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Abstract

Nonsmooth equation-solving and optimization algorithms which require local sensitivity information are
extended to systems with nonsmooth parametric differential-algebraic equations (DAEs) embedded. Nons-
mooth DAEs refers here to semi-explicit DAEs with algebraic equations satisfying local Lipschitz continuity
and differential right-hand side functions satisfying Carathéodory-like conditions. Using lexicographic dif-
ferentiation, an auxiliary nonsmooth DAE system is obtained whose unique solution furnishes the desired
parametric sensitivities. More specifically, lexicographic derivatives of solutions of nonsmooth parametric
DAEs are obtained. Lexicographic derivatives have been shown to be elements of the plenary hull of the
(Clarke) generalized Jacobian and thus computationally relevant in the aforementioned algorithms. To ac-
complish this goal, the lexicographic smoothness of an extended implicit function is proved. Moreover, these
generalized derivative elements can be calculated in tractable ways thanks to recent advancements in nons-
mooth analysis. Forward sensitivity functions for nonsmooth parametric DAEs are therefore characterized,
extending the classical sensitivity results for smooth parametric DAEs.
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1. Introduction

Algorithms for nonsmooth equation-solving (e.g., semismooth Newton methods [1, 2] and LP-Newton
methods [3]) and nonsmooth optimization (e.g., bundle methods for local optimization [4–6]) require sen-
sitivity information for which many current theoretical and computational approaches are lacking. Recent
progress has been made in tractable algorithms [7] for obtaining elements of a class of generalized derivative,
using lexicographic differentiation [8] to calculate lexicographic directional derivatives, as introduced in [7].
Applicable to lexicographically smooth functions (which includes all differentiable functions, convex func-
tions, and PC1 functions in the sense of Scholtes [9]), this approach has been used to furnish computationally
relevant generalized derivatives for parametric ordinary-differential equations (ODEs) with nonsmooth right-
hand sides [10]; hybrid systems, inverse functions, and implicit functions [11]; ODEs with linear programs
embedded [12]; and nonsmooth optimal control problems with nonsmooth ODEs embedded [13].

With applications in mechanical, electrical, and chemical engineering, DAEs (also called singular or
descriptor systems) have become a widely applied modeling tool [14]. Narrowing the focus more, nonsmooth
DAEs provide a natural modeling framework for a number of physical phenomena found in engineering and
applied mathematics such as campaign continuous pharmaceutical manufacturing (see, e.g., [15–17]). In
this paper, generalized derivative notions from nonsmooth analysis are used (for background, the reader
is referred to [9, 18–20] and the references therein). Elements of the plenary hull of Clarke’s generalized
Jacobian comprise the desired sensitivity information for the nonsmooth algorithms described earlier. As
DAEs pose a number of theoretical and numerical difficulties over ODEs (see, e.g., [14, 21–24] and the
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references therein), the extension of the aforementioned lexicographic differentiation theory to nonsmooth
DAEs requires careful consideration.

Numerous studies have been completed on forward and adjoint sensitivities of smooth DAEs (see, e.g.,
[25, 26] and the references therein), hybrid and discontinuous systems (see, e.g., [27–29]), and oscillating
systems [30, 31]. However, the theoretical tools and findings in these works are not applicable here due to
incompatible assumptions. Clarke first derived a result on generalized Jacobians of solutions of nonsmooth
parametric ODEs (Theorem 7.4.1 in [18]). Pang and Stewart (Theorem 11 and Corollary 12 in [32]) proved
that such generalized Jacobian supersets are linear Newton approximations (LNAs, see [19] for details)
when the ODE right-hand side functions are semismooth in the sense of Qi [2]. Pang and Stewart [32] then
applied their ODE sensitivity results to differential variational inequalities (DVIs), as introduced in [33], with
differentiable ODE right-hand side functions and differentiable variational condition functions; the authors
calculated directional derivatives of local solutions of DVIs and obtained LNAs of the solution map about
an initial data point. As DVIs can be expressed as a class of DAEs with specialized structure, the results in
[32] are restricted to a subclass of nonsmooth DAEs with differentiable ODE right-hand side functions and
nonsmooth algebraic equations. Furthermore, LNAs have been shown to not necessarily satisfy desirable
properties which are satisfied by generalized Jacobians, such as LNAs of differentiable functions containing
elements other than the Jacobian evaluated at said point (see Example 4.2 in [10] and Example 1.1 in [12])
and LNAs of convex scalar-valued functions including elements that are not subgradients [10].

Khan and Barton [10] derived a method for obtaining lexicographic derivatives of the unique solution
of parametric Carathéodory ODEs from the unique solution of an auxiliary ODE system obtained via the
lexicographic directional derivative chain rule [7]. This work is a natural extension of the classical sensitivity
results for smooth parametric ODE systems obtained via the classical chain rule (see, e.g., Chapter V in
[34]). As a subset of the plenary Jacobian, elements of the lexicographic subdifferential have been shown to
be computationally relevant in many applications [10], including the nonsmooth algorithms detailed earlier.
Moreover, as a key property of the lexicographic directional derivative is that it satisfies strict calculus rules,
the implementation of a vector forward mode of automatic differentiation to calculate elements of the plenary
Jacobian is therefore possible [7].

The main contribution of the current article is the development of a suitable theory for obtaining gen-
eralized derivative elements of solutions of nonsmooth parametric DAEs. In the spirit of [10], lexicographic
derivatives (and therefore elements of the plenary Jacobian) of unique solutions of Carathéodory index-1
semi-explicit DAEs are obtained from the unique solution of an auxiliary nonsmooth DAE system via the
lexicographic directional derivative chain rule. First, we derive the lexicographic smoothness of the extended
implicit function constructed in [35] inherited from lexicographic smoothness of the participating functions.
In doing so, it is possible to formulate the nonsmooth DAEs as equivalent parametric Carathéodory ODEs on
an open and connected set containing the unique solution. The sensitivity theory developed here applies to
DAEs for which existing methods fail and, thanks to the strict calculus rules of the lexicographic directional
derivative, lays the theoretical groundwork upon which efficient numerical implementations can be designed.
Methods for nonsmooth equation-solving and nonsmooth optimization are thus extended to systems with
nonsmooth parametric DAEs embedded.

The rest of this article is organized as follows. Necessary background in nonsmooth analysis is presented
in section 2. Lexicographic smoothness of extended implicit functions is proved in section 2.5. Generalized
derivatives of nonsmooth DAEs are calculated in section 3; forward sensitivities are found for semi-explicit
index-1 DAEs. Examples are given in section 4 and concluding remarks are provided in section 5.

2. Mathematical Background

Relevant preliminaries are discussed in this section.

2.1. Preliminaries

The notational conventions here echo those set out in [7, 10]. The set of positive integers is denoted by
N and the set of nonnegative real numbers is denoted by R+. The vector space R

n is equipped with the
Euclidean norm ‖ · ‖ and the vector space R

m×n is equipped with the corresponding induced norm. Sets
are denoted by uppercase letters (e.g., H), matrices in R

m×n and matrix-valued functions are denoted by
uppercase boldface letters (e.g., H), elements of R and scalar-valued functions are denoted by lowercase
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letters (e.g., h), and vectors in R
n and vector-valued functions are denoted by lowercase boldface letters

(e.g., h). The zero vector in R
n is denoted by 0n, the m× n zero matrix is denoted by 0m×n, and the n× n

identity matrix is denoted by In. A well-defined vertical block matrix (or vector):

[
H1

H2

]

can be written as (H1,H2). The ith component of a vector h is denoted by hi. Parenthetical subscripts
may be used to indicate the column vector of a matrix (e.g., the matrix H has the kth column h(k)), or to

indicate a sequence of vectors or vector-valued functions. Parenthetical superscripts (e.g., h(k)) are used for
lexicographic differentiation. A neighborhood of h ∈ R

n is a set of points Bδ(h) (the open ball of radius δ
centered at h) for some δ > 0. A neighborhood of H ⊂ R

n is given by Bδ(H) := ∪h∈HBδ(h) for some δ > 0.
The closed ball of radius r > 0 centered at h is denoted by B̄r(h). Given a set H ⊂ R

n, its convex hull is
denoted by convH. A set of matrices H ⊂ R

n×n is said to be of maximal rank if it contains no singular
matrices.

Given nx, ny, nz ∈ N and W ⊂ R
nx ×R

ny ×R
nz , the projections of W onto R

nx and R
nx ×R

ny are given
by, respectively,

πxW := {ηηηx ∈ R
nx : ∃(ηηηx, ηηηy, ηηηz) ∈ W} ⊂ R

nx ,

πx,yW := {(ηηηx, ηηηy) ∈ R
nx × R

ny : ∃(ηηηx, ηηηy, ηηηz) ∈ W} ⊂ R
nx × R

ny .

The shadows of W at y ∈ πyW with respect to R
nx and R

nx × R
nz are given by, respectively,

πx(W ;y) := πx{(ηηηx, ηηηy, ηηηz) ∈ W : ηηηy = y} ⊂ R
nx ,

πx,z(W ;y) := πx,z{(ηηηx, ηηηy, ηηηz) ∈ W : ηηηy = y} ⊂ R
nx × R

nz .

The shadow of W at (x,y) ∈ πx,yW with respect to R
nz is given by

πz(W ; (x,y)) := πz{(ηηηx, ηηηy, ηηηz) ∈ W : (ηηηx, ηηηy) = (x,y)} ⊂ R
nz .

Given nq ∈ N, Wx ⊂ πxW , (x,y, z) ∈ W , and f : W → R
nq , the cross-section of f at x ∈ πxW is given by

fx : πy,z(W ;x) → R
nq : (ηηηy, ηηηz) 7→ f(x, ηηηy, ηηηz).

The Wx-blind cross-section of f at x is given by

fx\Wx
: πy,z(W ;x) → R

nq : (ηηηy, ηηηz) 7→

{
f(x, ηηηy, ηηηz), x ∈ πxW \Wx,

0nq
, x ∈ Wx.

The other non-vacuous projections, shadows, cross-sections and blind cross-sections are defined similarly.
Consider an open set X ⊂ R

n and a function f : X → R
m. f is said to be (Fréchet) differentiable at

x ∈ X if there exists a matrix A ∈ R
m×n that satisfies

0m = lim
ααα→0n

f(x+ααα)− (f(x) +Aααα)

‖ααα‖
.

In this case, the matrix A is uniquely described by the above equation and is called the Jacobian matrix,
denoted by Jf(x) ∈ R

m×n. f is said to be differentiable on X if f is differentiable at each point x ∈ X. f is
said to be continuously differentiable (C1) at x ∈ X if f is differentiable on a neighborhood N(x) ⊂ X of x
and Jf : N(x) → R

m×n is continuous on N(x). f is said to be C1 on X if f is C1 at each point x ∈ X. As
defined by Scholtes [9], f is said to be piecewise differentiable (PC1) at x ∈ X if there exist a neighborhood
N(x) ⊂ X of x and a finite collection of functions of C1 functions on N(x), {f(1), . . . , f(k)}, such that f is
continuous on N(x) and

f(ηηη) ∈ {f(i)(ηηη) : i ∈ {1, . . . , k}}, ∀ηηη ∈ N(x).

f is said to be PC1 on X if f is PC1 at each point x ∈ X.
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2.2. Generalized Derivatives

Let X ⊂ R
n be open and f : X → R

m be locally Lipschitz continuous on X. It follows that f is
differentiable at each point x ∈ X \ Zf , where Zf ⊂ X has zero (Lebesgue) measure, by Rademacher’s
Theorem. Clarke [18] established the following definitions and results concerning generalized derivatives.
The B-subdifferential of f at x ∈ X is defined as

∂Bf(x) :=
{
lim
i→∞

Jf(x(i)) : lim
i→∞

x(i) = x, x(i) ∈ X \ Zf , ∀i ∈ N

}
.

The Clarke (generalized) Jacobian of f at x ∈ X is defined as

∂f(x) := conv ∂Bf(x).

For a point x ∈ X, ∂Bf(x) is necessarily nonempty and compact, while ∂f(x) is necessarily nonempty,
compact, and convex. If f is differentiable at x ∈ X then Jf(x) ∈ ∂f(x). If f is C1 at x then ∂f(x) =
∂Bf(x) = {Jf(x)}.

Given nx, ny, nz, nq ∈ N, W ⊂ R
nx × R

ny × R
nz open, and g : W → R

nq Lipschitz continuous on a
neighborhood of (x,y, z) ∈ W , the Clarke (generalized) Jacobian projections of g at (x,y, z) are defined as

π1∂g(x,y, z) :=
{
M ∈ R

nq×nx : ∃[M N1 N2] ∈ ∂g(x,y, z)
}
,

π2∂g(x,y, z) :=
{
M ∈ R

nq×ny : ∃[N1 M N2] ∈ ∂g(x,y, z)
}
,

π2,3∂g(x,y, z) :=
{
[M1 M2] ∈ R

nq×(ny+nz) : ∃[N M1 M2] ∈ ∂g(x,y, z)
}
,

with π3∂g(x,y, z), π1,2∂g(x,y, z), and π1,3∂g(x,y, z) defined similarly. If g is C1 at (x,y, z) then

π2,3∂g(x,y, z) =

{[
∂g

∂y
(x,y, z)

∂g

∂z
(x,y, z)

]}
.

The plenary Jacobian of f at x ∈ X [36] is defined as

∂Pf(x) := {M ∈ R
m×n : ∀d ∈ R

n, ∃H ∈ ∂f(x) s.t. Md = Hd}.

As the name suggests, the plenary Jacobian of f at x is the plenary hull of its Clarke Jacobian at x (see [36]
for details on plenary sets and plenary hulls); it is the intersection of all plenary supersets of ∂f(x), which
includes all linear transformations for which images are indistinguishable. As demonstrated by Imbert [37],
∂Pf(x) is nonempty, compact, convex, and satisfies

∂f(x) ⊂ ∂Pf(x) ⊂
m∏

i=1

∂fi(x).

Remark 2.1. As pointed out in [10], if min{m,n} = 1 then ∂f(x) = ∂Pf(x). Moreover, if m = n and if
∂f(x) is of maximal rank then a similar relationship holds between images of inverses of elements of ∂f(x)
and ∂Pf(x):

{H−1d ∈ R
n : H ∈ ∂Pf(x)} = {H−1d ∈ R

n : H ∈ ∂f(x)}, ∀d ∈ R
n.

As a consequence of these observations, elements of the plenary Jacobian are no less useful than elements
of the Clarke Jacobian in any of the following: bundle methods for finding local minima for nonsmooth
nonlinear programs (since the objective function is scalar-valued), semismooth Newton methods, Clarke’s
mean value theorem (Proposition 2.6.5 in [18]), and Clarke’s inverse function theorem (Theorem 7.1.1 in
[18]).

2.3. Lexicographic Differentiation

Nesterov [8] introduced lexicographically smooth functions and the lexicographic (generalized) derivative.
Given X ⊂ R

n open and f : X → R
m, the directional derivative of f at x ∈ X in the direction d ∈ R

n is
given by

f ′(x;d) := lim
α↓0

f(x+ αd)− f(x)

α
,
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if it exists. The function f is said to be directionally differentiable at x if f ′(x;d) exists and is finite for all
d ∈ R

n. Given that f is locally Lipschitz continuous on X, f is said to be lexicographically smooth (L-smooth)
at x ∈ X if for any k ∈ N and any M := [m(1) · · · m(k)] ∈ R

n×k, the following higher-order directional
derivatives are well-defined:

f
(0)
x,M : Rn → R

m : d 7→ f ′(x;d),

f
(1)
x,M : Rn → R

m : d 7→ [f
(0)
x,M]′(m(1);d),

f
(2)
x,M : Rn → R

m : d 7→ [f
(1)
x,M]′(m(2);d),

...

f
(k)
x,M : Rn → R

m : d 7→ [f
(k−1)
x,M ]′(m(k);d).

The function f is said to be lexicographically smooth (L-smooth) on X if it is L-smooth at each point x ∈ X.
The class of L-smooth functions is closed under composition, and includes all C1 functions, convex functions
[8], and PC1 functions [7] in the sense of Scholtes [9]. Given any nonsingular matrix M ∈ R

n×n and

f : X → R
m L-smooth at x ∈ X, the mapping f

(n)
x,M : Rn → R

m is linear and the lexicographic (L-)derivative
of f at x in the directions M is

JLf(x;M) := Jf
(n)
x,M(0n) ∈ R

m×n.

The lexicographic subdifferential of f at x is defined as

∂Lf(x) := {JLf(x;N) : N ∈ R
n×n, detN 6= 0}.

If f is differentiable at x then ∂Lf(x) = {Jf(x)} and if m = 1 then ∂Lf(x) ⊂ ∂f(x).
The lexicographic directional derivative was introduced by Khan and Barton [7]: given any k ∈ N,

any M := [m(1) · · · m(k)] ∈ R
n×k, and f : X → R

m L-smooth at x ∈ X, the lexicographic directional
(LD-)derivative of f at x in the directions M is defined as

f ′(x;M) :=
[
f
(0)
x,M(m(1)) f

(1)
x,M(m(2)) · · · f

(k−1)
x,M (m(k))

]
.

Note that f ′(x;M) is uniquely defined for all M ∈ R
n×k and all k ∈ N. The LD-derivative adopts its

name because if M is square and nonsingular then f ′(x;M) = JLf(x;M)M. If f is differentiable at x then
f ′(x;M) = Jf(x)M. If M has one column, the LD-derivative is equivalent to the directional derivative.
Unlike the generalized Jacobian, the LD-derivative obeys a strict chain rule [7].

Theorem 2.2. Let X ⊂ R
n, Y ⊂ R

m be open and h : X → Y and g : Y → R
q be locally Lipschitz

functions on X and Y , respectively. Let h and g be L-smooth at x ∈ X and h(x) ∈ Y , respectively. Then
the composition g ◦h is L-smooth at x; for any k ∈ N and any M ∈ R

n×k, the chain rule for LD-derivatives
is given as:

[g ◦ h]′(x;M) = g′(h(x);h′(x;M)). (1)

Theorem 2.2 reduces to Nesterov’s chain rule (Theorem 5 in [8]) when the matrix M is square and
nonsingular, and reduces to the classical chain rule when g and h are both differentiable. Significantly,
the strict chain rule of Theorem 2.2 allows for the development of a vector forward mode of automatic
differentiation to calculate LD-derivatives [7].

Remark 2.3. Given an open set X ⊂ R
n and f : X → R

m that is L-smooth at x ∈ X, ∂Lf(x) ⊂ ∂Pf(x)
[10]. If f is PC1 at x then f is L-smooth at x and ∂Lf(x) ⊂ ∂Bf(x) [7]. Prompted by these relations and
the discussions in Remark 2.1 on the usefulness of elements of the plenary Jacobian, obtaining an element of
∂Lf(x) is therefore just as useful as an element of the Clarke Jacobian in a variety of applications, and can
be furnished via computing f ′(x;M) for a square and nonsingular matrix M and solving the linear equation
system f ′(x;M) = JLf(x;M)M [7].
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2.4. Generalized Derivatives of Ordinary Differential Equations

Khan and Barton found LD-derivatives of ODEs in Theorem 4.2 in [10], which is restated here for
parametric ODEs whose right-hand side functions depend explicitly on parameters by virtue of its proof and
the remarks following Example 4.2 in [10].

Theorem 2.4. Let np, nx ∈ N, nt = 1, D ⊂ R
nt × R

np × R
nx be open and connected, t0, tf ∈ πtD satisfy

t0 < tf , and Zf be a zero-measure subset of [t0, tf ]. Let f : D → R
nx and f0 : πpD → πxD. Assume that the

following conditions are satisfied:

(i) f(·,p, ηηη) is measurable on [t0, tf ] for each (p, ηηη) ∈ πp,xD;

(ii) f(t, ·, ·) is L-smooth on πp,x(D; t) for each t ∈ [t0, tf ] \ Zf ;

(iii) there exist Lebesgue integrable functions kf ,mf : [t0, tf ] → R+ ∪ {+∞} for which:

(a) ‖f(t,p, ηηη)‖ ≤ mf (t), ∀t ∈ [t0, tf ], ∀(p, ηηη) ∈ πp,x(D; t);

(b) ‖f(t,p1, ηηη1)− f(t,p2, ηηη2)‖ ≤ kf (t)‖(p1, ηηη1)− (p2, ηηη2)‖, ∀t ∈ [t0, tf ],
∀(p1, ηηη1), (p2, ηηη2) ∈ πp,x(D; t);

(iv) f0 is L-smooth on πpD;

(v) for some p0 ∈ πpD, there exists a solution x(·,p0) of the following parametric ODE system at p := p0:

ẋ(t,p) = f(t,x(t,p)), a.e. t ∈ [t0, tf ],

x(t0,p) = f0(p),

which satisfies {(t,p0,x(t,p0)) : t ∈ [t0, tf ]} ⊂ D. Then, for each t ∈ [t0, tf ], the mapping xt ≡ x(t, ·) is
Lipschitz continuous on a neighborhood of p0, with a Lipschitz constant that is independent of t. Moreover,
xt is L-smooth at p0; for any k ∈ N and any M ∈ R

np×k, the LD-derivative mapping X̃ : [t0, tf ] → R
nx×k :

t 7→ [xt]
′(p0;M) is the unique solution on [t0, tf ] of the following ODE system:

Ẋ(t) = [ft\Zf
]′(p0,x(t,p0); (M,X(t))),

X(t0) = [f0]
′(p0;M).

(2)

Remark 2.5. The right-hand side function (t,A) 7→ [ft\Zf
]′(p0,x(t,p0); (M,A)) in (2) is measurable with

respect to t but not necessarily continuous with respect to A at almost every t ∈ [t0, tf ] (see Example 4.1 in
[10]). However, the columns of (2) can be decoupled to yield a sequence of k Carathéodory ODEs (Corollary
4.2 in [10]). Consequently, the k columns of the matrix-valued function t 7→ [xt]

′(p0;M) are absolutely
continuous vector-valued functions mapping [t0, tf ] to R

nx .

2.5. Lexicographic Smoothness of Extended Implicit Functions

Clarke provided local inverse and implicit function theorems for locally Lipschitz continuous functions
[18]; a Lipschitzian function has a local inverse near a point if its Clarke Jacobian is of maximal rank at
said point [18]. Levy and Mordukhovich [38] derived an implicit function theorem for coderivatives, and,
extending the results of Scholtes [9, Theorem 3.2.3] concerning directional derivative information, Khan and
Barton [11] established results on the lexicographic smoothness of local inverse and implicit functions and
their corresponding LD-derivatives. For congruence with the present article, the L-smooth implicit function
result in [11] is restated with a stricter sufficient condition concerning projections of Clarke Jacobians (see
the discussion following Theorem 2 in [11]).

Theorem 2.6. Let W ⊂ R
n × R

m be open and g : W → R
m be L-smooth at (x∗,y∗) ∈ W . Suppose

that g(x∗,y∗) = 0m and π2∂g(x
∗,y∗) is of maximal rank. Then there exist neighborhoods N(x∗) ⊂ πxW

and N(x∗,y∗) ⊂ W of x∗ and (x∗,y∗), respectively, and a function r : N(x∗) → R
m that is Lipschitz

continuous on N(x∗) such that, for each x ∈ N(x∗), (x, r(x)) is the unique vector in N(x∗,y∗) satisfying
g(x, r(x)) = 0m. Moreover, r is L-smooth at x∗; for any k ∈ N and any M ∈ R

n×k, the LD-derivative
r′(x∗;M) is the unique solution N ∈ R

m×k of the equation system

g′(x∗,y∗; (M,N)) = 0m×k. (3)
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In [35], an extended implicit function theorem was provided for locally Lipschitz continuous functions.
The L-smoothness of such an extended implicit function is detailed in the next result.

Theorem 2.7. Let W ⊂ R
n × R

m be open and g : W → R
m be L-smooth on W . Let Ω ⊂ W be

a compact set such that each point x ∈ πxΩ is the projection of only one point (x,y) ∈ Ω, π2∂g(x,y)
is of maximal rank for each (x,y) ∈ Ω, and g(Ω) = {0m}. Then there exist δ, ρ > 0 and a function
r : Bδ(πxΩ) ⊂ πxW → R

m that is Lipschitz continuous and L-smooth on Bδ(πxΩ) such that π2∂g(x,y) is
of maximal rank for all (x,y) ∈ Bρ(Ω) ⊂ W and, for each x ∈ Bδ(πxΩ), (x, r(x)) is the unique vector in
Bρ(Ω) satisfying g(x, r(x)) = 0m. Moreover, for any x ∈ Bδ(πxΩ), any k ∈ N, and any M ∈ R

n×k, r′(x;M)
is the unique solution N ∈ R

m×k of the equation system

g′(x, r(x); (M,N)) = 0m×k. (4)

Proof. By Theorem 3.6 in [35], there exist δ1, ρ1 > 0 and a function

r1 : Bδ1(πxΩ) ⊂ πxW → R
m

that is Lipschitz continuous on Bδ1(πxΩ) such that π2∂g(x,y) is of maximal rank for all (x,y) ∈ Bρ1
(Ω) ⊂ W

and, for each x ∈ Bδ1(πxΩ), (x, r1(x)) is the unique vector in Bρ1
(Ω) satisfying g(x, r1(x)) = 0m.

Let
Ω̃ :=

{
(x, r1(x)) : x ∈ B̄0.5δ1(πxΩ)

}
⊂ Bρ1

(Ω) ⊂ W,

which is a compact set as the image of compact set under continuous mapping. Furthermore, each point

x ∈ πxΩ̃ = B̄0.5δ1(πxΩ) ⊂ Bδ1(πxΩ)

is the projection of only one point in Ω̃ (namely, (x, r1(x))). Moreover, π2g(x,y) is of maximal rank for all

(x,y) ∈ Ω̃ ⊂ Bρ1
(Ω) and g(Ω̃) = {0m}. Theorem 3.6 in [35] can therefore be applied once more to yield the

existence of δ2, ρ2 > 0 and a function

r2 : Bδ2(πxΩ̃) ⊂ πxW → R
m

that is Lipschitz continuous on Bδ2(πxΩ̃) such that π2∂g(x,y) is of maximal rank for all (x,y) ∈ Bρ2
(Ω̃) ⊂ W

and, for each x ∈ Bδ2(πxΩ̃), (x, r2(x)) is the unique vector in Bρ2
(Ω̃) satisfying g(x, r2(x)) = 0m.

Choose any x̂ ∈ πxΩ̃. By virtue of the proof of Theorem 3.6 in [35], there exist a neighborhood N(x̂) ⊂
πxW of x̂ and a Lipschitz continuous function

rx̂ : N(x̂) → R
m

such that g(x̂, ŷ) = 0m, where ŷ := rx̂(x̂), and π2∂g(x̂, ŷ) is of maximal rank. Moreover, rx̂ = r2 on

N(x̂) ∩ πxΩ̃. By Theorem 2.6, rx̂ is L-smooth at x̂; for any k ∈ N and any M ∈ R
n×k, [rx̂]

′(x̂;M) =
[r2]

′(x̂;M) is the unique solution N ∈ R
m×k of the equation system

0m×k = g′(x̂, ŷ; (M,N)) = g′(x̂, r2(x̂); (M,N)).

Let δ := 0.5δ1, ρ := ρ1, and

r : Bδ(πxΩ) ⊂ πxW → R
m : ηηη 7→ r2(ηηη).

r is Lipschitz continuous on Bδ(πxΩ) ⊂ πxΩ̃ ⊂ Bδ2(πxΩ̃) and π2∂g(x,y) is of maximal rank for all (x,y) ∈

Bρ(Ω̃) = Bρ1
(Ω̃) ⊂ W . By uniqueness, r1 = r2 on Bδ1(πxΩ) ∩Bδ2(πxΩ̃) ⊃ Bδ(πxΩ); for each x ∈ Bδ(πxΩ),

(x, r(x)) = (x, r1(x)) = (x, r2(x))

is the unique vector in Bρ1
(Ω̃) satisfying g(x, r(x)) = 0m. r is L-smooth on Bδ(πxΩ) ⊂ πxΩ̃; for any

x ∈ Bδ(πxΩ), any k ∈ N, and any M ∈ R
n×k, r′(x;M) = [r2]

′(x;M) is the unique solution N ∈ R
m×k of

the equation system
0m×k = g′(x, r2(x); (M,N)) = g′(x, r(x); (M,N)).
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Remark 2.8. The implicit function r outlined in the statement of Theorem 2.7 is L-smooth on its open
domain Bδ(πxΩ) ⊃ πxΩ, which is needed for the higher-order directional derivatives outlined earlier to be
well-defined and is essential for the analysis to follow. The fact that r is also Lipschitz continuous on Bδ(πxΩ)
is not immediately implied by its L-smoothness. Moreover, when Ω is a singleton, Theorem 2.6 is recovered.

The next lemma is derived for later application of Theorem 2.7 to a nonsmooth differential-algebraic
equation system.

Lemma 2.9. Let W ⊂ R
n × R

m be open and g : W → R
q be locally Lipschitz continuous on W and

L-smooth at (x,y) ∈ W . Given any k ∈ N and any matrix M := [m(1) · · · m(k)] ∈ R
m×k,

[gx]
′(y;M) = g′(x,y; (0n×k,M)),

where gx ≡ g(x, ·).

Proof. Let M̄ := (0n×k,M) and w := (x,y). The LD-derivative of g at w in the directions M̄ :=
[m̄(1) · · · m̄(k)] is given by

g′(w; M̄) =
[
g
(0)

w,M̄
(m̄(1)) g

(1)

w,M̄
(m̄(2)) · · · g

(k−1)

w,M̄
(m̄(k))

]
,

=

[
g
(0)
(x,y),(0n×k,M)

([
0n

m(1)

])
· · · g

(k−1)
(x,y),(0n×k,M)

([
0n

m(k)

])]
,

= g′(x,y; (0n×k,M)).

It will be shown by induction that

g
(i)

w,M̄

([
0n

d

])
= [g(x, ·)]

(i)
y,M(d), ∀d ∈ R

m, ∀i ∈ {0, 1, . . . , k − 1},

Choose any d ∈ R
m and let d̄ :=

[
0n

d

]
, then

g
(0)

w,M̄
(d̄) = lim

α↓0
α−1(g(x,y + αd)− g(x,y)),

= lim
α↓0

α−1([g(x, ·)](y + αd)− [g(x, ·)](y)),

= [g(x, ·)]
(0)
y,M(d).

Assume that the claim is true for i := j ∈ {0, 1, . . . , k − 2}. Then, for any d ∈ R
m,

g
(j+1)

w,M̄
(d̄) = [g

(j)

w,M̄
]′(m̄(j+1); d̄),

= [g
(j)

w,M̄
]′
([

0n

m(j+1)

]
;

[
0n

d

])
,

= lim
α↓0

α−1(g
(j)

w,M̄
(0n,m(j+1) + αd)− g

(j)

w,M̄
(0n,m(j+1))),

= lim
α↓0

α−1([g(x, ·)]
(j)
y,M(m(j+1) + αd)− [g(x, ·)]

(j)
y,M(m(j+1))),

= [[g(x, ·)]
(j)
y,M]′(m(j+1);d),

= [g(x, ·)]
(j+1)
y,M (d),

and therefore the claim holds. It follows that

[gx]
′(y;M) =

[
[g(x, ·)]

(0)
y,M(m(1)) [g(x, ·)]

(1)
y,M(m(2)) · · · [g(x, ·)]

(k−1)
y,M (m(k))

]
,

= g′(x,y; (0n×k,M)).
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3. Forward Sensitivity Functions for Nonsmooth Differential-Algebraic Equations

Let np, nx, ny ∈ N. Let Dt ⊂ R, Dp ⊂ R
np , Dy ⊂ R

ny , and Dx ⊂ R
nx be open and connected sets. Let

D := Dt × Dp × Dx × Dy, f : D → R
nx , g : D → R

ny , and f0 : Dp → Dx. Given t0 ∈ Dt, consider the
following initial-value problem (IVP) in semi-explicit DAEs:

ẋ(t,p) = f(t,p,x(t,p),y(t,p)), (5a)

0ny
= g(t,p,x(t,p),y(t,p)), (5b)

x(t0,p) = f0(p), (5c)

where t is the independent variable and p ∈ Dp is a vector of the problem parameters. The following
assumption is made regarding the right-hand side functions in (5).

Assumption 3.1. Let tf ∈ Dt satisfy t0 < tf and Zf be a zero-measure subset of [t0, tf ]. Suppose that the
following conditions hold:

(i) f(·,p, ηηηx, ηηηy) is measurable on [t0, tf ] for each (p, ηηηx, ηηηy) ∈ Dp ×Dx ×Dy;

(ii) f(t, ·, ·, ·) is L-smooth on Dp ×Dx ×Dy for each t ∈ [t0, tf ] \ Zf ;

(iii) there exist Lebesgue integrable functions kf ,mf : [t0, tf ] → R+ ∪ {+∞} for which:

(a) ‖f(t,p, ηηηx, ηηηy)‖ ≤ mf (t), ∀t ∈ [t0, tf ], ∀(p, ηηηx, ηηηy) ∈ Dp ×Dx ×Dy;

(b) ‖f(t,p1, ηηηx1
, ηηηy1

)− f(t,p2, ηηηx2
, ηηηy2

)‖ ≤ kf (t)‖(p1, ηηηx1
, ηηηy1

)− (p2, ηηηx2
, ηηηy2

)‖,
∀t ∈ [t0, tf ], ∀(p1, ηηηx1

, ηηηy1
), (p2, ηηηx2

, ηηηy2
) ∈ Dp ×Dx ×Dy;

(iv) g and f0 are L-smooth on D and Dp, respectively.

Notions of consistent initialization, regularity, and solutions of (5) from [35] are reproduced here for the
reader’s convenience.

Definition 3.2. The consistency set, initial consistency set, and regularity set of (5) are given by, respec-
tively,

GC := {(t,p, ηηηx, ηηηy) ∈ D : g(t,p, ηηηx, ηηηy) = 0ny
},

GC,0 := {(t,p, ηηηx, ηηηy) ∈ GC : t = t0, ηηηx = f0(p)},

GR := {(t,p, ηηηx, ηηηy) ∈ D : π4∂g(t,p, ηηηx, ηηηy) is of maximal rank}.

Definition 3.3. Let T ⊂ Dt be a connected set containing t0, P ⊂ Dp, and Ω0 ⊂ GC,0. A mapping
z ≡ (x,y) : T × P → Dx ×Dy is called a solution of (5) on T × P through Ω0 if, for each p ∈ P , z(·,p) is
an absolutely continuous function on T which satisfies (5a) for almost every t ∈ T , (5b) for every t ∈ T , (5c)
at t = t0, and

{(t0,p,x(t0,p),y(t0,p)) : p ∈ P} = Ω0.

If, in addition,
{(t,p,x(t,p),y(t,p)) : (t,p) ∈ T × P} ⊂ GR,

then z is called a regular solution of (5) on T × P through Ω0.

Definition 3.4. Let z be a solution of (5) on T × P through Ω0. Then z is said to be unique if, given any
other solution z∗ of (5) on T ∗ × P ∗ through Ω∗

0 satisfying T ∩ T ∗ 6= {t0}, P ∩ P ∗ 6= ∅, and

{(t0,p, z(t0,p)) : p ∈ P ∩ P ∗} = {(t0,p, z
∗(t0,p)) : p ∈ P ∩ P ∗},

z(t,p) = z∗(t,p) for all (t,p) ∈ (T ∩ T ∗)× (P ∩ P ∗).

A generalization of the notion that (5) has differential index equal to one (see [14, 22]) for all (t,p) ∈ T×P
is implied by regularity. The following assumption regarding the existence of a solution is made.
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Assumption 3.5. Suppose that for some (p0,x0,y0) ∈ Dp ×Dx ×Dy, there exists a regular solution z of
(5) on [t0, tf ]× {p0} through {(t0,p0,x0,y0)}.

Before proceeding to the main result, a result is proved concerning uniqueness and parametric dependence
of solutions of (5), as well as its equivalence to a Carathéodory ODE system via an extended implicit function.

Proposition 3.6. Let Assumptions 3.1 and 3.5 hold. Then there exists a neighborhood N(p0) ⊂ Dp of p0,
a set Ω0 ⊂ GC,0 containing (t0,p0,x0,y0), and a unique regular solution z of (5) on [t0, tf ]×N(p0) through
Ω0. Furthermore, there exist δ, ρ > 0 and a function

r : Bδ({(t,p0,x(t,p0)) : t ∈ [t0, tf ]}) ⊂ Dt ×Dp ×Dx → R
ny ,

that is Lipschitz continuous and L-smooth on its open and connected domain, which satisfy y(t,p) =
r(t,p,x(t,p)) for all (t,p) ∈ [t0, tf ]×N(p0) and

{(t,p,x(t,p)) : (t,p) ∈ [t0, tf ]×N(p0)} ⊂ Bδ({(t,p0,x(t,p0)) : t ∈ [t0, tf ]}),

{(t,p, z(t,p)) : (t,p) ∈ [t0, tf ]×N(p0)} ⊂ Bρ({(t,p0, z(t,p0)) : t ∈ [t0, tf ]}) ⊂ D.

Proof. Define the following ets:

Λ := {(t,p0,x(t,p0)) : t ∈ [t0, tf ]},

Ω := {(t,p0,x(t,p0),y(t,p0)) : t ∈ [t0, tf ]}.

Note that the set Ω is compact since it is the image of a compact set under a continuous mapping.
π4∂g(t,p, ηηηx, ηηηy) is of maximal rank for all (t,p, ηηηx, ηηηy) ∈ Ω by regularity and g(Ω) = {0ny

} by consis-
tency. Each point in Λ is the projection of a unique point in Ω by Lemma 3.8 in [35]. By Theorem 2.7, there
exist δ1, ρ1 > 0 and a function

r : Bδ1(Λ) ⊂ Dt ×Dp ×Dx → R
ny

that is Lipschitz continuous and L-smooth on Bδ1(Λ) such that π4∂g(t,p, ηηηx, ηηηy) is of maximal rank for all
(t,p, ηηηx, ηηηy) ∈ Bρ1

(Ω) ⊂ D and, for each (t,p, ηηηx) ∈ Bδ1(Λ), (t,p, ηηηx, r(t,p, ηηηx)) is the unique vector in
Bρ1

(Ω) satisfying g(t,p, ηηηx, r(t,p, ηηηx)) = 0ny
.

By proceeding as in the proof of Theorem 4.34 in [35] using the inherited L-smoothness of the implicit
function in place of the Lipschitzian construction, the following conclusions are immediately furnished: there
exist ξ, β > 0 satisfying β < ξ and a regular solution z of (5) on [t0, tf ]×Bβ(p0) ⊂ Dt ×Dp through

Ω0 := {(t,p, ηηηx, ηηηy) : t = t0,p ∈ Bβ(p0), ηηηx = f0(p), ηηηy = r(t0,p, f0(p))} ⊂ GC,0

such that y(t,p) = r(t,p,x(t,p)) for all p ∈ Bβ(p0) and

{(t,p,x(t,p),y(t,p)) : (t,p) ∈ [t0, tf ]×Bβ(p0)} ⊂ Bρ1
(Ω).

Moreover, the intermediate construction u in the proof of Theorem 4.34 in [35] satisfies

{(t,u(t, c)) : (t, c) ∈ [t0, tf ]×Bξ(p0, f0(p0))} ⊂ B0.5δ1(Λ),[
p

x(t,p)

]
= u(t, (p, f0(p))), ∀(t,p) ∈ [t0, tf ]×Bβ(p0),

and {(p, f0(p)) : p ∈ Bβ(p0)} ⊂ Bξ(p0, f0(p0)). Thus,

{(t,p,x(t,p)) : (t,p) ∈ [t0, tf ]×Bβ(p0)}

= {(t,u(t, (p, f0(p))) : (t,p) ∈ [t0, tf ]×Bβ(p0)},

⊂ {(t,u(t, c)) : (t, c) ∈ [t0, tf ]×Bξ(p0, f0(p0))},

⊂ B0.5δ1(Λ).

Theorem 4.22 in [35] implies z is the unique regular solution of (5) on [t0, tf ]×Bβ(p0) through Ω0 and the
result holds with N(p0) := Bβ(p0), δ := 0.5δ1, and ρ := ρ1.
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Using lexicographic differentiation, forward sensitivity functions for (5) are given.

Theorem 3.7. Let Assumptions 3.1 and 3.5 hold. Then, for each t ∈ [t0, tf ], the mapping zt ≡ z(t, ·) is
L-smooth at p0; for any k ∈ N and any M ∈ R

np×k, the LD-derivative mapping

Z̃ ≡ (X̃, Ỹ) : [t0, tf ] → R
(nx+ny)×k : t 7→ [zt]

′(p0;M)

is such that X̃ and Ỹ are absolutely continuous and Lebesgue integrable on [t0, tf ], respectively. Furthermore,

Z̃ uniquely (in the sense of Definition 3.4) satisfies the following DAE system:

Ẋ(t) = [ft\Zf
]′(p0,x(t,p0),y(t,p0); (M,X(t),Y(t))), a.e. t ∈ [t0, tf ],

0ny×k = [gt]
′(p0,x(t,p0),y(t,p0); (M,X(t),Y(t))), ∀t ∈ [t0, tf ],

X(t0) = [f0]
′(p0;M),

(6)

on [t0, tf ] through {(t0,X0,Y0)}, where X0 := [f0]
′(p0;M) and Y0 ∈ R

ny×k is the unique solution of the
equation system

0ny×k = [gt0 ]
′(p0,x0,y0; (M,X0,Y0)).

Proof. Let δ, ρ > 0, r, and N(p0) be given as in the statement of Propositions 3.6. Define the sets

Dδ := Bδ({(t,p0,x(t,p0)) : t ∈ [t0, tf ]}) ⊂ Dt ×Dp ×Dx,

Dρ := Bρ({(t,p0, z(t,p0)) : t ∈ [t0, tf ]}) ⊂ D,

and the following mappings:

q : Dδ → Dp ×Dx ×Dy : (t,p, ηηηx) 7→ (p, ηηηx, r(t,p, ηηηx)),

f̄ : Dδ → R
nx : (t,p, ηηηx) 7→ f(t,q(t,p, ηηηx)).

For each (p, ηηηx) ∈ πp,xDδ ⊂ Dp ×Dx,

f̄(·,p, ηηηx) ≡ f(·,q(·,p, ηηηx)) : πt(Dδ; (p, ηηηx)) ⊂ Dt → R
nx

is measurable on [t0, tf ] by Lemma 1 in Chapter 1, Section 1 [39] since the mapping t 7→ (p, ηηηx, r(t,p, ηηηx))
is continuous on πt(Dδ; (p, ηηηx)) ⊃ [t0, tf ],

[t0, tf ]× q(Dδ) ⊂ [t0, tf ]×Dp ×Dx ×Dy, (7)

and f satisfies the Carathéodory conditions (see, e.g., [39]) on [t0, tf ]×Dp ×Dx ×Dy by assumption.
L-smoothness of f̄(t, ·, ·) is demonstrated as follows: for each t ∈ [t0, tf ], the mapping (p, ηηηx) 7→

(p, ηηηx, r(t,p, ηηηx)) is L-smooth on πp,x(Dδ; t) by L-smoothness of r on Dδ (and hence rt ≡ r(t, ·, ·) on
πp,x(Dδ; t)). Thus, qt ≡ q(t, ·, ·) is L-smooth on πp,x(Dδ; t). Since

qt(πp,x(Dδ; t)) ⊂ πp,x,y(Dρ; t) ⊂ Dp ×Dx ×Dy, ∀t ∈ [t0, tf ] \ Zf ,

and the composition of L-smooth functions is L-smooth, it follows that

f̄(t, ·, ·) ≡ f(t,q(t, ·, ·)) : πp,x(Dδ; t) ⊂ Dp ×Dx → R
nx

is L-smooth on πp,x(Dδ; t) for each t ∈ [t0, tf ] \ Zf .
For any t ∈ [t0, tf ] and any (p, ηηηx) ∈ πp,x(Dδ; t),

‖f̄(t,p, ηηηx)‖ = ‖f(t,p, ηηηx, r(t,p, ηηηx))‖ ≤ mf (t),

by (7) and the Carathéodory conditions of f . By Lipschitz continuity of r on Dδ, there exists kr ≥ 0 such
that

‖r(t,p1, ηηηx1
)− r(t,p2, ηηηx2

)‖ ≤ kr‖(p1, ηηηx1
)− (p2, ηηηx2

)‖, (8)
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for any (t,p1, ηηηx1
), (t,p2, ηηηx2

) ∈ Dδ. It follows that

‖f̄(t,p1, ηηηx1
)− f̄(t,p2, ηηηx2

)‖ = ‖f(t,p1, ηηηx1
, r(t,p1, ηηηx1

))− f(t,p2, ηηηx2
, r(t,p2, ηηηx2

))‖,

≤ kf (t)‖(p1, ηηηx1
, r(t,p1, ηηηx1

))− (p2, ηηηx2
, r(t,p2, ηηηx2

))‖,

≤ kf (t)(1 + kr)‖(p1, ηηηx1
)− (p2, ηηηx2

)‖,

for any t ∈ [t0, tf ] and any (p1, ηηηx1
), (p2, ηηηx2

) ∈ πp,x(Dδ; t).
By replacing f by f̄ and D by Dδ, it is valid to apply Theorem 2.4 to

u̇(t,p) = f̄(t,u(t,p)),

u(t0,p) = f0(p),

which admits the unique solution x(·,p) on [t0, tf ] for each p ∈ N(p0). Theorem 2.4 yields that, for each

t ∈ [t0, tf ], xt ≡ x(t, ·) is Lipschitz continuous on a neighborhood Ñ(p0) ⊂ N(p0) of p0, with Lipschitz

constant kx ≥ 0. For any p1,p2 ∈ Ñ(p0),

‖y(t,p1)− y(t,p2)‖ = ‖r(t,p1,x(t,p1))− r(t,p2,x(t,p2))‖,

≤ kr‖(p1,x(t,p1))− (p2,x(t,p2))‖,

≤ kr(1 + kx)‖p1 − p2‖,

since {(t,p,x(t,p)) : (t,p) ∈ [t0, tf ]× Ñ(p0)} ⊂ Dδ. This demonstrates Lipschitz continuity of yt on Ñ(p0),
with a Lipschitz constant independent of t. From Theorem 2.4 it also follows that xt is L-smooth at p0,
which implies that the mapping yt is L-smooth at p0 for any t ∈ [t0, tf ] since yt(·) ≡ rt(·,xt(·)) on N(p0)
and rt is L-smooth at (p0,xt(p0)).

Define the following mappings:

r̃(0) : [t0, tf ]× R
np+nx → R

ny : (t,d) 7→ [rt]
′(p0,x(t,p0);d),

r̃(i) : [t0, tf ]× R
np+nx → R

ny : (t,d) 7→ [r̃(i−1),t]
′(m(i), [xt]

(i−1)
p0,M

(m(i));d),

∀i ∈ {1, . . . , k − 1},

which are well-defined since r is L-smooth on Dδ ⊃ {(t,p0,x(t,p0)) : t ∈ [t0, tf ]}. It will be shown by
induction that, for each i ∈ {0, 1, . . . , k − 1}, r̃(i)(·,d) is measurable on [t0, tf ] for each d ∈ R

np+nx and
r̃(i)(t, ·) is Lipschitz continuous on R

np+nx for each t ∈ [t0, tf ], with a Lipschitz constant that is independent
of t.

Consider the base case and choose any d ∈ R
np+nx . The first part proceeds as in the proof of Theorem

4.1 in [10]: by construction,
{(t,p0,x(t,p0)) : t ∈ [t0, tf ]} ⊂ Dδ,

where {(t,p0,x(t,p0)) : t ∈ [t0, tf ]} is compact and Dδ is open. Thus,

{(t,p0,x(t,p0)) : t ∈ [t0, tf ]} ∩ (R1+np+nx \Dδ) = ∅.

Let d̃ := (0,d). There exists ǫ > 0 such that for any t ∈ [t0, tf ] and any τ ∈ [0, ǫ],

(t,p0,x(t,p0)) + τ d̃ = (t, (p0,x(t,p0)) + τd) ∈ Dδ;

this follows from Lemma 1 in Chapter 2, Section 5 [39]. Since t 7→ (p0,x(t,p0)) is continuous on [t0, tf ], the
composite mapping t 7→ r(t, (p0,x(t,p0)) + τd) is continuous on [t0, tf ] for each τ ∈ [0, ǫ]. The mapping

t 7→ lim
α↓0

r(t, (p0,x(t,p0)) + αd)− r(t,p0,x(t,p0))

α

is the pointwise limit of a sequence of continuous functions and is therefore measurable on [t0, tf ], from which
it follows that r̃(0)(·,d) is measurable on [t0, tf ] for each d ∈ R

np+nx .
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Choose any t ∈ [t0, tf ]. The function rt is Lipschitz continuous on πp,x(Dδ; t) and directionally differen-
tiable at (p0,x(t,p0)). By (8), kr acts as a Lipschitz constant for rt in a neighborhood of (p0,x(t,p0)), and
as a result

‖r̃(0)(t,d1)− r̃(0)(t,d2)‖ = ‖[rt]
′(p0,x(t,p0);d1)− [rt]

′(p0,x(t,p0);d2)‖,

≤ kr‖d1 − d2‖, ∀t ∈ [t0, tf ], ∀d1,d2 ∈ R
np+nx ,

by Theorem 3.1.2 in [9]. Hence, r̃(0)(t, ·) is Lipschitz continuous on R
np+nx for each t ∈ [t0, tf ], with Lipschitz

constant kr.
Assume that the claim is true for i := j ∈ {0, 1, . . . , k − 2} and choose any d ∈ R

np+nx . Corollary 4.2 in

[10] implies that t 7→ [xt]
(i−1)
p0,M

(m(i)) is an absolutely continuous mapping on [t0, tf ] for each i ∈ {1, . . . , k}.
Hence, the mapping

t 7→

[
m(j+1)

[xt]
(j)
p0,M

(m(j+1))

]
+ τd

is absolutely continuous, and therefore measurable, on [t0, tf ] for any τ ≥ 0. By the inductive assumption,
the mapping r̃(j)(·, ηηη) is measurable on [t0, tf ] for any ηηη ∈ R

np+nx and there exists kr̃(j) ≥ 0 such that

‖r̃(j)(t,d1)− r̃(j)(t,d2)‖ ≤ kr̃(j)‖d1 − d2‖, ∀t ∈ [t0, tf ], ∀d1,d2 ∈ R
np+nx .

Hence,
‖r̃(j)(t,d)‖ = ‖r̃(j)(t,d)− r̃(j)(t,0np+nx

)‖ ≤ kr̃(j)‖d‖, ∀(t,d) ∈ [t0, tf ]× R
np+nx .

Consequently, the mapping

t 7→
r̃(j)(t, (m(j+1), [xt]

(j)
p0,M

(m(j+1))) + τd)− r̃(j)(t,m(j+1), [xt]
(j)
p0,M

(m(j+1)))

τ

is Lebesgue integrable, and therefore measurable, on [t0, tf ] for any τ > 0 by Lemma 1 in Chapter 1, Section

1 [39]. Then, since r̃(j),t is directionally differentiable at (m(j+1), [xt]
(j)
p0,M

(m(j+1))), the mapping

t 7→ lim
α↓0

r̃(j)(t, (m(j+1), [xt]
(j)
p0,M

(m(j+1))) + αd)− r̃(j)(t,m(j+1), [xt]
(j)
p0,M

(m(j+1)))

α

is well-defined and is measurable on [t0, tf ] as the pointwise limit of a sequence of measurable functions.
Hence, r̃(j+1)(·,d) is measurable on [t0, tf ] for each d ∈ R

np+nx .
Again by Theorem 3.1.2 in [9], the finite constant kr̃(j) acts as a Lipschitz constant for r̃(j+1),t ≡

[r̃(j),t]
′(m(j+1), [xt]

(j)
p0,M

(m(j+1)); ·) on R
np+nx :

‖r̃(j+1)(t,d1)− r̃(j+1)(t,d2)‖ ≤ kr̃(j)‖d1 − d2‖, ∀t ∈ [t0, tf ], ∀d1,d2 ∈ R
np+nx ,

implying that r̃(j+1)(t, ·) is Lipschitz continuous on R
np+nx for each t ∈ [t0, tf ], with a Lipschitz constant

that is independent of t. The claim is therefore proved by induction.
Define the following mappings:

x̃(i) : [t0, tf ] → R
nx : t 7→ [xt]

(i−1)
p0,M

(m(i)), ∀i ∈ {1, . . . , k},

ỹ(i) : [t0, tf ] → R
ny : t 7→ r̃(i−1)(t,m(i), [xt]

(i−1)
p0,M

(m(i))), ∀i ∈ {1, . . . , k}.

Choose any i := j ∈ {1, . . . , k}. For each d ∈ R
np+nx , the mapping r̃(j−1)(·,d) is measurable on [t0, tf ].

Moreover, there exists kr̃(j−1)
≥ 0 such that

‖r̃(j−1)(t,d1)− r̃(j−1)(t,d2)‖ ≤ kr̃(j−1)
‖d1 − d2‖, ∀t ∈ [t0, tf ], ∀d1,d2 ∈ R

np+nx ,

and

‖r̃(j−1)(t,d)‖ = ‖r̃(j−1)(t,d)− r̃(j−1)(t,0np+nx
)‖,

≤ kr̃(j−1)
‖d‖, ∀(t,d) ∈ [t0, tf ]× R

np+nx .
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It was demonstrated earlier that the mapping x̃(j) : t 7→ [xt]
(j−1)
p0,M

(m(j)) is absolutely continuous on [t0, tf ].
x̃(j) is therefore measurable on [t0, tf ], from which it follows that ỹ(j) is Lebesgue integrable on [t0, tf ] by
Lemma 1 in Chapter 1, Section 1 [39].

Define the following matrix-valued functions:

X̃ : [t0, tf ] → R
nx×k : t 7→ [x̃(1)(t) · · · x̃(k)(t)],

Ỹ : [t0, tf ] → R
ny×k : t 7→ [ỹ(1)(t) · · · ỹ(k)(t)].

For any k ∈ N and any M ∈ R
np×k, Theorem 2.4 implies that the LD-derivative mapping t 7→ [xt]

′(p0;M)
is the unique solution on [t0, tf ] of the following ODE system:

U̇(t) = [f̄t\Zf
]′(p0,x(t,p0); (M,U(t))),

U(t0) = [f0]
′(p0;M).

(9)

By L-smoothness of qt and rt at (p0,x(t,p0)) for each t ∈ [t0, tf ], the LD-derivative chain rule (1) yields

[ft\Zf
◦ qt]

′(p0,x(t,p0); (M,A))

= [ft\Zf
]′(qt(p0,x(t,p0)); [qt]

′(p0,x(t,p0); (M,A))),

= [ft\Zf
]′(p0,x(t,p0), r(t,p0,x(t,p0)); (M,A, [rt]

′(p0,x(t,p0); (M,A)))),

for any (t,A) ∈ [t0, tf ]× R
nx×k. Since (9) admits the unique solution X̃ on [t0, tf ],

˙̃
X(t) = [ft\Zf

]′






p0

x(t,p0)
r(t,p0,x(t,p0))


 ;




M

X̃(t)

[rt]
′(p0,x(t,p0); (M, X̃(t)))




 , (10)

for almost every t ∈ [t0, tf ] and

X̃(t0) = [f0]
′(p0;M). (11)

For each t ∈ [t0, tf ] and each i ∈ {1, . . . , k},

ỹ(i)(t) = r̃(i−1)(t,m(i), [xt]
(i−1)
p0,M

(m(i))),

= [rt]
(i−1)
(p0,x(t,p0)),(M,[xt]′(p0;M))(m(i), [xt]

(i−1)
p0,M

(m(i))),

from which it follows that

Ỹ(t) = [rt]
′(p0,x(t,p0); (M, [xt]

′(p0;M)),

= [rt]
′(p0,x(t,p0); (M, X̃(t)), ∀t ∈ [t0, tf ]. (12)

Equation (4) and Lemma 2.9 imply that, for each t ∈ [t0, tf ],

N := r′(t,p0,x(t,p0); (01×k,M, [xt]
′(p0;M))) = [rt]

′(p0,x(t,p0); (M, X̃(t)))

is the unique solution of

0ny×k = g′(t,p0,x(t,p0),y(t,p0); (01×k,M, [xt]
′(p0;M),N)),

= [gt]
′(p0,x(t,p0),y(t,p0); (M, X̃(t),N)).

Hence,
0ny×k = [gt]

′(p0,x(t,p0),y(t,p0); (M, X̃(t), Ỹ(t))), ∀t ∈ [t0, tf ]. (13)

For each t ∈ [t0, tf ], the L-smoothness of yt was established earlier; the LD-derivative chain rule yields

[yt]
′(p0;M) = [rt]

′(p0,x(t,p0); (M, [xt]
′(p0;M))) = Ỹ(t), ∀t ∈ [t0, tf ].
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Evaluation of (13) at t = t0 yields the fact that Ỹ(t0) is the unique solution Y0 ∈ R
ny×k of the equation

system
0ny×k = [gt0 ]

′(p0,x0,y0; (M, [f0]
′(p0;M),Y0)),

since x(t0,p0) = x0, y(t0,p0) = y0, and X̃(t0) = [f0]
′(p0;M). The conclusion of the theorem holds by

virtue of Equations (10) to (13), and the observation that y(t,p0) = r(t,p0,x(t,p0)), X̃(t) = [xt]
′(p0,M),

and Ỹ(t) = [yt]
′(p0,M) for all t ∈ [t0, tf ].

Remark 3.8. If f , g, and f0 are C1 on their respective domains, then Zf = ∅ and, as expected, (6) simplifies
to

Ẋ(t) =
∂f

∂p
M+

∂f

∂x
X(t) +

∂f

∂y
Y(t),

0ny×k =
∂g

∂p
M+

∂g

∂x
X(t) +

∂g

∂y
Y(t),

X(t0) = Jf0(p0)M,

where the partial derivatives of f and g are evaluated at (t,p0,x(t,p0),y(t,p0)), which has been omitted
for brevity.

Remark 3.9. Given a regular solution z of (5) on [t0, tf ]×{p0} through {(t0,p0,x0,y0)} and any nonsingular
M ∈ R

np×np , (X(tf ),Y(tf )) := [ztf ]
′(p0;M) can be obtained by evaluating the unique solution of the

auxiliary nonsmooth DAE system (6) at t = tf . As an element of the lexicographic subdifferential,

[
JLxtf (p0;M)
JLytf (p0;M)

]
= JLztf (p0;M)

is a computationally relevant object related to the parametric sensitivities of the differential variables x and
algebraic variables y, respectively, at t = tf . It can be furnished by solving the following linear equation
system: [

X(tf )
Y(tf )

]
=

[
JLxtf (p0;M)
JLytf (p0;M)

]
M.

Remark 3.10. Mirroring the discussion in Remark 2.5, the right-hand side function

(t,A) 7→ [f̄t\Zf
]′(p0,x(t,p0); (M,A))

in (9) need not satisfy the Carathéodory conditions, but the k columns of the matrix-valued function t 7→
[xt]

′(p0;M) are nonetheless absolutely continuous on [t0, tf ]. However, the k columns of the matrix-valued
function t 7→ [yt]

′(p0;M) are Lebesgue integrable vector-valued functions mapping [t0, tf ] to R
ny , and

therefore may exhibit discontinuities with respect to the independent variable. This observation is also
applicable to Corollary 3.11, as illustrated in Example 4.2.

Sensitivities of solutions of (5) with respect to initial data are easily computed by Theorem 3.7.

Corollary 3.11. Suppose that f : Dt × Dx × Dy → R
nx and g : Dt × Dx × Dy → R

ny satisfy analogous
conditions to the hypotheses of Assumption 3.1. Suppose that there exists a regular solution z of

ẋ(t, c) = f(t,x(t, c),y(t, c)),

0 = g(t,x(t, c),y(t, c)),

x(t0, c) = c,

(14)

on [t0, tf ]×{c0} through {(t0, c0,y0)} for some (c0,y0) ∈ Dx ×Dy. Then, for each t ∈ [t0, tf ], the mapping
zt ≡ z(t, ·) is L-smooth at c0; for any k ∈ N and any M ∈ R

nx×k, the LD-derivative mapping

Z̃ ≡ (X̃, Ỹ) : [t0, tf ] → R
(nx+ny)×k : t 7→ [zt]

′(c0;M)
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is the unique solution (in the sense of Theorem 3.7) of the following DAE system:

Ẋ(t) = [ft\Zf
]′(x(t, c0),y(t, c0); (X(t),Y(t))),

0ny×k = [gt]
′(x(t, c0),y(t, c0); (X(t),Y(t))),

X(t0) = M.

(15)

on [t0, tf ] through {(t0,M,Y0)}, where Y0 ∈ R
ny×k is the unique solution of the equation system

0ny×k = [gt0 ]
′(x0,y0; (M,Y0)).

4. Examples

In this section, examples are provided to highlight the theory.

Example 4.1. Consider the following parametric nonsmooth DAEs:

ẋ(t, p) = 0.5 sign(1− t)max{0, p}y(t, p),

0 = |x(t, p)|+ |y(t, p)| − 1,

x(0, p) = arctan(p),

(16)

where sign(·) is defined as follows:

sign : R → {−1, 0, 1} : t 7→





1, if t > 0,

0, if t = 0,

−1, if t < 0.

Let p0 := 0, N(p0) := (−0.5, 0.5), x0 := 0, and y0 := 1. There exists a unique solution z ≡ (x, y) of (16) on
[0, 2]×N(p0) through

Ω0 := {(t, p, ηx, ηy) : t = 0, p ∈ N(p0), ηx = arctan(p), ηy = 1− | arctan(p)|}

which is given by

z : (t, p) 7→





[
(arctan(p)− 1) exp(−0.5pt) + 1

(1− arctan(p)) exp(−0.5pt)

]
, if (t, p) ∈ [0, 1)× (0, 0.5),

[
(β(p)− 1) exp(0.5p(t− 1)) + 1

(1− β(p)) exp(0.5p(t− 1))

]
, if (t, p) ∈ [1, 2]× (0, 0.5),

[
arctan(p)

1 + arctan(p)

]
, if (t, p) ∈ [0, 2]× (−0.5, 0],

where β : (0, 0.5) → (0, 1) : p 7→ (arctan(p)− 1) exp(−0.5p) + 1. See Figure 1 for an illustration.
The solution is regular as π4∂g(t, p, x(t, p), y(t, p)) = {1} for all (t, p) ∈ [0, 2] × N(p0), since y(t, p) > 0

for all (t, p) ∈ [0, 2] × N(p0). Note that z(t, 0) = (x(t, 0), y(t, 0)) = (0, 1) for all t ∈ [0, 2]. For any
d := (d1, d2, d3) ∈ R

3, [f0]
′(0; d1) = d1,

[ft\{1}]
′(0, z(t, 0);d) =





limα↓0 α
−1(0.5max{0, αd1}(1 + αd3)), if t ∈ [0, 1),

0, if t = 1,

limα↓0 α
−1(−0.5max{0, αd1}(1 + αd3)), if t ∈ (1, 2],

=





0.5max{0, d1}, if t ∈ [0, 1),

0, if t = 1,

−0.5max{0, d1}, if t ∈ (1, 2],

[gt]
′(0, z(t, 0);d) = lim

α↓0
α−1(|αd2|+ |1 + αd3| − 1) = |d2|+ d3.

16



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

t

-1

-0.5

0

0.5

1

1.5
xp(t)
yp(t)

(a) z(t, p) vs. t for various values of −0.5 < p < 0.5.
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Figure 1: Graphs of solution of (16).

By Theorem 3.7, zt ≡ z(t, ·) is L-smooth at p0 for each t ∈ [t0, tf ]; for any m ∈ R, the LD-derivative

mapping Z̃ ≡ (X̃, Ỹ ) : t 7→ [zt]
′(0;m) is the unique solution (in the sense of Theorem 3.7) on [0, 2] of the

following DAE system:
Ẋ(t) = 0.5 sign(1− t)max{0,m},

0 = |X(t)|+ Y (t),

X(0) = m.

(17)

The solution of (17) on [0, 2] through {(0,m,−|m|)} is given by

(X̃(t), Ỹ (t)) =





(0.5mt+m,−0.5mt−m) if t ∈ [0, 1),m > 0,

(−0.5mt+ 2m, 0.5mt− 2m) if t ∈ [1, 2],m > 0,

(m,m) if t ∈ [0, 2],m ≤ 0.

(18)

Observe that the initial condition Y (0) in (17) is uniquely determined from X(0) (unlike in (16)), in accor-
dance with Theorem 3.7. See Figure 4a for an illustration; m = 0 is admissible.

For any m 6= 0, post-multiplying the unique solution (X̃(t), Ỹ (t)) of (17) by m−1 yields:

JLzt(0;m) =





{(0.5t+ 1,−0.5t− 1)}, if t ∈ [0, 1),m > 0,

{(−0.5t+ 2, 0.5t− 2)}, if t ∈ [1, 2],m > 0,

{(1, 1)}, if t ∈ [0, 2],m < 0,

so that

∂Lzt(0) =

{
{(0.5t+ 1,−0.5t− 1), (1, 1)}, if t ∈ [0, 1),

{(−0.5t+ 2, 0.5t− 2), (1, 1)}, if t ∈ [1, 2].
(19)

From the analytic solution, for each t ∈ [0, 1),

Jzt(p) =





[
((1 + p2)−1 − 0.5t(arctan(p)− 1)) exp(−0.5pt)

(−(1 + p2)−1 − 0.5t(1− arctan(p))) exp(−0.5pt)

]
, if p > 0,

[
(1 + p2)−1

(1 + p2)−1

]
, if p < 0,
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and, for each t ∈ [1, 2],

Jzt(p) =





[
(β′(p) + 0.5(t− 1)(β(p)− 1)) exp(0.5p(t− 1))

(−β′(p) + 0.5(t− 1)(1− β(p))) exp(0.5p(t− 1))

]
, if p > 0,

[
(1 + p2)−1

(1 + p2)−1

]
, if p < 0.

Observe that, for each t ∈ [0, 2],

∂Bzt(0) =

{
{(1 + 0.5t,−1− 0.5t), (1, 1)}, if t ∈ [0, 1),

{(1.5− 0.5(t− 1),−1.5 + 0.5(t− 1)), (1, 1)}, if t ∈ [1, 2].

Noting that zt is PC1 on N(p0) for each t ∈ [0, 2], it is true that ∂Lzt(0) ⊂ ∂Bzt(0) for each t ∈ [0, 2], as
expected. See Figure 4b for an illustration.
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(a) Z̃(t) vs. t for various values of −1 ≤ m ≤ 1.
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Figure 2: Graphs of (18) and (19), respectively.

Example 4.2. Consider the following IVP in DAEs:

ẋ1(t, c) = 1− y(t, c),

ẋ2(t, c) = x2(t, c),

0 = max{x1(t, c), x2(t, c)}+ |y(t, c)| − 1,

x1(0, c) = c1,

x2(0, c) = c2.

(20)

Let c0 := (0, 0), y0 := 1, and [t0, tf ] := [0, 1]. Consider the parameter set

C := {(c1, c2) ∈ R
2 : 0 ≤ c1 < c2 ≤ 0.3} ∪ {c0}.

The unique solution z ≡ (x, y) of (20) on [0, 1]× [−0.3, 0.3]2 through

Ω0 := {(t, ηx1
, ηx2

, ηy) : t = 0, (ηx1
, ηx2

) ∈ C, ηy = 1−max{ηx1
, ηx2

}}
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is given by

z : (t, c) 7→







c1 + c2(1− exp(−t))

c2 exp(−t)

1− c2 exp(−t)


 , if t ∈ [0, τ(c)],




(c1 + c2(1− exp(−τ(c)))) exp(t− τ(c))

c2 exp(−t)

1− (c1 + c2(1− exp(−τ(c)))) exp(t− τ(c))


 , if t ∈ (τ(c), 1],

where

τ : C → [0, 0.7) : (c1, c2) 7→

{
ln
(

2c2
c1+c2

)
, if (c1, c2) ∈ C \ {c0},

0, if (c1, c2) = c0.

See Figure 3 for an illustration. The solution mapping z is regular; y(t, c) > 0 for all (t, c) ∈ [0, 1]×C implies
that π3∂g(t,x(t, c), y(t, c)) = {1} for all (t, c) ∈ [0, 1]×C. In fact, there is a unique regular solution of (20)
on [0, 1] × [−0.3, 0.3]2 through a superset of Ω0, which can be calculated by inspection and is PC1 on its
domain. However, its complete analytic expression is omitted here to make this example less cumbersome.
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Figure 3: Graphs of solution of (20); z(t, c) vs. t for c1 := 0 and various values of 0 ≤ c2 ≤ 0.3.

The right-hand side functions f and g in (20) are C1 and PC1 on R
3, respectively. Note that z(t,02) =

(x(t,02), y(t,02)) = (0, 0, 1) for all t ∈ [0, 1]. Let

A :=



a11 a12
a21 a22
a31 a32


 ∈ R

3×2.
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For any t ∈ [0, 1] and any d := (d1, d2, d3) ∈ R
3,

[gt]
(0)
z(t,02),A

(d) = [gt]
′(0, 0, 1;d),

= lim
α↓0

α−1(max{αd1, αd2}+ |1 + αd3| − 1),

= max{d1, d2}+ d3,

[gt]
(1)
z(t,02),A

(d) = [[gt]
(0)
z(t,02),A

]′(a11, a21, a31;d),

= lim
α↓0

α−1(max{a11 + αd1, a21 + αd2} −max{a11, a21}+ αd3),

=

{
d1 + d3, if a11 > a21 or a11 = a21 and d1 ≥ d2,

d2 + d3, if a11 < a21 or a11 = a21 and d1 < d2.

Therefore, for any t ∈ [0, 1],

[ft]
′(z(t,02);A) = Jft(z(t,02))A =

[
−a31 −a32
−a21 −a22

]
,

[gt]
′(z(t,02);A) =





[
a11 + a31 a12 + a32

]
, if a11 > a21 or a11 = a21 and a12 ≥ a22,[

a21 + a31 a22 + a32

]
, if a11 < a21 or a11 = a21 and a12 < a22.

Corollary 3.11 can be applied as follows: choose any directions matrix

M :=

[
m11 m12

m21 m22

]
∈ R

2×2,

satisfying
0 < m22 < m11 < m21 < m12 ≤ 0.3

(which guarantees its nonsingularity). Consider the following auxiliary nonsmooth DAE system:

Ẋ(t) =

[
−Y1(t) −Y2(t)
−X21(t) −X22(t)

]
,

Y(t) =





[
−X11(t) −X12(t)

]
, if X11(t) > X21(t) or X11(t) = X21(t) and X12(t) ≥ X22(t),[

−X21(t) −X22(t)
]
, if X11(t) < X21(t) or X11(t) = X21(t) and X12(t) < X22(t),

X(0) = M,

(21)

which admits the unique solution (in the sense of Corollary 3.11) Z̃ ≡ (X̃, Ỹ) : t 7→ [zt]
′(c0;M) on [0, 1]

through {(0,M, [−m21 −m22])} given by

Z̃ : t 7→



m11 +m21(1− exp(−t)) m12 +m22(1− exp(−t))

m21 exp(−t) m22 exp(−t)
−m21 exp(−t) −m22 exp(−t)


 ,

if t ∈ [0, τ(m(1))], and

Z̃ : t 7→




β(m(1)) exp(t− τ(m(1))) γ(m(1),m(2)) exp(t− τ(m(1)))
m21 exp(−t) m22 exp(−t)

−β(m(1)) exp(t− τ(m(1))) −γ(m(1),m(2)) exp(t− τ(m(1)))


 ,

if t ∈ (τ(m(1)), 1], where

β : m(1) 7→ m11 +m21(1− exp(−τ(m(1)))),

γ : (m(1),m(2)) 7→ m12 +m22(1− exp(−τ(m(1)))).
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The mappings X̃ and Ỹ1 are absolutely continuous on [0, 1] but

Ỹ2 : t 7→

{
−m22 exp(−t), if t ∈ [0, τ(m(1))],

−(m12 +m22(1− exp(−τ(m(1))))) exp(t− τ(m(1))), if t ∈ (τ(m(1)), 1],

is not continuous at τ(m(1)) ∈ (0, 1) since −m22 exp(−τ(m(1))) > −(m12 +m22(1 − exp(−τ(m(1))))). See
Figure 4 for an illustration with directions matrix

M∗ :=

[
0.15 0.25
0.2 0.1

]
.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

X̃11(t) X̃12(t) X̃21(t) X̃22(t)

t = τ (m∗

11, m
∗

21)

(a) X̃(t) vs. t.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t
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-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

Ỹ1(t)

Ỹ2(t)
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11, m
∗

21)

(b) Ỹ(t) vs. t.

Figure 4: Graphs of solution of (21) with directions matrix M := M
∗. Here τ(m∗

(1)
) = 0.1335.

Post-multiplying Z̃(tf ) by M−1 furnishes the following L-derivative:

JLztf (02;M) =




exp(1− τ(m(1))) (1− exp(−τ(m(1)))) exp(1− τ(m(1)))
0 exp(−1)

− exp(1− τ(m(1))) −(1− exp(−τ(m(1)))) exp(1− τ(m(1)))


 .

From the analytic solution with 0 < c1 < c2 ≤ 0.3,

Jτ(c) =
[
− 1

c1+c2

c1
c2(c1+c2)

]
,

so that

Jztf (c) =




exp(1− τ(c)) (1− exp(−τ(c))) exp(1− τ(c))
0 exp(−1)

− exp(1− τ(c)) −(1− exp(−τ(c))) exp(1− τ(c))


 .

Let c(j) := (m11/j,m21/j) for each j ∈ N. Then τ(c(j)) = τ(m(1)) for each j ∈ N and limj→∞ Jztf (c(j)) =
JLztf (02;M) ∈ ∂Lztf (02) ⊂ ∂Bztf (02), as expected.

5. Conclusions

A theory to compute lexicographic derivatives of solutions of nonsmooth parametric DAEs has been
developed. These generalized derivatives are computationally relevant and furnished via the solution of an
auxiliary nonsmooth DAE system. The part of this solution mapping that is associated with the algebraic
variables exhibits features that are unlike the original nonsmooth parametric DAEs of interest. Namely,
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it need not be continuous with respect to the independent variable and its initial condition is uniquely
determined from the algebraic constraints of the auxiliary nonsmooth DAE system.

Forward sensitivity functions for Carathéodory index-1 semi-explicit DAEs have thus been characterized.
Index refers here to a generalized differential index, which is formulated in terms of the projections of Clarke
Jacobians being of maximal rank. Existence and regularity of a solution of the nonsmooth parametric DAEs
need only be assumed on a finite horizon and at one parameter value for the theory to be applicable. This
work is a natural extension of the classical sensitivity results for the analogous smooth case. Numerical
solution of large-scale instances of the DAE system (6) will require automatic methods for evaluation of the
LD-derivatives appearing in (6), which is facilitated by a recently developed vector forward mode of automatic
differentiation for LD-derivative evaluation [7]. Moreover, developing tractable methods for simulating the
auxiliary nonsmooth DAE systems found here is an avenue for future work. Other possible directions for
future work include extending the results to “high-index” nonsmooth DAEs and adjoint sensitivity results
for nonsmooth DAEs.
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