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Abstract

Natural gas supply chain planning and optimization is important to ensure security
and reliability of natural gas supply. However, it is challenging due to the distinctive
features of natural gas supply chains. These features arise from the low volumetric
energy density of natural gas and the significance of gas quality and pressure in supply
chain operations. Contracts play a central role in the entire supply chain due to high
capital cost, specificity and investment risks associated with gas infrastructure.

An upstream production planning framework is crucial for supply-side optimiza-
tion and scenario evaluation in the natural gas supply chain. The technical features
of upstream systems imply that the most efficient mode of operation is by single
entity central control of the system, while their economics favor involvement of mul-
tiple parties in ownership. To resolve this conflict, upstream systems are generally
operated by a single operator on the basis of governing rules that stem from agree-
ments between the upstream operator, multiple stakeholders and consumer facilities.
These agreements govern production sharing, operational strategy and gas sales in
the upstream system.

A short-term operational planning framework (with a 2-12 weeks planning hori-
zon) for upstream natural gas systems is presented that can help to maximize produc-
tion infrastructure utilization and aid in its management, minimize costs and meet
production targets while simultaneously satisfying governing rules. Its requirements
are inspired by the Sarawak Gas Production System (SGPS), an offshore gas produc-
tion system in the South China Sea, which supplies the liquefied natural gas (LNG)
plant complex at Bintulu in East Malaysia. This is the first attempt to formulate a
comprehensive modeling framework for an upstream gas production system that in-
cludes a production infrastructure model and a methodology to incorporate governing
rules. The model has two components: the infrastructure model is a model of the phys-
ical system, i.e., of wells, trunkline network and facilities while the contractual model
is a mathematical representation of the governing rules, e.g., production-sharing con-
tracts (PSC), customer specifications and operational rules. The model formulation
and objectives are from the perspective of the upstream operator.
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The infrastructure model incorporates the capability to track multiple qualities
of gas throughout the network and determine the optimal routing and blending of
gas such that the quality specifications are satisfied at the demand nodes. Nonlinear
pressure-flowrate relationships in wells and the network are included for predicting
a sufficiently accurate pressure-flowrate profile thereby facilitating implementation of
the production strategy on the network. Modeling of complex platform configurations
with reversible lines, lines that can be shut-off in normal operation and compression
facilities, further improve the realistic representation of the network. A simplified
prediction of natural gas liquids (NGL) production is included to maximize NGL
revenue.

The contractual model represents the framework for modeling the governing rules
that are central to the operation of upstream systems. Modeling of production-
sharing contracts is a two-fold challenge: accounting for gas volumes and converting
the logical rules as stated in the system operations manual to binary constraints.
A PSC network representation is proposed to account for gas volumes as well as
interactions between different PSC. PSC rules are expressed as logical expressions in
terms of availability, priority and transfer Boolean-states, and converted to binary
constraints. Additional logical constraints are required to model the inference and
intent of the rules. Operational rules can be modeled within the same framework.

The resulting mathematical program is a mixed-integer nonlinear program (MINLP)
with nonconvex functions and can be solved with the current state-of-the-art global
optimization approaches, provided careful attention is paid to the model formulation.
A hierarchical multi-objective approach is proposed to address multiple objectives
when operating upstream systems, by optimizing a lower priority objective over the
multiple optimal solutions of a program with a higher priority objective to obtain a
win-win scenario. A reproducible case study that captures all the features of natural
gas upstream systems is constructed to facilitate future work in algorithm devel-
opment for such problems. A preliminary comparison with the existing approach
indicates that substantial benefits may be possible by using the proposed approach
for short-term planning.

The application of a reduced-space global optimization approach to planning in
upstream gas networks has also been demonstrated, which can significantly lower the
number of variables in the branch-and-bound algorithm. The lower bounding problem
is implemented using McCormick (convex) relaxations of computer evaluated func-
tions and solved by implementing a nonsmooth bundle solver as a linearization tool
to obtain a linear programming relaxation. The upper bounding problem is imple-
mented using automatic differentiation and a local NLP solver. Branch-and-bound
with reduction heuristics and linearization propagation is used for global optimiza-
tion. This approach has been found to be competitive with current state-of-the-art
global optimization algorithms for upstream planning problems.

Thesis Supervisor: Paul I. Barton
Title: Lammot du Pont Professor of Chemical Engineering
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Chapter 1

Overview

There are signs of a global energy crisis in the making in recent years. World energy

demand is estimated to grow by 50% in the period from 2005 to 2030 [1, 2] without

significant changes in government policies (the reference scenario). The unprece-

dented growth in energy usage is being primarily driven by rapid economic growth in

emerging markets and their integration into the global economy. The International

Energy Agency (IEA) estimates that the developing world will contribute 74% of the

increase in energy usage in the reference scenario. The share of China and India alone

is expected to be around 45% of the projected increase in the IEA reference scenario

[1].

The rise in energy demand in conjunction with supply-side problems have resulted

in a rapid rise in energy prices for the past several years. Underinvestment in energy

during a period of low energy prices in the last decade has led to supply-side bot-

tlenecks in terms of equipment, technology and human resources. A rise of resource

nationalism (i.e., the desire of national governments or national oil companies to ex-

ercise tight control on resources) is preventing the flow of investments and technology

into the most productive resources. This is resulting in low production rates and

total recovery in existing oil and gas fields as well as hindering the development of

new fields. Furthermore, the long-term investment climate in energy has been ad-

versely impacted by the continuing policy uncertainty in the regulation of carbon

emissions and alternative energy resources. This discourages investors from investing
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in large-scale projects with long-term returns. Finally, geopolitical tensions and po-

litical instability in producing regions and transportation passages continue to have

a negative impact on oil and gas markets.

For the foreseeable future, fossil fuels will continue to form the mainstay of global

energy supply. They contributed 81% of global energy demand in 2005 [1]. Their share

is estimated to almost stay the same at around 82% of the global energy demand in

the IEA reference scenario (without any major policy changes) and drop to 76% in

the IEA alternative policy scenario (i.e., with government policies to address energy

security and climate change) by 2030. Hence, over the next two decades or more,

ensuring reliable supplies of fossil fuels will be instrumental for global energy security

and therefore for maintaining the high growth rate of the global economy that is

crucial for breaking the cycle of poverty in the developing and poor economies.

1.1 Natural Gas

Natural gas contributed around a fifth of global energy demand in 2005 (Figure 1-1).

Natural gas is primarily methane (CH4) (usually in the 70-90 mole percent range

for well-head gas). It contains varying amounts of ethane, propane, butane and

other higher chain hydrocarbons. It can be formed by various processes including

high pressure and temperature decomposition of organic matter, bio degradation of

organic matter and abiogenic processes. Once gas is formed, it will rise to the surface

through porous rocks unless it is trapped by a geological trap. A typical trap has

a porous rock formation that holds gas with an umbrella shaped dome on top with

dense impermeable rock that prevents it from escaping further.

Natural gas can be produced from gas only reservoirs in which case the gas contains

none to a small fraction of heavier (than ethane) hydrocarbons. A fraction of the

heavier hydrocarbons (especially if they are present in appreciable amount) condense

when the pressure of the reservoir fluid is reduced at the well-head and an organic

liquid phase separates out. Additionally, raw gas can also contain water which needs

to be separated at the well-head to avoid formation of gas hydrates that can choke
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Figure 1-1: World energy usage by source in 2005 (based on the figures from World
Energy Outlook 2007, IEA)

pipelines. Therefore, in general, a three-phase separation occurs at the well-head.

The liquid organic phase is similar to light crude oil and is called Natural Gas Liquids

(NGL) or simply condensates. When gas has a significant amount of condensate, it

is sometimes referred to as wet gas as opposed to dry gas. Gas produced from such

reservoirs is described as non-associated gas. Occasionally dry gas reservoirs may be

referred to as gas only reservoirs to distinguished them from reservoirs producing wet

gas also called condensate reservoirs.

Natural gas can also be produced from oil fields as a by-product, in which case

it is termed associated gas. There are also unconventional sources of natural gas.

These include tight gas (gas trapped in low permeability formations), shale, coalbed

methane (gas adsorbed on coal, dissolved in water or stored in fractures and voids

in coalbeds), natural gas hydrates and deep gas (gas found in very deep reservoirs).

Natural gas can be classified as sweet and sour. Sour gas contains a relatively large

amount of H2S and CO2 (though in a strict context, sour may exclusively refer to

high levels of H2S) while gas from sweet fields is mostly free of these contaminants.

23



Table 1.1: Natural gas: Proven reservesa,b

Country tcf tcm % share
Russian Federation 1576.75 44.65 25.2
Iran 981.75 27.80 15.7
Qatar 904.06 25.60 14.4
Saudi Arabia 253.03 7.17 4.0
United Arab Emirates 215.07 6.09 3.4
US 211.08 5.98 3.4
Rest of the World 2121.60 60.08 33.9
World total 6263.34 177.36 100.0
Top 20 countries 5593.97 158.40 89.3
a BP Statistical Review of World Energy, BP, June 2008.
b End 2007.

1.1.1 Reserves

Proven natural gas reserves in the world currently stand at around 170-180 trillion

cubic meters (tcm) i.e., 6,000-6,300 trillion cubic feet (tcf) [3, 4]. Overall reserves to

production ratio for the world is 60.3 years [4]. The U.S. Geological Survey estimates

that around 4,136 tcf of natural gas remains undiscovered [3]. Within the total

resource base, 3,000 tcf is in reserves that are too far away from markets, also known

as stranded reserves [3].

The distribution of proven reserves of natural gas is quite skewed as shown in

Table 1.1 and Figure 1-2. The top 3 countries, Russia, Iran and Qatar, own close

to 55% of the global proven reserves of natural gas. Moreover, the top 20 countries

own around 90% of the total reserves. The biggest present and future consumers of

gas, big economies in North America, Europe and Asia, do not have much proven

reserves. The projected production from different regions is shown in Figure 1-3 and

it is evident that much of the growth in production will take place outside the OECD

(Organization for Economic Development, a group of mostly developed economies)

countries. The major consumers of gas will have to rely on gas imports increasingly.

The stark inequity of distribution raises concerns about the security of natural gas

supply due to increasing intervention of national governments in the development and

operation of gas projects.
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1.1.2 Demand

Natural gas is a less carbon-intense fuel than either oil or coal, i.e., its combustion

produces less greenhouse emissions per unit energy produced. Moreover, it produces

relatively lower sulfur, NOx and particulates emissions on combustion compared to

other fossil fuels. It is therefore the cleanest fossil fuel and is expected to play an

important role in the transition to alternative clean energy resources. Currently,

industrial uses and power generation are the major consumers of natural gas. A

rough division for global use of natural gas is shown in Figure 1-4.

Global natural gas demand in 2007 was 2,921.9 billion cubic meters (bcm) [4].

The global natural gas demand is expected to rise from 2,854 bcm in 2005 to 4,779

bcm in 2030 in the IEA 2007 reference scenario [1], rising at a rate of 2.1% annually.

There are three main uses of natural gas based on the sectors:

1. Residential and commercial users use natural gas for heating space and water,

and cooking. Residential and commercial demand is strongly dependent on

weather. Also these users are mostly captive, i.e., they cannot change their

usage patterns easily and therefore, residential demands take time to adjust in

face of a price change or a supply shock.

2. Industrial users may use gas as feedstock, for in-house power generation on a

small-scale and as a heat source. Their demand is fairly predicable and stable.

Industrial users can easily substitute another fuel for natural gas during periods

of price increase and shortages.

3. Natural gas use for power generation is rising rapidly in the OECD countries

with a doubling of gas use for power in the past fifteen years [5]. Gas-fired power

increasingly meets peak summer demand in several countries. In Europe, almost

two-thirds, and in North America, half, of new electricity plants are based on

natural gas [5]. Most new plants use the combined-cycle gas turbine (CCGT)

technology. These are favored economically because they are highly efficient and

require less capital investment. The efficiency of CCGT plants can be as high
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as 60%, the highest for any thermal power plant [5]. Increasing environmental

concerns favor natural gas as the fuel of choice for power generation due to gas

being the cleanest of all fossil fuels. Gas-fired plants are also being preferred

in the developed world because coal-fired generation is being held up by policy

uncertainly on carbon emissions. Finally, some renewable technologies such as

wind-powered generation may actually favor intermittent gas-fired generation

that can be quickly ramped up to fill in the supply-demand gap when the

primary renewable source is not able to fulfil the demand [5].

Gas-to-liquids (GTL) is another potentially promising area for exploiting stranded

reserves. GTL involves converting natural gas into liquid transportation fuels at

source. However, there has been a rapid rise in GTL project costs that have dampened

the development of projects [5]. Also, GTL projects are in competition with Liquefied

Natural Gas (LNG) projects for the feed gas. LNG projects also draw investments

away from GTL projects. Therefore, with rising feed gas prices and increasing trade

in LNG, the viability of GTL projects is uncertain at this stage [5].
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1.1.3 Natural Gas Supply Chain

Natural gas is conventionally produced from gas-only fields (non-associated gas) or

as a by-product from oil fields (associated gas). A three-phase separation at well-

heads removes water and natural gas liquids (NGL). Removal of water is essential

to avoid the formation of hydrates (usually methane hydrates) that can potentially

choke trunklines. NGL can be transported in the same trunklines as natural gas.

If gas is sweet, it requires no further processing (it may be still blended to match

heating value specifications). If gas has a high H2S and (or) CO2 content, it needs

additional processing to remove them.

If there are regional or national markets close to the fields, gas is fed into relatively

short-distance transportation networks (usually on the order of few hundred kilome-

ters) that carry it to markets or big consumers. In the case, fields are faraway from

markets, inter-regional transportation (over several thousand kilometers) is required

to deliver gas to markets. Transportation as liquefied natural gas (LNG) involves

specialized infrastructure to liquefy, transport and regasify natural gas. LNG may

also be preferred as a mode of transportation over short distances under special cir-

cumstances. Inter-regional transport is also possible using long-distance trunklines.

These have additional complications over the national networks such as crossing of

multiple international borders. Large natural gas consumer facilities whose products

are easier to transport, e.g., petrochemicals or gas-to-liquids (GTL) plants, may also

choose to locate near remote fields.

Regional networks are linked to local distribution networks that operate on much

lower pressure and supply residential and small commercial customers. Industrial

consumers (e.g., power plants, petrochemicals plants, fertilizer plants) may be di-

rectly supplied by national or regional networks. Due to the fluctuations in natural

gas demand right from an hourly basis to seasonal variations, regional networks are

generally tied into short-, medium- and long-term storage facilities to match supply

and demand.

An abstraction of the natural gas supply chain is presented in Figure 1-5.
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1.1.4 Liquefied Natural Gas (LNG)

Liquefied natural gas (LNG) is natural gas (usually processed to around 90+%methane)

that has been liquefied at near atmospheric pressure and cryogenic temperature

(around 110 K). The liquefaction reduces the volume by roughly 600 times. This

liquid is then carried by special ships expressly designed for the purpose, usually

called LNG tankers to the markets. LNG tankers unload the liquid at LNG termi-

nals (also called regasification terminals). LNG is converted back to gas at these

terminals. Gas is fed into downstream transportation networks to take it to markets

or supplied directly to bulk consumers. LNG regasification terminals may also have

storage facilities for LNG.

The entire LNG chain is arguably more complicated than normal pipeline trans-

mission and consists of the following:

1. The upstream natural gas production system.

2. Liquefaction plants that process raw gas and liquefy it.

3. The LNG shipping terminals.

4. The LNG tanker fleet.

5. Receiving terminals (often with storage) that are connected to pipeline net-

works.

Traditionally, gas producers have sold most of their production to regional con-

sumers through pipeline networks. Most gas is still distributed in this fashion. The

share of gas supply that is traded within major regions of the world was only 13% of

the total gas supply in 2005 compared with roughly 48% of supply (2006 figures) for

inter-regional oil trade [1]. Figure 1-6 shows that gas trade as well as LNG trade has

been rapidly rising during the last decade.

LNG based natural gas transportation usually has a large fixed cost at liquefaction

and regasification facilities but the dependence on distance is weak. On the other

hand, the fixed cost of pipeline transportation is strongly dependent on distance.
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Figure 1-6: Global gas and LNG imports trend 1990-2006 (Energy Information Ad-
ministration [7])

Usually, a single train LNG project breaks even with a 42 inch pipeline for a 4,000

km onshore pipeline and just 2,000 km for an offshore pipeline [8]. LNG is also favored

by several other factors. LNG does not suffer from the right of way issues such as the

pipeline crossing multiple international frontiers, and therefore may be favored even

if the economics are slightly against it. Since right of way is less of an issue for LNG,

the geopolitical risk for LNG is much less than pipelines. Small reserves and fields

are more favorable for exploitation as LNG because pipelines require a certain scale

of transportation to be viable. LNG offers much more flexibility to producers than

pipelines because pipelines (especially inter-regional pipelines) tend to lock producers

into markets while LNG can be diverted easily to other markets. Gas-fired plants are

also expected to increase LNG demand as it is convenient to build (and supply) these

plants near a LNG terminal in densely-populated coastal areas (and therefore, near

electricity markets). In certain geographical settings such as North America, LNG is

almost the only option for gas imports. LNG is also favored by inadequacy of the
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pipeline network in a country when it is easier to build a LNG terminal feeding part

of the deficient network, instead of building an interconnection to transfer gas from

another part of the network. A further discussion of some of these issues can be found

in the 2004 IEA report on LNG [8].

Recent years have seen the rise of a global gas market with rapid construction of

LNG plants, shipping facilities and regasification terminals. The IEA estimates that

global liquefaction and shipping capacity will double by the next decade. The global

LNG market continues to grow with a projected increase from 189 bcm in 2005 to 393

bcm in 2015 and 758 bcm in 2030 in the IEA reference scenario [1]. More optimistic

estimates predict that global LNG capacity will rise from 240 bcm (2005) to 360 bcm

in 2010 and 500-600 bcm by 2015. By 2015, LNG is expected to fulfil 14-16% of

global gas demand [5] and a quarter of gas demand in OECD countries [8].

A global LNG market still continues to evolve. Innovative contractual agreements

for LNG are still being worked out and experimented with in various parts of the

world. A further discussion can be found in Section 1.2.6. Eventually these develop-

ments will lead to markets that are flexible and resilient with supply backups from

LNG spot markets.

1.2 Issues in the Natural Gas Supply Chain

Natural gas, being a gas, suffers from low volumetric energy density (energy per unit

volume). As a result, it is inherently difficult to store and transport compared to oil

for a fixed amount of energy. The issues outlined here are all inter-related and related

in some way to the fact that natural gas is a gas and, therefore, is difficult to store

and transport. Oil and natural gas are occasionally referred together in contexts such

as discussions about fossil fuels or energy economics, but they are quite different from

all other standpoints: production, transportation, storage and consumption. Again,

the main difference stems from the obvious fact that crude oil and its end-products

(e.g., gasoline and diesel) are liquids while natural gas is handled and consumed as a

gas in most uses.
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1.2.1 Single Entity Operation of Upstream Systems

Pressures in reservoirs, wells and upstream networks play an important role in natural

gas production. A substantial amount of investment over the lifetime of upstream

networks is devoted to maintaining flow in the network. Due to this feature, an

upstream natural gas system needs to be managed by a single operator so that all

the fields are managed in coordination with each other. This coordinated operation

and management makes sure that the entire collection (gathering) network (either

surface or subsea) keeps flowing smoothly. Collection networks (and therefore entire

systems) can be adversely impacted by inefficient operation in one part of the system.

For example, failure to remove all water from the gas produced by a field (e.g., due

to a malfunction) can lead to choking of pipelines due to gas hydrates somewhere

downstream. Similarly, uncontrolled production from high pressure wells can choke

low pressure wells. Investments are required over time to install compressors to

produce from low pressure reservoirs and build new interconnections in the network

to maintain flow. As new reservoirs are developed, investments may be needed to

install new platforms and pipelines, and connect them to the existing network at

appropriate locations such that they have minimal effect on existing production. All

this requires central management of the entire upstream network.

The central operation of upstream gas networks is a technical necessity (and not

just for reasons of economies of scale as may be true for oil networks) because the

upstream pipeline network couples the entire system (i.e., multiple reservoirs and

consumer facilities) and is able to transmit disturbances from one part to the other.

Therefore, to have effective control over the system, an operator needs to have control

over the entire network and all elements connected to it. This means that even when

multiple stakeholders are involved, efficient practices will gravitate towards central-

izing the control and operation of an upstream system. Recently, with sophisticated

online sensors and actuators, and real-time data acquisition and processing, it has

become even more beneficial, efficient and easier to operate large upstream systems

centrally. Finally, gas production is technically intensive and, therefore, needs sophis-
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tication and experience which are only available to large operators (mostly interna-

tional oil companies) that naturally leads to centrally-controlled systems even when

operators do not entirely own the system.

Some of the above arguments may also apply to downstream gas networks. How-

ever, there is an important difference which distinguishes them from upstream net-

works. Downstream networks can be upgraded by installing additional inter-connections,

bypasses and compression facilities to decouple them from each other if it makes eco-

nomic sense to do so. On the other hand, upstream networks are connected to gas

wells, the pressures in which are governed by reservoir dynamics. Moreover, upstream

networks are by nature, collection networks, that deliver gas to certain demand nodes

and hence have a (converging to demand) topology that favors integration and not

decoupling. The network is expected to become cheaper (per unit of gas transported)

downstream as economies of scale for pipelines come into play. Besides, upstream

networks are likely to be offshore or in other difficult locations where the capital cost

of any additional facility may be too high. All these factors make decoupling parts of

the upstream system less favorable economically and make central operation a more

attractive proposition.

1.2.2 Issues in Production and Transportation Infrastructure

Gas production and transportation has some unique issues associated with it that

distinguish it from oil infrastructure.

Capital-intensity

Production and transportation infrastructure for natural gas requires a large capital

investment. Upstream investments in gas account for 56% of total gas sector ex-

penditure [5]. Most upstream investment goes towards the development of new and

existing fields.

Pipeline transportation of gas requires an extensive pipeline network and compres-

sion stations at regular intervals. Gas pipelines are significantly more expensive than
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their oil counterparts because they have a larger diameter and operate at much higher

pressure (e.g., 70-100 bar for cross-country pipelines). Long-distance gas pipelines can

cost up to US $1-2 billion for every 1,000 km [5] depending on the routing and terrain.

With the rising price of steel, they are expected to become even more expensive in

the near future.

Investments in liquefaction facilities, LNG tankers and regasification terminals are

required for transportation as LNG. A typical LNG train produces 3-4 million ton

per annum (mtpa)1 of LNG and can cost up to US $1 billion as per 2004 estimates

[8]. LNG has enormous economies of scale and therefore, the size of trains continues

to increase. New trains being set up in Qatar are in 5-7.5 mtpa range. It is estimated

that costs for a new (so called greenfield) LNG project are in the range US $3-5 billion

for liquefaction, US $2 billion for shipping and US $0.8-1 billion for the regasification

terminal [5]. For the same amount of energy carried, a large LNG carrier costs up

to four to five times more than a large oil tanker [5]. 2003-2004 estimates for a

135,000-140,000 cubic meter LNG carrier are around US $160-170 million.

Overall some estimates claim that gas costs up to 10 times more to store and

transport than oil [6].

Specificity

Natural gas infrastructure is specific and designed to strict capacity, pressure and

composition specifications for processing and transporting natural gas from a partic-

ular set of fields. It is therefore specific to the natural gas it can transport. This means

that it cannot be put to any other use (i.e., for carrying natural gas of a different

specification) without extensive modification of facilities. In the case of downstream

natural gas networks, even the direction can be specific and the capacity of the net-

work may be asymmetrical with respect to the designated (during design) direction

of flow and may require additional investment in compressors, inter-connectors and

by-passes, to make it symmetrical. The specificity of natural gas infrastructure raises

the risk of natural gas projects to investors. If the economics of a project are adversely

1A metric ton of LNG is approximately 2.47 cubic meters
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affected, almost none of the associated infrastructure can be put to another use to at

least partially recover capital costs. For example, an inter-regional pipeline, linking

a source to a market, once constructed, has the express purpose to transport gas at

a specified quality from the source to the market. Inter-regional gas pipelines result

in a long-term tie-up between the gas producer and a certain market. If, due to some

external factors, demand in the market collapses or gas at source is not available, the

entire rationale of the project collapses.

This specificity is in contrast to other infrastructure such as oil product pipelines,

tankers and storage tanks that can handle a much wider range of products. Oil can

be easily transported using conventional infrastructure such as roads or railways with

relatively modest additional capital costs (in road or rail tankers). This is usually not

possible without large investments in additional facilities (e.g., compression, liquefac-

tion, insulated or high pressure tankers) for natural gas. The specificity of natural

gas infrastructure can be seen at its extreme when comparing a LNG plant with a

crude oil refinery. Both involve a similar level of investment and impact. However, a

LNG plant is exclusively designed to process gas from a particular set of fields and

its returns can be significantly impacted if the supply of gas cannot be maintained to

required level or gas quality is significantly different from the plant design or enough

LNG shipping capacity is not available. On the other hand, a crude oil refinery can

handle a much wider range of crude qualities, can rely on the global oil market to

keep functioning and can transport products using conventional infrastructure.

Large Footprint

Natural gas facilities have large footprints; inter-regional gas pipelines occupy a strip

of land for several hundreds or thousands kilometers, production systems may be

spread over hundreds of square kilometers with several hundred kilometers of up-

stream collection network, liquefaction and regasification facilities require large pieces

of land in densely-populated coastal areas and so on. The large footprint of natu-

ral gas facilities in turn requires administrative and environmental clearances from

various entities. Inter-regional natural gas pipelines may cross multiple international
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or ethnic frontiers and suffer from right of way permissions and transit fee issues.

There are significant geopolitical risks associated with international pipeline projects

with involvement of multiple national governments with different strategic interests.

Finally, large liquefaction and regasification facilities as well as pipelines can have

significant environmental impact.

1.2.3 Role of Gas Quality

Oil is refined to convert it into final products. Therefore, refining and blending stages

for oil products can usually take care of specifications. Crude oil quality only affects

refineries’ operations, and they are designed to accept a range of crude qualities and

can adapt to produce a more or less consistent product quality. On the other hand,

natural gas is only minimally processed before being ready for use. This means

that quality specifications on final consumer-grade natural gas tend to impact the

operation of the upstream system. Raw gas quality can vary over extreme ranges.

Some of the difficult reservoirs being considered for production currently can have

20+% CO2 content that only a specialized infrastructure can handle. The same holds

for high H2S reservoirs.

Gas Quality and Global Gas Trade

Quality also potentially hinders global gas trade [6]. Although, gas sourced from

different sources have different compositions, the consumer equipment is designed and

optimized to accept a narrow range of gas quality for safety and efficiency reasons.

This quality may have historically been chosen based on the gas quality available in

the region. However, with global LNG trade, the quality delivered may not match

with consumer equipment and can create serious safety, environmental and economic

problems. For example [8], the bulk of LNG traded in the world has a higher heating

value and is richer in heavier hydrocarbons than specified by some North American

natural gas pipeline operators that require lean gas for transportation. Similarly,

California has strict limits on composition as a result of which the bulk of traded
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LNG does not qualify. In the UK [8], several LNG imports have a Wobbe Index

(ratio of higher heating value of gas to square root of its specific gravity, roughly

the amount of heat released by a gas burner at constant pressure) that exceeds the

current regulations. Higher Wobbe Index gas requires more oxygen than lower index

gas to burn. Gas appliances designed for low index gas may not be able to supply

sufficient oxygen for complete combustion of high index gas. This creates safety and

environmental issues such as flame lifting, back firing, excess CO and NOx emission

and increased sooting.

The solution to this lies in the processing or blending of natural gas or the modifi-

cation of consumer equipment, all of which have an economic impact [6]. For example,

ethane can be stripped from rich LNG; however, ethane does not have direct uses [8].

At least one US terminal has an ethane stripping plant that can handle rich LNG.

Another interesting proposal is to combine LNG terminals with LPG and power gen-

eration facilities that consume stripped heavier hydrocarbons. Blending with leaner

gas at a central location is another option. Finally, equipment modification is another

solution, though it suffers from the logistical difficulty of carrying out an upgrade of

all consumer equipment, besides its economic costs.

The quality of LNG is also a hindrance to spot trading of LNG for exactly the

same set of reasons.

1.2.4 Seasonal Nature of Demand

A big share of natural gas is used for residential and commercial heating purposes,

as well as for electricity generation. The demand is therefore strongly coupled with

seasonal patterns, especially in the developed world. In cold regions, demand is low

in summer months and high in winters when heat is required. Even during a single

winter, demands can spike within a region when a cold spell hits. In regions with gas-

fired electricity generation and hot summers, the demand can peak during summer

months when electricity demand for cooling is high.

The industry relies on long-term storage to offset seasonal fluctuations in demand.

However, even if gas is available in the storage, it must be able to be transported to
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the consumer. During periods of peak demand, the required transportation capacity

may not be available as discussed later in Section 1.2.5. Seasonal demand fluctuations

also have a regulatory dimension for local distribution companies (LDC) and utilities.

Especially in places which have colder winters, the loss of residential heating may

be life-threatening and regulators demand strict guarantees from LDCs that such

a situation does not occur. LDCs in turn have contractual arrangements (briefly

discussed later in Section 1.2.6) with bulk consumers to make sure supplies will be

available.

Again, these issues arise because any excess amount above the rated capacity of

gas storage and transportation infrastructure is expensive and not even technically

feasible at times. Gas infrastructure is inherently inflexible to handle spikes in de-

mand. Moreover, it is uneconomical to over-design the infrastructure for the worst

case scenarios (e.g., once in fifty years winter) and it will be done only if there is a

regulatory requirement to do so.

1.2.5 Issues in Storage

Natural gas cannot be easily stored due to its low volumetric energy density. Hence to

store a given amount of energy, a large volume is required unless the gas is stored at

a high pressure or is liquefied. The nature of storage for natural gas differs depending

on the time-scales of the storage as follows:

1. Short-term storage of natural gas is on the order of hours to satisfy peak demand

during the day. Linepack storage is achieved by raising the pressure in the

pipeline system to enable it to store extra gas that can relieve peak demand

on the order of hours. LNG has also been used on a small-scale for satisfying

peak demand in some natural gas networks where liquefaction is done during

off-peak hours and LNG so produced is regasified during peak hours.

2. Medium-term storage is on the order of several days to several weeks. Salt

caverns are underground cavities where salt has been dissolved by water and gas

can be stored in these cavities if compressed. Use of rock caverns for storage has
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also been investigated in recent years. Since these are essentially like compressed

gas storage tanks, they provide very fast injection and withdrawal profiles. LNG

has become a promising and viable option for storage with the rise in global LNG

trade and storage facilities are being made available at regasification terminals.

Since LNG terminals are usually near markets (i.e., near populated coastal

areas), they have additional advantages from a transportation standpoint as

transportation bottlenecks and disruptions over a short distance are less likely.

3. Long-term storage facilities serve to smooth out the seasonal variations of nat-

ural gas demand. These therefore operate on an yearly cycle. These are mostly

geological formations such as depleted fields and large aquifers. Gas is com-

pressed and injected into formations during a low demand period. The forma-

tions can be produced as a gas field during peak demand months. However,

suitable formations may not be available near all markets or may not have the

requisite capacity. The other issue with these facilities is that they have spe-

cific injection and withdrawal profiles that can put rate limits on drawing from

storage.

It is important to note again that each of the storage options above involve com-

pression or liquefaction and incurs a cost. Underground storage options also suffer

from a cost in terms of lost gas. Hence, gas storage incurs an operational cost per

unit of energy stored as opposed to oil storage which incurs little or no such costs. As

indicated earlier, some estimates give this cost to be 10 times as much as oil. Not only

that, except for short-term storage, most storage development is much more capital-

intensive than oil storage. For example, developing underground storage involves not

just investment in compression and transportation facilities, but also requires an ex-

penditure in cushion gas to bring up the storage to working pressure which can be

significant for large storage capacity. LNG storage can contribute up to 40-50% of

costs in a regasification terminal [8].
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Availability of Transportation

Delivering gas supplies during periods of shortages or peak demands usually involves

two steps:

1. Ascertaining the availability and maximum rate of withdrawal from the storage.

2. Ascertaining whether gas can actually be delivered to the market.

The second step may not be possible during peak demands for a particular market,

mainly because gas transportation relies heavily on pipeline networks for delivery

and pipelines have strict capacity limits. This is in contrast with the situation in oil

markets where (unless there is a nationwide crisis) additional road and rail oil tankers

may be pressed into service to reinforce supplies. Additionally, as opposed to rail or

road transportation, a lot of natural gas pipeline infrastructure favors unidirectional

flow.

The difficulty with storage and transportation of natural gas makes it challenging

to deal with supply shocks and market disruptions for natural gas. Oil storage pools,

e.g., the U.S. strategic reserve, can help to absorb temporary supply shocks (such

as weather or political events) in oil markets. Based on the difficulties outlined

above, a comparable (in terms of energy content) strategic reserve for gas would be

prohibitively expensive to commission and operate, and would not be as effective as

an oil storage pool because of withdrawal and transportation difficulties.

1.2.6 Contractual Framework

Contractual frameworks exist almost in the entire gas supply chain from production

to the final consumer. It is important to note here that contractual frameworks

are an integral part of the gas supply chain resulting from the characteristics of

natural gas and the associated infrastructure. They do not exist as add-ons in the

gas business, i.e., gas markets would not function without them. In fact, it can be

argued that contracts are responsible for the rise of natural gas as a viable fuel. Gas

infrastructure would not have developed without the supply and demand guarantees
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that contractual frameworks provide. Contractual frameworks also play a central role

in the operation of gas infrastructure because production, transportation and storage

of natural gas have to be in line with the contractual rules.

Contractual frameworks in natural gas systems mostly result from the factors that

have been discussed so far:

1. Capital-intensity and specificity of gas infrastructure for each part of the chain

pose a significant risk for investors, producers, transportation operators, con-

sumers and so on. They reduce their risk by obtaining guarantees from each

other. These guarantees are formally instated as contractual agreements.

2. High capital-intensity and risk also imply that there are multiple stakeholders

in the entire value chain and hence there is a need for formal agreements.

3. The absence of a liquid gas market increases the risk for producers and in-

vestors by making the sales of gas uncertain. Similarly, there is a risk for

buyers as to whether they will be able to source the required amount from the

markets. Therefore, there is both supply-security (from the buyers’ perspective)

and demand-security (from the producers’ perspective) rationale for contracts.

4. Imperfect markets also make discovering the market price of gas difficult. There-

fore, formal arrangements are required to set the gas price. This imperfect and

distorted market is a direct result of difficulties with transportation and storage.

Contracts for exploration and production exist as licenses granted by the state (or

the owner of the land, depending upon the laws in a particular country) either for

exploration or production or both. The license may be provided to producers for a

specified period of production. These contracts are usually long-term. A producer will

pay a royalty to the licensing-granting entity in exchange for the right to produce.

The royalty may be flat (a fixed share of production) or may be determined in a

complex way.

In some upstream systems, multiple firms have stakes in the production system

and a single operator (which is usually a firm that holds a stake in the upstream

42



system) is responsible for day to day operations. In such systems, there is a need for

formal agreements (that govern sharing of products or revenue and the agreed op-

erational strategy) between stakeholders and the operator. These are usually called

production-sharing contracts. Upstream producers (or in the case described here,

upstream operators and stakeholders) in turn may be involved in contractual ar-

rangements with big consumers such as LNG and GTL plants or pipeline exporters

for a guaranteed offtake of gas.

International gas sales have traditionally been governed by long-term contracts

between producers and consumers with periods ranging from 15-30 years. The length

of contracts depends on the economics of the project, with a tighter and more un-

certain economics leading to longer-term contracts. Contracts may usually define

not just the amount, but also gas quality. Most imports to the developed economies

take place through Take-or-Pay (ToP) contracts between buyers and seller [8]. These

contracts have played a major role in development and investment in the industry.

Under ToP contracts, producers are obligated to supply a predefined volume at a

mutually agreed price subject to revision and buyers are obligated to buy the pre-

defined volume. Under this arrangement, producers take a price risk while buyers

take a marketing risk. Pricing arrangements in such long-term contracts are based

on the replacement value principle [8], i.e., the gas price is tied to price (value) of

a substitute (replacement) fuel (e.g., heavy fuel oil for gas-fired power stations and

industrial uses). The replacement value principle is not simple when capital costs are

taken into account. For example [8], if the price of gas for power generation is inferred

from coal as an alternative, one comes up with an artificially low price for gas due to

the fact that long-run marginal costs are not considered which are lower for coal. If

the fact that gas-fired plants are efficient and cheaper to build (per unit generation

capacity) is taken into account, the price inferred for gas is high and the marginal cost

of generation from gas-fired plants becomes uncompetitive with coal-fired generation.

The price of gas in long-term contracts may also be linked with prices in a domestic

liquid gas market if one exists, such as in the US or the UK. A further discussion of

contractual arrangements in LNG can be found in [8].
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Contracts also exist in the transportation chain. Investors in a large-scale pipeline

project may need guarantees that enough transportation capacity can be sold in

the market. LNG producers may have agreements with LNG shipping operators.

Similarly, owners of a large LNG receiving terminal may need guarantees that gas

can be transported to markets from the terminal. Again the length of a contract

depends on economics and the risk of a project.

Finally, contracts also exist between downstream suppliers and bulk consumers.

These contracts may be interruptible (as opposed to firm or uninterruptible contracts

when the supply is guaranteed), i.e., under peak demand the supply can be disrupted.

This is especially true for utilities where there may be a regulatory requirement to

supply residential and small commercial customers.

Although necessary, the contracts may further distort gas markets, that are al-

ready imperfect and make them inflexible and unresponsive to external signals (e.g.,

changes in technology, resource scarcity and so on) due to long-term lock-ins.

Evolution of Contracts

With the rise of LNG trade and infrastructure, and the continued trend of liberal-

ization of markets in the developed world, the contractual framework continues to

evolve rapidly. Specifically, the maximum length of contracts is being shortened from

20-30 years to 15-20 years [8]. Also, contracts are increasingly becoming flexible. For

example, some long-term contracts now contain swing provisions that allow buyers to

vary the volume up to a certain maximum limit if they desire. Some LNG contracts

also allow the transfer of gas to spot markets at certain price thresholds. The volumes

involved in the contracts are getting smaller. The rise of spot markets has further

removed some inflexibility in the gas markets. Excess gas left over can be sold in the

spot market that is profitable for sellers. It is now possible to link contract prices to

open market spot prices. Therefore, price-indexation of LNG is moving away from

the prices of oil products. Additionally, upstream operators are increasing acquiring

interests in LNG terminals to ensure offtake of LNG.

As one of the first examples of the changes sweeping through the LNG contracts,
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MLNG Tiga negotiated a contract with three Japanese utilities (Tokyo Gas, Toho Gas

and Osaka Gas) in February 2002 with a buyer option to reduce contracted volumes

and a portion of the contract to be supplied Free-on-board (i.e., the buyer is respon-

sible for shipping from the exporting terminal as opposed to ex-ship arrangements)

[8].

Nevertheless, it is expected that long-term contracts will continue to coexist with

short-term arrangements in gas supply chains. Most experts agree that the LNG

short-term trade (both physical and paper) will never reach the scale of the oil market

[8]. Most optimistic estimates claim that the spot LNG trade will ultimately be

around 15-30% of global LNG trade [8]. Even in a liberalized market, the bulk of the

gas is still delivered under long-term contracts as of 2003-2004, e.g., in the US half of

the wholesale gas and in the UK, 85% of gas was delivered under long-term contracts

[8] (although, long-term in the US and the UK refers to a shorter period than other

parts of the world, 8-10 years).

1.2.7 Issues in the Overall Supply Chain

All previously discussed, unique features of gas production, transportation and stor-

age have major implications for the entire supply chain. It is clear that gas supply

chains operation involves tightly coupled subsystems and they must be closely coor-

dinated and aligned with each other for the proper functioning of the entire chain.

This means that the weakest link can disrupt the entire supply chain severely. This

is in contrast to the oil chain where it is possible for the system to recover from a

disruption of a single link, e.g., a disruption in crude supply can be circumvented by

drawing from a reserve or buying from oil spot markets, a disruption in refining can

be substituted by importing oil products, a disruption in a pipeline can be alleviated

by using road or rail and so on.

The fragility of gas chains has serious implications for the security of gas supply.

With the decline of gas reserves in the developed world and the growth of emerging

markets, the supply chains to markets will be stretched further in the near future

and therefore will be more prone to disruptions due to natural or geopolitical events.
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The rise of resource nationalism is a retrogressive development for gas supply chains

as national oil companies do not have the resources or will to invest in infrastructure

and technology that are crucial to a robust gas supply chain. The central role of

technology, advanced project management practices and capital in gas chains also

calls for expertise from international oil companies that have not been allowed to

operate (freely) by several national governments.

1.3 Planning Overview

In general, decisions in the petroleum industry involve a multitude of technical,

economic, regulatory, geopolitical and environmental factors and can be quite com-

plex. Petroleum infrastructure involves large investments and the industry has large

turnovers and volumes. Hence, even small fractional performance gains made in

the design and operation of petroleum infrastructure can translate into significant

increases in profits. It is therefore not surprising that the petroleum industry has

been a pioneer in the use of systematic mathematical programming methodology for

decision-making. For example, the earliest optimization models for blending problems

in refineries date back to at least 1952 [9].

The domain of planning in the industry encompasses the entire supply chain:

exploration and production, transportation, processing and distribution. Tradition-

ally, the part of the industry involved with exploration and production is termed

upstream while processing and distribution are termed downstream. Based on this

classification, planning problems can be categorized as being upstream or downstream

problems depending on their domain:

1. Upstream problems are concerned with exploration and production decisions

in the fields. These problems may concern technical and economic decisions

regarding field development, reservoir management, production infrastructure

development and expansion, and production operations.

2. Downstream problems are concerned with decision-making in the transporta-
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tion, processing and distribution of oil and natural gas. Examples of such

problems include crude and end-products supply chains, refinery design and

operation and natural gas transmission and distribution.

The decisions involved in a planning problem can vary with the time horizon over

which the plan is made. Based on this, planning problems may be roughly distributed

into three categories:

1. Long-term planning problems tend to have a time horizon of roughly over five

years to over a decade (or even several decades). The key decisions are major

investment decisions over the planning period. For example, long-term planning

problems in natural gas systems may include decisions about the development

of fields, offshore production platforms, pipeline infrastructure, processing fa-

cilities, compression stations, liquefaction plants and so on. The level of un-

certainty is quite high in these problems. The sources of uncertainty can be

technical, e.g., uncertainties in amount and quality of recoverable resources, or

they can be economic, such as demands and market prices, or a combination of

both, for example, total project costs.

2. Medium-term plans generally run from several months to several years. Ex-

amples of medium-term decisions may include reservoir management, major

debottlenecking and expansion, and maintenance of facilities.

3. Short-term planning problems involve decisions over several weeks to several

months. Due to the timescales involved they are usually concerned with op-

erational decision-making. Decisions may be concerned with the state of the

individual wells and fields, transportation of feed and final products, processing

facilities operating states and delivery to consumers.

There is often a substantial overlap and interaction between different planning

models, both between upstream and downstream models, and between short, medium

and long-term models.
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1.3.1 Planning in Natural Gas Systems

Planning in natural gas systems has additional issues due to the factors described

in Section 1.2. In most cases, planning models for natural gas must include a tech-

nical model of the infrastructure and cannot be purely economic or commercial (an

exception may be when infrastructure has excess capacity). This is because of the

specificity and capacity limitations of production, transportation and storage infras-

tructure. Without a technical representation, the model will likely generate impossible

scenarios. Accurate prediction of pressures and gas quality specifications usually play

an important role in natural gas planning problems. Natural gas models need addi-

tional constraints to take contractual, regulatory and operational rules into account.

Finally, due to the strong coupling of subsystems within gas chains, it is beneficial

to model the entire chain with a single planning model and generate a coordinated

management scenario if the mode of operation and control of the system permits to

do so. Such planning models can reduce systemic risks intrinsic to gas chains by en-

abling operators to evaluate scenarios, identify weak links in the chain and evaluate

potential remedies.

The next chapter explores in detail the specific issues and requirements arising

from short-term planning in upstream natural gas systems.

1.4 Literature Review

As described earlier, the oil and natural gas industry has been a pioneer in the ap-

plication of mathematical programming with work going back to at least 1952 [9].

Therefore, the body of literature on this topic is vast. There are multiple disciplines

that have contributed to the area. These include operations research and management

sciences, petroleum engineering, energy economics and chemical engineering. How-

ever, there has been little interaction and collaboration between these disciplines.

Each community has formulated and solved models in its own area of interest and ac-

cording to its own perspective. Petroleum engineers have focused on decision-making

in upstream engineering, e.g., gas-lift calculations, flow calculations in wells and fa-
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cilities, equipment scheduling and so on. Logistics, economic decision-making and

market modeling in the downstream business have been within the realm of the oper-

ations research community and energy economists. The chemical engineering commu-

nity has mainly focused on technical models (especially nonlinear models) for design

and operations of upstream and downstream infrastructure. Due to the involvement

of multiple disciplines, even the terminology across the field is not consistent. An

exhaustive survey of the field is therefore very difficult.

The subset of works described here are in some way related to natural gas pro-

duction, processing, transportation and distribution or have some relationship to the

modeling approach described later. Oil production and downstream system modeling

are not discussed here because most of the problems encountered and models used

in oil systems do not directly apply to natural gas systems. The main exception to

this is the class of refinery blending problems, so-called pooling problems [10, 11], the

constraints corresponding to which are found in gas networks when quality is tracked

across the entire network. There is a substantial literature on gas-lift optimization

in oil fields that is not been not discussed here since the modeling approach and

objectives of those problems differ widely from the actual gas problems.

Basic information about natural gas production can be found in the works by

Katz and Lee [12], Ikoku [13] and Lyons and Plisga [14]. A discussion of underground

storage can be found in Tek [15].

Dougherty [16] presents a review of works until 1970 from a petroleum engineering

perspective that covers both oil and natural gas applications. Another survey of the

work prior to 1977 can be found in Durrer and Slater [17]. Broadly, the work relevant

to natural gas can be divided into the following topics:

1. Planning in natural gas systems, both from the supply chain perspective and

the subsystem perspective.

2. Design, simulation and optimization of gas transmission systems.

3. Decision support models for local distribution companies (LDC) or utility com-

panies to plan purchase, storage and transportation of natural gas.
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4. Infrastructure development planning, both in oil and natural gas fields.

5. Some relevant models for oil fields.

1.4.1 Natural Gas Systems

There are only a few relevant and detailed works in this area due to the difficulty and

size of optimization problems that result from modeling of entire subsystems. One of

the earliest discussions of the factors involved in production planning in natural gas

systems from a technical and economic perspective appears in Van Dam [18]. A qual-

itative discussion of the long-term planning system for gas production and processing

operations owned by Santos in Australia is presented in Dougherty et al. [19]. A

simple operational planning model of the gas network in a commercial field planning

and optimization tool is optimized using SQP in Dutta-Roy et al. [20]. A superficial

presentation of the tools used for the North Sea gas fields can be found in Mortimer

[21]. Bitsindou and Kelkar [22] present a model for gas well production optimization

by solving the network sequentially and fitting historical data. A detailed discussion

of issues involved in the natural gas supply chain planning appears in Tomasgard

et al. [23]. The Energy Information Administration of the US Department of Energy

has developed over the years a demand, supply and transportation matching model

for the North American natural gas market [24, 25]. Midthun [26] discusses issues

in the optimization models along the entire natural gas value chain. Mason et al.

[27] formulate a production planning problem for a natural gas system with nonlinear

pressure-flowrate relationships and solve it with a derivative-free and a nonsmooth

method.

1.4.2 Gas Transportation Networks

A substantial body of work exists on design and operational optimization of gas

pipeline transmission systems, the main objective being to minimize the capital and

operational costs for the network. Osiadacz [28] and Kraálik et al. [29] contain a

discussions of methods for simulation and analysis of gas networks. Il’kaev et al. [30]
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present detailed fluid dynamic simulation approach for gas pipelines. A dynamic pro-

gramming based model for optimizing gas pipeline operations is presented in Peretti

and Toth [31]. An optimal control perspective on the problem can be found in Mar-

qués and Morari [32] and Osiadacz and Bell [33]. Furey [34] presents a modified suc-

cessive quadratic programming (SQP) algorithm for optimizing natural gas pipeline

networks. A bundle method is used to solve the pipeline design problem in De Wolf

and Smeers [35]. In a later work by the same authors [36], an iterative method using

piecewise linearizations of nonlinear functions and LP simplex is employed to solve

the network problem. An optimal routing problem for natural gas transportation is

presented in Dahl et al. [37]. A simulation model for natural gas pipeline systems is

presented in Nimmanonda et al. [38]. A reduction method for networks is presented

in Ríos-Mercado et al. [39]. Techniques for constructing piecewise linear approxima-

tions of the nonlinear functions involved in the gas transmission network and the

properties and solution of the resulting mixed-integer linear program (MILP) have

been discussed in Martin et al. [40]. A methodology based on dynamic programming

for minimizing fuel consumption in gas networks that contain cycles is presented in

Ríos-Mercado et al. [41]. Various numerical and mathematical aspects of cost min-

imization in gas transmission networks are discussed in [42–46]. Arsegianto et al.

[47] present a simulation-based design of a gas transmission network. A discussion of

capacity allocation in pipelines appears in Cremer et al. [48]. A model for planning

investment in residential gas network is presented in Davidson et al. [49]. Issues in

the maintenance of infrastructure networks is explored in Papadakis and Kleindorfer

[50]. Abbaspour et al. [51] develop an optimization model for linepack operation of

compressor stations and solve it with a sequential unconstrained minimization tech-

nique. Kabirian and Hemmati [52] present a nonlinear programming (NLP) model

for design of natural gas transmission networks. A nonconvex NLP model for the

design of a natural gas distribution network is presented and solved with Floudas’

GOP based global optimization approach in Wu et al. [53].
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1.4.3 Decision-making for Local Utilities

Substantial effort has been put into decision support models for making purchasing

and storage decisions for local distribution companies (LDC) and gas transportation

companies. An optimal schedule for withdrawal from storage reservoirs appears in

Wattenbarger [54]. An allocation problem within a statewide trunkline network with

users having different priorities is solved in O’Neill et al. [55] that introduces the

idea of a pseudonetwork to model swaps between different pipeline systems. Levary

and Dean [56] present a model for gas procurement by a natural gas utility. A

linear programming (LP) framework to evaluate supply scenarios for planners on a

statewide or national level is presented in Brooks [57]. A model that considers storage

deliverability for managing natural gas purchases for a LDC is developed in Bopp et al.

[58]. A chance constrained approach to making purchasing and storage decisions for a

utility is presented in Guldmann [59]. In a work by the same author [60] a marginal-

cost pricing model that includes gas supply, storage and transmission, for a gas utility

is discussed. A LP model for determining utility decisions appears in Avery et al. [61].

A decision support model for natural gas dispatch is developed in Chin and Vollmann

[62]. Guldmann and Wang [63] present a model for choosing the optimal mix of

natural gas supply contracts for a LDC. A similar contract selection approach for a

North American gas producer is presented in Haurie et al. [64]. Butler and Dyer [65]

develop a multi-period LP model for natural gas purchase by an electric utility that

considers purchasing, storage and usage. A model for a Chilean LDC with contracts

is presented in Contesse et al. [66]. Recently, Gabriel et al. [67] present a mixed

nonlinear complementarity model of natural gas markets. In another work, the same

authors present a stochastic equilibrium model for deregulated natural gas markets

[68] A complementarity model for the European gas market appears in Egging et al.

[69]. A combined upstream and downstream market model for Europe is presented in

Holz et al. [70]. Chen and Baldick [71] discuss a model for optimizing the short-term

natural gas supply portfolio for natural gas based power generation for an electric

utility. Attempts have been made to estimate residential and commercial demand
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([72]) as well as industrial demand ([73]).

1.4.4 Infrastructure Development

Offshore infrastructure development and long-term planning is the earliest and possi-

bly the most widespread application of mathematical programming in this area. This

is not surprising given the enormous capital cost and risk associated with offshore field

development. However, because this thesis is concerned with operational planning,

only some representative works and trends in the area are outlined and one should

refer to these to explore the field further. A combination of the infrastructure and

operational problems from a petroleum engineering perspective appears in Huppler

[74], Flanigan [75] and O’Dell et al. [76]. A well location problem with a simplified

reservoir model is solved in Murray III and Edgar [77]. McFarland et al. [78] use a

simple tank model for reservoir dynamics to formulate an optimal control problem

and solve it using a generalized reduced gradient method. Beale [79] describes a long-

term offshore field development problem with options to install compressors that is

solved as a MILP approximation. An approach for making exploration decisions in

oil and gas fields is presented in Beale [80]. Haugland et al. [81] present a long-term

multi-period MILP model for making decision in field and infrastructure develop-

ment. A long-term multiperiod MILP model in use by the Norwegian regulator to

aid in field development decision making is presented in Nygreen et al. [82]. van den

Heever et al. [83] present a model for long-term infrastructure planning with complex

economic objectives. A model of the production system in Saudi Arabia and issues

associated with it are presented by Gao et al. [84]. An oil well spacing and produc-

tion control problem is solved in Ayda-zade and Bagirov [85] by first formulating a

two dimensional partial differential equation (PDE) model of the reservoir and then

converting it to a conventional optimization problem. Recently, works have started fo-

cusing on handling the uncertainty involved in planning using stochastic programming

formulations [86, 87]. Jonsbråten [88] presents a stochastic programming model for

oil field development and operations under price uncertainty. A simple analysis of the

profitability of development projects in the presence of production-sharing contracts
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appear in Yusgiantoro and Hsiao [89]. The analysis does not involve mathematical

programming and is based on simply evaluating several scenarios.

1.4.5 Relevant Models in Oil Production

There have been works on short-term production planning in oil fields. Dawson and

Fuller [90] present a multi-period mixed-integer nonlinear programming (MINLP)

model for production planning in an oil field, however optimize it heuristically using

Generalized Benders Decomposition. Kosmidis et al. [91] present a model for well rate

allocation that comprises naturally flowing and gas lift wells. The model is solved

by linearizing well models to formulate an approximate MINLP and then solving

a sequence of MILPs. Khezzar and Seibi [92] discuss a NLP model for optimizing

upstream oil production systems with gas-lifted wells and solve it with SQP. Ortíz-

Gómez et al. [93] present MILP and MINLP short-term multiperiod oil production

models, however nonconvex MINLP models are not solved to global optimality and

they only address oil production systems where the gathering system is not strongly

coupled with the wells. Queipo et al. [94] present an integrated model of reservoir

and surface facilities for an upstream oil production system and solve it with SQP

and derivative-free methods. Barragán-Hernández et al. [95] solve a dynamic model

with an interior point solver for an oil field.

1.4.6 Miscellaneous Works

A hybrid systems model that includes reservoir dynamics and economics for gas wells

is presented in Chermak et al. [96]. Teisberg and Teisberg [97] discuss a contract

valuation methodology for natural gas. An introduction to the application of options

theory to oil and gas is discussed in Paddock et al. [98] and Smith and McCardle [99].

Murphy et al. [100] discuss analysis of natural gas regulatory proposals in the US.

Chen and Forsyth [101] develop an approach for valuation of a natural gas storage fa-

cility as a stochastic control problem and solve the resulting Hamilton-Jacobi-Bellman

equation using a semi-Lagrangian approach. An exploration of regulatory issues in
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the gas markets based on a model of gas transportation pricing model appears in

Cremer and Laffont [102]. A generalized network model of the US integrated energy

system is presented in Quelhas et al. [103] and Quelhas and McCalley [104]. A model

for LNG terminal design with a supply-chain perspective is presented in Özelkan et al.

[105].

1.4.7 Relationship with Electricity Planning

Gas production and transportation planning correspond respectively to power gen-

eration and transmission planning. This is because electricity shares several char-

acteristics with natural gas: the storage of electricity is difficult and expensive, the

expansion and development of electric generation capacity requires that a big share of

demand be guaranteed and peak power demand can result in non-availability of suf-

ficient power generation capacity or deliverability problems due to inadequacy of the

power grid. However, there are also important differences from a modeling and plan-

ning perspective. Natural gas planning is complicated by nonlinear pressure-flowrate

relationships in wells and transportation networks, gas quality issues, complex stor-

age deliverability, involved transportation issues due to pressures and gas quality,

and complex contractual rules. Also, natural gas faces uncertainty not only from

demand (as electricity) but also from the supply-side infrastructure in term of pro-

duction expansion in the long-term (exploration and recoverable reserve uncertainty)

and transportation availability. Finally, the capital intensity of the overall natural gas

chain is higher than electricity infrastructure. Electricity power planning problems

traditionally focus on generation expansion, scheduling and planning and competitive

market issues. Gas planning problems tend to focus on modeling of gas production,

transmission, storage and contractual issues. In general, issues in production (gener-

ation), transportation (transmission), and distribution differ for both and hence the

modeling approach in one is not directly applicable to the other. Nevertheless, some

aspects of the modeling and solution methods can be similar. A further discussion

is out of scope here and more information can be found in Kagiannas et al. [106]

and Hobbs [107]. An interesting (and worrying) development is the increasing use of
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natural gas in electricity generation using high-efficiency CCGT plants which is in-

creasingly intertwining both markets [5], thereby enabling supply shocks from natural

gas markets to travel to electricity markets.
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Chapter 2

Short-term Planning in Upstream

Natural Gas Systems

A short-term planning framework for upstream natural gas systems can streamline

production operations and enable operators to realize the full system potential in

terms of their preferred metrics while simultaneously satisfying governing rules (as

defined later). However, there has been little work in this area, partly because com-

puting power and optimization theory have been insufficient in the past to han-

dle the kind of moderate to large-scale nonconvex mixed-integer nonlinear programs

(MINLP) that result from these planning problems. However, with the advances in

global optimization theory and algorithms made in the last decade, this problem is

now tractable, provided a reasonably good optimization modeling approach is used

in conjunction with exploitation of problem structure.

2.1 General System Definition

The upstream natural gas system in this context is a set of natural gas fields that

produce into a common collection (gathering) network to transport gas to a large

consumer facility. The system includes reservoirs, wells, processing facilities connected

to wells and the surface or subsea pipeline network that supplies the consumer. The

consumer is usually a large facility that consumes all (or most of) the natural gas
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produced by the upstream system. Examples of such consumer facilities may be a

LNG plant, a GTL plant, a petrochemicals complex, a power plant, a big pipeline

exporter, or a combination of several such facilities. The consumer facility may or

may not be included in the planning scope depending on the mode of operation

and control of the upstream system. If the facility and the upstream production

system are operated in an integrated fashion, it is highly desirable that the operational

planning frameworks include the consumer facilities. The planning horizon is short-

term, typically ranging from a few weeks to several months.

2.2 General Features

Most upstream systems have multiple stakeholders because they are too large to be

owned by a single entity. Fields, facilities and network may be split between differ-

ent parties due to the high capital costs of developing upstream infrastructure. The

upstream system may be operated by a single operator which is usually one of the

stakeholders in the system. The above arrangement is progressively becoming more

widespread due to national oil companies owning large gas projects where they need to

bring in technology and investments from international oil companies. The consumer

facility itself may be a different entity from the group of producers. As a result, such

systems are operated on the basis of comprehensive contractual agreements that may

involve multiple stakeholders in the upstream infrastructure and consumer facilities

as well as the upstream operator. The contractual agreements define the operational

strategy for the system that facilitates sharing of products or revenue from the sys-

tem. They may also specify gas quality, delivery amount and pressures as dictated

by the operation of consumer facilities. Usually consumer facilities are designed to

accept a narrow band of quality and out of specification feed gas can disrupt the

facility operations. Some systems may also impose economic penalties on producers

if there is a failure to deliver the requisite amounts in contracts. Similarly, consumer

facilities, in turn, have sales agreements with buyers that may define amounts, qual-

ity specifications and penalties on non-delivery. System operations must also comply
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with governmental regulations, e.g., safety and environmental codes. Finally, there

is decades of human experience in operation of such upstream systems that result in

operational heuristics to work around design deficiencies.

These contractual and commercial agreements, regulatory rules and operational

heuristics govern the upstream operations and are referred to later as the governing

rules for the upstream system. As a result of these governing rules, an optimization

of the production infrastructure model alone is not sufficient to generate operational

policies that are consistent with the governing rules and therefore permissible. On

the other hand, a simplistic accounting of volumes based on the contractual rules

and gas qualities may not be consistent with the physical behavior of the production

infrastructure and therefore, may not be useful as an operational policy. A model

that integrates a production infrastructure model with the governing rules is therefore

the preferred approach for upstream systems.

Short-term planning problems are intrinsically operational planning problems be-

cause most decisions in short periods (a few weeks to several months) are concerned

with determining an operational state of the infrastructure that meets certain pro-

duction goals while satisfying system constraints. There are two required components

of such models:

1. A reasonable representation of the production infrastructure that is able to

predict pressures and gas quality throughout the upstream network so that the

resulting policy is physically realizable on the network.

2. A representation of the governing rules (whether contractual, regulatory, com-

mercial or operational) is required for the policy to be acceptable within the

framework agreed by all stakeholders.

2.3 Technical and Business Benefits

The upstream planning framework can yield multiple business and technical benefits

for production operations and by extension, overall gas supply chains. These tools
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generate an operational strategy that help system operators to fulfill their primary

production targets. As long as the models include the governing rules for the upstream

system, policies generated from these models are guaranteed to comply with them.

They can help to fulfill the gas quality specifications frequently mandated by contracts

for smooth functioning of consumer facilities. Additionally, several upstream produc-

tion systems and associated processing facilities produce by-products such as Natural

Gas Liquids (NGL) and Liquefied Petroleum Gas (LPG). By-product optimization

can further improve returns from the upstream system. Finally, it is also possible to

integrate complex commercial and economic clauses of contracts into these model to

take economic factors and penalties into account and create a techno-economic model

of the upstream system that maximizes the economic value generated by the system.

These models can facilitate management of assets in the upstream system in the

short term. Maintenance scheduling using these tools to evaluate scenarios and us-

ing intelligent objectives and constraints can help to minimize supply disruptions.

The majority of newly discovered reservoirs are expected to have high levels of con-

taminants, especially CO2 and H2S. These models can help to intelligently route gas

through the network so as to blend it with sweet gas to satisfy gas quality specifica-

tions. In this way, they aid in the distributed depletion of fields in the presence of

quality constraints. A post optimality sensitivity analysis of a planning model can

also precisely point out the bottlenecks in the system, i.e., which part of the system

must be upgraded to obtain an increase in the particular production objective, so that

capital investment decisions for capacity expansion can be targeted precisely and the

return obtained can be maximized. For example, an inability to sustain a particular

level of production from a sour field in the presence of quality constraints indicates

that a separation facility must be installed to further increase the production without

violating quality constraints or alternatively a quality constraint must be relaxed, if

feasible.

Short-term planning frameworks can interact beneficially with medium and long-

term upstream planning models. A short-term planning model can help to follow

trajectories specified by the medium and long-term planning more accurately while
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simultaneously satisfying production or revenue targets and governing rules in the

short term. For example, short-term models can enforce rate limits and profiles

computed by reservoir management models for maximum recovery. The information

can also flow the other way. Capacity expansion information and other operating

information can be factored into the medium and long-term models to correct them

and hence apply mid-course corrections to the plans, or reevaluate them entirely if

required.

Such models can also improve the resilience of upstream systems to failures. It is

possible to run various operational scenarios and evaluate the availability and plan in

advance. These model can also help to evaluate the delivery potential of the systems

in face of unexpected emergency demands (e.g., an unexpected bout of cold weather)

or unexpected supply-side problems (e.g., the failure of a facility). With increasing

LNG spot trade, the same approach can be applied to query the model as to whether

spot gas is available, and because spot markets fetch higher prices, this increases

overall revenue from the system. In this way, these models provide real-time decision

support. If a particular scenario makes violation of at least some governing rules

inevitable, these model can used to ascertain which set of rule violations involve the

least economic or operational penalty. These models can also aid in redesigning of

contractual agreements between parties by evaluating the impact of governing rules

on operations and identifying the most unfavorable rules.

With a move towards more automated upstream systems with online sensors and

actuators, and advanced control systems, these planning models can be modified

to use data from sensors in the field for effective and automatic calibration and to

provide target profiles for control systems. Consumer facilities can be integrated into

the planning framework if it is permitted by their operational mode. This can help to

determine the optimal response of facilities to fluctuations in the upstream network

and/or demand.

As discussed earlier, the entire gas supply chain has to be coordinated to ensure

reliable supply. An entire source-to-market model can help to make the supply chain

resilient and robust to disruption. These source-to-market models are expected to
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be short-term models (except when they are models for designing supply chains)

since supply chain availability planning is only relevant over short term. A short-

term upstream system model is an important component of the supply side of such a

model.

2.4 Mathematical Characteristics

Mass, volume or specieswise molar balances and pressure-flowrate relationships in

wells, pipelines and facilities account for a majority of the constraints in an upstream

production infrastructure model. Similarly, if a planning model incorporates con-

tracts, contractual volume accounting constraints are required. All these constraints

are equality constraints that are either linear or nonlinear. There are only a few “real”

inequality constraints in the problem that represent physical or contractual bounds

on volumes, composition and pressure variables (although, the actual number of in-

equalities is larger due to the addition of redundant constraints). A rough measure of

the number of degrees of freedom (DOF) in such a model is the difference between the

numbers of variables and equalities. If the DOF are fixed, the rest of the model can

be solved as a system of nonlinear equations, provided it is well-posed. Therefore, if

the feasible region is nonempty and the problem involves only smooth functions with

continuous variables, any feasible solution of the system lies on a smooth manifold

(which is the solution of the nonlinear system parameterized by the DOF) of a dimen-

sion that is equal to the number of degrees of freedom of the optimization problem.

Hence, the feasible sets of such problems are nonconvex. Furthermore, if governing

rules are incorporated in the upstream planning framework, either binary variables

and constraints or disjunctive constraints are required to represent these logical con-

ditions and model these rules. Hence, upstream planning problems are expected to

be mixed-integer nonlinear programs with nonconvex functions.

A general mixed-integer nonlinear programming problem (MINLP) can be repre-
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sented as:

min
x,y

f(x,y)

subject to g(x,y) ≤ 0

h(x,y) = 0

x ∈ X, y ∈ {0, 1}ny

where X ⊂ Rnx is a nonempty convex set, usually an interval defined by variable

bounds. f : X × [0, 1]ny → R, g : X × [0, 1]ny → Rng and h : X × [0, 1]ny → Rnh are

continuous functions, some or all of which are nonconvex. If the binary variable vector

y is relaxed to be in the interval [0, 1]ny , a nonconvex nonlinear program is obtained.

It is worth noting here that nonlinearity of equality constraints (even though they

may involve convex functions) is sufficient to make the nonlinear program nonconvex,

in almost all cases. MINLPs in which some or all the participating function are

nonconvex will be referred to as nonconvex MINLPs.

Deterministic optimization algorithms can be characterized on the basis of the na-

ture of their solution set as being global optimization algorithms and local optimization

algorithms. Local optimization algorithms are methods that use local information

(e.g., function values, gradients or Hessians at the points) to generate the next iter-

ate and therefore, define their solution set as points satisfying some local optimality

conditions. Since they rely on local information, they are only guaranteed to converge

to a local minimum (more precisely, to a point satisfying some necessary condition

or stationarity condition for a local minimum, e.g., the Karush-Kuhn-Tucker (KKT)

conditions [108, 109]). Almost all nonlinear programming algorithms (e.g., Sequen-

tial Quadratic Programming (SQP)) fall into this category. As is demonstrated later,

local algorithms perform poorly on nonconvex programs. On the other hand, global

optimization algorithms are methods for which the solution set is defined as the set of

global minima of the problem. Most global algorithms use information from the entire

feasible set. They guarantee (by definition) convergence to a global minimum for con-

tinuous nonconvex programs and by similar extension of logic to a global minimum
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for nonconvex MINLPs.

Most global algorithms are not specific algorithms, but are algorithmic frameworks

within which details should be filled in to arrive at a specific algorithm. In general,

these algorithms work by solving a series of subproblems using local solvers to generate

upper and lower bounds on the optimal solution value. Assuming that the problem is

a minimization problem, upper bounds are usually generated by solving a restriction

of the original problems by fixing variables or adding additional constraints that may

make it easy to solve. The feasible set of a restriction is a subset of the original feasible

set. Lower bounds are obtained by constructing and solving a relaxation such that

the feasible set of the relaxation contains the original feasible set. There are details

that are specific to an algorithm and implementation that define how restrictions and

relaxations are constructed, as well as how the next iterate is determined. These upper

and local bounds will converge to within the specified accuracy after a finite number of

iterations under mild assumptions on the nature of the subproblems. The robustness

of global optimization algorithms stems from their exhaustive search over the feasible

set of the problem, infeasibility decisions relying on overestimation (i.e., on relaxation)

of the feasible set, and their globally convergent nature (convergence is independent of

the initial guess for starting the algorithm). However, global optimization algorithms

suffer from worst-case exponential runtime and hence solving relatively moderate- to

large-scale nonconvex MINLPs (e.g., several hundred continuous variables and tens of

binary variables) to global optimality can be quite challenging. Therefore, in general,

global optimization algorithms need to be customized, i.e., the general frameworks

need to be tailored to a specific problem class using features of the class to accelerate

convergence for larger problems.

More information on general nonlinear programming theory can be found in Bert-

sekas [108] and Bazaraa et al. [109]. Further information on MINLP solution methods

can be found in the review by Grossmann [110].

It is a common misconception that the tradeoff between using global and local

optimization algorithms for upstream planning problems (and in general, for any

nonconvex NLP) is that when using global optimization, a global minimum is found
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while when using local optimization algorithms a locally optimal solution will be

found. Skeptics argue that real-world models are inherently uncertain and imprecise,

and therefore, that any potential benefits promised by using global optimization al-

gorithms may not be realizable and are not worth the complexity and computational

burden of these algorithms. Also, they claim that a robust behavior can be obtained

by using multistart approaches in conjunction with local solvers and that global al-

gorithms are incapable of handling complicated models. There are several arguments

against these objections:

1. The arguments above assume that a locally optimal solution can be found for

such problem using local solution methods. In general, there is no guaran-

tee that a feasible solution will be found for such problems using local solver.

There are numerous theoretical and numerical difficulties associated with apply-

ing local solution methods to nonconvex programs. As is demonstrated in the

example later, local method can be misleading even in determining feasibility

for such problems.

2. A strong parametric sensitivity of the solution is certainly observed in many

nonconvex programs. Therefore, a parametric uncertainty can potentially mis-

lead about a solution. However, this is a feature of the nonlinearity of such

problems that results in drastic changes in the feasible set topology with param-

eter variations, and applies to both local and global solution methods. A local

optimum (as well as a global optimum) can be equally sensitive to parameter

changes for nonconvex NLP. Moreover, this does not preclude the optimization

model from being useful as long as care is taken to obtain a reasonably accurate

estimate of the parameter and an eye is kept on the structure of the solution

with variation of the parameters. Also sensitive parameters can be deduced

from physical arguments, problem structure or numerical experiments. Efforts

can then be made to either estimate the parameters more accurately or even

comprehensively review the model formulation to reduce sensitivity. Often such

instability of solutions can indeed be a feature of the system itself and cannot
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be avoided. Finally, the solution effort for nonconvex programs is also strongly

dependent on parameter values and bounds due to similar arguments.

3. Integer variables cannot be handled (robustly) in continuous local solver frame-

works. This means that any logical condition based constraint cannot be in-

corporated in the planning frameworks, which severely limits the usefulness of

such frameworks for gas supply chains where governing rules are of paramount

importance for operations.

4. A multistart approach (i.e., performing solution attempts from multiple initial

points) can indeed alleviate some problems associated with local solution meth-

ods. Multistart approaches rely on the fact that one of the initial points will be

close enough to the actual feasible region and therefore will succeed in finding

a global or local optimum. However, there is no guarantee and success is very

much dependent on the structure of the problem and distribution of the set of

initial points. Moreover, some inferior minima may have large radii of conver-

gence while some that are of interest may have a small convergence radii and

therefore, are hard to find. Besides, it can be argued that a global optimization

framework already incorporates the multistart approach in a smart and sys-

tematic fashion (i.e., the upper bound initial points are chosen based on lower

bounding information) and therefore, computational effort and time is better

spent in systematic global approaches than the brute-force multistart solution

methods.

5. A global optimization framework is indeed complex from a theoretical and im-

plementation perspective but need not be complex from a user perspective.

Global optimization can almost always perform at least as good as a local

algorithm (simply because local solution methods are embedded in them for

subproblem solutions). Therefore, to argue complexity from a user perspective

is incorrect. A properly designed implementation can gracefully fall back to

local methods (or heuristic based approaches for a mixed-integer problem) if

the problem is too computationally intensive to solve or can even provide a
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tentative local solution immediately for the user to analyze while it continues

on computation of global solution. Finally, implementations can be designed

to replicate the current iterative (or heuristic-based) approaches (an example is

presented in later in Section 2.5.1) to recover from failures.

6. MINLP modeling is complicated and the model formulation is important for

efficient solution as is discussed later. However, once a modeling formulation

and methodology for a specific upstream system has been decided, adding ad-

ditional constraints to the model is not complicated from a user perspective.

This combined with a properly designed implementation means that the com-

plexity of this approach from a user perspective is no more than conventional

local solver based approaches. The only other option to MINLP models is the

iterative approach described later in Section 2.5.1 which is only defensible if one

is interested in a feasible solution of the problem and not in a optimal solution.

7. Most global optimization algorithms require explicit functional representation

of the governing equations (e.g., flowrate-pressure relationships). A black-box

function evaluator (e.g., a simulator to calculate a quantity such as a reservoir

pressure) cannot be used with them. This has been raised as an objection to

these frameworks in the past. However, this is really not a handicap at all.

A functional representation can be chosen to represent a particular governing

equation, preferably derived from a mechanistic approach. Parameters in the

functional representation can be then be regressed in the expected range from

data generated from a detailed simulation model (e.g., a detail fluid dynamics

model for flow in the reservoir) or even from real-time data obtained from

online sensors. Not only that, this entire calibration procedure can be easily

automated. These regressed functional relationships can be used in MINLP

models.

8. Global algorithms provide guaranteed bounds on system performance which is

a huge benefit. If the performance required by a plausible scenario is outside

the performance bounds provided by the global algorithm, that scenario can be
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immediately deemed unattainable.

2.4.1 Local Solver Behavior: A Case Study

This example outlines the downside of using local solvers to solve upstream plan-

ning problems that are expected to be strongly nonlinear and nonconvex problems.

Consider the following example problem:

minimize x3

subject to x2
1 − x2

2 − x2
3 = 0

5x1 − 4x2 − 3x3 − 6 = 0

1 ≤ x1 ≤ 20

1 ≤ x2 ≤ 20

1 ≤ x3 ≤ 20.

The first constraint is similar to the standard relationship for modeling pipeline pres-

sure drops in gas pipelines and wells (e.g., Equation (1), page 85). The region feasible

in the second linear constraint may result from the combination of other constraints

in the original problem, e.g., molar balances that are linear.

The feasible set of the problem is shown in Figure 2-1. Note that the feasible set

is the intersection of a nonlinear surface represented by the first constraint and the

hyperplane represented by the second. It is a one-dimensional curve with an “upper”

and a “lower” branch that are disjoint. The dimension of the feasible set is one

consistent with the fact that the problem has just one degree of freedom. Therefore

the feasible set is nonconvex as well as not connected. The optimal solution to the

problem is (x1, x2, x3) = (8.7712, 8.7140, 1.0000) with an objective value of 1.0000

(in the lower branch) obtained with a Branch-and-Reduce global optimization solver.

There is a local minimum for the problem (x1, x2, x3) = (4.8435, 1.0000, 4.7391) with

an objective value 4.7391 in the upper branch.

Table 2.1 present the results from various solvers with the example problem. It
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Figure 2-1: Feasible region of the example is the intersection of the surface with the
hyperplane

shows that the solutions obtained by local solvers depend on the initial point used

to start the algorithms. In the worst cases, as can be seen from the table, a local

method may report the problem as infeasible (sometimes after a single iteration).

Even worse, one can find several points, for which such behavior is observed. For

example, there are several starting points for which the SQP method (SNOPT) will

report the problem as infeasible: (5, 4, 3), (20, 2, 1), (10, 4, 1) and possibly even more.

In cases where the local solvers do find feasible points, nonconvexity in the problem

results in convergence to the inferior local minimum and not finding the best possible

objective value. Only for certain starting points do the local solvers converge to the

global minimum.

The failure of the SQP method is of particular concern since it is one of the most
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Figure 2-2: The feasible region of QP subproblem at (5,4,3) is intersection of the two
parallel hyperplanes resulting in an empty feasible set

popular methods in process and petroleum engineering software suites. Advantages

of the SQP method include its speed, ability to handle large NLPs and the need for

first order information only.

SQP Failure

This analysis serves to demonstrate an example of the underlying causes of local

solver failures. An example point (5,4,3) is chosen to demonstrate the problems

associated with SQP. In a major iteration, the SQP method generates linearizations

of the constraints and a quadratic approximation of the objective to formulate a

Quadratic Programming (QP) subproblem and solves it for a descent direction. It

then performs a line search in the resulting direction. The linearizations at (5, 4, 3) are

depicted in Figure 2-2. These yield a QP subproblem whose feasible set is composed of

the intersection of two strictly separated parallel hyperplanes and is therefore empty.

The QP subproblem at (5, 4, 3) is therefore infeasible and cannot be solved. The

convergence theory of the SQP method usually assumes that the QP problem can be
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solved at every iteration to obtain a descent direction. This certainly holds true for

convex programs with non-empty feasible sets and therefore, SQP perform quite well

for such problems.

Generally, SQP solvers use certain heuristics to overcome QP subproblem infea-

sibility. For example, the solver used here (SNOPT) switches to a weighted mini-

mization of local constraint infeasibilities when the QP subproblem is infeasible, but

this heuristic breaks down for several initial points as demonstrated above and the

problem is deemed as infeasible. This can happen even if a large weight is assigned

to the sum of infeasibilities. Some solvers also relax the infeasible constraints and

attempt to generate a feasible QP, but again such procedures can be shown to fail.

2.4.2 Implications for Upstream Planning Problems

It is demonstrated here that local algorithms are unsuitable for nonconvex program-

ming. There are both theoretical and numerical difficulties associated with erratic

behavior of local solvers when applied to nonconvex programs. Nonconvex programs

usually have multiple local minima some of which can be suboptimal. KKT conditions

are not sufficient to characterize a (global or local) minimum for nonconvex programs.

Additionally, several assumptions specific to the algorithms and their implementation

break down for these problems. Finally, due to nonlinearity of nonconvex programs,

subproblems in iterations (e.g., the QP direction finding problem is SQP) can be-

come numerically ill-conditioned or unstable and fail to solve. In the worst case, local

solvers can be misleading, reporting a problem whose feasible set is non-empty as

being infeasible.

It is therefore clear that for upstream planning problems, local solvers may not only

converge to a suboptimal local minimum, they may also fail to locate even a feasible

point. It can be potentially hard to ascertain if the feasible region of the problem is

empty and the problem is indeed infeasible or if the structure of the feasible region

combined with the fact that only a very small part of the search space is feasible is

making it hard for the solver to locate a feasible point. This can be especially true if

the system is operating close to its maximum potential and a very small region of the
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hyperrectangle defined by bound constraints is feasible and therefore, it is unlikely

that an initial guess will be close to the feasible region. Under such conditions, feasible

scenarios may be declared infeasible resulting in lost spot sales or contract violations.

It is also expected that there are multiple suboptimal local minima in the problem

and the point to which a local solver converges is strongly dependent on the starting

point of the solution method. Global optimization methods are therefore required for

a reliable solution of upstream planning problems.

The previous case study also serves to illustrate why the “black-box optimization of

simulation models” approach, i.e., an optimization solver coupled with a complicated

upstream simulation model to evaluate functions, is dangerous and can be misleading.

It is hard to even ascertain the basic properties of functions evaluated by complicated

models with embedded iterative solution methods in unit operation models and/or a

sequential simulation approach with logical conditions on the output of unit opera-

tion models. The functions involved can be nonconvex, nonsmooth, discontinuous or

even “undefined” on the required “domain”. There is no way to guarantee that core

mathematical assumptions necessary for the application and convergence of an opti-

mization algorithm are being satisfied. So the solutions obtained by these approaches

(if they can be solved at all) are entirely unreliable. Frequently, they will simply

fail to locate any solution. At best, one can say that the solution points obtained

from such approaches are feasible. In the real-world, this unreliable behavior breeds

distrust of planning models among users and operators because it is easy to best the

model using simple heuristics and trial-and-error.

Finally, due to the network structure of the problems, there are multiple produc-

tion profiles that can achieve similar production goals. The upstream problem with

operational objectives can therefore have multiple globally optimal solutions as well.

It is beneficial to add constraints reflecting operational aspects and preferences to the

problems, even though these might not represent any actual costs. This will certainly

help to reduce the number of multiple solutions. Also in such a scenario, even if there

are multiple solutions, they will be operationally equivalent, so that one need not be

concerned that any other solution may be more promising.
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Importance of Model Formulation

A problem can have several MINLP representations that are equivalent, i.e., the

optimal solution set and optimal solution value are the same. However, these repre-

sentations may not be equivalent in terms of the effort required to solve them. This

is because different equivalent MINLP representations result in different subproblems

that must be solved at an iteration of a global algorithm, thus strongly affecting its

convergence. To judge whether a formulation is better or worse for use in conjunction

with a particular optimization algorithm, a good understanding of the algorithm is

required. Hence, attention to modeling is of paramount importance for nonconvex

MINLP and is as crucial as the algorithms employed to solve the model. Finally, the

value of adding extra redundant constraints (to tighten relaxations) is well known

for integer programming and is even more important for MINLP. In particular, extra

constraints help to tighten the relaxation.

2.5 The Sarawak Gas Production System

The requirements and scope of the general modeling framework presented in the

following chapters has been inspired by the Sarawak Gas Production System (SGPS)

in East Malaysia. It is therefore instructive to discuss the SGPS features to put

in context the model requirements and overview presented later. The Sarawak Gas

Production System (SGPS) is located in the South China Sea off the coast of the

state of Sarawak in East Malaysia (Figure 2-3). There are 12 offshore gas fields in

the system. Additionally, associated gas from 3 oil fields is fed into the system. The

daily production rate of dry gas from the SGPS is around 4,000 million standard

cubic feet per day (MMscfd). Additionally the system also produces 90,000 barrels

per day (bpd) of natural gas liquids. The annual revenue from the SGPS is around

US $5 billion, that is approximately 4% of Malaysia’s GDP as of 20051.

The gas from the system is fed to the Petronas LNG complex in Bintulu, Sarawak.

The complex is one of the largest LNG production facilities at a single location in the
1All figures from 2005.
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Figure 2-4: The Sarawak Gas Production System: Network overview (not to scale)

world. It has three plants and produces around 21 million tonnes of LNG. The main

customers of this complex are Japan (58%), South Korea (25%) and Taiwan (17%)1.

From a modeling standpoint, the system comprises wells in the fields, well plat-

forms, the pipeline network, riser platforms and the facilities onshore. Gas from the

wells belonging to a particular field is collected at a well platform. A well platform

may serve more than one field. Well platforms have dehydration facilities that per-

form a three phase separation of gas, natural gas liquids (NGL) and water. They

may also have compression facilities, in case the field pressure is insufficient to drive

the flow. Once dehydrated, dry gas and natural gas liquids are remixed (after com-

pression if a platform has compression facilities) before injection into the pipeline. A

subsea pipeline network (referred to also as the trunkline network later) connects the

well platforms to the facilities onshore. The flow in the network is two phase (gas

and liquid).

1Petronas Annual Report, 2007.
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Table 2.2: Bintulu Petronas LNG complex: Stakeholdersa

Plant Ownership Capacity Start-up
(MMt/y)

MLNG Petronas (65%), Shell (15%), Mit-
subishi (15%), Sarawak local govern-
ment (5%)

8.1 1983

MLNG Dua Petronas (60%), Shell (15%), Mit-
subishi (15%), Sarawak local govern-
ment (10%)

7.8 1996

MLNG Tiga Petronas (60%), Shell (15%), Nippon
Oil (10%), Sarawak local government
(10%), Diamond Gas (5%)

6.8 2003

Total Liquefaction
Capacity

22.7

a EIA, U.S. DOE, (http://www.eia.doe.gov/cabs/Malaysia/Full.html).
Original source: Petronas

The subsea trunklines end at one of the three slugcatchers corresponding to the

three LNG plants at the complex in Bintulu, Sarawak. The slugcatchers are units

that remove NGL from the two phase flow coming out of the trunklines. The liquids

are sent to stabilizers to remove volatiles and the dry gas is fed into the LNG plants.

There are also small customers: a power generation company, a fertilizer plant, a

local utility and a petrochemical plant. However, these users consume close to 5%

of the total production and moreover their demand is mostly fixed and hence can be

represented by adding a small constant factor to the minimum demand rate of the

first LNG plant. Hence these need not be considered explicitly for planning. The

complex also contains a liquefied petroleum gas (LPG) plant. Hence, there are two

by-products, NGL and LPG, from the system.

2.5.1 Operational Aspects

The fields, facilities and plants in the system are not owned by a single entity but

instead several parties either have stakes in them or may fully own some of them.

The stakeholders for Bintulu LNG complex are shown in Table 2.2. However, almost

the entire system (excluding the customer plants) is operated by a single upstream
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operator.

As a consequence of ownership issues, a particular field cannot arbitrarily supply

any customer in the system. There are Production-Sharing Contracts (PSC ) that

determine how the products are shared between different parties. PSC (referred to as

simply “contracts” later) define the field to plant assignment, i.e., which field should

supply a particular LNG plant. They also define the course of action when a demand

cannot be fulfilled as per the contractual assignment, e.g., which fields should step

in to fill in the deficit if a particular set of fields cannot meet its mandated demand.

Moreover, the contracts also contain operational details (if necessary) to implement

such a flow redistribution on the network. Additionally, due to ownership issues,

contracts often also dictate the use of facilities. Finally, contracts specify the customer

requirements, particularly the amount, the delivery pressure, heating value of dry gas

and composition specifications. This extensive set of contractual and operational rules

govern the operation of the SGPS and must be satisfied at all times. Making routine

operational decisions about production and routing in the network is therefore very

difficult and cumbersome.

Traditionally this has been done in two stages: first solving a production planning

problem using the production system model, i.e., a model of production infrastructure

in a commercial software suite with a local solver (e.g., SQP) to determine feasible

values for the well production rates and trunkline flowrate-pressure distribution, and

then manually ascertaining if the contractual (including gas quality specifications)

and operational rules are satisfied. If not, then another scenario can be evaluated

by enforcing different constraints and bounds on the production system model and

checking the contract rules again. Iteratively, a feasible solution that satisfies all rules

may be found. However, this approach suffers from several problems:

1. Due to the nonlinear pressure-flowrate relationships in the wells and trunklines,

the problem is nonconvex. Hence, solution of the first stage production planning

problem is liable to fail. As was demonstrated in the numerical experiment

presented earlier, some instances of such problems may be reported infeasible

by local solvers when they are in fact feasible.
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2. Even if this iterative procedure does converge, there is no guarantee concerning

the quality of the solution, i.e., there is no information if a far superior solution

exists.

3. For a large system containing tens of fields, such a scheme is too tedious and

error prone to devise a consistent operating strategy. With an expansion in the

upstream system, this approach is only going to get more difficult to apply.

4. It is also possible that this procedure may not generate any solution point at

all that satisfies all the rules.

5. Finally, such an approach requires too much human intervention and intuition,

and is not maintainable in long-term. Depending on the person who is running

the problem solution procedure, the results will differ and will not be consistent

with someone else.

2.6 The Short-term Upstream Planning Model:

Overview

This work focuses on short-term production allocation in the upstream system. By

short term, planning on the order of a few days to a few weeks is implied. The

upstream system is defined as from the bottom of the well bore to the LNG plants,

however excluding the LNG plants. The operating state of the system is determined

by the following decision variables:

1. Production share of dry gas from each well (and therefore each field).

2. Associated pressures at the well bore and well head for each well.

3. Pressure and flowrate distribution in the trunkline network.

4. The state of inter contract transfers and operational rules.

5. Amount and quality of gas delivered to the LNG plants.
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2.6.1 Requirements

The objectives of the problem are with respect to the perspective of the upstream op-

erator managing the production system. Hence, the goal is to formulate a production

policy such that the operator can optimize its objectives while simultaneously satis-

fying the contractual rules and customer requirements. Only operational objectives

have been considered since the focus of this work is to assist operational decision

making. The model is supposed to serve as a decision support tool for operators

controlling the system and to plan a steady-state operation between disruptions or

planned events. These events can be disruptive, e.g., a field needs to be temporarily

shutdown due to a breakdown or a facility needs emergency repairs, or they can be

planned, e.g., a scheduled maintenance shutdown. Due to this a multiperiod formu-

lation is unnecessary for this problem.

Following are the requirements for the production planning model and discussion

of some model features resulting from these requirements:

1. The entire network is controlled by regulating the pressure at slugcatchers.

Hence, it is essential to model accurately the pressure-flowrate relationships in

the trunkline network and in the wells. However, even the simplest possible

expressions for pressure-flowrate relationships in gas pipelines and wells are

nonlinear equalities and therefore nonconvex.

2. There are different qualities of gas (i.e., gas with different composition) in the

network and hence species flowrates need to be tracked throughout the network.

These introduce additional nonconvexities in the model due to bilinearities in

formulating species balances since the network contains both splitters and mix-

ers.

3. The model needs to include customer specifications: the maximum and mini-

mum amounts to be delivered, the maximum and minimum delivery pressures,

the gross heating value of the dry gas and the composition specifications.

4. The contractual rules and operational heuristics need to be included in the
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Figure 2-5: Upstream planning model: Overview of components

model. These involve logical conditions and therefore, representation of these

rules requires binary variables and constraints.

5. A requirement for the model is that it be extensible so that more detailed models

for facilities can be added later.

From these requirements, it is clear that the final model will be a relatively large-scale

nonconvex MINLP.

2.6.2 Components

An overview of the model is presented in Figure 2-5. It is instructive to view the

overall model as being the two following sub-models that are coupled:

1. The Infrastructure Model: This is the model of the physical system that

includes wells, pipeline network and processing facilities.

2. The Contract Model: This is the model of the production sharing contracts

and customer requirements.

Both sub-models are network models with additional constraints and hence the overall

model can also be viewed as two networks whose sources and sinks are coupled as
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Table 2.3: Common symbols

Symbol Description Units Type
P(.) Pressures bar Variable
Q

(.)
(.) Dry gas volumetric rates in infrastructure

model
hm3/daya Variable

Q
(.)
L(.) Condensate volumetric rates in infrastruc-

ture model
m3/day Variable

q
(.)
(.) Volumetric rates in contract network hm3/day Variable
F

(.)
(.) Molar rates Mmoles/day Variable
y

(.)
(.) Binary variables Variable
π(.) Pressures bar Constant
θ(.) Temperatures K Constant
A,B . . . Sets Set symbol
(i, j) A directed arc from node i to j Index
i, j, k Indices Index

a 1 hm3 = 106 m3 (since 1 hectometer = 102 m)

shown in Figure 2-5.

2.6.3 Notation

The following conventions are used in the model description:

1. The constraints are numbered continuously throughout the work (except for

Section 3.6 on alternative infrastructure model formulation which has a separate

numbering scheme to avoid confusion). Any non-numbered expression is not a

constraint in the model and is an intermediate equality/inequality or the value

of a constant or the bounds on a variable.

2. All Greek letters denote parameters in the model with the exception of the

universal gas constant R.

3. Lower and upper case Roman alphabets denote decision variables.

4. Superscripts U and L to variables imply upper and lower bounds respectively.

A description of symbols that appear often in the model is presented in Table 2.3.
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Chapter 3

The Infrastructure Model

The infrastructure model is a model of the physical production infrastructure. In

particular, from a modeling perspective, it can be broken down into:

1. The trunkline network model: this is a model of the flow network that includes

pipelines and subsea connections.

2. The well performance model: this represents pressure-flowrate relationships in

the wells.

3. The compression model: the compression model is a calculation of the power

consumed by compressors.

3.1 Assumptions

Following are the primary assumptions in the infrastructure model:

1. The gas is assumed to be ideal at standard conditions. Standard conditions

(in the natural gas industry) are defined as the conditions at which volumetric

flowrate is metered. The standard conditions in this work is taken as 15oC and

1 atmosphere, which is close to the industry standard.

2. The reservoir pressure is assumed to be constant over the planning period. This

is justified by the planning period length of a few days, over which the reservoir
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pressure is not expected to change substantially.

3. The composition of the reservoir fluid for a field is assumed invariant over the

planning period. This is justified by the same argument as above. This as-

sumption implies that the composition of gas from fields and the condensate

gas ratio (CGR) stays the same over the planning period.

4. Perfect mixing is assumed at junctions, since the SGPS network is operated

without any preferential routing. For other systems, this assumption is easy to

relax provided the exact configuration of junctions is known.

3.2 Trunkline Network Model

The trunkline network is modeled as a directed graph. The nodes in this graph are

fields, well platforms, riser platforms and LNG plants. The trunklines and subsea

connections (for platforms serving several fields) are modeled as arcs of this graph.

Let (N ,A) be the directed graph representation of the trunkline network where

A is the set containing all arcs and N is the set containing all nodes.

3.2.1 Flow Model

Pressure-flowrate relationships are quite important in the system because the network

is controlled by regulating the pressure at certain nodes in the network. Hence, a

reasonable prediction of pressure is essential for an operational planning model to be

useful.

As pointed out earlier, the flow in pipelines is a two-phase mixture of gas and nat-

ural gas liquids. A full model of multiphase flow is not possible for use in conjunction

with current state-of-the-art global optimization algorithms that require an explicit

functional representation of constraints. Hence, the standard gas flow equation [12]

(described later) is used as a flow model. The pressure drop constant in this equa-

tion can be estimated from historical operating data. It has been observed that this

relationship works well for long trunklines (> 20 km) under steady-state operation.
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Figure 3-1: The SGPS trunkline network model: Directed graph representation
.

However, for short pipeline sections or for pipelines where the flow fluctuates a lot, the

predictions are not satisfactory and hence these are not modeled using this equation.

A representation of the network as in the model is presented in Figure 3-1. One

should note the differences in topology of the networks represented in Figure 2-4

and Figure 3-1. These differences facilitate easy representation of the pressure and

flowrates constraints in a directed graph framework. The set of arcs A is partitioned

into four subsets for the purposes of modeling the flow. Set Aq ⊂ A denotes the set

of arcs over which a volumetric flowrate variable Qa,(i,j) is defined.

1. For most trunklines, the flow is described by the standard gas pressure-flowrate

relationship [12]. This set is denoted by Ap ⊂ Aq. Therefore for this set

P 2
i − P 2

j = κ(i,j)Q
2
a,(i,j), ∀(i, j) ∈ Ap, (1)

where Pi and Pj are pressures at the inlet and outlet, respectively, and Qa,(i,j)

is the volumetric flowrate at standard conditions. This equation is one of the

major sources of nonconvexity in the model as it is a nonlinear equality. The
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coefficient κ(i,j) was estimated from the operating data for the SGPS, however

it has been changed in the case study presented later as it is business sensitive

information.

2. The second set Ay ⊂ Aq involves pipelines that can be shut off during normal

operation. These pipelines are only a few kilometers in length and have a

complicated configuration (e.g., multiple valves). Hence predictions from the

regressed standard gas flow equation (Equation (1)) do not match well with

operating data and therefore any equation of similar form is clearly not suitable

to model these lines.

These are modeled in the following way: when these lines are in the open state,

a pressure inequality between the inlet and outlet is enforced and any flowrate

up to the capacity of the lines is allowed. This is justified since the pressure

drop across these lines is quite small (less than 1 bar) at typical flowrates in the

network. When the lines are in the closed state, the pressure inequality need

not be enforced and the flowrate is pinned to zero.

To represent the above mathematically, a single binary variable yl(i,j) per line

is introduced such that yl(i,j) = 1, if the line is open and 0 otherwise. The

resulting constraints can be reformulated as per Glover [111] that require the

introduction of two extra variables wu,(i,j) and wd,(i,j) to represent the upstream

and downstream pressure respectively.

The following four constraints force wu,(i,j) to the upstream pressure Pi if yl(i,j) =

1 and to 0 if yl(i,j) = 0.

Pi − (1− yl(i,j))PU
i − wu,(i,j) ≤ 0, ∀(i, j) ∈ Ay, (2)

wu,(i,j) − Pi + (1− yl(i,j))PL
i ≤ 0, ∀(i, j) ∈ Ay, (3)

yl(i,j)P
L
i − wu,(i,j) ≤ 0, ∀(i, j) ∈ Ay, (4)

wu,(i,j) − yl(i,j)PU
i ≤ 0, ∀(i, j) ∈ Ay. (5)

Similarly, the following four constraints force wd,(i,j) to the downstream pressure
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Pj if yl(i,j) = 1 and to 0 if yl(i,j) = 0.

Pj − (1− yl(i,j))PU
j − wd,(i,j) ≤ 0, ∀(i, j) ∈ Ay, (6)

wd,(i,j) − Pj + (1− yl(i,j))PL
j ≤ 0, ∀(i, j) ∈ Ay, (7)

yl(i,j)P
L
j − wd,(i,j) ≤ 0, ∀(i, j) ∈ Ay, (8)

wd,(i,j) − yl(i,j)PU
j ≤ 0, ∀(i, j) ∈ Ay. (9)

Finally, the following inequality represents the actual constraint relating the

upstream and downstream pressure if yl(i,j) = 1. If yl(i,j) = 0, this constraint

evaluates to 0 and hence is irrelevant

wd,(i,j) − wu,(i,j) ≤ 0, ∀(i, j) ∈ Ay. (10)

Additionally, the following constraint forces the flowrate Qa,(i,j) to zero if yl(i,j) =

0 and otherwise keeps it within its bounds.

yl(i,j)Q
L
a,(i,j) ≤ Qa,(i,j) ≤ yl(i,j)Q

U
a,(i,j), ∀(i, j) ∈ Ay. (11)

3. There is a third set of arcs Asc ⊂ Aq for which a constant pressure drop is

assumed. This is because these arcs actually represent slugcatchers in LNG

plants. The operational data suggest that the pressure drop across slugcatchers

is constant. Then the pressure relationship between inlet and outlet pressures

is simply

Pi − Pj = ∆π(i,j), ∀(i, j) ∈ Asc, (12)

where ∆π(i,j) is the pressure drop associated with the facility.

4. There is a set of trunklines which can be adequately represented by molar

balances and pressure inequalities. These trunklines are subsea connections

from fields to the well platforms (that serve multiple fields). This is justified

since all these lines have chokes that reduce the pressure to the common header
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level. Hence any pressure drop modeling for these lines is not important. These

features imply that a flowrate variable need not be defined on these arcs since

the sources at their origins (subsea fields) and ends (well platforms modeled as

sources) can be directly related. Also there is no need to represent explicitly

this subset since the constraints are already represented in the common molar

balances and pressure inequalities.

Finally, a pressure inequality constraint is enforced over Ai ⊂ A, the set of all

trunklines for which pressure at the inlet should always be greater than the pressure

at the outlet. This is redundant for arcs in the set Ap ⊂ Ai ∩ Aq (since it follows

directly from Equation (1)), but may be useful for strengthening relaxations.

Pj − Pi ≤ 0, ∀(i, j) ∈ Ai. (13)

3.3 Material Balances

The material balances are formulated in terms of molar flowrates of chemical species.

This facilitates modeling of multiple qualities of gas (i.e., gas with different compo-

sitions) in the network. Eight species are modeled. The set of species is denoted by

S:

S = {CO2,N2,H2S,C1,C2,C3,C4,C5+}.

The balances need to be formulated separately for junctions and for nodes that

are sources or sinks. Let NJ be the set of nodes that are junctions. The set of

nodes that are sources and sinks, i.e., that have volumetric production rate Qs,i and

componentwise molar production rate Fs,i,k associated with them is denoted as Ns.

However not all nodes in this set form the origin or destination of arcs in set Aq, the

reason being that production from some of the sources is transferred to other sources

directly and therefore the former nodes need not be on the sub-network defined by Aq.

The sources that are directly connected to this sub-network are denoted as set Nq.

With these definitions, the species molar balances at nodes can be easily formulated
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as:

Fs,i,k +
∑

v:(v,i)∈A

Fa,(v,i),k −
∑

v:(i,v)∈A

Fa,(i,v),k = 0, ∀(i, k) ∈ Nq × S, (14)

∑
v:(v,i)∈A

Fa,(v,i),k −
∑

v:(i,v)∈A

Fa,(i,v),k = 0, ∀(i, k) ∈ NJ × S, (15)

where Fa,(i,v),k denotes componentwise molar flowrate on arc (i, v) ∈ Aq and Fs,i,k

denote the componentwise production rate from source i ∈ Nq.

Let F ⊂ Ns be the set of all fields and Nwp ⊂ Ns be the set of well platforms.

A node corresponding to a well platform that serves only one field and the node

corresponding to that field are the same node and lie in Nwp ∩ F . Denote the set of

well platforms that serve multiple fields as Nwp,m. Then production at well platforms

in the set Nwp,m is given as

∑
j∈Fi

Fs,j,k − Fs,i,k = 0, ∀(i, k) ∈ Nwp,m × S, (16)

where set Fi is the set of fields connected to the platform i ∈ Nwp,m.

3.3.1 Relationship with Volumetric Flowrate

The relationship between molar flowrate in arcs and volumetric flowrate is formulated

using the ideal gas assumption. The total molar flowrate in an arc is proportional to

the volumetric flowrate:

∑
k∈S

Fa,(i,j),k − φQa,(i,j) = 0, ∀(i, j) ∈ Aq, (17)

where φ is given by ideal gas equation of state:

φ = 105 πsc
Rθsc

,

where πsc and θsc are the pressure and temperature, respectively, at standard con-

ditions. At fields, a relationship between the molar production rate and volumetric
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flow rate is written:

Fs,i,k − χi,k φQs,i = 0, ∀(i, k) ∈ F × S, (18)

where χi,k is the mole fraction of species k in gas from field i. For well platforms that

serve multiple fields, i.e., set Nwp,m, and for demand nodes, i.e., set ND, the total

molar rate should match the volumetric rates:

∑
k∈S

Fs,i,k − φQs,i = 0, ∀i ∈ Nwp,m, (19)

∑
k∈S

Fs,i,k − φQs,i = 0, ∀i ∈ ND. (20)

3.3.2 Splitters and Mixers

There are both mixers and splitters of streams with unknown composition in the

network and hence bilinearities associated with models of splitting or mixing cannot

be avoided. There are at least two approaches to modeling a combination of splitters

and mixers. The first is to model the balances in terms of species-wise molar flowrates

at all nodes and split fractions at splitters. In this case, nodes that are mixers do

not require any special treatment (and are linear) while splitters require nonconvex

bilinear constraints to model them. The second approach is to model the balances in

terms of total flowrates and species-wise compositions in which case splitters become

linear while mixers now require bilinear constraints to calculate composition. Since

upstream networks are collection networks that converge as the demand node gets

closer, they are expected to contain more mixers than splitters. Most splitters in

upstream networks exist to provide interconnections and bypasses between parts of

network. The first approach is the preferred one that makes balances at mixers linear

and therefore, minimizes the number of nonconvex (bilinear) terms associated with

network balances.
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Let Nx be the set of splitters. Define

Nx,J = Nx ∩NJ

Nx,q = Nx ∩Nq.

Define a subset of arcs that are immediately downstream of splitters, i.e., ∀ (i, j) ∈ Aq
such that i ∈ Nx. s(i,j) is the split fraction defined over a subset Ax of this set. Ax
is defined by excluding exactly one arc corresponding to each splitter from the set

defined above. s(i,j) varies between zero and one and represents the fraction that goes

into arc (i, j) of the total flow coming into the splitter. It is not defined over one of

the arcs downstream of a particular splitter since flow in that arc is implied by the

molar balance constraints (equations (14) and (15)). At splitters that are junctions:

Fa,(i,j),k − s(i,j)

∑
v:(v,i)∈A

Fa,(v,i),k = 0, ∀(i, j, k) ∈ {Ax : i ∈ Nx,J} × S. (21)

For splitters with a source term,

Fa,(i,j),k−s(i,j)

 ∑
v:(v,i)∈A

Fa,(v,i),k + Fs,i,k

 = 0, ∀(i, j, k) ∈ {Ax : i ∈ Nx,q}×S. (22)

The above equalities are valid only with a perfect mixing assumption. However,

this framework can be easily extended to represent preferential routing and blending

in the network by defining mixing fractions for a particular outgoing arc over incoming

arcs (instead of splitting fraction on outgoing arc), i.e., each outgoing arc can choose

a fraction of different qualities of incoming gas. However, such a formulation is not

presented as it is not the case for the SGPS.

The constraints arising from the models of splitters and mixers are the same as

the classical pooling problem ([10, 11]). Therefore, some of the customized solution

strategies that have been developed for the pooling problem may also be applied to

this problem.
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Figure 3-2: The well-performance model
.

3.4 Well-performance Model

Let W denote the set of all wells. The well-performance model comprises:

1. The well flow model.

2. The well material balances.

An overview of the well-performance model is shown in Figure 3-2.

3.4.1 Well Flow Model

Variation of the reservoir pressure πr,w occurs in the vicinity of wells even if they

belong to the same field. This variation corresponds to a pressure distribution in the
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reservoir that can be assumed invariant over a period of a few days. There are two

pressures associated with each producing well. The bottom-hole pressure Pb,w is the

pressure at the bottom of the well bore. The flowing tubing-head pressure Pt,w is the

pressure at the well head.

Following are the two relations that relate the well dry gas production rate Qw,w

to the pressures Pb,w, Pt,w and πr,w:

1. In-Flow Performance (IFP): This models the flow from the reservoir bulk

to the well bore [12]:

αwQw,w + βwQ
2
w,w = π2

r,w − P 2
b,w, ∀w ∈ W . (23)

Here αw is Darcy’s constant and βw is the non-Darcy correction factor for mod-

eling gas flow.

2. Vertical-lift Performance (VLP): This models flow in the well bore itself:

ϑwQ
2
w,w = P 2

b,w − λwP 2
t,w, ∀w ∈ W . (24)

Additionally, constraints can be forced on the pressures from physical consider-

ations. The bottom-hole pressure should be less than the reservoir pressure for all

wells:

Pb,w − πr,w ≤ 0, ∀w ∈ W . (25)

The tubing-head pressure must be less than the bottom-hole pressure for all wells:

Pt,w − Pb,w ≤ 0, ∀w ∈ W . (26)

Implicit-choke Assumption: This assumption on the well head implies that the

pressure at the common header (into which all wells produce) must be less than the

flowing tubing-head pressure for all wells connected to that header. In reality, this is

achieved by a choke valve at each well head, however an explicit model of the choke

valve is not considered here. The implicit choke provides the required pressure drop.
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This constraint needs to be formulated differently for platforms that have compression

and those that produce directly into the trunkline network.

Let set Nwp,c ⊂ Nwp denote the platforms that have compression. Note that

Nwp,c ⊂ Fw ∪ Nwp,m, i.e., the nodes that represent platforms with compression are

either well platforms serving a single field and therefore are the same as the node rep-

resenting that particular field (as indicated earlier) or they are well platforms serving

multiple fields which require compression. For these platforms, the compression inlet

pressure Pc,i is the common header pressure and this pressure must be less than or

equal to the well-head pressures of the wells producing to that platform:

Pc,i − Pt,w ≤ 0, ∀w ∈ Wi, i ∈ Nwp,c. (27)

For the set of fields for which well performance is modeled and that have no

compression, i.e., the set Fw,nc ⊂ Fw, the common header pressure is the same as the

pressure Pi of the node corresponding to the field,

Pi − Pt,w ≤ 0, ∀w ∈ Wi, i ∈ Fw,nc. (28)

3.4.2 Well Material Balances

Wells produce a mixture of gas, natural gas liquids (also termed condensates) and

water. The NGL volume produced from a well is directly proportional to the volume of

dry gas produced from that well and the condensate gas ratio σw is assumed constant.

This can be justified partially by the assumption on the constant composition of the

reservoir fluid. Then the NGL production rate QLw,w from a well w is given as

QLw,w = σwQw,w, ∀w ∈ W . (29)

Finally total dry gas production from a field (for which well performance is modeled,

i.e., it is in set Fw), is the sum of productions from all wells that belong to that field
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(set Wi):

Qs,i =
∑
w∈Wi

Qw,w, ∀i ∈ Fw. (30)

The same is true for the total NGL production:

QLs,i =
∑
w∈Wi

QLw,w, ∀i ∈ Fw. (31)

However, the transport of NGL through trunklines is not modeled due to im-

practicality of modeling multiphase flow through trunklines in a global optimization

framework as discussed earlier. It is assumed that NGL produced can be transported

to the demand nodes and that the transport of NGL does not limit the transfer of

dry gas.

3.5 Compression Model

It is assumed that the compression equation is given by the polytropic work of com-

pression. The outlet pressure corresponds to the pressure of the node. Then the

power of compression in MW is given by

Wi = ωiQs,i

[(
Pi
Pc,i

)ν
− 1

]
, ∀i ∈ Nwp,c, (32)

where the constant ωi is given by

ωi =
1

ηi

ζ

ζ − 1

πsc
Rθsc

Rθm,i
1

τsec
=

1

ηi

πsc
θsc

θm,i
1

νtsec
, ∀i ∈ Nwp,c,

and ν is given as

ν =
ζ − 1

ζ
.

Here πsc and θsc are the pressure and temperature respectively at standard conditions,

R is the universal gas constant, ηi is the compression efficiency, θm,i is the mean

operating temperature of compression and ζ is the polytropic constant for the process.
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The power is constrained by the maximum rated power of a compressor as follows

ΨL
i ≤ Wi ≤ ΨU

i , ∀i ∈ Nwp,c.

Note that this is not treated as a constraint but instead as a bound. When the value

of Wi at the optimal solution or at an intermediate point in the solution procedure

is zero, the compression constraint (32) will be an equilibrium constraint. To avoid

this, the lower bound ΨL
i is set to a strictly positive small nonzero value. Physically,

this means that compression stations should never be shut down and therefore the

lowest production flowrates from these fields cannot go to zero, but only to a small

value that ensures that the compressors are operating at their minimum power.

3.6 Alternative Formulation

The model formulation presented in this section is an alternative formulation for the

production infrastructure model. The results and the case study presented later does

not correspond to this infrastructure representation because this formulation was

implemented only for the actual SGPS parameters and therefore is business sensitive.

The main advantage of this formulation is that it is simpler to follow and maintain,

however it suffers from a slightly larger number of variables along with a larger number

of equalities. This formulation also incorporates complex platform configurations and

flow reversals in certain trunklines in the network. There are also minor variations

on the relationships used for pressure-flowrate relationship.

The infrastructure network for this alternative formulation is different from Figure

3-1. It is larger than the network shown in Figure 3-1 with more fields. Also, it has

additional complicating features such as complex platform configurations and flow

reversals. Hence, this formulation also adds additional constructs to the infrastructure

modeling framework.
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3.6.1 Notation

The notation in this section is not referred to outside this discussion (not even in the

nomenclature to avoid conflict of notation). Hence, any references to symbols outside

this section (including appendices) refer exclusively to the formulation of infrastruc-

ture model presented earlier (unless stated explicitly to refer to this section). Set

definitions in this section are independent of the previous formulation. Nevertheless,

the variable, set and parameter naming conventions are in line with Table 2.3. Also,

most variable and parameter symbols are consistent with and retain the same or a

similar meaning as the earlier formulation. The constraints in this formulation are

numbered independently of the previous numbering scheme.

3.6.2 The Network Model

The entire network is represented in this formulation as a directed graph (N ,A) as

earlier. However, the definition of arcs and nodes differs from the earlier formulation.

Arcs in this formulation consists of not only trunklines, but also facilities and subsea

connections. The nodes consist of common field headers (to which a well produces),

well platforms, facility inlets and outlets, and junctions.

Arc Operating Equations

Each arc in this formulation is associated with one or more operating equations de-

pending on whether it is a trunkline, a facility or a subsea link. These operating

equations establish relationships between inlet and outlet pressures, and volumetric

flowrate associated with a particular arc.

1. Modeling of pressure-flowrate relationship in trunklines corresponding to set

Ap in the earlier formulation is more or less similar. Equation (1), the stan-

dard flowrate-pressure relationship for gas flow, is used to model flow in most

trunklines (set Asp) as below:

P 2
i − P 2

j = κ(i,j)Q
2
a,(i,j), ∀(i, j) ∈ Asp, (i)
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However, for some trunklines (subset Atp), a two parameter relationship pro-

vides a better fit to the data.

κu,(i,j)P
2
i − κd,(i,j)P 2

j = Q2
a,(i,j), ∀(i, j) ∈ Atp, (ii)

2. Lines that can be closed or opened in normal operation (set Ay) are modeled by

a binary variable as earlier. However, Glover’s reformulation has been dropped

in this formulation in favor of a direct bilinear formulation. There is at least

some evidence that a direct formulation gives a stronger relaxation and a faster

convergence within the branch-and-reduce algorithm.

yl(i,j)(Pj − Pi) ≤ 0, ∀(i, j) ∈ Ay. (iii)

Note that this formulation may be sensitive to how the constraint is input for

some algorithms, i.e., depending on the implementation, yl(i,j)(Pj − Pi) may be

treated differently from yl(i,j)Pj − yl(i,j)Pi. The former should give rise only to a

single bilinear term in a good implementation, while the latter may be relaxed as

two bilinear terms. Also, constraints on flowrate are formulated using species-

wise molar flowrates instead of volumetric flowrate in the earlier formulation.

This gives rise to a higher number of constraints per binary variable involved

that may potentially result in a tighter relaxation.

yl(i,j)F
L
a,(i,j),k ≤ Fa,(i,j),k ≤ yl(i,j)F

U
a,(i,j),k, ∀(i, j, k) ∈ Ay × S. (iv)

3. There are trunklines in this formulation that can be reversed, the set Ar. It is

assumed that (i, j) is the normal direction of the flow corresponding to yr(i,j) = 0

and yr(i,j) = 1 implies a reversal of flow, i.e., flow in direction (j, i). The flow

reversal is represented as negative flow in the (i, j) direction and the standard

network balance formulation is therefore valid for the reversal.
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The pressure inequality must switch to allow for reversal.

Pj − Pi + 2 yr(i,j) (Pi − Pj) ≤ 0, ∀(i, j) ∈ Ar. (v)

This can be reformulated as Glover’s formulation, but as described above is kept

as a bilinear term in the model. The constraints on the flowrates are enforced

in terms of species-wise molar flowrates similar to the case for lines that can be

open or closed in normal operation.

yr(i,j)F
L
a,(i,j),k ≤ Fa,(i,j),k ≤ (1− yr(i,j))FU

a,(i,j),k, ∀(i, j, k) ∈ Ar × S. (vi)

Here the lower bound is the negative of the upper bound on reversed flow, i.e.,

FL
a,(i,j),k = −|FU

a,(j,i),k| and therefore FL
a,(i,j),k < 0. This the only constraint where

a flowrate bound is allowed to go negative in the infrastructure model.

4. Compressors are represented as the set Ac ⊂ A with the similar equation for

the calculation of power as Equation (32) in the earlier framework.

W(i,j) = ω(i,j)Qa,(i,j)

[(
Pj
Pi

)ν
− 1

]
, ∀(i, j) ∈ Ac. (vii)

The premultiplying factor ω(i,j) for the compression equation is defined similarly

as in Section 3.5:

ω(i,j) =
1

η(i,j)

πsc
θsc

θm,(i,j)
1

νtsec
, ∀(i, j) ∈ Ac.

5. The slugcatchers are modeled with fixed pressure drop as earlier.

Pi − Pj = ∆π(i,j), ∀(i, j) ∈ Asc, (viii)

Except for compressors, reversible trunklines and lines that can be closed or open,

all other trunklines and connector lines must have a pressure inequality enforced
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Figure 3-3: Complex hub configuration: An example
.

between the inlet and the outlet.

Pj − Pi ≤ 0, ∀(i, j) ∈ Ai. (ix)

3.6.3 Complex Platform Configuration: An Example

Complex hubs like the one shown in Figure 3-3 collect gas from several fields and

can play an important role in blending sour gas with sweet gas. Hubs of this kind

provide flexibility to network operations by routing gas across different parts of the

network. A realistic representation of these hubs in the upstream planning problem is

important so that the model accounts for the complexity and flexibility of the system

and the solution represents an implementable routing in the network.

The modeling approach for the complex hub shown in Figure 3-3 is outlined here.
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There are four types of lines in the hub shown. There are normal long-distance

trunklines that terminate (or originate) at the hub and are modeled by the pressure-

flowrate relationships. There are unidirectional links that connect junctions on the

hub that are always open (i.e., have no controls on them) and can be adequately

represented by pressure inequalities and molar balances. There are links that carry

unidirectional flow and can be closed in normal operation. They can be modeled using

Equations (iii) and (iv). Finally, there are lines that can carry reverse flow in normal

operation if it is desirable and possible (i.e., pressures at the end-points are favorable

to reversal) to do so. Pressure constraints and flowrate constraints on the reversible

links are the same as Equations (v) and (vi). Except for the trunklines ending or

originating at the hub, all the other links are short inter-connectors that tie major

trunkline junctions and therefore any pressure modeling on them is not important.

As shown, lines (3,6) and (6,4) can be reversed. Therefore, depending on the

direction of flow in lines (3,6) and (6,4), nodes 4, 6 and 3 can be either splitters or

mixers. The splitters’ constraints modeling is based on the same arguments as Section

3.3.2 with species-wise molar flowrate balances at nodes and the definition of split

fractions at splitters. The splitter constraints are switched on and off as follows:

1. Node 3 is a splitter when (3,6) is flowing in the arc direction (i.e., direction

(3,6)) which implies that yr(3,6) = 0 should force the splitter constraint:

Fa.(3,1),k − s(3,1) Fa,(T8),k − yr3,6 SU(3,1),k ≤ 0, ∀k ∈ S (x)

yr(3,6) S
L
(3,1),k − Fa.(3,1),k + s(3,1)Fa,(T8),k ≤ 0, ∀k ∈ S (xi)

where SL(3,1),k and S
U
(3,1),k are lower and upper bounds on the Fa.(3,1),k−s(3,1) Fa,(T8),k

that are derived from the corresponding flow bounds,

SL(3,1),k = FL
a,(3,1),k − FU

a,(T8),k, ∀k ∈ S,

SU(3,1),k = FU
a,(3,1),k − FL

a,(T8),k, ∀k ∈ S.

The expression for SU(3,1),k (and similar expressions later) is valid only for FL
a,(T8),k ≥
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0 and FU
a,(T8),k ≥ 0.

2. Modeling for node 4 is almost identical except for the fact that node 4 is a

splitter when (4,6) reverses, i.e., splitter condition corresponds to yr(6,4) = 1,

Fa,(4,2),k − s(4,2)Fa,(T3),k − (1− yr(6,4))S
U
(4,2),k ≤ 0, ∀k ∈ S, (xii)

(1− yr(6,4))S
L
(4,2),k − Fa,(4,2),k + s(4,2)Fa,(T3),k ≤ 0, ∀k ∈ S (xiii)

with a similar definition of SL(4,2),k and SU(4,2),k as before,

SL(4,2),k = FL
a,(4,2),k − FU

a,(T3),k, ∀k ∈ S,

SU(4,2),k = FU
a,(4,2),k − FL

a,(T3),k, ∀k ∈ S.

3. Modeling is more complicated for node 6. This is because the splitter mode of

node 6 cannot be directed related to a single binary variable. An additionally

binary variable is defined to indicate if this node is a splitter. ys6 = 1 if node

6 is a splitter and zero otherwise. Node 6 is a splitter if line (3,6) reverses

and line (6,4) flows normally. This condition can be represented logically as

R36 ∧ ¬R64 ⇒ S6 where R(.) is an atomic proposition, true when the flow is

reversed in the corresponding arc and S6 is atomic proposition that is true

when the node 6 is splitter. This can be converted to a binary constraint as

explained in Section 4.3.10 to obtain the following binary constraints:

yr(3,6) − yr(6,4) − ys6 ≤ 0. (xiv)

The formulation then is identical to the above:

Fa,(6,4),k − s(6,4) Fa,(5,6) − ys6SU(6,4),k ≤ 0, ∀k ∈ S, (xv)

ys6 S
L
(6,4),k − Fa,(6,4),k + s(6,4) Fa.(5,6),k ≤ 0, ∀k ∈ S, (xvi)

(xvii)
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with

SL(6,4),k = FL
a,(6,4),k − FU

a,(5,6),k, ∀k ∈ S,

SU(6,4),k = FU
a,(6,4),k − FL

a,(5,6),k, ∀k ∈ S.

There are additional logical constraints that can be enforced for node 6. In

particular, the negation of the splitter condition ( ¬(R36 ∧ ¬R64) ⇒ ¬S6) to

give the constraints:

ys6 − yr(3,6) ≤ 0, (xviii)

ys6 + yr(6,4) − 1 ≤ 0. (xix)

Finally, line (3,6) flowing in the normal direction while line (6,4) is reversed is

impossible because there is no where for the incoming flow to leave node 6. The molar

balances will prohibit the {1, 0} realization for {yr(6,4), y
r
(3,6)} (except for identically

zero flowrate on all lines). However, a cut is added to cut off this realization explicitly,

yr(6,4) − yr(3,6) ≤ 0. (xx)

For the splitter molar balances, it is possible to use a direct trilinear formulation

instead of converting to a bilinear formulation outlined above. For example, for node

3, the splitter constraint can be formulated as:

yr3,6 (Fa.(3,1),k − s(3,1) Fa,(T8),k) = 0, ∀k ∈ S

In cursory numerical experiments, this formulation does not perform satisfactorily and

therefore was not considered. The performance is susceptible to how the algorithm

constructs the convex relaxations of the term and a different algorithm with a better

relaxation for trilinear terms may perform better with this formulation.
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3.6.4 Network Balances

Simplified molar balances in the upstream network is a major advantage of this for-

mulation. The definition of multiple sets to distinguish well platforms, field headers,

compressor inlets and so on is no longer required. This is achieved at the expense

of an increase in the number of variables in the molar balance formulation (and the

corresponding increase in equality constraints so that the degrees of freedom stay the

same). The balances are now written over the entire set of sources/sinks (set Ns) and

junctions (set NJ) as opposed to a subset only in Equations (14) and (15):

Fs,i,k +
∑

v:(v,i)∈A

Fa,(v,i),k −
∑

v:(i,v)∈A

Fa,(i,v),k = 0, ∀(i, k) ∈ Ns × S, (xxi)

∑
v:(v,i)∈A

Fa,(v,i),k −
∑

v:(i,v)∈A

Fa,(i,v),k = 0, ∀(i, k) ∈ NJ × S. (xxii)

The balances on the splitters (i.e., normal splitters, excluding ones encountered in

complex platform configurations with flow reversals that were described in the earlier

section) are the same as earlier.

Fa,(i,j),k − s(i,j)

∑
v:(v,i)∈A

Fa,(v,i),k = 0, ∀(i, j, k) ∈ {Ax : i ∈ Nx,J} × S,

(xxiii)

Fa,(i,j),k − s(i,j)

 ∑
v:(v,i)∈A

Fa,(v,i),k + Fs,i,k

 = 0, ∀(i, j, k) ∈ {Ax : i ∈ Nx,s} × S.

(xxiv)

The definitions of sets are similar to as defined earlier. Nx is the set of splitters, Ax
is the set of arcs downstream of a splitter, Nx,s = Nx∩Ns and Nx,J = Nx∩NJ . Also

this equation is only written over all except one arcs downstream of a splitter.

The relationship between molar flowrate in arcs and volumetric flowrate is formu-

lated using the ideal gas assumption as in Section 3.3.1, however, there is no longer

a need to distinguish arcs on which flowrate variables are defined as earlier and the
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constraint can be formulated for all arcs without qualification:

∑
k∈S

Fa,(i,j),k − φQa,(i,j) = 0, ∀(i, j) ∈ A. (xxv)

Finally, relationships at between the molar production rate and volumetric flow

rate is written for fields and demands:

Fs,i,k − χi,k φQs,i = 0, ∀(i, k) ∈ F × S, (xxvi)∑
k∈S

Fs,i,k − φQs,i = 0, ∀i ∈ ND. (xxvii)

Definition of φ is identical to Section 3.3.1.

3.6.5 Well-performance Model

The well-performance model in this formulation is similar to the one described earlier.

1. In-Flow Performance (IFP): This models the flow from the reservoir bulk

to the well bore [12]:

αwQw,w + βwQ
2
w,w = π2

r,w − P 2
b,w, ∀w ∈ W . (xxviii)

Here αw is Darcy’s constant and βw is the non-Darcy correction factor for mod-

eling gas flow.

For some high-pressure wells (with reservoir pressure > 200 bar), a linear single

parameter relationship seems to provide a more consistent relationship with the

data obtained from more detailed simulations:

κwQw,w = πr,w − Pb,w, ∀w ∈ W . (xxix)

2. Vertical-lift Performance (VLP): This models flow in the well bore itself:

ϑwQ
2
w,w = P 2

b,w − λwP 2
t,w, ∀w ∈ W . (xxx)
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Additionally constraints can be forced on the pressures from physical considera-

tions as in the earlier formulation.

Pb,w − πr,w ≤ 0, ∀w ∈ W (xxxi)

Pt,w − Pb,w ≤ 0, ∀w ∈ W . (xxxii)

The Implicit-choke assumption is simplified since all field headers are on the net-

work representation of the system and no special treatment is required to treat fields

with compression separately.

Pi − Pt,w ≤ 0, ∀w ∈ Wi, i ∈ Fw. (xxxiii)

Finally the mass balances are the same as before.

QLw,w = σwQw,w, ∀w ∈ W , (xxxiv)

Qs,i =
∑
w∈Wi

Qw,w, ∀i ∈ Fw, (xxxv)

QLs,i =
∑
w∈Wi

QLw,w, ∀i ∈ Fw. (xxxvi)

106



Chapter 4

The Contract Modeling Framework

Contracts are central to the operation of the upstream production system. Any supply

chain planning tool needs to take these rules into account to be implementable on the

real system. A framework for incorporating these rules is presented here. It is useful

to view contractual rules as comprising the following four subcategories:

1. Demand rates and delivery pressures : these are maximum and minimum supply

rates and delivery pressures to the LNG plants.

2. Gas quality specifications : these are customer requirements, e.g., the heating

value and the composition of the feed gas to the LNG plants.

3. Production-Sharing Contracts (PSC ): these define field to plant assignment

rules that designate certain fields to supply a specific plant under certain con-

ditions.

4. Operational rules : operational rules enforce conditions on the network to ensure

proper operation of the system and also, to aid implementation of production-

sharing rules on the network.

Strictly, operational rules are not part of the contractual framework. However, they

are included here because the approach for modeling them is the same as the PSC

rules and, moreover, several PSC rules also invoke operational constraints in order to

implement sharing and transfer on the physical network.
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To summarize, the contract modeling framework encompasses all constraints that

do not originate from modeling of the physics of the production infrastructure.

4.1 Demand Rates and Delivery Pressure

Contracts enforce a maximum demand rate at each LNG plant. This reflects the

maximum intake of the LNG plant and the supply should not exceed the amount

specified by the contracts. Additionally, the demands are bounded from below by a

minimum amount that should be supplied. Together, this defines a narrow window of

operation as defined by the LNG plant operators. Since the demand nodes are sinks

with a negative production rate, the bounds are reversed as follows

−ΛU
d,i ≤ Qs,i ≤ −ΛL

d,i, ∀i ∈ ND,

where ΛU
d,i and ΛL

d,i are maximum and minimum demand rates respectively. These

requirements are enforced as bounds and not as constraints.

The primary means of control for the network is to regulate the pressure at slug-

catchers. The LNG plants require the feed gas to be at a certain pressure for proper

operation. If the pressure is too low, the gas flowrate has to be cut back to maintain

the pressure. Since there is two phase flow in the pipelines, pressure regulation is also

quite important to make sure that the liquids properly separate out in slugcatchers.

If the pressure is too high, a lot of liquid will go through to the LNG plants which is

undesirable since in normal circumstances NGL belong to the upstream operator, but

in this case, LNG plants will take a share and hence a loss for the upstream operator:

πLd,i ≤ Pi ≤ πUd,i, ∀i ∈ Nsc,

where πLd,i and πUd,i are lower and upper limits of the operating pressure at slugcatchers.

This constraint is also represented as a bound in the model.
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4.2 Gas Quality Specifications

The specifications on the feed gas to the LNG plants are enforced by the sales agree-

ment between the upstream operators and the LNG plant operators. These comprise

the constraints on the gross heating value of the feed gas and mole percentages of

species in the feed gas. Feed gas quality directly affects LNG quality. As explained in

Section 1.2.3, gas quality plays a major role in gas trade. LNG quality is usually spec-

ified by LNG customers in their long-term contracts with suppliers. Customer equip-

ment and facilities are designed to these specifications and off-specification LNG can

seriously impact and even disrupt customer operations. Therefore, off-specification

LNG may have implications for reputation of LNG suppliers and may even carry an

economic cost for them either as penalties or as additional costs in further processing

to conform to the specifications.

An example of feed gas specifications as outlined in the contracts (similar to the

SGPS in structure but completely changed otherwise to preserve sensitive informa-

tion) is presented in Table 4.1 for the demand nodes in the network in Figure 3-1.

4.2.1 Gross Heating Value

The most important gas quality specification is the Gross Heating Value (GHV) of

the feed gas to the LNG plants, since it has a direct effect on the calorific value of the

LNG produced. The gross heating value of the feed gas is measured in terms of the

heat of combustion per unit mass of gas (excluding CO2 since it is separated before

liquefaction of the gas). The GHV is specified in a range.

For this work, the GHV is constrained to be higher than the lower limit of the

range. This is because a low heating value for the LNG is the major concern here and

a high heating value is not considered a problem. However, in general, GHV should

be constrained from both above and below as a high GHV may not be preferable

for some markets (as explained in Section 1.2.3). The energy content of the gas

is calculated using the superior calorific values of C1 through C5 at a prespecified

temperature and pressure. In this work, it is assumed to be calculated at 15oC and
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Table 4.1: Customer requirements on gas quality

Specification Constraint i ∈ ND
LNG1 LNG2 LNG3

Γsi (MJ/kg excl. CO2) Range 53.0-56.0 53.0-56.0 53.0-56.0
χsi,CO2

less than 5.8 mol % 5.8 mol % 6.0 mol %
χsi,N2

less than 1.2 mol % 1.0 mol % 1.2 mol %
χsi,H2S less than 250 ppmV 270 ppmV 30 mg/m3

χsi,S less than 29.0 mg/m3 22.0 mg/m3 25.0 mg/m3

χsi,C2
(Excl. CO2) greater than 3.2 mol % 3.4 mol % 4.0 mol %

χsi,C3
(Excl. CO2) greater than 2.1 mol % 2.7 mol % 3.0 mol %

χsi,C4
(Excl. CO2) less than 2.4 mol % 2.7 mol % 2.7 mol %

χsi,C5+
(Excl. CO2) less than 1.0 mol % 1.7 mol % 1.7 mol %

1 atmosphere. The superior calorific values at 15oC and 1 atmosphere were obtained

from the ISO standard for calculation of calorific values of natural gas [112, page

12, table 4]. For C1 through C3, the superior calorific values for methane, ethane

and propane respectively are used. For C4, the mean of superior calorific value of

n-butane and 2 -methylpropane is used. For heavier components, the heating value

and molecular weight of n-hexane is used. The inequality representing the GHV

constraint is given as:

∑
k∈Sh

γk µkFs,{i,k} − Γsi
∑

k∈S\CO2

µiFs,{i,k} ≤ 0, ∀i ∈ ND, (33)

where γk is the superior calorific value of component k on per unit mass basis, µk is

the molecular weight of the component, Γsi is the lower limit of GHV specification

at demand i and Sh is the set of species that are used to calculate heating value.

It should be noted that the inequality is the opposite to what may seem intuitive

because the demand nodes are sinks and all molar rates are negative. The heating

values and molecular weights used for the GHV calculation are presented in Table

B.9 in Appendix B.
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4.2.2 Composition Specifications

Additional quality specifications are related to satisfying composition specifications

by customers as well as maintaining the capacity and ensuring proper operation of

LNG plants. For example, if the CO2 mole fraction in the feed gas goes above a

certain threshold, the plants have to cut back the total amount of feed gas being

processed because the capacity of CO2 extraction units is exceeded.

It should be noted that the inequalities are the opposite to what may seem intuitive

because the molar rates are negative at demand nodes:

1. The CO2 and N2 mole fractions should be less than the threshold:

10−2 χsi,k
∑
j∈S

Fs,i,j − Fs,i,k ≤ 0, ∀(i, k) ∈ ND × {CO2,N2}. (34)

2. The amount of sulfur (mass per unit volume) should be below specified limits:

10−6 χsi,SQs,i − µSFs,i,H2S ≤ 0, ∀i ∈ ND. (35)

3. As is evident from Table 4.1, different demand nodes have different units in

which the hydrogen sulfide concentration specification is expressed. The hydro-

gen sulfide (H2S) concentration should be less the specified ppmV (parts per

million by volume) for the set ND,HSP ⊂ ND:

10−6 χsi,H2SφQs,i − Fs,i,H2S ≤ 0, ∀i ∈ ND,HSP . (36)

The hydrogen sulfide (H2S) concentration should be less the specified mg/m3

by volume for the set ND,HSM ⊂ ND:

10−6 χsi,H2SQp,i − µH2SFs,i,H2S ≤ 0, ∀i ∈ ND,HSM . (37)
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4. The C2, C3 mole fractions excluding CO2 should be greater than the threshold:

Fs,i,k − 10−2 χsi,k
∑

j∈S\CO2

Fs,i,j ≤ 0, ∀(i, k) ∈ ND × {C2,C3}. (38)

5. The C4, C5+ mole fraction excluding CO2 should be less than the threshold:

10−2 χsi,k
∑

j∈S\CO2

Fs,i,j − Fs,i,k ≤ 0, ∀(i, k) ∈ ND × {C4,C5+}. (39)

4.3 Production-Sharing Contracts (PSC):

Modeling Framework

As was pointed out in Section 2.5.1, several parties have stakes in different parts of

the system and therefore a complicated framework of production-sharing contracts

(referred to as simply contracts or PSC in this section) exists. A plant cannot receive

supply from arbitrary fields. It can only receive supply from fields that are “produced”

under the “contract” authorized to supply it. On the other hand, gas from different

fields is blended in the network, so the gas molecules originating from a field under a

particular contract do not all end up at the LNG plant associated with this contract.

Instead, only the gas volume produced by this field must be supplied to the LNG

plant associated with its contract, the actual gas may come from a different field.

One of the main reasons for this is that a field may be physically connected to the

network in such a way that it is easier to supply a different LNG plant than the LNG

plant corresponding to the producing contract, which must be then compensated from

some other field. Therefore, there is a need for accounting of volumes.

A framework for modeling these contracts is presented here.

4.3.1 Terminology

Every field in the system is associated with a PSC (contract). In the industry ter-

minology, “the field is produced under a contract.” A contract can contain several
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fields. The sum of productions from the fields associated with a particular contract

is the supply of that contract. A contract is mandated to supply to a particular

demand (a LNG plant). This is termed the primary demand of the contract. Inter-

contract transfers are exchanges of gas volumes between different contracts. They

are required because the primary demand and supply of a contract may not match.

A contract is in excess if its supply exceeds its primary demand and it is in deficit

otherwise. This is the state of the contract (contract state). A deficit can happen

due to production network constraints or the customer specifications and many other

reasons. The inter-contract transfer rules (transfer rules) are the set of rules that

govern the inter-contract transfers. The transfer rules can be viewed as deficit rules

associated with each contract that define, “which contracts and the order in which

they should supply”, the contract in question if it is in deficit. Alternatively, they

can be interpreted as excess rules that dictate the order in which a contract in excess

should supply other contracts in deficit. In other words, a deficit rule at the contract

that is borrowing is the same as an excess rule at the contract that is in excess and

supplying. Additionally, these rules may also invoke operational rules to implement

the transfers on the pipeline network. When a transfer takes place as per a rule, the

rule is said to have been activated (also termed the state of an inter-contract transfer

(rule) is active).

4.3.2 Issues in Mathematical Representation

The primary challenges in representing these contracts in a mathematical program-

ming framework are as follows.

The inter-contract transfer rules are activated by a particular contract being in

deficit or excess and, in certain cases, based also on several additional conditions

that represent priorities and operational concerns. Hence, they are based on logical

conditions and therefore require binary variables and constraints to model them.

The rules also interact with each other. This is because to establish whether a

supply of gas is available from a contract, it is not sufficient to know the primary

demand and supply of the contract, but also whether other rules have activated and
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borrowed from the contract under consideration.

Modeling the inference of a rule

The way a rule is stated in the operational documents for the real system may not

cover all logical possibilities. This is because for a human operator, the logic and

inference of a rule are obvious. Hence, the statement of a rule may not dictate the

outcomes that can be easily deduced by a human.

A simple of example of this problem is as follows. Transfer rules as stated only

define sufficient conditions for transfer activations, i.e., they are of the form, “if some

condition holds, then transfer should take place.” However, they may or may not be

necessary for transfer activation and this missing information is not stated explicitly

since a human operator can deduce it. Hence an exact mathematical representation

of transfer rules will only model the sufficiency clause. This will lead to a prob-

lem when the clause was indeed necessary, generating feasible operations where the

clause is false, but the transfer activates. This operation would be deemed infeasi-

ble by a human operator. For example, the deficit rules state that when a contract

is in deficit, what other contracts must supply it. However, they do not explicitly

prohibit transfers to contracts in excess since this is obvious to a human operator.

A straightforward modeling of rules as stated in operational documents will result in

transfers to contracts in excess. When transfer to a contract in excess is prohibited,

the deficit condition is now both sufficient (deficit implies transfer) and necessary

(transfer implies deficit).

Though the above example may seem obvious, for certain complex rules and sce-

narios, it may not be clear if an exact representation of the inference of a rule has

been embedded in the model or if more logical constraints must be added to avoid

infeasible scenarios at the solution. This is because activation conditions for complex

transfer rules may have (subtle) logical dependencies on other rules or states and this

is not always obvious from their operational statements. Additionally, for complex

rules, it is not at all clear whether their activation conditions are necessary. In either

case, it is usually easy to pinpoint violations in the solution, though it may be still be
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hard to deduce the exact rule (rules) causing it. Therefore, converting a rule written

in human language to an exact and equivalent set of logical clauses is challenging.

A rigorous verification as to whether a precise representation of rules has been

achieved in the model may require evaluating all feasible integer realizations of the

problem which is clearly impractical. The modeling approach in this work has been

to add as many logical constraints as was obvious or had become apparent during the

development of the model at that stage and then the solution was evaluated for any

infeasibility and if it was found that solution will be deemed infeasible by a human,

additional logical constraints were added to avoid such a scenario and iterate until

the solution was satisfactory.

4.3.3 Contracts: Network Representation

Contractual rules interact with each other and therefore there are levels of excesses

or deficits in a contract. Excess (or deficit) from a particular contract at the nth level

is defined as the excess (or deficit) after n excess (or deficit) rules for that particular

contract have been considered. In other word, it is the excess (or deficit) once the

decision on the transfers as per n excess (or deficit) rules have taken place. It is not

necessary that the transfer as per one of these rules must have taken place, i.e., the

rules need not have been activated.

This formulation can be represented using a directed graph (Ll, El) with nodes of

the graph (set Ll) indicating the levels in each contract and flows in arcs (set El)

indicating excesses or deficits between the levels. The flow in an arc is permitted to

be either negative or positive as opposed to traditional network theory. It is positive

if the direction of the flow is the same as the arc direction and negative otherwise. A

positive flow incident out of a particular node (i.e., the flow in the direction of the arc

originating at that node) indicates excess in the corresponding level. On the other

hand, a negative flow indicates deficit corresponding to that level and this therefore

means that the flow is incident into the node (i.e., the flow direction is opposite to

the arc originating at that node) corresponding to that particular level.

Each contract has a single source node corresponding to it in the contract graph
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Figure 4-1: Network representation of a contract

whose production rate is equal to the sum of production rates of fields producing

under that contract. Sink nodes in the infrastructure network have counterparts in

the contract graph representing LNG plants. Together sources and sinks form the set

Ls. The supply and demand arcs connect the source nodes and the demand nodes

respectively to the contract levels sub-graph (Ll, El). Together the supply and demand

arcs form the set Es.

All nodes that correspond to one particular contract can be grouped to indicate

the levels of excess or deficit in this contract. The nodes are labeled with index of the

contract and level, so that the node corresponding to contract p at level i is pi (∈ Ll).

The supply nodes and demand nodes are termed ps and pd (∈ Ls), respectively.

The inter-contract transfer rules can now be represented as arcs between the nodes

from different contracts. For example, a transfer from contract p to q may be rep-

resented as a unique arc (pi, qj) on this graph where i and j are determined by the

priority of that transfer over other transfers. The set of these arcs is represented by
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Et. The subnetwork for a contract is shown in Figure 4-1.

It should be noted that the originating node pi for a transfer (pi, qj) from contract

p to q can be a supply node (i.e., i = s) under special conditions. This is because

there are fields in the system that can supply to multiple production-sharing contracts

and hence need to be treated as special cases. These are modeled by treating them

as a separate contract that has no explicit mandated demand. In such a case, there

is no need for supply or demand arcs and the states corresponding to these fields

supplying one or the other contract are represented by transfer arcs originating at the

corresponding supply node.

The contract network representation is given by the directed graph (L, E) = (Ls∪

Ll, Es ∪ El ∪ Et). The excess and deficit calculations at different levels (including

inter-contract transfers) are equivalent to material balances on this network. Figure

4-2 represents an example of the contract network representation which is similar in

complexity to the real system, though not identical for confidentiality reasons. It

contains four contracts A, B, C and D and three demands. F corresponds to a field

that can supply multiple contracts. This network is used in the case study presented

in Chapter 5. Also, note the correspondence between Figure 2-4 and Figure 4-2 with

fields of a particular color in Figure 2-4 belonging to the contract of the same color

in Figure 4-2.

4.3.4 Excess (Deficit) Policy

The actual constraints for activating the excess/deficit rules can be formulated within

the contract network framework presented in the previous section. An atomic propo-

sition representing the contract state is formulated which is true when the contract

is in excess and false otherwise.

Once a contract is in excess (or deficit) at a particular level, it should maintain

that state for all further levels following it. If this is not so, there is a possibility of

transfers that should not be normally permitted.

Example: Consider the following two rules that state:
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Figure 4-2: Contracts in the case study: Network representation

1. If A is in excess and B is in deficit, then A should supply B.

2. If B is in excess and C is in deficit, then B should supply C

It is possible to get a scenario, when A is in excess and both B and C are in deficit. A

can supply B to make it in excess and B now can supply C. Hence A indirectly supplies

C, although this was never intended by the two rules as stated. The policy stated ensures

that this cannot happen. This example also demonstrates the difficulty outlined in Section

4.3.2 that a literal modeling of rules may not be sufficient to represent the inference of those

rules.

The above policy implies that a single atomic proposition is needed for representing

the contract state for most contracts, i.e., the flow from only a single arc corresponding

to a contract in the contract network representation needs to be examined to ascertain

if that contract is in excess (or deficit). Notationally, atomic proposition E(pi,pi+1) is

true if the flow in arc (pi, pi+1) is nonnegative in the contract network representation
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and this is equivalent to contract p being in excess. The level i used for defining the

contract state is 0 for most contracts, i.e, the excess flag is set before any transfer

rules have activated (therefore, the excess flag for a contract p is given by E(p0,p1) for

most cases).

However, for some contracts, there is a need to define multiple atomic propositions

to represent excess. This is because these contracts contain fields that can supply to

other contracts under special conditions. These fields feed downstream of the node

corresponding to 0th level in the contract network and hence flow in arc (p0, p1) is not

sufficient to resolve the state. This arrangement exists because a field in one contract

system may be physically connected to the other contract system and hence might

require special rules. In such a case, there are several atomic propositions E(pi,pi+1)

each corresponding to a different arc (pi, pi+1) ∈ El,a.

4.3.5 Transfer State

Atomic proposition Tp,q is used to indicate the state of an inter-contract transfer of

gas from contract p to contract q. Tp,q is true implies that the transfer takes place

(or the transfer is activated). It is equivalent to flowrate on an inter-contract transfer

arc (pi, qj) being non-negative, (pi, qj) being the unique arc in the contract network

representing transfer flowrate from contracts p to q.

4.3.6 Transfer Priorities

When a contract p is in excess and there are several contracts (say q, r) that are

in deficit and should receive supply from contract p (as per the rules), there is a

need to define priorities of transfer because the excess may not be enough to fulfill

all the transfer demands being placed on contract p. The rules indeed provide these

priorities. If these transfer priorities are not modeled, a solution may violate these

priorities (though the balances will still be closed and all deficits will be fulfilled but

not as per the priorities dictated by the rules).

Hence, atomic propositions S(qj ,qj+1) need to be defined corresponding to transfer
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from contract p to contract q (arc (pi, qj) or atomic proposition Tp,q). S(qj ,qj+1) flags

the state of the receiving contract once a transfer has been made. It being true implies

that arc (qj, qj+1) has a nonnegative flowrate and hence the transfer has fulfilled the

deficit. Another transfer Tp,r from the supply contract p can only go ahead if the

proposition S(qj ,qj+1) is true.

However, it is important to note that a S(rj ,rj+1) need not be defined corresponding

to every transfer Tp,r. Specifically, it is not required for transfers that are at the lowest

priority on the supplying side, i.e., for transfer arc (pi, rj), pi is the terminal level

node (the last node representing level) corresponding to contract p in the contract

network, because there is no transfer rule that follows it and needs to depend on

it. Of course this lowest priority transfer rule still needs to honor all the previously

defined priorities. Another condition when the priority flag is not required is when a

receiving contract r has the transfer Tp,r at the lowest priority, i.e., r tries to borrow

from p, only when everything else fails. In this case rj is a terminal level node and as

per material balance on the network, the demand should be satisfied. To summarize,

when either pi or rj is a terminal level node, it is not required to define a priority

corresponding to the transfer arc connecting them.

The set of arcs over which priority atomic propositions are defined is denoted by

El,S ⊂ El.

4.3.7 Coupling Constraints between Infrastructure and

Contract Networks

Equations (40), (41) and (42) represent the coupling constraints between the infras-

tructure and the contract networks. These are essentially constraints linking the

sources and sinks of both networks.

If multiple contracts have no special rules distinguishing them from one of the

others in the group (i.e., they either have no specific rules or have the same rules as

the others), they are collapsed to represent a single source and are not represented

separately on the contract network.
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Let CS be the superset of all contracts, some of which may not be represented on

the contract network. The set of contracts that are actually represented is C ⊂ CS.

These sets for the example shown in Figure 4-2 are defined as follows:

CS = {A,B,C,D,F,X,Y},

C = {A,B,C,D,F}.

Set CS is maintained in the model for future flexibility so as to add additional rules,

at which point the contract network can be expanded to incorporate those contracts.

Denote the set of contracts in the set CS that are collectively represented as a single

source ps ∈ C in the contract network as CSp .

The supply rate of a contract qc,i is given by

qc,i =
∑
j∈Fi

Qs,j, ∀i ∈ CS, (40)

where Fi is the set of fields producing under contract i. The source rates for the

contract network is given by

qs,ps =
∑
j∈Cs

p

qc,j, ∀ps ∈ C. (41)

The sink nodes in the contract network are mapped to the demand nodes in the

infrastructure network.

qs,ui
= Qs,i, ∀i ∈ ND\{i}, (42)

where ui is the demand node in the contract network corresponding to the demand

node i in the infrastructure network. This equation should not be formulated for

exactly one demand node in the infrastructure network. The reason is that the last

equality is implied by the combined material balances in the infrastructure and con-

tract networks. If this is included, it violates the linear independence constraint qual-

ification and has been observed to create severe problems for local solver convergence

in subproblem solutions.
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4.3.8 Volumetric Balances in the Contract Network

Representation

Volumetric balances in the contract network represent the actual constraints for sup-

ply and demand balances as well as for the excess/deficit calculations for each con-

tract. Volumetric balances are easier to formulate over the entire contract network

than referring to individual contracts. Hence the convention of referring to a node as

pi and it being associated with contract p has been dropped in this section.

Let e(u,v) be the excess volumetric flowrate in arc (u, v) ∈ El. It is positive when

a contract is in excess and negative otherwise. Let t(u,v) represent the transfer rates

in arcs (u, v) ∈ Et. Furthermore qa,(u,v) represents flowrates in arcs (u, v) ∈ Es, i.e.,

supply and demand arcs. At the nodes that are junctions in the contract network

(i.e., all nodes except the supply and demand nodes, same as set Ll), the balance can

be represented as:

∑
v:(v,u)∈El

e(v,u) −
∑

v:(u,v)∈El

e(u,v) +
∑

v:(v,u)∈Et

t(v,u)

−
∑

v:(u,v)∈Et

t(u,v) +
∑

v:(v,u)∈Es

qa,(v,u) −
∑

v:(u,v)∈Es

qa,(u,v) = 0, ∀u ∈ Ll. (43)

Nodes that are supply or demand nodes to the network (i.e., that are not junc-

tions) have a production term. It should be noted that these nodes do not have arcs

representing levels terminating at or originating from them.

∑
v:(v,u)∈Es

qa,(v,u) −
∑

v:(u,v)∈Es

qa,(u,v)

+
∑

v:(v,u)∈Et

t(v,u) −
∑

v:(u,v)∈Et

t(u,v) + qs,u = 0, ∀u ∈ Ls. (44)
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4.3.9 Relationship between Atomic Propositions and Flowrates

in Contract Network

A binary variable is introduced in the model corresponding to each atomic proposition

defined previously. The atomic proposition being true is equivalent to the binary

variable being equal to 1.

Binary variable ye(pi,pi+1) corresponds to the atomic proposition Ep,(pi,pi+1) and is

the contract state binary variable. It should be noted again that this variable is not

defined over every arc representing excess or deficit in the system. The set of arcs

over which this binary variable is defined is termed El,a ⊂ El.

Let e(pi,pi+1) denote the excess rate for contract p at level i. e(pi,pi+1) is negative if

the supply of contract is less than the primary demand of contract p and the contract

is in deficit. The binary variables ye(pi,pi+1) are related to the flowrates in the excess

arcs e(pi,pi+1) over the set of all contracts C as follows:

eL(pi,pi+1) − ye(pi,pi+1) e
L
(pi,pi+1) − e(pi,pi+1) ≤ 0, ∀(pi, pi+1) ∈ El,a, (45)

e(pi,pi+1) − ye(pi,pi+1) e
U
(pi,pi+1) ≤ 0, ∀(pi, pi+1) ∈ El,a, (46)

where eL(pi,pi+1) and e
U
(pi,pi+1) are lower and upper bounds respectively to e(pi,pi+1). These

constraints ensure that ye(pi,pi+1) = 1 is equivalent to 0 ≤ e(pi,pi+1) ≤ eU(pi,pi+1) and

ye(pi,pi+1) = 0 is equivalent to eL(pi,pi+1) ≤ e(pi,pi+1) ≤ 0. These constraints therefore

couple the contract state binary variables with the actual flowrates in the contract

network representation.

eL(pi,pi+1) is strictly negative and is set by making the assumption that the supply

of contract p is zero and the primary demand of contract p is fulfilled exclusively

by inter-contract transfers and is therefore the maximum deficit rate that is possible

for a contract. Hence, it is set to the lower bound of the rate at the sink node

corresponding to contract p (physically this is the maximum demand rate at the

LNG plant corresponding to this sink). On the other hand, eU(pi,pi+1) is the maximum

excess rate possible and is set assuming that the primary demand of the contract is
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zero and all the supply is available for inter-contract transfers. It is therefore equal

to the upper bound of the supply of the contract and is strictly positive. A further

discussion can be found in Appendix C.1.2.

An exactly analogous constraint exists for priority atomic propositions. Let ys(qj ,qj+1)

correspond to atomic proposition S(qj ,qj+1). Then

eL(qj ,qj+1) − ys(qj ,qj+1) e
L
(qi,qj+1) − e(qj ,qj+1) ≤ 0, ∀(qj, qj+1) ∈ El,S, (47)

e(qi,qj+1) − ys(qi,qj+1) e
U
(qj ,qj+1) ≤ 0, ∀(qj, qj+1) ∈ El,S. (48)

This constraint performs exactly the same function as equations (45) and (46) and

bounds on e(qj ,qj+1) are calculated as above and they satisfy the same properties.

Let t(pi,qj) denote the transfer rate between contract p and q (i.e., the flowrate in

arc (pi, qj) ∈ Et). Also, let ytp,q be the binary variable corresponding to the atomic

proposition Tp,q representing the state of the (p, q) transfer such that ytp,q = 1 when

Tp,q is true. Then this binary variable ytp,q can be coupled with the actual transfer

flowrate t(pi,qj) by the following relationships

−t(pi,qj) ≤ 0, ∀(pi, qj) ∈ Et, (49)

t(pi,qj) − ytp,q tU(pi,qj)
≤ 0, ∀(pi, qj) ∈ Et. (50)

It should be noted that the upper bound for t(pi,qj) is set to eU(pi−1,pi)
since the maximum

amount of transfer that is possible is the maximum flowrate possible in the excess arc

upstream of node pi in the transferring contract (except for transfer arcs originating

at supply nodes in which case it is set to the upper bound on the production rate

from that supply node). An explicit representation of these bounds can be found in

Appendix C.1.2. These constraints ensure that t(pi,qj) = 0, i.e., no transfer takes place

when ytp,q = 0 and t(pi,qj) ≥ 0 when ytp,q = 1.
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4.3.10 Transfer-Activation Constraints

An inter-contract transfer rule can now be expressed in terms of a logical expression

involving atomic propositions representing contract states, the transfers states, the

transfer priorities flags and operational flags. This logical expression can be converted

to its conjunctive normal form (CNF) and this CNF can be converted to constraints

involving binary variables [113, 114]. All contract rules used in the case study can be

found in Section 4.4. Following is an example from the case study.

Example (Transfer-Activation Constraint): Consider the following contractual

rule:

A to B Transfer Rule: When demand at LNG 2 (SC2D) cannot be fulfilled by contract

B, “borrow gas” from contract A shall supply to LNG 2 (SC2D) to meet the demand and the

RA to RB trunkline shall be open at this stage.

The following atomic propositions are required:

• E(A0,A1): A is in excess (contract A state),

• E(B1,B2): B is in excess (contract B state),

• TA,B: A supplies B (transfer state),

• C(RA,RB): RA to RB trunkline is open (additional operational state).

The logic in the above rule can be expressed as:

(E(A0,A1) ∧ ¬E(B1,B2)) ⇒ (TA,B ∧ C(RA,RB)).

Here ∧, ∨, ¬ and⇒ are logical AND, OR, NOT and IMPLICATION operators respectively.

The above is equivalent to

¬ (E(A0,A1) ∧ ¬E(B1,B2)) ∨ (TA,B ∧ C(RA,RB)).

The CNF of the statement is:

(¬ E(A0,A1) ∨ E(B1,B2) ∨ TA,B) ∧ (¬ E(A1,A2) ∨ E(B1,B2) ∨ C(RA,RB)).
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The CNF can be converted to binary constraints

1− ye(A0,A1) + ye(B1,B2) + ytA,B ≥ 1,

1− ye(A0,A1) + ye(B1,B2) + yl(RA,RB) ≥ 1,

so that the final form of the constraints representing the A to B transfer rule is as follows:

ye(A0,A1) − y
e
(B1,B2) − y

t
A,B ≤ 0,

ye(A0,A1) − y
e
(B1,B2) − y

l
(RA,RB) ≤ 0.

4.3.11 Additional Logical Constraints

Additional logical constraints must be added to formulate a satisfactory representa-

tion of the contracts as well as to strengthen relaxations. These are listed as follows:

1. Cuts should be added by analysing the negation of transfer-activation condi-

tions. If the negation corresponds to a condition when the transfer should not

activate (i.e., the original transfer-activation condition was both necessary and

sufficient for the transfer to take place), an additional logical constraint which

states that no transfer should take place when the negation is true must be

added to the problem. It is important to note that for some transfers, a nega-

tion of the activation condition does not imply that the transfer cannot activate

(e.g., they may have multiple activation conditions) and hence the above log-

ical cut will be invalid. Therefore, such an analysis must be carried out on a

case by case basis. This is important to avoid transfers when they should not

take place. This is required because inter-contract transfer rules represent only

sufficient conditions for transfer. The negation of transfer rules also introduces

logical constraints that imply that no transfer should be made to a contract in

excess and hence this need not be enforced explicitly.

2. If a contract q requiring a single excess flag is in excess, i.e, the unique excess
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flag E(qi,qi+1) corresponding to it is true, then any priority atomic propositions

S(qj ,qj+1) defined for that contract are also true. Also, if a contract q has multiple

excess flags, then a priority flag S(qj ,qj+1) is true if the closest excess flag to

S(qj ,qj+1) is true (i.e., E(qij ,qij+1), (qij , qij+1) ∈ El,a is true, (qij , qij+1) is the closest

element of set El,a to node qj in the sub-graph of contract q). This can be

represented logically as follows

E(qij ,qij+1) ⇒ S(qj ,qj+1), ij < j, ∀(qij , qij+1) ∈ El,a, (qj, qj+1) ∈ El,S,

where (qij , qij+1) is the closest arc in set El,a to node qj. This can be converted

to the following binary constraint

ye(qij ,qij+1) − ys(qj ,qj+1) ≤ 0, ij < j, ∀(qij , qij+1) ∈ El,a, (qj, qj+1) ∈ El,S. (51)

3. There are transfer rules that cannot activate simultaneously. For example,

either Tp,q is true or Tq,p is true. Both cannot happen simultaneously.

4. For contracts that have multiple excess atomic propositions, once an atomic

proposition is true, all excess atomic propositions on further levels must also be

true.

4.4 PSC Framework: An Example

In this section, the production-sharing contracts (PSC) framework for the case study

is described. It is of equal complexity and size as the original SGPS contractual

model, however the contract field assignments and rules have been changed to preserve

confidentiality.

4.4.1 Contract Definitions

There are five production-sharing contracts in the system. The field contract as-

signment is provided in Table 4.2. Following are the rules dictating contract plant
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assignments:

1. LNG plant 1 must be supplied by contract A, X and Y. There are no special rules

for separating them, so supplies from A, X and Y are combined and denoted by

contract A.

2. LNG plant 2 must be supplied by contract B.

3. LNG plant 3 must be supplied in the ratio 600:350 by contract C and D. Hence

the following constraint is enforced for flowrates in the contract graph:

350 qa,(C0,CDd) = 600 qa,(D0,CDd). (52)

4. Contract F should normally supply contract B (i.e., LNG plant 2), however

under certain conditions, it may supply contract A (further details are provided

in Section 4.4.1).

The methodology for modeling inter-contract transfer rules and operational rules has

already been developed in Section 4.3. The definition of atomic propositions required

for representation of the rules can be found in Table 4.3.

Table 4.2: Field contract assignments

i ∈ C j ∈ CSi Fields Fj
A A SC, F6, F23

X F23SW
Y BN,BY,D35

B B M1, M3, B11
C C M4, HL, JN
D D SE
F F E11

4.4.2 Inter-Contract Transfer Rules

This section describes the inter-contract transfer rules and their representation as

binary constraints. The priorities for supply when a contract is in excess are defined
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Table 4.3: Atomic proposition definitions

Symbol Definition Equivalent
Representation

E(A0,A1) A is in excess e(A0,A1) ≥ 0
E(B0,B1) B is in excess without F supply e(B0,B1) ≥ 0
E(B1,B2) B is in excess including F transfer e(B1,B2) ≥ 0
E(C0,C1) C is in excess e(C0,C1) ≥ 0
E(D0,D1) D is in excess e(D0,D1) ≥ 0
TA,B A supplies B t(A1,B2) ≥ 0
TA,C A supplies C t(A2,C3) ≥ 0
TA,D A supplies D t(A3,D3) ≥ 0
TB,C B supplies C t(B2,C2) ≥ 0
TB,D B supplies D t(B3,D2) ≥ 0
TC,B C supplies B t(C2,B3) ≥ 0
TC,D C supplies D t(C1,D1) ≥ 0
TC,B D supplies C t(D1,C1) ≥ 0
TF,A F supplies A t(Fs,A1) ≥ 0
TF,B F supplies B t(Fs,B1) ≥ 0
S(B2,B3) B is not in deficit after considering A-B

transfer
e(B2,B3) ≥ 0

S(C2,C3) C is not in deficit after considering B-C
transfer

e(C2,C3) ≥ 0

S(D1,D2) D is not in deficit after considering C-D
transfer

e(D1,D2) ≥ 0

C(RA,RB) (RA,RB) is open Qa,(RA,RB) ≥ 0,
PRA ≥ PRB

CM1 M1 production is greater than 500 MMscfd Qs,(M1) ≥ %g500
CJN,(M1,RC) All JN production is diverted into (M1,RC) -

in Table 4.4.

Following are the rules and binary constraints corresponding to them.

1. When demand of LNG plant 2 cannot be fulfilled by contract B, then gas shall

be borrowed from A to supply plant 2. RA to RB shall be open at this stage.

(a) The above statement can be expressed logically as

(E(A0,A1) ∧ ¬E(B1,B2)) ⇒ (TA,B ∧ C(RA,RB)).
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Table 4.4: Priority of supply

Supplying Contract Priority of Receiving if in Deficit
A B, C, D
B C, D
C D, B
D C
F B, A

Conjunctive normal form of the above is given by

(¬ E(A0,A1) ∨ E(B1,B2) ∨ TA,B ) ∧ (¬ E(A0,A1) ∨ E(B1,B2 ∨ C(RA,RB) ),

which can be converted to the following binary constraints:

ye(A0,A1) − ye(B1,B2) − ytA,B ≤ 0, (53)

ye(A0,A1) − ye(B1,B2) − yl(RA,RB) ≤ 0. (54)

(b) Additionally, the additional constraint that “if contract A supplies LNG 2,

then (RA,RB) should be open” is enforced:

TA,B ⇒ C(RA,RB)

that is equivalent to

¬TA,B ∨ C(RA,RB)

and therefore the constraint

ytA,B − yl(RA,RB) ≤ 0. (55)

(c) A negation of the original rule is also added to strengthen the relaxations.
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In case of negation, the state of (RA,RB) is immaterial:

¬ (E(A0,A1) ∧ ¬E(B1,B2)) ⇒ ¬TA,B,

or the following CNF

(E(A0,A1) ∨ ¬TA,B) ∧ (¬E(B1,B2) ∨ ¬TA,B).

Final binary constraints are given by

ytA,B − ye(A0,A1) ≤ 0, (56)

ye(B1,B2) + ytA,B − 1 ≤ 0. (57)

2. If demand of LNG plant 2 cannot be fulfilled by contract B and A is unable to

fulfill this deficit, then gas shall be borrowed from contract C to supply plant 2.

This clause requires a priority clause because the first priority of C is to supply

D and hence it needs to be tested if demand from D has been fulfilled:

(¬E(B1,B2) ∧ E(C0,C1) ∧ S(D1,D2)) ⇒ TC,B.

This can be written as a series of disjunctions:

E(B1,B2) ∨ ¬E(C0,C1) ∨ ¬S(D1,D2 ∨ TC,B,

which can be directly converted to a binary constraint

ye(C0,C1) + ys(D1,D2) − ye(B1,B2) − ytC,B − 1 ≤ 0. (58)

Negation

The negation of this constraint states the transfer should not take place if the
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left-hand side (LHS) is negated.

¬ (¬E(B1,B2) ∧ E(C1,C2) ∧ S(D1,D2)) ⇒ ¬TC,B.

Its CNF is given as

(¬E(B1,B2) ∨ ¬TC,B) ∧ (E(C0,C1) ∨ ¬TC,B) ∧ (S(D1,D2) ∨ ¬TC,B),

or in terms of binary variables

ye(B1,B2) + ytC,B − 1 ≤ 0, (59)

ytC,B − ye(C0,C1) ≤ 0, (60)

ytC,B − ys(D1,D2) ≤ 0. (61)

3. If contract D cannot meet its allocated production share, C shall have the first

priority to fulfill this deficit, followed by contract B, then A.

This rule actually contains three rules defining whether three transfers TC,D,

TB,D and TA,D should take place. Additionally it also defines the priorities. It

should also be noted that B needs to first fulfill any deficit from C (hence the

priority flag S(C2,C3)) and A needs to supply B and C (no priority required for

TA,C since it is a terminal level transfer):

(¬E(D0,D1) ∧ E(C0,C1)) ⇒ TC,D,

(¬E(D0,D1) ∧ E(B1,B2) ∧ S(C2,C3)) ⇒ TB,D,

(¬E(D0,D1) ∧ E(A0,A1) ∧ S(B2,B3)) ⇒ TA,D.
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Converting implication to disjunction

E(D0,D1) ∨ ¬E(C0,C1) ∨ TC,D,

E(D0,D1) ∨ ¬E(B1,B2) ∨ ¬S(C2,C3) ∨ TB,D,

E(D0,D1) ∨ ¬E(A0,A1) ∨ ¬S(B2,B3) ∨ TA,D.

These disjunctions can be directly formulated into binary constraints:

ye(C0,C1) − ye(D0,D1) − ytC,D ≤ 0, (62)

ye(B1,B2) + ys(C2,C3) − ye(D0,D1) − ytB,D − 1 ≤ 0, (63)

ye(A0,A1) + ys(B2,B3) − ye(D0,D1) − ytA,D − 1 ≤ 0. (64)

Negation

The negation of these conditions states that these transfers should not take

place if there is a violation of LHS.

¬ (¬E(D0,D1) ∧ E(C0,C1)) ⇒ ¬TC,D,

¬ (¬E(D0,D1) ∧ E(B1,B2) ∧ S(C2,C3)) ⇒ ¬TB,D,

¬ (¬E(D0,D1) ∧ E(A0,A1) ∧ S(B2,B3)) ⇒ ¬TA,D.

The corresponding CNF is given by

(¬E(D0,D1) ∨ ¬TC,D) ∧ (E(C0,C1) ∨ ¬TC,D),

(¬E(D0,D1) ∨ ¬TB,D) ∧ (E(B1,B2) ∨ ¬TB,D) ∧ (S(C2,C3) ∨ ¬TB,D),

(¬E(D0,D1) ∨ ¬TA,D) ∧ (E(A0,A1) ∨ ¬TA,D) ∧ (S(B2,B3) ∨ ¬TA,D).
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Converting to binary constraints:

ye(D0,D1) + ytC,D − 1 ≤ 0, (65)

ytC,D − ye(C0,C1) ≤ 0, (66)

ye(D0,D1) + ytB,D − 1 ≤ 0, (67)

ytB,D − ye(B1,B2) ≤ 0, (68)

ytB,D − ys(C2,C3) ≤ 0, (69)

ye(D0,D1) + ytA,D − 1 ≤ 0, (70)

ytA,D − ye(A0,A1) ≤ 0, (71)

ytA,D − ys(B2,B3) ≤ 0. (72)

4. If contract C cannot meet its allocated production share, D shall have the first

priority to fulfill this deficit, followed by contract B, then A. This rule is similar

to the previous one and governs three transfers:

(¬E(C0,C1) ∧ E(D0,D1)) ⇒ TD,C,

(¬E(C0,C1) ∧ E(B1,B2)) ⇒ TB,C,

(¬E(C0,C1) ∧ E(A0,A1) ∧ S(B2,B3)) ⇒ TA,C.

Converting implication to disjunction:

E(C0,C1) ∨ ¬E(D0,D1) ∨ TD,C,

E(C0,C1) ∨ ¬E(B1,B2) ∨ TB,C,

E(C0,C1) ∨ ¬E(A0,A1) ∨ ¬S(B2,B3) ∨ TA,C.
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Binary constraints corresponding to the above are given as

ye(D0,D1) − ye(C0,C1) − ytD,C ≤ 0, (73)

ye(B1,B2) − ye(C0,C1) − ytB,C ≤ 0, (74)

ye(A0,A1) + ys(B2,B3) − ye(C0,C1) − ytA,C − 1 ≤ 0. (75)

Negation

The negation of the transfer-activation conditions imply that no transfer should

take place:

¬ (¬E(C0,C1) ∧ E(D0,D1)) ⇒ ¬TD,C,

¬ (¬E(C0,C1) ∧ E(B1,B2)) ⇒ ¬TB,C,

¬ (¬E(C0,C1) ∧ E(A0,A1)) ∧ S(B2,B3) ⇒ ¬TA,C.

The CNF of the above logical conditions is

(¬E(C0,C1) ∨ ¬TD,C) ∧ (E(D0,D1) ∨ ¬TD,C),

(¬E(C0,C1) ∨ ¬TB,C) ∧ (E(B1,B2) ∨ ¬TB,C),

(¬E(C0,C1) ∨ ¬TA,C) ∧ (E(A0,A1) ∨ ¬TA,C) ∧ (S(B2,B3) ∨ ¬TA,C).

The binary constraints can now be obtained from CNF:

ye(C0,C1) + ytD,C − 1 ≤ 0, (76)

ytD,C − ye(D0,D1) ≤ 0, (77)

ye(C0,C1) + ytB,C − 1 ≤ 0, (78)

ytB,C − ye(B1,B2) ≤ 0, (79)

ye(C0,C1) + ytA,C − 1 ≤ 0, (80)

ytA,C − ye(A0,A1) ≤ 0, (81)

ytA,C − ys(B2,B3) ≤ 0. (82)

135



5. The supply clause for Contract F is complicated. The rule only states that

contract F supply normally belongs to contract B. However, if B is in excess

and A is in deficit, F may supply A. Following is the representation of this rule

with the first statement representing the rule and rest of the statement being

additional inferences of the rule.

(a) F can supply A when B is in excess either at level 0 or 1, and A cannot

fulfill demand of LNG plant 1

(¬E(A0,A1) ∧ (E(B0,B1) ∨ E(B1,B2))) ⇒ TF,A. (83)

(b) When B is in deficit at level 0, F should supply B

¬E(B0,B1) ⇒ TF,B. (84)

(c) F is forbidden to supply A, when B is in deficit at level 1

¬E(B1,B2) ⇒ ¬TF,A. (85)

(d) F is forbidden to supply A, when A is in excess

E(A0,A1) ⇒ ¬TF,A. (86)

(e) When F supplies B, (RA,RB) shall be open

TF,B ⇒ C(RA,RB). (87)
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The conjunctive normal forms for these logical expressions are as follows:

(E(A0,A1) ∨ TF,A ∨ ¬E(B0,B1)) ∧ (E(A0,A1) ∨ TF,A ∨ ¬E(B1,B2)),

E(B0,B1) ∨ TF,B,

E(B1,B2) ∨ ¬TF,A,

¬E(A0,A1) ∨ ¬TF,A,

¬TF,B ∨ C(RA,RB).

The following binary constraints are required:

ye(B0,B1) − ye(A0,A1) − ytF,A ≤ 0, (88)

ye(B1,B2) − ye(A0,A1) − ytF,A ≤ 0, (89)

1− ye(B0,B1) − ytF,B ≤ 0, (90)

ytF,A − ye(B1,B2) ≤ 0, (91)

ye(A0,A1) + ytF,A − 1 ≤ 0, (92)

ytF,B − yl(RA,RB) ≤ 0. (93)

Negation

The negation of only statement (a) needs to be considered since negations of

the other rules do not provide any new constraints because the right-hand side

(RHS) of the respective logical implications may or may not be true:

¬ (¬E(A0,A1) ∧ (E(B0,B1) ∨ E(B1,B2))) ⇒ ¬TF,A.

The CNF of the above is given by

(¬E(A0,A1) ∨ ¬TF,A) ∧ (E(B0,B1) ∨ E(B1,B2) ∨ ¬TF,A).

The first operand of ∧ is same as statement (d), hence only the second operand
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needs to be added as a constraint and is as follows

ytF,A − ye(B0,B1) − ye(B1,B2) ≤ 0. (94)

6. Only one of the following two transfers should activate: TC,D and TD,C,

¬ (TD,C ∧ TC,D)

or

¬TD,C ∨ ¬TC,D.

The final binary constraint is given by

ytD,C + ytC,D − 1 ≤ 0. (95)

7. Contract B has two excess atomic propositions E(B0,B1) and E(B1,B2). If the

contract is already in excess at level 0, it must be excess at further levels.

Logically this can be represented as

E(B0,B1) ⇒ E(B1,B2),

and in the CNF as

¬E(B0,B1) ∨ E(B1,B2).

The binary constraint representation of the above is as follows

ye(B0,B1) − ye(B1,B2) ≤ 0. (96)

4.5 Operational Rules

Operational rules can be modeled in the same framework as outlined for production-

sharing contracts, i.e., by defining atomic propositions representing the states of var-
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ious operating lines and facilities and then forming logical expressions representing

the rules. Finally, the resulting logical expression rules can be converted into binary

constraints in exactly the same way as described above.

4.5.1 An Example

Consider the following operational rules:

1. A minimum of 500 MMscfd shall be maintained in the (M1,T) line. In the

event that M1 production is less than 500 MMscfd, part of JN production shall

be diverted into this pipeline section.

Define the following atomic propositions:

(a) CM1: M1 production is greater than 500 MMscfd,

(b) CJN,(M1,RC): All of JN production is diverted into (M1,RC).

The following states that if M1 production is greater than 500 MMscfd, all of

JN production is carried by (M1,RC)

CM1 ⇒ CJN,(M1,RC).

The above can be converted to a disjunction

¬CM1 ∨ CJN,(M1,RC),

and finally to binary constraint

ycM1 − ycJN,(M1,RC) ≤ 0. (97)

If M1 production is less than 500 MMscfd, the (M1,T) flowrate is pinned to 500

MMscfd (an extra binary variable to do so is not required, since CM1 can also

force this). This implies that only enough production from JN is diverted so as

to make the shortfall and the bulk is still carried by (M1,RC). The following
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constraints relate M1 production to the binary variable ycM1

(1− ycM1)Q
L
s,M1 + ycM1 %g 500−Qs,M1 ≤ 0, (98)

Qs,M1 − ycM1Q
U
s,M1 − %g 500 ≤ 0. (99)

The following constraints force (M1,RC) flowrate to be equal to JN production

rate when binary variable ycJN,(M1,RC)

(QL
a,(M1,RC) −QU

s,JN) (1− ycJN,(M1,RC))−Qa,(M1,RC) +Qs,JN ≤ 0, (100)

Qa,(M1,RC) −Qs,JN − (1− ycJN,(M1,RC)) (QU
a,(M1,RC) −QL

s,JN) ≤ 0. (101)

The (M1,T) flowrate is bounded below by 500 MMscfd

%g500−Qa,(M1,T) ≤ 0. (102)

The following constraint combined with the above will pin (M1,T) flowrate to

500 MMscfd when ycM1 = 0:

Qa,(M1,T) − ycM1Q
U
a,(M1,T) − %g 500 ≤ 0. (103)

2. Processing capacity at M1 platform is 1300 MMscfd of which 750 MMscfd be-

longs to JN.

Processing capacity at M1 platform is 1300 MMscfd

Qs,M1 +Qs,JN − %g 1300 ≤ 0. (104)

750 MMscfd capacity belongs to JN production

Qs,JN − %g750 ≤ 0. (105)
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Chapter 5

The Case Study

A case study is presented in this chapter to demonstrate the application of the model-

ing approach described so far. This case study has been carefully constructed so that

it captures all the features of the SGPS model and hence, is a faithful and accurate

representation of the application to a real-world production system. However, it is

not a model of the Sarawak gas production system for the reasons outlined below.

This has been done to preserve the confidentiality of original system parameters that

are business sensitive.

1. The parameters in the system including reservoir pressures, compositions, water

and condensate ratios, well performance parameters, field production bounds,

constants in flowrate-pressure relationships and maximum demand rates have

been altered from their values in the SGPS model. Hence the flowrate-pressure

distribution in the infrastructure model is totally different from the SGPS model

and does not relate to it in any way.

2. Although the trunkline network used in the case study is the same as the SGPS,

the facilities have been moved around due to changes in the parameters.

3. The contractual model has been altered. However, it is of the same complexity

as the SGPS contract model. The production-sharing contracts are as in Figure

4-2 and the set of rules is as presented in Section 4.4. The customer requirements
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have been altered and are as in Table 4.1. Finally, operational rules included

are the ones presented in Section 4.5.1.

Information on subsets of nodes and arcs in the infrastructure and the contract

model can be found in Appendix A. Appendix B lists additional model parameter

values for the case study. The results in this section are presented in industry units

since the study is based on the SGPS and hence these are the most natural set of units

for the purpose of comparison and analysis. The volumetric flowrates are in million

standard cubic feet per day (MMscfd) and the NGL volume rates are in barrels per

day (bpd). However the detailed results for the base case are presented in the model

units, i.e., in SI units.

5.1 Planning Objectives

The objective functions considered in the proposed framework are operational ob-

jectives. The planning objectives are from the perspective of the single upstream

operator operating the production system. This operator has the obligation to op-

erate the system in such a way that all contractual rules and customer requirements

are met. These form the constraints of the model and have been delineated earlier.

Within these constraints, the operator may want to meet its own production targets.

The model is a production-allocation model, therefore the optimal solution point

(representing the production rates, flowrates and pressure distribution that satisfies

all requirements) is of more interest than the optimal solution value.

Following are the three objectives that are of interest from an operational per-

spective:

1. The upstream operator is interested in maximizing the delivery of dry gas to the

LNG plants. This is because the more gas sold, the higher the revenue for the

operator. Furthermore, the gas supply is stipulated by the gas sales agreement

and therefore, is the primary target for the operator. The gas flowrates cannot

go above the maximum demand rates set by gas sales agreements. Mathemat-

ically this is a minimization since demand nodes are sinks and hence Qs,i is
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nonpositive. This objective function is therefore bounded above by 0 and below

by the negative of the sum of maximum demand rates
∑
i∈ND

−ΛU
d,i.

zg =
∑
i∈ND

Qs,i (106)

2. NGL sharing is not governed by production-sharing contracts. Instead NGL

are shared according to the ownership of the fields. Hence, if two production

strategies produce the same amount of dry gas but different amounts of conden-

sates, the one with higher condensate production is preferred since the upstream

operator receives more condensate and hence a higher revenue.

zL = −
∑
i∈Fw

QLs,i (107)

3. It may be of interest to the upstream operator to prioritize production from

certain fields. The logic for doing so may come from long range production-

planning models or reservoir-management models, that may dictate the long

term production profile for a particular field. Over a short term, the interpreta-

tion of these profiles may be to prioritize certain fields. The simplest model for

prioritizing production is to simply maximize the production from these fields.

Define a set Fpr ⊂ F that is the set of fields that should have high priority.

Then this objective is represented as:

zpr = −
∑
i∈Fpr

Qs,i (108)

In this case study, the high priority fields are assumed to be sour fields (in this

context defined as the fields with higher CO2 and H2S content). Quality con-

straints favor a higher production rate from sweet fields and therefore, can lead

to a faster depletion of these fields. This can result in a situation in the future

when there is insufficient sweet gas available in the system to satisfy quality

requirements and additional investments must be made in sour gas processing
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facilities. A more sensible strategy is to produce the maximum possible amounts

from sour fields and then blend the sour gas with gas from sweet fields so that

quality specifications are just met and therefore, delay the capital investments

as far out as possible into the future. All over the world, several new fields cur-

rently under development have a high content of CO2 and H2S and therefore,

this is going to be an important concern in the future.

It should be noted that equalities (106), (107) and (108) are represented as constraints

in the model to facilitate calculation of all the three quantities when using one of them

as objective. The actual objective function is given by:

min z

z = zo,
(109)

where subscript o is either g, L or pr depending on the objective for the particular

instance of the model. The domain of the optimization is not indicated explicitly to

simplify notation, but it is over all the decision variables defined earlier.

5.2 Estimation of Bounds

The importance of estimating the tightest possible bounds for the decision variables

in a nonconvex optimization problem is well known. The most important variable

bounds on the system are bounds on the demand rates at the LNG plants, the pres-

sures at the slugcatchers and the dry gas production rate from fields.

This problem has been observed to be especially sensitive to the bounds on the

production rate. The optimal solution point is strongly influenced by the bounds

set for production rates and pressures. A completely different solution point with

the same optimal solution value can be found by varying the bounds. Roughly, the

flowrate and pressure distribution in the network is driven by the bounds set on the

field variables while the optimal solution value is dependent on the bounds on the

demand rates and delivery pressures. Bounds are therefore as important as model
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parameters in this problem and the discussion of the case study is incomplete without

a statement about setting the bounds.

Appendix C contains an exhaustive discussion of the bounds. However, here are

some of the general features (excluding the field dry gas production rate bounds that

are discussed in the following subsection):

1. Upper bounds for the pressures at nodes corresponding to fields are set using

the maximum reservoir pressure πMr,i among all wells in that field. The lower

bound is set to atmospheric pressure since the pressure does not matter when

the field is shut down.

2. All the lower bound on flowrates and productions rates are generally set to zero

(except at demand points).

3. The trunkline flowrate bounds are set either using the actual design capacities of

the lines (that have been changed in the case study to preserve confidentiality)

or are set by propagating either the field production rate bounds or the demand

rate bounds.

4. The contract model bounds are set by propagating the production rate bound

in the infrastructure model through the contract network.

5.2.1 Field Production Estimate

The field production rate bounds are derived from the well performance model. The

maximum theoretical rate of production from a well is estimated based on the well

performance model. This can be calculated by assuming that the tubing head pressure

is equal to the atmospheric pressure. The bottom-hole pressure can be eliminated out

of the equations (23) and (24) (page 93) to yield an upper bound on the production

rate from a well:

QU
w,w =

−αw +
√

(α2
w − 4 (λwπ2

atm − πr,w) (βw + ϑw))

2 (βw + ϑw)
.
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Finally, the maximum possible production from a field can be calculated simply by

summing the maximum productions from the wells corresponding to that field

QU
s,i =

∑
w∈Wi

QU
w,w, ∀i ∈ Fw.

However, these bounds are not the tightest bounds obtainable for several reasons;

the assumption about the wells producing to atmospheric pressure and a very sim-

plified well performance model. The historical production data on the system can be

used to estimate tighter bounds estimates. That is in fact the case with the SGPS

model. Also, detailed reservoir management and well performance models may en-

force rate limits on wells that can be used to fix the corresponding well and field

production rate bounds.

In this case study, the bounds are estimated from the relationship presented above

due to confidentiality reasons. For fields with no well performance modeling, the

bounds are presented in Table C.4 in the Appendix.

5.3 Solution Approach

The final model is a MINLP with nonconvex constraints. The model is formulated

in GAMS [115]. It has a total of 827 variables, with 804 continuous variables and

23 binary variables (reported using GAMS CONVERT by converting the model from

a set-based GAMS representation to a scalar GAMS representation). There are a

total of 1,086 constraints with 702 equalities (of which 220 are nonlinear) and 384

inequalities (not including variable bounds).

The model is solved with a branch-and-reduce algorithm [116, 117] as implemented

in BARON 7.5 [118] with GAMS 22.2 (64-bit version). The CPU times are as reported

by BARON on a 3.2 GHz Xeon dual processor machine running Linux kernel. SNOPT

[119] was used as the NLP solver and CPLEX [120] was used as an LP solver for

BARON. The constraint satisfaction tolerance was 10−6.

All variables in the model are in the same units as presented so far with the
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exception of pressures (that are scaled by a factor of 10 from the units in the paper)

and NGL rates (that are scaled by a factor of 100 from the units in the paper). It

must be noted that this scaling introduces multiplying factors for the parameters in

the constraints involving these variables. Also, all composition units in the model

are in mole fractions although the field compositions in Table B.2 (Appendix B) and

quality specifications in Table 4.1 are in mole percentages.

5.4 Dry Gas Maximization

In order to elucidate the characteristics of the model and the solution, it is instructive

to solve the following three cases with dry gas maximization (i.e., minimization of

zg). The first case excludes the PSC model and the gas quality specifications and is a

solution of the infrastructure model with the rate and pressure constraints at demand

nodes. The second case is the infrastructure model with gas quality constraints but

excluding the PSC and operational rules. Finally, the third case is the entire model

as presented.

All three cases are a MINLP. They are solved with a termination criterion of 1%

relative gap between upper and lower estimates on the solution value. The base case

(case (3)) was initialized with the solution from case (2). The lower bound on zg was

set equal to the lower bound on the solution value zL,2g at termination (and therefore

satisfying the termination criterion) obtained by solving case (2).

zLg = zL,2g = −102.9349595241

This is quite important since in the absence of this bound, the solution procedure

fails to converge even in 26+ hours.

It should be noted that the solution times are not directly comparable since all

three cases have different numbers of variables, both binary and continuous, as well

as different numbers of constraints. Objective values and solution times for the three

1The precision in this constraint is more than the input data precision, however, BARON is
sensitive to precision and therefore, the constraint is represented exactly as it was inputted
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Table 5.1: Dry gas maximization objective

Case DryGas NGL Sour Gas Best Possible Time
MMscfd bpd MMscfd MMscfd CPUs

(1) No gas quality, PSC
and operational rules

3,865 143,290 1,681 3,873 237

(2) No PSC and opera-
tional rules

3,599 151,688 1,188 3,635 205

(3) Full model (Base Case) 3,333 134,854 1,073 3,367 19,237

cases are compared in Table 5.1. “Best possible” column in the table presents the

lower bound on the objective value at termination (of the corresponding minimization

problem, therefore the best-possible value bounds the actual production value from

above). The detailed solution for case (3) (i.e., the base case) is presented in Appendix

D. An overview of the base case solution is shown in Figures 5-1 and 5-2.

The following general features of the problem can be noted:

1. The binary relaxation of the base case (which is a nonconvex NLP) can be

solved with SNOPT in less than 1 second and the relaxed solution value (3,435

MMscfd) is very tight with respect to the base case solution value (3,333 MM-

scfd). However, this does not mean that getting a contractually feasible solution

(i.e., integer feasible solution) is easy. This is clear from the fact that the time

required for the solution of the full model is two orders of magnitude greater

than the first and second cases.

2. The branch-and-bound on the base case behaves contrary to the usual behav-

ior observed in nonconvex NLP and MINLP. The conventional wisdom is that

branch-and-bound usually locates the global solution in the first 10-20 % of so-

lution time and rest of the time is spent verifying that it is indeed the solution.

However, in this instance, for just under two hours (close to 30% of the total

solution time), the upper and lower estimates on the solution are 3,635 and

2,100, respectively, with the actual solution being 3,333 MMscfd. This behav-

ior can be even worse in certain cases when weak estimates can persist until the
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very end of the solution procedure (>90% of the solution time). A plausible

explanation of this behavior may be that a very small subset of the hyperrect-

angle defined by bounds is feasible for certain values of the parameters and

therefore unless a partition containing the actual solution gets small enough,

the solution estimates fail to shrink. Therefore, global optimization algorithms

are indispensable to solve this problem.

3. There are multiple globally optimal solutions to the problem with the same ob-

jective value due to the network structure of the problem where it is possible to

deliver the same amount at the demand nodes with several different pressure,

flowrate and production rate distributions in the network. This presents a prob-

lem in terms of choosing an operational state for the system. Some operational

states may be more favorable than others (to a human operator) because of

factors that may have not been represented in the model.

4. There is a dilemma between setting tight bounds and loose bounds. A problem

with tighter bounds is easier to solve and the solution is more likely to be

implementable on the network (because it is expected to be close to the current

operating point). However, tight bounds can artificially restrict the feasible set

of the problem, remove operational flexibility and therefore prevent discovery of

unconventional and novel operational strategies. Finally, loose bounds indeed

create problems for the convergence of the solution procedure.

5. The time required for solution can be very different even with a slight change

in the parameters and the bounds.

The following are specific characteristics of the solution:

1. Effect of Quality Constraints : Between case (1) and (2), a major redistribution

of production rates takes place to satisfy quality. Quality constraints force the

production rates from fields with high CO2 and H2S concentrations, i.e., B11,

M3 and F6 to decrease. Also GHV constraints and composition constraints on

C4 and C5 force production from HL and M3 to drop since they contain less
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C1 and high levels of C4 and C5. On the other hand, production from fields

such as F23, F23SW and BN increase, since they have high levels of C1, which

compensate for the drop from the other fields, although not fully since the

overall production rate drops by 300 MMscfd. Although the difference between

the objective values of case (1) and (2) is only 300 MMscfd, the solutions are

actually very different and bear no resemblance to each other. A substantial

drop occurs in LNG 3 delivery because the production from fields physically

connected to LNG 3 drops.

2. Effect of PSC Rules : The incorporation of PSC rules results in further cuts

in production from M1 and JN, which is only partially compensated by a rise

in SC and M4 production rates and hence a net decrease in the delivery is

observed. This decrease is also reflected by contracts B and C being in deficit.

A redistribution of delivery between the LNG plants takes place due to PSC

rules. In particular, there is a major decrease in contract B production and

therefore LNG 2 supply. This leads to excess contract A supply being freed

up to supply LNG 3 via contract C and D and leads to an increase in LNG 3

delivery.

3. Supply from contract F is close to zero due to quality constraints being in force

since the field producing under F is a high CO2 field.

5.5 Comparison of Different Objectives

The full problem can also solved with the other objectives described in Section 5.1.

A summary of the results appear in Table 5.2. All these runs were started without

any initial guess to test if convergence is possible in absence of a sensible initial guess.

However, it is possible to use an initial guess from the dry gas maximization case for

the other solutions since this solution is feasible for all other runs. It is also possible

to add bounds to the objective variable as described in the previous section that can

significantly accelerate the convergence. The NGL and priority field objectives fail
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Table 5.2: Case study: Various optimization objectives

Objective DryGas NGL Sour Gas Best Possible Time
MMscfd bpd MMscfd CPUs

Dry Gas Maximization 3,252 (3,333a) 128,627 1,048 3,614 41,424b

NGL Maximization 3,204 141,584 1,086 149,757 24,238
Priority Maximization 3,276 136,489 1,144 1,248 16,042

a 1% gap, 19,237 CPUs
b The counter-intuitive observation that the solution time with 10% gap is greater than the base case
(1% gap) stems from the fact that the base case solution procedure was initialized with an initial
guess and included a lower bound on the objective.

to converge even after 24 hours with a 1% relative termination criterion. Hence, all

the runs are solved with 10% relative termination criterion although as presented in

previous section, dry gas maximization can be solved with a 1% relative termination

criterion.

M4 and E11 production rates decrease in the NGL maximization case, while F6,

SE, SC and M1 production rates increase since fields with high condensate-gas ratios

are favored in this solution. BN and HL production rates decrease as well because

they do not contribute to NGL production. The delivery rate to LNG 2 decreases

substantially while delivery to LNG 1 increases. This is because contract C is in

deficit due to a decrease in M4 production, forcing contract A to transfer gas to C

and therefore less gas is available in contract A for transfer to contract B, decreasing

LNG 2 rates.

The sour gas fields for the priority maximization run have been chosen to be the

fields that produce gas with high CO2 and H2S content, i.e., B11, F6, E11, M1 and

M4. Not all sour field production rates increase in the priority solution due to the

quality specifications. Indeed, E11, M4 and B11 register small decreases from the base

case, however the F6 and M1 production rate increases overcompensate this decrease

resulting in a net increase in the objective. Delivery to LNG 3 increases mostly due

to inter-contract transfers from contract A since contract A has excess gas available

due to the decrease in LNG 1 demand rate as well as from an increase in F6 supply.

It should be noted that sour gas maximization yields a higher dry gas delivery than
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Table 5.3: Hierarchical multi-objective case study

Objective DryGas NGL Sour Gas Best Possible Time
MMscfd bpd MMscfd seconds

Base Case 3,252 128,627 1,048 3,614 41,424
(3,333a)

NGL Maximization 3,252 131,960 1,048 146,648 86
(141,370b)

Priority Maximization 3,276 138,502 1,144 1,211 4,717

a 1% gap, 19,237 CPUs
b 1% gap with a restart using objective cut as outlined in Section 5.4 and initial guess solution
with 10% gap, 1,694 CPUs

the base case because of the 10% relative termination criterion employed.

5.6 Hierarchical Multi-Objective Case Study

As mentioned earlier, there are multiple globally optimal solutions to the problem.

Moreover, there are multiple objectives for the operation of the system. This feature

of the problem can be leveraged to obtain a solution that maximizes several objectives

in a hierarchical way [121]. There is a clear hierarchy of objectives as follows:

1. The first priority is to supply the required amount of dry gas (represented

by the maximum demand rates at the LNG plants), since this is mandated by

production-sharing contracts. Therefore maximization of the dry gas production

rate is the top priority for the upstream operator and only then a secondary

production target can be considered.

2. The second priority is to maximize the NGL production rate because it is ben-

eficial for the upstream operator from a revenue perspective. Moreover, NGL

production is not governed by production-sharing contracts.

3. Finally. the last priority is to maximize the production rate from some subset

of fields. This may be important to follow the long-term plans, however, it is

not as important as the two other objective in the short-term. In this work,
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this set is assumed to the same set of sour fields as described in the previous

section.

Getting a Pareto-optimal solution for this problem is unnecessary and not very useful.

For example, there is no explicit trade-off between gas and NGL production, and

increasing gas production rate does not have any straightforward implications for NGL

production rate due to the fact that a specific gas production rate may correspond

to multiple NGL rates. Furthermore, as long as the gas production rate is below the

combined maximum demand rate of all LNG plants, the top priority is maximization

of gas production rate and it is meaningless for the upstream operator to optimize

NGL production rate. Finally, determining a Pareto-optimal solution for this problem

is prohibitively expensive due to nonconvexity.

This hierarchical multi-objective optimization is done as follows:

1. First, the MINLP is solved with the first objective, i.e., maximizing the dry gas

production rate (minimizing zg). Let the optimal solution value be zoptg (this is

same as the base case).

2. Next the upper bound to zg is set to zoptg

zUg = zoptg .

Also upper bounds are added to the other objectives (zL and zpr) to get a better

value than this solution (zp1L and zp1pr respectively). This also helps to accelerate

convergence.

zUL = zp1L ,

zUpr = zp1pr .

The MINLP is initialized with the previous solution point and is solved with

the second objective, i.e., to maximize the NGL production rate (minimize zL).

3. The upper bounds of zg and zL are set at zoptg and at zoptL , respectively, i.e., the
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values of these variables in the solution of the second instance:

zUg = zoptg ,

zUL = zoptL .

Similarly the upper bound of zpr is fixed at the value of this variable zp2pr from

this solution

zUpr = zp2pr .

The MINLP is initialized with the solution point from second problem and is

solved to minimize zpr.

It should be noted that the solution obtained at each step is very different in terms

of the pressure-flowrate distribution in the network.

All runs are solved with a 10% relative termination criterion because although

the dry gas maximization step can be solved with 1% relative termination criterion,

the NGL maximization fails to converge in 24 hours with a 1% relative termination

criterion. A summary of the results is presented in Table 5.3.

The total NGL production rate after the second run is roughly 2.5% higher than

the base case NGL production while maintaining the same production rate for dry

gas. However the production rate distribution in this solution is almost the same

as with the dry gas maximization. This is because the NGL production in the dry

gas maximization solution is very close to being within 10% of the bounds and a

minor change satisfies the convergence criteria. Since the gap is big enough, a second

case with the NGL maximization objective was run with a 1% relative termination

criterion and an initial guess and objective variable bounds from this solution. This

offers an improvement of 10% in the solution value. This improvement is substantial

in financial terms to the upstream operator in comparison to the base case solution.

The priority field solution value shows an increase of 10% over the base case, increasing

their share from 32% to 35% of total production.
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This approach is a very powerful tool for planning operations in the system with

multiple operational objectives and criteria, and in the presence of multiple optimal

solutions. Innovative operational strategies may be constructed by carefully choos-

ing the set of objectives. In a sense, this approach is more viable to narrow down

the operational choices than employing symmetry-breaking constraints because the

form and nature of such constraints from an operational perspective is unclear. Cus-

tomized solution approaches that exploit the problem structure and avoid redundant

computation for the multi-objective case study may be required to solve the problem

efficiently.

157



158



Chapter 6

Comparison With the Existing

Approach

The motivation for this analysis is to compare the proposed MINLP approach to

the existing planning methodology to quantify the benefits of using the proposed

approach. The approach proposed in the previous chapters, i.e., formulating the

upstream planning problem as a mixed-integer nonlinear program and solving it with

a global optimization algorithm, has been referred to as the proposed approach (also

the proposed model or the proposed framework) as well as the MINLP approach (also

the MINLP model or the MINLP framework). The approach that is currently in use

for upstream planning is termed as the existing approach. The presentation of the

comparison between the two approaches here is mostly qualitative in nature due to

the business-sensitive nature of the information involved.

6.1 The Existing Approach: Overview

The existing approach employs a commercial software suite that is an integrated

production modeling environment designed for oil and gas production and is intended

to model the entire upstream system comprising reservoirs, wells, trunkline network

and surface facilities. It comprises several subsystems:

1. A reservoir prediction tool that models the reservoir dynamics and generates
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reservoir performance data.

2. A well performance component that models flow in wells.

3. A modeling framework for the surface network and facilities.

All components, i.e., well performance models and data, reservoir models and surface

models can be integrated into a single model for simulation and optimization. It has a

local nonlinear programming (NLP) optimization engine built into it that can locally

optimize the entire model. All these feature are leveraged to create a full model of the

system. The advantage of this approach is that there is a single software environment

for simulation, optimization and calibration purposes.

The suite is primarily designed for oil production and the ability to simulate and

optimize upstream gas production systems has only been added as an afterthought.

The result is that there is no ability for full composition tracking throughout the

network, a serious drawback because of the presence of CO2 rich fields and gas quality

specifications. There is also no direct support for the modeling of PSC and operational

rules that are crucial to the operation of upstream systems. For example, the software

cannot handle logical conditions on the production infrastructure, e.g., shutting down

selected trunklines and facilities under certain conditions. These factors have led to

development of ad hoc and complicated procedures inside the model to handle these

issues. Such approaches are bound to create model maintainability issues in the long

run. Finally, the optimization algorithms being employed are local NLP algorithms

that are well-known to be unreliable for nonconvex problems as was shown in Section

2.4.1 (page 68). They are expected to perform even worse on a blackbox model with

embedded procedures and iterative calculations that is likely to be nonsmooth or

discontinuous.

6.2 Scope

Two entirely different approaches cannot be compared simply by comparing the results

of the two models. A rigorous approach for reconciliation of the two models and a
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metric for comparison must be defined. Towards this end, the following were defined

as the objectives for this study:

1. Reconcile the proposed approach to the existing approach to the extent possible.

2. Ascertain the capability of the proposed approach to reproduce the solution of

the existing approach for production infrastructure.

3. Check the solution of the existing model for feasibility in the proposed frame-

work comprising gas quality specifications and PSC and operational rules.

4. Compare performance of the reconciled models in terms of dry gas production

rate.

5. Ascertain the benefits of the capability of the proposed approach to deal with

various operational objectives and compare solutions thus obtained with the

solution obtained from the existing approach

6. Ascertain the potential value added by the hierarchical multi-objective opti-

mization approach in comparison with the solution of the existing approach.

6.3 Model Reconciliation

The results from both models cannot be compared directly as they have not been

calibrated to a common data-set. The proposed approach must be reconciled against

the existing one. This section qualitatively describes the methodology used to perform

this reconciliation. The formulation used for the proposed approach is the same as

the alternative formulation presented in Section 3.6 (page 96).

6.3.1 Well-performance Model

There are two main components of the well-performance model that need to be rec-

onciled: in-flow performance and vertical-lift performance.
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In-Flow Performance

In-flow performance (IFP) in the proposed approach is given by the following pressure-

flowrate relationship (of the same form as Equation (xxviii) page 105 in alternative

formulation):

αQ+ βQ2 = (πr + ∆πr)
2 − P 2

b , (IFPA)

where Q is well production rate and Pb is the bottom-hole pressure. Reservoir pres-

sure πr and pressure shift ∆πr for all wells are directly available from the existing

model and were used as given. The inflow performance parameters (Darcy coefficient

α and non-Darcy coefficient β) for most wells are available in the existing model.

However, for several wells, a “psuedo-pressure” formulation is used and therefore the

usual pressure drop relationships cannot be used. A response table was constructed

manually by using the software to evaluate bottom-hole pressure for different val-

ues of flowrates and a linear pressure drop relationship (same as Equation (xxix) in

alternative formulation) as follows:

κQ = πr − Pb. (IFPB)

Vertical-Lift Performance

Vertical-lift performance (VLP) in the proposed model is modeled as follows (same

as Equation (xxx) page 105 in the alternative formulation):

ϑQ2 = P 2
b − λP 2

t , (VLP)

where Pb is bottom-hole pressure and Pt is well-head pressure. A calibration of VLP

between the existing model and the proposed model is considerably more involved

than the in-flow performance model. The suite uses look-up tables for VLP pre-

dictions. These tables list tubing-head pressure, CGR, WGR, well production rate,

flowing bottom-hole pressure and other information. A look-up table cannot be used

in conjunction with the proposed approach as global optimization algorithms require
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explicit functional representation of relationships. Moreover, the above VLP model

cannot accommodate flowrate dependencies on CGR, WGR and temperature. The

data in look-up tables is listed for 2-5 different values for CGR and almost the same

number values for WGR. The first step is to choose CGR and WGR values that are

the closest to the CGR and WGR of the well under consideration, irrespective of the

temperature. In most cases, the pressure range for bottom-hole pressure was also

narrowed down since the table contained flow data points for very low bottom-hole

pressure (< 10-20 bar) or very high pressure (> 500 bar) that were not likely to be

observed during normal operation. Therefore, one ends up with a table of flowrates,

bottom-hole pressures and tubing-head pressures for the requested CGR and WGR

range. A linear regression (using GNU R [122] statistical package) was then used

to fit ϑ and λ in the above equation. The above procedure was partially automated

using a Perl script, but still required quite a bit of manual intervention in the filtering

step. The fits are generally quite good for most wells.

Additional Parameters

Condensate Gas Ratio (CGR) and Water Gas Ratio (WGR) are available for all wells

from the existing model and were used as given. Some wells also have a maximum

rate constraint in the existing model which was enforced via well production rate

bounds in the MINLP model.

6.3.2 Gas Composition

Composition is available individually for fluids from each well in the existing model,

though it is not used to track composition through the network. The MINLP model

is formulated to accept only a single composition per field. While composition for

wells belonging to the same field is the same for most cases, it does differ among wells

for a few fields. In such cases, compositions of the majority of wells was chosen as

the composition of the field. In cases where a composition was not available in the

existing model, i.e., associated gas fields and third party fields that are modeled as
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fixed sources, composition data from the earlier SGPS model were used.

It may be possible to easily extend the MINLP model to accept differing composi-

tion for wells if it is beneficial to do so. The extra constraints and variables introduced

by doing so will be linear, so presumably the resulting MINLP, though larger than

the current one, may still be tractable.

The existing model has a complex surface network that has numerous units. It

is neither desirable nor probably feasible to duplicate the network in the MINLP

model exactly as it is in the existing model. Hence, a simpler trunkline network

was derived from the detailed network that represents the system with the sufficient

fidelity required for planning.

The standard gas pressure-flowrate relationship has been employed for the pressure-

flowrate relationship drop in most pipelines

P 2
i − P 2

j = κ(i,j)Q
2
(i,j),

where Pi and Pj are upstream and downstream pressures, respectively. The issues

involved in estimating the pressure drop coefficient κ(i,j) are similar to the problems

outlined earlier in regressing VLP parameters. A look-up table is available from the

software suite that lists a combination of several sets of CGR, WGR, upstream and

downstream pressures, downstream temperature, volumetric flowrate, maximum line

pressure, velocity and so on. Obviously the simplified standard gas flow relationship

above cannot represent flowrate dependency on all these factors.

A range of CGR andWGR that should be feasible for a particular line was deduced

from the CGR and WGR of the fields feeding a particular line. The look-up table

was filtered corresponding to this feasible range of CGR and WGR (ignoring other

factors) generating a data-set containing just the upstream and downstream pressure,

and volumetric flowrate for a particular line. The pressure drop constant κ(i,j) can

then be estimated using linear regression (using GNU R) with the standard gas flow

equation. Again, a Perl script was deployed to automate this procedure partially, but

filtering the data-set required substantial manual work. For most trunklines, the fit
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is reasonable.

However, for some trunklines, the above single parameter equation does not pro-

vide good results. This may be due to the unique configuration of these lines. A two

parameter equation (Equation (ii), page 98) similar in form to the VLP relationship

is used for these lines that provides a relatively better fit. There is also a set of

trunklines in the existing model that do not seem to model any pressure drop, e.g.,

lines from associated and third-party fields. These trunklines in the MINLP model

have been modeled simply by enforcing a pressure inequality between the upstream

and downstream pressure, and allowing any flowrate up to an upper bound. Also,

most of these lines carry fixed flowrates as they are fed by associated and third party

fields that have fixed source flowrate, and so they are mostly inconsequential to the

planning problem.

Lines that can be closed or open during normal operation are modeled using

Equations (iii) and (iv) as detailed in Section 3.6.2 (page 97). Complex platform

configurations have been modeled using the approach outlined in Section 3.6.3 (page

100). This circumvents the ad hoc and complicated modeling paradigm used in the

existing model to represent such configurations. Composition tracking combined with

this formulation can automatically determine how the flow around such hubs must

be routed so that quality constraints are met at LNG plants.

6.4 Issues in Reconciliation and Comparison

It is important to note that a complete reconciliation and a rigorous comparison of

both models was not possible within the scope of this analysis. The following are some

reasons for problems with reconciliation and comparison in this particular study:

1. The existing model relies on ad hoc and complicated approaches to divert flows

and switch pressure inequalities at junctions and splitters. In principle, it is

possible to functionally recreate these in the proposed model using extra con-

straints and integer variables. However, due to unnecessary complexity of the

existing model, there is no rigorous way to guarantee that the functionality of
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every relevant script and source has been duplicated in the MINLP model.

2. No attempt has been made to duplicate the paradigm used in the existing model

to represent PSC rules since the MINLP model relies on the logical modeling of

the PSC and operational rules and automatically satisfies them in the solution.

3. Compression parameters cannot be reconciled between the two models. The

existing model uses a polytropic model that relates RPM of the compressor to

flowrate, compression ratio and power. However, the explicit relationship is not

available from the documentation. So the compression subcomponents of the

models were not reconciled and the compression model and parameters from

the earlier SGPS model were used in the proposed approach.

4. It is not clear how pressures at fixed source fields is being calculated or set. In

absence of this information, pressures at these nodes were left free.

5. The suite used for the existing model makes the export of model parameters

and data tables difficult. IFP parameters for wells had to manually copied one

at a time. Formats of VLP and trunkline tables exported to text files had to be

reverse engineered by comparing values in the software interface since copying

them from the interface is not even possible. The results files were not easy to

parse automatically. Due to the large amount of manual work involved there is

always a possibility of errors, even though extreme care has been taken to avoid

any.

6. Some of the relationships in the existing model were not clear. To get around

this and proceed further, either they were reverse-engineered or certain assump-

tions about the form were made. An example of reverse-engineering is the in-

flow performance equation, where it was not clear what role parameter ∆πr (in

Equation (IFPA)) plays and was not available in the documentation. A plot of

bottom-hole pressure had to be examined and compared to predictions of the

various trial-and-error forms of the relationship before arriving at the correct

one. Another example is that at least one well in the system lists two local
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reservoir pressures. It was unclear in this case what should be the form of in-

flow performance relationship. One set of parameters was chosen along with

the normal in-flow relationship. In some cases, it is therefore conceivable that

the relationships inferred might be incorrect.

7. There was also insufficient information about the existing model with regard

to its deployment in production use. This includes issues such as what kind of

inputs can be provided to the model, what inputs or parameters can or cannot

be changed, what kind of different case studies are run and how the results are

extracted and used.

8. The existing model is a much more detailed model than the proposed model.

It is therefore difficult to ascertain if there is a constraint that is present in the

existing model but has not been duplicated in the MINLP model. The only

way to test this is to attempt to replicate the proposed MINLP solution in the

existing model which was outside the scope for this study. Again a best attempt

has been made to duplicate all constraints, but it is not possible to guarantee

that everything has been replicated.

9. The existing model has lots of left over disabled elements (probably from his-

torical model development and from development in progress). It is therefore

difficult to reproduce the active part of the network. For example, in several

cases, there are multiple paths between two points in the network of which only

one is used. It is quite easy to not realize this and pick a wrong configuration,

though extreme care was taken to avoid this.

To summarize, an entire reconciliation between the two models was not feasible

since the existing model is designed as a system-wide simulation model and not ex-

plicitly formulated as an optimization model. A complete reconciliation with all units

may result in a model with a non-tractable MINLP with no added benefits in terms

of improved predictions or forecasting. The existing model is an overly complicated

solution for the purposes of operational planning.
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6.5 Model Comparison: Reconciliation Tests

As a first step in comparison, it is instructive to test the solution of the existing model

in the proposed model. This is done to accomplish the following two objectives:

1. To gauge whether the model reconciliation is sufficient with respect to the in-

frastructure component of both models and whether it is reasonable to make a

meaningful comparison between the results from the two approaches.

2. In the case that the first test succeeds, it is important to ascertain if the existing

model solution respects the PSC rules and gas quality specifications by running

this solution through the MINLP model.

6.5.1 Solution of the Existing Model: Feasibility in the

Proposed Infrastructure Model

In these runs, only the infrastructure component of the MINLP model is used to check

if the production infrastructure components in both models agree with each other.

The obvious approach is to satisfy all the degrees of freedom in the MINLP model

using the solution of the existing model to test feasibility. However, this is almost

certain to fail and end up with an infeasible model because the two models can never

be calibrated to such an extent that the solution of one will be feasible in the other

due to the differences in governing relationships being used in both models. So the

next best possible alternative is to fix some natural set of variables (which is a strict

subset of the total number of free variables) from the structure of the problem. There

are several ways in which this can be accomplished. Three possible ones attempted

here are as follows:

1. Fix the well production rates using the solution of the existing model: this fixes

most variables on the well side but leaves routing and delivery profiles in the

surface network free.

2. Bound the delivery rates and pressures using the existing model solution: this
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fixes the delivery profile and part of the surface network, but leaves well alloca-

tion free.

3. Fix the well bottom-hole pressures from the existing model solution: this is

similar to the above case of fixing well flowrates, but may numerically perform

differently.

Well Production Profile Test

In the well production profile test, all well flowrates except a particular well in the

MINLP model were fixed to the solution obtained from the existing model. The

MINLP model slightly under-predicts the wellhead pressure in the aforementioned

well at the existing model production rate compared to the pressure predicted by the

existing model which results in a low delivery pressure at LNG plants and hence, the

rate at this well is left free. In all the MINLP solutions discussed later in the well

production rate test, production rate in this well is only slightly less than the rate at

the existing model solution. The demands were bounded from above by Maximum

Demand Rate (MDR) obtained from the existing model. The rates were left free from

below to test if the delivery profile of the existing model solution can be reproduced.

The model was solved for the dry gas maximization objective without quality and

PSC constraints.

The delivery profile at LNG plants can be reproduced to within 10% in the pro-

posed model without being forced by the bounds at demand nodes. This is quite

impressive as it shows that in spite of calibration issues with wells and network,

overall the surface network in the proposed framework is sufficiently calibrated to

reproduce the delivery profile. However, there are also discrepancies between the

solutions as follows:

1. There is a discrepancy between NGL production rate between the two models

that is unexpected since well and fixed-source flowrates are fixed in the MINLP

model to the same value as in the existing model and hence corresponding

liquids productions should be the same under a constant CGR assumption. An
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analysis reveals that it is due to discrepancies in NGL production rates for a

couple of particular wells and a field.

2. The proposed model over-predicts the pressure drop in the system. Anything

above a certain threshold is deemed infeasible. As is discussed later, this issue

is unique to the “reproduction of well production profile” test in the proposed

model and in general, the proposed model can generate higher delivery pres-

sures. This is a reconciliation issue in the production infrastructure model,

however, it is quite difficult to trace the origin of under-prediction.

To solve the issue related with liquids production for the two wells discussed above,

CGR was recalculated from the actual production value and used in the MINLP

model instead of the value from the existing model. The other discrepancy with a

field cannot be addressed satisfactorily as it involves accepting a discrepancy in either

natural gas production or in liquids production and the reconciliation of the models

is based on gas productions.

With the exception of slugcatcher pressures, this solution is surprisingly close to

the solution obtained from the existing model. The delivery rates at individual LNG

plant have less than 3% discrepancy with the ones in existing model solution. The

MINLP infrastructure model so calibrated has been used as the base case for further

studies and all further references to the MINLP model refer to this corrected model.

Delivery Profile Test

A demand profile test can also be carried on the proposed model to further test

the reconciliation. This test is expected to indicate whether the MINLP model can

match the delivery profile, especially pressures at the slugcatchers in the solution

of the existing model. The well profile test previously shows that the pressures at

slugcatchers are under-predicted.

The well flowrate in the MINLP model are set free subject to maximum produc-

tions rates bounds if available and natural flowrate bounds otherwise. The demand

delivery rates and pressures obtained from the solution of the existing model are
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forced as bounds in the MINLP model and the model is solved for the dry gas max-

imization case. In this case, the MINLP model produces 9% higher total delivery

rate than the existing model since the constraints force the model to deliver at least

as much as the solution of the existing model at a pressure at least as high as the

existing delivery pressure but otherwise allow it go above it both for delivery rate

(subject to MDR) and pressure. The pressures at slugcatchers agree more closely for

this case (<1% discrepancy)

Well Bottom-hole Pressure Profile Test

It is also theoretically possible to reproduce the solution of the existing model by

fixing bottom-hole pressure in the MINLP model. However, when attempted this

fails because bottom-hole pressures reported in the existing model for several wells

(especially the ones producing at low flowrates) are greater than the (local) reservoir

pressure which makes it infeasible in the existing model.

6.5.2 Existing Model Solution: Quality Specifications and PSC

Rules Feasibility

The methodology in this test is similar to the well production profile test. The well

production rates are fixed to the solution of the existing model in the MINLP model.

The quality and PSC rules are switched on successively to test if the solution of the

existing model violates any of them. The delivery bounds are not enforced in this

case. Therefore, it is the earlier well production profile test with the PSC and quality

constraints added. Following are the conclusions of this test:

1. The existing model solution is infeasible in the sulfur and C5+ quality constraint,

i.e., composition exceed the threshold mg of sulfur per unit volume of gas.

2. The existing model solution meets all the other quality constraints, specifically,

GHV, H2S, CO2, N2, C1, C2, C3 and C4. However, it is unclear if this is a

coincidence or is by design.

171



3. The solution of the existing model is feasible with respect to all PSC and oper-

ational rules except one operational rule.

The run of the full MINLP model with all well rates fixed and with the constraints

corresponding to the two violated quality specifications and the violated operational

rules dropped, is compared with the existing model solution. The agreement is ex-

cellent for delivery volumes, less than 1% discrepancy for total rate and 2.5% for

individual LNG plant rates, but not so close for slugcatcher pressures (almost 10%

discrepancy for one LNG plant and <5% for the other two). The disagreement in

pressure was already expected from the earlier well production profile test.

All further references to the MINLP model refer to the MINLP model that has

the corrected CGR values and the constraints corresponding to the quality and the

operational rule dropped for a fair comparison to the existing model solution. It

should be pointed out that although the operational rule is dropped out of the MINLP

model, all further solutions do respect it.

6.6 Model Comparison: Performance Gains

Three objectives were chosen in the MINLP model to compare performance with the

existing model solution. These are as follows:

1. maximize dry gas production,

2. maximize NGL production,

3. maximize production from sour fields. These fields are chosen in this case study

to be high CO2 fields.

The existing model is not flexible enough to handle a variety of objectives as the

MINLP model. There are two comparison sets that were run to ascertain the per-

formance of the MINLP model. The first test on various objectives is to run them

independently of each other and see what performance gains are possible for each ob-

jective. The second test is to run various objectives through the MINLP hierarchical
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Table 6.1: Comparison with the existing
approach: Independent optimization

objectivesa

Objective Dry Gas NGL Sour Gas
% % %

Dry Gas Maximization 8.8 6.3 144.1
NGL Maximization 4.1 15.9 16.7
Priority Maximization 9.2 8.9 424.1

a The table shows percentage improvement over the existing
solution. The actual rates cannot be disclosed due to their
business-sensitive nature. The numbers presented are (p −
er)/er × 100, where p is the particular rate in a solution of
the proposed approach and er is the same rate in the reference
solution of the existing approach.

multi-objective approach. All tests are run on the full MINLP model with corrected

CGR values and excluding the problematic quality specifications and operational rule

as discussed earlier. The MINLP model has 1,026 continuous variables and 24 binary

variables with 1,390 constraints. The model is solved with a global branch-and-reduce

algorithm as implemented in GAMS 22.5/BARON 7.8.1 [123].

6.6.1 Case Study: Independent Optimization Objectives

All these runs were run independently of each other. A summary of the comparison

is presented in Table 6.1, which compares the solution of each proposed model run

(with a different objective) to a single reference solution of the existing model. It

is important to note that all solutions are totally different in terms of field and well

allocation. The termination gap was 10% for the NGL and sour gas maximization.

Following can also be noted about these solutions:

1. The MINLP model produces more gas than the existing model solution in dry

gas (around 9%), NGL (around 4%) and sour gas (around 9%) maximization

cases.

2. NGL production in the MINLP model is also higher in all cases, roughly 6%,
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16% and 9% over the existing solution for dry gas, NGL and sour gas objectives

respectively, even after discounting the discrepancy.

3. Sour gas production can be increased roughly five times with the same dry gas

production in sour gas maximization, which is quite important for distributed

depletion of all fields.

6.6.2 Case Study: Hierarchical Multi-Objective Scenarios

The hierarchical multi-objective scenario study intends to highlight the additional

benefits that can be obtained with the MINLP model. The approach for hierarchi-

cal multi-objective scenario is as outlined in Section 5.6, i.e., successive solutions of

MINLPs with objectives in order of their priorities. This procedure generates an en-

tirely different rate-pressure profile for each solution that still has the same level of

dry gas production rate but a better secondary objective value (NGL production rate

in this case). This procedure can be repeated several times to successively narrow the

operational choices through a wise choice of objectives. A summary of the comparison

between the solution values of the proposed approach and the existing approach for

the hierarchical multi-objective case study appears in Table 6.2. The table compares

the solution of each proposed model run with a single reference solution of the existing

model.

The following are the important features of this solution:

1. A hierarchical optimization involving the NGL maximization as the first sec-

ondary objective yields roughly a 25% increase in the NGL production over the

existing model and roughly a 17% increase over the MINLP model with dry gas

optimization objective. It is important to point out here is that the dry gas

production rate can be maintained at the same level.

2. Similarly, a second run with sour gas maximization as a tertiary objective yields

a sour gas production rate that is roughly 4 times the sour gas production rate

in the existing model solution and 50% more than the MINLP model’s dry gas

maximization case.

174



Table 6.2: Comparison with the existing approach:
Hierarchical multi-objective studya

Objective Dry Gas NGL Sour Gas
% % %

Dry Gas Maximization 8.8 6.3 144.1
NGL Maximization 9.2 (0.3)b 24.6 (17.2) 218.5 (30.5)
Priority Maximization 9.2 (0.3) 24.6 (17.2) 278.7 (55.1)

a The table shows percentage improvement over the existing solution. The
actual rates cannot be disclosed due to their business-sensitive nature.
The numbers presented are (p− er)/er × 100, where p is the particular
rate in a solution of the proposed approach and er is the same rate in
the reference solution of the existing approach.

b Number in parenthesis are percentage improvements for the rates, de-
fined similarly as above, but with respect to the rates in the proposed
model solution for the dry gas maximization objective (instead of the
existing approach solution).

It is easy to extend this approach further by choosing more objectives and solving

problems at further levels, e.g., maximization of production from a certain field, choos-

ing a PSC or operational rule to violate in case the problem in infeasible, maximizing

pressures at certain nodes and so on.

6.7 Summary of Comparison

It is evident from the results that the proposed approach seems to be very promis-

ing and warrants a further consideration. However, there are issues with the model

calibration and reconciliation. It may be interesting to reproduce the MINLP model

results in the simulation model which was not attempted in this study due to insuf-

ficient expertise with the existing model and the software suite

However, the level of detail in the existing model, while making it a good system-

wide simulation model, precludes its use as a reliable operational planning and op-

timization tool. It may be better to split these functions into two models that have

different levels of fidelity. A model similar in nature to the proposed model that in-

cludes production infrastructure only to a detail sufficient for an optimization model
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but, on the other hand, includes all customer requirements and production-sharing,

commercial and operational rules, can be used for operational planning. A detailed

model of the production infrastructure such as the current existing model can then use

this solution to generate operational parameters, e.g., actuator control information

to run the system and in the process, also validate that the optimization solution can

actually be reproduced on the system. Of course, both models must be calibrated to

each other and to the real system periodically. For the proposed model, it is possible

to partly automate the calibration to the real system. This will result in a more

maintainable, robust and a simpler tool than the current practices.
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Chapter 7

Global Optimization of Algorithms:

Applications to Upstream Gas

Networks

Mathematical programs with embedded computer evaluated procedures defining con-

straints and objective functions arise in several areas where a sequential calculation

is employed to calculate a quantity of interest. Such programs more often than not

are expected to be nonconvex and therefore require a global optimization approach

for their solution. This chapter discusses the application of such an approach to the

upstream gas networks described earlier.

Global optimization requires formulation of lower and upper bounding procedures.

The lower bounding approach here is based on the approach described in Mitsos et al.

[124] that is based on formulating subgradient propagation rules for the McCormick

relaxation theory [125] for factorable functions, and employing automatic (algorith-

mic) differentiation (AD) theory to propagate convex/concave relaxations and the

corresponding subgradients. The resulting convex nonlinear programs are nonsmooth

and are solved with a simple bundle algorithm which is used as a linearization heuris-

tic for generating LP relaxations. The upper bounding problem is solved as a normal

NLP using AD to generate gradients with respect to input variables, as described later.

Finally, the entire framework is integrated with a Branch-and-Bound algorithm with
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reduction heuristics for variable bounds. An application of such a solution approach

and its advantages are demonstrated for upstream gas networks.

7.1 Motivation

Consider a general nonconvex nonlinear program with continuous variables as follows:

min
w

f(w)

g(w) ≤ 0

h(w) = 0

w ∈W ⊂ Rn

Denote a partition of the decision variables w as (x,y) such that x ∈ X ⊂ Rn−m and

y ∈ Y ⊂ Rm. Assume that the problem has the following special structure:

min
x,y

f(x,y)

g(x,y) ≤ 0

hi(x,y) = 0, i = 1 . . .m

x ∈ X ⊂ Rn−m, y ∈ Y ⊂ Rm

Furthermore, assume that for all x̂ ∈ X, the system of equations

hi(x̂,y) = 0, i = 1 . . .m,

can be solved for y. Moreover, this can be done with a non-iterative algorithm. This

requires a special structure or feature in the system of equations above, e.g., h may

be linear in y in which case it can be solved in fixed number of operations related to

m, h may be a sequential calculation sequence such as a simple network or flowsheet

calculation. Provided such a structure exists, the problem can be expressed as the
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following reduced problem:

min
x

f(x,y(x))

g(x,y(x)) ≤ 0

x ∈ X ⊂ Rn−m

(AP)

It may also be possible that the full set of equality constraints do not have such a

structure, but a large subset does. A flowsheet with a recycle is an example of such

a system. In this case, the above problem will also have some equality constraints

remaining after reduction (e.g., the tear equations in the flowsheeting example).

In general, a deterministic global optimization algorithm has worst-case exponen-

tial run-time performance (in the number of variables). While the original formulation

has an exponent of n, the reduced problem will have an exponent of n−m. For a case

when n and m are large but n−m is relatively small, this can result in a significant

saving of computational effort. This approach can therefore be termed a reduced-space

global optimization approach.

Such problems are not too uncommon. Any system with few inputs and outputs,

but a large number of internal state variables and corresponding governing equations

that relate them is a candidate for such a reduction. Examples include chemical

processes and unit operations, nonlinear networks, biological systems and so on.

In the current context, the resulting system of equations needs to have a structure

that has following specific properties as per the assumptions outlined before:

1. It can be solved using a finite, non-iterative procedure.

2. It can be solved for every x ∈ X.

Algorithm is therefore used in a narrow context here: given an x ∈ X, a finite calcu-

lation sequence that calculates functions f and g in Program (AP). Such calculation

sequences can be arbitrarily complex and involve any function provided each step is

factorable and relaxations and their subgradients as well as derivatives to univariate

intrinsic functions involved can be calculated. For example, Gauss elimination is an
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example of an algorithm in this context because the operations performed are known

a priori, but a Newton iteration is not an algorithm because it requires an unknown

(a priori) number of steps to converge to a given tolerance.

7.2 Convex/Concave Relaxations of Computer

Procedures

McCormick’s work [125] is a well-known method for constructing convex and concave

relaxations of factorable functions. A factorable function is a function that can be

defined from the finite, recursive composition of a number of “simple” mathematical

operations, i.e., binary and unary operations as well as univariate functional com-

positions. Convex and concave relaxations can be defined for each simple operation

involved in such a definition. Propagation rules for the relaxations can be formulated

for each binary or unary operation in simple terms, i.e., given the convex and concave

relaxations of the individual terms, one can define how to construct the relaxation of

the compound term. Finally, McCormick composition theorem [125] enables the con-

struction of the relaxations of the composition of two functions given the relaxations

of each.

Mitsos et al. [124] have formulated subgradient propagation rules that can be

used to propagate subgradients along with the convex and concave relaxation of func-

tions at each operation and composition. They have also proposed to combine this

idea with automatic differentiation (AD) [126] concepts using operator overloading

or source code transformation. An implementation of these principles using opera-

tor overloading, libMC, [127] is also presented in Mitsos et al. [124]. As a result, a

computer procedure for evaluating a factorable function by replicating the steps in

the composition of the function can also propagate convex and concave relaxations

and the respective subgradients. This means that a lower bounding procedure can be

constructed for a procedure evaluating such function, a crucial component for global

optimization of mathematical programs with computer evaluated functions.
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7.3 Application of Reduced-Space Methods to

Upstream Gas Networks

Upstream gas production network models satisfy all the requirements (that were de-

scribed in Section 7.1) for application of a reduced-space approach. There are large

numbers of internal variables in upstream gas network models; pressures, flowrates,

state of facilities and compositions. The inputs to the network model are the volu-

metric production-rates at wells and select variables in the trunkline network. The

majority of the flowrates, pressure and composition variables form the internal vari-

able of the network model and are given by pressure-flowrate relationships, molar

balances and facility operating equations. Finally, there are only a few outputs from

the model that include delivery states at the demand nodes and key states in the

network.

Based on this, network variables can be classified into the following three cate-

gories: input variables, internal variables and output variables. Input variables are

the variables that can be manipulated by the optimizer directly. Constraints and

bounds can therefore be enforced on these variables to prevent the optimization pro-

cedure from stepping outside a valid range so as to make sure that the network can

be solved for the internal and output variables. Internal variables (intermediate vari-

ables) are the variables that represent the internal state of the network and are not

directly seen by the optimizer. Output variables represent the values of functions

that are being calculated. For example, the delivery rate at a demand node is an

output variable. Conditions on an intermediate variable can enforced only by adding

an explicit constraint on it, so that it becomes an output variable.

The network structure permits a sequential calculation of the internal variables

and output variables, given the input variables. One can start at the wells and

progressively move towards the demand nodes calculating the values of the internal

variables and the output variables. All equality constraints are incorporated into the

network calculation procedure and therefore the resulting mathematical programming

problem with embedded network calculation procedure has no equality constraints.
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The following section describes the calculation sequence and the problem formulation.

The assumptions for the model are identical to the infrastructure model formulation

described in Chapter 3. The calculation sequence derived in the next section is based

on the alternative infrastructure formulation presented in Section 3.6. The variable,

set and parameter naming conventions are in line with Table 2.3 and, most variable

and parameter symbols are consistent with and retain the same or a similar meaning

as in the description of alternative formulation in Section 3.6.

7.4 Derivation of a Network Calculation Sequence

As a first step, the pressure variables in this model are transformed to the square of

the actual pressures. Denote the transformed pressure as P̂(.) that is square of the

actual pressure P(.):

P̂(.) = P 2
(.)

Since most pressure variables in the network are represented by this transformed

pressure, P̂(.) is referred to without qualification as just pressure later, as long as the

context is clear from the notation.

This model is a pure infrastructure NLP model that does not include features

of the alternative formulation that requires binary variables. As in the alternative

infrastructure model, the following are the components of a calculation sequence:

1. well performance model,

2. field calculations,

3. compression calculations,

4. network model.

The actual derived calculation steps are numbered using Roman numerals. Non-

numbered equations just represent intermediate manipulations or alternative calcu-

lation steps.
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7.4.1 Well Calculation Sequence

The primary input variables to the network is the well volumetric production rates

Qw,i. Qw,i is constrained by the natural production bounds as explained in Section

5.2.1 (page 145). The natural bounds make sure that the key pressures in the well

(bottom-hole and well-head pressure), do not fall below atmospheric pressure at the

upper bound of the flow. Given the volumetric rate, the molar production rate from

a well can be calculated using the following relationship:

Fs,i,k = χi,k φQw,i, ∀(i, k) ∈ W × S, (i)

where χi,k is the mole fraction of component k in gas from well i and φ is the volumet-

ric to molar conversion factor as defined in Section 3.3.1 (page 89). The bottom-hole

pressure can be calculated from the inflow performance relationship from the produc-

tion rate for the wells:

P̂b,i = π2
r,i − αwQw,i − βwQ2

w,i, ∀i ∈ W . (ii)

Once the bottom-hole pressure is known, the well-head pressure can be calculated

from the vertical lift performance equation as follows:

P̂t,i =
1

λi
(P̂b,i − ϑwQ2

w,i), ∀i ∈ W . (iii)

The NGL production rate can be calculated from the volumetric production rate:

QLw,i = σwQw,i, ∀i ∈ W . (iv)

7.4.2 Field Balances

There are two different approaches for calculating pressure at the common header

to which all wells belonging to a particular field produce. Let Fw denote the set of

fields for which well performance is modeled. The most obvious is to perform a direct
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calculation of pressure at the well headers as follows:

P̂i = min
w∈Wi

P̂t,w, ∀i ∈ Fw. (WF1)

On a close inspection, however, this formulation is not correct because it forces the

field pressure to be minimum of all well-head pressures and therefore, violates the im-

plicit choke assumption that allows for a finite nonzero pressure drop, i.e., it excludes

the following operating possibility:

Pi = Pt,w −∆Pw, ∆Pw > 0, w ∈ Wi, ∀i ∈ Fw

where Pt,w is the actual well-head pressure and Pi is the (actual) field pressure. Vio-

lation of the above operational possibility means that high-pressure fields can choke

low-pressure fields since high-pressure field headers cannot be brought to the pres-

sure of low-pressure fields using the relationship (WF1). Another option is to use

the above formulation and accept ∆Pw as an input variable, however, not only does

this result in an increase in the number of input variables, but it also introduces an

additional calculation step involving
√
P̂ , likely to make the problem ill-conditioned.

Another option is to accept field pressure P̂i as an input variables and enforce an

inequality constraint of the following form:

P̂i − P̂t,w ≤ 0, w ∈ Wi, ∀i ∈ Fw. (v)

However, this formulation has the drawback to add additional constraints to the

model and making it harder to locate a feasible point. This is the formulation used

in the case study presented later.

A yet another option is to introduce an intermediate variable P̂mh,i for every field

that is the minimum of all well-head pressures corresponding to the field. A single

constraint for a field can then be used to enforce the field pressure inequality instead
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of a constraint for each well, thereby reducing the number of constraints.

P̂mh,i = min
w∈Wi

P̂t,w, ∀i ∈ Fw, (WF3)

P̂i − P̂mh,i ≤ 0, ∀i ∈ Fw.

Volumetric and species-wise molar production rate from fields can be calculated

as follows:

Fs,i,k =
∑
w∈Wi

Fs,w,k, ∀(i, k) ∈ Fw × S, (vi)

Qs,i =
∑
w∈Wi

Qw,w, ∀i ∈ Fw. (vii)

The same is true for the total NGL production:

QLs,i =
∑
w∈Wi

QLw,w, ∀i ∈ Fw. (viii)

7.4.3 Compression

The compression equation is the same as presented in Equation (vii) (page 99). There

are two approaches to formulating the calculation sequence for compressors based on

the choice of the input variable. One can choose either the power consumption of the

compressor or choose the output pressure.

Consider the choice of compression power W(i,j) as input to calculate the output

pressure P̂j:

P̂j = P̂i

[
1 +

W(i,j)

ω(i,j)Qa,(i,j)

]2/ν

, ∀(i, j) ∈ Ac.

This formulation is indeed more natural since in a real-world case, it is the power that

is controlled which in turn dictates the output pressures. However, this formulation

has a serious drawback of becoming ill-conditioned as Qa,(i,j) gets close to zero. There

is no good physical guide to set bounds on Qa,(i,j). It is an internal network variable

that is not visible to the optimizer so it cannot be manipulated directly. It is possible

to set lower bounds on one or more well production rates to control the range of
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Qa,(i,j). Again, there is no clear physical argument for doing so and therefore, it is not

obvious how these lower bounds on well production rates should be set. It may be

possible to reformulate this relationship by adding a small term to the denominator

based on some physical argument.

The other option is to instead choose the output pressure of the compressor as an

input variable and enforce the calculated power to be limited by the rated power of

the compressor using a constraint. Output pressure P̂j is constrained by optimizer

to respect a maximum limit. This results in the following constraint that models the

compression:

ω(i,j)Qs,(i,j)

( P̂j
P̂i

)ν/2

− 1

−ΨU
(i,j) ≤ 0, ∀(i, j) ∈ Ac. (ix)

Both P̂j and P̂i are inputs. ΨU
(i,j) is the rated power of the compressor. The relaxation

can be further strengthened by enforcing a constraint relating them

P̂i − P̂j ≤ 0, ∀(i, j) ∈ Ac. (x)

The apparent drawback of this formulation is that in some sense, it seems to decouple

the subsystems upstream and downstream of a compressor from a pressure perspective

and thereby prevents the flow of pressure information from the downstream to the

upstream system. On the other hand, it can also be argued that a real compressor

actually does decouple the upstream and downstream parts of a real system.

7.4.4 Network Balances

One has to distinguish between nodes that are mixers and splitters for network bal-

ances as in the discussion on the infrastructure model earlier in Chapter 3. Nodes

with multiple incoming arcs and only a single outgoing trunkline (arc) are defined

as mixers in this context (set Nm). Therefore, specieswise molar flowrates can be
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calculated in a straightforward way by summing the incoming flowrates:

Fa,(i,v),k = Fs,i,k +
∑

v:(v,i)∈A

Fa,(v,i),k, ∀(i, k) ∈ Nm,s × S, (xi)

Fa,(i,v),k =
∑

v:(v,i)∈A

Fa,(v,i),k, ∀(i, k) ∈ Nm,J × S. (xii)

Here Nm,s is the set of mixers that have a source term while Nm,J is the set of mixers

that are junctions.

A splitter by definition has strictly more than one outgoing arcs. There is no

need to distinguish between splitters that are junctions and sources separately as was

done in Chapter 3. One needs to consider only splitters that are junctions because

a production node that is a splitter can be simply decomposed into a node that is a

production node (handled as above) that is connected to a splitter junction. This is

possible because volumetric and molar flowrate variables are internal variables that

are not seen by the optimizer and any increase in their number is not expected to

have any significant impact on the solution performance. At a splitter, one can define

a set of outgoing arcs Ax in exactly the same fashion as described in Section 3.3.2

(all outgoing arcs except one). A split fraction is defined over set Ax that is an input

variable for the optimizer. It is now possible to calculate the outgoing flow at the

splitters (set Nx) as follows:

Fa,(i,j),k = s(i,j)

∑
v:(v,i)∈A

Fa,(v,i),k, ∀((i, j), k) ∈ {Ax : i ∈ Nx} × S, (xiii)

Fa,(i,u),k =

1−
∑

v:(i,v)∈Ax

s(i,v)

 ∑
v:(v,i)∈A

Fa,(v,i),k, ∀(i, u) /∈ Ax, (i, k) ∈ Nx × S.

(xiv)

Split fractions must be forced to sum up to one explicitly

∑
v:(i,v)∈Ax

s(i,v) − 1 ≤ 0, ∀i ∈ Nx. (xv)
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An alternative option to enforcing constraint (xv) is to decompose a splitter having

three or more outgoing arcs into multiple splitters each having only two outgoing

arcs. This does away with the need for the above constraint as bounds are sufficient

to enforce these.

The volumetric flowrate in an arc can be calculated as before by using the con-

version factor φ:

Qa,(i,j) =
1

φ

∑
k∈S

Fa,(i,j),k, ∀(i, j) ∈ A. (xvi)

Outlet pressure for lines whose outlet is not a mixer can be calculated directly em-

ploying the standard gas flow relationship:

P̂j = P̂i − κ(i,j)Q
2
a,(i,j), j /∈ Nm, ∀(i, j) ∈ Ap. (xvii)

However, a similar pressure calculation for lines with mixer outlets (i.e., more than

one arc is flowing into the node) runs into a similar problem as with field headers. If

the pressure was calculated at this node using pressure-flowrate relationship as above,

it may invalidate molar balances or pressure-flowrate relationships in other arcs. The

only way to reconcile pressure calculations between multiple arcs in such instances

is to have it enforced as constraints. The outlet pressure for all arcs incoming at a

mixer can be calculated as:

P̂o = P̂i − κ(i,j)Q
2
a,(i,j), j ∈ Nm, ∀(i, j) ∈ Ap.

However, one does not need to define P̂o explicitly, instead the constraint can be

enforced directly as:

P̂j − P̂i + κ(i,j)Q
2
a,(i,j) ≤ 0, j ∈ Nm, ∀(i, j) ∈ Ap. (xviii)

In this case P̂j is an input variable being manipulated by the optimizer. Physically this

implies that there is a valve to choke down the flow coming from a high pressure line so

that it does not choke the flow from a low pressure line at a mixer. If such a situation
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is constraining the system, optimization is expected to drive P̂o = P̂j. However, in

a case when there are no valves on the system, this modeling approach can possibly

result in a nonzero P̂o − P̂j for some nodes which may be unphysical. In practice,

by manipulating wellhead chokes, it is always possible to achieve P̂o = P̂j which is in

fact what happens in a conventional optimization approach as presented earlier. To

incorporate this feature in the current context requires part of the calculation sequence

to track back upstream from mixers to wells in a reverse direction to the flow on some

arcs, which is complicated and has not been attempted here. A similar formulation

to the one in Equations (WF3) that is based on calculating the minimum of incoming

pressures can also be used here. An intermediate variable P̂o,(i,j) corresponding to the

pressure at the outlet of an arc (i, j) can be calculated as follows:

P̂o,(i,j) = P̂i − κ(i,j)Q
2
a,(i,j), j ∈ Nm, ∀(i, j) ∈ Ap.

The minimum of all such intermediate outlet pressures P̂o,(i,j) can be calculated as

another intermediate variable P̂nm,j

P̂nm,j = min
i:(i,j)∈Ap

P̂o,(i,j), j ∈ Nm.

Pressure P̂j at node j is an input variable with the following constraint on it

P̂j − P̂nm,j ≤ 0 j ∈ Nm.

This formulation is physically equivalent to the earlier formulation, i.e., it implies

presence of a choke valve.
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7.4.5 Demands

The delivery at the demand nodes (set ND) can be calculated using similar network

balance relationships earlier:

Fs,i,k =
∑

v:(v,i)∈A

Fa,(v,i),k, ∀(i, k) ∈ ND × S, (xix)

Qs,i =
1

φ

∑
k∈S

Fs,i,k, ∀(i, k) ∈ ND. (xx)

The delivery constraints at the demand nodes can be enforced once the relevant

output variables are calculated. For example, once the pressures at the demand nodes

are known, the pressure range as per the delivery specification can be enforced:

(πLi )2 ≤ P̂i ≤ (πUi )2, ∀i ∈ ND. (xxi)

Similarly there are constraints for delivery rates can be enforced once Qs,i is known

at demand nodes

ΛL
i ≤ Qs,i ≤ ΛU

i , ∀i ∈ ND. (xxii)

Finally, the composition specification χsi,k for a species k can be formulated as follows:

Fs,i,k − χsi,k
∑
j∈S

Fs,i,j ≤ 0, ∀i ∈ ND. (xxiii)

An overview of the calculation procedure for a small example network is presented

in Figure 7-1.

7.4.6 Overall Formulation

The objective function is simply the total production rate from the system:

min
∑
i∈ND

−Qs,i (xxiv)
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Figure 7-1: Network calculation algorithm: Schematic for an example network
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The overall program has both objective function and constraints as algorithms

min
x

f(x,y(x))

g(x,y(x)) ≤ 0

x ∈ X ⊂ Rn−m.

Both f and g can be calculated in a single pass through the calculation procedure

and a separate constraint or objective calculation is not required.

7.5 A Bundle Algorithm Implementation

Convex and/or concave relaxations obtained by the McCormick theory may not be

differentiable everywhere in the host set. Therefore the lower bounding convex pro-

gram is in general nonsmooth and cannot be solved with conventional NLP methods

that rely on differentiability of all functions on (an open superset of) the host set.

7.5.1 Theoretical Background

A survey of convex analysis and nonsmooth programming methods is outside the scope

of this work. Excellent theoretical treatments of convex analysis and nonsmooth

optimization can be found in Hiriart-Urruty and Lemaréchal [128, 129]. Further

details about nonsmooth algorithms can be found in Kiwiel [130] and Mäkelä and

Neittaanmäki [131]. The material presented here and the corresponding notation

follows closely and borrows heavily from these two works.

Consider the following convex program:

min f(x) (CP)

g(x) ≤ 0

x ∈ C ⊂ Rn.

Here X ⊂ Rn is an open bounded convex set, C ⊂ X is a compact convex set, and
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gi : X → R, i = 1, . . . ,m and f : X → R are convex (though not necessarily

differentiable) functions.

Definition 7.5.1 (Total Constraint Function). Total constraint function is a

scaler function G : X→ R defined as follows:

G(x) = max {g1(x), g2(x), . . . , gm(x)}.

Definition 7.5.2 (Improvement Function). Improvement function H(. ; x) : C→

R, x ∈ C corresponding to problem (CP) is defined as follows:

H(y ; x) = max { f(y)− f(x), G(y) }.

Assume that x is feasible, which in turn is equivalent to H(x; x) = 0. If H(y; x) <

H(x; x) then f(y) − f(x) < 0 and G(y) < 0 and therefore y is feasible and has a

better objective function value than x. This justifies the designation of H as an

improvement function for Program (CP).

It is straightforward to show that if f and gi are convex, the total constraint

function G and the improvement function H(.; x) corresponding to program (CP) at

a point x are convex.

Consider the following program:

minH(y; x) (IFx)

y ∈ C

Theorem 7.5.3. Assume that the Slater constraint qualification holds for Program

(CP). Then, the following are equivalent

1. x∗ is a solution of Program (CP).

2. x∗ is optimal in IFx∗ and furthermore

min
y∈C

H(y; x∗) = H(x∗; x∗) = 0.
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Proof. (1) =⇒ (2): If x∗ is a minimum of Program (CP), gi(x∗) ≤ 0 and therefore

H(x∗; x∗) = max{f(x∗)− f(x∗), G(x∗)} = 0.

If x∗ does not minimize Program IFx∗ , then ∃x̂ such thatH(x̂; x∗) < 0 = H(x∗; x∗)

which in turn implies that x̂ is feasible in (CP) and f(x̂) < f(x∗) and therefore x∗

does not minimize CP.

(2) ⇒ (1): Assume that ∃ x̂ ∈ C such that f(x̂) < f(x∗) and g(x̂) ≤ 0 (i.e.,

x∗ is not optimal for (CP)). Equivalently one can write f(x̂) = f(x∗) − δ, δ > 0.

Moreover, assume that Slater constraint qualification holds for x̄ ∈ C, i.e., g(x̄) < 0.

For a sufficiently small λ ∈ (0, 1), one has the following:

f((1− λ)x̂ + λx̄) ≤ (1− λ)f(x̂) + λf(x̄) (f1)

= f(x̂) + λ (f(x̄)− f(x̂))

= f(x∗)− δ + λ (f(x̄)− f(x̂))

< f(x∗).

Similarly for a sufficiently small λ:

g((1− λ)x̂ + λx̄) ≤ (1− λ)g(x̂) + λg(x̄) ≤ λg(x̄) < 0 (g1)

The first inequality follows from convexity of g, the second from the feasibility of x̂

(i.e., (1− λ)g(x̂) ≤ 0)) while the final strict inequality follows from the fact that x̄ is

a Slater point.

From inequalities (f1) and (g1), one has for a sufficient small λ ∈ (0, 1)

H((1− λ)x̂ + λx̄; x∗) = max{f((1− λ)x̂ + λx̄)− f(x∗), G((1− λ)x̂ + λx̄)}

< 0 = H(x∗; x∗),

therefore x∗ does not minimize (IFx∗) and (2) does not hold.
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Remark 7.5.4. This result can be further extended to derive necessary and sufficient

optimality conditions for nonsmooth convex programs [131]. The starting point is

to convert (IFx) into an unconstrained minimization by using the indicator function

[128, 129] of set C and then using necessary and sufficient conditions for minimiza-

tion of unconstrained nonsmooth convex functions in conjunction with properties of

relevant functions and their subdifferentials.

7.5.2 Algorithm Overview

The treatment presented here is exclusively for convex programs. From a convex

programming point of view, the fundamental principle of these algorithms derives

from the simple cutting plane approach for convex programming. The cutting plane

methods involve constructing a polyhedral approximation of the feasible set and ob-

jective function. They, however, suffer from slow convergence behavior due to the

fact that the polyhedral approximations poorly approximate the feasible set and ob-

jective function far away from the linearization points and, therefore, quite a bit of

zigzagging is observed before the algorithm reaches anywhere near the optimum.

The basic idea of a bundle method is to create an approximation of the subdif-

ferentials of the functions at every step and locate a descent direction based on this

information. There are sophisticated strategies to refine the approximations at ev-

ery step to keep the size of the direction finding problem manageable. Line search

plays a very crucial role for these algorithms and sophisticated line search strategies

are required for fast convergence. For convex programming, the idea of polyhedral

approximation and subdifferential approximation are the same1.

The approach is described for program (CP). Based on the definition of the

improvement function and Theorem 7.5.3, the following is a very rough structure for

a simple nonsmooth constrained optimization algorithm [130, 131]:

Step 1: Initialization: Set k = 1 and find a point x1 ∈ C such that G(x1) ≤ 0.

1As is obvious, these arguments do not completely motivate nonsmooth nonconvex methods,
although both convex and nonconvex methods employ very similar principles. A nonsmooth non-
convex method is attempting to approximate generalized gradients instead of subdifferentials.
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Step 2: Direction Finding : Find a direction dk that solves:

minH(xk + d; xk)

xk + d ∈ C.

Step 3: Line search: Find a step size tk > 0 in the direction dk such that

H(xk + tkdk; xk) < H(xk; xk). Set xk+1 = xk + tkdk.

Step 4: Set k = k + 1. Go to Step 2.

It is clear that the direction finding problem is in itself is a nonsmooth problem in the

broad framework above and must be replaced by an approximation as is described in

the following section. The above representation is of course a very coarse (and only

one of the several possible) motivation for this class of algorithms.

7.5.3 The Direction Finding Problem

The approach described here closely follows the development of cutting plane and

bundle methods in Kiwiel [130] and Mäkelä and Neittaanmäki [131]. The nonsmooth

program is given as before by Program (CP). Assume that the host set C is defined

as a n-dimensional interval:

C = {x ∈ Rn : xL ≤ x ≤ xU}.

Using the definitions of set C and the total constraint function G, Program (CP) can

be stated equivalently as:

min
x∈Rn

f(x) (ECP)

G(x) ≤ 0

xL ≤ x ≤ xU .

Denote the iterate at iteration k of the procedure as xk. One can define an
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improvement function for the program at the current iterate as follows:

H(x; xk) = max {f(x)− f(xk), g1(x), . . . , gm(x)}.

It is assumed that at every iterate xk, one can evaluate functions f and G, and at

least one element of their subdifferentials, i.e., a subgradient, at xk.

At every iterate, there is a collection of linearizations to the functions that is

termed as a bundle. It forms the best polyhedral approximation (or alternatively

best approximation of the subdifferential) of the functions at the point. One can also

distinguish between the objective bundle (linearizations of f) and the constraint bundle

(linearizations of G). Denote the index sets at the kth iteration of the bundles for the

objective function f and the total constraint function G as Jkf and JkG, respectively.

The points of linearization are denoted as yj ∈ C where j runs over bundle indices.

The subgradients at these points are denoted as follows:

ξfj ∈ ∂f(yj), j ∈ Jkf ,

ξGj ∈ ∂G(yj), j ∈ JkG,

where ∂f(yj) and ∂G(yj) are the set of all subgradients at yj (i.e., the subdifferentials

at yj) of f and G respectively. Linearizations to f and G at points yj ∈ C are defined

as follows:

f̄j(x) = f(yj) + ξfj (x− yj), j ∈ Jkf , (L1)

Ḡj(x) = G(yj) + ξGj (x− yj), j ∈ JkG.

Denote the value of linearizations for f and G at the current iterate xk as fkj and Gk
j

respectively:

fkj = f̄j(xk) = f(yj) + ξfj (xk − yj), j ∈ Jkf , (L2)

Gk
j = Ḡj(xk) = G(yj) + ξGj (xk − yj), j ∈ JkG.
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Subtracting the two relations (L1) and (L2) does away with the need to store lin-

earization points:

f̄j(x)− fkj = ξfj (x− xk), j ∈ Jkf ,

Ḡj(x)−Gk
j = ξGj (x− xk), j ∈ JkG.

For a direction finding problem, one is interested in the step d at the current iterate

xk, i.e., x = xk + d . Substituting this into the relationships:

f̄j(xk + d) = fkj + ξfjd, j ∈ Jkf ,

Ḡj(xk + d) = Gk
j + ξGj d, j ∈ JkG.

Finally, substituting xk+1 = xk + d, where d is the actual step after the line search

and recalling the definition of fkj and Gk
j , the following update formula is obtained

for the bundle when stepping from iterate k to k + 1:

fk+1
j = fkj + ξfj (xk+1 − xk), j ∈ Jkf , (LU)

Gk+1
j = Gk

j + ξGj (xk+1 − xk), j ∈ JkG

Definition 7.5.5. Define the polyhedral representation of f and G at iteration k as

being given as:

f̂k(x) = max{f̄j(x) : j ∈ Jkf },

Ĝk(x) = max{Ḡj(x) : j ∈ JkG}.

The polyhedral approximation to the improvement function at the current iterate

H(.; xk) is defined by

Ĥk(x) = max{f̂k(x)− f(xk), Ĝ
k(x)}.

Lemma 7.5.6. The polyhedral approximation function Ĥk is convex. If Program
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(ECP) is convex, then

Ĥk(x) ≤ H(x; xk).

Proof. Convexity follows from the fact that polyhedral approximation of f and G are

convex (linear) and the polyhedral approximation of H is the maximum of a finite

collection of linear approximations and hence is convex. The lower bounding nature

is obtained by the fact that it is an outer approximation of the (convex) feasible set

and objective function.

The standard direction finding problem for a proximal bundle method is given by:

min
d∈Rn

Ĥk(xk + d) +
uk
2
‖d‖22 (PBDFP)

xk + d ∈ C.

The ‖d‖2 term originates from a combination of the trust region concept and the

cutting plane strategies. In the most basic trust region approach in differentiable

optimization, constraints similar to the form ‖d‖2 ≤ δ2
k serve to limit an algorithm

from taking steps outside the “region of trust” defined by the constraint, where the

function approximations (usually quadratic for “Newton-like” methods) may no longer

be sufficiently accurate. In the direction finding problem (PBDFP) this constraint is

incorporated into objective function using a penalty term since quadratic programs

(QP) are easier to solve than quadratically-constrainted programs (QCP). In the end,
uk

2
‖d‖2 serves exactly the same purpose here to limit the stepsize to a certain extent.

The weight parameter uk can be modified at every iteration based on the subgradient

information and problem geometry based on complicated strategies.

In this work, the intention was to keep the direction finding problem as a linear

program. Two obvious options are to use a one-norm Ĥk(xk + d) + uk‖d‖1 or an

infinity-norm Ĥk(xk + d) + uk‖d‖∞ so as to avoid large steps and prevent the next

iterate from ending up too far away. However, cursory numerical experimentation

failed to show any benefit from using such terms. Again, this is insufficient to discard

the described approach because sophisticated strategies are required to update the
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weight parameter at every iteration that were not implemented or tried.

Therefore, the direction finding problem here is the polyhedral approximation to

the improvement function and therefore is equivalent to a linear program:

min
d∈Rn

Ĥk(xk + d) (DFH)

xk + d ∈ C.

Lemma 7.5.7. Program (DFH) is equivalent to the following program:

min
v,d∈Rn

v (DF)

v − ξfjd ≥ fkj − f(xk), ∀j ∈ Jkf

v − ξGj d ≥ Gk
j , ∀j ∈ JkG

xL − xk ≤ d ≤ xU − xk.

Proof. (DFH) can be represented as:

min
xk+d∈C

max {f̂k(xk + d)− f(xk), Ĝ
k(xk + d)}

which can be rewritten using the definitions of f̂k and Ĝk as:

min
xk+d∈C

max
i∈Jk

f , j∈J
k
G

{f̄i(xk + d)− f(xk), Ḡj(xk + d)}

and again as:

min
xk+d∈C

max
i∈Jk

f , j∈J
k
G

{fki + ξfi d− f(xk), G
k
j + ξGj d}

Finally considering the definition of set C as an interval, it is straightforward to

formulate this program as (DF).
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7.5.4 Subgradient Selection and Aggregation

Once a solution of the direction finding problem has been found, new linearizations

can be added to the constraint and objective bundles to incorporate new information

at the updated iterate and construct an updated direction finding problem. If nothing

else is done, the problem size (as in the number of constraints) will continue to grow

with each iteration. A strategy is therefore required to keep the size of the bundle

under control by dropping selected linearizations that may no longer be sufficiently

accurate and somehow making sure that doing this does not adversely impact the

approximations or result in loss of information. The Subgradient Aggregation and

Selection strategy [130] serves to accomplish exactly this objective. The core idea

is that constraints can be aggregated to generate new constraints. As a result some

of the past linearizations can be dropped without any loss of information about the

problem. This section first describes aggregation and then selection.

Consider the solution of the direction finding problem at the kth iteration. Let νkj
denote the Lagrange multipliers corresponding to j ∈ Jkf (the objective bundle) and

µkj denote the Lagrange multipliers corresponding to j ∈ JkG (the constraint bundle) at

the kth solution of the direction finding problem (DF). Denote the sums of Lagrange

multipliers as νkf =
∑
j∈Jk

f

νkj and µkG =
∑
j∈Jk

G

µkj . Define the scaled Lagrange multipliers

as follows:

ν̄kj =

ν
k
j /ν

k
f νkf > 0

1/|Jkf | νkf = 0

∀j ∈ Jkf , (AG1)

µ̄kj =

µ
k
j/µ

k
G µkG > 0

1/|JkG| µkG = 0

∀j ∈ JkG. (AG2)

Define:

σk
f =

∑
j∈Jk

f

ν̄kj ξ
f
j , fkσ =

∑
j∈Jk

f

ν̄kj f
k
j , (AG3)

σk
G =

∑
j∈Jk

G

µ̄kjξ
G
j , Gk

σ =
∑
j∈Jk

G

µ̄kjG
k
j .
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Definition 7.5.8 (Aggregated Linearizations). The aggregated linearizations are

defined as follows:

fσ(d) = fkσ + σk
fd

Gσ(d) = Gk
σ + σk

Gd.

Define strict subsets Ĵkf ⊂ Jkf and ĴkG ⊂ JkG so that the new bundle defined by Ĵkf
and ĴkG contains only a subset of the constraints. The reduced problem is defined by:

min
v,d∈Rn

v (DFA)

v − ξfjd ≥ fkj − f(xk), ∀j ∈ Ĵkf

v − ξGj d ≥ Gk
j , ∀j ∈ ĴkG

v − σk
fd ≥ fkσ − f(xk)

v − σk
Gd ≥ Gk

σ

xL − xk ≤ d ≤ xU − xk.

Theorem 7.5.9. Every optimal solution of Program (DF) is optimal in Program

(DFA).

Proof. For the purposes of this proof, represent the bounds as Bd ≥ c to simplify

the notation.

Consider a primal-dual solution pair (v∗k,d
∗
k, ν̃k, µ̃k, λ̃k) at the kth solution of Pro-

gram (DF). The necessary and sufficient conditions for optimality for this pair are

given by:

Primal Feasibility:

v∗k − ξfjd
∗
k ≥ fkj − f(xk), ∀j ∈ Jkf ,

v∗k − ξGj d∗k ≥ Gk
j , ∀j ∈ JkG,

Bd∗ ≥ c.
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Complementary Slackness:

ν̃kj (v∗k − ξfjd
∗
k − fkj + f(xk)) = 0, ∀j ∈ Jkf ,

µ̃kj (v
∗
k − ξGj d∗k −Gk

j ) = 0, ∀j ∈ JkG,

λ̃k(Bd∗ − c) = 0.

Dual Feasibility:

∑
j∈Jk

f

ν̃kj +
∑
j∈Jk

G

µ̃kj = 1,

−
∑
j∈Jk

f

ν̃kj ξ
f
j −

∑
j∈Jk

G

µ̃kjξ
G
j +

∑
j

λ̃kjBj = 0,

ν̃k ≥ 0, µ̃k ≥ 0, λ̃k ≥ 0.

Denote the sums of multipliers as ν̃kf =
∑
j∈Jk

f

ν̃kj and µ̃kG =
∑
j∈Jk

G

µ̃kj . Consider pro-

gram (DFA) and set the multipliers as follows. Assign the multipliers corresponding

to the aggregated constraints fσ and Gσ as ν̃kf and µ̃kG respectively. For the reduced

objective bundle (indexed by Ĵkf ) and for the reduced constraint bundle (indexed by

ĴkG), define the multipliers in the following way:

ν̂kj = 0, ∀j ∈ Ĵkf , µ̂kj = 0, ∀j ∈ ĴkG.

Consider (v∗k,d
∗
k, ν̂k, µ̂k, λ̃k, ν̃

k
f , µ̃

k
G) as a candidate for the primal-dual solution pair

of program (DFA). It is obvious that primal feasibility holds for ∀j ∈ Ĵkf ⊂ Jkf

and ∀j ∈ ĴkG ⊂ JkG. Multiply constraints over j ∈ Jkf and j ∈ JkG with ν̄kj and µ̄kj ,

respectively (ν̄kj and µ̄kj are defined as in Equations (AG1) and (AG2), page 201), and
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sum over j ∈ Jkf and j ∈ JkG, respectively:

v∗k
∑
j∈Jk

f

ν̄kj − (
∑
j∈Jk

f

ν̄kj ξ
f
j )d

∗
k ≥

∑
j∈Jk

f

(ν̄kj f
k
j )− ν̄kj f(xk),

v∗k
∑
j∈Jk

G

µ̄kj − (
∑
j∈Jk

G

µ̄kjξ
G
j )d∗k ≥ (

∑
j∈Jk

G

µ̄kjG
k
j ).

Considering that
∑
j∈Jk

f

ν̄kj = 1,
∑
j∈Jk

G

µ̄kj = 1 and definitions of σk
f , σk

G, fkσ and Gk
σ

(page 201), it is obvious that primal feasibility of (v∗k,d
∗
k) holds in the aggregated

constraints. Complementary slackness holds for ∀j ∈ Ĵkf and ∀j ∈ ĴkG by the definition

of the multipliers ν̂k and µ̂k. If ν̃kf = 0 or µ̃kG = 0, complementary slackness for the

corresponding aggregated constraint already holds. So one can assume that ν̃kf > 0

and µ̃kG > 0 for demonstrating the complementary slackness condition for aggregated

constraints. Summing and manipulating the complementary slackness conditions for

∀j ∈ Jkf and ∀j ∈ JkG:

ν̃kf

v∗k ∑
j∈Jk

f

ν̃kj
ν̃kf
− d∗k(

∑
j∈Jk

f

ν̃kj
ν̃kf

ξfj )− (
∑
j∈Jk

f

ν̃kj
ν̃kf
fkj ) + f(xk)

∑
j∈Jk

f

ν̃kj
ν̃kf

 = 0,

µ̃kG

v∗k ∑
j∈Jk

G

µ̃kj
µ̃kG
− d∗k(

∑
j∈Jk

G

µ̃kj
µ̃kG

ξGj )− (
∑
j∈Jk

G

µ̃kj
µ̃kG

Gk
j )

 = 0.

From definitions (AG1), (AG2) and (AG3), it is clear that complementary slackness

holds for the aggregated constraints. Finally consider the dual feasibility conditions.

∑
j∈ bJk

f

ν̂kj +
∑
j∈ bJk

G

µ̂kj + ν̃kf + µ̃kG =
∑
j∈Jk

f

ν̃kj +
∑
j∈Jk

G

µ̃kj = 1
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Assume ν̃kf > 0 and µ̃kG > 0 holds:

0 = −
∑
j∈Jf

k

ν̃kj ξ
f
j −

∑
j∈JG

k

µ̃kjξ
G
j +

∑
j

λ̃kjBj =

− ν̃kf
∑
j∈Jf

k

ν̃kj
ν̃kf

ξfj − µ̃kG
∑
j∈JG

k

µ̃kj
µ̃kG

ξGj +
∑
j

λ̃kjBj =

− ν̃kfσk
f − µ̃kGσk

G −
∑
j∈ bJf

k

ν̂kj ξ
f
j −

∑
j∈ bJG

k

µ̂kjξ
G
j +

∑
j

λ̃kjBj.

If ν̃kf = 0, it implies ν̃kj = 0, ∀j ∈ Ĵkf . By dropping terms corresponding to ν̃kj and

ν̃kf the above argument holds. The same is true if µ̃kG = 0. Also note that both

ν̃kf = 0 and µ̃kG = 0 cannot hold simultaneously due to the dual feasibility conditions

for (DF). This implies (v∗k,d
∗
k) is optimal in Program (DFA).

Remark 7.5.10. The set of optimal solutions of (DF) and (DFA) must be the same

for being able to replace program (DF) with (DFA). The previous result only shows

that the optimal solution set of (DF) is a subset of the solution set of (DFA). There-

fore, it does not provide a sufficient theoretical argument for aggregation.

The core reason for this issue seems to be the fact that the direction finding problem

is a linear program (LP). A quadratic program (QP) has a unique solution, which

means that a similar result to the previous one for a QP would immediately imply

that the reduced direction finding problem (with aggregated constraint) is equivalent to

the original problem. On the other hand, an LP can have multiple optimal solutions

and therefore only a subset relationship can be shown. This still does not preclude

aggregation being valid for an LP direction finding problem since the converse of the

previous result may be true under certain assumptions. However, no attempt has been

made to analyze this further. Finally, although, aggregation has been implemented in

the formal statement of the algorithm (Section 7.5.6, page 212), it can be turned off.
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Subgradient Selection

The cardinality of sets Jkf and JkG is bounded by a maximum size to keep the bundle

size manageable and therefore to manage the computational effort required to solve

the direction finding problem. To choose the constraints to drop from the sets Jkf
and JkG (and therefore construct Ĵkf and ĴkG) the value of the corresponding Lagrange

multipliers is used. A constraint with a zero multiplier can be dropped as it is not

active at the current optimum and therefore is likely to be a poor approximation of

the feasible set and objective function at this point.

The size of the bundle is an important tunable parameter of the algorithm. There

is an obvious trade-off between the work per iteration (or equivalently per direction

finding problem solution) and the number of iterations (direction finding problems

solved). A large bundle size results in a relatively more accurate representation of

the local problem geometry and therefore hopefully a better descent direction. This

means that a relatively smaller number of solutions of direction finding problems

may be required, however the work per iteration may be larger. On the other hand,

a smaller direction finding problem represents a coarser representation of problem

geometry and therefore a relatively larger number of direction finding problem may

need to be solved before declaring convergence. However, the work per iteration in

this case will be lower than the former one.

7.5.5 Line Search

Once a potential descent direction is available from the line search, a stepsize tk must

be calculated using a line search in the direction dk to update the current iterate, i.e.

xk+1 = xk + tkdk. The exposition and logic of the line search presented here is due

to Hiriart-Urruty and Lemaréchal [128].

Define a scalar function h : R+ → R as h(t) = f(xk + tdk). One is interested in

a t > 0 such that h(t) < h(0). Given a step size t∗ and information about the nature

of the objective function, a test can be designed that generates one of three possible

answers:
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1. (T) t∗ is appropriate, terminate the line search,

2. (R) t∗ is not appropriate and no suitable t > t∗ is possible,

3. (L) t∗ is not appropriate and no suitable t < t∗ is possible.

Note that cases 2 and 3 provide a bound on the stepsize from one side. The generic

framework of the line search is then as follows:

1. Set tL = 0, tR = +∞ and select t ∈ (tL, tR).

2. Perform the test on t. If case (T) stop.

3. In case (L), set tL = t, In case (R), set tR = t.

4. Select t ∈ (tL, tR) and go to step 2.

Finding the exact minimum of the scalar function h can be a nontrivial and

computationally intensive task. It is realized that a line search is an intermediate

problem and it is not worthwhile to spend too much computational effort on solving

it. Roughly, a line search should not generate too “large” a step which can potentially

lead to zigzagging because the next iterate may be too far away from the current one

and therefore the current polyhedral approximations may be poor and unreliable.

On the other hand too “small” a step can unnecessarily delay the convergence of the

algorithm. Defining “large” and “small” is the essence of case (T). The following is

an example of a test used for cases (R) and (L) from Hiriart-Urruty and Lemaréchal

[128]:

1. (R) t > 0 is not too “large” when:

h(t) ≤ h(0) +mth′(0), (R)

wherem is a line search parameter in (0, 1) usually less than 0.5. This guarantees

that h(t) < h(0) and there is sufficient descent in the step. A stepsize that

fails to satisfy the above is declared too large and therefore is unacceptable.
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h(0)+th’(0) Test L1: h(t)  h(0)+m’th’(0)≥

Test R: h(t)   h(0)+mth’(0)≤

t

h(t)

Test R is satisfied

Test L1 is satisfied

Figure 7-2: Line search tests (R) and (L1) (based on a figure from Hiriart-Urruty and
Lemaréchal [128])

Finally, it is not necessary to calculate the derivative value h′(0) exactly and an

approximation may be used.

2. (L) A similar condition is possible for rejecting a small t. Two examples of

conditions used are as follows:

h(t) ≥ h(0) +m′th′(0), (L1)

or

h(t) ≥ m′h′(0), (L2)

where m′ is a line search parameter in (m, 1) (m is the parameter that was

discussed before for test (R)).

A stepsize is acceptable, i.e., case (T), when it satisfies (R) and (L1) or (L2). A

stepsize is too large if it fails to satisfy (R). A stepsize is regarded as too “small” if it

fails to satisfy (L1) or (L2). Figure 7-2 illustrates the geometric description of tests

(R) and (L1).

The following is a simpler version of the result presented in Kiwiel [130] and Mäkelä
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and Neittaanmäki [131] which motivates the line search test used in this work.

Theorem 7.5.11. Assume that the current iterate xk is feasible in Program (ECP).

Let f̂(x) represent the polyhedral representation of f as defined earlier. Let (vk,dk)

be the kth solution of the direction finding problem formulated at the current iterate

xk. Then the following holds:

1. f̂(xk + dk)− f(xk) ≤ vk ≤ 0,

2. f̂(xk + tdk) ≤ f(xk) + tvk, ∀t ∈ [0, 1].

Proof. This proof considers the program (DF) instead of (DFA) to keep the nota-

tion simple. However, all arguments hold for program (DFA) as it is a matter of

simply forming a positive linear combination of inequalities to generate aggregated

constraints.

1. Recalling the definition of f̂ :

f̂k(xk+dk)−f(xk) = max
j∈Jk

f

{f̄j(xk+dk)−f(xk)} = max
j∈Jk

f

{fkj +ξfjdk−f(xk)}.

From feasibility of vk in (DF):

vk ≥ fkj + ξfjdk − f(xk), ∀j ∈ Jkf ⇐⇒ vk ≥ max
j∈Jk

f

{fkj + ξfjdk − f(xk)},

and therefore

vk ≥ f̂k(xk + dk)− f(xk),

which shows one part of the result. Substituting (v,d) = (0,0) in the constraints

of (DF)

f(xk) ≥ fkj , ∀j ∈ Jkf ,

0 ≥ Gk
j , ∀j ∈ JkG,

xL − xk ≤ 0 ≤ xU − xk.
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Given xk is feasible, the last set of (bound) inequalities holds. Also, G(xk) ≤ 0

because xk is feasible. The first and second inequalities follow from the fact

that linearizations of f and G at xk should underestimate f(xk) and G(xk), i.e.

fkj ≤ f(xk) and Gk
j ≤ G(xk). This implies that (0,0) is feasible in (DF). Since

vk is optimal in (DF), it implies that vk ≤ 0 and this completes the proof of the

first set of inequalities.

2. Consider a t ∈ [0, 1]:

f̂(xk + tdk) = f̂((1− t)xk + t(dk + xk))

≤ (1− t)f̂(xk) + tf̂(dk + xk)

≤ (1− t)f̂(xk) + t(f̂(xk) + vk)

≤ f̂(xk) + tvk

≤ f(xk) + tvk.

This completes the proof of inequality 2.

The second inequality in Theorem 7.5.11 above inspires a rough interpretation of

vk as an approximate directional derivative of f at xk [130]. This in combination with

the earlier description of test (R) for ensuring sufficient descent yields the following

line search test: find the largest tk such that

f(xk + tkdk) ≤ f(xk) +mtk vk, tk ∈ [0, 1].

Parameter m usually is chosen to be less than 0.5 and serves to provide an additional

control on the step. It is also possible to define a line search test for case (L) described

before. However, in this work a minimum stepsize has not been defined. The notation

for line search used here and later (in the description of the implementation) is from

Kiwiel [130]. Following this notation, tk is labeled tL. Therefore, the above test is

restated as: find the largest tL such that

f(xk + tLdk) ≤ f(xk) +mtL vk, tL ∈ [0, 1]. (LC1)
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One also needs to make sure that xk + tLdk is feasible given that xk is feasible.

So a second test required is:

G(xk + tL dk) ≤ 0. (LC2)

In theory, dk obtained from the direction finding problem is guaranteed to respect

bounds due to the fact that these bounds are included in the direction finding prob-

lem. A full step xk+dk should lead to a next iterate still within bounds and therefore,

line search need not test against bounds. However, in practice, a full step can po-

tentially violate a bound by the magnitude of the bound satisfaction tolerance in

the LP solution procedure. When the functions involved in the convex program are

McCormick relaxations (that are valid only within the interval on which they are con-

structed), violation by even a small magnitude can result in incorrect or undefined

function evaluations. Therefore a test on bounds should also be included in the line

search to avoid a full step violating the bounds.

xL ≤ xk + tkLdk ≤ xU . (LC3)

Set a stepsize threshold t̄ > 0. There are three possibilities that can be considered:

1. A tL > t̄ satisfying both (LC1), (LC2) and (LC3) is found. In this case a long

serious step is possible. Usually this means that there is significant decrease

in the objective function value. In a long serious step, the next iterate xk+1 =

xk + tLdk and the next linearization point yk+1 = xk+1 are the same point.

2. A 0 < tL < t̄ satisfying the above conditions is found. This is termed a short

serious step. In this case, a stepsize tR is also found that violates one or more

of the conditions above. For a short serious step, set the next iterate to xk+1 =

xk + tLdk and the next linearization point to yk+1 = xk + tRdk.

3. Finally, if tL = 0, i.e., no tL > 0 satisfies (LC1), (LC2) and (LC3), a null

step is declared. Again in this case, a tR > 0 is known that violates one or

more conditions. In this case, set the next iterate to xk+1 = xk and the next

linearization point to yk+1 = xk + tRdk. In a null step, the current iterate stays
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the same and a new point is added to the bundle.

In both short serious step and null steps, there is a possible “kink” in one or more of

the functions (equivalently a discontinuity in the gradients) and the line search must

make sure that the new linearization point is on the other side of the “kink”. Addition

of the new linearization will lead to a substantial modification of the search direction

[131].

In closing, it is important to note that line search plays a much more vital role in

nonsmooth algorithms than in differentiable optimization. This is primarily because

there is no guarantee that a direction obtained from the direction finding problem is

indeed a descent direction for the problem. The strategies implemented here are still

simplistic and more sophisticated strategies must be employed for a faster and more

robust convergence.

7.5.6 Formal Statement

Step 1: Initialization: Assume that a feasible point x1 ∈ C is available, i.e., assume

that

G(x1) ≤ 0.

(a) Set the maximum bundle sizes |Jkf |max and |JkG|max. Initialize the prob-

lem as follows:

Set k = 1, y1 = x1,

f 1
1 = f(y1), G1

1 = G(y1),

σ1
f = ξf1 ∈ ∂f(y1), σ1

G = ξG1 ∈ ∂G(y1),

J1
f = {1}, J1

G = {1}.

(b) Set the line search parameters: m ∈ (0, 1) a measure of decrease,

usually less than 0.5, t̄ ∈ (0, 1] a threshold for a long serious step,

tnull > 0 a minimum stepsize at which a step is declared a null step,

and tmax ∈ [t̄, 1] a maximum stepsize permitted for both serious and
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null steps.

Step 2: Direction Finding Problem: Solve the following linear program:

min
v,d

v

v − ξfjd ≥ fkj − f(xk), ∀j ∈ Jkf

v − ξGj d ≥ Gk
j , ∀j ∈ JkG

v − σk
fd ≥ fkσ − f(xk)

v − σk
Gd ≥ Gk

σ

dLk ≤ d ≤ dUk

where the bounds on the direction are set to:

dLk = xL − xk, dUk = xU − xk.

Denote the solution as (vk,dk). If infeasible, terminate immediately.

Step 3: Line search:

(a) Find largest number tkL ∈ {tmax, tmax

2
, tmax

4
, tmax

8
, . . .} that satisfies

i. f(xk + tkLdk) ≤ f(xk) +mtkLvk,

ii. G(xk + tkLdk) ≤ 0,

iii. xL ≤ xk + tkLdk ≤ xU ,

iv. tkL ≥ t̄.

(b) If such a tkL > 0 exists, take a long serious step. Set xk+1 = xk + tkLdk,

yk+1 = xk+1. Set tkR = tkL.

(c) If (i) and (ii) hold, but tnull ≤ tkL < t̄ accept a short serious step

xk+1 = xk + tkLdk, yk+1 = xk + tkRdk where tkR is known as below.

(d) If tkL < tnull implying (i) and/or (ii) are violated for all tkL > tnull, accept

a null step. Set tkL = 0, xk+1 = xk, yk+1 = xk + tkRdk where tR is known

as below.
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In both of above cases, tkR ∈ [t̄, tmax] violates at least one of (i) and (ii) and

has been found in the search for tkL above.

Step 4: Update RHS of linearizations : Update the RHS of linearizations as follows:

fk+1
j = fkj + tkLξ

f
jdk, ∀j ∈ Jkf

f̂k+1
σ = fkσ + tkLσ

k
fdk

Gk+1
j = Gk

j + tkLξ
G
j dk, ∀j ∈ JkG

Ĝk+1
σ = Gk

σ + tkLσ
k
Gdk

dLk+1 = xL − xk+1

dUk+1 = xU − xk+1

Update fkj − f(xk) term on the RHS of the objective function bundle (i.e.,

∀j ∈ Jkf ) to fk+1
j − f(xk+1). Similarly, replace fkσ − f(xk) by fk+1

σ − f(xk+1)

on the RHS of the aggregated constraint corresponding to the objective

function bundle.

Step 5: Re-solve the direction finding problem with the updated RHS with a (dual)

simplex warm start. Define the multipliers at this step as νk, k ∈ Jkf , µk, k ∈

JkG, νkσ and µkσ respectively.

Step 6: Calculation of Aggregate Linearizations: Calculate normalized multipliers

as follows:

ν̄kj =

ν
k
j /ν

k
f νkf > 0

1/|Jkf | νkf = 0

∀j ∈ Jkf ,

µ̄kj =

µ
k
j/µ

k
G µkG > 0

1/|JkG| µkG = 0

∀j ∈ JkG,

where νkf =
∑
j∈Jk

f

νkj and µkG =
∑
j∈Jk

G

µkj .
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Calculate aggregate linearizations as follows:

σk+1
f =

∑
j∈Jk

f

ν̄kj ξ
f
j , fk+1

σ =
∑
j∈Jk

f

ν̄kj f
k+1
j ,

σk+1
G =

∑
j∈Jk

G

µ̄kjξ
G
j , Gk+1

σ =
∑
j∈Jk

G

µ̄kjG
k+1
j .

Step 7: Subgradient Selection:

(a) If |Jkf | ≤ |Jkf |max, skip this step. Find the first index p ∈ Jkf such that

νkp = 0. Reset Jkf = Jkf /{p}.

(b) If |JkG| ≤ |JkG|max, skip this step. Find the first index p ∈ JkG such that

µkp = 0. Reset JkG = JkG/{p}.

Step 8: Cut Addition: Calculate ξfk+1 ∈ ∂f(yk+1), ξGk+1 ∈ ∂G(yk+1)

fk+1
k+1 = f(yk+1) + ξfj (xk+1 − yk+1) = f(yk+1) + (tkL − tkR)ξfjdk

Gk+1
k+1 = G(yk+1) + ξGj (xk+1 − yk+1) = G(yk+1) + (tkL − tkR)ξGj dk

Set Jk+1
f = {k + 1} ∪ Jkf , Jk+1

G = {k + 1} ∪ JkG.

Step 9: Termination Test: Terminate if either of the following conditions is true

(a) ‖dk‖ < εd, vk ≤ 0 and k > Nmin,

(b) k > Nmax.

Step 10: Continue: Set the LP solution procedure to primal warm start (since new

constraints have been added to the problem). Set k = k + 1. Go to Step 2.

Notes

1. In the literature implementations of similar algorithms, only a single direction

finding problem is solved instead of the two here. The main reason for this is to

exploit the LP simplex warm start by first updating the RHS of the constraints

(dual simplex warm start) and then adding new constraints (primal simplex

warm start). An additional reason is to simplify the implementation segments
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associated with data storage and LP solver queries.

2. As was already described, most literature methods solve a QP obtained from

Program (PBDFP) (page 199). The standard practice is to solve the dual of

this QP. In the QP formulation, the descent direction is a linear combination

of objective and constraint bundle subgradients (and also linear constraints if

present) at the current iteration1. This provides a direct parallel with simple

gradient based methods like steepest descent.

3. The aggregation of linearization can be turned off and in numerical experiments

does not seem to impact the performance, possibly because of the theoretical

issues outlined in Remark 7.5.10 (page 205) or because the bundle is sufficiently

large already.

4. The minimum iteration limit is to make sure that the bundle is full to avoid

false convergence in the first few steps.

5. If the functions involved in the original convex program are McCormick re-

laxations, function evaluation are only valid within the interval in which the

relaxations are constructed. Therefore, each step of the algorithm should rule

out the possibility of even small bound violations for the iterates and lineariza-

tion points. Minor bound violations (on the order of 10−8) have been observed

to severely impact the performance of algorithm. The possibility of a bound

violation when making a full step is the reason why an additional parameter

tmax (to limit the maximum possible step) and redundant bounds checks are

employed in the line search procedure.

6. The algorithm behavior is extremely sensitive to scaling. In particular, an

unscaled problem can result in slow convergence.

1This follows from the KKT conditions for QP. However, the optimality conditions for LP do not
yield this result. A possible route to proving this result for LP may be the representation theorem
for polyhedrons.
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7.5.7 Finding a Feasible Point and Detection of Infeasibility

As can be noted from the formal statement of the algorithm, a feasible point is

required to start the algorithm. Moreover, in a global optimization framework, a

certain number of subproblems will eventually be infeasible and this needs to be

robustly detected. Locating a feasible point and detecting infeasibility remain the

biggest challenges for the presented framework. The following two options have been

investigated:

1. Convert program (ECP) into a penalty representation and apply the bundle

method to this program instead of original program

min f(x) + cmax{0, G(x)} (PCP)

x ∈ C ⊂ Rn

where c > 0 is a penalty parameter. This approach altogether does away with

the requirement of a bundle algorithm for nonlinear constrained optimization.

However, it has been found to be not very reliable, possibly because of the sim-

plistic formulation used here. Using an unconstrained bundle method in this

way has been observed to result in the iterates tending to oscillate between fea-

sibility and infeasibility. A barrier function can be implemented in conjunction

with the above formulation to avoid the iterate leaving the feasible region (that

was not attempted).

The problem above belongs to the general class of penalty methods. There are

various choices of penalty functions and methods for updating penalty param-

eter ck in sequences of penalty problem solutions. It is possible to integrate

penalty parameter updates directly into the direction finding problem in the

bundle algorithm, i.e., formulate the direction finding problem corresponding

to program (PCP) and at the direction finding problem k employ a different

penalty parameter ck depending on the information available so far. This ap-

proach was cursorily attempted unsuccessfully, but was not investigated seri-
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ously. Nevertheless, it does seem promising and attractive and may be useful

to explore theoretically and numerically.

One of the serious drawbacks associated with these methods is controlling the

magnitude of the penalty parameter. The problem can become severely ill-

conditioned if the magnitude of the penalty parameter is too large (because

the subgradient to the objective is ξfj + cξGj outside the feasible region). The

direction finding problems have been observed to fail in such cases. On the

other hand, a small penalty parameter may be simply ineffective to drive the

problem into the feasible region. Therefore, a tight control is required on the

penalty parameter magnitude that is difficult to achieve in practice. Finally, as

indicated earlier, this can be combined with a barrier method. Once feasible,

the penalty term can be replaced by a barrier function.

2. Another approach is to solve a standalone feasibility problem and to switch to

a normal bundle approach once a feasible point is detected. The form of the

feasibility problem is as follows:

minG(x) (FP)

x ∈ C ⊂ Rn

If the optimal value of this program is positive then the problem is infeasible.

If a feasible point is detected, the main solver can be started.

The latter option is employed in this work. The feasibility detection algorithm is

almost the same as the main algorithm presented with a different termination criteria.

Statement

Step 1: Initialization:

(a) Get the maximum bundle size |JkG|max (same as the original algorithm).
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Initialize the problem as follows:

Set k = 1, x1 ∈ [xL,xU ], y1 = x1,

G1
1 = G(y1), σ1

G = ξG1 ∈ ∂G(y1), J1
G = {1}.

(b) Set line search parameters: m ∈ (0, 1) a measure of decrease, usually

less than 0.5, t̄ ∈ (0, 1] a threshold for a long serious step, tnull > 0

minimum stepsize at which a step is declared a null step, and tmax ∈

[t̄, 1] a maximum stepsize permitted for both serious and null steps.

Step 2: Direction Finding Problem: Solve the following linear program:

min
v,d

v

v − ξGj d ≥ Gk
j , ∀j ∈ JkG

v − σk
Gd ≥ Gk

σ

dLk ≤ d ≤ dUk .

Denote the solution as (vk,dk). If infeasible, terminate immediately.

Step 3: Line search: Find largest number tkL ∈ {tmax, tmax

2
, tmax

4
, tmax

8
, . . .} that satis-

fies

(a) G(xk + tkLdk) ≤ G(xk) +mtkLvk,

(b) xL ≤ xk + tkLdk ≤ xU ,

(c) tkL ≥ t̄.

Decide on a (short or long) serious and null step as in the previous algorithm.
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Step 4: Update RHS of linearizations : Update RHS of linearizations as follows:

Gk+1
j = Gk

j + tkLξ
G
j dk, ∀j ∈ JkG

Ĝk+1
σ = Gk

σ + tkLσ
k
Gdk

dLk+1 = xL − xk+1

dUk+1 = xU − xk+1

Step 5: Re-solve the direction finding problem with the updated RHS with a (dual)

simplex warm start. Define the multipliers at this step as µk, k ∈ JkG and µkσ
respectively.

Step 6: Calculation of Aggregate Linearizations: Calculate normalized multipliers

as follows:

µ̄kj =

µ
k
j/µ

k
G µkG > 0

1/|JkG| µkG = 0

∀j ∈ JkG.

where µkG =
∑
j∈Jk

G

µkj . Calculate aggregate linearizations as follows:

σk+1
G =

∑
j∈Jk

G

µ̄kjξ
G
j , Gk+1

σ =
∑
j∈Jk

G

µ̄kjG
k+1
j

Step 7: Subgradient Selection: If |JkG| ≤ |JkG|max, skip this step. Find the first index

p ∈ JkG such that µkp = 0. Reset JkG = JkG/{p}.

Step 8: Cut Addition: Calculate ξGk+1 ∈ ∂G(yk+1)

Gk+1
k+1 = G(yk+1) + ξGj (xk+1 − yk+1) = G(yk+1) + (tkL − tkR)ξGj dk

Set Jk+1
G = {k + 1} ∪ JkG.

Step 9: Termination Test:

(a) If G(xk+1) ≤ 0: Problem is feasible. Preserve JkG. Call the main

algorithm and pass xk+1 and JkG.

(b) If vk > 0 and k > Nmin, problem is infeasible because the direction
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finding problem underestimates the value of program (FP). Declare

infeasibility.

Step 10: Continue: Set LP solution procedure to primal warm start (since new

constraints have been added to the problem). Set k = k + 1. Go to Step 2.

Notes

1. A cycling behavior has been occasionally observed in the line search proce-

dure: the direction finding solution and line search results in a null step, a new

linearization is added, however, the next iteration generates exactly the same

direction again and algorithm is unable to move. One of the possible solution

for this problem that works in some cases is to reduce tR as follows if more than

one null step with same direction occurs, so that a different linearization point

is generated. This strategy has also been incorporated in the main solver line

search.

{tmax, t̄+
tmax − t̄

2
, t̄+

tmax − t̄
4

, . . .}

This procedure does have an important potential benefit. If the problem is feasible,

not only does it locate a feasible point but also populates the constraint bundle JkG,

so that the main algorithm can be “warm-started”.

7.5.8 Implementation

The above algorithms have been implemented in C++. CPLEX 11.1 is used as

the LP solver. The algorithm implementation uses CPLEX Concert Technology for

easy manipulation of constraints. CPLEX Concert Technology data structures are

employed to store the constraints. Warm starts are as per CPLEX defaults and not

explicitly specified as in the statement of the algorithm. It is trivial to extend the

implementation to be able to solve QP direction finding problems. In fact it is only

a matter of updating the objective. However, sophisticated strategies are required

for the weight-updating procedure (for updating uk in Program (PBDFP), page 199)

and hence, this was not attempted in this work.
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For large-scale problems which may involve solution of tens of thousands subprob-

lems, it may eventually become important to re-implement (a part of the/the entire)

algorithm in plain C/FORTRAN style instead of the C++ based Concert interface to

allow for further code optimization. However, for the time being there are substan-

tial improvements to be made in the algorithm itself and hence, this option is worth

considering only if code-profiling indicates substantial gains are possible by doing so

and there are no further easier avenues for improvement in the procedure.

7.5.9 Future Work

1. The line search strategies need to be improved. As has already been pointed out,

a direction obtained from the direction finding problem need not be a descent

direction. Moreover, there is potential for algorithm to get stuck at kinks in

the functions and gradients. The nonsmooth optimization literature contains

several sophisticated and complicated line search strategies to overcome some

of these hurdles. Such line search strategies can improve the robustness of

algorithms.

2. The direction finding problem can be formulated as a quadratic program instead

of an LP using trust region concepts. This provides an additional algorithm pa-

rameter that can be tuned using problem geometry to limit step size. Moreover,

this can also resolve some of the theoretical and convergence difficulties associ-

ated with using LP for the direction finding problem.

3. There is substantial work left for robust detection of infeasibility of the original

nonsmooth convex program as well as location of a feasible point for the pro-

gram if the user provided initial guess is infeasible in the nonlinear constraints.

Infeasibility of the original program does not always result in infeasibility of

direction finding problem. Instead, in several instances it can result in a com-

plete breakdown of the procedure and no way to update the current iterate, e.g.,

vk > 0 and d = 0, possibly because the core assumption to the improvement

function formulation no longer hold. A feasibility phase has been implemented
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as discussed before to solve minG(x). The apparent advantage of this proce-

dure is that if it does succeed in finding a feasible point, the constraint bundle

is already populated so that the performance of the main algorithm may be

better. Unfortunately, numerical experiments indicate that this approach is not

very robust, although it does work in most cases. It suffers from several prob-

lem, e.g., cycling as described earlier and inability to improve objective value.

Improved heuristics in the feasibility phase may hold the key for robustness.

For example, a simple heuristic to add linearization points to the bundle at

random corners of the hyper-rectangle defined by bounds was implemented to

break out of the zero direction norm loops in the feasibility phase and thereby

ascertain infeasibility for such problems, which seems to work at least in some

cases. A separate customized line search procedure for the feasibility phase may

also help to certain extent to avoid breakdown.

It may be possible to test vk > 0 to detect infeasibility under certain assump-

tions depending on the nature of the functions involved. This can improve the

robustness of the algorithm. However, it is important to check if this assump-

tion holds for the specific class of problem. Usually the sequence {v1, v2, v3 . . .}

starts below zero (recall that H(y; xk) < H(xk; xk) = 0 if y − xk is a de-

scent direction) and increases monotonically with each iteration and eventually

should approach zero as algorithm converges (because H(x∗; x∗) = 0 and no

descent direction is available). If the sequence crosses zero or starts above zero

for a well-behaved problem, it is usually a strong indication that the problem

is infeasible. However, this is not guaranteed by definition of the improvement

function. It may be possible to deploy a heuristic based on this.

4. The convergence of the algorithm is sensitive to the scaling of the problem as

indicated earlier. For example, a slow rate of convergence (and often an increase

in time required for convergence by several times) is observed for problems that

have variables varying over just two orders of magnitude. For most engineering

problem, a variation over a couple of orders of magnitude is not something
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unusual. Furthermore, this issue needs to be addressed within the context

of using this class of algorithms as a lower bounding procedure in a global

optimization framework because even a well-conditioned problem can become

ill-conditioned after several branching operations depending on the branching

heuristics used. It is therefore preferable to implement an automatic scaling

and conditioning of the problem within the algorithm itself.

5. There is substantial literature1 on variants of cutting plane methods. Several

ideas used to accelerate convergence and enhance robustness of these methods

can be extended and used to improve the algorithm presented earlier.

6. Subgradient aggregation does not seem to offer any significant benefits in prac-

tice and in fact has been turned off for case studies described later. There may

be theoretical reasons for aggregation being ineffective as outlined in Remark

7.5.10 (page 205), which need to be resolved before putting further effort into

an aggregation strategy. Alternatively, lack of any benefits from aggregation

may be attributed to a larger than required bundle being employed (although a

smaller bundle does seem to impact the convergence adversely). A fine tuning

of the algorithm may lead to a smaller bundle and therefore may see benefits of

aggregation as well as cheaper direction finding solutions. However, there seems

to be another problem with subgradient aggregation, which seems to indicate

that a more sophisticated handling than simple summing up the constraints

is required. The simple approach can make the direction finding problem ill-

conditioned resulting in occasional CPLEX failures. This seems to indicate a

more intelligent strategy for aggregation is needed: some kind of processing or

scaling of multipliers, selective aggregation instead of including all constraints,

based on a threshold of multiplier magnitudes and so on.

1For example, see Hiriart-Urruty and Lemaréchal [129], Chapter XV. Acceleration of Cutting
Plane Algorithm: Primal Forms of Bundle Methods, page 275.
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7.6 Lower Bounding Problem

The lower bounding calculation sequence is implemented in terms of libMC objects

to calculate convex relaxations and the corresponding subgradients. The resulting

convex but nonsmooth problem is underestimated by constructing its polyhedral ap-

proximation to obtain a lower bounding linear programming (LP) relaxation to the

original nonconvex program. The bundle algorithm in this context is used primarily

as a method to construct a polyhedral approximation of the feasible set and objective

function and, therefore, to generate a linear programming (LP) relaxation and not

directly as a method to solve the nonsmooth convex program. Simplex-based solution

methods for LP provide a guarantee to detect optimality or infeasibility for the lower

bounding problem (unboundedness is not possible in LP relaxations because the host

set C is bounded) and therefore more robust and reliable than the nonlinear convex

relaxations.

The maximum iteration count for the solver Nmax is set to a small number of

iterations, usually, a number larger than (but comparable to) the maximum bundle

size, and roughly an order of magnitude lower than required for a positive conver-

gence test for the bundle method. The bundle obtained at the end of the bundle

method termination can be transformed to the following LP relaxation (polyhedral

approximation) of the nonsmooth convex program in direction finding form1:

min
v,d

v (LPR)

v − ξfjd ≥ fkj , ∀j ∈ Jkf

−ξGj d ≥ Gk
j , ∀j ∈ JkG

xL − xk ≤ d ≤ xU − xk.

Lemma 7.6.1. The solution value v∗ of Program (LPR) bounds from below the op-

1Aggregated constraints are not shown here to simplify presentation. However, the relaxation
argument in Lemma 7.6.1 applies to aggregated constraints (transformed to the same form as the cor-
responding constraints in Program (LPR)) as well since they are simply positive linear combinations
of corresponding constraints in Program (LPR).
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timal solution value of Program (ECP) (page 196). Denote an optimal solution of

Program (LPR) as d∗. Consider an LP relaxation of Program (ECP) that is con-

structed by linearizing objective function at {yj : j ∈ Jkf } and linearizing total con-

straint function at {yj : j ∈ JkG}. Then an optimal solution of this relaxation can

be constructed by taking a full step, xk + d∗, where xk was the last iterate (in the

algorithm presented in 7.5.6), which was used to update RHS of bundle linearizations

in the direction finding problem.

Proof. Program (ECP) (page 196) can be stated equivalently as:

min
v,x∈Rn

v

v ≥ f(x)

0 ≥ G(x)

xL ≤ x ≤ xU .

Construct a polyhedral approximation to the above program by linearizing f at points

corresponding to objective function bundle index Jkf and forG at points corresponding

to constraint bundle index JkG at kth iteration.

min
v,x∈Rn

v

v ≥ f(yj) + ξfj (x− yj), ∀j ∈ Jkf

0 ≥ G(yj) + ξGj (x− yj), ∀j ∈ JkG

xL ≤ x ≤ xU .

The above is an LP relaxation to convex program (ECP) and therefore its optimal

value v∗ underestimates the solution value of (ECP). Denote a solution of the above

program as x∗. Using the definitions of fkj and Gk
J from Relationship L2 (page 208),
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it can be equivalently stated as:

min
v,x∈Rn

v

v ≥ fkj + ξfj (x− xk), ∀j ∈ Jkf

0 ≥ Gk
j + ξGj (x− xk), ∀j ∈ JkG

xL ≤ x ≤ xU .

Define d = x− xk. Substituting and rearranging:

min
v,d∈Rn

v

v − ξfjd ≥ fkj , ∀j ∈ Jkf

−ξGj d ≥ Gk
j , ∀j ∈ JkG

xL − xk ≤ d ≤ xU − xk.

This is Program (LPR). Therefore, the constructed LP relaxation can be transformed

to Program (LPR). Direction d̂ = x∗−xk is clearly feasible in the above program with

an objective value v∗. Assume however, that d̂ is not optimal in (LPR), i.e., ∃d̄ ∈ Rn

that is feasible in (LPR) and has a solution value v̄ < v∗. If so, one can construct

a new solution x̄ = xk + d̄ to the LP relaxation with a solution value v̄ < v∗. This

violates the assumption that x∗ is an optimal solution to LP relaxation. Therefore,

optimal solution value of (LPR) is v∗ and any solution of (LPR), e.g., d∗ corresponds

to an optimal solution xk + d∗ of the LP relaxation. This completes the proof.

The LP relaxation is also used to detect infeasibility. This relaxation should

become infeasible (either immediately or after few branching steps) if the original

lower bounding convex problem is infeasible. The bundle algorithm implementation

can detect infeasibility in certain circumstances, however it may also get stuck at an

iterate unable to find a reasonable stepsize or descent direction as described earlier.

In such cases, it is better to simply extract the bundle, solve an LP relaxation and

detect infeasibility based on it.
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Convex relaxation for childConvex relaxation for parent

LP relaxation for child

LP relaxation for parent

fp*

fc*

Figure 7-3: Need to propagate linearizations for LP relaxations: LP Lower bound
for a child can be worse than the parent even when convex relaxation on the child is
better than the parent

One of the problems associated with using LP relaxations in this manner is that

there is no guarantee that the lower bound will actually improve after a single branch-

ing operation (although, after a large number of branching operations, i.e., in the

limit, the linearizations for children will indeed improve). For example, a situation

shown in Figure 7-3 is possible when a child LP relaxation solution is worse than

the parent even though the convex relaxation for the child node is far tighter than

its parent. This behavior is indeed observed in practice. The best lower bound in

the branch-and-bound tree will improve till a certain point in the algorithm iteration

and then drop back again. This can happen several times at intermittent iterations

with successive drops becoming smaller as partitions become smaller. As a result the

algorithm does converge but only very slowly.
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7.6.1 Propagation of Linearizations in Branch-and-Bound Tree

The solution to this problem is to propagate the linearizations from parent to the

child node. The constraints above for the LP relaxations are stored in the node data

structure and are propagated to its children when branching. Let index sets Jpf and

JpG denote the bundle inherited from the parent node. At the entry point into the

lower bounding procedure in a child, The LP relaxation generated by the index sets

Jpf and JpG is formed with the new child bounds. The LP relaxation is solved and

a full step is taken to update the initial point (provided by the branch-and-bound

procedure), so that it is feasible in the child bounds. An explicit check is performed

to make sure that the point so generated is indeed within child bounds and in case,

a component is outside its upper or lower bound by the LP solver bound satisfaction

tolerance or less, it is reset to the corresponding upper or lower bound. The point may

be still infeasible in the original convex program at the child because the objective

and constraints functions of the convex program are convex relaxations are expected

to change in the child node. This point is passed to the main solver routine. If the

LP relaxation is infeasible, the node is declared infeasible.

There are two options for handling these inherited linearizations in the direction

finding problems at the child node. They can be added as normal linear constraints.

The second option is to transform them into their bundle form for the direction finding

problem as follows:

v − ξ
fp

j d ≥ fp
k
j − f(xk), ∀j ∈ Jpf ,

v − ξ
Gp

j d ≥ Gp
k
j , ∀j ∈ JpG.

The second option was chosen based on the relative simplicity of its implementation.

The argument for doing so is as follows. Consider the kth direction finding step
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obtained from minimization of the improvement function at the current node:

min
y∈C

H(y; xk) =


min
y∈C,v

v

v ≥ f(y)− f(xk)

v ≥ G(y).

Let the fp and Gp denote the relaxations at the parent node. Then any (v,y) feasi-

ble in the above convex program (with the feasible set corresponding to current node)

is not cut off from the direction finding problem if one adds additional constraints of

the form

v ≥ fp(y)− f(xk),

v ≥ Gp(y),

provided the relaxations on parent and child satisfy the following property1

f(y) ≥ fp(y), G(y) ≥ Gp(y), ∀y ∈ C ⊂ Cp,

where C is the host set at the current node and Cp is the superset at the parent

node. Therefore an equivalent representation of the convex program minimizing the

improvement function at xk is as follows:

min
y∈C,v

v

v ≥ f(y)− f(xk)

v ≥ G(y)

v ≥ fp(y)− f(xk)

v ≥ Gp(y).

1This has been shown to be true for McCormick relaxations by Joseph K. Scott (currently at
Process Systems Engineering Laboratory, MIT), however, the result is unpublished at the time of
writing of this thesis.
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The polyhedral representation of the above can be represented using the notation in

Section 7.5.2:

min
y∈C,v

v

v ≥ f(y)− f(xk) ≥ f̂k(y)− f(xk),

v ≥ G(y) ≥ Ĝk(y),

v ≥ fp(y)− f(xk) ≥ f̂kp (y)− f(xk),

v ≥ Gp(y) ≥ Ĝk
p(y),

and finally obtain the following problem for the direction finding problem:

min
v,d

v

v − ξfjd ≥ fkj − f(xk), ∀j ∈ Jkf

v − ξGj d ≥ Gk
j , ∀j ∈ JkG

v − ξ
fp

j d ≥ fp
k
j − f(xk), ∀j ∈ Jpf

v − ξ
Gp

j d ≥ Gp
k
j , ∀j ∈ JpG

dLk ≤ d ≤ dUk .

Inherited linearizations are propagated as is through the direction finding problem

and not aggregated or dropped even if they are inactive. Also note that the RHS of

the inherited constraints requires an update as per Step 4 (page 214) in the formal

statement of the algorithm (Section 7.5.6). Sets Jkf and JkG are passed to the children

of the current node on branching while the inherited linearizations are dropped.

7.6.2 Linearization Propagation and Feasibility Phase

The inherited constraint linearizations are passed on to the feasibility phase if the

solution of the initial LP constructed from inherited parent linearization (on entry to

the lower bounding procedure) yields a solution point that is infeasible in nonlinear

constraints. The constraint linearizations are passed back to the main solver if the
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problem is found feasible. If the feasibility phase exceeds the maximum number of

iterations without locating a feasible point, the constraint bundle is extracted and

combined with the linearizations inherited from the parent node to generate an LP

relaxation at this node. This LP relaxation is solved to generate a lower bounding

value for the node. If this LP relaxation is infeasible, the node is declared infeasible.

7.7 Upper Bounding Problem

The upper bounding problem is implemented as exactly the same computer calcula-

tion sequence as the lower bounding problem, however, now ADOL-C [132] objects are

used for implementing the calculation sequence (instead of libMC objects). ADOL-C

[132] is used to generate gradients of the objective function and constraints with re-

spect to input variables using operator overloading. Simple “tapeless” forward mode in

ADOL-C is used to generate the derivative for simplicity of implementation. SNOPT

[119] is used for local optimization of the resulting reduced NLP. It must be noted

that any information about the sparsity of the problem is lost in this operation and

the Jacobian of the system has to be assumed dense. Therefore, this approach may

not directly scale to very large-scale problems (i.e., problem with several hundred or

several thousand input variables). However, ADOL-C does permit the calculation of

sparsity in tape mode but this has not been explored in this work.

It is also possible to avoid solving upper bounding problem at every node. For

example, it is possible to attempt an upper bounding solution periodically every few

nodes (instead of each node which has not been proven infeasible or fathomed by

value dominance). Alternatively, for nodes, where lower bounding solution is feasible

in the upper bounding feasible set, a simple objective function evaluation can provide

an upper bound for the node.

232



7.8 Branch-and-Bound Algorithm

The Branch-and-Bound is implemented in C++. The node data structures are able

to propagate the objective function and constraint bundles from parent to child node.

Simple range reduction heuristics are implemented for bound constraints [133] using

the duality multiplier corresponding to bound constraints to tighten the bounds. This

scheme cuts off part of the feasible regions that is value-dominated, i.e., where the

lower bound value is greater than the current best upper bound available in the

tree. Let λLi and λUi denote the duality multipliers corresponding to lower and upper

bounds respectively corresponding to xi. Let L be the solution of the lower bounding

problem at this node and let Ub be the current best upper bound available in the tree.

Then the bounds can be tightened in the following way for variable xi

xUi = min

{
x̄Ui ,

(
x̄Li −

L− Ub
λLi

)}
,

xLi = max

{
x̄Li ,

(
x̄Ui +

L− Ub
λUi

)}
,

where x̄Ui and x̄Li are the original upper and lower bounds corresponding to the current

node. Note that the actual bounds reduction is carried out on bound on d since the

LP relaxations is in terms of d from which the above relationships can be deduced.

7.9 Implementation

An overview of the implementation is shown in Figure 7-4. The network and NLP

data structures are implemented as C++ templates. Exactly the same calculation

sequence and the corresponding data structures are implemented in terms of different

underlying objects, i.e., libMC and ADOL-C for lower and upper bounding implemen-

tations respectively. C++ templates avoid the duplication of the same code between

the upper and lower bounding problems for different objects or more precisely, they

allows for automatic generation of the same code by the C++ compiler for objects

from libMC and ADOL-C for lower and upper bounding problems. The actual cal-
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culation sequences are implemented with simple libMC and ADOL-C object arrays

to speed up computation. The book keeping to map the plain array variables that

are allocated in NLP data structures to the actual network variables is done by the

object-oriented representation of the network. The calculation sequence is generated,

compiled and loaded on the fly using calculation fragments for each network element

defined in the network data structures.

7.10 Preliminary Case Studies

Two preliminary case studies are presented to demonstrate the approach presented

so far. The networks corresponding to case study A and B are presented in Figure

7-5 and 7-6 respectively. Best lower bound is used as a node selection heuristic and

largest absolute diameter is used for branching variable selection heuristics in the

branch-and-bound algorithm. The maximum number of iterations, objective bundle

size and constraint bundle size for the bundle solver are all set to n + 5 where n

is number of variables. m = 0.5, t̄ = 0.1 and tmin = 10−12 are used as line search

parameters. The results are presented in Table 7.1. The CPU times shown in the

table are on an Intel Core Duo 2.16 GHz processor running Linux kernel 2.6. The

source code was compiled using GCC 4.2 with optimizations.

The number of nominal variables is the number of variables that will be required

to model the problem in a conventional NLP framework. This number is estimated

as follows. The gas composition is assumed to vary between wells belonging to the

same field (as opposed to the infrastructure model presented earlier). Therefore, 12

variables are required for modeling of a well (volumetric production rate, 8 specieswise

molar rates, 2 pressures, NGL production rates). Each arc (including the compressor)

requires 9 variables (one volumetric flowrate and 8 molar flowrates). Each field and

demand requires 10 variables (volumetric rate, 8 molar rates and a pressure). Each

compressor inlet and outlet, and junctions require a pressure. Finally, each demand

requires 10 variables, volumetric and molar delivery rates and a pressure. The actual

number of variables is the actual number of input variables in the reduced-NLP.
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Figure 7-5: Network corresponding to case study A

Figure 7-6: Network corresponding to case ctudy B
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Table 7.1: Relaxation of algorithms applied to upstream gas
networks: Preliminary case studies

Case study Number of variables CPUs Delivery
Nominal Actual hm3

A (14 Wells, 3 fields, 1 demand) 228 19 12a 30.42
B (27 Wells, 5 fields, 1 demand) 433 37 3,280b 73.83

a 2% termination gap
b 3% termination gap

Case study A has only delivery pressure constraints at the demand node. Case

study B has H2S and C2 quality constraints as well as delivery pressure constraints

at the demand nodes. Further details on the parameters and the constraints for the

case studies can be found in Appendix E (page 297).
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

Natural gas supplied a fifth of global energy demand in 2005 and it is forecasted to

continue to supply a similar fraction in the coming decades. Natural gas demand

growth is expected to be especially strong in power generation. It is the cleanest of

all fossil fuels and is therefore also expected to play the role of a transition fuel in

the near future as alternative and greener sources of energy come online and various

technical and business issues associated with these sources are resolved.

Natural gas supply chains have unique characteristics (when compared to oil) due

to the low volumetric energy density of natural gas. The production, transportation

and storage infrastructure is capital-intensive to build, incurs high operational costs

and is specific to natural gas. Natural gas demand is volatile and prone to daily,

weekly and seasonal fluctuations because a large share of consumption is contributed

by electricity generation and commercial/residential heating. It is difficult to alleviate

supply shocks due to the difficulties in storage and transportation. Transportation

and consumption infrastructure are sensitive to gas quality. The entire natural gas

supply chain, right from upstream systems to local distribution networks, is operated

on the basis of contractual agreements. Contracts play a central role in gas markets.

The growth of liquefied natural gas (LNG) trade and spot markets are welcome devel-

opments that are working toward faster development of resources and more flexibility
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in markets.

Supply chain planning in natural gas systems is critically important because the

entire supply chain is much more interdependent and coupled. Disruptions can prop-

agate through the chain and can lead to supply shocks in markets. Supply chain

modeling frameworks can potentially play a crucial role in evaluating scenarios and

ensuring that the effect of disruptions and breakdowns in one part of the system can

be limited in extent and localized. A supply chain planning problem is an inherently

short-term (i.e., over several weeks to several months) planning problem.

A crucial component of any supply chain planning framework is the model of the

upstream production system. Upstream systems are usually centrally operated and

governed by production-sharing contracts between multiple stakeholders and gas sales

agreements with the consumer facilities. Planning frameworks in upstream systems

can help to maximize production infrastructure utilization, aid asset management,

minimize costs, increase returns, honor governing rules and ensure reliable supplies.

A model for operational planning in the upstream natural gas supply chain has

been developed and was presented in Chapters 3 and 4. The model features and

requirements are inspired by the Sarawak Gas Production System (SGPS) in East

Malaysia. The SGPS is used as a real-world case study to demonstrate the application

and benefits of the proposed modeling methodology. This is the first attempt (to the

best knowledge of previous works) to formulate a comprehensive modeling framework

for an upstream production system that includes not only the production infrastruc-

ture model but also a methodology to incorporate the governing rules for upstream

systems, e.g., production-sharing contracts, customer specifications and operational

rules into the modeling framework. The model has two components: the infrastruc-

ture model and the contractual model. The infrastructure model is the model of the

physical system, i.e., wells, trunkline networks and facilities. The contractual model

is model of the governing rules, e.g., customer specifications and production-sharing

contracts. The model formulation and objectives are from the perspective of the

upstream operator.

The infrastructure model incorporates the capability to track multiple qualities of
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gas through the trunkline network and, therefore, to be able to route and blend gas

in the network in such a way that the customer quality specifications are satisfied at

LNG plants. This is an important concern with the rising number of sour fields being

developed throughout the world. Nonlinear pressure-flowrate relationships in wells

and trunkline networks are included for a realistic pressure-flowrate profile because the

infrastructure network is controlled by regulating pressure at certain nodes. Modeling

of complex platform configurations with reversible lines and lines that can be opened

and closed in normal operation provides realistic routing for blending.

The contractual model represents a framework for modeling customer specifica-

tions, complicated production-sharing contracts (PSC) and operational rules that are

central to the operation of the system. PSC modeling is a two-fold challenge: ac-

counting for volumes and converting the logical rules from the system operational

manuals to their mathematical representation. A PSC network representation is pro-

posed to account for volumes and the interactions between different PSC. A formal

approach is proposed to express PSC rules as binary constraints by first defining

atomic propositions to represent excess, priority and transfers states of the PSC, con-

verting PSC rules to logical expressions in terms of these states and finally converting

these logical expressions to binary constraints. The PSC states are linked to the flow

on the PSC network by governing constraints that force the flow to be in line with

the states. Additional logical constraints are required to model the inference of the

rules. Operational rules can also be modeled within the same framework.

Although the model has been inspired by SGPS features, it is general enough to

handle most upstream gas production systems with large consumer facilities. The

modeling framework results in a relatively large nonconvex mixed-integer nonlin-

ear program (MINLP) with tens of binary variables and several hundred to a few

thousand continuous variables and several hundred nonlinear equality constraints.

Numerical experiments indicate that local solution methods can even fail to detect

feasibility in (continuous versions of) such models reliably. This necessitates the use

of global optimization algorithms to solve the problem. The contractual modeling

framework introduces substantial complexity both from a modeling standpoint and
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computational time. A reproducible case study was presented to demonstrate the

entire framework. Three operational objectives: maximization of dry gas, natural gas

liquids (NGL) and sour gas rates have been considered.

The resulting MINLP can be solved with current state-of-the-art approaches [117],

provided close attention is paid to modeling details. The MINLP has multiple so-

lutions with the same optimal solution value. The upstream planning problem has

multiple operational objectives which have priorities as dictated by the contractual

and operational rules. A hierarchical multi-objective approach is proposed to exploit

the fact that there are multiple solutions to the mathematical program and hence, a

lower priority objective can be optimized over the solution set of the higher priority

objective to obtain a win-win scenario. As an example, a 10% increase in the NGL

production rate has been demonstrated for the case study with the same dry gas

production, yielding a substantial increase in revenues for the upstream operator.

The existing approach involves a laborious trial-and-error procedure to satisfy

quality specifications, PSC and operational rules. Also, the modeling approaches

used in the existing framework possibly violate assumptions inherent in the local so-

lution algorithms and there is little guarantee for the quality of the solutions obtained

with such approaches. Hence, compared with the existing approach, the proposed ap-

proach is a theoretically and practically better alternative. A preliminary comparison

with the existing approach indicates that substantial gains may be possible by using

the proposed approach. A dual model approach of having a simulation model (the

existing approach) and a separate planning tool (the proposed approach) calibrated

to each other is recommended as the most promising way forward for the overall

implementation.

The application of reduced-space global optimization to the upstream gas net-

works has been demonstrated. This can significantly lower the number of variables

in the branch-and-bound algorithm. The lower bounding problem was implemented

using libMC and solved by implementing a bundle solver as an iterative linearization

tool. The upper bounding problem was implemented using ADOL-C and SNOPT. A

branch-and-bound algorithm with reduction heuristics and linearization propagation
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was used for the global optimization. It has been demonstrated that the number

of variables in the branch-and-bound can be reduced by a factor of 10 in upstream

network problems and these methods are competitive with current state-of-the-art

approaches.

8.2 Future Work

8.2.1 Conventional Solution Methods

Efficient solution methods for the short-term upstream natural gas planning problem

should be one of the most important areas for future work. Current state-of-the-art

methods can only just barely solve these problems. A minor variation in a bound or

a change of objective is enough to cause a model instance from being solvable within

few hours to not converging in several days. This is especially true for problems

that are just barely feasible, i.e., when the system is operating near its maximum

potential. Given that determining availability under such conditions is one of the

most important applications for such models, this is a major drawback.

One of the most promising approaches in this regard seems to be a successive

solution strategy that involves starting with a strict subset of the constraints so as

to make the problem relatively “easy to solve” and then successively adding more

constraints, bounding the objective using the previous solution value and restarting

the solution procedure from the previous solution point. As shown in Tables 5.1

(page 148) and 5.2 (page 153) for the dry gas rate maximization objective, a direct

convergence to within 10% relative gap takes 41,424 CPU seconds (CPUs), while a

convergence to 1% gap can be achieved in approximately half this time, 19,679 CPUs,

using three successive restarts. The indication that this approach has potential is also

supported by the results for the hierarchical multi-objective optimization presented in

Table 5.3 (page 154) where the first stage objective takes 41,424 CPUs while the other

two combined take only 4,803 CPUs. It is possible to further expand, formalize and

refine this strategy. The success of this strategy is probably related to the structure of
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the problem. The most plausible reason may be that the tight bounding of objective

achieved in such a strategy combined with the structure of the solution helps to prune

a large part of the branch-and-bound tree. If the problem structure permits an easier

or even tighter calculation of these bounds, a successive solution approach can be

further speeded-up. It is also possible to integrate this idea within the branch-and-

bound tree directly instead of multiple branch-and-bound solutions as was done in

Section 5.4. A succession of passes can be made over a single tree each time adding a

subset of constraints and pruning the tree based on value dominance and infeasibility.

The initial passes are expected to be quite fast, as in Table 5.1, since the first two

solution steps take very little time.

A lot of experimentation is needed to come up with heuristics suited to this class

of problems within a branch-and-bound framework by exploiting problem structure.

Not only that, the subproblems solution can also be speeded-up using some of these

customized heuristics. Following are some of the possible options to exploit. A subset

of the constraints in the problem are the classical network constraints for which fast

LP methods are available. The direct relationship between volumetric rates, molar

rates and pressures permits an easy calculation of all these quantities provided a few of

them are known. In fact this is what the algorithmic relaxation approach presented in

Chapter 7 exploits. Even in a conventional branch-and-bound approach, it should be

possible to deduce information about the subproblem on a node much higher up in the

tree based on these features. Another subset of constraints in the infrastructure model

originate from the pooling problem component (mixers and splitters in the network).

Pooling problem formulations and solution methods have been extensively addressed

in the literature and some of these may apply to gas networks. A substantial amount

of literature exists on the simulation and optimization of natural gas transmission

systems, some of which may be applicable to upstream networks. Getting a feasible

contractual binary realization is possible by designing simple heuristics to adjust

infrastructure model bounds and factor the binary variable out from the flows on the

contract network. Additionally, information from the contractual model can be used

to immediately rule out some infrastructure solutions higher up in the tree and deduce
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additional constraints. As an example, quality specifications can permit calculation

of an additional cut on sour field production rate using system-wide molar balances

and maximum delivery rates that may lead to stronger relaxations higher in the tree.

However, some redundant constraints can result in linear dependence in the problem

which can adversely affect some local solution algorithms. A preprocessing step should

be able to resolve linear dependence at least for linear constraints. A preprocessing

step can also reduce the number of variables in the problem by performing a structural

analysis of constraints and symbolic substitutions. However, a good understanding of

the algorithms and their relaxation procedures is required in doing so. The contractual

rules themselves can be processed further using Boolean algebra to deduce additional

integer constraints.

It is also possible to integrate the hierarchical multi-objective approach into branch-

and-bound approach. A first pass with the highest priority objective can made. In

the process of finding the optimal solution, a part of the tree is pruned. The second

pass only needs to consider the left over (both explored and unexplored) part of the

tree. In each successive pass, the part of the tree that remains is reduced having been

pruned by earlier objectives. The implementation of this strategy is expected to be

similar to the implementation of the successive solution strategy in branch-and-bound

framework which was discussed earlier.

Substantial overhead is involved in making multiple solver calls with modeling

languages such as GAMS or AMPL and therefore, any of the strategies suggested

above are unlikely to be efficiently implementable in a higher level modeling lan-

guage. They require in-house implementation of a solution procedure that can be

modified and customized at will. From an implementation perspective, all strategies

requiring multiple branch-and-bound passes require sophisticated memory manage-

ment due to the fact that first few passes may require thousands of nodes which may

be expensive to store if all the required information for subproblem warm-starts is

included. Another advantage of an in-house implementation is that there is a wider

choice of subproblem solvers available. For example, BARON cannot use current

state-of-the-art interior point local solvers.
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8.2.2 Global Optimization of Algorithms

Relaxation of algorithms seems to be a promising approach for solving such problems.

However, there is lot of work done to be able to apply these methods to the upstream

production planning problem robustly. The bundle method implementation needs

to be improved a lot and some key areas for improvement were already identified in

Section 7.5.9 (page 222). For solving bigger problem, source code transformation and

an more efficient calculation of subgradients (reverse mode) may be required. Note,

for example, that although only one subgradient is needed for updating the constraint

bundle, the entire subgradient matrix is being propagated in the current approach.

The upper bounding approach can also improved to exploit sparsity.

A better calculation sequence needs to be derived from a structural analysis of the

system of equations. A unidirectional calculation sequence (in the direction of flow)

does not seem to be the best sequence possible. A better sequence may be derived by

traversing the network in both directions. The modeling approach can also be easily

extended to the calculation of contractual volumes by incorporating the contractual

network in the calculation sequence.

Again, there is much experimentation to be done to come up with improved

branch-and-bound heuristics for reduced-space approaches in general and the ap-

plication to natural gas networks in particular. Probing and other advanced bounds

reduction techniques [117] can also be implemented to further accelerate convergence.

Combining the reduced-space approach with mixed-integer programming to han-

dle discrete decisions is another challenge. It is possible to take binary variables as

input (fixed on a node) and modify the calculation sequences (for that node) as dic-

tated by the binary vector. However, it is not clear what must be done with the

binary variables which have not been branched upon (possibly retain a conventional

formulation till the variable are branched upon). A network calculation procedure

can also aid in generating a feasible binary realization because some of the outcomes

of a discrete decision can be taken as input and a calculation (some kind of reverse

calculation) can determine other variables.
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8.2.3 Modeling Aspects

Determining variable bounds continues to be another big challenge. Their importance

was already discussed in Section 5.2. Two broad approaches, namely, estimation from

physical arguments and from historical operating data were discussed (in the context

of well production bounds) in Section 5.2. Given the fact that the computational

time is extremely sensitive to bounds, varying over orders of magnitude with bounds

variation, and, the sensitivity of the solution point to these variations, this is a crucial

area for further improvements.

There continues to be a substantial amount of work left to refine the modeling

framework. Better pressure-rate relationships that are accurate enough for planning

purposes while simple enough to be handled within global optimization frameworks

are an important focus. For example, sophisticated reservoir and multiphase flow

simulators can be used to generate response data that can be used to obtain better well

performance models. It may also be required to incorporate a simple multiphase flow

model for lines with high condensate flow to account for the effect of liquid transport

on gas flow. More detailed modeling of well and riser platform configurations would

help to predict actuator inputs accurately in the planning solution that can be fed to

a lower level control system. It can therefore allow for preferential routing of gas in

the network for effective blending and result in a routing that is more realistic and

closer to implementation.

A model of the consumer facility (facilities) can be included in the upstream plan-

ning problem if the mode of operation of the system allows for a coordinated control

of the upstream system and the consumer facility. For example, a representation

of the LNG plant in the model can help the LNG plants to respond to upstream

fluctuations. Although the last improvement is not directly applicable to the SGPS,

as the LNG plants are owned by a third party, it is true for several other gas pro-

duction systems where the upstream operator also owns the liquefaction facility. A

combined operation of the LNG plant and the upstream system can help the LNG

plant and shipping facilities to adapt to the changing state of the upstream system
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and therefore move to a new steady state. For example, if there is a breakdown in

a field, the delivery amount, pressure, condensate amount and composition of feed

gas will change and LNG plant operating conditions need to undergo a corresponding

change. Equally possible is the flow of information from the LNG plant back to the

upstream system. For example, if the CO2 processing capacity of the plant is reduced

due to a breakdown, the upstream system can temporarily respond by cutting pro-

duction from CO2 rich fields so that the LNG plant can maintain LNG production

rates without sacrificing quality constraints and without any operational difficulties.

If the consumer facility has an LPG plant, a simplified model of the LPG plant in the

model would help to incorporate the objective of maximizing LPG production (this

also is of interest to the upstream operator in the SGPS).

An economic representation of the system could be built on top of the model

presented here where the contractual modeling framework is extended to include

complex commercial and economic rules. Several upstream systems have complicated

contractual clauses that imposes penalties on the operator if the contractual volume

or quality requirements are not met. These can be incorporated in the upstream

planning models to prevent these penalties and to minimize the penalties in the case

when an operational difficulty makes it impossible to meet all the requirements.

More innovative objectives can be considered in this framework. The main product

from an upstream system coupled with a liquefaction (or GTL) system is LNG (or

liquid fuels). If the mode of operation of the system permits, it is more sensible

to target plant operational/economic objectives than the upstream system objective.

This can potentially result in higher returns from the entire system. An objective

based on contractual violations can indicate which contractual violation can lead to

increased production rates. Several other operational objectives such as pressures

at certain nodes, certain qualities and production from certain fields can also be

analyzed. Finally, economic objectives can be included if the model includes an

economic representation of the system.
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8.2.4 Variable Transformations

A network is composed of repeating elements that are more or less similar to each

other with respect to governing equations. Therefore, the constraints representing

these elements and the corresponding “motifs” (i.e., form of terms or cluster of terms

in decision variables) repeat multiple times in the MINLP formulation. It is possible

to use transformed variable definitions to simplify the terms that occur multiple times

(e.g., convert a nonlinear term to a linear term), thereby tightening relaxations. Any

repeating functional form of variables is a candidate for such transformation.

An example is as follows. In the infrastructure model, the pressure variable ap-

pears as a square term more often than as linear term. Therefore, the transformation

of pressure (replace pressure variable by its square) presented in the derivation of the

calculation sequence in Section 7.4 can also be applied within conventional MINLP

approach. Such a transformation reduces the nonlinear terms in the model and there-

fore may make the relaxations tighter. However, the approach presented in Section

7.4 runs into a problem when there are linear equality constraints on pressure. In one

candidate formulation, a square root of the transformed pressure variable appears

(making a previously linear constraint as nonlinear) which can potentially become

ill-conditioned at low pressures (though, all pressures are bounded below by atmo-

spheric pressure). In superficial experimentation, this formulation only marginally

differs in computational time from the original formulation. However, a more serious

investigation is warranted to ascertain performance. If there are only a few linear

constraints involving pressure, a second candidate formulation is possible. A linear

constraint can be formulated in terms of an auxiliary variable and the square of this

auxiliary variable can be set equal to the transformed pressure variable. The benefits

of such an approach are questionable and uncertain since it increases the number of

variables in the problem.

It may be possible to come up with creative transformations that simplify the

MINLP considerably.
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8.2.5 Sensitivity Analysis

A sensitivity analysis needs to be carried out to ascertain the variation of optimal so-

lution value and solution point with respect to parameter values and variable bounds.

Intuitively, the solution is expected to be less sensitive to minor variations in param-

eter values in pressure-flowrate relationships because there is enough slack in the

network to adjust pressure-flowrate profiles as long as bounds permit it. However,

there is a strong dependence of the solution point on variable bounds for the problem.

Not only that, the computational effort required for the problem can vary over orders

of magnitude depending on bounds.

Hence, sensitivity of solution with respect to bounds is one of the important areas

to investigate (and in some sense is also the “easiest” because bounds form RHS of the

constraints, the theoretical foundation for which are available from convex nonlinear

programming). Such an analysis will help by identifying the most sensitive bounds

and thereby direct the effort to estimate them more accurately.

The following are some representative works in the area. Differentiability of the

solution for parametric convex programs appears in Dempe [134]. However, this is a

challenging theoretical problem for nonconvex NLPs and MINLPs. One of the earliest

discussions of shadow prices for nonconvex NLP appears in Gauvin [135]. A discussion

of properties of NLP solutions appears in Gauvin and Janin [136] and Shapiro [137].

Another recent treatment of local sensitivity analysis of multi-valued solution maps

appears in Levy and Mordukhovich [138]. A detail discussion of sensitivity analysis

for optimization problem appears in Bonnans and Shapiro [139].

8.2.6 Implementation Issues

Although implementation of this work in an industrial environment is not strictly a

research problem, there are some outstanding issues that fall between research and

application that need to be addressed. Heuristics for implementations that gener-

ate an “answer” under every possible input with a graceful fallback to local solvers

or feasibility-phase procedures is an important usability concern that cannot be ad-
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equately addressed without a deep knowledge of solution algorithms and problem

structure. A systematic mechanism to trace infeasibility of the model to specific

delivery specifications and contractual rules is needed for a good implementation

because determining the source of infeasibility is not always obvious because the ef-

fect of constraints can propagate through the network to appear far away from the

concerned constraint. An approach to do automatic conversion of the complicated

logical rules to the most favorable integer programming formulation and generation

of a maximum number of redundant constraints (to strengthen relaxations) requires a

good understanding of mixed-integer modeling and algorithms. A proper mechanism

for calibrating the model automatically using historical operating data also needs to

be explored.
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Appendix A

Set Definitions

This section presents the set definitions used in the case study. Figure 3-1 (page 85,

Chapter 3) presents a schematic of the infrastructure network as defined by the arc

and node set definitions presented here. Figure 4-2 (page 118, Chapter 4) does the

same for the PSC network.

Table A.1: Node set definitions (Infrastructure network)

Set ⊂ Elements

N - F23, F23P, F23SW, F6, E11, SC, E11P, RA, RB, RC, M1,

M3, M3P, M4, T, SE, JN, B11, HL, SC1, SC2, SC3, LNG1,

LNG2, LNG3, BN, D35, BY

Np N F23P, F23, F23SW, F6, E11P, SC, E11, RA, RB, RC, M1,

M3P, T, JN, B11, HL, SC1, SC2, SC3, LNG1, LNG2, LNG3,

BN, D35, BY

Ns N F23, F23P, F23SW, F6, E11, SC, E11P, M1, M3, M3P, M4,

SE, JN, B11, HL, LNG1, LNG2, LNG3, BN, D35, BY

Nq Ns F23P, F6, E11P, M1, M3P, JN, B11, HL, LNG1, LNG2,

LNG3, BN, D35, BY

ND Nq LNG1, LNG2, LNG3

NJ Np T, RA, RB, RC, SC1, SC2, SC3

Continued on next page
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Table A.1: Node set definitions (Infrastructure network)

Set ⊂ Elements

Nsc NJ SC1, SC2, SC3

F Ns F23, F23SW, F6, E11, SC, M1, M3, M4, SE, JN, B11, HL,

BN, D35, BY

Fw F F23, F23SW, F6, E11, SC, M1, M3, M4, SE, JN, B11

Fw,nc Fw F23, F23SW, SC, E11, JN

Fpr F B11, F6, E11, M1, M4

Nwp Ns F23P, F6, E11P, M1, M3P, JN, B11, HL, BN, D35, BY

Nwp,m Nwp F23P, E11P, M3P

Nwp,c Nwp F6, M1, M3P, B11

Nx N RA, RB, RC, SC2, M1

Nx,J NJ , Nx RA, RB, RC, SC2

Nx,q Nq, Nx M1

ND,HSP ND LNG1, LNG2

ND,HSM ND LNG3

Table A.2: Platforms serving multiple fields

i ∈ Nwp,m Fi
F23P F23SW, F23

E11P E11, SC

M3P M3, M4, SE
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Table A.3: Arc set definitions (Infrastructure network)

Set ⊂ Elements

A - (F6,RA), (F23SW,F23P), (F23,F23P), (F23P,RA),

(SC,E11P), (E11,E11P), (E11P,RA), (BN,RA), (D35,BY),

(BY,LNG1), (RA,RB), (RB,RC), (M4,M3P), (SE,M3P),

(M3,M3P), (M3P,T), (M1,T), (T,RB), (M1,RC), (JN,M1),

(HL,B11), (B11,RB), TL11, TL21, TL32, TL42, TL53, TL63,

(SC2,LNG3), (SC1,LNG1), (SC2,LNG2), (SC3,LNG3)

Aq A (F6,RA), (F23P,RA), (E11P,RA), (BN,RA), (D35,BY),

(BY,LNG1), (RA,RB), (RB,RC), (M3P,T), (M1,T), (T,RB),

(M1,RC), (JN,M1), (HL,B11), (B11,RB), TL1, TL2, TL3,

TL4, TL5, TL6, (SC2,LNG3), (SC1,LNG1), (SC2,LNG2),

(SC3,LNG3)

Ai A (F6,RA), (F23SW,F23P), (F23,F23P), (F23P,RA),

(SC,E11P), (E11,E11P), (E11P,RA), (BN,RA), (D35,BY),

(BY,LNG1), (M3P,T), (M1,T), (T,RB), (M1,RC), (JN,M1),

(HL,B11), (B11,RB), TL1, TL3, TL6, (SC2,LNG3),

(SC1,LNG1), (SC2,LNG2), (SC3,LNG3)

Ap Aq (F6,RA), (F23P,RA), (BN,RA), (D35,BY), (BY,LNG1),

(M3P,T), (M1,T), (T,RB), (M1,RC), (JN,M1), (HL,B11),

(B11,RB), TL1, TL2, TL3, TL4, TL5, TL6

Ay Aq (RA,RB), (RB,RC), (SC2,LNG3)

Asc Aq (SC1,LNG1), (SC2,LNG2), (SC3,LNG3)

Ax Aq (M1,T), TL1, TL2, TL3, TL4, TL5, (SC2,LNG3)

1(RA, SC1)
2(RB, SC2)
3(RC, SC3)
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Table A.4: Node set definitions (PSC network)

Set ⊂ Elements

L - As, A0, A1, A2, A3, Bs, Fs, B0, B1, B2, B3, Cs, C0, C1, C2, C3,

Ds, D0, D1, D2, D3, Ad, Bd, CDd

Ls L As, Fs, Bs, Cs, Ds, Ad, Bd, CDd

Ld Ls Ad, Bd, CDd

Ll L A0, A1, A2, A3, B0, B1, B2, B3, C0, C1, C2, C3, D0, D1, D2,

D3

Table A.5: Arc set definitions (PSC network)

Set ⊂ Elements

E - (As,A0), (A0,Ad), (A0,A1), (A1,A2), (A2,A3), (Bs,B0),

(B0,Bd), (B0,B1), (B1,B2), (B2,B3), (Cs,C0), (C0,CDd),

(C0,C1), (C1,C2), (C2,C3), (Ds,D0), (D0,CDd), (D0,D1),

(D1,D2), (D2,D3), (A1,B2), (A2,C3), (A3,D3), (B2,C2),

(B3,D2), (C2,B3), (C1,D1), (D1,C1), (Fs, A1), (Fs,B1)

El E (A0,A1), (A1,A2), (A2,A3), (B0,B1), (B1,B2), (B2,B3),

(C0,C1), (C1,C2), (C2,C3), (D0,D1), (D1,D2), (D2,D3)

El,a El (A0,A1), (B0,B1), (B1,B2), (C0,C1), (D0,D1)

El,S El (B2,B3), (D1,D2), (C2,C3)

Et E (A1,B2), (A2,C3), (A3,D3), (B2,C2), (B3,D2), (C2,B3),

(C1,D1), (D1,C1), (Fs,A1), (Fs,B1)

Es E (As,A0), (A0,Ad), (Bs,B0), (B0,Bd) (Cs,C0), (C0,CDd),

(Ds,D0), (D0,CDd)
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Appendix B

Model Parameters

As described in Chapter 5 on the case study, the values of the model parameters in

this section are not related to the actual SGPS model parameters to preserve business

sensitive information.

Table B.1: Well-performance model parameters

W πr,w αw βw λw ϑw σw ςw
bar bar2.d/hm3 bar2.d2/hm6 bar2.d2/hm6 m3/hm3 m3/hm3

B11A 75.39 2.163×10−2 5.616×10−4 3.534 7.285×10+2 49.50 16.61

B11B 78.46 2.287×10−2 5.605×10−4 3.204 6.787×10+2 47.04 17.18

B11C 78.62 2.266×10−2 5.206×10−4 3.628 6.668×10+2 49.79 18.22

B11D 71.45 2.045×10−2 5.190×10−4 3.568 7.987×10+2 45.65 17.27

E11A 54.74 6.160×10−1 9.266×10−5 2.555 3.410×10+3 13.64 13.52

E11B 56.68 6.630×10−1 9.918×10−5 2.78 3.558×10+3 14.94 14.36

E11C 60.05 6.074×10−1 9.082×10−5 2.706 3.700×10+3 13.93 14.52

E11D 52.69 6.701×10−1 9.837×10−5 2.595 3.340×10+3 14.51 14.40

E11E 56.15 6.241×10−1 8.899×10−5 2.433 3.320×10+3 12.54 12.70

E11F 56.50 5.960×10−1 9.096×10−5 2.525 3.255×10+3 14.40 12.21

E11G 49.89 5.831×10−1 9.180×10−5 2.603 3.661×10+3 13.20 13.41

E11H 59.71 6.503×10−1 9.728×10−5 2.648 3.567×10+3 13.32 12.80

E11I 56.77 6.153×10−1 8.749×10−5 2.558 3.224×10+3 14.45 14.37

E11J 54.47 6.661×10−1 8.810×10−5 2.362 3.745×10+3 14.11 12.51

F23A 247.67 1.591×10+0 2.356×10−6 1.576 4.962×10+2 104.55 2.93

F23B 231.76 1.658×10+0 2.170×10−6 1.455 4.653×10+2 108.73 2.80

F23C 266.73 1.603×10+0 2.525×10−6 1.488 5.112×10+2 109.70 2.74

F23D 227.98 1.720×10+0 2.162×10−6 1.444 4.854×10+2 114.70 3.08

Continued on next page
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Table B.1: Well-performance model parameters

W πr,w αw βw λw ϑw σw ςw
bar bar2.d/hm3 bar2.d2/hm6 bar2.d2/hm6 m3/hm3 m3/hm3

F23E 244.14 1.521×10+0 2.160×10−6 1.568 4.607×10+2 114.78 2.87

F23F 245.95 1.522×10+0 2.545×10−6 1.712 5.236×10+2 102.39 3.02

F23G 265.48 1.540×10+0 2.582×10−6 1.493 4.953×10+2 98.16 2.77

F23H 226.21 1.735×10+0 2.189×10−6 1.555 4.971×10+2 99.82 3.00

F23I 271.81 1.699×10+0 2.136×10−6 1.432 4.485×10+2 104.40 3.16

F23J 252.13 1.703×10+0 2.503×10−6 1.428 4.888×10+2 107.87 2.70

F23K 235.67 1.734×10+0 2.559×10−6 1.502 4.981×10+2 97.33 3.05

F23L 266.15 1.543×10+0 2.278×10−6 1.701 4.536×10+2 103.03 2.92

F23M 252.16 1.515×10+0 2.234×10−6 1.441 4.915×10+2 97.98 2.83

F23N 264.42 1.633×10+0 2.147×10−6 1.723 4.833×10+2 114.02 2.84

F23SW 239.26 1.645×10+0 2.358×10−6 1.688 4.895×10+2 105.92 3.06

F6A 44.81 3.673×10−2 8.976×10−4 1.613 6.049×10+2 145.16 12.42

F6B 47.11 3.397×10−2 8.247×10−4 1.527 5.993×10+2 137.00 11.50

F6C 41.81 3.781×10−2 9.758×10−4 1.553 5.708×10+2 136.05 13.44

F6D 44.95 3.344×10−2 9.623×10−4 1.654 6.066×10+2 138.11 13.29

F6E 40.47 3.578×10−2 9.846×10−4 1.558 5.835×10+2 138.56 12.61

F6F 40.83 4.016×10−2 8.238×10−4 1.691 6.467×10+2 141.61 13.41

F6G 43.24 3.770×10−2 8.531×10−4 1.622 5.926×10+2 158.50 12.56

F6H 47.84 3.612×10−2 8.448×10−4 1.496 5.553×10+2 144.54 12.88

F6I 46.02 3.444×10−2 9.426×10−4 1.486 6.637×10+2 145.87 13.00

F6J 47.91 3.644×10−2 8.938×10−4 1.627 6.399×10+2 147.88 12.32

F6K 44.49 3.742×10−2 9.648×10−4 1.578 6.195×10+2 142.81 13.55

F6L 44.19 3.390×10−2 9.100×10−4 1.703 5.889×10+2 135.04 13.11

F6M 45.43 3.568×10−2 8.411×10−4 1.676 5.666×10+2 140.55 12.14

JNA 142.21 1.258×10−1 1.504×10−7 0.724 7.807×10+2 284.16 2.25

JNB 150.50 1.356×10−1 1.468×10−7 0.696 7.518×10+2 274.25 2.13

JNC 145.96 1.378×10−1 1.520×10−7 0.684 7.853×10+2 299.10 2.38

JND 129.31 1.303×10−1 1.375×10−7 0.729 7.548×10+2 278.09 2.16

JNE 152.84 1.292×10−1 1.422×10−7 0.773 7.329×10+2 280.22 2.30

M1A 113.51 8.472×10+0 2.545×10−3 1.868 1.580×10+2 361.62 2.97

M1B 113.81 8.484×10+0 2.651×10−3 1.974 1.476×10+2 358.52 2.79

M1C 102.24 8.608×10+0 2.691×10−3 2.013 1.729×10+2 370.98 2.74

M1D 121.17 8.948×10+0 2.659×10−3 1.761 1.727×10+2 355.33 2.89

M1E 109.27 8.026×10+0 2.358×10−3 1.942 1.483×10+2 370.83 3.09

M1F 107.60 7.784×10+0 2.509×10−3 1.78 1.598×10+2 379.66 3.20

M1G 111.87 8.510×10+0 2.498×10−3 1.695 1.617×10+2 391.33 2.72

Continued on next page
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Table B.1: Well-performance model parameters

W πr,w αw βw λw ϑw σw ςw
bar bar2.d/hm3 bar2.d2/hm6 bar2.d2/hm6 m3/hm3 m3/hm3

M1H 105.22 8.074×10+0 2.325×10−3 1.926 1.566×10+2 345.96 2.99

M3A 69.33 1.888×10−1 3.445×10−4 1.482 1.090×10+3 57.75 8.67

M3B 82.08 1.662×10−1 3.691×10−4 1.621 1.215×10+3 61.18 9.08

M3C 78.36 1.816×10−1 3.481×10−4 1.539 1.048×10+3 58.32 8.21

M3D 73.13 1.657×10−1 3.695×10−4 1.53 1.076×10+3 62.13 9.18

M3E 79.77 1.627×10−1 3.159×10−4 1.642 1.209×10+3 61.00 8.39

M3F 80.46 1.818×10−1 3.815×10−4 1.446 1.160×10+3 61.50 8.40

M3G 82.30 1.825×10−1 3.513×10−4 1.663 1.056×10+3 67.66 9.56

M3H 76.71 1.749×10−1 3.555×10−4 1.617 1.193×10+3 60.95 9.11

M3I 79.49 1.824×10−1 3.375×10−4 1.621 1.033×10+3 58.05 9.71

M3J 72.10 1.577×10−1 3.502×10−4 1.673 1.148×10+3 63.25 8.57

M4A 75.69 1.724×10−1 3.474×10−4 1.573 1.143×10+3 62.21 8.98

M4B 81.38 1.753×10−1 3.316×10−4 1.484 1.219×10+3 64.58 8.28

SCA 142.30 9.924×10−1 6.815×10−3 3.638 2.285×10+3 162.82 12.54

SCB 146.68 1.054×10+0 7.021×10−3 3.577 2.345×10+3 161.38 11.39

SEA 153.40 1.050×10+0 4.298×10−3 3.515 3.853×10+2 401.44 10.00

SEB 141.22 1.154×10+0 4.566×10−3 3.813 3.845×10+2 403.21 9.77

Table B.2: Gas compositions (mole percent)

Field CO2 N2 H2S C1 C2 C3 C4 C5+

E11 9.2341 2.8907 0.0015 73.2353 8.8970 3.0058 0.6258 2.1098
F23 1.6427 1.0500 0.0004 89.1064 2.8060 3.6792 0.9170 0.7983
F6 3.4121 1.2627 0.0038 79.9876 7.6318 4.8226 1.0002 1.8793
M1 5.0408 0.4280 0.0033 81.0281 5.4633 3.5071 2.7518 1.7776
M3 0.9488 0.4465 0.0036 76.2553 7.3721 6.9870 1.1547 6.8320
M4 2.3048 0.2579 0.0048 82.2489 7.2965 3.6886 3.1960 1.0025
B11 8.8511 1.2626 0.0520 80.5107 5.3962 0.5317 0.6486 2.7471
SC 0.2687 0.6999 0.0000 96.1775 1.7790 0.4955 0.1158 0.4635
F23SW 0.6840 0.4068 0.0010 91.4870 4.4357 2.1390 0.4961 0.3504
JN 2.6347 0.1439 0.0003 88.7193 2.6646 3.7095 1.2948 0.8329
SE 2.4263 0.1808 0.0006 87.6063 3.7230 1.4481 2.3271 2.2879
HL 1.5894 0.9714 0.0000 70.0081 5.6934 5.4388 6.5830 9.7160
BY 0.8782 0.2160 0.0000 91.3967 4.5313 1.1332 0.3970 1.4476
D35 0.7177 0.5513 0.0000 83.8315 7.3682 4.6499 0.7337 2.1477
BN 1.4483 0.5193 0.0000 81.0205 4.4047 6.6060 4.2640 1.7372

275



Table B.3: Trunkline parameters

(i, j) ∈ Ap κ(i,j)

bar2.d2/hm6

(RA,SC1) TL1 2.46
(RA,SC1) TL2 5.06
(RB,SC2) TL3 6.10
(RB,SC2) TL4 5.43
(RC,SC3) TL5 7.65
(RC,SC3) TL6 5.11
(F6,RA) 5.33
(F23P,RA) 4.40
(B11,RB) 12.78
(HL,B11) 35.58
(D35,BY) 3062.62
(BN,RA) 97.51
(BY,SC1D) 254.77
(M3P,T) 0.39
(M1,T) 1.17
(T,RB) 2.59
(JN,M1) 3.17
(M1,RC) 21.84

Table B.4: Demand rate bounds

i ∈ ND ΛL
d,i ΛU

d,i

MMscfd MMscfd
SC1D 700 1100
SC2D 600 1300
SC3D 800 1600

Table B.5: Maximum reservoir
pressure

i ∈ Fw πMr,i
bar

E11 187
B11 83
F23 273
F23SW 273
JN 157
M4 84
M3 84
SC 165
F6 50
M1 125
SE 169

Table B.6: Compression power bounds

i ∈ Nwp,c ΨL,i ΨU,i

MW MW
F6 0.01 22.0
B11 0.01 27.0
M3P 0.01 27.0
M1 0.01 20.0

Table B.7: Slugcatcher pressure
bounds

i ∈ Nsc πLd,i πUd,i
bar bar

SC1 60 70
SC2 60 70
SC3 60 70
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Table B.8: Miscellaneous parameter values

Parameter Value Unit Remarks
πsc 1.013 bar -
θsc 288.15 K -
∆π(i,j) 5.0 bar ∀(i, j) ∈ Asc
ηi 0.75 - ∀i ∈ Nwp,c
θm,i 315 K ∀i ∈ Nwp,c
ζ 1.5 -
φ 42.2845 Mmole/hm3 -
%g 0.0283168 hm3/MMscfd -
%L 0.158987 m3/barrel -

Table B.9: Heating values and Molecular weights

k ∈ S γk
a µk

MJ/kg kg/mole
CO2 - 44.010×10−3

N2 - 28.020×10−3

H2S - 34.082×10−3

C1 55.574 16.043×10−3

C2 51.95 30.070×10−3

C3 50.37 44.097×10−3

C4 49.47 58.123×10−3

C5+ 48.72 86.177×10−3

afrom [112], only for k ∈ Sh
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Appendix C

Bounds

As pointed out in Section 5.2 (page 144) in Chapter 5, the variable bounds in the

SGPS model have been obtained from design capacities and historical operating data

that cannot be disclosed. These values therefore have been changed from the values

used in the SGPS model. The bounds can be divided into two categories:

1. Derived Bounds: these bounds are derived from other variables or parameters.

2. Variable specific bounds: these bounds are set individually.

C.1 Derived Bounds

C.1.1 Bounds: Infrastructure Model

The derived bounds are as follows:

1. The bounds on the rates at the LNG plants are as given in Section 4.1 (page

108).

−ΛU
d,i ≤ Qs,i ≤ −ΛL

d,i, ∀i ∈ ND.

2. The bounds on the pressures at the slugcatchers are also given as per Section

4.1 (page 108).

πLd,i ≤ Pi ≤ πUd,i, ∀i ∈ Nsc.

279



3. The molar rate bounds are set using the standard volumetric rate bounds. For

nodes with production term

χi,k φQ
L
s,i ≤ Fs,i,k ≤ χi,k φQ

U
s,i, ∀(i, k) ∈ F × S,

φQL
s,i ≤ Fs,i,k ≤ 0, ∀(i, k) ∈ ND × S,

0 ≤ Fs,i,k ≤ φQU
s,i, ∀(i, k) ∈ Nwp,m× ∈ S.

The relationship between standard volumetric flowrates and molar flowrates in

arcs in given by

0 ≤ Fa,(i,j),k ≤ φQU
a,(i,j), ∀((i, j), k) ∈ Aq × S.

4. For the variables at wells the following bounds are used

0 ≤ QLw,w ≤ σwQ
U
w,w, ∀w ∈ W ,

where QU
w,w is calculated as in the Section 5.2.1 (page 145). The pressure bounds

at wells are given by

πatm ≤ Pb,w ≤ πMr,i , ∀w ∈ Wi, i ∈ Fw,

πatm ≤ Pt,w ≤ πMr,i , ∀w ∈ Wi, i ∈ Fw.

5. Fields for which well performances is modeled:

0 ≤ Qs,i ≤
∑
w∈Wi

QU
w,w, ∀i ∈ Fw,

0 ≤ QLs,i ≤
∑
w∈Wi

QU
Lw,w, ∀i ∈ Fw,
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6. For the well platforms serving various fields,

0 ≤ Qs,i ≤
∑
j∈Fi

QU
s,j, ∀i ∈ Nwp,m.

7. The split fractions should lie between 0 and 1

0 ≤ s(i,j) ≤ 1, ∀(i, j) ∈ Ax.

8. The bounds on the compression variables are given as per Section 3.5 (page 95).

ΨL,i ≤ Wi ≤ ΨU,i, ∀i ∈ Nwp,c.

9. The bounds on the dummy variables for reformulation of constraints in set Ay

0 ≤ wu,(i,j) ≤ PU
i , ∀(i, j) ∈ Ay,

0 ≤ wd,(i,j) ≤ PU
j , ∀(i, j) ∈ Ay.

C.1.2 Bounds: Production-sharing Contracts (PSC) Model

The following is a discussion of the bounds for the PSC model:

1. The supply rates for PSC are bounded above by the production rate of the

corresponding fields

0 ≤ qc,i ≤
∑
j∈Fi

QU
s,j, ∀i ∈ CS.

2. The source and sink production rates in the PSC network are set using the

supply and demand rate bounds

0 ≤ qs,ps ≤
∑
j∈Cs

i

qUc,j, ∀p ∈ C,

QL
s,i ≤ qs,ui

≤ QU
s,i, ∀i ∈ ND.
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where ui ∈ Ls is the demand node in the PSC network corresponding to the

demand node i ∈ ND.

3. The source and sink production rate bounds are used to set arc flowrate bounds

in the demand and supply arcs

qLs,ps
≤ qa,(ps,p0) ≤ qUs,ps

, ∀p ∈ C,

−qUs,pd
≤ qa,(p0,pd) ≤ −qLs,pd

, ∀p ∈ {A,B},

0 ≤ qa,(p0,CDd) ≤ −qLs,CDd
, ∀p ∈ {C,D}.

4. The bounds on the flowrates in arcs representing levels are set using the supply

and demand rates of that production-sharing contract:

eU(pi,pi+1) = qUa,(ps,p0), ∀(pi, pi+1) ∈ El\{(B1,B2), (B2,B3)},

eL(pi,pi+1) = −qUa,(p0,pd), ∀(pi, pi+1) ∈ El.

However the upper bound is not applicable for (B1,B2) and (B2,B3) as there is

a transfer arc terminating at node B1

eU(pi,pi+1) = qUa,(Bs,B0) + tU(Fs,B1), ∀(pi, pi+1) ∈ {(B1,B2), (B2,B3)}.

5. The transfer rate bounds are set using the upstream level arc flowrate bounds

from the receiving production-sharing contract:

tL(pi,qj)
= 0, ∀(pi, qj) ∈ Et,

tU(pi,qj)
= eU(pi−1,pi)

, ∀(pi, qj) ∈ Et, i 6= s,

tU(pi,qj)
= qUs,ps

, ∀(pi, qj) ∈ Et, i = s.
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C.2 Variable Specific Bounds

Table C.1: Trunkline flow bounds

Trunkline QL
a,(i,j) QU

a,(i,j)

MMscfd MMscfd
(F6,RA) 0 1000

(F23P,RA) 0 950

(RA,RB) 0 950

(RB,RC) 0 720

(T,RB) 0 1700

(M1,RC) 0 900

(HL,B11) 0 500

(B11,RB) 0 500

TL1 0 −QL
s,SC1D

TL2 0 −QL
s,SC1D

TL3 0 850

TL4 0 850

TL5 0 900

TL6 0 900

(SC2,SC3D) 0 800

(BN,RA) QL
s,BN QU

s,BN
(D35,BY) QL

s,D35 QU
s,D35

(BY,SC1D) QL
s,BY QU

s,BY +QU
s,D35

(M3P,T) 0 QU
s,M3 +QU

s,M4 +QU
s,SE

(M1,T) %g500 QU
a,(T,RB)

(JN,M1) 0 QU
s,JN

(E11P,RA) QL
s,E11P QU

s,E11P
(SC1,SC1D) QL

a,(TL1) QU
a,(TL1) +QU

a,(TL2)

(SC2,SC2D) QL
a,(TL3) QU

a,(TL3) +QU
a,(TL4)

(SC3,SC3D) QL
a,(TL5) QU

a,(TL5) +QU
a,(TL6)

Table C.2: Pressure bounds

Node PL
i PU

i

bar bar
SC1D 50 70

SC2D 50 70

SC3D 50 70

F23 πatm πMr,F23

F23SW πatm πMr,F23SW

E11 πatm πMr,E11

SC πatm πMr,SC

M1 πatm 150

JN πatm πMr,JN

B11 πatm 150

F23P πatm πMr,F23

E11P πatm πMr,E11

F6 πatm 150

T πatm 150

M3P πatm 150

HL πatm 150

BN πatm 120

D35 πatm 100

BY πatm 95

RA πatm 110

RB πatm 110

RC πatm 110

Table C.3: Compression inlet
pressure bounds

Platform PL
c,i PU

c,i

bar bar
B11 20 πMr,B11

F6 πatm πMr,F6

M3P 30 πMr,SE

M1 πatm πMr,M1

Table C.4: Field rate bounds (no
well performance)

Fields QL
s,i QU

s,i

MMscfd MMscfd
HL 0 600

BN 50 155

D35 40 130

BY 40 125
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Appendix D

Base Case: Optimal Solution

The base case infrastructure solution is graphically shown in Figure 5-1 (page 149)

and the base case PSC solution is shown in Figure 5-2 (page 150).

Total Dry Gas Production : 94.38 hm3/d.

Total Priority Production : 30.37 hm3/d.

Total NGL Production : 21440 m3/d.

D.1 Trunkline Network

(RA,RB) is open.

(RB,RC) is open.

(SC2,LNG3) is open.

M1 production is greater than 500 MMscfd.

All of JN production is being diverted into (M1,RC).
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LNG1

Total delivery rate : -29.45 hm3/d
Delivery pressure : 62.6 bar
Fs,LNG1,CO2 : -1.803×10+1 Mmol/d
Fs,LNG1,H2S : -9.869×10−3 Mmol/d
Fs,LNG1,N2 : -9.792×10+0 Mmol/d
Fs,LNG1,C1 : -1.097×10+3 Mmol/d
Fs,LNG1,C2 : -5.081×10+1 Mmol/d
Fs,LNG1,C3 : -4.356×10+1 Mmol/d
Fs,LNG1,C4 : -1.380×10+1 Mmol/d
Fs,LNG1,C5+: -1.227×10+1 Mmol/d

LNG2

Total delivery rate : -24.62 hm3/d
Delivery pressure : 55 bar
Fs,LNG2,CO2 : -3.073×10+1 Mmol/d
Fs,LNG2,H2S : -1.689×10−2 Mmol/d
Fs,LNG2,N2 : -4.215×10+0 Mmol/d
Fs,LNG2,C1 : -8.890×10+2 Mmol/d
Fs,LNG2,C2 : -4.514×10+1 Mmol/d
Fs,LNG2,C3 : -3.226×10+1 Mmol/d
Fs,LNG2,C4 : -2.240×10+1 Mmol/d
Fs,LNG2,C5+: -1.717×10+1 Mmol/d

LNG3

Total delivery rate : -40.31 hm3/d
Delivery pressure : 55 bar
Fs,LNG3,CO2 : -5.729×10+1 Mmol/d
Fs,LNG3,H2S : -3.076×10−2 Mmol/d
Fs,LNG3,N2 : -6.374×10+0 Mmol/d
Fs,LNG3,C1 : -1.447×10+3 Mmol/d
Fs,LNG3,C2 : -7.415×10+1 Mmol/d

Fs,LNG3,C3 : -5.576×10+1 Mmol/d
Fs,LNG3,C4 : -3.689×10+1 Mmol/d
Fs,LNG3,C5+: -2.668×10+1 Mmol/d

B11

Dry gas production rate :
3.586×10−3 hm3/d

NGL production rate :
1.688×10−1 m3/d

Pressure : 71.99 bar
Compression power : 0.01 MW
Compression inlet pressure : 20 bar
Fs,B11,CO2 : 1.342×10−2 Mmol/d
Fs,B11,H2S : 7.885×10−5 Mmol/d
Fs,B11,N2 : 1.915×10−3 Mmol/d
Fs,B11,C1 : 1.221×10−1 Mmol/d
Fs,B11,C2 : 8.183×10−3 Mmol/d
Fs,B11,C3 : 8.063×10−4 Mmol/d
Fs,B11,C4 : 9.835×10−4 Mmol/d
Fs,B11,C5+: 4.166×10−3 Mmol/d

BN

Dry gas production rate :
4.389× 10+0 hm3/d

Pressure: 83.96 bar
Fs,BN,CO2 : 2.688×10+0 Mmol/d
Fs,BN,H2S : 0.000×10+0 Mmol/d
Fs,BN,N2 : 9.638×10−1 Mmol/d
Fs,BN,C1 : 1.504×10+2 Mmol/d
Fs,BN,C2 : 8.175×10+0 Mmol/d
Fs,BN,C3 : 1.226×10+1 Mmol/d
Fs,BN,C4 : 7.914×10+0 Mmol/d
Fs,BN,C5+: 3.224×10+0 Mmol/d

286



BY

Dry gas production rate :
1.774×10+0 hm3/d

Pressure : 77.92 bar
Fs,BY,CO2 : 6.587×10−1 Mmol/d
Fs,BY,H2S : 0.000×10+0 Mmol/d
Fs,BY,N2 : 1.620×10−1 Mmol/d
Fs,BY,C1 : 6.856×10+1 Mmol/d
Fs,BY,C2 : 3.399×10+0 Mmol/d
Fs,BY,C3 : 8.500×10−1 Mmol/d
Fs,BY,C4 : 2.978×10−1 Mmol/d
Fs,BY,C5+: 1.086×10+0 Mmol/d

D35

Dry gas production rate :
1.133×10+0 hm3/d

Pressure : 100 bar
Fs,D35,CO2 : 3.437×10−1 Mmol/d
Fs,D35,H2S : 0.000×10+0 Mmol/d
Fs,D35,N2 : 2.640×10−1 Mmol/d
Fs,D35,C1 : 4.015×10+1 Mmol/d
Fs,D35,C2 : 3.529×10+0 Mmol/d
Fs,D35,C3 : 2.227×10+0 Mmol/d
Fs,D35,C4 : 3.514×10−1 Mmol/d
Fs,D35,C5+: 1.029×10+0 Mmol/d

E11

Dry gas production rate :
0.000×10+0 hm3/d

NGL production rate :
0×10+0 m3/d

Pressure : 92.9 bar

Fs,E11,CO2 : 0.000×10+0 Mmol/d
Fs,E11,H2S : 0.000×10+0 Mmol/d
Fs,E11,N2 : 0.000×10+0 Mmol/d
Fs,E11,C1 : 0.000×10+0 Mmol/d
Fs,E11,C2 : 0.000×10+0 Mmol/d
Fs,E11,C3 : 0.000×10+0 Mmol/d
Fs,E11,C4 : 0.000×10+0 Mmol/d
Fs,E11,C5+: 0.000×10+0 Mmol/d

E11P

Dry gas production rate :
1.927×10+0 hm3/d

Pressure : 71.91 bar
Fs,E11P,CO2 : 2.189×10−1 Mmol/d
Fs,E11P,H2S : 0.000×10+0 Mmol/d
Fs,E11P,N2 : 5.703×10−1 Mmol/d
Fs,E11P,C1 : 7.837×10+1 Mmol/d
Fs,E11P,C2 : 1.450×10+0 Mmol/d
Fs,E11P,C3 : 4.037×10−1 Mmol/d
Fs,E11P,C4 : 9.436×10−2 Mmol/d
Fs,E11P,C5+: 3.777×10−1 Mmol/d

F23

Dry gas production rate :
1.751×10+1 hm3/d

NGL production rate :
1.879×103 m3/d

Pressure : 91.41 bar
Fs,F23,CO2 : 1.217×10+1 Mmol/d
Fs,F23,H2S : 2.962×10−3 Mmol/d
Fs,F23,N2 : 7.776×10+0 Mmol/d
Fs,F23,C1 : 6.599×10+2 Mmol/d
Fs,F23,C2 : 2.078×10+1 Mmol/d
Fs,F23,C3 : 2.725×10+1 Mmol/d
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Fs,F23,C4 : 6.791×10+0 Mmol/d
Fs,F23,C5+: 5.912×10+0 Mmol/d

F23P

Dry gas production rate :
2.690×10+1 hm3/d

Pressure : 91.41 bar
Fs,F23P,CO2 : 1.488×10+1 Mmol/d
Fs,F23P,H2S : 6.931×10−3 Mmol/d
Fs,F23P,N2 : 9.391×10+0 Mmol/d
Fs,F23P,C1 : 1.023×10+3 Mmol/d
Fs,F23P,C2 : 3.839×10+1 Mmol/d
Fs,F23P,C3 : 3.574×10+1 Mmol/d
Fs,F23P,C4 : 8.760×10+0 Mmol/d
Fs,F23P,C5+: 7.303×10+0 Mmol/d

F23SW

Dry gas production rate :
9.386×10+0 hm3/d

NGL production rate :
9.942×102 m3/d

Pressure : 91.41 bar
Fs,F23SW,CO2 : 2.715×10+0 Mmol/d
Fs,F23SW,H2S : 3.969×10−3 Mmol/d
Fs,F23SW,N2 : 1.615×10+0 Mmol/d
Fs,F23SW,C1 : 3.631×10+2 Mmol/d
Fs,F23SW,C2 : 1.761×10+1 Mmol/d
Fs,F23SW,C3 : 8.490×10+0 Mmol/d
Fs,F23SW,C4 : 1.969×10+0 Mmol/d
Fs,F23SW,C5+: 1.391×10+0 Mmol/d

F6

Dry gas production rate :

4.387×10+0 hm3/d
NGL production rate :

6.155×102 m3/d
Pressure : 72.62 bar
Compression power : 13.91 MW
Compression inlet pressure :

17.55 bar
Fs,F6,CO2 : 6.330×10+0 Mmol/d
Fs,F6,H2S : 7.050×10−3 Mmol/d
Fs,F6,N2 : 2.343×10+0 Mmol/d
Fs,F6,C1 : 1.484×10+2 Mmol/d
Fs,F6,C2 : 1.416×10+1 Mmol/d
Fs,F6,C3 : 8.947×10+0 Mmol/d
Fs,F6,C4 : 1.856×10+0 Mmol/d
Fs,F6,C5+: 3.486×10+0 Mmol/d

HL

Dry gas production rate :
9.654×10−1 hm3/d

Pressure : 72.22 bar
Fs,HL,CO2 : 6.488×10−1 Mmol/d
Fs,HL,H2S : 0.000×10+0 Mmol/d
Fs,HL,N2 : 3.965×10−1 Mmol/d
Fs,HL,C1 : 2.858×10+1 Mmol/d
Fs,HL,C2 : 2.324×10+0 Mmol/d
Fs,HL,C3 : 2.220×10+0 Mmol/d
Fs,HL,C4 : 2.687×10+0 Mmol/d
Fs,HL,C5+: 3.966×10+0 Mmol/d

JN

Dry gas production rate :
1.428×10+1 hm3/d

NGL production rate :
4.044×103 m3/d
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Pressure : 101.4 bar
Fs,JN,CO2 : 1.591×10+1 Mmol/d
Fs,JN,H2S : 1.812×10−3 Mmol/d
Fs,JN,N2 : 8.691×10−1 Mmol/d
Fs,JN,C1 : 5.358×10+2 Mmol/d
Fs,JN,C2 : 1.609×10+1 Mmol/d
Fs,JN,C3 : 2.240×10+1 Mmol/d
Fs,JN,C4 : 7.820×10+0 Mmol/d
Fs,JN,C5+: 5.030×10+0 Mmol/d

M1

Dry gas production rate :
2.253×10+1 hm3/d

NGL production rate :
8.296×103 m3/d

Pressure : 98.11 bar
Compression power : 20 MW
Compression inlet pressure :

61.33 bar
Fs,M1,CO2 : 4.802×10+1 Mmol/d
Fs,M1,H2S : 3.144×10−2 Mmol/d
Fs,M1,N2 : 4.077×10+0 Mmol/d
Fs,M1,C1 : 7.719×10+2 Mmol/d
Fs,M1,C2 : 5.205×10+1 Mmol/d
Fs,M1,C3 : 3.341×10+1 Mmol/d
Fs,M1,C4 : 2.621×10+1 Mmol/d
Fs,M1,C5+: 1.693×10+1 Mmol/d

SE

Dry gas production rate :
1.263×10+1 hm3/d

NGL production rate :
5.081×103 m3/d

Fs,SE,CO2 : 1.296×10+1 Mmol/d
Fs,SE,H2S : 3.205×10−3 Mmol/d

Fs,SE,N2 : 9.657×10−1 Mmol/d
Fs,SE,C1 : 4.679×10+2 Mmol/d
Fs,SE,C2 : 1.988×10+1 Mmol/d
Fs,SE,C3 : 7.734×10+0 Mmol/d
Fs,SE,C4 : 1.243×10+1 Mmol/d
Fs,SE,C5+: 1.222×10+1 Mmol/d

M3

Dry gas production rate :
3.855×10−6 hm3/d

NGL production rate :
2.608×10−4 m3/d

Fs,M3,CO2 : 1.546×10−6 Mmol/d
Fs,M3,H2S : 0.000×10+0 Mmol/d
Fs,M3,N2 : 0.000×10+0 Mmol/d
Fs,M3,C1 : 1.243×10−4 Mmol/d
Fs,M3,C2 : 1.202×10−5 Mmol/d
Fs,M3,C3 : 1.139×10−5 Mmol/d
Fs,M3,C4 : 1.882×10−6 Mmol/d
Fs,M3,C5+: 1.114×10−5 Mmol/d

M3P

Dry gas production rate :
1.608×10+1 hm3/d

Pressure : 95.57 bar
Compression power : 27 MW
Compression inlet pressure :

41.49 bar
Fs,M3P,CO2 : 1.632×10+1 Mmol/d
Fs,M3P,H2S : 1.021×10−2 Mmol/d
Fs,M3P,N2 : 1.342×10+0 Mmol/d
Fs,M3P,C1 : 5.880×10+2 Mmol/d
Fs,M3P,C2 : 3.054×10+1 Mmol/d
Fs,M3P,C3 : 1.312×10+1 Mmol/d
Fs,M3P,C4 : 1.709×10+1 Mmol/d
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Fs,M3P,C5+: 1.368×10+1 Mmol/d

M4

Dry gas production rate :
3.452×10+0 hm3/d

NGL production rate :
2.191×102 m3/d

Fs,M4,CO2 : 3.364×10+0 Mmol/d
Fs,M4,H2S : 7.007×10−3 Mmol/d
Fs,M4,N2 : 3.765×10−1 Mmol/d
Fs,M4,C1 : 1.201×10+2 Mmol/d
Fs,M4,C2 : 1.065×10+1 Mmol/d
Fs,M4,C3 : 5.384×10+0 Mmol/d
Fs,M4,C4 : 4.665×10+0 Mmol/d
Fs,M4,C5+: 1.463×10+0 Mmol/d

SC

Dry gas production rate :
1.927×10+0 hm3/d

NGL production rate :
3.121×102 m3/d

Pressure : 71.91 bar
Fs,SC,CO2 : 2.189×10−1 Mmol/d
Fs,SC,H2S : 0.000×10+0 Mmol/d
Fs,SC,N2 : 5.703×10−1 Mmol/d
Fs,SC,C1 : 7.837×10+1 Mmol/d
Fs,SC,C2 : 1.450×10+0 Mmol/d
Fs,SC,C3 : 4.037×10−1 Mmol/d
Fs,SC,C4 : 9.436×10−2 Mmol/d
Fs,SC,C5+: 3.777×10−1 Mmol/d
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D.2 Wells

Table D.3: Well results

W Qw,w Pb,w Pt,w QLw,w

hm3/d bar bar m3/d
B11A 4.566× 10−5 75.39 40.10 2.260× 10−3

B11B 3.540× 10−3 78.46 43.83 1.665× 10−1

B11C 0.000× 10+0 78.62 41.28 0.000× 10+0

B11D 0.000× 10+0 71.45 37.83 0.000× 10+0

E11A 0.000× 10+0 154.70 96.81 0.000× 10+0

E11B 0.000× 10+0 156.70 93.97 0.000× 10+0

E11C 0.000× 10+0 160.00 97.30 0.000× 10+0

E11D 0.000× 10+0 152.70 94.79 0.000× 10+0

E11E 0.000× 10+0 156.20 100.10 0.000× 10+0

E11F 0.000× 10+0 156.50 98.49 0.000× 10+0

E11G 0.000× 10+0 149.90 92.90 0.000× 10+0

E11H 0.000× 10+0 159.70 98.15 0.000× 10+0

E11I 0.000× 10+0 156.80 98.02 0.000× 10+0

E11J 0.000× 10+0 154.50 100.50 0.000× 10+0

F23A 7.147× 10−1 247.70 196.90 7.472× 10+1

F23B 4.598× 10−1 231.80 192.00 4.999× 10+1

F23C 1.072× 10+1 266.70 91.41 1.175× 10+3

F23D 4.598× 10−1 228.00 189.50 5.274× 10+1

F23E 0.000× 10+0 244.10 195.00 0.000× 10+0

F23F 2.230× 10−1 245.90 187.90 2.283× 10+1

F23G 1.000× 10+0 265.50 216.50 9.820× 10+1

F23H 4.392× 10−1 226.20 181.20 4.385× 10+1

F23I 4.581× 10−1 271.80 227.00 4.783× 10+1

F23J 4.551× 10−1 252.10 210.80 4.909× 10+1

F23K 1.017× 10+0 235.70 191.40 9.896× 10+1

F23L 6.683× 10−1 266.10 203.80 6.885× 10+1

F23M 4.395× 10−1 252.20 209.90 4.307× 10+1

F23N 4.648× 10−1 264.40 201.30 5.299× 10+1

F23SW 9.386× 10+0 239.20 91.41 9.942× 10+2

F6A 0.000× 10+0 44.81 35.28 0.000× 10+0

F6B 0.000× 10+0 47.11 38.12 0.000× 10+0

F6C 1.491× 10+0 41.81 17.55 2.029× 10+2

F6D 0.000× 10+0 44.95 34.95 0.000× 10+0

F6E 0.000× 10+0 40.47 32.42 0.000× 10+0

Continued on next page
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Table D.3: Well results

W Qw,w Pb,w Pt,w QLw,w

hm3/d bar bar m3/d
F6F 0.000× 10+0 40.83 31.40 0.000× 10+0

F6G 0.000× 10+0 43.24 33.95 0.000× 10+0

F6H 0.000× 10+0 47.84 39.11 0.000× 10+0

F6I 4.052× 10−1 46.02 36.77 5.911× 10+1

F6J 3.908× 10−1 47.91 36.75 5.779× 10+1

F6K 1.553× 10+0 44.49 17.55 2.217× 10+2

F6L 5.474× 10−1 44.19 32.30 7.393× 10+1

F6M 0.000× 10+0 45.43 35.09 0.000× 10+0

JNA 2.674× 10+0 142.20 142.20 7.598× 10+2

JNB 3.026× 10+0 150.50 150.50 8.300× 10+2

JNC 2.928× 10+0 146.00 146.00 8.757× 10+2

JND 2.843× 10+0 129.30 120.70 7.906× 10+2

JNE 2.812× 10+0 152.80 150.70 7.879× 10+2

M1A 6.062× 10+0 113.30 61.33 2.192× 10+3

M1B 5.916× 10+0 113.60 62.60 2.121× 10+3

M1C 1.114× 10+0 102.20 71.28 4.134× 10+2

M1D 2.865× 10+0 121.10 86.71 1.018× 10+3

M1E 0.000× 10+0 109.30 78.41 0.000× 10+0

M1F 0.000× 10+0 107.60 80.65 0.000× 10+0

M1G 6.135× 10+0 111.60 61.33 2.401× 10+3

M1H 4.360× 10−1 105.20 75.70 1.508× 10+2

SEA 6.734× 10+0 153.40 41.49 2.703× 10+3

SEB 5.897× 10+0 141.20 41.49 2.378× 10+3

M3A 0.000× 10+0 69.33 56.95 0.000× 10+0

M3B 0.000× 10+0 82.08 64.47 0.000× 10+0

M3C 0.000× 10+0 78.36 63.16 0.000× 10+0

M3D 0.000× 10+0 73.13 59.12 0.000× 10+0

M3E 0.000× 10+0 79.77 62.25 0.000× 10+0

M3F 0.000× 10+0 80.46 66.91 0.000× 10+0

M3G 3.855× 10−6 82.30 63.82 2.608× 10−4

M3H 0.000× 10+0 76.71 60.32 0.000× 10+0

M3I 0.000× 10+0 79.49 62.43 0.000× 10+0

M3J 0.000× 10+0 72.10 55.74 0.000× 10+0

M4A 1.626× 10+0 75.69 41.49 1.011× 10+2

M4B 1.827× 10+0 81.38 41.49 1.180× 10+2

SCA 7.928× 10−1 142.30 71.91 1.291× 10+2

Continued on next page
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Table D.3: Well results

W Qw,w Pb,w Pt,w QLw,w

hm3/d bar bar m3/d
SCB 1.134× 10+0 146.70 71.91 1.830× 10+2

D.3 PSC Status

Table D.4: Production-sharing contracts: Supply rate status

Contracts Production
hm3/d

A (Total of AM, X and Y) 40.51

AM 23.83

X 9.386

Y 7.296

B 22.53

C 18.7

D 12.63

F 0

Table D.5: Excess flowrates in the PSC network

El e(i,j) Status (ye(i,j)) Priority (ys(i,j))
hm3/d

(A0,A1) +11.060 Excess (1) -
(A1,A2) +8.975 - -
(A2,A3) +2.218 - -
(B0,B1) −2.085 Deficit (0) -
(B1,B2) −2.085 Deficit (0) -
(B2,B3) +0.000 - Satisfied (1)
(C0,C1) −6.756 Deficit (0) -
(C1,C2) −6.756 - -
(C2,C3) −6.756 - Deficit (0)
(D0,D1) −2.218 Deficit (0) -
(D1,D2) −2.218 - Deficit (0)
(D2,D3) −2.218 - -
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Table D.6: Production-sharing contracts: Transfer status

Et t(i,j) Status (yt(i,j))
hm3/d

(A, B) 2.085 Active (1)
(A, C) 6.756 Active (1)
(A, D) 2.218 Active (1)
(B, C) 0.000 Inactive (0)
(B, D) 0.000 Inactive (0)
(C, D) 0.000 Inactive (0)
(C, B) 0.000 Inactive (0)
(D, C) 0.000 Inactive (0)
(F, A) 0.000 Inactive (0)
(F, B) 0.000 Active (1)
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Appendix E

Global Optimization of Algorithms:

Preliminary Case Studies

The objective function in both case studies is to maximize the delivery rate at demand

D1 (expressed as a minimization problem). The scaling of variables used is identical

to the one described in Section 5.3 (page 146).

E.1 Case Study A

The network corresponding to case study A is presented in Figure 7-5 (page 236).

E.1.1 Parameters

Compressor M3P:

Rated power : 27.0 MW

Maximum pressure at outlet : 200 bar

Trunkline pressure-drop coefficient for (M3P,D1) : 2.46 bar2.d2/hm6

The following delivery pressure constraint (presented here in unscaled form) is en-

forced

302 ≤ P̂D1 ≤ 802.
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Table E.1: Case study A: Wells

Fields No. of Wells Wells
M3 10 M3A, M3B, M3C, M3D, M3E, M3F, M3G, M3H, M4I, M3J
M4 2 M4A, M4B
SE 2 SEA, SEB

The wells belonging to each field are presented in Table E.1. The parameters for

the well-performance model are the same as in Table B.1 (page 275). Gas from

each well is assumed to have the same composition as the field to which it belongs.

The composition for fields are as in Table B.2 (page 275). Upper bounds on well

production rates are calculated as in Section 5.2.1 (Page 145) and the lower bounds

are set to a small number (10−9) to avoid zero flowrates through the compressor.

E.2 Case Study B

The network corresponding to case study B is presented in Figure 7-6 (page 236).

E.3 Parameters

Compressor M3P:

Rated power : 27.0 MW

Maximum pressure at outlet : 200 bar

Compressor M1P:

Rated power : 20.0 MW

Maximum pressure at outlet : 200 bar

Trunkline pressure-drop coefficient for (M3P,D1) : 2.46 bar2.d2/hm6

Trunkline pressure-drop coefficient for (JN,M1P) : 3.17 bar2.d2/hm6

(JN, M1P) is connected to the outlet of compressor M1P and not the inlet.

Trunkline pressure-drop coefficient for (M1P,D1) : 5.06 bar2.d2/hm6

The constraint enforced at demand D1 are as follows:
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Table E.2: Case study B: Wells

Fields No. of Wells Wells
M1 8 M1A, M1B, M1C, M1D, M1E, M1F, M1G, M1H
M3 10 M3A, M3B, M3C, M3D, M3E, M3F, M3G, M3H, M4I, M3J
M4 2 M4A, M4B
JN 5 JNA, JNB, JNC, JND, JNE
SE 2 SEA, SEB

1. H2S content must be less than 270 ppmV (i.e., χsD1,H2S = 270)

Fs,D1,H2S − 10−6 χsD1,H2SφQs,D1 ≤ 0,

2. C2 content should be greater than 3.4% (i.e., χsD1,C2
= 0.034).

10−2 χsD1,C2

∑
j∈S\CO2

Fs,D1,j − Fs,D1,C2 ≤ 0,

3. Delivery pressure must be within 10-80 bar range

102 ≤ P̂D1 ≤ 802.

The wells belonging to each field are presented in Table E.2. The parameters for

the well-performance model are the same as in Table B.1 (page 275). Gas from

each well is assumed to have the same composition as the field to which it belongs.

The composition for fields are as in Table B.2 (page 275). Upper bounds on well

production rates are calculated as in Section 5.2.1 (Page 145) and the lower bounds

are set to a small number (10−9) to avoid zero flow through compressors.
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Nomenclature

The nomenclature presents the symbols used in the descriptions of the standard for-
mulation of infrastructure model (as presented in Sections 3.2-3.5) and the contract
modeling framework (Chapter 4). Although, symbols used in the descriptions of the
alternative formulation of infrastructure model (presented in Section 3.6) and the ap-
plications of global optimization of algorithms to upstream gas networks (presented
in Chapter 7), are more or less consistent with this nomenclature, there are minor
differences in subscripts and superscripts used, and the definitions of relevant sets.
Therefore, these symbols have not been listed here to avoid confusion.

Atomic Propositions

C(.) Propositions denoting some operational condition

E(pi,pi+1) True if contract p is in excess (defined using flowrate on arc (pi, pi+1))

S(qj ,qj+1) True if an inter-contract transfer terminating at qj fulfilled the deficit in contract q

(defined using flowrate on arc (qj , qj+1))

Tp,q True if contract p supplies contract q

Parameters

αw Darcy flow constant for a well w ∈ W (bar2.d/hm3)

βw Non Darcy flow constant for a well w ∈ W (bar2.d2/hm6)

χs
i,k Specification on the component k at demand node i ∈ ND (Unit depends on the compo-

nent under consideration)

χi,k Mole fraction of component k in field i

∆π(i,j) Pressure drop across arcs in set Asc (bar)
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ηi Compression efficiency for compressor i

Γs
i Specification on the gross heating value of feed gas at the demand node i ∈ ND (MJ/kg)

γk Superior calorific value of component k ∈ Sh (MJ/kg)

κ(i,j) Pressure drop constant for arc (i, j), ( ∀(i, j) ∈ Ap ) (bar2.d2/hm6)

ΛL
d,i Minimum demand rate at LNG plant i ∈ ND (hm3/day)

ΛU
d,i Maximum demand rate at LNG plant i ∈ ND (hm3/day)

λw Coefficient of P 2
t,w in VLP equation for a well w ∈ W (dimensionless)

µk Molecular weight of a species k (kg/mole)

ν Exponential factor for compressor (same for all compressors)

ωi Premultiplier for compression power equation for compressor i

φ Number of moles per unit volume of dry gas at standard conditions (42.2845 Mmole/hm3)

πL
d,i Minimum delivery pressure at slugcatchers (bar)

πM
r,i Maximum reservoir pressure among all wells corresponding to a field i ∈ Fw (bar)

πU
d,i Maximum delivery pressure at slugcatchers (bar)

πatm Atmospheric pressure (bar)

πr,w Reservoir pressure at well w ∈ W (bar)

πsc Pressure at standard conditions (1 atmosphere, 1.013 bar)

ΨL
i Lower bound for the compression power i (MW) (> 0)

ΨU
i Upper bound for the compression power i (MW)

σw Condensate gas ratio for well w ∈ W (m3/hm3)

τsec Number of seconds in a day (84600 s/d)

θm,i Mean operating temperature for compressor i (K)

θsc Temperature at standard conditions (15 oC, 288.15 K)

%g Conversion factor from MMscfd to hm3/day (0.0283168 hm3/MMscfd)

%L Conversion factor from barrel(bbl) to m3/day (0.158987 m3/bbl)
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ςw Water gas ratio for well w ∈ W (m3/hm3)

ϑw Coefficient of Q2
w,w in VLP equation for a well w ∈ W (bar2.d2/hm6)

ζ Compression polytropic constant

R Universal gas constant (8.314 J/K.mole)

Sets

A Superset for all arcs in the graph representation (N ,A) of the trunkline network

Ap Arcs for which Weymouth pressure-flowrate relationship is used

Aq Arcs for which a flowrate variable is defined

Ax Set of all arcs that are immediately downstream of splitters excluding exactly one arbi-

trary downstream arc per splitter

Ay Arc for which flow is controlled just by pressure inequality and binary variable

Ai Arcs for which pressure inequalities between inlet and outlet should be enforced

Asc Arcs across which a fixed pressure drop is assumed

C Set of contracts in the system (represented on contract network)

CS Superset of contracts in the system (not necessarily represented on contract network)

E Set of arcs in contract network representation

El Set of arcs in contract network representation that denote excess/deficit levels (equiva-

lently flowrate between levels for a contract) (⊂ E)

Es Supply and demand arcs in the contract network representation (i.e., ∀(i, j) ∈ E s.t. i ∈

Ls or j ∈ Ls)

Et Set of arcs in the contract network representing inter-contract transfer rules (⊂ E)

El,a Subset of excess/deficit arcs in the contract network representation over which binary

variables to indicate contract excess are defined. ⊂ El

El,S Set of arcs in contract network representation over which binary variables to indicate

priorities are defined (⊂ El)

F Set of all fields (⊂ Ns)

Fpr Fields that have high priority of production (⊂ F)
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Fw,nc Fields with well performance modeling that do not have compression (⊂ Fw)

Fw Fields for which well performance is modeled (⊂ F)

L Nodes in contract network representation

LD Set of demand nodes in contract network representation (⊂ Ls)

Ll Nodes in contract network that represent levels of availability (⊂ L)

Ls Source/sink nodes in contract network representation (⊂ L)

N Superset for nodes in the graph representation (N ,A) of the trunkline network

ND Set of demand nodes (equivalently set of nodes in the network that are sinks) (⊂ Ns)

NJ Set of nodes that are junctions (for which production term does not exist)(⊂ Np)

Np Set of nodes over which pressure variable Pi is defined (⊂ N )

Nq A subset of source/sink nodes whose elements are on the sub- network defined by Aq

(⊂ Ns)

Ns Set of nodes that are sources or sinks (i.e., they have a production term) (⊂ N )

ND,HSM Demand nodes for which H2S specification is expressed in mg/m3

ND,HSP Demand nodes for which H2S specification is expressed in ppmV

Nsc Nodes that are slugcatchers ⊂ NJ

Nwp,c Set of well platforms that have compression (⊂ Nwp)

Nwp,m Set of well platforms that receive gas from multiple fields (⊂ Nwp)

Nwp,nc Set of well platforms that do not have compression (⊂ Nwp,w)

Nwp Set of well platforms (⊂ Ns)

Nx,J Set of nodes that are splitters and junctions (Nx ∩NJ)

Nx,q Set of nodes that are splitters and production nodes (Nx ∩Nq)

Nx Nodes that are splitters (⊂ N )

S Set of chemical species

Sh Species that are used for gross heating value calculation ⊂ S

W Set of all wells in the system
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Wi Wells that belong to a field i or a well platform i (⊂ W)

Decision Variables

e(pi,pi+1) Excess/deficit flowrates in the contract network representation (pi, pi+1) ∈ El (hm3/day)

Fa,(i,j),k Molar flowrate of component k in arc (i, j) ∈ Aq (Mmole/day)

Fs,i,k Molar production rate (negative for demand) of component k for node i ∈ Ns (Mmole/day)

Pi Pressure at node i ∈ Np (bar)

Pb,w Bottom-hole pressure at well w (bar)

Pc,i Compression inlet pressure for well platform i (equivalently common header pressure)

(i ∈ Nwp,c) (bar)

Pt,w Flowing tubing-head pressure at well w (bar)

Qa,(i,j) Volumetric flowrate at standard conditions in arc (i, j), ((i, j) ∈ Aq) (hm3/day)

qa,(u,v) Flowrate in the arcs connecting the supply/demand nodes ((u, v) ∈ Es) (hm3/day)

qc,i Production rate for contract i ∈ CS (hm3/day)

QLs,i NGL production rate from field i ∈ Fw (m3/day)

QLw,w NGL production rate from well w ∈ W (m3/day)

Qs,i Production rate at source or sink node i ∈ Ns (hm3/day)

qs,i Production rate for nodes in contract network representation (negative for sinks) i ∈

{ps, pd}, p ∈ C (hm3/day)

Qw,w Dry gas production from well w (hm3/day)

s(i,j) Split fraction (i, j) ∈ Ax

t(pi,qj) inter-contract transfer rates from contract p to contract q (equivalently flowrate from pi

to qj in the contract network ((pi, qj) ∈ Et)) (hm3/day)

Wi Daily average power consumption of the compressor i ∈ Nwp,c (MW )

wd,(i,j) Dummy pressure variable for reformulation of constraints for arcs in set Ay (Down-

stream pressure)

wu,(i,j) Dummy pressure variable for reformulation of constraints for arcs in set Ay (Upstream

pressure)
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yc
(.) Binary variable representing the operational atomic proposition C(.)

ye
(pi,pi+1)

Binary variable representing excess in the contract p (ye
(pi,pi+1)

= 1 ⇒ Ep,(pi,pi+1),

(pi, pi+1) ∈ El,a

yl
(i,j) Binary variable to indicate if an arc (i, j) ∈ Ay is open (yl

(i,j) = 1) or closed (yl
(i,j) = 0)

ys
(qi,qi+1)

Binary variable to indicate whether a transfer succeeded in fulfilling the deficit of the

destination contract q ((qi, qi+1) ∈ El,S)

yt
p,q Binary variable representing the status of the contract transfer from contract p to con-

tract q (pi, qj) ∈ Et

zg Production rate from fields that have priority (hm3/day)

zg Total dry gas production rate from the system (hm3/day)

zL Total NGL production rate from the system (m3/day)
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