (𝑞9) 57.1 57.1
Range 0 ≤ 𝑞3 ≤ 20 20 ≤ 𝑞6 ≤ 40 40 ≤ 𝑞9 ≤ 55 - -

Figure 5-5: Graphs showing the simulation results of the top half in Phase-2 of the
multi-resolution control strategy, using the values obtained from the optimal control
policy. (a) Probability of the desired arrangement of nanoparticles in blue line and
red dashed line. Black dotted lines show the size of the projection space. (b) Upper
bound on the error due to the use of a state projection space.

Figure 5-5 shows the simulation results using the values obtained from the optimal

control policy. In Figure 5-5(a), the blue line shows the probability of the desired
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arrangement of the nanoparticles, i.e. finding 3 nanoparticles in the top-left quadrant

and 2 nanoparticles in the top-right quadrant, produced by the optimal control policy.

The red dashed line shows the probability of the desired arrangement of nanoparticles

when the final steady-state optimal control actions were applied to the system at

time, 𝑡 = 0, and were kept constant for the duration, i.e. a non-optimal control

policy. As in Phase-1, the probability of the desired arrangement reaches a high

probability of around 0.95, at 𝑡 = 987,973 𝜈−1, whereas the use of the optimal static

control policy yields a probability of only around 0.75; the result of a kinetic trap.

It is noteworthy that the optimal control policy does not produce a monotonically

increasing probability of the desired arrangement. In Step 3 the probability is reduced,

but in Step 4 it rises sharply towards the final value of around 0.95.

The black dotted line indicates the size of the projection space in each step,

determined a priori using the AFSP algorithm. The plot with the size of the state

projection space shows that the simulation does not need to simulate more than

35,000 configurations at any point in time, and the maximum error resulting for the

reduced projection space is less than 0.002, as shown in Figure 5-5(b), implying the

projection space was well selected and did not need to be modified.

Figure 5-6 shows the control strategy for finding the optimal external charge

strengths in the bottom half of the domain. In this phase, the aim is to have 3

nanoparticles in the bottom-right part of the domain. The steps here are similar to

the ones shown in earlier phases of the optimal control strategy. The steady-state

probability (𝑝𝑠𝑠) of the desired arrangement, using the optimal values of the external

charges shown in Step 5, is estimated to be around 0.99, using the samples generated

by Metropolis Monte Carlo simulations. Hence, a desired probability (𝑝𝑚𝑖𝑛) of 0.98

is used as the termination criterion.

Table 5.3 shows the values obtained from the optimization. It also contains the

constraints used for each of the control variables. Similar to the previous case, only

𝑞1 and 𝑞2 are active in Step 1, 𝑞3 and 𝑞4 are active in Step 2, and so on. The value of

minimum time, 𝑡𝑁 , obtained from the optimization was 166,698 𝜈−1.

Figure 5-7 shows the probability of the desired configuration (i.e. finding 3
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Figure 5-6: Figure illustrating the locations of the external charges in the bottom
half of the domain, in the various steps for Phase-2 of the multi-resolution control
strategy. The expected locations of nanoparticles at the end of each step are also
shown in the figure. A horizontal line of repulsive charges is added along the middle
of the domain to separate the top and bottom halves of the domain, and thus the two
parts are simulated independently.

Table 5.3: The values of parameters used from the optimization of the bottom half
of the domain in Phase-2 of the multi-resolution control strategy. The strengths of
the repulsive external charges used are -100 in all the steps. Other parameters used
in the simulation are 𝑘𝐶𝑞

2
𝑝 = 1 kcal mol−1nm, 𝑘𝐵𝑇 = 0.7 kcal mol−1 and 𝑎 = 105 kcal

mol−1nm6.
Step 1 Step 2 Step 3 Step 4 Step 5

Value 100 (𝑞1) 100 (𝑞3) 38.26 (𝑞5) 18.82 (𝑞7) -
Range 50 ≤ 𝑞1 ≤ 100 50 ≤ 𝑞3 ≤ 100 0 ≤ 𝑞5 ≤ 50 0 ≤ 𝑞7 ≤ 50 -
Value 50 (𝑞2) 50 (𝑞4) 100 (𝑞6) 100 100
Range 0 ≤ 𝑞2 ≤ 50 0 ≤ 𝑞4 ≤ 50 50 ≤ 𝑞6 ≤ 100 - -

nanoparticles in the bottom right quadrant), obtained from the dynamic optimal

control policy (blue line), while the red dashed line shows the probability of the de-

sired arrangement of nanoparticles when the optimal steady-state control was applied

to the system at time, 𝑡 = 0, for the entire period. At 𝑡 = 166,698 𝜈−1, the probabil-

ity of the desired arrangement due to the optimal external charges strengths reaches
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Figure 5-7: Graph showing the simulation results for the bottom half in Phase-2 of the
multi-resolution control strategy, using the values obtained from the optimal control
policy. The blue line shows the probability of the desired arrangement of nanoparticles
under dynamic optimal control, while the red line shows the probability of the desired
configuration under the application of the optimal steady-state control.

0.98, whereas that of the static solution, as computed in Step 5, yielded a probability

of around 0.50.

Intermediate equilibration step between Phase-1 and Phase-2

At the end of Phase-1, the positions of the nanoparticles are shown in Step 5 of

Figure 5-2. At that point, as mentioned before, a horizontal line of repulsive charges

are added in the center of the domain, in addition to the other repulsive charges.

Attractive charges are also added at the center of each of the top and bottom half,

thus attracting the nanoparticles towards them, as shown in Step 0 of Figures 5-4

and 5-6.

The time scale required to achieve this intermediate step between the two phases

is assumed to be much smaller than the total time of self-assembly in Phase-1 or

Phase-2. This is because all the repulsive charges are at the "boundaries" of the

reduced domain, and with a strong attractive charge in the middle, the nanoparticles

are immediately attracted towards the middle of this domain. To verify this, the

intermediate step for the top half was simulated with 5 nanoparticles from the end of
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Step 5 in Figure 5-2 to Step 0 in Figure 5-4.

Figure 5-8: Graph showing the simulation results for the top half in the intermediate
equilibration step between Step 5 of Phase-1 (Figure 5-2) and Step 0 of Phase-2 top
half (Figure 5-4) of the multi-resolution control strategy.

As seen from Figure 5-8, the time taken to reach Step 0 of Figure 5-4 is around

4 × 104 𝜈−1, whereas the time of self-assembly in both Phase-1 and Phase-2 top half

are of 𝒪 (106) 𝜈−1. Therefore, this process can be assumed to be instantaneous.

Phase-3

At the end of Phase-2, a vertical line of repulsive external charges is placed in the

middle of the domain, dividing it into four quadrants. As in Phase-2, the high re-

pulsive charges form an energy barrier, allowing the four quadrants to be simulated

independently, and yielding four independent ergodic spaces.

For Phase-3 of the multi-resolution control strategy, Figure 5-9 shows the control

policy in the top-left quadrant of the domain. The aim is to bring the nanoparticles

to the configuration shown in the Step 2 of the figure. The strategy starts with a

strong attractive external charge in a location that is determined by the final (steady-

state) locations of the external charges. In this case, the attractive charge is placed in

between the locations of the final external charges. The strengths and the locations of
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Figure 5-9: Figure illustrating the locations of the external controls in the top-left
quadrant of the domain, in the various steps for Phase-3 of multi-resolution control
strategy. The expected locations of nanoparticles at the end of each step are also
shown in the figure. A vertical line of repulsive charges is now added along the
middle of the domain to separate the domain into four parts, and treat each one
independently.

the external charges in Step 2 are determined by the optimal static solution developed

in Solis et al. [63] in their first paper. The simulation starts at the end of Step 0,

when the initial charge is mapped on two new charges on either side (Step 1). The

self-assembly in this phase of the multi-resolution control strategy requires a smaller

number of steps. The optimization variables are 𝑞1 and 𝑡𝑁 . The final steady-state

probability can be calculated easily in this case as the entire configuration space can

be modeled. Based on the final steady-state probability, the termination criterion

probability (𝑝𝑚𝑖𝑛) of 0.99 is used.

Table 5.4 shows the values obtained from the optimization. It also contains the

constraint used for 𝑞1. The value of 𝑡𝑁 obtained from the optimization was 209,207

𝜈−1.

Table 5.4: The values of parameters used from the optimization of the top left quad-
rant in Phase-3 of the multi-resolution control strategy. The strengths of the repulsive
external charges used are -50 in all the steps. Other parameters used in the simulation
are 𝑘𝐶𝑞

2
𝑝 = 1 kcal mol−1nm, 𝑘𝐵𝑇 = 0.7 kcal mol−1 and 𝑎 = 105 kcal mol−1nm6.

Step 1
Value 0 (𝑞1)
Range 0 ≤ 𝑞1 ≤ 50
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Figure 5-10: Locations of the external controls in the bottom-right quadrant of the
domain, in the various steps for Phase-3 of multi-resolution control strategy. The
expected locations of nanoparticles at the end of each step are also shown in the
figure. A vertical line of repulsive charges has been added along the middle of the
domain to separate the domain into four parts.

Figure 5-10 shows the control strategy in the bottom-right quadrant of the domain.

Step 1 shows the final desired configuration that the strategy aims to achieve. The

optimal control policy involves only one step; the mapping of the initial charge in the

center of the domain with two charges that correspond to the optimal static solution

for the final desired arrangement, as computed by the method described by Solis et

al. [63] in their first paper. The optimal control policy involves one step, and the

only optimization variable is 𝑡𝑁 , whose optimal value is found to be 150 𝜈−1.

There was no need for an optimization problem in the top-right quadrant of the

domain, as only one attractive external charge is required to achieve the desired

configuration of the nanoparticles (Figure 5-9 and Figure 5-10).

Figure 5-11 shows the simulation results for Phase-3 of the multi-resolution control

strategy. Figure 5-11(a) shows the probability of the desired configuration in the

top-left quadrant. Note that from Table 5.4, 𝑞1 = 0, which implies that Step 2

is implemented directly after Step 0. Figure 5-11(b) shows the probability of the

desired configuration in the bottom-right quadrant in blue.

In summary, an optimal control problem formulation and solution strategy is pro-

posed that allows self-assembly of nanoparticles into desired structures. The method-

ology uses AFSP method and multi-resolution approach to make the optimization
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Figure 5-11: Graphs showing the probabilities of the desired arrangements in Phase-
3 of the multi-resolution control strategy: (a) Top-left quadrant. (b) Bottom-right
quadrant.

problem tractable, and the minimum-time objective function ensured that the sys-

tem avoids any kinetic traps.
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Chapter 6

Rotation of nanoparticles

In the next phase of this study, self-assembly of nanoparticles with “sticky" edges is

considered. For example, as proposed in Chapter 1, a DNA tile could be a nanoparti-

cle building block for the nanostructures. The edges of these DNA tiles can be func-

tionalized with specific DNA sequences (e.g. ATCGAA) which have strong binding

affinities for their complementary sequences present in other tiles (e.g. TAGCTT).

The binding affinities between two functionalized edges can be expressed with the

help of a function that characterizes the hydrogen bonding interactions between the

complementary base pairs. The well-matched edges will experience strong binding

affinities, and the umatched or partially matched edges will experience weak affini-

ties. Weak binding causes errors in the self-assembly process [26] and should be taken

into account.

However, the effect of the binding forces between edges is greatly dependent on

temperature. At higher temperatures, the tiles move faster due to the Brownian

motion and hence it is less likely for any two matched edges to remain close enough

for the binding to occur. Generally, premature binding is not preferred during self-

assembly, and therefore the temperature during most of the multi-resolution phases

can be kept high enough to prevent any specific DNA tile binding. The system can be

then cooled down in the final phase of the multi-resolution approach, allowing edge

binding.
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6.1 Modified Model

There are two additional considerations that need to be included in the master equa-

tion model in order to account for the functionalized edges in particles: hydrogen

bonding between the functionalized edges, and the rotational configurations that are

possible for each nanoparticle. For the first case, since each nanoparticle or DNA tile

will have the same number of DNA bases, it can be assumed that all the particles

will have the same charge. Therefore, no changes are required to the contributions

from Van der Waals or electrostatic part of the energy. However, the binding forces

between matched edges (or penalty for unmatched edges) will have an impact on

the total energy of a configuration. To tackle this consideration, a constant factor is

subtracted (or added) to the energy expression for any configuration 𝛼:

ℋ𝛼 =
𝑉∑︁
𝑖=1

𝑁𝑐𝑝∑︁
𝑘=1

𝑞𝑘𝑞𝑝
|𝑟𝑖,𝑘|

𝑧𝛼,𝑖 +
𝑉∑︁
𝑖=1

𝑉∑︁
𝑗 ̸=𝑖

𝑧𝛼,𝑖

(︂
𝑞2𝑝
|𝑟𝑖,𝑗|

− 𝑎

|𝑟𝑖,𝑗|6

)︂
𝑧𝛼,𝑗 −

𝐵∑︁
𝑏=1

𝐸𝑏, (6.1)

where 𝐵 is the number of bonds between the edges of nanoparticles, 𝐸𝑏 is a constant

value that depends on the matched functionalized edges between adjacent nanoparti-

cles. Since hydrogen bonding is electrostatic in nature [5], the order of magnitude of

𝐸𝑏 is same as that of the electrostatic energy between any two nanoparticles. How-

ever, hydrogen bonding strongly depends on the solvent conditions [5]. For example,

hydrogen bonding is known to be quite weak in protic solvents such as water and al-

cohol. Therefore, the energy contribution from hydrogen bonding can be easily varied

by changing the solvent conditions under which the self-assembly process is taking

place.

The second new consideration is the inclusion of rotational configurations of the

nanoparticles. Nanoparticles, depending on the number of functionalized edges, may

contain one, two, or four unique rotational orientations. This increases the total

number of possible configurations of the nanoparticles. However, as mentioned be-

fore, these new configurations need to be considered only when the binding energy is

significant enough, which happens when the temperature is low enough or when the
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hydrogen bonding is high due to the presence of certain solvents.

6.2 Case Study

A case study similar to previous case studies is considered. In this case study, it

is assumed that self-assembly until the last multi-resolution phase has already been

achieved, and one is left with 4 particles in each top-left and top-right part of the

domain, in the desired configuration. We will assume that there are only two func-

tionalized edges possible in a nanoparticle, and they are on the adjacent edges of

the nanoparticle. Therefore, there are only 2 possible rotational orientations for any

nanoparticle. Every configuration of the nanoparticles has 24 possible rotational ori-

entations, where each of the four nanoparticles can rotate in two ways. Since there

are 1,820 possible positional configurations (4 particles in 16 lattice cells), the total

number of configurations with different rotational orientations are 29,120. For the

purpose of this simulation, in addition to the step-wise jump of a nanoparticle to an

adjacent empty cell, we will also allow for a 90o rotational change for any nanopar-

ticle. However, only one of these changes are possible at a time, either jump of a

nanoparticle to an adjacent cell or rotation of a nanoparticle by 90o.

Figure 6-1: Figure showing the desired configuration of the nanoparticles at the end
of the multi-resolution approach, i.e., using the procedure given in Chapter 5. The
top-left quadrant has the configuration shown in (a) and the top-right quadrant has
the configuration shown in (b).
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Figure 6-1(a) shows the initial configuration of the top left part of the domain

for this case study, and Figure 6-1(b) shows the initial configuration for the top right

part. These configurations can be achieved using the multi-resolution based control

policy proposed in Chapter 5. This process is assumed to have been performed at a

high enough temperature so that the hydrogen bonding between matched edges does

not play a significant role. Therefore the nanoparticles may not be aligned based on

their edges.

Figure 6-2: Figure showing the desired orientation of the nanoparticles in the final
configuration in the top-left part of the domain. The case study aims to align the
nanoparticles in any possible orientation, shown in (a), into the desired orientation
shown in (b).

Figure 6-2 shows the final desired aligned configuration. Note that in Figures 6-1

and 6-2(a) the functionalized edges are present, but not displayed. This is because the

functionalized edges are not important in those configurations, and the nanoparticles

can be in any possible orientation. In Figure 6-2(b), the functionalized edges are

important and it is desired to achieve the displayed orientation of the nanoparticles.

The process of alignment of the nanoparticles into the desired orientation will be

studied in this case study.

The two functionalized edges in Figure 6-2(b) are indicated with a gray box and

a shaded box. With these two functionalized edges, there are three kinds of bonding

affinities possible in this system - gray edge next to a gray edge, gray edge next a

shaded edge and shaded edge next to a shaded edge. Hence, in Equation (6.1), 𝐸𝑏

can take three possible values, as indicated in the Table 6.1 below.
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Table 6.1: Definition of the energy parameters associated with the various binding
energies that are possible between any two nanoparticles.

Type of bonding Parameter
gray edge next a gray edge 𝐸𝑔𝑔

gray edge next a shaded edge 𝐸𝑠𝑔

shaded edge next a shaded edge 𝐸𝑠𝑠

The parameter values used in the simulation are contained in Table 6.2.

Table 6.2: External charge values for the simulation of top-left part of the grid.
The strengths of the repulsive charges used are -50. Other parameters used in the
simulation are 𝑘𝐶𝑞

2
𝑝 = 1 kcal mol−1nm and 𝑎 = 105 kcal mol−1nm6.

Strength of attractive external
charges ((𝑞𝑘)/(𝑞𝑝)) (top to bottom)

18.2, 50, 50

Figure 6-3: Figure showing the desired orientation of the nanoparticles in the final
configuration in the top-right part of the domain. The case study aims to align the
nanoparticles in any possible orientation, shown in (a), into the desired orientation
shown in (b) and (c).

Similar simulations are also carried out for the top-right part of the grid. Figure
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6-3(a) shows the initial configuration of the nanoparticles after the multi-resolution

based self-assembly, where any orientation of the nanoparticles is possible. In top-

right part of the grid, for the desired orientation of the nanoparticles, there are two

gray-gray edge bonds and two shaded-shaded edge bonds. Hence, there are two

orientations of the nanoparticles that have the same energies. Note that these two

orientations are the same for the purposes of the self-assembly process. This is because

the structure shown in Figure 6-3(b) can be obtained by just rotating the structure

shown in Figure 6-3(c). This case study studies the process of alignment of the

nanoparticles into the desired orientation, as shown in Figure 6-3(b) and (c).

The strength of attractive external charge values for the simulation of top right

part of the grid used is +50 and the strengths of the repulsive charges used are -50.

Other parameters used in the simulation are 𝑘𝐶𝑞
2
𝑝 = 1 kcal mol−1nm and 𝑎 = 105

kcal mol−1nm6.

6.2.1 Reduction in temperature

For the top-left part of the grid, the initial configuration (Figure 6-2(a)) is assumed

to have been obtained using the parameter values shown in the second column of

Table 6.3. The temperature is then reduced from 0.6 kcal mol−1 to 0.1 kcal mol−1,

thus enabling strong binding affinities between adjacent edges.

Table 6.3: Values for the various binding energies and the temperature. The second
column contains the parameter values that were used to obtain the configurations in
Figures 6-2(a) and 6-3(a). The third column contains the parameters that were used
for the simulation of the case study, where the temperature was reduced.

Parameter Value at initial time Value used for simulation
𝐸𝑔𝑔 [kcal mol−1] 1.0 1.0
𝐸𝑠𝑔 [kcal mol−1] -1.0 -1.0
𝐸𝑠𝑠 [kcal mol−1] 0.2 0.2
𝑘𝐵𝑇 [kcal mol−1] 0.6 0.1

As seen in Figure 6-2(b), the desired orientation of the nanoparticles is such that

the shaded edge should always face upwards. As a result, in the desired orientation,
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there are two bonds between the gray edges and one bond between the shaded edges.

Therefore, in order to maximize the probability of this orientation, the energy of the

system reduces the most when gray-gray edge binds, i.e., by 𝐸𝑔𝑔. It is also assumed

that the gray edge does not bind with the shaded edge, and causes steric hindrance

instead. Therefore, it results in the increase in the energy of the orientation, which

is indicated by negative 𝐸𝑠𝑔.

Since the model is a phenomenological one, the parameter values were chosen

using trial and error. As mentioned before, these numbers are chosen such that they

are the same order of magnitude as the electrostatic forces between two nanoparticles,

and these numbers can be easily modified by the appropriate choice of solvent.

Figure 6-4: Graph showing the simulation results for the top-left part of the domain
when the temperature is reduced. The blue bold line shows the probability of the
desired configuration, irrespective of the orientation. The blue dashed line shows the
probability of the desired orientation of the nanoparticles in that configuration.

Figure 6-4 shows the results from the simulation at reduced temperature. The blue

bold line shows the probability of the desired configuration, which has a high value

of 0.98 initially, and does not change at all when the temperature is reduced. The

blue dashed line tracks the probability of the oriented nanoparticles in the desired

configuration. Although the probability of the desired orientation of nanoparticles

is expected to increase due to the increased affinity between the matched edges,
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the dynamics of reaching this orientation is very slow. After 𝑡 = 5 × 106 𝜈−1, the

probability increases by only 1 × 10−5.

The simulation was repeated for the top-right part of the grid (Figure 6-3).

Figure 6-5: Graph showing the simulation results for the top-right part of the domain
when the temperature is reduced. The blue bold line shows the probability of the
desired configuration, irrespective of the orientation. The blue dashed line shows the
probability of the desired orientation of the nanoparticles in that configuration.

Figure 6-5 shows the results from the simulation at reduced temperature. The blue

bold line shows the probability of the desired configuration, which has a high value

of 0.99 initially, and does not change at all when the temperature is reduced. The

blue dashed line tracks the probability of the oriented nanoparticles in the desired

configuration and it includes both the structures shown in Figure 6-3(b) and (c).

Although the probability of the desired orientation of nanoparticles is expected to

increase due to the increased affinity between the matched edges, the dynamics of

reaching this orientation is very slow. After 𝑡 = 5 × 106 𝜈−1, the probability increases

by only 2 × 10−5.
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6.2.2 Changing the solvent

Since the dynamics of the alignment of nanoparticles in the desired orientation at

low temperature is quite slow, an alternate methodology is proposed. In this new

simulation, the temperature is kept constant, and the hydrogen bonding affinities

are increased instead. The new set of parameter values are given by Table 6.4. As

mentioned earlier, this can be achieved by changing the solvent conditions under

which the process of self-assembly takes place.

Table 6.4: Values for the various binding energies and the temperature. The second
column contains the parameter values that were used to obtain the configurations in
Figures 6-2(a) and 6-3(a). The third column contains the parameters that were used
for the simulation of the case study, where the binding affinities were increased.

Parameter Value at initial time Value used for simulation
𝐸𝑠𝑠 1.0 3.0
𝐸𝑠𝑔 -1.0 -3.0
𝐸𝑔𝑔 0.2 0.2
𝑘𝐵𝑇 0.6 0.6

At the new parameter settings, the bonding affinity for gray-gray edges, 𝐸𝑔𝑔, is

increased in order to force the nanoparticles to maximize the bonds between gray

edges. The high negative value of 𝐸𝑠𝑔 also penalizes the unmatched edges in the

system.

Figure 6-6 shows the results from the simulation for increased bonding affinities.

The blue bold line shows the probability of the desired configuration, which has a high

value of 0.98 initially, and does not change at all when the conditions change. The

blue dashed line tracks the probability of the oriented nanoparticles in the desired

configuration. Since the temperature is kept high, the fast dynamics of the system is

maintained while rapidly aligning towards the desired orientation.

Figure 6-7 shows the results from the simulation for increased bonding affinities.

The blue bold line shows the probability of the desired configuration, which has a high

value of 0.99 initially, and does not change at all when the conditions change. The

blue dashed line tracks the probability of the oriented nanoparticles in the desired
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Figure 6-6: Graph showing the simulation results for the top-left part of the domain
when the bonding affinities are increased. The blue bold line shows the probability of
the desired configuration, irrespective of the orientation. The blue dashed line shows
the probability of the desired orientation of the nanoparticles in that configuration.

Figure 6-7: Graph showing the simulation results for the top-right part of the domain
when the bonding affinities are increased. The blue bold line shows the probability of
the desired configuration, irrespective of the orientation. The blue dashed line shows
the probability of the desired orientation of the nanoparticles in that configuration.

configuration. Since the temperature is kept high, the fast dynamics of the system is

maintained while rapidly aligning towards the desired orientation.
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In conclusion, temperature and solvent conditions are important factors that influ-

ence the orientation of the nanoparticles. Preliminary results indicate that reduction

in temperature causes the dynamics of the alignment of nanoparticles into a desired

orientation to slow down. A better approach is to change the solvent, which will

in turn influence the binding affinities. However, the binding affinities cannot be

arbitrarily large, as it will interfere with the external charges, and cause the proba-

bility of the system being in desired configuration to fall. Therefore, optimal control

should be used to find the best solvent conditions, such that the probability of desired

orientation of nanoparticles in the desired configuration is maximized.
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Chapter 7

Conclusion and future directions

In the previous chapters, a guided self-assembly of nanostructures is achieved. Suit-

able numerical methods and control strategies are developed to simplify the simu-

lation and optimization of this self-assembly process. In Chapter 3, an algorithm is

presented to simulate the dynamics of directed self-assembly of nanoparticles, through

the model reduction of master equations. The approach is based on a novel adaptive

version of the finite state projection method. Event detection is used to determine

effectively those points in time at which the projection space should be modified.

Consequently, the method does not require a priori information for changes in projec-

tion space, which is particularly useful when the relevant time scales for modification

of the projection space vary significantly, as is typically the case for directed self-

assembly. Furthermore, transition rates are analyzed systematically to anticipate the

configurations that will become relevant to prevent a steep increase in the error from

model reduction. A case study illustrates the effectiveness of the approach. The

number of selected master equations is at least 100-fold smaller for the studied cases,

compared to the simulation of the full system.

In Chapter 4, a control strategy that allows efficient implementation of AFSP is

presented that provides an effective path towards reliable self-assembly. The strat-

egy is based on a multi-resolution view of the self-assembled system. Over time, it

judiciously decomposes the state space into non-ergodic subspaces, by creating new

and shifting energy wells, thus moving the nanoparticles along with them. A case
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study illustrates the proposed strategy and demonstrates the advantage over static

strategies, which would have attempted to reach the final desired structure through

implementation of the static solution at the initial time. The strategy enables the

nanoparticles to follow a dynamic path towards self-assembly that avoids any kinetic

traps. The resulting control policy is not optimal in any sense. The strengths of the

charges employed were determined a priori by trial and error.

In Chapter 5, an optimal control problem formulation and a strategy for its solu-

tion have been proposed for the design of optimal control policies that bring an initial

random configuration of nanoparticles to a configuration with desired geometry, in

minimum time. External charges (attractive or repulsive) act as the controls, whose

locations and intensities vary over time. The minimum-time objective of the optimal

control policy ensures that the system does not fall into a kinetic trap. In order

to guarantee the optimality of the control policy in the presence of possible discrete

transitions in the projection space, an expanded projection space that includes all

pertinent configurations is determined a priori with the help of an AFSP simula-

tion. The validity of the projection space is maintained with the help of additional

constraints on the external charges.

In Chapter 6, the nanoparticles are assumed to have been self-assembled into their

respective desired locations, but are not in the desired rotational orientation. Due

to the binding affinities between certain edges, various external factors, which ro-

tate the nanoparticles to the desired orientation, are identified, namely, temperature

and the external solvent. Temperature slows down the nanoparticles, enabling their

edges to bind, but this results in a drastic slowing of the dynamics of the system.

Changing the solvent in order to increase the hydrogen bonding energy between com-

plementary edges produces the same effect without slowing down the dynamics of the

system. Optimal control should be used to find the best solvent conditions, such that

the probability of desired orientation of nanoparticles in the desired configuration is

maximized.

108



7.1 Future directions - Sub-Assemblies

The next step in the process of self-assembly is the fabrication of complex structures.

With the help of the approach described in this thesis, smaller, intermediate structures

(called sub-assemblies) can be fabricated reliably. Then, those intermediate structures

can be combined to form the final complex nanostructure.

Figure 7-1: Figure showing the fabrication of the desired complex nanostructure by
dividing the structure into finer sub-assemblies (labelled 1 through 4).

For example, in Figure 7-1, four types of sub-assemblies can be fabricated (labeled

1 through 4) using the methodology described in this thesis. These sub-assemblies are

then combined and positioned accordingly to form the final complex nanostructure.

The multi-resolution approach can be used in combination with the sub-assembly

approach, thus enabling the formation of the sub-assemblies.

The sub-assemblies can be fabricated and transported to the main fabrication

area. These sub-assemblies can be functionalized in such a way that when added to

the domain in a specific order under the influence of dynamically controlled external

charges, they bind to the exact position as in the final nanostructure. The sub-

assemblies will self-assemble into the scaffolding superstructure, as shown in Figure

7-2. By controlling the rate and order at which the sub-assemblies are introduced
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Figure 7-2: Figure showing the final stage of the self-assembly process, where the
sub-assemblies are combined into the final nanostructure under the influence of the
external charges.

into the fabrication area, one has complete control over the self-assembly process.
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