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Abstract

This thesis addresses the challenges brought forth by the shale oil and gas revolution
through the application of formal optimization techniques. Two frameworks, each
addressing the monetization of shale oil and gas resources at different ends of the
scale spectrum, are developed. Importantly, these frameworks accounted for both
the dynamic and stochastic aspects of the problem at hand.

The first framework involves the development of a strategy to allocate small-scale
mobile plants to monetize associated or stranded gas. The framework is applied to a
case study in the Bakken shale play where large quantities of associated gas are flared.
Optimal strategies involving the continuous redeployment of plants are analyzed in
detail. The value of the stochastic solution with regards to uncertainty in resource
availability is determined and it indicates that mobile plants possess a high degree
of flexibility to handle uncertainty.

The second framework is a comprehensive supply chain optimization model to
determine optimal shale oil and gas infrastructure investments in the United States.
Assuming two different scenario sets over a time horizon of twenty-five years, the
features of the optimal infrastructure investments and associated operating decisions
are determined. The importance of incorporating uncertainty into the framework is
demonstrated and the relationship between the stability of the stochastic solution
and the variance of the distribution of future parameters is analyzed.

The thesis also analyzes the Continuous Flow Stirred Tank Reactor (CFSTR)
equivalence principle as a method for screening and targeting favorable reaction path-
ways, with applications directed towards gas-to-liquids conversion. The principle is
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found to have limited usefulness when applied to series reactions due to an unphys-
ical independence of the variables which allows for the maximization of production
of any intermediate species regardless of the magnitude of its rate of depletion. A
reformulation which eliminates the unphysical independence is proposed. However,
the issue of arbitrary truncation of downstream reactions remains.

Thesis Supervisor: Paul I. Barton
Title: Lammot du Pont Professor of Chemical Engineering
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Chapter 1

Introduction

1.1 Background

The main theme of this thesis is the application of optimization techniques with

the aim of optimal monetization of oil and gas from unconventional resources. The

discovery of large reserves of shale oil and gas in many locations worldwide and the

technological advances that have made it possible to exploit them has presented an

unprecedented economic opportunity. This revolutionary development in the global

energy arena has been led largely by activity in the United States. From 2008 to

2013, U.S. crude oil production grew from 5.0 to 7.4 million barrels a day, and U.S.

dry natural gas production grew from 20.2 to 24.3 trillion cubic feet per year [5].

The work of this thesis began at a time when the shale revolution was transi-

tioning from a focus on upstream activities towards that on mid- and downstream

activities. Great strides in increasing the efficiency of shale oil and gas production

and the management of production sites were already being made, and the ques-

tion of the day turned towards analyzing the possible ways in which the growing
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abundance of shale oil and gas could be monetized.

The analysis of shale oil and gas monetization involves the simultaneous consid-

eration of numerous factors, including technological options, scales of production,

availability of existing infrastructure, nature of production at sources, nature of

markets, economic parameters of prices, demand and supply of resources and end

products, transportation options, time horizon, and uncertainty of future conditions.

With the multitude of options, heuristic approaches to determine the best options

for monetization are likely to lead to sub-optimal results.

The aim of this thesis seeks to address this issue through formal optimization

techniques. Formalized optimization frameworks can handle complexity with relative

ease. The development of efficient algorithms and formulations, combined with the

rapid increase in computational power of modern computers over the past decades,

has now made it possible to solve once-intractable problem instances containing

tens of millions of variables and constraints. The holistic yet granular nature of an

optimization framework allows it to uncover optimal solutions which might not be

accessible by heuristic-based analyses.

The heart of this thesis’ analysis is centered around the twin issues of scale and

risk and their associated trade-offs. On one hand, operating at larger scales allows

for the benefits of economies of scale. On the other, the large capital outlay and

lengthy development times might pose a significant risk for investors due to consid-

erable uncertainty in the future demand, supply and prices at the time at which an

investment decision is being made.

As the scale of operation decreases, there is a distinct discontinuity in the con-

ceptualization of the mode of operation of plants. The main difference is that below

a certain operational scale, individual plants gain the ability to be moved to dif-

ferent locations during their lifetime. This discontinuity in the mode of operation
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leads to distinct formulations of the optimization models and their specific realms of

application. As such, the work of this thesis is organized around this distinction.

The application of optimization techniques to solve problems related to shale oil

or gas in the research community is still relatively new. A brief overview of the

relevant studies performed thus far are given here.

Martín and Grossmann [6] presented a superstructure optimization approach to

produce liquid fuels and hydrogen from switchgrass and shale gas in a facility. Cafaro

and Grossmann [7] optimized the design and operation of supply chain networks at

shale gas drilling sites. Yang et al. [8] optimized water management operations

during shale gas production to maximize profits. An extension to consider both

strategic design decisions and environmental objectives in the optimization of water

management during shale gas production was provided by Gao and You [9]. The

same authors also optimized a shale gas and water supply chain network from well

sites to power plants and performed a life-cycle analysis of electricity generated from

shale gas [10].

In a series of papers, Knudsen and Foss [11] optimized the production from a

set of late-life wells at a shared production pad to avoid well liquid-loading. The

formulation was extended to multiple pads and solved using a Lagrangian relaxation

based decomposition scheme [12]. Later, the scheduling problem was extended to

consider the operation of the wells to supply electric power [13]. Bistline [14] explored

how uncertainties in natural gas prices and future climate policies impacted economic

and environmental outcomes in the U.S. power sector with a two-stage stochastic

programming formulation.
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1.2 Small-scale mobile plants

Large upfront investments preclude the tapping of stranded gas reserves, which are

reserves that are either too small or too physically inaccessible to be economically

exploitable. A recent survey by Attanasi and Freeman [15] of the gas fields in the

world excluding the U.S. estimated that only around 12.2% of the gas fields tabulated

were larger than 1.54 tcf in size. In contrast, as indicated by Velocys [16], the

remaining fields which would be considered too small to monetize by traditional

large-scale technologies might be accessible to medium- to small-scale technologies.

Stranded gas can also arise from the lack of infrastructure access despite the field

having a large size. A pertinent example in the United States is the gas associated

with the production of shale oil at liquids-rich fields, such as the Bakken shale field

in North Dakota. In 2013, Ford and Davis [17] estimated that 33% of the natural

gas produced at the Bakken was not marketed, where most gas not marketed was

flared.

Recent concepts for implementing gas-to-liquids (GTL) and liquefied natural gas

(LNG) technology at a small-scale and modular level have the game-changing po-

tential to shift the paradigm away from large capital expenditures and one fixed lo-

cation. These proposed plants are currently in the early stages of commercialization

by several companies in the oil and gas industry, including GE Oil & Gas [18], Com-

pactGTL [19] and Velocys [20]. These technologies involve pre-manufacturing each

process unit as compartmentalized, individual modules which can then be shipped to

the site of interest and assembled together in minimal time to form the entire plant.

Additionally, plants can be quickly disassembled into their individual modules and

redeployed at other sites, affording them the benefit of mobility. This mobility will

allow them to respond quickly to changes in conditions that might affect their prof-
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itability. This could include economic factors such as large changes in the price of

both the raw gas and its associated products, and supply shocks arising from the

steep decline curves typically observed with unconventional sources of gas. For ex-

ample, a study by Hughes in 2013 [21] concluded that wells in the top five U.S. shale

plays typically produced 80-95% less gas after three years. Although the commercial

availability of modular plants is limited at the time of writing, there has been a grow-

ing interest in evaluating them for purposes of monetizing stranded or associated gas

from both conventional and nonconventional sources.

In view of these promising claims, it would be both useful and informative for

industry players to have access to a framework that optimally utilizes these small-

scale, mobile technologies to monetize stranded or associated gas. To this aim, this

thesis develops a multi-period strategy for the optimal allocation of these technologies

under time-varying supplies of gas in locations where stranded or associated gas is

present and time-varying prices of and demand for the various products in their

respective markets.

Prior to this work, the application of optimization to analyze small-scale mobile

plants has not been investigated in literature, to our knowledge. However, ideas on

problem formulation are similar in the context of the unit commitment problem.

For example, in the case of a hydro-thermal system, decisions are made to operate

thermal units and pumped hydro storage plants, which can be turned off and on at

certain time points [22, 23].
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1.3 Large-scale infrastructure investments in the

United States

With high levels of growth of shale oil and gas production, there has been an accom-

panying increase in capital spending on midstream and downstream infrastructure

[24]. These infrastructure investments primarily aim to provide greater access to

shale plays which previously lacked connections and direct the resources to locations

where additional demand could be served.

Unfortunately, making infrastructure investments in the oil and gas industry is

rarely a straightforward affair. Because of the large sizes of investments, regulatory

and geopolitical challenges, and considerable uncertainty in future resource prices,

projects often face schedule delays and cost overruns [25]. In severe cases, the original

intentions behind the investments might have to be abandoned. A pertinent example

would be the over-investment in LNG import terminals in the early 2000s, when

the general expectation was that of significant declines in future U.S. natural gas

production [26].

To deal with the challenges associated with oil and gas infrastructure investments,

a formalized framework in which to analyze these investments is required. This thesis

develops a framework which assumes a comprehensive, high-level view of making

optimal shale oil and gas investments in the context of current and future projections

of supply, demand and prices of various commodities. This framework allows for a

systematic study of the optimal types and levels of infrastructure investments, as

well as the accompanying operational aspects of the supply chain.

The study continues the rich history of the application of optimization techniques

to solve problems related to the management of supply chains. In particular, it can
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be broadly associated to the study of facility location problems, where in general,

optimal facility locations are to be determined to satisfy customer demand, with

the objective of minimizing overall costs or maximizing overall profits. A review of

the history of these problems is given by Owen and Daskin [27]. A compilation of

significant contributions to the field, as well as mention of potential areas for further

research, was given by Melo et al. [28]. A review of supply chain optimization

specifically applied to the field of energy, in particular, that involving hybrid feedstock

processes, was contributed by Elia and Floudas [29]. In these reviews, the importance

of the need for more future models to incorporate both stochastic and dynamic

aspects was highlighted. Sahinidis [30] provided a review of optimization under

uncertainty, which provides hints of how one might extend the traditional facility

location problems to their stochastic counterparts.

Although there has been a long history of papers demonstrating the application

of supply chain optimization, we believe that the study in this thesis possesses a

scope that is unprecedented in existing literature. Table 1.1 shows the different

extent in which a supply chain optimization framework can vary in terms of its

comprehensiveness, and as indicated, the study in this thesis lies on the high side of

comprehensiveness for all of the dimensions of scope explored. To the best of our

knowledge, most papers in existing literature typically only possess the high side

of comprehensiveness for one or two dimensions of scope at best, while the other

dimensions remain on the low side of comprehensiveness.

In addition, to the best of our knowledge, there has been no comprehensive na-

tionwide supply chain optimization model specific to shale oil and gas prior to this

work. Our framework integrates the economic dynamics of the upstream, midstream

and downstream sectors of the oil and gas industry in the U.S. and select foreign

markets and takes into account both the time-varying projections of supply, demand
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Scope less comprehensive←−−−−−−−−−− Extent more comprehensive−−−−−−−−−−−→

Sector Upstream Midstream Downstream Full

X

Structure Converging Diverging Multi-nodal

X

Time periods Single (Rate-based) Multiple

X

Objective Cost-based Profits-based

X

Uncertainty Excluded Included

X

Geography State Region Country International

X

Technologies Single Multiple

X

Commodities Single Multiple

X

Transportation Single Multiple

X

Table 1.1: Different dimensions of scope in which a supply chain optimization can
vary in its extent of comprehensiveness. Having a more comprehensive model is ideal,
but has to be balanced with considerations of computational tractability.
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and price parameters as well as the different scenario realizations of these parame-

ters. The development of the model would achieve the aim of providing an accurate

and timely guide towards making the best investment and operating decisions for

monetizing shale oil and gas in the country moving forward.

1.4 Mixed-integer linear programming

The optimization frameworks developed in this thesis are formulated as mixed-integer

linear programs (MILP), which have the following structure:

minimize
𝑥,𝑦

𝑐T𝑥 + 𝑑T𝑦

subject to 𝐴𝑥 + 𝐷𝑦 = 𝑏,

𝑥 ∈ 𝑋 ∩ R𝑛𝑥
+ ,

𝑦 ∈ 𝑌 ∩ Z𝑛𝑦

+ ,

where 𝑥 are nonnegative continuous variables and 𝑦 are nonnegative integer variables.

𝑋 and 𝑌 denote polyhedral sets containing 𝑥 and 𝑦 respectively. 𝑐, 𝑑 are cost vectors

for 𝑥 and 𝑦, respectively. 𝐴𝑥 + 𝐷𝑦 = 𝑏 are the coupling constraints between these

variables.

In the context of the thesis, the continuous variables typically refer to the opera-

tional decisions, whereas the integer variables typically refer to investment, location,

or logical decisions.

Modern commercial solvers like CPLEX [31] and Gurobi [32] typically imple-

ment a branch-and-cut method to solve the MILP. Many ways in which the solution

procedure can be made more efficient are documented in literature, typically by de-

veloping sharp formulations, formulating tight cuts, or decomposing the structure of
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the problem into smaller subproblems [33]. However, the effectiveness of these mod-

ifications over a direct implementation of the fullspace formulation depends largely

on a case-by-case basis among the instances examined.

1.5 CFSTR equivalence principle

Chemical engineers often encounter reaction schemes with varying complexity and

have an abundance of reactor and separator designs to choose from. This proves to be

a formidable task, and a method for screening reaction schemes is often desired such

that more attention can be focused on particular schemes that have comparatively

higher productivities of a certain desired species. It was with this in mind that Fein-

berg and co-workers developed a theory to determine an absolute and computable

limit for the achievable production of any species for any arbitrary steady-state

reactor-separator design, given the kinetics of the reaction network and a specified

commitment of resources [34, 35]. Named the Continuous Flow Stirred Tank Reac-

tor (CFSTR) equivalence principle, it asserts that the effluent of any steady-state

reactor-separator design can be achieved arbitrarily closely by another steady-state

design with arbitrarily sharp separations but in which the only reactor components

are 𝑠 + 1 ideal CFSTRs, where 𝑠 is the rank of the underlying network of chemical

reactions.

The CFSTR equivalence principle is atttractive because it has a simple form

yet powerful applicability as a screening tool for potentially very complex reaction

networks. In this thesis, distinct from the studies above, we explored the applicability

of the principle to screen and target favorable reaction pathways, with applications

directed towards gas-to-liquids conversion.
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1.6 Thesis outline

The outline of the remainder of the thesis is as follows:

• Chapter 2 discusses an optimization framework for the dynamic allocation of

small-scale mobile plants to monetize associated or stranded gas and its appli-

cation to the Bakken shale play.

• Chapter 3 expands upon the previous chapter by incorporating uncertainty

into the framework.

• Chapter 4 discusses a comprehensive supply chain optimization framework to

determine optimal shale oil and gas infrastructure investments in the United

States.

• Chapter 5 explores the screening of reaction networks using an optimization

framework based on the CFSTR equivalence principle.

• Chapter 6 concludes.

• Appendix A provides Supplementary Material for Chapters 2 and 3.

• Appendix B provides Supplementary Material for Chapter 4.

• Appendix C provides the Capstone Paper, written during my studies at the

Sloan School of Management.
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Chapter 2

Small-Scale Mobile Plants: Bakken

Shale Play

Associated or stranded natural gas presents a challenge to monetize due to its low

volume and lack of supporting infrastructure. Recent proposals for deploying mobile,

modular plants, such as those which perform gas-to-liquids (GTL) conversion or

produce liquefied natural gas (LNG) on a small scale, have been identified as possible

attractive routes to gas monetization. However, such technologies are yet unproven

in the marketplace. To assess their potential, we propose a multi-period optimization

framework which determines the optimal dynamic allocation and operating decisions

for a decision maker who utilizes mobile plants to monetize associated or stranded

gas. We then apply this framework to a case study of the Bakken shale play. Our

framework is implemented to determine the optimal net present value (NPV) which

would be realized over a twenty-year time frame. Sensitivity studies on the technology

costs and conversion inputs conclude that the profitability and viability of mobile

technologies remain valid for a wide range of possible inputs.
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2.1 Problem description and challenges

We will assume the role of a decision maker whose primary concern is to monetize

natural gas in stranded fields or associated with the production of oil. When making

decisions, the decision maker would have to consider the production characteristics

unique to the field and choose among several technology options. These technologies

convert natural gas into either higher-value products or a more transportable form,

or both. Among the technology options available, two which have garnered the most

interest due to their relative maturity are the gas-to-liquids (GTL) and liquefied

natural gas (LNG) technologies.

GTL has recently gained attention due to the increased spread between the price

of oil and natural gas, as noted by Hobbs and Adair [36] and Salehi et al. [37]. The

GTL process converts natural gas into liquid fuel. There are three main parts to this

process: 1) syngas generation, 2) Fischer-Tropsch (FT) synthesis, and 3) refining

and upgrading.

In syngas generation, natural gas is first cleaned and then converted into syngas,

which is a mixture of hydrogen and carbon monoxide. After the syngas has been

generated, it undergoes FT synthesis where it is converted into longer chain hydro-

carbons. Finally, after the FT synthesis step, the product is sent for refining and

upgrading to meet final specifications.

GTL products are attractive not only because they are liquid fuels and can be

easily transported, but also because they are virtually sulfur-free, as mentioned in

studies by Wood et al. [38] and Salehi et al. [37]. The most promising product from

the GTL process is GTL diesel. Also high in cetane number, it is ideal as a blendstock

for refineries to adjust conventional diesel in production to meet specifications.

LNG technology is considered mature and proven. The process involves lique-
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faction of gas by cooling to cryogenic temperatures. Prior to cooling, the feed gas

undergoes several treatment steps, such as filtration and removal of carbon dioxide,

sulfur, mercury and water.

The value of LNG is that it significantly increases the energy density of natural

gas, allowing it to be transportable for sale in distant markets. In the U.S., the most

promising market for LNG is fuel for heavy-duty trucks or freight rail, as documented

in a study by TIAX [39].

In addition, depending on the source of natural gas, there may be a significant

presence of natural gas liquids (NGLs), ethane, propane, butane, etc., mixed in the

wellhead gas. Such gas is termed “wet gas”, and the NGLs are usually separated from

the mixture because they possess substantial economic value. NGLs primarily serve

as feedstock for the petrochemical industry or as fuel for heating and transportation

purposes, as noted by Platts Price Group [40]. Therefore, GTL and LNG technologies

which take in wet gas as their feedstock should necessarily have a NGL separation

unit.

Applying these technologies to monetize stranded or associated gas poses a chal-

lenge. First, the technologies have to be designed to be mobile, since the supply of

gas at any fixed location would not last for very long. The mobility of the plants

adds a dimension of complexity to the decision-making process. Although the idea

of mobility generally allows plants to be more agile and thus suitable for capturing

stranded gas, start-up and shut-down costs would be incurred every time a move is

made. Thus, the company has to weigh the costs and benefits of continuing oper-

ations at a certain location versus redeployment in the context of how the supply

profile and the demands of its customers evolve over time. Second, because of the

dynamic nature of gas supply and well availability, it is a challenge to determine the

optimal number of mobile plants of each technology type to be purchased or sold at
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each time point of the time horizon that would maximize profits.

Figure 2-1: General simplified illustration of the dynamic mobile plant allocation
problem to monetize associated or stranded gas.

Figure 2-1 portrays a simplified illustration of the decision framework under con-

sideration. In this example, there are three time stages, three gas sources, two

technologies for mobile plants (GTL and LNG) and two markets. Depending on the

time period, the gas sources might or might not have gas available to monetize in

various quantities. At each time stage, the decision maker has to decide how many

plants of each technology type and size to purchase or sell and where to locate ex-

isting plants purchased in previous time stages, along with the appropriate levels of

production to deliver the finished products to the markets. In Figure 2-1, we see

that the decision in the first time period to purchase a GTL and an LNG plant and

develop gathering systems at the gas sources is made in anticipation of more sources

coming online in subsequent time periods. Once the plants have been constructed

off-site and shipped to the site of operation in the second time period, they are then
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available for the decision maker to deploy to the available gas sources. Subsequently,

between the second and third time period, the gas source in which the GTL plant

has been located becomes depleted. Hence, the decision is made to move the plant

to another source where it can resume its operations profitably. All decisions are

made with the goal of maximizing the net present value (NPV) of the project over

the entire time horizon.

2.2 Mathematical formulation

The problem is formulated as a multi-period MILP. A decision maker makes decisions

on a uniform grid 𝑡 ∈ {0, . . . , 𝑇} over a given time horizon. Based on the topology of

the gas field and the production characteristics, the decision maker has access to a

number of gas sources 𝑖 ∈ {1, . . . , 𝐼}, which might or might not supply gas depending

on the point in time considered. At each source, the decision maker can choose to

deploy a plant of type 𝑗 ∈ {1, . . . , 𝐽} in order to monetize the gas. The products are

then shipped and sold to various surrounding markets 𝑘 ∈ {1, . . . , 𝐾}, each of which

has a demand for a particular type of product 𝑙 ∈ {1, . . . , 𝐿}. In order to track the

age of the plants at a given time 𝑡, we also record the time point at which the plant

was purchased 𝜏 ∈ {0, . . . , 𝑡}.

The optimization decisions are:

1. Decision to allocate plant of type 𝑗 to source 𝑖 at time 𝑡, denoted by 𝑦𝑡𝑖𝑗 ∈ {0, 1}.

2. Indicator of the presence of a gas gathering system at source 𝑖 at time 𝑡, denoted

by 𝑧𝑡𝑖 ∈ {0, 1}.

3. Gas feed rate to plant of type 𝑗 at source 𝑖 at time 𝑡, denoted by 𝑥𝑡
𝑖𝑗 ∈ R+.
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4. Product delivery rate of product 𝑙 from source 𝑖 to market 𝑘 at time 𝑡, denoted

by 𝑤𝑡
𝑖𝑘𝑙 ∈ R+.

5. Number of plants of type 𝑗 purchased at time 𝑡, denoted by 𝐵𝑢𝑦𝑡𝑗 ∈ Z+.

6. Number of plants of type 𝑗 which originally arrived in inventory at time 0 ≤

𝜏 < 𝑡, sold at time 𝑡, denoted by 𝑆𝑒𝑙𝑙𝑡𝑗𝜏 ∈ Z+.

7. Inventory of plants of type 𝑗 at time 𝑡, arriving in inventory at time 0 ≤ 𝜏 ≤ 𝑡,

denoted by 𝐼𝑛𝑣𝑡𝑗𝜏 ∈ Z+.

The decision maker has to make his or her decisions subject to the following

constraints.

Once a decision has been made to develop a gathering system at source 𝑖 at time

𝑡, the gathering system is available at that source for all subsequent time points:

𝑧𝑡𝑖 ≤ 𝑧𝑡+1
𝑖 , ∀𝑖, ∀0 ≤ 𝑡 < 𝑇. (2.1)

A plant can only be deployed at a particular source if a gathering system had

been developed at least 𝒯𝑔 time periods prior, where 𝒯𝑔 denotes the time necessary

to construct the gathering system:

𝑦𝑡𝑖𝑗 ≤ 𝑧
𝑡−𝒯𝑔
𝑖 , ∀𝑖, 𝑗, ∀𝑡 ≥ 𝒯𝑔, and (2.2)

𝑦𝑡𝑖𝑗 = 0, ∀𝑖, 𝑗, ∀𝑡 < 𝒯𝑔. (2.3)

The inventory balance of plants has to be satisfied. Constraints (2.4) describes

the inventory balance where 𝜏 = 𝑡, (i.e., for plants that are brand new). In this case,

the inventory of new plants are simply the number bought 𝒯𝑗 time stages ago, where
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𝒯𝑗 denotes the construction time lag between the purchase of plants and their actual

arrival in the inventory ready for deployment.

𝐼𝑛𝑣𝑡𝑗𝜏 = 𝐵𝑢𝑦
𝑡−𝒯𝑗
𝑗 , ∀𝑗, ∀𝑡 ≥ 𝒯𝑗, ∀𝜏 = 𝑡, and (2.4)

𝐼𝑛𝑣𝑡𝑗𝜏 = 0, ∀𝑗, ∀𝑡 < 𝒯𝑗, ∀𝜏 = 𝑡.

Constraint (2.5) describes the inventory balances where 𝜏 < 𝑡, which considers

plants which are at least one time point old. Here, the current inventory of plants

bought at a particular previous time point is simply that carried forward from the

previous inventory, less any plants that are sold.

𝐼𝑛𝑣𝑡𝑗𝜏 = 𝐼𝑛𝑣𝑡−1
𝑗𝜏 − 𝑆𝑒𝑙𝑙𝑡𝑗𝜏 , ∀𝑗, 𝑡, ∀𝜏 < 𝑡. (2.5)

The number of plants allocated to the sources cannot exceed the number of plants

in the inventory. Note that we are indifferent to the purchase date of the plant and

treat all plants as equally efficient for our allocation decisions:

∑︁
𝑖

𝑦𝑡𝑖𝑗 ≤
𝑡∑︁

𝜏=0

𝐼𝑛𝑣𝑡𝑗𝜏 , ∀𝑗, 𝑡. (2.6)

Each gas source is associated with a gas supply 𝑠𝑡𝑖. If a plant has been deployed

at a gas source, the gas feed rate to the plant cannot exceed the gas supply from the

source:

𝑥𝑡
𝑖𝑗 ≤ 𝑠𝑡𝑖𝑦

𝑡
𝑖𝑗, ∀𝑖, 𝑗, 𝑡. (2.7)

At every source, the sum of flows from the gas source to the plants cannot exceed
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the gas supply: ∑︁
𝑗

𝑥𝑡
𝑖𝑗 ≤ 𝑠𝑡𝑖, ∀𝑖, 𝑡. (2.8)

Each plant type is associated with a capacity 𝑚𝑗. The feed to a plant cannot

exceed the plant’s capacity:

𝑥𝑡
𝑖𝑗 ≤ 𝑚𝑗𝑦

𝑡
𝑖𝑗, ∀𝑖, 𝑗, 𝑡. (2.9)

In addition, each plant type is associated with a minimum capacity that cannot

be violated due to physical constraints on the equipment. This minimum capacity is

determined by the turndown ratio, expressed as a fraction 𝛾𝑗 of total capacity. Thus,

if allocated, the feed to the plant cannot be below the plant’s minimum capacity:

𝑥𝑡
𝑖𝑗 ≥ 𝛾𝑗𝑚𝑗𝑦

𝑡
𝑖𝑗, ∀𝑖, 𝑗, 𝑡. (2.10)

For each technology, we denote a conversion factor 𝛼𝑗𝑙 to denote the proportion

of gas feed which gets converted into an end product. Then, the total flow rate of

a product exiting a source must equal the sum over all routes of shipment of that

product to its markets:

∑︁
𝑗

𝛼𝑗𝑙𝑥
𝑡
𝑖𝑗 =

∑︁
𝑘

𝑤𝑡
𝑖𝑘𝑙, ∀𝑖, 𝑙, 𝑡. (2.11)

Each market is associated with a demand 𝑑𝑡𝑘𝑙. Then, if a market is chosen to

be served, the total rate of products delivered to that market cannot exceed their
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demand:

∑︁
𝑖

𝑤𝑡
𝑖𝑘𝑙 ≤ 𝑑𝑡𝑘𝑙, ∀𝑘, 𝑙, 𝑡. (2.12)

The objective function of the decision maker is to maximize the net present value

(NPV) of the project, given an appropriate discount factor 𝑟:

NPV =
∑︁
𝑡

(1 + 𝑟)−𝑡(𝑅𝑒𝑣𝑡 − 𝐶𝑜𝑠𝑡𝑡) (2.13)

where 𝑅𝑒𝑣𝑡 is the total revenue and 𝐶𝑜𝑠𝑡𝑡 is the total cost at time 𝑡.

𝑅𝑒𝑣𝑡 is defined as the sum of the following terms. The sale of all products, each

with a corresponding price 𝑝𝑡𝑘𝑙:

∑︁
𝑖

∑︁
𝑗

∑︁
𝑘

∑︁
𝑙

𝑝𝑡𝑘𝑙𝛼𝑗𝑙𝑥
𝑡
𝑖𝑗. (2.14)

The gains obtained by salvaging a plant and its associated equipment. The

salvage value of a plant 𝑗 purchased at time 𝜏 , sold at time 𝑡, is denoted 𝑐𝑡𝑠𝑎𝑙𝑣,𝑗𝜏 :

∑︁
𝑗

𝑡∑︁
𝜏=0

𝑐𝑡𝑠𝑎𝑙𝑣,𝑗𝜏𝑆𝑒𝑙𝑙
𝑡
𝑗𝜏 . (2.15)

𝐶𝑜𝑠𝑡𝑡 is defined as the sum of the following terms. The total plant investment

costs, where each plant has an associated capital cost 𝑐𝑐𝑎𝑝,𝑗:

∑︁
𝑗

𝑐𝑐𝑎𝑝,𝑗𝐵𝑢𝑦𝑡𝑗. (2.16)
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The total gathering system investment costs, where each gathering system has

an associated capital cost 𝑐𝑔𝑎𝑡ℎ𝑒𝑟𝑐𝑎𝑝. Note that because of Constraint (2.1), we are

guaranteed that for each term 𝑐𝑔𝑎𝑡ℎ𝑒𝑟𝑐𝑎𝑝(𝑧
𝑡
𝑖 − 𝑧𝑡−1

𝑖 ), with 𝑖 fixed, there will be at most

one non-zero term across all values of 𝑡:

∑︁
𝑖

𝑐𝑔𝑎𝑡ℎ𝑒𝑟𝑐𝑎𝑝(𝑧
𝑡
𝑖 − 𝑧𝑡−1

𝑖 ). (2.17)

The total startup costs of deploying plants to their sources. These costs include

installation and assembly costs of the plant to the associated gathering system con-

necting to the wells, as well as any lost revenue that occurs due to partial operation

during the period. The following representation assumes that a plant can be set up

within the time elapsed between two time points:

∑︁
𝑖

∑︁
𝑗

𝑐𝑠𝑡𝑎𝑟𝑡,𝑗max{𝑦𝑡𝑖𝑗 − 𝑦𝑡−1
𝑖𝑗 , 0}. (2.18)

The total shutdown costs of removing plants from their sources. These costs

include disassembly and removal costs of the plant from the associated gathering

system connecting to the wells, as well as any lost revenue that occurs due to partial

operation during the period. Again, the following representation assumes that a

plant can be shut down within the time elapsed between two time points:

∑︁
𝑖

∑︁
𝑗

𝑐𝑠ℎ𝑢𝑡,𝑗max{𝑦𝑡−1
𝑖𝑗 − 𝑦𝑡𝑖𝑗, 0}. (2.19)

For modeling purposes, the max functions (2.18) and (2.19) are typically repre-
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sented by introducing auxiliary variables 𝛿𝑡𝑠𝑡𝑎𝑟𝑡,𝑖𝑗, 𝛿
𝑡
𝑠ℎ𝑢𝑡,𝑖𝑗 ∈ R+ and the constraints:

𝑦𝑡𝑖𝑗 − 𝑦𝑡−1
𝑖𝑗 ≤ 𝛿𝑡𝑠𝑡𝑎𝑟𝑡,𝑖𝑗, ∀𝑖, 𝑗, 𝑡, (2.20)

𝑦𝑡−1
𝑖𝑗 − 𝑦𝑡𝑖𝑗 ≤ 𝛿𝑡𝑠ℎ𝑢𝑡,𝑖𝑗, ∀𝑖, 𝑗, 𝑡, (2.21)

which then allow (2.18) and (2.19) to be represented by
∑︀

𝑖

∑︀
𝑗 𝑐𝑠𝑡𝑎𝑟𝑡,𝑗𝛿

𝑡
𝑠𝑡𝑎𝑟𝑡,𝑖𝑗 and∑︀

𝑖

∑︀
𝑗 𝑐𝑠ℎ𝑢𝑡,𝑗𝛿

𝑡
𝑠ℎ𝑢𝑡,𝑖𝑗, respectively. Note that when 𝑡 = 0, we set 𝑦𝑡−1

𝑖𝑗 to 0.

The total operating costs of the plants. The operating costs are divided into fixed

operating costs 𝑐𝑜𝑝𝐹 𝑖𝑥𝑒𝑑,𝑗 and variable operating costs 𝑐𝑜𝑝𝑉 𝑎𝑟,𝑗.

∑︁
𝑖

∑︁
𝑗

𝑐𝑜𝑝𝐹 𝑖𝑥𝑒𝑑,𝑗𝑦
𝑡
𝑖𝑗, (2.22)

∑︁
𝑖

∑︁
𝑗

𝑐𝑜𝑝𝑉 𝑎𝑟,𝑗𝑥
𝑡
𝑖𝑗. (2.23)

The total transportation costs of products from the plants to their markets. Ship-

ping a product 𝑙 from its source 𝑖 to a market 𝑘 incurs a per unit cost of 𝑐𝑠ℎ𝑖𝑝,𝑖𝑘𝑙.

This cost primarily depends on the mode of transportation and the physical distance

between the gas source and the market:

∑︁
𝑖

∑︁
𝑘

∑︁
𝑙

𝑐𝑠ℎ𝑖𝑝,𝑖𝑘𝑙𝑤
𝑡
𝑖𝑘𝑙. (2.24)

The total costs of wellhead gas fed to the plants. The spot price of the wellhead

gas is denoted by 𝑝𝑡𝑔𝑎𝑠,𝑖:

∑︁
𝑖

∑︁
𝑗

𝑝𝑡𝑔𝑎𝑠,𝑖𝑥
𝑡
𝑖𝑗. (2.25)
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In the case of associated gas otherwise flared if not monetized, 𝑝𝑡𝑔𝑎𝑠,𝑖 = 0.

In short, we seek to maximize (2.13) subject to the constraints of Eqs. (2.1) to

(2.12) and (2.20) and (2.21).

2.3 Case study on the Bakken shale play

2.3.1 Overview

The Bakken Formation is a wet shale formation occupying approximately 200,000

square miles within the Williston Basin, extending through various parts of North

Dakota, South Dakota, Montana and the Canadian provinces of Manitoba and

Saskatchewan. A detailed description of the formation was given by Wocken et

al. [41].

The rapid growth in oil production has also led to a significant production of

associated gas. Despite attempts to develop infrastructure to gather, process and

transmit the gas, this has proceeded at a much slower rate than that of production.

The result has been a rapid increase in the amount of gas that is unable to be

monetized and hence flared.

There are several unique aspects to consider when monetizing associated gas in

the Bakken play: first, as analyzed by Mason [42], the production rate of a typical

well operating on unconventional resources faces a very steep decline. As a result,

the flow rates of associated gas might very quickly drop to levels which make the gas

uneconomical to monetize. Second, as indicated by Wocken et al. [41], the associated

gas arising from the Bakken is typically wet, and exists as a mixture of methane and

NGLs. Therefore, when developing technology to be implemented in the Bakken, we
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include an NGL separation unit in the process.

We adopt the role of a decision maker who faces a time horizon of twenty years,

divided into quarterly time steps. The choice for twenty years corresponds to the

typical lifespan of a mobile plant implementing the technologies that we considered

- GTL and LNG, each of three different sizes.

2.3.2 Technologies

Figure 2-2 shows the flow diagrams of the two systems considered, specifying flow

rates and compositions of the feed gas and finished products. There are three sizes

for each system considered in our study - small, medium and large. The sizes corre-

spond to the capacity to process a feed rate of 500, 1,000, and 1,500 thousand cubic

feet (mcf) of rich gas per day, respectively. Although in reality the gas composition

can vary between the Bakken wells, we assumed a constant, representative gas com-

position at 10 - 12 gallons of NGLs per 1 mcf of rich gas. This value was chosen

to be in line with a study by Wocken et al. [41], where several options for monetiz-

ing associated gas in the Bakken were discussed and assessed by a more qualitative

approach.

Each technology produces two high-value products: the “GTL process” produces

NGLs and GTL diesel, while the “LNG process” produces NGLs and LNG. Although

10 - 12 gallons of NGLs is present per mcf of feed gas, the recovery of NGLs in the

product stream can only be achieved at a rather low rate at 4 gallons per mcf of feed

gas. This recovery rate was obtained from the Wocken et al. [41] study. The low

recovery rate was mainly due to the technological simplicity of the extraction unit,

which operated as a two-stage compression and chilling process at -20 °F and 1,000

psi. Although not explicitly stated in the report, it could be that the technological
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GTL process flow:

NGL
recovery unit

GTL
process unit

1 mcf rich gas
including 10-12
gallons NGLs

0.85 mcf
lean gas

3.57 gallons
GTL diesel

4 gallons
NGLs

LNG process flow:

NGL
recovery unit

LNG
process unit

1 mcf rich gas
including 10-12
gallons NGLs

0.85 mcf
lean gas

9.10 gallons
LNG

4 gallons
NGLs

Figure 2-2: Flow diagrams showing compositions of streams for the modular GTL
and LNG technologies under consideration. Flow rates are expressed on a 1 mcf feed
rich gas basis.
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sophistication of the NGL extraction process was limited by size requirements.

For the GTL process, a conversion factor of 1 mcf of lean feed gas to 0.1 barrel of

GTL diesel product was used, which matches the values reported by Patel [43] and

Wood et al. [38]. For the LNG process, we assumed an efficiency rate of 88%, as

reported by Patel [43] and Garcia-Cuerva and Sobrino [44]. This corresponds to a

conversion factor of 1 mcf of lean feed gas to 10.7 gallons of LNG. We then assumed

that 85% of the rich gas flow rate is recovered as lean gas after the extraction of

NGLs. This is again in line with the assumptions made by Wocken et al [41]. With

these inputs, we arrive at 3.57 gallons of GTL diesel product and 9.10 gallons of

LNG per mcf of rich gas, respectively.

As the flow rates of associated gas are characterized by steep declines, it is also

important to consider the point at which the flow rates of feed gas are too low for

the mobile plants to operate. That is, the flow rates must respect the minimum

turndown capacity for each technology. A reasonable lower bound for the turndown

capacity for both GTL and LNG technologies is set at 50%, which is a value that was

quoted by Ballout and Price [45] and Baxter [46], who studied these technologies at

the small scale.

These technologies are agile enough such that they could be moved from one

area to another within a quarter of a year. To define what constitutes an area of

operation, we considered that the technology should serve a maximum area of one

square mile, which is a reasonably small size such that the installation or disassembly

of equipment could be done well within the allocated time frame. Well spacing in

the Bakken was set at four wells per square mile, which corresponded to the average

well density in the Bakken determined in a technical report by Continental Resources

[47]. Therefore, each technology takes in as its input the associated gas arising from

four wells, denoted as a “gas source”.
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One of the main proposed advantages of modular plants is that they have much

shorter construction lead times than that of traditional investments. For example,

GE’s LNG In a Box system [48], which produces 10,000 to 50,000 gallons of LNG

per day has a 6 - 12 month lead time while Oxford Catalysts’ 2,500 barrel per day

modular GTL plant [49] has a 18 - 24 month lead time. Since the plants under

consideration in our case study are on the smaller side of the scale, we assumed a

reasonable construction lead time of one year. We assume that the gathering system

takes a year to construct.

Current literature on estimation of startup and shutdown costs is scant, but

an early study by Bauman [50] estimated the average and median start-up costs

of various types of chemical process capital projects to be around 1% of the fixed

capital costs. Correspondingly, we assume that both the startup and shutdown costs

are 1% of the capital costs of the plant. In addition, we assume that each plant will

have an operating lifetime of twenty years, equal to the time horizon under study.

Finally, at any point of the time horizon, the plants can be sold at their depreciated

costs. We determine the depreciated costs by performing a straight-line depreciation

of the original capital costs of the plants by their age, over twenty years. The basic

characteristics of the mobile plants under consideration are summarized in Table 2.1.

Capital costs of the GTL and LNG processing units were not readily available

for the small sizes that were considered for this study. As such, we collected data on

capital costs from existing larger GTL and LNG plants or from studies of hypothetical

plants from the literature, as documented in the Supplementary Material. Using the

U.S. Inflation Calculator [51], costs were normalized to 2012 dollars in order for valid

comparisons to be made across plants. We then plotted cost curves to determine the

relationship between capacity and capital costs for both technologies. Figures 2-3

and 2-4 depict the log-log relationship between capital costs and capacity.
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Figure 2-3: Capital cost curve of GTL plants in actual implementation or in literature
studies.
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Figure 2-4: Capital cost curve of LNG plants in actual implementation or in literature
studies.
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Plant life 20 years
Small (500 mcfd)

Sizes Medium (1,000 mcfd)
Large (1,500 mcfd)

Turndown capacity 50%
Gathering system construction time 1 year
Plant construction lead time 1 year
Startup costs 1 % of capital costs
Shutdown costs 1 % of capital costs
Depreciation Straight-line
Technology land requirement 1 sq. mile
Number of wells served per plant 4

Table 2.1: Basic characteristics of the GTL and LNG mobile plants under consider-
ation.

From the fitted equations, we calculated the estimated capital costs required for

GTL and LNG units sized to our specifications. The capital costs of the GTL units

required extrapolation of the fitted line, as compared to the capital costs of the

LNG units, which were interpolated values. Therefore, we have a greater confidence

in the accuracy of the capital costs of the LNG units. Nevertheless, since mobile

plant technologies are not mature, there would be a large variation in the costs that

manufacturers of such plants might quote. As detailed later, we performed sensitivity

studies on significant variations of the assumed capital costs to determine how our

results might change. Using the Wocken et al. study [41] as a guide, we estimated

the capital costs of the NGL removal system sized to our specifications using the

six-tenths rule.

The operating costs for each plant were separated into two components: fixed and

variable operating costs. The fixed costs were expressed on a per plant per quarter

basis, since fixed costs are incurred every time the decision is made to deploy a plant
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at a location. The variable operating costs were expressed in a per unit of feed gas

basis, as they naturally scale with the level of production.

Fixed costs comprise the cost of labor, taxes and duties, maintenance costs and

general administration costs. For a single plant, our assumptions for labor includes

operating personnel at four shifts with one person per shift, maintenance personnel

of one person, and administration and support personnel of one person. Salaries

were set at $35,000/year per person. Taxes and duties were set at 0.75% of capital

costs, fixed maintenance costs at 1.5% of capital costs, and general administration

costs at 20% of personnel wages and fixed maintenance costs, which corresponded to

values set by Garcia-Cuerva and Sobrino [44].

The variable operating costs differ depending on the type of technology consid-

ered. For a single GTL plant, we considered catalysts and gas processing chemicals

and water as the main components of variable operating costs. The catalysts and

chemicals were set at $6 per barrel, after assimilating information from correspon-

dence with a manufacturer of small-scale GTL technologies with reasonable estimates

from industry literature. Corresponding to a GTL study by the National Energy

Technology Laboratory (NETL) [52], water was costed at $0.2 per barrel.

For a single LNG plant, the main sources for variable operating costs are the

make-up for refrigerant losses and chemicals needed for gas processing. Correspond-

ing to Kohler et al. [53], refrigerant make-up was priced at $800 per ton of refrigerant.

Corresponding to Garcia-Cuerva and Sobrino [44], a ratio of 0.0008 refrigerant re-

quired per LNG produced was assumed and chemicals were costed at $0.82 per ton

of LNG produced.

Note that both plants do not require an external source of electricity. As noted by

NETL [52], in the GTL process, the highly exothermic FT process generates enough

steam to power the plant. Similarly, as noted by Garcia-Cuerva and Sobrino [44], in

54



the LNG process, part of the natural gas feed is used as fuel for the plant, and the

conversion value from feed to product has taken the power production process into

account.

Lawlor and Conder [54] provided capital costs for installing gathering and pro-

cessing systems in unconventional gas fields for a range of pipes of different diameters

and materials. Such costs included equipment, transportation, survey, installation,

supervision and contingency costs. For our study, we set the capital cost to be the

average of the quoted cost per mile for 3, 4, 6 and 8-inch diameter steel pipes. In

addition, the length of steel pipe required at a gas source was taken to be 2
√

2 miles.

This value arises from our assumed geometry that plants would be located in the

center of a square plot of land one square mile in area, and the four wells in the plot

of land are located at each of the corners of the square. Thus, running pipes from

the center of the square to its corners amounts to 2
√

2 miles of pipeline. This is a

conservative estimate, suited to the needs of our analysis. With this assumption,

capital costs of the gathering system amounted to $0.6 million.

We summarize the associated capital costs for each plant in Table 2.2 and the

associated operating costs for each plant in Table 2.3. A detailed breakdown of the

operating costs is found in the Supplementary Material.

2.3.3 Production curves

Mason [42] collected data of monthly production curves from various strata of the

Bakken field and fitted the curve to a hyperbolic decline function. The hyperbolic

decline function is given as:

𝑞𝑜𝑖𝑙(𝑡) =
𝑞𝑖,𝑜𝑖𝑙

(1 + 𝑏𝐷𝑖𝑡)1/𝑏
(2.26)
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Entity Capital Costs
( $ million )

Small Medium Large
(1) NGL Recovery Unit 1.6 2.5 3.2
(2) GTL Processing Unit 9.5 17.0 23.8
(3) LNG Processing Unit 1.5 2.9 4.2

Overall Capital Costs:
GTL System = (1) + (2) 11.1 19.5 27.0
LNG System = (1) + (3) 3.1 5.4 7.4

Table 2.2: Capital costs for GTL and LNG mobile plants.

Plant Fixed
( $ million/Quarter )

Variable
( $/mcf feed gas )

Small Medium Large All Sizes
GTL System 0.136 0.191 0.240 0.53
LNG System 0.085 0.101 0.115 0.02

Table 2.3: Operating costs for GTL and LNG mobile plants.
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where 𝑞𝑜𝑖𝑙(𝑡) denotes the monthly oil production rate for a typical well at time 𝑡,

𝑞𝑖,𝑜𝑖𝑙 denotes the initial production rate, 𝐷𝑖 is the nominal decline rate and 𝑏 is the

decline exponent.

To determine the amount of associated gas with the production from the well,

we referred to the EIA’s monthly drilling productivity reports [55] which reported a

value of 258 to 292 mcf per day of new-well gas production per rig throughout 2012.

A similar value of 300 mcf per day of rich gas flow rate from the average wellhead

was reported in the Wocken et al. study [41]. Taking these values into account, our

study set the initial gas flow rate from a well to be 9,000 mcf per month. These

production parameters are summarized in Table 2.4.

Table 2.4: Bakken well production characteristics and assumptions.

Parameters of production

𝑞𝑖,𝑜𝑖𝑙 (bbl/month) 14,225
𝑏 1.4
𝐷𝑖 0.197
𝑞𝑖,𝑔𝑎𝑠 (mcf/month) 9,000

From this initial value and the fitted parameters associated with the decline

curve, we then constructed a similar decline curve for associated gas by assuming

that the ratio of associated gas to oil remained constant throughout production.

Then, making the assumption that all four wells in an area served by one mobile

plant came online at the same time, we determined the associated gas production

profile for the area served by the plant, denoted as a “gas source”. The resulting

production curve for a gas source is shown in Figure 2-5.
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Figure 2-5: Quarterly production curve of associated gas at a gas source under
consideration in the Bakken field.
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2.3.4 Markets

For purposes of this study, we only considered currently existing domestic markets

for GTL diesel, LNG, and the associated NGLs products that allowed for a realistic

chance for the products to be sold in the near future. Overseas markets are considered

too nascent at this point, and could be analyzed in a subsequent study. Due to the

disparate nature of the finished products, the markets corresponding to each product

differ from each other. Nevertheless, our proposed general model allows for situations

where multiple products get shipped to one market.

Markets for GTL diesel were taken to be the ten closest existing refineries sur-

rounding the Bakken shale play, the locations of which were taken from EIA’s U.S.

Energy Mapping System [56]. As mentioned earlier, the most immediate market for

GTL diesel lies in its use as a refinery blendstock for high quality diesel. To deter-

mine the demand for GTL diesel in each of the refineries, the capacities (in barrels

of crude oil per day) were obtained. We then multiplied this value by 10 gallons of

diesel produced per barrel of crude oil processed, a yield value given by EIA [57], to

determine the diesel output for each refinery. Then, assuming that demand for GTL

diesel as a blendstock comprise 20% of the diesel output, we arrive at the final values

for the demand for GTL diesel at each of the refineries.

Markets for LNG were taken to be the nine closest existing public LNG fueling

stations surrounding the Bakken shale play, the locations of which were taken from

the U.S. Department of Energy Alternative Fuels Data Center’s Alternative Fueling

Station Locator [58]. This recognizes LNG’s immediate value as a fuel for long dis-

tance trucks. Unfortunately, exact capacity values for each station were not available.

Therefore, we relied on the value specified in EIA’s Natural Gas Transmission and

Distribution Module of the National Energy Modeling System (NEMS) [59], where
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the capacity of an LNG public retail station was set at 4,000 diesel gallon equivalent

(dge) per day.

Finally, markets for the extracted NGLs were taken to be the two main NGLs

market hubs as indicated on the EIA’s U.S. Energy Mapping System [2] - Conway

and Mont Belvieu. The demand for NGLs was set to be the fractionation capacities

of the two hubs respectively. In 2013, Van Hull [60] reported that the fractiona-

tion capacities of Conway and Mont Belvieu were 550,000 barrels/day and 1,250,000

barrels/day of NGLs respectively.

To determine shipping costs, we first determined the distance from the Bakken

shale play to the various markets. Since the gas sources were assumed to be tightly

clustered, we made the simplification that the distance from all gas sources to a

particular market would be identical, essentially considering the Bakken shale play

as a single location. The Google Distance Matrix API [61] was used to map the road

distance from Williston, ND to each of the GTL diesel and LNG product markets,

since it is assumed that the products will be transported by trucks.

Hadder and McNutt [62] attributed shipping costs for light duty diesel fuel at

$0.10 per gallon for several hundred miles by long distance trucking or rail cars.

We assumed that this quote would cover two hundred miles, and set shipping costs

for GTL diesel at $0.050 per gallon per hundred miles. The 2012 study on LNG

infrastructure by TIAX [39] quoted a trucking cost of LNG fuel at $0.20 per gallon

of LNG for 300 miles. Thus, we used this rate (i.e., $0.067 per gallon per hundred

miles) for LNG shipping costs. Rates were multiplied by the corresponding distance

to market to arrive at final shipping costs for the GTL diesel and LNG markets.

For NGLs, we assumed delivery by single-car rail to the corresponding NGLs market

hub. Aux Sable’s 2014 assessment of NGLs transportation costs from North Dakota

[63] quoted single-car rail shipping to Conway at $0.28 per gallon NGL and to Mont
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Belvieu at $0.39 per gallon NGL.

Product Market Number Shipping Costs

GTL diesel Petroleum Refinery 10 $0.050/gallon/hundred miles
LNG LNG Fueling Station 9 $0.067/gallon/hundred miles

NGLs NGL Market Hub 2 To Conway: $0.28/gallon;
To Mont Belvieu: $0.39/gallon

Table 2.5: Type and number of markets for GTL diesel, LNG and NGLs products
and associated shipping costs.

Table 2.5 summarizes the market type and number for the various products and

the associated shipping costs. The full list of markets and specific shipping costs are

detailed in the Supplementary Material.

2.3.5 Supply, price and demand projections

We use data generated from the Energy Information Administration’s (EIA) National

Energy Modeling System (NEMS) [64] to obtain projections for supply, price and

demand parameters for the next twenty years. In particular, we use the results

generated for the Reference Case in the EIA’s Annual Energy Outlook 2014 [65].

In the Annual Energy Outlook, 2012 served as the base year, from which projec-

tions were then made for subsequent years. As such, we use 2012 as the beginning

of our time horizon for our case study. Relevant parameters were obtained from the

year 2012 up till 2032, which gave the required twenty-year horizon. Each year was

divided into four quarters, and linear interpolation was performed to determine the

intermediate values for quarters that were lying in between the beginning of each

year.
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Supply

To determine the number of wells available in the Bakken for monetization, we first

obtained the data from the Total Lower 48 Wells Drilled series of the Oil and Gas

Supply table for the time horizon, and normalized each value such that the 2012

number corresponded with the actual number of new oil wells which appeared in the

Bakken for the year 2012 - a total of 1,773 wells - a statistic obtained from the North

Dakota Department of Mineral Resources [66].

The values were then translated into a per quarter basis and linear interpolation

was performed to obtain intermediate values. We then divided the values by four to

obtain the number of gas sources available per year, where each gas source is defined

as four gas wells.

The question of what percentage of these gas sources are actually available for

the decision maker to monetize is an open one, as it depends on a variety of factors,

such as the level of competition from other entrants into the market, the level of

substitute uses of associated gas that the producers might consider, and the build

up of infrastructure at several locations which might be able to carry away the gas

in long-distance pipelines. Such a value is highly subjective and depends on the

specific circumstances of the decision maker. For purposes of our study, we chose

a conservative percentage of 1.6%. That is, we assumed that the decision maker

has access to 1.6% of these gas sources for monetization purposes, and rounded the

resulting number of gas sources down to the nearest integer.

Even with such a seemingly low percentage, informative results can be obtained.

This is because of the long time horizon which, as a result of an average of one or

two gas sources becoming available for monetization per quarter, leads to a total of

131 gas sources under consideration for the entire time horizon, which is a significant
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amount for the decision maker to make allocation decisions on. As will be seen

later in the results section, the project is already profitable under these conservative

assumptions, and assuming a higher percentage of gas source availability is only

expected to increase profitability. Figure 2-6 depicts the number of wells that come

online per quarter which are available for monetization. At the point in time at which

each source comes online, the supply of gas assumes the profile shown in Figure 2-5.
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Figure 2-6: Number of gas sources coming online per quarter.

Demand and prices

For each market under consideration, we determined the census division it be-

longed to (refer to the Supplementary Material for the corresponding mappings),

and thereby determined the appropriate demand and price parameters given by the
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2014 Annual Energy Outlook’s projections.

Demand forecasts for GTL diesel was determined by first obtaining the Energy

Consumption for Distillate Fuel Oil for Transportation data series in the Energy

Consumption by Sector and Source table for the time horizon. Then, all values were

normalized such that the value for the base year 2012 corresponded to the baseline

demand for GTL diesel at each of the markets. This served as the forecasted demand

for GTL diesel for our case study. Price forecasts for GTL diesel were determined

by the Wholesale Price of Diesel for the Transportation Sector series, obtained from

the Components of Selected Petroleum Product Prices table for every scenario.

Demand forecasts for LNG was determined by first obtaining the Natural Gas

Consumption by the Transportation sector data series for the time horizon, and

again, all values were normalized such that the value for the base year 2012 cor-

responded to the baseline demand for LNG at each of the markets. This served

as the forecasted demand for LNG for our study. The price forecasts of LNG was

determined by first obtaining the Natural Gas Delivered Prices series for the Trans-

portation sector. In order to obtain the wholesale prices for LNG, dispensing costs,

federal taxes and state taxes were deducted. These values were obtained from cor-

respondence with an EIA representative. Deducting these costs, we arrived at the

projections of LNG wholesale prices used in our study.

Finally, demand forecasts for NGLs were determined by the Consumption of

Liquefied Petroleum Gases and Other for the Industrial Sector data series for the

time horizon, and values were normalized such that the value for 2012 corresponded

to the baseline demand for NGLs at the markets. Price forecasts for NGLs were set

at the prices for Propane in the Industrial Sector.

Figure 2-7 depicts the final values of the demand and price forecasts for a selected

market for each of the products that were used in the case study. A complete set of
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forecasts for all the markets can be found in the Supplementary Material.

(a) Demand forecast at GTL diesel market 1. (b) Price forecast at GTL diesel market 1.

(c) Demand forecast at LNG market 1. (d) Price forecast at LNG market 1.
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(e) Demand forecast at NGLs market 1. (f) Price forecast at NGLs market 1.

Figure 2-7: Demand and price forecasts generated at a selected market for each
product under the Reference case. The complete set of forecasts for every market
can be found in the Supplementary Material.
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2.3.6 Results and discussion

With all the parameters specified, we solved the dynamic mobile plant allocation

problem as presented in the Mathematical Formulation section. In addition, the

required annual rate of return was set to 10%, compounded quarterly. This is a

slightly conservative estimate over the typical weighted-average cost of capital for

projects in the Oil and Gas industry in the world, at 8.6% (estimated by Deloitte)

and 9.7% (estimated by Bloomberg), as reported by Deloitte [67].

The resulting instance of the MILP formulation consisted of 971,600 variables,

of which 122,720 were integer, and 464,989 constraints. The optimization problem

was solved on an Intel Xeon E5-1650 3.20 GHz machine with 12 GB of RAM using

IBM ILOG CPLEX 12.6 accessed by the CPLEX Python API [31]. CPLEX is an

optimization software which includes a general-purpose MILP solver that employs

a branch-and-cut procedure to solve the MILP. Given the finiteness of the set of

integers in the problem, a global optimum is guaranteed to be achieved in a finite

number of steps. The optimal solution with 0% gap was found in 6.8 seconds.

A maximum net present value (NPV) of $1.73 billion over the twenty-year hori-

zon could be achieved with the optimization framework. This required the overall

purchase of 14 small- and 6 medium-sized GTL plants and no LNG plants. Figure

2-8 shows the cumulative NPV of the project. The discounted payback period is 2

years.

The option of using mobile plants of different sizes also allows for an interesting

optimal strategy to present itself. Figure 2-9 displays the optimal plant deployment

decisions at several time points for the Reference case. Each cell in the grid represents

a gas source and the shade intensity reflects the current rich gas output. The presence

of a small-sized square (small GTL plant) or medium-sized square (medium GTL
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Figure 2-8: Cumulative NPV determined by solving the dynamic allocation of mobile
plants optimization model.
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plant) indicates that a plant of the corresponding type is currently being deployed

at the gas source.
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(a) At quarter 16.
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(b) At quarter 32.
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(c) At quarter 48.
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(d) At quarter 64.

Figure 2-9: Optimal plant deployment decisions at several points in the time horizon.
Each cell in the grid represents a gas source with its corresponding gas flow rate.
The presence of a square in the cell indicates that a plant has been deployed at that
gas source for the current point in time.
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We can see that the optimal strategy involves first allocating the medium-sized

plants to the sources with the highest gas outputs. However, once the output of a

gas source is reduced below a certain level, the decision is made to move the medium-

sized plant away from its current source to a newer source, while at the same time,

bring in a small-sized plant to the current source in order to further monetize it. Such

a strategy clearly brings to light the great value in the degree of flexibility mobile

plants possess when monetizing gas sources of a transient nature.

Figure 2-10 shows the changes in the number of plants of each type and size in the

decision maker’s inventory over time. Again, the ability of the decision maker to buy

and sell plants at any point in time allows him or her to easily expand or contract

capacity to accommodate changes in demand, supply and price conditions over time.

In this case, overall economic conditions in the Reference scenario dictate that op-

portunities for profitability become more available further into the time horizon, and

the optimal solution reflects this by buying more plants as a response to this change.

At the final time point, it is more profitable to sell the newer plants because of their

higher salvage values, whereas it would be more profitable to continue operating the

older plants because of their lower salvage values.

To further demonstrate that such profitability mainly arises from the ability of

mobile plants to be deployed dynamically to counter the effects of steep decline

curves, we performed an alternative case study where the plants were not allowed to

be moved once they have been deployed. This was done by introducing the following

constraint into the optimization model:

𝑦𝑡𝑖𝑗 ≤ 𝑦𝑡+1
𝑖𝑗 , ∀𝑖, 𝑗, ∀0 ≤ 𝑡 < 𝑇. (2.27)

With Constraint (2.27) included, the NPV declined drastically to $46.4 million,
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(a) Small GTL plants. (b) Medium GTL plants.

Figure 2-10: Number of plants in inventory over time. Plants of other types and
sizes were not purchased.

which is 2.7% of the original maximum NPV. In addition, the purchase decisions

were made towards the end of the time horizon, particularly because of the relatively

high product prices and demand at those time points. For most of the time horizon,

no purchases were made simply because the constraint of fixed locations made it

unprofitable to operate the plants. This clearly demonstrates the distinct advantage

that mobility brings to the table.

Another interesting area to explore is that the optimal solution favored GTL

plants over LNG plants to the point of excluding any purchases of LNG plants. We

wanted to see if this was due to LNG plants being uneconomical in as of themselves,

or if the constraints of having a fixed number of gas sources to monetize, coupled

with the more favorable economics of GTL over LNG led to the resulting exclusion,

even though LNG plants might be economical in as of themselves.

To address this question, we conducted another case study where we excluded the

availability of GTL plants from the choice of technologies. Thus, the decision maker

has only access to small, medium and large LNG plants to purchase, deploy and
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operate. Solving this version of the problem led to a maximum NPV of $0.79 billion,

and an overall inventory of 14 small- and 6 medium-sized LNG plants. Again, the

optimal strategy of allocating the small plants to the gas sources previously occupied

by the medium plants was employed. We therefore conclude that the LNG plants are

an economical option, and were only not selected in the original formulation because

of the more attractive economics of the GTL plants.

Sensitivity studies were also performed in order to see how our conclusions would

change with our assumptions of the technology characteristics. In particular, costs

assumptions for each plant were varied from their base value and the resulting optimal

NPV and overall optimal number of GTL plants and optimal number of LNG plants

were recorded.

We varied the following in the sensitivity studies:

1. Capital costs at 50, 75, 100, 125, and 150% of base value.

2. Operating costs at 80, 90, 100, 110 and 120% of base value.

3. Shipping costs at 80, 90, 100, 110 and 120% of base value.

4. Startup and shutdown costs at 50, 75, 100, 125 and 150% of base value.

5. Conversion efficiencies at 95, 97.5, 100, 102.5 and 105% of base value.

These were chosen to reflect a reasonable range in which these parameters could

take values. For each item in the list, the parameters were varied independently

for each technology. Since there were two technologies under consideration, and five

different values for each item, there were 52 = 25 studies for each item in the list.

Since there are 5 items on the list, a total of 125 studies were carried out (allowing

for the double-counting of the cases where the parameters were at 100% of the base

value for both technologies).
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The results from the sensitivity studies show that in all 125 cases, the same

number and type (14 small GTL and 6 medium GTL) of plants were purchased over

the entire time horizon. In addition, the maximum NPV varied within a tight range of

$1.64 to $1.83 billion. These results reflect that even allowing for inaccuracies in cost

estimates and technology assumptions, the profitability of the project is minimally

affected.

2.4 Concluding remarks

We have proposed a framework that allows a decision maker to allocate mobile plants

dynamically to monetize stranded or associated gas under time-varying supply, price

and demand such that the net present value of the project is maximized. In addition,

we have demonstrated how this framework can be used in a real-world case study on

the Bakken shale play, where the current amount of untapped associated gas presents

a tremendous economic opportunity.

With our current assumptions on GTL and LNG technologies and the nature of

supply, demand and prices, we conclude that utilizing mobile plants indeed offers a

profitable and flexible method to monetize associated gas in the Bakken, resulting in

a NPV of $1.73 billion over a twenty-year time horizon with a 10% annual required

rate of return, compounded quarterly. The expected discounted payback period was

2 years. In addition, both technologies are currently attractive and the optimal

strategy involves the application of medium-sized GTL plants to gas sources with

higher initial outputs, followed by smaller-sized GTL plants to the same sources when

the gas outputs have lowered.

The mobility of the plants was identified as a key ingredient leading to the high

profitability, as an alternative case study where the plants were forced to remain in
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one location dramatically reduced the profitability of the project. In another case

study, we found that LNG technologies could also be a profitable technology option

in the absence of GTL technologies. Finally, sensitivity studies of technology cost

and conversion parameters over a large range indicated that the optimal NPV still

remained profitable.

The intention of our study is to be descriptive rather than prescriptive. That is,

we hope that our case study provides a guideline as to how a decision maker could

apply our framework to a real-world situation. Ultimately, the results and degree

of profitability of implementing mobile plants would depend on the unique circum-

stances of the decision maker (i.e., the specific technologies, gas supply options and

potential markets that are accessible to him or her). Although the Bakken is cur-

rently the most active shale play where associated gas is present, more opportunities

might open up in the future to apply this framework to, as more shale fields are de-

veloped in the U.S., or further down the road, in the rest of the world. In addition,

many stranded gas fields around the world which possess short-lived gas supplies

can now undergo a similar method of analysis to determine their profitabilities. De-

velopers of the mobile plant technologies can also utilize this framework to identify

key areas for improvement of their proposed technologies which would offer them

significant opportunities to enhance their economic competitiveness.

In practice, our framework should be implemented with a rolling time horizon.

For example, although the optimizer determines the optimal decisions for every time

point of the twenty-year horizon, in practice the decision maker would only implement

the decisions for the first year. At the end of the first year, the optimization problem

can then be re-solved with updated initial conditions and new parameters for the

twenty-year time horizon now shifted one year ahead. This iterative process will

continue indefinitely, stepping forward one year at each iteration. A rolling horizon
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implementation would allow decisions to better reflect changes in current conditions

and forecasts with the passage of time.

One issue that has not been addressed in this chapter is the presence of uncer-

tainty. That is, would the mobile plants perform as well if we were to consider that

our supply, price and demand estimates could vary significantly differently from the

values that we had assumed? This is a typical issue which plagues large-scale, fixed-

location plants in the oil and gas industry, since it is extremely difficult to obtain

accurate forecasts of the future. In the next chapter, we shall explore how the in-

troduction of uncertainty affects our optimization framework and how robust these

plants could be in dealing with uncertainty.
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Chapter 3

Small-Scale Mobile Plants:

Addressing Uncertainty

Using the Bakken shale play as a case study, the previous chapter demonstrated

how small-scale mobile plants could be used to monetize associated or stranded gas

effectively. Here, we address the issue of uncertainty in future supply, demand and

price conditions. To this end, we modified our multi-period optimization framework

to a stochastic programming framework to account for various scenarios of different

parameter realizations in the future. The maximum expected net present value

(ENPV) obtained was $2.01 billion, higher than the NPV obtained in the previous

part. In addition, by comparing the value of the stochastic optimal solution to that

of the deterministic method, we determine that the flexible nature of mobile plants

affords them a great advantage when dealing with uncertainty.
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3.1 Motivation

We add to the complexity of the case study in the previous chapter by introducing

uncertainty into various parameters that would ultimately affect the profitability of

the entire undertaking. First, typically complicating the decision process of invest-

ments in the oil and gas industry is the considerable uncertainty in the estimated

ultimate recovery (EUR) of gas from wells being drilled. As mentioned by the U.S.

Energy Information Administration (EIA) [65], this problem is significantly acute

for the case of unconventional resources where the data collected on production pat-

terns thus far have not been enough to estimate production rates far into the future

reliably. In addition, this uncertainty in EUR also impacts the predictions of drilling

patterns of future wells in the play.

A second major source of uncertainty lies in the prices and demand for the finished

products, as they directly impact the revenue generated from the decision maker’s

activities. As the markets for the finished products are very large, the decision maker

is essentially a price taker in these markets. Predicting the future prices and demand

for oil and gas-based products is extremely difficult and as can be seen from past

experience, can be very wrong. An example would be the flurry of activity a decade

ago to increase LNG import capacity with the expectation of future shortages of

domestic natural gas production, as reported by White [26]. Hence, the decision

maker has to live with the uncertainty with regards to prices and demands and make

his or her decisions under such conditions.

To make decisions under uncertainty adequately, a stochastic programming frame-

work should be used. Readers are referred to Shapiro [68] for a comprehensive refer-

ence on the subject. In this framework, several price, supply and demand scenarios

are projected for the future. The decision variables are partitioned into two sets: the
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‘here-and-now’ decisions, which have to be made before the scenarios are realized,

and the ‘wait-and-see’ (or ‘recourse’) decisions, which are made once a particular

scenario has been realized. The objective function for the stochastic program would

typically be to maximize the expected net present value (ENPV) of the project,

which is the sum of the net present value of every scenario weighted by its associated

probability.

3.2 Stochastic formulation

The modification of the optimization problem from the previous chapter is straight-

forward - we retain the previous indices: time stages 𝑡 ∈ {0, . . . , 𝑇}, gas sources

𝑖 ∈ {1, . . . , 𝐼}, plant type 𝑗 ∈ {1, . . . , 𝐽}, markets 𝑘 ∈ {1, . . . , 𝐾} and products

𝑙 ∈ {1, . . . , 𝐿}. We then introduce a new index for scenarios 𝑠 ∈ {1, . . . , 𝑆}.

The optimization decisions are:

1. Decision to allocate plant of type 𝑗 to source 𝑖 at time 𝑡 of scenario 𝑠, denoted

by 𝑦𝑡𝑠𝑖𝑗 ∈ {0, 1}.

2. Indicator of the presence of a gas gathering system at source 𝑖 at time 𝑡 of

scenario 𝑠, denoted by 𝑧𝑡𝑠𝑖 ∈ {0, 1}.

3. Gas feed rate to plant of type 𝑗 at source 𝑖 at time 𝑡 of scenario 𝑠, denoted by

𝑥𝑡𝑠
𝑖𝑗 ∈ R+.

4. Product delivery rate of product 𝑙 from source 𝑖 to market 𝑘 at time 𝑡 of scenario

𝑠, denoted by 𝑤𝑡𝑠
𝑖𝑘𝑙 ∈ R+.

5. Number of plants of type 𝑗 purchased at time 𝑡 of scenario 𝑠, denoted by

𝐵𝑢𝑦𝑡𝑠𝑗 ∈ Z+.
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6. Number of plants of type 𝑗 which originally arrived in inventory at time 0 ≤

𝜏 < 𝑡 of scenario 𝑠, sold at time 𝑡, denoted by 𝑆𝑒𝑙𝑙𝑡𝑠𝑗𝜏 ∈ Z+.

7. Inventory of plants of type 𝑗 at time 𝑡 of scenario 𝑠, arriving in inventory at

time 0 ≤ 𝜏 ≤ 𝑡, denoted by 𝐼𝑛𝑣𝑡𝑠𝑗𝜏 ∈ Z+.

Essentially, to each constraint in the previous chapter, we replace it with its

stochastic counterpart simply by requiring that each constraint holds for each indi-

vidual scenario. For brevity, we directly list the constraints here and refer the reader

to the previous chapter for detailed explanation of each set of constraints.

𝑧𝑡𝑠𝑖 ≤ 𝑧𝑡+1,𝑠
𝑖 , ∀𝑖, 𝑠, ∀0 ≤ 𝑡 < 𝑇. (3.1)

𝑦𝑡𝑠𝑖𝑗 ≤ 𝑧
𝑡−𝒯𝑔 ,𝑠
𝑖 , ∀𝑖, 𝑗, 𝑠, ∀𝑡 ≥ 𝒯𝑔, and (3.2)

𝑦𝑡𝑠𝑖𝑗 = 0, ∀𝑖, 𝑗, 𝑠, ∀𝑡 < 𝒯𝑔. (3.3)

𝐼𝑛𝑣𝑡𝑠𝑗𝜏 = 𝐵𝑢𝑦
𝑡−𝒯𝑗 ,𝑠
𝑗 , ∀𝑗, 𝑠, ∀𝑡 ≥ 𝒯𝑗, ∀𝜏 = 𝑡, and (3.4)

𝐼𝑛𝑣𝑡𝑠𝑗𝜏 = 0, ∀𝑗, 𝑠, ∀𝑡 < 𝒯𝑗, ∀𝜏 = 𝑡.

𝐼𝑛𝑣𝑡𝑠𝑗𝜏 = 𝐼𝑛𝑣𝑡−1,𝑠
𝑗𝜏 − 𝑆𝑒𝑙𝑙𝑡𝑠𝑗𝜏 , ∀𝑗, 𝑡, 𝑠 ∀𝜏 < 𝑡. (3.5)∑︁

𝑖

𝑦𝑡𝑠𝑖𝑗 ≤
𝑡∑︁

𝜏=0

𝐼𝑛𝑣𝑡𝑠𝑗𝜏 , ∀𝑗, 𝑡, 𝑠. (3.6)

𝑥𝑡𝑠
𝑖𝑗 ≤ 𝑠𝑡𝑠𝑖 𝑦

𝑡𝑠
𝑖𝑗 , ∀𝑖, 𝑗, 𝑡, 𝑠. (3.7)∑︁

𝑗

𝑥𝑡𝑠
𝑖𝑗 ≤ 𝑠𝑡𝑠𝑖 , ∀𝑖, 𝑡, 𝑠. (3.8)

𝑥𝑡𝑠
𝑖𝑗 ≤ 𝑚𝑗𝑦

𝑡𝑠
𝑖𝑗 , ∀𝑖, 𝑗, 𝑡, 𝑠. (3.9)

𝑥𝑡𝑠
𝑖𝑗 ≥ 𝛾𝑗𝑚𝑗𝑦

𝑡𝑠
𝑖𝑗 , ∀𝑖, 𝑗, 𝑡, 𝑠. (3.10)∑︁

𝑗

𝛼𝑗𝑙𝑥
𝑡𝑠
𝑖𝑗 =

∑︁
𝑘

𝑤𝑡𝑠
𝑖𝑘𝑙, ∀𝑖, 𝑙, 𝑡, 𝑠. (3.11)
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∑︁
𝑖

𝑤𝑡𝑠
𝑖𝑘𝑙 ≤ 𝑑𝑡𝑠𝑘𝑙, ∀𝑘, 𝑙, 𝑡, 𝑠. (3.12)

One key difference between the stochastic program and our original formulation is

that we have to introduce a new set of constraints which are termed non-anticipativity

constraints. Non-anticipativity refers to the fact that the decisions at any particu-

lar time stage have to be made based only on the information realized up to that

particular stage.

Consider a scenario tree where different branches of the tree represent different

scenarios of parameter realizations that might occur in the future. At present how-

ever, all scenarios share the same realization of parameters, as they can be directly

observed. Therefore, in our optimal solution, decisions for the first-stage variables

have to be identical for all scenarios to reflect this reality. This condition is imposed

by the followng constraints:

𝑦0,𝑠𝑖𝑗 = 𝑦0,𝑠+1
𝑖𝑗 , ∀𝑖, 𝑗,∀𝑠 ∈ {1, . . . , 𝑆 − 1}. (3.13)

𝑧0,𝑠𝑖 = 𝑧0,𝑠+1
𝑖 , ∀𝑖, ∀𝑠 ∈ {1, . . . , 𝑆 − 1}. (3.14)

𝑥0,𝑠
𝑖𝑗 = 𝑥0,𝑠+1

𝑖𝑗 , ∀𝑖, 𝑗,∀𝑠 ∈ {1, . . . , 𝑆 − 1}. (3.15)

𝑤0,𝑠
𝑖𝑘𝑙 = 𝑤0,𝑠+1

𝑖𝑘𝑙 ∀𝑖, 𝑘, 𝑙,∀𝑠 ∈ {1, . . . , 𝑆 − 1}. (3.16)

𝐵𝑢𝑦0,𝑠𝑗 = 𝐵𝑢𝑦0,𝑠+1
𝑗 , ∀𝑗,∀𝑠 ∈ {1, . . . , 𝑆 − 1}. (3.17)

𝑆𝑒𝑙𝑙0,𝑠𝑗,0 = 𝑆𝑒𝑙𝑙0,𝑠+1
𝑗,0 , ∀𝑗,∀𝑠 ∈ {1, . . . , 𝑆 − 1}. (3.18)

𝐼𝑛𝑣0,𝑠𝑗,0 = 𝐼𝑛𝑣0,𝑠+1
𝑗,0 , ∀𝑗,∀𝑠 ∈ {1, . . . , 𝑆 − 1}. (3.19)

The objective function of the decision maker is to maximize the expected net present

value (ENPV) of the project, given an appropriate discount factor 𝑟. This is done by
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summing up the NPV for each scenario, weighted by its associated probability 𝜋𝑠:

ENPV =
∑︁
𝑠

𝜋𝑠

∑︁
𝑡

(1 + 𝑟)−𝑡(𝑅𝑒𝑣𝑡𝑠 − 𝐶𝑜𝑠𝑡𝑡𝑠), (3.20)

where 𝑅𝑒𝑣𝑡𝑠 is the total revenue and 𝐶𝑜𝑠𝑡𝑡𝑠 is the total cost at time 𝑡 for scenario 𝑠.

𝑅𝑒𝑣𝑡𝑠 is defined as the sum of the following terms:

∑︁
𝑖

∑︁
𝑗

∑︁
𝑘

∑︁
𝑙

𝑝𝑡𝑠𝑘𝑙𝛼𝑗𝑙𝑥
𝑡𝑠
𝑖𝑗 , (3.21)

∑︁
𝑗

𝑡∑︁
𝜏=0

𝑐𝑡𝑠𝑎𝑙𝑣,𝑗𝜏𝑆𝑒𝑙𝑙
𝑡𝑠
𝑗𝜏 . (3.22)

𝐶𝑜𝑠𝑡𝑡𝑠 is defined as the sum of the following terms:

∑︁
𝑗

𝑐𝑐𝑎𝑝,𝑗𝐵𝑢𝑦𝑡𝑠𝑗 , (3.23)

∑︁
𝑖

𝑐𝑔𝑎𝑡ℎ𝑒𝑟𝑐𝑎𝑝(𝑧
𝑡𝑠
𝑖 − 𝑧𝑡−1,𝑠

𝑖 ), (3.24)

∑︁
𝑖

∑︁
𝑗

𝑐𝑠𝑡𝑎𝑟𝑡,𝑗max{𝑦𝑡𝑠𝑖𝑗 − 𝑦𝑡−1,𝑠
𝑖𝑗 , 0}, (3.25)

∑︁
𝑖

∑︁
𝑗

𝑐𝑠ℎ𝑢𝑡,𝑗max{𝑦𝑡−1,𝑠
𝑖𝑗 − 𝑦𝑡𝑠𝑖𝑗 , 0}, (3.26)

∑︁
𝑖

∑︁
𝑗

𝑐𝑜𝑝𝐹 𝑖𝑥𝑒𝑑,𝑗𝑦
𝑡𝑠
𝑖𝑗 , (3.27)

∑︁
𝑖

∑︁
𝑗

𝑐𝑜𝑝𝑉 𝑎𝑟,𝑗𝑥
𝑡𝑠
𝑖𝑗 , (3.28)

∑︁
𝑖

∑︁
𝑘

∑︁
𝑙

𝑐𝑠ℎ𝑖𝑝,𝑖𝑘𝑙𝑤
𝑡𝑠
𝑖𝑘𝑙, (3.29)

∑︁
𝑖

∑︁
𝑗

𝑝𝑡𝑠𝑔𝑎𝑠,𝑖𝑥
𝑡𝑠
𝑖𝑗 . (3.30)
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In the case of associated gas otherwise flared if not monetized, 𝑝𝑡𝑠𝑔𝑎𝑠,𝑖 = 0.

The max functions (3.25) and (3.26) are typically represented by introducing

auxiliary variables 𝛿𝑡𝑠𝑠𝑡𝑎𝑟𝑡,𝑖𝑗, 𝛿
𝑡𝑠
𝑠ℎ𝑢𝑡,𝑖𝑗 ∈ R+ and the constraints:

𝑦𝑡𝑠𝑖𝑗 − 𝑦𝑡−1,𝑠
𝑖𝑗 ≤ 𝛿𝑡𝑠𝑠𝑡𝑎𝑟𝑡,𝑖𝑗, ∀𝑖, 𝑗, 𝑡, 𝑠, (3.31)

𝑦𝑡−1,𝑠
𝑖𝑗 − 𝑦𝑡𝑠𝑖𝑗 ≤ 𝛿𝑡𝑠𝑠ℎ𝑢𝑡,𝑖𝑗, ∀𝑖, 𝑗, 𝑡, 𝑠, (3.32)

which then allow (3.25) and (3.26) to be represented by
∑︀

𝑖

∑︀
𝑗 𝑐𝑠𝑡𝑎𝑟𝑡,𝑗𝛿

𝑡𝑠
𝑠𝑡𝑎𝑟𝑡,𝑖𝑗 and∑︀

𝑖

∑︀
𝑗 𝑐𝑠ℎ𝑢𝑡,𝑗𝛿

𝑡𝑠
𝑠ℎ𝑢𝑡,𝑖𝑗 respectively. Note that when 𝑡 = 0, we set 𝑦𝑡−1,𝑠

𝑖𝑗 to 0.

The stochastic program is summarized by maximizing (3.20) subject to the con-

straints of Eqs. (3.1) to (3.19) and (3.31) and (3.32).

3.3 Scenario generation

Investments in the oil and gas industry are risky because they rely on favorable sup-

ply, prices and demand conditions for extended periods of time in order to recoup the

initial investment. Depending on the scenarios of parameter realizations assumed,

drastically different results could be obtained. The challenge lies in generating rea-

sonably accurate scenarios such that adequate planning can be made. This is a very

challenging task, especially in the field of energy, where the correlations between

supply, prices and demand arise due to highly complex interactions at many levels -

geographical, economical and political, to name a few.

The EIA has developed a computer-based energy-economy modeling system for

the U.S., known as the National Energy Modeling System (NEMS) [64]. NEMS has,

in recent years, utilized data from public and private sources to generate plausible

scenarios of prices, production, trade and consumption of energy which might play
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out through 2040, given different assumptions of macroeconomic factors, world en-

ergy markets, resource availability, technological choices, demographics and public

policy. These projections are reported annually in the EIA’s Annual Energy Out-

look [65], which is one of the most quoted resources in the U.S. with regards to

energy-related data.

In Annual Energy Outlook 2014, all scenarios begin with a common set of data

realizations from the year 2012. From 2013 onwards, the data varies depending on

which scenario is assumed. For our case study, we will consider the three most per-

tinent scenarios: the Reference, High Oil and Gas Resource, and Low Oil and Gas

Resource cases [65]. These three cases were chosen because of the significant differ-

ences in how the supply, demand and prices would change in the future, depending

on their assumptions.

In the Reference case, the EIA assumes a business-as-usual scenario, given all

known technological and demographic trends. Further, it assumes that current laws

and regulations affecting the energy sector are largely unchanged throughout the

projection period. In particular, the Reference case estimates the total unproved

technically recoverable crude oil resources at 209 billion barrels, and the total un-

proved technically recoverable dry natural gas resources at 1,932 tcf.

The High and Low Oil and Gas Resource cases differ in their assumptions from the

Reference case that result in higher and lower estimates of the technically recoverable

crude oil and natural gas resources respectively. For the High Oil and Gas Resource

case, assumptions include 50% higher EURs for tight oil, tight gas and shale gas

wells, long-term technology improvements resulting in an addition 1% increase in

the aforementioned EURs, 50% lower well spacing, diminishing returns on EURs

beyond a certain well count limit, more resources in Alaska and areas offshore, and

the development of onshore oil shale. The Low Oil and Gas Resource case simply
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assumes that EURs for tight oil and gas and shale wells are 50% lower than in the

Reference case.

For each of the scenarios, relevant parameters (as explained in detail later) were

obtained from the year 2012 (as the base year) up until 2032, which gave the required

twenty year horizon for our study. Each year was divided into four quarters, and

linear interpolation was performed to determine the intermediate values for quarters

that lie between the beginning of each year.

3.3.1 Supply

Using the assumptions detailed in the previous chapter, the time evolution of the

number of gas sources coming online per quarter and the corresponding supply curve

for each gas source were then created. The supply curve for each gas source will vary

according to the assumptions for each scenario. For the Low Oil and Gas Resource

case, the supply curve was reduced by 50% from the Reference case. For the High Oil

and Gas Resource case, the supply curve was increased by 50% from the Reference

case and in addition, depending on the year in which the gas source came online,

enjoyed an annual 1% increase in the output of its supply, compounded quarterly,

for the time period between the base year (2012) and the time point in which it

came online. This took into account the long-term technological growth assumption

for the scenario. After these calculations, the final supply conditions used in our

case study are depicted in Figure 3-1. Figure 3-1a depicts the number of wells which

come online per quarter and Figure 3-1b depicts the associated gas output from gas

sources which come online at a few selected time points for the different scenarios

under consideration.
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(a) Number of gas sources coming online per quarter.
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(b) Decline curves for sources coming online at quarters
0, 20, 40 and 60.

Figure 3-1: Supply characteristics generated for the various scenarios under consid-
eration: Reference (ref), Low Oil and Gas Resource (low-ogr) and High Oil and Gas
Resource (hi-ogr).
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3.3.2 Demand and prices

Using the assumptions and methodology detailed in the previous chapter, the cor-

responding demand and prices for the various products in their respective markets

were created for all three scenarios. Figure 3-2 depicts the final values of the demand

and price forecasts for a selected market for each of the products that were used in

the case study. A complete set of forecasts for all the markets can be found in the

Supplementary Material.

3.4 Results and discussion

With the introduction of new parameters corresponding to each scenario, we solved

the stochastic program with the same inputs for all non-stochastic parameters as

in the previous chapter. Since there is no specific bias as to which scenario will

materialize, each scenario was assigned an equal probability of 1/3.

The full stochastic program instance was an MILP consisting of 3,014,480 vari-

ables, of which 377,120 were integer, and 1,462,309 constraints. The optimization

problem was solved on an Intel Xeon E5-1650 3.20 GHz machine with 12 GB of

RAM using IBM ILOG CPLEX 12.6 accessed by the CPLEX Python API [31]. The

optimal solution with 0% gap was found in 42.1 seconds.

An expected net present value (ENPV) of $2.01 billion over the twenty-year

horizon could be achieved with the optimization framework. The expected discounted

payback period was slightly over 2 years. For the Reference scenario, the NPV was

$1.73 billion, requiring the purchase of 14 small and 6 medium GTL plants and

sales of 7 small and 3 medium GTL plants throughout the planning horizon. The

corresponding figures for the Low Oil and Gas Resource case was an NPV of $0.44
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(a) Demand forecasts at GTL diesel market 1. (b) Price forecasts at GTL diesel market 1.

(c) Demand forecasts at LNG market 1. (d) Price forecasts at LNG market 1.

Figure 3-2: Demand and price forecasts generated at selected markets for the various
scenarios under consideration: Reference (ref), Low Oil and Gas Resource (low-ogr)
and High Oil and Gas Resource (hi-ogr). The complete set of forecasts for every
market is found in the Supplementary Material.
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(e) Demand forecasts at NGLs market 1. (f) Price forecasts at NGLs market 1.

Figure 3-2: Demand and price forecasts generated at selected markets for the various
scenarios under consideration: Reference (ref), Low Oil and Gas Resource (low-ogr)
and High Oil and Gas Resource (hi-ogr). The complete set of forecasts for every
market is found in the Supplementary Material.

billion and purchases (sales) of 6 (2) small and 3 (3) medium GTL plants, while that

of the High Oil and Gas Resource case was an NPV of $3.85 billion and purchases

(sales) of 32 (16) small, 10 (4) medium and 4 (0) large GTL plants. Figure 3-3

shows the cumulative ENPV, and, given the optimal decisions implemented for each

scenario, the cumulative net present value (NPV) for each of the scenarios. It is

important to note that even in the pessimistic Low Oil and Gas Resource case, the

project is profitable. Also, consistent with the findings in the previous chapter, the

optimal strategy typically involved the reallocation of smaller plants to gas sources

that were occupied by larger plants previously. These strategies are depicted in

Figures 3-4 to 3-6. In addition, Figure 3-7 depicts the flexbility of the decision

maker to respond to changes in profitability by adjusting his or her inventory of

plants over time.
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Figure 3-3: Cumulative ENPV and NPV for every scenario, determined by solving
the stochastic program for the dynamic allocation of mobile plants. Scenarios: Ref-
erence (ref), Low Oil and Gas Resource (low-ogr) and High Oil and Gas Resource
(hi-ogr).
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(a) At quarter 16.
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(b) At quarter 32.
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(c) At quarter 48.
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(d) At quarter 64.

Figure 3-4: Optimal plant deployment decisions at several points in the time horizon
for the Reference case. Each cell in the grid represents a gas source with its corre-
sponding gas flow rate. The presence of a square in the cell indicates that a plant
has been deployed at that gas source for the current point in time.
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(a) At quarter 16.
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(b) At quarter 32.
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(c) At quarter 48.
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(d) At quarter 64.

Figure 3-5: Plant deployment decisions at several points in the time horizon for the
Low Oil and Gas Resource case. Each cell in the grid represents a gas source with
its corresponding gas flow rate. The presence of a square in the cell indicates that a
plant has been deployed at that gas source for the current point in time.
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(b) At quarter 32.
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(c) At quarter 48.
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(d) At quarter 64.

Figure 3-6: Plant deployment decisions at several points in the time horizon for the
High Oil and Gas Resource case. Each cell in the grid represents a gas source with
its corresponding gas flow rate. The presence of a square in the cell indicates that a
plant has been deployed at that gas source for the current point in time.
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(a) Small GTL plants. (b) Medium GTL plants.

(c) Large GTL plants.

Figure 3-7: Number of plants in inventory over time. LNG plants were not purchased.
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One of the main oft-claimed advantages of utilizing mobile plants as compared to

traditional large-scale, fixed-location investments is their increased agility to better

react to uncertain conditions. We will assess this by measuring a quantity known as

the value of the stochastic solution.

To motivate this, let us concern ourselves with the issues typically faced with

large-scale investments. That is, the profitability of a large-scale investment critically

hinges on how accurately future earnings can be predicted. Once the investment

decisions have been made, there is very little flexibility in terms of recourse in the

operational decisions. Therefore, if supply, price and demand conditions turn out to

be drastically different from a prediction on which the design was based, the project

would be in jeopardy.

Sophisticated planners who try to mitigate this issue would therefore construct a

scenario tree and use a stochastic program to determine the most optimal “here-and-

now” decisions one has to make in the face of uncertainty. This solution is guaranteed

to maximize the ENPV of the project (over the scenarios considered).

Compare this approach to a less sophisticated planner, who, although aware that

different scenarios might play out in the future, does not implement the stochastic

programming approach. Instead, he or she identifies a nominal scenario among all

possible scenarios and solves for the optimal “here-and-now” decision based on this

average scenario. Based on this “here-and-now” decision, he or she then tries his or

her best to make the most optimal recourse decisions once the uncertainty has been

realized at future time points.

The difference between the ENPV from approach of the sophisticated planner

and the less sophisticated planner is termed the value of the stochastic solution.

As might be expected, this value is largely determined by how much flexibility the

decision maker possesses in the recourse decisions - the lower the flexibility, the
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greater the value.

The value of the stochastic solution therefore gives an appropriate metric to judge

the degree of flexibility mobile plants have to respond to uncertainty. Our aim is to

show that this value is small, demonstrating that mobile plants have a high degree

of robustness to uncertainty. The implications of this is that using mobile plants

allows for the decision maker to be profitable even if a sub-optimal initial investment

decision was made, so long as a reasonable nominal scenario can be constructed

beforehand.

To determine the value of the stochastic solution, we first solve the optimization

problem only for a single scenario that represents the most likely or average values

the uncertain parameters would take. In our case, we chose the Reference case as

this scenario.

After solving the problem for this single scenario, we noted the optimal decision

variables made for the first time point of the time horizon. Then, fixing these first-

stage decision variables, we solved the optimization problem for the High and Low

Oil and Gas Resource cases independently, for the entire time horizon. In this way,

we obtained what we termed the “deterministic” optimal solution value by summing

up the optimal NPVs for each independent scenario, multiplied by their associated

probabilities. By subtracting the deterministic optimal solution value from the opti-

mal ENPV as determined from solving the entire stochastic program, we arrived at

the value of the stochastic solution.

The value of the stochastic solution for our case study was determined to be

$2.23 million, which is only 0.11% of the optimal ENPV. This is very low compared

to other case studies on large-scale, fixed-location investments. For example, a study

by Li et al. in 2011 [69] on the Sarawak gas production system yielded a value of the

stochastic solution of 9.94% of the optimal ENPV.
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The robustness of mobile plants operating under uncertainty can be attributed

to the great degree of flexibility in the recourse actions. First, their ability to be

redeployed over time to different gas sources ensures that they closely track the gas

sources which offer the highest flow rates, even if the gas sources by themselves

deplete very quickly. Second, the ability to avoid pipeline infrastructure for trans-

portation to markets ensures that the plants are not required to deliver to any specific

market in order to recoup the investment made. Third, the feature of plants to be

continuously purchased throughout the time horizon, due to the standardized man-

ner in which they are constructed, coupled with short lead times, allows one to react

to changing supply, price and demand conditions readily.

Sensitivity studies on our cost and conversion assumptions were also performed

with the same ranges as in the previous chapter. The ranges studied were as follows:

1. Capital costs at 50, 75, 100, 125, and 150% of base value.

2. Operating costs at 80, 90, 100, 110 and 120% of base value.

3. Shipping costs at 80, 90, 100, 110 and 120% of base value.

4. Startup and shutdown costs at 50, 75, 100, 125 and 150% of base value.

5. Conversion efficiencies at 95, 97.5, 100, 102.5 and 105% of base value.

For each item in the list, the parameters were varied independently for each technol-

ogy.

With this range of capital cost inputs, the optimal ENPV remained profitable

from a low of $1.89 billion to a high of $2.12 billion. In addition, the value of the

stochastic solution never exceeded 0.13% of the optimal ENPV.
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3.5 Concluding remarks

We have demonstrated the effectiveness of mobile plants in scenarios where estimates

of supply, price and demand conditions might differ significantly from one another.

With the introduction of uncertainty, utilizing mobile plants to monetize associated

gas in the Bakken results in an ENPV of $2.01 billion over a twenty year time

horizon assuming a 10% annual required rate of return, compounded quarterly, with

an expected discounted payback period of slightly over 2 years.

Analyzing the value of the stochastic solution leads us to conclude that mobile

plants offer a robust way to be profitable even in uncertain conditions of supply,

prices and demand, and this confirms their advantage over larger-scale, fixed location

investments in this regard. Finally, sensitivity studies show that our conclusion

remain valid for a reasonably large range of technological costs and conversion inputs.
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Chapter 4

Shale Oil and Gas Investments in the

United States

We present a comprehensive supply chain optimization framework to determine opti-

mal shale oil and gas infrastructure investments in the United States. The framework

encompasses multiple shale plays, commodities, plant locations, conversion technolo-

gies, transportation modes and both local and foreign markets. The dynamic evo-

lution of supply, demand and price parameters and the uncertainty in parameter

realizations are also fully taken into account. Assuming two different scenario sets

over a time horizon of twenty-five years, we analyze the features of the optimal in-

frastructure investments and associated operating decisions. We also highlight the

importance of incorporating uncertainty into the framework and analyze the stability

of the stochastic solutions as the degree of uncertainty changes.
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Figure 4-1: General framework of the supply chain in study. The flows of commodi-
ties are represented with arrows. Resources from shale oil and gas sources can either
be sold directly to the markets or undergo a conversion or upgrading process at dif-
ferent plants, where the resulting products are then sold to the markets. Variation of
parameter values in different time periods and the uncertainty of future predictions
are also incorporated into the framework. Constraints and an objective function are
imposed with the formulation of an optimization problem. The circles containing ‘I’
and ‘O’ refer to possible investment decisions and operating decisions respectively,
made at either the nodes or arcs of the supply chain.

4.1 Problem description and methodology

4.1.1 General framework

Figure 4-1 illustrates the resulting general framework that was employed in this study.

A decision maker seeks to make new oil and gas investments to best capitalize on

the current and future projected abundance of shale oil and gas resources in the

United States, in order to meet future demand in excess of that currently satisfied

by existing infrastructure.

The supply chain begins with the sources of oil and gas available to monetize,

namely, the shale plays currently active in the country and projected to be increas-
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ingly so in the future. These shale plays produce a combination of oil, natural gas,

and natural gas liquids (NGLs), which we term collectively as resources. Here, the

decision maker makes the operating decision of how much of each resource would

be purchased from the producers each year. Further, he or she then has to decide

whether to sell the resources to the respective markets directly, or to convert or

upgrade the resources into higher-value products by transporting them to plants of

various technologies.

If the conversion/upgrading route is chosen, the decision maker then has to decide

what types of technologies to invest in, the appropriate capacities and counts, and

locations at which to build the plants. For each plant, the decision maker also has to

choose the optimal operating levels every year. Finally, for each product, the decision

maker has to select the most profitable markets at which the products should be sold.

The transportation of resources from source to plants or to markets, and the

transportation of products from plants to markets adds an additional layer of con-

sideration for the decision maker. Various modes of transportation are available for

different products. For each route, the decision maker has to make the operating

decision of how much commodity to ship through that route, if any, and which mode

of transportation to take. In addition, the decision maker also has the ability to

make investments in new pipelines to transport the commodities if necessary.

The sequence of decisions described are made with the complication of time-

varying economic parameters and the presence of uncertainty in the parameter values.

That is, the decision maker has to make a series of decisions in each time period,

over a time horizon of twenty-five years. From one year to the next, the values of the

supply, demand and price parameters of each commodity differ. In addition, at each

particular time point, aside from the first time point where all parameters are known

with certainty, each parameter can assume a different value based on the particular
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scenario realized.

We assume a stochastic programming formulation of the problem by partitioning

the investment and operating variables into two separate sets. The first set consists

of the investment variables which are decided at the beginning of the time horizon,

where all parameter values are known with certainty. That is, the decisions are

made “here-and-now”. In contrast, the second set consists of the operating variables

which are decided individually for each scenario, once the parameter values have

been realized under a particular scenario of consideration. That is, they are the

“wait-and-see” decisions that are made to optimize profitability given the constraints

imposed by the investment decisions that have been made [70].

These decisions have to be made satisfying various constraints imposed on the

framework. The relevant constraints include operating within the limits of supply

and demand of each commodity at the sources and markets, respectively, respecting

capacity limits of plants and pipelines, respecting the resource-to-product conversion

efficiencies of the various plant technologies adopted, and respecting the conservation

of flow of materials through the network structure imposed between sources, plants

and markets. Under these constraints, the decision maker then seeks to maximize

the expected net present value his or her investments over given a time horizon,

assuming an appropriate discount rate.

4.1.2 Time horizon

The time horizon under consideration is twenty-five years, with each year repre-

senting a time period in which decisions can be made. Projections through this

twenty-five year time frame were obtained from the latest U.S. Energy Information

Administration (EIA)’s Annual Energy Outlook Report (2015) [5]. These projections
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were generated by the National Energy Modeling System (NEMS) a computer-based

energy-economy modeling system [64]. NEMS utilizes data from public and private

sources to generate plausible scenarios of prices, production, trade and consumption

of energy which might play out through 2040, given different assumptions of macroe-

conomic factors, world energy markets, resource availability, technological choices,

demographics and public policy. The twenty-five year time horizon in our study

spanned 2015 to 2039.

4.1.3 Scenario sets

Scenario sets are collections of projections of future realizations of economic parame-

ters (supply, demand and prices) which the decision-maker might feel are important

to consider in the process of making investment and operating decisions.

We considered two different scenario sets, termed GDP and Oil Prices. The sce-

narios in each set have been constructed to align with the main cases from the Annual

Energy Outlook 2015 (AEO 2015). Table B.1 from the Supplementary Material de-

scribes the assumptions made in generating each case.

Each scenario set contains three scenarios. In particular, the Reference scenario

is included in both sets, which assumes a “business-as-usual” outcome, given known

technological and demographic trends [5]. The other two scenarios in each scenario

set represents the results from perturbing upwards or downwards the inputs to NEMS

along a particular dimension (GDP growth or international oil supply and demand

conditions) and they are termed as the High and Low scenarios respectively.

Table 4.1 shows the scenarios corresponding to each of the scenario set.

The supply chain optimization procedure is performed for each scenario set sep-

arately, potentially yielding different optimal investment decisions. The relative im-
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Table 4.1: Scenarios corresponding to each scenario set (GDP and Oil Price).

GDP Oil Price

• High Economic Growth • High Oil Price
• Reference • Reference
• Low Economic Growth • Low Oil Price

portance of the consideration of either scenario set lies with the judgment of the

decision-maker. Ideally, we would like to identify investment decisions which are

common to both scenario sets, as this would suggest a good degree of robustness

regardless of the specific probability distribution of future economic parameters that

was assumed for the study.

4.1.4 Sources

The sources under consideration corresponded to the shale oil and gas plays analyzed

by the EIA’s Drilling Productivity Report [55, 71]. They are namely the Bakken, Ea-

gle Ford, Haynesville, Marcellus, Niobrara, Permian and Utica Shale regions. When

combined, these seven shale regions accounted for 95% of U.S. oil production growth

and all of U.S. natural gas production growth during 2011 - 2013. Current trends

from the report indicate that drilling activity in most of these regions continues to

increase. As such, they provide a reasonable representation of the current and future

availability of shale oil and gas resources in the country.

Figure 4-2 shows the locations of these seven shale regions assumed in our frame-

work. We term each region as a source. Although each source was represented as a

single point on the map, each is in reality a collection of shale oil and gas producing

counties associated with that particular geographical area. This classification was

in accordance with how the data was collected and analyzed in the Drilling Produc-
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Figure 4-2: Locations of the seven sources in this study.

tivity Report. For reference, the list of counties associated with each source can be

found in the report data file accompanying the report [55].

For each source, we were concerned with the production levels of three resources:

oil, dry natural gas, and NGLs. We considered two of the sources, namely Haynesville

and Marcellus as “dry” sources. That is, only dry natural gas can be produced from

them. The other five “wet” sources can produce a combination of all three resources.

The Drilling Productivity Report classified the production of commodities at

each source as that of oil or gas. Because data was collected at the well level, any

separating processes downstream of the well meter were not accounted for. Therefore,

in order to get an estimate of NGLs production at the wet sources, we referred

to play level data supplied by the Oil and Gas Supply Module of NEMS [2]. In
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particular, plays were assigned to their corresponding wet sources (as documented in

Table B.3 in the Supplementary Material) and the respective sums of the estimated

ultimate recovery (EUR) of natural gas plant liquids and that of dry natural gas were

tabulated. Then, the ratio of the EUR of the natural gas plant liquids to that of dry

natural gas was taken at each source, and this ratio was multiplied by the natural gas

production data in the Drilling Productivity Report to obtain the production rates

of NGLs at the sources. These production values attributed to NGLs production

were then subtracted from the oil production values from the Drilling Productivity

Report, and the result was taken to be the production rate of crude oil at the sources.

Table 4.2 summarizes the production levels of interest of each resource at each

source at the end of January 2015, which corresponds to the beginning of the time

horizon considered.

Table 4.2: Initial production rates of resources at the sources at the beginning of
2015.

Source Crude Oil (MMB/yr) Dry Gas (BCF/yr) NGLs (MMB/yr)

Bakken 447.4 554.1 25.9
Eagle Ford 588.4 2,668.8 26.9
Haynesville - 2,507.6 -
Marcellus - 5,953.4 -
Niobrara 127.4 1,692.4 22.9
Permian 498.4 2,294.9 191.6
Utica 17.2 648.6 1.7

Supply and price projections of resources

We assumed that for all resources, supply matched demand at the beginning of the

time horizon. The decision maker is concerned only with monetizing any supply

in the future that is over and above 2015 levels. Additionally, if future projections
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indicate that supply of a resource in later years falls below that of 2015 levels, the

corresponding supply would be set to zero during that period of time. To construct

the projected supplies for each source in each scenario, the sources were first mapped

to their corresponding oil and gas producing region in the AEO 2015 projections.

Then, the initial values in Table 4.2 were scaled with the projections for each year of

the time horizon. Finally, the difference between each resulting value and its initial

value was taken in order to arrive at the supply value available for the decision-maker

to utilize.

The prices of the resources were mapped in a similar manner, where the price

projections of each product were mapped to each source in its corresponding produc-

tion region. The prices of NGLs were assume to vary in a fixed ratio of $6 per barrel

of NGL to $1 per mcf of dry natural gas at each point in time for each scenario.

Prices were also adjusted to bring them from 2013 (given format in AEO 2015) to

2015 levels using the U.S. Inflation Calculator [51]. The AEO projections used to

construct each time series are indicated in Table B.11 in the Supplementary Material.

4.1.5 Plants

Plants serve to upgrade or convert the resources of oil and dry natural gas to higher-

value products, which have varying end-use purposes. In our study, these products

are liquefied natural gas (LNG), gasoline, kerosene, diesel and residual fuel oil (RFO).

The decision maker has to assimilate competing factors of supply, demand, prices,

transportation distances and economies of scale in order to select the optimal loca-

tions, technologies, scale and number of plants to construct in order to maximize his

or her profitability. Each consideration is explained below in further detail.
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Technologies

We consider three technologies - hydroskimming, gas-to-liquids conversion, and nat-

ural gas liquefaction. Correspondingly, the plants associated with these technologies

are hydroskimming refineries, gas-to-liquids (GTL) plants, and liquefied natural gas

(LNG) plants, respectively. These technologies have been chosen because they are

relatively mature and have a history of past implementations. As shown in Figure 4-

3, each technology accepts different inputs and yields different outputs, thus offering

a variety of options to the decision maker.

Hydroskimming refineries Hydroskimming refineries are refineries with rela-

tively low complexity. They typically include primary distillation equipment and

downstream units and are suitable for processing oil of a lighter nature. We consid-

ered them in this study since there is currently a mismatch between existing U.S.

refinery configurations, which were designed to process lower-quality, imported crude

oil, and the abundance of light tight oil that shale oil plays produce [72]. In this

study, we defined a hydroskimming refinery to consist of a desalter, an atmospheric

distillation unit, a catalytic reformer and a catalytic hydrotreater.

The products from the hydroskimming refinery are gasoline, kerosene, diesel, and

residual fuel oil (RFO). Because of the relative simplicity of the equipment, RFO

represents the combination of all of the heavy fractions of the oil. The relative

proportions of each refined product correlates strongly to the natural yield of the

crude oil barrel. In our study, we set the barrel yield for each product, per barrel of

crude oil fed as follows: gasoline - 0.25, kerosene - 0.10, diesel - 0.20 and RFO - 0.40.

Note that there is an assumption of 0.05 losses per unit of input fed. These numbers

were reasonable values made with the consideration of typical ranges quoted from
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Figure 4-3: Plant technologies under consideration and their associated inputs and
outputs.
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industry sources [72, 73].

GTL plants The GTL process converts natural gas into liquid fuel, which, de-

pending on the specifications of the process, can be adjusted to lie predominantly

in the gasoline, kerosene, diesel or wax range, or a combination of them [38]. There

are three main parts to this process: 1) syngas generation, 2) Fischer-Tropsch (FT)

synthesis, and 3) refining and upgrading.

In syngas generation, natural gas is first cleaned and then converted into syngas,

which is a mixture of hydrogen and carbon monoxide. This is typically done through

one of or a mixture of three main technologies: steam methane reforming (SMR),

partial oxidation (POX) and autothermal reforming (ATR). After the syngas has

been generated, it proceeds to the next step, FT synthesis, where it is converted

into longer chain hydrocarbons. Depending on the temperature, the process can be

adjusted to optimize production of molecules within a certain chain length range.

Finally, after the FT synthesis step, the product is sent for refining and upgrading

to meet its final specifications.

In our study, we defined the output of the GTL plants to match the current

demand ratios of refined products in the U.S. [5], which, for every thousand cubic

feet of dry gas fed into the plant, yields 0.0589, 0.0109 and 0.0302 barrels of gasoline,

kerosene and diesel, respectively.

LNG plants The value of LNG technology lies in its ability to increase the energy

density of natural gas significantly, thus allowing it to be transportable for sale

in distant markets. In the U.S., the most promising market for LNG lies in the

transportation sector involving heavy-duty trucks or freight rail, where it can be

used as a fuel for long distance travel [65, 39]. In overseas markets, the price of
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natural gas is currently higher than that in the U.S., primarily due to the fact that

gas in overseas markets has traditionally been pegged closely to the price of oil.

As such, a substantial profit margin could be captured if LNG could be shipped to

overseas markets, and a flurry of activity has taken place in order to expedite the

process of exporting LNG from U.S. shores [74].

Essentially, the LNG process involves the liquefaction of gas by cooling it to an

average temperature of approximately -162 °C, primarily by mixed-refrigerant cycles

at the larger scales. The finished product is then stored in cryogenic tanks from

which it is loaded into trucks or tankers for delivery to markets.

We assumed an efficiency rate of 88% for the LNG process, which translates to

0.0172 tons of LNG produced per thousand cubic feet of dry gas fed to the plant.

Candidate locations

An approximately evenly spaced grid of 35 locations throughout the United States

that provided good coverage of the country served as the collection of candidate

location sites for the construction of plants. Figure 4-4 shows the layout of these

candidate locations.

In brief, the candidate locations were selected through a scoring procedure that

took into account different land cover types and land ownership and favored land

that was less developed, had lighter vegetation or was barren, and owned by agencies

which were deemed to be more likely to accept development projects. Readers should

refer to the Supplementary Material where the procedure is explained in detail.
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Figure 4-4: Plant technologies under consideration and their associated inputs and
outputs.
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Capacities, capital costs and operating costs

For each technology, the decision maker can construct plants of different capacities.

Traditionally, when building a plant for a single source and a single market, the deci-

sion maker will seek to maximize the cost savings that arise from economies of scale

and build at the largest scale possible, within the limits of supply and demand, while

locating the plant as close as possible to the supply or demand center, depending

on the relative transportation costs of the resources and products. However, such

a choice is not obvious when one has access to multiple sources, markets and plant

locations within a large geographical area. For example, having distributed, smaller

plants, might be optimal if transportation costs overpower economies of scale when a

significant number of distant sources or markets have to be served. Another example

of when operating at a smaller scale might be beneficial would be when there is a

need to mitigate some risk of the loss of profitability arising from operating under

capacity due to changing future economic conditions.

In our study, we considered the effect of economies of scale in the capital costs

of the plants. For each technology, we selected three different plant capacities that

the decision maker would be able to choose from in his or her investments, hereby

termed “small”, “medium” and “large”. The range of plant capacities has been chosen

to correspond to the typical range found in previous implementations of similar plants

in real life or in studies.

The available plant capacities are as follows. The hydroskimming refinery was

available at capacities of 25, 50 and 100 million barrels per year of oil feed. The GTL

plant and LNG plant were available at capacities of 150, 300, 600 billion cubic feet

per year of dry natural gas feed. Converting to commonly-used units in industry,

this translated to approximate capacities of 68, 137 and 274 thousand barrels per

113



day of oil for the refinery, 41, 82 and 164 thousand barrels per day of GTL product

for the GTL plant and 2.6, 5.1 and 10.3 million tonnes per annum of LNG product

for the LNG plant, respectively.

Because the supply of resources varies from year to year, there might be a mis-

match in the amount of actual resource being fed into the plant versus its design

capacity. In our model, we allow for a feasible operation of each plant down to a

lower bound of half its design capacity for each year. Note that this does not nec-

essarily imply that the plant is required to operate at half its capacity throughout

the year, where the feasibility of such a mode of operation would depend on the

turndown characteristics of the plant equipment. Rather, it could imply that the

plant is operated, for example, at full capacity for half the year, and shut down its

operations for the other half, thereby achieving the same effect. Because our study

was not concerned with operating decisions with finer granularity than a year, we

consider both situations and variations thereof as identical.

The capital costs of the plants were determined from capital cost curves obtained

from a combination of industry sources and previous studies [75, 76]. The details

of the cost curves and methodology can be found in the Supplementary Material.

The resulting capital costs are, in order of size: hydroskimming refineries of $559.5,

$921.7 and $1,533.6 million, GTL plants of $2,921.7, $5,184.2 and $9,198.6 million,

and LNG plants of $885.0, $1,676.1 and $3,174.5 million. The effects of economies of

scale on capital costs can clearly be recognized, since the capital costs are less than

double that of the previous size.

Operating costs comprise labor, utility, maintenance and administrative expenses.

For this study, we set the operating costs of hydroskimming refineries at $8.50 per

barrel, which was a reasonable value set in consultation with an EIA’s performance

report of major energy producers in refining and marketing in 2009 [77]. We further
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assume operating costs of $1.5 per mcf gas fed (translating to $15 per barrel of GTL

product) for the GTL plant [38, 78, 37] and $0.2 per mcf gas fed for the LNG plant

[43, 79], which are within the ranges reported in various studies in the literature.

Investment decisions

The investment decisions lie in choosing among the various plant locations, tech-

nologies, capacities and quantities for an optimal outcome. This planning decision

has to be made at the beginning of the time horizon, when uncertainty in economic

parameters is present. In addition, although plans have to be made “here-and-now”,

the points in time to initiate construction can be further decided upon. This is to

accommodate possible changes in demand or supply conditions further in the time

horizon which necessitate the expansion of plant capacities.

Formally, the decision maker initiates his investment decisions in the year 2015.

He has two time points at which he could initiate construction of a plant: at the

beginning of the time horizon at 2015, and ten years later at 2025. Once the con-

struction is initiated, each plant has to undergo a construction period before it is

fully operational. We have set the construction period to be three years. Once the

plant has been constructed, it is fully operational for the rest of the time horizon.

One issue to consider is that our study is limited to a finite time horizon due

to the finiteness of the time series of the data. This leads to edge effects which

have to be corrected for. In particular, if we assume that each plant can remain

fully operational for twenty-five years from the time construction is initiated, then,

plants which are constructed in 2025 would still have life remaining beyond the time

horizon. To correct for this, we appropriately prorate the capital costs of these

plants in accordance to the length of the remaining time horizon from the year of
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construction. This implies that the capital costs of plants constructed in 2025 would

be scaled by (15 years/25 years) = 0.6. In addition, the time horizon over which the

plant is in operation is larger than that over which it would be depreciated. As such,

we assume no salvage value can be recovered from the plants at the end of the time

horizon.

Summary of plant characteristics

Table 4.3 summarizes the plant characteristics discussed in the previous sections.

4.1.6 Markets

We considered two sets of markets which the decision maker can access - local and

foreign markets.

We first describe our representation of the local markets. The local markets com-

prise the Lower 48 states (i.e., contiguous U.S.). These states, along with Washington

D.C., were each considered as a distinct market, yielding 49 local markets in total.

The geographical location of each market was taken to be the geographical center of

the corresponding state [80]. This level of granularity in the representation was able

to describe adequately the geographical variation of flows of commodities and their

demand pertinent to the objectives of our study, while at the same time preserving

the computational tractability of our endeavor.

We next describe our representation of the foreign markets. The foreign markets

were aggregated into three main entities which, based on projections, are likely to

face an increasing need for natural gas imports in the future [81]. The three foreign

entities were namely Mexico, OECD Asia, and OECD Europe1. The aggregation was

1We followed the EIA’s grouping of the OECD countries. OECD Asia comprises Japan and South
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Table 4.3: Summary of plant characteristics. Corresponding units are indicated in
brackets. Abbreviations for products: G (gasoline), K (kerosene), D (diesel), R
(residual fuel oil), L (liquefied natural gas).

Parameter Value

Locations 35
Construction time 3 years

Technologies Refinery GTL LNG

Capacities
(in feed terms)

[MMB/yr] [BCF/yr] [BCF/yr]
sm: 25 sm: 150 sm: 150
md: 50 md: 300 md: 300
lg: 100 lg: 600 lg: 600

Capacities
(commonly-used units)

[MB/day] [MB/day] [mtpa]
sm: 68 sm: 41 sm: 2.6
md: 137 md: 82 md: 5.1
lg: 274 lg: 164 lg: 10.3

Capacity lower limit 50% 50% 50%

Capital costs

[$B] [$B] [$B]
sm: 0.56 sm: 2.92 sm: 0.88
md: 0.92 md: 5.18 md: 1.68
lg: 1.53 lg: 9.20 lg: 3.17

Operating costs [$/bbl] [$/mcf] [$/mcf]
8.5 1.5 0.2

Feed Oil Dry natural gas Dry natural gas

Output

[bbl/bbl feed] [bbl/mcf feed] [tonnes/mcf feed]
G: 0.25 G: 0.059 L: 0.017
K: 0.10 K: 0.011
D: 0.20 D: 0.030
R: 0.40
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performed to accommodate the lower degree of granularity of data available for these

markets, while still ensuring a broad and adequate representation of the potential

foreign opportunities that the U.S.-based decision maker might have access to.

The nature of the commodities available to be sold directly to these markets vary

slightly according to geographical and end-use considerations. Among the mix of

resources (oil, dry natural gas, and NGLs) and products (LNG, gasoline, kerosene,

diesel, and RFO) available, only a subset of these commodities would be available to

each type of market. Table 4.4 describes the type of commodity available to be sold

in each market.

Table 4.4: Types of commodities accessible to respective markets.

Lower 48 States Mexico OECD Europe
and

OECD Asia
• Dry natural gas • Dry natural gas • NGLs
• NGLs • NGLs • LNG
• LNG • Gasoline • Gasoline
• Gasoline • Kerosene • Kerosene
• Kerosene • Diesel • Diesel
• Diesel • RFO • RFO
• RFO

We stress that we only considered any additional demand above the initial year

when planning for new investments, as we have made the assumption that demand

levels up to that of the initial year are satisfied by existing infrastructure in the U.S.

Korea. OECD Europe comprises Austria, Belgium, Czech Republic, Denmark, Estonia, Finland,
France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Luxembourg, Netherlands, Norway,
Poland, Portugal, Slovakia, Spain, Sweden, Switzerland, Turkey, and the United Kingdom.
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Demand of commodities

Lower 48 states The commodities that were demanded by the Lower 48 states

were: dry natural gas, NGLs, LNG, gasoline, kerosene, diesel, and RFO. Crude

oil was excluded from the demand mix as our model accounted for the presence of

refineries to convert the crude oil into refined products that would be demanded by

end-use customers.

To construct the demand series, consumption data for each commodity in each

state was first obtained from the EIA’s State Energy Data System (SEDS) [82],

corresponding to the year 2013 which was the final year in which data was available.

Using these numbers, the proportion of consumption allocated to each state within

each census division was determined. These proportions were then multiplied by the

corresponding initial value taken from the Reference scenario in the year 2015 in the

AEO 2015 projections to arrive at the initial demand levels for each state. These

initial demand levels were then evolved with the AEO 2015 projections to obtain

the appropriately scaled projections. Finally, with the scaled projections, only the

excess demand above initial year levels was taken to arrive at the final demand time

series.

Foreign markets For foreign markets, we exclude the direct sale of crude oil in

our consideration, as currently there is a legacy ban on oil exports from the U.S.,

with the exception of a handful of restricted situations [72].

With recent developments transforming the oil supply landscape, there has been

interest in understanding the various implications if this ban is potentially lifted

[72, 83, 84, 85]. Nevertheless, because we would like this study to be informative for

actionable implementations based in the present, we did not consider the possibility

119



of lifting the oil ban. Future work might incorporate various case studies where the

limitation of oil exports is relaxed, depending on the likelihood of future legislation

changing in this regard.

In addition, we exclude LNG as a product for sale in Mexico, as the LNG export

projections provided by AEO 2015 are based only on exports to Asia and Europe.

Any natural gas sold to Mexico would be in the form of dry natural gas shipped by

pipeline. In contrast, we exclude dry natural gas from the slate of salable commodities

to OECD Asia and OECD Europe because these regions are only accessible across

the ocean and therefore any transport of natural gas would have to be in the form

of LNG.

The demand time series were determined for each product/region as follows: Dry

natural gas exports to Mexico corresponded to pipeline exports to Mexico projections

in AEO 2015. LNG exports were taken from the AEO 2015 projections and appro-

priately scaled to the respective foreign regions using data from the International

Energy Outlook 2013 Reference Case projections of world natural gas consumption

by region [81]. Initial values for exports of NGLs and refined products were obtained

from EIA’s Exports by Destination annual data for the year 2014 [86]. These initial

values were then evolved with the the Petroleum and Other Liquids Consumption

projections in AEO 2015 to obtain the appropriately scaled projections. Finally, only

the excess demand above initial year levels was taken to arrive at the final demand

time series.

The details of specific calculations for the foreign demand series, as well as a

table of the data series used for projections of both the local and foreign demand of

commodities can be found in the Supplementary Material.
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Prices of commodities

In a similar vein, the initial prices of commodities in the Lower 48 states were taken

from the SEDS price data, reported for the year 2013, which was the latest year

in which data was available. These prices were then adjusted to 2015 values by

adjusting for the trend in prices from 2013 to 2015 as indicated in the Reference

case of the AEO 2015 projections, corresponding to the appropriate census division

for each state. These initial prices were then evolved with the corresponding price

series in the AEO 2015 projections to arrive at the final price time series for each

state through the entire time horizon. Prices were also adjusted to bring them from

2013 dollar terms (given format in AEO 2015) to 2015 dollar terms using the U.S.

Inflation Calculator [51].

The time series of prices of commodities in the foreign markets required a more

involved construction process. We first discuss the handling of Mexico price data.

Initial dry natural gas prices in Mexico were obtained from EIA’s U.S. Natural Gas

Exports and Re-Exports by Point of Exit data as an average of the pipeline gas

prices in the first three months of 2015 [87]. These initial prices were then scaled

according to the evolution of AEO 2015 border prices of pipeline gas imports from

Mexico. The assumption we made was that both import and export prices reflect the

prevailing economic conditions in Mexico and would be expected to move in similar

fashion.

The evolution of oil prices in Mexico is taken to be the average between the

projected Brent and WTI prices from the AEO 2015 data, adjusted for inflation

from 2013 dollar terms to 2015 dollar terms, using the U.S. Inflation Calculator [51].

Our assumption is made in light of the lack of better data, and due to Mexico’s

accessibility to both the U.S. and to the North Sea. This time series, termed as
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“Mexico Blend”, also served as the trend to determine the evolution of prices for

NGLs and the refined products. Adjustments were also made to convert the initial

spot price to an import price. This was done by multiplication with a proxy factor

of the ratio of the gasoline import price in Mexico to the spot price of price in the

U.S. in 4Q2014, obtained from the International Energy Agency (IEA)’s Quarterly

Statistics on Energy Prices and Taxes [88].

Initial prices for the refined products were also obtained from the same publica-

tion. These prices were reported for 4Q2014, ex-tax (i.e., after excise tax and VAT

have been deducted from the final selling prices), which is a good representation

of the actual receipts that would accrue to a U.S.-based decision maker. As the

price of NGLs was not available from the publication, a price ratio of 1.20 gasoline

price/NGLs price was assumed to obtain the corresponding initial NGLs price [89].

Initial prices were also brought forward to 1Q2015 values by multiplication with the

average of the ratios of 1Q2015 North Sea and WTI crude oil to their 4Q2014 values.

Finally, the initial prices for each commodity were then evolved according to the

price series of the “Mexico Blend” to obtain the corresponding final time series.

We next discuss the handling of OECD Asia and OECD Europe price data.

Initial LNG prices were taken from the Federal Energy Regulatory Commission World

Landed LNG Prices for the beginning of the year 2015 [90]. These prices were then

evolved with the Brent prices from the AEO 2015 data, as we assumed that overseas

LNG prices are predominantly indexed to the price of oil. Oil prices were assumed

to be that of Brent prices from the AEO 2015 data, adjusted for inflation from 2013

dollar terms to 2015 dollar terms, using the U.S. Inflation Calculator [51]. The initial

spot oil price was also converted to an import price. This was done by multiplication

with a factor of the ratio of North sea crude import costs in IEA Europe to its spot

price in 4Q2014 [88].
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Initial prices for all refined products and NGLs in OECD Asia were determined

by taking an average of ex-tax prices in Japan and Korea of the corresponding com-

modities from the IEA publication [88]. The initial prices were also brought forward

to 1Q2015 values by multiplication with the ratio of 1Q2015 North Sea crude to its

4Q2014 value. Initial prices for gasoline, diesel and kerosene in OECD Europe were

set according to average in-Europe EIA country ex-tax prices from 5 January to 16

March 2015 [91, 92]. Residual fuel oil was assumed to be selling at 70.6% of diesel

price [93, 94], while NGLs were assumed to be selling at 51.9% of gasoline price [95].

Finally, the initial prices of the products were made to evolve with Brent prices from

the AEO 2015 data to obtain the final price series.

Details on the initial prices set at foreign markets for the various commodities,

as well as the data used for each price series can be found in the Supplementary

Material.

4.1.7 Transportation

To transport the commodities, the decision maker has access to four main modes of

transportation: pipeline, road, rail and barge. The possible flows of transportation lie

in three categories: source-to-plant, source-to-market, and plant-to-market. We use

the term “node” to indicate either a source, plant or market. Depending on the type of

commodity carried, some of modes of transportation might or might not be available.

Table 4.5 documents the commodities carried by each mode of transportation in our

study. Details of the peculiarities of each mode of transportation, methods of routing

from node to node, and costs are made specific in the following sections.
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Table 4.5: Types of commodities carried by each mode of transportation.

Pipeline Road Rail Barge

• Oil • Oil • Oil • Oil
• Dry natural gas • NGLs • NGLs • NGLs
• NGLs • LNG • LNG • LNG
• Refined Products • Refined Products • Refined Products • Refined Products

Pipeline

The pipeline is the most common mode used for the transportation of oil and gas

commodities in the United States today [96]. In our study, pipelines were made avail-

able for the transport of oil, dry natural gas, NGLs and refined products. Note that

for purposes of transportation, individual refined products (i.e. gasoline, kerosene,

diesel and residual fuel oil) were grouped into a single category, since it is usual

practice to transport different refined products in the same pipeline, by sequencing

the flow of each batch of product through the pipeline [97]. Naturally, LNG was

excluded as a possibility for pipeline transport, since the main appeal of liquefaction

technology is to act as a substitute for transporting natural gas via pipelines over

long distances [98].

Consistent with our assumption that current supply matches current demand

for the initial year, we excluded the consideration of utilizing existing pipelines in

the U.S. to service the transportation of commodities arising from the operational

decisions in our study. This was a fair assumption to make, since many of the

existing pipelines currently operate in excess of 95% utilization [99]. Therefore, we

required that new pipelines be built in order to enable any future transportation of

commodities by pipeline in our study.

Routing from one node to another was performed with ESRI ArcMap 10.2.2 [100]
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by determining the straight-line distances between each node. The result was a col-

lection of potential pipeline paths, one for each particular node-to-node connection,

upon which pipelines could be built.

For each set of pipelines corresponding to a particular commodity and node-to-

node flow, we provided three different capacities for the decision maker to utilize.

Typically, the capacities for pipelines for source-to-plant flows were set to be larger

than that for source-to-market or plant-to-market flows. This was mainly due to

the fact that commodity volumes supplied by the sources were typically larger than

volumes demanded at the markets. As a result, nodes located upstream in the

supply chain typically deliver commodities to multiple nodes downstream. With

this consideration, the pipelines were sized to match the volumes at the destinations

rather than at the origins.

Table 4.6 shows the pipeline capacities considered for new investments in this

study. Note that for notational convenience, we classified the three different pipeline

sizes as “small”, “medium” and “large”, although the actual capacity would vary de-

pending on the specific type of commodity and flow that the pipeline is associated

with.

A lower annual operational limit of 50% of the stated capacity of the pipelines

was imposed. Similar to our discussion in the section of plant capacities, we note

that this lower bound does not necessarily imply that pipelines can practically be

operated at 50% capacity at all times. Rather, it might suggest the case where the

pipelines are operated at full capacity for half a year and shut down for the other

half, or other reasonable variations thereof. With the lower bound of capacity set

in this manner, the decision maker has an ex ante continuous range of choice of

transportation levels, since the capacity for each pipeline size is set to double that

of the previous size.
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Table 4.6: Pipeline capacities available for invest-
ments. Abbreviations for flows: s-p (source-to-plant),
s-m (source-to-market), p-m (plant-to-market).

Commodity Flow Capacities units
sm md lg

Oil s-p 25 50 100 MMB/yrs-m 25 50 100

Dry natural gas s-p 150 300 600 BCF/yrs-m 37.5 75 150
NGLs s-m 5 10 20 MMB/yr

Refined products p-m 5 10 20 MMB/yr

Note: Lower operating bounds of pipelines are set to 50% of
stated capacity values. Construction time is 3 years.

Similar to plant investments, pipeline investments also exhibit cost savings due

to economies of scale. The two main determinants of capital costs for pipeline invest-

ments are its capacity and length. To determine the pipeline cost curves, data was

collected based on implemented projects of dry natural gas and oil pipelines, and re-

gressions were performed with the following relationship: log𝑒(Capital Costs/Length)𝑖 =

𝛽0 +𝛽1log𝑒(Capacity)𝑖 + 𝜖𝑖. The cost curve of the oil pipelines also served as a proxy

for the costing of NGL and refined products pipelines. Finally, the capital costs of

pipelines estimated from the fitted regression were scaled by a curvature multiplier

of 1.2 to account for our straight-line assumption of pipeline lengths. Details of the

data used for the regressions and resulting coefficient estimates can be found in the

Supplementary Material.

Transportation costs for pipelines generally comprise power consumption costs

for the operation of pumps and compressors as well as general monitoring and main-

tenance of the system. We estimated operating costs for dry natural gas pipelines

at $0.78 per mcf per thousand miles [101], for oil and refined products pipelines at
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$1.06 per barrel per thousand miles [102, 103] and for NGLs pipelines at $0.75 per

barrel per thousand miles [102, 104].

Similar to plant investment decisions, the investment decisions for new pipelines

have to be made at the beginning of the time horizon, when the uncertainties in

economic parameters are still present. The decision maker can choose to initiate the

construction process at the beginning of the time horizon in 2015 and/or ten years

into the time horizon in 2025, if there is a need to capture any additional increase in

commodity flows arising further down in the time horizon.

Once the construction process has been initiated, the pipelines undergo construc-

tion for a period of three years before they become operational. Similar to the case

with plant capital costs, we appropriately scale the capital costs of pipelines con-

structed in 2025 by a factor of 0.6 (i.e., 15 years/25 years) to deal with edge effects

arising from the finite nature of the time horizon. In addition, we assume no salvage

value at the end of the time horizon.

Road

We considered the transportation of liquid fuels by road through the use of trucks.

The commodities thus available to transportation by road are oil, NGLs, LNG and

refined products. Node-to-node road distances were computed using the Google Dis-

tance Matrix API [61]. Transportation costs were set at $7.30 per barrel per thousand

miles for oil and refined products [105, 103], $5.14 per barrel per thousand miles for

NGLs [105, 104], and $8.07 per mcf per thousand miles for LNG [39, 106]. Contrary

to pipeline transport, we assumed that current roads can support the movement of

commodities that arise in our study.
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Rail

Rail transport was an alternative method for the transportation of liquid fuels, which

were oil, NGLs, LNG and refined products in this study. Node-to-node distances were

computed using the Network Analyst tool of ESRI ArcMap 10.2.2 [100] over a rail

network dataset. The rail network dataset used was the U.S. National Transportation

Atlas Railroads network [107], which was pre-processed to remove any short, isolated

lines or loops before routing. Transportation costs were set at $3.45 per barrel

per thousand miles for oil and refined products [105, 103], and $2.43 per barrel

per thousand miles for NGLs [105, 104]. Transportation costs of $3.82 per mcf

per thousand miles for LNG by rail were assumed by appropriate scaling from its

road transportation costs. Similar to road transport, we assumed that the existing

railroads network can support the movement of commodities that arise in our study.

Barge

Transport by barges on U.S. waterways was the final alternative for transportation of

liquid fuels, which were, once again, oil, NGLs, LNG and refined products. Because

most nodes were not directly situated beside a petroleum port along a waterway,

we defined barge transport between a pair of nodes as a composition of three legs:

node-to-port, port-to-port, and port-to-node. The node-to-port and port-to-node

legs was carried out either by road or rail transportation, while the port-to-port leg

was carried out by barge transportation.

To illustrate this idea, consider the transportation route from a generic node A

to a generic node B. For node A, we identified the port which required the lowest

transportation cost to it, either by road or by rail, and defined this selected port as

port 0. This yielded the node-to-port leg. Similarly, for node B, we identified the
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port with the lowest transportation cost to it, and defined this selected port as port

1. This yielded the port-to-node leg. Finally, the port 0 to port 1 leg yielded the

port-to-port leg. The cost of the transportation route from node A to B was then

determined by the sum of the transportation costs of each leg.

The petroleum ports were obtained from an EIA-filtered list of ports used in

the U.S. Energy Mapping System [108], originally taken from data from the U.S

Army Corps of Engineers Navigation Data Center [109]. Port-to-port routes and

corresponding distances were obtained from the Sea Route & Distance calculator

from Ports.com [110], and several adjustments were made to deal with specific ports

whenever data could not be obtained from the calculator. The adjustments are

documented in the Supplementary Material. Port-to-node and node-to-port legs

were routed using the Google Distance Matrix API [61] and ESRI ArcMap 10.2.2

[100] as described in the sections on road and rail transport respectively.

Transportation costs for barge transport were set at $1.32 per barrel per thousand

miles for oil and refined products [105, 103], and $0.93 per barrel per thousand miles

for NGLs [105, 104]. Transportation costs of $1.46 per mcf per thousand miles for

LNG by barge were assumed by appropriate scaling from its road transportation

costs. We considered barge transport to be uncapacitated for the purposes of this

study.

Table 4.7 summarizes the transportation costs associated with each transporta-

tion mode applied to this study.

Adjustments for transport to foreign markets

Characterizing the modes of transportation of commodities to foreign markets, namely

Mexico, OECD Asia and OECD Europe, required additional adjustments which we
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Table 4.7: Transport costs for transportation modes in the
study.
``````````````̀Commodity

Mode Pipeline Road Rail Barge

Oil1 1.06 7.30 3.45 1.32
Dry natural gas2 0.78 N.A. N.A. N.A.

NGLs1 0.75 5.14 2.43 0.93
LNG2 N.A. 8.07 3.82 1.46

Refined products1 1.06 7.30 3.45 1.32

1: Units of $ per barrel per thousand miles.
2: Units of $ per mcf per thousand miles.

now describe.

Mexico Road transportation from nodes to Mexico was determined by the Google

Distance Matrix API [61], where the destination was set to Mexico City. Pipeline

and rail transportation were described by a two-leg setting: the first leg involved

determining the routes within the U.S. to one of seven points on the U.S.-Mexico

border, whose coordinates can be found in Table B.15 of the Supplementary Material.

The routes within this leg were characterized using the techniques described in the

previous sections on pipeline and rail transportation. The second leg mapped the

route from the border points to Mexico City. Due to the lack of finer information,

we approximated the distance of this leg as simply the straight-line distance from

the border points to Mexico City, again indicated in Table B.15. Both legs were then

combined to obtain the final routes for pipeline and rail transport.

Barge transport was also characterized in a two-leg fashion. The first leg com-

prised the transport from domestic nodes to domestic petroleum ports, which were

filtered to only include ports that processed products associated with foreign move-

ment (i.e., with export and/or import activity). For each node, the port that required
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the lowest transportation cost by road or rail was chosen. The second leg then com-

prised the barge route from this port to one of two ports - Dos Bocas and Salina

Cruz, which were representative petroleum ports found on either coast of Mexico

[111]. The shorter of the two distances was set to be the second leg. Finally, both

legs were then combined to obtain the final routes for barge transport.

OECD Asia and OECD Europe Transportation to OECD Asia and OECD

Europe required a two-leg process, the first being within the United States (i.e.,

source/plant-to-coast) and the second across the oceans (i.e., U.S. coast-to-foreign

coast). For the first leg, we allowed three modes of transportation - pipeline, road

and rail - from sources/plants to U.S. ports. Intra-U.S. barge transportation was

not considered since for most cases it would make better sense to ship commodities

directly to the foreign destination once a port could be accessed in the route. Only

ports associated with foreign movement of petroleum products were considered. The

same routing methods previously discussed were performed to characterize the first

leg for each mode of transport.

The second leg involved transport across the oceans via tankers to their final

destinations. A coarse mapping of origins and destinations was implemented, where

four possible U.S. coasts served as the origin to a final foreign destination either in

Asia or Europe. Representative ports for each coast are described in Table B.16 in the

Supplementary Material. Distances between each U.S. coast and foreign destination

were mapped using the Ports Distances calculator from Sea-Distances.org [112].

For the second leg, we imposed tanker costs for oil, NGLs and refined products of

$0.28 per bbl per thousand nautical miles, and for LNG, $0.22 per mcf per thousand

nautical miles. These values were arrived at by averaging several representative

shipping costs found in several shipping-related technical reports [113, 114]. Finally,
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both legs were composed together by matching the selected ports in the first leg to

their corresponding U.S. coasts in the second leg, to obtain the final, complete paths

from sources or plants to the overseas markets.

4.2 Model formulation

This section describes in detail the formulation of the optimization model which was

implemented in the study. Readers only interested in the results of the study may

proceed to the next section with no problems.

4.2.1 Index sets

• Sources 𝐼 = {Bakken, Eagleford, Haynesville, Marcellus, Niobrara, Permian, Utica}

• Plant technologies 𝐽 = {hydroskimming refinery, GTL plant, LNG plant}

• Plant locations 𝐾 = {35 selected points in the U.S.}

• Plant sizes 𝑁 = {small, medium, large}

• Local markets 𝐿0 = {geographic centers of U.S. Lower 48 + D.C.}

• Land-connected foreign markets 𝐿1 = {Mexico}

• Overseas foreign markets 𝐿2 = {OECD Asia, OECD Europe}

• Resources 𝐹 = {crude oil, dry gas, NGLs}

• Products 𝑃 = {LNG, gasoline, kerosene, diesel, residual fuel oil}

• Commodity classification in transportation

𝑉 = {class crude oil, class dry gas, class NGLs, class LNG, class refined products}
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• Modes of transportation 𝐴 = {pipe, truck, rail, barge}

• Pipeline sizes 𝑂 = {small, medium, large}

• Operational time periods 𝑇 = {2016, 2017, . . . , 2038, 2039}

• Scenarios 𝑆 = {High, Reference, Low}

• Construction time points 𝐶 = {2015, 2025}

4.2.2 Sets constructed from index sets

Tags

• Resources associated with transportation classification tags

ℱ = {(crude oil, class crude oil), (dry gas, class dry gas), (NGLs, class NGLs)}

• Products associated with transportation classification tags

𝒫 = {(LNG, class LNG), (gasoline, class refined products), (kerosene, class refined products),

(diesel, class refined products), (residual fuel oil, class refined products)}

Associations between Commodities and Markets

• Markets served by each commodity ℒ(𝑣) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∅, if 𝑣 = class crude oil

𝐿0 ∪ 𝐿1, if 𝑣 = class dry gas

𝐿0 ∪ 𝐿2, if 𝑣 = class LNG

𝐿0 ∪ 𝐿1 ∪ 𝐿2, otherwise
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Routes

• All routes from sources to plants by pipeline ℛpipe
𝐼→𝐾 = {(𝑖, 𝑘, 𝑗, (𝑓, 𝑣)) ∈ 𝐼 ×

𝐾 × 𝐽 ×ℱ ∖ {(NGLs, class NGLs)}}

• All routes from sources to plants by road ℛroad
𝐼→𝐾 = {(𝑖, 𝑘, 𝑗, (𝑓, 𝑣)) ∈ 𝐼 ×𝐾 ×

𝐽 ×ℱ ∖ {(dry gas, class dry gas), (NGLs, class NGLs)}}

• All routes from sources to plants by rail ℛrail
𝐼→𝐾 = {(𝑖, 𝑘, 𝑗, (𝑓, 𝑣)) ∈ 𝐼 × 𝐾 ×

𝐽 ×ℱ ∖ {(dry gas, class dry gas), (NGLs, class NGLs)}}

• All routes from sources to plants by barge ℛbarge
𝐼→𝐾 = {(𝑖, 𝑘, 𝑗, (𝑓, 𝑣)) ∈ 𝐼 ×𝐾 ×

𝐽 ×ℱ ∖ {(dry gas, class dry gas), (NGLs, class NGLs)}}

• All routes from sources to markets by pipeline ℛpipe
𝐼→𝐿 = {(𝑖, 𝑙, (𝑓, 𝑣)) ∈ 𝐼 ×

ℒ(𝑣)×ℱ}

• All routes from sources to markets by road ℛroad
𝐼→𝐿 = {(𝑖, 𝑙, (𝑓, 𝑣)) ∈ 𝐼 ×ℒ(𝑣)×

ℱ ∖ {(dry gas, class dry gas)}}

• All routes from sources to markets by rail ℛrail
𝐼→𝐿 = {(𝑖, 𝑙, (𝑓, 𝑣)) ∈ 𝐼 × ℒ(𝑣) ×

ℱ ∖ {(dry gas, class dry gas)}}

• All routes from sources to markets by barge ℛbarge
𝐼→𝐿 = {(𝑖, 𝑙, (𝑓, 𝑣)) ∈ 𝐼 ×ℒ(𝑣) ∖

𝐿2 ×ℱ ∖ {(dry gas, class dry gas)}}

• All routes from plants to markets by pipeline ℛpipe
𝐾→𝐿 = {(𝑘, 𝑙, (𝑝, 𝑣)) ∈ 𝐾 ×

ℒ(𝑣)× 𝒫}

• All routes from plants to markets by road ℛroad
𝐾→𝐿 = {(𝑘, 𝑙, (𝑝, 𝑣)) ∈ 𝐾×ℒ(𝑣)×

𝒫}
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• All routes from plants to markets by railℛrail
𝐾→𝐿 = {(𝑘, 𝑙, (𝑝, 𝑣)) ∈ 𝐾×ℒ(𝑣)×𝒫}

• All routes from plants to markets by barge ℛbarge
𝐾→𝐿 = {(𝑘, 𝑙, (𝑝, 𝑣)) ∈ 𝐾×ℒ(𝑣)∖

𝐿2 × 𝒫}

Infrastructure

• All plants 𝒦 = {(𝑘, 𝑗, 𝑛, 𝑐) ∈ 𝐾 × 𝐽 ×𝑁 × 𝐶}

• All pipelines from sources to plants 𝒵𝐼→𝐾 = {(𝑖, 𝑘, 𝑣, 𝑜, 𝑐) ∈ 𝐼 × 𝐾 × 𝑉 ∖

{class NGLs} ×𝑂 × 𝐶}

• All pipelines from sources to markets 𝒵𝐼→𝐿 = {(𝑖, 𝑙, 𝑣, 𝑜, 𝑐) ∈ 𝐼 × ℒ(𝑣) × 𝑉 ×

𝑂 × 𝐶}

• All pipelines from plants to markets 𝒵𝐾→𝐿 = {(𝑘, 𝑙, 𝑣, 𝑜, 𝑐) ∈ 𝐾 × ℒ(𝑣)× 𝑉 ×

𝑂 × 𝐶}

4.2.3 Decision variables

Investment decisions

• Plant𝑘𝑗𝑛𝑐 ∈ Z+,∀(𝑘, 𝑗, 𝑛, 𝑐) ∈ 𝒦: Number of plants at location 𝑘 of technology

𝑗 with size 𝑛 constructed at time point 𝑐.

• Pipe𝐼→𝐾
𝑖𝑘𝑣𝑜𝑐 ∈ Z+,∀(𝑖, 𝑘, 𝑣, 𝑜, 𝑐) ∈ 𝒵𝐼→𝐾 : Number of pipelines connecting source 𝑖

to plant location 𝑘 carrying commodity type 𝑣 with size 𝑜 constructed at time

point 𝑐.
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• Pipe𝐼→𝐿
𝑖𝑙𝑣𝑜𝑐 ∈ Z+,∀(𝑖, 𝑙, 𝑣, 𝑜, 𝑐) ∈ 𝒵𝐼→𝐿: Number of pipelines connecting source 𝑖

to market 𝑙 carrying commodity type 𝑣 with size 𝑜 constructed at time point

𝑐.

• Pipe𝐾→𝐿
𝑘𝑙𝑣𝑜𝑐 ∈ Z+,∀(𝑘, 𝑙, 𝑣, 𝑜, 𝑐) ∈ 𝒵𝐾→𝐿: Number of pipelines connecting plant 𝑘

to market 𝑙 carrying commodity type 𝑣 with size 𝑜 constructed at time point

𝑐.

Operating decisions

• Flow𝐼→𝐾,pipe
𝑖𝑘𝑗(𝑓,𝑣)𝑡𝑠 ∈ R+,∀((𝑖, 𝑘, 𝑗, (𝑓, 𝑣)), 𝑡, 𝑠) ∈ ℛpipe

𝐼→𝐾 × 𝑇 × 𝑆: Flow of material

by pipeline from source 𝑖 to plant at location 𝑘 and of technology 𝑗, carrying

resource (𝑓, 𝑣) at time point 𝑡 in scenario 𝑠.

• Flow𝐼→𝐾,road
𝑖𝑘𝑗(𝑓,𝑣)𝑡𝑠 ∈ R+,∀((𝑖, 𝑘, 𝑗, (𝑓, 𝑣)), 𝑡, 𝑠) ∈ ℛroad

𝐼→𝐾 ×𝑇 ×𝑆: Flow of material by

road from source 𝑖 to plant at location 𝑘 and of technology 𝑗, carrying resource

(𝑓, 𝑣) at time point 𝑡 in scenario 𝑠.

• Flow𝐼→𝐾,rail
𝑖𝑘𝑗(𝑓,𝑣)𝑡𝑠 ∈ R+,∀((𝑖, 𝑘, 𝑗, (𝑓, 𝑣)), 𝑡, 𝑠) ∈ ℛrail

𝐼→𝐾 × 𝑇 × 𝑆: Flow of material by

rail from source 𝑖 to plant at location 𝑘 and of technology 𝑗, carrying resource

(𝑓, 𝑣) at time point 𝑡 in scenario 𝑠.

• Flow𝐼→𝐾,barge
𝑖𝑘𝑗(𝑓,𝑣)𝑡𝑠 ∈ R+, ∀((𝑖, 𝑘, 𝑗, (𝑓, 𝑣)), 𝑡, 𝑠) ∈ ℛbarge

𝐼→𝐾 × 𝑇 × 𝑆: Flow of material

by barge from source 𝑖 to plant at location 𝑘 and of technology 𝑗, carrying

resource (𝑓, 𝑣) at time point 𝑡 in scenario 𝑠.

• Flow𝐼→𝐿,pipe
𝑖𝑙(𝑓,𝑣)𝑡𝑠 ∈ R+,∀((𝑖, 𝑙, (𝑓, 𝑣)), 𝑡, 𝑠) ∈ ℛpipe

𝐼→𝐿 × 𝑇 × 𝑆: Flow of material by

pipeline from source 𝑖 to market 𝑙, carrying resource (𝑓, 𝑣) at time point 𝑡 in

scenario 𝑠.
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• Flow𝐼→𝐿,road
𝑖𝑙(𝑓,𝑣)𝑡𝑠 ∈ R+,∀((𝑖, 𝑙, (𝑓, 𝑣)), 𝑡, 𝑠) ∈ ℛroad

𝐼→𝐿×𝑇×𝑆: Flow of material by road

from source 𝑖 to market 𝑙, carrying resource (𝑓, 𝑣) at time point 𝑡 in scenario 𝑠.

• Flow𝐼→𝐿,rail
𝑖𝑙(𝑓,𝑣)𝑡𝑠 ∈ R+,∀((𝑖, 𝑙, (𝑓, 𝑣)), 𝑡, 𝑠) ∈ ℛrail

𝐼→𝐿×𝑇 ×𝑆: Flow of material by rail

from source 𝑖 to market 𝑙, carrying resource (𝑓, 𝑣) at time point 𝑡 in scenario 𝑠.

• Flow𝐼→𝐿,barge
𝑖𝑙(𝑓,𝑣)𝑡𝑠 ∈ R+, ∀((𝑖, 𝑙, (𝑓, 𝑣)), 𝑡, 𝑠) ∈ ℛbarge

𝐼→𝐿 × 𝑇 × 𝑆: Flow of material by

barge from source 𝑖 to market 𝑙, carrying resource (𝑓, 𝑣) at time point 𝑡 in

scenario 𝑠.

• Flow𝐾→𝐿,pipe
𝑘𝑙(𝑝,𝑣)𝑡𝑠 ∈ R+, ∀((𝑘, 𝑙, (𝑝, 𝑣)), 𝑡, 𝑠) ∈ ℛpipe

𝐾→𝐿 × 𝑇 × 𝑆: Flow of material by

pipeline from plant 𝑘 to market 𝑙, carrying product (𝑝, 𝑣) at time point 𝑡 in

scenario 𝑠.

• Flow𝐾→𝐿,road
𝑘𝑙(𝑝,𝑣)𝑡𝑠 ∈ R+,∀((𝑘, 𝑙, (𝑝, 𝑣)), 𝑡, 𝑠) ∈ ℛroad

𝐾→𝐿 × 𝑇 × 𝑆: Flow of material

by road from plant 𝑘 to market 𝑙, carrying product (𝑝, 𝑣) at time point 𝑡 in

scenario 𝑠.

• Flow𝐾→𝐿,rail
𝑘𝑙(𝑝,𝑣)𝑡𝑠 ∈ R+,∀((𝑘, 𝑙, (𝑝, 𝑣)), 𝑡, 𝑠) ∈ ℛrail

𝐾→𝐿 × 𝑇 × 𝑆: Flow of material by

rail from plant 𝑘 to market 𝑙, carrying product (𝑝, 𝑣) at time point 𝑡 in scenario

𝑠.

• Flow𝐾→𝐿,barge
𝑘𝑙(𝑝,𝑣)𝑡𝑠 ∈ R+,∀((𝑘, 𝑙, (𝑝, 𝑣)), 𝑡, 𝑠) ∈ ℛbarge

𝐾→𝐿 × 𝑇 × 𝑆: Flow of material

by barge from plant 𝑘 to market 𝑙, carrying product (𝑝, 𝑣) at time point 𝑡 in

scenario 𝑠.

4.2.4 Constraints

The sum of flows of each resource leaving each source cannot exceed its corresponding

supply. Denoting supply𝑖𝑓𝑡𝑠 as the supply at source 𝑖 for resource 𝑓 at time 𝑡 in
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scenario 𝑠:

∑︁
𝑎∈𝐴

⎡⎣ ∑︁
{(𝑘,𝑗,𝑣)|∃(𝑖,𝑘,𝑗,(𝑓,𝑣))∈ℛ𝑎

𝐼→𝐾}

Flow𝐼→𝐾,𝑎
𝑖𝑘𝑗(𝑓,𝑣)𝑡𝑠 +

∑︁
{(𝑙,𝑣)|∃(𝑖,𝑙,(𝑓,𝑣))∈ℛ𝑎

𝐼→𝐿}

Flow𝐼→𝐿,𝑎
𝑖𝑙(𝑓,𝑣)𝑡𝑠

⎤⎦ ≤ supply𝑖𝑓𝑡𝑠,

∀(𝑖, 𝑓, 𝑡, 𝑠) ∈ 𝐼 × 𝐹 × 𝑇 × 𝑆. (4.1)

The sum of flows through each pipeline route must be within the capacity bounds

available for that route. At time 𝑡, let the maximum and minimum available pipeline

capacity for a pipe of type 𝑣 and size 𝑜 constructed at time point 𝑐 be cap_pipe_max*→*
𝑣𝑜𝑡𝑐

and cap_pipe_min*→*
𝑣𝑜𝑡𝑐 , respectively.

Then, we introduce the encoding:

cap_pipe_(max/min)*→*
𝑣𝑜𝑡𝑐 =

⎧⎪⎨⎪⎩(max/min) pipeline capacity, if 𝑡− 𝑐 ≥ 𝒯𝑐

0, otherwise,

where 𝒯𝑐 is the construction time for capital investments.

With the given encoding, we write the pipeline flow capacity constraints in an

aggregated form as such: Source-to-plant:

∑︁
{(𝑗,𝑓)|∃(𝑖,𝑘,𝑗,(𝑓,𝑣))∈ℛpipe

𝐼→𝐾}

Flow𝐼→𝐾,pipe
𝑖𝑘𝑗(𝑓,𝑣)𝑡𝑠 ≤

∑︁
{(𝑜,𝑐)|∃(𝑖,𝑘,𝑣,𝑜,𝑐)∈𝒵𝐼→𝐾}

cap_pipe_max𝐼→𝐾
𝑣𝑜𝑡𝑐 Pipe𝐼→𝐾

𝑖𝑘𝑣𝑜𝑐 ,

∀(𝑖, 𝑘, 𝑣, 𝑡, 𝑠) ∈ 𝐼 ×𝐾 × 𝑉 ∖ {class NGLs} × 𝑇 × 𝑆. (4.2a)
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∑︁
{(𝑗,𝑓)|∃(𝑖,𝑘,𝑗,(𝑓,𝑣))∈ℛpipe

𝐼→𝐾}

Flow𝐼→𝐾,pipe
𝑖𝑘𝑗(𝑓,𝑣)𝑡𝑠 ≥

∑︁
{(𝑜,𝑐)|∃(𝑖,𝑘,𝑣,𝑜,𝑐)∈𝒵𝐼→𝐾}

cap_pipe_min𝐼→𝐾
𝑣𝑜𝑡𝑐 Pipe𝐼→𝐾

𝑖𝑘𝑣𝑜𝑐 ,

∀(𝑖, 𝑘, 𝑣, 𝑡, 𝑠) ∈ 𝐼 ×𝐾 × 𝑉 ∖ {class NGLs} × 𝑇 × 𝑆. (4.2b)

Source-to-market:

∑︁
{𝑓 |∃(𝑖,𝑙,(𝑓,𝑣))∈ℛpipe

𝐼→𝐿}

Flow𝐼→𝐿,pipe
𝑖𝑙(𝑓,𝑣)𝑡𝑠 ≤

∑︁
{(𝑜,𝑐)|∃(𝑖,𝑙,𝑣,𝑜,𝑐)∈𝒵𝐼→𝐿}

cap_pipe_max𝐼→𝐿
𝑣𝑜𝑡𝑐 Pipe𝐼→𝐿

𝑖𝑙𝑣𝑜𝑐 ,

∀(𝑖, 𝑙, 𝑣, 𝑡, 𝑠) ∈ 𝐼 × ℒ(𝑣)× 𝑉 × 𝑇 × 𝑆. (4.3a)

∑︁
{𝑓 |∃(𝑖,𝑙,(𝑓,𝑣))∈ℛpipe

𝐼→𝐿}

Flow𝐼→𝐿,pipe
𝑖𝑙(𝑓,𝑣)𝑡𝑠 ≥

∑︁
{(𝑜,𝑐)|∃(𝑖,𝑙,𝑣,𝑜,𝑐)∈𝒵𝐼→𝐿}

cap_pipe_min𝐼→𝐿
𝑣𝑜𝑡𝑐 Pipe𝐼→𝐿

𝑖𝑙𝑣𝑜𝑐 ,

∀(𝑖, 𝑙, 𝑣, 𝑡, 𝑠) ∈ 𝐼 × ℒ(𝑣)× 𝑉 × 𝑇 × 𝑆. (4.3b)

Plant-to-market:

∑︁
{𝑝|∃(𝑘,𝑙,(𝑝,𝑣))∈ℛpipe

𝐾→𝐿}

Flow𝐾→𝐿,pipe
𝑘𝑙(𝑝,𝑣)𝑡𝑠 ≤

∑︁
{(𝑜,𝑐)|∃(𝑘,𝑙,𝑣,𝑜,𝑐)∈𝒵𝐾→𝐿}

cap_pipe_max𝐾→𝐿
𝑣𝑜𝑡𝑐 Pipe𝐾→𝐿

𝑘𝑙𝑣𝑜𝑐 ,

∀(𝑘, 𝑙, 𝑣, 𝑡, 𝑠) ∈ 𝐾 × ℒ(𝑣)× 𝑉 × 𝑇 × 𝑆. (4.4a)

∑︁
{𝑝|∃(𝑘,𝑙,(𝑝,𝑣))∈ℛpipe

𝐾→𝐿}

Flow𝐾→𝐿,pipe
𝑘𝑙(𝑝,𝑣)𝑡𝑠 ≥

∑︁
{(𝑜,𝑐)|∃(𝑘,𝑙,𝑣,𝑜,𝑐)∈𝒵𝐾→𝐿}

cap_pipe_min𝐾→𝐿
𝑣𝑜𝑡𝑐 Pipe𝐾→𝐿

𝑘𝑙𝑣𝑜𝑐 ,

∀(𝑘, 𝑙, 𝑣, 𝑡, 𝑠) ∈ 𝐾 × ℒ(𝑣)× 𝑉 × 𝑇 × 𝑆. (4.4b)

The sum of flows entering a plant must be within its capacity bounds. At
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time 𝑡, let the maximum and minimum available capacity of a plant of type 𝑗 and

size 𝑛 constructed at time point 𝑐 for resource type 𝑓 be cap_plant_max𝑗𝑛𝑓𝑡𝑐 and

cap_plant_min𝑗𝑛𝑓𝑡𝑐, respectively.

In a similar manner, we introduce the encoding:

cap_plant_(max/min)𝑗𝑛𝑓𝑡𝑐 =

⎧⎪⎨⎪⎩(max/min) plant capacity, if 𝑡− 𝑐 ≥ 𝒯𝑐

0, otherwise,

where 𝒯𝑐 is the construction time for capital investments.

The plant capacity constraints are then written as such:

∑︁
𝑎∈𝐴

∑︁
{(𝑖,𝑣)|∃(𝑖,𝑘,𝑗,(𝑓,𝑣))∈ℛ𝑎

𝐼→𝐾}

Flow𝐼→𝐾,𝑎
𝑖𝑘𝑗(𝑓,𝑣)𝑡𝑠 ≤

∑︁
{(𝑛,𝑐)|∃(𝑘,𝑗,𝑛,𝑐)∈𝒦}

cap_plant_max𝑗𝑛𝑓𝑡𝑐Plant𝑘𝑗𝑛𝑐,

∀(𝑘, 𝑗, 𝑓, 𝑡, 𝑠) ∈ 𝐾 × 𝐽 × 𝐹 × 𝑇 × 𝑆. (4.5a)

∑︁
𝑎∈𝐴

∑︁
{(𝑖,𝑣)|∃(𝑖,𝑘,𝑗,(𝑓,𝑣))∈ℛ𝑎

𝐼→𝐾}

Flow𝐼→𝐾,𝑎
𝑖𝑘𝑗(𝑓,𝑣)𝑡𝑠 ≥

∑︁
{(𝑛,𝑐)|∃(𝑘,𝑗,𝑛,𝑐)∈𝒦}

cap_plant_min𝑗𝑛𝑓𝑡𝑐Plant𝑘𝑗𝑛𝑐,

∀(𝑘, 𝑗, 𝑓, 𝑡, 𝑠) ∈ 𝐾 × 𝐽 × 𝐹 × 𝑇 × 𝑆. (4.5b)

At the plants, the resources are then converted into products. We denote convert𝑓𝑝𝑗

as the conversion ratio to product 𝑝 from one unit of input resource 𝑓 , using plant
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technology 𝑗. The following constraints then describe the plant conversion processes:

∑︁
𝑎∈𝐴

∑︁
{(𝑖,𝑗,(𝑓,𝑣))|∃(𝑖,𝑘,𝑗,(𝑓,𝑣))∈ℛ𝑎

𝐼→𝐾}

convert𝑓𝑝𝑗Flow𝐼→𝐾,𝑎
𝑖𝑘𝑗(𝑓,𝑣)𝑡𝑠

=
∑︁
𝑎∈𝐴

∑︁
{(𝑙,𝑣)|∃(𝑘,𝑙,(𝑝,𝑣))∈ℛ𝑎

𝐾→𝐿}

Flow𝐾→𝐿,𝑎
𝑘𝑙(𝑝,𝑣)𝑡𝑠,

∀(𝑘, 𝑝, 𝑡, 𝑠) ∈ 𝐾 × 𝑃 × 𝑇 × 𝑆. (4.6)

At the markets, the sum of flows for each resource or product entering a market

cannot exceed its corresponding demand. Denoting demand_res𝑙𝑓𝑡𝑠 and demand_prod𝑙𝑝𝑡𝑠

as the demand for resource 𝑓 or product 𝑝 respectively at market 𝑙 at time 𝑡 and

scenario 𝑠:

∑︁
𝑎∈𝐴

∑︁
{(𝑖,𝑣)|∃(𝑖,𝑙,(𝑓,𝑣))∈ℛ𝑎

𝐼→𝐿}

Flow𝐼→𝐿,𝑎
𝑖𝑙(𝑓,𝑣)𝑡𝑠 ≤ demand_res𝑙𝑓𝑡𝑠,

∀(𝑙, 𝑓, 𝑡, 𝑠) ∈ 𝐿× 𝐹 × 𝑇 × 𝑆. (4.7a)

∑︁
𝑎∈𝐴

∑︁
{(𝑘,𝑣)|∃(𝑘,𝑙,(𝑝,𝑣))∈ℛ𝑎

𝐾→𝐿}

Flow𝐾→𝐿,𝑎
𝑘𝑙(𝑝,𝑣)𝑡𝑠 ≤ demand_prod𝑙𝑝𝑡𝑠,

∀(𝑙, 𝑝, 𝑡, 𝑠) ∈ 𝐿× 𝑃 × 𝑇 × 𝑆. (4.7b)

We now identify the components that comprise the objective function.

Revenues at time 𝑡 for scenario 𝑠, denoted by Revenues𝑡𝑠, are the sum of sales

made at the markets. The prices of resources 𝑓 and products 𝑝 at market 𝑙 at time
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𝑡 for scenario 𝑠 are denoted by price_res𝑙,𝑓,𝑡,𝑠 and price_prod𝑙,𝑝,𝑡,𝑠, respectively:

Revenues𝑡𝑠

=
∑︁
𝑎∈𝐴

⎡⎣ ∑︁
(𝑖,𝑙,(𝑓,𝑣))∈ℛ𝑎

𝐼→𝐿

price_res𝑙,𝑓,𝑡,𝑠Flow𝐼→𝐿,𝑎
𝑖𝑙(𝑓,𝑣)𝑡𝑠 +

∑︁
(𝑘,𝑙,(𝑝,𝑣))∈ℛ𝑎

𝐾→𝐿

price_prod𝑙,𝑝,𝑡,𝑠Flow𝐾→𝐿,𝑎
𝑘𝑙(𝑝,𝑣)𝑡𝑠

⎤⎦ ,

∀(𝑡, 𝑠) ∈ 𝑇 × 𝑆. (4.8)

Recurring costs at time 𝑡 for scenario 𝑠, denoted by Costs𝑡𝑠, consist of resource

purchase costs, plant operating costs and commodity transportation costs, denoted

by Res_Costs𝑡𝑠 Op_Costs𝑡𝑠, and Trans_Costs𝑡𝑠, respectively:

Costs𝑡𝑠 = Res_Costs𝑡𝑠 + Op_Costs𝑡𝑠 + Trans_Costs𝑡𝑠, ∀(𝑡, 𝑠) ∈ 𝑇 × 𝑆. (4.9)

Resource purchase costs are the sum of purchases of resources made at every

source. The cost of resource 𝑓 at source 𝑖 at time 𝑡 for scenario 𝑠 is denoted by

cost_res𝑖,𝑓,𝑡,𝑠:

Res_Costs𝑡𝑠

=
∑︁
𝑎∈𝐴

⎡⎣ ∑︁
(𝑖,𝑘,𝑗,(𝑓,𝑣))∈ℛ𝑎

𝐼→𝐾

cost_res𝑖,𝑓,𝑡,𝑠Flow𝐼→𝐾,𝑎
𝑖𝑘𝑗(𝑓,𝑣)𝑡𝑠 +

∑︁
(𝑖,𝑙,(𝑓,𝑣))∈ℛ𝑎

𝐼→𝐿

cost_res𝑖,𝑓,𝑡,𝑠Flow𝐼→𝐿,𝑎
𝑖𝑙(𝑓,𝑣)𝑡𝑠

⎤⎦ ,

∀(𝑡, 𝑠) ∈ 𝑇 × 𝑆. (4.10)

Plant operating costs are the sum of operating costs scaled by the flow of resources

into every plant. The operating cost corresponding to resource 𝑓 for plant technology
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𝑗 is denoted by cost_op𝑓𝑗:

Op_Costs𝑡𝑠 =
∑︁
𝑎∈𝐴

∑︁
(𝑖,𝑘,𝑗,(𝑓,𝑣))∈ℛ𝑎

𝐼→𝐾

cost_op𝑓𝑗Flow𝐼→𝐾,𝑎
𝑖𝑘𝑗(𝑓,𝑣)𝑡𝑠, ∀(𝑡, 𝑠) ∈ 𝑇 × 𝑆. (4.11)

Commodity transportation costs are the sum of transportation costs of each

commodity by each mode of transportation through each possible origin-destination

route. The cost for a particular route for origin 𝑑0 to destination 𝑑1 carrying com-

modity 𝑣 by mode 𝑎 is denoted by cost_trans*→*,𝑎
𝑑0𝑑1𝑣

Trans_Costs𝑡𝑠 =
∑︁
𝑎∈𝐴

[︃ ∑︁
(𝑖,𝑘,𝑗,(𝑓,𝑣))∈ℛ𝑎

𝐼→𝐾

cost_trans𝐼→𝐾,𝑎
𝑖𝑘𝑣 Flow𝐼→𝐾,𝑎

𝑖𝑘𝑗(𝑓,𝑣)𝑡𝑠

+
∑︁

(𝑖,𝑙,(𝑓,𝑣))∈ℛ𝑎
𝐼→𝐿

cost_trans𝐼→𝐿,𝑎
𝑖𝑙𝑣 Flow𝐼→𝐿,𝑎

𝑖𝑙(𝑓,𝑣)𝑡𝑠

+
∑︁

(𝑘,𝑙,(𝑝,𝑣))∈ℛ𝑎
𝐾→𝐿

cost_trans𝐾→𝐿,𝑎
𝑘𝑙𝑣 Flow𝐾→𝐿,𝑎

𝑘𝑙(𝑝,𝑣)𝑡𝑠

]︃
,∀(𝑡, 𝑠) ∈ 𝑇 × 𝑆. (4.12)

Investment costs are one-off costs that occur at construction time points 𝑐, de-

noted by Investments𝑐. They comprise plant investments and pipeline investments,

denoted by Invest_Plants𝑐 and Invest_Pipes𝑐 respectively:

Investments𝑐 = Invest_Plants𝑐 + Invest_Pipes𝑐, ∀𝑐 ∈ 𝐶. (4.13)

Investments in plants are the sum of investments across all plants. We denote

the capital cost of a plant of technology 𝑗 of size 𝑛 scaled by construction time 𝑐 by
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cap_cost_plant𝑗𝑛𝑐:

Invest_Plants𝑐 =
∑︁

{(𝑘,𝑗,𝑛)|∃(𝑘,𝑗,𝑛,𝑐)∈𝒦}

cap_cost_plant𝑗𝑛𝑐Plant𝑘𝑗𝑛𝑐, ∀𝑐 ∈ 𝐶. (4.14)

Similarly, investments in pipelines are the sum of investments across all pipelines.

We denote the capital cost of a pipeline from origin 𝑑0 to destination 𝑑1, of type 𝑣

and size 𝑜, scaled by construction time 𝑐 by cap_cost_pipe*→*
𝑑0𝑑1𝑣𝑜𝑐

:

Invest_Pipes𝑐 =
∑︁

{(𝑖,𝑘,𝑣,𝑜)|∃(𝑖,𝑘,𝑣,𝑜,𝑐)∈𝒵𝐼→𝐾}

cap_cost_pipe𝐼→𝐾
𝑖𝑘𝑣𝑜𝑐Pipe𝐼→𝐾

𝑖𝑘𝑣𝑜𝑐

+
∑︁

{(𝑖,𝑙,𝑣,𝑜)|∃(𝑖,𝑙,𝑣,𝑜,𝑐)∈𝒵𝐼→𝐿}

cap_cost_pipe𝐼→𝐿
𝑖𝑙𝑣𝑜𝑐Pipe𝐼→𝐿

𝑖𝑙𝑣𝑜𝑐

+
∑︁

{(𝑘,𝑙,𝑣,𝑜)|∃(𝑘,𝑙,𝑣,𝑜,𝑐)∈𝒵𝐾→𝐿}

cap_cost_pipe𝐾→𝐿
𝑘𝑙𝑣𝑜𝑐 Pipe𝐾→𝐿

𝑘𝑙𝑣𝑜𝑐 , ∀𝑐 ∈ 𝐶. (4.15)

Finally, the objective function seeks to maximize the expected net present value

(ENPV) of the entire project. Denoting the discount factor at time 𝑡′ as 𝛾𝑡′ and the

probability of scenario 𝑠 as 𝜋𝑠, the objective function is:

ENPV =
∑︁
𝑐∈𝐶

−𝛾𝑐Investments𝑐 +
∑︁

(𝑡,𝑠)∈𝑇×𝑆

𝜋𝑠 [𝛾𝑡 (Revenues𝑡𝑠 − Costs𝑡𝑠)] . (4.16)

4.3 Results and discussion

4.3.1 Computational results

All instances of the optimization models were solved on an Intel Xeon E5-1560 3.20

GHz machine with 12 GB of RAM using IBM ILOG CPLEX 12.6.1 in determin-

istic parallel mode, implemented with GAMS Python API 24.4.1. The stochastic
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programs and nominal scenario problem instances were solved as Mixed Integer

Programs (MIPs) with a relative tolerance of 1% and time limit of 10,000s. The

largest full-sized instance of the stochastic program consisted of 494,431 equations

and 2,723,803 variables, of which 18,900 were integer. All instances were solved to

within the relative tolerance limit.

4.3.2 Profitability

Table 4.8 shows the optimal NPVs (in $B) over the full time horizon obtained from

solving the stochastic program for each scenario set, while Figure 4-5 shows the

cumulative NPVs over time. The optimal NPVs were in a much tighter range across

scenarios and at higher levels for the GDP scenario set as compared to the Oil Price

scenario set. The differences in levels of the NPVs of the Reference scenario in both

scenario sets suggests that more conservative investments were made with the Oil

Price scenario set assumptions. From the larger spread in NPV outcomes in the Oil

Price scenario set, we infer that the ultimate profitability was much more sensitive

to the differences in scenario realizations than in the GDP scenario set. The more

conservative investment decision in the Oil Price scenario set is likely a reflection of

how the stochastic program adjusts to accommodate this higher degree of sensitivity.

Table 4.8: Optimal NPVs (in $B) over entire time horizon for each scenario and
expected value in each scenario set.

hhhhhhhhhhhhhhhhhhScenario Set
Scenario High Reference Low Expected

GDP 88.1 96.0 92.8 92.3
Oil Price 54.0 59.4 20.2 44.5

Figure 4-6 shows the cumulative expected discounted cash flows for each scenario

set. The cash flows were classified into investments, revenues, resource costs, oper-
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(a) GDP Scenario Set.

(b) Oil Price Scenario Set.

Figure 4-5: Cumulative Expected Discounted Cash Flows for each scenario set.
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ating costs and transportation costs. Generally, resource costs make up the largest

component of costs, followed by investments, transportation costs and operating

costs. The respective proportions of each cost component are an indication to the

sensitivity of profitability to the respective cost inputs.

4.3.3 Investments

Figure 4-7 shows the optimal plant and pipeline investment types, capacities and

construction timing for each scenario set. The optimal plant investments for the

GDP scenario set involved all three technologies - GTL, LNG and hydroskimming

oil refinery (OR), whereas only GTL and LNG technologies were selected for the Oil

Price scenario set.

The most significant difference between the optimal plant investments for both

scenario sets were the levels of LNG plant investments, particularly in the year 2025.

Much larger LNG investments were made for the GDP scenario set, at a cumulative

level of 4,050 BCF/yr (69.5 mtpa output), as compared to 1,350 BCF/yr (23.2 mtpa

output) for the Oil Price scenario set. Relating to the discussion in the previous

section on NPV, higher levels of investment in the GDP scenario set were likely made

due to the lower variance in profitability with the different scenario realizations, as

compared to that in the Oil Price scenario set, where a more hedged solution was

preferred.

Both GTL and OR technologies were selected for the GDP scenario set, where

a cumulative capacity of 150 BCF/yr (41 MB/day output) and 25 MMB/yr (68

MB/day output) respectively was installed. In contrast, only GTL was selected for

the Oil Price set, where a cumulative capacity of 300 BCF/yr (82 MB/day output)

was installed. In both scenarios, the GTL plants were invested in the year 2025,
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(a) GDP Scenario Set.

(b) Oil Price Scenario Set.

Figure 4-6: Cumulative Expected Discounted Cash Flows for each scenario set.
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(a) Plant investments.

(b) Pipeline investments.

Figure 4-7: Optimal investments for each scenario set.
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reflecting relatively lower opportunities for GTL technology in the nearer term. The

combined capacity for the output of refined products were at similar levels for both

scenario sets, indicating that there is less variation in terms of output of refined prod-

ucts as compared to the case for LNG. The levels of investments in these technologies

on an energy-equivalent basis were also much lower than that of LNG.

The differences in levels of pipeline investments between the two scenario sets

largely reflect the differences in transportation infrastructure required to support

the LNG plants. A cumulative total of 4,425 BCF/yr of dry gas pipelines and 25

MMB/yr of oil pipelines were installed for the GDP scenario set, whereas a much

lower cumulative total of 1,875 BCF/yr of dry gas pipelines were installed for the

Oil Price scenario set. No NGLs or refined products pipelines were installed in either

scenario set.

Figures 4-8 and 4-9 depict the geographical locations of the cumulative plant

and pipeline investments in 2015 and 2025, for the GDP and Oil Price scenario sets

respectively.

The most striking feature of the maps is the small number of locations chosen in

which to make these investments, and the similarity of location choices between the

two scenario sets. In general, plant locations were chosen to be close to their sources,

and only a small number of sources were deemed profitable to obtain resources from.

Common investment location decisions among both scenario sets include the

building of LNG plants and associated dry gas pipelines near to the Eagle Ford,

Haynesville and Marcellus sources in order to utilize the dry gas output in those

areas. In addition, a dry gas pipeline was built from the Niobrara source to supply

California with dry natural gas. The selected locations of the plants near the coasts

also offered a transportation advantage, since a large proportion of the products were

directed to overseas markets.
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(a) Investments in 2015.

(b) Investments in 2025.

Figure 4-8: Plant and pipeline investments for GDP scenario set.
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(a) Investments in 2015.

(b) Investments in 2025.

Figure 4-9: Plant and pipeline investments for Oil Price scenario set.
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Beyond the common investment location decisions, there were several differences

between the two scenario sets. In the GDP scenario set, an oil refinery in 2015,

and LNG and GTL plants in 2025 of relatively small capacities and their associated

pipelines were built near the Niobrara source. However, these investment decisions

were not made in the Oil Price Scenario Set, indicating that the relative attractive-

ness of the Niobrara source is sensitive with respect to the uncertainty in future

realizations of oil prices.

In order to monetize demand for refined products in the Oil Price case, the

decision to build a GTL facility near the Eagle Ford source is made, in the absence

of Niobrara being a monetizable source. This might also be due to the fact that

more excess dry gas over that required to supply the LNG plants was available, since

smaller LNG capacities were invested in this scenario set.

4.3.4 Resources utilized

Figure 4-10 shows the volumes of resources utilized at the sources in two time peri-

ods, 2016-2027 and 2028-2039, for each scenario in each scenario set. The resources

utilized are either transported to plants for conversion to higher-value products, or

transported directly to the markets and sold.

On an energy-equivalent basis, the utilization of dry gas greatly exceeds that of

NGLs and crude oil in all scenarios for both scenario sets. In addition, the utilization

of dry gas increases greatly in the second half of the time horizon whereas that for

NGLs and oil remain relatively constant.
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(a) GDP Scenario Set.

(b) Oil Price Scenario Set.

Figure 4-10: Resources utilized for each scenario set.
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4.3.5 Commodities delivered

Figures 4-11 and 4-12 show the volumes of commodities delivered at the various

markets for two time periods, 2016-2027 and 2028-2039, for each scenario and each

scenario set.

In the GDP scenario set, we observe a relatively stable mix of markets for each

commodity across all scenarios. In the earlier half of the time horizon, LNG was

primarily delivered to overseas markets with a bias towards OECD Asia, whereas

the bias changes towards OECD Europe in the later half of the time horizon.

Dry gas, NGLs, Kerosene and RFO were primarily delivered to the Lower 48

States, while gasoline and diesel were primarily delivered to Mexico. The market

mix for these products are consistent across scenarios and for both time periods.

In the Oil Price scenario set, the market mix of LNG varied depending on the

scenario realized. Across both time periods, LNG was delivered mainly to the Lower

48 and OECD Asia in the High Oil Price scenario, to OECD Asia and OECD Europe

with a bias towards OECD Europe in the Low Oil Price scenario case, and to OECD

Asia and OECD Europe with a bias towards OECD Asia in the Reference case.

The behavior of varying the LNG market mix depending on the scenario realized

lends evidence towards the high sensitivity of LNG profitability in each market to the

prevailing oil prices at that point in time and scenario. This serves to explain the more

conservative levels of optimal LNG capacity investments in this scenario set, where

capacity levels are set to accommodate market-switching behavior while remaining

profitable and operationally feasible in each of the realized scenarios. Finally, the

market mix patterns for NGLs and refined fuels were similar to the GDP scenario

set across all scenarios and time periods.
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(a) 2016-2027.

(b) 2028-2039.

Figure 4-11: Commodities delivered for GDP scenario set.
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(a) 2016-2027.

(b) 2028-2039.

Figure 4-12: Commodities delivered for Oil Price scenario set.
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4.3.6 Transportation utilized

Figures 4-13 and 4-14 depict the various volumes transported for each commodity,

partitioned into the various modes, for each scenario in each scenario set. Typically,

both rail and barge were favored modes of transportation for the liquid commodities,

and road transportation was mostly excluded.

4.3.7 Stochastic versus deterministic optimal investment de-

cisions

The main advantage of using a stochastic programming framework is to ensure an

optimal outcome in the face of uncertainty. Stochastic programming solves two issues

by guaranteeing both operational feasibility in all scenario realizations and optimality

of the project’s expected net present value taken across the scenarios. In other words,

it hedges against both operational infeasbility and suboptimality in outcomes.

We can also consider a simpler problem to solve, which we term as the “deter-

ministic” problem. The deterministic problem involves choosing a nominal scenario

from the set of possible scenarios and solving an optimization problem with it to

determine the optimal investment decisions. The nominal scenario would reflect a

“reasonable” scenario which is in line with the decision maker’s best guess of how the

future would play out. For example, the Reference scenario might be a good choice

to set as the nominal scenario. Or, if the decision maker might be more optimistic,

he or she could choose a scenario with higher demand or product prices than the

nominal scenario.

The deterministic problem serves as a proxy for how many investment projects

are analyzed and planned today. That is, investments are made by planning with

a nominal scenario projection. Once the investments have been made, a particular
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(a) 2016-2027.

(b) 2028-2039.

Figure 4-13: Transportation utilized for GDP scenario set.
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(a) 2016-2027.

(b) 2028-2039.

Figure 4-14: Transportation utilized for Oil Price scenario set.
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scenario would then be realized. The decision maker would then have to determine

the optimal recourse operational decisions are made in response to the particular

scenario realization, constrained by the investment decisions made earlier.

We performed a study to compare the differences in the optimal objective value of

the overall project in each realized scenario, conditioned on the investment decisions

made either by solving the stochastic problem or the deterministic problem.

For the deterministic problem, we created five different choices for the nominal

scenario, for each scenario set. The five choices were based on five outlooks: opti-

mistic, semi-optimistic, neutral, semi-pessimistic, and pessimistic. Table 4.9 depicts

the corresponding nominal scenario for each outlook. Note that by “Avg”, we mean

that each parameter value at each time point was taken to be the average of its two

values in the two selected scenarios at each time point.

Table 4.9: Outlooks and associated nominal scenarios.

Outlook Nominal Scenario

Optimistic High
Semi-Optimistic Avg(High, Ref)

Neutral Ref
Semi-Pessimistic Avg(Ref, Low)

Pessimistic Low

Figure 4-15 shows the variations in optimal plant investments depending on the

outlook assumed for each scenario set.

For the GDP scenario set, we observe relatively similar levels and types of invest-

ments across all outlooks. There is a slight trend towards building more LNG plants

as we transition from an optimistic to a pessimistic outlook, which runs counter to

the typical notion that higher GDP is correlated to higher levels of investments. Note

that although the levels of capacity investments might be similar for the stochastic
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(a) GDP Scenario Set.

(b) Oil Price Scenario Set.

Figure 4-15: Plant investments.

162



and the neutral or semi-pessimistic case, this does not obviate the need for a stochas-

tic solution. As will be discussed later, the chance of operational infeasibility if an

unfavorable scenario is realized is likely under the deterministic solution, even if

this might not be obvious from simply considering the aggregate capacity levels of

investments.

The Oil Price scenario set is radically different in characterizing the differences

in investment levels among the various outlooks. There is a very significant trend

towards building more LNG plants as we transition from a pessimistic to optimistic

outlook, indicating that high oil prices drive the tendency to invest more in LNG

technology. The level of investment in the stochastic case is in between that of the

semi-pessimistic and pessimistic case, which indicates a significant amount of over-

investment if the decision-maker were to make his or her investment decisions based

on optimistic outlooks on the price of oil.

Figure 4-16 shows the corresponding variations in optimal pipeline investments

depending on the outlook assumed, for each scenario set. Typically, the investments

in dry gas pipelines follow the same trend as that for plant investments across the

outlooks within each scenario set, as they adjust proportionally to the different op-

timal levels of LNG investments.

Given the differences in the optimal investment decisions based on the decision-

maker’s ex ante outlook, we determined how he or she would perform given these

investment decisions when a particular scenario is subsequently realized. To simu-

late this, we solved the recourse problem for each scenario as a linear program, fixing

the optimal investment decisions determined earlier from solving either the stochas-

tic or deterministic problem, and determining the optimal operational decisions to

maximize profits.

Table 4.10 displays the results from this procedure. We observe that implement-
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(a) GDP Scenario Set.

(b) Oil Price Scenario Set.

Figure 4-16: Pipeline investments.
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(a) GDP Scenario Set.
hhhhhhhhhhhhhhhhhhhhhhhEx-ante Outlook

Realized Scenario
High Ref Low

Optimistic 105.9 Infeas. Infeas.
Semi-Optimistic 100.6 Infeas. Infeas.

Neutral Infeas. 102.2 Infeas.
Semi-Pessimistic 89.3 97.8 Infeas.

Pessimistic 88.1 Infeas. 97.0
Stochastic 88.1 96.0 92.8

(b) Oil Price Scenario Set.
hhhhhhhhhhhhhhhhhhhhhhhEx-ante Outlook

Realized Scenario
High Ref Low

Optimistic 107.9 Infeas. Infeas.
Semi-Optimistic 85.3 Infeas. Infeas.

Neutral Infeas. 102.2 Infeas.
Semi-Pessimistic Infeas. Infeas. Infeas.

Pessimistic Infeas. Infeas. 23.4
Stochastic 54.0 59.4 20.2

Table 4.10: Optimal objective values of the recourse problems and initial investments
arising from fixing the optimal investment decisions generated from various ex-ante
outlooks.
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ing the investment decisions from a deterministic solution often leads to operational

infeasibility in the majority of scenarios which were not similar to it. Operational

infeasibility occurs whenever the flow of material through the invested infrastruc-

ture is not sufficient to meet the lower capacity bounds. This might serve as ev-

idence as to why cost and budget overruns are common in large-scale oil and gas

investments, which frequently have to contend with significant uncertainty in their

decision-making processes.

The relationship between ensuring operational feasibility in all considered scenar-

ios and the foregone profits in a deterministic setting in exchange for this guarantee

can be analyzed by comparing the optimal objective values of the stochastic and de-

terministic implementations for a particular scenario of interest. For example, in the

Oil Price scenario set, potentially 53.9 (= 107.9−54.0) billion dollars of the project’s

NPV would have to be given up in the High Oil Price scenario, in exchange for the

guarantee of operational feasibility should any scenario other than the High Oil Price

scenario be realized. Such analyses can guide the decision-makers’ choice whether or

not to bear risks of operational infeasibility in various scenarios of interest.

4.3.8 Variations in the degree of uncertainty

While the projections from EIA’s NEMS serve to be a useful source of future pro-

jections, it is also of interest to know how results might change if the degree of

uncertainty of the projections increase. As depicted in Figure 4-17, we varied the

uncertainty level by adjusting the differences between the High and Low projections

for each scenario set. The differences in results which arise from these variations can

serve as an important guide for decision makers who would like to assume different

degrees of confidence in the variance of future projections.
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Figure 4-17: The degree of uncertainty of scenario projections were varied by per-
turbing the parameters of High and Low scenarios from their original values, while
keeping the Reference scenario invariant.

For each scenario set, we studied five different degrees of uncertainty, which were

measured by the degree of perturbation of the High and Low scenarios from the Ref-

erence scenario. The degrees were 0, 20, 40, 60, 80 and 100%. These percentages were

expressed as the additional percentage added to the original difference of parameter

values from the High or Low scenario to that of the Reference scenario. For example,

if a parameter took a value of 30 in the Low scenario, 40 in the Reference scenario

and 50 in the High scenario, a 40% perturbation level would imply the adjustment

of the parameter value to be 26 in the Low scenario (i.e., 40 + 140%(30− 40)), 40 in

the Reference scenario and 54 in the High scenario (i.e., 40 + 140%(50− 40)).

For each perturbation level of the projections of each scenario set, we solved

the corresponding stochastic program and analyzed the results. Figure 4-18 depicts

how the optimal ENPV changes as a function of the level of perturbation of the
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Figure 4-18: Optimal ENPV variations with the level of perturbation of scenario
projections from their original values.

projections from their original values.

In general, the optimal ENPV decreases with the degree of parameter perturba-

tion for each scenario set. The decrease is gradual for the GDP scenario set. On the

other hand, we experience an initial larger decrease, followed by a leveling off and

slight increase in the optimal ENPV for the Oil Price scenario set.

The behavior of the optimal ENPV can be explained by referring to Figures 4-19

and 4-20, which show how the optimal investment decisions vary with the degree of

parameter perturbation.

The GDP scenario set showed a gradual decrease in the optimal levels of LNG

investment capacity with increasing levels of parameter perturbation. This reflected

the tendency of the stochastic solution to be more conservative in order to accommo-

date increasingly disparate scenarios in its consideration. However, the investment
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(a) GDP Scenario Set.

(b) Oil Price Scenario Set.

Figure 4-19: Stochastic plant investments change depending on degree of perturba-
tion.
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(a) GDP Scenario Set.

(b) Oil Price Scenario Set.

Figure 4-20: Stochastic pipeline investments change depending on degree of pertur-
bation.
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decisions were relatively stable in terms of type and in levels. This corroborated with

our observations from previous sections that optimal investment decisions were not

very sensitive to the differences in scenarios in this scenario set.

On the other hand, the Oil Price scenario set showed a drastic decrease in LNG

investments even at a low degree of parameter perturbation of 20%. In other words,

the optimal stochastic solution was highly sensitive to the degree of confidence the

decision maker possessed on the potential future evolution of parameters. Assuming

too large a spread of possible parameter values arising from the uncertainty in oil

prices would cause the stochastic solution to be increasingly conservative and, beyond

a certain point, as can be seen from levels of 40% perturbation and beyond, LNG

investments were abandoned altogether.

We gain an additional insight that GTL investments were relatively robust to-

wards the degree of uncertainty of future projections, although GTL investments

were made at low overall levels. The decrease in LNG investments but relatively

stable levels of GTL investments as a function of the degree of parameter pertur-

bation would serve to explain the stabilization of the optimal ENPV with increased

parameter perturbation.

This exercise served to demonstrate that although implementing a stochastic solu-

tion has its advantages over a deterministic solution in terms of ensuring operational

feasibility in the considered scenarios, it also has a disadvantage for this very reason.

That is, the optimal stochastic solution might be highly sensitive to the amount of

variance present in future projections.

One way to handle the potential instability of the stochastic solution towards the

degree of variance in future projections would be to consider the implementation of

financial hedging instruments, such as options. For example, cheap out-of-the-money

put options on products to be sold might be purchased during the investment phase in
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order to effectively “trim” from the scenario tree situations where the product prices

are too low. This would serve to control directly the variance of future projections

and ensure stability in the stochastic solution at a relatively low cost. The optimal

number and characteristics of such options to purchased can be determined with a

modification of the optimization problem, although such an exercise is outside the

scope of this study but can be implemented in future studies.

4.3.9 Summary of results

In general, we observe a relatively sparse set of types and locations of investments

which were common in both scenario sets. However, the main difference between

each scenario set was the optimal invested capacity levels of LNG plants. Compared

to the GDP scenario set, the Oil Price scenario set had much lower levels of LNG

capacity invested and a subsequently lower ENPV over the time horizon. This was

mainly attributed to the larger sensitivity of the realized profitability with regards

to the different scenario realizations.

The importance of taking into account uncertainty in the investment decisions

was also highlighted. Implementing investment decisions based on deterministic op-

timization of a nominal scenario often led to operational infeasibility if the eventual

scenario realized was different. In addition, the degree of variance in the param-

eter values in the future scenarios also complicated the stability of the stochastic

solutions. Our analysis provided a quantitative approach to valuing these trade-offs,

which could be used as a guide in the decision-making process.

We briefly comment on how our solution compares with current industry activ-

ity with regards to the application to the Federal Energy Regulatory Commission

(FERC) for approval to build U.S. LNG export terminals [115]. Strikingly, the opti-
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mal locations for the LNG plants matched the areas in which currently approved and

proposed LNG export terminals are located. As of June 2015, 9.22 Bcfd of capacity

has been approved and is under construction, while an additional 1.40 Bcfd has been

approved but not under construction. A further 24.26 Bcfd of capacity is in the

proposal pipeline. Comparing these numbers to our results (and assuming a 365 day

year), the optimal cumulative levels of investment for LNG plants were 11.10 Bcfd

for the GDP scenario set and 3.70 Bcfd for the Oil Price scenario set.

With these numbers, there might be a tendency to believe in a current situation

of over-investment in LNG export capacity. However, we state the caveat that our

analysis only considered the monetization of any excess supply and demand beyond

that of the current year. That is, the higher numbers by FERC might be justified

since many applicants are incumbents in the industry. In addition, we assumed that

foreign LNG prices were directly indexed to the price of oil. If future conditions

indicate a trend towards the delinking of international oil and gas prices, then the

optimal investment capacities will change. Nevertheless, the demonstration of the

importance of taking into account uncertainty and the resulting conclusions are likely

to remain.

4.4 Concluding remarks

We have developed a comprehensive supply chain optimization model of the United

States and foreign markets which simultaneously integrates the economic dynamics

of the upstream, midstream and downstream sectors of the oil and gas industry which

takes into account both the time-varying projections of supply, demand and price

parameters as well as the different scenario realizations of these parameters. The

model was then used to determine the optimal investment and operating decisions
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for monetizing shale oil and gas in the United States moving forward.

We considered two scenario sets in our study which varied in the assumptions of

GDP growth and oil prices. Our results show that LNG plants and dry natural gas

pipelines were the predominant investments made for both scenario sets. The types

and locations of these investments were sparse and common to both scenario sets.

The resulting profitability of the investments was much more sensitive to scenario

differences in the Oil Price scenario set. As a result, a more hedged solution was

optimal for this scenario set, resulting in lower ENPV over the time horizon. Stud-

ies were also performed highlighting the importance of including uncertainty in the

analysis, and investigating the stability of the stochastic solutions with respect to

the degree of variance in future parameters.

Future studies include expanding the current scope of the model, as well as di-

recting it towards further case studies which might be of interest. For example, the

model can be made more comprehensive by increasing the degree of granularity in

representation or expanding the size of the current sets in the model. This would

have to be balanced with the need for a tractable solution of the instance, and could

be approached with different algorithmic schemes. Case studies which focus on plan-

ning, forecasting or screening could be carried out tailored to the specific needs of

the user.
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Chapter 5

Examination of the CFSTR

Equivalence Principle

The Continuous Flow Stirred Tank Reactor (CFSTR) equivalence principle is a sim-

ple and elegant but powerful tool to screen potentially complex reaction networks

for their productivities of desired species. Here, while we maintain the correctness

of the principle, we present a potential limitation of the principle when applied to a

series reaction. Namely, given a reactor of a reasonably moderate size, the principle

allows for the maximization of production of any intermediate species regardless of

the magnitude of its rate of depletion, thus effectively truncating any reactions down-

stream from it. This issue arises from the unphysical independence of the variables

involving the species molar effluent rate and its concentration.

To eliminate the unphysical independence of the variables, a reformulation was

proposed. Nevertheless, this reformulation was unable to solve the issue of the trun-

cation of downstream reactions, but gives the critical additional insight that the

target determined by the CFSTR equivalence principle is achieved by allowing infi-
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nite flows between the CFSTRs and the omnipotent separator system.

5.1 Introduction

Here, we provide a brief background of the development of the CFSTR equivalence

principle.

Assuming any arbitrary reactor design and perfect seperation system, consider

the mass balance on the overall reactor-separator system:

M−M0 −R = 0, (5.1)

where M denotes the molar flow rate out of the system, M0 denotes the molar flow

rate into the system and R denotes the total molar production rate in the system.

M,M0,R ∈ R𝑛, where 𝑛 is the number of species in the system.

Because we assume any arbitrary reactor design is possible, R would be the sum

total of the individual production rate in each reaction element. For example, if we

consider the design to only consist of three CFSTRs, then:

R = 𝑉1r(c1, 𝑇1) + 𝑉2r(c2, 𝑇2) + 𝑉3r(c3, 𝑇3), (5.2)

where 𝑉𝑘 is the volume of reactor 𝑘, 𝑇𝑘 is the temperature of reactor 𝑘, c𝑘 ∈ R𝑛 is

the concentration vector in reactor 𝑘 and r(·, ·) ∈ R𝑛 is the molar production rate

per unit volume.

Another example is if we consider the design to only consist of one PFR, then:

R = 𝐴

∫︁ 𝐿

0

r(c(𝑧), 𝑇 (𝑧))𝑑𝑧, (5.3)
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where 𝐴 is the cross-sectional area of the PFR and 𝑧 describes the distance from the

reactor’s entrance, 0 ≤ 𝑧 ≤ 𝐿.

Using these two examples as motivation, we now look at the the general case

for any arbitrary reactor design. Within the arbitrary reactor, we could discretize

the system into reaction elements of volumes ∆𝑉𝑘, each approximated as a CFSTR,

such that the arbitrary reactor is the sum (or integral) of potentially infinitely many

reaction elements of different sizes (including those infinitesimally small):

R = ∆𝑉1r(c1, 𝑇1) + ∆𝑉2r(c2, 𝑇2) + . . . , (5.4)

and
∞∑︁
𝑘=1

∆𝑉𝑘 = 𝑉 *, (5.5)

where 𝑉 * is the total volume of the reactor system.

Now if we consider the averaged production rate per unit volume r*, defined by:

r* ≡ 1

𝑉 *R, (5.6)

then we might write that

r* =
∆𝑉1

𝑉 * r(c1, 𝑇1) +
∆𝑉2

𝑉 * r(c2, 𝑇2) + . . . , (5.7)

and it follows that
∞∑︁
𝑘=1

∆𝑉𝑘

𝑉 * = 1, 0 ≤ ∆𝑉𝑘

𝑉 * ≤ 1 ∀𝑘. (5.8)

Immediately, we see that r* lies in the convex hull of the set {r(c1, 𝑇1), r(c2, 𝑇2), . . .}.

The problem is that this set is potentially infinite and thus computationally in-
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tractable because we might have to take infinitesimally small volume elements. This

would be the case for example if our reactor includes a PFR among other elements

in its design.

To overcome this problem, we appeal to Carathéodory’s Theorem:

Theorem 1. (Carathéodory’s Theorem) Let Q be a set in a vector space of dimension

n. If x* lies in the convex hull of Q, then it is possbile to represent x* as a convex

combination of no more than 𝑠+1 vectors in Q. That is, there are vectors
{︀
x1, . . . ,x𝑝

}︀
in Q and numbers {𝜆1, . . . , 𝜆𝑝} where 𝑝 ≤ 𝑠 + 1, such that

x* = 𝜆1x1 + . . . + 𝜆𝑝x𝑝,

𝜆1 + . . . + 𝜆𝑝 = 1,

and

0 ≤ 𝜆𝑘 ≤ 1, 𝑘 = 1, . . . , 𝑝.

In addition, if Q has no more than s topologically connected components, then p can

be chosen not to exceed s.

With this, we have converted the potentitally infinite problem into a finite one.

Invoking Carathéodory’s Theorem, we write:

r* = 𝜆1r(c1, 𝑇1) + . . . + 𝜆𝑠+1r(c𝑠+1, 𝑇𝑠+1). (5.9)

In terms of R we get:

R = 𝑉 *r* = 𝜆1𝑉
*r(c1, 𝑇1) + . . . + 𝜆𝑠+1𝑉

*r(c𝑠+1, 𝑇𝑠+1). (5.10)
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Denoting 𝑉𝑘 = 𝜆𝑘𝑉
*, we notice that this representation is identical to that of 𝑠+1

CFSTRs that exchange materials in a perfect separation system. We thus arrive at

the “CFSTR-equivalent” form of equation 5.1:

M−M0 − 𝑉1r(c1, 𝑇1)− . . .− 𝑉𝑠+1r(c𝑠+1, 𝑇𝑠+1) = 0. (5.11)

The vector r* lies in a subspace with dimensions that matches the rank of the

stoichiometry matrix of the reaction network. This is because r* is simply a linear

combination of the columns of the stoichiometry matrix. To illustrate, consider the

example of the following reaction network:

A
𝑘1−−→ B

𝑘2−−→ C (5.12)

2 A
𝑘3−−→ C

The stoichiometry matrix is then:

S =

⎡⎢⎢⎢⎣
−1 0 −2

1 −1 0

0 1 1

⎤⎥⎥⎥⎦ , (5.13)

where the rows correspond to the stoichiometric coefficients for each species (A, B,

C) while the columns correspond to each reaction (𝑘1, 𝑘2, 𝑘3).

It can be seen that the rank of S is 3, and the vector r* lies in a vector space of
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dim 3, because:

r* = 𝑘1𝐶𝐴

⎡⎢⎢⎢⎣
−1

1

0

⎤⎥⎥⎥⎦+ 𝑘2𝐶𝐵

⎡⎢⎢⎢⎣
0

−1

1

⎤⎥⎥⎥⎦+ 𝑘3𝐶
2
𝐴

⎡⎢⎢⎢⎣
−2

0

1

⎤⎥⎥⎥⎦ . (5.14)

So, referring back to equation 5.11, we see that 𝑠 corresponds to the rank of the

stoichiometry matrix of the reaction network.

Based on this principle, Feinberg proposed that the solution of the following

nonlinear program will determine the productivity bounds of a certain desired species

(eg. 𝑀1) of any given reaction network:

maximize 𝑀1

subject to 𝑀𝑖 = 𝑀0
𝑖 + 𝑉 1𝑟𝑖(c1, 𝑇1) + . . . + 𝑉𝑠+1𝑟𝑖(c𝑠+1, 𝑇𝑠+1), 𝑖 = 1, . . . , 𝑛,

𝑀𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑛,

𝑉𝑘 ≥ 0, 𝑇Max ≥ 𝑇𝑘 ≥ 𝑇Min, 𝑃Max ≥ 𝑃𝑘 ≥ 𝑃Min, 𝑘 = 1, . . . , 𝑠 + 1,

c𝑘 ≥ 0, 𝑘 = 1, . . . , 𝑠 + 1,

𝑉1 + . . . + 𝑉𝑠+1 ≤ 𝑉 Max,

𝑔(𝑇𝑘, 𝑃𝑘, c𝑘) = 0, 𝑘 = 1, . . . , 𝑠 + 1 (equation of state).
(5.15)

The variables are as follows: 𝑀𝑖 denotes the molar effluent flow rate of species

𝑖. 𝑉𝑘, 𝑇𝑘, 𝑃𝑘 denote the volume, temperature and pressure of CFSTR 𝑘 respectively.

c𝑘 ∈ R𝑛 denotes the species concentration vector in CFSTR 𝑘. The function 𝑟𝑖(c𝑘, 𝑇𝑘)

denotes the rate of formation of species 𝑖 in CFSTR 𝑘 per unit volume, while the

equation 𝑔(𝑇𝑘, 𝑃𝑘, c𝑘) = 0 describes the equation of state in CFSTR 𝑘. The param-

eters are as follows: 𝑀0
𝑖 denotes the molar supply rate of species 𝑖. 𝑉 Max denotes
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the upper bound of the total sum of volumes of all CFSTRs, equivalent to the total

volume of the arbitrary reactor, while 𝑇Min, 𝑇Max, 𝑃Min, 𝑃Max denote temperature

and pressure bounds of all reactions.

5.2 Applying the CFSTR equivalence principle to a

series reaction

As we were examining this principle we came across an interesting observation. Con-

sider the series reaction given as follows:

A
𝑘1−−→ B

𝑘2−−→ C, (5.16)

where we would like to maximize the production of species B. Assume that we feed

in 40 mol/h of species A into the system.

The reaction network is of rank 2, and the CFSTR equivalence principle allows

for three reactors in the optimization problem. However, we restrict the problem to

only one reactor, because as will be shown later, using one reactor is enough to fully

maximize the production of B.
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The optimization problem is formulated as:

maximize
𝑀𝐴,𝑀𝐵 ,𝑀𝐶 ,

𝑐𝐴, 𝑐𝐵 , 𝑐𝐶 ,

𝑉, 𝑇

𝑀𝐵

subject to 𝑀𝐴 = 40− 𝑉 𝑘1(𝑇 )𝑐𝐴,

𝑀𝐵 = 𝑉 𝑘1(𝑇 )𝑐𝐴 − 𝑉 𝑘2(𝑇 )𝑐𝐵,

𝑀𝐶 = 𝑉 𝑘2(𝑇 )𝑐𝐵,

𝑀𝐴,𝑀𝐵,𝑀𝐶 ≥ 0, 𝑐𝐴, 𝑐𝐵, 𝑐𝐶 ≥ 0,

0 ≤ 𝑉 ≤ 8000, 373 ≤ 𝑇 ≤ 673,

0 ≤ 𝑅𝑇 (𝑐𝐴 + 𝑐𝐵 + 𝑐𝐶) ≤ 5.

(5.17)

The rate expressions are given as:

𝑘1 = 5.12× 103 exp(−5535/𝑇 ),

𝑘2 = 8.46× 108 exp(−10064/𝑇 ).

Because of the nature of the series reaction, we expect that we cannot obtain full

conversion of B from A (ie. 𝑀𝐵 would not be 40 mol/h), especially if we set 𝑘2 ≫ 𝑘1.

However, from the optimization problem, if we set:

𝑉 𝑘1(𝑇 )𝑐𝐴 = 40, 𝑐𝐵 = 0,

then the objective function indeed obtains its maximum at 𝑀*
𝐵 = 40, even if 𝑘2 ≫ 𝑘1.

Thus, any additional CFSTRs added to the formulation are redundant since we are

able to maximize 𝑀𝐵 without the need for them.
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Mathematically, the reason why this occurs is due to the treatment of 𝑀𝐴,𝑀𝐵,𝑀𝐶

as independent of the concentrations 𝑐𝐴, 𝑐𝐵, 𝑐𝐶 . This means that we are able to have

an unphysical result where there is maximized molar outflow of 𝑀𝐵 even though

the concentration 𝑐𝐵 in the reactor is zero. While the CFSTR equivalence principle

still holds in the sense that the assumption of perfect separation of species implies

that we are able to separate a species infinitely fast regardless of the magnitude of

its rate of depletion, this implementation would allow for the complete truncation

of the reaction downstream of it. Extending this argument for a long chain of series

reactions, we see that any intermediate species can be arbitrarily maximized to the

feed rate, and any reaction network downstream of that intermediate species can be

arbitrarily truncated. Therefore, applying the CFSTR equivalence principle might

present a potential limitation when analyzing reaction networks with large depth (ie.

having long chains of series reactions).

5.3 A reformulation of the CFSTR equivalence prin-

ciple

A way to reformulate the problem to express the physicality of the system would be

to explicitly define the flows going into and out of each reactor element. Following

the development of the original CFSTR equivalence principle, we discretize a reactor

of arbitrary design into potentially infinite reaction elements of volume ∆𝑉𝑘 (which

might be infinitesimally small). This time however, we explicitly model the flows

exchanging between each reaction element and the separator, as shown in Figure

5-1.

A balance around the separator and each individual reaction element yields the
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-
M0

Separator -
M

∆𝑉1r(c1, 𝑇1)

Reaction element 1

6

?

𝑣1c1 m̄1

∆𝑉2r(c2, 𝑇2)

Reaction element 2

6

?

𝑣2c2 m̄2

∆𝑉𝑘r(c𝑘, 𝑇𝑘)

Reaction element 𝑘

6

?

𝑣𝑘c𝑘 m̄𝑘

. . . . . .

. . . . . .

. . . . . .

. . . . . .

Figure 5-1: Arbitrary reactor formulation.

system of equations:

M−M0 = (𝑣1c1 − m̄1) + (𝑣2c2 − m̄2) + . . . , (5.18)

𝑣𝑘c𝑘 − m̄𝑘 = ∆𝑉𝑘r(c𝑘, 𝑇𝑘) ∀𝑘 = 1, 2, . . . , (5.19)

where M ∈ R𝑛 denotes the molar flow rate out of the system and M0 ∈ R𝑛 denotes

the molar flow rate into the system, where 𝑛 is the number of species in the system.

∆𝑉𝑘 is the volume of reaction element 𝑘, 𝑇𝑘 is the temperature of reaction element

𝑘, c𝑘 ∈ R𝑛 is the concentration vector in reaction element 𝑘 and r(·, ·) ∈ R𝑛 is the

molar production rate per unit volume.

The only difference between this and the original formulation is that new variables

m̄𝑘 ∈ R𝑛, the inlet species mass vector flowing into reaction element 𝑘, 𝑣𝑘 , the volu-

metric flow rate out of reaction element 𝑘, and additional equations in 5.19 involving

mass balances around each individual reaction element have been introduced.
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Substituting equations in 5.19 into Equation 5.18, we arrive at

M−M0 = ∆𝑉1r(c1, 𝑇1) + ∆𝑉2r(c2, 𝑇2) + . . . . (5.20)

Then, we can apply Carathéodory’s Theorem to attain

M−M0 = 𝑉1r(c1, 𝑇1) + . . . + 𝑉𝑠+1r(c𝑠+1, 𝑇𝑠+1), (5.21)

where 𝑉𝑘 is the volume of CFSTR 𝑘 and 𝑠 is the rank of the reaction network.

Using the identity that 𝑉𝑘 = 𝜆𝑘𝑉
*, where 𝑉 * is the total volume of the reactor and

𝜆𝑘 is the coefficient in the convex combination defined in Carathéodory’s Theorem,

we can define 𝑣𝑘 ≡
𝜆𝑘𝑉

*

∆𝑉𝑘

𝑣𝑘 and m𝑘 ≡
𝜆𝑘𝑉

*

∆𝑉𝑘

m̄𝑘 to modify equations in 5.19 to arrive

at a CFSTR-equivalent form:

𝑣𝑘c𝑘 −m𝑘 = 𝑉𝑘r(c𝑘, 𝑇𝑘), ∀𝑘 = 1, . . . , 𝑠 + 1. (5.22)

Equations 5.21 and 5.22 together are a valid reformulation such that the CFSTR

equivalence principle can be applied in this manner. The reformulation is illustrated

in Figure 5-2.

Returning back to the example of the series reaction 5.16, where 40 mol/h of

species A was fed into the system, we now reformulate the optimization problem as

follows. Again, although we are allowed three CFSTRs, we implement just one for
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-
M0

Omnipotent Separator System -
M

𝑉1r(c1, 𝑇1)

CFSTR 1

6

?

𝑣1c1 m1

. . . . . . . . .

. . . . . . . . .

𝑉𝑠+1r(c𝑠+1, 𝑇𝑠+1)

CFSTR 𝑠 + 1

6

?

𝑣𝑠+1c𝑠+1 m𝑠+1

Figure 5-2: CFSTR equivalent formulation.

purposes of illustration:

maximize
𝑀𝐴,𝑀𝐵 ,𝑀𝐶 ,

𝑐𝐴, 𝑐𝐵 , 𝑐𝐶 ,

𝑚𝐴,𝑚𝐵 ,𝑚𝐶 ,

𝑣, 𝑉, 𝑇

𝑀𝐵

subject to 𝑀𝐴 = 40− 𝑉 𝑘1(𝑇 )𝑐𝐴,

𝑀𝐵 = 𝑉 𝑘1(𝑇 )𝑐𝐴 − 𝑉 𝑘2(𝑇 )𝑐𝐵,

𝑀𝐶 = 𝑉 𝑘2(𝑇 )𝑐𝐵,

𝑣𝑐𝐴 −𝑚𝐴 = −𝑉 𝑘1(𝑇 )𝑐𝐴,

𝑣𝑐𝐵 −𝑚𝐵 = 𝑉 𝑘1(𝑇 )𝑐𝐴 − 𝑉 𝑘2(𝑇 )𝑐𝐵,

𝑣𝑐𝐶 −𝑚𝐶 = 𝑉 𝑘2(𝑇 )𝑐𝐵,

𝑀𝐴,𝑀𝐵,𝑀𝐶 ≥ 0, 𝑐𝐴, 𝑐𝐵, 𝑐𝐶 ≥ 0, 𝑚𝐴,𝑚𝐵,𝑚𝐶 ≥ 0,

𝑣 ≥ 0, 0 ≤ 𝑉 ≤ 8000, 373 ≤ 𝑇 ≤ 673,

0 ≤ 𝑅𝑇 (𝑐𝐴 + 𝑐𝐵 + 𝑐𝐶) ≤ 5.

(5.23)
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The idea of this reformulation is to fix the issue of having the situation where

𝑐𝐵 = 0 but 𝑀𝐵 ̸= 0, which we encountered in the original formulation (and thus 𝑀𝐵

could be arbitrarily maximized). To see how this might be fixed, consider the case

in the formulation 5.23 where 𝑐𝐵 = 0. Then we have:

−𝑚𝐵 = 𝑉 𝑘1(𝑇 )𝑐𝐴.

The LHS is non-positive but the RHS is non-negative, so the only solution is

when both sides of the equation are zero. This then forces 𝑀𝐵 to be zero as well.

So, consider the case where 𝑐𝐵 ̸= 0. Then, examining the relations

0 < 𝑉 𝑘1(𝑇 )𝑐𝐴 ≤ 40,

0 ≤𝑀𝐵 = 𝑉 𝑘1(𝑇 )𝑐𝐴 − 𝑉 𝑘2(𝑇 )𝑐𝐵 ≤ 40,

𝑣𝑐𝐵 −𝑚𝐵 = 𝑉 𝑘1(𝑇 )𝑐𝐴 − 𝑉 𝑘2(𝑇 )𝑐𝐵,

we see that maximizing 𝑀𝐵 is equivalent to maximizing 𝑣𝑐𝐵 −𝑚𝐵. Since 𝑚𝐵 ≥ 0,

we set 𝑚𝐵 = 0 so that the expression can be maximized. Now, even though we are

maximizing 𝑣𝑐𝐵, we have to minimize 𝑐𝐵 because of the relation 𝑀𝐵 = 𝑉 𝑘1(𝑇 )𝑐𝐴 −

𝑉 𝑘2(𝑇 )𝑐𝐵.

This presents a problem, because so long as we set 𝑣 large enough for any small

𝑐𝐵, we can attain the optimal solution as 𝑀*
𝐵 = 40. This result is confirmed by global

optimizer BARON 11.9.1, where the solution is very close to 40 and is assumed to

be at 40, after accounting for the limitations of global optimizers in dealing with

unbounded variables.

Therefore, although the reformulation solves the issue of having non-zero species
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molar outflows while having zero species concentrations in the reactor, it does not

circumvent the issue of allowing for the unphysical maximization of the molar outflow

of species B in the given example.

One might wonder if we could solve this issue by setting an upper bound for

𝑣. Then we would be unable to arbitrarily set 𝑣 large enough to compensate for

increasingly smaller values of 𝑐𝐵. However, we shall see that if we do so, the CFSTR

equivalence principle no longer applies:

Assume by contradiction that there exists an upper bound 𝑀 such that 𝑣𝑘 ≤

𝑀 ∀𝑘 = 1, . . . , 𝑠 + 1, and the CFSTR equivalence principle still applies. Then

since 𝑣𝑘 ≡
𝜆𝑘𝑉

*

∆𝑉𝑘

𝑣𝑘 (from the derivation of Equation 5.22), and since 𝑉 * and 𝜆𝑘 are

bounded, then
𝑣𝑘

∆𝑉𝑘

is bounded by
𝑀

𝜆𝑘𝑉 * . However, if such a bound exists, then

we would exclude reaction elements where for fixed 𝑣𝑘, ∆𝑉𝑘 → 0 (a PFR comes to

mind), or for fixed ∆𝑉𝑘, 𝑣𝑘 →∞.

Then, the RHS of Equation 5.20 would not lie in the convex hull of all reaction

rates in the set {r(c1, 𝑇1), r(c2, 𝑇2), . . .} which considers reaction rates found in all

possible reaction elements. If so, then Carathéodory’s Theorem would no longer

apply, and it follows that the CFSTR equivalence principle would not apply.

To demonstrate our claim, computation simulations were performed on the series

reaction example where an upper bound for 𝑣𝑘 was set and the number of CFSTRs

were varied from one to six. By the CFSTR equivalence principle, since the rank

of the reaction network is two, any more than three CFSTRs would be superfluous

in attaining a greater production in species B. However, as seen in Table 5.1, the

objective function improves as the number of CFSTRs increases beyond three.

Therefore, if we set bounds for 𝑣, then the reformulation does not satisfy the

CFSTR equivalence principle. On the other hand, if we do not bound 𝑣, then we
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No. of CFSTRs 1 2 3 4 5 6
𝑀*

𝐵 9.436 13.859 17.281 20.177 22.681 24.655

Table 5.1: Reformulated problem 5.23 implemented in BARON 11.9.1, where the
upper bound of 𝑣𝑘 is set at 1 × 103. The optimal value of the objective function is
shown as a function of the number of CFSTRs.

still face the problem of the truncation of reactions downstream of the desired species.

Although we have not solved the issue of truncation, this exercise in reformulating

the CFSTR equivalence principle has granted us the critical additional insight that

the Feinberg target is achieved by allowing infinite flows between the CFSTRs and

the omnipotent separator system.

5.4 Concluding remarks

The CFSTR equivalence principle as stated with its assumptions gives the correct

results. However, when addressing series reactions, there are limitations to obtaining

useful information about the productivity of intermediate species. We feel that users

seeking to apply the principle should be aware of these additional insights so as to

know appropriate situations when the principle can be beneficially applied.
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Chapter 6

Conclusions

6.1 Summary and future work

The main contribution of this thesis is the development of novel and comprehensive

optimization frameworks for the optimal monetization of shale oil and gas at different

scales. At the small scale, a framework that determined the optimal allocation of

mobile plants to monetize associated or stranded was developed. At the large scale,

a framework to determine optimal shale oil and gas infrastructure investments in the

United States was developed.

The development of these frameworks has contributed to the existing literature

concerning the application of optimization techniques to the oil and gas sector in two

significant ways. First, they are likely to encourage new research activity with the aim

towards increasing the depth and breadth of modeling efforts in the field. The small-

scale plants study has demonstrated how the traditional unit commitment framework

can be applied in a novel area. Opportunities to extend this study are ripe as

they can draw on the results on existing literature on unit commitment frameworks.
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In addition, we hope that this study spurs further thought on how the traditional

unit commitment framework can be applied to other new areas. The nationwide

supply chain study has demonstrated, contrary to what has been indicated in most

previous studies, that it is now possible to model and solve very large instances of

problems that are very comprehensive in their representation of all dimensions of

scope commonly considered. We hope that this would encourage greater efforts in

seeking a comprehensive representation in future supply chain optimization studies

in the field, which would be a large step towards yielding conclusions which can be

relied upon or acted on in the real world.

Second, both frameworks have been successfully applied to real-world case stud-

ies, the results of which can be readily assimilated by decision makers in industry and

government today. The relationship between scale and risk in the studies has been

explicitly quantified and allows for a clearer approach to making decisions which

require the weighing of trade-offs associated with these two issues. Finally, these

frameworks can now be readily applied to further case studies involving the screen-

ing of new technologies and the analysis of outcomes with the introduction of new

scenarios of interest.
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Appendix A

Supplementary Material: Small-Scale

Plants
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Plant Capacity
( bbl/day )

Capital Costs
( 2012 dollars /
( bbl/day ) )

Reference

Velocys, small (2012) 1,000 100,000 [38]
Shell Bintulu (1993) 12,000 127,500 [78]
Velocys, large (2012) 15,000 80,000 [38]
Hobbs Jr. study (2012) 20,000 85,000 [36]
Korea study (2009) 32,293 89,773 [78]
Sasol/Chevron Oryx (2006) 34,000 45,000 [78]
AEO2013 study (2013) 34,000 91,800 [78]
Bechtel study (2002) 44,900 61,953 [78]
Montney Shale (Proposed 2017/8) 48,000 83,333 [38]
R.W. Beck study (2010) 50,000 97,964 [78]
Wood study (2012) 50,000 110,000 [38]
Sasol St Charles (Proposed 2018) 96,000 14,280 [78]
Patel study (2005) 100,000 29,500 [43]
Shell Pearl (2011) 140,000 145,714 [78]

Table A.1: Reported capital costs of GTL plants in actual implementation or in
literature studies.
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Plant Capacity
( gal/day )

Capital Costs
( 2012 dollars /
( gal/day ) )

Reference

GTI-1000 (2003) 1,000 288 [116]
Nitrogen Open Cycle (2012) 4,200 440 [39]
GTI-5000 (2003) 5,000 175 [116]
West Sacramento (2012) 10,000 600 [39]
Willis plant (2012) 100,000 200 [39]
Boron plant (2012) 240,000 320 [39]
Garcia-Cuerva (2009) 1,700,000 612 [44]
Rep. SMR plant (2012) 2,000,000 210 [39]
Rep. DMR plant (2012) 5,000,000 120 [39]
Rep. APCI C3/MR plant (2012) 8,000,000 110 [39]

Table A.2: Reported capital costs of LNG in actual implementation or in literature
studies.
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Table A.3: Breakdown of fixed operating costs for small-scale plants. *Rounded to nearest thousand.

Plant

Items GTL, Small GTL, Medium GTL, Large LNG, Small LNG, Medium LNG, Large
Operating Personnel ($/Year) 140000 140000 140000 140000 140000 140000
Maintenance Personnel ($/Year) 35000 35000 35000 35000 35000 35000
Administration and Support Personnel ($/Year) 35000 35000 35000 35000 35000 35000
Taxes and Duties ($/Year) 86250 150750 207750 26250 45000 60750
Fixed Maintenance Costs ($/Year) 172500 301500 415500 52500 90000 121500
General Administration Costs ($/Year) 76500 102300 125100 52500 60000 66300
Total Annual Fixed Operating Costs ($/Year) 545250 764550 958350 341250 405000 458550
Total Quarterly Fixed Operating Costs* ($/Quarter) 136000 191000 240000 85000 101000 115000
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Table A.4: Breakdown of variable operating costs for small-scale plants

(a) GTL plant variable costs

Items $/bbl $/mcf gas feed

Catalysts and Chemicals 6.0 0.51
Water 0.2 0.02
Total 6.2 0.53

(b) LNG plant variable costs

Items $/gal LNG $/mcf gas feed

Chemicals 0.001 0.01
Refrigerant Make-up 0.001 0.01
Total 0.002 0.02
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(a) Markets for GTL diesel under study.

# Name Baseline Demand
( gallon GTL diesel/day ) City State Census

Division
Distance
( mi )

Shipping Costs
( $/gallon )

1 Tesoro West Coast 136,000 Mandan ND WNC 225 0.113
2 ExxonMobil Refining & Supply Co. 120,000 Billings MT WNC 312 0.156
3 Phillips 66 Co. 118,000 Billings MT WNC 316 0.158
4 Cenex Harvest States Coop 119,200 Laurel MT WNC 332 0.166
5 Wyoming Refining Co. 28,000 Newcastle WY MTN 372 0.186
6 Calumet Montana Refining LLC 20,000 Great Falls MT WNC 414 0.207
7 Antelope Refining LLC 7,600 Douglas WY MTN 428 0.214
8 Calumet Lubricants Co. LP 76,000 Superior WI ENC 605 0.303
9 Flint Hills Resources LP 534,000 Saint Paul MN ENC 636 0.318
10 St Paul Park Refining Co. LLC 163,000 Saint Paul MN ENC 643 0.322

(b) Markets for LNG under study.

# Name Baseline Demand
( dge/day ) City State Census

Division
Distance
( mi )

Shipping Costs
( $/gallon )

1 Blu LNG - Fuel Stop 4,000 Idaho Falls ID MTN 660 0.440
2 Blu LNG - Terminal Station 4,000 Pocatello ID MTN 708 0.472
3 Blu LNG - Terminal Station 4,000 Raft River ID MTN 750 0.500
4 Kwik Trip #870 4,000 La Crosse WI ENC 782 0.521
5 Blu LNG - Maverick Travel Plaza 4,000 West Haven UT MTN 831 0.554
6 Blu LNG - Blu Travel Plaza 4,000 Myton UT MTN 845 0.563
7 Blu LNG - Dunn Travel Plaza 4,000 Salt Lake City UT MTN 868 0.579
8 Blu LNG - Flying J Travel Plaza 4,000 Salt Lake City UT MTN 869 0.579
9 Blu LNG - Maverick Travel Plaza 4,000 Salt Lake City UT MTN 870 0.580

(c) Markets for NGLs under study.

# Name Baseline Demand
( bbl NGL/day ) City State Census

Division
Distance
( mi )

Shipping Costs
( $/gallon )

1 Conway 550,000 Conway KS WNC 1,445 0.280
2 Mont Belvieu 1,250,000 Mont Belvieu TX WSC 1,614 0.390

Table A.5: Markets of various products under study. Census Divisions abbreviations: ENC = East North Central, MTN = Mountain, WNC =
West North Central, WSC = West South Central.
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(a) Demand forecasts at GTL diesel market 1. (b) Demand forecasts at GTL diesel market 2.

(c) Demand forecasts at GTL diesel market 3. (d) Demand forecasts at GTL diesel market 4.

Figure A-1: Demand forecasts for all GTL diesel markets.
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(e) Demand forecasts at GTL diesel market 5. (f) Demand forecasts at GTL diesel market 6.

(g) Demand forecasts at GTL diesel market 7. (h) Demand forecasts at GTL diesel market 8.

Figure A-1: Demand forecasts for all GTL diesel markets.
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(i) Demand forecasts at GTL diesel market 9. (j) Demand forecasts at GTL diesel market 10.

Figure A-1: Demand forecasts for all GTL diesel markets.
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(a) Price forecasts at GTL diesel markets 1, 2,
3, 4 and 6.

(b) Price forecasts at GTL diesel markets 5 and
7.

(c) Price forecasts at GTL diesel markets 8, 9
and 10.

Figure A-2: Price forecasts for all GTL diesel markets.
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(a) Demand forecasts at LNG markets 1, 2, 3,
5, 6, 7, 8 and 9.

(b) Demand forecasts at LNG market 4.

Figure A-3: Demand forecasts for all LNG markets.

(a) Price forecasts at LNG markets 1, 2, 3, 5,
6, 7, 8 and 9.

(b) Price forecasts at LNG market 4.

Figure A-4: Price forecasts for all LNG markets.
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(a) Demand forecasts at NGLs market 1. (b) Demand forecasts at NGLs market 2.

Figure A-5: Demand forecasts for all NGLs markets.

(a) Price forecasts at NGLs market 1. (b) Price forecasts at NGLs market 2.

Figure A-6: Price forecasts for all NGLs markets.
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Appendix B

Supplementary Material: U.S.

Investments

Assumptions to scenarios in scenario sets

The assumptions for the cases in AEO 2015 are documented in Table B.1. These

cases were directly used to generate the corresponding scenarios for this study.

Preparation of sources data

The geographical coordinates of the seven sources used in the study are shown in

Table B.2.

Table B.3 shows the correspondence of plays to wet sources that was used to

determine NGL content in the wet sources.

205



Table B.1: Assumptions for the AEO 2015 Cases. Taken from [1]

Case name Description

Reference

Real gross domestic product (GDP) grows at an
average annual rate of 2.4% from 2013 to 2040,
under the assumption that current laws and regulations
remain generally unchanged throughout the projection
period. North Sea Brent crude oil prices
rise to $141/barrel (bbl) (2013 dollars) in 2040.

Low Economic Growth
Real GDP grows at an average annual rate of 1.8%
from 2013 to 2040. Other energy market assumptions
are the same as in the Reference case.

High Economic Growth
Real GDP grows at an average annual rate of 2.9%
from 2013 to 2040. Other energy market assumptions
are the same as in the Reference case.

Low Oil Price

Low oil prices result from a combination of low
demand for petroleum and other liquids in nations
outside the Organization for Economic Cooperation and
Development (non-OECD nations) and higher global
supply. On the supply side, the Organization of Petroleum
Exporting Countries (OPEC) increases its liquids market
share from 40% in 2013 to 51% in 2040, and the costs
of other liquids production technologies are lower than
in the Reference case. Light, sweet (Brent) crude oil
prices remain around $52/bbl (2013 dollars) through
2017, and then rise slowly to $76/bbl in 2040. Other
energy market assumptions are the same as in the
Reference case.

High Oil Price

High oil prices result from a combination of higher
demand for liquid fuels in non-OECD nations and lower
global crude oil supply. OPEC’s liquids market share
averages 32% throughout the projection. Non-OPEC
crude oil production expands more slowly in short- to mid-
term relative to the Reference case. Brent crude oil prices
rise to $252/bbl (2013 dollars) in 2040. Other energy
market assumptions are the same as in the Reference
case.
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Table B.2: Geographical coordinates of sources.

Source Longitude Latitude

Bakken -102.608 47.984
Eagle Ford -98.374 28.805
Haynesville -94.071 32.026
Marcellus -78.695 40.713
Niobrara -104.470 40.631
Permian -101.606 32.108
Utica -78.655 41.381

Determining candidate plant locations

The generation of the plant locations was performed with ESRI ArcMap 10.2.2 [100].

The candidate plant locations were determined through the use of two datasets,

the National Land Cover Database [117], which described land cover, and the U.S.

National Atlas Federal and Indian Land Areas [118], which described land ownership.

An evenly-spaced grid of 35 points that provided good coverage of the United

States was first generated. Then, each land type dataset was converted into raster

form, each with a cell size of 3 km x 3 km. The Weighted Overlay tool from the

Spatial Analyst Extension was used to generate a suitability score for each raster

cell by equally weighting scores from each input raster. Depending on the land cover

or land ownership type, different scores were assigned, with lower scores indicating

higher suitability. The scores assigned to both datasets are shown are Tables B.4

and B.5 respectively.

Once the weighted overlay raster had been created, it was then filtered such that

only cells with a score of 1 (indicating the most suitable areas) were selected. Then,

each plant in the original evenly-spaced grid was then mapped to a cell of score 1

which was located closest to it. The resulting grid of selected cells was then used as
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Table B.3: Mapping of plays to wet source for the determination of NGL content.
Basins/plays referenced from [2].

Source Basin Play

Bakken Williston Bakken Central
Bakken Eastern

Bakken Elm Coulee-Billings
Bakken Nesson-Little Knife

Basin Northwest
Bakken Three Forks

Gammon
Judith River-Eagle

Eagle Ford Western Gulf Buda
Eagle Ford-Dry Zone
Eagle Ford-Oil Zone
Eagle Ford-Wet Zone

Olmos
Pearsall

Tuscaloosa
Vicksburg

Wilcox Lobo
Woodbine

Niobrara Denver Muddy
Niobrara

Greater Green River Hilliard-Baxter-Mancos
Tight Oil Plays

Powder River Tight Oil Plays
San Juan Mesaverde

Uinta-Piceance Mancos
Tight Oil Plays
Williams Fork

Permian Permian Abo
Avalon/BoneSpring
Barnett-Woodford

Canyon
Spraberry
Wolfcamp

Utica Appalachian Utica-Gas Zone Core
Utica-Gas Zone Extension

Utica-Oil Zone Core
Utica-Oil-Zone Extension
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Table B.4: Scores assigned to land cover type from the National Land Cover Database
dataset. Detailed descriptions of the land cover classifications can be found at [3].

Classification Key Description Score

11 Open Water Exclude
12 Perennial Ice/Snow Exclude
21 Developed, Open Space 2
22 Developed, Low Intensity 5
23 Developed, Medium Intensity 8
24 Developed, High Intensity Exclude
31 Barren Land (Rock/Sand/Clay) 1
41 Deciduous Forest 4
42 Evergreen Forest 4
43 Mixed Forest 4
52 Shrub/Scrub 2
71 Grassland/Herbaceous 2
81 Pasture/Hay 3
82 Cultivated Crops 5
90 Woody Wetlands Exclude
95 Emergent Herbaceous Wetlands Exclude

N.A. Unclassified 1

Table B.5: Scores assigned to land ownership type from the U.S. National Atlas
Federal and Indian Land Areas dataset.

Classification Key Description Score

DOD Department of Defense 5
BOR Bureau of Reclamation 3
BLM Bureau of Land Management 1
BIA Bureau of Indian Affairs 1
NPS National Park Service Exclude
FWS Fish and Wildlife Service Exclude
FS Forest Service Exclude

TVA Tenessee Valley Authority 1
OTHER Primarily national labs and experimental ranges 2

N.A. Unclassified 1
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the grid of candidate plant locations for the study. Table B.6 shows the geographical

coordinates of the candidate plant locations.

Table B.6: Geographical coordinates of candidate plant locations.

Plant Longitude Latitude Plant Longitude Latitude

0 -97.638 27.013 17 -96.343 41.120
1 -80.349 26.700 18 -91.376 40.501
2 -102.429 31.553 19 -83.985 39.688
3 -96.943 32.083 20 -77.794 39.286
4 -91.490 31.350 21 -123.010 42.214
5 -85.538 31.951 22 -117.265 43.300
6 -114.498 35.012 23 -109.721 43.576
7 -108.436 35.542 24 -103.764 44.359
8 -103.013 35.692 25 -95.790 45.474
9 -96.963 36.458 26 -90.054 43.913
10 -90.573 36.017 27 -83.954 43.903
11 -84.985 35.953 28 -77.351 42.361
12 -79.720 35.207 29 -71.069 42.140
13 -121.267 38.048 30 -119.090 47.881
14 -114.950 39.255 31 -111.941 48.561
15 -109.324 39.825 32 -104.077 48.907
16 -103.926 40.256 33 -96.298 47.722

34 -68.996 46.620

Capital costing of plants

The capital costs of hydroskimming refineries were determined by a lookup table

which indicated the process cost functions for four main process units that made up

the refinery - the desalter, the atmospheric distillation unit, the continuous catalytic

reformer and the catalytic resid hydrotreater. Table B.7 shows the parameters used

for the process cost functions.
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Table B.7: Process cost function parameters for process units in a hydroskimming
refinery. Taken from [4].

Process Unit 𝛼 𝛽

Desalter 0.44 0.555
Atmospheric distillation 8.2 0.51

Catalytic reforming,
continuous 12.19 0.547

Catalytic hydrotreating,
resid desulfurization 8.61 0.834

The capital cost for each process unit was calculated with the formula: Capital

Costs ($M) = 𝛼 · [Capacity (thousand bbls/stream day)]𝛽. We assumed an equiva-

lence between a stream day and a calendar day. We arrived at the capital cost for

the plant through the summation of the capital costs of the four processes. Finally,

we adjusted the capital cost from 2007 to 2015 values by adjusting for the rate of

inflation using the U.S. Inflation Calculator [51].

The capital costs of GTL and LNG plants were determined from a previous study

that generated cost curves which were fitted to cost data from literature studies

and real world implementations of these plants [75, 76]. The costs from the study

were updated to 2015 prices using annual inflation estimates from the U.S. Inflation

Calculator [51]. The resulting plant capital cost curve for GTL was: ln(Capital Costs

($B)) = 0.8273 ln(Capacity (thousand bbls/day)) - 2.002, while that for LNG was:

ln(Capital Costs ($M)) = 0.9214 ln(Capacity (million gallons/day)) + 5.425.
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Specific calculations for construction of demand series

Foreign LNG demand

The World Natural Gas Consumption by Region (Reference case) data was obtained

from the International Energy Outlook 2013 [81] and the relative proportions of

Japan, Korea and OECD Europe were determined for each year. OECD Asia was

then represented with the sum of the proportions of Japan and Korea. These relative

proportions were then multiplied into the Liquefied Natural Gas Export data from

AEO 2015 to obtain the LNG demand for each foreign entity.

Foreign NGLs and refined products demand

Initial export values of NGLs and refined products were determined from EIA’s Ex-

ports by Destination annual data for 2014 [86]. The determination was performed

by mapping each commodity in our study to one or several exported products pro-

vided by EIA, depicted by Table B.8. The initial export value for each commodity in

each foreign market was determined by summing across all export values of products

and countries which corresponded to that particular commodity and foreign market

respectively.

Table B.9 documents the initial values of liquid commodities demand for each

foreign market resulting from these calculations, which were used to multiply into

the original International Liquids Use demand series from AEO 2015 to generate

individual demand projections for each commodity. Note that these initial values

were used as baselines for which the final demand series which represented excess

over these baselines were input into the optimization model.
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Table B.8: Mapping of commodities in study to exported products classification in
EIA’s Exports by Destination data.

Commodity Exported Products by EIA’s Classification

NGLs Pentanes Plus
Liquefied Petroleum Gases

Gasoline Finished Motor Gasoline
Motor Gasoline Blending Components

Kerosene Kerosene
Kerosene-Type Jet Fuel

Diesel Distillate Fuel Oil
RFO Residual Fuel Oil

Table B.9: Initial demand values of NGLs and refined products for each foreign
market. Units are in MMB/year.

hhhhhhhhhhhhhhhhhhCommodity
Foreign Market Mexico OECD Asia OECD Europe

NGLs 24.215 23.860 36.028
Gasoline 86.717 0.035 1.837
Kerosene 4.585 0.001 6.162

Diesel 46.445 0.424 107.104
RFO 8.416 1.548 14.395
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Initial prices used for price series in foreign markets

Following the procedure as described in the main paper, the initial prices of the

commodities in foreign markets used in the study are documented in TableB.10.

Table B.10: Initial prices used for price series in foreign markets.
hhhhhhhhhhhhhhhhhhCommodity

Foreign Market Mexico OECD Asia OECD Europe

Dry gas 3.17 N.A. N.A.
LNG N.A. 10.00 8.45

Crude Oil 76.78 61.57 56.86
NGLs 72.64 71.85 44.12

Gasoline 87.17 86.56 84.98
Diesel 92.97 82.38 94.05

Kerosene 92.97 98.23 94.05
RFO 48.05 71.93 66.40

Prices of dry gas and LNG in $ per mcf.
Prices of crude oil, NGLs and refined products in $ per bbl.

Tables for data series

Tables B.11 and B.12 show the corresponding AEO 2015 series used for future pro-

jections of the parameters in our study at the sources and markets respectively. The

AEO 2015 series were used in one of two ways to determine future parameter values -

either they were used as-is, or rather, in the cases where initial values were separately

determined, the AEO 2015 series were used to scale the evolution of the initial values

over time.
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Table B.11: AEO 2015 series used for determining the future evolution of corre-
sponding parameter values at the sources.

Parameter AEO 2015 Series

Supply of natural gas and NGLs Natural Gas : Dry Production : Lower 48 Onshore
Supply of crude oil Crude Oil : Production : Lower 48 Onshore

Price of natural gas and NGLs Natural Gas : Supply Prices : Lower 48 Onshore
Price of crude oil Crude Oil : Wellhead Prices : Lower 48 Onshore
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Table B.12: AEO 2015 series used for determining the future evolution of corresponding parameter values
at the markets. Asterisks represent specially constructed series, as described in the body of the paper. * :
Appropriately apportioned quantities of the AEO 2015 Natural Gas : Volumes : Exports : Liquefied Natural
Gas Exports demand series, according to relative foreign consumption ratios in IEO 2013 Reference Case. **
: ‘Mexico Blend’ prices, which are the average of Brent and WTI prices.

Parameter AEO 2015 Series

Local demand for dry gas Energy Use : Delivered : All Sectors : Natural Gas
- Energy Use : Transportation : Natural Gas

Local demand for NGLs Energy Use : Delivered : All Sectors : Liquefied Petroleum Gases
Local demand for LNG Energy Use : Transportation : Natural Gas

Local demand for gasoline Energy Use : Delivered : All Sectors : Motor Gasoline

Local demand for kerosene Energy Use : Delivered : All Sectors : Kerosene
+ Energy Use : Delivered : All Sectors : Jet Fuel

Local demand for diesel Energy Use : Delivered : All Sectors : Distillate Fuel Oil
Local demand for RFO Energy Use : Delivered : All Sectors : Residual Fuel Oil

Mexico demand for dry gas Natural Gas : Volumes : Exports : Pipeline Exports to Mexico
Mexico demand for NGLs, gasoline,

kerosene, diesel and RFO International Liquids : Use : OECD : Mexico and Chile

Mexico, OECD Asia and
OECD Europe demand for LNG *

OECD Asia demand for NGLs, gasoline,
kerosene, diesel and RFO

International Liquids : Use : OECD : Japan
+ International Liquids : Use : OECD : South Korea

OECD Europe demand for NGLs,
gasoline, kerosene, diesel and RFO International Liquids : Use : OECD : OECD Europe

Local prices of dry gas Energy Prices : Average Price to All Users : Natural Gas
Local prices of NGLs Energy Prices : Average Price to All Users : Propane
Local prices of LNG Energy Prices : Transportation : Natural Gas

Local prices of gasoline Energy Prices : Average Price to All Users : Motor Gasoline
Local prices of kerosene Energy Prices : Average Price to All Users : Jet Fuel
Local prices of diesel Energy Prices : Average Price to All Users : Distillate Fuel Oil
Local prices of RFO Energy Prices : Average Price to All Users : Residual Fuel Oil

Mexico prices of dry gas Natural Gas : Border Prices : Pipeline Import Prices : From Mexico
Mexico prices of NGLs, gasoline,

kerosene, diesel and RFO **

OECD Asia and OECD Europe prices of NGLs,
LNG, gasoline, kerosene, diesel and RFO International Liquids : Crude Oil Prices : Brent
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Capital costing of pipelines

For dry natural gas pipelines, an aggregated list of natural gas pipeline and expansion

projects in operation or slated to commence operations in coming years, compiled by

the EIA, was used as the sample set [119]. The data was compiled from FERC, trade

press, company websites and other industry sources. The sample set was filtered to

exclude samples with zero cost or zero length. The costs were further adjusted to

2015 prices by using annual inflation estimates from the U.S. Inflation Calculator

[51].

For oil pipelines, a sample set was created using a Reuters-compiled list of U.S.

crude oil pipeline projects either fully or partially in service, nearing completion,

under construction, or planned [120]. Only projects with the full set of cost, capacity

and length data, either procured directly from the Reuters source or through other

industry reports, were included in the sample set. The capital costs were assumed

to be appropriate at 2015 levels, since most projects are relatively new. Table B.13

documents the final list of projects used for the regression.

Table B.14 shows the estimated regression coefficients for the cost curves of the

pipelines associated with the different commodity types. Due to a lack of data for

NGLs and refined products pipelines, we used the cost curve for the oil pipelines to

determine their capital costs.

Note that the regression coefficients were less than one and significant, provid-

ing evidence for economies of scale. The estimated regressions were then used to

determine capital costs for every possible node-to-node pipeline generated in the

study.
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Table B.13: List of U.S. oil pipeline projects used for determining oil pipeline cost
curve.

Project Capacity (KB/day) Length (Miles) Capital Costs ($M)

Eagle Ford Joint-Venture Pipeline First Expansion 120 140 120
Double Eagle Pipeline 100 140 150

Knight Warrior Pipeline 100 160 300
Double H Pipeline 84 488 375
Cactus Pipeline 330 310 450

Line 67 (Alberta Clipper) Expansion 350 700 450
Kinder Morgan Crude and Condensate Pipeline 400 147 555

Pony Express Pipeline 320 260 725
Permian Basin Projects 860 182 800

Southern Access Extension 300 165 800
Saddlehorn Pipeline 400 600 850
Diamond Pipeline 200 440 900
BridgeTex Pipeline 300 450 1000
Seaway Pipeline 700 500 2000

Gulf Coast Pipeline Project 700 535 2300
Flanagan South Pipeline 600 600 2600

Sandpiper Pipeline 600 608 2600
Dakota Access Pipeline 320 1134 5000

Keystone XL Northern Leg 830 1179 5300

Table B.14: Regression coefficient estimates for log-
log relation between pipeline capital costs per length
and capacity. Standard errors are shown in parenthe-
ses.

Commodity 𝛽0 𝛽1

Dry natural gas
-0.468 0.304
(0.148) (0.034)

Oil, NGLs and refined products
-2.306 0.663
(0.772) (0.160)

Units: Capital Costs ($M), Capacity (oil, NGLs and re-
fined products) (MMB/yr), Capacity (dry natural gas)
(BCF/yr), Length (miles).
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Transportation Routes

Adjustments made to port-to-port routing calculations

Port-to-port distances were mainly calculated using the Sea Route & Distance cal-

culator from Ports.com [110]. However, in some instances, routing information was

not available. This section documents the additional calculations made in order to

obtain a complete set of port-to-port distances for the study.

Adjustments were made to ports located along the Delaware River (New Cas-

tle, DE, Wilmington, DE, Marcus Hook, PA, Paulsboro, NJ, Camden-Gloucester,

NJ, and Philadelphia, PA). First, pairwise distances among these ports were deter-

mined by the Distances Between United States Ports publication by the Office of

Coast Survey, National Ocean Service, National Oceanic and Atmospheric Admin-

istration (NOAA) [121]. An additional assumption that Paulsboro was located 1/3

and Camden-Gloucester was located 2/3 the way from Marcus Hook to Philadelphia

was made. The distance between a port not in the Delaware River system and one

in it was calculated as the sum of the distance between the former port and New

Castle (as determined from Ports.com) and the distance between New Castle and

the latter port.

Distances to Freeport, TX and Tacoma, WA were determined by first selecting

ports located close-by to each, which were Galveston, TX and Anacortes, WA re-

spectively. Port-to-port distances from any other port to Freeport or Tacoma were

then determined by summing up the distance first to the corresponding ports located

close-by (as determined from Ports.com) with the distance from these corresponding

ports to either Freeport or Tacoma (as determined by NOAA’s publication).

Distances to Hempstead, NY and Port Jefferson, NY were determined in a similar
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manner. The closest port located to both ports was Bridgeport, CT. The distance

from Bridgeport to Port Jefferson was 15 nautical miles (as determined from NOAA’s

publication), and distances from Bridgeport to Hempstead and from Port Jefferson

to Hempstead were estimated at 30 and 15 nautical miles respectively.

Adjustments were also made for ports in the Ohio River system (Mount Vernon,

IN, Louisville, KY, Cincinnati, OH, Huntington, WV, and Pittsburgh, PA). The

distances between each of these ports were determined. In addition, the distance from

each of these ports to a reference port, Memphis, TN, was determined by the sum

of distance from each of these ports to the Ohio River mouth, and the distance from

the Ohio River mouth to Memphis, TN (as determined by NOAA’s publication). An

additional assumption that Mount Vernon was located midway between the Wabash

river mouth and Evansville, IN was made. The distance between a port not in the

Ohio River system and one in it was calculated as the sum of the distance between

the former port and Memphis and the distance between Memphis and the latter port.

Intermediate information used for calculating transport to for-

eign markets

This section documents the tables referenced when describing the adjustments made

to determine the transportation routes to foreign markets. Table B.15 shows the ge-

ographical coordinates of the seven border points for the characterization of pipeline

and rail transportation to Mexico.

Table B.16 shows the representative ports for each coast of the U.S. and for

foreign markets which were used to determine the cross-ocean distances from the

U.S. to foreign markets.
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Table B.15: U.S.-Mexico Border Points used in determining pipeline and rail trans-
portation routes to Mexico.

Border Point Latitude Longitude Straight-Line Distance to Mexico City (miles)

B0 32.611 -116.229 1,389.31
B1 31.642 -112.044 1,158.92
B2 31.792 -107.626 994.44
B3 30.573 -104.886 834.40
B4 29.765 -101.536 719.41
B5 26.069 -97.945 455.65

Table B.16: Representative ports of U.S. and Foreign Coasts.

Location Representative Port

East Coast New York
West Coast Long Beach
Great Lakes Chicago
Gulf Coast Houston
OECD Asia Nagoya

OECD Europe Rotterdam
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Appendix C

Capstone Paper: A Literature Survey

of Portfolio Optimization

Introduction

We document, through a survey of the literature, the uses and limitations of optimiza-

tion in the construction of investment portfolios. The framework of mean-variance

optimization was introduced by Markowitz [122] in 1952. Namely, given a set of

securities 𝑖 ∈ {1, . . . , 𝑁}, their expected returns 𝑟𝑖, and the covariance matrix of

future returns [𝜎𝑖𝑗] (where 𝜎𝑖𝑖 ≡ 𝜎2
𝑖 ), we seek to determine weights 𝑤𝑖 that maximize

the portfolio’s expected return, given an upper limit on its variance, as shown in

Formulation C.1, or equivalently, minimize its variance, given a lower limit on its

expected return, as shown in Formulation C.2.
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maximize
w

𝑁∑︁
𝑖=1

𝑟𝑖𝑤𝑖

subject to
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝜎𝑖𝑗𝑤𝑖𝑤𝑗 ≤ 𝛾,

𝑁∑︁
𝑖=1

𝑤𝑖 = 𝑏.

(C.1)

minimize
w

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝜎𝑖𝑗𝑤𝑖𝑤𝑗

subject to
𝑁∑︁
𝑖=1

𝑟𝑖𝑤𝑖 ≥ 𝜆,

𝑁∑︁
𝑖=1

𝑤𝑖 = 𝑏.

(C.2)

Budget constraints, where the sum of all security weights must equal 𝑏, are typi-

cally included in the formulation. For the most common cases, 𝑏 = 1 for the unlevered

portfolio, greater or less than 1 for a levered or de-levered portfolio, respectively, and

0 for the zero-investment portfolio. The tuning parameters 𝛾 or 𝜆 are specified by

the investment manager as a measure of the level of his or her risk aversion. An

efficient frontier of optimal portfolios can then be traced out on the return-risk axes,

giving an exact representation of the trade-off between risk and return.

This mean-variance optimization framework is both a simple and powerful way to

approach construction of investment portfolios. Yet, portfolios constructed through

this approach are usually far from optimal when implemented in real life. One key

issue is the large estimation error which complicates an accurate determination of

the parameters which go into the optimizer. In particular, expected returns are in

practice not straightforward to determine. Yet, this optimization framework is known
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to be highly sensitive to the inputs of expected returns, heavily skewing weights

towards securities with the highest expected returns. Clearly, if ex-post returns do

not match ex-ante expected returns, we would expect the “optimal” portfolio to

perform poorly. It was with this observation that Michaud, perhaps in jest, referred

to mean-variance optimizers as “error maximizers” [123].

Besides issues of uncertainty or estimation errors, the standard mean-variance

framework does not take into account other considerations such as liquidity, transac-

tion costs, trading restrictions and alternative measures of risk. As such, extensions

to the framework which address such issues have been developed. This paper ex-

plores such extensions of the standard mean-variance framework, with the purpose

of serving as a compact reference for practitioners. Finally, we return to the issue of

determining meaningful model inputs.

Practical considerations

Transaction costs

In reality, transaction costs are incurred whenever a portfolio is formed or rebalanced,

and should be taken into account. In general, they are assumed to be separable, that

is, the total transaction costs 𝜑(w) can be expressed as the sum of transaction costs

associated with each security traded.

𝜑(w) =
𝑁∑︁
𝑖=1

𝜑𝑖(𝑤𝑖),

where 𝜑𝑖(𝑤𝑖) is the transaction cost function for security 𝑖. The transaction cost

function can be included in the objective or in the constraints.
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Linear transaction costs

As documented in Lobo et al. [124], piecewise linear transaction costs are easily

handled since the constraints they generate are linear. A typical example of piecewise

linear costs is:

𝜑𝑖(𝑤𝑖) =

⎧⎪⎨⎪⎩𝛼+
𝑖 𝑤𝑖, if 𝑤𝑖 ≥ 0,

−𝛼−
𝑖 𝑤𝑖, otherwise.

where 𝛼+
𝑖 , 𝛼

−
𝑖 ≥ 0. This can be better represented by introducing new variables

𝑤+
𝑖 , 𝑤

−
𝑖 ≥ 0 such that

𝑤𝑖 ≡ 𝑤+
𝑖 − 𝑤−

𝑖 ,

resulting in

𝜑𝑖 = 𝛼+
𝑖 𝑤

+
𝑖 + 𝛼−

𝑖 𝑤
−
𝑖 .

Alternatively, the epigraph reformulation could be used. In general, any piecewise

linear convex transaction cost function could be handled with similar techniques.

Fixed or concave transaction costs

Fixed or concave transaction costs also appear in practice. However, incorporating

them into the formulation introduces nonconvexities in the objective function or

constraints, which significantly increases the difficulty of solution. Fixed costs are

costs which occur conditioned on the event that a trade is placed, independent of of

the size of the trade. Concave costs occur when transaction costs per share decreases

as the number of shares traded increases.

As documented in Speranza [125], fixed costs can be modeled using binary vari-
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ables. Namely, for each security 𝑖, we introduce binary variables 𝑧𝑖 such that

𝜑𝑖(𝑤𝑖, 𝑧𝑖) = 𝛼𝑖|𝑤𝑖|+ 𝛽𝑖𝑧𝑖,

where 𝛽𝑖 is the fixed costs that are incurred for every non-zero trade made for security

𝑖.

The relationship between 𝑤𝑖 and 𝑧𝑖 is handled by introducing the constraints

|𝑤𝑖| ≤𝑀𝑖𝑧𝑖, 𝑖 = 1, . . . , 𝑛,

where 𝑀𝑖 is the upper bound and −𝑀𝑖 the lower bound on 𝑤𝑖 if security 𝑖 is traded.

Auxiliary variables 𝜉𝑖 would then be introduced to represent |𝑤𝑖|, accompanied with

the constraints:

𝑤𝑖 ≤ 𝜉𝑖, 𝑖 = 1, . . . , 𝑛,

−𝑤𝑖 ≤ 𝜉𝑖, 𝑖 = 1, . . . , 𝑛.

This framework can be extended to accommodate situations where the fixed and

linear costs are different depending on whether one goes long or short the security.

For concave costs, we have that 𝜑𝑖(𝑤𝑖) is a continuous concave function of 𝑤𝑖.

Concave costs could be handled by generating convex relaxations of the cost function,

then solving the system to global optimality with a branch-and-bound approach

[126]. Alternatively, one could linearize the concave cost function into a continuous

piecewise linear concave function, and apply integer programming methods to solve

the problem.

Given a generic piecewise linear concave function 𝑓(𝑥), we denote its breakpoints
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by 𝑎1 < 𝑎2 < . . . < 𝑎𝑘. Any 𝑥 ∈ [𝑎1, 𝑎𝑘] can be expressed in the form:

𝑥 =
𝑘∑︁

𝑖=1

𝜆𝑖𝑎𝑖,

and 𝑓(𝑥) can be expressed as

𝑓(𝑥) =
𝑘∑︁

𝑖=1

𝜆𝑖𝑓(𝑎𝑖),

where 𝜆1, . . . , 𝜆𝑘 ≥ 0 and
∑︀𝑘

𝑖=1 𝜆𝑖 = 1 .

These representations of 𝑓(𝑥) for a given 𝑥 are not unique in terms of the 𝜆𝑖’s

unless we impose the additional constraint that at most two consecutive coefficients

𝜆𝑖 can be zero. This condition can be imposed through the introduction of binary

variables 𝛿𝑖, which are equal to 1 only if 𝑎𝑖 ≤ 𝑥 ≤ 𝑎𝑖+1, and 0 otherwise.

Then, we can represent the problem of minimizing the piecewise linear concave
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function with the following formulation:

minimize
𝜆,𝛿

𝑘∑︁
𝑖=1

𝜆𝑖𝑓(𝑎𝑖)

subject to
𝑘∑︁

𝑖=1

𝜆𝑖 = 1,

𝜆1 ≤ 𝛿1,

𝜆𝑖 ≤ 𝛿𝑖−1 + 𝛿𝑖, , 𝑖 = 2, . . . , 𝑘 − 1,

𝜆𝑘 ≤ 𝛿𝑘−1,

𝑘−1∑︁
𝑖=1

𝛿𝑖 = 1,

𝜆𝑖 ≥ 0,

𝛿𝑖 ∈ {0, 1}.

Minimum transaction units

Analogous to the issue of fixed costs is the situation of minimum transaction units.

That is if security 𝑖 is traded, at least a minimum of 𝑚𝑖 units must be transacted, or

multiples of 𝑚𝑖 units must be transacted. This can be addressed by the introduction

of binary, or in general, integer variables 𝑧𝑖, with the constraints

𝑚𝑖𝑧𝑖 =
𝑊

𝑝𝑖
|𝑤𝑖|, 𝑖 = 1, . . . , 𝑛,

where 𝑝𝑖 is the current price of security 𝑖, 𝑊 is the total wealth of the portfolio, and

𝑧𝑖 is binary for the former situation and integer for the latter. As with the example

in fixed costs, auxiliary variables are used to linearize the constraints.

229



Sizing

Setting bounds on the security weights or number of securities may help to restrict

the “error maximization” tendencies of a naive implementation of mean-variance op-

timization. The simplest case involves limiting the absolute weights of each security

to an upper bound 𝑀𝑖:

|𝑤𝑖| ≤𝑀𝑖, 𝑖 = 1, . . . , 𝑛.

We could also have the case where we could like a lower bound on the number of

securities to achieve diversification, where we introduce binary variables 𝑧𝑖 such that:

∑︁
𝑖

𝑧𝑖 ≥ 𝑁,

𝑚𝑖𝑧𝑖 ≤ |𝑤𝑖| ≤𝑀𝑖𝑧𝑖, 𝑖 = 1, . . . , 𝑛.

Considering that this integer formulation significantly increases the difficulty of

solution, we could look at an alternative approach that only requires continuous

variables. As documented in Lobo et al. [124], consider the case that we require no

more than a weight 𝛾 be invested in fewer than 𝑟 securities. If we denote f[𝑖] as the

𝑖th largest component of the vector f , this constraint can be expressed as

𝑟∑︁
𝑖=1

w[𝑖] ≤ 𝛾.

It is shown that this constraint can be reformulated into the following system, re-
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quiring only 1 + 2𝑛 linear inequalities:

𝛾 ≥ 𝑟𝑡 +
𝑛∑︁

𝑖=1

𝑦𝑖,

𝑡 + 𝑦𝑖 ≥ 𝑤𝑖, 𝑖 = 1, . . . , 𝑛,

𝑦𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑛,

where 𝑦𝑖 and 𝑡 are auxiliary variables.

To see why the reformulation is valid, note that
∑︀𝑟

𝑖=1w[𝑖] is the solution of the

linear program

maximize
x

𝑛∑︁
𝑖=1

𝑤𝑖𝑥𝑖

subject to 0 ≤ 𝑥𝑖 ≤ 1, 𝑖 = 1, . . . , 𝑛,

𝑛∑︁
𝑖=1

𝑥𝑖 = 𝑟,

where the variables are 𝑥𝑖. Assuming the problem is feasible and bounded, its optimal

value is also the same as that of its dual:

minimize
𝑡,y

𝑟𝑡 +
𝑛∑︁

𝑖=1

𝑦𝑖

subject to 𝑡 + 𝑦𝑖 ≥ 𝑤𝑖, 𝑖 = 1, . . . , 𝑛,

𝑦𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑛.

The optimal value of the dual is
∑︀𝑟

𝑖=1 w[𝑖], and is less than 𝛾 if and only if there

exists a feasible solution 𝑡,y with 𝑟𝑡 +
∑︀𝑛

𝑖=1 𝑦𝑖 ≤ 𝛾.

There are extensions to this type of constraint, for example, if we divide the 𝑛

securities into 𝑚 classes, and require that no more than a fraction 𝛾 of the portfolio

231



be invested in fewer than 𝑅 of these classes.

Institutional investment managers often also face constraints on short selling.

Individual bounds 𝑠𝑖 on short selling can naturally be set:

−𝑤𝑖 ≤ 𝑠𝑖, 𝑖 = 1, . . . , 𝑛.

The total amount of short selling can also be bounded by 𝑆:

𝑛∑︁
𝑖=1

max{−𝑤𝑖, 0} ≤ 𝑆.

The max function is naturally replaced by using auxiliary variables with linear con-

straints, as had been documented earlier.

Finally, the total weight of short positions can also be expressed as a fraction 𝛾

of the total weight of long positions:

𝑛∑︁
𝑖=1

max{−𝑤𝑖, 0} ≤ 𝛾
𝑛∑︁

𝑖=1

max{𝑤𝑖, 0}.

Risk measures

The variance of portfolio returns has served as the classical measure of risk in the

mean-variance framework. However, in a more general scheme, a risk measure 𝑅(w)

is minimized subject to a minimum required expected portfolio return. Here, we

document alternative risk measures found in the literature. In the sections following

below, we denote the random variable 𝑟𝑖 as the return of security 𝑖 in the following

period.
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Mean absolute deviation

The relative difficulty in solving a quadratic program in the early 1990s led to the

proposal of mean-absolute deviation (MAD) as a risk measure by Konno and Ya-

mazaki [127], where a linear program formulation was available. MAD is defined

as:

𝑅(w) = E

[︃⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

𝑟𝑖𝑤𝑖 − E

[︃
𝑛∑︁

𝑖=1

𝑟𝑖𝑤𝑖

]︃⃒⃒⃒⃒
⃒
]︃
.

Under conditions where returns are multivariate normally distributed, the minimum

MAD portfolio coincides with the minimum variance portfolio. Admittedly, these

assumptions do not hold in practice.

In order to reformulate the problem into a linear program, a sample of returns

data would have to be available. This could be generated by the user, or obtained

from historical data. Denoting each observation of returns as (𝑟1𝑡, . . . , 𝑟𝑛𝑡), 𝑡 =

1, . . . , 𝑇 , we can rewrite the MAD measure as:

𝑅(w) =
1

𝑇

𝑇∑︁
𝑡=1

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

𝑎𝑖𝑡𝑤𝑖

⃒⃒⃒⃒
⃒ ,

where 𝑎𝑖𝑡 ≡ (𝑟𝑖𝑡 − 𝑟𝑖) and 𝑟𝑖 ≡ 1
𝑇

∑︀𝑇
𝑡=1 𝑟𝑖𝑡.

Introducing auxiliary variables 𝑣𝑡 and 𝑢𝑡, minimizing 𝑅(w) is equivalent to the

linear program [128][129]:

minimize
w,v,u

𝑇∑︁
𝑡=1

(𝑣𝑡 + 𝑢𝑡)

subject to 𝑣𝑡 − 𝑢𝑡 −
𝑛∑︁

𝑖=1

𝑎𝑖𝑡𝑤𝑖 = 0, 𝑡 = 1, · · · , 𝑇,

𝑣𝑡, 𝑢𝑡 ≥ 0, 𝑡 = 1, · · · , 𝑇.
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As evident in the reformulation, we introduce 2𝑇 new variables and 𝑇 new con-

straints. Naturally, one might want to explore how the difficulty of solution increases

as we increase the number of observations included in our sample. In addition, lit-

tle comment is made about how to choose the sample in order to achieve a useful

solution. These are very important practical issues to consider. In addition, the

necessity of replacing variance with MAD might be diminished today with much

improved performance of modern-day second-order cone program solvers.

Maximum loss

We can alternatively define the maximum loss of the portfolio as the appropriate

risk measure to minimize. Similar in spirit to MAD, this leads to a linear program

formulation [130]. Given observations of returns (𝑟1𝑡, . . . , 𝑟𝑛𝑡), 𝑡 = 1, . . . , 𝑇 , let 𝑅(w)

be the maximum loss of the portfolio over the time period, defined as:

𝑅(w) = max
𝑡

{︁
−

𝑛∑︁
𝑖=1

𝑟𝑖𝑡𝑤𝑖

}︁
.

Minimizing 𝑅(w) involves the introduction of a single auxiliary variable, 𝑧, in

the linear program:

minimize 𝑧

subject to −
𝑛∑︁

𝑖=1

𝑟𝑖𝑡𝑤𝑖 − 𝑧 ≤ 0, 𝑡 = 1, · · · , 𝑇.

Skewness

One drawback of using variance as the risk measure is that it neglects the considera-

tion of skewness in the portfolio’s return distribution. All else being equal, investors
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would naturally prefer positive skewness over negative skewness. Konno et al. ex-

tended their work on MAD to account for skewness as a risk measure [129]. They

proposed the negative of the lower semi-third moment of the portfolio’s return as the

risk function:

𝑅(w) = E

[︃
𝑔

(︃
𝑛∑︁

𝑖=1

𝑟𝑖𝑤𝑖 − E

[︃
𝑛∑︁

𝑖=1

𝑟𝑖𝑤𝑖

]︃)︃]︃
,

where

𝑔(𝑢) =

⎧⎪⎨⎪⎩0, if 𝑢 ≥ 0,

−𝑢3, otherwise.

Although 𝑔(·) is convex, it might introduce computational difficulties when the

size of the problem is large. As such, the authors proposed replacing it with a

piecewise linear convex function 𝐺(·), given as

𝐺(𝑢) = |𝑢− 𝜌1|− + 𝛼 |𝑢− 𝜌2|− ,

where 𝛼 > 0, 𝜌1, 𝜌2 < 0 are tuning parameters and |𝑥|− ≡ max{0,−𝑥}.

Similar to the MAD method, we generate a sample of observations to evaluate

the expectation terms. In addition, we ignore the mean term in the skewness. This

leads to a rewrite of the skewness risk measure as:

𝑅(w) =
1

𝑇 − 1

(︃
𝑇∑︁
𝑡=1

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

𝑟𝑖𝑡𝑤𝑖 − 𝜌1

⃒⃒⃒⃒
⃒
−

+ 𝛼
𝑇∑︁
𝑡=1

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

𝑟𝑖𝑡𝑤𝑖 − 𝜌2

⃒⃒⃒⃒
⃒
−

)︃
.

Introducing auxiliary variables 𝑢𝑡 and 𝑣𝑡, minimizing 𝑅(w) is equivalent to the
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linear program:

minimize
w,u,v

1

𝑇 − 1

(︃
𝑇∑︁
𝑡=1

𝑢𝑡 + 𝛼
𝑇∑︁
𝑡=1

𝑣𝑡

)︃

subject to 𝑢𝑡 +
𝑛∑︁

𝑖=1

𝑟𝑖𝑡𝑤𝑖 ≥ 𝜌1, 𝑡 = 1, · · · , 𝑇,

𝑣𝑡 +
𝑛∑︁

𝑖=1

𝑟𝑖𝑡𝑤𝑖 ≥ 𝜌2, 𝑡 = 1, · · · , 𝑇,

𝑣𝑡, 𝑢𝑡 ≥ 0, 𝑡 = 1, · · · , 𝑇.

2𝑇 new variables and 2𝑇 new constraints have been introduced in the reformulation.

As with the MAD reformulation, careful attention needs to be paid on the choice of

the sample.

Value-at-risk

An alternative measure of risk is value-at-risk (VaR). Given a confidence level 1−𝛼,

VaR is the minimum value of loss that occurs no more than 𝛼 * 100% of the time.

For example, if 𝛼 = 0.05, a VaR of −0.10 indicates that in the future realizations

of portfolio returns, 5% of them will have returns less than or equal to -10%, while

95% of them will have returns greater than -10%. Defining 𝑅(w) as the negative of

VaR, which we intend to minimize, we formalize its definition as:

𝑅(w) = −𝑄𝛼

(︃
𝑛∑︁

𝑖=1

𝑟𝑖𝑤𝑖

)︃
,

where 𝑄𝛼(·) is the 𝛼-quantile of return:

𝑄𝛼(𝑍) = inf{𝑧 : 𝐹𝑍(𝑧) > 𝛼},
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where 𝐹𝑍(·) is the cdf of the random variable 𝑍.

Studies have been done to evaluate 𝑅(w) given a sample of return observa-

tions and working with the sample cdf [131]. However, 𝑅(w) turns out to be non-

differentiable and non-convex in w. Following which, smoothing techniques can be

used to address the non-differentiability.

An alternate way to consider VaR is not to work with minimizing 𝑅(w) directly,

but instead expressing the VaR requirement in a constraint, and perform the portfolio

optimization for different values of VaR, given a certain confidence level 1− 𝛼 [124].

With this method, we could include one or multiple VaR constraints in a single

optimization model. A tractable expression of this constraint makes the assumption

that portfolio returns are Gaussian, i.e.,
∑︀𝑛

𝑖=1 𝑟𝑖𝑤𝑖 ∼ 𝒩 (𝜇̃, 𝜎̃2), where 𝜇̃ and 𝜎̃2 are

the mean and variance of the portfolio’s returns, respectively.

Following which, we can express the VaR requirement with the following con-

straint:

Pr

(︃
𝑛∑︁

𝑖=1

𝑟𝑖𝑤𝑖 ≤ 𝑉 𝑎𝑅

)︃
≤ 𝛼.

Under the assumption of normality, we have:

Φ

(︂
𝑉 𝑎𝑅− 𝜇̃

𝜎̃

)︂
≤ 𝛼,

where Φ(·) is the cdf of the standard normal distribution. Using the identity Φ−1(𝛼) =

−Φ−1(1− 𝛼), we have:

𝜇̃− 𝑉 𝑎𝑅 ≥ Φ−1(1− 𝛼)𝜎̃.
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Substituting 𝜇̃ =
∑︀𝑛

𝑖=1 𝑟𝑖𝑤𝑖 and 𝜎̃2 =
∑︀𝑁

𝑖=1

∑︀𝑁
𝑗=1 𝜎𝑖𝑗𝑤𝑖𝑤𝑗, we have:

Φ−1(1− 𝛼)

⎯⎸⎸⎷ 𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝜎𝑖𝑗𝑤𝑖𝑤𝑗 ≤
𝑛∑︁

𝑖=1

𝑟𝑖𝑤𝑖 − 𝑉 𝑎𝑅.

Provided that Φ−1(1 − 𝛼) ≥ 0, and therefore 𝛼 ≤ 0.5, this is a second-order cone

constraint, which is easily handled. Since investment managers are often interested in

VaR values for which 𝛼 is small, this constraint is useful when constructing portfolios.

Conditional value-at-risk

Related to VaR is conditional value-at-risk (CVaR). A CVaR at confidence level

1 − 𝛼 is the expected losses of all return realizations which are at or below the

corresponding VaR. In contrast to VaR, CVaR has the ideal properties of being a

coherent risk measure and its minimization can be formulated as a linear program,

as first introduced by Uryasev et al. [132][133]. Further, by its definition, the VaR

is never more than the CVaR, and so portfolios with low CVaR necessarily have low

VaRs too. Using the definition of the 𝛼-quantile of return, 𝑄𝛼(·), as above, we define

the CVaR risk measure 𝑅(w) as:

𝑅(w) =
1

𝛼

∫︁
{r:

∑︀𝑛
𝑖=1 𝑟𝑖𝑤𝑖≤𝑄𝛼(

∑︀𝑛
𝑖=1 𝑟𝑖𝑤𝑖)}

(︃
−

𝑛∑︁
𝑖=1

𝑟𝑖𝑤𝑖

)︃
𝑝(r)𝑑r,

where 𝑝(r) is the pdf of the return vector r. It can be seen that this expression indeed

gives us our definition of CVaR: the integral is over all realizations that give a total

loss greater than our 𝛼-quantile of return, weighted by their respective probabilities,

and the normalizing factor 1/𝛼 correctly rescales the unconditional probabilities to

attain the required conditional expectation of losses.
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Minimizing 𝑅(w) as defined would be a little tricky, since we would have to also

deal with the inner minimization 𝑄𝛼(·). However, the key finding by Uryasev et al.

was that one could more easily directly work with the risk measure 𝑅(w, 𝑧), defined

as:

𝑅(w, 𝑧) = 𝑧 +
1

𝛼

∫︁
r∈R𝑛

[︃
−

𝑛∑︁
𝑖=1

𝑟𝑖𝑤𝑖 − 𝑧

]︃+
𝑝(r)𝑑r,

where [𝑥]+ ≡ max{0, 𝑥}.

It was shown that the joint minimization of 𝑅(w, 𝑧) leads to the same opti-

mal value as the minimization of 𝑅(w), and further, in the case where the set

𝑄𝛼(
∑︀𝑛

𝑖=1 𝑟𝑖𝑤
*
𝑖 ) is a singleton (which is typically the case), an optimal solution (w*, 𝑧*)

from the joint minimization of 𝑅(w, 𝑧) will yield a w* which minimizes 𝑅(w).

Again, similar to some of the previous risk measures, we generate a sample of

observations that can help to approximate the integral. Denoting each observation

of returns as (𝑟1𝑡, . . . , 𝑟𝑛𝑡), 𝑡 = 1, . . . , 𝑇 , we can rewrite 𝑅(w, 𝑧) as:

𝑅(w, 𝑧) = 𝑧 +
1

𝛼

1

𝑇

𝑇∑︁
𝑡=1

[︃
−

𝑛∑︁
𝑖=1

𝑟𝑖𝑡𝑤𝑖 − 𝑧

]︃+
.

By using auxiliary variables 𝑢𝑡 to replace the max function, this can be expressed as

a linear program, where minimizing 𝑅(w, 𝑧) is equivalent to:

minimize
𝑧,w,u

𝑧 +
1

𝛼

1

𝑇

𝑇∑︁
𝑡=1

𝑢𝑡

subject to 𝑢𝑡 ≥ −
𝑛∑︁

𝑖=1

𝑟𝑖𝑡𝑤𝑖 − 𝑧, 𝑡 = 1, · · · , 𝑇,

𝑢𝑡 ≥ 0, 𝑡 = 1, · · · , 𝑇.

To more finely shape the profit/loss distribution, we can introduce use multiple
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CVaRs in the objective (or constraints) by using a weighted sum of CVaRs at dif-

ferent 𝛼’s [134]. Standard cross-validation methods can then be used to select the

appropriate weights. Finally, the use of CVaR minimization would be much more

relevant in the cases where the return distribution is highly non-normal, exhibits

a negative skew, and if the portfolio manager’s main priority is to protect against

heavy losses, such as in a credit portfolio [135].

Drawdown

While the above risk measures are concerned with losses occurring at a point in

time, drawdown concerns itself with the specific accumulative sequence of losses over

time [136]. Given a sequence of return realizations over time r𝑡 ≡ (𝑟1𝑡, . . . , 𝑟𝑛𝑡), 𝑡 =

1, . . . , 𝑇 , and a static portfolio allocation w, we define 𝑣(w, 𝑡) ≡
∑︀𝑡

𝜏=1 r𝜏 ·w as the

uncompounded portfolio value at time 𝑡. The drawdown function 𝑑(w, 𝑡) at time

𝑡 is defined as the difference between the maximum of 𝑣(w, 𝑡) over all preceding

observations and its current value, that is:

𝑑(w, 𝑡) = max
0≤𝜏≤𝑡

{𝑣(w, 𝑡)} − 𝑣(w, 𝑡).

Similar in spirit to CVaR, conditional drawdown (CDD) at a confidence level 1−𝛼 is

defined as the average drawdown of the worst 𝛼 * 100% of drawdowns in the sample.

Specifically, the CDD risk function 𝑅𝐶𝐷𝐷(w) is defined as:

𝑅𝐶𝐷𝐷(w) =
1

𝛼𝑇

∑︁
𝑡∈Ω

𝑑(w, 𝑡) Ω = {𝑡 ∈ {1, · · · , 𝑇} : 𝑑(w, 𝑡) ≥ 𝑧(w, 𝑡)},

where 𝑧(w, 𝑡) is defined as the threshold such that 𝛼 * 100% of drawdowns exceed

this threshold.
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Similar to the method of implementation in CVaR, it was noted that we could

instead define the function 𝑅𝐶𝐷𝐷(w, 𝑧) and perform the minimization jointly over

(w, 𝑧), in order to bypass the inner minimization implied by 𝑧(w, 𝑡), where:

𝑅𝐶𝐷𝐷(w, 𝑧) = 𝑧 +
1

𝛼𝑇

𝑇∑︁
𝑡=1

[𝑑(w, 𝑡)− 𝑧]+ ,

where [𝑥]+ ≡ max{0, 𝑥}.

If we consider the limits of 𝛼, we also get two special cases which might serve as

alternative risk measures. If 𝛼→ 0, we attain the maximum drawdown, 𝑅𝑀𝐷𝐷(w),

defined as:

𝑅𝑀𝐷𝐷(w) = max
1≤𝑡≤𝑇

{𝑑(w, 𝑡)}.

If 𝛼→ 1, we attain the average drawdown, 𝑅𝐴𝐷𝐷(w), defined as:

𝑅𝐴𝐷𝐷(w) =
1

𝑇

𝑇∑︁
𝑡=1

𝑑(w, 𝑡).

The problems defined by minimizing 𝑅𝐶𝐷𝐷(w, 𝑧), 𝑅𝑀𝐷𝐷(w) and 𝑅𝐴𝐷𝐷(w) can be

expressed as linear programs, by introducing auxiliary variables to represent the max

function in 𝑑(w, 𝑡), as well as the outer max functions in 𝑅𝐶𝐷𝐷(w, 𝑧) and 𝑅𝑀𝐷𝐷(w).

A naive LP transformation of minimizing 𝑅𝐶𝐷𝐷(w, 𝑧) would introduce 𝑂(𝑇 2) ad-

ditional constraints, since for each 𝑑(w, 𝑡) term we have a max function over 𝑡 values,

and we have 𝑂(𝑇 ) 𝑑(w, 𝑡) terms in total. However, it is possible to arrive at a for-

mulation which only adds 𝑂(𝑇 ) constraints through the elimination of intermediate

variables [137]:
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minimize
𝑧,w,u,v

𝑧 +
1

𝛼

1

𝑇

𝑇∑︁
𝑡=1

𝑢𝑡

subject to 𝑢𝑡 ≥ 𝑣𝑡 − 𝑧, 𝑡 = 1, · · · , 𝑇,

𝑣𝑡 ≥ 𝑣𝑡−1 − 𝑧, 𝑡 = 2, · · · , 𝑇,

𝑣0 = 0,

𝑢𝑡, 𝑣𝑡 ≥ 0, 𝑡 = 1, · · · , 𝑇.

Varying 𝛼 in [0, 1] allows one to fine-tune required performance of the portfolio

with respect to drawdowns. One major drawback of using a single drawdown risk

function is that the solution is very dependent on the exact sequence of realizations

fed into the optimizer. As such, the solution is not expected to be robust once imple-

mented out-of-sample. One might mitigate this by generating 𝑆 different sequences

of return realizations, and then either add 𝑆 individual drawdown constraints, or add

a single constraint which limits the average CDD among these different sequences.

The former would lead to a total of 𝑂(𝑆𝑇 ) constraints added, whereas the latter

preserves the number of constraints at 𝑂(𝑇 ). However, the former would lead to

more conservative portfolios, whereas the latter might lead to solutions that have

extreme drawdowns clustered in a few scenarios. Naturally, one has to consider the

trade-offs between computational tractability and the usefulness of the solution in

practice.

Robust optimization

In contrast to many of the above approaches, which generally apply stochastic opti-

mization techniques, requiring the generation of many scenarios of return realizations

as model inputs, robust optimization is an alternative approach to optimization un-
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der uncertainty that is deterministic and set-based. That is, it seeks to construct a

solution that is feasible for any realization of uncertainty in a given set of possible

parameter values. This set is termed as an ‘uncertainty set’. Intersections of uncer-

tainty sets for a given parameter, or uncertainty sets defined separately for different

parameters also fall under the general setting of robust optimization.

A potential advantage of using robust optimization over stochastic optimization

methods is the preservation of computational tractability while obtaining solutions

that are fairly robust to uncertainty [138]. However, some care is needed in the choice

of uncertainty sets in order to ensure that tractability is maintained.

We consider the robust minimum variance problem, which is the robust version

of Formulation C.2:
minimize

w
max
Σ∈𝒮

w⊤Σw

subject to min
𝜇∈ℳ

𝜇⊤w ≥ 𝜆,

1⊤w = 𝑏,

(C.3)

where 𝜇 and Σ are the mean return vector and covariance matrix of the securities

in the universe respectively, andℳ and 𝒮 are their corresponding uncertainty sets.

The disadvantage of Formulation C.3 is that it might be overly conservative.

Further, one would have to be cautious in determining the appropriate structure

of 𝒮 in order to arrive at a tractable formulation. We might consider instead, a

less conservative formulation, where we treat 𝒮 as a singleton and only consider

uncertainty in 𝜇. Thus, we define the linear robust minimum variance problem,
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where the uncertainty sets are only defined on the coefficients of the linear constraint:

minimize
w

w⊤Σw

subject to min
𝜇∈ℳ

𝜇⊤w ≥ 𝜆,

1⊤w = 𝑏.

(C.4)

For Formulation C.4, well-known results that lead to computationally tractable

and easily expressed robust counterparts are available [138]. In particular, these

include cases where the uncertainty setℳ is a polyhedron, or can be described as a

ball with a general norm.

We can also express Formulation C.4 equivalently as:

minimize
w

w⊤Σw

subject to − 𝜇⊤w ≤ −𝜆 ∀𝜇 ∈ℳ,

1⊤w = 𝑏.

(C.5)

In general, for variable x, we have the set-up:

minimize
x

𝑓(x)

subject to a⊤
𝑖 x ≤ 𝑏𝑖 ∀a𝑖 ∈ 𝒰𝑖, 𝑖 = 1, . . . ,𝑚,

x ∈ 𝒳 ,

(C.6)
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or equivalently:

minimize
x

𝑓(x)

subject to max
a𝑖∈𝒰𝑖

a⊤
𝑖 x ≤ 𝑏𝑖, 𝑖 = 1, . . . ,𝑚,

x ∈ 𝒳 ,

(C.7)

where 𝑓(x) is a potentially non-linear objective function and the set 𝒳 define addi-

tional constraints on x.

Given the general form above, we present the results of the robust counterpart

for different assumptions on the structure of 𝒰𝑖:

Polyhedral uncertainty

Given polyhedral uncertainty sets of the form:

𝒰𝑖 = {a𝑖|D𝑖a𝑖 ≤ d𝑖},

we consider the subproblem of maximizing a𝑖:

maximize
a𝑖

a⊤
𝑖 x

subject to D𝑖a𝑖 ≤ d𝑖,

and its dual:
minimize

p𝑖

p⊤
𝑖 d𝑖

subject to p⊤
𝑖 D𝑖 = x,

p𝑖 ≥ 0.
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Thus the robust counterpart becomes [138]:

minimize
x

𝑓(x)

subject to p⊤
𝑖 d𝑖 ≤ 𝑏𝑖, 𝑖 = 1, . . . ,𝑚,

p⊤
𝑖 D𝑖 = x, 𝑖 = 1, . . . ,𝑚,

p𝑖 ≥ 0, 𝑖 = 1, . . . ,𝑚,

x ∈ 𝒳 .

Note that in contrast to the original, non-robust problem which contained 𝑚 con-

straints, the robust counterpart contains 3𝑚 constraints and introduces 𝑚 additional

variables.

Ellipsoidal uncertainty

Given ellipsoidal uncertainty sets of the form:

𝒰𝑖 = {a𝑖|a𝑖 = ā𝑖 + Δ⊤
𝑖 u𝑖, ‖u𝑖‖2 ≤ 𝜌}, Δ𝑖 : 𝑘𝑖 × 𝑛, u𝑖 : 𝑘𝑖 × 1,

where ā𝑖 is a nominal value, the robust counterpart is [138]:

minimize
x

𝑓(x)

subject to ā⊤
𝑖 x + 𝜌‖Δ𝑖x‖2 ≤ 𝑏𝑖, 𝑖 = 1, . . . ,𝑚,

x ∈ 𝒳 .

We observe that the robust counterpart is an SOCP, which can efficiently be solved.

Using ellipsoidal uncertainty sets are in general useful when the underlying data

has covariance structure, which is the case for security returns. Given a vector
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of nominal expected returns 𝜇0 and the covariance matrix of returns Σ, we can

construct an ellipsoidal uncertainty set for 𝜇 of the form:

𝒰 = {𝜇|𝜇 = 𝜇0 + Σ− 1
2u, ‖u‖2 ≤ 𝜌},

where 𝜌 is determined from the appropriate critical value for the confidence interval

corresponding to a given size of the uncertainty set. As we shall discuss in detail

later, 𝜇0 is best represented through the influence of a practitioner’s forward-looking

views, and Σ should be estimated using a factor model or shrinkage techniques.

General norm uncertainty

We can generalize the above to consider general norm uncertainty sets of the form:

𝒰𝑖 = {a𝑖|a𝑖 = ā𝑖 + Δ⊤
𝑖 u𝑖, ‖u𝑖‖𝑝 ≤ 𝜌}, Δ𝑖 : 𝑘𝑖 × 𝑛, u𝑖 : 𝑘𝑖 × 1,

where the 𝐿𝑝 norm ‖𝑥‖𝑝 ≡
(︁∑︀𝑛

𝑗=1 |𝑥𝑗|𝑝
)︁1/𝑝

.

The robust counterpart in this general case is [138]:

minimize
x

𝑓(x)

subject to ā⊤
𝑖 x + 𝜌‖Δ𝑖x‖* ≤ 𝑏𝑖, 𝑖 = 1, . . . ,𝑚,

x ∈ 𝒳 ,

where ‖𝑠‖* is the dual of the 𝐿𝑝 norm, with ‖𝑠‖* = ‖𝑠‖𝑞 where 𝑞 = 1 + 1
𝑝−1

.

We are particularly interested in the cases of the 𝐿1, 𝐿2 and 𝐿∞ norms. Note

that the dual norm of the 𝐿1 norm is the 𝐿∞ norm, and vice versa. In contrast, the

dual norm of the 𝐿2 norm is 𝐿2. Uncertainty sets with 𝐿1 and 𝐿∞ norms reduce

247



the robust counterpart to a linear optimization problem, while those with 𝐿2 norms

reduce the robust counterpart to a SOCP, as we have seen earlier.

Factor models

Factor models are commonly used to model security returns. Given 𝑛 securities,

it is common to find that only a small number 𝑘 of underlying factors drive their

movement. Specifically, a factor model is described as:

r𝑡 = 𝛼 + 𝛽⊤f𝑡 + 𝜖𝑡,

where r𝑡 ∈ R𝑛 is the single-period return vector of the securities, f𝑡 ∈ R𝑘 is the

single-period return vector of the factors, 𝛽 ∈ R𝑘×𝑛 is the matrix of factor loadings

for each security, 𝛼 ∈ R𝑛 is the vector of excess returns, and 𝜖𝑡 ∈ R𝑛 is the vector of

residual returns.

We assume that the factors f𝑡 have mean returns 𝜇𝑓 ∈ R𝑘 and covariance matrix

Σ𝑓 ∈ R𝑘×𝑘, while the residual returns 𝜖𝑡 have zero mean and covariance matrix

Σ𝜖 ∈ R𝑛×𝑛.

Given this setup, the single-period expected return of the securities is 𝛼+𝛽⊤𝜇𝑓

and the covariance matrix is 𝛽⊤Σ𝑓𝛽 + Σ𝜖.

With a weight vector w, the portfolio’s single-period return is:

w⊤r𝑡 = w⊤𝛼 + w⊤𝛽⊤f𝑡 + w⊤𝜖𝑡,

with mean w⊤ (︀𝛼 + 𝛽⊤𝜇𝑓

)︀
and variance w⊤ (︀𝛽⊤Σ𝑓𝛽 + Σ𝜖

)︀
w.

A computational advantage of using factor models in mean-variance optimization
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is that it reduces the number of cross-terms in the expression for the portfolio’s vari-

ance [127]. That is, we introduce additional 𝑘 additional variables w̄ = [𝑤̄1, . . . , 𝑤̄𝑘] ≡

𝛽w, such that

𝜎2
𝑝 = w⊤Σ𝜖w + w̄⊤Σ𝑓w̄

=
𝑛∑︁

𝑖=1

𝑤2
𝑖 𝜎

2
𝜖𝑖

+
𝑘∑︁

𝑖=1

𝑘∑︁
𝑗=1

𝑤̄𝑖𝑤̄𝑗𝜎𝑓𝑖𝑗 ,

where 𝜎2
𝑝 is the variance of the portfolio, 𝜎2

𝜖𝑖
denotes the 𝑖th diagonal element of Σ𝜖,

𝜎𝑓𝑖𝑗 is the (𝑖, 𝑗)th entry of Σ𝑓 , with the additional constraints that

𝑤̄𝑗 =
𝑛∑︁

𝑖=1

𝛽𝑗𝑖𝑤𝑖, 𝑗 = 1, . . . , 𝑘.

Expressing security returns in terms of factor returns also allow constraints that

restrict the portfolio’s overall exposure to particular factors. Note that by definition

of 𝑤̄𝑗 above, this is precisely the sensitivity or exposure of the portfolio to the 𝑗th

factor. Thus, we could set the portfolio’s target exposure (beta) to each factor,

𝛽𝑡𝑎𝑟𝑔𝑒𝑡
𝑗 , as such:

𝛽𝑡𝑎𝑟𝑔𝑒𝑡
𝑗 − 𝛾𝑗 ≤ 𝑤̄𝑗 ≤ 𝛽𝑡𝑎𝑟𝑔𝑒𝑡

𝑗 + 𝛾𝑗, 𝑗 = 1, . . . , 𝑘,

where 𝛾𝑗 is a small number.

Resampling

Portfolio resampling is a heuristic method to determine portfolio weights which might

be more resilient to estimation errors in the model parameters [139]. Given nomi-
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nal values of the mean return vector 𝜇0 and covariance matrix Σ0, a sample of 𝑇

observations can be generated by bootstrapping from the nominal distribution. Al-

ternatively, we can draw bootstrap samples directly from an empirical distribution

of returns.

Either way, we generate 𝑛 bootstrap samples and estimate their corresponding

mean return vectors and covariance matrices, (𝜇̂1, Σ̂1) to (𝜇̂𝑛, Σ̂𝑛). These estimates

then each serve as inputs to the mean-variance optimizer. For each optimization,

we choose 𝑚 portfolios along the frontier by varying the risk-aversion parameter and

save the corresponding allocation vectors w11, . . . ,w1𝑚 to w𝑛1, . . . ,w𝑛𝑚.

The resampled weight for a portfolio of risk level 𝑚′ is given by:

w̄𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑒𝑑
𝑚′ =

1

𝑛

𝑛∑︁
𝑖=1

w𝑖𝑚′ ,

which simply takes the average weight across all samples. The advantage of this

method is that it preserves any constraints on the weights in the optimization, for

example, constraints on the total weight or constraints on individual weights.

Despite the simplicity of resampling, some caveats must be seriously noted. Re-

sampled weights are known to suffer from the problem of “optionality”. This is a

situation where securities with higher volatilities generate a wider distribution of ex-

pected returns through the bootstrapping procedure. The result is that there exists

a minority of cases where the expected return of this security is exceptionally high

and for which the optimal allocation heavily weights this security, whereas for the

majority of the cases, low or zero weights are given to this security. However, the av-

eraging process during the final determination of the resampled weights obscures this

behavior. As as result, the resampled weights might exhibit a bias towards higher

volatility securities even with a deterioration of their Sharpe ratio. Further, resam-
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pling might help to mitigate the “error maximization” effect of a naive mean-variance

optimization in-sample, but its usefulness out-of-sample over other methods in this

regard is not clear.

Crafting the inputs

Using sample means and covariances of returns directly into the optimizer usually

leads to poor results due to the large amount of estimation error present. Further,

historical returns are usually not a good predictor of future returns in the short to

middle term, and even in the long term (defined as several decades, using the human

lifespan as a yardstick) this might not be true.

In this section, we document methods that somewhat address these weaknesses.

Expected returns

The Black-Litterman model is a systematic way to combine either expected returns

estimated through sample means, or implied by an existing portfolio allocation, with

an investor’s own forward-looking views on expected returns [140]. Both the former

and latter models of returns are described by probability distributions characterized

by their means and covariances, and are mixed together in a way that assigns weights

inversely proportional to their degree of uncertainty to arrive at the final vector of

expected returns.

There are advantages to using the Black-Litterman update to systematically in-

corporate investors’ views. First, investors do not need to provide a full set of

expected returns in their projections. Rather, they could only provide their views on

a subset of securities. Further, they have the flexibility of providing their views both

251



in a relative (“A outperforms B by 2%”) or absolute sense (“A will return 6%, while

B will return 4%.”). Second, investors are able to express the degree of confidence in

their views, and this information is used to derive the appropriate weighting between

the existing and new views. Third, the update incorporates the current correlation

structure between the securities, such that the resulting expected returns vector will

reflect this information, even if only partial views are provided. This might also con-

tribute to the observation that the inputs are generally robust, that the new optimal

weights are not drastically different from the old ones if the investor provides only

weak views in his or her update. In a sense, practitioners should be comforted by

the observation that the new allocation should vary from the old one in a somewhat

direct proportion to how different the new and old expected return vectors are.

We briefly document the inputs and outputs of the Black-Litterman model here.

Readers should refer to Satchell and Scowcroft [141] and Idzorek [142] for greater

detail.

The inputs to the model include:

• 𝜋 ∈ R𝑛: A vector consisting of the existing implied expected returns for the 𝑛

securities.

• Σ ∈ R𝑛×𝑛: The covariance matrix of returns for the 𝑛 securities.

• 𝜏 ∈ R: A scaling prefactor for Σ, commonly set to 1.

• P ∈ R𝑘×𝑛: A matrix that describes the linear relationships among the 𝑛 secu-

rities for each of the 𝑘 investor views.

• q ∈ R𝑘: A vector consisting of the 𝑘 views of the investor.

• Ω ∈ R𝑘×𝑘: A diagonal matrix of the variance of error terms for each view,

reflecting the investor’s degree of uncertainty in each view.
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In practice, 𝜋 is typically inferred via ‘inverse optimization’ given existing weights

of a portfolio or benchmark. Alternatively, it could adopt the assumption that we are

living in a CAPM world where all investors are holding global assets in a proportion

that seeks to maximize their overall expected return. As such, the current market

capitalization of global assets can be used to infer what the world assumes the assets’

expected returns would be. In this situation, the implied excess expected return in

an unconstrained portfolio setting is given by:

𝜋 = 𝛿Σw𝑚,

where 𝛿 = (𝜇𝑚−𝑟𝑓 )/𝜎2
𝑚, 𝜇𝑚 is the return on the global market in domestic currency,

𝑟𝑓 is the risk-free rate, 𝜎2
𝑚 is the variance of the rate of return on the world market,

and w𝑚 are the weights on the global market, as determined by market values.

Under the assumption that both returns and investor views are normally dis-

tributed, Bayes rule is applied to arrive at the formula for the new combined return

vector R. In fact, R ∼ 𝒩 (𝜇𝑅,Σ𝑅), where:

𝜇𝑅 = [(𝜏Σ)−1 + P⊤Σ−1P]−1[(𝜏Σ)−1 𝜋 + P⊤Σ−1q],

Σ𝑅 = [(𝜏Σ)−1 + P⊤Σ−1P]−1.

Covariances

There is a serious issue of estimation error when estimating the true covariance matrix

using sample covariances. Consider the fact that for 𝑁 securities, we require the

estimation of 𝑁(𝑁+1)
2

parameters, which is a large number. If we use data observations

over 𝑇 time periods, we have a total of 𝑁𝑇 observations. Naturally, if the latter
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quantity is less than the former, we are unable to do the estimation, while if it is

larger, but not by much, the estimation error of the covariance matrix will be very

large. Consider a somewhat not uncommon case where 𝑁 = 100 and 𝑇 = 120 (i.e.,

monthly return observations over ten years). For every estimated parameter we have

only slightly more than 2 observations - not a very promising situation.

As such, one should never simply use the sample covariance directly to represent

the covariances. Rather, techniques have been proposed to “shrink" the sample

covariance matrix, in the sense of reducing its estimation error. At the heart of the

approach is the tuning of the trade-off between bias and variance in estimation. The

sample covariance matrix has no bias, but at the expense of a huge variance. We

can thus consider substituting or blending it with alternative estimators with higher

bias but lower variances.

A common alternative estimator for the covariance matrix of returns is derived

from a factor model. Given the general form of the factor model as introduced earlier

in this paper:

r𝑡 = 𝛼 + 𝛽⊤f𝑡 + 𝜖𝑡,

where r𝑡 ∈ R𝑛 is the single-period return vector of the securities, f𝑡 ∈ R𝑘 is the

single-period return vector of the factors, 𝛽 ∈ R𝑘×𝑛 is the matrix of factor loadings

for each security, 𝛼 ∈ R𝑛 is the vector of excess returns, and 𝜖𝑡 ∈ R𝑛 is the vector of

residual returns, the covariance matrix of returns is given by:

Σ𝐹𝑀 = 𝛽⊤Σ𝑓𝛽 + Σ𝜖,

where Σ𝑓 ∈ R𝑘×𝑘 is the covariance matrix of the factors, and Σ𝜖 ∈ R𝑛×𝑛 is the

diagonal matrix of residual return variances.
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Factor models involve the projection of security returns into a lower dimensional

space, and this naturally reduces the variance of the covariance matrix estimator,

at the expense of increasing its bias. They have shown to perform better in out-of-

sample forecasts of covariances than using the sample covariance matrix. However,

one sobering fact is that the correlation between predicted and future covariances

is not large. For instance, in a study on AMEX and NYSE stocks, the correlation

between past and future sample covariances is 34% at the 36-month horizon and

much less at 18% at the 12-month horizon. Nevertheless, they are especially useful

in cases where tracking error towards a benchmark is sought to be minimized [143].

Instead of directly using a substitute for the sample covariance matrix, Ledoit

and Wolf provide a way to combine the sample covariance matrix with alternative,

more structured estimators to produce a blended estimator Σ* by the following linear

combination:

Σ* = 𝛿F + (1− 𝛿)S,

where S is the sample covariance matrix, F is a highly structured estimator, and 𝛿 is

a number between 0 and 1. Ledoit and Wolf showed how to determine 𝛿 systemically

by choosing 𝛿 such that the expected error of the combined matrix with the true

covariance matrix is asymptotically minimized.

Examples of F given by Ledoit and Wolf are the identity matrix [144], the single-

factor covariance matrix [145], and the constant correlation matrix [146]. The con-

stant correlation matrix is constructed such that all pairwise correlations between se-

curities are set to the global average pairwise correlation. That is, given entries 𝑠𝑖𝑗 of

the sample covariance matrix, we construct F with entries 𝑓𝑖𝑖 = 𝑠𝑖𝑖 and 𝑓𝑖𝑗 = 𝜌
√
𝑠𝑖𝑖𝑠𝑗𝑗,

where 𝜌 = 2
𝑁(𝑁−1)

∑︀𝑁−1
𝑖=1

∑︀𝑁
𝑗=𝑖+1 𝜌𝑖𝑗 and 𝜌𝑖𝑗 =

𝑠𝑖𝑗√
𝑠𝑖𝑖𝑠𝑗𝑗

.

Interestingly, several papers have shown that constraining the weights of the
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portfolio to be non-negative, or constraining the norm of the portfolio weights have

a similar effect of shrinking the covariance matrix [147][148]. This gives insight as to

why practitioners typically prefer bounds to be set on portfolio weights, where the

practice is usually justified as a way to achieve “diversification”. Here, we understand

it to be a way to diversify against the presence of large estimation errors.

Conclusion

In this day and age, the main challenge in successfully applying optimization to port-

folio selection lies in the generation of high quality input parameters. This trumps

all other intellectual challenges commonly associated with the study of optimization

- namely, new formulations, algorithmic schemes and the need to overcome compu-

tational tractability. Because the usefulness of optimization is of first-order tied to

the quality of inputs, we see that useful optimization can be most easily achieved

when the uncertainty regarding parameters are low or non-existent. These include

cases involving the minimization of transaction costs, the construction of portfolios

to adhere to certain trading requirements (such as minimum lot requirements), op-

timizing a portfolio to minimize tracking error to a benchmark, or the tuning the

portfolio’s overall exposure to underlying factors in a factor model.

On the other end of the uncertainty spectrum, when uncertainty is large, matters

require much more care in order to preserve the usefulness of optimization. Whenever

the problem involves expected returns, covariances, or scenarios of return realizations

as numerical input, the majority of the value added derives from the practitioner’s

ability to provide these inputs, which require the ability to look forward reasonably

accurately in time. Precluding any major advances in artificial intelligence, this

skill is currently only able to be acquired through many years of practical working
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experience in the field, requiring a judicious combination of human intuition with

the support of hard data from a variety of sources to make sound inferences about

the future.

Supplementary note on leverage and short selling

Here, we discuss the concepts of leverage and short selling. These are concepts

which are common in the practice of finance, but might be obscure to members

of the engineering community. In fact, the definition of leverage implies that the

total portfolio weight is greater than 1, while the definition of short selling implies

a negative weight on whichever security is “sold short”. As a result, these concepts

possess a certain “unphysicality” which understandably might unsettle an engineer,

whose attendance is towards that of the physical world, upon first encounter. In

reality, the ability to leverage or sell short is enabled by the fact that investors in

the financial markets are able to borrow either cash or securities from other parties

in order to achieve their financial aims.

Leverage implies that the investor is borrowing cash over and above what he or

she possesses, in the hopes of generating returns in excess of the borrowing costs.

A total portfolio weight of 1 + ∆ where ∆ > 0 implies that for every one dollar

that the investor owns, he or she borrows ∆ dollars. A typical example that most

people would be familiar with would be taking out a mortgage loan when purchasing

a house. Here, owners are commonly expected to contribute cash equivalent to 20%

of the value of the house, while borrowing the remaining 80%. In this case, if the

investor’s portfolio consists only of the house, then ∆ = 4 and the total portfolio

weight is 5.

Additionally, we could also have a situation where the total portfolio weight is
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between 0 and 1, say 1−∆, where 0 < ∆ < 1. This is when the investor decides to

keep a proportion ∆ of his total wealth in cash, while investing the rest.

Short selling is a technique where the investor borrows a security that he or she

does not own from another party and sells it in the market, paying borrowing fees in

order to do so. The investor is expected to return the security at a later date. The

reason why investors are motivated to sell short is because they expect the security

to go down in price in the future, where they can buy it back at a cheaper price and

book a profit, net of borrowing costs. The result of short selling is a negative weight

on the security in the investor’s portfolio while it is being held short. Intuitively,

this makes sense since a negative return on the security sold short would lead to a

positive return contribution to the portfolio.

Finally, the ability to go long and short on securities lead to the interesting

concept of a “zero-investment portfolio”, where the total portfolio weight is zero. This

implies the situation where every dollar on the long side is balanced with a dollar

on the short side. This is a useful construct theoretically for studying the sources

of risk in trading strategies, and also in practical situations, for example, when the

portfolio manager would like to reduce certain systematic risks in the portfolio. For

example, by going long on one stock and short another within the same sector, risks

specifically related to the sector can be reduced, and profits are made only through

the relative performance of these stocks.
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