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Abstract

An essential requirement for the fabrication of future electronic, magnetic, optical and
biologically-based devices, composed of constituents at the nanometer length scale,
is the precise positioning of the components in the system’s physical domain. We
introduce the design principles, problems and methods associated with the controlled
formation of nanostructures with desired geometries through a hybrid top-down and
bottom-up approach: top-down formation of physical domains with externally-imposed
controls and bottom-up generation of the desired structure through the self-assembly
of the nanoscale constituents, driven by interparticle interactions (short- and long-
range) and interactions with the external controls (e.g., electrical, magnetic, chemi-
cal). The desired nanoscale structure must be locally stable and robust to a desired
level of robustness, and it should be reachable from any initial particle distribution.
These two requirements frame the two elements of the design problem: (a) Static
Problem: Systematic placement of externally imposed controls and determination of
their intensities in order to ensure that the final desired structure is stable with a
desired degree of robustness; (b) Dynamic Problem: Time-varying controls in order
to ensure that the desired final structure can be reached from any initial particle
distribution.

The concept of external controls is realized through point conditions, which in-
troduce attractive or repulsive interaction terms in the system potential energy. The
locations of the point conditions are found through the solution of a minimum tiling
problem. Given these locations, the Static Problem is solved through the solution of
combinatorially-constrained optimization problems. The Dynamic Problem is solved
through a genetic algorithm search for the appropriate time-varying system degrees of
freedom. Crucial to the achievement of the design goals is the necessity to break the
ergodicity of the system phase space and control the subset of system states accessi-
ble to the system. More specifically, the static approach requires isolating the desired
structure from all competing structures in phase space. The dynamic approach in-
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volves a multiresolution view of the system particle number, where we successively
restrict the accessible volume of phase space based on coarse-grained particle number
(i.e., density) specifications. We illustrate the design problems and solution methods
through 1- and 2-dimensional lattice models and simulate the self-assembly process
with a dynamic Monte Carlo method.

Thesis Supervisor: George Stephanopoulos
Title: Arthur D. Little Professor of Chemical Engineering

Thesis Supervisor: Paul I. Barton
Title: Lammot du Pont Professor of Chemical Engineering

4



Acknowledgments

Six years went by. In this time, a young student whose expertise was mainly in

solving “textbook” problems learned how to approach and tackle more open-ended

and pertinent engineering problems (or so he hopes). The transition from learning the

theory and tools needed in the chemical engineering discipline to applying them to

the challenging questions posed by today’s scientific community is not a smooth one,

and one must acknowledge the guidance and support of mentors, colleagues, friends

and family. To this end, here I go...

I begin with Professor George Stephanopoulos. His support and encouragement

pushed me to be more aware, creative and productive. His guidance and patience,

especially during the challenging periods of scientific discovery, have undoubtedly

molded me as a researcher. Professor Stephanopoulos provided me with a unique grad-

uate education, guiding me through an open-ended research project, while also giving

me the freedom to try different approaches and learn from mistakes. I will always

remember the brainstorming sessions on the blackboard in Professor Stephanopoulos’

office.

Professor Paul Barton played a significant role in educating me about the prac-

tical sides of research, e.g., determining whether a problem is solvable, using the

appropriate solution methods. His guidance with optimization problem formulations

and solution methods were crucial to the completion of my thesis work. His atten-

tion to detail and constructive feedback is a testament to his success as an academic

researcher and advisor.

I would also like to thank the other committee members, Professors Klavs Jensen

and Arup Chakraborty, for their feedback throughout the development of my thesis

project.

This work could not have been done without the computational support of both

the Process Systems Engineering Laboratory (PSEL), under the guidance of Professor

Barton, and the Tester Group. I would also like to thank Christopher Marton for his

help with the initial investigations of the Dynamic Problem.

5



The many hours spent in Building 66 undoubtedly forges strong friendships within

the graduate student body of the Chemical Engineering Department. I would like to

thank Scott and Yumi Paap, Mahriah Alf, Ingrid Berkelmans Fox, Lily Tong, and

my roommates, Andrew Peterson and Sandeep Sharma, for their encouragement and

friendship.

During my six years at MIT, I was involved in few activities outside of research,

which undeniably salvaged my sanity. The Thirsty Ear Pub was my office outside the

office. I would like to thank the staff, especially Sara Cinnamon and Michael Grenier,

for their support and friendship. Thursday nights will never be the same without

karaoke and red wine in the basement of a graduate student dormitory. I would also

like to thank the members of MIT’s Dance Troupe for providing me a creative outlet

for my love of dance. Specifically, I would like to thank the dancers who worked with

me during my 3 choreography attempts. “This is love...”

I would not be here without 27+ years of love and support from my parents,

Achilles and Carmelita Solis, and sister, Mahalia Solis Ong.

Finally, I would like to thank the Mitsubishi Chemical Holding Corporation for

financially supporting my thesis research.

ES

28 May 2009

6



Contents

1 Introduction 15

1.1 Statistical mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.1.1 Thermodynamics of small systems . . . . . . . . . . . . . . . . 21

1.1.2 Ergodicity considerations . . . . . . . . . . . . . . . . . . . . . 23

2 Model systems 27

2.1 Potential energy considerations . . . . . . . . . . . . . . . . . . . . . 29

2.2 Simulation techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.1 Dynamic Monte Carlo . . . . . . . . . . . . . . . . . . . . . . 33

3 The static problem 37

3.1 Qualitatively shaping the energy landscape: the minimum tiling approach 38

3.2 Quantitatively shaping the energy landscape: the energy-gap maxi-

mization problem (EMP) . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 Defining the phase space component Ωα . . . . . . . . . . . . 46

3.2.2 Reducing the number of constraints needed to solve EMP . . . 47

3.2.3 Linearization of a 0− 1 quadratic problem . . . . . . . . . . . 50

3.3 System robustness, constraining features and introducing additional

degrees of freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.1 Glass transition temperature . . . . . . . . . . . . . . . . . . . 55

3.4 Static problem examples . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.1 1D example system . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.2 2D example systems . . . . . . . . . . . . . . . . . . . . . . . 71

7



3.5 Current technology and the imposed limitations on the desired structure 79

4 The dynamic problem 83

4.1 Systematic shrinking of accessible phase space states . . . . . . . . . 84

4.2 Qualitatively shaping the energy landscape at each stage of the dy-

namic process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3 Quantitatively shaping the energy landscape at each stage of the dy-

namic process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3.1 Genetic algorithm approach . . . . . . . . . . . . . . . . . . . 94

4.4 The dynamic self-assembly process . . . . . . . . . . . . . . . . . . . 98

4.5 Dynamic problem examples . . . . . . . . . . . . . . . . . . . . . . . 99

4.5.1 1D example system . . . . . . . . . . . . . . . . . . . . . . . . 99

4.5.2 2D example system . . . . . . . . . . . . . . . . . . . . . . . . 104

5 Conclusions and future directions 111

A Proof of maximum-term method 113

B More Static Problem example systems 115

8



List of Figures

1-1 The periodic nanostructures in (a) can be achieved through self-assembly

of judiciously designed nanoparticles, but the non-periodic structures

in (b) require external controls for guided self-assembly. . . . . . . . . 18

2-1 The long-range repulsive and short-range attractive interactions among

the self-assembling particles. . . . . . . . . . . . . . . . . . . . . . . . 29

3-1 The three types of point conditions used in the example systems: (a)

on a lattice site, (b) between two lattice sites, (c) between four lattice

sites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3-2 The geometry of tiles generated from the three types of point conditions

defined in Figure 3-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3-3 The flowchart of the minimum tiling algorithm that generates the min-

imum number of well- or barrier-forming point conditions. . . . . . . 43

3-4 To decrease the complexity of the problem, we transition from viewing

the system as a set of energy differences between the desired config-

uration and all Nα competing configurations to considering only the

energy gap between the desired configuration and the minimum-energy

competing configuration. . . . . . . . . . . . . . . . . . . . . . . . . . 45

3-5 The definition of the glass transition temperatures, T+
g and T−g for the

transition between ergodic and nonergodic behavior. The region be-

tween the two temperatures is the transition region for the probability

of the desired configuration. . . . . . . . . . . . . . . . . . . . . . . . 56

9



3-6 The desired configuration for the 1D example system, where N = 6

and V = 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3-7 The minimum tiling algorithm outputted six point condition locations,

three in barrier regions and three in well regions. The tiles represent

each point condition’s area of influence. . . . . . . . . . . . . . . . . . 57

3-8 The five competing configurations used in the OSEMP formulation,

representing configurations that are one step away from the desired

configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3-9 Dynamic MC results using the solution to PSEMP for the 1D example

system compared to the Boltzmann probability distribution function. 61

3-10 Dynamic MC results using the solution to OSEMP for the 1D example

system compared to the Boltzmann probability distribution function. 64

3-11 The enumeration of all configurations in the ergodic component of the

1D example system. These configurations were used in the CEMP

formulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3-12 Dynamic MC results using the solution to CEMP for the 1D example

system compared to the Boltzmann probability distribution function. 69

3-13 Dynamic MC results for the variability of the ensemble probabilities

using the solution to CSEMP for the 1D example system. . . . . . . . 70

3-14 The desired configurations for the two 2D example systems: (a) N =

7, V = 16, (b) N = 19, V = 64. . . . . . . . . . . . . . . . . . . . . . . 72

3-15 The solution to the minimum tiling algorithm for both 2D example

systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3-16 The numbering of lattices sites from left-to-right and top-to-bottom

for 2D square lattice systems. . . . . . . . . . . . . . . . . . . . . . . 75

3-17 Dynamic MC results using the solution to PSEMP for the 2D example

system (N = 7, V = 16). . . . . . . . . . . . . . . . . . . . . . . . . . 76

3-18 Phase space energy distributions for PSEMP1w 2D and PSEMP1b 2D. 77

3-19 Dynamic MC results using the solution to OSEMP for the 2D example

system (N = 7, V = 16). . . . . . . . . . . . . . . . . . . . . . . . . . 78

10



3-20 Dynamic MC results using the solution to OSEMP for the 2D example

system (N = 19, V = 64). . . . . . . . . . . . . . . . . . . . . . . . . 80

4-1 Four representative configurations of the set of configurations with an

occupied lattice site 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4-2 The multiresolution distribution of particles for the Dynamic Problem

solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4-3 The dynamic path that restricts the system to progressively smaller

subsets of the system’s phase space. . . . . . . . . . . . . . . . . . . . 88

4-4 Possible locations of point conditions for each stage of the dynamic

process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4-5 Types of energy distributions that can result from solving EMP at

each stage of the dynamic process: (a) positive δ separating the desired

from the competing configurations; (b) negative δ with the two sets of

configurations overlapping; (c) zero δ; (d) negative δ with the desired

set of configurations subsumed in the energy range of the competing

set of configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4-6 Two configurations belonging to 2 different components that portray

the difficulty in guaranteeing that δ ≥ 0 in the multiresolution EMP

formulation. Using the well-forming point conditions, the level 1 com-

peting configuration shown will have a lower energy than the level 1

desired configuration shown. . . . . . . . . . . . . . . . . . . . . . . . 93

4-7 The flowchart of the dynamic self-assembly process approach when the

same point condition locations are used in each process stage. . . . . 96

4-8 A pictorial representation of the different regions of the probability of

achieving the desired state at a particular stage. Given changes in a

particular system parameter, the system can transition from an ergodic

to a nonergodic system, and vice versa. . . . . . . . . . . . . . . . . . 100

4-9 A view of the dynamic process at each stage, defined by the multires-

olution view of the system. . . . . . . . . . . . . . . . . . . . . . . . . 100

11



4-10 Dynamic MC results for staying in the desired set of configurations for

each stage of the dynamic process for the 1D example system (N =

6, V = 16). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4-11 Results from dynamic MC simulations of the dynamic self-assembly

process for the 1D example system. . . . . . . . . . . . . . . . . . . . 103

4-12 The desired particle number distributions in the three stages of the

dynamic process for the 2D example system (N = 7, V = 16). . . . . 105

4-13 The point condition locations analyzed for the 2D example system. . 106

4-14 Dynamic MC results for staying in the desired set of configurations for

each stage of the dynamic process for the 2D example system (N =

7, V = 16). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4-15 Results from dynamic MC simulations of the dynamic self-assembly

process for the 2D example system. . . . . . . . . . . . . . . . . . . . 109

B-1 The desired configuration and point condition locations for another 1D

example system (N = 5, V = 8). . . . . . . . . . . . . . . . . . . . . . 115

B-2 The desired configuration and point condition locations for another 2D

example system (N = 119, V = 1024). . . . . . . . . . . . . . . . . . . 116

B-3 The barrier-forming point conditions and 23 well-forming point condi-

tions that provide an OSEMP objective function value, δ = 1.2. . . . 117

12



List of Tables

3.1 EMP results for the 1D example system. . . . . . . . . . . . . . . . . 65

3.2 Marginal values for the linear constraints using the OSEMP formulation. 65

3.3 EMP results for the 2D example system (N = 7, V = 16). . . . . . . . 73

3.4 EMP results for the 2D example system (N = 19, V = 64). . . . . . . 74

4.1 Initial guesses and generated point condition strengths for the 1D ex-

ample system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.2 Initial guesses and generated point condition strengths for the 2D ex-

ample system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

13



14



Chapter 1

Introduction

The fabrication of structures with desired nanoscale geometric features is a core re-

quirement for the manufacturing of future electronic, magnetic, and optical devices,

composed of nanoscale particles or blocks of particles, e.g., nanoelectronic circuits,

high-sensitivity sensors, molecular computers, molecular-scale factories, synthetic

cells, adaptive devices (e.g., artificial tissues and sensorial systems, scalable plas-

monic devices, chemico-mechanical processing, nanodevices and targeted cell ther-

apy, human-machine interfaces at the tissue and nervous system level)[1]. The theory

and practice of forming closely-packed 2-dimensional films and 3-dimensional ma-

terials with desired periodic nanoscale geometries in an essentially infinite domain

have advanced significantly during the last 10-15 years. For example, a large va-

riety of self-assembled monolayers, leading to highly structured films on surfaces

that provide biocompatibility, control of corrosion, friction, wetting, and adhesion,

have been experimentally synthesized and theoretically analyzed[2]. These films are

viewed as possible precursors to nanometer-scale devices for use in organic microelec-

tronics. However, their geometries are essentially periodic, which could constitute

an important limitation. The features of phase-separated regions of block copoly-

mers and blends are often of nanometer scale, periodic and dense, and can be ra-

tionally designed through the judicious selection of the monomers, and the length

and frequency of blocks in the polymeric chain(s)[3, 4]. Furthermore, templated self-

assembly techniques have been extensively developed to produce nanostructures with
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desired geometries through the judicious selection of nanoparticles and features of

the system environment. Examples include crystallization on template surfaces that

determine the morphology of the resulting crystals[5] and crystallization of colloids

in optical fields [6]. The templates could be physical (capillary forces, spin-coating,

surface steps, and others), molecular (patterned self-assembled monolayers with spe-

cific chemical functionalization of terminal groups), or electrostatic (localized charges

on the surface of a substrate). The resolution of the structural features that can

be achieved by template-based approaches depends on the spatial resolution of tem-

plates. DNA-programmed placement using 2-dimensional DNA crystals as scaffolds,

placement using electrophoresis, and focused placement, which uses focusing mech-

anisms to guide the nanoscale particles to specific locations in the physical domain

that are smaller in scale than the template guiding them, are additional approaches

that have been extensively reviewed by Koh[7].

Major challenges remain in two areas: (i) the fabrication of non-close-packed ma-

terials with asymmetric structures, and (ii) creation of composite systems through

the precise positioning of individual functional units. In both cases the fundamen-

tal problem is how to place the individual elements (e.g., nanoparticles, nanowires,

nanotubes, fragments of DNA, oligomers, proteins) at precise positions in a physi-

cal domain so that they are connected to each other to form a complex structure

of desired geometry and are also connected to the outside world with which they

interact. As an example, let us use a lattice model to represent a system of N par-

ticles within a system volume V . Figure 1-1 shows different categories of desired

self-assembled structures for such a model system. Judiciously designed nanopar-

ticles can self-assemble and form the periodic structures in Figure 1-1(a), but to

form non-periodic nanostructures like those in Figure 1-1(b) external controls are

needed to guide the self-assembly process. The size of the physical domains may be

defined through a top-down fabrication technique such as photolithography[8, 9] or

nanoimprinting[10, 11, 12] and could produce domains with dimensions of ∼50nm or

larger. External controls, which may include electric or magnetic fields, chemical func-

tionalizations, could be positioned through various top-down fabrication techniques,
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e.g., 2 nm diameter electrodes made with electron beam lithography[13], carbon nan-

otubes as electrodes (1-5 nm diameter)[14], etc. The particles may have charges,

dipoles, long-range and/or short-range interactions with each other, specific affinities

(e.g., “patchy” particles[15], DNA molecules[16, 17, 18]), etc. The resolution in the

distribution of controls is limited by the physics of the fabrication technique. For

example, electron beam lithography can generate arrays of electrodes 2 nm in diam-

eter with about 20-50 nm between electrodes[13]. Thus, in selecting the location of

external controls we must always conform with these physical constraints.

New approaches are needed to design and construct non-periodic and non- closed-

packed nanostructures systematically, and this need defines the scope of the work

presented in this thesis. More specifically, the following design questions are ad-

dressed: (a) Static Problem: what are the optimal external controls so that the

desired nanostructure is stable with a desired degree of robustness? (b) Dynamic

Problem: how do we change the external controls over time in order to ensure that

the desired final structure can be reached from any initial distribution of the particles

in the physical domain? The first problem is addressed in Chapter 3, and the second

problem in Chapter 4. However, before we can address these problems, we provide

some background on statistical mechanics considerations (Section 1.1), lattice models

for self-assembling particle systems (Chapter 2), and Monte Carlo (MC) simulation

techniques (Section 2.2).

1.1 Statistical mechanics

Statistical mechanics is a probabilistic approach to the thermodynamic principles of

chemical systems and is traditionally considered a molecular understanding of systems

in the thermodynamic limit, i.e., N →∞, V →∞, N
V

= ν, where the specific volume

ν is finite. We cite here a few statistical mechanics textbooks[19, 20, 21, 22] that

provide an excellent background on the principles of this field.

The first law of thermodynamics states that both work and heat are forms of

energy, and that the total energy is conserved. This is summarized by the fundamental

17



Figure 1-1: The periodic nanostructures in (a) can be achieved through self-assembly
of judiciously designed nanoparticles, but the non-periodic structures in (b) require
external controls for guided self-assembly.

18



equation:

E = TS + J · x + µ ·N, (1.1)

where J represents generalized forces, e.g., pressure (−P ), and x represents general-

ized displacements, e.g., volume (V ), and µ is the chemical potential. This equation

tell us that a system is fully specified by 3 variables, one from each term in the above

sum. The most common system types, or ensembles, are the following: (1) N, V,E

(microcanonical); (2) N, V, T (canonical); (3) µ, V, T (grand canonical); (4) N,P, T

(Gibb’s canonical). These systems are equivalent in the thermodynamic limit, but this

equivalency breaks down for finite systems (see Section 1.1.1). Hence, for nanoscale

systems with finite N and V , each system type must be understood separately.

Thus far, we have described energy as a thermodynamic quantity. At the mi-

croscopic level, we know that systems are composed of smaller constituents (e.g.,

particles, molecules, atoms), whose interactions and dynamics are reasonably well-

understood in terms of more fundamental theories. At any time, t, the microstate of

a system of N particles is described by specifying the position, q(t), and momentum,

p(t), of all the system constituents. Thus, the microstate, m(t) =
∏N

i=1{qi(t), pi(t)}.

The classical energy function for a particle system at a particular microstate can be

divided into separable potential and kinetic energy terms:

E(m) = EPE(q) + EKE(p), (1.2)

where it is assumed that the potential energy is only a function of position and the

kinetic energy is only a function of momentum.

The model systems described in Chapter 2 specify N, V and T , and are there-

fore canonical in nature. The probability distribution function (pdf) of a particular

microstate, mj, in the canonical prescription is given by the Boltzmann equation:

p(mj) =
e−βE(mj)∑
k e
−βE(mk)

= Z−1e−βE(mj), (1.3)
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where Z is called the normalizing partition function:

Z =
∑
k

e−βE(mk). (1.4)

Equation 1.3 is an ensemble probability, i.e., p(mj) represents the fraction of an

ensemble of systems that are in microstate mj. It also represents the probability of

finding a representative system in state mj after the system has reached equilibrium.

The energy parameter, β, essentially determines the “flow” of the system through

phase space. The smaller the β value, the more accessible all states are to the system.

Traditionally, β = 1/kBT . Because we assume that the kinetic and potential energy

terms are independent from each other in Equation 1.2, we can split the Boltzmann

pdf:

p(m) = p(p) · p(q) = Z−1
p e−βEKE(p) · Z−1

q e−βEPE(q), (1.5)

where Zp and Zq are given by

Zp =
∑
k

e−βEKE(pk), (1.6)

Zq =
∑
k

e−βEPE(qk). (1.7)

Analyzing only the Boltzmann pdf, we see that the most probable configuration(s)

minimizes the energy E(m); configurations of equal energy are equally probable.

Changing the random variable from microstate m to energy, E(m) = ε:

p(ε) =
∑
k

p(mk)δ(E(mk)− ε) = Z−1e−βε
∑
k

δ(E(mk)− ε) = Z−1Ω(ε)e−βε, (1.8)

where Ω(ε) is simply the number of microstates with energy ε. We define entropy as

S(ε) = kB ln Ω(ε). (1.9)
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Given this definition, Equations 1.8 and 1.9 can be used to give

p(ε) = Z−1e−β(ε−TS(ε)) = Z−1e−βF (ε), (1.10)

where F (ε) = ε − TS(ε) is the Helmholtz free energy. Therefore, if we work in the

energy space, it is the free energy that is minimized at equilibrium and the entropy

that informs us of the degeneracy of a particular energy state.

The other ensembles are also important to analyze, especially since finite systems

do not allow for ensemble equivalency. For example, one can imagine an open system

with a particular volume, V , and temperature, T , but does not maintain the same

particle number, N , in time. This grand canonical system prescription has important

applications in open particle systems.

1.1.1 Thermodynamics of small systems

The fundamental laws of thermodynamics and their derivations from statistical me-

chanics require that the system be in the thermodynamic limit. Under these circum-

stances, the system parameters typically do not exhibit significant fluctuations. The

following derivation portrays this principle.

Using the maximum-term method[19], one can simplify Equation 1.4:

Z =
∑
k

e−βE(mk) =
∑
{ε}

e−βF (ε) ≈ e−βF (ε∗), (1.11)

where ε∗ is the energy state that minimizes F (ε), i.e., the most probable energy state.

This approximation holds true for systems in the thermodynamic limit (see Appendix

A for the proof). The average energy can be computed as follows:

Ē =
∑
k

E(mk)Z
−1e−βE(mk) = −∂ lnZ

∂β
. (1.12)

If we define an average free energy, F̄ = Ē − T S̄, where both energy and entropy are
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also averages, then we can also use the following equation for the average energy:

Ē = F̄ + T S̄ = F̄ − T ∂F̄
∂T

= −T 2 ∂

∂T

(
F̄

T

)
=
∂(βF̄ )

∂β
. (1.13)

Equations 1.12 and 1.13 tell us that

F̄ = −kBT logZ. (1.14)

In the thermodynamic limit, Equation 1.11 tells us that

F (ε∗) = −kBT logZ. (1.15)

Hence, in the thermodynamic limit, the average energy state is also the most probable

energy state. We can get an idea of how true this is by analyzing the variance in

energy, var(E) = E2 − Ē2:

var(E) = E2 − Ē2 = Z−1
∑
k

E2e−βE − Z−2

(∑
k

Ee−βE

)2

,

=
∂2 lnZ

∂β2
= −∂Ē

∂β
= kBT

2∂Ē

∂T
= kBT

2 · C, (1.16)

where C is the heat capacity. The relative root mean square difference of the energy

is given by

rms(E) =

√
var(E)

Ē
=

√
kBT 2 · C
Ē

. (1.17)

The root mean square difference essentially is the average energy difference from the

mean normalized by the average energy. Having a small value for this ratio means

that the energy does not deviate much from its mean value. In the thermodynamic

limit, the heat capacity and the system energy are extensive, i.e., (E,C) = O(N1),

22



which means

rms(E) = O

(
1√
N

)
. (1.18)

Therefore, for a system in the thermodynamic limit, the root mean square difference

is essentially nonexistent (for N = O(1023), rms(E) = O(10−12)), and the most prob-

able energy is the average energy. However, as we decrease N , as in biological and

nanotechnological systems, fluctuations become significant.

Researchers are currently working on new theories, e.g., thermodynamics of small

systems[23, 24], nonextensive thermodynamics[25], which account for phenomena that

counter the classical laws due to finite system sizes. For instance, it has been

shown that finite systems may violate the second law of thermodynamics[26], the

principles of extensivity and intensivity[27], and ensemble equivalency[28]. Mohaz-

zabi and Mansoori[27] have shown that finite systems exhibit subextensivity, i.e.,

E,C ∼ O(Nλ), where λ > 1. We can generalize Equations 1.17 and 1.18 as follows:

rms(E) =

√
kBT 2 · C
Ē

∼
√
O(Nλ)

O(Nλ)
= O

 1(√
N
)λ
 = O

(
N−

λ
2

)
. (1.19)

Ensemble equivalency has often been applied to problems which are difficult to solve

under one set of thermodynamic conditions but easily solved under another set of

conditions. For finite systems, such methods are no longer available. Statistical me-

chanics, however, is not restricted to infinite systems and we utilize its basic principles

that do not utilize the thermodynamic limit assumption.

1.1.2 Ergodicity considerations

Equations 1.3 and 1.10 both assume that the “flow” through phase space allows

eventual access to any other state from any particular state. This is the ergodic

hypothesis, and is an important consideration. For the controlled self-assembling

processes we discuss in Chapters 3 and 4, the externally imposed controls offer degrees

23



of freedom that can be used to decrease the volume of phase space accessible to the

system, i.e., decrease the number of microstates accessible from any given microstate.

Systems that exhibit such nonergodicity[29] are known as glassy systems[30, 31] and

characteristically have rugged energy landscapes. As a result, transitioning between

two ergodic subsets of phase space, separated by a large energetic barrier, is not very

probable and requires either a sufficiently small β value or a sufficiently long period

of time.

In questioning whether the behavior of a particular system is ergodic, one always

needs to consider two aspects: (1) the time-scale of interest, and (2) the temperature

of the system. Given a finite measurable time, many systems are effectively noner-

godic and are therefore not properly described by the Boltzmann equation. Also, as

one lowers the system temperature, the system may become trapped within energy

wells, breaking system ergodicity. Spin glasses[30] have become the model system for

the study of nonergodic behavior, which has found applicability in areas of research

such as protein folding[32, 33].

A system with competing interactions exhibits “frustration”. This phenomena

describes the system’s inability to satisfy all competing internal interactions, making

a rough energy landscape with many local minima separated by high energy barriers.

Given a sufficiently low temperature, i.e., below the glass transition temperature, or

a finite time-scale, a system exhibits nonergodic behavior. However, one can analyze

a nonergodic system’s phase space Ω, as a set of ergodic subsets, called components,

where

Ω = ∪αΩα. (1.20)

A system which is in equilibrium within but not between components is referred to as

being in quasiequilibrium, which describes a system trapped in a local minimum well.

Because of the ergodicity within a component, one may use the Boltzmann equation
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within each component:

pα(mi) =
e−βE(mi)∑

mk∈Ωα
e−βE(mk)

= Z−1
α e−βE(mi), (1.21)

where Zα is now the partition function of the ergodic component, α, and the sum

over k is over all states in α with state mi being in α.

In the Static Problem, we require that the desired configuration be robust, i.e.,

once the system reaches the desired configuration, it stays in it. From a statistical

mechanics perspective, this requirement implies that we want to maximize the prob-

ability of the system being in the desired state and therefore minimize the desired

state’s energy compared to energies of all other accessible states. Under such condi-

tions, the partition function is dominated by the desired state, leading to its increased

probability, i.e., p(mdesired)→ 1. This essentially means we have created a nonergodic

system where the desired configuration is the only probable state in the accessible

system component. These considerations form the basis of the problem formulation

for the Static Problem (Chapter 3). Nonergodicity is also a desirable trait in the

self-assembly process, where the desired configuration is the system’s final equilib-

rium state, because it reduces the total number of undesirable competing states. In

Chapter 4, we propose a systematic restriction of phase space, starting with an er-

godic system where all of phase space is accessible. At all times, the desired state is

a member of the component the system is trapped in.
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Chapter 2

Model systems

The model system we use to demonstrate our self-assembly design strategies is an

isomorph of the Ising model[34], the workhorse of statistical mechanics. We assume

that the system particles do not rotate but simply translate throughout the discrete

system volume. We also assume that the particles are indistinguishable and negatively

charged with a charge equal to −1. Analyzing only the positional pdf, the potential

energy function (note that we have dropped the subscript) is given by

E(z) = Eext(z) + Eint(z) =
V∑
i=1

Nd∑
k=1

ziHi,ksk +
∑
i<j

ziJi,jzj = zTHs + zTJz. (2.1)

The binary vector, z, represents the system configuration, where zi = 0 represents

an empty lattice site and zi = 1 represents the presence of a particle. V is the

system volume, i.e., the number of lattice sites, and Nd is the number of external

fields (controls). The first sum, Eext, is the total energy imparted on the system by

external fields, and the second sum, Eint, accounts for binary interactions between

the system constituents (particles). Higher-order interaction terms may be included,

if necessary. Because we are using a phenomenological model, we tend to simplify the

system and focus on the most important contributors to the system behavior. The

parameter sk is the strength of external field k.

27



Many binary interaction potential energy models have the following form:

Eint(z) =
∑
i,j

ziJi,jzj =
∑
i,j

zizj
∑
p

c
(p)
i,j f

(p)(ri,j) =
∑
i,j

zizj
∑
p

c
(p)
i,j

(ri,j)mp
, (2.2)

where ri,j is the positional distance between constituents i and j, and c
(p)
i,j is typically

a fitted parameter used to match the model to experimental results. The larger the

exponent, mp, the shorter the interaction range. For instance, the classic Lennard-

Jones potential has an attraction interaction exponent, m = 6, whereas the Coulombic

potential has an interaction exponent, m = 1. Figure 2-1 shows that Coulombic

interactions are more long-range compared to the Lennard-Jones model for van der

Waals attraction. Of course the total interaction energy is the sum of all short-

and long-range contributions, shown in the above equation as a sum with the index

p. Both types of interactions are important considerations in a self-assembly process;

long-range interactions may be used to attract or repel system constituents within the

system volume and short-range interactions may be used to define the local geometry

of neighboring constituents. In this body of work, we consider particles interacting

with both long- and short-range interactions.

The most basic external field potential function takes the following form:

Eext(z) =
∑
i,k

ziHi,ksk =
∑
i,k

zici,ksk, (2.3)

where ci,k is simply a constant. We may also introduce external fields that can take

a basic form similar to the binary interaction potential above:

Eext(z) =
∑
i,k

ziHi,ksk =
∑
i,k

zisk
∑
p

c
(p)
i,kf

(p)(ri,k) =
∑
i,k

zisk
∑
p

c
(p)
i,k

(ri,k)mp
. (2.4)

Here, we introduce a distance parameter, ri,k, which represents the distance between

lattice site i and external control k. We call this type of external field a point condition

because the field originates at a point that is a certain distance away from each

lattice site and influences the lattice site through a potential that is a function of
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Figure 2-1: The long-range repulsive and short-range attractive interactions among
the self-assembling particles.

that distance. Each point condition has a positional array and can be located within

(internal point condition) or outside (boundary point condition) the system volume.

The point condition locations and strengths are determined by solving the Static

Problem (see Chapter 3). When sk is positive, the point condition k, in general,

produces an energy well, and when sk is negative, k produces an energy barrier.

2.1 Potential energy considerations

In all of our examples, we utilize point conditions as a means of controlling the

features of the potential energy landscape. More specifically, we use the external

potential energy function in Equation 2.4 with p = 1, c
(1)
i,k = −1 and m1 = 1. This is

a simple phenomenological model for Coulombic charged interactions. The negative

constant value simply represents the fact that we specify negatively charged particles.

We take a more complicated form for the interparticle interaction potential energy
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function, using Equation 2.2 with p = 1, 2; (c
(1)
i,j , c

(2)
i,j ) = (1,−1); and (m1,m2) =

(1, 6). These parameter values represent a simple phenomenological model for long-

range Coulombic charged repulsion and short-range van der Waals attraction. More

specifically, we utilize the following overall potential energy function:

E = Eext + Eint = −
∑
i,k

zi
sk
ri,k

+
∑
i,j

zizj

(
1

ri,j
− 1

r6
i,j

)
. (2.5)

For real systems, more complex interaction energy models will be required, but the

above model serves as a phenomenological one.

2.2 Simulation techniques

Because we are working with a lattice model system and we are only analyzing the

potential energy of a specific microstate, i.e., we are only looking at the system con-

figuration space, we utilize Monte Carlo techniques[34, 35] to simulate our system.

For a particle system of N particles in a finite volume V operated at a specific tem-

perature T , one Monte Carlo simulation takes a representative system from an initial

configuration to its stable equilibrium state. At equilibrium, the probability of being

in a particular configuration state arrives at a limiting value, called the equilibrium

probability. The evolution of the probability distribution in time is represented by

the master equation:

d

dt
p(zi, t) =

∑
i 6=j

[p(zj, t)Wj→i − p(zi, t)Wi→j] , (2.6)

where p(zi, t) is the probability of being in state i at time t. The first term in the

summation is the rate that the system arrives at state i from state j; Wj→i is the

probability of transitioning from state j to state i. The second term is the rate that

the system leaves state i. As the system approaches equilibrium, the above equation

reaches a steady state, i.e., p(zi, t)→ p(zi). There are many ways that this equation

can equal zero, but the most common approach is to impose detailed balance on the
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system:

p(zj)Wj→i = p(zi)Wi→j,∀(i, j), i 6= j. (2.7)

There are many choices for Wi→j that satisfy the above equation, the most famous

of which is the Metropolis Monte Carlo scheme[36]:

Wi→j = min

{
1,
p(zj)

p(zi)

}
. (2.8)

Using the Boltzmann distribution equation for an ergodic phase space or an ergodic

subset of phase space, this equation can be expanded:

Wi→j = min
{

1, e−β(E(zj)−E(zi))
}
. (2.9)

The right-hand side of the above equation comes from comparing the two energy

values, E(zi) and E(zj). If E(zi) ≥ E(zj), then the minimum value is unity. If,

however, E(zi) < E(zj), then the minimum value is the exponential term. To prove

detailed balance, if E(zi) ≥ E(zj),

Wi→j = 1,

p(zi)Wi→j = p(zi),

= e−βE(zi);

Wj→i = e−β(E(zi)−E(zj)),

p(zj)Wj→i = p(zj)e
−β(E(zi)−E(zj)),

= e−βE(zi). (2.10)
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As can be seen, detailed balance is satisfied. If E(zi) < E(zj), we can perform a

similar analysis:

Wi→j = e−β(E(zj)−E(zi)),

p(zi)Wi→j = p(zi)e
−β(E(zj)−E(zi)),

= e−βE(zj);

Wj→i = 1,

p(zj)Wj→i = p(zj),

= e−βE(zj). (2.11)

This also satisfies the detailed balance criteria.

In standard Monte Carlo simulations of particle systems, the system is initialized

at a particular state, z0, and a sequence of one-step moves of individual particles

are proposed and accepted using the acceptance probability in Equation 2.9, leading

the system to equilibrium. The transition from the initial state to the equilibrium

distribution of states may also serve as an approximation to the system’s nonequilib-

rium dynamics. However, if the system exhibits strong interaction potentials, defined

by Uint and Uext, we may find that the system gets trapped in unphysical kinetic

traps. For example, if two particles are located in neighboring lattice sites and there

is a strong short-range attractive potential between them, then the likelihood of one

particle moving one site away from its current location is very low. In essence, the

system is trapped in an unphysical potential energy well. It is unphysical because a

real system’s potential energy surface would not include such a well; the two particles

would simply move together in concert. The problem with the standard Monte Carlo

approach therefore lies in the fact that it does not allow for movement of clusters of

particles that are interacting through strong-range attractive potentials. Therefore,

the Monte Carlo method we use throughout the self-assembly studies in Chapters

3 and 4 utilize the “virtual-move” Monte Carlo (vmmc) algorithm, developed by

Whitelam and Geissler[37].
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2.2.1 Dynamic Monte Carlo

Given a system of particles, the vmmc algorithm chooses a seed particle, i, and creates

a cluster of linked particles, Ci, that moves together in concert. The same cluster of

particles can be formed and moved in concert using multiple linkages with different

seed particles. Similar to the detailed balance criteria above, the vmmc method

satisfies superdetailed balance through the following equilibrium requirement:

p(zj)Wj→k|Ci = p(zk)Wk→j|Ci ,∀(i, j, k), j 6= k. (2.12)

It is called superdetailed balance because it is specified over a specific linking between

particles. More specifically,

Wj→k|Ci = W gen
j→k|CiW

acc
j→k|Ci , (2.13)

where W gen is the probability of proposing (i.e., generating) and moving from state

zj to state zk, and W acc is the probability of accepting the move from state zj to zk.

We can break down the first term as follows:

W gen
j→k|Ci = pseed(zj)pdisplace(Ci; zj → zk), (2.14)

where pseed(zj) is the probability of choosing a seed particle in state zj and pdisplace(Ci; zj →

zk) is the probability, given a seed particle, of building Ci and moving it from state

zj to state zk. This latter term can be broken down further to two factors:

pdisplace(Ci; zj → zk) =
∏
{mn}nl

(1− pmn(zj → zk))

Ci∏
{mn}l

pmn(zj → zk). (2.15)

The first product is the probability of not forming links between all the particles

within Ci and all the particles that do not belong to Ci. Hence, the product over

{mn}nl is the product over all particle pairs, m and n, that must not form in order to

move from state zj to zk. The second product is the probability of forming a specific
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set of links between the particles that form the Ci cluster.

From Equation 2.12, superdetailed balance now states that

p(zj)W
gen
j→k|CiW

acc
j→k|Ci = p(zk)W

gen
k→j|CiW

acc
k→j|Ci ,∀(i, j, k), j 6= k. (2.16)

This can be rearranged as follows:

W acc
j→k|Ci

W acc
k→j|Ci

=
p(zk)

p(zj)

W gen
k→j|Ci

W gen
j→k|Ci

. (2.17)

There are many choices for W acc
j→k|Ci that satisfy the above equation. Whitelam and

Geissler use the following form:

W acc
j→k|Ci = min

{
1,
pseed(zk)

pseed(zj)
e−β(E(zk)−E(zj))

·
∏
{mn}k→jnl

1− pmn(zk → zj)∏
{mn}j→knl

1− pmn(zj → zk)
·

Ci∏
{mn}l

pmn(zk → zj)

pmn(zj → zk)

 . (2.18)

We can choose the seed particle from a uniform distribution, and therefore pseed(zj) =

pseed(zk). The probability pmn(zj → zk) depends on the energy difference of the bond

between particles m and n before and after the seed particle is moved:

pmn(zj → zk) = max
{

0, 1− e−β(EI(m,n)−EC(m,n))
}
. (2.19)

The energy EC(m,n) is the energy of the bond between a concerted move of particles

m and n. Because the particles do not move relative to each other, this bond energy

is identical at the beginning and end of the move. The energy EI(m,n) is the bond

energy following an individual move of particle m without moving particle n.

Using the above derivations, the vmmc algorithm proceeds as follows:

Step 0: Start in state zj. Define the number of MC steps for the simulation.

Step 1: Select from a uniform distribution a seed particle, m, and a proposed

translation.
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Step 2: Find the particles, {n}, that interact with the seed particle. Link a

given particle, n, to the seed particle with probability, pmn(zj → zk).

Step 3: Calculate pmn(zk → zj).

Step 4: Perform Steps 2 and 3 recursively for each linked particle to form new

links with each linked particle acting as the “seed”.

Step 5: After no more possible links can be evaluated, update the position of

the formed cluster using the proposed translation defined in Step 1.

Step 6: Evaluate the acceptance probability, and update the state of the system

accordingly.

Step 7: Perform Steps 1-6 for the remaining MC steps.

All simulations in Chapters 3 and 4 use the vmmc algorithm to simulate both system

equilibrium and nonequilibrium dynamics.
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Chapter 3

The static problem

The static problem deals with maintaining the desired structure once it has been

reached by the dynamic process. In essence, we assume that we have attained the

desired geometry and our concern is to make this state robust. We are creating an

ergodic component that consists of the just the desired state, and sufficiently large

energy barriers keep the system inside this component. In order to shape the energy

landscape for the creation of this ergodic component, we introduce system degrees of

freedom in the form of externally-controlled point conditions. Each point condition

has two parametric degrees of freedom: the location of the point conditions and their

strength. The qualitative features of the energy landscape are defined by the location

of the point conditions and their energetic characteristics, e.g., attractive or repulsive,

while the quantitative features (the robustness) are determined by the point condition

strengths.

We accordingly divide the Static Problem into two subparts: (a) the qualitative

definition of the energy landscape through the specification of the point condition

locations; (b) quantifying the robustness of the desired structure through the speci-

fication of the strengths of the point conditions. Section 3.1 details how to system-

atically place point conditions in order to qualitatively shape the energy landscape,

introducing the minimum tiling algorithm for attractive and repulsive point con-

ditions. Section 3.2 details the problem formulation and solution methodology for

defining the strengths of the point conditions. To find the strengths we define and
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solve the Energy-gap Maximization Problem (EMP), a combinatorially-constrained

mixed-integer quadratic optimization problem. Section 3.4 provides examples that

illustrate the qualitative and quantitative solutions of the Static Problem. Given the

set of point conditions used, the system robustness can be quantified and the appro-

priate operating system temperature can be found through simulation techniques. If

the system robustness is such that the necessary operating temperature is imprac-

tically low, we must introduce additional degrees of freedom to increase robustness.

Section 3.3 details how we can use the EMP output to find the constraining features

of the desired configuration and introduce the necessary degrees of freedom that en-

ergetically influence these features.

3.1 Qualitatively shaping the energy landscape: the

minimum tiling approach

The qualitative features of the energy landscape are defined by the location of the

degrees of freedom. The degrees of freedom we use are isotropic point conditions,

which are attractive or repulsive in nature. Attractive point conditions introduce

wells in the energy landscape, attracting the particles; repulsive point conditions

introduce barriers, deflecting particles. Because the presence of two wells forms a

barrier and vice versa, only one of these types (well- or barrier-forming) is needed to

define the qualitative features of the energy landscape. However, when solving EMP,

we may find that additional point conditions are needed to maintain a certain level of

robustness. It is therefore necessary to solve EMP with both types of point conditions

to see which is optimal in terms of two factors: (1) the total number of degrees of

freedom needed, (2) the minimum distance between the degrees of freedom. Based on

fabrication limitations, one can select which set of point conditions is more practical,

while still maintaining the desired level of robustness for the desired structure.

To find the minimum number of well- and barrier-forming point conditions, we

have formulated the minimum tiling algorithm below. For each point condition we
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assign a tile that encompasses the local area that the point condition is intended to

influence. Thus, the minimum number of tiles needed to cover the well- and barrier-

forming regions determines the minimum number of attractive and repulsive point

conditions, respectively.

In our example systems, we restrict the point conditions to 3 types with respect

to their locations. As shown in Figure 3-1, the point conditions can be on a lattice

site, between two lattice sites, or between four lattice sites. The first two types apply

to both the 1- and 2-D example systems while the third type applies only to the 2-D

examples. One can consider the possible point condition locations as another system

degree of freedom. The more types of point conditions (or, more generally, degrees

of freedom) we provide the system, the less the number of point conditions we need,

and vice versa. It is straightforward to see that for 1-D systems (V = L) the number

of possible point condition locations can be calculated for each type as follows:

Na
pc = L,

N b
pc = L+ 1,

Npc = Na
pc +N b

pc = 2L+ 1. (3.1)

In the same fashion, the number of possible point condition locations for 2-D square-

lattice systems (V = L2) can be calculated as follows:

Na
pc = L2,

N b
pc = 2(L+ 1)L = 2L2 + 2L,

N c
pc = (L+ 1)2 = L2 + 2L+ 1,

Npc = Na
pc +N b

pc +N c
pc = 4L2 + 4L+ 1. (3.2)

We only consider isotropic point conditions, and therefore each point condition’s

area of influence grows radially in all directions. The discretization of the system

volume into lattice sites and the different locations of each point condition type cause

their respective areas of influence to form different tile shapes. Figure 3-2 shows how
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Figure 3-1: The three types of point conditions used in the example systems: (a) on
a lattice site, (b) between two lattice sites, (c) between four lattice sites.

each type of point condition develops different tile shapes of increasing sizes. As a

point condition’s strength increases so does the area of influence it possesses. A point

condition’s tile can only include lattice sites of one particular type, i.e., occupied

sites for well-forming point conditions and unoccupied sites for barrier-forming point

conditions. Therefore, when an incremental growth in the radius of a point condition’s

area of influence causes the inclusion of a lattice site of the opposing type, we know

that the tile has reached its maximum size.

Given a desired lattice structure, the minimum tiling algorithm proceeds as fol-

lows:

Step 1: Locate all possible point conditions of a particular type (well- or barrier-

forming). Npc = O(V ).

Step 2: Grow each point condition’s tile (defining the area of influence) to its

maximum size. In other words, increment the radius of influence of each point

condition until any further increase would include a lattice site of the opposing

type.

Step 3: Eliminate all point conditions with null areas of influence. These

point conditions are located in areas where the opposite point condition type is

needed.

Step 4: Eliminate all point conditions with areas of influence completely sub-

sumed by another point condition’s area of influence. If the set of lattice sites
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in the area of influence of point condition i is Si, we eliminate any point con-

dition j where Sj ⊆ Si. If Sj = Si, then one point condition is chosen, which

therefore allows for multiple solution sets of point conditions. We may eliminate

multiple solutions by choosing the location that optimizes a particular system

characteristic, e.g., maximizes the distance between point condition locations.

Step 5: Solve a set cover optimization problem with the remaining point con-

ditions:

min
x

∑
i

xi

s.t.
∑
i

aijxi ≥ 1, ∀j,

xi ∈ {0, 1}, (3.3)

where xi is a binary variable that takes a value of 1 if the point condition is

kept and 0 if it is discarded. The parameter aij is a binary parameter that

equals 1 if lattice site j is within the area of influence of point condition i,

i.e., j is a member of i’s tile, and 0 otherwise. The set of point conditions

with xi = 1 represents the minimum set that covers all the lattice sites. After

Step 4, the resulting point condition set is essentially all point conditions with

independent sets of lattice sites in their areas of influence. Solving the set cover

problem accounts for the fact that the union of multiple point condition tiles

may subsume another point condition’s area of influence, e.g., Si ⊂ ∪{j,i6=j}Sj.

Step 6: Repeat Steps 1-5 for the other point condition type.

Figure 3-3 depicts the logical flowchart for Steps 1-5 of the minimum tiling algorithm.

The set cover optimization problem in Step 5 is an NP-hard problem with an NP-

complete decision problem equivalent. If the number of point conditions considered is

small enough, the set cover optimization problem can be solved for the minimum set.

However, if the number of point conditions is too large, one must use an approximate

algorithm, e.g., the greedy cover algorithm[38]. The greedy cover algorithm sequen-

tially chooses the point condition that covers the most number of lattice sites not yet
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Figure 3-2: The geometry of tiles generated from the three types of point conditions
defined in Figure 3-1.

covered by another chosen point condition.

The minimum tiling algorithm will output two sets of point conditions, the set

representing the necessary well-forming point conditions to cover the occupied lattice

sites and the set representing the necessary barrier-forming point conditions to cover

the unoccupied lattice sites. These sets of point condition locations can be used to

quantitatively shape the energy landscape, as described in Section 3.2.

3.2 Quantitatively shaping the energy landscape:

the energy-gap maximization problem (EMP)

Given the number of point conditions and their locations generated by the minimum

tiling algorithm (Section 3.1), we must now guarantee that the desired configuration is

robust, i.e., we want to maintain the desired structure given that the dynamic process

allows us to reach the desired state. To do this we utilize the point condition strengths

as our degrees of freedom. From Section 1.1, we may formulate this problem for a

system in the Canonical prescription by simply maximizing its Boltzmann probability:

max
s∈S

p(zd, s) = max
s∈S

e−βE(zd,s)∑
zj∈Ωα

e−βE(zj ,s)
= max

s∈S
Zα(s)−1e−βE(zd,s), (3.4)
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Figure 3-3: The flowchart of the minimum tiling algorithm that generates the mini-
mum number of well- or barrier-forming point conditions.
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where s is the set of point condition strengths needed to calculate the system energy.

We specify the partition function as that of the ergodic component, α, and the sum

over j is over all configurations in α. Configuration zd is in α. From Section 1.1, we

are also familiar with the ratio:

p(zi, s)

p(zj, s)
= e−β(E(zi,s)−E(zj ,s)). (3.5)

If E(zi, s) >> E(zj, s), this ratio approaches zero, and we know that state zj has

a high probability. If E(zi, s) << E(zj, s), this ratio approaches infinity, and we

know zi has a higher probability. Using this analysis, we see that we may analyze the

equilibrium probability of being in a particular state versus any accessible competing

states simply by looking at energy differences. We would like to minimize the energy

of the desired state with respect to all competing configurations. To minimize the

complexity of the problem, we may consider simply the competing configuration of

minimum energy and the energy difference between this configuration and the desired

configuration, see Figure 3-4. Using this approach, we may recast Equation 3.4 as a

bilevel optimization problem:

max
s∈S

E∗(s)− E(zd, s)

s.t. E∗(s) = min
z∈Ωα\{zd}

E(z, s). (3.6)

In this optimization formulation, which we call the Energy-gap Maximization Problem

(EMP), the inner problem finds the configuration in the ergodic component, excluding

the desired configuration, that minimizes the system energy. This configuration is

then passed to the outer problem, where we maximize the energy difference between

our desired configuration and the inner problem solution through the modification

of the point condition strengths. A negative objective function value means that,

given the set of point condition locations, the desired configuration cannot be the

energy minimum and therefore is not the configuration within component α with the

highest probability. In other words, there is at least one configuration with lower
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Figure 3-4: To decrease the complexity of the problem, we transition from viewing
the system as a set of energy differences between the desired configuration and all
Nα competing configurations to considering only the energy gap between the desired
configuration and the minimum-energy competing configuration.

energy, and the actual energy minimum is the energy of the desired configuration

plus the objective function value. If the objective function value is zero, there is

an energetically degenerate configuration that will have the same probability as the

desired configuration. However, if the value of the objective function is positive, our

desired configuration has the highest probability within component α.

The problem formulation in Equation 3.4 is difficult to solve because calculating

the partition function may require considering a combinatorially large number of

configurations. Also, it is a 0− 1 nonconvex non-linear problem (NLP), and a global

solution is not guaranteed. The reformulated optimization problem is an NLP with

an embedded 0− 1 quadratic problem (QP); the outer and inner problems cannot be

decoupled and solved separately. We can recast this bilevel optimization problem as

a combinatorially-constrained linear problem as follows:

max
s∈S,δ

δ

s.t. E(s, z)− E(s, zd) ≥ δ,∀z ∈ Ωα\{zd}, (3.7)

where δ is the minimum energy difference between the desired configuration and the
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competing configuration states. The combinatorial number of constraints in Equation

3.7 is directly related to the system volume and particle number. In Section 3.2.2 we

discuss how one can implicitly solve this problem without realizing all the constraints.

In Section 3.2.3, we discuss how a binary integer quadratic problem can be linearized

for faster computation times and guaranteed global solutions.

The minimum-energy competing configuration gives us a lower bound to the prob-

ability of the desired structure as follows:

pLBα (zd, s) =
e−βE(zd,s)

e−βE(zd,s) +
∑

zj∈Ωα\{zd} e
−β(E(zd,s)+δ)

= (ZLB
α (s))−1e−βE(zd,s). (3.8)

The following inequality holds true for all configurations in Ωα\{zd}:

E(zj) ≥ E(zd) + δ. (3.9)

Because of this inequality,

ZLB
α (s) ≥ Zα(s), (3.10)

pLBα (zd, s) ≤ pα(zd, s). (3.11)

If solving EMP provides us with a lower bound on the probability of the desired

configuration, we know that the actual probability is at least that value, and there-

fore the system will be more robust than the EMP output specifies. To find the

actual probability of the desired configuration or a tighter lower bound to the actual

probability, we must have more information about all other configurations’ energies.

3.2.1 Defining the phase space component Ωα

The ergodic component that includes the desired configuration and other accessible

competing configuration states can be defined in multiple ways. If we consider a

high-temperature system, all configurations in phase space are accessible and there-

fore make up Ωα. We call this problem the Phase Space Energy-gap Maximization
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Problem (PSEMP). If, however, the system temperature is sufficiently low or the

timeframe we are considering is short, Ωα is only a subset of the phase space. This

subset is not always easy to define, but in Section 3.4 we provide an example where

the barrier-forming point conditions define the competing configurations, in that the

energetic peaks trap particles in localized subvolumes of the system. In other words,

we restrict the system to specific particle number specifications. We call this problem

the Component Energy-gap Maximization Problem (CEMP).

In many cases, the definition of the competing component configurations is difficult

or impractical. In these cases, we propose a “one step” approach, where we consider

all one-particle movements from the desired configuration. We call this problem

the One Step Energy-gap Maximization Problem (OSEMP). Using this method of

defining the competing configurations, the number of constraints becomes O(N).

3.2.2 Reducing the number of constraints needed to solve

EMP

Solving EMP requires considering a combinatorially large number of constraints. To

solve such problems, we utilize a cutting-plane method. Cutting-plane methods allow

us to solve optimization problems with a very large, sometimes infinite, number of

constraints with only a subset of the constraints. More specifically, in our examples in

Section 3.4, we utilize a cutting-plane method devised by Blankenship and Falk[39],

where we start by solving the optimization problem subject to a finite subset of the

combinatorial number of constraints and enlarge this subset in order to obtain better

solutions to the problem. Therefore, we are solving the following problem:

max
s∈S,δi

δi

s.t. E(s, z)− E(s, zd) ≥ δ, ∀z ∈ Ωi
α\{zd}, (3.12)

where Ωi
α is a finite subset of Ωα and i is the iteration number. As the iteration

number increases, so does the accuracy of the solution. The approach to the solution
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is an upper bound to the EMP global solution:

δi ≥ δEMP ,∀i ∈ N. (3.13)

Clearly, if i reaches the combinatorial number of constraints defined by the subset of

configurations in Ωα, we are then solving the original EMP. However, we would like

to reach δEMP before we consider the full set of constraints.

The algorithm proposed by Blankenship and Falk involves the four following steps.

Step 1. Initialize: set i = 0 and choose Ωi
α ⊂ Ωα.

Step 2. Solve the ith outer problem: compute si ∈ S and δi that solves the

linear problem defined in Equation 3.12.

Step 3. Solve the ith inner problem: compute zi ∈ Ωα that solves the following

quadratic 0− 1 problem using the outer problem solution si and δi:

min
z∈Ωα

E(z, si)− E(zd, s
i)− δi. (3.14)

Step 4. Check termination criteria and update Ωi
α, if necessary: If E(zi, si) −

E(zd, s
i)−δi ≥ 0, then iteration i has generated the global solution. Otherwise,

return to Step 2 with an updated subset of constraints: Ωi+1
α = Ωi

α ∪ {zi}.

The inner problem essentially finds the configuration that maximally violates the

EMP energy difference constraint. If the solution to the inner problem however still

satisfies the EMP constraint, then we know all other configurations in Ωi
α\{zd} also

satisfy the constraint and we have the global solution at the current iteration.

Expanded EMP formulation

Thus far, the EMP formulation has been given in a concise form. The outer problem

is an LP with variables s and δ, the output values of which are passed to the inner

problem (Equation 3.14), which can be expanded as follows (to the form that is
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actually solved) to find the minimum energy competing configuration:

min
z

E(z, si)− E(zd, s
i)− δi (3.15)

s.t. zj ≥ 0,∀j = 1, 2, · · · , V ; (3.16)

zj ≤ 1,∀j = 1, 2, · · · , V ; (3.17)

zj ∈ {0, 1},∀j = 1, 2, · · · , V ; (3.18)
V∑
j=1

zj = N ; (3.19)

N −
∑
zj∈Θ

zj ≥ 1; (3.20)

∑
zj∈υ

zj = Nυ,∀υ ∈ Υ. (3.21)

The variable zj is simply the occupancy of lattice site j, where j = 1, 2, · · · , V .

Constraints 3.16-3.18 define zj as a binary integer variable. Constraint 3.19 tells

us that our system must have N particles. In Constraint 3.20, Θ is the set of all

occupied lattice sites in the desired configuration, i.e., zd,i = 1. This constraint

ensures that z 6= zd by requiring at least one difference in the occupancies of zd and

z. If we are solving PSEMP, only Constraints 3.16-3.20 are required. Constraint 3.21

is a particle number constraint needed for CEMP. The component α of competing

configurations in CEMP is made up of configurations that have a certain number of

particles, Nυ, trapped inside the system subvolume, υ ∈ Υ, where Υ represents the

set of all defined system subvolumes. Hence, υ represents a system subvolume with

an energetically favorable well between energetic barriers that are sufficiently large

to isolate the particles within the corresponding subvolume, υ, of the system volume.

An example using this type of constraint can be found in Section 3.4.1.

Solving this optimization problem involves iterating between solutions of an LP

and a QIP. To decrease computational times and guarantee a global solution, QIP’s

with binary variables can be linearized, which is discussed in Section 3.2.3.
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3.2.3 Linearization of a 0− 1 quadratic problem

Quadratic functions with binary variables can easily be linearized in the following

manner. Consider the general potential energy equation:

E(z, s) = sTHz + zTJz =

Npc∑
k=1

N∑
i=1

skHk,izi +
1

2

∑
i,j

ziJijzj. (3.22)

When you multiply two binary variables with each other, there are 4 possible out-

comes:

0 · 0 = 0, (3.23)

0 · 1 = 0, (3.24)

1 · 0 = 0, (3.25)

1 · 1 = 1. (3.26)

We can therefore create a new binary variable, zij for each pair of the original binary

variables, zi and zj, where zij = 0 if one or both lattice sites i and j are unoccupied

and zij = 1 if both lattices sites are occupied. Using this new variable, Equation 3.22

can be recast as follows:

E(z, s) =

Npc∑
k=1

N∑
i=1

skHk,izii +
1

2

∑
i,j

Jijzij, (3.27)

where

zij ≤ zii, 1 ≤ i < j ≤ V ; (3.28)

zij ≤ zjj, 1 ≤ i < j ≤ V ; (3.29)

zij ≥ zii + zjj − 1, 1 ≤ i < j ≤ V ; (3.30)

zij ≥ 0, 1 ≤ i < j ≤ V ; (3.31)

zii ∈ {0, 1}V , ∀i = 1, 2, · · · , V. (3.32)
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In this formulation, zij, i 6= j, is a continuous variable, and zii is a binary variable.

Hence, the number of binary variables remains the same, but new continuous variables

and the above constraints are introduced. Due to these additions, recasting the

problem does not guarantee a faster solution time. For example, if we have an 8x8

2-D square lattice system or a 64-site 1-D system, the original problem would include

64 binary variables. If we linearize this problem, we would maintain the 64 binary

variables but also add 2016 new continuous variables, i.e.,

Nnew
bin = N old

bin , (3.33)

Nnew
cont =

N old
bin(N old

bin − 1)

2
, (3.34)

where Ncont is the number of continuous variables and Nbin is the number of binary

variables. The number of additional constraints is

Nconst = 4 ·

 V

2

 . (3.35)

Because of this increase in number of variables and constraints, many have researched

what additional constraints are needed in order to make linearization a favorable

strategy for the solution of quadratic binary integer problems. Adams and Sherali[40]

propose one such linearization method for quadratic binary problems with linear

constraints.

Let us define a general quadratic integer program with a quadratic objective func-

tion and linear constraints:

min
x

m∑
i=1

cixi +
∑
i,j

Dijxixj (3.36)

s.t. x ∈ X, (3.37)

x ∈ {0, 1}, (3.38)
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where X ≡ X1 ∩X2 ∩X3 is the set of constraints:

X1 =
m∑
i=1

akixi = bk, k = 1, 2, · · · , K; (3.39)

X2 =
m∑
i=1

glixi ≥ hl, l = 1, 2, · · · , L; (3.40)

X3 = 0 ≤ xi ≤ 1, i = 1, 2, · · · ,m. (3.41)

X1 defines the set of equality constraints, X2 defines the set of inequality constraints,

and X3 bounds the value of xi to between zero and unity. Adams and Sherali linearize

this general quadratic integer program by performing the following operations:

Step 1: Form m ·K new constraints by multiplying the K equality constraints

in X1 by each xj, j = 1, 2, · · · ,m.

Step 2: Form m ·L new constraints by multiplying the L inequality constraints

in X2 by each xj, j = 1, 2, · · · ,m.

Step 3: Form m ·L new constraints by multiplying the L inequality constraints

in X2 by each (1− xj), j = 1, 2, · · · ,m.

Step 4: Form 3m(m − 1)/2 new constraints by multiplying the m xi ≥ 0 in-

equality constraints in X3 by each (1 − xj), j = 1, 2, · · · ,m, j 6= i, and by

multiplying, for i = 1, 2, · · ·m − 1, the xi ≤ 1 inequality constraints in X3 by

each (1− xj), j = i+ 1, i+ 2, · · · ,m.

Step 5: Substitute wij ≡ xixj,∀(i, j), wij ≥ 0. Note that wij needs to only be

defined for i = 1, 2, · · · ,m− 1, j = i, i+ 1, · · · ,m, reducing the total number of

new variables introduced to the problem. Also, x2
i ≡ wii.

The linearized general quadratic optimization problem can therefore be written as
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follows:

minw
∑m

i=1 ciwii +
∑

i,j Dijwij

s.t. (akj − bk)wjj +
∑

i<j akiwij +
∑

i>j akiwji = 0, ∀(j, k);∑
i gliwii − hl ≥

∑
i<j gliwij +

∑
i>j gliwji + (glj − hj)wjj ≥ 0, ∀(j, l);

wii − wij ≥ 0, ∀(i, j), i < j;

wjj − wij ≥ 0, ∀(i, j), i < j;

−wii − wjj + wij ≥ −1, ∀(i, j), i < j;

wij ≥ 0, ∀(i, j), i < j;∑m
i=1 akiwii = bk, ∀k;

wii ∈ {0, 1}, ∀i;

wij ∈ [0, 1], ∀(i, j) i < j.

(3.42)

The second constraint is a result of performing Steps 2 and 3 on the inequality con-

straint (Equation 3.40). One can see that this new constraint also includes the old

constraint, X2; therefore, adding the old constraint would be redundant in the lin-

earized problem. Applying this linearization approach to the QIP in the inner prob-

lem, we have the following linearized problem:

minz E(z, si)− E(zd, si)− δi

s.t. (1−N)zjj +
∑
i<j zij +

∑
i>j zji = 0, ∀j;

(N − 1)−
∑
zii∈Θ zii ≥ (N − 1)zjj −

∑
zii∈Θ,i≤j zij −

∑
zii∈Θ,i>j zji ≥ 0, ∀j;

zii − zij ≥ 0, ∀(i, j), i < j;

zjj − zij ≥ 0, ∀(i, j), i < j;

−zii − zjj + zij ≥ −1, ∀(i, j), i < j;

zij ≥ 0, ∀(i, j), i < j;∑
i zii = N, ∀i;

zii ∈ {0, 1}, ∀i;

zij ∈ [0, 1], ∀(i, j), i < j;∑
zii∈υ,i≤j zij +

∑
zii∈υ,i>j zji −Nυ · zjj = 0, ∀(j, υ ∈ Υ);∑

zii∈υ zii = Nυ, ∀υ ∈ Υ.

(3.43)

Similar to the original problem formulation, the last two constraints above is used
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to define particle number specifications within system subvolumes for CEMP. We

have now reduced our problem to two linear problems, the first (outer problem) with

continuous variables and the second (inner problem) with binary integer variables.

3.3 System robustness, constraining features and

introducing additional degrees of freedom

The value of δ, resulting from optimization problem, is a measure of the desired

structure’s robustness against statistical fluctuations, a measure of the probability

that the nanostructure will remain in the desired geometric configuration. If the

value of δ suggests satisfactory robustness, then the Static Problem is solved. If

not, then additional system degrees of freedom are needed. Since the initial set of

point conditions used thus far is of the same type, i.e., well- or barrier-forming, the

additional point conditions will be selected from the opposite type class. The selection

of the new point conditions is guided by the solution of the optimization problem.

The computed δ value tells us the minimum energy gap between the competing

configurations and the desired configuration. All energy difference values are found

in the optimization problem’s constraints. The constraints that are active, such that

E(z, s)−E(zd, s) = δ, represent the configurations that are constraining our objective

function from increasing in value. We look at the configurational differences between

the constraining configurations and the desired configuration and find the constraining

features of the desired structure, i.e., the locations in the desired structure where the

energetic barriers are easier to overcome, therefore allowing particles to sample out

of the desired configuration.

Once the constraining features are found, new point conditions can be added that

include the constraining features in their areas of influence (see Section 3.1). Then,

the optimization problem can be solved again for an updated δ value. This approach

can be repeated until a satisfactory level of robustness is achieved.
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3.3.1 Glass transition temperature

Thus far, we have not spoken about the system temperature. Given that we have

solved the Static Problem and have computed a δ value, we must determine at what

temperature to operate the system, assuming it has reached the desired configura-

tion. We use system simulations at multiple temperatures, all initialized with the

desired configuration, to see how the probability of maintaining the desired configu-

ration changes with the system temperature, kBT . The results in Section 3.4 show a

second-order phase transition from nonergodic behavior (i.e., the system is trapped in

the desired state) and ergodic behavior (i.e., the system follows Boltzmann’s proba-

bility distribution with all of phase space accessible). This transition from “glassy” to

“fluid” is parameterized by a glass transition temperature, Tg. This critical tempera-

ture is useful in that if we choose an operating temperature, To << Tg, then we know

the system is nonergodic; if we choose To >> Tg, the system is ergodic; if we choose

To ≈ Tg, the system is in transition between ergodic and nonergodic behavior. This

transition region simply means that, given an ensemble of system realizations, the

temperature is sufficiently high enough for the system to leave the desired state, but

the system is not able to fully sample all of phase space. As the system temperature

increases, so does the subset of allowable configurations in phase space.

The most widely-used approach to finding the glass transition temperature of a

second-order transition involves finding the intersection of the tangents to two “lin-

ear” regions of a curve representing the corresponding temperature dependence[41].

From the simulation results for the example systems in Section 3.4, we see second

order phase transitions similar to that in Figure 3-5. Using this curve, there are 3

straight-line regions. If we find the intersection of each adjacent pair of straight-

line regions to find T+
g and T−g . These two glass temperature values are different

and the region in between them represent the transition region between ergodic and

nonergodic behavior.

As a clarifying note, the curve represented in Figure 3-5 does not represent a

“cooling” or “heating” process. Classical glass transition temperatures are calculated
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Figure 3-5: The definition of the glass transition temperatures, T+
g and T−g for the

transition between ergodic and nonergodic behavior. The region between the two
temperatures is the transition region for the probability of the desired configuration.

from analyzing the system starting from a low (or high) temperature and heating

(or cooling) it while monitoring a characteristic parameter that shows a second-order

critical transition; this type of study may be a fruitful investigative topic, especially

for the Dynamic Problem described in Section 4. However, the glass transition tem-

perature, as described above, is useful for understanding the robustness of the desired

structure. In other words, if we operate the system, which has reached the desired

structure, at To << T−g , then we know our desired structure is robust due to the

system’s nonergodic behavior.

3.4 Static problem examples

We show the principles discussed above with 3 example lattice systems, one 1-D

system and two 2-D systems. Section 3.4.1 discusses the results of the 1-D example,

and Section 3.4.2 discuss the 2-D examples. Other example systems were analyzed

(not to the same level of completeness as in the following sections), and these systems
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Figure 3-6: The desired configuration for the 1D example system, where N = 6 and
V = 16.

Figure 3-7: The minimum tiling algorithm outputted six point condition locations,
three in barrier regions and three in well regions. The tiles represent each point
condition’s area of influence.

are described in Appendix B.

3.4.1 1D example system

The 1-D example system has particle number N = 6 and system volume (i.e., number

of lattice sites) V = 16. The desired configuration is depicted in Figure 3-6. Using the

minimum tiling algorithm, the locations and the respective tiles that define the areas

of influence for the well- and barrier-forming point conditions are shown in Figure

3-7.

Given these point condition locations, we solved all variations of the EMP op-

timization problem. The results are shown in Table 3.1. The strength values were

constrained, −100 ≤ si ≤ 100,∀i = 1, 2, · · · , Npc. The variables s1,3,5 are the well-

forming point condition strengths, and s2,4,6 are the barrier-forming point condition

strengths. A strength value of zero simply means that a particular point condition was

not considered in the optimization problem. The δ column is the objective function

output value. The column with the number of constraints has a different meaning
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Figure 3-8: The five competing configurations used in the OSEMP formulation, rep-
resenting configurations that are one step away from the desired configuration.

depending on which specific variation of EMP we are solving. For PSEMP, the num-

ber of constraints specifies how many iterations of Blankenship and Falk’s method

the solver needed to perform before arriving at the global solution. We initialized

the outer problem with one constraint (i.e., card(Ω0
α) = 1), which has all the par-

ticles in lattice sites 1, 2, · · · , N (starting from the left). For OSEMP, the number

of constraints is the number of configurations that are one MC step away from the

desired configuration. These configurations are depicted in Figure 3-8. For CEMP,

the number of constraints represents the subset of configurations within the defined

component needed for Blankenship and Falk’s method to reach the global optimum.

As before we initialized the outer problem with one constraint, which defined a con-

figuration that belonged to the respective component. More specifically, the initial

constraint defined a configuration with particles in lattice sites 1, 2, 3, 6, 7, and 11.

Problems PSEMPw 1D and PSEMPb 1D are the outputs of PSEMP using the

well- and barrier-forming point conditions, respectively. As can be seen, the 3 well-

forming point conditions provide a larger δ value. Figure 3-9 shows the results of dy-

namic MC simulations (using the vmmc methods in Section 2.2.1), varying the system

temperature with both the strength value outputs of PSEMPw 1D and PSEMPb 1D.

The MC simulations were initialized with the desired configuration and were allowed

to run for 50, 000 MC steps in order to test the robustness of the desired state.

A total of 50 simulation results were averaged to find the average probabilities in
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Figure 3-9. The points labeled E[pwMC(zd)] represent the average probability of main-

taining the desired configuration using the well-forming point conditions defined in

PSEMPw 1D, while the points labeled E[pbMC(zd)] represent the average probability

using the barrier-forming point conditions in PSEMPb 1D. We see that the well-

forming point conditions provide a more robust desired configuration, evident from

the larger δ value, i.e., the system probability decreases from unity at higher temper-

atures for higher output values of δ.

Figure 3-9 also compares the MC results to the equilibrium Boltzmann probability

(Equation 1.3) of the desired configuration, pEQ(zd), calculated from a full enumer-

ation of the energies of all system configurations. Looking at the general structure

of the MC simulation results, they tend to follow the Boltzmann distribution, i.e.,

pMC(zd) = pEQ(zd) = 1 at very low temperatures and pMC(zd) → pEQ(zd) at higher

temperatures. The fact that the equilibrium probabilities reach unity at low tem-

peratures tells us that our desired configuration is the minimum energy state. The

simulated systems are not equilibrium systems as the Boltzmann equation suggests.

Because the Boltzmann equation includes all possible system states, it assumes that

the system is ergodic, i.e., given a long period of time, pMC(zd)→ pEQ(zd). However,

the simulated system is non-ergodic at low temperatures and only approaches an er-

godic system at very high temperatures. This is the reason why we see differences in

the behavior of the probability at intermediate temperatures. This will become more

apparent in the OSEMP results.

The transition from non-ergodic to ergodic behavior is a second-order phase tran-

sition parameterized by the glass transition temperature. At high temperatures, the

system follows the Boltzmann distribution, i.e., the system exhibits ergodic behav-

ior. As you decrease the temperature, a critical temperature is reached where the

system begins to exhibit “glassy’ behavior, and after the transition, the system is

non-ergodic.

The second plot in Figure 3-9 shows the standard deviation of the probability

given these 50 realizations of the system, initialized with the desired configuration.

We see that within the transition region, there are large deviations between the 50
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simulations at each particular temperature. This tells us that the system is becom-

ing trapped in meta-stable system components during the transition region, therefore

allowing for different probabilities between different system realizations. At low tem-

peratures, there is low variability because all systems are essentially frozen at the

desired configuration. At high temperatures, there is also low variability because the

system exhibits ergodic behavior, where all system states are accessible and we are

essentially following the Boltzmann distribution.

We solved OSEMP using the well- and barrier-forming point conditions, respec-

tively. The resulting point condition strengths and objective function values are

shown in Table 3.1 under OSEMPw1 1D and OSEMPb1 1D. As can be seen, the well-

forming point conditions provide the larger δ value. Figure 3-10 shows dynamic MC

simulation results for OSEMPw1 1D. Here, E[pw1
MC(zd)] represent the average proba-

bility of maintaining the desired configuration using the well-forming point conditions

defined in OSEMPw1 1D, while the points labeled E[pb1MC(zd)] represent the average

probability using the barrier-forming point conditions in OSEMPb1 1D. Given the

results from PSEMP above, we know that the well-forming point conditions will pro-

vide a more robust desired structure due to its larger δ value. Again, we compare the

simulation results to th Boltzmann equilibrium probability of maintaining the desired

configuration, pEQ(zd).

We may find that, given a set of point condition locations and strengths, we

would like to increase the robustness of our desired configuration, i.e., we would

like to increase the probability of maintaining the desired configuration at a specific

system temperature. This can be done through the introduction of additional point

conditions. Because each point condition provides another system degree of freedom

(the point condition strength) within the optimization problem, adding another point

condition to a set of point conditions can only increase the system’s robustness, i.e.,

δs1 ≥ δs2⊆s1 , (3.44)

p(zd, s1) ≥ p(zd, s2). (3.45)
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Figure 3-9: Dynamic MC results using the solution to PSEMP for the 1D example
system compared to the Boltzmann probability distribution function.
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Because OSEMP is an LP, we can look at the optimization problem output and

see which additional point conditions will impact the objective function value the

most. More specifically, we can analyze the marginal value of all equality and active

inequality constraints, where an active inequality constraint simply means that the

energy difference is equal to δ. The marginal value specifies how sensitive the objective

function value is to the bound or right-hand side of the constraint. The larger the

marginal value, the greater the change in the objective function value given a change

in the bound. Table 3.2 shows the marginal values of all 5 constraints (representing

one step movements away from the desired configuration) for OSEMPw1 1D and

OSEMPb1 1D. The column named ‘configurational change’ provides information on

the configurational difference between the desired configuration and the competing

configuration being analyzed in each constraint. Non-zero marginal values show us

the locations of the constraining features of the desired configuration.

For OSEMPw1 1D, constraints 1, 2, and 4 are active inequality constraints with

marginal values of 0.84, 0.14, and 0.02, respectively. The constraining features in the

desired configuration are the particles in lattice site 3, 7 and 13. The first constraint

provides the largest marginal value. The barrier-forming point condition at lattice

site 5 would help decrease the likelihood of the particle in lattice site 3 moving to

lattice site 4, i.e., lattice site 4 is in the area of influence of this particular barrier-

forming point condition. In fact, both constraints 1 and 2, having positive marginal

values, suggest adding the point condition at site 5. Constraints 3 and 4 suggest

adding the barrier-forming point condition between sites 10 and 11. Finally, con-

straint 5 suggests adding the barrier-forming point condition at the right boundary

of the system. Problem OSEMPw2 1D has the additional barrier-forming point con-

dition at lattice site 5. The optimized output shows a large increase in the minimum

energy gap value, δ = 25.27. Figure 3-10 also shows the MC average probability,

E[pw2
MC(zd)], of maintaining the desired configuration for OSEMPw2 1D. Comparing

it to OSEMPw1 1D, we see that it transitions from a non-ergodic to an ergodic system

at a higher temperature, i.e., the glass transition temperature for OSEMPw2 1D is

greater than that for OSEMPw1 1D. Something to note is that while the Boltzmann
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equilibrium probability for OSEMPw1 1D shows that the desired configuration is the

phase space minimum energy configuration, this is not the case for the Boltzmann

probability, pw2
EQ(zd), in OSEMPw2 1D. As the temperature decreases, we no longer

see an increase in the equilibrium probability, i.e., the minimum energy configura-

tion equilibrium probability goes to unity (assuming the system is ergodic), and this

configuration is not the desired configuration. The MC simulation results exhibit

non-ergodic behavior by maintaining the desired configuration at low temperatures.

As the temperature increases, we are able to sample other configurations. Figure

3-10 also shows the equilibrium probability, pEQ(zd|Ωα), of maintaining the desired

configuration given that the system is sampling within component Ωα. As can be

seen, the desired configuration is the minimum within the component because this

probability goes to unity at low temperatures. We also see that as the tempera-

ture increases, pMC(zd) initially follows pEQ(zd|Ωα). Then the system temperature

increases sufficiently to allow the system to sample beyond Ωα, and the system even-

tually approaches ergodic behavior at higher temperatures. Figure 3-10 also shows

that, as in PSEMP, deviations in the desired configuration probability also suggest

the transition from a non-ergodic system at low temperatures to an ergodic one at

high temperatures.

Problem OSEMPw3 1D has the additional point condition between sites 10 and

11, and problem OSEMPw4 1D has the additional point condition at the right bound-

ary. We see that these do not significantly change the objective function value. OS-

EMPw3 1D has a slightly higher δ value, attributed to the non-zero marginal value

of constraint 4. OSEMPw4 1D shows the lowest increase in the objective function

due to the fact that constraint 5 is not active. OSEMPw5 1D shows the outcome of

using as many point conditions as those needed to account for all the constraining

features of the desired configuration.

Performing a similar analysis using OSEMPb1 1D, we see that constraints 2, 4 and

5 are active, with constraint 5 having the largest marginal value. Both constraints

4 and 5 suggest the addition of a well-forming point condition at lattice site 13.

Constraint 2 suggests the addition of the point condition between sites 7 and 8. As
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Figure 3-10: Dynamic MC results using the solution to OSEMP for the 1D example
system compared to the Boltzmann probability distribution function.
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Table 3.1: EMP results for the 1D example system.

Problem s1 s2 s3 s4 s5 s6 δ # Constraints

PSEMPw 1D 100 0 30.26 0 33.61 0 7.66 9
PSEMPb 1D 0 -67.15 0 -52.48 0 -100 3.60 7

OSEMPw1 1D 100 0 27.83 0 33.47 0 8.17 5
OSEMPw2 1D 100 -84.49 100 0 96.23 0 25.27 5
OSEMPw3 1D 100 0 45.33 -100 57.45 0 8.88 5
OSEMPw4 1D 100 0 30.02 0 54.29 -100 8.40 5
OSEMPw5 1D 100 -96.24 100 -24.79 100 0 28.77 5

OSEMPb1 1D 0 -29.09 0 -51.27 0 -100 4.24 5
OSEMPb2 1D 0 -69.38 0 -100 47.84 -100 12.99 5
OSEMPb3 1D 0 -30.45 100 -74.29 0 -100 4.68 5
OSEMPb4 1D 100 -40.58 0 -54.55 0 -100 4.35 5
OSEMPb5 1D 0 -100 48.23 -100 86.69 -100 25.30 5

CEMPb 1D 0 -35.84 0 -50.52 0 -100 4.22 7

Table 3.2: Marginal values for the linear constraints using the OSEMP formulation.

OSEMPw1 OSEMPb1
Constraint marginals marginals Configurational change

1 0.84 0 Particle in site 3 moves right.
2 0.14 0.01 Particle in site 7 moves left.
3 0 0 Particle in site 8 moves right.
4 0.02 0.34 Particle in site 13 moves left.
5 0 0.65 Particle in site 13 moves right.

expected, adding the point condition s5 has a larger impact on the δ value output.

In terms of defining Ωα, PSEMP uses the entire phase space. However, the combi-

natorial number of configurations makes solutions for large systems difficult to achieve.

Though we are using an implicit enumeration approach, we are still limited by the

problem combinatorics. The OSEMP formulation is a means of reducing the com-

putational complexity. As was seen with OESMPw2 1D, this formulation does not

require that the desired configuration be the minimum energy state in the entire

phase space. Hence, the solution to this problem creates a rugged energy landscape,
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where the desired configuration is the minimum only within the set of configurations

considered in the constraints, i.e., configurations that are one MC step away from the

desired configuration. If we compare the MC simulation results for PSEMPw 1D and

OSEMPw1 1D, we see that the former is more robust than the latter. The δ values

in Table 3.1 do not suggest this result. However, we have to consider that the δ in

PSEMP compares the desired configuration to all other phase space configurations,

while the δ in OSEMP only compares the desired configuration to the small subset of

configurations that are one step away. These objective function values are therefore

not comparable, and it is not surprising that the OSEMP value is higher since this

problem is less constrained.

The introduction of external controls leads to the formation of ergodic compo-

nents within the system phase space. However, it is not possible to define the compo-

nent that the desired configuration belongs to without knowing the point condition

strengths. Hence, PSEMP and OSEMP represent the two extreme problem formula-

tions, the former being the most restrictive and the latter being the least restrictive.

However, in certain cases, we may know most, if not all, component configurations

because we know where barrier-forming point conditions introduce large barriers to

the energy landscape. This allows for the binning of particles within the correspond-

ing subvolumes that define the regions where there are energetic wells. Assuming the

system temperature is sufficiently low to lock the particles within the wells between

the barriers, this binning of particles defines the set of configurations that approxi-

mate the component, which includes the desired configuration. These configurations

therefore make up the constraints in CEMP.

Using the 1D desired configuration (Figure 3-6) and the 3 barrier-forming point

conditions found through the minimum tiling algorithm, we may define the component

as the set of configurations that have three, two and one particle in the wells separated

by the three barriers and the system edges, see Figure 3-11. The number of component
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Figure 3-11: The enumeration of all configurations in the ergodic component of the
1D example system. These configurations were used in the CEMP formulation.
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states is calculated as follows: 4

3

 5

2

 6

1

 = 240. (3.46)

OSEMP considers only 5 competing configurations. PSEMP considers all possible

configurations in phase space:  16

6

 = 8, 008. (3.47)

In the optimization problem formulation of CEMP, the constraints defined by Equa-

tion 3.21 are now used. For the example above, the following specific constraints were

added:

4∑
j=1

zj = 3, (3.48)

10∑
j=6

zj = 2, (3.49)

16∑
j=11

zj = 1. (3.50)

From Table 3.1, we see the strengths and δ value from solving CEMP for the 1D

example system. Figures 3-12 and 3-13 show the results of dynamic MC simulations at

various temperatures. As in the results for OSEMP, we see that at low temperatures

the system exhibits non-ergodic behavior within its component. However, as the

system temperature increases, there is a transition to ergodic behavior, and the system

follows the Boltzmann distribution.

The solutions to PSEMP, OSEMP and CEMP show similar results for the Static

Problem. Given the optimum strength values that maximize δ, the energy differ-

ence between the desired configuration and a set of competing configurations, we see

that the system maintains the desired configuration at low temperatures, exhibiting

nonergodic behavior. As the temperature increases, there is an eventual transition
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Figure 3-12: Dynamic MC results using the solution to CEMP for the 1D example
system compared to the Boltzmann probability distribution function.
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Figure 3-13: Dynamic MC results for the variability of the ensemble probabilities
using the solution to CSEMP for the 1D example system.

to ergodic behavior. The larger the δ value, the later this transition, i.e., the glass

transition temperature is higher. The transition region also exhibits large deviations

in the probability of the desired configuration because the system is able to sample

outside the desired component into a subset of neighboring metastable phase space

components. From these results, we see that OSEMP is the best problem formulation

for the Static Problem. PSEMP is hampered by the combinatorially large number

of competing configurations (which represents the number of constraints needed).

OSEMP solves with a small subset of the constraints needed in PSEMP with com-

parable results. Therefore, considering all possible system states in phase space is

not a requirement for guaranteeing a robust desired configuration. CEMP requires

knowledge of all competing states within the desired configuration’s component. In

certain situations, such as the 1D example above, this is possible, but without prior

knowledge of the point condition strengths, it is difficult to perform the same analysis,

especially in higher dimension systems.
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3.4.2 2D example systems

We present two 2-D square-lattice example systems and their Static Problem results.

The first example has a particle number N = 7 and system volume V = 16, i.e., a

4-by-4 square-lattice. This has the same number of sites as the 1-D example, and the

number of phase space states (11440 total) is still small enough for full enumeration.

The second example has a particle number N = 19 and system volume V = 64, i.e.,

an 8-by-8 square-lattice. The desired configurations for both systems are depicted

in Figure 3-14. The minimum tiling algorithm was used to find the point condition

locations, shown in Figure 3-15. Given these point condition locations, we solved

both PSEMP and OSEMP; results are shown in Tables 3.3 and 3.4. As in the 1D

example, we initialized the outer problem in PSEMP with one constraint that has

all the particles in lattice sites 1, 2, · · · , N ; lattice site numbering is left-to-right and

top-to-bottom, as depicted by Figure 3-16. Defining specific phase space components,

as was done in the 1D CEMP example, is difficult in 2D without knowledge of the

point condition strengths, and therefore we do not present any CEMP solutions.

2D Example 1: N = 7, V = 16

Problems PSEMP1w 2D and PSEMP1b 2D are the outputs of PSEMP using the well-

and barrier-forming point conditions, respectively. Both sets have similar δ outputs,

and Figure 3-17 shows that they follow similar transitions from non-ergodic behavior

at low temperatures to ergodic behavior at higher temperatures, i.e., the two sys-

tems have similar glass transition temperatures. In this situation, we see that though

PSEMP1b 2D has a higher δ value, it is slightly less robust than PSEMP1w 2D.

This is due to the fact that δ is only a measure of the energy gap between the desired

configuration and the minimum energy state in the rest of phase space. This is an im-

portant factor in terms of the robustness of the desired configuration, but we are not

considering the energies of all the other configurations in phase space. The distribu-

tion becomes especially important when the δ values from two optimization problems

are similar. Figure 3-18 shows the energy distributions from both PSEMP1w 2D and
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Figure 3-14: The desired configurations for the two 2D example systems: (a) N =
7, V = 16, (b) N = 19, V = 64.

Figure 3-15: The solution to the minimum tiling algorithm for both 2D example
systems.
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Figure 3-16: The numbering of lattices sites from left-to-right and top-to-bottom for
2D square lattice systems.

PSEMP1b 2D. Both sets of point conditions allow the desired configuration to be the

minimum energy configuration. However, the optimum barrier-forming point condi-

tion strengths have more configurations with energies closer in value to the minimum.

This allows the well-forming point conditions to not only sample out of the desired

configuration less, but also allows the system to return with higher probability to the

desired configuration.

As was done in the 1D example system, OSEMP was solved using all one-site

one particle movements away from the desired configuration, i.e., there were 12 con-

straints representing all allowed one particle movements for each occupied lattice site.

OSEMP1w1 2D and OSEMP1b1 2D use the well- and barrier-forming point condi-

tions used in PSEMP. The marginal values for all 12 constraints in OSEMP1w1 2D

show that the constraining feature of the desired configuration is the particle occu-

pying lattice site 8 and its movement to lattice site 12. OSEMP1w2 2D therefore

adds the point condition at the bottom right corner of the system volume, s9. Per-

forming a similar analysis for OSEMP1b1 2D, we find the constraining feature to be

the particle in lattice site 7 and its movement to lattice site 6. We therefore add

the point condition between sites 7 and 11, s5, in OSEMP1b2 2D. In both cases, we

see an improvement in the δ value. Figure 3-19 shows the dynamic MC simulation

results for OSEMP1w1 2D, OSEMP1w2 2D and OSEMP1b1 2D. The well-forming

point conditions provide a more robust system. Also, since the δ values are sim-

ilar for OSEMP1w1 2D and OSEMP1w2 2D, we see similar trends for the desired

configuration probability with respect to system temperature.
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Figure 3-17: Dynamic MC results using the solution to PSEMP for the 2D example
system (N = 7, V = 16).
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Figure 3-18: Phase space energy distributions for PSEMP1w 2D and PSEMP1b 2D.

2D Example 2: N = 19, V = 64

PSEMP was not performed for the larger 2D example system. Even with the Blanken-

ship and Falk approach for implicit enumeration, the increased number of variables

and constraints did not allow for a reasonable solution time for the quadratic integer

optimization problem, even after using the Adams and Sherali linearization technique.

As shown in the 1D and the smaller 2D examples, OSEMP provides a computation-

ally less complex problem with results comparable to PSEMP. Using the well- and

barrier-forming point conditions from the minimum tiling algorithm, we solved OS-

EMP2w1 2D and OSEMP2b1 2D for the optimum point condition strengths with

41 constraints representing all one step single-particle movements away from the de-

sired configuration. The constraining feature in the desired configuration for OS-

EMP2w1 2D, i.e., the configurational change represented by the constraint with the

largest marginal value, is the particle in lattice site 58 and its motion to site 59. We

therefore added the barrier-forming point condition s18 in OSEMP2w2 2D. Similarly,
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Figure 3-19: Dynamic MC results using the solution to OSEMP for the 2D example
system (N = 7, V = 16).
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the constraining feature for OSEMP2b1 2D is the particle in lattice site 47 moving to

site 48. OSEMP2b2 2D therefore includes s16, which has site 47 in its area of influ-

ence. Figure 3-20 shows dynamic MC results for OSEMP2w1 2D and OSEMP2b2 2D,

which both have the same number of point conditions but very different robustness

results.

3.5 Current technology and the imposed limita-

tions on the desired structure

It is important to clarify the technological limitations constraining the creation of ex-

ternal controls on the physical domain in the examples above, which are phenomeno-

logical models for templated self-assembly systems. There are several practical ap-

proaches to creating these external controls:

Self-assembled monolayers (SAMs): SAMs are ordered assembly of organic

molecules on the surface of metals, metal oxides and semiconductors. This

technology is therefore limited by the minimum feature sizes of lithographic

techniques. Current high-throughput semiconductor technology is at the 32nm

node, which creates features with a characteristic lengthscale of ∼32nm[42, 43].

Also, techniques for the removal (and replacement) of SAMs allow for resolu-

tions of ∼25nm[44].

Electrostatic templates: Surfaces with varying electronic charge densities have

been studied for the templated self-assembly of charged particles and molecules.

Electrical microcontact printing allows for feature sizes of ∼50nm[45, 46], while

electron beam irradiation allows for feature sizes of ∼5-20nm that are ∼50nm

apart[47]. Ion beams can also be used, but with larger feature sizes of ∼6µm[48].

Atomic force microscopy (AFM) with a conducting tip can be use to create

charged features of ∼30nm resolution[49].

Electrodes created by electron beam lithography: Electron beam lithography is

capable of creating nanopores of <5nm in size[50], which can be used to create
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Figure 3-20: Dynamic MC results using the solution to OSEMP for the 2D example
system (N = 19, V = 64).
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electrodes that introduce electric fields to attract/repel particles[13]. However,

due to scattering, a radius of 50-100nm around the nanopore shows “wedge”

effects, i.e., the pores would need to be >100nm apart.

These techniques all allow for the control of the locations of energetic wells and

barriers on the system potential energy surface. Because the energetic wells may be

steep, they may allow for the focused placement of the constituents into precise regions

that are smaller in length scale than the control features on the surface. For example,

Koh[51] has shown the precise placement of nanoparticles (with ∼5nm precision) in a

line between differentially charged SAMs with a characteristic lengthscale of 100nm.

Using this understanding of research literature, current technology allows for con-

trols that are about 20-50nm in size with about 20-50nm of space between them.

This helps us analyze the sizes of our example lattice model systems and the point

conditions we impose on them to achieve our desired configurations. For instance, let

us analyze the 1D example system in Figure 3-6 and the point conditions we impose

on the system in Figure 3-7. If the δ value from OSEMPw1 1D is sufficient, the

minimum distance between the 3 point condition locations is roughly 5.5 lattice sites.

If this distance is taken as about 20nm, then we know that the system 1D volume is

about 58nm, with about 3.6nm between each lattice site. This system can therefore

model a 1D system on a line of length ≥58nm with nanoparticles of diameter ≥3.6nm.

If we needed to introduce the additional point condition in OSEMPw2 1D to improve

system robustness, the minimum distance between the 4 point conditions is now 2.5

lattice sites. Given current technology, this would be able to model a 1D system on a

line of length ≥128nm with nanoparticles of diameter ≥8nm. Any systems that are

smaller than these respective dimensions would not currently be manufacturable.

Given the 2D example system in Figure 3-14 and their respective point conditions

in Figure 3-15, we can perform a similar analysis. For the example system in Figure

3-14(a), OSEMP1w1 2D outputs a large δ value. However, these point conditions

have a small minimum distance of about 0.7 lattice sites. This system can only be

created if it had the following dimensionalities: ≥12,800nm2 system volume (L ≥

113nm), and ≥28nm-diameter nanoparticles. Similarly, OSEMP2w1 2D also has a
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minimum distance of about 0.7 lattice sites for the desired configuration in Figure

3-14(b). This requires the following system dimensionalities: ≥51,200nm2 system

volume (L ≥ 226nm), and ≥28nm-diameter nanoparticles. Any systems that are

smaller in size would require new technology for the placement of system controls.
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Chapter 4

The dynamic problem

In the Static Problem, we were able to reduce the phase space combinatorics to only

the neighboring configurations that were one step away, and we showed that these

considerations were sufficient to guarantee a robust desired structure. However, we

assumed in Chapter 3 that we were able to arrive at the desired structure. Given

that we have introduced nonergodicity to the system energy landscape, i.e., we have

created a rough energy landscape that traps the system in subsets of phase space

(or components), we know that arriving at the desired configuration from any ini-

tial configuration can only occur if we are in the desired configuration’s component.

Therefore, we must design a process that allows the system to reach the desired

configuration with high probability: a robust dynamic path.

The proposed dynamic process is inspired by protein folding studies[32, 33, 52, 53].

More specifically, we systematically modify the degrees of freedom in a manner that

shrinks the desired configuration’s component in time, starting from the entire phase

space to a component with just the desired configuration as its sole member. Here,

ergodicity plays a large role in guaranteeing that we are trapping the system in the

desired component.
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4.1 Systematic shrinking of accessible phase space

states

There are many ways of systematically breaking the phase space up into components.

For instance, in a lattice system, one can use site occupancy as a means of system-

atically isolating the desired configuration. Let us analyze this approach for the 1D

example system in Chapter 3 (Figure 3-6). The desired configuration has 6 particles

in lattice sites 1, 2, 7, 8, and 13. We can start by specifying that we would like to iso-

late all configurations with a particle in lattice site 1, i.e., our desired component is

made up of all configurations with site 1 occupied. This component has the following

number of configurations:  V − 1

N − 1

 . (4.1)

This represents all possible ways of having the N − 1 particles occupy the remaining

V − 1 lattice sites. Given this, we then move to the next stage, where we would like

to isolate all configurations with lattice sites 1 and 2 occupied. We continue to do

this in the same fashion, in stages, until we have specified all 6 occupied lattice sites

in the desired configuration, therefore isolating the desired configuration as the sole

member of a system component.

If we now consider the process of modifying the degrees of freedom such that

we isolate the group of configurations that belong to the desired component, we see

an inherent flaw in this approach. The problem lies in the dissimilarities between

the configurations that make up the desired component in the self-assembly process.

Figure 4-1 shows four configurations that belong to the first isolated component (i.e.,

all configurations with lattice site 1 occupied) in the 1D example. To maximize the

probability of being in this component, we may look at the Boltzmann distribution:

p(Ω(i)
α ) =

∑
zj∈Ω

(i)
α
e−βE(zj)∑

zk∈Ω
(i−1)
α

e−βE(zk)
, (4.2)
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Figure 4-1: Four representative configurations of the set of configurations with an
occupied lattice site 1.

where we are essentially comparing the collective energies of the current stage’s set

of desired configurations, Ω
(i)
α , to the previous stage’s set of desired configurations,

Ω
(i−1)
α . In Stage 1 of the 1D example, the numerator consists a sum over all con-

figurations with lattice site 1 occupied (Ω
(1)
α ), and the denominator represents all

configurations in phase space (Ω
(0)
α ). To maximize this probability, we have to mini-

mize the energies of all the configurations that make up the component compared to

the other configurations that belong to the previous stage’s component. Because, as

depicted in Figure 4-1, the configurations that belong to the desired component vary

greatly from each other, they would require different degrees of freedom to minimize

their energies. The necessary degrees of freedom for each individual configuration

are therefore competing with each other to maximize the probabilities of each indi-

vidual configuration within the component. This competition decreases the overall

probability of the component and is therefore undesirable. One can imagine that we

can assign a dominant configuration within the component and use the degrees of

freedom needed to maximize the probability of that particular configuration, but this

creates a “needle-in-the-haystack” situation, where the one optimized state is difficult

to find in a reasonable time and the system may become trapped in an undesirable

local minimum state.

Therefore, the method used to isolate sets of configurations is crucial; we must

divide the phase space into sets of similar configurations that require similar degrees

of freedom to optimize their probabilities. In other words, the energies (and there-
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Figure 4-2: The multiresolution distribution of particles for the Dynamic Problem
solution.

fore probabilities) of the configurations in a particular component must be highly

correlated.

We propose a multiresolution view of the system particle number as a means

of systematically breaking down the phase space. Looking once again at the 1D

example lattice system, we can coarsen the particle number specification from one-

site specifications to two-site specifications. Then, we can look at neighboring groups

of two-site specifications and specify four-site specifications. If we continue to do this

for the 1D example, we’ll have 5 stages of coarse-graining, see Figure 4-2. Starting

at Stage 0, we specify 6 particles in the 16-site 1D volume. Given that our system

is in the Canonical prescription, we know this has a probability of unity, i.e., we will

always have 6 particles within the system volume.

If we now increase the resolution of the system to Stage 1, we isolate the system

configurations that have 5 particles in the first 8 lattice sites and 1 particle in the

last 8 lattice sites. This represents the first restriction on the allowable system states.

Starting from an ergodic system in Stage 0, we now want to transition to a Stage 1

system that guarantees a (5, 1) particle number distribution. To do this, we maximize

the probability of all configurations within Ω
(1)
α with respect to the entire phase space
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(since the system begins as an ergodic one at Stage 0):

max p(Ω(1)
α ) = max

∑
zj∈Ω

(1)
α
e−βE(zj)∑

zk∈Ω
(0)
α
e−βE(zk)

. (4.3)

The self-assembly process should proceed in a manner such that the system is now

nonergodic in Stage 1, and the only accessible configurations belong to Ω
(1)
α . Given

this, we now transition to a Stage 2 system, where we maximize the probability of

having a (3, 2, 0, 1) particle distribution:

max p(Ω(2)
α ) = max

∑
zj∈Ω

(2)
α
e−βE(zj)∑

zk∈Ω
(1)
α
e−βE(zk)

, (4.4)

where the normalizing factor in the denominator is over all Stage 1 states. Because

we have already maximized the probability of being in Stage 1, we assume here that

the starting system state is within the subset of configurations Ω
(1)
α . Maximizing the

probability in Equation 4.4 will push the system towards a state in Ω
(2)
α . We continue

with Stage 3 and 4, maximizing the following two probabilities:

max p(Ω(3)
α ) = max

∑
zj∈Ω

(3)
α
e−βE(zj)∑

zk∈Ω
(2)
α
e−βE(zk)

, (4.5)

max p(Ω(4)
α ) = max

∑
zj∈Ω

(4)
α
e−βE(zj)∑

zk∈Ω
(3)
α
e−βE(zk)

. (4.6)

In Stage 4, we have maximized the probability of our system being in the desired

configuration, which is the sole member of the subset of configurations Ω
(4)
α . After we

have reached this desired configuration, we may now impose the optimized degrees

of freedom generated from the Static Problem’s OSEMP. Figure 4-3 portrays the

dynamic path through phase space described above. As can be seen, the desired

configuration is always a member of each stage’s set of desired states, and we are

restricting the accessible states at each stage until we reach the final stage, where we

have isolated the desired configuration.
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Figure 4-3: The dynamic path that restricts the system to progressively smaller
subsets of the system’s phase space.

4.2 Qualitatively shaping the energy landscape at

each stage of the dynamic process

Now that we have defined the appropriate problems to solve in Equations 4.3-4.6, we

must also define the degrees of freedom needed for each stage. In terms of the point

condition locations, we may use two approaches: (1) Redefine the point condition

locations at each stage to fit the desired particle number specification of each partic-

ular stage, (2) Utilize the same set of point conditions as the Static Problem. Figure

4-4 shows what the system designer may choose as locations for point conditions at

each stage, given that the locations are redefined based on the coarse-grained particle

number specifications at each stage. Although we do not rigorously define a method-

ology for redefining the point condition locations, the general principle for placement

is similar to the Static Problem’s minimum tiling algorithm; we place point conditions

in the general desired locations of wells and barriers, given the desired configuration

at each particular level of detail.

We may also choose to utilize the same point condition set as the one found

using the minimum tiling algorithm for the desired configuration. Let us analyze the

probabilities at each stage of the 1D example, comparing these probabilities to the
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Figure 4-4: Possible locations of point conditions for each stage of the dynamic pro-
cess.

ergodic Boltzmann probabilities. If we assume the system is ergodic, the Stage 4

desired configuration probability takes the following form:

pEQ(Ω(4)
α ) =

∑
zj∈Ω

(4)
α
e−βE(zj)∑

zk∈Ω
(0)
α
e−βE(zk)

. (4.7)

We know that at any given temperature, the normalizing sum in the denominator

of this equation is always greater than the sum in the denominator of Equation 4.6.

Therefore,

pEQ(Ω(4)
α ) ≤ p(Ω(4)

α ). (4.8)

Using the same reasoning, we can generalize this inequality for all stages:

pEQ(Ω(i)
α ) ≤ p(Ω(i)

α ). (4.9)

Similarly, we can also compare the ergodic Boltzmann probabilities at each stage, and
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see that they follow the following inequalities:

∑
zj∈Ω

(4)
α
e−βE(zj)∑

zk∈Ω
(0)
α
e−βE(zk)

≤

∑
zj∈Ω

(3)
α
e−βE(zj)∑

zk∈Ω
(0)
α
e−βE(zk)

≤

∑
zj∈Ω

(2)
α
e−βE(zj)∑

zk∈Ω
(0)
α
e−βE(zk)

≤

∑
zj∈Ω

(1)
α
e−βE(zj)∑

zk∈Ω
(0)
α
e−βE(zk)

≤

∑
zj∈Ω

(0)
α
e−βE(zj)∑

zk∈Ω
(0)
α
e−βE(zk)

= 1; (4.10)

pEQ(Ω(4)
α ) ≤ pEQ(Ω(3)

α ) ≤ pEQ(Ω(2)
α ) ≤ pEQ(Ω(1)

α ) ≤ pEQ(Ω(0)
α ) = 1. (4.11)

This tells us that if we can guarantee a large value for pEQ(Ω
(4)
α ), then we can guarantee

that the degrees of freedom used can guarantee a high probability at each stage

of the dynamic process. However, guaranteeing that we can create this “needle-

in-the-haystack” is not feasible for large systems due to the combinatorially large

number of configurations in phase space. Because of this reasoning, though, we

may move forward with the same approach of determining the locations of the point

conditions as the Static Problem, i.e., use the minimum tiling algorithm in Section

3.1, because this approach defines the minimum set of degrees of freedom needed to

shape the system energy landscape such that the desired configuration is the energetic

minimum. We can proceed in a similar fashion as in the Static Problem, in that if

the subset of point conditions used do not seem to provide a robust self-assembly

process from any initial configuration, we can analyze what additional degrees of

freedom are needed in order to increase robustness by determining the “constraining

features” of the desired structure (see Section 3.3). This can be done by examining

what competing configurations, in each stage of the self-assembly process, trap the

system in an undesirable system state.

90



4.3 Quantitatively shaping the energy landscape

at each stage of the dynamic process

The potential energy equation we utilize involves knowing both the locations and

intensities of the system point conditions. In the Static Problem, the minimum tiling

algorithm provides the locations of the point conditions, and we solved variants of

the Energy-gap Minimization Problem (EMP) to find the point condition intensities

(or strengths) that, given the point condition locations, maximize the desired con-

figuration’s robustness. EMP essentially uses energy differences between the desired

configuration and a set of competing configurations and attempts to maximize the

energy difference between the desired configuration and the minimum energy state

of the competing configurations. This approach allowed us to linearize the problem

formulation while still guaranteeing a robust desired structure. One can imagine

formulating a similar problem for the dynamic problem:

maxs∈S E∗(s)− E ′(s)

s.t. E∗(s) = min
z∈Ω

(i−1)
α \Ω(i)

α
E(z, s),

E ′(s) = max
zd∈Ω

(i)
α
E(zd, s).

(4.12)

In this optimization problem formulation, we are trying to maximize the energy gap

between the configuration in the competing set with minimum energy and the con-

figuration in the desired set with the maximum energy. As in the Static Problem, we

can pose this as a combinatorially-constrained problem:

max
s∈S,δ

δ

s.t. E(s, z)− E(s, zd) ≥ δ, ∀(z, zd) ∈ Ω(i−1)
α \Ω(i)

α × Ω(i)
α . (4.13)

Many different types of energy distributions can arise when solving this problem;

Figure 4-5 highlights four possible outcomes. The first (a) shows an ideal situation

where δ is positive and all states in the set of desired configurations have low energies

compared to the competing states. The second possible outcome (b) has a negative
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δ value, where the maximum energy configuration in the desired component is in

the range of the competing configurations’ energies. However, there exists at least

one configuration in the desired set with energy lower than the minimum competing

energy. This is less ideal, but because the minimum energy configuration belongs

to the desired component, then this can produce a high probability of achieving

the desired state at that particular stage of the self-assembly process. Figure 4-5(c)

shows a situation where the δ value is zero, which can be advantageous for a robust

dynamic process because the minimum also belongs to the desired component. It is

energy distributions such as the one depicted in Figure 4-5(d) that causes problems.

In this case, the δ value is also negative, but the minimum energy state belongs

to the competing set of configurations. This would not give a high probability of

achieving a configuration in the desired set. We cannot protect against this type

of distribution by only analyzing the minimum competing and maximum desired

configurations. Therefore, the only way to use EMP is to guarantee that δ ≥ 0.

Using the multiresolution approach defined in Section 4.1, however, does not allow

for this guarantee, especially in the earlier stages of the dynamic process. Figure 4-6

shows an example that portrays this difficulty. In essence, we cannot always guarantee

that all configurations in a desired component are energetically more favorable (i.e.,

lower in value) than the most energetically favorable competing configuration.

Stepping back from the EMP formulation, we now have to work with the original

non-linear problem formulation (Equations 4.3-4.6). However, this non-linear form

makes it difficult to numerically guarantee a global optimum solution. Also, because

of the combinatorially large number of configurations in the normalizing factor, nu-

merical optimization techniques no longer pose a possible solution. Therefore, we

propose a genetic algorithm approach that searches the parameter space for the point

condition strengths and uses dynamic MC simulations to calculate the “fitness” of a

potential solution.
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Figure 4-5: Types of energy distributions that can result from solving EMP at each
stage of the dynamic process: (a) positive δ separating the desired from the competing
configurations; (b) negative δ with the two sets of configurations overlapping; (c) zero
δ; (d) negative δ with the desired set of configurations subsumed in the energy range
of the competing set of configurations.

Figure 4-6: Two configurations belonging to 2 different components that portray the
difficulty in guaranteeing that δ ≥ 0 in the multiresolution EMP formulation. Using
the well-forming point conditions, the level 1 competing configuration shown will have
a lower energy than the level 1 desired configuration shown.
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4.3.1 Genetic algorithm approach

Genetic algorithms[54, 55] are a family of computational methods inspired by the

evolution process in biology. Given a population of solutions to a specific problem,

one calculates each member’s fitness with a specific fitness function. Then, based

on these fitness values, “parents” are chosen for the next generation. Recombination

and mutation are applied to the parent population in order to form the “children” of

the next generation. This process is repeated until a solution of satisfactory fitness is

found.

Specific to the optimization problems we are trying to solve, we perform a search

at each stage of the dynamic process. If we change the point condition locations in

each stage of the dynamic process (e.g., Figure 4-4), we can provide either a randomly

generated set of initial possible point condition strengths. However, given that we

have a general idea of where we would like energetic wells and barriers to form within

the system volume, we may also provide an intelligent initial guess, that defines

whether a point condition will be well- or barrier- forming, based on its location, and

a general order of magnitude, based on the particle number specifications at each

stage of the dynamic process. If we utilize the Static Problem point conditions in the

final stage of the dynamic process, as we do in Stage 4 for the 1D example system,

we may use OSEMP results for the point condition strengths as the initial guess.

If we are utilizing the same set of the point condition locations throughout the

dynamic process, i.e., those generated in the minimum tiling algorithm of the Static

Problem, we may also provide a random or intelligent initial guess for the point

condition strengths. However, we may perform the parameter search sequentially

between the stages in order to use a solution in one stage to initialize the next stage’s

initial solution population. More specifically, we may look at each stage as either a

restriction of the previous stage (i.e., a constriction of the subsets of configurations

that represent the accessible and desired states) or a relaxation of the next stage (i.e.,

a controlled growth of the subsets of configuration that represent the accessible and

desired states). The solution at one stage is therefore a good initial guess for either
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the next or previous stage. Again, the Static Problem OSEMP solution can be used

as an initial guess for the search in the final stage of the dynamic process. After a

good solution is found for the final stage, we may use the solution as an initial guess

to the previous stage’s search. We can continue to do this until we reach Stage 1, the

first stage we impose a restriction on the accessible and desired states of phase space.

Figure 4-7 depicts this approach.

The genetic algorithm proceeds as follows:

Step 0: Solve the minimum tiling algorithm and EMP for the Static Problem

degrees of freedom, s(SP ).

Step 1: If you are using the same set of point condition locations in Stage N

of the dynamic process, initialize your first generation with s(SP ) being the first

member, i.e., s(N+1) = s(SP ). If not, provide a random or intelligent guess,

s(N+1). Create a generation of mG total members by mutating each point con-

dition strength in s(N+1), i.e., s
(N+1)
k = s

(N+1)
k +∆, where ∆ is a random number

normally distributed with E[∆] = 0, σ∆ = d. Set i = N .

Step 2: With each possible solution, i.e., member of the generation, simulate a

Stage i system using dynamic MC. Initialize the simulation with a configuration

within the Stage i−1 desired component. Operating at a particular kBT value,

repeat the MC simulation nsim times. Output the average probability and

standard deviation of achieving the desired configuration(s) in Stage i.

Step 3: Repeat Step 2 for all mG possible solutions.

Step 4: Calculate the fitness, fj, of the each possible solution, where j =

1, 2, · · · ,mG. Fitness is calculated by the following equation:

fj = E[pj(Ω
(i)
α )] + E[pj(Ω

(i)
α )] · (1− σ

pj(Ω
(i)
α )

) = E[pj(Ω
(i)
α )] · (2− σ

pj(Ω
(i)
α )

).(4.14)

This fitness equation tells us that the fitness is not only a function of the proba-

bility of the desired state but also its variability; the higher the probability and

lower the variability, the higher the fitness of the potential solution.
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Step 5: Normalize the fitness by dividing each fitness by the sum of all fitness

values within the generation, i.e.,

Fj =
fj∑
k fk

. (4.15)

Step 6: Given all fitness values, choose mG parents for the next generation.

The probability of choosing a particular possible solution as a parent should

be proportional to its fitness value. One can imagine mapping all the fitness

values on a line between 0 and 1, where the length of the jth segment is equal

to Fj. Then, one can perform a stochastic sampling using mG random numbers

generated from a uniform distribution between 0 and 1.

Step 7: Perform a recombination on the new parent set. Select pairs of parents,

and with probability pc, recombine these solutions to form two new possible

solutions in the next generation. If recombination is accepted, a random number

generator can be used to choose the location to perform the crossover in the

two possible solutions, i.e., choose a random integer value, rc, between 1 and

Npc − 1. For example, if we perform a crossover with rc = 3 on the strings,

11000 and 10101, the next generation strings are 11001 and 10100.

Step 8: Given the set of possible solutions in the next generation, mutate each

point condition strength by a low probability, pm. The mutation is performed

similar to the initial mutation of the first generation in Step 1 above.

Step 9: Perform Steps 2-8, keeping track of the solution with the highest fitness

value. Terminate the genetic algorithm for Stage i when this maximum fitness

value is acceptable to the system designer. Though the fitness has an upper

bound of 2, solutions with lower fitness values, representing local optima may

be sufficient to guarantee a robust dynamic path at Stage i.

Step 10: If i = 1, we have found point condition strengths for each stage of the

dynamic process. If i > 1, perform Steps 2-9 for i = i− 1.
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4.4 The dynamic self-assembly process

Given the point condition locations and strengths defined in Sections 4.2 and 4.3, we

must now define the dynamic process. At each stage of the process, we assume that

the system is first able to sample all the states defined by the previous stage’s set of

desired configurations, i.e., the previous stage’s desired configurations represent the

accessible states at the current stage. However, at the end of each stage, we want

to restrict the system’s accessible configurations to only those that belong to the

stage’s set of desired configurations. This can only be done by imposing a transition

in the behavior of the system toward nonergodicity. Because we guarantee that our

desired set of configurations has a sufficiently high probability at each stage, then the

likelihood of trapping the system within the component of desired configurations is

high.

To cause this transition to nonergodic behavior, we must be able to adjust the

relative magnitudes of energy differences between two adjacent configurations in the

allowable region of phase space, ultimately having the ability to change what is con-

sidered a surmountable energy gap between configurations (defined by the system

temperature). There are two ways to do this for the systems and degrees of free-

dom we are currently working with: (1) modify the heights/depths of peaks/wells by

modifying the magnitudes of the point condition strengths, (2) change the system

temperature. The latter is self-explanatory. The former can be done by slowly in-

troducing the point conditions, i.e., providing strengths that are of the same relative

magnitudes, but of lower overall strength. As time continues, these strengths can be

increased to their final values.

At Stage 0, we have an ergodic system. To restrict the accessible region of phase

space, we introduce the Stage 1 degrees of freedom with strengths and a system tem-

perature that still allows the system to be ergodic. Then, we modify the appropriate

parameters (i.e., the point condition strength magnitudes and/or system tempera-

ture) to trap the system in the appropriate component. In Stage 2, we want to start

with the desired states of Stage 1 being accessible. Then, we slowly modify parame-
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ters to restrict the system to the Stage 2 desired component. This is different from

the transition from Stage 0 to Stage 1 because we no longer want to start with the

system exhibiting ergodic behavior. Hence, a system in Stage 2 of the self-assembly

process must start in the transition region between an ergodic and nonergodic system,

therefore allowing the system to access states near the desired specification. Further

sampling outside of this neighborhood may trap the system in an undesirable com-

ponent. If we are working with the system temperature, we may start the system

at a temperature within the glass transition region (see Section 3.3.1) and lower the

temperature in time to restrict the accessible phase space region. We then use this

same method for all the later stages until we have finished the final stage, where we

have guided the system to the desired configuration. At this point, we utilize the

Static Problem solution to guarantee a robust desired state.

Figure 4-8 shows the ergodic, nonergodic and transition regions for a probability

distribution with respect to the system parameter being used to modify the system’s

behavior. For Stage 1, we want to start with an ergodic system and transition to a

nonergodic system. For subsequent stages, we start with a system in the transition

region and modify the system parameter(s) to create a nonergodic system. Figure

4-9 depicts the overall dynamic self-assembly process.

4.5 Dynamic problem examples

We performed this dynamic problem approach on the 1D and 2D example desired

configurations depicted in Figures 3-6 and 3-14(a), respectively. In the former system,

N = 6, V = 16, and in the latter system, N = 7, V = 16.

4.5.1 1D example system

The dynamic process for the 1D example system has 4 stages, depicted in Figure 4-2.

For this example, we modify the point condition locations at each stage, as shown in

Figure 4-4. Table 4.1 shows the initial guesses and the point condition strength values

(with their fitness values) generated from the genetic algorithm. Within the genetic
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Figure 4-8: A pictorial representation of the different regions of the probability of
achieving the desired state at a particular stage. Given changes in a particular system
parameter, the system can transition from an ergodic to a nonergodic system, and
vice versa.

Figure 4-9: A view of the dynamic process at each stage, defined by the multiresolu-
tion view of the system.
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Table 4.1: Initial guesses and generated point condition strengths for the 1D example
system.

i (stage) si,1 si,2 si,3 si,4 si,5 si,6 si,7 f

4, initial guess 100 27.83 33.47
4, final 367.52 126.96 134.53 1.97

3, initial guess 100 50 -50 100 -100 50 -50
3, final 106.82 -22.68 -103.34 97.04 -95.22 91.62 -64.72 2.00

2, initial guess 50 -50 50 -50 50
2, final 100.53 -86.29 79.42 -146.10 20.44 1.84

1, initial guess 100 -50 50
1, final 223.39 72.44 42.15 1.28

algorithm, we use the following parameter values: mG = 20, σ∆ = 50, kBT = 10,

nsim = 10, pc = 0.4, pm = 0.02.

Using these point condition locations and strengths at each stage, we simulated the

dynamic self-assembly process through dynamic MC, using temperature as a means

of controlling the system ergodicity. To find the appropriate simulation temperatures,

we performed dynamic MC simulations of all the stages, initializing each simulation

with a configuration in the desired component. Figure 4-10 shows the results of these

simulations. The purpose of these simulations is to show us at what temperatures

the system is ergodic, nonergodic and transitioning.

For Stage 1, we need temperatures which allow the system to exhibit ergodic and

nonergodic behavior. Using the dynamic MC results, we transition from kBT = 6

(ergodic) to kBT = 0.25 (nonergodic), using increments of ∆(kBT ) = 0.25, in the

Stage 1 dynamic process. For all subsequent stages, we need two temperature values,

one which allows the system to be nonergodic and one which allows the system to

be in the transition region between ergodicity and nonergodicity. For Stage 2, we

transition from kBT = 12 (transition) to kBT = 6 (nonergodic), using increments of

∆(kBT ) = 0.5. For Stage 3, we transition from kBT = 6.5 (transition) to kBT = 3

(nonergodic), using increments of ∆(kBT ) = 0.5. For Stage 4, we transition from

kBT = 8 (transition) to kBT = 3 (nonergodic), using increments of ∆(kBT ) = 0.5.
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Figure 4-10: Dynamic MC results for staying in the desired set of configurations for
each stage of the dynamic process for the 1D example system (N = 6, V = 16).
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Figure 4-11: Results from dynamic MC simulations of the dynamic self-assembly
process for the 1D example system.

Figure 4-11 shows the average of 30 simulation results of the entire self-assembly

process from Stage 0 to Stage 4. We start at Stage 0 with a probability of unity

for satisfying the desired configuration specification. After the Stage 1 transition

from ergodic to nonergodic behavior, we see that the system has a 0.97 probability

of becoming trapped in the set of desired configurations. We then move to Stage

2, where after we transition from a system in the transition region to a nonergodic

system, we see that the system has a 0.87 probability of becoming trapped in the

desired component. Hence, there is a higher probability of sampling outside the

desired component in Stage 2. After Stage 3, the system has a 0.83 probability of

achieving the desired component, and after Stage 4, the system has a 0.97 probability

of arriving at the desired configuration. This tells us that the Stage 4 point conditions

allow us to recover a majority of the systems that became trapped in a competing

component in earlier stages of the dynamic process.

Figure 4-11 also includes three other data sets. The points labeled “nonergodic

process” represent the dynamic process results if we use only the final temperatures
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of each stage in the dynamic process, i.e., the simulation was performed at constant

nonergodic system temperatures within each stage. We see that the probability of

achieving the desired component in each stage is consistently lower at the nonergodic

temperatures. Hence, the manipulation of system ergodicity throughout the dynamic

process is important to ensuring that we find the desired configuration with high

probability at the end of the process. The points labeled “nonergodic random” in

Figure 4-11 represent simulations at nonergodic temperatures and a random initial

configuration at each stage. These probabilities are consistently lower than both the

dynamic and nonergodic process probabilities, which means that the use of stages

that constrict the accessible region of the system phase space is advantageous to our

dynamic process. Finally, the points labeled “dynamic random” represent simulations

that use the dynamic process at each stage but initialize with a random configuration.

These probabilities are consistently lower than the dynamic process probabilities.

However, one should note that the Stage 4 system has a high probability of arriving

at the desired configuration from a random initial configuration by just modifying

the system ergodicity, which tells us that the desired configuration is not difficult to

find using a simple annealing process. This will not be the case in the 2D example

system. Overall, these results show us that the dynamic self-assembly process defined

through a multiresolution view of the system provides a robust path from any initial

configuration to the desired configuration.

4.5.2 2D example system

For the 2D example system (N = 7, V = 16), we define 3 Stages in the dynamic

process, see Figure 4-12. We demonstrate both the dynamic process with variable

point condition locations and also the point condition locations generated from the

minimum tiling algorithm (Section 3.1), see Figure 4-13. Table 4.2 shows the initial

guesses and the point condition strength values (with their fitness values) generated

from the genetic algorithm. We used the same genetic algorithm parameter values as

in the 1D example. For Stage 2, we used the OSEMP optimum point condition

strengths as an initial guess into a genetic algorithm that solves the problem in
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Figure 4-12: The desired particle number distributions in the three stages of the
dynamic process for the 2D example system (N = 7, V = 16).

Table 4.2: Initial guesses and generated point condition strengths for the 2D example
system.

i (stage) si,1 si,2 si,3 si,4 si,5 f

2, initial guess 100 100 -3.38 100 99.20
2, final 132.18 80.98 174.09 114.79 172.95 1.93

1, initial guess (static) 132.18 80.98 174.09 114.79 172.95
1, final (static) 32.76 111.65 -111.62 -37.19 158.67 0.35

1, initial guess (variable) -50 50 -50 50 50
1, final (variable) -114.28 134.58 -188.39 141.68 -70.55 1.47

Equation 4.4. For Stage 1 (static), we use the Stage 2 point condition strengths

generated from the first genetic algorithm as an initial guess into another genetic

algorithm that solves the problem in Equation 4.3. For Stage 1 (variable), we use

an intelligent guess for the point condition strengths, based on the features we would

like to generate in the system energy landscape.

Using the point condition strengths generated by the genetic algorithm at each

stage, we simulated the dynamic self-assembly process. Within the simulation, we

again used temperature as means of controlling the ergodicity of the system. To find

the appropriate simulation temperatures, we performed dynamic MC simulations of

both stages, initializing each simulation with a configuration in the desired compo-

nent. Figure 4-14 shows the results of these simulations. For Stage 1 (static), we

transition from kBT = 10 (ergodic) to kBT = 1 (nonergodic), using increments of
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Figure 4-13: The point condition locations analyzed for the 2D example system.

∆(kBT ) = 0.5. For Stage 1 (variable), we transition from kBT = 18 (ergodic) to

kBT = 4 (nonergodic), using increments of ∆(kBT ) = 1. For Stage 2, we need to

transition from a system in the transition temperature range to a nonergodic system.

Using the dynamic MC simulation results, we transition from kBT = 5 (transition)

to kBT = 3 (nonergodic), using increments of ∆(kBT ) = 0.25.

Figure 4-15 shows the results of simulations of the entire self-assembly process

from Stage 0 to Stage 2 using both variable and static point condition locations. For

all stages, we see that the dynamic process results show equal or greater probabilities

than their nonergodic counterparts. Also, the self-assembly process probabilities for

both the dynamic and ergodic processes performed better than the randomly initial-

ized results. The plots show that the variable point conditions process seems to be

more robust. However, we note that the static point conditions had a low fitness value

in the genetic algorithm. If we allowed the genetic algorithm to run longer and/or

with a larger generation size, we may have arrived at a “fitter” solution, which in turn

may have allowed for a better dynamic process with the static point conditions. In
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Figure 4-14: Dynamic MC results for staying in the desired set of configurations for
each stage of the dynamic process for the 2D example system (N = 7, V = 16).
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comparison to the 1D results, we see that the dynamic self-assembly process performs

much better than a system that is annealed at the final stage of the process. Overall,

the 2D example system results, similar to the 1D results, show us that the dynamic

self-assembly process creates a robust dynamic path from any initial configuration to

the desired configuration.
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Figure 4-15: Results from dynamic MC simulations of the dynamic self-assembly
process for the 2D example system.
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Chapter 5

Conclusions and future directions

The construction of nanoscale structures with complex desired designs can be achieved

through controlled self-assembly of nanoparticles. In this thesis, we have proposed a

two-phase approach for the design and construction of such structures. In the first

phase we solve the Static Problem that ensures the local stability and robustness of

the desired structure through the judicious specification of external controls, while

in the second phase we develop a time-varying specification of external controls in

order to ensure that the final desired structure is reached from any initial particle

distribution.

Some future investigations that can branch out from this body of work are outlined

below:

Further investigation of the dynamic self-assembly process. In this thesis, we

present positive results for a dynamic self-assembly process that uses a multires-

olution view of the system particle number to constrict the accessible regions of

phase space. We presented two approaches of defining the point condition loca-

tions but have not proposed a systematic approach to placing point conditions at

the different stages of the self-assembly process. Within the self-assembly pro-

cess, we discussed a transition to nonergodic behavior at each stage. However,

further investigations may determine how process time, system temperature and

level of system ergodicity work together to create a robust dynamic process.
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Application to more complex models for real systems. The results described

in this thesis used a simple phenomenological model for interparticle interac-

tions and interactions with external controls. In moving towards the direction

of applying the developed methods and tools, the use of more complex energy

functions that have successfully been used to model real nanoparticle systems

would bring this work closer to being useful to experimental researchers. Ulti-

mately, the main concepts behind the problem formulations hold independent

of the energy models used, so the applicability to a wide variety of nanoparticle

systems is foreseeable.

Exploration of the degrees of freedom. The only system controls specified in all

the examples were point conditions. However, there are many different types of

system controls or degrees of freedom for nanoparticle systems. For example,

there is a large body of work[15, 56] on how the geometric and surface properties

of nanoparticles may affect their interactions amongst themselves and with their

environment.

Experimental use of the methodologies and tools. Many researchers are working

on experimental templated self-assembly systems[7]. The direct application of

these design principles, for example, on charged nanoparticle self-assembly on

a surface is apparent in the 2D example systems used throughout the thesis.

Developing a better understanding of designable systems. We discussed in this

body of work the limitations current technology poses on the locations of the

degrees of freedom. However, we did not pose such limitations on the point

condition strengths. A study that discusses what is designable and what tech-

nologies need to be developed to allow for more complex designable structures

would help provide a direction to alleviating the current limitations in achieving

a desired self-assembled structure.

112



Appendix A

Proof of maximum-term method

In Section 1.1.1, we discussed how fluctuations disappeared in the thermodynamic

limit, where we referenced the maximum-term method[19]. For completeness, we

provide this proof.

In a constant N, V, T system, the energy is a fluctuating random variable. It can

be shown that for a system in the thermodynamic limit (N → ∞, V → ∞, finite

ν = N/V ), the partition function,

Z =
∑
{m}

e−βE(m) =
∑
{ε}

e−βF (ε) ≈ eβF (ε∗). (A.1)

To prove this, consider the sum:

S =
M∑
i=1

εi, (A.2)

where each term is positive with an exponential dependence on N :

0 ≤ εi ∼ O
(
eNφi

)
. (A.3)

Note that the pdf for a constant N, V, T system contains exponentials that are a

function of energy, which is an extensive property, i.e., E(µ) ∼ O(N1). For each term
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in the sum,

0 ≤ εi ≤ εmax. (A.4)

Therefore, the sum is bounded:

εmax ≤ S ≤M · εmax. (A.5)

If we form the intensive property, (logS)/N , it will be bounded as follows:

log εmax
N

≤ logS

N
≤ log εmax

N
+

logM

N
. (A.6)

BecauseM has a combinatorial relationship withN , i.e., M ∝ Np, the ratio (logM)/N

vanishes in the thermodynamic limit:

lim
N→∞

logS

N
=

log εmax
N

= φmax. (A.7)

Therefore, in the thermodynamic limit of a system in the canonical prescription, the

partition function can be simplified as shown in Equation A.1, guaranteeing that the

most probable energy state has a probability that is essentially unity. This tells us

that equilibrium energy fluctuations are insignificant for thermodynamic systems.
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Appendix B

More Static Problem example

systems

A smaller 1D example system (N = 5, V = 8) and a larger 2D example system

(N = 119, V = 1024) were used for Conference Proceeding papers[57, 58].

The desired configuration and point condition locations, determined through the

minimum tiling algorithm of Section 3.1, for the 1D example system are shown in

Figure B-1. If we utilize the well-forming point conditions, s1 and s3, and solve

PSEMP, we find that δ = 12.7, s1 = 71.4, and s3 = 100.

The desired configuration and point condition locations for the larger 2D example

system are shown in Figure B-2. For this example system, NPC = 4, 225. Before

solving the set cover problem, we were able to reduce this number to 905 barrier-

and 105 well- forming point conditions. After the set cover problem was solved, there

remains 32 barrier- and 54 well- forming point conditions, shown in Figure B-2. We

solved OSEMP with the 32 barrier-forming point conditions to find δ = −0.1. To

Figure B-1: The desired configuration and point condition locations for another 1D
example system (N = 5, V = 8).
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Figure B-2: The desired configuration and point condition locations for another 2D
example system (N = 119, V = 1024).

make this positive, we analyzed the marginal values and added 23 of the well-forming

point conditions, shown in Figure B-3. We solved OSEMP again to find δ = 1.2.
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Figure B-3: The barrier-forming point conditions and 23 well-forming point conditions
that provide an OSEMP objective function value, δ = 1.2.
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