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Abstract

For this thesis, several tools for dynamic model development were developed and analyzed.
Dynamic models can be used to simulate and optimize the behavior of a great number of
natural and engineered systems, from the movement of celestial bodies to projectile motion
to biological and chemical reaction networks. This thesis focuses on applications in chem-
ical kinetic systems. Ordinary differential equations (ODEs) are sufficient to model many
dynamic systems, such as those listed above. Differential-algebraic equations (DAEs) can
be used to model any ODE system and can also contain algebraic equations, such as those
for chemical equilibrium. Software was developed for global dynamic optimization, con-
vergence order was analyzed for the underlying global dynamic optimization methods, and
methods were developed to design, execute, and analyze time-varying experiments for pa-
rameter estimation and chemical kinetic model discrimination in microreactors. The global
dynamic optimization and convergence order analysis thereof apply to systems modeled by
ODEs; the experimental design work applies to systems modeled by DAEs.

When optimizing systems with dynamic models embedded, especially in chemical engi-
neering problems, there are often multiple suboptimal local optima, so local optimization
methods frequently fail to find the true (global) optimum. Rigorous global dynamic op-
timization methods have been developed for the past decade or so. At the outset of this
thesis, it was possible to optimize systems with up to about five decision variables and five
state variables, but larger and more realistic systems were too computationally intensive.
The software package developed herein, called dGDOpt, for deterministic Global Dynamic
Optimizer, was able to solve problems with up to nine parameters with five state variables
in one case and a single parameter with up to 41 state variables in another case. The im-
proved computational efficiency of the software is due to improved methods developed by
previous workers for computing interval bounds and convex relaxations of the solutions of
parametric ODEs as well as improved branch-and-bound heuristics developed in the present
work.

The convergence order and prefactor were analyzed for some of the bounding and re-
laxation methods implemented in dGDOpt. In the dGDOpt software, we observed that
the empirical convergence order for two different methods often differed, even though we
suspected that both had the same analytical convergence order. In this thesis, it is proven
that the bounds on the solutions of nonlinear ODEs converge linearly and the relaxations of
the solutions of nonlinear ODEs converge quadratically for both methods. It is also proven
that the convergence prefactor for an improved relaxation method can decrease over time,
whereas the convergence prefactor for an earlier relaxation method can only increase over
time, with worst-case exponential dependence on time. That is, the improved bounding
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method can actually shed conservatism from the relaxations as time goes on, whereas the
initial method can only gain conservatism with time. Finally, it is shown how the time
dependence of the bounds and relaxations explains the difference in empirical convergence
order between the two relaxation methods.

Finally, a dynamic model for a microreactor system was used to design, execute, and
analyze experiments in order to discriminate between models and identify the best parame-
ters with less experimental time and material usage. From a pool of five candidate chemical
kinetic models, a single best model was found and optimal chemical kinetic parameters were
obtained for that model.

Thesis Supervisor: Paul I. Barton
Title: Lammot du Pont Professor of Chemical Engineering
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especially Graham Wright and Dan Butler, for conveying enthusiasm for math and science

7



and demonstrating the value of discipline and hard work.

Thanks to Professors Curt Frank and Claude Cohen for mentoring me at your research

labs during summer NSF REUs.

Thanks to all of my professors at the University of Minnesota, especially Ed Cussler,
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Chapter 1

Introduction

Dynamic models are often formulated as ordinary differential equations (ODEs) or differential-

algebraic equations (DAEs). An ODE is a special case of a DAE that is theoretically and

computationally easier to work with, while still being broadly applicable. Chemically react-

ing mixtures, vehicle dynamics, and a large variety of other systems can be modeled using

ODEs.

We seek to optimize systems modeled by ODEs. Two examples addressed in this thesis

are: (i) choosing the temperature profile along the length of a chemical reactor to maximize

the concentration of a product and (ii) minimizing the difference between experimental

data and model predictions by varying the model parameters. These types of optimizations

are called dynamic optimization or open-loop optimal control problems. Another example

not specifically addressed in this thesis would be choosing a flight path to minimize fuel

consumption subject to constraints imposed by the airframe, flight dynamics of the aircraft,

and government regulations.

1.1 Dynamic optimization methods

Broadly, dynamic optimization can be approached in two ways: so-called direct and in-

direct methods. Indirect methods derive optimality conditions for the original optimal

control problem before discretizing these conditions, whereas direct methods use some form

of discretization aimed at approximating the infinite-dimensional problem with a finite-
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simultaneous approach
(full discretization)

optimize then discretize discretize then optimize

Figure 1-1: Overview of dynamic optimization approaches, adapted from [28].

dimensional one. In this section, we discuss the existing indirect and direct methods for

dynamic optimization. For a graphical overview of these methods, see Figure 1-1.

The two most common indirect methods are the Hamilton-Jacobi-Bellman (HJB) equa-

tion approach [18] and the Pontryagin Maximum Principle (PMP) [31, 152] also known as

the Pontryagin Minimum Principle. The HJB equation approach is the continuous-time

analog of dynamic programming [18], which can be used to solve discrete-time closed-loop

optimal control problems. The HJB equation approach yields a partial differential equation

(PDE) with an embedded minimization; the states and time are the independent variables

of the PDE. By solving the PDE over the combined (time, state) space with an embedded

minimization over the control space, the solution of this HJB PDE gives the optimal closed-

loop control action for any value of the state and time. If the embedded minimization of

the HJB equation can be solved to guaranteed global optimality, it yields a globally optimal

solution of the optimal control problem. For convex problems, such as those with linear

ODE models and quadratic costs, this is attainable, but for arbitrary nonconvex problems

it amounts to embedding an NP-hard optimization problem within the solution of a PDE. If

the state space has infinite cardinality (such as any problem where a state variable can take

any real value in some range) and there is no analytical solution to the HJB PDE, then it
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becomes necessary to discretize the PDE in the state space and solve it at a finite number of

values of the states. This is prohibitive in numerical implementations of the HJB approach

with large numbers of state variables due to the curse of dimensionality inherent in solving

a PDE with 𝑛𝑥 + 1 independent variables, where 𝑛𝑥 is the number of state variables. See

[19, 20, 25, 30, 40, 78, 197] for additional information on the HJB. The PMP leads to a

boundary-value problem that can be solved numerically [26, 40, 209]. In general, the PMP

is a necessary but not sufficient condition for optimality. If it can be guaranteed that all

possible solutions meeting the necessary conditions of the PMP can be found, then the best

solution among those can be selected. However, in general this is very difficult to implement

numerically.

Direct methods discretize the problem equations partially or fully. In the partial dis-

cretization approach also known as the sequential or control vector parameterization (CVP)

approach, control functions are discretized into a vector of real-valued parameters whereas

the states are evaluated as functions of these parameters by numerical integration of ODEs

or DAEs. In full discretization also known as the simultaneous discretization approach, all

of the control and state variables are discretized in time, yielding a nonlinear programming

(NLP) problem with a large number of variables and constraints, as in [27, 29, 45, 91, 119].

The simultaneous approach has been attempted for global dynamic optimization, but due

to the worst-case exponential running time of global NLP solvers and the very large number

of optimization variables in the simultaneous approach, it can perform very badly [51, 67].

Here our focus is on direct methods, particularly partial discretization, which is also

associated with the keywords control vector parameterization and (single) shooting. The

infinite-dimensional problem of finding the control function minimizing some objective func-

tional is reduced to a finite-dimensional problem by discretizing the control functions. Com-

mon choices of discretizations include piecewise constant, piecewise linear, and orthogonal

polynomials such as Legendre polynomials. Within the piecewise control discretizations,

the time discretization can be uniform or nonuniform, fixed or variable, and continuity of

the control functions can be enforced or not enforced. See Figure 1-2 for a few examples of

control discretization schemes. By parameterizing the controls into a vector of real param-

eters, optimal control problems and parameter optimization problems can be solved in the
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Figure 1-2: Control functions can be discretized in many ways. Each control discretization
method above uses 8 control parameters.

same framework. See Figure 1-3 for an overview of the major steps in dynamic optimiza-

tion based on the sequential approach. For further review of optimal control methods, see

[26, 40, 197].

One more class of solution methods for optimal control methods is multiple shooting.

Multiple shooting behaves something like a hybrid between single shooting, mentioned in

the previous paragraph, and simultaneous or full discretization. The original optimal control

problem is broken into several shooting problems, each with a portion of the original time

horizon, and constraints are added to ensure that the states are continuous where the

different time horizons intersect. This method yields NLPs intermediate in size between

single shooting and full discretization approaches. The NLPs tend to be better conditioned

than those arising from single shooting.

Chemical engineering dynamic optimization problems frequently have multiple subop-

timal local minima. Luus and coworkers optimized a catalyst blend in a tubular reactor.

With ten decisions, twenty-five local minima were found [121]. Singer et al. mentioned

that when optimizing three chemical kinetic parameters for a seven-reaction, six-species
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Figure 1-3: Overview of the major steps of the sequential approach to dynamic optimization,
adapted from [141].

system, hundreds of local minima were found [188]. Whereas most optimization software

only finds local minima, we focus on methods that theoretically guarantee finding the best

possible solution within a finite numerical tolerance. Software such as BARON [161] has

been highly successful at solving nonconvex NLPs to guaranteed optimality; we seek to

extend the success of global optimization methods to dynamic optimization problems.

1.2 Global optimization methods

Within global optimization, there are both stochastic and deterministic methods. Stochastic

methods, such as simulated annealing [97], differential evolution [192], and others [14, 131,

156] have weak guarantees of convergence. Deterministic methods can have much stronger

theoretical guarantees of convergence. In contrast to stochastic methods, deterministic

methods, if properly designed, can theoretically guarantee convergence to within some 𝜀 > 0

tolerance in finite time. For an overview of global optimization applications and methods,

see [143].

23



1.2.1 Branch-and-bound

The optimization methods herein are based on spatial branch-and-bound (B&B), a standard

method used for global optimization of nonlinear programs (NLPs). Since any maximiza-

tion problem can be trivially reformulated as a minimization problem, we consider only

minimization problems. The basic idea of spatial B&B is to break a difficult (nonconvex)

optimization problem into easier (convex) subproblems. The global optimum of a convex

NLP can be obtained in polynomial time using a wide variety of optimization algorithms

[24]. An optimization problem is convex if it has a convex feasible set and a convex objective

function.

Definition 1.2.1 (Convex set). A set 𝐶 ⊂ R𝑛 is convex if for every x,y ∈ 𝐶, the points

z ≡ 𝜆x+ (1− 𝜆)y, ∀𝜆 ∈ [0, 1]

are also in the set 𝐶. In other words, 𝐶 is convex if and only if every point on the line

segment connecting any pair of points in 𝐶 is also in 𝐶.

Definition 1.2.2 (Convex function). Let 𝐶 ⊂ R𝑛 be a nonempty, convex set. A function

𝑓 : 𝐶 → R is convex if it satisfies

𝑓(𝜆x+ (1− 𝜆)y) ≤ 𝜆𝑓(x) + (1− 𝜆)𝑓(y), ∀(x,y, 𝜆) ∈ 𝐶 × 𝐶 × (0, 1).

For a vector-valued function, the inequality must hold componentwise.

Definition 1.2.3 (Convex relaxation). Given a nonempty convex 𝐶 ⊂ R𝑛 and function

𝑓 : 𝐶 → R, a function 𝑢 : 𝑃 → R is a convex relaxation of 𝑓 on 𝐶 if 𝑢 is convex and satisfies

𝑢(x) ≤ 𝑓(x), ∀x ∈ 𝐶.

Consider the NLP

min
p∈𝑃

𝑔(p)

s.t. h(p) ≤ 0,

(1.1)
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where 𝑃 ⊂ R𝑛𝑝 is an 𝑛𝑝-dimensional interval and 𝑔 : 𝑃 → R and h : 𝑃 → R𝑛ℎ are continuous

on 𝑃 . To solve (1.1) to guaranteed global optimality, spatial B&B considers subproblems

in which the feasible set is restricted to an interval 𝑃 ℓ ⊂ 𝑃 :

min
p∈𝑃 ℓ

𝑔(p)

s.t. h(p) ≤ 0.

(1.2)

To apply spatial B&B, we need a method of computing guaranteed lower- and upper-bounds

for (1.2) for any 𝑃 ℓ ⊂ 𝑃 . Any feasible point in the optimization problem is a valid upper

bound. Obtaining a rigorous lower bound is the difficult step. In this work, we obtain a

lower bound on (1.2) by solving the relaxed optimization problem:

min
p∈𝑃 ℓ

𝑔𝑐𝑣(p)

s.t. h𝑐𝑣(p) ≤ 0,

(1.3)

where 𝑔𝑐𝑣 is a convex relaxations of 𝑔 and h𝑐𝑣 is a convex relaxation of h. Problem (1.3) is

a convex optimization problem, so it can be solved to global optimality with standard NLP

solvers. Since (1.3) is a relaxation of (1.2), the solution of (1.3) gives a lower bound on the

solution of (1.2).

Alternatively, affine relaxations can be constructed to 𝑔 and h and the resulting problem

can be solved using a linear programming (LP) solver. The latter approach is more rigorous

in the case that 𝑔𝑐𝑣 or h𝑐𝑣 cannot be guaranteed to be twice continuously differentiable. Such

a LP relaxation can be readily constructed from the functions participating in (1.3) as long

as subgradients are available. Such subgradients can be readily computed for McCormick

relaxations [125] on a computer using the library MC++, which is the successor to libMC

[130]. Since (1.3) is a relaxation of (1.2), it gives a lower bound on the optimal solution of

(1.2), which is exactly what we need. In S2.1.1, we describe the generation of the convex

relaxations 𝑔𝑐𝑣 and h𝑐𝑣 for dynamic optimization problems. See [84, 108, 143] for additional

background on B&B.
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1.2.2 Domain reduction

Domain reduction [129, 159, 160, 195] (or range reduction) techniques sometimes enable

eliminating subsets of the optimization search space by guaranteeing that those subsets of

the search space are guaranteed to be either suboptimal or infeasible. Domain reduction

has helped make many more global optimization problem instances tracable. For branch-

and-bound with the addition of domain reduction, the term branch-and-reduce has been

coined [160]. For details of the domain reduction techniques used in this thesis, see S2.1.2.

1.2.3 Factorable function

The methods used for global optimization in this thesis rely on the participating functions

being factorable [125, 135, 170]. Any function that can be represented finitely on a computer

is factorable, including those with if statements and for loops. For our purposes, it will be

sufficient for a function to be decomposable into a recursive sequence of operations, each

of which is either addition, multiplication, or a univariate function from a given library of

univariate functions.

1.2.4 Interval arithmetic

Given an interval ̂︀𝑃 ≡ {p ∈ R𝑛𝑝 : p𝐿 ≤ p ≤ p𝑈} contained in the domain 𝑃 of a factorable

function 𝑓 , interval arithmetic [134–136] can be used to generate a rigorous enclosure for the

image 𝑓( ̂︀𝑃 ) of that input interval ̂︀𝑃 under 𝑓 . Several libraries are available to calculate such

enclosures, including INTLAB [158] for Matlab and PROFIL/BIAS [98], FILIB++ [111],

and the BOOST interval arithmetic library [38] for C++. Once the factorable function is

(automatically) decomposed into a sequence of individual operations, intervals are propa-

gated through each of those constituent operations, finally yielding an interval guaranteed

to enclose the image of the input interval for the overall function.

1.2.5 McCormick relaxations

The McCormick relaxation technique [125] allows point evaluation of a convex underes-

timator for any factorable function over any interval ̂︀𝑃 contained in the domain 𝑃 of the
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function. Analogously to the procedure for interval arithmetic, McCormick [125] introduced

rules for addition, multiplication, and univariate composition. When these rules are applied

for each factor in the factored representation of the function, the end result is a procedure for

point evaluation of a pair of convex and concave functions that underestimate and overesti-

mate, respectively, the original function. As mentioned earlier, the libraries MC++ (http:

//www.imperial.ac.uk/AP/faces/pages/read/Research.jsp?person=b.chachuat) and

libMC [130] can be used to compute such relaxations and their subgradients.

1.2.6 𝛼BB relaxations

The 𝛼BB relaxation technique [1, 2] generates a convex relaxation of a function 𝑓 by over-

powering any nonconvexity in a function with a large convex term, yielding a relaxation of

the form 𝑓 𝑐𝑣 : x ↦→ 𝑓(x) + 𝛼
∑︀𝑛𝑥

𝑖=1(𝑥𝑖 − 𝑥𝐿𝑖 )(𝑥𝑖 − 𝑥𝑈𝑖 ). A large number of strategies have

been demonstrated to calculate a sufficiently large value of 𝛼 [1].

1.3 Global dynamic optimization

Deterministic global dynamic optimization methods have been successfully developed for

about a decade [48, 114, 116, 117, 162–164, 171, 172, 174, 177, 186–188]. Although these

methods are valid and guarantee finding a global optimum, at the outset of this thesis they

were limited to problems with up to about 5 parameters and 5 state variables. In Chapter 2,

we present computational results testing the methods from [172, 174, 177].

Broadly, deterministic global dynamic optimization methods fall into three categories.

One method is known as discretize-then-bound, or Taylor models, in which the Taylor

expansion in time of the solution of the ODE is constructed then interval techniques are

used to bound the Taylor model. This class dates back to Moore’s thesis in 1962 [134]

and many enhancements have been made since then [86, 114, 116, 117, 135, 163, 164]. A

second approach is a dynamic extension of 𝛼BB [148]. Applying this approach rigorously

requires bounding the second-order sensitivities of the dynamic system, so that a large

number of equations must be numerically integrated and bounded, with commensurate

computational cost and overestimation. A third approach, which we refer to as the auxiliary
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ODE approach, relies on auxiliary ODE systems constructed such that their solutions give

bounds [171, 172, 186], affine relaxations [187], or nonlinear relaxations [174, 177] of the

solution of the parametric ODE. We focus on the auxiliary ODE approach.

1.4 Outline of the thesis

Chapters 2 and 3 focus on global dynamic optimization, which combines the ideas from Sec-

tions 1.1 and 1.2 to certify global optimality for dynamic optimization problems. Chapter 4

focuses on the use of time-varying (dynamic) experiments in microreactors to discriminate

between candidate models and identify the best-fit parameters of the models.

Chapter 2 describes software created for deterministic global dynamic optimization

based on auxiliary ODEs. We give an overview of the implementation details and nu-

merical results, comparing to previous work. A primary goal of this thesis was to reduce

the CPU requirements for software for global dynamic optimization thereby making it suit-

able for larger problems. Faster CPU times were achieved for many benchmark problems

by implementing new methods [172, 174, 177] and improving heuristics. We have solved

practical problems with up to 9 parameters and 7 state variables and a test problem inspired

by PDE discretization with up to 41 state variables.

Chapter 3 is the most significant theoretical contribution of this thesis. There, the

convergence order and prefactor are analyzed for two convex relaxation methods [174, 177]

used in global dynamic optimization. It is shown that although both methods analyzed

guarantee second-order convergence, the newer method [174] dominates the older [177].

The newer method always gives a smaller convergence prefactor than the older method,

sometimes vastly smaller. For the relaxations from the older method, once a certain level of

conservatism has been reached, that conservatism can never decrease. However, using the

newer relaxation method, the relaxations can actually shed conservatism as the independent

variable in the ODE (usually time) increases. When coupled with the fact that the state

bounding method gives first-order convergence this analysis gives rise to a critical parameter

interval diameter 𝑤crit. For parameter intervals smaller than 𝑤crit, the empirical convergence

behavior is second-order, whereas it is first order for parameter intervals larger than 𝑤crit.
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For the older relaxation method, 𝑤crit tends to decrease rapidly with increasing time, making

it more and more difficult to achieve second-order empirical convergence. For the newer

relaxation method, 𝑤crit tends to be a much weaker function of time, making the highly-

desired second-order empirical convergence much more probable.

Chapter 4 describes the design and execution of time-varying experiments to estimate

parameters for a chemical reaction in microreactors. Using time-varying experiments in

microreactors rather than the traditional microreactor experimentation approach of setting

conditions and waiting for steady state before recording a data point has the potential to

significantly decrease the time and material required to accurately discriminate between

candidate models and estimate model parameters in microreactors. The difficulty with this

idea that has prevented its adoption for microreactor experiments is the requirement to

simulate the solution of a PDE within an optimization routine. When using an appropriate

spatial discretization and a suitable ODE simulator, however, a half-day-long experiment

can be simulated in a matter of minutes on a modern personal computer, making dynamic

experimental design entirely feasible, even with the embedded approximate PDE solution.

Whenever running experiments, National Instruments LabView was used to automatically

perform the time-varying experiment, setting flow rates and the reactor temperature over

time and recording data from a Fourier Transform Infrared (FTIR) spectroscopic flow cell.

Chapter 5 gives a few overarching conclusions from the thesis and outlook for future

research in the area. Appendix A gives a brief overview of the convergence of the McCormick

relaxation of the product operation when only one of the two variables is partitioned.

Appendix B is an article that we published regarding the economics of continuous versus

batch production of a large-production-volume small-molecule pharmaceutical tablet.
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Chapter 2

dGDOpt: Software for

deterministic global optimization

of nonlinear dynamic systems

Abstract

Dynamic systems are ubiquitous in nature and engineering. Two examples are the chemical
composition in a living organism and the time-varying state of a vehicle. Optimization
of dynamic systems is frequently used to estimate model parameters or determine control
profiles that will achieve the best possible result, such as highest quality, lowest cost, or
fastest time to reach some endpoint. Here we focus on dynamic systems that can be modeled
by nonlinear ordinary differential equations (ODEs). We implemented methods based on
auxiliary ODE systems that are theoretically guaranteed to find the best possible solution
to an ODE-constrained dynamic optimization problem within user-defined tolerances. Our
software package, named dGDOpt, for deterministic Global Dynamic Optimizer, is available
free of charge from the authors. The methods have been tested on problems with up to
nine parameters and up to 41 state variables. After adjusting for the differences in CPU
performance, the methods implemented here give up to 50 times faster CPU times than the
Taylor model-based methods implemented in Sahlodin (2013) for one parameter estimation
problem and up to twice as fast for one optimal control problem. Again adjusting for
differences in CPU performance, we achieved CPU times similar to or better than Lin and
Stadtherr (2006) on two chemical kinetic parameter estimation problems and better scaling
of CPU time with the number of control parameters on an optimal control problem than
Sahlodin (2013) and Lin and Stadtherr (2007).

Keywords: dynamic optimization, differential inequalities, global optimization, McCormick

relaxations, nonconvex optimization, optimal control, state bounds
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For background, see Chapter 1.

2.1 Methods

All methods used the branch-and-bound framework. We implemented domain reduction

techniques, so the method could more aptly be called branch-and-reduce [160], but we use

the more widely-recognized term branch-and-bound.

2.1.1 Bounds and relaxations

We require convex relaxations of the objective and constraint functions to solve the lower-

bounding problems in the branch-and-bound framework. To obtain such relaxations using

the McCormick relaxation technique [125], we require time-varying lower and upper bounds

as well as convex and concave relaxations of the solutions of the ODEs.

Three methods were used to bound the solutions of ordinary differential equations:

natural bounds [186] and two convex polyhedral bounding methods, given by [172, Equation

(6)] and [172, Equation (7)]. We will refer to the bounding methods as NatBds, ConvPoly1,

and ConvPoly2, respectively. All three bounding methods rely on some amount of a priori

information on the solutions of the ODEs. NatBds prune the state space using an interval

𝑋𝑁 that is known to contain the solution of the ODE for all time. These state bounds can

come from conservation relations, such as the fact that the total mass of any component of

a closed system can never exceed the total mass of the system and concentrations, masses,

pressures, and absolute temperatures must always be nonnegative. If the model is physically

correct, these will also be mathematical properties of the model that can be verified, for

example through viability theory [7]. ConvPoly1 and ConvPoly2 use the set 𝑋𝑁 in addition

to known affine invariants or affine bounds in state space defining a convex polyhedron

𝐺 known to contain the solution of the ODE for all time. In the case that an interval

𝑋𝑁 is used in place of the convex polyhedral set 𝐺, the ConvPoly methods reduce to

NatBds. In all cases, ConvPoly2 is guaranteed to be at least as tight as, and possibly

tighter than, ConvPoly1, which in turn is guaranteed to be at least as tight as NatBds.

However, ConvPoly1 is computationally cheaper than ConvPoly2 by a factor of 2𝑛𝑥 and
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NatBds are computationally cheaper than ConvPoly1 when 𝐺 is not an interval. Because of

this tradeoff, the optimal method between NatBds, ConvPoly1, and ConvPoly2 is problem-

dependent. NatBds and the pruning portion of the ConvPoly methods can also be used

to tighten the bounds after integration but before calculation of the convex relaxation of

the objective function. This post-integration bounds-tightening step has very little cost

compared to performing the bounding during numerical integration and can significantly

tighten bounds, so it is always used.

Convex relaxations of the states for the ODEs were computed using the affine relaxation

(AR) method of Singer and Barton [187] and the two nonlinear methods of Scott and

Barton [174, 177]: the earlier relaxation-amplifying dynamics (RAD, [177]) and the later

relaxation-preserving dynamics (RPD, [174]). For any given test problem, a single template

function for the ODE vector field was used, so that it could be evaluated using both real

arithmetic and McCormick arithmetic. Using a template function in this way eliminates

a potential source of errors: there is no need to create separate vector field functions for

the lower-bounding and upper-bounding problems in each example. After integration, the

nonlinear relaxations to the states were linearized using sensitivity analysis. By linearizing,

integration is only necessary for the first lower-bounding function evaluation per lower-

bounding subproblem; subsequent function evaluations in the lower-bounding problem were

computed using the linearized values for the state relaxations. Since the objective functions

can depend nonlinearly on the states, the final objective function can still be nonlinear, even

when the states are linearized. For example, note that least-squares parameter estimation

problems depend nonlinearly on the state variables. The relaxations were always linearized

at the midpoint of the parameter bounds, p𝑚𝑖𝑑 (see Table 2.1). Since the relaxations are

convex on the (compact) decision space, a supporting hyperplane must exist at any p in

the interval over which the relaxations are constructed. Once we generate a supporting

hyperplane using a subgradient to the relaxation, any state value on that hyperplane gives

an affine underestimator for on the relaxation and hence a bound on the solution to the

original ODE. A state value on the hyperplane can be computed using the value of the convex

relaxation of the solution to the original ODE and the subgradient of the convex relaxation.

In almost all problems, we found that linearizing the relaxations gave faster CPU times
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for solving the global optimization problems than using the nonlinear relaxations directly.

That is, the additional cost of numerical integration for every function evaluation in each

lower-bounding problem was not overcome by a sufficient decrease in the number of B&B

nodes.

Singer and Barton’s theory [187] has two significant drawbacks: (i) it requires selecting

a reference trajectory, which strongly affects the strength of the relaxations and (ii) it

required event detection and discontinuity locking for certain reference trajectories and

problems. Drawback (i) implies that while a given global optimization problem may be

solved efficiently with certain reference trajectories, the best reference trajectory is not

known a priori and it may be necessary to try multiple reference trajectories to solve

the problem in a reasonable CPU time. Here, our implementation eliminates drawback

(ii) of Singer and Barton’s method [187]. To explain further: in [187], a discontinuity-

locking scheme was used. The convex and concave relaxations of the right-hand side may,

in general, be nonsmooth since they can contain min and max functions of two variables

and mid functions which return the middle value of three scalars. At certain times during

integration, the argument selected by the min, max, or mid may be arbitrary since they

are equal. When such a case is implemented on a finite-precision computer, the argument

selected may switch back and forth many times in the numerical integration due to round-off

error. Since either argument is valid, the relaxations remain valid, but the integrator may

switch between modes arbitrarily often, causing a very large number of integration steps.

Singer addressed this by detecting integration “chattering”, when the min, max, or mid

alternated in quick succession, and locking the switch into an arbitrary mode by adding a

small positive constant to one of the arguments. We have found that chattering only occurs

for particular state reference trajectories. Since any reference trajectory in the current

parameter bounds and time-varying state enclosure is valid as long as it does not depend

on the current value of the parameter, we perturbed the reference trajectory for the state

slightly and avoided chattering completely. The exact reference trajectories we used are

given in Table 2.1. Note that we perturbed the state reference values but not the parameter

reference values. These slight perturbations eliminated the need for a discontinuity locking,

making the implementation simpler and the resulting CPU times faster.
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Table 2.1: Meaning of reference trajectories

Abbreviation Value used

p𝑚𝑖𝑑 0.5(p𝐿 + p𝑈 )
x𝐿* (1.0− 10−8)x𝐿 + 10−8x𝑈

x𝑚𝑖𝑑* (0.5 + 10−8)x𝐿 + (0.5− 10−8)x𝑈

x𝑈* 10−8x𝐿 + (1.0− 10−8)x𝑈

The origin of chattering can be understood in the following way. All of the problems

tested by Singer and Barton [185, 187] have products (𝑥, 𝑦) ↦→ 𝑥𝑦 in the factored represen-

tations of their vector fields. The McCormick rule for the convex (resp. concave) relaxation

of a product is nonsmooth on the line connecting 𝑥𝐿𝑦𝑈 to 𝑥𝑈𝑦𝐿 (resp. 𝑥𝐿𝑦𝐿 to 𝑥𝑈𝑦𝑈 ).

Therefore, both the convex and concave relaxations are nonsmooth at (𝑥
𝐿+𝑥𝑈

2 , 𝑦
𝐿+𝑦𝑈

2 ), so

that the subgradient is discontinuous at that point. Therefore, the computed value of the

subgradient can switch back and forth depending on roundoff error in a finite-precision

computer. This subgradient is used to compute the vector field for the ODE that generates

state relaxations, therefore a discontinuous subgradient at (𝑥
𝐿+𝑥𝑈

2 , 𝑦
𝐿+𝑦𝑈

2 ), coupled with

roundoff error to slightly perturb the arguments of the vector field, can yield a discontinu-

ous vector field when implemented on a finite-precision computer, which can in turn yield

chattering in numerical integration observed in [185, 187] when using the exact midpoint

for the reference trajectory. Perturbing the reference trajectory sufficiently far away from

points of nonsmoothness on the relaxations (cf. Table 2.1) yields a continuous ODE vec-

tor field for generating state relaxations even with numerical error and fixes the chattering

problem in all cases that we studied. Whereas in the affine relaxation theory [187], the

reference trajectory is fixed in time relative to the state bounds (Table 2.1), which causes

the chattering problem. On the other hand, for the nonlinear relaxation theories (RAD and

RPD), there is no reference trajectory, so the point in state space at which the McCormick

relaxation for the vector field is evaluated varies with time relative to the state bounds.

This makes chattering occur much less frequently for RAD and RPD.

A subgradient of the objective function is computed in the following way. Sensitivity

analysis with the staggered corrector method [69] is used during integration to compute the

subgradients of the convex and concave relaxations to the states, which are then propagated
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to a subgradient of the objective function using the operator overloading library MC++

[47]. MC++ is the successor to libMC, which is described in detail in [130]. Error control

for the sensitivities is enabled in the integrator, which increases the cost of integration but

guarantees accuracy of sensitivity information, which is needed for accurate subgradient in-

formation, linearizations of the objective, and domain reduction (S2.1.2). In most cases, the

vector fields for the sensitivity systems were computed using the algorithmic differentiation

(AD) library FADBAD++ [22] and the subgradient capability of MC++. In FADBAD++,

we used the stack-based allocation by pre-specifying the number of parameters to which

derivatives are taken. This is significantly faster than the dynamically-allocated alterna-

tive. Otherwise, AD objects would be created and their derivatives dynamically allocated

in each evaluation of the right-hand side function. If, during the course of integration, the

state relaxations leave the state bounds, the sensitivity of the offending relaxation is reset

to zero (see Proposition 2.1.1).

Next we argue the validity of using subgradients of the vector fields of the relaxation

systems to generate subgradients of the relaxations of the solutions of the ODEs. RAD

[177] satisfy the hypotheses of [52, Theorem 2.7.3], so that integrating a subgradient of the

vector fields for the convex and concave relaxations yields a subgradient of the relaxations

of the solution of the ODE. In the affine relaxation (AR) theory [187], the subgradient of

the McCormick relaxation is always evaluated at a reference trajectory within the state

and parameter bounds. Therefore, as long as the reference trajectory at which the vector

field for the relaxation system is evaluated does not stay on a point of nonsmoothness

for finite time, [221, Theorem 3.2.3] guarantees that the resulting sensitivity information

will give a partial derivative (and therefore also a subgradient) of the relaxations of the

solution of the ODE at each point in time. See also [52, Theorem 7.4.1]. By perturbing

the reference trajectory away from points of nonsmoothness in the vector field of the ODE

used to generate the state relaxations, we obtained a system for which the ODE vector field

does not stay on a point of nonsmoothness for finite time (a so-called sliding mode) and

[221, Theorem 3.2.3] guarantees that we obtain a subgradient of the state relaxations. For

RPD, it is again valid to use the subgradient of the vector field to calculate a subgradient

of the solution of the ODE relaxation system, provided there is no sliding mode, because
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[221, Theorem 3.2.3] again tells us that we obtain a partial derivative which is guaranteed

to be a subgradient. We have noticed that when sliding modes occur, numerical integration

tends to take an excessive number of steps, therefore failing, and returning −∞ for a lower

bound, so that the node would be partitioned and revisited, and this process repeated until

there was no sliding mode. However, to make the solver’s implementation of RPD rigorous,

we need to be able to rigorously guarantee that there are no sliding modes so that the

subgradient information is accurate. One way to do this would be to use the necessary

conditions for a sliding mode to arise as derived by [95]. The key steps are as follows:

(i) reconsider the McCormick relaxation as an abs-factorable function [77], in which all

nonsmoothness in the factored representation arises due to absolute value functions, (ii)

generate a vector containing the values of the arguments of all absolute value functions in

the abs-factorable representation, (iii) employ event detection (rootfinding) to determine

when each of the arguments of the absolute value functions crosses zero, and (iv) at each

zero-crossing, determine whether there is a second, distinct, root function that is also within

some numerical tolerance of zero and has a derivative within some tolerance of zero. If the

situation in (iv) never arises, then there is no sliding mode and the subgradient method

furnishes a partial derivative. If the situation in (iv) does arise, then there could be a sliding

mode and we cannot guarantee that the subgradient information for the relaxations of the

solution of the ODE is valid. In that case, we could complete the numerical integration for

the current node and use the interval bounds (only) to compute a lower bound, setting the

vector field for the relaxations equal to zero so that any potential sliding modes do not slow

numerical integration.

To generate an abs-factorable representation of a McCormick relaxation for (i) above,

observe that the nonsmoothness in McCormick relaxations arises due to min, max, and mid

functions. The computations for min and max can be reformulated using the absolute value

function with the following well-known identities:

min{𝑥, 𝑦} =
1

2
(𝑥+ 𝑦)− 1

2
|𝑥− 𝑦|,

max{𝑥, 𝑦} =
1

2
(𝑥+ 𝑦) +

1

2
|𝑥− 𝑦|.
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The mid function can be reformulated in terms of min and max:

mid{𝑥, 𝑦, 𝑧} = max {min {𝑥, 𝑦} ,max {min {𝑦, 𝑧} ,min {𝑥, 𝑧}}} ,

so that, when the absolute value forms are employed for min and max, we can obtain an

abs-factorable representation for any McCormick relaxation. The only remaining difficulty

is to modify MC++ so that it also outputs the values of the arguments of each absolute

value function in the factored representation for (ii) above.

For more information about the McCormick-based [125] ODE bounding and relaxation

theory, see [170, 174, 178].

2.1.2 Domain reduction

Domain reduction, also known as range reduction [129, 159, 160, 195], techniques can be

used to eliminate subsets of the search space from consideration. See [195] for a framework

that unifies many of the domain-reduction methods, including those used here. In some

cases, domain reduction greatly accelerates convergence. Two types of domain reduction

tests have been used: Tests 1 & 2 from [159] can be used only when the solution of a

lower-bounding subproblem lies on a parameter bound; probing [159, Tests 3 & 4] is more

computationally intensive but can be applied for any node in the branch-and-bound tree,

by solving up to 2𝑛𝑝 different optimization problems at any node. In dGDOpt, we use

affine relaxations to the states based on a single numerical integration of the auxiliary ODE

system. These affine relaxations to the states are used in both the lower-bounding problem,

and the 2𝑛𝑝 probing problems, greatly reducing the cost of probing by performing a single

integration instead of 2𝑛𝑝 + 1.

All four range-reduction tests exploit the following idea: if there is a region of the search

space for which the convex underestimator for the objective function has a value greater

than or equal to the best known upper bound for the problem, that region of the search

space can be eliminated, for it cannot contain a better solution than the feasible solution

we have already found.

In the test problems in the literature, enabling probing can reduce or increase CPU time
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required to solve a given problem. In the four examples in [159, Table 5], probing increased

the CPU time by a factor of 1.2–1.5. In the 27 examples in [160, Table V], the ratio of CPU

time with probing to that without ranged from 0.4 to 5.7, with a median value of 1.07. In

all cases, the number of nodes decreased or remained the same when probing was enabled.

Sometimes a very large reduction in the number of nodes is possible by enabling probing:

in one problem listed in [160, Table V], the number of nodes required was reduced from 49

to 3.

With all of the possible combinations of bounding, relaxation, domain reduction, other

heuristics, and problem structures it is nearly impossible to say with certainty which com-

bination is best overall. For this reason, we focus on one “base case” of method choices

that we consider to be good options for typical problems and occasionally explore the effect

of using different choices for particular problems. Focusing on one base case also ensures a

fair comparison by changing only one aspect of the method at a time.

2.1.3 Implementation details

The choice of reference trajectory (x𝑟𝑒𝑓 ,p𝑟𝑒𝑓 ) for the Singer relaxation method can have a

very large impact on the performance of the method, yet it is impossible to know in advance

which reference trajectory will be best. To account for this drawback of the method, we

chose to use the midpoint reference trajectory throughout these case studies for linearizing

both the Singer and Scott relaxations. A practitioner wanting to solve a global dynamic op-

timization problem only wants to solve it once rather than trying several different reference

trajectories. Thus, we think that running the test suite with a single reference trajectory

better emulates the performance likely to be encountered in practice. In our preliminary

tests, we found that the midpoint tends to be either the best reference trajectory, or not

much worse than the best. In contrast, other reference trajectories such as (x𝐿*,p𝐿*) or

(x𝑈*,p𝑈*) can be much slower than the midpoint reference trajectory (x𝑚𝑖𝑑*,p𝑚𝑖𝑑*). For

example, see Table 2.10.
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2.1.3.1 Nonlinear local optimizer

The sequential quadratic programming (SQP) optimization solver SNOPT [74] version 7.2

was always used as the local optimizer for the upper-bounding problem and used except

where otherwise noted for the lower-bounding problem. This sequential quadratic program-

ming (SQP) code has been preferred for optimal control problems because it uses relatively

few objective function, constraint, and gradient evaluations. Evaluations of all three of

those quantities can be very expensive for dynamic optimization because they depend on

the numerical solution of an ODE. The method only requires first derivatives, which it uses

in a BFGS-type update of the approximate Hessian. First derivatives of the solutions of an

ODE with respect to parameters can be calculated relatively efficiently and automatically

[69, 123], whereas second derivatives are more expensive and automated implementations

are less widely available.

2.1.3.2 Linear local optimizer

The linear programming (LP) solver CPLEX 12.4 was used to minimize the lower-bounding

objective for a few test cases. The objective function was the supporting hyperplane for the

nonlinear convex relaxation generated using the function value and subgradient at p𝑚𝑖𝑑.

The interval lower bound for the objective function from the state bounds and interval

arithmetic was used as a lower-bounding constraint for the objective function.

2.1.3.3 Event detection scheme for relaxation-preserving dynamics

Integrating the ODEs used to generate relaxations by relaxation-preserving dynamics re-

quires that the state relaxations never leave the state bounds. To ensure this, we must

identify the exact event time 𝑡𝑒 when 𝑥𝑐𝑣𝑖 (𝑡𝑒,p) = 𝑥𝐿𝑖 (𝑡𝑒) or 𝑥𝑐𝑐𝑖 (𝑡𝑒,p) = 𝑥𝑈𝑖 (𝑡𝑒) for each

applicable 𝑖. We do this using the built-in rootfinding features of CVODES, with the event

detection scheme in [170, S7.6.3]. First the initial condition is checked to set the proper

mode for the binary variables, then the integration is run with rootfinding enabled using

the root functions and state vector fields given in [170, S7.6.3]. An analogous scheme is also

used to detect when the time-varying state bounds leave the time-invariant natural state
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bounds (if any).

Whenever one of the relaxations reaches the bounds, there is typically a jump in the

sensitivities 𝜕x𝑐𝑣/𝑐𝑐

𝜕p for which we must account [71]. When the integration event is detected,

integration halts, the sensitivity is reset to its new value, and the sensitivity calculation is

reinitialized from that point.

Proposition 2.1.1. For relaxation-preserving dynamics, for some 𝑖 = 1, . . . , 𝑛𝑥,
𝜕𝑥𝑐𝑣

𝑖
𝜕p jumps

to 0 when 𝑥𝑐𝑣𝑖 reaches the bound 𝑥𝐿𝑖 from above. Similarly, when 𝑥𝑐𝑐𝑖 reaches 𝑥𝑈𝑖 from below,

𝜕𝑥𝑐𝑐
𝑖

𝜕p jumps to 0.

Proof. Consider the case when 𝑥𝑐𝑣𝑖 (𝑡,p) approaches 𝑥𝐿𝑖 (𝑡) from above for some 𝑖. Then

𝑓
𝑐𝑣,(𝑗)
𝑖 =

𝜕𝑥
𝑐𝑣,(𝑗)
𝑖
𝜕𝑡 and 𝑓

𝑐𝑣,(𝑗+1)
𝑖 =

𝜕𝑥
𝐿,(𝑗)
𝑖
𝜕𝑡 , where 𝑗 denotes the current epoch of the dynamic

system, and 𝑗 is incremented by 1 each time there is an event. In our problems, the only

events occur when 𝑥𝑐𝑣𝑖 (̂︀𝑡,p) = 𝑥𝐿𝑖 (̂︀𝑡) or 𝑥𝑐𝑐𝑖 (̂︀𝑡,p) = 𝑥𝑈𝑖 (̂︀𝑡) for some 𝑖 and some ̂︀𝑡. In the rest

of this proof, except where we explicitly declare a function, we refer to functions evaluated

at points. We have omitted the arguments for readability but the functions are understood

to be evaluated at the points shown below.

𝜕𝑔
(𝑗)
𝑗+1

𝜕ẋ(𝑗)
,
𝜕𝑔

(𝑗)
𝑗+1

𝜕x(𝑗)
,
𝜕𝑔

(𝑗)
𝑗+1

𝜕𝑝𝑘
, and

𝜕𝑔
(𝑗)
𝑗+1

𝜕𝑡
are evaluated at (ẋ(𝑗)(𝑡

(𝑗)
𝑓 ,p),x(𝑗)(𝑡

(𝑗)
𝑓 ,p),p, 𝑡

(𝑗)
𝑓 ),

𝜕f (𝑗)

𝜕𝑝𝑘
and

𝜕f (𝑗)

𝜕𝑡
are evaluated at (𝑡

(𝑗)
𝑓 ,x(𝑗)(𝑡

(𝑗)
𝑓 ,p),p),

𝜕x(𝑗)

𝜕𝑝𝑘
,
𝜕x(𝑗)

𝜕𝑡
, and

𝜕x
𝑐𝑣,(𝑗)
𝑖

𝑝𝑘
are evaluated at (𝑡

(𝑗)
𝑓 ,p),

𝜕x
𝐿,(𝑗)
𝑖

𝑝𝑘
is evaluated at (𝑡

(𝑗)
𝑓 ).

The following relation gives the jumps in sensitivities for an ODE with continuous states

[71, Eq. (57)]:

𝜕𝑥
𝑐𝑣,(𝑗+1)
𝑖

𝜕𝑝𝑘
− 𝜕𝑥

𝑐𝑣,(𝑗)
𝑖

𝜕𝑝𝑘
= −(𝑓

𝑐𝑣,(𝑗+1)
𝑖 − 𝑓

𝑐𝑣,(𝑗)
𝑖 )

d𝑡

d𝑝𝑘
. (2.1)
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d𝑡
d𝑝𝑘

is given by [71, Eq. 50]:

d𝑡

d𝑝𝑘
= −

𝜕𝑔
(𝑗)
𝑗+1

𝜕ẋ(𝑗)
𝜕f (𝑗)

𝜕𝑝𝑘
+

𝜕𝑔
(𝑗)
𝑗+1

𝜕x(𝑗)
𝜕x(𝑗)

𝜕𝑝𝑘
+

𝜕𝑔
(𝑗)
𝑗+1

𝜕𝑝𝑘

𝜕𝑔
(𝑗)
𝑗+1

𝜕ẋ(𝑗)
𝜕f (𝑗)

𝜕𝑡 +
𝜕𝑔

(𝑗)
𝑗+1

𝜕x(𝑗)
𝜕x(𝑗)

𝜕𝑡 +
𝜕𝑔

(𝑗)
𝑗+1

𝜕𝑡

, ∀𝑘 ∈ {1, . . . , 𝑛𝑝}, (2.2)

The discontinuity function

𝑔
(𝑗)
𝑗+1 : (ż

(𝑗), z(𝑗),p, 𝑡) ↦→ 𝑧
𝑐𝑣(𝑗)
𝑖 − 𝑧

𝐿(𝑗)
𝑖 − 𝑏𝑐𝑣𝑖 𝜖,

where z is a dummy variable to avoid confusion with x, implies that

𝜕𝑔
(𝑗)
𝑗+1

𝜕ẋ(𝑗)
≡ 0,

𝜕𝑔
(𝑗)
𝑗+1

𝜕p
≡ 0,

𝜕𝑔
(𝑗)
𝑗+1

𝜕𝑡
≡ 0.

Therefore, (2.2) reduces to

d𝑡

d𝑝𝑘
= −

𝜕𝑔
(𝑗)
𝑗+1

𝜕x(𝑗)
𝜕x(𝑗)

𝜕𝑝𝑘

𝜕𝑔
(𝑗)
𝑗+1

𝜕x(𝑗)
𝜕x(𝑗)

𝜕𝑡

= −
𝜕𝑥

𝑐𝑣,(𝑗)
𝑖
𝜕𝑝𝑘

− 𝜕𝑥
𝐿,(𝑗)
𝑖
𝜕𝑝𝑘

𝜕𝑥
𝑐𝑣,(𝑗)
𝑖
𝜕𝑡 − 𝜕𝑥

𝐿,(𝑗)
𝑖
𝜕𝑡

, ∀𝑘.

Substituting this information into (2.1), we obtain:

𝜕𝑥
𝑐𝑣,(𝑗+1)
𝑖

𝜕𝑝𝑘
− 𝜕𝑥

𝑐𝑣,(𝑗)
𝑖

𝜕𝑝𝑘
= −

(︃
𝜕𝑥

𝐿,(𝑗)
𝑖

𝜕𝑡
− 𝜕𝑥

𝑐𝑣,(𝑗)
𝑖

𝜕𝑡

)︃⎛
⎝−

𝜕𝑥
𝑐𝑣,(𝑗)
𝑖
𝜕𝑝𝑘

− 𝜕𝑥
𝐿,(𝑗)
𝑖
𝜕𝑝𝑘

𝜕𝑥
𝑐𝑣,(𝑗)
𝑖
𝜕𝑡 − 𝜕𝑥

𝐿,(𝑗)
𝑖
𝜕𝑡

⎞
⎠ , ∀𝑘

=⇒ 𝜕𝑥
𝑐𝑣,(𝑗+1)
𝑖

𝜕p
− 𝜕𝑥

𝑐𝑣,(𝑗)
𝑖

𝜕p
= −

(︃
𝜕𝑥

𝑐𝑣,(𝑗)
𝑖

𝜕p
− 𝜕𝑥

𝐿,(𝑗)
𝑖

𝜕p

)︃
,

= −𝜕𝑥
𝑐𝑣,(𝑗)
𝑖

𝜕p
,

where
𝜕𝑥

𝐿,(𝑗)
𝑖
𝜕p = 0 always. Therefore,

𝜕𝑥
𝑐𝑣,(𝑗+1)
𝑖

𝜕p
=
𝜕𝑥

𝑐𝑣,(𝑗)
𝑖

𝜕p
− 𝜕𝑥

𝑐𝑣,(𝑗)
𝑖

𝜕p
= 0.

The proof is analogous when 𝑥𝑐𝑐𝑖 reaches 𝑥𝑈𝑖 from below.

Proposition 2.1.2. The sensitivity
𝜕𝑥𝑐𝑣

𝑖
𝜕p does not have a jump at the point where 𝑥𝑐𝑣𝑖
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becomes greater than 𝑥𝐿𝑖 , and similarly for 𝑥𝑐𝑐𝑖 and 𝑥𝑈𝑖 .

Proof. This can be seen by a proof similar to that of Proposition 2.1.1.

The relaxed objective function generated using McCormick relaxations, while convex,

may be nonsmooth. In practice, we have found this is particularly problematic for the local

solver SNOPT when working with the nonlinear relaxations generated by RPD. SNOPT is

designed to solve smooth problems, so this is not unexpected. This problem was averted

by working with the affine relaxations to the states. The affine state relaxations are still

nonsmooth if the state bounds are used to cut them, so if SNOPT gave too many return

codes indicating numerical difficulties, the state bounds were no longer used to cut the

relaxations for the rest of the global optimization, which mitigated the problem. The

problem could be made smooth by introducing additional variables and constraints to the

local optimization problem in SNOPT. In particular, the additional variables in the local

optimizer would be:

𝑧𝑐𝑣𝑖,𝑗 , ∀(𝑖, 𝑗) ∈ {1, . . . , 𝑛𝑥} × {1, . . . , 𝑛𝑡𝑖𝑚𝑒𝑠},

𝑧𝑐𝑐𝑖,𝑗 , ∀(𝑖, 𝑗) ∈ {1, . . . , 𝑛𝑥} × {1, . . . , 𝑛𝑡𝑖𝑚𝑒𝑠},

as well as auxiliary variables for the smooth reformulation of the McCormick relaxation of

the objective function. The additional constraints in the local optimizer would be:

𝑧𝑐𝑣𝑖,𝑗 ≥ 𝑥𝐿𝑖 (𝑡𝑗), ∀(𝑖, 𝑗) ∈ {1, . . . , 𝑛𝑥} × {1, . . . , 𝑛𝑡𝑖𝑚𝑒𝑠},

𝑧𝑐𝑐𝑖,𝑗 ≤ 𝑥𝑈𝑖 (𝑡𝑗), ∀(𝑖, 𝑗) ∈ {1, . . . , 𝑛𝑥} × {1, . . . , 𝑛𝑡𝑖𝑚𝑒𝑠},

𝑧𝑐𝑣𝑖,𝑗 ≥ 𝑥𝑐𝑣𝑖 (𝑡𝑗 , ̂︀p) +
(︂
𝜕𝑥𝑐𝑣𝑖
𝜕p

(𝑡𝑗 , ̂︀p)
)︂T

(p− ̂︀p), ∀(𝑖, 𝑗) ∈ {1, . . . , 𝑛𝑥} × {1, . . . , 𝑛𝑡𝑖𝑚𝑒𝑠},

𝑧𝑐𝑐𝑖,𝑗 ≤ 𝑥𝑐𝑐𝑖 (𝑡𝑗 , ̂︀p) +
(︂
𝜕𝑥𝑐𝑐𝑖
𝜕p

(𝑡𝑗 , ̂︀p)
)︂T

(p− ̂︀p), ∀(𝑖, 𝑗) ∈ {1, . . . , 𝑛𝑥} × {1, . . . , 𝑛𝑡𝑖𝑚𝑒𝑠},

as well as additional equations to represent the smooth reformulation of the McCormick

relaxation of the objective function and constraints in terms of the 𝑧
𝑐𝑣/𝑐𝑐
𝑖,𝑗 and 𝑥

𝐿/𝑈
𝑖 (𝑡𝑗).

For some problems, we also ran the test problems using the linear programming solver

CPLEX and saw improved CPU times.
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2.1.3.4 Preprocessing

To increase the chances of a strong upper-bound, the upper-bounding problem is solved 30

times using random initial guesses before any lower-bounding problems are solved. With

a strong upper-bound available at the root node for the lower-bounding problem, domain

reduction can be much more effective.

2.1.3.5 Branch-and-bound

A branch-and-bound library internal to our research group was used. Tolerances specified

in the local optimizer for each upper- and lower-bounding problem were always at least

100 times tighter than those in the branch-and-bound framework; tolerances in the inte-

grator were always set at least 100 times tighter than those in the local optimizer. Unless

otherwise noted, the variable with the largest absolute diameter (max𝑖 𝑝
𝑈
𝑖 − 𝑝𝐿𝑖 ) was cho-

sen for branching. We refer to this as AbsDiamBV. We also tested a different heuristic

for selecting the variable to branch on, which we refer to as GradBV. Let 𝜎ℎ𝑐𝑣 ,𝑝𝑖(p
𝑚𝑖𝑑)

be a subgradient of the convex relaxation to the objective function with respect to deci-

sion variable 𝑝𝑖 at the midpoint of the current node. For GradBV we branch on variable

𝑖 ∈ arg max𝑖
⃒⃒
𝜎ℎ𝑐𝑣 ,𝑝𝑖(p

𝑚𝑖𝑑)
⃒⃒
(𝑝𝑈𝑖 − 𝑝𝐿𝑖 ) except when level of B&B tree is evenly divisible by

3, in which case the variable with the largest absolute diameter is chosen for branching. We

did not find a description of GradBV in the global optimization literature, but it is related

to the idea mentioned in [160, S4.1.2]: “Select a variable 𝑝𝑗 which is ‘mostly responsible’ for

the difference [between upper and lower bounds on the current node]”. In our case, it selects

the variable that contributes the most to the variation of the affine underestimator on the

current node, rather than the difference between the upper and lower bounds. The GradBV

idea also appears to be similar to the ideas for branching variable selection developed in

[181, S3.5] and [194, S6.2.1].

We always choose the node with the least lower bound to process next and always branch

at the midpoint of the chosen branching variable (bisection).
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2.1.3.6 Hardware, operating system, and compiler

The algorithm was implemented in C++ on Ubuntu Linux using GCC as the compiler with

the -O2 optimization flag and allocated a single core of an Intel Xeon W3550 3.07 GHz CPU

and 1.0 GB of RAM. There was no parallelization scheme—the code was implemented as a

single thread.

2.2 Numerical results

In this section, subproblem counts and CPU times for the different bounding and relaxation

methods are given for several test problems from the literature. All parameter estimation

problems are formulated as a minimization of the unweighted sum of squared differences

between experimental data and simulation:

min
p

∑︁

𝑖

∑︁

𝑗

(𝑥meas
𝑖,𝑗 − 𝑥𝑗(𝑡𝑖,p))

2,

where 𝑖 indexes times at which data were measured, 𝑗 indexes state variables for which

experimental data is available at the current time point, and x : [𝑡0, 𝑡𝑓 ]×𝑃 → R𝑛𝑥 is given

by the solution of the ODE:

ẋ(𝑡,p) = f(𝑡,x(𝑡,p),p), ∀𝑡 ∈ (𝑡0, 𝑡𝑓 ],

x(𝑡0,p) = x0(p).

Throughout this chapter, we use the abbreviations in Table 2.2. For post-integration

pruning, the most advanced method possible was always used (NatBds or ConvPoly1), since

it adds very little to the cost per node and always gives equal or tighter bounds, so always

produces similar or faster CPU times in the overall global optimization procedure. Note

that while ConvPoly2 gives the tightest bounds when used during integration, the flattening

step of ConvPoly2 is not valid for post-integration pruning, making ConvPoly1 the tightest

possible bounding method post-integration.
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Table 2.2: List of abbreviations

AbsDiamBV Branch on the variable with the largest absolute diameter (𝑖 ∈ max𝑖 𝑝
𝑈
𝑖 −𝑝𝐿𝑖 ).

AR Affine relaxation theory for nonlinear ODEs [185, 187].
ConvPoly1 Prune-first convex polyhedral bounding technique [172, Equation (6)].
ConvPoly2 Flatten-first convex polyhedral bounding technique [172, Equation (7)].
NäıveBds Similar to differential inequalities, but no flattening step.
GradBV A rule for selecting the variable to branch on. See S2.1.3.5.
IBTM Interval bounds from Taylor models [116, 162].
LBP Lower-bounding problem.
NatBds Natural bounds [186].
PRMCTM Polyhedral relaxations of McCormick-Taylor models [162].
PRTM Polyhedral relaxations of Taylor models [162].
RAD Relaxation-amplifying dynamics [170, 177].
RPD Relaxation-preserving dynamics [170, 174].
UBP Upper-bounding problem.

2.2.1 Reversible series reaction parameter estimation

The first problem is a four-parameter estimation problem for the first-order reversible chain

reaction A � B � C from [201], also solved by [67, 162, 187]. The problem has been solved

with four different sets of data: (i) noise-free data for all three states from [67], (ii) data for

states 𝑥1 and 𝑥2 with noise added from [67], (iii) data for all three states with noise added

from [67], and (iv) the data from [162], which differs from (i)–(iii) above.

2.2.1.1 Using noise-free data

Noise-free data generated using parameter values of (4.0, 2.0, 40.0, 20.0) were taken from

[67]. Note that the equation for �̇�3 in [67] has a typographical error, but their numerical

results are consistent with the statement below. The ODE model is:

�̇�1 = −𝑝1𝑥1 + 𝑝2𝑥2,

�̇�2 = 𝑝1𝑥1 − (𝑝2 + 𝑝3)𝑥2 + 𝑝4𝑥3,

�̇�3 = 𝑝3𝑥2 − 𝑝4𝑥3,

x(0) = (1, 0, 0),

p ∈ [0, 10]2 × [10, 50]2,

𝑡 ∈ [𝑡0, 𝑡𝑓 ] = [0, 1],
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with

𝑋𝑁 = [0, 1]3, 𝐺 = {x ∈ 𝑋𝑁 :
3∑︁

𝑖=1

𝑥𝑖 = 1}.

The noise-free case is trivial: it was solved at the root node in all cases (AR, RAD,

and RPD relaxations in all combinations with NatBds, ConvPoly1, or ConvPoly2). Similar

performance was also noted for VSPODE in [114]. This problem is easy because the upper

bound is within the absolute tolerance of zero, and the lower-bounding problem always

returns at least zero because it is a sum of squares. Sensitivity to the choice of reference

trajectory for AR relaxations is low; standard deviations in CPU time due to changes in

reference trajectory are 7–16% of the mean values. The RAD relaxation method solves

each instance 1.8–2.7 times faster than the average of the Singer relaxation methods for the

same bounding method. All instances solved with RAD relaxations are comparable, with

the standard deviation in CPU time among the different methods of about 6% of the mean

value. See Table 2.3 for detailed results.

2.2.1.2 Using data with noise added from Esposito and Floudas [67]

Data with noise added were taken from [67]. There are two versions of this problem. The

first uses the data for species A and B only. The second is more challenging and uses data

for all three species. It is more challenging because the upper bound is larger, so the lower

bound must come farther off zero. Also, since the initial condition is (1, 0, 0), species C can

only be formed via species B. Therefore, we expect the overestimation for species C to be at

least as large as the overestimation for species B for this chemical reaction network, so fitting

based on data for the concentration of species C should be at least as hard as using data

on species B. For both problems, solving with the most advanced bounding and relaxation

methods in dGDOpt gives performance similar or better to the results using VSPODE from

[114], even after adjusting for the difference in CPU performance. See Tables 2.4 and 2.5.

2.2.1.3 Using data with noise added from [162]

The following results use the same pseudo-experimental data set and tolerance values as

[162], both of which differ from those above. Even after normalizing for the differences
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Table 2.3: Numerical results for reversible series reaction problem (S2.2.1.1).
bounding method subproblem

during after relaxation upper CPU count

integration integration method bound time (s) LBP UBP

NatBds NatBds AR (x𝐿,p𝐿) 1.26×10−6 0.101 1 1
NatBds NatBds AR (x𝑚𝑖𝑑,p𝑚𝑖𝑑) 1.26×10−6 0.101 1 1
NatBds NatBds AR (x𝑈 ,p𝑈 ) 1.26×10−6 0.122 1 1

NatBds ConvPoly1 AR (x𝐿,p𝐿) 1.26×10−6 0.094 1 1
NatBds ConvPoly1 AR (x𝑚𝑖𝑑,p𝑚𝑖𝑑) 1.26×10−6 0.087 1 1
NatBds ConvPoly1 AR (x𝑈 ,p𝑈 ) 1.26×10−6 0.101 1 1

ConvPoly1 NatBds AR (x𝐿,p𝐿) 1.26×10−6 0.081 1 1
ConvPoly1 NatBds AR (x𝑚𝑖𝑑,p𝑚𝑖𝑑) 1.26×10−6 0.073 1 1
ConvPoly1 NatBds AR (x𝑈 ,p𝑈 ) 1.26×10−6 0.096 1 1

ConvPoly1 ConvPoly1 AR (x𝐿,p𝐿) 1.26×10−6 0.079 1 1
ConvPoly1 ConvPoly1 AR (x𝑚𝑖𝑑,p𝑚𝑖𝑑) 1.26×10−6 0.072 1 1
ConvPoly1 ConvPoly1 AR (x𝑈 ,p𝑈 ) 1.26×10−6 0.093 1 1

ConvPoly2 NatBds AR (x𝐿,p𝐿) 1.26×10−6 0.069 1 1
ConvPoly2 NatBds AR (x𝑚𝑖𝑑,p𝑚𝑖𝑑) 1.26×10−6 0.075 1 1
ConvPoly2 NatBds AR (x𝑈 ,p𝑈 ) 1.26×10−6 0.092 1 1

ConvPoly2 ConvPoly1 AR (x𝐿,p𝐿) 1.26×10−6 0.068 1 1
ConvPoly2 ConvPoly1 AR (x𝑚𝑖𝑑,p𝑚𝑖𝑑) 1.26×10−6 0.075 1 1
ConvPoly2 ConvPoly1 AR (x𝑈 ,p𝑈 ) 1.26×10−6 0.091 1 1

NatBds NatBds RAD linearized (p𝑚𝑖𝑑) 1.26×10−6 0.039 1 1
NatBds ConvPoly1 RAD linearized (p𝑚𝑖𝑑) 1.26×10−6 0.039 1 1

ConvPoly1 NatBds RAD linearized (p𝑚𝑖𝑑) 1.26×10−6 0.037 1 1
ConvPoly1 ConvPoly1 RAD linearized (p𝑚𝑖𝑑) 1.26×10−6 0.039 1 1
ConvPoly2 NatBds RAD linearized (p𝑚𝑖𝑑) 1.26×10−6 0.043 1 1
ConvPoly2 ConvPoly1 RAD linearized (p𝑚𝑖𝑑) 1.26×10−6 0.043 1 1

All instances solved to an absolute global tolerance of 10−4. CPU times are averages from
100 repetitions. Minimizer was (4.00, 2.00, 39.5, 19.7) in all cases. No domain reduction
techniques were used.
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Table 2.4: Numerical results for reversible series reaction (S2.2.1.2) using data for two
species.

relaxation LBP normalized
method count CPU time (s)

NatBds, AR (x*,𝑚𝑖𝑑,p*,𝑚𝑖𝑑) 96599 17010

ConvPoly1, AR (x*,𝑚𝑖𝑑,p*,𝑚𝑖𝑑) 69267 13447

ConvPoly2, AR (x*,𝑚𝑖𝑑,p*,𝑚𝑖𝑑) 17049 1732

NatBds, RPD linearized at p𝑚𝑖𝑑 97157 2390

ConvPoly1, RPD linearized at p𝑚𝑖𝑑 67789 1811

ConvPoly2, RPD linearized at p𝑚𝑖𝑑 13155 359

ConvPoly2, RPD linearized at p𝑚𝑖𝑑, GradBV 7478 192

VSPODE, fastest 𝜀-global [114] 1622 91

VSPODE, slowest 𝜀-global [114] 9050 211

VSPODE, fastest exact [114] 1392 89

VSPODE, slowest exact [114] 1357 272

All domain reduction techniques were used. The sensitivity right-hand sides were calculated
using the built-in finite differencing scheme of CVODES for RAD and using automatic
differentiation for RPD. The first seven tests are new results; the remaining entries are
reproduced from [114, Table 2], with the CPU times normalized based on the PassMark
benchmark from [114] being about 2.98 times slower than that of the CPU used for the new
results. In all cases, the upper bound was 8.57×10−4, the relative B&B tolerance was 10−3,
and the absolute B&B tolerance was 0.

Table 2.5: Numerical results for reversible series reaction (S2.2.1.2) using data for all three
species.

relaxation LBP normalized
method count CPU time (s)

ConvPoly2, RPD linearized at p𝑚𝑖𝑑 20503 507

ConvPoly2, RPD linearized at p𝑚𝑖𝑑, GradBV 15356 358

VSPODE, fastest 𝜀-global [114] 40552 878

VSPODE, slowest 𝜀-global [114] 10192 999

VSPODE, fastest exact [114] 4330 425

VSPODE, slowest exact [114] 7401 673

All domain reduction techniques were used. The sensitivity right-hand sides were calculated
using automatic differentiation for RPD. The first two tests are new results; the remaining
entries are reproduced from [114, Table 2], with the CPU times normalized based on the
PassMark benchmark from [114] being about 2.98 times slower than that of the CPU used
for the new results. In all cases, the upper bound was 1.59×10−3, the relative B&B tolerance
was 10−3, and the absolute B&B tolerance was 0.
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in processing power, all methods in dGDOpt gave significantly better CPU times than

the fastest method from [162]. See Table 2.6. In all cases, we obtained a minimum at

(3.9855, 1.9823, 40.4505, 20.2308). All four components of the minimizer agree with [162,

Section 5.5.5] to at least three significant figures. The fastest method from dGDOpt uses

ConvPoly2 bounds with RAD relaxations linearized at p𝑚𝑖𝑑 and the GradBV method of

choosing the branching variable. It was about 55 times faster than the fastest result from

[162] after correcting for the difference in CPU speed using the PassMark benchmark.

2.2.2 Fed-batch control problem

This problem is from [162, Section 5.5.4]. The objective is to maximize the final-time

concentration of a chemical product in an isothermal fed-batch reactor, with upper bounds

constraining the final-time concentrations of two side products. The control variable is

the input flow rate of one of the reactants. The flow rate is discretized into a piecewise

constant function with 1, 3, 5, 7, and 9 intervals of uniform duration. For the full details

of the formulation, the reader is referred to [162]. Here we formulate the problem as a

minimization instead of a maximization, so the objective function has the opposite sign as

that in [162]. The problem was solved with the tolerances given in Table 2.7. The B&B

tolerances are identical to those used in [162]. Tighter feasibility tolerances were used in

the UBP than in the LBP to ensure that the solution was truly feasible and therefore gives

a valid upper bound. Looser feasibility tolerances were used in the LBP to ensure that the

constraints were not overly restrictive, so that we could be sure the optimizer gave a valid

lower bound. Results are given in Table 2.8. We reformulated the problem (see below) to

enable use of ConvPoly bounds in addition to NatBds. For 𝑛𝑝 ≥ 5, RPD relaxations give

consistently faster CPU times and lower node counts than IBTM. However, PRTM and

PRMCTM are consistently faster than the RPD relaxations implemented in dGDOpt. We

attribute this to the dependency problem in the right-hand side, which weakens the interval

arithmetic and McCormick extensions used in dGDOpt, but does not weaken PRTM and

PRMCTM to such a great degree. In Figure 2-1, we can see that the RPD relaxations have

more favorable scaling of CPU time than IBTM [162]. The CPU time of RPD relaxations

when using CPLEX to solve the lower-bounding problem appear to scale slightly better
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Table 2.6: Numerical results for reversible series reaction (S2.2.1.3).
relaxation LBP normalized
method count CPU time (s)

NatBds, AR (x*,𝑚𝑖𝑑,p*,𝑚𝑖𝑑) 115 8.0

ConvPoly1, AR (x*,𝑚𝑖𝑑,p*,𝑚𝑖𝑑) 111 6.3

ConvPoly2, AR (x*,𝑚𝑖𝑑,p*,𝑚𝑖𝑑) 77 4.0

NatBds, RAD linearized at p𝑚𝑖𝑑 495 10.6

ConvPoly1, RAD linearized at p𝑚𝑖𝑑 491 10.7

ConvPoly2 RAD linearized at p𝑚𝑖𝑑 157 4.2

NatBds, RPD linearized at p𝑚𝑖𝑑 163 5.7

ConvPoly1, RPD linearized at p𝑚𝑖𝑑 171 6.3

ConvPoly2, RPD linearized at p𝑚𝑖𝑑 85 11.1

NatBds, AR (x*,𝑚𝑖𝑑,p*,𝑚𝑖𝑑), GradBV 25 1.1

ConvPoly1, AR (x*,𝑚𝑖𝑑,p*,𝑚𝑖𝑑), GradBV 25 1.4

ConvPoly2, AR (x*,𝑚𝑖𝑑,p*,𝑚𝑖𝑑), GradBV 22 1.4

NatBds, RAD linearized at p𝑚𝑖𝑑, GradBV 41 2.7

ConvPoly1, RAD linearized at p𝑚𝑖𝑑, GradBV 44 1.1

ConvPoly2 RAD linearized at p𝑚𝑖𝑑, GradBV 23 0.6

NatBds, RPD linearized at p𝑚𝑖𝑑, GradBV 31 0.8

ConvPoly1, RPD linearized at p𝑚𝑖𝑑, GradBV 31 0.8

ConvPoly2, RPD linearized at p𝑚𝑖𝑑, GradBV 17 0.5

NatBds, RPD linearized at p𝑚𝑖𝑑, CPLEX LBP, GradBV 148 5.3

ConvPoly1, RPD linearized at p𝑚𝑖𝑑, CPLEX LBP, GradBV 189 5.5

ConvPoly2, RPD linearized at p𝑚𝑖𝑑, CPLEX LBP, GradBV 52 1.5

IBTM [162] 207 62.6

PRTM [162] 374 27.6

PRMCTM [162] 31 32.7

All domain reduction techniques were used. The sensitivity right-hand sides were calculated
using the built-in finite differencing scheme of CVODES for RAD and using automatic dif-
ferentiation for RPD. The first six tests are new results; the remaining entries are reproduced
from [162, Table 5.13], with the CPU times normalized based on the PassMark benchmark
from [162] being about 1.56 times slower than that of the CPU used for the new results. In
all cases, the upper bound of −1.061523×10−3 was achieved at (3.99, 1.98, 40.45, 20.23).
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Table 2.7: Solver tolerances for fed-batch control problem

absolute relative

CVODES 10−9 10−9

SNOPT optimality — 10−5

SNOPT feasibility (LBP) 10−5 —
SNOPT feasibility (UBP) 10−7 —
B&B 10−3 10−3

Note: B&B tolerances are identical to those used by [162].

with 𝑛𝑝 than the PRTM method from [162], but the PRTM and PRMCTM methods are

faster in every case studied.

We reformulated this problem using total numbers of moles rather than molar concen-

trations, giving five state variables and two invariants:

�̇�A = −𝑘1𝑛A𝑛B/𝑉,

�̇�B = −(𝑛B/𝑉 )(𝑘1𝑛A + 2𝑘2𝑛B) + 𝑢𝑐B,𝑖𝑛,

�̇�C = 𝑘1𝑛A𝑛B/𝑉,

�̇�D = 𝑘2𝑛
2
B/𝑉,

�̇� = 𝑢,

𝑘1 = 0.053, 𝑘2 = 0.128,

x0 ≡ (𝑛A,0, 𝑛B,0, 𝑛C,0, 𝑛D,0, 𝑉0) ≡ (0.72, 0.05, 0, 0, 1),

𝑋𝑁 ≡ [0, 0.72]× [0, 0.3]× [0, 0.3]× [0, 0.15]× [0, 1.05],

𝐺 ≡ {z ∈ 𝑋𝑁 : 𝑛A + 𝑛C = 0.72 and 𝑛B + 𝑛C + 2𝑛D − 5𝑉 = −4.95},

𝑃 ≡ [0, 0.001]𝑛𝑝 ,

𝑡 ∈ [𝑡0, 𝑡𝑓 ] ≡ [0, 50],

(2.3)

where 𝑢 is the inlet flow rate given by a piecewise constant control parameterization with

time intervals of uniform duration.

The invariant quantities 𝑛A + 𝑛C and 𝑛B + 𝑛C +2𝑛D − 5𝑉 were obtained by writing an
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Table 2.8: Numerical results for fed-batch control problem (S2.2.2).
relaxation LBP normalized CPU

𝑛𝑝 method count time (s)

1 RPD (p𝑚𝑖𝑑), reform., GradBV, NatBds 5 3.11
1 RPD (p𝑚𝑖𝑑), reform., GradBV, ConvPoly1 5 0.41
1 RPD (p𝑚𝑖𝑑), reform., GradBV, ConvPoly2 5 0.43
1 RPD (p𝑚𝑖𝑑), reform., CPLEX LBP, GradBV, NatBds 5 2.84
1 RPD (p𝑚𝑖𝑑), reform., CPLEX LBP, GradBV, ConvPoly1 5 0.36
1 RPD (p𝑚𝑖𝑑), reform., CPLEX LBP, GradBV, ConvPoly2 5 0.38
1 IBTM [162] 5 0.06
1 PRTM [162] 1 0.03
1 PRMCTM [162] 1 0.04

3 RPD (p𝑚𝑖𝑑), reform., GradBV, NatBds 22 19.8
3 RPD (p𝑚𝑖𝑑), reform., GradBV, ConvPoly1 22 18.5
3 RPD (p𝑚𝑖𝑑), reform., GradBV, ConvPoly2 22 20.0
3 RPD (p𝑚𝑖𝑑), reform., CPLEX LBP, GradBV, NatBds 21 16.8
3 RPD (p𝑚𝑖𝑑), reform., CPLEX LBP, GradBV, ConvPoly1 21 14.6
3 RPD (p𝑚𝑖𝑑), reform., CPLEX LBP, GradBV, ConvPoly2 21 13.6
3 IBTM [162] 215 4.54
3 PRTM [162] 3 0.21
3 PRMCTM [162] 3 0.29

5 RPD (p𝑚𝑖𝑑), reform., GradBV, NatBds 486 172
5 RPD (p𝑚𝑖𝑑), reform., GradBV, ConvPoly1 480 157
5 RPD (p𝑚𝑖𝑑), reform., GradBV, ConvPoly2 458 166
5 RPD (p𝑚𝑖𝑑), reform., CPLEX LBP, GradBV, NatBds 110 67.6
5 RPD (p𝑚𝑖𝑑), reform., CPLEX LBP, GradBV, ConvPoly1 102 65.2
5 RPD (p𝑚𝑖𝑑), reform., CPLEX LBP, GradBV, ConvPoly2 104 62.2
5 IBTM [162] 65, 043 3, 132.
5 PRTM [162] 27 6.2
5 PRMCTM [162] 27 6.8

7 RPD (p𝑚𝑖𝑑), reform., GradBV, NatBds 9, 104 3, 893.
7 RPD (p𝑚𝑖𝑑), reform., GradBV, ConvPoly1 9, 260 3, 989.
7 RPD (p𝑚𝑖𝑑), reform., CPLEX LBP, GradBV, NatBds 1,380 793.
7 RPD (p𝑚𝑖𝑑), reform., CPLEX LBP, GradBV, ConvPoly1 1,348 787.
7 RPD (p𝑚𝑖𝑑), reform., CPLEX LBP, GradBV, ConvPoly2 1,358 848.
7 IBTM [162] > 250, 000 >64, 000.
7 PRTM [162] 179 218.
7 PRMCTM [162] 73 65.

9 RPD (p𝑚𝑖𝑑), reform., CPLEX LBP, GradBV, NatBds 22,704 15, 904.
9 RPD (p𝑚𝑖𝑑), reform., CPLEX LBP, GradBV, ConvPoly1 22,892 15, 652.
9 RPD (p𝑚𝑖𝑑), reform., CPLEX LBP, GradBV, ConvPoly2 23,894 17, 089.
9 PRTM [162] 1,007 6, 189.
9 PRMCTM [162] 209 895.

Tests 1 & 2 and probing for domain reduction were used in all cases. For the results from dGDOpt,
ConvPoly1 bounds were always used for post-integration pruning; integration bounding method is
noted. The sensitivity right-hand sides were calculated using the built-in finite differencing scheme
of CVODES. The RPD results in each block are new results; the last three results in each block are
reproduced from [162], with CPU times normalized based on the CPU in [162] having a PassMark
benchmark about 1.56 times slower than the CPU used here.

Table 2.9: Solutions to flow control problem (S2.2.2).
𝑛𝑝 upper bound example minimizer

1 −4.857×10−2 (1.0147×10−4)
3 −4.966×10−2 (0, 2.424×10−4, 1.193×10−4)
5 −4.967×10−2 (0, 5.504×10−5, 2.370×10−4, 2.234×10−4, 8.751×10−5)
7 −4.970×10−2 (0, 0, 1.442×10−4, 2.219×10−4, 1.870×10−4, 2.398×10−4, 5.243×10−5)
9 −4.971×10−2 (0, 0, 0, 2.342×10−4, 1.949×10−4, 2.079×10−4, 1.873×10−4, 2.493×10−4, 1.343×10−5)
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Figure 2-1: CPU time for methods from the present work scale significantly better with 𝑛𝑝
than previously-reported results using IBTM for the fed-batch control problem. The two
solid lines connect CPU times measured in the current work; dashed lines connect CPU
times reported in [162]. PRTM and PRMCTM methods were faster than the present work
for all values of 𝑛𝑝 tested, however, with CPLEX for the LBP, our software appears to scale
better than PRTM and PRMCTM. CPU times from [162] were normalized based on the
PassMark benchmarks for the respective CPUs. All domain reduction options were used in
all cases shown.
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augmented stoichiometry matrix for the flow system

Saug =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0

−1 −2 𝑐B,𝑖𝑛

1 0 0

0 1 0

0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and computing the null space of ST
aug. The first two columns of Saug correspond to the

reactions A + B → C and 2B → D; the third column corresponds to the inflow containing

species B at concentration 𝑐B,𝑖𝑛 = 5. The idea of using an augmented stoichiometry matrix

to compute invariants for the system was inspired by [5, S3.1.4].

2.2.3 Singular control problem

This three-state, one-control singular control problem from [120] has also been solved in

[66, 116, 187].

min
p

∫︁ 1

0

(︀
𝑥21 + 𝑥22 + 0.0005(𝑥2 + 16𝑡− 8− 0.1𝑥3𝑢

2)2
)︀
𝑑𝑡

s.t. 𝑢(𝑡) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

𝑝1 if 𝑡 ∈ [𝑡0, (𝑡𝑓 − 𝑡0)/𝑛control + 𝑡0),

...

𝑝𝑛control
if 𝑡 ∈ [(𝑛control − 1)(𝑡𝑓 − 𝑡0)/𝑛control + 𝑡0, 𝑡𝑓 ],

p ∈ [−4, 10]𝑛control ,
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where the state variables x are given by the solution of the initial value problem

�̇�1 = 𝑥2,

�̇�2 = −𝑥3𝑢+ 16𝑡− 8,

�̇�3 = 𝑢,

x(𝑡0) = (0,−1,−
√
5),

𝑡 ∈ [𝑡0, 𝑡𝑓 ] = [0, 1],

where

𝑋𝑁 = 𝐺 = R3.

This problem is not derived from a physical system and no natural bounding set exists.

Using AR relaxations to solve this problem, the amount of CPU time and number of sub-

problems required are very sensitive to the reference trajectory, varying by a factor of about

30 under changes in reference trajectory (Table 2.10). For this particular problem, RPD

relaxations yield consistently slower CPU times than RAD relaxations. This is because the

RPD relaxations offer no benefit in tightness since for each 𝑖, the time derivative �̇�𝑖 does

not depend on the current value of state 𝑥𝑖, so the flattening step in the computation of

RPD (ℛ𝑐𝑣/𝑐𝑐
𝑖 operator in [170, S7.6.3]) has no benefit. In our tests, slightly fewer lower-

bounding problems are required for RPD as compared to RAD because our implementation

of RPD uses event detection to ensure the state relaxations always stay inside the state

bounds. For some nodes in the B&B tree using RAD relaxations, the relaxations leave the

bounds, leading to larger values of the state variables in the integrator and more numerical

integration failures. In the end, RAD is still significantly faster because the average cost

of each lower-bounding problem is so much lower than that for RPD and the relaxations

of the objective function are of equal strength except when there are numerical integration

failures. See Table 2.11. We further tailored the optimization methods to this problem by

solving using RAD without performing the flattening step in the state bounding system

(NäıveBds). Again, since no �̇�𝑖 depends on 𝑥𝑖, this does not worsen the bounds, but it

decreases the cost of evaluating the right-hand side of the bounding system.
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Table 2.10: Numerical results for Singular Control problem (S2.2.3) using AR relaxations
are highly sensitive to the reference trajectory.

relaxation LBP normalized
method count CPU time (s)

NatBds, AR (x*,𝐿,p*,𝐿) 20953 4106.0

NatBds, AR (x*,𝑚𝑖𝑑,p*,𝑚𝑖𝑑) 607 184.0

NatBds, AR (x*,𝑈 ,p*,𝑈 ) 19735 3812.0

NatBds, RAD linearized at p𝑚𝑖𝑑 633 124.0

All instances solved to a global absolute tolerance of 10−3 with 𝑛𝑝 = 3. Natural
bounds were used in all cases, with bounds effectively (−∞,+∞) since the system
has no affine invariants and no a priori known bounds. Tests 1 and 2 as well as
probing for domain reduction were enabled. In all cases, the upper bound was 0.1475.

The singular control problem was solved with 1, 2, 3, 4, and 5 piecewise constant control

epochs to examine the scaling with CPU time. For small numbers of control epochs, Lin

and Stadtherr [116] and Sahlodin [162] solved the problem more quickly than we have here,

but as the number of control epochs increases, dGDOpt solves the problem more quickly

than some of the other methods. For 𝑛𝑝 = 1 and 𝑛𝑝 = 2, RAD and RPD relaxations are

consistently slower than the methods from [162]. However, for 𝑛𝑝 ≥ 3, RAD yields faster

CPU times than IBTM even after adjusting for differences in CPU performance. For 𝑛𝑝 = 5,

RAD gives faster global optimization than all three methods from [162] after normalizing for

CPU performance. Figure 2-2 makes it clear that RAD with NatBds scales more favorably

than the methods from [116, 162]—the only other methods reported to have solved this

problem to guaranteed global optimality.

2.2.4 Denbigh problem

This problem is taken from [162, Section 5.5.3]. Sahlodin adapted the problem slightly from

[58]. We solved an equivalent problem to that solved in Sahlodin’s code, which differs slightly

from what is printed in [162]. We used absolute and relative tolerances on the function

value of 10−3, in agreement with [162]. In personal communication with Dr. Sahlodin, we

established that the formulation used to generate the results results in [162] is:

min
p∈𝑃

−𝑥2(𝑡𝑓 )
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Table 2.11: Numerical results for Singular Control problem (S2.2.3) with 1 to 5 control
epochs.

relaxation upper LBP normalized
method probing? bound minimizer count CPU time (s)

AR (x𝑚𝑖𝑑*,p𝑚𝑖𝑑) yes 0.4965 (4.071) 15 1.07
RAD, NäıveBds yes 0.4965 (4.071) 13 0.37
RAD no 0.4965 (4.071) 13 0.29
RAD yes 0.4965 (4.071) 13 0.19
RAD, GradBV yes 0.4965 (4.071) 13 0.29
RPD yes 0.4965 (4.071) 13 4.54
IBTM yes 0.4965 (4.071) 5 0.06
PRTM yes 0.4965 (4.071) 3 0.03
PRMCTM yes 0.4965 (4.071) 3 0.04

AR (x𝑚𝑖𝑑*,p𝑚𝑖𝑑) yes 0.2771 (5.575,−4.000) 43 7.62
RAD, NäıveBds yes 0.2771 (5.575,−4.000) 49 2.16
RAD no 0.2771 (5.550,−4.000) 39 4.32
RAD yes 0.2771 (5.575,−4.000) 39 3.21
RAD, GradBV yes 0.2771 (5.575,−4.000) 32 1.77
RPD yes 0.2771 (5.575,−4.000) 39 3.86
IBTM yes 0.2771 (5.575,−4.000) 55 1.28
PRTM yes 0.2771 (5.575,−4.000) 27 0.48
PRMCTM yes 0.2771 (5.575,−4.000) 27 0.63

AR (x𝑚𝑖𝑑*,p𝑚𝑖𝑑) yes 0.1475 (8.002,−1.944, 6.042) 607 139
RAD, NäıveBds yes 0.1475 (8.002,−1.944, 6.042) 591 31
RAD no 0.1475 (7.972,−1.916, 6.061) 597 147
RAD yes 0.1475 (8.002,−1.944, 6.042) 591 34
RAD, GradBV yes 0.1475 (8.002,−1.944, 6.042) 484 24
RPD yes 0.1475 (8.002,−1.944, 6.042) 603 51
IBTM yes 0.1475 (8.002,−1.944, 6.042) 1,367 45
PRTM yes 0.1475 (8.002,−1.944, 6.042) 445 17
PRMCTM yes 0.1475 (8.002,−1.944, 6.042) 443 22

AR (x𝑚𝑖𝑑*,p𝑚𝑖𝑑) yes 0.1237 (9.789,−1.199, 1.256, 6.356) 8,547 3, 038
RAD, NäıveBds yes 0.1237 (9.789,−1.199, 1.256, 6.356) 8,919 641
RAD no 0.1237 (9.789,−1.205, 1.255, 6.371) 9,435 1, 079
RAD yes 0.1237 (9.789,−1.199, 1.256, 6.356) 8,919 726
RAD, GradBV yes 0.1237 (9.789,−1.199, 1.256, 6.356) 6,578 572
RPD yes 0.1237 (9.789,−1.199, 1.256, 6.356) 9,081 656
IBTM yes 0.1238 (9.789,−1.200, 1.257, 6.356) 28,809 1, 419
PRTM yes 0.1238 (9.789,−1.200, 1.257, 6.356) 5,159 474
PRMCTM yes 0.1238 (9.789,−1.200, 1.257, 6.356) 5,137 553

AR (x𝑚𝑖𝑑*,p𝑚𝑖𝑑) yes 0.1236 (10.000, 1.494,−0.814, 3.352, 6.154) 92,183 42, 037
RAD, NäıveBds yes 0.1236 (10.000, 1.494,−0.814, 3.352, 6.154) 83,469 7, 027
RAD no 0.1236 (9.994, 1.554,−0.938, 3.479, 6.063) 172,675 20, 474
RAD yes 0.1236 (10.000, 1.494,−0.814, 3.352, 6.154) 83,469 8, 353
RAD, GradBV yes 0.1236 (10.000, 1.498,−0.817, 3.330, 6.184) 59,364 5, 666
RPD yes 0.1236 (10.000, 1.494,−0.814, 3.352, 6.154) 83,507 13, 275
IBTM yes 0.1236 (10.000, 1.494,−0.814, 3.354, 6.151) 504,827 25, 067
PRTM yes 0.1236 (10.000, 1.494,−0.814, 3.354, 6.151) 54,617 11, 890
PRMCTM yes 0.1236 (10.000, 1.494,−0.814, 3.354, 6.151) 55,107 13, 792

All instances solved to global absolute and relative tolerances of 10−3, just as in [162]. NatBds were used
unless otherwise noted, with bounds effectively (−∞,+∞) for all states, since the system has no affine
invariants and no natural bounds. Tests 1 & 2 for domain reduction were always enabled. All RAD and
RPD relaxations were linearized at p𝑚𝑖𝑑. CPU time data for IBTM, PRTM, and PRMCTM have been
normalized from [162, Tables 5.3 and 5.4], which used a CPU with a PassMark benchmark about 1.56 times
slower than the CPU used here.
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Figure 2-2: CPU time for some methods from dGDOpt scale better with 𝑛𝑝 than previously-
reported results for the singular control problem. The three solid lines connect CPU times
measured in the current work; dashed lines connect CPU times reported in [162]; a dot-
dashed line connects CPU times from [116]. All instances were solved to a global absolute
tolerance of 10−3. CPU times from [162] and [116] were normalized based on the PassMark
benchmarks for the respective CPUs.
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where x(𝑡𝑓 ) is given by the solution of the IVP:

�̇�1 = −𝑘1𝑥21,

�̇�2 = 𝑘1𝑥
2
1 − 𝑘2𝑥2,

x(𝑡0) = (1, 0),

𝑡 ∈ [𝑡0, 𝑡𝑓 ] = [0, 10],

where

𝑘𝑖 = 𝑎𝑖 exp

(︂−𝑏𝑖𝑝
298𝑅

)︂
, 𝑖 = 1, 2,

p ∈ [298/423, 1]𝑛𝑝 ,

𝑎1 = 4.0×103, 𝑎2 = 6.2×104,

𝑏1/𝑅 = 2.5×103, 𝑏2/𝑅 = 5.0×103,

with 𝑛𝑝 = 1, . . . , 4 for different numbers of piecewise constant control parameters on a

uniform time grid. In particular, note that the definitions for 𝑘𝑖 and 𝑎2 used here differ

from those printed in [162], but they are the definitions actually used to generate the results

in [162] and in the present work. We added an additional state to the system, such that

the solution obeys an affine invariant and the natural bounds below:

�̇�1 = −𝑘1𝑥21,

�̇�2 = 𝑘1𝑥
2
1 − 𝑘2𝑥2,

�̇�3 = 𝑘2𝑥2,

x(𝑡0) = (1, 0, 0),

𝑋𝑁 ≡ [0, 1]× [0, 1]× [0, 1],

𝐺 ≡ {z ∈ 𝑋𝑁 : 𝑥1 + 𝑥2 + 𝑥3 = 𝑥1,0 + 𝑥2,0 + 𝑥3,0 = 1},

𝑡 ∈ [𝑡0, 𝑡𝑓 ] = [0, 10].

CPU times and LBP counts are given in Table 2.12; solutions are given in Table 2.13.
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The methods from [162] give about an two to five times faster CPU times than the fastest

methods implemented for this work.

Table 2.12: Numerical results for Denbigh problem (S2.2.4)
with 1 to 4 control epochs.

relaxation LBP normalized
𝑛𝑝 method count CPU time (s)

1 NatBds, AR (x*,𝑚𝑖𝑑,p*,𝑚𝑖𝑑) 33 2.5
1 ConvPoly1, AR (x*,𝑚𝑖𝑑,p*,𝑚𝑖𝑑) 29 5.2
1 ConvPoly2, AR (x*,𝑚𝑖𝑑,p*,𝑚𝑖𝑑) 27 2.3
1 NatBds, RAD 97 3.2
1 ConvPoly1, RAD 67 2.3
1 ConvPoly2, RAD 53 2.3
1 NatBds, RPD 31 6.1
1 ConvPoly1, RPD 29 3.3
1 ConvPoly2, RPD 23 1.7
1 NatBds, RPD, CPLEX LBP 35 0.9
1 ConvPoly1, RPD, CPLEX LBP 33 0.7
1 ConvPoly2, RPD, CPLEX LBP 29 0.7
1 IBTM 7 0.3
1 PRTM 7 0.3
1 PRMCTM 7 0.6

2 NatBds, AR (x*,𝑚𝑖𝑑,p*,𝑚𝑖𝑑) 213 29.2
2 ConvPoly1, AR (x*,𝑚𝑖𝑑,p*,𝑚𝑖𝑑) 206 32.2
2 ConvPoly2, AR (x*,𝑚𝑖𝑑,p*,𝑚𝑖𝑑) 187 27.2
2 NatBds, RAD 916 46.7
2 ConvPoly1, RAD 886 46.6
2 ConvPoly2, RAD 870 55.0
2 NatBds, RPD 195 49.2
2 ConvPoly1, RPD 190 38.6
2 ConvPoly2, RPD 179 21.4
2 NatBds, RPD, CPLEX LBP 220 5.1
2 ConvPoly1, RPD, CPLEX LBP 224 5.2
2 ConvPoly2, RPD, CPLEX LBP 208 4.8
2 IBTM 31 2.7
2 PRTM 27 1.8
2 PRMCTM 27 3.2

3 NatBds, AR (x*,𝑚𝑖𝑑,p*,𝑚𝑖𝑑) 10328 2697.0
3 ConvPoly1, AR (x*,𝑚𝑖𝑑,p*,𝑚𝑖𝑑) 10594 2793.0
3 ConvPoly2, AR (x*,𝑚𝑖𝑑,p*,𝑚𝑖𝑑) 1768 462.0
3 NatBds, RAD 8004 628.0
3 ConvPoly1, RAD 8056 646.0
3 ConvPoly2, RAD 7652 701.0
3 NatBds, RPD 1562 928.0

61



3 ConvPoly1, RPD 1448 344.0
3 ConvPoly2, RPD 882 153.0
3 NatBds, RPD, CPLEX LBP 1640 40.1
3 ConvPoly1, RPD, CPLEX LBP 1508 38.6
3 ConvPoly2, RPD, CPLEX LBP 1482 39.7
3 IBTM 111 10.8
3 PRTM 93 9.9
3 PRMCTM 93 16.1

4 NatBds, RPD, CPLEX LBP 9956 306.0
4 ConvPoly1, RPD, CPLEX LBP 8940 300.0
4 ConvPoly2, RPD, CPLEX LBP 8724 303.0
4 IBTM 411 63.5
4 PRTM 303 55.4
4 PRMCTM 295 81.4

All instances solved to global absolute and relative tolerances of 10−3, just as in [162]. Tests 1 & 2
and probing for domain reduction were always enabled. GradBV was used in all cases except IBTM,
PRTM, and PRMCTM. All RAD and RPD relaxations were linearized at p𝑚𝑖𝑑. CPU time data for
IBTM, PRTM, and PRMCTM have been normalized from [162, Tables 5.3 and 5.4], which used a
CPU with a PassMark benchmark about 1.56 times slower than the CPU used here. For each value
of 𝑛𝑝, all solvers and options gave the same solutions to at least 3 significant figures (Table 2.13).

2.2.5 Oil shale pyrolysis optimal control problem

This two-state, one-control optimal control problem has been studied by several authors [44,

120, 157, 187]. Here, piecewise constant control parameterization is used with a uniform

time grid in one to three control epochs (𝑛𝑝 = 1, 2, 3). The problem is:

min
p

−𝑥2(𝑡𝑓 ),

Table 2.13: Solutions to Denbigh problem (S2.2.4).
𝑛𝑝 upper bound minimizer

1 −0.8811 (0.977)
2 −0.8813 (0.969, 0.985)
3 −0.8814 (0.963, 0.983, 0.986)
4 −0.8815 (0.958, 0.980, 0.985, 0.987)
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Figure 2-3: CPU times using RPD in dGDOpt scale similarly with 𝑛𝑝 as previously-reported
results for the Denbigh problem. The six solid lines connect CPU times measured in the
current work; dashed lines connect CPU times reported in [162]. All instances were solved
to a global absolute tolerance of 10−3. CPU times from [162] were normalized based on the
PassMark benchmarks for the respective CPUs.
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Table 2.14: Values of constants in Oil Shale Pyrolysis problem

𝑖 𝑎𝑖 𝑏𝑖/𝑅

1 7.044482745×103 −10215.4
2 3.401270608×1010 −18820.5
3 1.904365858×1010 −17008.9
4 1.390021558×108 −14190.8
5 9.770027258×108 −15599.8

where 𝑥2(𝑡𝑓 ) is given by the solution of the initial value problem:

�̇�1 = −𝑥1(𝑘1 + 𝑘3𝑥2 + 𝑘4𝑥2 + 𝑘5𝑥2), ∀𝑡 ∈ (𝑡0, 𝑡𝑓 ]

�̇�2 = 𝑥1(𝑘1 + 𝑘3𝑥2)− 𝑘2𝑥2, ∀𝑡 ∈ (𝑡0, 𝑡𝑓 ]

𝑘𝑖 = 𝑎𝑖 exp

[︂ −𝑏𝑖/𝑅
698.15 + 50𝑢

]︂
, 𝑖 = 1, . . . , 5,

x(𝑡0) = (1, 0),

𝑡 ∈ [𝑡0, 𝑡𝑓 ] ≡ [0, 10],

where 𝑢 is given by a piecewise constant control parameterization on a uniform grid with

𝑛𝑝 epochs, p ∈ [0, 1]𝑛𝑝 , and

𝑋𝑁 = [0, 1]2, 𝐺 = 𝑋𝑁 .

For this problem, there are no affine invariants in the original formulation so only natural

bounds can be used in the original formulation. However, an additional state can be added,

yielding one affine invariant. Specifically, the additional state is:

�̇�3 = 𝑥2(𝑘2 + (𝑘4 + 𝑘5)𝑥1), 𝑥3(𝑡0) = 0, (2.4)

with the new sets

𝑋𝑁 = [0, 1]3, 𝐺 = {z ∈ 𝑋𝑁 : 𝑧1 + 𝑧2 + 𝑧3 = 1}.

With NatBds on the original formulation, RPD relaxations gave six to seven times

faster CPU times than RAD and AR for 𝑛𝑝 = 2. Within tests of each relaxation method,

ConvPoly2 gave slightly faster times than NatBds, while ConvPoly1 gave slower times. The
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Table 2.15: Numerical results for Oil Shale Pyrolysis problem (S2.2.5) with 𝑛𝑝 = 2

relaxation LBP normalized
method count CPU time (s)

NatBds, AR (x*,𝑚𝑖𝑑,p*,𝑚𝑖𝑑) 5001 840

ConvPoly1, AR (x*,𝑚𝑖𝑑,p*,𝑚𝑖𝑑) 4967 1511

ConvPoly2, AR (x*,𝑚𝑖𝑑,p*,𝑚𝑖𝑑) 2047 653

NatBds, RAD linearized at p𝑚𝑖𝑑 14599 938

ConvPoly1, RAD linearized at p𝑚𝑖𝑑 14593 1858

ConvPoly2, RAD linearized at p𝑚𝑖𝑑 6849 893

NatBds, RPD linearized at p𝑚𝑖𝑑 4639 133

ConvPoly1, RPD linearized at p𝑚𝑖𝑑 4607 271

ConvPoly2, RPD linearized at p𝑚𝑖𝑑 2037 151

NatBds, AR (x*,𝑚𝑖𝑑,p*,𝑚𝑖𝑑), GradBV 4550 697

ConvPoly1, AR (x*,𝑚𝑖𝑑,p*,𝑚𝑖𝑑), GradBV 4502 1301

ConvPoly2, AR (x*,𝑚𝑖𝑑,p*,𝑚𝑖𝑑), GradBV 2272 676

NatBds, RAD linearized at p𝑚𝑖𝑑, GradBV 18242 1406

ConvPoly1, RAD linearized at p𝑚𝑖𝑑, GradBV 19060 3050

ConvPoly2, RAD linearized at p𝑚𝑖𝑑, GradBV 13804 2264

NatBds, RPD linearized at p𝑚𝑖𝑑, GradBV 4254 116

ConvPoly1, RPD linearized at p𝑚𝑖𝑑, GradBV 4364 235

ConvPoly2, RPD linearized at p𝑚𝑖𝑑, GradBV 1836 109

VSPODE [116] 178 9

All instances, including the literature result, were solved to a global absolute tolerance of
10−3. The dynamic system solved using natural bounds had 2 states; that solved using
ConvPoly bounds had 3 states. An extra state was added to create the affine invariant to
enforce in the ConvPoly runs. Tests 1 and 2 and probing for domain reduction were enabled.
All results except that from VSPODE are from the present study. The results from VSPODE
were normalized based on the PassMark benchmark being 2.98× faster for one core of the
present CPU compared to that in [116]. In all cases, the minimum function value of −0.351
was attained at (0.431, 0.000).
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normalized CPU time for VSPODE is about 10 times faster than that for dGDOpt on this

problem. See Table 2.15.

2.2.6 Pharmaceutical reaction model

This seven-state, five-parameter problem is from the Novartis-MIT Center for Continuous

Manufacturing. It is an unweighted least-squares parameter estimation problem where the

state variables x are given by the solution of the initial value problem

ẋ = Sr,

r = (𝑘1𝑥1, 𝑘2𝑥4, 𝑘3𝑥1, 𝑘4𝑥4, 𝑘5),

𝑘𝑖 = exp(𝑝𝑖),

p ∈ [−2, 1]4 × [−6,−3],

x(𝑡0) = (0.792302, 3.942141, 0, 0, 0, 0, 0),

𝑡 ∈ [𝑡0, 𝑡𝑓 ] = [0, 5./3.],

where the stoichiometry matrix S is given by

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 −1 0 −0.5

−1 1 0 0 −1.5

1 −1 0 −1 −0.5

0 0 0 1 0

0 0 0 0 1

0 0 1 0 0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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Table 2.16: Experimental data for pharmaceutical reaction model (S2.2.6).
𝑡 (hours) 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7

0 0.792302 3.942141 0.000000 0.000000 0.000000 0.000000 0.000000
1/6 0.594226 3.751241 0.186349 0.003565 0.000657 0.000000 0.000657
2/6 0.294261 3.458084 0.466507 0.011251 0.004199 0.006259 0.004199
3/6 0.181754 3.345181 0.570457 0.015450 0.007368 0.005625 0.007368
4/6 0.134612 3.298436 0.611340 0.017510 0.009904 0.005467 0.009904
5/6 0.115835 3.279183 0.626711 0.018540 0.011805 0.004675 0.011805
1 0.108070 3.270745 0.630672 0.019570 0.014103 0.004595 0.014103
7/6 0.104663 3.268447 0.628295 0.020204 0.016797 0.005150 0.016797
8/6 0.103950 3.267100 0.625522 0.020758 0.019174 0.005150 0.019174
9/6 0.104188 3.268685 0.620214 0.021154 0.021392 0.005467 0.021392
10/6 0.103792 3.266347 0.617758 0.021788 0.024165 0.005705 0.024165

All concentrations in mol/L.

and

𝑋𝑁 = [−0.0242, 0.792302]× [2.3091, 3.942142]× [−0.0242, 0.792302]× [−0.0242, 0.792302]

× [−0.0242, 0.792302]× [−0.0242, 0.792302]× [−0.0242, 0.792302],

𝐺 =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

z ∈ 𝑋𝑁 :

𝑧1 + 𝑧3 + 𝑧4 + 𝑧6 + 𝑧7 = 𝑥1,0 + 𝑥3,0 + 𝑥4,0 + 𝑥6,0 + 𝑥7,0,

𝑧2 + 𝑧3 + 𝑧4 + 2𝑧7 = 𝑥2,0 + 𝑥3,0 + 𝑥4,0 + 2𝑥7,0, and

𝑧5 − 𝑧7 = 𝑥5,0 − 𝑥7,0

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

Dr. Sahlodin gave us his GDOPT code used for [162]; we solved this problem using his

software in addition to our own. Both codes gave the same minimizer and upper bound,

but our fastest method solved the problem over 15 times faster than the fastest method

from [162].

Figure 2-4 illustrates the impact of using the GradBV rule to select the branching

variable rather than the AbsDiamBV rule.
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Figure 2-4: Objective function and its convex relaxation generated plotted versus 𝑝1 and
𝑝5 for pharmaceutical reaction model (S2.2.6) on (top) root node, (middle) two child nodes
when partitioned at the plane 𝑝5 = 0.5(𝑝𝐿5 + 𝑝𝑈5 ), and (bottom) two child nodes partitioned
at the plane 𝑝1 = 0.5(𝑝𝐿1 + 𝑝𝑈1 ). Partitioning at the midpoint of 𝑝5 does not visibly improve
the relaxations and does not allow eliminating any of the search space from consideration.
Partitioning at the midpoint of 𝑝1 visibly improves the relaxations and is sufficient to
eliminate half of the search space from consideration. Given the choice between only 𝑝1 and
𝑝5 as branching variables, GradBV would select 𝑝1 for partitioning (thus eliminating half
of the search space) whereas AbsDiamBV could select 𝑝5 (thus not eliminating any of the
search space) because both 𝑝1 and 𝑝5 have equal absolute diameters at the root node.
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Table 2.17: Numerical results for pharmaceutical reaction network (S2.2.6).
relaxation LBP
method count CPU time (s)

NatBds, RPD linearized at p𝑚𝑖𝑑 75030 3534

ConvPoly1, RPD linearized at p𝑚𝑖𝑑 75030 3622

ConvPoly2, RPD linearized at p𝑚𝑖𝑑 75548 4456

NatBds, RPD linearized at p𝑚𝑖𝑑, GradBV 260 17

ConvPoly1, RPD linearized at p𝑚𝑖𝑑, GradBV 260 16

ConvPoly2, RPD linearized at p𝑚𝑖𝑑, GradBV 262 21

IBTM 705 266

PRTM 705 266

PRMCTM 569 279

All domain reduction techniques were used. Probing used the linearized states, so only a
single integration was required for each lower bounding problem and the subsequent 2𝑛𝑝
probing problems. The absolute and relative B&B tolerances were 10−2. An upper bound of
0.1205 at (0.811, 0.000,−1.756, 0.000,−4.31) was achieved in all cases. All other settings
for the code from [162] were left at defaults.

2.2.7 Discretized PDE problem to show scaling with 𝑛𝑥

The next problem is inspird by a discretized PDE with varying numbers of states, 𝑛𝑥, to

elucidate the scaling of the methods with 𝑛𝑥. We simulated the dynamic system

�̇�1 =
−𝑐𝑛𝑥

𝜁max − 𝜁min
(𝑥1),

�̇�𝑖 =
−𝑐𝑛𝑥

𝜁max − 𝜁min
(𝑥𝑖 − 𝑥𝑖−1), 𝑖 = 2, . . . , 𝑛𝑥 − 1,

�̇�𝑛𝑥 =
−𝑐𝑛𝑥

𝜁max − 𝜁min
(−𝑥𝑛𝑥−1),

(2.5)

with the initial condition x(𝑡0) = (1, 0, . . . , 0). For each value of 𝑛𝑥 tested, we simulated

data for the system using 𝑐
𝜁max−𝜁min

= 5.0 in Matlab using ode15s with absolute and relative

tolerances of 10−9, then added the pseudorandom noise in Table 2.18 to the simulated data

for (𝑥𝑛𝑥−1, 𝑥𝑛𝑥) to form the pseudoexperimental data (̂︀𝑥𝑛𝑥−1, ̂︀𝑥𝑛𝑥). Finally, we formed an

unweighted least-squares parameter estimation problem using those 20 data points, letting
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𝑝 ∈ 𝑃 ≡ [0, 10]. The system obeys a natural bound and an affine invariant:

𝑋𝑁 = [0, 1]𝑛𝑥 ,

𝐺 = {z ∈ 𝑋𝑁 :
∑︁

𝑖

𝑧𝑖 = 1},

which we exploited where noted. The problem was solved using CPLEX for the lower-

bounding problem in all cases.

The problem was solved with up to 41 state variables. Relaxations from RAD yielded

an initial large increase in LBP count with 𝑛𝑥, then plateaued around 600 LBPs. Relax-

ations from RPD and AR yielded a more gradual increase with up to about 150 LBPs.

CPU time scaled the most favorably with ConvPoly1/RAD and NatBds/RAD, followed

by ConvPoly1/AR and NatBds/AR, then RPD with all three bounding methods. Con-

vPoly2/RAD and ConvPoly2/AR gave the least favorable scaling of CPU time with 𝑛𝑥.

This is expected since the number of operations for the ConvPoly2 bounding method scales

as 𝑛3𝑥.

This results could be significantly improved by exploiting sparsity in at least two ways.

First, the states for the lower-bounding problem could be arranged in the order

(𝑥𝐿1 , 𝑥
𝑈
1 , 𝑥

𝑐𝑣
1 , 𝑥

𝑐𝑐
1 , ..., 𝑥

𝐿
𝑛𝑥
, 𝑥𝑈𝑛𝑥

, 𝑥𝑐𝑣𝑛𝑥
, 𝑥𝑐𝑐𝑛𝑥

)

and a banded linear solver with an upper half-bandwidth of 1 and a lower half-bandwidth

of 7 could be used in the numerical integration, where the number of integration variables

for the lower-bounding problem is 4𝑛𝑥. (The lower and upper half-bandwidths (𝑚lower and

𝑚upper) are such that every nonzero element (𝑖, 𝑗) of the Jacobian matrix for the ODE

vector field satisfies −𝑚lower ≤ 𝑗− 𝑖 ≤ 𝑚upper.) For the upper-bounding problem, the upper

half-bandwidth would be 0 and the lower half-bandwidth would be 1. Second, in the vector

field evaluation, when applying the ℬ𝐿/𝑈
𝑖 operators [172, Definition 2] to the current values

of the bounds and the ℛ𝑐𝑣/𝑐𝑐
𝑖 operators [174, Definition 11] to the current values of the

relaxations, the current implementation copies the entire vector of bounds or relaxations,

then modifies the appropriate component. The time required for this scales as 𝑛𝑥. A more
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Table 2.18: Pseudorandom noise added to state data to create a parameter estimation
problem

𝑡 ̂︀𝑥𝑛𝑥−1(𝑡)− 𝑥𝑛𝑥−1(𝑡, 𝑝) ̂︀𝑥𝑛𝑥(𝑡)− 𝑥𝑛𝑥(𝑡, 𝑝)

0.1 −0.0117 −0.0532
0.2 −0.0339 −0.0931
0.3 −0.0448 −0.0579
0.4 0.1009 0.0133
0.5 0.0661 0.0156
0.6 0.0123 0.0180
0.7 −0.0502 −0.0052
0.8 −0.0346 0.0073
0.9 −0.0071 −0.0190
1.0 0.0316 0.0344

efficient, but more error-prone, method is as follows. Modify the vector without copying

it, keeping temporary variables for the index 𝑖, the direction (𝐿/𝑈/𝑐𝑣/𝑐𝑐), and the value of

the appropriate 𝑖th value before applying the operator, so that the effects of the ℬ𝐿/𝑈
𝑖 and

ℛ𝑐𝑣/𝑐𝑐
𝑖 operators can be reversed. The time required for this method does not depend on

𝑛𝑥.

2.3 Discussion and conclusions

Our software dGDOpt solves chemical kinetics problems at least as quickly as all other

deterministic global dynamic optimization methods in the literature [114, 162, 185, 187]

and in some cases 10 to 50 times faster than [162]. For optimal control problems, our

software tends to scale better with the number of control parameters than methods based

on Taylor models [116, 162] but the methods based on Taylor models tend to solve problems

with smaller numbers of control parameters more quickly than our methods.

We explored some possibilities for further improvements to the methods. For the singular

control problem with 𝑛𝑝 = 5, using the GradBV rule for selecting the branch variable rather

than selecting the variable with the largest absolute diameter gave 29% lower node counts

and commensurate improvement in CPU times. Also for the singular control problem,

decreasing the frequency of the upper-bounding problem solutions from every level of the

B&B tree to every third level and using NäıveBds instead of the usual bounds decreased
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Figure 2-5: Scaling of CPU time and LBP count with 𝑛𝑥 for discretized PDE example
(S2.2.7) solved using CPLEX for the LBP
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the CPU time required by a factor of 1.06–1.86 for 𝑛𝑝 ranging from 1 to 5. This suggests

that the speed of dGDOpt could be further improved by only performing the flattening

operations in RPD and the state bounding systems when it is beneficial, which is exactly

for those states 𝑖 such that �̇�𝑖 depends on 𝑥𝑖. For a few problems, we experimented with

the linear programming (LP) solver CPLEX for the lower-bounding problems rather than

the nonlinear programming (NLP) solver SNOPT. For the Denbigh problem with 𝑛𝑝 = 3

for NatBds and RPD, solving as a LP with CPLEX gave a 23-fold reduction in CPU time

compared to solving as a NLP with SNOPT. For the fed-batch control problem with 𝑛𝑝 = 7,

we observed up to a 5-fold reduction from using the LP solver rather than the NLP solver.

Concerning the local optimizer used to solve the lower-bounding problems, our software

sometimes gave faster results when formulating the lower-bounding problem as a LP and

solving with CPLEX rather than treating it as a NLP and solving with SNOPT. In ad-

dition, the lower-bounding problems are in general nonsmooth, so it is more rigorous to

solve the lower-bounding problem by linearizing and using CPLEX since SNOPT is de-

signed for problems in which the objective function and constraints are twice continuously

differentiable and neither the LP nor NLP formulations meet this qualification in general.

Among the auxiliary-ODE-based relaxation methods, the RPD relaxation method is

typically the best choice because it either gives a similar CPU time to the fastest method, or

a much faster CPU time—up to 10× faster than the slowest method for a given test problem,

holding all other optimization options fixed. In future implementations, we suggest using

RPD and only performing the flattening operations where beneficial, as described earlier.

We think this would make the CPU time of RPD the fastest among AR, RAD, and RPD

in almost all problems.

GradBV is almost always a better heuristic to select the branching variable than Abs-

DiamBV. When GradBV does not give the fastest results, they are typically within a few

percentage points of the results with AbsDiamBV. On the other hand, the absolute diameter

branch variable selection heuristic can be 200 times slower.

It is difficult to choose which bounding method among NatBds, ConvPoly1, and Conv-

Poly2 is best, because each of them gave the fastest performance for at least one problem.

When considering only RPD relaxations, those respective problems are oil shale pyrolysis,
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the reformulated fed-batch control problem for 𝑛𝑝 = 1, 3, 5, and the Denbigh problem with

𝑛𝑝 = 2, 3. However, for chemical kinetics problems ConvPoly2 tends to yield the fastest

CPU times in our experience.

There remain several interesting areas for exploration in global dynamic optimization,

especially extending to dynamic systems the remaining ideas from global optimization of

algebraic systems. Heuristics for priority-ranking the next nodes to process, variables to

branch on and perform domain reduction on, and locations for branching have been carefully

developed for branch-and-bound and its relatives [21, 194, 195] and can strongly impact the

structure of the branch-and-bound tree as well as overall CPU time requirements. Along

the same lines as the GradBV heuristic developed here, we suggest extending more of

these ideas to problems with dynamics embedded as a critical step for further improving

global dynamic optimization. Another interesting avenue for future research, specific to

optimal control problems, is to apply branch-and-lift [85] using dGDOpt for the bounds

and relaxations on the underlying ODEs. The basic idea of branch-and-lift is to solve an

optimal control problem using orthogonal basis functions, first parameterizing the controls

by one parameter and finding some set known to contain the global optimum for that

parameter, then adding the second control parameter and optimizing again with the first

parameter already known to lie in some reduced domain, and continuing to add parameters

in this way, reducing the domain before adding each additional control parameter.

Another possible avenue for improving the CPU efficiency of global dynamic optimiza-

tion is to dynamically switch between different possible bounding and relaxation methods.

The quality of both the bounds and the relaxations impact the final relaxation of the ob-

jective function. A problem can be considered sufficiently hard to solve if the number of

nodes remaining in the B&B tree exceeds some threshold. To choose which bounding and

relaxation method to use, an empirical convergence order analysis can be performed near

the best-known solution to the upper-bounding problem. If the more expensive bounding

(ConvPoly) or relaxation (RPD) methods give a significant improvement over the methods

which are cheaper per node for a node of the current diameter, then they would be enabled.
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Chapter 3

Convergence analysis for

differential-inequalities-based

bounds and relaxations of the

solutions of ODEs

Abstract

For the tractability of global optimization algorithms, the rate of convergence of convex
relaxations to the objective and constraint functions is critical. We extend results from
Bompadre and Mitsos (J. Glob. Optim. 52(1): 1–28, 2012) to characterize the convergence
rate of parametric bounds and relaxations of the solutions of ordinary differential equations
(ODEs). Such bounds and relaxations are used for global dynamic optimization and are
computed using auxiliary ODE systems that use interval arithmetic and McCormick relax-
ations. Two ODE bounding methods are shown to give first-order convergence. Two ODE
relaxation methods (Scott, Chachuat, and Barton (Optim. Control Appl. and Meth. 34(2),
145–163, 2013); Scott and Barton (J. Glob. Optim. 57:143–176, 2013)) are shown to give
second-order convergence, yet they can behave very differently from each other in practice.
As time progresses, the prefactor in the convergence-order bound tends to grow much more
slowly for one of the methods, and can even decrease over time, yielding global optimization
procedures that require significantly less CPU time.
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3.1 Introduction

Dynamic optimization or optimal control problems seek to minimize an objective function

that depends on the solution of an ordinary differential equation (ODE) or differential-

algebraic equation (DAE) system. There are numerous applications such as minimizing the

cost of a chemical process containing a plug-flow reactor or batch reactor; optimizing the

steering, braking, and acceleration of a self-driving car to conserve fuel or minimize time

to a destination while obeying safety constraints; finding the worst-case behavior of one

of these systems for safety analysis; or identifying the best-fit parameters to a dynamic

model. Many methods have been developed for local dynamic optimization, but for some

applications such as safety analysis or rejecting a model that fails to accurately predict

system behavior [188], a certificate of global optimality is essential. For some dynamic

optimization problems, such as those involving chemical reactions, local optima can be very

numerous [121, 156], rendering local optimization techniques ineffective.

This chapter provides an analysis of the convergence order of methods for solving dy-

namic optimization problems to global optimality. We address dynamic models containing

ODEs only. Local dynamic optimization with DAEs embedded is also possible [46, 110, 206],

as is rigorous deterministic global optimization with DAEs embedded [170, 173, 175, 176],

but both are outside the scope of this thesis.

Global optimization techniques can be broadly divided into stochastic and deterministic

methods. Several stochastic global dynamic optimization techniques have been proposed,

such as [14, 131, 156], but they cannot rigorously guarantee global optimality and we do

not consider them further. Deterministic global dynamic optimization techniques rely on

methods of generating pointwise-in-time lower and upper bounds on the parametric solu-

tion of the ODEs on successively refined subsets of the decision space. Some techniques

also generate convex relaxations to the parametric solution. For non-dynamic global opti-

mization problems it has been observed that convex relaxations, rather than interval bounds

alone, can significantly improve the performance of global optimization methods due to their

higher convergence order and the enhanced ability to apply domain reduction techniques.

The present contribution shows that these advantages extend to the dynamic optimization
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methods studied.

Two major approaches have been proposed for generating the necessary bounds and

relaxations for deterministic global dynamic optimization. The first is based on Taylor

models [86, 114, 116, 117, 162–164]. A convergence analysis for bounds and relaxations

generated by these methods has been recently published [33]. The second major approach

uses auxiliary ODE systems that, when solved, provide the required bounds and relaxations

[48, 171, 172, 174, 177, 186, 187]. The auxiliary-ODE approach uses interval arithmetic

[134–136] and generalized McCormick relaxations [125, 178] to obtain global information

on the variation of functions of interest on a desired domain with low computational cost.

In the present contribution, we develop convergence-order bounds for this auxiliary ODE

approach.

Convergence order in various senses is often a key measure of the performance of nu-

merical algorithms. In this thesis, by convergence order we mean the rate at which bounds

or relaxations of a function (such as a state variable, objective function, or constraint func-

tion) approach the (possibly nonconvex) function being relaxed as the size of the domain

is reduced (Definitions 3.2.17 and 3.2.19). Convergence order in this sense has long been

studied for interval analysis [4, 134, 135, 167] and has very recently been formalized for

McCormick-based [125, 178] convex relaxations [32].

The number of nodes in a branch-and-bound routine depends strongly on the conver-

gence order [62] as well as the convergence order prefactor [214]. Several estimates for the

scaling relationship have been published. Schöbel et al. [166, Theorem 2] present an upper

bound on the number of boxes considered in a branch-and-bound routine as a sum of the

boxes considered in each level of the tree, assuming that the search space is divided into 2𝑛

congruent boxes. They assume that the convergence order bound (Definition 3.2.17) for the

relaxations for the objective function holds with equality. They make very weak hypotheses,

neglecting even the curvature of the objective function, arriving at an upper bound that is

broadly applicable but potentially very conservative. At the other limit, we can assume that

boxes cluster in the vicinity of the global minimum, and that those boxes dominate the total

number of boxes, as in Du and Kearfott [62]. This “clustering” analysis can be used to show

that first-order-converging bounding methods give exponential scaling with the dimension
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Table 3.1: Scaling of number of boxes in a branch-and-bound routine (with branch-and-
bound absolute tolerance 𝜀𝐵𝐵) differs depending on which regime dominates. For most
problems, the true scaling tends to behave between these limiting cases. 𝑛 is problem
dimension and order refers to the order of Hausdorff convergence in 𝑃 of the bounding
method.

Order Boxes Uniformly Distributed [166] Boxes Near Minima Dominate [214]

1 ∝ (𝜀−𝑛
BB) ∝ (𝜀

−𝑛
2

BB )

2 ∝ (𝜀
−𝑛/2
BB ) ∝ (1)

3 ∝ (𝜀
−𝑛/3
BB ) ∝ (𝜀

𝑛
6
BB)

of the optimization problem whereas second-order-converging bounding methods give weak

scaling with problem dimension and third-order-converging bounding methods give inverse

scaling of the number of boxes in the clustering region with problem dimension. It is widely

believed that generating third-order-converging methods is NP-hard [142], so second-order

methods are the most attractive in practice. Some illustrative cases for the two analyses

are presented in Table 3.1. Refining the analysis of [62], Wechsung et al [214, Theorem 1]

showed that using branch-and-bound with a bounding method with convergence order of 2,

the exponential scaling of the number of boxes with problem dimension can be prevented

by a sufficiently small convergence order prefactor.

In this chapter, we analyze the convergence order of the differential-inequalities-based

ODE bounding method developed in [81, 172, 186] as well as the ODE relaxation method

developed in [177] and subsequently improved in [174]. The developments are organized

as follows. In Section 3.2, we give some necessary definitions and lemmas, including two

notions of convergence order. In Section 3.3, we state the problem of finding convergence-

order bounds on the bounds and relaxations of the solutions of ODEs. In Section 3.4, we

show that the methods from [81, 172, 186] produce bounds on the solutions of parametric

ODEs that converge at least linearly as the parameter space is refined (Theorem 3.4.10).

Next we use the logarithmic norm [59, 190] to show that, under appropriate conditions,

the bounds can actually become tighter as time increases—the convergence-order prefactor

can decrease over time and asymptotically approach a fixed value as time tends to infinity

(Theorem 3.4.15). In Section 3.5, we show that the methods described in [174, 177] produce

relaxations of the parametric solutions of ODEs that converge quadratically as the param-
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eter space is refined (Theorem 3.5.9). We next use the logarithmic norm to show that for

the improved method [174], the convergence-order prefactor can decrease as time progresses

and asymptotically approach a fixed value (Theorem 3.5.17). Relaxations constructed using

the improved relaxation method [174] have much more favorable dependence on time than

relaxations constructed using the older relaxation method [177]. For the improved method,

the prefactor can decrease over time, whereas for the older method, the prefactor can never

decrease once a certain level of conservatism has been introduced. In Section 3.6, we discuss

a numerical example. Concluding remarks are given in Section 3.7.

3.2 Preliminaries

In this section, some necessary definitions and previously-published lemmas and theorems

are given. Much of the content of this section comes from [32, 33] with minor extensions to

vector-valued functions. These preliminaries will be applied and extended in the subsequent

sections.

3.2.1 Basic notation and standard analysis concepts

For notation, we use lower-case italic letters for scalars and scalar-valued functions. We use

lower-case bold letters for vectors and vector-valued functions. We use capital letters for

sets and set-valued functions.

Definition 3.2.1 (Lipschitz and locally Lipschitz functions). Let (𝑋, 𝑑𝑋) and (𝑍, 𝑑𝑍) be

metric spaces. Let ̂︀𝑋 ⊂ 𝑋. A function 𝑓 : 𝑋 → 𝑍 is said to be Lipschitz on ̂︀𝑋 with

Lipschitz constant 𝑀 if

𝑑𝑍(𝑓(𝑥1), 𝑓(𝑥2)) ≤𝑀𝑑𝑋(𝑥1, 𝑥2), ∀𝑥1, 𝑥2 ∈ ̂︀𝑋,

and 𝑀 ∈ R+ is the smallest value for which the inequality holds. 𝑓 is locally Lipschitz if,

for every ̂︀𝑥 ∈ 𝑋, ∃𝜂,𝑀 ∈ R+ such that

𝑑𝑍(𝑓(𝑥1), 𝑓(𝑥2)) ≤𝑀𝑑𝑋(𝑥1, 𝑥2), ∀𝑥1, 𝑥2 ∈ 𝐵𝜂(̂︀𝑥),
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where 𝐵𝜂(̂︀𝑥) ≡ {𝑥 ∈ 𝑋 : 𝑑𝑋(𝑥, ̂︀𝑥) < 𝜂} is the open ball in 𝑋 of radius 𝜂 about ̂︀𝑥. Let

𝐼 ⊂ R and 𝑔 : 𝐼 ×𝑋 → 𝑍. The function 𝑔 is said to be Lipschitz on ̂︀𝑋, uniformly on 𝐼 if

∃𝑀 ∈ R+ such that

𝑑𝑍(𝑔(𝑡, 𝑥1), 𝑔(𝑡, 𝑥2)) ≤𝑀𝑑𝑋(𝑥1, 𝑥2), ∀(𝑡, 𝑥1, 𝑥2) ∈ 𝐼 × ̂︀𝑋 × ̂︀𝑋,

and locally Lipschitz on 𝑋, uniformly on 𝐼 if

𝑑𝑍(𝑔(𝑡, 𝑥1), 𝑔(𝑡, 𝑥2)) ≤𝑀𝑑𝑋(𝑥1, 𝑥2), ∀(𝑡, 𝑥1, 𝑥2) ∈ 𝐼 ×𝐵𝜂(̂︀𝑥)×𝐵𝜂(̂︀𝑥).

Proposition 3.2.2. Let (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌 ) be metric spaces and let 𝑓 : 𝑋 → 𝑌 . If 𝑓 is

locally Lipschitz on 𝑋 then 𝑓 is Lipschitz on every compact 𝐾 ⊂ 𝑋.

Lemma 3.2.3 (Gronwall-Bellman inequality [94, Lemma A.1]). If 𝑥 : 𝐼 → R and 𝜆 : 𝐼 → R,

and 𝜇 : 𝐼 → R are continuous functions, 𝜇 is nonnegative, and 𝑥 satisfies

𝑥(𝑡) ≤ 𝜆(𝑡) +

∫︁ 𝑡

𝑡0

𝜇(𝑠)𝑥(𝑠)d𝑠, ∀𝑡 ∈ 𝐼,

then

𝑥(𝑡) ≤ 𝜆(𝑡) +

∫︁ 𝑡

𝑡0

𝜆(𝑠)𝜇(𝑠) exp

[︂∫︁ 𝑡

𝑠
𝜇(𝜏)𝑑𝜏

]︂
d𝑠, ∀𝑡 ∈ 𝐼.

If 𝜆 ≡ 𝜆(𝑡) is a constant, then

𝑥(𝑡) ≤ 𝜆 exp

[︂∫︁ 𝑡

𝑡0

𝜇(𝜏)𝑑𝜏

]︂
.

If, in addition, 𝜇 ≡ 𝜇(𝑡) ≥ 0 is a constant, then

𝑥(𝑡) ≤ 𝜆 exp[𝜇(𝑡− 𝑡0)].

The following result is similar to Lemma 3.2.3 but with 𝜇 allowed to be a negative

constant. We will use it to show that the diameter of the state bounds can become smaller

with increasing time.
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Lemma 3.2.4. Let 𝜆0, 𝜆1 ∈ R+, 𝜇 ∈ R. Let 𝑥 : 𝐼 → R be continuous. If 𝑥 satisfies

𝑥(𝑡) ≤ 𝜆0 + 𝜆1(𝑡− 𝑡0) +

∫︁ 𝑡

𝑡0

𝜇𝑥(𝑠)d𝑠, ∀𝑡 ∈ 𝐼, (3.1)

then

⎧
⎪⎪⎨
⎪⎪⎩

𝑥(𝑡) ≤
(︁
𝜆0 +

𝜆1
𝜇

)︁
exp(𝜇(𝑡− 𝑡0))− 𝜆1

𝜇 if 𝜇 ̸= 0,

𝑥(𝑡) ≤ 𝜆0 + 𝜆1(𝑡− 𝑡0) if 𝜇 = 0,

for all 𝑡 ∈ 𝐼.

Proof. See S3.9.

The logarithmic norm [59, 190] is useful for producing tighter bounds on convergence

behavior of bounds and relaxations of parametric ODEs than would be possible without it.

Note, however, that the logarithmic norm of a matrix is not truly a norm since it can be

negative.

Definition 3.2.5 (Logarithmic norm of a matrix). Let A ∈ R𝑛×𝑛 and 𝑝 ∈ {1, 2,∞}. The

logarithmic norm of A is given by

𝜇𝑝(A) ≡ lim
ℎ→0+

‖I+ ℎA‖𝑝 − 1

ℎ
,

where ‖A‖𝑝 is the induced 𝑝-norm of A.

Proposition 3.2.6. The following formulas are equivalent to the definition of the logarith-

mic norm:

𝜇1(A) = max
𝑖=1,...,𝑛

⎛
⎝𝑎𝑖𝑖 +

∑︁

𝑘 ̸=𝑖

|𝑎𝑘𝑖|

⎞
⎠ ,

𝜇2(A) = 𝜆max = largest eigenvalue of
1

2
(AT +A),

𝜇∞(A) = max
𝑖=1,...,𝑛

⎛
⎝𝑎𝑖𝑖 +

∑︁

𝑘 ̸=𝑖

|𝑎𝑖𝑘|

⎞
⎠ .

Proof. See [59, S1.2] or [80, Theorem I.10.5].
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For 𝜇1 and 𝜇∞, these are equivalent to their regular norm counterparts, except that the

absolute values of the diagonal terms are not taken.

3.2.2 Interval analysis

Definition 3.2.7 (Interval). For a,b ∈ R𝑛, a ≤ b, define the interval [a,b] as the compact,

connected set {p ∈ R𝑛 : a ≤ p ≤ b}. It can be written 𝑃 = [p𝐿,p𝑈 ] = [𝑝𝐿1 , 𝑝
𝑈
1 ] × · · · ×

[𝑝𝐿𝑛 , 𝑝
𝑈
𝑛 ]. We will sometimes use a single real vector to denote a singleton interval, as in

p ≡ [p,p]. The set of all interval subsets of 𝐷 ⊂ R𝑛 is denoted I𝐷. In particular, IR𝑛 is

the set of all interval subsets of R𝑛.

Definition 3.2.8 (Diameter of a set). The diameter of a set 𝑃 ⊂ R𝑛 is given by:

𝑤(𝑃 )= sup
p1,p2∈𝑃

‖p1 − p2‖∞.

Occasionally, we will want to know the diameter of each component of a set. We denote by

𝑤𝑉 (𝑃 ) a vector of diameters for each component. Given 𝑃 ⊂ R𝑛, 𝑤𝑉 (𝑃 ) ∈ R𝑛, where the

𝑖th component is given by

sup
p1,p2∈𝑃

|𝑝1,𝑖 − 𝑝2,𝑖|.

Definition 3.2.9 (Hausdorff metric). For𝑋,𝑌 ⊂ R𝑛 compact and nonempty, the Hausdorff

metric is given by

𝑑𝐻(𝑋,𝑌 ) ≡ max

{︃
sup
x∈𝑋

inf
y∈𝑌

‖x− y‖∞, sup
y∈𝑌

inf
x∈𝑋

‖x− y‖∞
}︃
.

When the argument sets are both intervals, the Hausdorff metric specializes as follows:

Proposition 3.2.10 (Hausdorff metric for intervals). Let 𝑋 = [x𝐿,x𝑈 ] and 𝑌 = [y𝐿,y𝑈 ]

be two intervals in IR𝑛. Then the Hausdorff metric, 𝑑𝐻(𝑋,𝑌 ) is equivalent to:

𝑑𝐻(𝑋,𝑌 ) = max
𝑖∈{1,...,𝑛}

max
{︀
|𝑥𝐿𝑖 − 𝑦𝐿𝑖 |, |𝑥𝑈𝑖 − 𝑦𝑈𝑖 |

}︀
= max

𝑖∈{1,...,𝑛𝑥}
𝑑𝐻(𝑋𝑖, 𝑌𝑖).
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Definition 3.2.11 (Image and inclusion function). Let 𝑃 ⊂ R𝑛𝑝 be nonempty. Consider

a vector-valued continuous function f : 𝑃 → 𝑋 ⊂ R𝑛𝑥 . The image of ̂︀𝑃 ⊂ 𝑃 under f is

denoted by f( ̂︀𝑃 ). Consider also an 𝑛𝑥-dimensional interval-valued function 𝐹 : I𝑃 → IR𝑛𝑥 .

𝐹 is an inclusion function for f on I𝑃 if

f( ̂︀𝑃 ) ⊂ 𝐹 ( ̂︀𝑃 ), ∀ ̂︀𝑃 ∈ I𝑃.

Definition 3.2.12 (Interval hull). For any nonempty, bounded set 𝑃 ⊂ R𝑛, let the interval

hull of 𝑃 be denoted by �𝑃 . This is the smallest interval containing 𝑃 ; it can be written

�𝑃 ≡ [inf{𝑝1 : p ∈ 𝑃}, sup{𝑝1 : p ∈ 𝑃}]× · · · × [inf{𝑝𝑛 : p ∈ 𝑃}, sup{𝑝𝑛 : p ∈ 𝑃}].

3.2.3 Convex relaxations

Definition 3.2.13. Let f : 𝑃 → R𝑛𝑥 be a continuous function. A function u : 𝑃 → R𝑛𝑥 is

said to be a convex relaxation (or equivalently a convex underestimator) of f if u(p) ≤ f(p),

∀p ∈ 𝑃 and u is convex. A function o : 𝑃 → R𝑛𝑥 is said to be a concave relaxation (or

equivalently a concave overestimator) of f if o(p) ≥ f(p), ∀p ∈ 𝑃 and u is concave.

McCormick [125] defined a method for computing convex and concave relaxations for

a large class of functions—any function that can be decomposed into a finite sequence of

addition, multiplication, and univariate composition operations. This relaxation method

has been further formalized in [170, Chapter 2]. We next define MR𝑛, which is the space

containing the basic mathematical objects in McCormick’s relaxation technique [125] as

formalized in [170, Chapter 2].

Definition 3.2.14 ([170]). Let 𝐷 ⊂ R𝑛. A set M𝐷 is denoted

M𝐷 ≡ {(𝑍𝐵, 𝑍𝐶) ∈ I𝐷 × I𝐷 : 𝑍𝐵 ∩ 𝑍𝐶 ̸= ∅}.

Elements of MR𝑛 are denoted by script capitals 𝒵. They will also be referred to using 𝑍𝐵

and 𝑍𝐶 . To save space, for a “thin” McCormick object ([a,a], [a,a]), we will sometimes

simply use a.
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Definition 3.2.15 (Relaxation function). Let 𝑃 ⊂ R𝑛𝑝 be nonempty and let f : 𝑃 → R𝑛𝑥

be a continuous function. Suppose we can construct two functions f 𝑐𝑣, f 𝑐𝑐 : M𝑃 → R𝑛𝑥

such that for each (𝑖, ̂︀𝑃 ) ∈ {1, . . . , 𝑛𝑥} × I𝑃 :

∙ the function 𝑢𝑖 : p ↦→ 𝑓 𝑐𝑣𝑖 (( ̂︀𝑃 , [p,p])) is a convex underestimator of 𝑓𝑖 on ̂︀𝑃 ,

∙ the function 𝑜𝑖 : p ↦→ 𝑓 𝑐𝑐𝑖 (( ̂︀𝑃 , [p,p])) is a concave overestimator of 𝑓𝑖 on ̂︀𝑃 .

We call the pair of functions (f 𝑐𝑣, f 𝑐𝑐) a relaxation function for f in 𝑃 . We call the relaxation

function continuous if 𝑓 𝑐𝑣𝑖 (( ̂︀𝑃 , ·)), 𝑓 𝑐𝑐𝑖 (( ̂︀𝑃 , ·)) are continuous for all ( ̂︀𝑃 , 𝑖). To streamline

notation, we also define 𝐹𝐶 ≡ [f 𝑐𝑣, f 𝑐𝑐] (using the corresponding capital letter).

Bompadre and Mitsos [32] use the term scheme of estimators instead of relaxation

function.

Throughout the rest of the chapter, the notation 𝑣𝑐𝑣/𝑐𝑐 is used to indicate that any

associated statement holds independently for both 𝑣𝑐𝑣 and 𝑣𝑐𝑐.

Definition 3.2.16 (Inclusion function associated to a relaxation function). Let 𝑃 ⊂ R𝑛𝑝

be nonempty and let f : 𝑃 → R𝑛𝑥 be a continuous function. Let 𝐹𝐶 : M𝑃 → IR𝑛𝑥 be a

relaxation function for f in 𝑃 . The inclusion function associated to this relaxation function

is:

𝐻f : I𝑃 → IR𝑛𝑥 : ̂︀𝑃 ↦→
[︃
inf
p∈ ̂︀𝑃 𝑓 𝑐𝑣1 (( ̂︀𝑃 , [p,p])), sup

p∈ ̂︀𝑃 𝑓
𝑐𝑐
1 (( ̂︀𝑃 , [p,p]))

]︃
× · · ·

×
[︃
inf
p∈ ̂︀𝑃 𝑓 𝑐𝑣𝑛𝑥

(( ̂︀𝑃 , [p,p])), sup
p∈ ̂︀𝑃 𝑓

𝑐𝑐
𝑛𝑥
(( ̂︀𝑃 , [p,p]))

]︃
.

3.2.4 Convergence order

Definition 3.2.17 (Hausdorff convergence order and prefactor). Let 𝑃 ⊂ R𝑛𝑝 be nonempty.

Let f : 𝑃 → R𝑛𝑥 be a continuous function, and let 𝐹 be an inclusion function for f on I𝑃 .

The inclusion function 𝐹 has Hausdorff convergence in 𝑃 of order 𝛽 with prefactor 𝜏 if

there exist constants 𝜏, 𝛽 > 0 such that

𝑑𝐻

(︁
�f( ̂︀𝑃 ), 𝐹 ( ̂︀𝑃 )

)︁
≤ 𝜏𝑤

(︁
̂︀𝑃
)︁
𝛽, ∀ ̂︀𝑃 ∈ I𝑃. (3.2)
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Let 𝐼 ⊂ R and g : 𝐼 × 𝑃 → R𝑛𝑥 . Let 𝐺(𝑡, ·) be an inclusion function for g(𝑡, ·) on I𝑃 for

every 𝑡 ∈ 𝐼. If

𝑑𝐻

(︁
�g(𝑡, ̂︀𝑃 ), 𝐺(𝑡, ̂︀𝑃 )

)︁
≤ 𝜏𝑤

(︁
̂︀𝑃
)︁
𝛽, ∀(𝑡, ̂︀𝑃 ) ∈ 𝐼 × I𝑃,

then 𝐺 is said to have Hausdorff convergence in 𝑃 of order 𝛽 with prefactor 𝜏 uniformly on

𝐼.

Definition 3.2.18 ((𝛾1, 𝛾2)-convergence). For 𝒳 ∈ MR𝑛, let 𝑤(𝒳 ) ≡ 𝑤(Enc(𝒳 )) ≡

𝑤(𝑋𝐵 ∩ 𝑋𝐶). Let ℱ : M𝑋0 ⊂ MR𝑛 → MR𝑚. We say that ℱ has (𝛾1, 𝛾2)-convergence

on M𝑋0 if ∃𝜏1, 𝜏2 ∈ R+ such that

𝑤(ℱ(𝒳 )) ≤ 𝜏1𝑤(𝒳 )𝛾1 + 𝜏2𝑤(𝑋
𝐵)𝛾2 , ∀𝒳 ∈ M𝑋0. (3.3)

In S3.9.7, we show that natural McCormick extensions [125, 170, 178] have (1, 2)-

convergence.

Definition 3.2.19 (Pointwise convergence order and prefactor). Let 𝑃 ⊂ R𝑛𝑝 be nonempty

and f : 𝑃 → R𝑛𝑥 be continuous. Let 𝐹𝐶 : M𝑃 → IR𝑛𝑥 be a relaxation function for f in 𝑃 .

The relaxation function has pointwise convergence in 𝑃 of order 𝛾 with prefactor 𝜏 if there

exist constants 𝜏, 𝛾 > 0 such that

sup
p∈ ̂︀𝑃 𝑤

(︁
𝐹𝐶(( ̂︀𝑃 , [p,p]))

)︁
≤ 𝜏𝑤

(︁
̂︀𝑃
)︁
𝛾 , ∀ ̂︀𝑃 ∈ I𝑃.

Let 𝐼 ⊂ R and g : 𝐼 × 𝑃 → R𝑛𝑥 . Let 𝐺𝐶(𝑡, ( ̂︀𝑃 , ·)) be a relaxation function for g(𝑡, ·) in 𝑃

for every 𝑡 ∈ 𝐼. If

sup
p∈ ̂︀𝑃 𝑤

(︁
𝐺𝐶(𝑡, ( ̂︀𝑃 , [p,p]))

)︁
≤ 𝜏𝑤

(︁
̂︀𝑃
)︁
𝛾 , ∀(𝑡, ̂︀𝑃 ) ∈ 𝐼 × I𝑃,

then 𝐺𝐶 has pointwise convergence in 𝑃 of order 𝛾 with prefactor 𝜏 , uniformly on 𝐼.

The reader can verify that pointwise convergence in the sense of Definition 3.2.19 and

pointwise convergence in the sense of [32] are equivalent to within a factor of two. Further-
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Figure 3-1: This hypothetical empirical convergence behavior satisfies a linear convergence
bound yet still also satisfies a quadratic convergence bound for any ̂︀𝑃 ∈ I𝑃 . In this way,
convergence of a given order does not preclude convergence of higher order. On larger sets
the linear bound is stronger than the quadratic bound; on smaller sets, the quadratic bound
is stronger.

more, pointwise convergence is a special case of (𝛾1, 𝛾2)-convergence (to within a factor of

two) with 𝑋𝐶 degenerate.

In the definitions of Hausdorff and pointwise convergence orders and prefactors, the

order and prefactor may depend on the host set 𝑃 but not on the intervals ̂︀𝑃 . Also,

the definitions allow for the possibility that the convergence orders are not the highest

possible. Whereas a convergence order bound can be very weak, we will use the term

“empirical convergence behavior” to indicate the curve along which the Hausdorff distance

𝑑𝐻(�f( ̂︀𝑃 ), 𝐹 ( ̂︀𝑃 )) actually passes as the diameter of the host interval ̂︀𝑃 is decreased. See

Figure 3-1.

3.3 Problem statement

We are interested in bounds and relaxations of the solution of the following ODE.
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Problem 3.3.1. Let 𝐼 = [𝑡0, 𝑡𝑓 ] ⊂ R be the time interval of interest, 𝐷 ⊂ R𝑛𝑥 be an open,

connected set, 𝑃 ⊂ R𝑛𝑝 be the set of possible parameter values, f : 𝐼 × 𝐷 × 𝑃 → R𝑛𝑥 be

the vector field for the ODE, and x0 : 𝑃 → 𝐷 be the initial condition. We are interested in

the solution of the initial value problem (IVP) in ODEs:

ẋ(𝑡,p) = f(𝑡,x(𝑡,p),p), ∀𝑡 ∈ (𝑡0, 𝑡𝑓 ],

x(𝑡0,p) = x0(p).

(ODE)

For the ODE relaxation theory to be valid and to obtain the needed convergence order

bounds, we assume:

Assumption 3.3.2. Problem 3.3.1 satisfies the following conditions:

1. A unique solution exists on all of 𝐼 × 𝑃 and

2. x0 and f are locally Lipschitz.

We show in S3.9.3 that if x0 and f are factorable functions and all of the univariate

functions in the factored representation are locally Lipschitz, then x0 and f are locally

Lipschitz as well. With x now well-defined, we seek bounds on the convergence order

(Definitions 3.2.17 and 3.2.19) of state bounds and state relaxations of the solution of

Problem 3.3.1. State bounds and relaxations are defined below.

Definition 3.3.3 (State bounds). A function

𝑋𝐵 : 𝐼 × I𝑃 → IR𝑛𝑥 : (𝑡, ̂︀𝑃 ) ↦→ [x𝐿(𝑡, ̂︀𝑃 ),x𝑈 (𝑡, ̂︀𝑃 )]

is said to provide state bounds on ̂︀𝑃 if:

x𝐿(𝑡, ̂︀𝑃 ) ≤ x(𝑡,p) ≤ x𝑈 (𝑡, ̂︀𝑃 ), ∀(𝑡,p) ∈ 𝐼 × ̂︀𝑃 ,

where x is the solution of Problem 3.3.1.

Definition 3.3.4 (State relaxations). A function 𝑋𝐶 : 𝐼 ×M𝑃 → IR𝑛𝑥 : (𝑡, ( ̂︀𝑃 , [p,p])) ↦→

[x𝑐𝑣(𝑡, ( ̂︀𝑃 , [p,p])),x𝑐𝑐(𝑡, ( ̂︀𝑃 , [p,p]))] is said to provide state relaxations if for each 𝑡 ∈ 𝐼,

𝑋𝐶(𝑡, ·) is a relaxation function for x(𝑡, ·) in 𝑃 , where x is the solution of Problem 3.3.1.
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3.4 Bounds on the convergence order of state bounds

In this section, we will study the bounds of the solutions of parametric ODEs that are

computed using auxiliary ODE systems, which we refer to as state bounding systems. We

develop convergence-order bounds on the state bounding systems. We begin by formalizing

some of the necessary definitions and results for the natural interval extension.

Proposition 3.4.1. Let 𝑃 ⊂ R𝑛. Then (I𝑃, 𝑑𝐻) is a metric space.

Assumption 3.4.2. We have inclusion functions 𝐹 : I𝐼 × I𝐷 × I𝑃 → IR𝑛𝑥 and 𝑋0 :

I𝐼 × I𝑃 → IR𝑛𝑥 for the f and x0 of Problem 3.3.1 with Hausdorff convergence of order 1

on any interval subset of their domains. Furthermore, 𝐹 and 𝑋0 are locally Lipschitz.

The natural interval extensions of f and x0 satisfy Assumption 3.4.2, provided the

technical Assumptions 3.9.4 and 3.9.6 hold [170, Theorem 2.5.30].

Next, we examine the convergence behavior of two methods for generating state bounds

for Problem 3.3.1. We consider two different auxiliary systems of ODEs whose solutions

provide state bounds. We consider a näıve bounding system, then a bounding system due to

Harrison [81] that is based on differential inequalities [212]. Both auxiliary ODE systems can

be numerically integrated to generate state bounds. We will show that Harrison’s method

gives bounds that can be no looser than those generated using the näıve state bounding

system. Provided that Harrison’s bounding method provides valid state bounds, it follows

immediately that the näıve state bounding system provides valid state bounds. Next we

prove that the state bounds produced by the näıve state bounding system converge linearly,

and it follows that Harrison’s method also produces linearly-converging state bounds.

Definition 3.4.3 (Näıve state bounding system). We call the following ODE system the

näıve state bounding system for Problem 3.3.1. For any ̂︀𝑃 ∈ I𝑃 ,

ẋ𝐿(𝑡, ̂︀𝑃 ) = f𝐿([𝑡, 𝑡], 𝑋𝐵(𝑡, ̂︀𝑃 ), ̂︀𝑃 ), ∀𝑡 ∈ (𝑡0, 𝑡𝑓 ],

ẋ𝑈 (𝑡, ̂︀𝑃 ) = f𝑈 ([𝑡, 𝑡], 𝑋𝐵(𝑡, ̂︀𝑃 ), ̂︀𝑃 ), ∀𝑡 ∈ (𝑡0, 𝑡𝑓 ],

x𝐿(𝑡0, ̂︀𝑃 ) = x𝐿
0 (
̂︀𝑃 ),

x𝑈 (𝑡0, ̂︀𝑃 ) = x𝑈
0 ( ̂︀𝑃 ),

(3.4)
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where f𝐿/𝑈 and x
𝐿/𝑈
0 are lower and upper bounds from the natural interval extensions for

f and x0.

Harrison’s method [81] gives a computational implementation for potentially tighter

bounds on the solution of Problem 3.3.1. Before we define Harrison’s method, we need to

define the following operator.

Definition 3.4.4 (ℬ𝐿/𝑈
𝑖 ). Let ℬ𝐿

𝑖 : IR𝑛 → IR𝑛 : [v,w] ↦→ {z ∈ [v,w] : 𝑧𝑖 = 𝑣𝑖} and

ℬ𝑈
𝑖 : IR𝑛 → IR𝑛 : [v,w] ↦→ {z ∈ [v,w] : 𝑧𝑖 = 𝑤𝑖}.

Definition 3.4.5 (Harrison’s method [81], as stated in [170], Equations (3.3)). Given an

ODE as in Problem 3.3.1, Harrison’s method bounds are given by the solution of the

following ODE:

�̇�𝐿𝑖 (𝑡,
̂︀𝑃 ) = 𝑓𝐿𝑖 ([𝑡, 𝑡],ℬ𝐿

𝑖 (𝑋
𝐵(𝑡, ̂︀𝑃 )), ̂︀𝑃 ), ∀𝑡 ∈ (𝑡0, 𝑡𝑓 ],

�̇�𝑈𝑖 (𝑡, ̂︀𝑃 ) = 𝑓𝑈𝑖 ([𝑡, 𝑡],ℬ𝑈
𝑖 (𝑋

𝐵(𝑡, ̂︀𝑃 )), ̂︀𝑃 ), ∀𝑡 ∈ (𝑡0, 𝑡𝑓 ],

[𝑥𝐿𝑖 (𝑡0, ̂︀𝑃 ), 𝑥𝑈𝑖 (𝑡0, ̂︀𝑃 )] = 𝑋0,𝑖( ̂︀𝑃 ),

for 𝑖 = 1, . . . , 𝑛𝑥, where 𝑓
𝐿/𝑈
𝑖 are constructed using the natural interval extension of 𝑓𝑖 and

𝑋0,𝑖 are constructed using the natural interval extension of 𝑥0,𝑖.

If a solution to the Harrison’s method bounding system exists, then it provides valid

state bounds [170, S3.5.3].

For the following, we denote the space of absolutely continuous functions from [𝑎, 𝑏] into

R by 𝒜𝒞([𝑎, 𝑏],R). It is well-known that any 𝜑 ∈ 𝒜𝒞([𝑎, 𝑏],R) is differentiable at almost

every 𝑡 ∈ [𝑎, 𝑏]. We use the abbreviation “a.e. 𝑡 ∈ [𝑎, 𝑏]”. For any measurable 𝐼 ⊂ R we

denote the space of Lebesgue integrable functions 𝑢 : 𝐼 → R by 𝐿1(𝐼).

Theorem 3.4.6. Let 𝐷 ⊂ R𝑛𝑥 be open, 𝐼 ⊂ R, and 𝑃 ⊂ R𝑛𝑝. Let u,o, ̃︀u, ̃︀o : 𝐼×I𝐷×I𝑃 →
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R𝑛𝑥. Let ̃︀u, ̃︀o be locally Lipschitz. Let v0,w0, ̃︀v0, ̃︀w0 : I𝑃 → R𝑛𝑥. Suppose for all ̂︀𝑃 × I𝑃 ,

v̇(𝑡, ̂︀𝑃 ) = u(𝑡, [v(𝑡, ̂︀𝑃 ),w(𝑡, ̂︀𝑃 )], ̂︀𝑃 ), a.e. 𝑡 ∈ (𝑡0, 𝑡𝑓 ]

ẇ(𝑡, ̂︀𝑃 ) = o(𝑡, [v(𝑡, ̂︀𝑃 ),w(𝑡, ̂︀𝑃 )], ̂︀𝑃 ), a.e. 𝑡 ∈ (𝑡0, 𝑡𝑓 ]

v(𝑡0, ̂︀𝑃 ) = v0( ̂︀𝑃 ),

w(𝑡0, ̂︀𝑃 ) = w0( ̂︀𝑃 ),

(3.5)

̃̇︀v(𝑡, ̂︀𝑃 ) = ̃︀u(𝑡, [̃︀v(𝑡, ̂︀𝑃 ), ̃︀w(𝑡, ̂︀𝑃 )], ̂︀𝑃 ), a.e. 𝑡 ∈ (𝑡0, 𝑡𝑓 ]

̃̇︀w(𝑡, ̂︀𝑃 ) = ̃︀o(𝑡, [̃︀v(𝑡, ̂︀𝑃 ), ̃︀w(𝑡, ̂︀𝑃 )], ̂︀𝑃 ), a.e. 𝑡 ∈ (𝑡0, 𝑡𝑓 ]

̃︀v(𝑡0, ̂︀𝑃 ) = ̃︀v0( ̂︀𝑃 ),

̃︀w(𝑡0, ̂︀𝑃 ) = ̃︀w0( ̂︀𝑃 ),

(3.6)

and

̃︀v0( ̂︀𝑃 ) ≤ v0( ̂︀𝑃 ) ≤ w0( ̂︀𝑃 ) ≤ ̃︀w0( ̂︀𝑃 ). (3.7)

Suppose furthermore

̃︀u(𝑡, 𝑍, ̂︀𝑃 ) ≤ u(𝑡, 𝑍, ̂︀𝑃 ) and o(𝑡, 𝑍, ̂︀𝑃 ) ≤ ̃︀o(𝑡, 𝑍, ̂︀𝑃 ),

a.e. 𝑡 ∈ (𝑡0, 𝑡𝑓 ], ∀(𝑍, ̂︀𝑃 ) ∈ I𝐷 × I𝑃
(3.8)

and

̃︀u(𝑡, 𝑍, ̂︀𝑃 ) ≤ ̃︀u(𝑡, 𝑍 ′, ̂︀𝑃 ) and ̃︀o(𝑡, 𝑍 ′, ̂︀𝑃 ) ≤ ̃︀o(𝑡, 𝑍, ̂︀𝑃 ),

a.e. 𝑡 ∈ (𝑡0, 𝑡𝑓 ], ∀(𝑍,𝑍 ′, ̂︀𝑃 ) ∈ I𝐷 × I𝐷 × I𝑃 : 𝑍 ′ ⊂ 𝑍.

(3.9)

If solutions to (3.5) and (3.6) exist on 𝐼 then

[̃︀v(𝑡, ̂︀𝑃 ), ̃︀w(𝑡, ̂︀𝑃 )] ⊃ [v(𝑡, ̂︀𝑃 ),w(𝑡, ̂︀𝑃 )], ∀(𝑡, ̂︀𝑃 ) ∈ 𝐼 × I𝑃. (3.10)

Proof. See S3.9.2.
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Proposition 3.4.7. Suppose for any ̂︀𝑃 ∈ I𝑃 , solutions ̃︀𝑋𝐵(·, ̂︀𝑃 ), 𝑋𝐵(·, ̂︀𝑃 ) of the näıve

and Harrison state bounding systems (Definitions 3.4.3 and 3.4.5) for Problem 3.3.1 exist

on 𝐼. Then the bounds from the näıve state bounding system satisfy ̃︀𝑋𝐵(𝑡, ̂︀𝑃 ) ⊃ 𝑋𝐵(𝑡, ̂︀𝑃 ),

∀(𝑡, ̂︀𝑃 ) ∈ 𝐼 × I𝑃 .

Proof. Fix any ̂︀𝑃 ∈ I𝑃 . Let ̃︀𝑋𝐵(·, ̂︀𝑃 ) = [̃︀v(·, ̂︀𝑃 ), ̃︀w(·, ̂︀𝑃 )] be the solution of the näıve state

bounding system and 𝑋𝐵(·, ̂︀𝑃 ) = [v(·, ̂︀𝑃 ),w(·, ̂︀𝑃 )] be the solution of the Harrison’s method

bounding system. By Assumption 3.4.2, the vector fields for the näıve state bounding

systems are locally Lipschitz. Since the initial conditions for both systems are given by the

natural interval extension, (3.7) holds. Since the solutions to both systems exist, we have

for each 𝑖 and every (𝑡, 𝑍, ̂︀𝑃 ) ∈ 𝐼 × I𝐷 × I𝑃 ,

̃︀𝑢𝑖(𝑡, 𝑍, ̂︀𝑃 ) = 𝑓𝐿𝑖 ([𝑡, 𝑡], 𝑍, ̂︀𝑃 ),

𝑢𝑖(𝑡, 𝑍, ̂︀𝑃 ) = 𝑓𝐿𝑖 ([𝑡, 𝑡],ℬ𝐿
𝑖 (𝑍), ̂︀𝑃 ),

ℬ𝐿
𝑖 (𝑍) ⊂ 𝑍.

Using the above with the fact that the natural interval extension is inclusion monotonic (and

analogous facts for ̃︀𝑜𝑖, 𝑜𝑖, and ℬ𝑈
𝑖 ), it is clear that (3.8) holds. By inclusion monotonicity

of the natural interval extension, (3.9) holds. Therefore, by Theorem 3.4.6, 𝑋𝐵(𝑡, ̂︀𝑃 ) ⊂
̃︀𝑋𝐵(𝑡, ̂︀𝑃 ), ∀𝑡 ∈ 𝐼.

Corollary 3.4.8. Suppose for any ̂︀𝑃 ∈ I𝑃 , solutions ̃︀𝑋𝐵(·, ̂︀𝑃 ), 𝑋𝐵(·, ̂︀𝑃 ) of the näıve and

Harrison state bounding systems (Definitions 3.4.3 and 3.4.5) for Problem 3.3.1 exist on 𝐼.

Then the näıve state bounding method provides valid state bounds.

Proof. This follows directly from Proposition 3.4.7.

Theorem 3.4.9. Consider näıve state bounds for Problem 3.3.1. If 𝑃 ′ ⊂ 𝑃 is compact,

then they have Hausdorff convergence in 𝑃 ′ of order at least 1, uniformly on 𝐼.

Proof. Fix any compact 𝑃 ′ ⊂ 𝑃 . Fix any 𝑖 ∈ {1, . . . , 𝑛𝑥}, 𝑡 ∈ 𝐼, ̂︀𝑃 ∈ I𝑃 ′, and p ∈ ̂︀𝑃 . Write
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the integral form of the ODE for 𝑥𝑖 − 𝑥𝐿𝑖 :

𝑥𝑖(𝑡,p)− 𝑥𝐿𝑖 (𝑡,
̂︀𝑃 ) = 𝑥0,𝑖(p)− 𝑥𝐿0,𝑖(

̂︀𝑃 ) +
∫︁ 𝑡

𝑡0

𝑓𝑖(𝑠,x(𝑠,p),p)− 𝑓𝐿𝑖 (𝑠,𝑋
𝐵(𝑠, ̂︀𝑃 ), ̂︀𝑃 )d𝑠.

Use the triangle inequality:

|𝑥𝑖(𝑡,p)− 𝑥𝐿𝑖 (𝑡,
̂︀𝑃 )| ≤ |𝑥0,𝑖(p)− 𝑥𝐿0,𝑖(

̂︀𝑃 )|+
∫︁ 𝑡

𝑡0

⃒⃒
⃒𝑓𝑖(𝑠,x(𝑠,p),p)− 𝑓𝐿𝑖 (𝑠,𝑋

𝐵(𝑠, ̂︀𝑃 ), ̂︀𝑃 )
⃒⃒
⃒d𝑠.

To bound the difference in the initial conditions, we can add and subtract 𝑥0,𝑖(p
*
0), where

p*
0 ∈ argmin

p∈ ̂︀𝑃 𝑥0,𝑖(p), to obtain the bound:

|𝑥0,𝑖(p)− 𝑥𝐿0,𝑖( ̂︀𝑃 )| = |𝑥0,𝑖(p)− 𝑥0,𝑖(p
*
0) + 𝑥0,𝑖(p

*
0)− 𝑥𝐿0,𝑖(

̂︀𝑃 )|,

≤ |𝑥0,𝑖(p)− 𝑥0,𝑖(p
*
0)|+ |𝑥0,𝑖(p*

0)− 𝑥𝐿0,𝑖(
̂︀𝑃 )|,

then use the local Lipschitz continuity of the initial condition (Assumption 3.3.2.2) and

known convergence order 𝛽x0 ≥ 1 of the inclusion function for the initial condition (Assump-

tion 3.4.2). Since we have fixed a compact set 𝑃 ′, there is a Lipschitz constant 𝐿x0 ∈ R+

and Hausdorff convergence prefactor ̃︀𝑘0 ∈ R+ such that

|𝑥0,𝑖(p)− 𝑥0,𝑖(p
*
0)|+ |𝑥0,𝑖(p*

0)− 𝑥𝐿0,𝑖(
̂︀𝑃 )| ≤ 𝐿x0𝑤

(︁
̂︀𝑃
)︁
+ ̃︀𝑘0𝑤

(︁
̂︀𝑃
)︁
𝛽x0 .

Next, we bound the contribution from the vector field. Observe that

∫︁ 𝑡

𝑡0

⃒⃒
⃒𝑓𝑖(𝑠,x(𝑠,p),p)− 𝑓𝐿𝑖 (𝑠,𝑋

𝐵(𝑠, ̂︀𝑃 ), ̂︀𝑃 )
⃒⃒
⃒ d𝑠

=

∫︁ 𝑡

𝑡0

⃒⃒
⃒𝑓𝑖(𝑠,x(𝑠,p),p)− 𝑓𝑖(𝑠, z

*(𝑠),p*(𝑠)) + 𝑓𝑖(𝑠, z
*(𝑠),p*(𝑠))− 𝑓𝐿𝑖 (𝑠,𝑋

𝐵(𝑠, ̂︀𝑃 ), ̂︀𝑃 )
⃒⃒
⃒ d𝑠,

≤
∫︁ 𝑡

𝑡0

⃒⃒
𝑓𝑖(𝑠,x(𝑠,p),p)− 𝑓𝑖(𝑠, z

*(𝑠),p*(𝑠))
⃒⃒
+
⃒⃒
⃒𝑓𝑖(𝑠, z*(𝑠),p*(𝑠))− 𝑓𝐿𝑖 (𝑠,𝑋

𝐵(𝑠, ̂︀𝑃 ), ̂︀𝑃 )
⃒⃒
⃒d𝑠,

where, for any 𝑡 ∈ 𝐼, (z*(𝑡),p*(𝑡)) is a solution of min
(z,p)∈𝑋𝐵(𝑡, ̂︀𝑃 )× ̂︀𝑃 𝑓𝑖(𝑡, z,p). Then use the

local Lipschitz continuity of the vector field (Assumption 3.3.2.2) and known convergence

order 𝛽f ≥ 1 of the inclusion function for the vector field (Assumption 3.4.2) with parameters
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(𝐿f ,̃︀𝑘) ∈ R2
+:

|𝑥𝑖(𝑡,p)− 𝑥𝐿𝑖 (𝑡,
̂︀𝑃 )| ≤ 𝐿x0𝑤

(︁
̂︀𝑃
)︁
+ ̃︀𝑘0𝑤

(︁
̂︀𝑃
)︁
𝛽x0 +

∫︁ 𝑡

𝑡0

𝐿f max
{︁
𝑤
(︁
̂︀𝑃
)︁
, 𝑤
(︁
𝑋𝐵(𝑠, ̂︀𝑃 )

)︁}︁
d𝑠

+

∫︁ 𝑡

𝑡0

̃︀𝑘max
{︁
𝑤
(︁
̂︀𝑃
)︁
, 𝑤
(︁
𝑋𝐵(𝑠, ̂︀𝑃 )

)︁}︁𝛽f

d𝑠,

≤ 𝐿x0𝑤
(︁
̂︀𝑃
)︁
+ ̃︀𝑘0𝑤

(︁
̂︀𝑃
)︁
𝛽x0 +

∫︁ 𝑡

𝑡0

𝐿f

[︁
𝑤
(︁
̂︀𝑃
)︁
+ 𝑤

(︁
𝑋𝐵(𝑠, ̂︀𝑃 )

)︁]︁
d𝑠

+

∫︁ 𝑡

𝑡0

̃︀𝑘
[︁
𝑤
(︁
̂︀𝑃
)︁
+ 𝑤

(︁
𝑋𝐵(𝑠, ̂︀𝑃 )

)︁]︁𝛽f

d𝑠. (3.11)

Since 𝛽x0 ≥ 1 and 𝛽f ≥ 1, there exist 𝑘0, 𝑘 ∈ R+ such that

̃︀𝑘0𝑤
(︁
̂︀𝑃
)︁
𝛽x0 ≤ 𝑘0𝑤

(︁
̂︀𝑃
)︁

and

̃︀𝑘
[︁
𝑤
(︁
̂︀𝑃
)︁
+ 𝑤

(︁
𝑋𝐵(𝑠, ̂︀𝑃 )

)︁]︁𝛽f ≤ 𝑘
[︁
𝑤
(︁
̂︀𝑃
)︁
+ 𝑤

(︁
𝑋𝐵(𝑠, ̂︀𝑃 )

)︁]︁
.

The values 𝑘0 = ̃︀𝑘0𝑤(𝑃 ′)𝛽x0−1 and 𝑘 = ̃︀𝑘
[︀
𝑤(𝑃 ′) + 𝑤(𝑋𝐵(𝑠, 𝑃 ′))

]︀𝛽f−1
are sufficient for any

̂︀𝑃 ∈ I𝑃 ′. We use these 𝑘, 𝑘0 and compute the contributions from the time-invariant part of

the integrands in (3.11) to obtain:

|𝑥𝑖(𝑡,p)− 𝑥𝐿𝑖 (𝑡, ̂︀𝑃 )| ≤ 𝐿x0𝑤
(︁
̂︀𝑃
)︁
+ 𝑘0𝑤

(︁
̂︀𝑃
)︁
+ (𝑡− 𝑡0)(𝐿f + 𝑘)𝑤

(︁
̂︀𝑃
)︁
+

∫︁ 𝑡

𝑡0

(𝐿f + 𝑘)𝑤
(︁
𝑋𝐵(𝑠, ̂︀𝑃 )

)︁
d𝑠.

Then:

|𝑥𝑖(𝑡,p)− 𝑥𝐿𝑖 (𝑡, ̂︀𝑃 )| ≤ 𝑐1𝑤
(︁
̂︀𝑃
)︁
+ 𝑐2

∫︁ 𝑡

𝑡0

𝑤
(︁
𝑋𝐵(𝑠, ̂︀𝑃 )

)︁
d𝑠,

where 𝑐1 ≡ [𝐿x0 + 𝑘0 + (𝑡𝑓 − 𝑡0)(𝐿f + 𝑘)] and 𝑐2 ≡ (𝐿f + 𝑘). We can also obtain the same

bound for |𝑥𝑖(𝑡,p)− 𝑥𝑈𝑖 (𝑡,
̂︀𝑃 )|:

|𝑥𝑖(𝑡,p)− 𝑥𝑈𝑖 (𝑡,
̂︀𝑃 )| ≤ 𝑐1𝑤

(︁
̂︀𝑃
)︁
+ 𝑐2

∫︁ 𝑡

𝑡0

𝑤
(︁
𝑋𝐵(𝑠, ̂︀𝑃 )

)︁
d𝑠.
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Then note that

|𝑥𝑈𝑖 (𝑡, ̂︀𝑃 )− 𝑥𝐿𝑖 (𝑡,
̂︀𝑃 )| = |𝑥𝑈𝑖 (𝑡, ̂︀𝑃 )− 𝑥𝑖(𝑡,p) + 𝑥𝑖(𝑡,p)− 𝑥𝐿𝑖 (𝑡,

̂︀𝑃 )|,

≤ |𝑥𝑈𝑖 (𝑡, ̂︀𝑃 )− 𝑥𝑖(𝑡,p)|+ |𝑥𝑖(𝑡,p)− 𝑥𝐿𝑖 (𝑡, ̂︀𝑃 )|,

≤ 2𝑐1𝑤
(︁
̂︀𝑃
)︁
+ 2𝑐2

∫︁ 𝑡

𝑡0

𝑤
(︁
𝑋𝐵(𝑠, ̂︀𝑃 )

)︁
d𝑠.

Next,

𝑤
(︁
𝑋𝐵(𝑡, ̂︀𝑃 )

)︁
= max

𝑖∈{1,...,𝑛𝑥}
|𝑥𝑈𝑖 (𝑡, ̂︀𝑃 )− 𝑥𝐿𝑖 (𝑡, ̂︀𝑃 )|

≤ 2𝑐1𝑤
(︁
̂︀𝑃
)︁
+ 2𝑐2

∫︁ 𝑡

𝑡0

𝑤
(︁
𝑋𝐵(𝑠, ̂︀𝑃 )

)︁
d𝑠,

since the bound above does not depend on the particular 𝑖 ∈ {1, . . . , 𝑛𝑥}. We can apply the

Gronwall-Bellman inequality to see that

𝑤
(︁
𝑋𝐵(𝑡, ̂︀𝑃 )

)︁
≤ 2𝑐1𝑤

(︁
̂︀𝑃
)︁
exp

(︂
2𝑐2

∫︁ 𝑡

𝑡0

d𝑠

)︂
= 2𝑐1𝑤

(︁
̂︀𝑃
)︁
exp(2𝑐2(𝑡− 𝑡0)), ∀𝑡 ∈ 𝐼.

Since 𝑤(𝐼) = 𝑡𝑓 − 𝑡0 is finite,

𝑤
(︁
𝑋𝐵(𝑡, ̂︀𝑃 )

)︁
≤ 𝑐3𝑤

(︁
̂︀𝑃
)︁
, ∀𝑡 ∈ 𝐼,

where 𝑐3 ≡ 2𝑐1𝑒
2𝑐2𝑤(𝐼). Since 𝑋𝐵(𝑡, ̂︀𝑃 ) ⊃ x(𝑡, ̂︀𝑃 ) for all 𝑡 ∈ 𝐼,

𝑑𝐻(𝑋𝐵(𝑡, ̂︀𝑃 ),�x(𝑡, ̂︀𝑃 )) ≤ 𝑤
(︁
𝑋𝐵(𝑡, ̂︀𝑃 )

)︁
≤ 𝑐3𝑤

(︁
̂︀𝑃
)︁
, ∀𝑡 ∈ 𝐼.

Since ̂︀𝑃 was arbitrary, we have Hausdorff convergence in 𝑃 ′ of order 1 with prefactor

𝜏(𝑡) ≤ 𝑐3, ∀𝑡 ∈ 𝐼.

Theorem 3.4.10. If solutions exist to both the Harrison’s method and näıve state bounding

systems, then the state bounds resulting from Harrison’s method have Hausdorff convergence

in any compact 𝑃 ′ ⊂ 𝑃 of order at least 1, uniformly on 𝐼.

Proof. This follows directly from Proposition 3.4.7 and Theorem 3.4.9.
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The following proposition gives a situation in which bounds computed by Harrison’s

method can improve over time. Hypothesis (3.12) in the theorem is guaranteed to hold

with 𝛼 < 0 for a linear dynamic system ẋ = Ax where at least one diagonal element of

A is bounded above by 𝛼 < 0. Another sufficient condition to achieve (3.12) is: 𝑓𝑘 is

differentiable and 𝜕𝑓𝑘
𝜕𝑥𝑘

(𝑡, z,p) ≤ 𝛼 < 0, ∀(z,p) ∈ 𝑋𝐵(𝑡, ̂︀𝑃 ) × ̂︀𝑃 . Specific examples where

(3.12) holds with 𝛼 < 0 include mass-action chemical kinetic systems in which at least one

species can be consumed by reaction, the (nonlinear) Lorenz equations with positive values

of the parameters (𝜎, 𝛽), the Duffing equation with 𝛿 > 0 (indicating positive damping of

the harmonic oscillator), and the Lotka-Volterra model whenever 𝑥2 > 1 or 𝑥1 < 1. Strictly

decreasing functions restricted to compact subsets of their domains also obey such a bound

with 𝛼 < 0. For example, exp (−𝑥).

Proposition 3.4.11. Let 𝑋𝐵(·, ̂︀𝑃 ) be a solution to the Harrison’s method bounding system

(Definition 3.4.5) for Problem 3.3.1. Let 𝑃 ′ ⊂ 𝑃 be compact. Suppose for some (𝑡, 𝑘, ̂︀𝑃 ) ∈

𝐼 × {1, . . . , 𝑛𝑥} × I𝑃 ′, ∃𝛼𝑘 ∈ R such that

𝑓𝑘(𝑡, z
(1),p)− 𝑓𝑘(𝑡, z

(2),p) ≤ 𝛼𝑘(𝑧
(1)
𝑘 − 𝑧

(2)
𝑘 ),

∀(z(1), z(2),p) ∈ 𝑋𝐵(𝑡, ̂︀𝑃 )×𝑋𝐵(𝑡, ̂︀𝑃 )× ̂︀𝑃 : 𝑧
(1)
𝑗 = 𝑧

(2)
𝑗 ,∀𝑗 ̸= 𝑘 and 𝑧

(1)
𝑘 ≥ 𝑧

(2)
𝑘 . (3.12)

Then there exists 𝜏𝑘 ∈ R+ such that the solution satisfies

𝑑𝑤(𝑋𝐵
𝑘 )

𝑑𝑡
(𝑡, ̂︀𝑃 ) ≤ 𝛼𝑘𝑤

(︁
𝑋𝐵

𝑘 (𝑡, ̂︀𝑃 )
)︁
+ (𝐿+ 𝜏𝑘)max

{︂
max
𝑖 ̸=𝑘

𝑤
(︁
𝑋𝐵

𝑖 (𝑡, ̂︀𝑃 )
)︁
, 𝑤
(︁
̂︀𝑃
)︁}︂

,

provided 𝐿 ∈ R+ satisfies

|𝑓𝑘(𝑡, z(1),p(1))− 𝑓𝑘(𝑡, z
(2),p(2))| ≤ 𝐿max

{︂
max
𝑖 ̸=𝑘

|𝑧(1)𝑖 − 𝑧
(2)
𝑖 |, ‖p(1) − p(2)‖∞

}︂
,

∀(z(1), z(2),p(1),p(2)) ∈ (𝑋𝐵(𝑡, ̂︀𝑃 ))2 × (𝑃 ′)2.

If 𝛼𝑘 < 0, this bound can be negative. Furthermore, for the bounds given in Definition 3.4.3,

it is not possible to obtain
𝑑𝑤(𝑋𝐵

𝑘 )
𝑑𝑡 (𝑡, ̂︀𝑃 ) < 0.

Proof. Choose any compact 𝑃 ′ ⊂ 𝑃 containing the hypothesized ̂︀𝑃 ∈ I𝑃 . For this proof
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only, make the following definitions:

1. Let 𝐹𝑘,𝐿/𝑈 (𝑡, ̂︀𝑃 ) be the intervals given by the natural interval extensions

𝐹𝑘(𝑡,ℬ𝐿/𝑈
𝑘 (𝑋𝐵(𝑡, ̂︀𝑃 )), ̂︀𝑃 ),

where the notation 𝐿/𝑈 means the two definitions hold for 𝐿 and 𝑈 independently.

2. 𝑓*,𝐿𝑘 (𝑡, ̂︀𝑃 ) ≡ inf
z∈ℬ𝐿

𝑘 (𝑋𝐵(𝑡, ̂︀𝑃 )), p∈ ̂︀𝑃 𝑓𝑘(𝑡, z,p), and
3. 𝑓*,𝑈𝑘 (𝑡, ̂︀𝑃 ) ≡ sup

z∈ℬ𝑈
𝑘 (𝑋𝐵(𝑡, ̂︀𝑃 )), p∈ ̂︀𝑃 𝑓𝑘(𝑡, z,p).

Observe that

𝑑𝑤(𝑋𝐵
𝑘 )

𝑑𝑡
(𝑡, ̂︀𝑃 ) = 𝐹𝑈

𝑘,𝑈 (𝑡,
̂︀𝑃 )− 𝐹𝐿

𝑘,𝐿(𝑡,
̂︀𝑃 ),

≤
(︁
𝑓*,𝑈𝑘 (𝑡, ̂︀𝑃 ) + 𝑤

(︁
𝐹𝑘,𝑈 (𝑡, ̂︀𝑃 )

)︁)︁
−
(︁
𝑓*,𝐿𝑘 (𝑡, ̂︀𝑃 )− 𝑤

(︁
𝐹𝑘,𝐿(𝑡, ̂︀𝑃 )

)︁)︁
,

= 𝑓*,𝑈𝑘 (𝑡, ̂︀𝑃 )− 𝑓*,𝐿𝑘 (𝑡, ̂︀𝑃 ) + 𝑤
(︁
𝐹𝑘,𝑈 (𝑡, ̂︀𝑃 )

)︁
+ 𝑤

(︁
𝐹𝑘,𝐿(𝑡, ̂︀𝑃 )

)︁
,

where the first equality is by the definition of 𝑋𝐵
𝑘 (𝑡, ̂︀𝑃 ), the inequality follows from the

facts 𝑓
*,𝐿/𝑈
𝑘 (𝑡, ̂︀𝑃 ) ∈ 𝐹𝑘,𝐿/𝑈 (𝑡, ̂︀𝑃 ), and the second equality is by rearranging terms. Next,

by Assumption 3.3.2.2 and the Weierstrass theorem (e.g., [24]) we know that the infimum

and supremum of Definitions 2 and 3 above are attained. Assume they are attained at

(z*,min,p*,min) and (z*,max,p*,max), respectively. Due to the ℬ𝐿/𝑈
𝑘 in the defining optimiza-

tion problems, we have 𝑧*,min
𝑘 = 𝑥𝐿𝑘 (𝑡,

̂︀𝑃 ) and 𝑧*,max
𝑘 = 𝑥𝑈𝑘 (𝑡,

̂︀𝑃 ). Then,

𝑓*,𝑈𝑘 (𝑡, ̂︀𝑃 )− 𝑓*,𝐿𝑘 (𝑡, ̂︀𝑃 )

= 𝑓𝑘(𝑡, (𝑧
*,max
1 , . . . , 𝑥𝑈𝑘 (𝑡,

̂︀𝑃 ), . . . , 𝑧*,max
𝑛𝑥

),p*,max)

− 𝑓𝑘(𝑡, (𝑧
*,min
1 , . . . , 𝑥𝐿𝑘 (𝑡,

̂︀𝑃 ), . . . , 𝑧*,min
𝑛𝑥

),p*,min).

Note that (𝑡, (𝑧*,max
1 , . . . , 𝑥𝐿𝑘 (𝑡,

̂︀𝑃 ), . . . , 𝑧*,max
𝑛𝑥 ),p*,max) is guaranteed to be in the domain of

𝑓𝑘 because for a solution to the Harrison’s method bounding system to exist, the point

(𝑡, (𝑧1, . . . , 𝑥
𝐿
𝑘 (𝑡,

̂︀𝑃 ), . . . , 𝑧𝑛𝑥),p
*,max)
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must be in the domain of 𝑓𝑘 for any values of 𝑧𝑖, 𝑖 ̸= 𝑘 satisfying 𝑧𝑖 ∈ 𝑋𝐵
𝑖 (𝑡, ̂︀𝑃 ) for every

𝑖 ̸= 𝑘. Subtract and add

𝑓𝑘(𝑡, (𝑧
*,max
1 , . . . , 𝑥𝐿𝑘 (𝑡,

̂︀𝑃 ), . . . , 𝑧*,max
𝑛𝑥

),p*,max),

then use the 𝛼𝑘 bound from Hypothesis 1 and local Lipschitz property from Assump-

tion 3.3.2.2 to obtain:

𝑓*,𝑈𝑘 (𝑡, ̂︀𝑃 )− 𝑓*,𝐿𝑘 (𝑡, ̂︀𝑃 )

=
[︁
𝑓𝑘(𝑡, (𝑧

*,max
1 , . . . , 𝑥𝑈𝑘 (𝑡,

̂︀𝑃 ), . . . , 𝑧*,max
𝑛𝑥

),p*,max)

− 𝑓𝑘(𝑡, (𝑧
*,max
1 , . . . , 𝑥𝐿𝑘 (𝑡,

̂︀𝑃 ), . . . , 𝑧*,max
𝑛𝑥

),p*,max)
]︁

+
[︁
𝑓𝑘(𝑡, (𝑧

*,max
1 , . . . , 𝑥𝐿𝑘 (𝑡,

̂︀𝑃 ), . . . , 𝑧*,max
𝑛𝑥

),p*,max)

− 𝑓𝑘(𝑡, (𝑧
*,min
1 , . . . , 𝑥𝐿𝑘 (𝑡,

̂︀𝑃 ), . . . , 𝑧*,min
𝑛𝑥

),p*,min)
]︁
,

≤ 𝛼𝑘𝑤
(︁
𝑋𝐵

𝑘 (𝑡, ̂︀𝑃 )
)︁
+ 𝐿max

{︂
max
𝑖 ̸=𝑘

𝑤
(︁
𝑋𝐵

𝑖 (𝑡, ̂︀𝑃 )
)︁
, 𝑤
(︁
̂︀𝑃
)︁}︂

.

Finally, apply linear Hausdorff convergence of the natural interval extension:

𝑤
(︁
𝐹𝑘,𝑈 (𝑡, ̂︀𝑃 )

)︁
≤ 𝜏𝑘,𝑈 max

{︂
max
𝑖 ̸=𝑘

𝑤
(︁
𝑋𝐵

𝑖 (𝑡, ̂︀𝑃 )
)︁
, 𝑤
(︁
̂︀𝑃
)︁}︂

and

𝑤
(︁
𝐹𝑘,𝐿(𝑡, ̂︀𝑃 )

)︁
≤ 𝜏𝑘,𝐿max

{︂
max
𝑖 ̸=𝑘

𝑤
(︁
𝑋𝐵

𝑖 (𝑡, ̂︀𝑃 )
)︁
, 𝑤
(︁
̂︀𝑃
)︁}︂

to obtain:

𝑑𝑤(𝑋𝐵
𝑘 )

𝑑𝑡
(𝑡, ̂︀𝑃 ) ≤ 𝛼𝑘𝑤

(︁
𝑋𝐵

𝑘 (𝑡, ̂︀𝑃 )
)︁
+ (𝐿+ 𝜏𝑘,𝑈 + 𝜏𝑘,𝐿)max

{︂
max
𝑖 ̸=𝑘

𝑤
(︁
𝑋𝐵

𝑖 (𝑡, ̂︀𝑃 )
)︁
, 𝑤
(︁
̂︀𝑃
)︁}︂

,

= 𝛼𝑘𝑤
(︁
𝑋𝐵

𝑘 (𝑡, ̂︀𝑃 )
)︁
+ (𝐿+ 𝜏𝑘)max

{︂
max
𝑖 ̸=𝑘

𝑤
(︁
𝑋𝐵

𝑖 (𝑡, ̂︀𝑃 )
)︁
, 𝑤
(︁
̂︀𝑃
)︁}︂

,

where 𝜏𝑘 = 𝜏𝑘,𝐿 + 𝜏𝑘,𝑈 . To see that this bound can be negative, choose 𝛼𝑘 < 0 and take

𝑤(𝑋𝐵
𝑘 (𝑡, ̂︀𝑃 )) arbitrarily large.

When the bounds of Definition 3.4.3 are used,
𝑑𝑤(𝑋𝐵

𝑘 )
𝑑𝑡 (𝑡, ̂︀𝑃 ) = 𝑤(𝐹𝐵

𝑘 (𝑡,𝑋𝐵(𝑡, ̂︀𝑃 ), ̂︀𝑃 )),

which must be nonnegative because 𝐹𝐵
𝑘 (𝑡,𝑋𝐵(𝑡, ̂︀𝑃 ), ̂︀𝑃 ) is an interval.
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Definition 3.4.12. The upper right Dini derivative of 𝜓 : 𝐼 → R is defined

(𝐷+
𝑡 𝜓)(𝑡) = lim sup

ℎ→0+

𝜓(𝑡+ ℎ)− 𝜓(𝑡)

ℎ
, ∀𝑡 ∈ 𝐼.

The Dini derivative is a generalization of a true derivative, and is useful for analyzing

functions that are not necessarily differentiable.

Corollary 3.4.13. Under the hypotheses of Proposition 3.4.11, suppose 𝑋𝐵
𝑘 (𝑡0, ̂︀𝑃 ) is so

large that 𝑤(𝑋𝐵
𝑘 (𝑡0, ̂︀𝑃 )) > 𝑤(𝑋𝐵

𝑗 (𝑡0, ̂︀𝑃 )), ∀𝑗 ̸= 𝑘. Then, since we are using the ∞-norm

for the diameter, 𝐷+
𝑡 𝑤(𝑋

𝐵)(𝑡0, ̂︀𝑃 ) =
𝑑𝑤(𝑋𝐵

𝑘 )
𝑑𝑡 (𝑡0, ̂︀𝑃 ) < 0. That is, the overall diameter of

the state bounds can be decreasing at 𝑡0.

The following example gives a specific case where state bounds from Harrison’s method

satisfy
𝑑𝑤(𝑋𝐵

𝑖 )
𝑑𝑡 (𝑡′, ̂︀𝑃 ) < 0 for some 𝑖 and some 𝑡′.

Example 3.4.14. Consider the very simple chemical reaction A � B, with the ODE model

�̇�A = −𝑘f𝑥A + 𝑘r𝑥B,

�̇�B = 𝑘f𝑥A − 𝑘r𝑥B,

with 𝑋A,0 ≡ [0.8, 1.2], 𝑋B,0 ≡ [0.1, 0.1], 𝐾f ≡ [15, 20], 𝐾r ≡ [1, 5], 𝑃 ≡ 𝑘f × 𝑘r. Applying

the rules of interval arithmetic, the vector field for the bounding system (Definition 3.4.5)

for species A is:

�̇�𝐿A = min{−𝑘𝐿f 𝑥𝐿A,−𝑘𝑈f 𝑥𝐿A}+min{𝑘𝐿r 𝑥𝐿B, 𝑘𝐿r 𝑥𝑈B , 𝑘𝑈r 𝑥𝐿B, 𝑘𝑈r 𝑥𝑈B},

�̇�𝑈A = max{−𝑘𝐿f 𝑥𝑈A,−𝑘𝑈f 𝑥𝑈A}+max{𝑘𝐿r 𝑥𝐿B, 𝑘𝐿r 𝑥𝑈B , 𝑘𝑈r 𝑥𝐿B, 𝑘𝑈r 𝑥𝑈B}.

At the initial time, with the provided initial conditions and parameter ranges, we obtain

�̇�𝐿A(𝑡0) = −15.9 > −17.5 = �̇�𝑈A. This means that at the initial time, the bounds for species

A are becoming tighter, since
𝑑𝑤(𝑋𝐵

A )
𝑑𝑡 (𝑡0, ̂︀𝑃 ) = �̇�𝑈A − �̇�𝐿A = −1.6.

If we use the näıve state bounds of Definition 3.4.3, the vector field for the bounding
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system for species A are:

̃̇︀𝑥𝐿A = min{−𝑘𝐿f 𝑥𝐿A,−𝑘𝐿f 𝑥𝑈A,−𝑘𝑈f 𝑥𝐿A,−𝑘𝑈f 𝑥𝑈A}+min{𝑘𝐿r 𝑥𝐿B, 𝑘𝐿r 𝑥𝑈B , 𝑘𝑈r 𝑥𝐿B, 𝑘𝑈r 𝑥𝑈B},

̃̇︀𝑥𝑈A = max{−𝑘𝐿f 𝑥𝐿A,−𝑘𝐿f 𝑥𝑈A,−𝑘𝑈f 𝑥𝐿A,−𝑘𝑈f 𝑥𝑈A}+max{𝑘𝐿r 𝑥𝐿B, 𝑘𝐿r 𝑥𝑈B , 𝑘𝑈r 𝑥𝐿B, 𝑘𝑈r 𝑥𝑈B},

which gives ̃︀𝑥𝐿A(𝑡0) = −23.9 < −1 = ̃︀𝑥𝑈A(𝑡0), so that the bounds are becoming farther apart.

Next, we will build on Proposition 3.4.11 to give an integrated bound showing the time

dependence of 𝑤(𝑋𝐵).

Theorem 3.4.15. Let 𝑋𝐵(·, ̂︀𝑃 ) be state bounds for the solution of Problem 3.3.1. Let

𝑃 ′ ⊂ 𝑃 be compact. Suppose ∃𝛼 ∈ R𝑛𝑥, such that for all (𝑡, 𝑘, ̂︀𝑃 ) ∈ 𝐼 × {1, . . . , 𝑛𝑥} × I𝑃 ′,

𝑓𝑘(𝑡, z
(1),p)− 𝑓𝑘(𝑡, z

(2),p) ≤ 𝛼𝑘(𝑧
(1)
𝑘 − 𝑧

(2)
𝑘 ),

∀(z(1), z(2),p) ∈ {(𝑋𝐵(𝑡, ̂︀𝑃 ))2 × ̂︀𝑃 : 𝑧
(1)
𝑗 = 𝑧

(2)
𝑗 , ∀𝑗 ̸= 𝑘 and 𝑧

(1)
𝑘 ≥ 𝑧

(2)
𝑘 }.

Let the matrix S ∈ R𝑛𝑥×𝑛𝑥 have elements given by:

𝑆𝑖𝑗 =

⎧
⎪⎪⎨
⎪⎪⎩

𝛼𝑖 if 𝑖 = 𝑗,

𝐿+ 𝜏𝑖 if 𝑖 ̸= 𝑗,

where each 𝜏𝑖 ∈ R+ is the maximum of the corresponding value from Proposition 3.4.11 and

for each 𝑡 ∈ 𝐼, 𝐿 ∈ R+ satisfies

‖f(𝑡, z(1),p(1))− f(𝑡, z(2),p(2))‖∞ ≤ 𝐿‖(z(1),p(1))− (z(2),p(2))‖∞,

∀(z(1), z(2),p(1),p(2)) ∈ (𝑋𝐵(𝑡, ̂︀𝑃 ))2 × (𝑃 ′)2.

Then, for each (𝑡, ̂︀𝑃 ) ∈ 𝐼 × I𝑃 ′, the state bounds from Harrison’s method (Definition 3.4.5)

satisfy

1.

𝑑𝑤𝑉 (𝑋
𝐵)

𝑑𝑡
(𝑡, ̂︀𝑃 ) ≤ S𝑤𝑉

(︁
𝑋𝐵(𝑡, ̂︀𝑃 )

)︁
+ (𝜏 + 𝐿1)𝑤

(︁
̂︀𝑃
)︁
,
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where 1 is a vector whose components are all 1.

2. If 𝜇∞(S) ̸= 0, then

𝑤
(︁
𝑋𝐵(𝑡, ̂︀𝑃 )

)︁
≤
(︃
𝑤
(︁
𝑋𝐵(𝑡0, ̂︀𝑃 )

)︁
+

(𝐿+ ‖𝜏‖∞)𝑤( ̂︀𝑃 )
𝜇∞(S)

)︃
exp (𝜇∞(S)(𝑡− 𝑡0))

− (𝐿+ ‖𝜏‖∞)𝑤( ̂︀𝑃 )
𝜇∞(S)

.

(3.13)

3. If instead 𝜇∞(S) = 0, then

𝑤
(︁
𝑋𝐵(𝑡, ̂︀𝑃 )

)︁
≤ 𝑤

(︁
𝑋𝐵(𝑡0, ̂︀𝑃 )

)︁
+
[︁
(𝐿+ ‖𝜏‖∞)𝑤

(︁
̂︀𝑃
)︁]︁

(𝑡− 𝑡0). (3.14)

4. If 𝛼𝑖 < −(𝑛𝑥−1)|𝐿+𝜏𝑖|, ∀𝑖 then 𝜇∞(S) < 0, the state bounds can grow closer together

as time increases, and the upper bound for 𝑤(𝑋𝐵(𝑡, ̂︀𝑃 )) tends toward

−(𝐿+ ‖𝜏‖∞)𝑤( ̂︀𝑃 ))
𝜇∞(S)

as 𝑡→ +∞.

Proof. Applying Proposition 3.4.11, we have for every 𝑘,

𝑑𝑤(𝑋𝐵
𝑘 )

𝑑𝑡
(𝑡, ̂︀𝑃 ) ≤ 𝛼𝑘𝑤

(︁
𝑋𝐵

𝑘 (𝑡, ̂︀𝑃 )
)︁
+ (𝐿+ 𝜏𝑘)max

{︂
𝑤
(︁
̂︀𝑃
)︁
,max
𝑖 ̸=𝑘

𝑤
(︁
𝑋𝐵

𝑖 (𝑡, ̂︀𝑃 )
)︁}︂

.

To obtain a linear bound, we can change the max operations to sums since all arguments

of max are nonnegative:

𝑑𝑤(𝑋𝐵
𝑘 )

𝑑𝑡
(𝑡, ̂︀𝑃 ) ≤ 𝛼𝑘𝑤

(︁
𝑋𝐵

𝑘 (𝑡, ̂︀𝑃 )
)︁
+ (𝐿+ 𝜏𝑘)

⎛
⎝𝑤

(︁
̂︀𝑃
)︁
+
∑︁

𝑖 ̸=𝑘

𝑤
(︁
𝑋𝐵

𝑖 (𝑡, ̂︀𝑃 )
)︁
⎞
⎠ .
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With

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛼1 𝐿+ 𝜏1 · · · · · · 𝐿+ 𝜏1

𝐿+ 𝜏2 𝛼2 𝐿+ 𝜏2 · · · 𝐿+ 𝜏2
...

. . .
. . .

. . .
...

...
. . .

. . . 𝐿+ 𝜏𝑛𝑥−1

𝐿+ 𝜏𝑛𝑥 · · · 𝐿+ 𝜏𝑛𝑥 𝐿+ 𝜏𝑛𝑥 𝛼𝑛𝑥

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

it is clear that

𝑑𝑤𝑉 (𝑋
𝐵)

𝑑𝑡
(𝑡, ̂︀𝑃 ) ≤ S𝑤𝑉

(︁
𝑋𝐵(𝑡, ̂︀𝑃 )

)︁
+ (𝐿1+ 𝜏 )𝑤

(︁
̂︀𝑃
)︁
. (3.15)

Next we will follow a similar line of reasoning to [190, (1.8)]. We write below the Dini deriva-

tive of the potentially nondifferentiable ‖𝑤𝑉 (𝑋
𝐵(𝑡, ̂︀𝑃 ))‖∞. First we note that 𝑤𝑉 (𝑋

𝐵(·, ̂︀𝑃 ))

is continuously differentiable because 𝑋𝐵(·, ̂︀𝑃 ) is continuously differentiable, which is true

because the vector fields defining 𝑋𝐵(·, ̂︀𝑃 ) are locally Lipschitz.

𝐷+
𝑡 𝑤
(︁
𝑋𝐵(𝑡, ̂︀𝑃 )

)︁
= 𝐷+

𝑡

⃦⃦
⃦𝑤𝑉

(︁
𝑋𝐵(𝑡, ̂︀𝑃 )

)︁
⃦
∞
,

= lim sup
ℎ→0+

⃦⃦
⃦𝑤𝑉 (𝑋

𝐵(𝑡+ ℎ, ̂︀𝑃 ))
⃦⃦
⃦
∞

−
⃦⃦
⃦𝑤𝑉 (𝑋

𝐵(𝑡, ̂︀𝑃 ))
⃦⃦
⃦
∞

ℎ
,

= lim
ℎ→0+

⃦⃦
⃦𝑤𝑉 (𝑋

𝐵(𝑡, ̂︀𝑃 )) + ℎ𝑑𝑤𝑉 (𝑋𝐵)
𝑑𝑡 (𝑡, ̂︀𝑃 )

⃦⃦
⃦
∞

−
⃦⃦
⃦𝑤𝑉 (𝑋

𝐵(𝑡, ̂︀𝑃 ))
⃦⃦
⃦
∞

ℎ
,

≤ lim
ℎ→0+

⃦⃦
⃦𝑤𝑉 (𝑋

𝐵(𝑡, ̂︀𝑃 )) + ℎ
(︁
S𝑤𝑉 (𝑋

𝐵(𝑡, ̂︀𝑃 )) + (𝐿1+ 𝜏 )𝑤( ̂︀𝑃 )
)︁⃦⃦
⃦
∞

−
⃦⃦
⃦𝑤𝑉 (𝑋

𝐵(𝑡, ̂︀𝑃 ))
⃦⃦
⃦
∞

ℎ
,

≤ lim
ℎ→0+

‖I+ ℎS‖∞ − 1

ℎ

⃦⃦
⃦𝑤𝑉

(︁
𝑋𝐵(𝑡, ̂︀𝑃 )

)︁
⃦
∞

+
⃦⃦
⃦(𝐿1+ 𝜏 )𝑤

(︁
̂︀𝑃
)︁
⃦
∞
,

= 𝜇∞(S)
⃦⃦
⃦𝑤𝑉

(︁
𝑋𝐵(𝑡, ̂︀𝑃 )

)︁
⃦
∞

+ (𝐿+ ‖𝜏‖∞)𝑤
(︁
̂︀𝑃
)︁
,

= 𝜇∞(S)𝑤
(︁
𝑋𝐵(𝑡, ̂︀𝑃 )

)︁
+ (𝐿+ ‖𝜏‖∞)𝑤

(︁
̂︀𝑃
)︁
,

where the first inequality holds since

0 ≤ 𝑤𝑉

(︁
𝑋𝐵(𝑡, ̂︀𝑃 )

)︁
+ ℎ

𝑑𝑤𝑉 (𝑋
𝐵)

𝑑𝑡
(𝑡, ̂︀𝑃 ), for ℎ > 0 sufficiently small, (3.16)
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which we will justify next. Given any 𝜀 > 0, ∃𝛿 > 0 such that for all ℎ ∈ [0, 𝛿),

0 ≤ 𝑤𝑉

(︁
𝑋𝐵(𝑡+ ℎ, ̂︀𝑃 )

)︁
,

≤ 𝑤𝑉

(︁
𝑋𝐵(𝑡, ̂︀𝑃 )

)︁
+ ℎ

𝑑𝑤𝑉 (𝑋
𝐵)

𝑑𝑡
(𝑡, ̂︀𝑃 ) + 𝜀.

We used the fact that 𝑤𝑉 (𝑋
𝐵)(·, ̂︀𝑃 ) is differentiable; it need not be continuously differen-

tiable. Parenthetically, 𝑤𝑉 (𝑋
𝐵)(·, ̂︀𝑃 ) is in fact continuously differentiable since it is the

solution of an ODE with a locally Lipschitz vector field. Since we can take 𝜀 > 0 arbitrarily

small and the inequalities are weak, we have (3.16).

Looking at the bound for 𝐷+
𝑡 𝑤(𝑋

𝐵(𝑡, ̂︀𝑃 )), it is clear that if 𝜇∞(S) < 0, then for

𝑤(𝑋𝐵(𝑡, ̂︀𝑃 )) sufficiently large, the bounds grow closer together with time. By Proposi-

tion 3.2.6, if 𝛼𝑖 < −∑︀𝑘 ̸=𝑖 𝐿 + 𝜏𝑖, ∀𝑖 or equivalently if 𝛼𝑖 < −(𝑛𝑥 − 1)(𝐿 + 𝜏𝑖), ∀𝑖, then

𝜇∞(S) < 0.

For näıve state bounds, the same interval objects are used in the construction of the

vector fields for both the lower and upper bounds, so the rate of change for the lower bound

must be smaller than that for the upper bound, and the bounds can never become closer

together over time.

By integrating the bound for 𝐷+
𝑡 𝑤(𝑋

𝐵(𝑡, ̂︀𝑃 )) using [79, Theorem 11], we obtain

𝑤
(︁
𝑋𝐵(𝑡, ̂︀𝑃 )

)︁
≤ 𝑤

(︁
𝑋𝐵(𝑡0, ̂︀𝑃 )

)︁
+

∫︁ 𝑡

𝑡0

𝜇∞(S)𝑤
(︁
𝑋𝐵(𝑠, ̂︀𝑃 )

)︁
+ (𝐿+ ‖𝜏‖∞)𝑤

(︁
̂︀𝑃
)︁
d𝑠,

= 𝑤
(︁
𝑋𝐵(𝑡0, ̂︀𝑃 )

)︁
+ (𝐿+ ‖𝜏‖∞)𝑤

(︁
̂︀𝑃
)︁
(𝑡− 𝑡0) +

∫︁ 𝑡

𝑡0

𝜇∞(S)𝑤
(︁
𝑋𝐵(𝑠, ̂︀𝑃 )

)︁
d𝑠.

If 𝜇∞(S) = 0, we obtain (3.14) directly. If 𝜇∞(S) ̸= 0, we apply Lemma 3.2.4 with

𝜇 ≡ 𝜇∞(S), 𝜆0 ≡ 𝑤(𝑋𝐵(𝑡0, ̂︀𝑃 )), 𝜆1 ≡ (𝐿 + ‖𝜏‖∞)𝑤( ̂︀𝑃 ), and 𝑥 ≡ 𝑤(𝑋𝐵(·, ̂︀𝑃 )) to obtain

(3.13). If 𝜇∞(S) < 0, it is clear that the upper bound for 𝑤(𝑋𝐵(𝑡, ̂︀𝑃 )) tends toward

−(𝐿+ ‖𝜏‖∞)𝑤( ̂︀𝑃 ))
𝜇∞(S)

as 𝑡→ +∞.

See Example 3.6.1 for an application of this convergence bound and the corresponding
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convergence bound for the state relaxations for a chemical kinetics problem.

3.5 Bounds on the convergence order of state relaxations

In this section, we extend the work of Bompadre and Mitsos [32] to develop convergence-

order bounds for state relaxations. The salient results are ultimately given in Theorems 3.5.9

and 3.5.17. To reach that end, we use the Gronwall-Bellman inequality, so we require several

convergence bounds formulated in different terms than in previous literature. Specifically,

we require (1, 2)-convergence of the relaxation functions for x0 and f (Assumption 3.5.3.1).

We show in S3.9 that Assumption 3.5.3 holds for relaxation functions generated using the

natural McCormick extension [125, 170, 178].

Definition 3.5.1 (𝑑𝑀 ). Let 𝒴,𝒵 ∈ MR𝑛. Define

𝑑𝑀 (𝒴,𝒵) = max
{︀
𝑑𝐻(𝑌 𝐵, 𝑍𝐵), 𝑑𝐻(𝑌 𝐶 , 𝑍𝐶)

}︀
.

Lemma 3.5.2. MR𝑛 is a metric space when equipped with the metric 𝑑𝑀 .

Proof. See [170, S2.5.1].

Assumption 3.5.3. The relaxation functions used for f and x0 of Problem 3.3.1:

1. have (1, 2)-convergence on any interval subset of their domains and

2. are locally Lipschitz.

If f and x0 are factorable in a certain sense (Definition 3.9.3) and satisfy Assump-

tions 3.9.12 and 3.9.13, then Assumption 3.5.3 holds for the natural McCormick extensions

[125, 170, 178] of f and x0.

3.5.1 Methods for generating state relaxations

Next, we consider two different methods for generating state relaxations: relaxation-amplifying

dynamics (RAD) [177] and relaxation-preserving dynamics (RPD) [174]. Both methods

utilize an auxiliary ODE system that can be numerically integrated to generate state relax-

ations. We refer the reader to the paper on RPD [174], which compares the two methods
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from a theoretical standpoint. The full convergence analysis was deferred to the present

thesis.

The Cut operator (defined below) is a key part of the theoretical development of gen-

eralized McCormick relaxations [170, 178], and it is used throughout the computational

procedure in order to tighten the resulting relaxations and ensure that they are inclusion

monotonic.

Definition 3.5.4 (Cut function [170]). Let

Cut : MR𝑛 → MR𝑛 : 𝒵 ↦→ (𝑍𝐵, 𝑍𝐵 ∩ 𝑍𝐶).

Definition 3.5.5 (MC function). Let

̃︀� : R𝑛 × R𝑛 → IR𝑛 : (v,w) ↦→
[︂
v −max

{︂
0,

1

2
(v −w)

}︂
,w +max

{︂
0,

1

2
(v −w)

}︂]︂
,

̃︀∩ : IR𝑛 × IR𝑛 → IR𝑛 : ([x𝐿,x𝑈 ], [̂︀x𝐿, ̂︀x𝑈 ]) ↦→ [mid{x𝐿,x𝑈 , ̂︀x𝐿},mid{x𝐿,x𝑈 , ̂︀x𝑈}],

MC : R4𝑛 → MR𝑛 : (x𝐿,x𝑈 ,x𝑐𝑣,x𝑐𝑐) ↦→ (̃︀�(x𝐿,x𝑈 ), ̃︀�(x𝐿,x𝑈 )̃︀∩̃︀�(x𝑐𝑣,x𝑐𝑐)),

where mid returns the middle value of three scalars and operates on vectors componentwise.

The MC operator is similar to the Cut operator, but differs in the following way.

Let 𝑋𝐵, 𝑋𝐶 ∈ IR𝑛 such that 𝑋𝐵 ∩ 𝑋𝐶 = ∅. Let (𝑌 𝐵, 𝑌 𝐶) ≡ Cut((𝑋𝐵, 𝑋𝐶)) and

(𝑍𝐵, 𝑍𝐶) ≡ MC(x𝐿,x𝑈 ,x𝑐𝑣,x𝑐𝑐). Then 𝑌 𝐶 = ∅ but 𝑍𝐶 ̸= ∅. The MC operator is used in

the construction of relaxations of the solutions of ODEs. It ensures that valid bounds and

relaxations are constructed from input data. For example, the numerical integrator, during

iterations, could attempt to converge with values of the state bounds or relaxations such

that 𝑧𝐿𝑖 > 𝑧𝑈𝑖 or 𝑧𝑐𝑣𝑖 > 𝑧𝑐𝑐𝑖 . The MC operator ensures that such all inputs from the ODE

integrator yield valid relaxations for the vector field of the ODE for the relaxation system,

and therefore valid relaxations of the solutions of the ODE.

The following restates a definition for convex and concave relaxations of the solution of

an ODE from [177].

Definition 3.5.6 (Implementation of relaxation-amplifying dynamics (RAD) [177]). Let f ,
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x0, and x be defined as in Problem 3.3.1. Let ̂︀𝑃 ∈ I𝑃 and let ̂︀𝒫p ≡ ( ̂︀𝑃 , [p,p]). RAD for

(x𝑐𝑣,x𝑐𝑐) are given by the IVP in ODEs:

ẋ𝑐𝑣(𝑡, ̂︀𝒫p) = {f}𝑐𝑣(𝑡,MC(x𝐿(𝑡, ̂︀𝑃 ),x𝑈 (𝑡, ̂︀𝑃 ),x𝑐𝑣(𝑡, ̂︀𝒫p),x
𝑐𝑐(𝑡, ̂︀𝒫p)), ̂︀𝒫p),

ẋ𝑐𝑐(𝑡, ̂︀𝒫p) = {f}𝑐𝑐(𝑡,MC(x𝐿(𝑡, ̂︀𝑃 ),x𝑈 (𝑡, ̂︀𝑃 ),x𝑐𝑣(𝑡, ̂︀𝒫p),x
𝑐𝑐(𝑡, ̂︀𝒫p)), ̂︀𝒫p),

x𝑐𝑣(𝑡0, ̂︀𝒫p) = {x0}𝑐𝑣( ̂︀𝒫p),

x𝑐𝑐(𝑡0, ̂︀𝒫p) = {x0}𝑐𝑐( ̂︀𝒫p),

for every ̂︀𝑃 ∈ I𝑃 and every (𝑡,p) ∈ 𝐼 × ̂︀𝑃 , where {𝑔} indicates the natural McCormick

extension (Definition 3.9.11) of a function 𝑔 and 𝑋𝐵(·, ̂︀𝑃 ) are state bounds.

The RAD of Definition 3.5.6 provide state relaxations for Problem 3.3.1 [177, The-

orem 4.1]. The natural McCormick extension can be evaluated computationally using

the library libMC [130] or its successor MC++ (http://www3.imperial.ac.uk/people/b.

chachuat/research). Moreover, the constructed functions are locally Lipschitz on M𝐼 ×

M𝐷 ×M𝑃 .

Lemma 3.5.7. For any ̂︀𝑃 ∈ I𝑃 , the solution of the RAD satisfies

x𝑐𝑐(𝑡, ̂︀𝒫p) ≥ x𝐿(𝑡, ̂︀𝑃 ), x𝑐𝑣(𝑡, ̂︀𝒫p) ≤ x𝑈 (𝑡, ̂︀𝑃 ),

̃︀�(x𝐿(𝑡, ̂︀𝑃 ),x𝑈 (𝑡, ̂︀𝑃 )) = [x𝐿(𝑡, ̂︀𝑃 ),x𝑈 (𝑡, ̂︀𝑃 )],

̃︀�(x𝑐𝑣(𝑡, ̂︀𝒫p),x
𝑐𝑐(𝑡, ̂︀𝒫p)) = [x𝑐𝑣(𝑡, ̂︀𝒫p),x

𝑐𝑐(𝑡, ̂︀𝒫p)],

(3.17)

for every (𝑡,p) ∈ 𝐼 × ̂︀𝑃 .

Proof. Fix any ̂︀𝑃 ∈ I𝑃 and any (𝑡,p) ∈ 𝐼 × ̂︀𝑃 . Since the state bounds and relaxations are

both valid, we have

x(𝑡,p) ∈ 𝑋𝐵(𝑡, ̂︀𝑃 ) ∩𝑋𝐶(𝑡, ̂︀𝒫p).

If any of the claims in (3.17) fails to hold, then 𝑋𝐵(𝑡, ̂︀𝑃 )∩𝑋𝐶(𝑡, ̂︀𝒫p) = ∅, which contradicts

the assumption that a unique solution to Problem 3.3.1 exists (Assumption 3.3.2.1).
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Corollary 3.5.8. For any ̂︀𝑃 ∈ I𝑃 , the solution of the RAD satisfies

MC(x𝐿(𝑡, ̂︀𝑃 ),x𝑈 (𝑡, ̂︀𝑃 ),x𝑐𝑣(𝑡, ̂︀𝒫p),x
𝑐𝑐(𝑡, ̂︀𝒫p)),

= Cut((𝑋𝐵(𝑡, ̂︀𝑃 ), 𝑋𝐶(𝑡, ̂︀𝒫p))), ∀(𝑡,p) ∈ 𝐼 × ̂︀𝑃 .

If the relaxation functions for both the initial condition and the vector field converge

pointwise in 𝑃 with order at least 𝛾, Theorem 3.5.9, below, shows that RAD converge point-

wise in 𝑃 with order at least 𝛾 as well. Theorem 3.5.13 shows that RPD (Definition 3.5.11)

also converge in 𝑃 with order at least 𝛾.

Theorem 3.5.9. Consider the dynamic system of Problem 3.3.1. Let 𝑃 ′ ∈ I𝑃 . Assume

that state bounds 𝑋𝐵 with Hausdorff convergence in 𝑃 ′ of order 𝛽x ≥ 1, uniformly on 𝐼,

are available. Under Assumption 3.5.3, the RAD (Definition 3.5.6), if a solution exists,

have pointwise convergence in 𝑃 ′ of order 2, uniformly on 𝐼.

Proof. Choose any ̂︀𝑃 ∈ I𝑃 and any (𝑡,p) ∈ 𝐼 × ̂︀𝑃 . By Definition 3.5.6 and Corollary 3.5.8,

the difference between the convex underestimator and the concave overestimator is:

𝑥𝑐𝑐𝑖 (𝑡, ̂︀𝒫p)− 𝑥𝑐𝑣𝑖 (𝑡, ̂︀𝒫p) = 𝑥𝑐𝑐0,𝑖(
̂︀𝒫p)− 𝑥𝑐𝑣0,𝑖(

̂︀𝒫p)

+

∫︁ 𝑡

𝑡0

{𝑓𝑖}𝑐𝑐(𝑠,Cut((𝑋𝐵(𝑠, ̂︀𝑃 ), 𝑋𝐶(𝑠, ̂︀𝒫p))), ̂︀𝒫p)

− {𝑓𝑖}𝑐𝑣(𝑠,Cut((𝑋𝐵(𝑠, ̂︀𝑃 ), 𝑋𝐶(𝑠, ̂︀𝒫p))), ̂︀𝒫p) d𝑠,

for each 𝑖. Observe that without Cut, we have the inequality:

𝑥𝑐𝑐𝑖 (𝑡, ̂︀𝒫p)− 𝑥𝑐𝑣𝑖 (𝑡, ̂︀𝒫p) ≤ 𝑥𝑐𝑐0,𝑖(
̂︀𝒫p)− 𝑥𝑐𝑣0,𝑖(

̂︀𝒫p)

+

∫︁ 𝑡

𝑡0

{𝑓𝑖}𝑐𝑐(𝑠, (𝑋𝐵(𝑠, ̂︀𝑃 ), 𝑋𝐶(𝑠, ̂︀𝒫p)), ̂︀𝒫p)

− {𝑓𝑖}𝑐𝑣(𝑠, (𝑋𝐵(𝑠, ̂︀𝑃 ), 𝑋𝐶(𝑠, ̂︀𝒫p)), ̂︀𝒫p) d𝑠.

(3.18)

By Assumption 3.5.3, there exist 𝜏0,1, 𝜏0,2 > 0 such that

𝑤
(︁
𝑋𝐶

0,𝑖( ̂︀𝒫p)
)︁
≤ 𝜏0,1𝑤([p,p])+ 𝜏0,2𝑤

(︁
̂︀𝑃
)︁
2,

= 𝜏0,2𝑤
(︁
̂︀𝑃
)︁
2,

(3.19)
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where the equality holds since 𝑤([p,p]) = 0. By Assumption 3.5.3, ∃𝜏1, 𝜏2, 𝜏3 ∈ R+ such

that the integrand in (3.18) is bounded above by

𝑤
(︁
𝐹𝐶
𝑖 (𝑠,𝒳 (𝑠, ̂︀𝒫p), ̂︀𝒫p)

)︁
≤ 𝜏1max

{︁
𝑤
(︁
𝑋𝐵(𝑡, ̂︀𝑃 )

)︁
, 𝑤
(︁
̂︀𝑃
)︁}︁2

+ 𝜏2max
{︁
𝑤
(︁
𝑋𝐶(𝑠, ̂︀𝒫p)

)︁
, 𝑤([p,p])

}︁
,

≤ 𝜏3𝑤
(︁
̂︀𝑃
)︁
2 + 𝜏2𝑤

(︁
𝑋𝐶(𝑠, ̂︀𝒫p)

)︁

where 𝜏1, 𝜏2, 𝜏3 do not depend on the particular values of 𝑠, ̂︀𝑃 , or p. The second line above

holds since we have assumed state bounds 𝑋𝐵 with linear Hausdorff convergence, uniformly

on 𝐼 and 𝑤([p,p]) = 0. With these bounds on the initial condition and integrand, (3.18)

gives

𝑤
(︁
𝑋𝐶

𝑖 (𝑡, ̂︀𝒫p)
)︁
≤ 𝜏0,2𝑤

(︁
̂︀𝑃
)︁
2 +

∫︁ 𝑡

𝑡0

𝜏3𝑤
(︁
̂︀𝑃
)︁
2 + 𝜏2𝑤

(︁
𝑋𝐶(𝑠, ̂︀𝒫p)

)︁
d𝑠.

Repeating for each 𝑖 and taking the max, we obtain:

𝑤
(︁
𝑋𝐶(𝑡, ̂︀𝒫p)

)︁
≤ 𝜏0,2𝑤

(︁
̂︀𝑃
)︁
2 +

∫︁ 𝑡

𝑡0

𝜏3𝑤
(︁
̂︀𝑃
)︁
2 + 𝜏2𝑤

(︁
𝑋𝐶(𝑠, ̂︀𝒫p)

)︁
d𝑠,

The first term in the integrand above is time-independent, so we have

𝑤
(︁
𝑋𝐶(𝑡, ̂︀𝒫p)

)︁
≤ 𝜏0,2𝑤

(︁
̂︀𝑃
)︁
2 + (𝑡− 𝑡0)𝜏3𝑤

(︁
̂︀𝑃
)︁
2 +

∫︁ 𝑡

𝑡0

𝜏2𝑤
(︁
𝑋𝐶(𝑠, ̂︀𝒫p)

)︁
d𝑠,

≤ 𝜏0,2𝑤
(︁
̂︀𝑃
)︁
2 + 𝜏4𝑤

(︁
̂︀𝑃
)︁
2 +

∫︁ 𝑡

𝑡0

𝜏2𝑤
(︁
𝑋𝐶(𝑠, ̂︀𝒫p)

)︁
d𝑠,

where 𝜏4 ≡ (𝑡𝑓 − 𝑡0)𝜏3. Next, apply the Gronwall-Bellman inequality to obtain:

𝑤
(︁
𝑋𝐶(𝑡, ̂︀𝒫p)

)︁
≤
(︁
𝜏0,2𝑤

(︁
̂︀𝑃
)︁
2 + 𝜏4𝑤

(︁
̂︀𝑃
)︁
2
)︁
exp(𝜏2(𝑡− 𝑡0)),

≤ 𝜏5𝑤
(︁
̂︀𝑃
)︁
2 exp(𝜏2(𝑡𝑓 − 𝑡0)),

where 𝜏5 = 𝜏0,2 + 𝜏4. Finally, since ̂︀𝑃 ∈ I𝑃 and p ∈ ̂︀𝑃 were arbitrary, we have

sup
p∈ ̂︀𝑃 𝑤

(︁
𝑋𝐶(𝑡, ̂︀𝒫p)

)︁
≤ 𝜏6𝑤

(︁
̂︀𝑃
)︁
2, ∀(𝑡, ̂︀𝑃 ) ∈ 𝐼 × I𝑃,
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where 𝜏6 = 𝜏5 exp(𝜏2(𝑡𝑓 − 𝑡0)).

Now, we move on to the improved nonlinear ODE relaxation theory, termed RPD. Relax-

ations calculated using the original nonlinear ODE relaxation theory, RAD, were observed

to have poor empirical convergence and poor CPU times in global dynamic optimization.

The idea of “flattening” in calculating the vector field for the bounding system was mo-

tivated by Harrison’s method, but this very flattening destroyed convexity if 𝑋𝐶 ̸⊂ 𝑋𝐵,

necessitating a numerical integration scheme with event detection to ensure 𝑋𝐶 ⊂ 𝑋𝐵 at

all times.

The following definition differs from that of ℬ𝐿/𝑈
𝑖 in that the function returns a pair of

vectors rather than an interval.

Definition 3.5.10. Let ℛ𝑐𝑣
𝑖 : R𝑛 × R𝑛 → R𝑛 × R𝑛 : (v,w) ↦→ (v,w′), where 𝑤′

𝑘 = 𝑤𝑘 if

𝑘 ̸= 𝑖 and 𝑤′
𝑖 = 𝑣𝑖. Similarly, let ℛ𝑐𝑐

𝑖 : R𝑛×R𝑛 → R𝑛×R𝑛 : (v,w) ↦→ (v′,w), where 𝑣′𝑘 = 𝑣𝑘

if 𝑘 ̸= 𝑖 and 𝑣′𝑖 = 𝑤𝑖.

Definition 3.5.11 (Implementation of relaxation-preserving dynamics (RPD) [170, 174]).

Let f , x0, and x be defined as in Problem 3.3.1. Relaxation-preserving dynamics for

(x𝑐𝑣,x𝑐𝑐) are given by the IVP in ODEs:

�̇�𝑐𝑣𝑖 (𝑡, ̂︀𝒫p) =

⎧
⎪⎪⎨
⎪⎪⎩

𝑢𝑖(𝑡,𝑋
𝐵(𝑡, ̂︀𝑃 ), 𝑋𝐶(𝑡, ̂︀𝒫p), ̂︀𝒫p) if 𝑏𝑐𝑣𝑖 = 0,

max{�̇�𝐿𝑖 (𝑡, ̂︀𝑃 ), 𝑢𝑖(𝑡,𝑋𝐵(𝑡, ̂︀𝑃 ), 𝑋𝐶(𝑡, ̂︀𝒫p), ̂︀𝒫p)} if 𝑏𝑐𝑣𝑖 = 1,

�̇�𝑐𝑐𝑖 (𝑡, ̂︀𝒫p) =

⎧
⎪⎪⎨
⎪⎪⎩

𝑜𝑖(𝑡,𝑋
𝐵(𝑡, ̂︀𝑃 ), 𝑋𝐶(𝑡, ̂︀𝒫p), ̂︀𝒫p) if 𝑏𝑐𝑐𝑖 = 0,

min{�̇�𝑈𝑖 (𝑡, ̂︀𝑃 ), 𝑜𝑖(𝑡,𝑋𝐵(𝑡, ̂︀𝑃 ), 𝑋𝐶(𝑡, ̂︀𝒫p), ̂︀𝒫p)} if 𝑏𝑐𝑐𝑖 = 1,

x𝑐𝑣(𝑡0, ̂︀𝒫p) = {x0}𝑐𝑣( ̂︀𝒫p),

x𝑐𝑐(𝑡0, ̂︀𝒫p) = {x0}𝑐𝑐( ̂︀𝒫p),

∀(𝑖, 𝑡,p) ∈ {1, . . . , 𝑛𝑥} × (𝑡0, 𝑡𝑓 ]× ̂︀𝑃 ,
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where

𝑢𝑖(𝑡,𝑋
𝐵(𝑡, ̂︀𝑃 ), 𝑋𝐶(𝑡, ̂︀𝒫p), ̂︀𝒫p)

= {𝑓𝑖}𝑐𝑣(𝑡,MC(x𝐿(𝑡, ̂︀𝑃 ),x𝑈 (𝑡, ̂︀𝑃 ),ℛ𝑐𝑣
𝑖 (x𝑐𝑣(𝑡, ̂︀𝒫p),x

𝑐𝑐(𝑡, ̂︀𝒫p))), ̂︀𝒫p),

𝑜𝑖(𝑡,𝑋
𝐵(𝑡, ̂︀𝑃 ), 𝑋𝐶(𝑡, ̂︀𝒫p), ̂︀𝒫p)

= {𝑓𝑖}𝑐𝑐(𝑡,MC(x𝐿(𝑡, ̂︀𝑃 ),x𝑈 (𝑡, ̂︀𝑃 ),ℛ𝑐𝑐
𝑖 (x𝑐𝑣(𝑡, ̂︀𝒫p),x

𝑐𝑐(𝑡, ̂︀𝒫p))), ̂︀𝒫p),

∀(𝑡,p, 𝑖) ∈ (𝑡0, 𝑡𝑓 ]× ̂︀𝑃 × {1, . . . , 𝑛𝑥},

𝑋𝐵 are state bounds, 𝑏𝑐𝑣𝑖 and 𝑏𝑐𝑐𝑖 are Boolean variables satisfying

𝑏𝑐𝑣𝑖 =

⎧
⎪⎪⎨
⎪⎪⎩

0 if 𝑥𝑐𝑣𝑖 (𝑡, ̂︀𝒫p) > 𝑥𝐿𝑖 (𝑡,
̂︀𝑃 )

1 if 𝑥𝑐𝑣𝑖 (𝑡, ̂︀𝒫p) ≤ 𝑥𝐿𝑖 (𝑡,
̂︀𝑃 )
, 𝑏𝑐𝑐𝑖 =

⎧
⎪⎪⎨
⎪⎪⎩

0 if 𝑥𝑐𝑐𝑖 (𝑡, ̂︀𝒫p) < 𝑥𝑈𝑖 (𝑡,
̂︀𝑃 )

1 if 𝑥𝑐𝑐𝑖 (𝑡, ̂︀𝒫p) ≥ 𝑥𝑈𝑖 (𝑡,
̂︀𝑃 )
,

and {𝑔} indicates the natural McCormick extension (Definition 3.9.11) of a function 𝑔.

Theorem 3.5.12. Let ̂︀𝑃 ∈ I𝑃 . If a solution of the RPD of Definition 3.5.11 exists, it pro-

vides valid state relaxations. Furthermore, those relaxations satisfy x𝑐𝑣(𝑡, ̂︀𝒫p),x
𝑐𝑐(𝑡, ̂︀𝒫p) ∈

𝑋𝐵(𝑡, ̂︀𝑃 ), ∀(𝑡,p) ∈ 𝐼 × ̂︀𝑃 .

Proof. The first claim is proven in [174, Theorem 3] and [170, Chapter 7]. The second claim

is proven in [174, Lemma 1].

Theorem 3.5.13. Under the same hypotheses as Theorem 3.5.9 and the additional as-

sumption that a solution exists for RPD, RPD give pointwise convergence in any 𝑃 ′ ∈ I𝑃

of order 2, uniformly on 𝐼.
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Proof. We will show that the hypotheses of Theorem 3.4.6 hold with the definitions

̃︀v(𝑡, ̂︀𝑃 ) = x𝑐𝑣,𝑅𝐴𝐷(𝑡, ̂︀𝒫p),

̃︀w(𝑡, ̂︀𝑃 ) = x𝑐𝑐,𝑅𝐴𝐷(𝑡, ̂︀𝒫p),

v(𝑡, ̂︀𝑃 ) = x𝑐𝑣,𝑅𝑃𝐷(𝑡, ̂︀𝒫p),

w(𝑡, ̂︀𝑃 ) = x𝑐𝑐,𝑅𝑃𝐷(𝑡, ̂︀𝒫p),

∀(𝑡,p) ∈ 𝐼 × ̂︀𝑃 .

(3.20)

We have

̃︀𝑢𝑖(𝑡, 𝑍, ̂︀𝑃 ) = {𝑓𝑖}𝑐𝑣(𝑡,MC(x𝐿(𝑡, ̂︀𝑃 ),x𝑈 (𝑡, ̂︀𝑃 ), z𝐿, z𝑈 ), ̂︀𝒫p),

̃︀𝑜𝑖(𝑡, 𝑍, ̂︀𝑃 ) = {𝑓𝑖}𝑐𝑐(𝑡,MC(x𝐿(𝑡, ̂︀𝑃 ),x𝑈 (𝑡, ̂︀𝑃 ), z𝐿, z𝑈 ), ̂︀𝒫p),

𝑢𝑖(𝑡, 𝑍, ̂︀𝑃 ) ≥ {𝑓𝑖}𝑐𝑣(𝑡,MC(x𝐿(𝑡, ̂︀𝑃 ),x𝑈 (𝑡, ̂︀𝑃 ),ℛ𝑐𝑣
𝑖 (z𝐿, z𝑈 )), ̂︀𝒫p),

𝑜𝑖(𝑡, 𝑍, ̂︀𝑃 ) ≤ {𝑓𝑖}𝑐𝑐(𝑡,MC(x𝐿(𝑡, ̂︀𝑃 ),x𝑈 (𝑡, ̂︀𝑃 ),ℛ𝑐𝑐
𝑖 (z𝐿, z𝑈 )), ̂︀𝒫p),

∀(𝑡, ̂︀𝑃 ,𝑍) ∈ 𝐼 × I𝑃 × I𝐷 and every p ∈ ̂︀𝑃 ,

where the same state bounds [x𝐿,x𝑈 ], are used for both types of relaxations.

Relation (3.7) holds since the values at the initial conditions satisfy v(𝑡0, ̂︀𝑃 ) = ̃︀v(𝑡0, ̂︀𝑃 )

and w(𝑡0, ̂︀𝑃 ) = ̃︀w(𝑡0, ̂︀𝑃 ), ∀ ̂︀𝑃 ∈ I𝑃 and all p ∈ ̂︀𝑃 . Relation (3.8) holds since the natural

McCormick extension is inclusion monotonic, [ℛ𝑐𝑣
𝑖 (z𝐿, z𝑈 )] ⊂ 𝑍, ∀𝑍 ∈ I𝐷 and 𝑢𝑖(𝑡, 𝑍, ̂︀𝑃 ) ≥

̃︀𝑢𝑖(𝑡, [ℛ𝑐𝑣
𝑖 (z𝐿, z𝑈 )], ̂︀𝑃 ), ∀(𝑖, 𝑍, ̂︀𝑃 ) ∈ {1, . . . , 𝑛𝑥} × I𝐷 × I𝑃 and analogously for each ℛ𝑐𝑐

𝑖 ,

𝑜𝑖, ̃︀𝑜𝑖. Relation (3.9) holds since the natural McCormick extension is inclusion monotonic.

Therefore, we have [v(𝑡, ̂︀𝑃 )),w(𝑡, ̂︀𝑃 )] ⊂ [̃︀v(𝑡, ̂︀𝑃 ), ̃︀w(𝑡, ̂︀𝑃 )], ∀(𝑡, ̂︀𝑃 ) ∈ 𝐼 × I𝑃 with v,w, ̃︀v, ̃︀w

defined in (3.20) for any p ∈ ̂︀𝑃 . Since the relaxations from RPD are at least as strong

as those from RAD, the RPD relaxations inherit the convergence properties of the RAD

relaxations.

The following theorem gives a result for state relaxations analogous to the result that

Proposition 3.4.11 gives for state bounds.

Proposition 3.5.14. Let 𝑋𝐶 be state relaxations for Problem 3.3.1 from RPD (Defini-
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tion 3.5.11). Let 𝑃 ′ ∈ I𝑃 . Suppose the state bounds 𝑋𝐵 have linear Hausdorff convergence

in 𝑃 ′, uniformly on 𝐼. Suppose for some (𝑡, 𝑘, ̂︀𝑃 ) ∈ 𝐼 × {1, . . . , 𝑛𝑥} × I𝑃 ′,

1. ∃𝛼𝑘 ∈ R such that

𝑓𝑘(𝑡, z
(1),p)− 𝑓𝑘(𝑡, z

(2),p) ≤ 𝛼𝑘(𝑧
(1)
𝑘 − 𝑧

(2)
𝑘 ),

∀(z(1), z(2),p) ∈ {(𝑋𝐶(𝑡, ̂︀𝒫p))
2 × ̂︀𝑃 : 𝑧

(1)
𝑗 = 𝑧

(2)
𝑗 ,∀𝑗 ̸= 𝑘 and 𝑧

(1)
𝑘 ≥ 𝑧

(2)
𝑘 }.

2. 𝑋𝐶(𝑡, ̂︀𝒫p) ⊂ 𝐷,∀p ∈ ̂︀𝑃 .

Then, the state relaxations satisfy

𝑑𝑤(𝑋𝐶
𝑘 )

𝑑𝑡
(𝑡, ̂︀𝒫p) ≤ 𝛼𝑘𝑤

(︁
𝑋𝐶

𝑘 (𝑡, ̂︀𝒫p)
)︁
+ 𝜏1,𝑘𝑤

(︁
̂︀𝑃
)︁
min{2,𝛾f}

+𝜏2,𝑘 max
𝑖 ̸=𝑘

𝑤
(︁
𝑋𝐶

𝑖 (𝑡, ̂︀𝒫p)
)︁
, ∀p ∈ ̂︀𝑃 .

If 𝛼𝑘 < 0, this bound can be negative. Furthermore, for the RAD (Definition 3.5.6), it is

not possible to obtain
𝑑𝑤(𝑋𝐶

𝑘 )
𝑑𝑡 (𝑡, ̂︀𝒫p) < 0.

Proof. Choose any p ∈ ̂︀𝑃 . By Definition 3.5.11,

�̇�𝑐𝑣𝑘 (𝑡, ̂︀𝒫p) ≥ {𝑓𝑘}𝑐𝑣(𝑡,MC(x𝐿(𝑡, ̂︀𝑃 ),x𝑈 (𝑡, ̂︀𝑃 ),ℛ𝑐𝑣
𝑘 (x𝑐𝑣(𝑡, ̂︀𝒫p),x

𝑐𝑐(𝑡, ̂︀𝒫p))), ̂︀𝒫p) and

�̇�𝑐𝑐𝑘 (𝑡, ̂︀𝒫p) ≤ {𝑓𝑘}𝑐𝑐(𝑡,MC(x𝐿(𝑡, ̂︀𝑃 ),x𝑈 (𝑡, ̂︀𝑃 ),ℛ𝑐𝑣
𝑘 (x𝑐𝑣(𝑡, ̂︀𝒫p),x

𝑐𝑐(𝑡, ̂︀𝒫p))), ̂︀𝒫p).

By Theorem 3.5.12 and the fact that the state bounds are valid, the MC operator gives the

same result as the Cut operator for this system:

�̇�𝑐𝑣𝑘 (𝑡, ̂︀𝒫p) ≥ {𝑓𝑘}𝑐𝑣(𝑡,Cut((𝑋𝐵(𝑡, ̂︀𝑃 ),ℬ𝐿
𝑘 (𝑋

𝐶(𝑡, ̂︀𝒫p)))), ̂︀𝒫p) and

�̇�𝑐𝑐𝑘 (𝑡, ̂︀𝒫p) ≤ {𝑓𝑘}𝑐𝑐(𝑡,Cut((𝑋𝐵(𝑡, ̂︀𝑃 ),ℬ𝑈
𝑘 (𝑋

𝐶(𝑡, ̂︀𝒫p)))), ̂︀𝒫p).

Using the fact above and the fact that 𝑥𝑐𝑐𝑘 (𝑡, ̂︀𝒫p) ≥ 𝑥𝑐𝑣𝑘 (𝑡, ̂︀𝒫p) for all (𝑡,p) ∈ 𝐼 × ̂︀𝑃 , we
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have

𝑑𝑤(𝑋𝐶
𝑘 )

𝑑𝑡
(𝑡, ̂︀𝒫p) =

𝑑 (𝑥𝑐𝑐𝑘 − 𝑥𝑐𝑣𝑘 )

𝑑𝑡
(𝑡, ̂︀𝒫p),

≤ {𝑓𝑘}𝑐𝑐(𝑡,Cut((𝑋𝐵(𝑡, ̂︀𝑃 ),ℬ𝑈
𝑘 (𝑋

𝐶(𝑡, ̂︀𝒫p)))), ̂︀𝒫p)

− {𝑓𝑘}𝑐𝑣(𝑡,Cut((𝑋𝐵(𝑡, ̂︀𝑃 ),ℬ𝐿
𝑘 (𝑋

𝐶(𝑡, ̂︀𝒫p)))), ̂︀𝒫p).

Invoking the hypothesis that 𝑋𝐶(𝑡, ̂︀𝒫p) ⊂ 𝐷,∀p ∈ ̂︀𝑃 , we subtract and add the quantities

𝑓𝑘(𝑡, (𝑥1(𝑡,p), . . . , 𝑥
𝑐𝑐
𝑘 (𝑡, ̂︀𝒫p), . . . , 𝑥𝑛𝑥(𝑡,p)),p) and

𝑓𝑘(𝑡, (𝑥1(𝑡,p), . . . , 𝑥
𝑐𝑣
𝑘 (𝑡, ̂︀𝒫p), . . . , 𝑥𝑛𝑥(𝑡,p)),p)

to obtain

𝑑𝑤(𝑋𝐶
𝑘 )

𝑑𝑡
(𝑡, ̂︀𝒫p) =

[︀
{𝑓𝑘}𝑐𝑐(𝑡,Cut((𝑋𝐵(𝑡, ̂︀𝑃 ),ℬ𝑈

𝑘 (𝑋
𝐶(𝑡, ̂︀𝒫p)))), ̂︀𝒫p)

− 𝑓𝑘(𝑡, (𝑥1(𝑡,p), . . . , 𝑥
𝑐𝑐
𝑘 (𝑡, ̂︀𝒫p), . . . , 𝑥𝑛𝑥(𝑡,p)),p)

]︀

+
[︀
𝑓𝑘(𝑡, (𝑥1(𝑡,p), . . . , 𝑥

𝑐𝑐
𝑘 (𝑡, ̂︀𝒫p), . . . , 𝑥𝑛𝑥(𝑡,p)),p)

− 𝑓𝑘(𝑡, (𝑥1(𝑡,p), . . . , 𝑥
𝑐𝑣
𝑘 (𝑡, ̂︀𝒫p), . . . , 𝑥𝑛𝑥(𝑡,p)),p)

]︀

+
[︀
𝑓𝑘(𝑡, (𝑥1(𝑡,p), . . . , 𝑥

𝑐𝑣
𝑘 (𝑡, ̂︀𝒫p), . . . , 𝑥𝑛𝑥(𝑡,p)),p)

− {𝑓𝑘}𝑐𝑣(𝑡,Cut((𝑋𝐵(𝑡, ̂︀𝑃 ),ℬ𝐿
𝑘 (𝑋

𝐶(𝑡, ̂︀𝒫p)))), ̂︀𝒫p))
]︀
.

Using the convergence bounds from Assumption 3.5.3, the linear convergence of 𝑋𝐵, and

the assumptions on 𝛼𝑘, we have

𝑑𝑤(𝑋𝐶
𝑘 )

𝑑𝑡
(𝑡, ̂︀𝒫p) ≤ ̃︀𝜏1𝑤

(︁
̂︀𝑃
)︁
2 + ̃︀𝜏2𝑤

(︁
ℬ𝑈
𝑘 (𝑋

𝐶(𝑡, ̂︀𝒫p))
)︁

+ 𝛼𝑘𝑤
(︁
𝑋𝐶

𝑘 (𝑡, ̂︀𝒫p)
)︁

(3.21)

+ ̃︀𝜏3𝑤
(︁
̂︀𝑃
)︁
2 + ̃︀𝜏4𝑤

(︁
ℬ𝐿
𝑘 (𝑋

𝐶(𝑡, ̂︀𝒫p))
)︁
.
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Note that

𝑤
(︁
ℬ𝐿
𝑘 (𝑋

𝐶(𝑡, ̂︀𝒫p))
)︁
= 𝑤

(︁
ℬ𝑈
𝑘 (𝑋

𝐶(𝑡, ̂︀𝒫p))
)︁
= max

𝑖 ̸=𝑘
𝑤
(︁
𝑋𝐶

𝑖 (𝑡, ̂︀𝒫p)
)︁
,

so that (3.21) becomes

𝑑𝑤(𝑋𝐶
𝑘 )

𝑑𝑡
(𝑡, ̂︀𝒫p) ≤ 𝜏1,𝑘𝑤

(︁
̂︀𝑃
)︁
2 + 𝜏2,𝑘 max

𝑖 ̸=𝑘
𝑤
(︁
𝑋𝐶

𝑖 (𝑡, ̂︀𝒫p)
)︁

+ 𝛼𝑘𝑤
(︁
𝑋𝐶

𝑘 (𝑡, ̂︀𝒫p)
)︁
,

where 𝜏1,𝑘 = ̃︀𝜏1 + ̃︀𝜏3 and 𝜏2,𝑘 = ̃︀𝜏2 + ̃︀𝜏4 are sufficient.

The constant 𝛼𝑘, which can be negative, multiplies 𝑤(𝑋𝐶
𝑘 (𝑡, ̂︀𝒫p)), which must be non-

negative, so that there can be a negative contribution to the change in size of 𝑤(𝑋𝐶
𝑘 (𝑡, ̂︀𝒫p)).

If a system has 𝛼𝑘 < 0, then if 𝑥𝑐𝑣𝑘 (𝑡, ̂︀𝒫p) and 𝑥
𝑐𝑐
𝑘 (𝑡, ̂︀𝒫p) are sufficiently far apart relative to

the diameters of ̂︀𝑃 and 𝑋𝐶
𝑖 (𝑡, ̂︀𝒫p), ∀𝑖 ̸= 𝑘, the overall sum can be negative.

Remark 3.5.15. For RAD, the natural McCormick extension of 𝑓𝑘 takes the same arguments

for the convex and concave relaxations, so that
𝑑𝑤(𝑋𝐶

𝑘 )
𝑑𝑡 (𝑡, ̂︀𝒫p) ≥ 0 always.

The following example shows a simple system in which relaxations can be improving at

a particular time.

Example 3.5.16. Consider again the very simple chemical reaction A � B, with the ODE

model

�̇�A = −𝑘f𝑥A + 𝑘r𝑥B,

�̇�B = 𝑘f𝑥A − 𝑘r𝑥B.

Let 𝒳A,0 ≡ ([0.8, 1.2], [0.8, 1.2]), 𝒳B,0 ≡ ([0.1, 0.1], [0.1, 0.1]), 𝒦f ≡ ([15, 20], [17.5, 17.5]),
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𝒦r ≡ ([1, 5], [3, 3]), and 𝒫 ≡ 𝒦f ×𝒦r. Using the facts

0 ≤ 𝑥𝐿A(𝑡0), 0 ≤ 𝑥𝐿B(𝑡0), 0 ≤ 𝑥𝑐𝑣A (𝑡0), 0 ≤ 𝑥𝑐𝑣B (𝑡0),

0 ≤ 𝑘𝐿f , 0 ≤ 𝑘𝐿r , 𝑘𝑐𝑣f = 𝑘𝑐𝑐f , 𝑘𝑐𝑣r = 𝑘𝑐𝑐r ,

and applying the rules of the natural McCormick extension, the vector fields for the RPD

for species A at 𝑡0 are:

𝑢A = −min{𝑘𝑐𝑐f 𝑥𝐿A + 𝑘𝑈f 𝑥
𝑐𝑣
A − 𝑘𝑈f 𝑥

𝐿
A, 𝑘

𝑐𝑐
f 𝑥

𝑈
A + 𝑘𝐿f 𝑥

𝑐𝑣
A − 𝑘𝐿f 𝑥

𝑈
A}

+max{𝑘𝑐𝑣r 𝑥𝐿B + 𝑘𝐿r 𝑥
𝑐𝑣
B − 𝑘𝐿r 𝑥

𝐿
B, 𝑘

𝑐𝑣
r 𝑥

𝑈
B + 𝑘𝑈r 𝑥

𝑐𝑣
B − 𝑘𝑈r 𝑥

𝑈
B},

𝑜A = −max{𝑘𝑐𝑣f 𝑥𝐿A + 𝑘𝐿f 𝑥
𝑐𝑐
A − 𝑘𝐿f 𝑥

𝐿
A, 𝑘

𝑐𝑣
f 𝑥

𝑈
A + 𝑘𝑈f 𝑥

𝑐𝑐
A − 𝑘𝑈f 𝑥

𝑈
A}

+min{𝑘𝑐𝑐r 𝑥𝐿B + 𝑘𝑈r 𝑥
𝑐𝑐
B − 𝑘𝑈r 𝑥

𝐿
B, 𝑘

𝑐𝑐
r 𝑥

𝑈
B + 𝑘𝐿r 𝑥

𝑐𝑐
B − 𝑘𝐿r 𝑥

𝑈
B},

�̇�𝑐𝑣A = max{𝑢A, �̇�𝐿A},

�̇�𝑐𝑐A = min{𝑜A, �̇�𝑈A},

where we have omitted the arguments to preserve readability and (�̇�𝐿A, �̇�
𝑈
A) are computed

using Harrison’s method as in Example 3.4.14. At the initial time, with the provided initial

conditions and parameter ranges, we obtain

𝑢A = −min{17.5 · 0.8 + 20 · 0.8− 20 · 0.8, 17.5 · 1.2 + 15 · 0.8− 15 · 1.2}

+max{3 · 0.1 + 1 · 0.1− 1 · 0.1, 3 · 0.1 + 5 · 0.1− 5 · 0.1},

𝑜A = −max{17.5 · 0.8 + 15 · 1.2− 15 · 0.8, 17.5 · 1.2 + 20 · 1.2− 20 · 1.2}

+min{3 · 0.1 + 5 · 0.1− 5 · 0.1, 3 · 0.1 + 1 · 0.1− 1 · 0.1},

�̇�𝑐𝑣A = max{−13.7,−15.9} = −13.7,

�̇�𝑐𝑐A = min{−20.7,−17.5} = −20.7.

This means that at the initial time, the relaxations for species A are becoming tighter, since

𝑑𝑤(𝑋𝐶
A )

𝑑𝑡 (𝑡0, ̂︀𝒫p) = 𝑓 𝑐𝑐A,RPD − 𝑓 𝑐𝑣A,RPD = −7.
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If we use RAD, the vector fields at 𝑡0 are:

�̇�𝑐𝑣A = −min{𝑘𝑐𝑐f 𝑥𝐿A + 𝑘𝑈f 𝑥𝑐𝑐A⏟ ⏞ −𝑘
𝑈
f 𝑥

𝐿
A, 𝑘

𝑐𝑐
f 𝑥

𝑈
A + 𝑘𝐿f 𝑥𝑐𝑐A⏟ ⏞ −𝑘

𝐿
f 𝑥

𝑈
A}

+max{𝑘𝑐𝑣r 𝑥𝐿B + 𝑘𝐿r 𝑥
𝑐𝑣
B − 𝑘𝐿r 𝑥

𝐿
B, 𝑘

𝑐𝑣
r 𝑥

𝑈
B + 𝑘𝑈r 𝑥

𝑐𝑣
B − 𝑘𝑈r 𝑥

𝑈
B},

�̇�𝑐𝑐A = −max{𝑘𝑐𝑣f 𝑥𝐿A + 𝑘𝐿f 𝑥𝑐𝑣A⏟ ⏞ −𝑘
𝐿
f 𝑥

𝐿
A, 𝑘

𝑐𝑣
f 𝑥

𝑈
A + 𝑘𝑈f 𝑥𝑐𝑣A⏟ ⏞ −𝑘

𝑈
f 𝑥

𝑈
A}

+min{𝑘𝑐𝑐r 𝑥𝐿B + 𝑘𝑈r 𝑥
𝑐𝑐
B − 𝑘𝑈r 𝑥

𝐿
B, 𝑘

𝑐𝑐
r 𝑥

𝑈
B + 𝑘𝐿r 𝑥

𝑐𝑐
B − 𝑘𝐿r 𝑥

𝑈
B},

where we have again omitted the arguments and the changed terms are highlighted using

braces below. At the initial time, with the provided initial conditions and parameter ranges,

we obtain

�̇�𝑐𝑣A = −min{17.5 · 0.8 + 20 · 1.2⏟ ⏞ −20 · 0.8, 17.5 · 1.2 + 15 · 1.2⏟ ⏞ −15 · 1.2}

+max{3 · 0.1 + 1 · 0.1− 1 · 0.1, 3 · 0.1 + 5 · 0.1− 5 · 0.1},

�̇�𝑐𝑐A = −max{17.5 · 0.8 + 15 · 0.8⏟ ⏞ −15 · 0.8, 17.5 · 1.2 + 20 · 0.8⏟ ⏞ −20 · 1.2}

+min{3 · 0.1 + 5 · 0.1− 5 · 0.1, 3 · 0.1 + 1 · 0.1− 1 · 0.1},

�̇�𝑐𝑣A = −20.7,

�̇�𝑐𝑐A = −13.7.

so we have
𝑑𝑤(𝑋𝐶

A,RAD)

𝑑𝑡 (𝑡0) = 𝑓 𝑐𝑐A,RAD−𝑓 𝑐𝑣A,RAD = +7, so the relaxations are becoming farther

apart with time.

Theorem 3.5.17. Let 𝑋𝐶 be state relaxations for Problem 3.3.1 from RPD (Definition 3.5.11).

Let 𝑃 ′ ∈ I𝑃 . Let state bounds 𝑋𝐵 have Hausdorff convergence in 𝑃 ′ of order 1, uniformly

on 𝐼. Suppose ∃𝛼 ∈ R𝑛𝑥 such that for all (𝑡, 𝑘, ̂︀𝑃 ) ∈ 𝐼 × {1, . . . , 𝑛𝑥} × I𝑃 ,

𝑓𝑘(𝑡, z
(1),p)− 𝑓𝑘(𝑡, z

(2),p) ≤ 𝛼𝑘(𝑧
(1)
𝑘 − 𝑧

(2)
𝑘 ),

∀(z(1), z(2),p) ∈ {(𝑋𝐵(𝑡, ̂︀𝑃 ))2 × ̂︀𝑃 : 𝑧
(1)
𝑗 = 𝑧

(2)
𝑗 ,∀𝑗 ̸= 𝑘 and 𝑧

(1)
𝑘 ≥ 𝑧

(2)
𝑘 }
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and 𝑋𝐶(𝑡, ̂︀𝒫p) ⊂ 𝐷,∀p ∈ ̂︀𝑃 . Let the matrix S ∈ R𝑛𝑥×𝑛𝑥 have elements:

𝑆𝑖𝑗 =

⎧
⎪⎪⎨
⎪⎪⎩

𝛼𝑖 if 𝑖 = 𝑗,

𝜏2,𝑖 if 𝑖 ̸= 𝑗,

where each 𝜏2,𝑖 is given by the maximum value achieved by the corresponding quantity in

Proposition 3.5.14 over 𝐼 × I𝑃 ′. Then, the state relaxations satisfy

1.

𝑑𝑤𝑉 (𝑋
𝐶)

𝑑𝑡
(𝑡, ̂︀𝒫p) ≤ S𝑤𝑉

(︁
𝑋𝐶(𝑡, ̂︀𝒫p)

)︁
+ 𝜏 1𝑤

(︁
̂︀𝑃
)︁
2,

∀(𝑡, ̂︀𝑃 ) ∈ 𝐼 × I𝑃 ′ and each p ∈ ̂︀𝑃 .

2. If 𝜇∞(S) ̸= 0, then

𝑤
(︁
𝑋𝐶(𝑡, ̂︀𝒫p)

)︁
≤
(︃
𝑤
(︁
𝑋𝐶(𝑡0, ̂︀𝒫p)

)︁
+

‖𝜏 1‖∞𝑤( ̂︀𝑃 )2
𝜇∞(S)

)︃
exp(𝜇∞(S)(𝑡− 𝑡0))

− ‖𝜏 1‖∞𝑤( ̂︀𝑃 )2
𝜇∞(S)

,

∀(𝑡, ̂︀𝑃 ) ∈ 𝐼 × I𝑃 ′ and each p ∈ ̂︀𝑃 . (3.22)

3. If instead 𝜇∞(S) = 0 then

𝑤
(︁
𝑋𝐶(𝑡, ̂︀𝒫p)

)︁
≤ 𝑤

(︁
𝑋𝐶(𝑡, ̂︀𝒫p)

)︁
+
[︁
‖𝜏 1‖∞𝑤

(︁
̂︀𝑃
)︁
2
]︁
(𝑡− 𝑡0),

∀(𝑡, ̂︀𝑃 ) ∈ 𝐼 × I𝑃 ′ and each p ∈ ̂︀𝑃 . (3.23)

4. If 𝛼𝑖 < −(𝑛𝑥 − 1)|𝜏2,𝑖| ∀𝑖, then 𝜇∞(S) < 0, the relaxations grow closer together as

time increases, and the upper bound for 𝑤(𝑋𝐶(𝑡, ̂︀𝒫p)) tends toward

−‖𝜏 1‖∞𝑤( ̂︀𝑃 )2
𝜇∞(S)

as 𝑡→ +∞.
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For the RAD (Definition 3.5.6), the relaxations can never become closer together as time

increases.

Proof. For every (𝑡, 𝑘, ̂︀𝑃 ) and every p ∈ ̂︀𝑃 we apply Proposition 3.5.14 to obtain

𝑑𝑤(𝑋𝐶
𝑘 )

𝑑𝑡
(𝑡, ̂︀𝒫p) ≤ 𝛼𝑘𝑤

(︁
𝑋𝐶

𝑘 (𝑡, ̂︀𝒫p)
)︁
+ 𝜏1,𝑘𝑤

(︁
̂︀𝑃
)︁
2 + 𝜏2,𝑘 max

𝑖 ̸=𝑘
𝑤
(︁
𝑋𝐶

𝑖 (𝑡, ̂︀𝒫p)
)︁
.

To obtain a linear bound, we can change from max𝑖 ̸=𝑘 to
∑︀

𝑖 ̸=𝑘 since all arguments of max

are nonnegative:

𝑑𝑤(𝑋𝐶
𝑘 )

𝑑𝑡
(𝑡, ̂︀𝒫p) ≤ 𝛼𝑘𝑤

(︁
𝑋𝐶

𝑘 (𝑡, ̂︀𝒫p)
)︁
+ 𝜏1,𝑘𝑤

(︁
̂︀𝑃
)︁
2 + 𝜏2,𝑘

∑︁

𝑖 ̸=𝑘

𝑤
(︁
𝑋𝐶

𝑖 (𝑡, ̂︀𝒫p)
)︁
.

With

S ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛼1 𝜏2,1 · · · · · · 𝜏2,1

𝜏2,2 𝛼2 𝜏2,2 · · · 𝜏2,2
...

. . .
. . .

. . .
...

...
. . .

. . . 𝜏2,𝑛𝑥−1

𝜏2,𝑛𝑥 · · · 𝜏2,𝑛𝑥 𝜏2,𝑛𝑥 𝛼𝑛𝑥

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

it is clear that

𝑑𝑤𝑉 (𝑋
𝐶)

𝑑𝑡
(𝑡, ̂︀𝒫p) ≤ S𝑤𝑉

(︁
𝑋𝐶(𝑡, ̂︀𝒫p)

)︁
+ 𝜏 1𝑤

(︁
̂︀𝑃
)︁
2. (3.24)

Next we will follow a similar line of reasoning to the proof of Theorem 3.4.15. We write the
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Dini derivative of the potentially nondifferentiable ‖𝑤𝑉 (𝑋
𝐶(𝑡, ̂︀𝒫p))‖∞ as

𝐷+
𝑡 𝑤
(︁
𝑋𝐶(𝑡, ̂︀𝒫p)

)︁
= 𝐷+

𝑡

⃦⃦
⃦𝑤𝑉

(︁
𝑋𝐶(𝑡, ̂︀𝒫p)

)︁
⃦
∞
,

= lim sup
ℎ→0+

⃦⃦
⃦𝑤𝑉 (𝑋

𝐶(𝑡+ ℎ, ̂︀𝒫p))
⃦⃦
⃦
∞

−
⃦⃦
⃦𝑤𝑉 (𝑋

𝐶(𝑡, ̂︀𝒫p))
⃦⃦
⃦
∞

ℎ
,

= lim sup
ℎ→0+

⃦⃦
⃦𝑤𝑉 (𝑋

𝐶(𝑡, ̂︀𝒫p)) + ℎ𝑑𝑤𝑉 (𝑋𝐶)
𝑑𝑡 (𝑡, ̂︀𝒫p)

⃦⃦
⃦
∞

−
⃦⃦
⃦𝑤𝑉 (𝑋

𝐶(𝑡, ̂︀𝒫p))
⃦⃦
⃦
∞

ℎ
,

≤ lim
ℎ→0+

⃦⃦
⃦𝑤𝑉 (𝑋

𝐶(𝑡, ̂︀𝒫p)) + ℎ
(︁
S𝑤𝑉 (𝑋

𝐶(𝑡, ̂︀𝒫p)) + 𝜏 1𝑤( ̂︀𝑃 )2
)︁⃦⃦
⃦
∞

−
⃦⃦
⃦𝑤𝑉 (𝑋

𝐶(𝑡, ̂︀𝒫p))
⃦⃦
⃦
∞

ℎ
,

≤ lim
ℎ→0+

‖I+ ℎS‖∞ − 1

ℎ

⃦⃦
⃦𝑤𝑉

(︁
𝑋𝐶(𝑡, ̂︀𝒫p)

)︁
⃦
∞

+
⃦⃦
⃦𝜏 1𝑤

(︁
̂︀𝑃
)︁
2
⃦⃦
⃦
∞
,

= 𝜇∞(S)
⃦⃦
⃦𝑤𝑉

(︁
𝑋𝐶(𝑡, ̂︀𝒫p)

)︁
⃦
∞

+ ‖𝜏 1‖∞𝑤
(︁
̂︀𝑃
)︁
2,

= 𝜇∞(S)𝑤
(︁
𝑋𝐶(𝑡, ̂︀𝒫p)

)︁
+ ‖𝜏 1‖∞𝑤

(︁
̂︀𝑃
)︁
2,

where the first inequality holds since

0 ≤ 𝑤𝑉

(︁
𝑋𝐶(𝑡, ̂︀𝒫p)

)︁
+ ℎ

𝑑𝑤𝑉 (𝑋
𝐶)

𝑑𝑡
(𝑡, ̂︀𝒫p), for ℎ > 0 sufficiently small, (3.25)

which we will justify next. Given any 𝜀 > 0, ∃𝛿 > 0 such that for all ℎ ∈ [0, 𝛿),

0 ≤ 𝑤𝑉

(︁
𝑋𝐶(𝑡+ ℎ, ̂︀𝒫p)

)︁
,

≤ 𝑤𝑉

(︁
𝑋𝐶(𝑡, ̂︀𝒫p)

)︁
+ ℎ

𝑑𝑤𝑉 (𝑋
𝐶)

𝑑𝑡
(𝑡, ̂︀𝒫p) + 𝜀.

Since we can take 𝜀 > 0 arbitrarily small and the inequalities are weak, we have (3.25).

By the bound for 𝐷+
𝑡 𝑤(𝑋

𝐶(𝑡, ̂︀𝒫p)), if 𝜇∞(S) < 0 and 𝑤(𝑋𝐶(𝑡, ̂︀𝒫p)) is sufficiently large,

then 𝐷+
𝑡 𝑤(𝑋

𝐶(𝑡, ̂︀𝒫p)) < 0 so that the relaxations are becoming closer together with time.

By Proposition 3.2.6, if 𝛼𝑖 < −∑︀𝑘 ̸=𝑖 |𝜏2,𝑖|, ∀𝑖 or equivalently if 𝛼𝑖 < −(𝑛𝑥 − 1)|𝜏2,𝑖|, ∀𝑖,

then 𝜇∞(S) < 0.
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By integrating the bound for 𝐷+
𝑡 𝑤(𝑋

𝐶(𝑡, ̂︀𝒫p)) using [79, Theorem 11],

𝑤
(︁
𝑋𝐶(𝑡, ̂︀𝒫p)

)︁
≤ 𝑤

(︁
𝑋𝐶(𝑡0, ̂︀𝒫p)

)︁
+

∫︁ 𝑡

𝑡0

𝜇∞(S)𝑤
(︁
𝑋𝐶(𝑠, ̂︀𝒫p)

)︁

+ ‖𝜏 1‖∞𝑤
(︁
̂︀𝑃
)︁
2d𝑠,

= 𝑤
(︁
𝑋𝐶(𝑡0, ̂︀𝒫p)

)︁
+ ‖𝜏 1‖∞𝑤

(︁
̂︀𝑃
)︁
2(𝑡− 𝑡0)

+

∫︁ 𝑡

𝑡0

𝜇∞(S)𝑤
(︁
𝑋𝐶(𝑠, ̂︀𝒫p)

)︁
d𝑠.

If 𝜇∞(S) = 0, we obtain (3.23) directly. If 𝜇∞(S) ̸= 0, we apply Lemma 3.2.4 with

𝜇 ≡ 𝜇∞(S), 𝜆0 ≡ 𝑤(𝑋𝐶(𝑡0, ̂︀𝒫p)), 𝜆1 ≡ ‖𝜏 1‖∞𝑤( ̂︀𝑃 )2, and 𝑥 ≡ 𝑤(𝑋𝐶(·, ̂︀𝒫p)) to obtain

(3.22). If 𝜇∞(S) < 0, it is clear that the upper bound for 𝑤(𝑋𝐶(𝑡, ̂︀𝒫p)) tends toward

−‖𝜏 1‖∞𝑤( ̂︀𝑃 )2
𝜇∞(S)

as 𝑡→ +∞.

For RAD, the same arguments are used in the construction of the vector fields for both

the convex and concave relaxations, so the rate of change of the convex relaxation must

be less than that of the concave relaxation, and the relaxations can never become closer

together over time.

3.5.2 Critical parameter interval diameter

Similar bounds to those derived above for addition, multiplication, and univariate com-

position can also be derived for interval arithmetic. Within any host interval 𝑃 , a linear

convergence bound can be derived for the Hausdorff convergence in 𝑃 of the natural interval

extension to the original function (see Proposition 3.9.9 or [136, Lemma 6.1]):

𝑑𝐻(𝐹𝐵( ̂︀𝑃 ), f( ̂︀𝑃 )) ≤ 𝜏IA𝑤
(︁
̂︀𝑃
)︁
, ∀ ̂︀𝑃 ∈ I𝑃.

A potentially higher-order bound can be derived for McCormick relaxations:

𝑑𝐻(𝐻f ( ̂︀𝑃 ), f( ̂︀𝑃 )) ≤ 𝜏Mc𝑤
(︁
̂︀𝑃
)︁
𝛾Mc , ∀ ̂︀𝑃 ∈ I𝑃, 𝛾Mc ≥ 1.
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The natural McCormick extension [170, 178] intersects the relaxations with the bounds for

the computation of each factor, so 𝐻f ( ̂︀𝑃 ) ⊂ 𝐹𝐵( ̂︀𝑃 ), ∀ ̂︀𝑃 ∈ I𝑃 . As a result,

𝑑𝐻(𝐻f ( ̂︀𝑃 ), f( ̂︀𝑃 )) ≤ 𝑑𝐻(𝐹𝐵( ̂︀𝑃 ), f( ̂︀𝑃 )) ≤ 𝜏IA𝑤
(︁
̂︀𝑃
)︁
, ∀ ̂︀𝑃 ∈ I𝑃.

If the convergence bound for the McCormick relaxations grows faster than linearly in

𝑤( ̂︀𝑃 ) while that for the interval extensions grows linearly, then the bound for the interval

extensions will at some point be stronger than that for the McCormick relaxations, as we

formalize below.

Proposition 3.5.18. When the bounds for relaxations and intervals cross, 𝜏Mc𝑤( ̂︀𝑃 )𝛾𝑀𝑐 =

𝜏IA𝑤( ̂︀𝑃 ). Apart from 𝑤( ̂︀𝑃 ) = 0, this equation is satisfied when 𝑤( ̂︀𝑃 ) = (𝜏IA/𝜏Mc)
1/(𝛾Mc−1).

For the case 𝛾Mc = 2, we have a critical parameter interval diameter equal to 𝜏IA/𝜏Mc.

Proof. Trivial.

We refer to the critical parameter interval diameter as 𝑤crit.

3.6 Numerical example and discussion

The following example will serve to illustrate the connection between the convergence-order

bounds and results we see in practice with global dynamic optimization.

Example 3.6.1. Consider the three-species reversible series isomerization four-parameter

estimation problem with error added for the first-order reversible chain reaction A � B � C

from [67, 187, 201]. The ODE model is:

�̇�1 = −𝑝1𝑥1 + 𝑝2𝑥2,

�̇�2 = 𝑝1𝑥1 − (𝑝2 + 𝑝3)𝑥2 + 𝑝4𝑥3,

�̇�3 = 𝑝3𝑥2 − 𝑝4𝑥3,

x(𝑡0) = (1, 0, 0),

p ∈ 𝑃 = [0, 10]2 × [10, 50]2,

𝑡 ∈ [𝑡0, 𝑡𝑓 ] = [0, 1],
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and it can be shown with viability theory [7] that the solution must satisfy x(𝑡,p) ∈ [0, 1]3

for all (𝑡,p) ∈ 𝐼 × 𝑃.

For this problem, we have observed that RAD [170, 177] give empirical convergence

behavior that is quadratic on short time scales, but linear on longer time scales (Figure 3-

2). This is consistent with the convergence prefactor for the state bounds growing more

slowly than that for the state relaxations. This behavior leads to a 𝑤crit (Lemma 3.5.18) that

decreases as time increases. On the other hand, RPD give quadratic empirical convergence

for all time scales in the problem, indicating that the convergence prefactor for the state

relaxations is growing at a similar rate to the convergence prefactor for the state bounds.

With RAD, the matrix SRAD in the bound from Theorem 3.5.17 is

SRAD =

⎡
⎢⎢⎢⎢⎣

10 10 0

10 70 60

0 60 60

⎤
⎥⎥⎥⎥⎦
,

so that 𝜇∞[SRAD] = max{20, 140, 120} = 140. Therefore, the convergence bound for the

RAD relaxations grows roughly as 𝑒140𝑡. For the RPD, we have

SRPD =

⎡
⎢⎢⎢⎢⎣

0 10 0

10 −10 60

0 60 −10

⎤
⎥⎥⎥⎥⎦
,

so that 𝜇∞[SRPD] = max{10, 60, 50} = 60 so the convergence bound for RPD grows roughly

as 𝑒60𝑡. Clearly, both of these bounds grow extremely quickly, but there is still a vast

difference of 𝑒140𝑡 − 𝑒60𝑡 ≈ 𝑒140𝑡 between the two bounds.

Since McCormick relaxations typically converge quadratically whereas natural interval

extensions typically converge linearly, there is usually a critical parameter interval diameter

(𝑤crit). For parameter intervals with smaller diameters than this, the quadratic convergence

bound is the stronger of the two; otherwise, the linear convergence bound is the stronger.

This means that in numerical examples, for large parameter intervals, the empirical con-

vergence behavior will be linear whereas for small parameter intervals it will be quadratic.
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Also, until parameter intervals become smaller than 𝑤crit, clustering [62, 214] will ensue as

though the convergence order is linear.

Using RAD, although there is a valid second-order convergence bound, empirical second-

order convergence in dynamic optimization can be lost. If the prefactor in the convergence

bound for the RAD state relaxations grows faster with time than the prefactor for the state

bounds from Harrison’s method, 𝑤crit shrinks exponentially with time. For sufficiently long

times, 𝑤crit can be so small that quadratic convergence is never observed in practice.

We investigated empirically the time-dependence of the convergence behavior using a

parameter estimation problem with the dynamic system of Example 3.6.1 with the experi-

mental data from [67, Example 2]. We constructed a nested sequence of boxes in the decision

space, all of which contained the global minimum. For the sum-of-squared-errors objective

function ℎ, we plotted the conservatism of the lower bounds (min
p∈ ̂︀𝑃 ℎ(p)−min

p∈ ̂︀𝑃 ℎ𝑐𝑣( ̂︀𝒫p))

versus the size of the intervals (𝑤( ̂︀𝑃 )). We calculated the convex underestimator to the ob-

jective function calculated using both RAD and RPD. On log-log axes, we refer to the

steepest slope of a line bounding this convergence behavior from above as the empirical

convergence order. For the original parameter estimation problem, which had a time hori-

zon of [0, 1] and 20 data points (every 0.05 time units), we observed empirical convergence of

order 1 with RAD. However, when we shortened the time horizon by a factor of 10, defining

the objective function based only on the first two data points at times 0.05 and 0.1, we

observed quadratic empirical convergence even with RAD. See Figure 3-2. We attribute

this phenomenon to the conservatism growing much faster with time for RAD than for the

Harrison bounds, so that at times later than 0.1, the linear convergence bound from the

Harrison bounds is stronger for all 𝑤( ̂︀𝑃 ) considered, whereas up to a time of about 0.1, the

quadratic convergence bound of the relaxations is stronger for 𝑤( ̂︀𝑃 ) ≤ 4.

3.7 Conclusion

Convergence behavior of bounds and relaxations is pivotal to the success of determinis-

tic global optimization algorithms. We proved that relaxations generated by relaxation-

amplifying dynamics (RAD) [177] and relaxation-preserving dynamics (RPD) [174] both
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Figure 3-2: Empirically, the relaxations of the objective function for a test problem using
RAD converge in 𝑃 with order 2 at short integration times (𝑡 ∈ [0, 0.1]), but with order less
than 1 at longer integration times. Relaxations based on RPD consistently converge in 𝑃
with order 2.
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obey second-order convergence bounds. We also illustrated how they can behave very dif-

ferently from each other in practice, despite both obeying a second-order convergence bound.

Numerically, we have found that relaxations generated using RAD give empirical first-order

convergence in some test problems and empirical second-order convergence in others. On

the other hand, relaxations generated using RPD give second-order empirical convergence

most of the time. For RAD, the convergence-order bound for the state bounds grows more

slowly with time than the convergence bound for the state relaxations, leading to a critical

parameter interval diameter that decreases as time increases. This critical diameter is the

locus of intersection of the first- and second-order convergence bounds. For intervals smaller

than the critical diameter, the quadratic bound is dominant; otherwise the linear bound is.

Because for RAD with Harrison bounds, the critical diameter decreases with time, longer

time horizons increase the likelihood that RAD will display empirical first-order convergence

even for very small intervals in parameter space. Even without the changeover in empirical

convergence between first- and second-order at some critical parameter interval diameter,

our analysis predicts that RPD could potentially perform much better, simply based on the

potentially much smaller convergence prefactor. It was recently shown that a sufficiently

small convergence prefactor can eliminate the cluster effect of global optimization [214].

One limitation of these results is that, as bounds that are always guaranteed to be

valid, they represent the worst-case behavior. In much the same way, even if a theoretical

convergence-order bound for method A is tighter than that for method B, in practice method

A could still show inferior performance. This could occur, for example, if the convergence-

order bound for method B were unnecessarily weak, or even if the convergence-order bound

for method B held with equality for some problems, but just happened to be very weak

for a particular problem instance. It is well-known that the simplex algorithm for linear

programs shows worst-case exponential complexity, but it typically scales polynomially in

practice. A smoothed analysis of the simplex algorithm was given by [191] to show why the

simplex algorithm usually takes polynomial time. An analogous analysis may be possible

for deterministic global dynamic optimization.

In the future, this analysis can be readily extended to incorporate additional bounding

techniques. A relatively simple extension would show that if the bounds of [186] are used and
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a priori upper and lower bounds are known for every state variable, then the convergence-

order bounds for the state bounds and relaxations should grow at most linearly in time.

Due to the a priori known bounds on the solution of the ODE, the norm of the vector

field has a time-invariant upper bound. This gives a convergence bound for the solution

of the ODE that depends linearly on time rather than exponentially. The bounds of [172]

exploit known invariant sets for the solution of the ODE, so a slightly more careful analysis

may be required to develop a tight bound on their convergence behavior. It would also be

interesting to analyze the convergence behavior of ODE bounding methods based on Taylor

models [114, 116, 117, 163, 164], including the step in which the high-order Taylor model is

bounded with a polynomial-time algorithm and the dependence of those convergence bounds

on both the time horizon for the ODE and the diameter of the parameter interval. If other

candidate bounding and relaxation methods for ODEs and DAEs are being developed, the

present analysis framework could be used to estimate how they will behave in practice as

well to examine whether and by what route the convergence order and prefactor can be

improved.
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3.9 Supporting lemmas and proofs

3.9.1 Proof of Lemma 3.2.4

Proof. If 𝜇 = 0, the result is trivial. Now consider 𝜇 ̸= 0. Define

𝑣(𝑠) ≡ exp(𝜇(𝑡0 − 𝑠))

∫︁ 𝑠

𝑡0

𝜇𝑥(𝑟)d𝑟, ∀𝑠 ∈ 𝐼. (3.26)

127



Differentiating gives

𝑣′(𝑠) = 𝜇 exp(𝜇(𝑡0 − 𝑠))

(︂
𝑥(𝑠)−

∫︁ 𝑠

𝑡0

𝜇𝑥(𝑟)d𝑟

)︂
, ∀𝑠 ∈ 𝐼.

Since 𝜇 ̸= 0,

𝑣′(𝑠)

𝜇
= exp(𝜇(𝑡0 − 𝑠))⏟  ⏞  

≥0

(︂
𝑥(𝑠)−

∫︁ 𝑠

𝑡0

𝜇𝑥(𝑟)d𝑟

)︂

⏟  ⏞  
≤𝜆0+𝜆1(𝑠−𝑡0)

, ∀𝑠 ∈ 𝐼,

where the bound on the second term comes from (3.1). Therefore,

𝑣′(𝑠)

𝜇
≤ exp(𝜇(𝑡0 − 𝑠))(𝜆0 + 𝜆1(𝑠− 𝑡0)), ∀𝑠 ∈ 𝐼.

Note that 𝑣(𝑡0) = 0 and integrate:

𝑣(𝑡)

𝜇
=

∫︁ 𝑡

𝑡0

𝑣′(𝑠)

𝜇
d𝑠 ≤

∫︁ 𝑡

𝑡0

exp(𝜇(𝑡0 − 𝑠))(𝜆0 + 𝜆1(𝑠− 𝑡0))d𝑠,

=
𝜆0𝜇+ 𝜆1 − exp(𝜇(𝑡0 − 𝑡))(𝜆0𝜇+ 𝜆1 + 𝜆1𝜇(𝑡− 𝑡0))

𝜇2
, ∀𝑡 ∈ 𝐼.

Substitute in the definition for 𝑣 from (3.26):

exp(𝜇(𝑡0 − 𝑡))

∫︁ 𝑡

𝑡0

𝑥(𝑠)d𝑠 ≤ 𝜆0𝜇+ 𝜆1 − exp(𝜇(𝑡0 − 𝑡))(𝜆0𝜇+ 𝜆1 + 𝜆1𝜇(𝑡− 𝑡0))

𝜇2
, ∀𝑡 ∈ 𝐼.

Multiply by 𝜇 exp(𝜇(𝑡− 𝑡0)):

∫︁ 𝑡

𝑡0

𝜇𝑥(𝑠)d𝑠 ≤ (𝜆0𝜇+ 𝜆1) exp(𝜇(𝑡− 𝑡0))− (𝜆0𝜇+ 𝜆1 + 𝜆1𝜇(𝑡− 𝑡0))

𝜇
, ∀𝑡 ∈ 𝐼.

Substitute the above inequality into (3.1) to obtain

𝑥(𝑡) ≤ 𝜆0 + 𝜆1(𝑡− 𝑡0) +
(𝜆0𝜇+ 𝜆1) exp(𝜇(𝑡− 𝑡0))− (𝜆0𝜇+ 𝜆1 + 𝜆1𝜇(𝑡− 𝑡0))

𝜇

=

(︂
𝜆0 +

𝜆1
𝜇

)︂
exp(𝜇(𝑡− 𝑡0))−

𝜆1
𝜇
,

for all 𝑡 ∈ 𝐼.
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3.9.2 Proof of Theorem 3.4.6

Proof. The following argument follows a similar line of reasoning to [170, Corollary 3.3.6]

and [170, Proof of Theorem 3.3.2], but is sufficiently different that we prove it in full.

Fix any ̂︀𝑃 ∈ I𝑃 . Since solutions to (3.5) and (3.6) are assumed to exist, we have

v(𝑡, ̂︀𝑃 ),w(𝑡, ̂︀𝑃 ), ̃︀v(𝑡, ̂︀𝑃 ), ̃︀w(𝑡, ̂︀𝑃 ) ∈ 𝐷, ∀𝑡 ∈ 𝐼,

v(𝑡, ̂︀𝑃 ) ≤ w(𝑡, ̂︀𝑃 ) and ̃︀v(𝑡, ̂︀𝑃 ) ≤ ̃︀w(𝑡, ̂︀𝑃 ), ∀𝑡 ∈ 𝐼.

We need to prove that

̃︀v(𝑡, ̂︀𝑃 ) ≤ v(𝑡, ̂︀𝑃 ) and w(𝑡, ̂︀𝑃 ) ≤ ̃︀w(𝑡, ̂︀𝑃 ), ∀𝑡 ∈ 𝐼,

The initial conditions satisfy [̃︀v(𝑡0, ̂︀𝑃 ), ̃︀w(𝑡0, ̂︀𝑃 )] ⊃ [v(𝑡0, ̂︀𝑃 ),w(𝑡0, ̂︀𝑃 )]. Suppose (to arrive

at a contradiction) ∃𝑡 ∈ 𝐼 such that either 𝑣𝑖(𝑡, ̂︀𝑃 ) < ̃︀𝑣𝑖(𝑡, ̂︀𝑃 ) or 𝑤𝑖(𝑡, ̂︀𝑃 ) > ̃︀𝑤𝑖(𝑡, ̂︀𝑃 ) for at

least one 𝑖 ∈ {1, . . . , 𝑛𝑥} and define

𝑡1 ≡ inf{𝑡 ∈ 𝐼 : 𝑣𝑖(𝑡, ̂︀𝑃 ) < ̃︀𝑣𝑖(𝑡, ̂︀𝑃 ) or 𝑤𝑖(𝑡, ̂︀𝑃 ) > ̃︀𝑤𝑖(𝑡, ̂︀𝑃 ), for at least one 𝑖}.

Define

𝛿 : 𝐼 → R2𝑛𝑥 : 𝑡 ↦→ 𝛿(𝑡) ≡ (̃︀v(𝑡, ̂︀𝑃 )− v(𝑡, ̂︀𝑃 ),w(𝑡, ̂︀𝑃 )− ̃︀w(𝑡, ̂︀𝑃 )).

By (3.7), 𝛿(𝑡0) ≤ 0 and ∃𝑡 ∈ 𝐼 such that 𝛿𝑖(𝑡) > 0 for at least one 𝑖. Applying [170, Lemma

3.3.5], we obtain the following three facts.

1. 𝑡0 ≤ 𝑡1 < 𝑡𝑓 , 𝑣𝑖(𝑡, ̂︀𝑃 ) ≥ ̃︀𝑣𝑖(𝑡, ̂︀𝑃 ) and 𝑤𝑖(𝑡, ̂︀𝑃 ) ≤ ̃︀𝑤𝑖(𝑡, ̂︀𝑃 ), ∀𝑡 ∈ [𝑡0, 𝑡1].

2. At least one of the sets

𝒱𝐿 ≡ {𝑖 : ∀𝛾 > 0,∃𝑡 ∈ (𝑡1, 𝑡1 + 𝛾] : 𝑣𝑖(𝑡, ̂︀𝑃 ) < ̃︀𝑣𝑖(𝑡, ̂︀𝑃 )},

𝒱𝑈 ≡ {𝑖 : ∀𝛾 > 0,∃𝑡 ∈ (𝑡1, 𝑡1 + 𝛾] : 𝑤𝑖(𝑡, ̂︀𝑃 ) > ̃︀𝑤𝑖(𝑡, ̂︀𝑃 )},
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is nonempty.

3. Let 𝑡4 ∈ (𝑡1, 𝑡𝑓 ], 𝜀 > 0, and 𝛽 ∈ 𝐿1([𝑡1, 𝑡4]). Then there exists

(a) 𝑗 ∈ {1, . . . , 𝑛𝑥},

(b) a non-decreasing function 𝜌 ∈ 𝒜𝒞([𝑡1, 𝑡4],R) satisfying

0 < 𝜌(𝑡) ≤ 𝜀, ∀𝑡 ∈ [𝑡1, 𝑡4] and �̇�(𝑡) > |𝛽(𝑡)|𝜌(𝑡), a.e. 𝑡 ∈ [𝑡1, 𝑡4], (3.27)

(c) numbers 𝑡2, 𝑡3 ∈ [𝑡1, 𝑡4] with 𝑡2 < 𝑡3 such that

̃︀v(𝑡, ̂︀𝑃 )− 1𝜌(𝑡) < v(𝑡, ̂︀𝑃 ) and w(𝑡, ̂︀𝑃 ) < ̃︀w(𝑡, ̂︀𝑃 ) + 1𝜌(𝑡), ∀𝑡 ∈ [𝑡2, 𝑡3)

(3.28)

and

𝑣𝑗(𝑡2, ̂︀𝑃 ) = ̃︀𝑣𝑗(𝑡2, ̂︀𝑃 ), 𝑣𝑗(𝑡3, ̂︀𝑃 ) = ̃︀𝑣𝑗(𝑡3, ̂︀𝑃 )− 𝜌(𝑡3),

and 𝑣𝑗(𝑡, ̂︀𝑃 ) < ̃︀𝑣𝑗(𝑡, ̂︀𝑃 ), ∀𝑡 ∈ (𝑡2, 𝑡3)

(3.29)

(︁
or 𝑤𝑗(𝑡2, ̂︀𝑃 ) = ̃︀𝑤𝑗(𝑡2, ̂︀𝑃 ), 𝑤𝑗(𝑡3, ̂︀𝑃 ) = ̃︀𝑤𝑗(𝑡3, ̂︀𝑃 ) + 𝜌(𝑡3),

and 𝑤𝑗(𝑡, ̂︀𝑃 ) > ̃︀𝑤𝑗(𝑡, ̂︀𝑃 ), ∀𝑡 ∈ (𝑡2, 𝑡3)
)︁
.

(3.30)

Choose 𝜀 > 0 and 𝑡4 ∈ (𝑡1, 𝑡𝑓 ] sufficiently small that

[̃︀v(𝑡, ̂︀𝑃 ), ̃︀w(𝑡, ̂︀𝑃 )] ⊂ [̃︀v(𝑡1, ̂︀𝑃 ), ̃︀w(𝑡1, ̂︀𝑃 )] + [−𝜀1, 𝜀1], ∀𝑡 ∈ (𝑡1, 𝑡4]

where

[̃︀v(𝑡1, ̂︀𝑃 ), ̃︀w(𝑡1, ̂︀𝑃 )] + [−2𝜀1, 2𝜀1] ⊂ 𝐷.

and 1 is a vector with all components equal to 1. This is possible since (i) 𝐷 is open,

(ii) [̃︀v(𝑡, ̂︀𝑃 ), ̃︀w(𝑡, ̂︀𝑃 )] ⊂ 𝐷, ∀𝑡 ∈ 𝐼 by existence of a solution to (3.6), and (iii) 𝜌(𝑡) < 𝜀,

∀𝑡 ∈ [𝑡2, 𝑡3). Let 𝐿 ∈ R+ be the larger of the two Lipschitz constants for ̃︀u and ̃︀o on

[̃︀v(𝑡1, ̂︀𝑃 ), ̃︀w(𝑡1, ̂︀𝑃 )] + [−2𝜀1, 2𝜀1]. Let 𝛽 ≡ 𝐿 and use the three facts from above.
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Suppose that (3.29) holds (the proof is analogous if instead (3.30) holds). We know

from (3.28) that

[v(𝑡, ̂︀𝑃 ),w(𝑡, ̂︀𝑃 )] ⊂ [̃︀v(𝑡, ̂︀𝑃 )− 𝜌(𝑡)1, ̃︀w(𝑡, ̂︀𝑃 ) + 𝜌(𝑡)1], ∀𝑡 ∈ [𝑡2, 𝑡3).

By (3.8), (3.9), and the inclusion above, we have

𝑢𝑗(𝑡, [v(𝑡, ̂︀𝑃 ),w(𝑡, ̂︀𝑃 )], ̂︀𝑃 ) ≥ ̃︀𝑢𝑗(𝑡, [v(𝑡, ̂︀𝑃 ),w(𝑡, ̂︀𝑃 )], ̂︀𝑃 ),

≥ ̃︀𝑢𝑗(𝑡, [̃︀v(𝑡, ̂︀𝑃 )− 𝜌(𝑡)1, ̃︀w(𝑡, ̂︀𝑃 ) + 𝜌(𝑡)1], ̂︀𝑃 ), a.e. 𝑡 ∈ [𝑡2, 𝑡3),

(3.31)

where 𝜀 has already been chosen sufficiently small that [̃︀v(𝑡, ̂︀𝑃 )− 𝜌(𝑡)1, ̃︀w(𝑡, ̂︀𝑃 ) + 𝜌(𝑡)1] ⊂

𝐷, ∀𝑡 ∈ [𝑡2, 𝑡3) (and therefore [̃︀v(𝑡, ̂︀𝑃 )− 𝜌(𝑡)1, ̃︀w(𝑡, ̂︀𝑃 ) + 𝜌(𝑡)1] ∈ I𝐷, ∀𝑡 ∈ [𝑡2, 𝑡3)).

By the choice of 𝐿 above, we have

|̃︀𝑢𝑗(𝑡, 𝑍(1), ̂︀𝑃 )− ̃︀𝑢𝑗(𝑡, 𝑍(2), ̂︀𝑃 )| ≤ 𝐿𝑑𝐻(𝑍(1), 𝑍(2)), ∀𝑍(1), 𝑍(2) ∈ I𝐾. (3.32)

with 𝐾 ≡ [̃︀v(𝑡1, ̂︀𝑃 ), ̃︀w(𝑡1, ̂︀𝑃 )] + [−2𝜀1, 2𝜀1]. Therefore,

̃︀𝑢𝑗(𝑡, [̃︀v(𝑡, ̂︀𝑃 )− 𝜌(𝑡)1, ̃︀w(𝑡, ̂︀𝑃 ) + 𝜌(𝑡)1], ̂︀𝑃 ) ≥ ̃︀𝑢𝑗(𝑡, [̃︀v(𝑡, ̂︀𝑃 ), ̃︀w(𝑡, ̂︀𝑃 )], ̂︀𝑃 )− 𝐿𝜌(𝑡),

a.e. 𝑡 ∈ [𝑡2, 𝑡3].

(3.33)

Combining (3.31) and (3.33),

𝑢𝑗(𝑡, [v(𝑡, ̂︀𝑃 ),w(𝑡, ̂︀𝑃 )], ̂︀𝑃 ) ≥ ̃︀𝑢𝑗(𝑡, [̃︀v(𝑡, ̂︀𝑃 ), ̃︀w(𝑡, ̂︀𝑃 )], ̂︀𝑃 )− 𝐿𝜌(𝑡), a.e. 𝑡 ∈ [𝑡2, 𝑡3].

Adding �̇�(𝑡) to both sides,

𝑢𝑗(𝑡, [v(𝑡, ̂︀𝑃 ),w(𝑡, ̂︀𝑃 )], ̂︀𝑃 ) + �̇�(𝑡) ≥ ̃︀𝑢𝑗(𝑡, [̃︀v(𝑡, ̂︀𝑃 ), ̃︀w(𝑡, ̂︀𝑃 )], ̂︀𝑃 )− 𝐿𝜌(𝑡) + �̇�(𝑡),

a.e. 𝑡 ∈ [𝑡2, 𝑡3],

≥ ̃︀𝑢𝑗(𝑡, [̃︀v(𝑡, ̂︀𝑃 ), ̃︀w(𝑡, ̂︀𝑃 )], ̂︀𝑃 ), a.e. 𝑡 ∈ [𝑡2, 𝑡3],
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where the second inequality follows from (3.27) with 𝛽 ≡ 𝐿 ∈ R+. By [170, Theorem 3.3.3],

this implies that (̃︀𝑣𝑗(·, ̂︀𝑃 )− 𝑣𝑗(·, ̂︀𝑃 )− 𝜌) is non-increasing on [𝑡2, 𝑡3], so that

̃︀𝑣𝑗(𝑡3, ̂︀𝑃 )− 𝑣𝑗(𝑡3, ̂︀𝑃 )− 𝜌(𝑡3) ≤ ̃︀𝑣𝑗(𝑡2, ̂︀𝑃 )− 𝑣𝑗(𝑡2, ̂︀𝑃 )− 𝜌(𝑡2),

but, by (3.29), this implies that 0 ≤ −𝜌(𝑡2), which contradicts (3.27). Since ̂︀𝑃 ∈ I𝑃 was

arbitrary, we have shown (3.10).

3.9.3 ℒ-factorable functions

In the rest of the chapter, we use the notion of ℒ-factorable functions to analyze functions

by factoring them into finite sequences of simple operations. Almost any function that

can be represented finitely on a computer is ℒ-factorable provided the library of univariate

functions ℒ is sufficiently large. Roughly speaking, a function is ℒ-factorable if it can be

broken down into a sequence of computational steps that use only univariate functions in

ℒ as well as the bivariate operations of addition and multiplication. When a function is

ℒ-factorable, we can show that each cumulative mapping in the factored representation,

including the overall function, has desirable properties as long as each univariate functions

in the library ℒ has certain properties. We use the concept of an ℒ-factorable function

to show certain properties of the function itself, its natural interval extension, and its

natural McCormick extension [170, 178]. These properties will satisfy the assumptions

above (Assumptions 3.3.2.2, 3.4.2, and 3.5.3), so that the natural McCormick extension

has the properties necessary for RAD [177] and RPD [174] to give quadratically-convergent

relaxations of the solutions of ODEs. ℒ-factorable functions and other useful concepts

in McCormick analysis were formalized in [170, Chapter 2], which unifies the ideas and

notation of [178].

We will sometimes use the formal notation for a function as a triple (𝑜,𝐷,𝑅), where 𝐷

is the domain, 𝑅 is the range, and 𝑜 is a mapping from 𝐷 into 𝑅. This will allow us to

identify a function unambiguously while overloading standard functions to take interval or

McCormick objects (the basic mathematical objects for the convex relaxation technique).

For example, we can use exp for the real-valued function exp(𝑝) or the interval-valued
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function exp(𝑃 ). The elements of the set ℒ are univariate functions (𝑢,𝐵,R) satisfying

𝐵 ⊂ R. The elements of ℒ represent functions such as 𝑥 ↦→ √
𝑥, 𝑥 ↦→ 𝑥𝑛, 𝑥 ↦→ ln(𝑥), or

𝑥 ↦→ sin𝑥. Typically, ℒ will also include the negative and reciprocal functions 𝑥 ↦→ −𝑥 and

𝑥 ↦→ 1/𝑥 so that subtraction and division can be achieved by combination with (+,R2,R)

and (×,R2,R).

Definition 3.9.1 (ℒ-computational sequence [170, Definition 2.2.1]). Let 𝑛𝑖, 𝑛𝑜 ∈ N. An

ℒ-computational sequence with 𝑛𝑖 inputs and 𝑛𝑜 outputs is a pair (𝒮, 𝜋𝑜):

1. 𝒮 is a finite sequence {((𝑜𝑘, 𝐵𝑘,R), (𝜋𝑘,R𝑘−1,R𝑑𝑘))}𝑛𝑓

𝑘=𝑛𝑖+1 with every element defined

by one of the following options:

(a) (𝑜𝑘, 𝐵𝑘,R) is either (+,R2,R) or (×,R2,R) and 𝜋𝑘 : R𝑘−1 → R2 is defined by

𝜋𝑘(v) = (𝑣𝑖, 𝑣𝑗) for some integers 𝑖, 𝑗 ∈ {1, . . . , 𝑘 − 1}.

(b) (𝑜𝑘, 𝐵𝑘,R) ∈ ℒ and 𝜋𝑘 : R𝑘−1 → R is defined by 𝜋𝑘(v) = 𝑣𝑖 for some integer

𝑖 ∈ {1, . . . , 𝑘 − 1}.

2. 𝜋𝑜 : R𝑛𝑓 → R𝑛𝑜 is defined by 𝜋𝑜(v) = (𝑣𝑖(1), . . . , 𝑣𝑖(𝑛𝑜)) for some integers 𝑖(1), . . . , 𝑖(𝑛𝑜) ∈

{1, . . . , 𝑛𝑓}.

A computational sequence defines a function f𝒮 : 𝐷𝒮 ⊂ R𝑛𝑖 → R𝑛𝑜 in the following way.

Definition 3.9.2 ([170, Definition 2.2.2]). Let (𝒮, 𝜋𝑜) be an ℒ-computational sequence with

𝑛𝑖 inputs and 𝑛𝑜 outputs. Define the sequence of factors {(𝑣𝑘, 𝐷𝑘,R)}𝑛𝑓

𝑘=1, with 𝐷𝑘 ⊂ R𝑛𝑖 ,

where

1. For 𝑘 = 1, . . . , 𝑛𝑖, 𝐷𝑘 = R𝑛𝑖 and 𝑣𝑘(p) = 𝑝𝑘, ∀p ∈ 𝐷𝑘,

2. For 𝑘 = 𝑛𝑖 + 1, . . . , 𝑛𝑓 , 𝐷𝑘 = {p ∈ 𝐷𝑘−1 : 𝜋𝑘(𝑣1(p), . . . , 𝑣𝑘−1(p)) ∈ 𝐵𝑘}, and 𝑣𝑘(p) =

𝑜𝑘(𝜋𝑘(𝑣1(p), . . . , 𝑣𝑘−1(p))), ∀p ∈ 𝐷𝑘.

The set𝐷𝒮 ≡ 𝐷𝑛𝑓
is called the natural domain of (𝒮, 𝜋𝑜) and the natural function (f𝒮 , 𝐷𝒮 ,R𝑛𝑜)

is defined by f𝒮(p) = 𝜋𝑜(𝑣1(p), . . . , 𝑣𝑛𝑓
(p)), ∀p ∈ 𝐷𝒮 .

Definition 3.9.3 (ℒ-factorable function [170, Definition 2.2.3]). Given any 𝐷 ⊂ R𝑛𝑖 , a

function f : 𝐷 → R𝑛𝑜 is said to be ℒ-factorable if there exists an ℒ-computational sequence
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(𝒮, 𝜋𝑜) with 𝑛𝑖 inputs and 𝑛𝑜 outputs such that the natural function (f𝒮 , 𝐷𝒮 ,R𝑛𝑜) satisfies

𝐷 ⊂ 𝐷𝒮 and f = f𝒮 |𝐷.

With a sufficiently large library of univariate functions ℒ, an ℒ-factorable function can

describe almost any function that can be represented finitely on a computer. See [170,

Example 2.2.1].

The following assumption ensures that every ℒ-factorable function is locally Lipschitz

[170, Theorem 2.5.26].

Assumption 3.9.4. Every univariate function in ℒ is locally Lipschitz.

By [170, Theorem 2.5.26], Assumption 3.9.4 implies that any ℒ-factorable function is

locally Lipschitz and therefore continuous on its domain. Furthermore, it implies that all

of the factors in the ℒ-computational sequences for any ℒ-factorable function is locally

Lipschitz.

3.9.4 Interval analysis

Definition 3.9.5 ([170, Definition 2.3.10]). For every ℒ-computational sequence (𝒮, 𝜋𝑜)

with 𝑛𝑖 inputs and 𝑛𝑜 outputs, define the sequence of inclusion factors {(𝑉𝑘,D𝑘, IR)}𝑛𝑓

𝑘=1

where

1. For all 𝑘 = 1, . . . , 𝑛𝑖, D𝑘 = IR𝑛𝑖 and 𝑉𝑘(𝑃 ) = 𝑃𝑘, ∀𝑃 ∈ D𝑘,

2. For all 𝑘 = 𝑛𝑖 + 1, . . . , 𝑛𝑓 , D𝑘 = {𝑃 ∈ D𝑘−1 : 𝜋𝑘(𝑉1(𝑃 ), . . . , 𝑉𝑘−1(𝑃 )) ∈ I𝐵𝑘} and

𝑉𝑘(𝑃 ) = 𝑜𝑘(𝜋𝑘(𝑉1(𝑃 ), . . . , 𝑉𝑘−1(𝑃 ))), ∀𝑃 ∈ D𝑘.

The natural interval extension of (𝒮, 𝜋𝑜) is the function (𝐹𝒮 ,D𝒮 , IR𝑛𝑜) defined byD𝒮 ≡ D𝑛𝑓

and 𝐹𝒮(𝑃 ) = 𝜋𝑜(𝑉1(𝑃 ), . . . , 𝑉𝑛𝑓
(𝑃 )), ∀𝑃 ∈ D𝒮 .

The rules for the natural interval extension of 𝑜𝑘 for addition, multiplication, and uni-

variate composition were developed by [134] and are stated in this form in [170, Definition

2.3.6].

Assumption 3.9.6. For every (𝑢,𝐵,R) ∈ ℒ, the natural interval extension (𝑢, I𝐵, IR) is

locally Lipschitz on I𝐵.
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By [170, Theorem 2.5.30], if Assumption 3.9.6 holds and (𝒮, 𝜋𝑜) is an ℒ-computational

sequence, then the natural interval extension (𝐹𝒮 ,D𝒮 , IR𝑛𝑜) is locally Lipschitz on D𝒮 .

Proposition 3.9.7. If 𝐾 ⊂ R𝑛 is compact, then I𝐾 is compact.

Proof. Let 𝑖R : IR𝑛 → {(a,b) ∈ R𝑛 × R𝑛 : a ≤ b} : [z𝐿, z𝑈 ] ↦→ (z𝐿, z𝑈 ). It follows from the

definition that 𝑖R is bijective and isometric, i.e.,

𝑑𝐻(𝑍1, 𝑍2) = ‖𝑖R(𝑍1)− 𝑖R(𝑍2)‖∞.

Therefore, 𝑖−1
R is a continuous function, so that it maps compact sets to compact sets. Then

I𝐾 = 𝑖−1
R ({(z𝐿, z𝑈 ) ∈ 𝐾2 : z𝐿 ≤ z𝑈})

is compact since {(z𝐿, z𝑈 ) ∈ 𝐾2 : z𝐿 ≤ z𝑈} is compact.

Corollary 3.9.8. Let 𝑃 ⊂ R𝑛 and 𝐹 : I𝑃 → IR𝑚 be locally Lipschitz on I𝑃 . Then, for

any compact 𝑃 ′ ⊂ 𝑃 , 𝐹 is Lipschitz on I𝑃 ′.

Proof. By Proposition 3.9.7, I𝑃 ′ is compact. The result follows from Proposition 3.2.2.

In the following, given any function (f , 𝐷,R𝑚), we use the notation ([f ],D, IR𝑚) to

denote its natural interval extension.

The following proposition shows how an interval extension being locally Lipschitz on I𝑃

guarantees Hausdorff convergence of order at least 1 on any compact 𝑃 ′ ⊂ 𝑃 .

Proposition 3.9.9. Let 𝑃 ⊂ R𝑛𝑝 be nonempty. Let f : 𝑃 → R𝑛𝑥 be a continuous function,

and let 𝐹 be an inclusion function for f on I𝑃 . If 𝐹 is locally Lipschitz on I𝑃 , then on any

compact 𝑃 ′ ⊂ 𝑃 , it has Hausdorff convergence in 𝑃 ′ of order 1 with prefactor 2𝐿, where

𝐿 ∈ R+ is the Lipschitz constant for 𝐹 on I𝑃 ′.

Proof. By assumption, the inclusion function 𝐹 is locally Lipschitz on I𝑃 , which by Corol-

lary 3.9.8 implies that for any compact 𝑃 ′ ⊂ 𝑃 and any 𝑗 ∈ {1, . . . , 𝑛𝑥}, ∃𝐿 ∈ R+ such

that

𝑑𝐻(𝐹𝑗(𝑃
(1)), 𝐹𝑗(𝑃

(2))) ≤ 𝐿𝑑𝐻(𝑃 (1), 𝑃 (2)), ∀𝑃 (1), 𝑃 (2) ∈ I𝑃 ′.
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Fix any 𝑃 (1) ∈ I𝑃 ′ and take 𝑃 (2) = {p} for some p ∈ 𝑃 (1). Then we know

𝑑𝐻(𝐹𝑗(𝑃
(1)), 𝐹𝑗({p})) ≤ 𝐿𝑑𝐻(𝑃 (1), {p}). (3.34)

Next, observe that

𝑑𝐻(𝑃 (1), {p}) = max
𝑖

max{|𝑝(1),𝐿𝑖 − 𝑝𝑖|, |𝑝(1),𝑈𝑖 − 𝑝𝑖|} ≤ 𝑤
(︁
𝑃 (1)

)︁
, (3.35)

where, for each 𝑖, 𝑝
(1),𝐿
𝑖 and 𝑝

(1),𝑈
𝑖 are the bounds of 𝑝𝑖 in 𝑃

(1). Combining (3.34) and (3.35)

we have

𝑑𝐻(𝐹𝑗(𝑃
(1)), 𝐹𝑗({p})) ≤ 𝐿𝑤

(︁
𝑃 (1)

)︁
. (3.36)

Since 𝐹𝑗({p}) ⊂ 𝐹𝑗(𝑃
(1)) is a singleton,

0.5𝑤
(︁
𝐹𝑗(𝑃

(1))
)︁
≤ 𝑑𝐻(𝐹𝑗(𝑃

(1)), 𝐹𝑗({p})). (3.37)

Combining (3.36) and (3.37), we have

𝑤
(︁
𝐹𝑗(𝑃

(1))
)︁
≤ 2𝐿𝑤

(︁
𝑃 (1)

)︁
. (3.38)

Since 𝑓𝑗(𝑃
(1)) ⊂ 𝐹𝑗(𝑃

(1)),

𝑑𝐻(𝐹𝑗(𝑃
(1)), 𝑓𝑗(𝑃

(1))) ≤ 𝑤
(︁
𝐹𝑗(𝑃

(1))
)︁
. (3.39)

Combining (3.38) and (3.39),

𝑑𝐻(𝐹𝑗(𝑃
(1)), 𝑓𝑗(𝑃

(1))) ≤ 2𝐿𝑤
(︁
𝑃 (1)

)︁
.

By Proposition 3.2.10, 𝑑𝐻(𝐹 (𝑃 (1)),�𝑓(𝑃 (1))) = max𝑗∈{1,...,𝑛𝑥} 𝑑𝐻(𝐹𝑗(𝑃
(1)),�𝑓𝑗(𝑃 (1))), so

𝑑𝐻(𝐹 (𝑃 (1)),�f(𝑃 (1))) ≤ 2𝐿𝑤
(︁
𝑃 (1)

)︁
.
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Since 𝑃 (1) ∈ I𝑃 ′ was arbitrary, 𝐹 has Hausdorff convergence in 𝑃 ′ of order 1 with prefactor

2𝐿.

Corollary 3.9.10. The natural interval extension has Hausdorff convergence of order 1 in

any compact subset of D𝒮 .

Proof. By Assumption 3.9.6 and [170, Theorem 2.5.30], the natural interval extension is

locally Lipschitz onD𝒮 , and therefore it has Hausdorff convergence of order 1 in any compact

subset of D𝒮 .

3.9.5 Natural McCormick extensions

The natural McCormick extension has its genesis in [125], but the statement below is from

[170, Definition 2.4.31].

Definition 3.9.11 (Natural McCormick extension). For every ℒ-computational sequence

(𝒮, 𝜋𝑜) with 𝑛𝑖 inputs and 𝑛𝑜 outputs, define the sequence of relaxation factors {(𝒱𝑘,𝒟𝑘,MR)}𝑛𝑓

𝑘=1

where

1. for all 𝑘 = 1, . . . , 𝑛𝑖, 𝒟𝑘 = MR𝑛𝑖 and 𝒱𝑘(𝒫) = 𝒫𝑘, ∀𝒫 ∈ 𝒟𝑘,

2. for all 𝑘 = 𝑛𝑖 + 1, . . . , 𝑛𝑓 , 𝒟𝑘 = {𝒫 ∈ 𝒟𝑘−1 : 𝜋𝑘(𝒱1(𝒫), . . . ,𝒱𝑘−1(𝒫)) ∈ M𝐵𝑘} and

𝒱𝑘(𝒫) = 𝑜𝑘(𝜋𝑘(𝒱1(𝒫)), . . . ,𝒱𝑘−1(𝒫)), ∀𝒫 ∈ 𝒟𝑘.

The natural McCormick extension of (𝒮, 𝜋𝑜) is the function (ℱ𝒮 ,𝒟𝒮 ,MR𝑛𝑜) defined by

𝒟𝒮 ≡ 𝒟𝑛𝑓
and ℱ(𝒫) = 𝜋𝑜(𝒱1(𝒫), . . . ,𝒱𝑛𝑓

(𝒫)), ∀𝒫 ∈ 𝒟𝒮 . In the following, we will use the

notation ({f},𝒟,MR𝑚) to denote a natural McCormick extension of (f , 𝐷,R𝑚).

The rules for the natural McCormick extension of 𝑜𝑘 for addition, multiplication, and

univariate composition were developed by [125] and are stated in this form in [170, Def-

initions 2.4.18, 2.4.21, and 2.4.26]. The natural McCormick extension yields a relaxation

function for f [32, 125, 170].

Assumption 3.9.12. For every (𝑢,𝐵,R) ∈ ℒ, the natural McCormick extension (𝑢,M𝐵,MR)

is locally Lipschitz on M𝐵.
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By [170, Theorem 2.5.40], if Assumption 3.9.12 holds and (𝒮, 𝜋𝑜) is an ℒ-computational

sequence, then the natural McCormick extension (ℱ𝒮 ,𝒟𝒮 ,MR𝑛𝑜) is locally Lipschitz on 𝒟𝒮 .

Assumption 3.9.13. For every (𝑢,𝐵,R) ∈ ℒ, the natural McCormick extension (𝑢,M𝐵,MR)

is known and converges pointwise in every 𝐵′ ∈ I𝐵 with order 2.

Assumption 3.9.13 is true of convex hulls. With Assumption 3.9.13 in place, we will

see below that the natural McCormick extension of any ℒ-factorable function has (1, 2)-

convergence. As a special case, it follows that the natural McCormick extension has point-

wise convergence of order 2 in any 𝑃 ′ ∈ I𝑃 , as shown in [32].

3.9.6 Pointwise convergence bounds for ℒ-factorable functions

In this subsection, we develop a convergence bound for generalized McCormick relaxations

in the form needed for the ODE relaxation theory [174, 177]. If (i) bounds and relaxations

are available for some function q : R𝑛𝑝 ⊃ 𝑃 → 𝑋 ⊂ R𝑛𝑥 , (ii) 𝜑 : 𝑌 → R is ℒ-factorable, and

(iii) R𝑛𝑥 ⊃ 𝑌 ⊃ q(𝑃 ), then the generalized McCormick relaxation technique [178, Definition

15] allows us to obtain a relaxation function for some overall composite function 𝑔 ≡ 𝜑 ∘ q

in the following way. First, initialize factors 𝑣
𝐿/𝑈/𝑐𝑣/𝑐𝑐
𝑖 , 𝑖 = 1, . . . , 𝑛𝑥 with the bounds

and relaxations for each component of q, then apply the rules of the natural McCormick

extension to each factor in a factored representation of the outer function 𝜑.

Proposition 3.9.14. Let 𝐹𝐶 : M𝑃 → IR𝑛𝑥 be a relaxation function for the vector-valued

function f : 𝑃 ⊂ R𝑛𝑝 → R𝑛𝑥 with pointwise convergence in 𝑃 of order 𝛾f . Then each

component 𝐹𝐶
𝑖 of the relaxation function has pointwise convergence in 𝑃 of order 𝛾𝑓𝑖 ≥ 𝛾f .

Proof. For each 𝑖 and each ̂︀𝑃 ∈ I𝑃 ,

sup
p∈ ̂︀𝑃 𝑤

(︁
𝐹𝐶
𝑖 ( ̂︀𝒫p)

)︁
≤ sup

p∈ ̂︀𝑃 𝑤
(︁
𝐹𝐶( ̂︀𝒫p)

)︁
≤ 𝜏f𝑤

(︁
̂︀𝑃
)︁
𝛾f .

The following theorem extends [32, Theorem 1] to vector-valued functions.
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Theorem 3.9.15. Let 𝑃 ⊂ R𝑛𝑝. Suppose a relaxation function for a vector-valued function

f : 𝑃 → R𝑛𝑥 has pointwise convergence in 𝑃 of order 𝛾. Then, the inclusion function 𝐻f

associated to the relaxation function has Hausdorff convergence in 𝑃 of order 𝛽 ≥ 𝛾.

Proof. Fix any ̂︀𝑃 ∈ I𝑃 . By Proposition 3.2.10,

𝑑𝐻(�f( ̂︀𝑃 ), 𝐻f ( ̂︀𝑃 )) = max
𝑖∈{1,...,𝑛𝑥}

𝑑𝐻(𝑓𝑖( ̂︀𝑃 ), 𝐻f ,𝑖( ̂︀𝑃 )). (3.40)

By Proposition 3.9.14, the relaxation function for each component 𝑓𝑖 has pointwise conver-

gence in 𝑃 of order 𝛾𝑖 ≥ 𝛾. By [32, Theorem 1], the component of the inclusion function

𝐻f ,𝑖 has Hausdorff convergence in 𝑃 of order 𝛽𝐻f ,𝑖
≥ 𝛾𝑖, so 𝛽𝐻f ,𝑖

≥ 𝛾 and for each 𝑖 there

exists 𝜏1,𝑖 ∈ R+ such that

𝑑𝐻(𝑓𝑖( ̂︀𝑃 ), 𝐻f ,𝑖( ̂︀𝑃 )) ≤ 𝜏1,𝑖𝑤
(︁
̂︀𝑃
)︁
𝛾 ,

so

max
𝑖∈{1,...,𝑛𝑥}

𝑑𝐻(𝑓𝑖( ̂︀𝑃 ), 𝐻f ,𝑖( ̂︀𝑃 )) ≤ max
𝑖∈{1,...,𝑛𝑥}

𝜏1,𝑖𝑤
(︁
̂︀𝑃
)︁
𝛾 . (3.41)

Taking (3.40) and (3.41) together we have

𝑑𝐻(�f( ̂︀𝑃 ), 𝐻f ( ̂︀𝑃 )) = max
𝑖∈{1,...,𝑛𝑥}

𝑑𝐻(𝑓𝑖( ̂︀𝑃 ), 𝐻f ,𝑖( ̂︀𝑃 ) ≤ 𝜏𝑤(𝑃 )𝛾 ,

for some 𝜏 ∈ R+.

3.9.7 (1,2)-Convergence of natural McCormick extensions

Along with linear convergence for the interval bounding method, (1, 2)-convergence is easily

composable; i.e.,

𝑤(𝐹𝐵(𝑋𝐵)) ≤ 𝐶0𝑤(𝑋
𝐵), (3.42)

𝑤(ℱ(𝒳 )) ≤ 𝐶1𝑤(𝒳 ) + 𝐶2𝑤(𝑋
𝐵)2, (3.43)
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and

𝑤(𝐺𝐵(𝑋𝐵)) ≤ 𝐷0𝑤(𝑋
𝐵), (3.44)

𝑤(𝒢(𝒳 )) ≤ 𝐷1𝑤(𝒳 ) +𝐷2𝑤(𝑋
𝐵)2, (3.45)

imply that

𝑤(𝐺𝐵 ∘ 𝐹𝐵(𝑋𝐵)) ≤ 𝐷0𝜏0𝑤(𝑋
𝐵), (3.46)

𝑤(𝒢 ∘ ℱ(𝒳 )) ≤ 𝐷1𝑤(ℱ(𝒳 )) +𝐷2𝑤(𝐹
𝐵(𝑋𝐵))2, (3.47)

≤ 𝐷1(𝐶1𝑤(𝒳 ) + 𝐶2𝑤(𝑋
𝐵)2) +𝐷2(𝜏0𝑤(𝑋

𝐵))2, (3.48)

≤ 𝐷1𝐶1𝑤(𝒳 ) + (𝐷1𝐶2 +𝐷2𝜏
2
0 )𝑤(𝑋

𝐵)2. (3.49)

By this argument, it suffices to show that the basic McCormick operations are each (1, 2)-

convergent McCormick extensions of the corresponding real operations.

3.9.7.1 Addition

Definition 3.9.16. Define (+,MR2,MR) by

+(𝒳 ,𝒴) = 𝒳 + 𝒴 = (𝑋𝐵 + 𝑌 𝐵, (𝑋𝐵 ∩𝑋𝐶) + (𝑌 𝐵 ∩ 𝑌 𝐶)). (3.50)

Lemma 3.9.17. +(𝒳 ,𝒴) is (1,2)-convergent on MR2.

Proof.

𝑤(𝒳 + 𝒴) = 𝑤(Enc(𝒳 + 𝒴)), (3.51)

= 𝑤((𝑋𝐵 ∩𝑋𝐶) + (𝑌 𝐵 ∩ 𝑌 𝐶)), (3.52)

= 𝑤(𝑋𝐵 ∩𝑋𝐶) + 𝑤(𝑌 𝐵 ∩ 𝑌 𝐶), (3.53)

= 𝑤(𝒳 ) + 𝑤(𝒴), (3.54)

≤ 2max (𝑤(𝒳 ), 𝑤(𝒴)) , (3.55)

= 2𝑤((𝒳 ,𝒴)). (3.56)
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Thus, 𝜏1 = 2 and 𝜏2 = 0.

3.9.7.2 Multiplication

Definition 3.9.18. Define (×,MR2,MR) by

×(𝒳 ,𝒴) = 𝒳𝒴 = (𝑋𝐵𝑌 𝐵, [𝑧𝑐𝑣, 𝑧𝑐𝑐]), (3.57)

where

𝑧𝑐𝑣 = max
(︁[︀
𝑦𝐿�̄�𝐶 + 𝑥𝐿𝑌 𝐶 − 𝑥𝐿𝑦𝐿

]︀𝐿
,
[︀
𝑦𝑈�̄�𝐶 + 𝑥𝑈𝑌 𝐶 − 𝑥𝑈𝑦𝑈

]︀𝐿)︁
, (3.58)

𝑧𝑐𝑐 = min
(︁[︀
𝑦𝐿�̄�𝐶 + 𝑥𝑈𝑌 𝐶 − 𝑦𝐿𝑥𝑈

]︀𝑈
,
[︀
𝑦𝑈�̄�𝐶 + 𝑥𝐿𝑌 𝐶 − 𝑦𝑈𝑥𝐿

]︀𝑈)︁
. (3.59)

and 𝒳 = Cut(𝒳 ) and 𝒴 = Cut(𝒴).

As shown in [170, Chapter 2], the definition above gives valid convex relaxations.

Lemma 3.9.19. ×(𝒳 ,𝒴) is (1,2)-convergent on M𝑋0 ×M𝑌 0 for any interval 𝑋0 × 𝑌 0.

Proof. Choose any (𝒳 ,𝒴) ∈ M𝑋0 × M𝑌 0. We have 𝑤(𝒳𝒴) ≤ 𝑧𝑐𝑐 − 𝑧𝑐𝑣. There are four

cases to consider. For the first case,

𝑧𝑐𝑐 − 𝑧𝑐𝑣 =
[︀
𝑦𝐿�̄�𝐶 + 𝑥𝑈𝑌 𝐶 − 𝑦𝐿𝑥𝑈

]︀𝑈 −
[︀
𝑦𝐿�̄�𝐶 + 𝑥𝐿𝑌 𝐶 − 𝑥𝐿𝑦𝐿

]︀𝐿
. (3.60)

Writing 𝑟𝑈 = 𝑤(𝑅) + 𝑟𝐿 for 𝑅 =
[︀
𝑦𝐿�̄�𝐶 + 𝑥𝑈𝑌 𝐶 − 𝑦𝐿𝑥𝑈

]︀
on the right,

𝑧𝑐𝑐 − 𝑧𝑐𝑣 = 𝑤(
[︀
𝑦𝐿�̄�𝐶 + 𝑥𝑈𝑌 𝐶 − 𝑦𝐿𝑥𝑈

]︀
) +

[︀
𝑦𝐿�̄�𝐶 + 𝑥𝑈𝑌 𝐶 − 𝑦𝐿𝑥𝑈

]︀𝐿 −
[︀
𝑦𝐿�̄�𝐶 + 𝑥𝐿𝑌 𝐶 − 𝑥𝐿𝑦𝐿

]︀𝐿
,

(3.61)

= 𝑤(
[︀
𝑦𝐿�̄�𝐶 + 𝑥𝑈𝑌 𝐶

]︀
) +

[︀
𝑦𝐿�̄�𝐶

]︀𝐿
+
[︀
𝑥𝑈𝑌 𝐶

]︀𝐿 − 𝑦𝐿𝑥𝑈 −
[︀
𝑦𝐿�̄�𝐶

]︀𝐿 −
[︀
𝑥𝐿𝑌 𝐶

]︀𝐿
+ 𝑥𝐿𝑦𝐿,

(3.62)

≤ |𝑦𝐿|𝑤(�̄�𝐶) + |𝑥𝑈 |𝑤(𝑌 𝐶) +
[︀
𝑥𝑈𝑌 𝐶

]︀𝐿 − 𝑦𝐿𝑥𝑈 −
[︀
𝑥𝐿𝑌 𝐶

]︀𝐿
+ 𝑥𝐿𝑦𝐿, (3.63)

= |𝑦𝐿|𝑤(𝒳 ) + |𝑥𝑈 |𝑤(𝒴) +
[︀
𝑥𝑈𝑌 𝐶 − 𝑦𝐿𝑥𝑈

]︀𝐿 −
[︀
𝑥𝐿𝑌 𝐶 − 𝑥𝐿𝑦𝐿

]︀𝐿
, (3.64)

= |𝑦𝐿|𝑤(𝒳 ) + |𝑥𝑈 |𝑤(𝒴) +
[︀
𝑥𝑈 (𝑌 𝐶 − 𝑦𝐿)

]︀𝐿 −
[︀
𝑥𝐿(𝑌 𝐶 − 𝑦𝐿)

]︀𝐿
. (3.65)
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Noting that 𝑌 𝐶 ⊂ 𝑌 𝐵, it follows that every element of 𝑌 𝐶−𝑦𝐿 is nonnegative and bounded

above by 𝑤(𝑌 𝐵). Thus, ∃𝑞1, 𝑞2 ∈ (𝑌 𝐶 −𝑦𝐿), both bounded betwen 0 and 𝑤(𝑌 𝐵), satisfying

𝑧𝑐𝑐 − 𝑧𝑐𝑣 ≤ |𝑦𝐿|𝑤(𝒳 ) + |𝑥𝑈 |𝑤(𝒴) + 𝑥𝑈𝑞1 − 𝑥𝐿𝑞2, (3.66)

= |𝑦𝐿|𝑤(𝒳 ) + |𝑥𝑈 |𝑤(𝒴) + (𝑥𝐿 + 𝑤(𝑋𝐵))𝑞1 − 𝑥𝐿𝑞2, (3.67)

= |𝑦𝐿|𝑤(𝒳 ) + |𝑥𝑈 |𝑤(𝒴) + 𝑥𝐿(𝑞1 − 𝑞2) + 𝑤(𝑋𝐵)𝑞1, (3.68)

≤ |𝑦𝐿|𝑤(𝒳 ) + |𝑥𝑈 |𝑤(𝒴) + |𝑥𝐿|𝑤(𝑌 𝐶 − 𝑦𝐿) + 𝑤(𝑋𝐵)𝑤(𝑌 𝐵), (3.69)

≤ |𝑦𝐿|𝑤(𝒳 ) + (|𝑥𝑈 |+ |𝑥𝐿|)𝑤(𝒴) + 𝑤(𝑋𝐵)𝑤(𝑌 𝐵). (3.70)

By similar arguments for the remaining three cases,

𝑤(𝒳𝒴) ≤ 𝜏1𝑤(𝒳 × 𝒴) + 𝜏2𝑤(𝑋
𝐵 × 𝑌 𝐵)2, (3.71)

with 𝜏1 = 3max{|𝑥𝐿|, |𝑥𝑈 |, |𝑦𝐿|, |𝑦𝑈 |} and 𝜏2 = 1.

3.9.7.3 Univariate Functions

Assumption 3.9.20. For every (𝑢,𝐵,R) ∈ ℒ, functions 𝑢𝑐𝑣, 𝑢𝑐𝑐 : �̄� → R, where �̄� ≡

{(𝑋,𝑥) ∈ I𝐵 ×𝐵 : 𝑥 ∈ 𝑋}, and 𝑥min, 𝑥max : I𝐵 → R are known such that

1. For every 𝑋 ∈ I𝐵, 𝑢𝑐𝑣(𝑋, ·) and 𝑢𝑐𝑐(𝑋, ·) are convex and concave relaxations of 𝑢 on

𝑋, respectively.

2. 𝑥min(𝑋) and 𝑥max(𝑋) are a minimum of 𝑢𝑐𝑣(𝑋, ·) on 𝑋 and a maximum of 𝑢𝑐𝑐(𝑋, ·)

on 𝑋, respectively.

3. For any 𝑋1, 𝑋2 ∈ IR with 𝑋2 ⊂ 𝑋1, 𝑢
𝑐𝑣(𝑋1, 𝑥) ≤ 𝑢𝑐𝑣(𝑋2, 𝑥) and 𝑢𝑐𝑐(𝑋1, 𝑥) ≥

𝑢𝑐𝑐(𝑋2, 𝑥) for all 𝑥 ∈ 𝑋2.

4. 𝑢𝑐𝑣([𝑥, 𝑥], 𝑥) = 𝑢𝑐𝑐([𝑥, 𝑥], 𝑥) for every 𝑥 ∈ 𝐵.

In [170, S2.8], suitable 𝑢𝑐𝑣, 𝑢𝑐𝑐, 𝑥min, and 𝑥max functions are given for the univariate

functions:

∙ 𝑥 ↦→ 𝑥+ 𝑐, where 𝑐 ∈ R,
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∙ 𝑥 ↦→ 𝑐𝑥, where 𝑐 ∈ R+,

∙ 𝑥 ↦→ −𝑥,

∙ 𝑥 ↦→ 1
𝑥 ,

∙ 𝑥 ↦→ exp𝑥,

∙ 𝑥 ↦→ ln𝑥,

∙ 𝑥 ↦→ 𝑥 ln𝑥,

∙ 𝑥 ↦→ √
𝑥,

∙ 𝑥 ↦→ 𝑥2𝑛, where 𝑛 = 1, 2, . . .,

∙ 𝑥 ↦→ 𝑥2𝑛+1, where 𝑛 = 1, 2, . . .,

∙ 𝑥 ↦→ sin𝑥, and

∙ 𝑥 ↦→ cos𝑥.

Suitable functions can be readily derived for other univariate functions using the techniques

of [125, S4].

McCormick’s composition rule now defines relaxation functions for the elements of ℒ as

follows.

Definition 3.9.21. For every (𝑢,𝐵,R) ∈ ℒ, define (𝑢,M𝐵,MR) by

𝑢(𝒳 ) =
(︀
𝑢(𝑋𝐵),

[︀
𝑢𝑐𝑣(𝑋𝐵,mid(𝑥𝑐𝑣, 𝑥𝑐𝑐, 𝑥min(𝑋𝐵))),

𝑢𝑐𝑐(𝑋𝐵,mid(𝑥𝑐𝑣, 𝑥𝑐𝑐, 𝑥max(𝑋𝐵)))
]︀)︀
,

where 𝑢(𝑋𝐵) is the value of (𝑢, I𝐵, IR) at 𝑋𝐵.

Note that 𝒳 ∈ M𝐵 implies that either 𝑥𝑐𝑣 ∈ 𝑋𝐵 or 𝑥𝑐𝑐 ∈ 𝑋𝐵, or both. By definition

𝑥min(𝑋𝐵), 𝑥max(𝑋𝐵) ∈ 𝑋𝐵, so that, in both uses of the mid function above, at least two of

the three arguments lie in 𝑋𝐵. It follows that the mid function chooses an element of 𝑋𝐵,

and hence of 𝐵, in both cases, so that 𝑢(𝒳 ) is well-defined.
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Theorem 3.9.22 ([170, Theorem 2.4.27]). (𝑢,M𝐵,MR) is a McCormick extension of

(𝑢,𝐵,R).

Lemma 3.9.23. (𝑢,M𝐵,MR) is (1,2)-convergent on M𝑋0 for every interval 𝑋0 ⊂ 𝐵.

Proof. Choose any 𝒳 ∈ M𝑋0. Since both mid(𝑥𝑐𝑣, 𝑥𝑐𝑐, 𝑥min(𝑋𝐵))) and mid(𝑥𝑐𝑣, 𝑥𝑐𝑐, 𝑥max(𝑋𝐵)))

are in 𝑋𝐶 ∩𝑋𝐵, it follows that

|mid(𝑥𝑐𝑣, 𝑥𝑐𝑐, 𝑥max(𝑋𝐵))−mid(𝑥𝑐𝑣, 𝑥𝑐𝑐, 𝑥min(𝑋𝐵))| ≤ 𝑤(𝒳 ). (3.72)

Now,

𝑤(𝑢(𝒳 )) = |𝑢𝑐𝑐(𝑋𝐵,mid(𝑥𝑐𝑣, 𝑥𝑐𝑐, 𝑥max(𝑋𝐵)))− 𝑢𝑐𝑣(𝑋𝐵,mid(𝑥𝑐𝑣, 𝑥𝑐𝑐, 𝑥min(𝑋𝐵)))|, (3.73)

≤ |𝑢𝑐𝑐(𝑋𝐵,mid(𝑥𝑐𝑣, 𝑥𝑐𝑐, 𝑥max(𝑋𝐵)))− 𝑢(mid(𝑥𝑐𝑣, 𝑥𝑐𝑐, 𝑥max(𝑋𝐵)))| (3.74)

+ |𝑢(mid(𝑥𝑐𝑣, 𝑥𝑐𝑐, 𝑥max(𝑋𝐵)))− 𝑢(mid(𝑥𝑐𝑣, 𝑥𝑐𝑐, 𝑥min(𝑋𝐵)))| (3.75)

+ |𝑢(𝑋𝐵,mid(𝑥𝑐𝑣, 𝑥𝑐𝑐, 𝑥min(𝑋𝐵)))− 𝑢𝑐𝑣(𝑋𝐵,mid(𝑥𝑐𝑣, 𝑥𝑐𝑐, 𝑥min(𝑋𝐵)))|, (3.76)

≤ 𝜏𝑤(𝑋𝐵)2 + 𝐿𝑤(𝒳 ) + 𝜏𝑤(𝑋𝐵)2, (3.77)

where 𝐿 is the Lipschitz constant for 𝑢 on 𝑋𝐵. Thus, 𝜏1 = 𝐿 and 𝜏2 = 2𝜏 .

An alternate proof could use a Lipschitz constant for either 𝑢𝑐𝑣(𝑋𝐵, ·) or 𝑢𝑐𝑐(𝑋𝐵, ·) and

avoid using 𝑢 altogether:

𝑤(𝑢(𝒳 )) = |𝑢𝑐𝑐(𝑋𝐵,mid(𝑥𝑐𝑣, 𝑥𝑐𝑐, 𝑥max(𝑋𝐵)))− 𝑢𝑐𝑣(𝑋𝐵,mid(𝑥𝑐𝑣, 𝑥𝑐𝑐, 𝑥min(𝑋𝐵)))|, (3.78)

≤ |𝑢𝑐𝑐(𝑋𝐵,mid(𝑥𝑐𝑣, 𝑥𝑐𝑐, 𝑥max(𝑋𝐵)))− 𝑢𝑐𝑐(𝑋𝐵,mid(𝑥𝑐𝑣, 𝑥𝑐𝑐, 𝑥min(𝑋𝐵)))| (3.79)

+ |𝑢𝑐𝑐(𝑋𝐵,mid(𝑥𝑐𝑣, 𝑥𝑐𝑐, 𝑥min(𝑋𝐵)))− 𝑢𝑐𝑣(𝑋𝐵,mid(𝑥𝑐𝑣, 𝑥𝑐𝑐, 𝑥min(𝑋𝐵)))|,

(3.80)

≤ 𝐿𝑤(𝒳 ) + 𝜏𝑤(𝑋𝐵)2. (3.81)

3.9.7.4 (1,2)-Convergence of natural McCormick extensions

Theorem 3.9.24. Let f : 𝐷 → R𝑛 be an ℒ-factorable function with natural McCormick

extension {f} : 𝒟 ⊂ M𝐷 → MR𝑛. For any interval 𝑋0 represented in 𝒟, {f} is (1,2)-
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convergent on M𝑋0; i.e., ∃𝜏1, 𝜏2 ∈ R+ such that

𝑤({f}(𝒳 )) ≤ 𝜏1𝑤(𝒳 ) + 𝜏2𝑤(𝑋
𝐵)2, ∀𝒳 ∈ M𝑋0. (3.82)

Proof. This follows immediately by repeated composition, addition, and multiplication.

From here, we can recover all manner of more complicated-looking results. It follows

that

𝑤(𝐹𝐶(𝒳 )) ≤ 𝜏1𝑤(𝑋
𝐶) + 𝜏2𝑤(𝑋

𝐵)2, ∀𝒳 ∈ M𝑋0. (3.83)

If 𝒳 = (𝑋𝐵, [x,x]), we obtain

|f 𝑐𝑐((𝑋𝐵, [x,x]))− f 𝑐𝑣((𝑋𝐵, [x,x]))| = 𝑤(𝐹𝐶(𝒳 )) (3.84)

≤ 𝜏2𝑤(𝑋
𝐵)2, ∀x ∈ 𝑋𝐵, ∀𝑋𝐵 ⊂ 𝑋0. (3.85)

If 𝒳 is obtained as the relaxation of an inner function; i.e., 𝒳 = 𝒳 (𝒫) where 𝒳 is (1,2)-

convergent on some M𝑃 0 and 𝒫 = (𝑃, [p,p]) ∈ M𝑃 0, then we simply use the composition

result to observe that {f} ∘ 𝒳 is (1,2)-convergent on M𝑃 0, and hence

|f 𝑐𝑐((𝑋𝐵(𝑃 ), [x𝑐𝑣((𝑃, [p,p])),x𝑐𝑐((𝑃, [p,p]))]))− f 𝑐𝑣((𝑋𝐵(𝑃 ), [x𝑐𝑣((𝑃, [p,p])),x𝑐𝑐((𝑃, [p,p]))]))|

= 𝑤(𝐹𝐶(𝒳 (𝒫))) ≤ 𝜏1𝑤([p,p]) + 𝜏2𝑤(𝑃 )
2 = 𝜏2𝑤(𝑃 )

2, ∀p ∈ 𝑃, ∀𝑃 ⊂ 𝑃 0,

where 𝜏2 is only a function of 𝑃 0 and is a combination of the convergence constants for {f}

and 𝒳 .

3.10 Supplementary material

When solving the lower-bounding problem in a global minimization problem, it is sometimes

more efficient to minimize a linearization of the convex underestimating objective rather

than recomputing the nonlinear relaxation at every step in the numerical optimizer. This is

because the linearizations are often not much weaker than the nonlinear relaxation, yet they
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are a great deal cheaper to calculate for any nontrivial dynamic optimization problem. The

following proposition gives a bound on the distance between a relaxation and its linearization

at a point p* that is contained in a neighborhood where the relaxation is twice continuously

differentiable.

Proposition 3.10.1. Let 𝑃 ⊂ R𝑛𝑝 and f : 𝑃 → 𝑋 ⊂ R𝑛𝑥. Let 𝐹𝐶 : M𝑃 → IR𝑛𝑥

be a relaxation function for f in 𝑃 that converges pointwise in 𝑃 with order 𝛾. Suppose

there exists p* ∈ ̂︀𝑃 and 𝜖 > 0 such that f 𝑐𝑣(( ̂︀𝑃 , ·)) and f 𝑐𝑐(( ̂︀𝑃 , ·)) are twice continuously

differentiable on 𝑁𝜀(p
*) ≡ {p ∈ ̂︀𝑃 : ‖p − p*‖ < 𝜀}. Then the affine functions constructed

at p*,

a𝑐𝑣/𝑐𝑐( ̂︀𝒫p) = f 𝑐𝑣/𝑐𝑐( ̂︀𝒫p*) + (∇f 𝑐𝑣/𝑐𝑐( ̂︀𝒫p*))T(p− p*), ∀p ∈ ̂︀𝑃 ,

where ̂︀𝒫p* ≡ ( ̂︀𝑃 , [p*,p*]), make (a𝑐𝑣,a𝑐𝑐) a relaxation function in 𝑃 that converges point-

wise in 𝑁𝜀(p
*) with order min{𝛾, 2}.

Proof. The linearization of f 𝑐𝑣( ̂︀𝒫p) (f 𝑐𝑐(( ̂︀𝑃 , ·))) is guaranteed to underestimate (overesti-

mate) f due to convexity (concavity). Since f 𝑐𝑣/𝑐𝑐(( ̂︀𝑃 , ·)) is twice differentiable in 𝑁𝜀(p
*),

there are mappings H𝑐𝑣/𝑐𝑐 : 𝑁𝜀(p
*) → R𝑛𝑝×𝑛𝑝 such that

f 𝑐𝑣/𝑐𝑐( ̂︀𝒫p) = f 𝑐𝑣/𝑐𝑐( ̂︀𝒫p*) + (∇f 𝑐𝑣/𝑐𝑐( ̂︀𝒫p*))T(p− p*)

+
1

2
(p− p*)TH𝑐𝑣/𝑐𝑐(p)(p− p*) + r(p− p*), ∀p ∈ 𝑁𝜀(p

*),

where r satisfies

lim
p→p*

‖r(p− p*)‖
‖p− p*‖2 = 0.

Then,

f 𝑐𝑣/𝑐𝑐( ̂︀𝒫p)− a𝑐𝑣/𝑐𝑐( ̂︀𝒫p) =
1

2
(p− p*)TH𝑐𝑣/𝑐𝑐(p)(p− p*) + r(p− p*),

∀p ∈ 𝑁𝜀(p
*),

146



so there exists 𝜏 > 0 such that

⃒⃒
⃒f 𝑐𝑣/𝑐𝑐( ̂︀𝒫p)− a𝑐𝑣/𝑐𝑐( ̂︀𝒫p)

⃒⃒
⃒ ≤ 𝜏𝑤

(︁
̂︀𝑃
)︁
2, ∀p ∈ 𝑁𝜀(p

*).

The result follows by applying the assumed pointwise convergence of order 𝛾 of 𝐹𝐶 , using

the triangle inequality, and taking the sup over 𝑁𝜀(p
*).

Remark 3.10.2. Numerically, we have assessed empirical Hausdorff convergence by con-

structing a nested sequence of intervals ̂︀𝑃 containing the global minimum for several test

problems. For both ODE relaxation methods studied in this chapter (relaxation-amplifying

dynamics and relaxation-preserving dynamics), the empirical Hausdorff convergence behav-

ior for the linearized relaxations in the vicinity of the global minimum closely tracks that

for the nonlinear relaxations for all test problems. We have not seen a case where the

nonlinear relaxations produce drastically different convergence behavior from the linearized

relaxations. The convergence order is about the same between nonlinear and linearized

relaxations, but the linearized relaxations can have a slightly larger prefactor.
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Chapter 4

Design, execution, and analysis of

time-varying experiments for

model discrimination and

parameter estimation in

microreactors

Abstract

Time-varying, or dynamic, experiments can produce richer data sets than a sequence of
steady-state experiments using less material and time. A case study demonstrating this
concept for microreactor experiments is presented. Beginning with five kinetic model can-
didates for the reaction of phenylisocyanate with 𝑡-butanol, an initial dynamic experiment
showed that two of the five models gave a similar quality of fit to the experimental data,
whereas the remaining three gave significantly poorer fits. Next an optimal experiment was
designed to discriminate between the remaining two models. This drove the two models to
differ significantly in quality, leaving a single model and a set of kinetic parameter values
that adequately described the data. This method can be applied to future kinetic studies to
reduce material use and experimental time while validating a dynamic model of the physics
and chemical kinetics.
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4.1 Introduction

Most organizations continually strive to reduce costs and environmental impact while main-

taining or improving products and processes. One way to achieve this aim is to reduce

material and time used in experiments in research and development by creating more

information-rich experiments through time-varying, or dynamic experiments. Dynamic ex-

periments allow rapid exploration of the permissible experimental space without waiting

for steady state between changes. Model-based design of experiments (MBDoE), or optimal

experimental design (OED) has been applied to dynamic experiments for some time, but

has not been used to design microreactor experiments. For a review of model-based design

of experiments, see [70]. Such techniques use computer simulations that take the experi-

mental conditions as input to estimate a priori the information content of an experiment.

Numerical optimization software embeds the aforementioned computer simulation to max-

imize the expected information content. Using different objective functions, experiments

can be designed to drive apart the predictions of two or more candidate models (model

discrimination [34, 35, 41–43, 82, 88]) or to minimize the expected size of the confidence

region for the model parameters [36, 70, 211]. Time-varying experiments are also useful

because they allow validation of the dynamics of a model, which is especially useful when

a dynamic model of the process will be used to design the control system for the process as

in [105].

Due to small holdup, excellent heat transfer per unit volume, and lack of head space,

microreactors and small-diameter tubular reactors allow conditions that could be dangerous

in batch, such as those involving diazomethane [124], diazotization [220], nitration [50, 104,

219], high-pressure hydrogenation [203], and lithium-halogen exchange [39, 138, 139]. To

our knowledge, MBDoE techniques have not yet been applied to designing time-varying

experiments in microreactors. The combination of small holdup in the microreactor with

a dynamic model allows relatively rapid changes in reaction conditions while extracting

meaningful information from the process.

We studied the reaction of phenylisocyanate (PhNCO) with 𝑡-butanol (𝑡BuOH) in N,N-

dimethylformamide (DMF) to produce N-Boc-aniline (PhNHBoc) (Scheme 4.1). Isocyanates
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Scheme 4.1: The principal reaction studied in this chapter

can be produced in a Curtius rearrangement of acyl azides which in turn can be produced by

reaction of carboxylic acids with diphenylphosphoryl azide (DPPA) under basic conditions

[182, 183]. Similarly to Scheme 4.1, various isocyanates can be reacted with various nucle-

ophiles to produce ureas and carbamates. The former substructure is frequently found in

enzyme inhibitors and pseudopeptides [122]. The reactivity of isocyanates with nucleophiles

has been widely studied due to interest in production of urethanes and polyurethane [9–13],

alcohol content measurement [145–147, 179, 180, 193], and more recently for analysis of

environmental micro-pollutants [205].

Bauer et al. [15] and Galvanin et al. [72] did purely computational studies on the appli-

cation of optimal experimental design techniques to the reaction of PhNCO with butanol

(undisclosed isomer) in a semibatch reactor. In the present work, actual experiments were

performed rather than a purely computational study. McMullen and Jensen [128] applied

optimal experimental design techniques to microreactors to design a sequence of steady-state

set points at which to measure reactor performance. In contrast, we consider time-varying

input functions and continuous monitoring of concentration. Mozharov et al. [137] used

step functions to interrogate an experimental system. We take this idea further by allow-

ing arbitrary input functions rather than only step functions. Moore and Jensen [132, 133]

used linear ramp functions in flow rate to emulate batch reactor time-course responses. The

present method can be used with arbitrary time-varying input functions such as piecewise

constant, piecewise linear, or sums of basis functions (e.g., flow rates, temperatures). In

practice, the difficulty is that solving for the optimal experiment is more challenging in the

present case since a broader range of possible experiments are considered.

A model for the reaction of butanol (undisclosed isomer) with phenylisocyanate was

jointly developed by researchers at BASF and Universität Heidelberg [15, 101, 102]. They
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indicated mass-action kinetics for PhNCO and butanol coupling to form the carbamate

product as well as for the reversible addition of PhNCO to the carbamate product to form

an allophanate. For trimerization of PhNCO to form triphenyl isocyanurate, they indicated

second-order kinetics.

Dyer and coworkers [63] reported that the reaction of isocyanate with 𝑛- and 𝑠-butyl

alcohols in xylene has approximately second-order kinetics, with the value of the rate con-

stant slightly larger for large excesses of alcohol. Activation energies were reported as

8.1 and 9.9 kcal/mol for the 𝑛- and 𝑠- isomers, respectively. Bailey and coworkers [8] re-

ported the following relative activities of substituted phenylisocyanates toward alcohols:

𝑚-chlorophenylisocyanate > phenylisocyanate > 𝑝-tolyl isocyanate > 𝑜-tolyl isocyanate.

Baker et al. [9, 11, 13] proposed that alcohol and isocyanate first form a complex which then

reacts with a second alcohol molecule to form the product and release an alcohol molecule.

Zaplatin et al. [222] studied the reaction of phenyl isocyanate with 𝑛-butanol in amides

and dimethyl sulfoxide and proposed that the reaction is faster in these solvents because an

alcohol-solvent complex is formed. Chang and Chen [49] showed that, considering a second-

order rate law (first order in both phenyl isocyanate and isobutanol), the observed rate con-

stant increases with the ratio [alcohol]0/[isocyanate]0. Plotting the data from Table IV of

[49], it appears that 𝑘obs is approximately constant until [alcohol] ≈ 0.8[phenylisocyanate]

and for all higher concentrations of alcohol, there is a linear trend of increasing 𝑘obs. Side

products of the reactions of isocyanates with nucleophiles are given in Figure 6 of [216], and

include uretdiones, isocyanurates, allophanates, and biurets. In a batch reaction between

an isocyanate and an alcohol described in [169], carbamate was the primary product and

allophanate was the next most abundant product. Schwetlick and Noack [169] claimed that

the isocyanurate cyclotrimer is built up via a linear trimer adduct.

4.1.1 Overview of optimal experimental design procedure

Following is the sequence of steps we used to design and execute optimal dynamic experi-

ments and discriminating between candidate models.

1. Gather system model(s) to be compared.
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2. Implement the system model(s) in a dynamic simulation environment such as an ordi-

nary differential equation (ODE) or differential-algebraic equation (DAE) simulator.

3. Select initial guesses for model parameters for each candidate model. For example,

these initial guesses for the parameters may come from intuition, molecular modeling,

or literature on similar systems. If insufficient information is available to select initial

guesses for model parameters, design a simple experiment that explores the exper-

imental space by varying flowrates, temperatures, etc. throughout their permissible

ranges at permissible rates of change (e.g., temperature cannot be changed instanta-

neously). Our initial experimental conditions are depicted in Figure 4-1. Estimate

parameters for each model using these data to minimize 𝜒2.

4. Design experiments to distinguish between models by maximizing their predicted de-

viations from one another; perform experiments; estimate parameters and calculate

optimal 𝜒2 values.

5. Reject models with excessive lack-of-fit (e.g., based on 𝜒2 test).

6. If no models remain, select/generate additional models and go to step 2.

7. If two or more models remain, update the model parameters to the new fits from step

4, then begin the process again at step 4.

4.2 Experimental and computational methods

To perform the dynamic experiments, we used three syringe pumps (Harvard Apparatus

PHD2000) to feed PhNCO and 𝑡BuOH solutions in DMF as well as neat DMF, into a silicon

microreactor. For the initial experiment, concentrations of PhNCO and 𝑡BuOH were both

1.0 M; for the optimized experiment, both were 2.0 M. An FTIR flow cell (Mettler Toledo

FlowIR) was used to estimate concentrations and National Instruments LabVIEW was used

to control the syringe pump flow rates, send the temperature set point to the temperature

controller, and write IR absorption data to the master output file. See Figure 4-2. At

startup, to purge the system of any gas bubbles rapidly and without using any expensive
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Figure 4-1: Experimental conditions for manually-designed initial experiment used to esti-
mate parameters for all candidate models.

starting materials, the system was first flushed with neat solvent at 120 𝜇L/min until no

gas bubbles were visible in the microreactor or tubing.

The microfabricated silicon microreactor had the specifications described by McMullen

and Jensen [128]. In particular, a reaction volume of 120 𝜇L consisting of a channel with

0.4 mm×0.4 mm square cross section and a quench volume of 14.25 𝜇L [153].

IR calibration curves were made for PhNCO and PhNHBoc using at least six samples

with concentrations from 0 to 1.0 M with at least two measurements per sample. Note:

PhNCO is a lachrymator and should be handled in a fume hood. We made PhNHBoc for

IR calibration: to a round-bottom flask were added 3 g of PhNCO, 2.5 eq of 𝑡BuOH and

18 g of toluene. The mixture was heated to reflux for 4 h and concentrated to a crystalline

solid powder under vacuum. Yield of crude product was 94%. 1H-NMR was used to confirm

product identity as PhNHBoc (S4.6.2). Crude product was used for FTIR calibration curve.

To estimate concentration data from IR data, we used the ranges 2350–2285 cm−1 for

PhNCO and 1166–1162 and 1319–1315 cm−1 for PhNHBoc. These ranges were found to

give the most accurate calibrations among wavenumbers for which all other known species
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fractional factorial.48 Rate constants were estimated by minimiz-
ing the sum of squared errors. Computationally, this estimation
was achieved in Matlab using a nonlinear optimization solver
(fmincon) using the active-set algorithm for models rI-rIII and
the interior-point algorithm for model rIV. The model responses,
predictions, and sensitivities were estimated using a PFR model
for each rate model and a differential equation solver (ode15s).
As will be discussed later, a PFR model is appropriate over the
range of experimental conditions that were investigated. After
these four preliminary experiments, sequential experiments used
the previous rate constant solution as the initial guess.
Once the preliminary experiments were performed and the

best-fit rate constants and the model variances were computed,
the fifth and subsequent experiments were determined by finding
the conditions that maximized D of eq 2. Because the isoprene
outlet concentration was modeled by numerically solving the
differential rate equations, determining the global minimum ofD
using nonlinear optimization solvers was deemed too computa-
tionally expensive for the solution purpose and problem size.
Instead, the parameter space was discretized to grid points
defined by residence times between 1 and 10 min in intervals
of 0.5 min and 1 and 2 inlet concentrations between 0.5 and
2.0 M in increments of 0.25 M. Values of D were explicitly
enumerated, and the sequential experiments were determined by
locating the grid point with the maximum D value. Experimenta-
tion continued until the Bayesian posterior probability of rate
model surpassed 95%, or if it was determined that discrimination
could no longer be achieved.
Online Parameter Estimation. After determining the correct

rate law, the automatedmicroreactor systemwas used to estimate
the pre-exponential and the activation energy parameters of the
rate constant. Similar to the model discrimination investigation,
the isoprene reactor outlet concentration was modeled with PFR
kinetics. However, the laminar flow in microfluidics creates a

parabolic velocity profile that results in axial dispersion.49 The
degree of dispersion and the discrepancy between the PFR and
the laminar flow reactor kinetic models is dependent upon the
experimental conditions. To avoid the complications of model-
ing the reaction environment as a laminar flow reactor, computer
simulations were performed to determine a range of experimental
conditions where the effects of dispersion would be minimal and
where modeling the reaction with PFR kinetics would be satisfac-
tory. This approach and the simulated results are located in the
Supporting Information. The results indicated that an appropriate
design space for this kinetic study was the region bounded by
50-150 !C and residence times between 1 and 10 min.
Experiments for parameter estimation followed the D-optimal

design framework and used temperature and residence time as
variables. The design space was discretized to form a grid of
potential experiments, corresponding to temperatures between
50! and 150 !C in increments of 10 !C and residence times
between 1 and 10 min in intervals of 0.5 min. The reactor inlet
concentrations of 1 and 2 remained constant during these
experiments at 1.0 M. Four preliminary experiments correspond-
ing to a full factorial were performed to arrive at initial estimates
for the pre-exponential and activation energy. Parameter estima-
tion was performed byminimizing the sum of squared errors with
a nonlinear optimization solver in Matlab. The estimates were
substituted into the Fisher Information matrix (see eq 4) and
sequential experiments were selected by locating the experimen-
tal point that satisfied eq 5. Sequential experimentation contin-
ued until the activation energy estimate (Ea) and 95% confidence
intervals (ΔEa) converged according to eqs 10 and 11. This
confidence interval provides the upper and lower bounds on the
values for Ea in the joint confidence region described by eq 3.
Although developing termination criteria based on the actual
joint confidence region could provide more insight to the
parameter estimates, the 95% confidence intervals are

Figure 1. Sketch of automated microreactor system for online model discrimination and parameter estimation. The red-shaded zone of the
microreactor indicates the reaction zone, and the portion of the reactor maintained at 20 !C is denoted by the blue shaded area. The high thermal
conductivity of silicon and the small reactor channel width ensures that the reactionmixture is cooled before exiting the microreactor, thereby quenching
this Diels-Alder reaction.

FTIR 
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waste
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from PC

data from FTIR flow cell

temperature set points from PC

Figure 4-2: Experimental apparatus used a PC to control inlet flow rates of reactants, inlet
flow rate of neat solvent, and temperature of microreactor while collecting IR data. Solid
lines show material flow; dot-dashed lines show information flow.

in the system absorbed weakly. Although this led to larger mean squared error in the cali-

bration curves than the chemometric techniques described in [202], it produced dramatically

smoother time-series data than the chemometric techniques. This is because chemometric

techniques work best when using a training data set with samples containing known con-

centrations of all species that will occur in the experimental mixture, whereas we gathered

data from one species in solvent at a time.

We considered five candidate models for the reaction of PhNCO with 𝑡BuOH (Table 4.1).

Table 4.1: Five kinetic models were considered. In all cases, we used the Arrhenius
temperature-dependence 𝑘 = 𝑘0 exp(−𝐸𝑎/(𝑅𝑇 )) and the free parameters 𝑘0 and 𝐸𝑎.

name rate expression

m01 𝑘𝐶0
PhNCO𝐶

1
𝑡BuOH

m10 𝑘𝐶1
PhNCO𝐶

0
𝑡BuOH

m11 𝑘𝐶1
PhNCO𝐶

1
𝑡BuOH

m12 𝑘𝐶1
PhNCO𝐶

2
𝑡BuOH

m21 𝑘𝐶2
PhNCO𝐶

1
𝑡BuOH

4.2.1 Dynamic model for time-varying experiments

For design of time-varying experiments, as well as subsequent analysis of experimental data

to discriminate between models and estimate parameter values, a DAE model was simulated

in the process simulator Jacobian (RES Group, Inc.). The nonlinear optimizer initiates a
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Jacobian simulation whose output is used to calculate the objective function (𝜒2 for param-

eter estimation, divergence between models as in [43] for designing model discrimination

experiments, or determinant of the Fisher information matrix [35, 210] for designing pa-

rameter estimation experiments). The decision variables in the nonlinear optimizer vary

depending on the problem currently being solved. For parameter estimation problems, the

decision variables are the model parameters whereas for experimental design problems, the

decision variables are the control parameters.

Jacobian was selected for the simulation for two primary reasons. First, it exploits the

sparsity of the dynamic system—the fact that there are of hundreds or thousands of state

variables and equations but most variables only appear in a handful of the equations—

to simulate the system very efficiently. Second, it allowed separating the physical models

for the microreactor, quench, and IR flow cell from the models for the chemistry. This

minimized the amount of redundant lines of modeling code to avoid repetition for each new

sequence of conditions when a new experiment is performed and whenever changes are made

to the experimental apparatus.

A dynamic model for the microreactor was derived, assuming incompressible solutions

and cross-sectionally uniform concentration, yielding the following partial differential equa-

tion (PDE) in time and the axial spatial dimension:

𝜕𝐶𝑖

𝜕𝑡
+ 𝑣𝑥

𝜕𝐶𝑖

𝜕𝑥
= 𝐷𝑖

𝜕2𝐶𝑖

𝜕𝑥2
+𝑅𝑖, 𝑖 = 1, . . . , 𝑛species.

The Peclet number (Pe) is very large for our system (about 105), indicating that trans-

port is dominated by convection rather than diffusion. Since centered differences can yield

unphysical oscillations for large values of Pe, upwind differences [16] were used for the first-

order derivatives in the finite-volume model. We used 30 finite volumes for the reaction

portion and 10 finite volumes for the quench portion and tubing between quench and IR
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flow cell. Discretizing the PDE yields the ordinary differential equation (ODE):

𝑑𝐶𝑖,𝑗

𝑑𝑡
= −𝑣𝑥

𝐶𝑖,𝑗 − 𝐶𝑖,𝑗−1

Δ𝑥
+𝐷𝑖

𝐶𝑖,𝑗−1 + 𝐶𝑖,𝑗+1 − 2𝐶𝑖,𝑗

(Δ𝑥)2
+𝑅𝑖𝑗 ,

𝑖 = 1, . . . , 𝑛species, 𝑗 = 1, . . . , 𝑛mesh.

Upwind differences can yield excessive “numerical diffusion” as an artifact. To check for

this phenomenon, we used step functions in the input flow rates of reactants. The shapes

of the time-course experimental concentration measurements agreed closely with those of

the simulation (Figure 4-3), validating our finite-volume model. The step functions also

helped ensure good synchronization of IR measurement data to the experimental condi-

tions. Simulations reported for this 120 𝜇L microreactor in the supporting information of

[128] indicated that, under the conditions reported there, the reactor would be adequately

modeled by plug flow for residence times of 1–10 min and temperatures of 50–150∘C. We

expected the Boc group formed in the coupling reaction to decompose at significant rates

at about 150∘C [3] and appreciable rates as low as 130∘C [213], which was not accounted

for in our kinetic model. Therefore, we kept the reactor temperature below 130∘C after

completing the initial experiment.

The gradient-based optimization solver SNOPT [74] was used to optimize the model,

which was simulated using Jacobian. SNOPT has often been favored for optimal control

problems because it only requires first derivatives and it typically requires relatively few

objective function evaluations. Since the objective function evaluation requires a dynamic

simulation, it dominates the computational cost of the optimization and fewer objective

function evaluations implies less CPU time. The optimization was repeated from at least

20 random initial guesses for the model parameters since problems of this type tend to be

nonconvex and have suboptimal local minima [188].
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Figure 4-3: Plot of time-series data for manually-designed experiment (Figure 4-1) and best-
fitting dynamic model, m11. Points show experimental data from IR; curves show model
fit. The first 3500 seconds of data show that the amount of dispersion in the dynamic model
closely approximates the dispersion in the experimental data since there is a similar level
of smoothing of step functions of PhNCO concentration in model and experiment. This
experiment used about 7 mmol of PhNCO and 6 mmol of 𝑡BuOH.
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4.3 Results and discussion

4.3.1 Lack of fit for each model considered

After performing the initial experiment with time-varying conditions given in Figure 4-1,

we fit the parameters to the data for each model in turn by minimizing 𝜒2 in the dynamic

simulation. The best-fit parameter and 𝜒2 values for each kinetic model (Table 4.1) are

shown in Figure 4-4. The best fits for models m11 and m21 were of similar quality, whereas

those for the remaining models were significantly poorer. See the Figure 4-3 for the fit

of the best model, m11, to the data from the initial experiment. Having eliminated all

models except m11 and m21 from consideration, we designed an experiment to discriminate

between those two following the methods of Buzzi-Ferraris and Manenti [43]. Essentially, we

used the best-fit model parameters obtained from the initial experiment and maximized the

differences in predicted measurements (weighted by their uncertainties) for the two models.

The designed experimental conditions are shown in Figure 4-5.

0 1000 2000 3000 4000 5000 6000 7000 8000
χ2  (lack of fit)

m01
m10
m12
m21
m11

ki
ne

tic
 m

od
el

model 𝑘0 (M−1s−1) 𝐸𝑎 (kJ/mol)

m11 7.15×101 28.0
m21 1.28×103 34.2
m12 4.27×102 29.5
m10 2.37×101 31.5
m01 5.85×106 73.3

Figure 4-4: Models m11 and m21 show similar lack of fit; remaining three models give
substantially worse fits, with 2 to 4.4 times more error than the best model, and can be
eliminated from further experimentation.
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Figure 4-5: Experimental conditions for optimal dynamic experiment to discriminate be-
tween models m11 and m21.

4.3.2 Results of model discrimination experiment

After designing and executing an experiment to discriminate between the remaining candi-

date models, m11 and m21, we plotted the simulated trajectories of PhNCO and PhNHBoc

concentration using the parameter values found using only the initial experiment. The

discriminating experiment succeeded in driving the concentration trajectories apart (Fig-

ure 4-6).

Next, we used all data from the initial and model discrimination experiments simultane-

ously to estimate the best-fit parameters for models m11 and m21. Although this improved

the fit of model m21 to the new experimental data significantly, it became clear that model

m11 was significantly better at predicting all of the experimental data for the two different

experiments, since model m11 had 𝜒2 = 2115.4 whereas model m21 had 𝜒2 = 2441.3. See

Figure 4-7. The values of 𝜒2 stated were calculated assuming that the only source of error

in the experiment is the IR measurement. Although this indicates both models are likely

to be inadequate based on the 𝜒2 tests, it also indicates that model m11 is 1026 times more
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Figure 4-6: Simulated trajectories and experimental data for model discrimination exper-
iment using best-fit parameter values from initial experiment only. Top: model m11,
𝜒2 = 652.3; bottom: model m21, 𝜒2 = 65101.6. This experiment used about 10 mmol
each of PhNCO and 𝑡BuOH.

161



probable than model m21.

4.3.3 Reasons for imperfect fit

There are a few reasons for imperfect fits in the dynamic model. First, there may be

reactions occurring that are not present in our model, such as Boc deprotection, which

occurs at significant rates at temperatures around 130∘C or higher [3, 213], and the for-

mation of side products. Second, the dynamics of heating of the silicon microreactor via

the aluminum chuck are not modeled. The temperature of the microreactor is assumed to

be equal to the set point at all times. We chose temperature ramp rates sufficiently small

(between −2∘C/min and +3∘C/min) that temperature of the microreactor followed the set

point within ±2∘C. McMullen [127, Chapter 4] also showed that with proper tuning of the

temperature controller, the temperature of the microreactor closely follows the set point.

Third, syringe pumps are known to be imperfect in their delivery of material. In some

cases, the flowrates delivered by multiple syringe pumps have been observed to oscillate; we

mitigated this effect by used a 250-psi backpressure regulator to give a relatively constant

resistance to the syringe pumps, with the added benefit of preventing 𝑡BuOH from boiling

at the elevated temperatures used in our experiments.

4.3.4 Prediction accuracy for reactor performance at steady state

To validate the model discrimination and parameter estimation techniques used, the system

was run to steady state at selected residence times and temperatures out of the permissi-

ble ranges of 1–10 minutes and 50–130∘C. Model m11 with the best-fit parameters from

the combined experiment was used to calculate the theoretical concentrations of phenyliso-

cyanate and N-Boc-aniline at steady state. The root mean square (RMS) errors for PhNCO

and PhNHBoc predictions were 0.071 M and 0.078 M, respectively. See Figure 4-8.

4.4 Conclusion

We used a microreactor system with online FTIR spectroscopy to execute optimal dynamic

experiments to validate a dynamic model of the microreactor system, distinguish between

162



0 4000 8000 12000
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

co
nc

en
tr

at
io

n 
(m

ol
/L

)

0 4000 8000 12000
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

PhNCO
PhNHBoc

0 4000 8000 12000
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

co
nc

en
tr

at
io

n 
(m

ol
/L

)

0 4000 8000 12000
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4-7: Simulated trajectories and experimental data for both initial experiment and
optimal experiment for model discrimination using best-fit parameter values obtained using
all experimental data. Top: model m11, 𝜒2 = 2115.4, 𝑘0 = 63 M−1 s−1, 𝐸𝑎 = 27 kJ/mol;
bottom: model m21, 𝜒2 = 2441.3, 𝑘0 = 1400 M−2 s−1, 𝐸𝑎 = 33 kJ/mol. Points show
experimental data; curves show simulated concentrations.
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candidate chemical kinetic models, and estimate best-fit kinetic parameters. Such experi-

ments have the potential to reduce experimental time and material used, with commensurate

reduction in cost, by obtaining information at a higher rate per unit of time and material.

In particular, the initial time-varying experiment used about 7 mmol of PhNCO and 6

mmol of 𝑡BuOH over 3.5 hours and provided useful data at 377 time points and allowed

rejecting three of the five models whereas the steady-state experiments used about 10 mmol

each of PhNCO and 𝑡BuOH over 2.3 hours and provided data at 8 different experimental

conditions. Applying the 𝜒2 test to the steady-state experimental data is insufficient to

reject any of the five models. Furthermore, the steady-state experiments, having used fixed

feed concentrations of PhNCO and 𝑡BuOH both equal to 2.0 M, cannot distinguish model

m21 from m12 nor model m10 from m01.

Going forward, we recommend microreactor experiments with two or three initial step

functions in concentration to verify proper synchronization between experimental condi-

tions and IR data measurement as well as adequate modeling of the fast dynamics of the

physical system. Such step functions could be followed by further step or ramp functions for

programming simplicity, or by control functions discretized using orthogonal polynomials

such that the control profiles are smooth, making the DAE simulation more CPU-efficient.

On-line HPLC as used in previous studies [128] would also be helpful to determine online

the number of species of significant concentration, to see whether the model captures the

correct number of species and to validate the concentrations estimated using IR.
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4.6 Supporting information

4.6.1 Experimental and computational details

The effective diffusion coefficient including numerical diffusion from discretization with up-

wind differences is given by [87]

𝐷eff = 𝐷 +
𝑣Δ𝑧

2
,

where 𝐷 is the true physical diffusion coefficient, 𝑣 is the superficial velocity of the fluid,

and Δ𝑧 is the length of a finite control volume used in the discretization. For our system,

the values are:

Δ𝑧 =
𝑉rctr

𝑛mesh𝐴XS
=

120 mm3

30 · 0.4 mm · 0.4 mm
= 25 mm,

𝑣max =
𝑄max

𝐴XS
=

120 mm3/min

0.4 mm · 0.4 mm
= 750 mm/min = 12.5 mm/s,

𝐷 = 2×10−3 mm2/s,

𝐷eff,max = 𝐷 +
𝑣maxΔ𝑧

2
= 2×10−3 mm2/s +

12.5 mm/s · 25 mm

2
= 2×10−3 mm2/s + 156.25 mm2/s,

= 7.8126×104𝐷.

Although the effective diffusion coefficient is five orders of magnitude larger than the molec-

ular diffusion coefficient, we still obtained accurate modeling of the smoothing of step func-

tions in concentration input to the system. In the physical system, we expect the effective

diffusivity, or dispersivity, to be larger than the molecular diffusivity due to the nonuniform

velocity profile in the channel of the reactor. Deen [60, S9.7] gives the following formula for

dispersivity, 𝐾, for flow in a tube, which in turn is based on [6, 196]:

𝐾 = 𝐷

(︂
1 +

Pe2

192

)︂
= 𝐷 +

𝑣𝑟2

48𝐷
.
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The square channel in the reactor is 0.4 mm×0.4 mm. If we take use 0.2 mm for the radius

𝑟 in the formula, we obtain:

𝐾max = 𝐷 +
𝑣max𝑟

2

48𝐷
= 2×10−3 mm2/s +

12.5 mm/s(0.2 mm)2

48 · 2×10−3 mm2/s
,

= 5.2103 mm2/𝑠,

= 2.6052×103𝐷,

which is about 30 times smaller than the numerical diffusion estimate. Therefore, we would

expect the effective dispersion in the simulation to be about 30 times greater than the

dispersion in the true system.

The coefficient of thermal expansion of all solutions was taken to be 0.75×10−3 K−1 as

measured in [64] for pure DMF.
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4.6.2 1H-NMR spectra for crude N-Boc-aniline product from batch reac-

tion
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Chapter 5

Conclusions and outlook

5.1 Summary of contributions

The two most significant contributions in this thesis are the software for deterministic

global dynamic optimization (GDO) (Chapter 2) and the convergence-order analysis of

auxiliary-ODE-based bounds and relaxations of the solutions of ODEs (Chapter 3). The

GDO software, named dGDOpt, gives CPU times up to 90 times faster than methods

published in 2006 by Singer and Barton [187] and up to 60 times faster than recently

published methods from Sahlodin’s thesis [162] on certain problems. In Chapter 3, it was

shown for the first time that the bounds [186] and relaxations [174, 177] on the solutions

of ODEs have first- and second-order convergence, respectively, under mild assumptions.

It was also shown for the first time that certain of these computationally efficient bounds

and relaxations can shed conservatism over time, for example, if the bounds or relaxations

at the initial condition are overly conservative. In contrast, it was also shown that other,

more näıve, methods for computing bounds and relaxations can only become looser as time

goes on, as pointed out by [174].

In Chapter 4, optimal experimental design (OED), also known as model-based design

of experiments, was applied to design time-varying experiments for microreactor systems

for estimation of kinetic model parameters and discrimination between candidate kinetic

models. To our knowledge, time-varying experiments for microreactors have never been

designed using OED techniques nor have time-varying experiments as general as those
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here been used to estimate parameters or distinguish between models in microreactors.

The dynamic simulations embedded in the parameter estimation problems had up to 1,422

state variables and 57 control parameters and those embedded in the experimental design

optimization problems had up to 11,845 state variables (2,776 differential).

5.2 Outlook

Following on from this thesis, there are plans to extend dGDOpt to be able to solve problems

with differential algebraic equations (DAEs) embedded, making it applicable to more general

dynamic systems. There are also plans to develop and test the performance of new relaxation

methods for ODEs. With the series of refinements that have been made in this thesis to

the branch-and-bound (or, more aptly, branch-and-reduce) implementation and the results

shown when using a linear programming solver for the lower-bounding problem and the

relative efficiencies of the different bounding and relaxation methods in the ODE case, future

workers are positioned to achieve much better results than they would if using a simplistic

branch-and-bound routine with bisection on the decision variable with the largest absolute

diameter and no domain reduction.

From the convergence analysis work of Chapter 3, it is now clearer why relaxation-

preserving dynamics [174] are so far superior to relaxation-amplifying dynamics [177]. It

would be instructive to undertake a similar analysis for global dynamic optimization meth-

ods based on Taylor models [114–117] and McCormick-Taylor models [162, 163] to show

the convergence order and the dependence of the conservatism of the bounding method on

time.
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Appendix A

Convergence of convex relaxations

from McCormick’s product rule

when only one variable is

partitioned (selective branching)

The following lemma is useful if we want to branch on a subset of the problem variables

(whose host set is called 𝑌 in the lemma) but still achieve linear convergence. The assump-

tions are similar to, but not the same as, [65, Conditions W]. The following result is valid

if Condition W.6(a) holds but is not valid if only Condition W.6(b) holds.

Lemma A.0.1. Let 𝑋 ⊂ R𝑛𝑥, 𝑌 ⊂ R𝑛𝑦 , c ⊂ R𝑛𝑥, 𝑣𝑋 : 𝑋 ∋ x ↦→ cTx ∈ R, 𝑣𝑌 : 𝑌 → R.

We use 𝑣𝑋 as the scheme of estimators for itself, since it is convex and concave. Let 𝑣𝑌 be

locally Lipschitz on 𝑌 . Let 𝑉 𝐵
𝑋 , the inclusion function for 𝑣𝑋 , be inclusion monotonic and

let 𝑉 𝐵
𝑌 , the inclusion function for 𝑣𝑌 , have Hausdorff convergence of order at least 1. Let

𝑉 𝐶
𝑌 , the scheme of estimators for 𝑣𝑌 , have pointwise convergence of order at least 1 in 𝑌 .

Let 𝑔 : 𝑋 × 𝑌 → R : (x,y) ↦→ 𝑣𝑋(x)𝑣𝑌 (y). Let 𝐺𝐶 ≡ [𝑔𝑐𝑣, 𝑔𝑐𝑐] be the relaxations of 𝑔 given

by the scheme of McCormick [125]. Then for every compact 𝑌 ′ ⊂ 𝑌 and every 𝑋 ′ ∈ I𝑋,
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∃𝜏 ∈ R+ such that 𝐺𝐶 satisfies

sup
x∈ ̂︀𝑋,y∈̂︀𝑌 𝑤

(︁
𝐺𝐶(( ̂︀𝑋, [x,x]), (̂︀𝑌 , [y,y]))

)︁
≤ 𝜏𝑤

(︁
̂︀𝑌
)︁
, ∀( ̂︀𝑋, ̂︀𝑌 ) ∈ I𝑋 ′ × I𝑌 ′.

Proof. Choose any compact 𝑌 ′ ⊂ 𝑌 . Choose any ̂︀𝑋 ∈ I𝑋, ̂︀𝑌 ∈ I𝑌 ′ and (x,y) ∈ ̂︀𝑋 × ̂︀𝑌 .

We can combine inequalities (4), (5), and (8) from [32, Proof of Theorem 4] to obtain:

|𝑔(x,y)− 𝑔𝑐𝑣(( ̂︀𝑋, [x,x]), (̂︀𝑌 , [y,y]))|

≤ (𝑣𝑋(x)− 𝑣𝐿𝑋( ̂︀𝑋))(𝑣𝑌 (y)− 𝑣𝐿𝑌 (
̂︀𝑌 ))

+ |𝑣𝐿𝑋( ̂︀𝑋)|max{𝑣𝑌 (y)− 𝑣𝑐𝑣𝑌 ((̂︀𝑌 , [y,y])), 𝑣𝑐𝑐𝑌 ((̂︀𝑌 , [y,y]))− 𝑣𝑌 (y)}

+ |𝑣𝐿𝑌 (̂︀𝑌 )|max{𝑣𝑋(x)− 𝑣𝑐𝑣𝑋 (( ̂︀𝑋, [x,x])), 𝑣𝑐𝑐𝑋(( ̂︀𝑋, [x,x]))− 𝑣𝑋(x)}.

(A.1)

Since 𝑣𝑋(x) ∈ 𝑉 𝐵
𝑋 ( ̂︀𝑋) and 𝑣𝑌 (y) ∈ 𝑉 𝐵

𝑌 (̂︀𝑌 ), we have:

(𝑣𝑋(x)− 𝑣𝐿𝑋( ̂︀𝑋))(𝑣𝑌 (y)− 𝑣𝐿𝑌 (̂︀𝑌 )) ≤ 𝑤
(︁
𝑉 𝐵
𝑋 ( ̂︀𝑋)

)︁
𝑤
(︁
𝑉 𝐵
𝑌 (̂︀𝑌 )

)︁
. (A.2)

Similarly we know that the factors are bounded by the schemes of estimators, 𝑣𝑋(x) ∈

𝑉 𝐶
𝑋 (( ̂︀𝑋, [x,x])) and 𝑣𝑌 (y) ∈ 𝑉 𝐶

𝑌 ((̂︀𝑌 , [y,y])), so that:

|𝑣𝐿𝑋( ̂︀𝑋)|max{𝑣𝑌 (y)− 𝑣𝑐𝑣𝑌 ((̂︀𝑌 , [y,y])), 𝑣𝑐𝑐𝑌 ((̂︀𝑌 , [y,y]))− 𝑣𝑌 (y)} ≤ |𝑣𝐿𝑋( ̂︀𝑋)|𝑤
(︁
𝑉 𝐶
𝑌 ((̂︀𝑌 , [y,y]))

)︁
,

|𝑣𝐿𝑌 (̂︀𝑌 )|max{𝑣𝑋(x)− 𝑣𝑐𝑣𝑋 (( ̂︀𝑋, [x,x])), 𝑣𝑐𝑐𝑋(( ̂︀𝑋, [x,x]))− 𝑣𝑋(x)} ≤ |𝑣𝐿𝑌 (̂︀𝑌 )|𝑤
(︁
𝑉 𝐶
𝑋 (( ̂︀𝑋, [x,x]))

)︁
.

(A.3)

By substituting (A.2) and (A.3) into (A.1), it follows that

|𝑔(x,y)− 𝑔𝑐𝑣(( ̂︀𝑋, [x,x]), (̂︀𝑌 , [y,y]))|

≤ 𝑤
(︁
𝑉 𝐵
𝑋 ( ̂︀𝑋)

)︁
𝑤
(︁
𝑉 𝐵
𝑌 (̂︀𝑌 )

)︁
+ |𝑣𝐿𝑋( ̂︀𝑋)|𝑤

(︁
𝑉 𝐶
𝑌 ((̂︀𝑌 , [y,y]))

)︁
+ |𝑣𝐿𝑌 (̂︀𝑌 )|𝑤

(︁
𝑉 𝐶
𝑋 (( ̂︀𝑋, [x,x]))

)︁
.

(A.4)

Since the scheme of estimators for 𝑣𝑋 is exact, we know that 𝑤(𝑉 𝐶
𝑋 (( ̂︀𝑋, [x,x]))) = 0, so
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(A.4) reduces to

|𝑔(x,y)− 𝑔𝑐𝑣(( ̂︀𝑋, [x,x]), (̂︀𝑌 , [y,y]))|

≤ 𝑤
(︁
𝑉 𝐵
𝑋 ( ̂︀𝑋)

)︁
𝑤
(︁
𝑉 𝐵
𝑌 (̂︀𝑌 )

)︁
+ |𝑣𝐿𝑋( ̂︀𝑋)|𝑤

(︁
𝑉 𝐶
𝑌 ((̂︀𝑌 , [y,y]))

)︁
.

(A.5)

Since 𝑉 𝐵
𝑋 is inclusion monotonic, 𝑤(𝑉 𝐵

𝑋 ( ̂︀𝑋)) ≤ 𝑤(𝑉 𝐵
𝑋 (𝑋 ′)) and |𝑣𝐿𝑋( ̂︀𝑋)| ≤ |𝑣𝐿𝑋(𝑋 ′)| for any

̂︀𝑋 ∈ I𝑋 ′, so we have

|𝑔(x,y)− 𝑔𝑐𝑣(( ̂︀𝑋, [x,x]), (̂︀𝑌 , [y,y]))|

≤ 𝑤
(︀
𝑉 𝐵
𝑋 (𝑋 ′)

)︀
𝑤
(︁
𝑉 𝐵
𝑌 (̂︀𝑌 )

)︁
+ |𝑣𝐿𝑋(𝑋 ′)|𝑤

(︁
𝑉 𝐶
𝑌 ((̂︀𝑌 , [y,y]))

)︁
.

(A.6)

Since 𝑣𝑌 is Lipschitz on the compact set 𝑌 ′ and its inclusion function 𝑉 𝐵
𝑌 has Hausdorff

convergence at least 1, we know there exist 𝐿, 𝜏1 ∈ R+ such that for whichever ̂︀𝑌 ∈ I𝑌 ′ we

have chosen,

𝑤
(︁
𝑉 𝐵
𝑌 (̂︀𝑌 )

)︁
≤ 𝑤

(︁
𝑣𝑌 (̂︀𝑌 )

)︁
+ 2𝑑𝐻

(︁
𝑣𝑌 (̂︀𝑌 ), 𝑉 𝐵

𝑌 (̂︀𝑌 )
)︁

≤ (𝐿+ 2𝜏1)𝑤
(︁
̂︀𝑌
)︁
,

(A.7)

where 𝑣𝑌 (̂︀𝑌 ) denotes the exact image of ̂︀𝑌 under 𝑣𝑌 . Substituting (A.7) into (A.6), we

have

|𝑔(x,y)− 𝑔𝑐𝑣(( ̂︀𝑋, [x,x]), (̂︀𝑌 , [y,y]))|

≤ 𝑤
(︀
𝑉 𝐵
𝑋 (𝑋 ′)

)︀
(𝐿+ 2𝜏1)𝑤

(︁
̂︀𝑌
)︁
+ |𝑣𝐿𝑋(𝑋 ′)|𝑤

(︁
𝑉 𝐶
𝑌 ((̂︀𝑌 , [y,y]))

)︁
.

(A.8)

Next, use the known pointwise convergence of the scheme for 𝑣𝑌 , which means ∃𝜏2 ∈ R+

such that for whichever ̂︀𝑌 ∈ I𝑌 we have chosen,

sup
y∈̂︀𝑌 𝑤

(︁
𝑉 𝐶
𝑌 ((̂︀𝑌 , [y,y]))

)︁
≤ 𝜏2𝑤

(︁
̂︀𝑌
)︁
, (A.9)
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so that (A.8) becomes

|𝑔(x,y)− 𝑔𝑐𝑣(( ̂︀𝑋, [x,x]), (̂︀𝑌 , [y,y]))|

≤ 𝑤
(︀
𝑉 𝐵
𝑋 (𝑋 ′)

)︀
(𝐿+ 2𝜏1)𝑤

(︁
̂︀𝑌
)︁
+ |𝑣𝐿𝑋(𝑋 ′)|𝜏2𝑤

(︁
̂︀𝑌
)︁
.

(A.10)

Take 𝜏3 = 𝑤(𝑉 𝐵
𝑋 (𝑋 ′))(𝐿+ 2𝜏1) + |𝑣𝐿𝑋(𝑋 ′)|𝜏2, so that (A.10) becomes

|𝑔(x,y)− 𝑔𝑐𝑣(( ̂︀𝑋, [x,x]), (̂︀𝑌 , [y,y]))| ≤ 𝜏3𝑤
(︁
̂︀𝑌
)︁
. (A.11)

Since the constant 𝜏3 does not depend on x or y, we can take the supremum

sup
x∈ ̂︀𝑋,y∈̂︀𝑌 |𝑔(x,y)− 𝑔𝑐𝑣(( ̂︀𝑋, [x,x]), (̂︀𝑌 , [y,y]))| ≤ 𝜏3𝑤

(︁
̂︀𝑌
)︁
. (A.12)

Note also that 𝜏3 does not depend on ̂︀𝑋 or ̂︀𝑌 , and a similar result holds for

sup
x∈ ̂︀𝑋,y∈̂︀𝑌 |𝑔𝑐𝑐(( ̂︀𝑋, [x,x]), (̂︀𝑌 , [y,y]))− 𝑔(x,y)|,

so the result follows.

Linear convergence in the case of selective branching is the strongest result that can be

proven, as the following example shows.

Example A.0.2. Consider the McCormick relaxation of 𝑓 : 𝑋 × 𝑌 : (𝑥, 𝑦) ↦→ 𝑥𝑦:

𝐹𝐶(([𝑥𝐿, 𝑥𝑈 ], [𝑦𝐿, 𝑦𝑈 ]), ([𝑥, 𝑥], [𝑦, 𝑦]))

= [max{𝑦𝐿𝑥+ 𝑥𝐿𝑦 − 𝑥𝐿𝑦𝐿, 𝑦𝑈𝑥+ 𝑥𝑈𝑦 − 𝑥𝑈𝑦𝑈},

min{𝑦𝑈𝑥+ 𝑥𝐿𝑦 − 𝑥𝐿𝑦𝑈 , 𝑦𝐿𝑥+ 𝑥𝑈𝑦 − 𝑥𝑈𝑦𝐿}].

Figure A-1 shows the linear pointwise convergence of 𝐹𝐶 when only the 𝑌 space is par-

titioned, using ̂︀𝑋 = [−2.5, 12.5] and ̂︀𝑌 = [−2.5 − 𝜀,−2.5 + 𝜀]. It can be seen that

sup
(𝑥,𝑦)∈ ̂︀𝑋×̂︀𝑌 𝑤(𝐹𝐶(( ̂︀𝑋, [𝑥, 𝑥]), (̂︀𝑌 , [𝑦, 𝑦]))) = 7.5𝜀 = 0.5𝑤( ̂︀𝑋)𝜀 = 𝑤( ̂︀𝑋)𝑤(̂︀𝑌 ). See also the

proof of Lemma 3.9.19, where the bound 𝑤( ̂︀𝑋)𝑤(̂︀𝑌 ) is also shown, but used for a different

final result.
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0

1

2

3

4

5

6

7

8

su
p

(x
,y

)
∈X̂

×̂Y
w

(F
C

((
X̂
,[
x
,x

])
,(
Ŷ
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Figure A-1: Example A.0.2 shows linear pointwise convergence of the bilinear form when
only one variable is partitioned.
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Appendix B

Economic analysis of integrated

continuous and batch

pharmaceutical manufacturing: a

case study

This chapter was joint work with Dimitrios I. Gerogiorgis, Rohit Ramachandran, James

M. B. Evans, Paul I. Barton, and Bernhardt L. Trout, and was published in [165].

Abstract

The capital, operating, and overall costs of a dedicated continuous manufacturing process

to synthesize an active pharmaceutical ingredient (API) and formulate it into tablets are

estimated for a production scale of 2000 metric tons of tablets per year, with raw material

cost, production yield, and API loading varied over broad ranges. Costs are compared to

batch production in a dedicated facility. Synthesis begins with a key organic intermediate

three synthetic steps before the final API; results are given for key intermediate (KI) costs of

$100 to $3000/kg, with drug loadings in the tablet of 10 and 50 wt%. The novel continuous

process described here is being developed by an interdisciplinary team of 20 researchers.
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Since yields are not yet well-known, and continuous processes typically have better yields

than batch ones, the overall yields of the continuous processes with recycling were set equal

to that of the batch process. Without recycling, yields are 10% lower, but less equipment

is required. The continuous process has not been built at large scale, so Wroth factors

and other assumptions were used to estimate costs. Capital expenditures for continuous

production were estimated to be 20 to 76% lower, depending on the drug loading, KI cost,

and process chosen; operating expenditures were estimated to be between 40% lower and

9% higher. The novel continuous process with recycling coupled to a novel direct tablet

formation process yields the best overall cost savings in each drug loading/KI price scenario:

estimated savings range from 9 to 40%. Overall cost savings are also given assuming the

yield in the continuous case is 10% above and 10% below that of the batch process. Even

when yields in the continuous case are lower than in the batch case, savings can still be

achieved because the labor, materials handling, CapEx, and other savings compensate.

B.1 Introduction

Continuous manufacturing (CM) is attracting increasing attention within the pharmaceu-

tical industry today because it could lead to significant decreases in production costs while

improving product quality [126, 151]. Historically, production costs were seen as a small

enough part of the overall industry expenses that major cost reductions were not needed.

Regulations also drove production towards the batch mode, since processes were required

to be run in exactly the same way for the lifetime of the therapy. Also, batch production

allows verification of quality of each batch from each process before further processing,

whereas a “batch” in a continuous process is not contained in the same way [112, 208].

Today, however, it is becoming more difficult for pharmaceutical companies to meet profit

expectations, due to increasing research and development (R&D) costs and competition

from generics manufacturers [17]. At the same time, regulatory bodies are shifting the em-

phasis towards process understanding and giving more freedom when such understanding

is demonstrated [89]. For sufficiently large production scales, continuous processes tend

to have lower production costs; CM would also allow manufacturers to use the increased
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process understanding for on-line process control, yielding consistently high-quality product

and less material wasted as off-spec product [99, 155].

A review of the fine and commodity chemical industries demonstrates that CM could

offer both operating expenditure (OpEx) and capital expenditure (CapEx) savings for the

pharmaceutical industry. Labor for transporting material between batch units, labor for

quality assurance/quality control (QA/QC), and in-process inventory (working capital) can

all be significantly reduced in continuous processing [151, 154]. Processing equipment for fine

chemical synthesis can be made much smaller by moving to continuous processing, as well

has having larger surface area to volume ratios, which implies a safer plant (a smaller holdup

of solvents in reactors and enhanced heat transfer for safe handling of highly exothermic

reactions), a smaller investment in reactors, and faster change over in multipurpose plants

[99, 107, 155]. More rapid mixing, reaction, and quenching are possible in continuous

flow [100], enabling reactions that would produce significantly more impurities if run in

batch mode, such as in the first reaction in the novel continuous process presented in

this work. Plant footprint can also be reduced due to smaller processing equipment, with

commensurate energy savings for heating, ventilation, and air conditioning [199].

Pharmaceutical processes often contain continuous or semi-continuous processing steps,

such as milling and tablet compression, but the processes are started and stopped to mirror

the batch processing in other steps. These steps can be more naturally run in a continuous

manner, potentially yielding more consistent product quality [151, 208]. Scaleup of batch

granulation can be difficult, and is sometimes easier in continuous mode, so development

of a needed granulation process could begin on continuous equipment, easing scaleup for

production [112]. Recently, the lack of continuous tablet coating equipment was a bottleneck

for continuous pharmaceutical production [208], but now it is available. Continuous powder

mixing has been shown to perform as needed, with excellent time stability [23].

In addition to cost savings, developing continuous processes early on, using microreactors

for instance, can enhance process understanding early in the patent life of a product, easing

scale-up and leading to additional time during which the product can be sold exclusively

by the patent holder, as well as the ability to bring therapies to ailing people more quickly

[151]. Recent developments in process analytical technology (PAT) will allow manufacturers
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to complete the shift to continuous manufacturing, as long as it proves cost-effective [17].

Despite studies on the individual differences between batch and continuous processing

[151, 154, 155, 199], to date, an integrated analysis of the continuous manufacture of a

final drug product from a late-stage organic KI has not been published. The Novartis-MIT

Center for Continuous Manufacturing (CCM) is focused on a holistic approach where we

consider manufacture of the final drug product from starting materials available as fine

chemicals. In this work we estimate CapEx, OpEx, and present cost of a dedicated batch

process and four continuous processes that are enabled by new technologies developed for

continuous production. While many pharmaceutical production processes use multi-purpose

equipment to manufacture several drugs in partial-year campaigns, very high-volume drugs

are sometimes produced on dedicated equipment.

B.2 Process description

For both the batch and continuous processes, the assessment starts with a late-stage organic

key intermediate (KI) molecule, three synthetic steps before the final active pharmaceutical

ingredient (API), and produces a final drug product: tablets. The production scale is 2000

metric tons of tablets per year, which is on par with the production scale of a very high-

volume “blockbuster” drug. API loadings in the tablet of 10 and 50 wt% were used to

account for variations in API potency. Both processes produce the same drug product. The

batch process has been extensively developed by Novartis, whereas the continuous process

is being developed in the Center for Continuous Manufacturing.

B.2.1 Batch process

The sequence of unit operations for the batch process is given in Figure B-1. The raw

materials requirements and costs for one scenario are given in Table B.1 and Table B.2. We

are not permitted to disclose further details of the process.
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Figure B-1: Process flow diagram for batch (Bx) manufacturing route

B.2.2 Novel CM route (CM1)

The CCM team developed a new synthetic route (CM1; Figure B-2) that utilizes pathways

that are not feasible in a batch process. For example, processing in a continuous-flow reactor

enables a much more rapid deprotection reaction than batch reaction; translating the CM1

route into a standard batch process would result in significant degradation of the product

because the required rate of reagent addition cannot be achieved in batch mode. Also,

the continuous processes save an average of 61% of the annual water usage and 21 wt% of

the annual solvent usage compared to batch. Reactors 1, 2, and 3 are plug-flow reactors.

The crystallizer and combined reactor/crystallizer are agitated tanks. The API synthesis is

coupled with two downstream process options: roller compaction (RC) and a novel direct

tablet formation (DTF) process. RC is a well-established pharmaceutical technology; a

patent application is being prepared for the novel direct tablet formation process, so it is

not described in detail here. Since the yields for the final continuous processes are not

known precisely, yields have been set such that the overall yield for the continuous process
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with recycling for the first reaction (CM1R) is equal to that of the batch process, and the

overall yield of the continuous process without recycling (CM1) is 10% below that of the

batch process. Overall cost savings are also given for the case where overall yield for process

CM1R is 10% below and 10% above that of the batch case. In each case, the overall yield

for process CM1 is 10% below the corresponding yield for process CM1R. The actual yields

that have been demonstrated in bench-scale continuous reactions are bracketed by these

scenarios; it is believed that a mature continuous process will have yields equal to or better

than the batch yields, since the continuous process already has competitive yields despite

being developed for fewer than half as many years, at a much smaller scale, and by fewer

people.

Continuous reactions scale up very predictably and in an economically favorable way

[155]. One issue currently limiting the savings is microreactor plugging or fouling, which

can be observed as an increasing pressure drop across the reactor [99, 155]. The methods

for using microreactors with heterogeneous catalysts or severe precipitation are not mature

[99]. However, several workarounds to the plugging and fouling issue are possible, based

on including strategic solvent choice, flow velocity, temperature, and device geometry [99].

Microreactors have been successfully used to produce hundreds of kg of product in a few

weeks [155].

B.2.3 Novel CM route with recycle (CM1R)

Process CM1R is identical to CM1, except that a single recycle loop and appropriate sep-

aration equipment are added to increase the effective yield (from 86.4% to 98.5%) in the

first step (Reactor 1) of the API synthesis from the KI. Separation equipment and recycle

are essential in order to reduce formation of the primary impurity. Without the separation

step, the primary product of the reaction can undergo a subsequent reaction to form an

impurity. The overall yields (mol drug substance/mol KI) of processes CM1 and CM1R

are 69% and 79%, respectively; that of the batch process is 79%. Even without recycling,

significant savings overall are estimated, due to savings in CapEx, working capital, quality

assurance and control, labor, materials handling, waste handling, and utilities.
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Figure B-2: Process flow diagram for continuous manufacturing route CM1, showing both
options for forming tablets

Table B.1: Raw materials requirements for all processes at 50 wt% API loading
Materials Bx CM1R/DTF CM1/DTF CM1R/RC CM1/RC
Organic reagents 1,955,000 1,597,000 3,112,000 1,597,000 3,112,000
Inorganic reagents 5,508,000 3,659,000 3,659,000 3,659,000 3,659,000
Organic solvents 34,090,000 24,659,000 29,497,000 24,659,000 29,497,000
Water 22,907,000 7,803,000 9,965,000 7,803,000 9,965,000
Excipients and coatings 1,004,000 1,000,000 1,000,000 1,000,000 1,000,000
Total 65,464,000 38,718,000 47,233,000 38,718,000 47,233,000

All values in kg/yr. DTF: direct tablet formation; RC: roller compaction.

B.2.4 Material balances

Material requirements and costs for all processes are given in Tables B.1 and B.2. For

Table B.2, the cost of the KI (one of the organic reagents) is $3000 kg/yr, whereas costs for

other raw materials are from vendor quotes, and are typically much less than $3000/kg.

B.3 Cost analysis methods

Green-field construction of a new, dedicated plant was considered in all cases. A 335-day

working year was considered, with 30 days left for maintenance, cleaning, and startup/shutdown.
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Table B.2: Raw materials costs for all processes at 50 wt% API loading and $3000/kg KI
Materials Bx CM1R/DTF CM1/DTF CM1R/RC CM1/RC
Organic reagents 3,394,145,000 3,375,898,000 3,899,888,000 3,375,898,000 3,899,888,000
Inorganic reagents 2,674,000 4,784,000 4,784,000 4,784,000 4,784,000
Organic solvents 92,356,000 22,864,000 27,263,000 22,864,000 27,263,000
Water 2,182,000 780,000 996,000 780,000 996,000
Excipients and coatings 15,936,000 15,893,000 15,893,000 15,893,000 15,893,000
Total 3,507,293,000 3,420,219,000 3,948,824,000 3,420,219,000 3,948,824,000

All values in $/yr. DTF: direct tablet formation; RC: roller compaction

One production line per plant was assumed. Batch process effective utilization time was

assumed to be 85% for upstream processes and 55% for downstream processes; 95% was

assumed for all continuous processes. This is the percentage of time when the process

equipment is actually processing material. The remaining time is spent filling, emptying,

and cleaning the batch processing unit, or simply waiting for material to be processed.

These assumptions are optimistic for batch production, representing lean batch operations

in dedicated production: According to Vervaet and Remon [208] the overall equipment effec-

tiveness (OEE), a related metric, takes a typical value in batch pharmaceutical production

of 30%, with good processes having 74% and “best-in-class” production lines reaching 92%.

B.3.1 Capital expenditures (CapEx)

B.3.1.1 Equipment size and cost estimation

Vendor price quotations for all process equipment were obtained for both batch and con-

tinuous equipment over a wide range of sizes, and the smallest unit of sufficiently large size

was selected. When price quotations were only available for batch equipment, a 10% price

premium was assumed for continuous units relative to a batch unit of the same size, to

account for the increased process engineering (CapEx) required to operate a process contin-

uously with feedback control, as compared to batch processes which are typically operated

in an open-loop manner. Scaling of cost could be approximated well (𝑅2 ≥ 0.98) by a power

law in the following cases: plug-flow reactor, exponent 0.42; filtration equipment, exponent

0.33; agitated vessel/CSTR/crystallizer, exponent 0.20; dryer, exponent 0.21.
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Table B.3: Selected Wroth Factors [54]
Unit Wroth factor

Distillation tower and internals 4.0
Instrument 4.1
Process tank 4.1
Reactor (factor into appropriate process tanks and other equipment)
Storage tank 3.5
All other equipment 3.5

B.3.1.2 Calculation of overall CapEx from individual process equipment costs

The total cost of processing equipment excluding any ancillary equipment, delivery, electri-

cal, engineering, or piping expenses is termed the FOB (free on board) cost. From delivered

equipment cost (1.05x FOB cost), Wroth factors (Table B.3) were used to calculate delivered

installed equipment cost, which includes ancillary equipment, delivery, electrical, engineer-

ing, and piping costs [54]. Wroth factors allow quick estimation of installation and other

necessary equipment costs, and are commonly used at this stage of an economic analysis.

(Delivered installed equipment cost) = (Wroth factor)×(Delivered equipment cost) (B.1)

Additional CapEx heuristics used in the present analysis are summarized in Table B.4. Since

pharmaceutical production scales are smaller than typical commodity chemical production

scales, and must adhere to stricter hygiene regulations, the additional expenses are expected

to comprise a larger fraction of the CapEx. Thus, the values used were the upper bounds

of the ranges given by [54].

B.3.2 Operating expenditures (OpEx)

Operating expenditures were calculated for KI prices of $100, $500, and $3000/kg. The

heuristics used are summarized in Table B.5. The continuous plant has not been built at

large scale, so the values for labor, materials handling, and QA/QC savings represent our

best estimates at this time. For example, OpEx savings are expected in QA/QC since some

manual sampling and analysis can be replaced by on-line analysis.
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Table B.4: Summary of CapEx Heuristics Used
Item Cost

(1) FOB cost Sum of processing equipment units [54]
(2) Delivery 5% of FOB cost [54]
(3) Installation: ancillary equipment, au-
tomation, electrical, piping, and engineering

[(Wroth factor)−1]x(delivered equipment
cost) [54]

(4) Battery-limits installed cost (BLIC) Sum of items (1) to (3) [54]

(5) Buildings and structures 20% of BLIC [54]
(6) Contingency 20% of BLIC [54]
(7) Offsite capital (for a grass-roots plant) 150% of BLIC [54]
(8) Service facilities 20% of BLIC [54]
(9) Waste disposal Not included in CapEx; assumed to be treated

at a nominal cost indicated in Table 5
(10) Working capital 35% of annual sales [54] =⇒ used 35% of an-

nual materials costs for batch; 3.5% for con-
tinuous, since throughput times are expected
to be 10x lower in continuous processing

(11) Total CapEx Sum of items (4) to (10)

Table B.5: Summary of OpEx Heuristics Used
Item Cost

(1) Labor and supervision $160,000/yr per operator [150]; number of op-
erators estimated as in [204]; twice as many
operators required for batch processes as for
continuous

(2) Materials handling and storage Continuous is estimated at 40% of batch
(3) Off-spec product 0% for batch and continuous
(4) Quality assurance and control (QA/QC) Continuous is estimated at 50% of batch
(5) Utilities $1.50/kg material input
(6) Waste disposal $2.50/gallon for water and organic solvents;

$15.00/gallon for all other material [53]
(7) Total OpEx Sum of items (1) to (6) plus raw material costs
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B.3.3 Overall cost of production

To quantify overall cost differences accounting for both CapEx and OpEx, present cost of

the project (B.2) was calculated for each processing option. This is the discounted total

cost of the project, excluding any revenue. Present cost of the project is similar to net

present value (NPV) (B.3), but does not include revenue. This figure of merit was chosen

because we are comparing costs, not NPV.

(Present Cost) = (CapEx) +

𝜏∑︁

𝑖=1

(OpEx)

(1 + 𝑟𝑑)𝑖
(B.2)

(NPV) = −(CapEx) +

𝜏∑︁

𝑖=1

{︂−(OpEx)

(1 + 𝑟𝑑)𝑖
+

(Revenue)

(1 + 𝑟𝑑)𝑖

}︂
(B.3)

Discount rate (𝑟𝑑) was 7%, construction period was 1 year, and project lifetime (𝜏) was 15

years.

B.3.4 Contributors to overall cost savings

To quantify the contributions of different expenses to the cost differences for CM relative

to batch, the following quantity was defined:

⎛
⎝ Contribution to present

cost difference

⎞
⎠ =

⎛
⎝ Present cost of contributor

for Bx process

⎞
⎠−

⎛
⎝ Present cost of contributor

for CM process

⎞
⎠

(Present cost of Bx process)
.

(B.4)

To clarify the above definition, note that

∑︁

(contributors)

⎛
⎝ Contribution to present

cost difference

⎞
⎠ =

⎛
⎝ Percentage present cost

difference vs. batch

⎞
⎠ . (B.5)

B.4 Results

B.4.1 Capital expenditures (CapEx)

Process CM1 with direct tablet formation has the largest CapEx savings (31–76% savings

vs. batch processing). At the highest KI price, the working capital, especially for the KI,
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Table B.6: CapEx (including working capital) differences for all process options, relative to
batch case, for upstream and downstream
Cost of KI $100/kg $500/kg $3000/kg $100/kg $500/kg $3000/kg
API loading 10 wt% 10 wt% 10 wt% 50 wt% 50 wt% 50 wt%
Batch Tot: [$315M] Tot: [$346M] Tot: [$542M] Tot: [$429M] Tot: [$585M] Tot: [$1565M]

U: [$73M] U: [$105M] U: [$300M] U: [$173M] U: [$329M] U: [$1308M]
D: [$242M] D: [$242M] D: [$242M] D: [$256M] D: [$256M] D: [$256M]

CM1R, Tot: -28% Tot: -33% Tot: -54% Tot: -39% Tot: -53% Tot: -76%
DTF U: -31% U: -49% U: -76% U: -52% U: -70% U: -85%

D: -27% D: -27% D: -27% D: -31% D: -31% D: -31%
CM1, Tot: -31% Tot: -36% Tot: -55% Tot: -42% Tot: -55% Tot: -76%
DTF U: -43% U: -57% U: -78% U: -59% U: -73% U: -85%

D: -27% D: -27% D: -27% D: -31% D: -31% D: -31%
CM1R, Tot: -20% Tot: -26% Tot: -49% Tot: -34% Tot: -49% Tot: -75%
RC U: -31% U: -49% U: -76% U: -52% U: -70% U: -85%

D: -17% D: -17% D: -17% D: -21% D: -21% D: -21%
CM1, Tot: -23% Tot: -29% Tot: -50% Tot: -36% Tot: -50% Tot: -74%
RC U: -43% U: -57% U: -78% U: -59% U: -73% U: -85%

D: -17% D: -17% D: -17% D: -21% D: -21% D: -21%
All percentage differences are relative to Batch (top row). DTF: direct tablet formation; RC: roller compaction;
Tot: total CapEx; U: upstream CapEx; D: downstream CapEx. CapEx dollar amounts are provided in square
brackets for the base case of a batch process.

Table B.7: Summary of CapEx differences for all process options, relative to batch case
Cost of KI $100/kg $500/kg $3000/kg $100/kg $500/kg $3000/kg
API loading 10 wt% 10 wt% 10 wt% 50 wt% 50 wt% 50 wt%
Batch (basis for differences) [$315M] [$346M] [$542M] [$429M] [$585M] [$1565M]
CM1R with direct tablet formation -28% -33% -54% -39% -53% -76%
CM1 with direct tablet formation -31% -36% -55% -42% -55% -76%
CM1R with roller compaction -20% -26% -49% -34% -49% -75%
CM1 with roller compaction -23% -29% -50% -36% -50% -74%
Total CapEx dollar amounts are provided in square brackets for the base case of a batch process.

dominates CapEx, so savings are similar for all processes. Detailed results are given in

Table B.6; summarized results are given in Table B.7.

B.4.2 Operating expenditures (OpEx)

Process CM1R with either direct tablet formation or roller compaction has the lowest annual

OpEx of any process option (6–40% savings); process CM1 options show slightly less savings,

due to the lower overall yield without recycling. Detailed results are given in Table B.8;

summarized results are given in Table B.9.

B.4.3 Overall cost of production

Process CM1R with direct tablet formation has the lowest present cost (9–40% savings).

CM1R with roller compaction is the next best option, with very similar savings. See Ta-

ble B.10.
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Table B.8: Annual OpEx differences for all process options, relative to batch case
Cost of KI $100/kg $500/kg $3000/kg $100/kg $500/kg $3000/kg
API loading 10 wt% 10 wt% 10 wt% 50 wt% 50 wt% 50 wt%
Batch Tot: [$136M] Tot: [$226M] Tot: [$785M] Tot: [$531M] Tot: [$979M] Tot: [$3777M]

URM: [$49M] URM: [$139M] URM: [$698M] URM: [$246M] URM: [$693M] URM: [$3491M]
DRM: [$25M] DRM: [$25M] DRM: [$25M] DRM: [$16M] DRM: [$16M] DRM: [$16M]
Oth: [$62M] Oth: [$62M] Oth: [$62M] Oth: [$269M] Oth: [$269M] Oth: [$269M]

CM1R, Tot: -33% Tot: -20% Tot: -6% Tot: -40% Tot: -22% Tot: -6%
DTF URM: -36% URM: -13% URM: -2% URM: -36% URM: -13% URM: -2%

DRM: 0% DRM: 0% DRM: 0% DRM: -1% DRM: -1% DRM: -1%
Oth: -45% Oth: -45% Oth: -45% Oth: -47% Oth: -47% Oth: -47%

CM1, Tot: -19% Tot: -6% Tot: 8% Tot: -22% Tot: -6% Tot: 9%
DTF URM: -6% URM: 7% URM: 13% URM: -6% URM: 7% URM: 13%

DRM: 0% DRM: 0% DRM: 0% DRM: -1% DRM: -1% DRM: -1%
Oth: -36% Oth: -36% Oth: -36% Oth: -38% Oth: -38% Oth: -38%

CM1R, Tot: -33% Tot: -20% Tot: -6% Tot: -40% Tot: -22% Tot: -6%
RC URM: -36% URM: -13% URM: -2% URM: -36% URM: -13% URM: -2%

DRM: 0% DRM: 0% DRM: 0% DRM: -1% DRM: -1% DRM: -1%
Oth: -45% Oth: -45% Oth: -45% Oth: -47% Oth: -47% Oth: -47%

CM1, Tot: -19% Tot: -6% Tot: 8% Tot: -22% Tot: -6% Tot: 9%
RC URM: -6% URM: 7% URM: 13% URM: -6% URM: 7% URM: 13%

DRM: 0% DRM: 0% DRM: 0% DRM: -1% DRM: -1% DRM: -1%
Oth: -36% Oth: -36% Oth: -36% Oth: -38% Oth: -38% Oth: -38%

All percentage differences are relative to Batch (top row). DTF: direct tablet formation; RC: roller compaction; Tot:
total OpEx; URM: upstream raw materials OpEx; DRM: downstream raw materials OpEx; Oth: all other OpEx.
OpEx dollar amounts are provided in square brackets for the base case of a batch process.

Table B.9: Summary of annual OpEx differences for all process options, relative to batch
case
Cost of KI $100/kg $500/kg $3000/kg $100/kg $500/kg $3000/kg
API loading 10 wt% 10 wt% 10 wt% 50 wt% 50 wt% 50 wt%
Batch (basis for differences) [$136M] [$226M] [$785M] [$531M] [$979M] [$3777M]
CM1R with direct tablet formation -33% -20% -6% -40% -22% -6%
CM1 with direct tablet formation -19% -6% 8% -22% -6% 9%
CM1R with roller compaction -33% -20% -6% -40% -22% -6%
CM1 with roller compaction -19% -6% 8% -22% -6% 9%
Annual OpEx dollar amounts are provided in square brackets for the base case of a batch process.

Table B.10: Summary of present cost differences for all process options, relative to batch
case
Cost of KI $100/kg $500/kg $3000/kg $100/kg $500/kg $3000/kg
API loading 10 wt% 10 wt% 10 wt% 50 wt% 50 wt% 50 wt%
Batch (basis for differences) [$1515M] [$2337M] [$7472M] [$5117M] [$9225M] [$34902M]
CM1R with direct tablet formation -32% -22% -9% -40% -24% -9%
CM1 with direct tablet formation -21% -10% 4% -24% -9% 5%
CM1R with roller compaction -30% -21% -9% -40% -23% -9%
CM1 with roller compaction -20% -9% 4% -23% -8% 5%
Present cost is the total discounted cost of the project, excluding any revenue, for the 15-year project lifetime.
Present cost dollar amount is provided in square brackets for the base case of a batch process.
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Table B.11: Summary of present cost differences if CM1R yield is 10% below batch yield
Cost of KI $100/kg $500/kg $3000/kg $100/kg $500/kg $3000/kg
API loading 10 wt% 10 wt% 10 wt% 50 wt% 50 wt% 50 wt%
Batch (basis for differences) [$1515M] [$2337M] [$7472M] [$5117M] [$9225M] [$34902M]
CM1R with direct tablet formation -28% -15% 3% -35% -14% 4%
CM1 with direct tablet formation -16% -1% 18% -16% 3% 20%
CM1R with roller compaction -27% -13% 3% -34% -14% 4%
CM1 with roller compaction -14% 0% 18% -15% 3% 20%
Present cost is the total discounted cost of the project, excluding any revenue, for the 15-year project lifetime.
Present cost dollar amount is provided in square brackets for the base case of a batch process.

Table B.12: Summary of present cost differences if CM1R yield is 10% above batch yield
Cost of KI $100/kg $500/kg $3000/kg $100/kg $500/kg $3000/kg
API loading 10 wt% 10 wt% 10 wt% 50 wt% 50 wt% 50 wt%
Batch (basis for differences) [$1515M] [$2337M] [$7472M] [$5117M] [$9225M] [$34902M]
CM1R with direct tablet formation -35% -28% -19% -44% -31% -19%
CM1 with direct tablet formation -25% -17% -7% -30% -18% -6%
CM1R with roller compaction -33% -27% -18% -44% -31% -19%
CM1 with roller compaction -24% -16% -7% -29% -17% -6%
Present cost is the total discounted cost of the project, excluding any revenue, for the 15-year
project lifetime. Present cost dollar amount is provided in square brackets for the base case of a
batch process.

If the overall yield of process CM1R is 10% below that of the batch process (Table B.11),

the overall costs of continuous processing are between 4% higher and 35% lower than batch

processing if the best process is chosen for each API loading/KI price scenario. At $3000/kg

for the KI, all continuous processes are estimated to be more expensive than the batch

process. If the overall yield is 10% higher for CM1R than for the batch process (Table B.12),

19–35% savings can be achieved vs. batch in all low API loading cases by choosing process

CM1R with direct tablet formation.

B.4.4 Contributors to overall cost savings

In Table B.13, the present cost of the project for the baseline case in which CM1R yield

is equal to batch yield is broken down into contributions for each category (cf. (B.4)).

The values are for the novel continuous process with recycling with direct tablet formation

(CM1R/DTF), and are similar to those for the other novel CM options (not published).

The expenditures for the KI and for excipients are the same for CM1R/DTF and batch,

since equally-priced excipients are used and the overall yield of drug substance from KI is

assumed equal in CM1R and batch. The cost of the other organic reagents needed in the

novel continuous process are lower, reducing OpEx in the Other raw materials category. The

novel continuous process also has lower solvent usage, reducing costs of other raw materials

194



Table B.13: Contributions to present cost difference relative to batch for novel continuous
process with recycling (CM1R) with direct tablet formation
Cost of KI $100/kg $500/kg $3000/kg $100/kg $500/kg $3000/kg
API loading 10 wt% 10 wt% 10 wt% 50 wt% 50 wt% 50 wt%
Organic reagents -2.2% -1.4% -0.4% -3.2% -1.8% -0.5%

KI 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Other raw materials -8.0% -5.2% -1.6% -11.9% -6.6% -1.7%

Excipients 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Labor and materials handling -4.1% -2.6% -0.8% -5.3% -3.0% -0.8%
Waste handling -4.4% -2.8% -0.9% -5.0% -2.8% -0.7%
Utilities -4.7% -3.0% -0.9% -6.9% -3.8% -1.0%
QA/QC -2.9% -1.9% -0.6% -4.3% -2.4% -0.6%
CapEx excluding working capital -4.2% -2.7% -0.8% -1.6% -0.9% -0.2%
Working capital/in-process inventory -1.6% -2.2% -3.1% -1.7% -2.5% -3.2%
Total: -32% -22% -9% -40% -24% -9%

[−$485M] [−$513M] [−$689M] [−$2048M] [−$2188M] [−$3066M]
Difference in present cost relative to batch case is provided in square brackets. Contribution to present cost difference
relative to batch is defined by (B.4). Since the continuous yield is identical to the batch yield, the contribution of KI
cost to overall savings is identically zero in all cases.

and waste handling. Moving towards higher KI price in the table means the KI makes up

a higher fraction of the expenses, so percentage savings are reduced. However, the working

capital (in-process inventory) savings measured in dollars are increased moving towards

higher KI price, since the batch process has ten times more in-process inventory. For a

given KI price, the percentage savings due to working capital is similar for high and low

loadings. This may initially seem counterintuitive since the high-loading processes require

five times more KI, the most expensive raw material. However, the high-loading cases also

have about four times greater overall cost than the corresponding low-loading cases, so the

percentage savings are similar.

In the low API loading scenarios, the largest savings consistently come from (1st) other

raw materials, (2nd) utilities, (3rd) waste handling, (4th) CapEx excluding working capital,

(5th) labor and materials handling, (6th) QA/QC, and (7th) other organic reagents. The

significance of working capital varies depending on the KI price; it is the 1st, 6th, or 8th

contributor to cost savings for KI prices of $3000/kg, $500/kg, and $100/kg respectively.

In the high API loading scenarios, the largest savings consistently come from (1st) other

raw materials, (2nd) utilities, (3rd) labor and materials handling, (4th) waste handling,

(5th) QA/QC, (6th) other organic reagents, (7th) CapEx excluding working capital. The

significance of working capital again depends on the KI price; it is the 1st, 5th, or 7th most

significant contributor to cost savings for KI prices of $3000/kg, $500/kg, and $100/kg

respectively.
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B.5 Discussion

Batch and continuous production of a very large-scale pharmaceutical product produced

in dedicated batch or continuous plants was analyzed. This is one of the first market

segments in which continuous pharmaceutical manufacturing may be implemented. Overall

cost savings of 9 to 40% are predicted if the appropriate process is selected for the API

loading/KI price scenario at hand. The novel process with recycling (CM1R) with direct

tablet formation is consistently one of the most favorable processes, with the same or slightly

more savings than CM1 with roller compaction. Percentage savings are greatest when KI

prices are lower. This is because the expenditure for the KI is the same in batch and CM1R,

that expenditure is proportional to KI price, and all other expenses except working capital

are insensitive to KI price. That is, as KI price approaches infinity, present cost savings

approach the working capital savings from the reduced in-process inventory.

The process development costs will tend to be greater for continuous manufacturing

processes as opposed to batch processes, because the pharmaceutical industry has less ex-

perience with continuous processing and the absence of conventional batches in the highly-

regulated industry demands more process understanding and on-line instrumentation (i.e.,

PAT). This was accounted for as a 10% price premium for continuous processing equip-

ment at the same scale as an equivalent batch process. With the current trend towards

smaller continuous processes (e.g., microreactors), however, more process understanding

will be obtained at early stages of the process development, making scaleup easier and less

expensive over time. Furthermore, the smaller scale required for each unit in a continu-

ous process (due to greater effective utilization time) usually offsets the additional process

understanding and control required. Some unit operations are easier to characterize in

continuous mode: Dhenge et al [61] claim that continuous granulation processes can be

developed more quickly, with associated savings in API material during development. Once

the process is operational, labor costs are typically lower as well.

The capital expenditure for the novel direct tablet formation process was based on

a vendor quotation, but since it has not been used in the pharmaceutical industry, the

equipment cost is subject to more uncertainty than most of the other costs. A typical Wroth
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factor for the process under consideration in other industries is about 2.0, but the standard

value for Other Equipment of 3.5 has been assumed (cf. Table B.3). This assumption

allows for cost increases specific to the pharmaceutical industry, and may be unnecessarily

high, meaning that the realized cost savings for the direct tablet formation process may be

greater than those estimated here. The novel direct tablet formation process should also be

more broadly applicable than roller compaction and eliminate other costs related to powder

handling that are not considered in this study. In addition to the direct tablet formation

approach reported here, we are developing another novel tablet formation process (not yet

published) that should have significantly better yields than roller compaction.

Although different aspects of continuous pharmaceutical production have been analyzed

[151, 154, 155, 199], no articles have been published comparing the overall economics of batch

and continuous pharmaceutical processes producing drug product (tablets) from an organic

key intermediate. A presentation at the American Association of Pharmaceutical Scientists

meeting on Drug Product Manufacturing claimed 58% CapEx savings and 67% annual

OpEx savings for a continuous pharmaceutical processing facility versus a batch processing

facility [56]. A study on production of ethanol estimated 57% CapEx savings by shifting the

process from batch to continuous mode [57]. A study on production of cell culture media

estimated overall cost savings at 34% for switching from batch to continuous production

at 100,000 L/yr capacity [90]. A study on production of fine chemicals on dedicated batch

vs. continuous equipment found that continuous production is economically favorable at

all production levels studied (as low as 200 mtpy) [76]. Thus, this case study of a specific

pharmaceutical product found results similar to those found in other industries.

Some areas of continuous processing in pharmaceuticals are well understood whereas

others require further study. Microreactors and other continuous-flow reactors have re-

ceived quite a lot of study [37, 75, 99, 154, 155], however efficient chemistry for the par-

ticular product being produced is absolutely crucial. Particularly in the case of high KI

price, a 10% yield difference can shift a continuous process from providing cost savings to

providing cost increases (see Tables B.11 and B.12). Continuous granulation processes

have also been widely studied [61, 73, 92, 93, 118, 168, 200, 208]. On the contrary,

studies on continuous crystallization for pharmaceuticals has been lacking until recently
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[109]. The recent research is promising: one study found that the purification of an

API using a continuous oscilattory baffled crystallizer is much more predictable to scale

up than batch crystallization, as well as having a lower residence time: the continuous

process took 12 minutes as opposed to 9 hours and 40 minutes using the batch process

[109]. The easy scaleup in this type of continuous crystallizer compares favorably with

the ten different schemes for scaling up batch crystallization enumerated by Lawton et al

[55, 68, 83, 96, 103, 109, 113, 140, 144, 184, 189, 198, 215]. Despite recent promising results

on continuous crystallization of pharmaceuticals, appropriate solvents and conditions must

be chosen for each specific purification step in each particular manufacturing process. Other

effective separations technologies may become more promising under continuous mode as

well [149, 207, 217, 218]. Vervaet and Remon [208] wrote a review article on six different

methods of continuous granulation. The best-studied method for continuous granulation is

extrusion, on which the first papers for pharmaceutical applications were published in 1986

[73] and much subsequent work has been completed [61, 92, 93, 118, 168, 200]. Commercial

equipment for creating the final dosage form such as continuous tableting and coating is

already available; alternative methods for doing so may prove even more efficient.

Apart from considerations of continuous pharmaceutical manufacturing unit operations,

more economic analysis and system-level research is also required. Specifically, analysis of

smaller-scale production and considering a multipurpose continuous production line rather

than a line dedicated to a single product. For example, how much time is needed to change

between products, and how much waste material is generated during startup and shutdown,

when the production line has not reached steady state, as well as the economic implications

thereof. Plantwide dynamic models are essential for this task [106].

B.6 Conclusion

An integrated cost estimation of the production of a final drug product from a key organic

intermediate was performed, using a batch process and four continuous processes. In order

to make the analysis applicable to a wider range of products, the analysis was performed

with two API loading levels in the final drug product, three prices for the most expensive KI
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organic feedstock, three continuous API synthesis processes, and two continuous drug prod-

uct formation processes. The overall cost of production can be reduced most by changing to

the continuous process with recycling (CM1R) with the novel direct tablet formation pro-

cess in all scenarios tested if overall yields for the continuous process meet or exceed those

of the batch process; in those two yield scenarios, the savings are 9 to 40% and 19 to 44%

respectively. If the CM process with recycling has 10% lower yield than the batch plant, sav-

ings can be achieved for all scenarios except the highest KI price. The break-even KI price

is $1700/kg. Again, the maximal savings can be achieved by choosing process CM1R with

the novel direct tablet formation process. When combining the economic advantage with

more consistent product quality and greater regulatory freedom, continuous manufacturing

of pharmaceuticals is a viable way for the pharmaceutical industry to achieve substantial

cost savings. Many opportunities for further study exist: developing more efficient chemical

routes, separations technologies, final dosage form production, and plantwide modeling are

all expected to lead to more economical processes.
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B.8 Nomenclature

API = active pharmaceutical ingredient

BLIC = battery-limits installed cost, US$

Bx = batch manufacturing process

CapEx = capital expenditures, US$

CCM = Novartis-MIT Center for Continuous Manufacturing

CM1 = novel continuous manufacturing process
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CM1R = novel continuous manufacturing process with recycle

DP = drug product (final dosage form)

DTF = direct tablet formation

FOB = free on board (cost of equipment before delivery), US$

KI = key intermediate

LLE = liquid-liquid extraction

NPV = net present value

OEE = overall equipment effectiveness

OpEx = operating expenditures, US$

PAT = process analytical technology

QA/QC = quality assurance/quality control

RC = roller compaction
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optimum experimental design in DAE systems, Journal of Computational and Applied

Mathematics, 120 (2000), pp. 1–25.

[16] K. J. Beers, Numerical Methods for Chemical Engineering, Cambridge University

Press, Cambridge, UK, 2007.

202



[17] A. Behr, V. Brehme, C. Ewers, H. Grön, T. Kimmel, S. Küppers, and
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[51] M. Cizniar, M. Podmajerský, T. Hirmajer, M. Fikar, and A. M. Latifi,

Global optimization for parameter estimation of differential-algebraic systems, Chem-

ical Papers, 63 (2009), pp. 274–283.

[52] F. H. Clarke, Optimization and Nonsmooth Analysis, SIAM, Philadelphia, 1990.

[53] J. R. Couper, Process Engineering Economics, CRC Press, New York, 2003.

[54] J. R. Couper, D. W. Hertz, and F. L. Smith, Process Economics, in Perry’s

Chemical Engineers’ Handbook, D. W. Green and R. H. Perry, eds., McGraw-Hill,

New York, 8th ed., 2008, ch. 8, pp. 9–1 – 9–56.

[55] J. R. Couper, W. R. Penney, and J. R. Fair, Chemical Process Equipment:

Selection and Design, Elsevier, Amsterdam, Boston, 2004.

[56] T. F. Crosby, Enhanced Capital Productivity Through Continuous Processing,

American Association of Pharmaceutical Scientists conference on Drug Product Man-

ufacturing, (2010).

[57] G. R. Cysewski and C. R. Wilke, Process design and economic studies of alterna-

tive fermentation methods for the production of ethanol, Biotechnology and Bioengi-

neering, 20 (1978), pp. 1421–1444.

206



[58] S. A. Dadebo and K. B. Mcauley, Dynamic optimization of constrained chemical

engineering problems using dynamic programming, Computers & Chemical Engineer-

ing, 19 (1995), pp. 513–525.

[59] G. Dahlquist, Stability and error bounds in the numerical integration of ordinary

differential equations, PhD thesis, University of Stockholm, 1958.

[60] W. M. Deen, Analysis of Transport Phenomena, Oxford University Press, New York,

1998.

[61] R. Dhenge, R. Fyles, J. Cartwright, D. G. Doughty, M. J. Hounslow,

and A. D. Salman, Twin screw wet granulation: Granule properties, Chemical En-

gineering Journal, 164 (2010), pp. 322–329.

[62] K. Du and R. B. Kearfott, The cluster problem in multivariate global optimiza-

tion, Journal of Global Optimization, 5 (1994), pp. 253–265.

[63] E. Dyer, H. A. Taylor, S. J. Mason, and J. Samson, The rates of reaction of

isocyanates with alcohols. I. Phenyl isocyanate with 1- and 2-butanol, Journal of the

American Chemical Society, 71 (1949), pp. 4106–4109.

[64] G. I. Egorov and A. M. Kolker, The Thermal Properties of Water-N, N-

Dimethylformamide Solutions at 278-323.15 K and 0.1-100 MPa, Russian Journal

of Physical Chemistry A, 82 (2008), pp. 2058–2064.

[65] T. G. W. Epperly and E. N. Pistikopoulos, A Reduced Space Branch and Bound

Algorithm for Global Optimization, Journal of Global Optimization, (1997), pp. 287–

311.

[66] W. R. Esposito and C. A. Floudas, Deterministic global optimization in nonlinear

optimal control problems, Journal of Global Optimization, (2000), pp. 97–126.

[67] W. R. Esposito and C. A. Floudas, Global optimization for the parameter estima-

tion of differential-algebraic systems, Industrial & Engineering Chemistry Research,

39 (2000), pp. 1291–1310.

207



[68] J. J. Evangelista, S. Katz, and R. Shinnar, Scale-up criteria for stirred tank

reactors, AIChE Journal, 15 (2004), pp. 843–853.

[69] W. F. Feehery, J. E. Tolsma, and P. I. Barton, Efficient sensitivity analysis of

large-scale differential-algebraic systems, Applied Numerical Mathematics, 25 (1997),

pp. 41–54.

[70] G. Franceschini and S. Macchietto, Model-based design of experiments for

parameter precision: State of the art, Chemical Engineering Science, 63 (2008),

pp. 4846–4872.

[71] S. Galán, W. F. Feehery, and P. I. Barton, Parametric sensitivity functions

for hybrid discrete/continuous systems, Applied Numerical Mathematics, 31 (1999),

pp. 17–47.

[72] F. Galvanin, M. Barolo, and F. Bezzo, Online model-based redesign of experi-

ments for parameter estimation in dynamic systems, Industrial & Engineering Chem-

istry Research, 48 (2009), pp. 4415–4427.

[73] M. Gamlen and C. Eardley, Continuous extrusion using a Baker Perkins MP50

(Multipurpose) extruder, Drug Development and Industrial Pharmacy, 12 (1986),

pp. 1701–1713.

[74] P. E. Gill, W. Murray, and M. A. Saunders, SNOPT : An SQP Algorithm for

Large-Scale Constrained Optimization, SIAM Review, 47 (2005), pp. 99–131.

[75] T. N. Glasnov and C. O. Kappe, Toward a Continuous-Flow Synthesis of Boscalid,

Advanced Synthesis & Catalysis, 352 (2010), pp. 3089–3097.

[76] A. Gorsek and P. Glavic, Design of Batch Versus Continuous Processes Part III:

Extended Analysis of Cost Parameters, Chemical Engineering Research & Design, 78

(2000), pp. 231–244.

[77] A. Griewank, Automatic directional differentiation of nonsmooth composite func-

tions, in Recent Developments in Optimization, French-German Conference on Opti-

mization, Dijon, 1994.

208
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