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Abstract

Separation processes are used extensively in the chemical process industries and by far
the most common of these is distillation� Although several alternative strategies have
been developed� distillation will likely remain dominant particularly for the large�
scale separation of non�ideal liquid mixtures� A topic of particular interest in recent
years has been heterogeneous azeotropic distillation or heteroazeotropic distillation�
This technique is commonly employed to separate azeotropic mixtures by introducing
a heterogeneous entrainer that causes liquid�liquid phase separation� Although the
design and simulation of heteroazeotropic systems is far more complicated than its
homogeneous counterpart� heteroazeotropic distillation is often preferred due to the
ease of recovery of the entrainer and the crossing of distillation boundaries due to the
liquid�liquid phase split in the decanter�
The topic of this thesis is the analysis of heteroazeotropic systems� Speci�cally�

an algorithm has been developed which� under reasonable assumptions� will compute
all homogeneous and heterogeneous azeotropes present in a multicomponent mixture
predicted by the phase equilibrium model employed� The approach is independent of
both the particular representation of the nonideality of the mixture and the topol�
ogy of the liquid�liquid region� Furthermore� the approach can be readily extended
to handle any number of liquid and	or solid phases in equilibrium� Moreover� the
heteroazeotrope �nding algorithm can be extended to explore the phase equilibrium
structure of a multicomponent mixture under system and	or property model param�
eter variation� including the detection of incipient homogeneous and heterogeneous
azeotopes and the determination of the bifurcation values of the parameters where
they appear� disappear� or switch between each other� The ability to predict the in�
cipient homogeneous and heterogeneous azeotropes that may appear under di
erent
conditions or property parameter values can be incorporated into design algorithms
to expand the number of alternative designs� Furthermore� the ability to systemati�
cally and e�ciently explore the phase equilibrium structure is a valuable tool when
�tting property model parameters� allowing the experimentalist to rapidly explore
the capabilities and limitations of the phase equilibirum model�
The techniques mentioned above are useful when analyzing heteroazetropic sys�
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tems for design purposes� The second product of this thesis improves the e�ciency of
the actual simulation of the heteroazeotropic system �or any system for that matter
�
Speci�cally� a new class of automatic di
erentiation methods� known as �subgraph
reduction methods�� have been developed that o
er substantial improvement over ex�
isting techniques both in the increase in speed of the derivative evaluation and the
reduction in memory required to store and evaluate the Jacobian matrix of a sparse
system of equations� Furthermore� a variant of the subgraph reduction approach
has been custom�tailored for use within an interpretive simulator architecture that
dramatically increases speed and reduces memory requirements compared to other
techniques commonly employed in this environment�

Thesis Supervisor� Paul I� Barton
Title� Assistant Professor of Chemical Engineering
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and thick lines are heterogeneous curves� � � � � � � � � � � � � � � � � ���

��� Homotopy paths connecting heteroazeotropes to spurious homogeneous

azeotropes for the benzene� ethanol� and water system at ��� bar� � � ���

��� Ethyl acetate mole fraction versus the homotopy parameter for ternary

system� ethyl acetate� ethanol� and water� Thin lines are homogeneous

curves and thick lines are heterogeneous curves� � � � � � � � � � � � � ���

��� Chloroform mole fraction versus the homotopy parameter for ternary

system� water� acetone� and chloroform� Thin lines are homogeneous

curves and thick lines are heterogeneous curves� � � � � � � � � � � � � ���

��� Water mole fraction versus the homotopy parameter for ternary sys�

tem� toluene� ethanol� and water� Thin lines are homogeneous curves

and thick lines are heterogeneous curves� � � � � � � � � � � � � � � � � ���

��� Homotopy paths connecting heteroazeotropes to spurious homogeneous

azeotropes for the toluene� ethanol� and water system at ��� bar� � � � ���
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��� Benzene mole fraction versus the homotopy parameter for ternary sys�

tem� benzene� isopropanol� and water� Thin lines are homogeneous

curves and thick lines are heterogeneous curves� � � � � � � � � � � � � ���

��� Homotopy paths connecting heteroazeotropes to spurious homogeneous

azeotropes for the benzene� isopropanol� and water system at ��� bar� ���

���� Methanol mole fraction versus the homotopy parameter for ternary

system� methanol� benzene� and heptane� � � � � � � � � � � � � � � � � ���

���� Benzene mole fraction versus the homotopy parameter for quaternary

system� benzene� ethanol� water� and heptane� � � � � � � � � � � � � � ���

���� Benzene mole fraction versus the homotopy parameter for quaternary

system� benzene� ethanol� water� and cyclohexane� � � � � � � � � � � � ���

���� Bifurcation diagram for the chloroform�methanol system at pressures

of ��� bar� ��� bar� and ��� bar� � � � � � � � � � � � � � � � � � � � � � ���

���� T�xy diagram for the chloroform�methanol system at ��� bar� �����

bar� and ��� bar� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

���� Pressure versus the value of � at the intersection point for the water�

��butoxyethanol system� � � � � � � � � � � � � � � � � � � � � � � � � � ���

���� Ethyl acetate mole fraction versus the homotopy parameter at ��� bar

for ternary system� ethyl acetate� ethanol� and water� Thin lines are

homogeneous curves and thick lines are heterogeneous curves� The

continuation is performed beyond � � � in this �gure� � � � � � � � � � ���

���� Pressure versus the value of � at the intersection point for the ethyl

acetate� ethanol� water system� � � � � � � � � � � � � � � � � � � � � � ���

���� Pressure versus the value of � at the intersection point for the water�

����dichloroethane system� � � � � � � � � � � � � � � � � � � � � � � � ���

���� Pressure versus the value of � at the intersection point for the THF�

water system� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

���� Pressure versus the value of � at the intersection point for the THF�

water system� Enlarged region of interest at � � �� � � � � � � � � � � ���
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���� Pressure versus the value of � at the intersection point for the water�
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���� Gibbs composition simplex containing measured boiling temperatures

�K
 of the azeotropes present in the methanol� benzene� and heptane
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��� Computational graph of system of equations �����
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��� Vector sweep forward mode evaluation of Jacobian of equations �����
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���� Vector sweep reverse mode evaluation of Jacobian of equations �����
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graph shown in Figure ��� after subgraph reduction �continued in next

�gure
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Chapter �

Heteroazeotropic Distillation

This thesis is divided into three parts� The �rst part� Analysis of Heteroazeotropic

Systems �chapters one through four
� presents topics associated with the analysis

of heteroazeotropic systems� In particular� a new homotopy continuation based ap�

proach for the computation of the heteroazeotropes present in a multicomponent

mixture and the e�cient analysis of changes in phase equilibrium structure under

system and	or property model parameter variation is discussed� The second part�

Computational Di
erentiation �chapters �ve through eight
� presents topics associ�

ated with the simulation of heteroazeotropic systems� in particular� the generation of

analytical derivatives� This thesis concludes with a chapter describing a technique for

the optimization of problems exhibiting multiple local optima� based on the combined

application of computational di
erentiation and homotopy continuation�

��� Overview

Separation processes are used extensively in the chemical process industries� Virtu�

ally every chemical process involves the separation of products from byproducts and

unreacted raw materials� the recovery of solvent from waste streams� and possibly

the puri�cation of feed stocks prior to processing� By far the most common of these

processes is distillation� and although many new technologies are being developed�

distillation is likely to remain dominant� especially for the large�scale separation of

��



thermodynamically nonideal liquid mixtures� This argument in convincingly pre�

sented by Fair �����

Azeotropy is the condition where a vapor and liquid in equilibrium have the same

composition� Azeotropes are characterized by extrema in the equilibrium surfaces of

the mixture� Figure ��� contains a schematic of a Txy�diagram for a binary mixture

exhibiting a maximum boiling azeotrope� As will be shown later in this chapter� the

�

� ������

���

Figure ���� Schematic of a binary mixture exhibiting a maximum boiling azeotrope�

presence of azeotropes e
ectively divides the composition space into di
erent regions

characterized by the separations possible with distillation�

A topic of particular interest in recent years has been heterogeneous azeotropic

distillation or heteroazeotropic distillation� This technique is commonly employed to

separate azeotropic mixtures by introducing a heterogeneous entrainer that causes

liquid�liquid phase separation� Heteroazeotropy is the condition where the tempera�

ture� pressure� and overall liquid composition of a mixture of two or more immiscible

liquid phases is equal to that of the equilibrium vapor phase� Heteroazeotropy is

characterized by strong positive deviations from Raoult�s law and occurs when the

azeotropic point on the vapor�liquid equilibrium surface intersects the multiple liq�

uid region� Figure ��� contains a schematic of a Txy�diagram for a binary mixture

��



exhibiting a heteroazeotrope� Heteroazeotropic distillation is often preferred over the

�

� ������

���

Figure ���� Schematic of a binary mixture exhibiting a heteroazeotrope�

more traditional homogeneous distillation due the ease of recovery of the entrainer

and the crossing of distillation boundaries due to the liquid�liquid phase split in the

decanter �see Figure ���
� Although heteroazeotropic systems are primarily studied

with regard to methods for separating azeotropic mixtures� these systems are also

important from the viewpoint of separation system integration ��� within a chemical

plant where various process streams may form heterogeneous liquid mixtures when

combined� and also from the viewpoint of design and simulation of heterogeneous

reactive distillation systems�

This chapter discusses some of the key issues associated with the analysis� design�

and simulation of heteroazeotropic systems�

�
�
� Computation of Homogeneous and Heterogeneous

Azeotropes

Obviously an important task when analyzing homogeneous and heterogeneous azeo�

tropic systems is the a priori determination of the homogeneous and heterogeneous

��



azeotropes present in the mixture of interest� Several approaches have been developed

in the past for the computation of homogeneous azeotropes� A few of them are

discussed below�

Teja and Rowlinson ����� developed an algorithm based on corresponding states

and an equation of state to compute the binary azeotropes present in a mixture� Given

a binary mixture� the following equations are satis�ed at the azeotropic conditions�

Av�V 
� Al�V 
 � � ����


Av�x�
� Al�x�
 � � ����


Av � x�A
v�x�
� V vAv�V 
� Al � x�A

l�x�
 � V lAl�V 
 � �� ����


where Av and Al are the Helmholtz free energy of the vapor and liquid phases� re�

spectively� V � V v� and V l are the total molar volume� the vapor molar volume� and

the liquid molar volume� respectively� and �x�� x�
 is the composition of the liquid

and vapor phase� equal at the azeotrope� The authors use Powell�s method ���� to

minimize the sum of the squares of the right�hand�side of equations ����
�����
 with

respect to the partial molar volumes of each phase� V v and V l� and composition�

x� � xv� � xl�� At constant temperature and volume� the azeotrope corresponds to a

global minimum of the Helmholtz free energy of the mixture� which is not guaranteed

using a local search strategy such as Powell�s method� Therefore� solutions obtained

will have to be checked for stability �see following section
�

Wang and Whiting extended the work of Teja and Rowlinson to multicompo�

nent mixtures ������ The authors compute azeotropes at constant pressure �or tem�

perature
 using a nested iteration� The outer iteration adjusts the composition by

performing a secant update with the following system of equations�

ln
�
��vi �
��li

�
� � i � �� � � � � n ����


where ��vi and
��li are the mixture fugacity coe�cients of the vapor and liquid phases�

respectively� for an n component mixture� The inner iteration adjusts temperature

��



�or pressure
 by performing a secant update with the following equation�

Av � Al � P �V l � V v
� ����


Equation ����
 is simply an expression for the equality of the Gibbs energy between the

vapor and liquid phases� This approach has been applied successfully to several binary

and one ternary mixture� Like the approach of Teja and Rowlinson� the solutions

obtained satisfy only the necessary conditions for azeotropy and must be checked for

stability� Although the approach can be applied to multicomponent mixtures� there

are no guarantees that all azeotropes� if any� will be computed�

An approach developed by Fidkowski et al����� computes the homogeneous azeotropes

present in a multicomponent mixture using homotopy continuation� Higher dimen�

sional azeotropes are obtained through a series of bifurcations from lower dimensional

homotopy branches� This approach provides the basis for an algorithm developed in

this thesis for the computation of heteroazeotropes and is thus described in more de�

tail in the following chapter� Fidkowski et al� conjecture that all azeotropes present

in a multicomponent mixture will be computed but present no proof� A detailed anal�

ysis in this thesis provides conditions under which all azeotropes will be computed

using this method� Implementation improvements also result from this analysis�

A second approach guaranteeing the computation of all homogeneous azeotropes

has been developed by Harding et al� ����� The authors enclose all solutions to the

necessary conditions for azeotropy using global optimization� The use of convex un�

derestimators within a branch and bound framework partitions the search space into

rectangles of decreasing size containing the solutions� In this work� the vapor phase

is treated as an ideal gas and the liquid phase nonideality is modeled with activ�

ity coe�cients computed through the NRTL� UNIQUAC� and UNIFAC equations�

These activity coe�cient models satisfy the convexity requirements of the global op�

timization algorithm employed� By employing the �BB�method ���� this method

can in principle be extended to any twice continuously di
erentiable model for phase

equilibrium� As with Fidkowski�s method� this approach only computes solutions

��



satisfying the necessary conditions for azeotropy� which must be checked for stability�

Less attention has been given to the more di�cult heterogeneous case� One ap�

proach has been developed by Chapman and Goodwin ����� In this work� the authors

use the Levenberg�Marquardt method to �nd multiple solutions to the necessary con�

ditions for azeotropy� Solutions are then checked for stability using the Gibbs tangent

plane analysis �see following section
� Unstable solutions are used as starting points

for a new search to �nd the heteroazeotropes� There are several problems with this

approach� First� the solution procedure used to �nd homogeneous azeotropes does

not guarantee any� let alone all� solutions will be obtained� Second� an unstable

homogeneous solution corresponding to an actual heteroazeotrope does not neces�

sarily exist in the physical composition region �i�e�� the regular simplex de�ned by

fx � R
n j

Pn
i�� xi � � and xi � � i � �� � � � � ng
� In this thesis� it is shown that

homogeneous azeotropes corresponding to heteroazeotropes �referred to as spurious

homogeneous azeotropes
 will exist and very often lie outside the physical region� and

are thus of little use to the algorithm described above�

Another approach has recently been brie�y described by Harding et al����� for

the computation of heteroazeotropes� This approach is very similar to the global

optimization approach described above�

A new approach has been developed in this thesis for the computation of the ho�

mogeneous and heterogeneous azeotropes present in a multicomponent mixture� The

approach is independent of the liquid�liquid region topology and phase equilibrium

model� Furthermore� this approach is capable of predicting incipient homogeneous

and heterogeneous azeotropes and computing the bifurcation values of system and	or

property model parameters at which they appear� disappear� or switch between each

other�

All of the approaches described above �nd solutions satisfying the necessary con�

ditions for homogeneous and heterogeneous azeotropy� The necessary and su�cient

conditions as well as several phase stability tests are described in the following sec�

tion� Once the homogeneous and heterogeneous azeotropes have been computed� the

set can be tested for topological consistency ����� ���� As will be shown later in this
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chapter� the pure components and homogeneous and heterogeneous azeotropes are

the �xed�points of a certain dynamical system� Furthermore� the compositions on

the trajectories associated with these dynamical systems are con�ned to lie within

the compact physical composition region� Consequently� the �xed�points of an n

component mixture are subject to the Poincar�e�Hopf Theorem and their indices must

satisfy the following constraint�

nX
k��

�k�I�k � I�k 
 � ���

n�� � � ����


where I�k and I�k are the number of �xed�points with k nonzero mole fraction ele�

ments that have indices �� and ��� respectively� If the set of computed homogeneous

and heterogeneous azeotropes do not satisfy this constraint� then either one or more

solutions were not computed or one or more additional spurious solutions were com�

puted�

�
�
� Phase Stability Analysis

Necessary conditions for a nonreacting mixture of n components and 	 phases to be

in equilibrium are

T � � T � � � � � � T ��

P � � P � � � � � � P �� and


�i � 
�i � � � � � 
�i i � �� � � � � n�

where 
ji denotes the chemical potential of species i in phase j� For a mixture satis�

fying the conditions above to be a stable equilibrium state� at constant temperature

and pressure� the Gibbs free energy of the mixture must be at a global minimum�

Determining solutions satisfying the necessary conditions is equivalent to �nding a

tangent plane to the Gibbs energy of mixing surface of the mixture� Su�cient con�

ditions correspond to �nding a supporting hyperplane� that is� a tangent hyperplane

that lies completely below the Gibbs energy surface �see Figure ���
� This equiv�
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Figure ���� Schematic of hyperplanes to the Gibbs energy of mixing surface for a
binary mixture with overall composition z�

alence between a global minimum of the Gibbs free energy of the mixture and the

tangent plane criteria was presented by Baker et al� ��� and an algorithm for phase

stability testing based on this criteria was subsequently developed by Michelsen �����

Michelsen derives a tangent plane distance function�

F �x
 �
nX
i��

xi�
i�x
� 
oi 
� ����


which is equal to the vertical distance from the supporting hyperplane at composition

xo� �where 
oi � 
i�x
o

� to the Gibbs energy surface� Hence� a mixture at conditions

�xo� T� P 
 is unstable if for any x�

F �x
 � �� ����


At such a point� the tangent plane lies above the Gibbs energy surface� It is shown

in ���� that F �x
 will be non�negative for all x in the physical composition space if it

is non�negative at all stationary points in the physical composition space� Stationary

��



points of ����
 are de�ned by the following n equations�

�
�m
�xi

�
�
�
�m
�xi

�
o
�
�

�m
�xn

�
�
�
�m
�xn

�
o
� � i � �� � � � � n� �Pn

i�� xi � � � ��
����


where m�x
 �  gM�RT is the Gibbs free energy of mixing �scaled by RT 
 and the

subscript o denotes the quantity is evaluated at the test composition xo� The number

of stationary points indicates the potential number of phases the liquid will split into

and provide a good initial guess to the composition of each of the resulting phases�

It is important that any phase stability test distinguish an absolutely stable state

from a metastable or unstable state� Metastable states are e
ectively unstable from

the viewpoint of heteroazeotropic distillation� The tangent plane criteria correctly

classi�es metastability as being unstable�

Several phase stability tests have been developed in the past that attempt to

solve equation system ����
 for all stationary points and then check to make sure non�

negativity of F �x
 is satis�ed at all solutions� Unless the test is capable of computing�

with certainty� all stationary points or at least the stationary point corresponding to

the global minimum of ����
� stability cannot be guaranteed� Of course� only one

stationary point satisfying F �x
 � � is required to correctly conclude the phase is

unstable �with respect to the phase equilibrium model assumed to formulate F �x

�

Solution procedures based on sophisticated initialization strategies and homotopy

continuation have been developed to make the solution procedure robust� however�

only few have been developed that can guarantee either all stationary points or the one

corresponding to the minimum value for F �x
 will be obtained� One such approach�

developed by McDonald and Floudas ����� applies to a certain class of models used to

compute the Gibbs free energy and computes the global minimum value for F �x
 using

global optimization� Obviously� if F �x
 � � at the global minimum� the test phase is

stable� Another approach� developed by Stadtherr et al� ������ computes all stationary

points using interval Newton	generalized bisection techniques� This approach applies

to any model used to compute the Gibbs energy� If F �x
 is non�negative at every

��



stationary point then it is non�negative everywhere within the physical composition

space and the test phase is stable� Both McDonald�s and Stadtherr�s approaches

guarantee correct determination of the stability of the phase� however� they are very

computationally costly�

When the nonideality in multiple phases is represented with the same model� one

possible solution to the phase equilibrium problem is the trivial solution� At the trivial

solution� the composition� temperature� and pressure in all phases �associated with

the same model
 are equal� For the vapor�liquid�liquid equilibrium �VLLE
 problem

or the liquid�liquid equilibrium �LLE
 problem� the trivial solution is the correct

solution outside the liquid�liquid region and incorrect within the liquid�liquid region�

Unfortunately� this trivial solution has a large region of convergence and unless a phase

stability test is employed� there is no way to determine if it is the correct solution�

Pham and Doherty ���� developed an algorithm for a limited class of mixtures that

provides conditions whether or not the trivial solution should be rejected or not� The

algorithm applies to liquids that may potentially split into at most two immiscible

liquid phases and have liquid�liquid binodals characterized by either an upper critical

solution temperature �UCST
 or a lower critical solution temperature �LCST
� For

the UCST case� the algorithm is based on �nding a maximum temperature� Tmax� for

which a given liquid of composition xo and at pressure P will split into two stable

liquid phases� This temperature is used during a phase equilibrium calculation to

determine if a VLE calculation or a VLLE calculation should be performed� If a

VLLE calculation is performed� the trivial solution can be con�dently rejected� In

the case of mixtures exhibiting a LCST� a minimum temperature� Tmin� is computed

and a similar procedure is applied� The disadvantage with this approach� aside from

being applicable to a limited class of problems�� is that the test simply indicates

whether or not the trivial solution should be rejected but not how to obtain the

actual solution� Furthermore� due to the possibility of multiple nontrivial liquid�

liquid solutions� stability is not guaranteed�

�The class of problems may be limited� but many liquid mixtures� particularly those of industrial
importance� fall into this category�
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�
� Residue Curve Maps and Distillation Lines

As mentioned above� azeotropes limit the separation possible with distillation� The

presence of azeotropes e
ectively divides the composition space into regions charac�

terized by the separations possible using a single distillation column� The analysis of

these regions is very often carried out through the use of residue curve maps� Residue

curve maps have been used since the turn of the century to characterize the behav�

ior of binary distillation ����� ����� The analysis of residue curve maps was greatly

extended in the work of Matsuyama and Nishimura ���� and Doherty and Perkins

���� ��� ���� including the application of the analysis to the separation of homoge�

neous mixtures� In addition� residue curve maps have been the basis for many column

sequencing algorithms ���� ��� and entrainer selection rules ���� �����

The residue curves of an n component homogeneous mixture are de�ned by the

following system of n� � ODEs�

dxi
d�
� xi � yi�x
 i � �� � � � � n� �� �����


where � is a dimensionless !warped time" �see Appendix A for derivation of �����

�

According to the Gibbs phase rule� at a speci�ed� constant pressure �or tempera�

ture
� the equilibrium vapor composition� y� is uniquely de�ned by n� � liquid mole

fractions� xi� It is shown in ���� that the pure components and azeotropes are ex�

actly �xed points of the dynamical system �����
 and can either be stable or unstable

nodes� saddle points� or non�elementary arm�chair �xed�points� Moreover� they are

subject to the topological constraints described above� The presence of azeotropes

often introduces stable and unstable separatices and the projection of these separatri�

ces onto the physical composition space de�nes simple distillation regions# a residue

curve starting in one simple distillation region remains in this region for all �� These

separatrices de�ne simple distillation boundaries� It is generally assumed that the

trajectories of �����
� the residue curves� approximate the composition pro�les of an

actual distillation column at total re�ux� Consequently� the simple distillation bound�

aries mentioned above are assumed to restrict the separations possible with a single

��



distillation column� There are two problems with this� First� the residue curves only

approximate the column pro�les at total re�ux� Second� it is possible for a column

pro�le to cross the convex side of a curved simple distillation boundary due to the

fact that near the boundary� the vapor composition associated with the residue curve

lies in the simple distillation region adjacent to the boundary ������ This has led

several authors in the past to report distillation �anomalies�� The correct tool to em�

ploy in this type of analysis are the distillation lines which are the column operating

lines at total re�ux ������ The behavior of both the residue curves and distillation

lines are identical in the immediate vicinity of the �xed�points of the system �pure

components and homogeneous and heterogeneous azeotropes
 and� like the residue

curves� the distillation lines often introduce distillation�line boundaries that divide

the composition space into distinct regions� Even though the residue curve maps are

only approximations to the distillation lines and column pro�les at �nite re�ux� they

have proven to be invaluable in the analysis of distillation and have been successfully

applied in several column sequencing and entrainer selection algorithms�

Residue curve map analysis is extended to heterogeneous systems in ���� and �����

The residue curves of an n component heterogeneous mixture are de�ned by

dxoi
d�
� xoi � yi�x

o
 i � �� � � � � n� �� �����


where xo denotes the overall liquid composition �see Appendix A for derivation of

�����

� For a heterogeneous mixture with nL liquid phases in equilibrium� there

are nL additional liquid compositions and nL � � phase fractions embedded in the

equilibrium calculation used to compute y� The heteroazeotropes are �xed points of

�����
� which like the homogeneous case� are restricted to stable and unstable nodes

and saddles� Non�elementary arm�chair �xed points are found in systems exhibiting

positive and negative deviations from Raoult�s Law� Since heteroazeotropy is charac�

terized by strong positive deviations from Raoult�s Law over a range of composition�

the non�elementary �xed�points are not likely to be found in heterogeneous mixtures�

Furthermore� it is shown in ���� that the presence of multiple liquid phases further

��



restricts the number of di
erent types of �xed points of �����
 to n � nL � �� The

residue curves of a heterogeneous mixture are smooth and continuous as they move

through the boundary of the heterogeneous liquid boiling surface� at which point

�����
 correctly describes their behavior� The crossing of the heterogeneous residue

curve into the homogeneous liquid region is illustrated in the schematic in Figure

���� Figure ��� contains a schematic of a two column distillation sequence used to
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Figure ���� Schematic of a heterogeneous Txy�diagram showing the residue curve
moving into the homogeneous liquid region�

separate components A and B �which form a binary homogneous azeotrope
 using

C as a heterogeneous entrainer� The addition of C causes a liquid�liquid phase split

and introduces an additional binary BC homogenous azeotrope� a binary AC hetero�

geneous azeotrope� and a ternary heterogeneous azeotrope� This �gure illustrates the

partitioning of the composition space into di
erent regions by separatrices and the

use of the liquid�liquid phase split in the decanter to move the feed compositions into

di
erent distillation regions� Heterogeneous residue curve maps have been employed
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Figure ���� Schematic of a two column distillation sequence used to separate com�
ponents A and B using C as an entrainer and the associated residue curve map� Mass
balance lines associated with the columns� decanter� and mixing� as well as distillation
boundaries are illustrated in the Gibbs composition triangle�

in the column sequencing algorithm described in �����

�
�
	 Simulation of Heteroazeotropic Distillation Columns

The discussion above presents topics that are important when analyzing hetero�

azeotropic systems for design purposes� Once the preliminary designs for a distillation

system have been developed �e�g�� entrainer selection� column sequencing� etc�
 the

next step is to simulate the process� Several approaches have been developed for the

steady�state and dynamic simulation of heteroazeotropic distillation systems� some of

which are discussed below� Heteroazeotropic distillation is far more complicated than

its homogeneous counterpart� Often� the liquid�liquid phase is not restricted to the

decanter and can appear on as much as seventy percent of the trays� The appearace

of a second liquid phase on the trays results in singularities and multiple solutions

in the model ������ Furthermore� a large temperature gradient is associated with the

movement of the liquid�liquid front within the column� Heteroazeotropic columns are

also characterized by multiple steady�states and extreme parametric sensitivity� Like

a homogeneous azeotropic column� a heterogeneous tower exhibits a maximum re�ux

��



ratio� above which separation deteriorates�

Steady�state Simulation

The steady�state simulation of heteroazeotropic columns has been studied extensively

in the past ���� ��� ��� ��� ���� �� ��� ��� ����

An algorithm employing homotopy continuation has been developed by Kovach

and Seider ���� for the steady�state simulation of a three phase distillation tower and

associated phase separator� This approach uses homotopy continuation to avoid limit

points when multiple liquid phases appear on some of the trays and to compute the

liquid�liquid phase equilibrium� This approach uses homotopy continuation to avoid

the trivial solution �improving the robustness of the LLE calculation
� however� it

does not employ a proper phase stability test and thus correct column pro�les cannot

be guaranteed�

Another algorithm for the steady�state simulation of heteroazeotropic towers has

been developed by Cairns and Furzer ���� ��� ���� The authors employ the modi�ed

Naphthali�Sandholm approach of Furzer ���� to express the MESH �material balance�

equilibrium� summation of mole fractions� and heat balance
 equations and solve them

using Newton�s method� A phase stability test is employed each time the activity

coe�cients are computed to ensure the phase is stable� however� the authors do not

employ an implementation that guarantees correct results �e�g�� the two approaches

described in the phase stability section above
� Consequently� very little can be said

on the correctness of the column pro�les�

Dynamic Simulation

Several approaches have been developed for the dynamic simulation of heteroazeotropic

distillation columns ���� ���� ����� In contrast to the steady�state models above which

simply contain the MESH equations� the dynamic models of heteroazeotropic columns

must be very detailed �e�g� including tray hydraulics� geometry� etc�
 in order to ac�

curately predict the dynamic behavior under various conditions such as the response

to process disturbances�

��



Rovaglio and Doherty ���� developed a dynamic model for a heteroazeotropic distil�

lation column and examined the e
ect of disturbances in a column used to dehydrate

ethanol using benzene as an entrainer� The model predictions are consistent with

previous work in that these columns exhibit multiple steady�states� complex behav�

ior� extreme parametric sensitivity and that the liquid�liquid region is not con�ned

to the decanter and can be found on as much as sixty percent of the trays� Further�

more� they show that small perturbations in pressure can lead to separation failure

over the course of a ���hour period� Rather than performing a phase stability test

at each time step and on every tray� the authors �t a spline to the boundary of the

heterogeneous liquid boiling surface in order to check whether or not the overall liquid

composition lies inside or outside the liquid�liquid region� As shown in ������ the loca�

tion of the liquid�liquid region within the column is sensitive to small perturbations�

Furthermore� sharp temperature gradients are associated with the movement of the

liquid�liquid region through the column� Consequently� accurate determination of the

point at which a second liquid phase appears or disappears is crucial for accurately

predicting the column dynamics� Although the approach based on the spline �t of

the heterogeneous liquid boiling surface boundary is a very rapid way of checking

whether or not the overall liquid composition is stable� a better approach may be to

use the spline to determine if the overall liquid composition is �near� the liquid�liquid

boundary �based on the interpolation error of the spline
 and if it is� use a more

robust� but computationally expensive� phase stability test to accurately locate the

point at which liquid�liquid phase splitting occurs�

In ������ Wong et al�solve a dynamic model using a semi�implicit Runge�Kutta

integrator to simulate a tower to dehydrate ethanol using benzene as an entrainer� At

each time step� a phase stability test is performed on every tray to determine stability�

The authors employ the phase stability algorithm based on the tangent plane criteria�

but do not describe how they compute all stationary points or the global minimum of

the tangent plane distance function� Judging from the computational times reported�

they are probably not using a method such as that of McDonald or Stadtherr and�

thus� stability cannot be guaranteed�

��



A similar approach is described in ������ Here� the authors solve a dynamic model

using DASSL ����� a di
erential�algebraic equation �DAE
 integrator based on the

backwards di
erentiation formula �BDF
 method� After each successful time step

and on every tray� a phase stability test is employed� The authors address the prob�

lem of accurately detecting the real bifurcation occurring at the point where a second

liquid phase appears or disappears and develop a branch switching algorithm to cor�

rectly reinitialize the system on the correct branch� thereby avoiding the problem of

converging to the trivial solution outside the heterogeneous liquid region� The au�

thors employ the phase stability test of Michelsen as implemented in the UNIFLASH

program ���� ���� Unfortunately� this algorithm does not guarantee stability� leaving

the computed column pro�les in question�

��� Challenges

Although the topic of heteroazeotropic distillation has been studied by many re�

searchers in the past� there are still several issues that remain to be addressed� First�

there are limited tools available for the systematic analysis of heteroazeotropic sys�

tems� Robust and e�cient procedures are required for the computation of all homo�

geneous and heterogeneous azeotropes present in a multicomponent mixture� These

tools should be independent of the model used to represent the nonideality of the

system and should be capable of dealing with complex liquid�liquid topologies� as

well as systems containing three or more liquid phases in equilibrium� Furthermore�

operation of a heteroazeotropic column is very sensitive to perturbations in process

parameters� leading to complex dynamics and multiple steady�states� Greater under�

standing of the phase equilibrium structure will improve interpretation of simulation

results as well as improve the understanding of how the column should be operated�

Several models and algorithms have been developed for both steady�state and

dynamic simulation of heteroazeotropic columns� None of the approaches described

apply a phase stability test that guarantees stability� However� the phase stability

tests employed are far better than not performing any test at all �i�e�� assuming if

��



a solution to the VLLE model can be found then the overall liquid composition is

unstable and if no solution can be found the liquid is stable
� These approaches are

fast �relative to the approaches of McDonald or Stadtherr
 and provide satisfactory

results� particularly if the system is well understood �e�g�� number of possible phases

that can form and which components they are rich in
� however� conclusions based

on the results of such simulations should bear in mind the results may be incorrect�

A better approach would be to employ a hybrid phase stability test such as that

described above� With the developement of appropriate tools� the liquid�liquid region

can be rapidly determined a priori and enclosed within a collection of convex sets�

During the simulation� the location of the temperature� pressure� and overall liquid

composition relative to these sets can be used as a basis for deciding whether or not

a robust phase stability test should be performed�

The remainder of this part of the thesis addresses the �rst de�ciency described

above� Chapter � describes a new approach for the computation of homogeneous and

heterogeneous azeotropes present in a multicomponent mixture� Theoretical analysis

is performed� resulting in conditions under which all homogeneous and heterogeneous

azeotropes will be computed as well as several algorithmic improvements� The fol�

lowing chapter describes how this approach can be extended to compute e�ciently

changes in phase equilibrium structure under system and	or property model param�

eter variation� including the bifurcation values of the parameters where homogeneous

and heterogeneous azeotropes appear� disappear� and switch between each other� This

part of the thesis is concluded with a chapter containing several numerical examples

illustrating the approaches developed in chapters � and ��
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Chapter �

Computation of Heteroazeotropes

��� Introduction

Azeotropes and heteroazeotropes of an n component system satisfy the following

system of nonlinear equations�

x� y � � ����


feq�x� y� T� P 
 � � ����

nX
i��

yi � � � � ����


x� y � � ����


T� P � � ����


where x � R
n is the liquid composition� y � R

n is the vapor composition� and feq

is some equilibrium relationship between the liquid and the vapor� If the system

is heterogeneous �two or more liquid phases in equilibrium
� x is the overall liquid

composition and there are NL additional liquid compositions and NL�� liquid phase

fractions embedded within the equilibrium relationship� where NL is the number of

distinct liquid phases present� It should be noted that the equations above are a

necessary but not su�cient condition for azeotropy� As described in the previous

chapter� the solution to equations ����
�����
 corresponds to a tangent hyperplane to

��



the Gibbs energy of mixing surface at a temperature T and pressure P where the

liquid composition is equal to the vapor composition �overall liquid composition in

the heterogeneous case
� The su�cient condition for stability is that the composition�

temperature� and pressure minimize the Gibbs free energy of the mixture or equiva�

lently� the tangent hyperplane supports the entire Gibbs free energy surface� Figures

��� and ��� contain schematics of the supporting hyperplanes to the Gibbs free energy

surface for a binary homogeneous azeotrope and a binary heterogeneous azeotrope�

respectively� Solutions satisfying the necessary conditions must be further examined
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Figure ���� Schematic of supporting hyperplane to the Gibbs free energy surface for
a binary homogeneous azeotrope�

to determine if they are stable using a phase stability test such as those described in

the previous chapter ���� ��� �����

This chapter describes a systematic approach developed in this thesis for com�

puting the homogeneous and heterogeneous azeotropes present in a multicomponent

mixture containing any number of liquid phases in equilibrium and with any liquid�

liquid region topology� For example� liquid�liquid binodals exhibiting an upper crit�

ical solution temperature �UCST
� or a lower critical solution temperature �LCST
�

or both an UCST and a LCST� disjoint liquid�liquid regions� etc� The approach is

an extension of a method developed by Fidkowski et al� ���� for the computation

of homogeneous azeotropes� Other approaches for the computation of homogeneous
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Figure ���� Schematic of supporting hyperplane to the Gibbs free energy surface for
a binary heterogeneous azeotrope�

and heterogeneous azeotropes are reviewed in the previous chapter� Our approach has

the advantage of being able to compute e�ciently changes in the phase equilibrium

structure under system and	or property model parameter variation including the ca�

pability of detecting incipient homogeneous azeotropes and heterogeneous azeotropes

that may exist under di
erent conditions� This extension of the algorithm is discussed

in detail in chapter � of this thesis�

The �rst section of this chapter describes Fidkowski�s approach followed by some

previously unreported analysis of the method� The following section describes our

extension for the computation of heteroazeotropes� This section also includes an

analysis of our approach� The e
ectiveness of the method is illustrated through

several numerical examples contained in chapter �� In the remainder of this part of

the thesis� azeotropes will refer to homogeneous azeotropes and heteroazeotropes will�

obviously� refer to heterogeneous azeotropes� The homogeneous quali�er will only be

used where necessary to avoid confusion�
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��� Computation of Homogeneous Azeotropes

Fidkowski�s approach for computing homogeneous azeotropes is based on solving the

necessary conditions for azeotropy using homotopy continuation� The homotopy map

is given by

hi�x� �
 � ��xi � yi�x

 � ��� �
�xi � yidi �x

 i � �� � � � � n� � ����


where x � R
n is the liquid composition� yid � R

n is the vapor composition in equilib�

rium with the liquid computed using Raoult�s Law� y � R
n is the vapor in equilibrium

with the liquid computed using some nonideal vapor�liquid equilibrium model� and

� � R is the homotopy parameter� The summation of mole fraction constraint is han�

dled implicitly by removing xn� yn� and y
id
n � At a given pressure� system ����
 is n� �

equations in terms of n unknowns �n� � independent mole fractions and �
� By set�

ting this underdetermined system equal to zero� a homotopy path is de�ned that can

be tracked numerically using standard continuation methods ��� ���� ���� At � � ��

the homotopy map reduces to h�x� �
 � x�yid�x
 � � and since Raoult�s Law cannot

predict azeotropy� there are precisely n solutions to this system of equations� the pure

components� Provided the pure component boiling temperatures are distinct at the

speci�ed pressure� these n solutions correspond to n pure component branches� If the

pure component boiling temperatures are not distinct� then more than n branches

may exist at � � �� This is discussed in detail in chapter �� The basic idea of the

approach is to start with � initialized to zero and x initialized to each of the pure

components and track these n paths to � � � where the homotopy map reduces to

h�x� �
 � x � y�x
 � �� the necessary conditions for azeotropy� Along some of these

pure component branches bifurcation points appear that correspond to intersections

with binary branches �branches with two nonzero mole fraction elements
� These

binary branches result in points satisfying the necessary conditions for azeotropy for

a binary mixture at � � �� Similarly� along some of the binary branches� bifurca�

tion points are identi�ed that correspond to intersections with ternary branches from

which solutions satisfying the necessary conditions for azeotropy of ternary mixtures
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are obtained at � � �� In general� k�ary azeotropes are obtained from branches that

bifurcate o
 �k��
�ary branches� Figure ��� contains a bifurcation diagram �T versus

�
 for the acetone� chloroform� methanol� ethanol� and benzene system at a pressure

of one bar� The six binary azeotropes� two ternary azeotropes� and one quarternary

azeotrope present in the mixture are computed�
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Figure ���� Bifurcation diagram for the acetone� chloroform� methanol� ethanol� and
benzene system at one bar�

Although the bifurcation points correspond to intersections between branches of

di
erent dimension� the term intersection point will refer to a speci�c intersection

discussed in section ����
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� Analysis

The homogeneous homotopy map� equation ����
� can be expressed in the following

alternative form�

F �x� y�� T� �
 �

�
BBBBBBBBB�

x� y�

y�� � ��K� � ��� �
P s
� �P �x�

���

y�n � ��Kn � ��� �
P s
n�P �xnPn

i�� y
�
i � �

�
CCCCCCCCCA

����


where y� � R
n is the perturbed vapor composition and the term �Kj � �Kj � �� �

�
P s
j �P is a pseudo K�value� In this form� the summation of mole fraction constraint

is handled explicitly� The perturbed vapor composition can be removed from ����


using the �rst n equations�

�F �x� T� �
 �

�
BBBBBB�

x� ��� ��K� � ��� �
P s
� �P �


���

xn ��� ��Kn � ��� �
P s
n�P �
Pn

i�� xi � �

�
CCCCCCA
� ����


Setting system ����
 to zero de�nes a ��manifold in �x� T� �
�space� Alternatively�

temperature can be �xed in which case setting ����
 to zero de�nes a ��manifold in

�x� P� �
�space� This curve will be referred to as a homogeneous homotopy path or

branch or as simply a homogeneous branch� The Jacobian matrix of ����
 can be

expressed as�

r �F 	x�T��
�

�
BBBBBBBBBBBBBBBB�

����x�K��� ��x�K��� ��� ��x�K��n �x��� �x���

��x�K��� ����x�K��� ��� ��x�K��n �x��� �x���

���
���

���
���

���
���

��xnKn�� ��xnKn�� ��� �n��xnKn�n �xn�n �xn�n

� � ��� � � �

�
CCCCCCCCCCCCCCCCA

����


��



where

�j � ��
�
�Kj � ��� �
P s

j �P
�
� �� �Kj� �����



j � �

�
�Kj

�T

	
x�y�P

�
��� �


P

dP s
j

dT
� �����


�j � Kj �
P s
j

P
� and �����


Ki�j �

�
�Ki

�xj

	
xi�j��y�T�P

� �����


for i� j � �� � � � � n and the subscript xi�j
 denotes all mole fraction elements are held

constant except xj�

Without loss of generality� a k�ary branch of an n component mixture satis�es the

following

xj �� � 	j � �� � � � � k� �����


�j � � 	j � �� � � � � k� �����


xj � � 	j � k � �� � � � � n� and �����


�j �� � 	j � k � �� � � � � n� �����


Constraints �����
 and �����
 may be simultaneously violated at isolated points along

the homotopy branch� As shown below� there violations are of particular interest� Let

�c��
 � �F����
 denote a homotopy branch where � is some suitable parameterization

�e�g�� arclength
 and suppose we are currently on a k�ary branch� On �c��
 the following

holds�

�j � � for all j � �� � � � � k�

��



Thus�

r �F 	�c		

�

�
BBBBBBBBBBBBBBBBBBBBBBBBB�

��x�K��� ��x�K��� ��� ��x�K��k�� ��� ��x�K��n �x��� �x���
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�
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The following lemma provides useful information for identifying bifurcation points

and is used in the discussion of when all azeotropes will be computed� presented later

in this section�

Lemma � A necessary condition for a transcritical bifurcation from a k�ary branch

onto a �k � �
�ary branch at a point �c�$�
 is

�j�$�
 � � for some j � fk � �� � � � � ng� �����


A necessary condition for a transcritical bifurcation from a �k � �
�ary branch to

a k�ary branch at a point �c�$�
 is

xj�$�
 � � for some j � f�� � � � � k � �g� �����


Condition ������ becomes necessary and su	cient for the bifurcation from a �k �

�
�ary branch onto a k�ary branch by adding the following


�� dxj�d�



	��	

�� ��

�� rank r �F �$�
 � N � � where N � n � �� and


� �F��xj



	��	

� R
�
r�j


�F �$�

�
where r�j
 denotes partial derivatives with respect

to all variables except xj�

��



Proof� See Appendix B�

The bifurcation points on the pure component branches can be identi�ed a priori

without any branch tracking� First� de�ne the following quantity�

�i�j �
�� P s

j �T
s
i 
�P

Kj�ei� ei� T s
i � P 
� P s

j �T
s
i 
�P

�
�� P s

j �T
s
i 
�P

���i�j � �
P
s
j �T

s
i 
�P

�i �� j
 �����


where T s
i is the boiling point of pure component i at pressure P and

��i�j � lim
xi��

�j��j
�sj
exp

�
�
�

RT

Z P

P s
j

VjdP

�

���j is the fugacity coe�cient for species j in a mixture and �sj is the fugacity of

saturated pure j
� At low to moderate pressure� the quantity ��i�j is approximately

equal to the in�nite dilution activity coe�cient� ��j in a binary mixture of i and j�

There will be a bifurcation point on the pure component i branch corresponding to a

binary branch of components i and j if � � �i�j � �� Actually� the bifurcation point

will exist regardless of the value of �i�j provided �
�
i�j �� �� However� as explained later

in this section� it is branches associated with bifurcation points between � � � and

� � � that lead to solutions satisfying the necessary conditions for azeotropy at � � ��

Assume that component � forms an azeotrope with component � and this is not an

isolated azeotrope� An isolated azeotrope is an azeotrope with the xy�diagram shown

in Figure ���� According to Fidkowski ����� although isolated azeotropes cannot be

ruled out on thermodynamic grounds� there are no known physical examples of them

and it is extremely unlikely they even exist� The authors cite only one known case

of multiple azeotropy� formed in a mixture of benzene and hexa�ourobenzene� In

this mixture both azeotropes are computed with this method� a minimum boiling

binary azeotrope bifurcates from the lower boiling species� homotopy branch and

the maximum boiling azeotrope bifurcates from the higher boiling species� homotopy

branch� When computing homogeneous azeotropes� we are interested in bifurcations

��
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Figure ���� Binary mixture exhibiting an isolated azeotrope and a pair of azeotropes
�at another pressure
 that bifurcate from the isolated azeotrope�

in � � � � �� Criteria �����
 will be satis�ed if
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Thus�
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Now� if a binary azeotrope actually exists� it can be readily seen from the xy�plot

that if the azeotrope is minimum boiling�

�����
P s
� �T

s
� 


P
� � and �����

P s
� �T

s
� 


P
� �� �����


��



or if the azeotrope is maximum boiling�

�����
P s
� �T

s
� 


P
� � and �����

P s
� �T

s
� 


P
� �� �����


provided the azeotrope is not isolated� Finally� if the azeotrope is maximum boiling

and component � is less volatile than component � �i�e�� T s
� � T s

� 
 then P
s
� �T

s
� 
�P � �

and the bifurcation point will appear on the pure component � branch �the higher

boiling component
� If� however� the azeotrope is minimum boiling �and component

� is still less volatile than component �
 then the bifurcation appears on the pure

component � branch� Thus� for the binary case� if the azeotrope actually exists� the

bifurcation point will appear at some � � � � � and a minimum boiling azeotrope

will be obtained through a bifurcation on the lower boiling component branch and a

maximum boiling azeotrope will be obtained through a bifurcation on the higher boil�

ing component branch �assuming the phase equilibrium model employed accurately

represents the physical behavior
� Unfortunately� the exact values for the bifurcation

��s cannot be predicted a priori for k � � since �k � �k��c��

 and �c��
 is not known

a priori�

The exact condition under which a bifurcation point occurs is important because

it allows for a more aggressive stepsize strategy to be used during the numerical

continuation� If the bifurcation points were identi�ed by monitoring the sign of the

determinant of the Jacobian matrix� there is a possibility of jumping over multiple

bifurcation points in which case it would possible to miss an even number of them due

to a cancellation of sign changes or incorrectly conclude there is only one when there

may be an odd number of them greater than one� By using the explicit necessary con�

ditions for the existence of a bifurcation point� it is possible to use more sophisticated

approaches for detecting them� thereby increasing the e�ciency and robustness of the

algorithm� This is described in the implementation section later in this chapter�

The remainder of this section discusses under what conditions all homogeneous

azeotropes will be computed using the homotopy method� First� a brief outline of

the proof is given� A bounded region� S� will be constructed in �x� T� �
�space� If an

��



azeotrope exists� it will be located on a side of S and the homogeneous path through

this azeotrope will move into S� If zero is a regular value �i�e�� r �F has full rank n��


inside this region� it will be shown that� except under extremely pathological cases�

the homogeneous path will leave S at a bifurcation point associated with a lower

dimensional homogeneous branch� Once on this lower dimensional branch� the same

reasoning above is applied� This process is continued until a pure component branch

is obtained and the computation of the original azeotrope is guaranteed� The section

concludes with a discussion of the conditions under which zero will be a regular value

in this region�

The bounded� connected set mentioned above is de�ned as follows�

S � C � �Tmin� Tmax�� ��� �� �����


where

C � fx � R
n j � 
 xj 
 �� j � �� � � � � n� and

Pn
i��xi � �g �����


is the physical composition space and � � Tmin � Tmax� The bounds on the temper�

ature� Tmin and Tmax are based on the fact that �Kj is a convex combination of two

smooth functions� Kj and P s
j �P in S� Suppose an n�ary azeotrope exists� Denote

this point on the homotopy path as �c�$�
 � �x�$�
� T �$�
� �
 � S� Assuming that d�c�d�

is not tangent to the level set C � �Tmin� Tmax�� f�g at $� �this exception will be dis�

cussed later
� �c��
 will point into S �de�ning the positive � direction as the direction

of decreasing � at $�
� If zero is a regular value of �F in the interior of S �i�e�� r �F

has maximal rank n � � along �c��
 � int�S

 then after �nite �� �c��
 will leave S�

Obviously� zero will not be a regular value of �F on the boundary of S since this is

where bifurcations onto lower dimensional branches occur� This homotopy path will

leave S in one of two ways� through a side of S where xi � � for some � 
 i 
 n or

turn back around and exit through the side where � � � �see Figure ���
� A branch

with n � � cannot� in general� leave through the side where � � � since as a con�

sequence of Raoult�s Law� the pure components are the only solutions at this point�

��



It is possible� however� for the homotopy branch to leave S at � � �� This special

case� discussed in detail in chapter �� occurs only at speci�c values of pressure and

does not present any problem for this algorithm� If �c��
 leaves through a side of S

where xi � � then this point corresponds to a transcritical bifurcation point onto an

�n� �
�ary branch provided the conditions of lemma � are satis�ed� The case where

�c��
 leaves through the side de�ned by � � � corresponds to the case of multiple

azeotropes bifurcating from an isolated azeotrope �see Figure ���
� As stated above�

this has never been observed experimentally� Nevertheless� the method will fail in

this case� Furthermore� the case where d�c�d� is tangent to C � �Tmin� Tmax��f�g at $�

corresponds to the isolated azeotrope� If the homotopy branch passes through a side

de�ned by xi � �� we are able to jump onto a lower dimensional branch� The set S

is rede�ned for this new lower dimensional space by reducing the dimensionality of

the composition space C� If zero is a regular value of �F in the interior of the new S

and the homotopy path does not leave this new S through the side de�ned by � � ��

we will be able to bifurcate onto a branch of even lower dimension� This reasoning is

continued until we reach a pure component branch� If we are able to do this then the

original n�ary azeotrope can be obtained through the homotopy method� The next

question to examine is under what conditions zero will be a regular value of �F �

��

�

�

� � �

��

�

�

� � �

Figure ���� Two possible ways �c��
 can leave S�

Zero will be a regular value of �F along a path �c��
 if the Jacobian matrix �����


has rank n��� To facilitate the analysis� the vapor is treated as an ideal gas and the

��



Jacobian matrix is rewritten as

r �F ��c��
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� �x���
���

���
� � �

���
���

���
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�
CCCCCCA

�
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���
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���

� � �
���

���
���

�gn�� � � � �gn�n �n �n
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�
CCCCCCA

�

�
BBBBBB�
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� �x�K�
���

���
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���
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�
CCCCCCA
�
� �G � �

eT � �

�
A �����


where

�i � �

�
� ln �i
�T

	
x�P

�

�
��

�� �

�i

	
d lnP s

i

dT
� �����


�i � ��
�

�i
� �����


�G
i�j � gi�j �

�
� ln �i
�xj

	
xk�j��T�P

� and �����


eT � �� � � � � �
 � �����


Note that G is the Hessian matrix of the excess Gibbs free energy of mixing �scaled

by RT 
 and thus�

�� G � GT � R
n�n and

��



�� By the Gibbs�Duhem relation� the rank of G is at most n� ��

The �rst term in the factored Jacobian matrix� equation �����
� is a diagonal matrix

which is nonsingular in the interior of S� Thus� it is su�cient to look only at the

second term to examine the rank of the overall Jacobian matrix�

Theorem � Zero will be a regular value of �F in the interior of S if

�� rank�G
 � n� ��

�� �HE
i �  Hvap

i for i � �� � � � � n � �HE
i and  Hvap

i are the excess partial molar

enthalpy and the molar heat of evaporation of component i� respectively�� and


� xT ��� ��
 �� � for any constant � where x is the current composition at which

� and � are evaluated �this constraint is only necessary if rank�G
 � n� ��

�assuming the vapor may be treated as an ideal gas��

Proof� Zero will be a regular value of �F in the interior of S if

rank

�
� �G � �

eT � �

�
A � n� �

Suppose u � R�G
 � R�GT 
� Then u �
Pn

i�� cigi where G � �g� g� � � � gn� and

gk �

�
BBB�

g��k
���

gn�k

�
CCCA 	k � �� � � � � n�

By the Gibbs�Duhem relation� xTu �
Pn

i�� cix
Tgi � � since x

Tgi � � for all i where x

is the current liquid composition on the curve � However� xT e �� � and if �HE
i �  Hvap

i

for all i then � � � in the interior of S and xT� �� �� This implies the following

rank

�
� �G

eT

�
A � rank�G
 � �

rank

�
� �G �

eT �

�
A � rank�G
 � �
��



This completes the proof if rank�G
 � n� �� If condition ��
 also holds�

rank

�
� �G � �

eT � �

�
A � maxfrank�G
 � �� n� �g�

Corollary � There will be no isolated azeotropes nor multiple azeotropes that bifur�

cate from isolated azeotropes if the rank of G is equal to n�� and condition ��� holds

in the interior of S�

There must be a turning point in the interior of S for there to be an isolated branch

�i�e�� a branch not connected to a lower dimensional branch
 connecting a pair of

azeotropes that bifurcate o
 an isolated azeotrope �see Figure ���
� The corollary

above excludes turning points in � in the interior of S and thus� these isolated branches

and corresponding azeotropes are not possible�

The condition for non�negativity of � is derived as follows�

�i � �

�
� ln �i
�T

	
x�P

�

�
��

�� �

�i

	
d lnP s

i

dT

� ��
�HE
i

RT �
�

�
��

�� �

�i

	
 Hvap

i

RT � Zvap
i

where �HE
i is the excess partial molar enthalpy of mixing for species i�  H

vap
i is the

molar heat of evaporation for species i� and  Zvap
i is the change in the compressibility

factor associated with evaporation for species i �which is very close to unity at low

to moderate pressure
� Since� in the interior of S� � � � � � � ��� �
��i� �i � � if

�HE
i �  Hvap

i � This is not at all an unreasonable assumption�

The exact conditions under which the rank of G is less than n� � in the interior

of S� if this may occur at all� have not been determined� However� the only physically

meaningful case where the rank of G is equal n� � is at a non�elementary arm�chair

azeotrope �of which the isolated azeotrope is an example
� which are extremely rare

and will occur only at speci�c values of pressure� Furthermore� arm�chair azeotropes

which are not isolated azeotropes are readily computed with this method� Within

the interior of S� the phase equilibrium is modeled using pseudo K�values which

��



are convex combinations of the nonideal and ideal K�values� Thus� the !pseudo

equilibrium" is not likely to be signi�cantly di
erent from the actual phase equilibrium

except for the most pathological cases�

If the approach described above is applied to systems containing heteroazeotropes�

solutions are found at � � � that either don�t satisfy the necessary conditions for

azeotropy due to a violation of the non�negativity of the mole fractions constraint or

they satisfy the necessary conditions� but a subsequent phase stability test indicates

the liquid at the computed composition� temperature� and pressure will split into

multiple liquid phases� These spurious homogeneous solutions� discussed in detail in

the following section� correspond to actual heteroazeotropes present in the mixture�

The spurious solutions themselves do not assist in the computation of the corre�

sponding heteroazeotropes� the composition and temperature of these spurious so�

lutions� even when within their respective bounds� are signi�cantly di
erent from

the actual heteroazeotrope composition and temperature and there is no systematic

way to initialize the additional variables associated with the heterogeneous model�

However� sections ��� and ��� describe how two additional homotopy maps can be

constructed so that heteroazeotropes can be computed using the spurious homoge�

neous azeotropes and branches�

��� Spurious Homogeneous Azeotropes

In this section� the existence of spurious homogeneous azeotropes is considered� It will

be shown in the following section that the spurious azeotropes need not be computed

�only the spurious branches are required to obtain the heteroazeotropes
� however�

the following analysis provides some useful insights and an alternative� very e�cient

mechanism for computing certain heteroazeotropes� The existence of spurious homo�

geneous azeotropes will be analyzed by examining the following homotopy map�

hsi �x� �
 � ��xi � yi�x

 � ��� �
�xi � yoi �x

 i � �� � � � � n� � �����


��



where x � R
n is the liquid composition� y�x
 � R

n is the vapor composition in

equilibrium with the liquid computed using an appropriate vapor�liquid equilibrium

�VLE
 model� yo�x
 � R
n is the vapor composition in equilibrium with the liquid

computed using an appropriate vapor�liquid�liquid equilibrium �VLLE
 model �x is

the overall liquid composition in this case
� and � � R is the homotopy parameter�

The equilibrium vapor composition and temperature as well as the additional liquid

compositions and phase fraction in the heterogeneous case are fully determined by

specifying x and pressure� System �����
 is n� � equations in terms of n unknowns

�n � � independent liquid compositions and �
� The summation of mole fraction

constraint was used to eliminate a mole fraction element� rather than treating the n

compositions as independent and explicitly handling the summation constraint as in

the other homotopies described in this chapter� At � � �� the homotopy map reduces

to hsi �x� �
 � xi�y
o
i �x
� i � �� � � � � n��� the necessary conditions for heteroazeotropy�

At � � �� the homotopy map reduces to hsi �x� �
 � xi � yi�x
� i � �� � � � � n � �� the

necessary conditions for homogeneous azeotropy� This homotopy map is related to

the residue curves of homogeneous and heterogeneous mixtures� The homogeneous

residue curves are de�ned by the dynamical system

dxi
d�
� xi � yi�x
 i � �� � � � � n� � �����


and the heterogeneous residue curves are de�ned by

dxi
d�
� xi � yoi �x
 i � �� � � � � n� �� �����


The notation is slightly changed from that in chapter � to remain consistent in this

chapter� As stated in chapter �� �xed�points of these dynamical systems are the pure

components� azeotropes� and heteroazeotropes and can only be stable or unstable

nodes� saddles� or non�elementary arm�chair �xed�points ���� ���� Furthermore� it is

shown in ���� that the number of di
erent types of �xed�points is further restricted in

the heterogeneous case by the number of components present and number of liquid

phases in equilibrium� The homotopy curve de�ned by hs�x� �
 � � describes how

��



the �xed�points of the following dynamical system vary with ��

dxi
d�
� ��xi � yi�x

 � ��� �
�xi � yoi �x

 i � �� � � � � n� �� �����


Figure ��� contains a schematic of the relationship between the �xed�points of the

three dynamical systems above�

x - yo

Water Benzene

Ethanol

Water Benzene

Ethanol

Water Benzene

Ethanol

Heterogeneous HomogeneousComposite

d x
d

d x
d

x - yo) + (1 - x - y) x - yd x
d

Locus of fixed points for 0 <  < 1

Figure ��
� Schematic of relationship between the �xed�points of the dynamical
systems �����
� �����
� and �����

�

Suppose $xo satis�es the necessary and su�cient conditions for heteroazeotropy

and $x satis�es the necessary conditions for homogeneous azeotropy �and is thus� the

composition of a spurious homogeneous azeotrope
� We are interested in under what

conditions a smooth path de�ned by hs�x� �
 � � connects �$xo� �
 and �$x� �
� The

homotopy map can be expressed as�

hsi �x� �
 � xi �����Ki
 � ��� �
���Ko
i 
� i � �� � � � � n� � �����


where Ki is the normal VLE K�value and

�

Ko
i

� s
�

KI
i

� ��� s

�

KII
i

�����


is the overall K�value for the heterogeneous system�

��



The Jacobian of �����
 is

rhs�x� �
 �

�
rxh

s


 �hs

��

	
�����


�����


where

�rxh
s
i�j �  i�i�j � xi



�
�Ki

�xj
� ��� �


�Ko
i

�xj

�
� �����


 i � ����Ki
 � ��� �
���Ko
i 
� and �����
�

�hs

��

	
i

� �xi �Ki �Ko
i 
 � �����


Let c��
 � �hs
����
 denote the homotopy path where � is some suitable parame�

terization� As before� de�ne a k�ary branch� denoted by c	k
��
� as a connected com�

ponent of �hs
����
 such that xi �� � for �� � � � � k and xi � � for i � k � �� � � � � n� ��

On c	k
��
�  i � � for all i � �� � � � � k� On this path� the Jacobian can be written as

rxh
s�c	k
��

 �

�
BBBBBBBBBBBB�

�x�K ��� � � � �x�K ��k�� � � � �x�K ��n��

���
� � �

���
� � �

���

�xkK k�� � � � �xkK k�k�� � � � �xkK k�n��

� � � �  k�� � � � �
���

� � �
���

� � �
���

� � � � � � � �  n��

�
CCCCCCCCCCCCA

and

�hs

��





c�k�		


�

�
BBBBBBBBBBBB�

�x��K� �Ko
�


���

�xk�Kk �Ko
k


�
���

�

�
CCCCCCCCCCCCA

��



where K i�j � �Ki�j � ��� �
Ko
i�j� As with the other homotopy branches discussed in

this paper� c��
 exhibits transcritical bifurcation points� corresponding to intersections

between k�ary and �k��
�ary branches� where a mole fraction element on the �k��
�

ary branch and the corresponding  i on the k�ary branch cross zero� �The proof

is very similar to the one shown in Appendix B for the bifurcation points on the

homogeneous branches�
 This observation will be shown to be particularly useful in

the heteroazeotrope �nding algorithm�

Let s�x
 denote the liquid phase fraction computed through a VLLE calculation

with a �xed pressure and overall liquid composition x� De�ne the following set�

% � fz � R
n�� j xT � �zT � ��

Pn��
i�� zi
 and � 
 s�x
 
 �g�

At a speci�ed pressure� this set is constant and does not change along the homotopy

path �it is simply the region where a liquid�liquid phase split is predicted by the

necessary conditions for vapor�liquid�liquid equilibrium
� Let $c��
 � �$xo� �
 � % � R

where $xo satis�es the necessary and su�cient conditions for heteroazeotropy� We

are interested in under what conditions a spurious homogeneous azeotrope will exist

when a corresponding heteroazeotrope exists� Thus� we can assume $c��
 � % � R

for �� � � � ��� This is due to the fact that if $c��
 leaves % � R at a point

$c���
 � ��x� ��
� � � �� � �� then s��x
 � � �or �
 and �x will satisfy the necessary

conditions for azeotropy and thus� be the spurious homogeneous azeotrope we are

looking for� Su�cient conditions for the homotopy path to cross the level set %�f�g

at a point �$x� �
 �where $x is a spurious homogeneous azeotrope
 are�

�� Zero is a regular value of h in �%� Z
� ��� �� and

�� Multiple heteroazeotropy does not occur

where Z � fz � R
n�� j xT � �zT � ��

Pn��
i�� zi
 and xi � � for at least one ig �this

set is removed from % to exclude the case of transcritical bifurcations onto other

branches when a mole fraction element crosses zero
� If the �rst condition holds then

$c��
 will be di
eomorphic to a circle or the real line and will either cross % � f�g

��



benzene

0 1

1 0

ethanolwater

0 1

benzene

0 1

1 0

ethanolwater

0 1

heteroazeotropes

spurious azeotropes

Figure ���� Homotopy paths connecting heteroazeotropes to spurious homogeneous
azeotropes for the benzene� ethanol� and water system at ��� bar�

or turn around before the ��component of $c��
 reaches unity� Condition ��
 prevents

the latter from occurring�

Figure ��� contains a plot of the homotopy paths connecting the heteroazeotropes

to the corresponding spurious homogeneous azeotropes in the benzene� ethanol� and

water system at a pressure of one bar� In this �gure� the ternary branch intersects

the binary branch where the ethanol mole fraction crosses zero� The binary het�

eroazeotrope is a saddle when the system is viewed as a three component mixture

and the corresponding spurious azeotrope is an unstable node �they are both un�

stable nodes when the system is viewed as a binary benzene�water mixture
� This

di
erence in stability is due to the fact that a ternary homotopy branch experiences

a transcritical bifurcation through the binary branch� Suppose the two conditions

listed above hold on all homotopy paths connecting heteroazeotropes to spurious ho�

mogeneous azeotropes present in an n�component mixture�� In addition� suppose we

are currently on a k�ary branch� At any value of �� the matrix rxh
s has n � k � �

�Actually� condition ��� above can be relaxed� zero need only be a regular value for the homotopy
map� hs�x� ��� in the set �� � C�� 	
� ���

��



eigenvalues equal to  i� i � k � �� � � � � n� �� A su�cient condition for the existence

of a higher dimensional branch crossing the k�ary branch is

 i�� � �
 � i�� � �
 
 � for some i � k � �� � � � � n� �����


�The  corresponding to the component removed using the summation of mole frac�

tions constraint must also be examined�
 This observation can be exploited in the het�

eroazeotrope �nding algorithm� Given a k�ary heteroazeotrope and its spurious homo�

geneous azeotrope� compare the signs of  i�� � �
 and  i�� � �
 for i � k��� � � � � n�

If any of these quantities di
er in sign then a �k � �
�ary heteroazeotrope may exist�

In addition� we know with which additional component this new heteroazeotrope is

formed and that the spurious homogeneous azeotrope lies outside C� Furthermore�

this provides an e�cient means of computing the higher dimensional heteroazeotrope�

Suppose �����
 is satis�ed for some k � � 
 j 
 n� The homotopy path is tracked

from the k�ary heteroazeotrope to determine where  j��
 crosses zero� A point on

the higher dimensional homotopy branch is then computed by solving the following

system of equations�

�
BBBBBB�

x� �

���

xk k

xj � �

�
CCCCCCA
� �

for some su�ciently small � � �� This branch is then tracked in the direction of

decreasing � to the heteroazeotrope at � � �� Obviously� we will need to compute

binary heteroazeotropes in a di
erent manner in order to obtain the higher dimen�

sional heteroazeotropes using the approach described above� The following section

describes another approach for the computation of the heteroazeotropes�

��



��� Computation of Heterogeneous Azeotropes

This section describes our extension of Fidkowski�s approach for the computation of

the heteroazeotropes present in a multicomponent mixture� The description of the

approach is followed by some analysis� The case of two liquid phases in equilibrium

with vapor is discussed below� However� the approach can be readily extended to

handle any number of liquid phases in equilibrium�

The �rst step is to derive a heterogeneous homotopy map� Since there is no

equivalent to Raoult�s Law for vapor�liquid�liquid equilibrium� equation ����
 cannot

be used as a starting point� However� starting with equation ����
 the following

homotopy map can be derived�

F o�x� y�� xI � xII � T� s� �
 �

�
BBBBBBBBBBBBBBBBBBBBBBBB�

x� y�

y�� �
�
�KI

� � ��� �
P s
� �P

�
xI�

���

y�n �
�
�KI

n � ��� �
P s
n�P

�
xIn

�
�
�I�x

I
� � �II� xII�

�
� ��� �


�
xI� � xII�

�
���

�
�
�Inx

I
n � �IIn xIIn

�
� ��� �


�
xIn � xIIn

�
x� sxI � ��� s
xIIPn

i�� y
�
i � �Pn

i�� x
I
i � �

�
CCCCCCCCCCCCCCCCCCCCCCCCA

�����


where x � R
n is the overall liquid composition� y� � R

n is the perturbed vapor

composition� xI � xII � R
n are the liquid compositions of liquid phases I and II�

respectively� s is the liquid phase fraction �the fraction of the total number of moles

of liquid in liquid phase I
� T is temperature� P is pressure� and � � R is the

homotopy parameter� As in the homogeneous case� the perturbed vapor composition

��



can be eliminated from �����
 using the �rst n equations�

�F o�x� xI � xII � T� s� �
 �

�
BBBBBBBBBBBBBBBBBBBBB�

x� �
�
�KI

� � ��� �
P s
� �P

�
xI�

���

xn �
�
�KI

n � ��� �
P s
n�P

�
xIn

�
�
�I�x

I
� � �II� xII�

�
� ��� �


�
xI� � xII�

�
���

�
�
�Inx

I
n � �IIn xIIn

�
� ��� �


�
xIn � xIIn

�
x� sxI � ��� s
xIIPn

i�� xi � �Pn
i�� x

I
i � �

�
CCCCCCCCCCCCCCCCCCCCCA

� �����


Similar to the homogeneous case� at constant pressure setting expression �����
 to

zero de�nes a ��manifold in �x� xI � xII � T� s� �
�space� This curve will be referred to as

a heterogeneous homotopy path or branch or simply as a heterogeneous branch� This

form of the heterogeneous homotopy map has the following property� when the liquid

phase fraction s on the heterogeneous branch crosses zero or one� a projection of the

heterogeneous branch will intersect the corresponding spurious homogeneous branch

�see Figure ���
� As stated earlier in this chapter� a spurious homogeneous azeotrope

is a solution to the necessary conditions of azeotropy that fails a stability test or lies

outside the physical bounds of the variables �i�e�� mole fractions outside the range of

zero and unity
� The basic heteroazeotrope �nding algorithm can be summarized in

the following steps�

�� Compute the homogeneous azeotropes using the homogeneous homotopy map�

�� Test all homogeneous azeotropes for stability �this also indicates which azeotropes

are spurious
�

�� Retrace all spurious branches and search for the points of intersection with a

projection of a heterogeneous branch�

�� From the intersection points� track the heterogeneous branches to the het�

��
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Figure ���� Schematic of the intersection of spurious homogeneous branch and pro�
jection of heterogeneous branch�

eroazeotropes using the heterogeneous homotopy map� and

�� Test all heterogeneous solutions for stability�

Since only the necessary conditions are satis�ed at � � �� a phase stability test

must be performed on all solutions� The homogeneous azeotropes are easily obtained

through a series of bifurcations from some of the pure component branches� Cri�

teria �����
 should be checked at each heteroazeotrope computed� If this condition

is satis�ed� the approach described in the previous section provides an alternative�

independent means of computing the higher dimensional heteroazeotrope�

At the intersection points� the common components of the homogeneous and het�

erogeneous branches are equal� The following additional constraints are satis�ed on

the heterogeneous branch �when s � �
�

���jxj � �IIj xIIj 
 � ��� �
�xj � xIIj 
 � � j � �� � � � � n �����

nX
i��

xIIi � �� �����


The heterogeneous homotopy map was constructed so that it can be assumed the liq�

��



uid phase fraction s crosses one� As the spurious homogeneous branches are retraced�

equations �����
������
 are monitored to determine if a root exists in the current con�

tinuation step� A root exclusion test based on interval arithmetic ���� is employed

to make this search robust and e�cient� This algorithm is described in detail in the

implementation section later in this chapter� If a root is identi�ed in a neighborhood

of the current continuation point� a bounded Newton�s method is used to compute

the missing components associated with the heterogeneous branch �xII
� After com�

puting the intersection point� the heterogeneous homotopy map is used to track the

path from the intersection point to the heteroazeotrope at � � ��

�
	
� Analysis

There are two classes of bifurcations that are important in the heterogeneous case�

bifurcations onto higher dimensional heterogeneous branches and intersections with

spurious homogeneous branches� Both of these classes of bifurcations are analyzed in

this section� This section is concluded with a discussion of under what conditions all

heteroazeotropes will be computed using this approach�

In order to make the following Jacobian derivation and analysis clearer�

�F o�x� xI � xII� T� s� �


is partitioned as follows�

�F o�x� xI � xII � T� s� �
 �

�
BBBBBBBBB�

�F o
�

�F o
�

�F o
�

�F o
�

�F o
�

�
CCCCCCCCCA

�����


��



where

� �F o
� 
i � xi �

�
�KI

i � ��� �
P s
i �P

�
xIi i � �� � � � � n� �����


� �F o
� 
i � �

�
�Ii x

I
i � �IIi xIIi

�
� ��� �


�
xIi � xIIi

�
i � �� � � � � n� �����


�F o
� � x� sxI � ��� s
xII � �����


�F o
� �

nX
i��

xi � �� and �����


�F o
� �

nX
i��

xIi � �� �����


The Jacobian matrix can then be expressed as follows

r �F o	x�xI �xII �T�s��
�

�
BBBBBBBBBBBBBBBB�

I � �F o
� 
�x

I � � �F o
� 
�T � � �F o

� 
��

� � �F o
� 
�x

I � �F o
� 
�x

II � �F o
� 
�T � � �F o

� 
��

I �sI 	s��
I � xII�xI �
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� eT � � � �

�
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where
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�

�xI

	
i�j

� �
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�KI

i � ��� �
P s
i �P

�
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and the i and j indices above vary from � to n� Similar to the homogeneous case�

de�ne

�KI
j � �KI

j � ��� �
P s
j �P � �� �j� �����


��Ij � ��Ij � ��� �
� �����


��IIj � ��IIj � ��� �
� �����



j � �

�
�KI

i

�T

	
x�y�P

�
��� �


P

dP s
i

dT
� and �����


�j � KI
i �

P s
i

P
� �����


Intersections with other Heterogeneous Branches

Let �co	k
��
 � �x��
� xI��
� xII��
� T ��
� s��
� ���

 � � �F o
	k



����
 denote a heteroge�

neous branch where x��
� xI��
� xII��
 each have k nonzero elements� Suppose we are

currently on a k�ary branch of an n component system such that xi �� �� i � �� � � � � k�

and xi � �� i � k��� � � � � n� Without loss of generality� suppose for some $�� xk�$�
 � ��

Then xIk�
$�
 � xIIk �

$�
 � � and

�F o
	k��
�P	k��
�c

o
	k
�
$�

 � P	k��


�F o
	k
��c

o
	k
�
$�

 � �

where P	k��
 is a projection matrix that removes all elements associated with xk� x
I
k�

and xIIk from �c
o
	k
 and

�F o
	k
 �i�e�� element k� xk�

�KI
kx

I
k� element �k� ��

I
kx

I
k� ��

II
k xIIk � and
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element �k� xk � sxIk � ��� s
xIIk 
� Furthermore�

�
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�
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k
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This point may correspond to a transcritical bifurcation point where the k�ary branch

intersects a �k��
�ary branch� The �rst step in proving this is a transcritical point is

to show that rank r �F o
	k
��c

o
	k
�
$�

 � �n�� �i�e�� rank de�cient by one
� When xk � ��

there are three rows in the Jacobian matrix that have entries that become identically

zero �as opposed to other entries that may happen to equal zero coincidentally
� rows

k� �k� and �k� Removing all zero entries common to all three of these rows� we have

the following �reduced� rows�

�
BBB�
� � �KI

k �

� ��Ik ���IIk

� �s s� �

�
CCCA �

If these rows are not independent then the original matrix will be rank de�cient and

det

�
BBB�
� � �KI

k �

� ��Ik ���IIk

� �s s� �

�
CCCA � �� �����
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Expanding the determinant above�

�s� �
��Ik � �s� �KI
k
��

II
k � �����


On the k�ary branch� the following holds

�KI
k � xk�x

I
k �����


s �
xk � xIIk
xIk � xIIk

�
�KI
k � �k
�� �k
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where �k � xIIk �x
I
k� Furthermore�

�KI
k��
� s��
� and �k��
 remain smooth and contin�

uous as � passes through $�� In addition� rearranging equation �����
 �with i � k


we see that ��Ik � ��
II
k �k ��k �� � if xI �� xII
� Substituting these quantities into the

expression for the determinant� we have

��Ik�s� �
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II
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k
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�KI
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�� �k

� �
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I
k � �


� �

and� thus� the original matrix is rank de�cient �rank de�cient by at least one by

inspection
� The derivation above simply shows that the dimension of the null�space

of the Jacobian matrix is at least two� The following lemma contains necessary and

su�cient conditions for a transcritical bifurcation point onto another heterogeneous

branch�

Lemma � A necessary condition for a bifurcation from a �k � �
�ary branch onto a

k�ary branch at a point �co�$�
 is

h
s�$�
� �

i
��Ij �
$�
�

h
s�$�
� �KI

j �
$�

i
��IIj �

$�
 � � for some j � fk� � � � � ng� �����
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A necessary condition for a bifurcation from a k�ary heterogeneous branch onto a

�k � �
�ary branch at a point �co�$�
 is

xj�$�
 � � for some j � f�� � � � � kg� �����


Condition ������ becomes necessary and su	cient for a bifurcation from a k�ary

branch onto a �k � �
�ary branch by adding the following


�� dxj�d�



	��	

�� ��

�� rank r �F o�$�
 � No � � where No � �n� �� and


� �F o��xj



	��	

� R
�
r�j


�F o�$�

�
where r�j
 denotes partial derivatives with respect

to all variables except xj�

Proof� See Appendix C�

Intersections with Homogeneous Branches

In this section� the subscript �k
 will be dropped since we are dealing with intersections

with branches with the same number of nonzero elements in the mole fraction vectors

�which will be greater than or equal to two
� Suppose for some $�� eTs �c
o�$�
 � s�$�
 � ��

then x�$�
 � xI�$�
 �in general� xI�$�
 �� xII�$�

 and

r �F o	x�xI �xII �T�s��
�

�
BBBBBBBBBBBBBBBB�

I � �F o
� 
�x

I � � �F o
� 
�T � � �F o

� 
��

� � �F o
� 
�x

I � �F o
� 
�x

II � �F o
� 
�T � � �F o

� 
��

I �I � � xII�x �

eT � � � � �

� eT � � � �

�
CCCCCCCCCCCCCCCCA


 �����


Furthermore� �F o
� ��c

o�$�

 and �F o
� ��c

o�$�

 are identical to the corresponding homogeneous

homotopy map �with the same nonzero mole fraction elements
� and thus� this point

is an intersection of the projection of the heterogeneous branch onto �x� T� �
�space

and a spurious homogeneous branch� It can be readily seen that the last n � � rows

��



of �����
 can be combined linearly to form a zero row and thus� the matrix is rank

de�cient by at least one at the intersection point� We only need to treat the case

where s � � since the designation of liquid phases I and II is arbitrary� If from a

given starting point the branch crossed s � � then if the two liquid phase compositions

were swapped and the continuation was performed again from the original starting

point the branch would cross s � �� The homogeneous homotopy curve� �c��
� can be

thought of as a hypersurface in �x� xI � xII � T� s� �
�space� where xI � xII � and s are free

to take any value� An intersection point is a point where the heterogeneous homotopy

curve� �co��
 intersects this hypersurface�

The remainder of this section discusses under what conditions all heteroazeotropes

will be computed� The proof is similar to the homogeneous case� A bounded region�

So� will be constructed in �x� xI � xII � T� s� �
�space containing the heteroazeotrope on

the side de�ned by � � �� The heterogeneous branch will move into So and if zero is a

regular value of the heterogeneous map in this region� the branch will either leave So

at a point corresponding to an intersection with a lower dimensional heterogeneous

branch �a bifurcation point as de�ned in this paper
 or at an intersection with a

spurious homogeneous branch� If a bifurcation point is identi�ed then the reasoning

is continued in this lower dimensional space� If an intersection point is identi�ed then

the analysis described in the homogeneous azeotrope section is evoked�

If the heteroazeotrope exists and the Jacobian has maximal rank at this point

then a smooth path �co��
 will exist� Let �co�$�
 denote the heteroazeotrope� Similar to

the homogeneous case� the following bounded� connected set can be de�ned�

So � C � C � C � �Tmin� Tmax�� ��� ��� ��� �� � �����


The heteroazeotrope�

�co�$�
 � �x�$�
� xI�$�
� xII�$�
� T �$�
� s�$�
� ��$�

�

is located on the side of So where � � �� If zero is a regular value of �F o in the interior

of So� the heterogeneous branch passing through �co�$�
 will leave So after �nite �

��



�provided d�co�d� is not tangent to So at $�
� Again� the positive � direction is the

direction of decreasing � at $�� Furthermore� the heterogeneous branch will leave So

in one of three ways�

�� �co��
 will turn around and leave through the side of So where � � ��

�� �co��
 will leave through a side of So where s equals zero or unity� or

�� �co��
 will leave through a side of So where xi � � for some � 
 i 
 n�

Figure ��� contains a diagram of the three possible cases� The branch cannot cross

�

�

�

� � �

�

�

�

� � �

��

�

�

� � �

Figure ���� Three possible ways �co��
 can leave So�

� � � due to the fact that there is no solution at this point for n � � and pure compo�

nent heterogeneous branches are physically meaningless and degenerate� For the case

where n � �� the only solution is the trivial solution and the liquid phase fraction is

indeterminant� The �rst case listed above corresponds to multiple heteroazeotropy�

Although multiple heteroazeotropy is not physically possible�� there may arise sit�

uations where one of the two heteroazeotropes is not physical� In this case� the

�In the homogeneous case� multiple azeotropy occurs when there are both positive and negative

��



heterogeneous branch will be isolated and the corresponding heteroazeotrope will not

be computed using our approach� This is an extremely pathological case and it is

very unlikely that it will occur� If the second case above occurs� the point at which

the heterogeneous branch leaves So will correspond to an intersection with a spuri�

ous homogeneous branch� Provided this spurious homogeneous branch is obtainable

from a pure component branch �see discussion on the computation of homogeneous

azeotropes above
� the corresponding heteroazeotrope will be computed using our ap�

proach� If the third case above occurs� the point at which the heterogeneous branch

leaves So will correspond to an intersection with a lower dimensional heterogeneous

branch provided the conditions in lemma � are satis�ed� As with the homogeneous

case� if a lower dimensional heterogeneous branch is obtained the same analysis is

applied within this lower dimensional space� If the original heterogeneous branch is

obtained through a series of bifurcations on lower dimensional heterogeneous branches

then we must eventually reach a branch that is obtainable from a pure component

branch� Appendix D contains a proof that� under reasonable assumptions� all bi�

nary heteroazeotropes will be obtained from pure component homogeneous branches�

Appendix E contains a discussion of the rank of the Jacobian of the heterogeneous

homotopy map�

Thus� there are three independent mechanisms by which heteroazeotropes may be

obtained� through intersections with spurious homogeneous branches� through bifur�

cations from lower dimensional heterogeneous branches� and� if the spurious azeotrope

lies outside C� through the approach described in section ���� Numerical examples

and implementation details are presented in chapter �� In nearly every case examined�

the heteroazeotropes �k � �
 were obtained through all three mechanisms�

deviations from Raoult�s Law at various compositions� Since heteroazeotropy is associated with
strong positive deviations from Raoult�s Law an analogous situation is not likely to occur�

��



��� Algorithm

This chapter describes and analyzes a new approach for the computation of azeotropes

and heteroazeotropes present in a multicomponent mixture� Azeotropes are obtained

through a series of bifurcations on the homotopy paths de�ned by ����
� The starting

points for these homogeneous branches are �x� T� �
 � �ek� T
s
k � �
� k � �� � � � � n� where

ek denotes pure component k with boiling temperature T
s
k at the speci�ed pressure�

Heteroazeotropes are obtained using the heterogeneous homotopy map� �����
� Start�

ing points for the heterogeneous branches are obtained by two mechanisms� through

intersections with spurious homogeneous branches and through bifurcations on lower

dimensional heterogeneous branches� As a consequence of the analysis in this chap�

ter� bifurcation and intersection points of interest for the computation of azeotropes

and heteroazeotropes will occur in the range � � � � �� Heteroazeotropes are also

obtained through a third� independent mechanism described in section ����

The algorithm for computing the homogeneous and heterogeneous azeotropes is

described below� The algorithm described computes the azeotropes at a �xed pres�

sure� however� computing the azeotropes at a �xed temperature is simply a matter

of replacing temperature with pressure in the description below�

Three lists are employed in this algorithm� The �rst list� AL� holds the homo�

geneous azeotropes� both stable and spurious� The elements of this list are data

structures holding the value of the bifurcation points� �xb� T b� �b
� the value of the

azeotrope� �x� T 
� and a status �eld� These are referred to as azeotrope data structures�

The second list� HL� holds the heterogeneous azeotropes� The elements of this list are

data structures holding the value of the intersection point� �xi� xII�i� T i� �i
� the value

of the bifurcation point� �xb� xI�bxII�b� T b� sb� �b
� and the value of the heteroazeotrope�

�x� xI � xII � T� s
� These are referred to as heteroazeotrope data structures� The third

list� SL contains the values of the thermodynamically stable homogeneous and hetero�

geneous azeotropes identi�ed� These data structures are referred to as homogeneous

and heterogeneous solution data structures�

As described earlier in this chapter� there are three independent mechanisms by

��



which the heteroazeotropes are obtained� �
 bifurcations on lower dimensional het�

erogeneous branches� �
 through the use of lower dimensional heteroazeotropes and

spurious homogeneous azeotropes and the spurious homotopy map� equation �����
�

and �
 through intersections on spurious homogeneous branches� These three mech�

anisms are summarized in Table ����

Table �
�� The three mechanisms for computing heteroazeotropes�
Mechanism Starting Point Homotopy Map

Bifurcations on lower Heterogeneous homotopy map�
� dimensional heterogeneous equation �����


branches
Bifurcation points on the Spurious homotopy map�

� homotopy branches de�ned equation �����

by �����


� Intersection on homogeneous Heterogeneous homotopy map�
homotopy branches equation �����


Computation of Stable and Spurious Homogeneous Azeotropes

The �rst step in the heteroazeotrope algorithm is to construct a list containing all

homogeneous azeotropes� both stable and spurious� This is performed in the following

steps�

�� Compute the quantities �i�j� de�ned by equation �����
� for all i� j � �� � � � � n�

�� For each � � �i�j � � compute a point on the binary branch �see following

section
 and store these bifurcation points in the azeotrope data structures and

set status �eld equal to unprocessed� Append each of these data structures to

the end of AL�

�� For each element of AL� track the homogeneous branch from the bifurcation

point to � � �� For each new bifurcation point identi�ed along the branch�

compute a point on the new branch� store in a azeotrope data structure as

above� and append to the end of AL� At � � �� set the azeotrope value �eld

of the azeotrope data structure containing the bifurcation point from which the

azeotrope was obtained equal to the value of the computed azeotrope�

��



Step � above will be repeated as many times as there are bifurcation points on the

homogeneous branches �within the set S
� Upon completion of the steps above� the

list AL will contain all homogeneous azeotropes predicted by the model �provided the

conditions described in section ����� are satis�ed
 and a set of spurious homogeneous

azeotropes�

Computation of Heteroazeotropes

Having computed the list of homogeneous azeotropes� the next step is to compute

the heteroazeotropes� The procedure described below attempts to locate the het�

eroazeotropes through mechanisms � and � �rst� using mechanism � as a last resort

�although it is necessary for binary branches
�

For each entry in the list AL� perform the following steps�

�� Check stability�

�� If azeotrope is stable� remove entry from list and place in SL�

�� If azeotrope is unstable or lies outside the physical composition space �and is

thus a spurious homogeneous azeotrope
� search the list HL for a correspond�

ing entry to determine if the corresponding heteroazeotrope may be obtained

through mechanisms � or ��

�� If an entry is found� set the status �eld equal to possibly found� move to the

next entry in AL� and go to step ��

�� If an entry is not found� retrace the corresponding spurious homogeneous branch

and search for the point of intersection with the projection of a heterogeneous

branch� When found� store the intersection point in the heterogeneous data

structure and append to the list HL� It may be necessary to search the branch

both forward and backward from the bifurcation point� however� the search is

con�ned to the set S�

�� Using the heterogeneous map� track the heterogeneous branch from the intersec�

tion point identi�ed in the step above� During the tracking of the heterogeneous

��



branch� identify bifurcation points along the heterogeneous branch� compute

points on the new branch� store in heterogenous data structures� append to end

of HL� and continue tracking the original heterogeneous branch to � � �� Store

the computed heteroazeotrope in the data structure holding the intersection

point from which this heteroazeotrope was obtained�

�� At this point� all bifurcations associated with the current heterogeneous branch

�obtained through the intersection point identi�ed in step �
 are explored�

Preferably� all heteroazeotropes reachable from this branch should be computed

through this mechanism� For all entries in list HL associated with with the het�

eroazeotrope computed in the previous step� track the heterogeneous branch to

� � � and store the heteroazeotrope value in the appropriate entry of HL� As

the heterogeneous branches are tracked� identify and compute additional bifur�

cation points and append to HL� Continue this step until all heteroazeotropes

reachable from the branch associated with the heteroazeotrope computed in

step � have been computed�

�� Next� attempt to compute a higher dimensional heteroazeotrope through mech�

anism � as follows� Remove the spurious homogeneous azeotrope corresponding

to heteroazeotrope computed in step � from AL� Check the criteria �����
 and

if satsi�ed� track the spurious homotopy map� equation �����
� from the het�

eroazeotrope to the spurious homogeneous azeotrope� If a bifurcation point is

identi�ed on this homotopy branch� scan the heteroazeotrope list� HL� to deter�

mine if it was previously computed through a bifurcation on a lower dimensional

heterogeneous branch in step �� If not� switch to the higher dimensional branch

and track this new branch to � � � �the location of the heteroazeotrope on the

homotopy branches associated with �����
� Store this new heteroazeotrope in a

heteroazeotrope data structure and append to end of HL�

Upon completion of the steps above� the azeotrope list� AL� will contain spurious

homogeneous azeotropes with status possibly found� indicating that their corre�

sponding azeotropes may have been obtained through mechanisms � or �� The het�

��



eroazeotrope list� HL� will contain values for the heteroazeotropes computed through

mechanisms �� �� or ��

According to theory developed in this chapter� on a given heterogeneous branch�

either an intersection point with a spurious homogeneous branch or a bifurcation point

on a lower dimensional heterogeneous branch will occur within the set So� Conse�

quently� the intersection point search can be limited to this region� In many of the

systems examined� the heterogeneous branch leaves So through an intersection on a

spurious homogeneous branch then crosses a lower dimensional heterogeneous branch

�a bifurcation point
 outside So� Obtaining the heterogeneous branches through bi�

furcation points is somewhat more e�cient than the intersection search and thus�

it is worthwhile to perform the branch tracking outside So in an attempt to locate

additional heterogeneous bifurcation points� How far the continuation is performed

outside this set depends on the dimensionality of the current branch �the cost of

the intersection search increases with size faster than the bifurcation point search�

which is extremely e�cient for systems containing several components� thus� higher

dimensional branches warrant a more exhaustive bifurcation point search
�

The next step is to determine the stability of the heteroazeotropes� For each entry

in list HL� perform the following steps�

�� Compute stability if heteroazeotrope is physical �i�e�� variable are within their

respective bounds
�

�� If stable� append heteroazeotrope to list SL and remove corresponding spurious

azeotrope from AL�

Upon completion of the steps above� the sets AL and HL should be empty if the

conditions described in sections ��� and ��� are satis�ed� If HL is nonempty then it

contains nonphysical solutions� If the set AL is nonempty then every entry with a

corresponding entry in HL also corresponds to a nonphysical solution predicted by

the equilibrium model� All other entries may correspond to heteroazeotropes that

were missed in the steps above �theoretical robustness does not imply computational

robustness
� For each of these entries� an intersection search is performed� Each

��



resulting heteroazeotrope is tested for stability and stored in SL if stable�

The set SL contains all homogeneous and heterogeneous azeotropes computed

through the approach described in this chapter� The �nal step of the heteroazeotrope

�nding algorithm is to check for topological consistency using the constraint� equation

����
� described in chapter ��

The following chapter considers the case of bifurcation and intersection points

outside the range � � � � � and describes how the approach above can be used to

explore the phase equilibrium structure under system and	or property model param�

eter variation� including the detection of incipient azeotropes and heteroazeotropes

�i�e�� azeotropes and heteroazeotropes that do not appear under current conditions

but may exist if parameters� such as pressure� are perturbed
�

Chapter � contains several numerical examples illustrating the approach described

in this chapter� In nearly every system examined� the heterogeneous branches of di�

mensionality greater than two were obtained through mechanisms �� �� and �� One ex�

ception was the benzene�isopropanol�water system where the ternary spurious branch

is isolated from the other homogeneous branches� This ternary heteroazeotrope was

obtained� however� through mechanisms � and �� Another exception was the water�

acetone�chloroform system where the ternary heterogeneous branch does not intersect

the binary heterogeneous branch� In this case� the ternary heteroazeotrope was ob�

tained through mechanisms � and ��

��� Implementation

The basic algorithm for the computation of azeotropes and heteroazeotropes described

in this thesis can be summarized in the following steps� ��
 compute the homogeneous

azeotropes using the homogeneous homotopy map� ��
 perform a phase stability test

on all homogeneous solutions� ��
 identify the spurious homogeneous branches� ��


retrace spurious branches and search for points of intersection with a projection of the

heterogeneous branches� ��
 track the heterogeneous branches to the heteroazeotropes

using the heterogeneous homotopy map� and ��
 perform a phase stability test on all

��



heterogeneous solutions� There are four key numerical calculations in this algorithm�

�� Branch tracking�

�� Bifurcation point identi�cation and branch switching�

�� Intersection point identi�cation and computation of missing components� and

�� Phase stability test�

These items are discussed below�

�
�
� Branch Tracking

The main numerical calculation performed in this algorithm is the tracking of the

homogeneous and heterogeneous branches� In every multicomponent mixture ana�

lyzed� no turning points in any of the parameters was exhibited by the homogeneous

branches inside the set S� however� several turning points were found in the more

complicated heterogenous branches �see examples in chapter �
� As a result� a con�

tinuation procedure capable of dealing with turning points must be employed� All

branch tracking in the numerical examples in this thesis were performed using the con�

tinuation code PITCON ���� which uses a locally parameterized continuation method�

Alternatively� a continuation procedure based on arclength continuation ����� can be

used� however� the algorithm used in PITCON was su�ciently robust and e�cient�

The remainder of this subsection brie�y describes this algorithm�

Consider the following underdetermined system of nonlinear equations�

f�z
 � � �����


where f � D � R
n �
 R

n�� � The following assumptions on f are made�

�� f is continuously di
erentiable in D�

�� The derivative rf of f is locally Lipschitzian on D� and

��



�� The regularity set of f � R�f
 � fx � D j rf�x
 has full rank n � �g is

nonempty�

The connected component c��
 � f����
 where c � � � R ��
 R
n is computed by

�rst selecting an appropriate variable zi to parameterize the system above� The

appropriate choice is based on making r�i�f nonsingular and as well�conditioned as

possible �r�i� denotes the Jacobian matrix with partial derivative entries with respect

to all variables except zi
� The appropriate selection of zi at any given point on

the curve is based on looking at the local curvature of c��
� hence the name locally

parameterized continuation method� Given an appropriate parameter� the following

system is solved at the current point on the the path� z	k
� for v	k
 � R
n �

�
� rf�z	k



eTi

�
A v	k
 � en� �����


The matrix on the left�hand�side of the equation above will be referred to as the

augmented Jacobian matrix� The direction to step on the curve is then given by

d	k
 � �
v	k


kv	k
k�
�����


where

� � sgn��v	k

T ei
sgn det

�
� rf�z	k



eTi

�
A � �����


Provided conditions ��
 through ��
 above hold� d	k
 will be uniquely determined�

The next point on the curve is

z	k��
 � z	k
 � h	k
d	k
 �����


where h	k
 is the current stepsize selected by looking at the local curvature�
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If a simple transcritical bifurcation point exists between z	k��
 and z	k
 then

sgn det

�
� rf�z	k��



eTik��

�
A sgn det

�
� rf�z	k



eTik

�
A � �� �����


where ik�� and ik are the parameter indices at step k�� and k� respectively� A better

approach for the identi�cation of the bifurcations of interest in the heteroazeotrope

�nding algorithm is described below�

�
�
� Bifurcation Point Identi�cation

As shown in section ��� for the homogeneous case� while moving along a k�ary branch�

a necessary condition for a bifurcation point corresponding to an intersection with a

�k � �
�ary branch is

�j��
 � � �����


for some j � fk � �� � � � � ng� If the bifurcation point is identi�ed by monitoring the

sign of the determinant of the augmented Jacobian matrix there is a risk that an even

number of bifurcation points might missed due to a cancellation in the sign change of

the determinant or we may incorrectly conclude there is one bifurcation point when

there may acually be an odd number greater than one� The occurrence of a bifurcation

along the homotopy branch is analogous to a state event in a di
erential	algebraic

equation �DAE
 system� that is� a point at which the functional form of the DAE

changes during the course of a simulation� Typically� the state events are identi�ed

by zero crossings of an appropriate discontinuity function� Park and Barton describe

an algorithm for state event location that not only guarantees the identi�cation of

the state event� but also correctly identi�es the �rst zero crossing of the discontinuity

function ����� Condition �����
 is analogous to the discontinuity function of a hybrid

discrete	continuous DAE model� By constructing an interpolating polynomial for

each �j� j � k��� � � � � n� using l previously computed points� the algorithm described

in ���� can be used to identify e�ciently the bifurcation points along the path�

��



Once the bifurcation point has been identi�ed� a point on the �k � �
�ary branch

is predicted by stepping in the direction of the eigenvector associated with the zero

eigenvalue of the augemented Jacobian matrix ������ This predicted point is then

moved onto the �k � �
�ary branch by solving the following system of equations�

�
BBBBBBBBBBBB�

x���� �K��x� T� �


���

xk��� �Kk�x� T� �

Pk��
i�� xi � �

�j�x� T� �


xj � �

�
CCCCCCCCCCCCA
� � �����


where k � � 
 j 
 n and � is some su�ciently small positive constant� The exact

direction for stepping onto the new branch� as well as necessary and su�cient condi�

tions for the existence of a transcritical bifurcation point� can be derived from �rst

and second order derivative information of �F at the singular point ������ However�

experience has shown the approach described above to be more than adequately ro�

bust and e�cient� Once this new point is computed� it is saved so that this branch

may be tracked later� The branch tracking is then continued on the original k�ary

branch to � � ��

In the case of a k�ary heterogeneous branch� the bifurcation criteria is

�j��
 � �s��
� �� ��
I
j ��
�

�
s��
� �KI

j ��

�
��IIj ��
 � � �����


for some j � fk��� � � � � ng� As with the homogeneous case� polynomials can be �tted

to the �j�s and the state event location algorithm mentioned above can be used to

locate the bifurcation points� Once the points are identi�ed� the following system of

equations is solved for a point on the new �k � �
�ary branch �with a starting point

obtained from stepping in the direction of the eigenvector associated with the zero

��



eigenvalue of the augemented Jacobian matrix
�

�
BBBBBBBBBBBBBBBBBBBBBBBBBBB�

x� �
�
�KI

� � ��� �
P s
� �P

�
xI�

���

xn �
�
�KI

n � ��� �
P s
n�P

�
xIn

�
�
�I�x

I
� � �II� xII�

�
� ��� �


�
xI� � xII�

�
���

�
�
�Inx

I
n � �IIn xIIn

�
� ��� �


�
xIn � xIIn

�
x� sxI � ��� s
xIIPn

i�� xi � �Pn
i�� x

I
i � �

��x� xI � xII� T� s� �


xj � �

�
CCCCCCCCCCCCCCCCCCCCCCCCCCCA

� � �����


where k � � 
 j 
 n and � is some su�ciently small positive constant� This point is

saved so that that this branch may be tracked later�

�
�
� Intersection Point Identi�cation

At the intersection of an n component spurious homogeneous branch and a projection

of a heterogeneous branch the following system of equations is satis�ed�

�
BBBBBBBBBBBBBBBBBB�

x���� �K�

���

xn��� �Kn


���x� � ��II� xII�
���

��nxn � ��
II
n xIInPn

i�� x
II
i � �Pn

i�� xi � �

�
CCCCCCCCCCCCCCCCCCA

� � �����


��



Equation �����
 was formed from �����
 by simply setting s � � and x � xI and

removing the redundant equations� Elements � through n and element �n � � of

�����
 are satis�ed on the spurious homogeneous branch� The intersection �nding

problem amounts to moving along the spurious homogeneous branch and looking

for solutions to �����
� Since the cost of this root �nding problem increases with

the number of variables� locating roots of the following subset of equations has been

found to be computational more e�cient and just as robust�

& �

�
BBBBBB�

���x� � ��
II
� xII�

���

��nxn � ��IIn xIInPn
i�� x

II
i � �

�
CCCCCCA
� � �����


The intersection �nding problem is divided into two steps� �
 intersection point identi�

�cation and �
 intersection point computation� The identi�cation problem is handled

using a root exclusion test�

A root exclusion test performed on a system of equations f�z
 � �� f � D �

R
n �
 R

n � provides the following information about X � D�

�� There is no root in X�

�� There is a unique root in X� or

�� There may or may not be one or more roots in X�

For a multidimensional problem� a root exclusion test based on interval arithmetic

is ideal� Interval arithmetic is a branch of mathematics concerned with operations

with intervals or closed subsets of the real line ����� Let X� �
�
X l

�� X
u
�

�
� fx �

R j X l
� 
 x 
 Xu

� g denote an interval� The set of all intervals in R is denoted by IR�

Similarly� the set of all n�dimensional intervals in Rn is denoted by IRn �e�g�� the set

of all rectangles in R
� is denoted by IR

�
� The familiar operations associated with

real numbers can also be de�ned for intervals� For example� let � denote some binary

operation de�ned for real numbers� The associated interval operation is de�ned as

��



X� � Y� � fx � y j x � X�� y � Y�g� If x � y is unde�ned for any x � X� or y � Y��

the corresponding interval operations is unde�ned� For example� interval division

is unde�ned if the denominator contains zero� Similarly� elementary functions can

be extended to intervals� Let func denote some function �e�g�� sin� cos� etc�
� The

interval value for func� denoted by Func� is de�ned by Func�X�
 � ffunc�x
 j x �

X�g� Again� Func�X�
 is unde�ned if func�x
 is unde�ned for any x � X�� An

interval extension of a general nonlinear function f � D � R
n �
 R

n � denoted by

F � IRn �
 IR
n� can be constructed by replacing all real operators and elementary

functions in f with the corresponding interval operations� The interval extension of

f has the important property that given X � IR
n �X � D
� F �X
 contains the

image set of X under f � that is� f�X
 � F �X
� The cost of evaluating the interval

extension of a function is a small multiple of the cost of evaluating the function

using real operations� This provides a rapid way of answering question ��
 above� if

� �� F �X
 then there is no solution to f�x
 � � for any x � X� Unfortunately� since

the interval extension of a function over�approximates the image set� � � F �X
 does

not provide any information about solutions within X� Question ��
 above can be

answered by a theorem due to Moore ����� First� the Krawczyk operator is de�ned�

K �X
 � y � Y f�y
 � �I � YrF �X
� �X � y
 �����


where y � X � D� Y � R
n�n is an arbitrary nonsingular� real matrix� and rF �X
 �

IR
n�n is the interval extension of the Jacobian matrix of f �

Theorem � �Moore�� If

K �X
 � int�X
 �����


then there exists a unique solution x� � X to f�x
 � ��

In practice� y � m�X
 and Y � �m�rF �X


�� where m��
 denotes the midpoint

��



of an interval vector� i�e��

m�X
 �

�
BBB�
�Xu

� �X l
�
��

���

�Xu
n �X l

n
��

�
CCCA

Figure ���� contains a pseudo�code description of the intersection �nding algorithm�

The input to this procedure is the current point on a spurious homogeneous curve�

�x	k
� T 	k
� �	k

� and an interval in � over which to search for the intersection point�

��	k
� based on the size of the previous step taken during the continuation� The return

value of this procedure is a subdomain X � IR
N �IR that contains a unique solution

to �����
 �in which case procedure argument solution is set to contains solution
�

or a subdomain that may contain a solution if status is set to possible solution�

or the empty set is returned and status is set to no solution� indicating there

is no solution to �����
 near the current continuation point� Upon entering Lo�

cateIntersection� the nontrivial index set� I� is constructed� This set contains

the indices of the nonzero mole fraction elements �the dimensionality of the root

�nding problem is equal to the dimensionality of the spurious branch plus one
�

Next� the current search domain� Dk� is constructed� Solutions are sought where

�xII � �
 � ��� ��N � ��	k
 � ��	k
� �	k
 � ��	k
� where N is the number of nonzero mole

fraction elements on the current branch� Although the intersection point may occur

at a point where xII is outside the physical region �where the elements are bounded

between zero and one
� these branches will be obtained through bifurcations on lower

dimensional heterogeneous branches� Since the trivial solution �xII � x	k

 satis�es

�����
 at each continuation point� x	k
 must be excluded from the search domain�

Thus� �N subdomains are constructed from Dk by bisecting through x	k
� These sub�

domains are stored in a list L� For each domain in this list� the interval extension of

�����
� denoted by � �X
� is evaluated and a check is made to see if � � � �X
� If zero

is not contained within this set� the X is deleted from L and the next subdomain in

the list is examined� If zero is contained within � �X
 then X may contain one or

��



more solutions� If the diameter of X� denoted by diam�X
 and de�ned as

diam�X
 � max
��i�n

fXu
i �X l

ig� �����


is less than 
 � � then the Krawczyk operator is evaluated� If K �X
 � int�X
 then X

contains a unique solution and X is returned with status set to contains solution�

Otherwise� if the diameter of X is less than � where � � � � 
� then X is very

small and may contain a solution� This set is then returned with status equal to

possible solution and the problem is handled by the intersection point computa�

tion routine� Finally� if diam�X
 � � and K �X
 �� int�X
 then X is bisected through

its largest edge� forming two sets� X� and X�� X is then removed from L� X� and X�

are appended to L� and the next subdomain in the list is examined� This is repeated

until the list is empty� in which case� the empty set is returned with status set to

no solution indicating there is no solution near the current continuation point�

If status is returned with a value of contains solution or possible solution�

a bounded Newton�s method is employed to compute the solution� The search is

limited to the region X returned from LocateIntersection�

�
�
	 Phase Stability Test

Solutions satisfying only the necessary conditions for azeotropy and heteroazeotropy

must be tested for thermodynamic stability� A test based on the tangent plane criteria

���� was chosen for this work� As described in chapter �� the solution procedure must

be guaranteed to compute either all stationary points the global minimum of the

tangent plane distance function� equation ����
� For the the phase stability test used in

this thesis� all stationary points were computed using an interval Newton	generalized

bisection approach� similar to that described in ������ This option was chosen for its

simplicity and computational robustness� It is important to note that the approaches

developed in this thesis minimize the number of times the highly costly stability test

has to be performed�
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��	 Conclusion

This chapter describes a new approach for the computation of the homogeneous and

heterogeneous azeotropes present in a mulicomponent mixture� The approach� which

is an extension of an approach developed by Fidkowski et al�for the computation of ho�

mogeneous azeotropes� is independent of both the topology of the liquid�liquid region

and the model used to represent the nonideality of the system� Theoretical analysis

of the method provides conditions under which all azeotropes and heteroazeotropes

will be computed� This analysis has also led to several algorithmic improvements� It

is important for one to recognize the di
erence between theoretical robustness and

computational robustness of an algorithm� Theoretical robustness results from the

determination of exact conditions under which the algorithm will not fail� Algorithmic

robustness has to do with the actual implementation of the approach within a com�

puter� Theoretical robustness in this approach is addressed with the developement

of the theories in this chapter� Algorithmic robustness results from the capability of

computing the heteroazeotropes through several independent mechanisms�

The following chapter describes an extension of this algorithm for computing ef�

�ciently the changes in phase equilibirium structure under system and	or property

model parameter variation� The analysis of the changes in phase equilibrium structure

include the determination of bifurcation values of the parameters where homogeneous

and heterogeneous azeotropes appear� disappear� and switch between each other�
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LocateIntersection�x	k
�T 	k
��	k
� ��	k
�status

� � Determine the index set of nonzero mole fractions�

� I � f j j x
	k

j � � and � 
 j 
 ng #

� N � dim I #
� � Construct current search domain�
� Dk �

�
�xII � �
 � R

N � R j � 
 xII 
 � � �	k
 � ��	k
 
 � 
 �	k
 � ��	k

�
#

� � Construct subdomains by bisecting through x	k
 and store in list�
� L �

�
Dk

� � D
k
� � � � � � D

k
�N

�
#

� while L �� � do
� X � L #
�� � Evaluate natural interval extension of intersection equations�
�� if � � � �X
 then
�� if diam�X
 � 
 and K �X
 � int�X
 then
�� � X contains unique solution to intersection equations�
�� status � contains solution #
�� return X #
�� elseif diam�X
 � � then
�� � Current subdomain very small and may contain a solution�
�� � Return X and status set accordingly�
�� status � possible solution #
�� return X #
�� else

�� � Re�ne subdomain by bisecting through the midpoint of the
�� � longest edge of X� Replace X in list with the re�nement�
�� X 
 �X�� X�
 #
�� L � �L � fXg
 � fX�� X�g #
�� end

�� else

�� � Delete X from list�
�� L � L� fXg #
�� end

�� end

�� � No solution in neighborhood of current point�
�� status � no solution #
�� return � #

Figure ����� Intersection location algorithm�
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Chapter �

Analysis of Phase Equilibrium

Structure

��� Introduction

Computation of all azeotropes and heteroazeotropes present in a multicomponent

mixture is a necessary task when analyzing and designing separation systems� In

addition to computing the azeotropes and heteroazeotropes at a given pressure �or

temperature
� it is often valuable to know how the azeotropic composition and tem�

perature vary with pressure �or� equivalently� since the azeotrope is a univariate state�

how the azeotropic composition and pressure vary with temperature
� A systematic

approach for analyzing such changes can be incorporated directly into design algo�

rithms� sometimes dramatically increasing the space of alternative designs�

As described in chapter �� the operation of a heteroazeotropic distillation column

exhibits multiple solutions� high parametric sensitivity� and a sharp temperature gra�

dient associated with the movement of the liquid�liquid front through the column� In

addition� as shown by Rovaglio and Doherty ����� small pressure perturbations can

lead to separation failure over a relatively short period of time� Increased knowledge

of the phase equilibrium structure under system parameter variation can improve the

interpretation of simulation results as well as improve the understanding of how the

column should be operated� Furthermore� tools capable of improving the modeler�s

��



understanding of the phase equilibrium behavior can be used to develop more robust

and e�cient simulation methods�

Most activity coe�cient models are based on binary interaction parameters� ob�

tained through regression with experimental equilibirum data� Ideally� when the

activity coe�cient models are applied to multicomponent mixtures �n � �
� the com�

puted values of higher dimensional azeotropes and heteroazeotropes are extrapolated

from the parameters �t to the binary pairs contained in the systems� In some cases�

these higher dimensional azeotropes and heteroazeotropes are not predicted or the

computed values are signi�cantly di
erent than the experimental values� due to the

limitations of using binary interaction parameters� Often� the solutions not predicted

by the phase equilibrium model actually exist albeit outside the physical composition

space� fx � R
n j

Pn
i�� xi � � and xi � � i � �� � � � � ng� where they are of little

practical use� In the event of such failures� a systematic analysis of the e
ect of pa�

rameter perturbation on the prediction of azeotropes and heteroazeotropes provides

useful insights into the capabilities of the phase equilibrium model� Furthermore�

tools assisting the user in the systematic exploration of the phase equilibrium struc�

ture can be used as the property model parameters are being estimated in order to

judge the quality of the �t�

Given the composition� temperature� and pressure of an azeotrope or hetero�

azeotrope� standard continuation methods ���� ���� can be applied to the necessary

conditions for azeotropy or heteroazeotropy to determine how the state variables

change with a given system parameter �e�g�� temperature or pressure
 or property

model parameter� By applying a phase stability test during the continuation� it is

possible to determine at what conditions an azeotrope becomes a heteroazeotrope or

vice versa� However� there often arises situations where at the speci�ed temperature

or pressure� the azeotrope or heteroazeotrope does not physically exist or does exist�

but is not predicted within the physcial composition space by the phase equilibrium

model either due to the limitations of the actual model or the model parameter values�

This chapter describes how the approach for computing azeotropes and het�

eroazeotropes developed in this thesis can be used to compute� systematically and ef�
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�ciently� changes in phase equilibrium structure under system and property model pa�

rameter variation� The approach has the capability of predicting incipient azeotropes

and heteroazeotropes� that is� azeotropes and heteroazeotropes that do not exist un�

der current conditions but may appear at a di
erent temperature and pressure or

di
erent values for the property model parameters�

The following section brie�y summarizes the algorithm described in the previous

chapter� This is followed by a description of the extension to the exploration of the

phase equilibrium structure� Numerical examples of this approach are provided in

chapter ��

��� Summary of Homogeneous and Heterogeneous

Azeotrope Finding Algorithm

The previous chapter in this thesis describes an algorithm for the computation of the

azeotropes and heteroazeotropes present in a multicomponent mixture� The proce�

dure is based on using two homotopy maps� The homogeneous map is

�F �x� T� P� �
 �

�
BBBBBB�

x� ��� ��K��T� P� x
 � ��� �
P s
� �T 
�P �


���

xn ��� ��Kn�T� P� x
 � ��� �
P s
n�T 
�P �
Pn

i�� xi � �

�
CCCCCCA
� � ����


��



where x � R
n is the liquid composition� T is temperature� P is pressure� and � � R

is the homotopy parameter� The heterogeneous map is

�F o�x� xI � xII � T� P� s� �
 �

�
BBBBBBBBBBBBBBBBBBBBB�

x����KI
� 	T�P�x

I
�	���
P s
� 	T 

P �xI�

���

xn���KI
n	T�P�x

I
�	���
P s
n	T 

P �xIn

���I� 	T�P�xI
xI���II� 	T�P�xII
xII� ��	���
�xI��xII� �
���

���In	T�P�xI
xIn��IIn 	T�P�xII
xIIn ��	���
�xIn�xIIn �

x�sxI�	��s
xII

Pn
i�� xi��

Pn
i�� x

I
i��

�
CCCCCCCCCCCCCCCCCCCCCA

� � ����


where x � R
n is the overall liquid composition� xI � xII � R

n are the composition

of liquid phases I and II� respectively� and s � R is the liquid phase fraction �the

fraction of the total number of moles of liquid in liquid phase I
�

As described in the previous chapter� at constant temperature or pressure� the

homogenous azeotropes are obtained through a series of bifurcations on the homon�

geneous branches� �c��
 � �F����
� originating from the pure components� The het�

eroazeotropes are computed with the heterogeneous branches� �co��
 � � �F o
����
�

from starting points obtained either through intersections with spurious homogeneous

branches or bifurcations on lower dimensional heterogeneous branches� As shown in

previous chapter� bifurcation and intersection points of interest when computing the

azeotropes and heteroazeotropes will occur within � � � � �� However� if the ho�

motopy branches are tracked outside this range� bifurcation and intersection points

are often identi�ed that correspond to nonphysical branches� that is� branches that

either do not cross � � � �the only physically meaningful point on the branch
 or

cross � � � at a point where one or more mole fraction vector elements or the phase

fraction �in the heterogeneous case
 are outside their physical range of zero and unity�

For example� if a pure component homogeneous branch is tracked backwards from

� � � �backwards de�ned as the direction of decreasing �
 and a bifurcation point is
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identi�ed� then the corresponding binary branch is not physical because it is unable

to cross � � � in order to reach � � �� �Recall that� as a consequence of Raoult�s

Law� the only solutions to the homotopy map at � � � are the pure components and

thus� branches of dimension two or greater can only cross � � � under very speci�c

conditions�
 If a bifurcation or intersection point is identi�ed at some � � � then

the corresponding branch either does not cross � � � or does so at a point where the

composition or phase fraction is outside the physical bounds of zero and unity�

These nonphysical branches themselves are not of any use� however� as will be

shown in section ������ the nonphysical bifurcation and intersection points �i�e�� points

occurring outside � � � � �
 are useful in examining the phase equilibrium structure

of the mixture�

��� Analysis of Phase Equilibrium Structure

The condition of azeotropy occurs when there is an extremum in the equilibrium

surface of a mixture� At such a point� the composition of the equilibrium vapor

and liquid are equal� and thus� this point acts as a barrier to separations exploiting

composition gradients �or� more strictly� chemical potential gradients
 as described

in chapter �� Azeotropic points are univariate# specifying one intensive property

uniquely de�nes the intensive state of the system� Under certain conditions� changing

a system parameter �e�g�� pressure
 results in the appearance or disappearance of an

azeotrope� For example� Figure ��� contains a schematic of a Txy diagram for a binary

mixture where the azeotropic state does not exist at low pressure� but emerges from a

pure component vertex as pressure is increased� The pressure at which the azeotrope

appears or disappears is referred to as a bifurcation pressure� This is illustrated for

the acetone�ethanol system and the tetrahydrofuran�water system in sections �����

and ������ respectively�

Heteroazeotropy occurs when the azeotropic composition on the vapor�liquid equi�

librium surface intersects the liquid�liquid binodal� The locus of azeotropic and het�

eroazeotropic points as a function of pressure are shown in the schematic in Figure
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Figure ���� Binary homogeneous T�xy diagram�

��� where� in this case� the liquid�liquid binodal exhibits an UCST�
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Figure ���� Binary heterogeneous T�xy diagram�

Pressure does not strongly e
ect the liquid�liquid region� however� decreasing pres�

sure reduces the boiling temperatures of the components present in the mixture�

thereby causing the vapor�liquid equilibrium surface to move into the liquid�liquid

region� As a result� the azeotrope becomes a heteroazeotrope� The pressure where

the azeotropic point on the vapor�liquid surface just touches the liquid�liquid binodal

��



is also referred to as a bifurcation pressure�

In many cases� the azeotropic and heteroazeotropic conditions are highly sensitive

to changes in the system parameters� Knowing how the conditions of the system

change is important because in some cases avoiding a liquid�liquid phase split is de�

sirable whereas in other cases� it may be advantageous to exploit this condition� This

chapter describes an e�cient procedure for analyzing the changes in phase equilibrium

structure with system and	or property model parameter variation� The approach is an

extension of an algorithm for the computation of the azeotropes and heteroazeotropes

present in a multicomponent mixture described in the previous chapter� Thus� it is

possible to compute simultaneously the azeotropes and heteroazeotropes present un�

der one set of conditions �e�g�� speci�ed temperature or pressure
 as well as predicting

the e
ect on the azeotropic states of the system under parameter variation�

�
�
� Examination of the Phase Equilibrium Structure

There are three types of points of interest on the bifurcation diagrams generated

using the approach described in chapter �� solution points� bifurcation points� and

intersection points� Solution points are points on the branches where the � component

equals unity� Bifurcation points are intersections of k�ary and �k � �
�ary branches

�branches are either both homogeneous or both heterogeneous
� Intersection points

are intersections of heterogeneous k�ary and spurious homogeneous k�ary branches�

The homogeneous and heterogeneous homotopy maps can expressed in general as

�F �x� T� P� �� fpig
Np

i��
 � � ����


and

�F o�x� xI � xII� s� T� P� �� fpig
No
p

i��
 � � ����


where fpig
Np

i�� and fpig
No
p

i�� are the parameters associated with the property models

used to compute the VLE and VLLE� respectively� For example� these models in�
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clude vapor pressure correlations and activity coe�cient equations� The homogeneous

map is n � � equations in terms of n � Np � � variables and parameters� The ho�

mogenous branches are computed by specifying Np � � values of the variables and

parameters� leaving ����
 n�� equations in terms of n�� variables with which stan�

dard continuation methods can be applied to determine �c��
� In chapter �� the Np

physical property parameters and temperature or pressure are speci�ed to compute

the azeotropes� Similarly� the heterogeneous map is �n � � equations in terms of

�n�No
p � � variables and parameters� The heterogenous branches are computed by

specifying No
p � � variables and parameters �N

o
p physical property parameters and

temperature or pressure in chapter �
 and using standard continuation methods to

compute �co��
�

The basic idea described in this section is to append an additional equation� which

de�nes the point of interest� to system ����
 or ����
� thereby removing a degree of

freedom from the augmented system� This allows an additional parameter that was

�xed in order to compute �c��
 or �co��
 to be treated as a variable so that standard

continuation methods can be applied to the new system of equations to determine

how the point of interest varies� In order to use continuation to track c��
 � f����


of an underdetermined system f � Rm �
 R
m�� � the following conditions must be

satis�ed in the neighborhood� D � R
m � of the point at which the continuation is to

be started�

�� f is continuously di
erentiable in D�

�� The derivative rf of f is locally Lipschitzian on D� and

�� The regularity set of f � R�f
 � fz � D j rf�z
 has full rank m � �g is

nonempty�

These criteria must be satis�ed when selecting the additional parameter to free at

each of the points described below�
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Solution Points

A solution point is simply a point on the homotopy branch that satis�es the necessary

conditions for homogeneous or heterogeneous azeotropy �i�e�� a point at which the

homotopy branch crosses � � �
� Thus� the additional equation mentioned above is

simply

� � �� ����


Instead of augmenting ����
 and ����
 with equation ����
� � is simply replaced by

unity� thereby reducing the homotopy maps down to the necessary conditions for

azeotropy and heteroazeotropy� This allows an additional variable or parameter to

be selected from the set fx� T� P� �� fpig
Np

i��g or fx� x
I � xII � s� T� P� �� fpig

No
p

i��g �satisfy�

ing the continuation criteria above
 and treated as a variable� Standard continuation

methods can then be applied to the new underdetermined set of equations to examine

how the azeotrope and heteroazeotrope conditions vary� Since only the necessary con�

ditions are satis�ed at each continuation point� a phase stability test must be used at

each step during the continuation to determine when the azeotrope or heteroazeotrope

disappears or switches between each other� The need for an expensive phase stability

test makes the tracking of solution branches computationally unattractive�

The examination of the phase equilibrium structure using the approach described

above is straightforward and� with the exception of the phase stability test� quite

e�cient� However� an azeotrope or heteroazeotrope must be known a priori in order to

start the continuation� that is� we must start o
 with a point on the homotopy branch

that crosses � � �� The following two sections describe how the existence of incipient

azeotropes and heteroazeotropes can be predicted by examining the bifurcation and

intersection points associated with nonphysical branches� branches that do not cross

� � � or do so at points that do not satisfy the necessary conditions due to a variable

bound violation�
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Bifurcation Points

A bifurcation point is where a k�ary branch intersects a �k � �
�ary branch �both

branches are either homogeneous or heterogeneous
� Without loss of generality� the

following conditions are satis�ed on a k�ary homogeneous branch�

xj �� � j � �� � � � � k� ����


�j � � j � �� � � � � k� ����


xj � � j � k � �� � � � � n� and ����


�j �� � j � k � �� � � � � n ����


where �j � �� ��Kj � ��� �
P s
j �P 
 � �� �Kj� As shown in chapter �� a necessary

condition for a bifurcation onto a �k � �
�ary branch at a point $� is

�j�$�
 � � for some j � k � �� � � � � n� �����


Thus� this is the equation that is appended to ����
 to make the system fully deter�

mined� Without loss of generality� assume for some $�� �k���$�
 � �� At a bifurcation

point corresponding to the intersection of a k�ary and a �k � �
�ary branch the fol�

lowing set of k � � equations are satis�ed �the equations associated with zero mole

fractions are not written
�

�
BBBBBBBBB�

x� ��� ��K��T� P� x
 � ��� �
P s
� �T 
�P �


���

xk ��� ��Kk�T� P� x
 � ��� �
P s
k �T 
�P �
Pk

i�� xi � �

�k���T� P� x� �


�
CCCCCCCCCA
� �� �����


Equation �����
 is k�� equations in terms of k�Np�� variables and parameters� By

selecting k�� variables from the set ffxig
k
i��� T� P� �� fpig

Np

i��g such that the continu�

ation crieteria are satis�ed� �����
 becomes k�� variables in terms of k�� variables
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�only the k nonzero mole fraction elements are considered and these are treated as

independent since the summation of mole fractions constraint is handle explicitly
�

Again� standard continuation methods can be applied to this underdetermined system

to examine how the bifurcation point varies�

Of particular interset is under what conditions the bifurcation point occurs at

� � � or � � �� A bifurcation point at � � � corresponds to the case where

the �k � �
�ary azeotrope emerges from a k�ary azeotrope� This is illustrated in an

example in section ����� where an acetone�ethanol homogeneous azeotrope emerges

from the pure acetone vertex as pressure is increased above approximately ��� bar�

A bifurcation at � � � will most commonly occur between a pure component and a

binary homogeneous branch and it is a consequence of two components� which form

an azeotrope� having the same boiling temperature at a certain pressure� This is

the exception brie�y mentioned in chapter � where more than n branches occur at

� � �� This point corresponds to the case where the bifurcation point associated

with the physical binary azeotrope switches the pure component branch from which

it emerges from� This phenomenon is illustrated in section ����� for the chloroform�

methanol system�

In the heterogeneous case� the necessary condition for a bifurcation from a k�ary

branch onto a �k � �
�ary branch at a point $� is

�j�$�
 �
h
s�$�
� �

i
��Ij �
$�
�

h
s�$�
� �KI

j �
$�

i
��IIj �

$�
 � � �����


for some j � k � �� � � � � n� where ��Ij � ��Ij � �� � �
� ��IIj � ��IIj � �� � �
� and

�KI
j � �KI

j � �� � �
P s
j �P � This is the additional equation appended to ����
 to

remove a degree of freedom� Again� without loss of generality� we can assume that

condition �����
 is satis�ed for j � k � � at $�� Similar to the homogeneous case� the

���



following set of equations are satis�ed at the heterogeneous bifurcation point�

�
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB�

x� � �KI
� �x

I � T� P� �
xI�
���

xk � �KI
k�x

I � T� P� �
xIk

��I��x
I � T� P� �
xI� � ��

II
� �x

II � T� P� �
xII�
���

��Ik�x
I � T� P� �
xIk � ��

II
k �x

II � T� P� �
xIIk

x� � sxI� � ��� s
xII�
���

xk � sxIk � ��� s
xIIk
kX
i��

xi � �

kX
i��

xIi � �

�k���x� x
I � xII � T� P� s� �


�
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

� �� �����


This is a system of �k� � equations in terms of �k�No
p � � unknowns� By selection

�k�� variables or parameters from the set fx� xI � xII � T� P� s� �� fpig
Np

i��g� not including

the zero mole fractions and subject to the continuation criteria� standard continuation

methods can be applied to �����
 to determine how the heterogeneous bifurcation

point varies�

Of particular interest for the heterogeneous case is where the homogeneous azeotrope

becomes a heteroazeotrope at the point where the vapor�liquid equilibrium surface

enters the liquid�liquid binodal� Thus� the variation of intersection points� described

below� is more interesting than the variation of bifurcation points for the heteroge�

neous case�

Intersection Points

For the case where the bifurcation diagrams described in chapter � are constructed at

constant pressure� an intersection point is an intersection of a spurious homogeneous

���



branch and a projection of a heterogeneous branch into �x� T� �
�space� Alterna�

tively� the intersection point can be viewed as an intersection between a heteroge�

neous branch and a spurious homogeneous surface in �x� xI � xII � s� T� �
�space� This

intersection occurs at a point on the heterogeneous branch where s � � and thus� this

is the additional constraint appended to the heterogeneous homotopy map� As shown

in chapter �� the rank of the Jacobian of the heterogeneous homotopy map� equation

����
� is de�cient by at least one at an intersection point� The case where the rank

of this matrix is de�cient by exactly one corresponds to the case of a !normal" inter�

section point while the others are degenerate and require further analysis� However�

this condition was not encountered in any of the systems analyzed in chapter ��

As stated above� the heterogeneous homotopy map is appended with the constraint

s � �� However� rather than increasing the size of ����
� the liquid phase fraction

is replaced by unity and the redundant equations are removed� Thus� the set of

constraints satis�ed at a k�ary intersection point are

�
BBBBBBBBBBBBBBBBBBBBBB�

x���� ��K��T� P� x
 � ��� �
P s
� �T 
�P �


���

xk��� ��Kk�T� P� x
 � ��� �
P s
k �T 
�P �


�
�
���T� P� x
x� � �II� �T� P� x

II
xII�
�
� ��� �


�
x� � xII�

�
���

�
�
�k�T� P� x
xk � �IIk �T� P� x

II
xIIk
�
� ��� �


�
xk � xIIk

�
kX
i��

xi � �

kX
i��

xIIi � �

�
CCCCCCCCCCCCCCCCCCCCCCA

� �� �����


System �����
 was formed from system ����
 by removing xI � s� the n� k zero mole

fraction vector elements� and the equations de�ning the overall liquid composition�

The singularity of r �F o at the intersection point has been removed by eliminating

x � sxI � �� � s
xII � � from ����
� Similar to the other cases above� equation

�����
 is �k � � equations in terms of the following variables� x� xII � R
k � T � P �

���



�� and fpig
No
p

i��� Specifying N
o
p of these variables and	or parameters �subject to the

continuation criteria
 allows standard continuation methods to be applied to examine

how the intersection point varies� The point where � � � on the intersection point

curve corresponds to the case where the azeotrope composition on the vapor�liquid

equilibrium surface just touches the liquid�liquid binodal�

��� Conclusion

The extensions of the heteroazeotrope �nding algorithm described in this chapter

allows the phase equilibrium structure of a multicomponent mixture to be explored

systematically and e�ciently� The power in this approach lies in the ability to identify

incipient azeotropes and heteroazeotropes� that is� azeotropes and heteroazeotropes

that do not exist �in the physical composition space
 under current conditions or

property model parameter values� but may exist under di
erent conditions or param�

eter values� This methodology provides insights into both the physical system and

the property models used to compute equilibrium� The following chapter contains

several example problems illustrating the approach described in this chapter�

���



Chapter �

Numerical Examples

This chapter contains numerical examples illustrating the approach described in chap�

ter � for the computation of the azeotropes and heteroazeotropes present in a multi�

component mixture as well as examples illustrating the extensions described in chap�

ter � for examining changes in phase equilibrium structure�

In the �rst section� the azeotropes and heteroazeotropes present in several mul�

ticomponent mixtures are computed� The second section contains eight examples

illustrating the approaches discussed in chapter �� All numerical calculations were

performed using the NRTL equation to model the liquid phase activity coe�cients and

the Extended Antoine Correlation was used to compute the vapor pressure� Constants

for both models were obtained from ���� In all cases� the vapor phase was treated as

an ideal gas�

��� Computation of Homogeneous and Heteroge


neous Azeotropes

The following heterogeneous systems were examined� �
 benzene� ethanol� and water�

�
 ethyl acetate� ethanol� and water� �
 water� acetone� and chloroform� �
 toluene�

ethanol� and water� �
 benzene� isopropanol� and water� �
 methanol� benzene� and

heptane� �
 benzene� ethanol� water� and heptane� and �
 benzene� ethanol� water�

���



and cyclohexane� Tables ��� and ��� contain a summary of the experimental and

computed values for the azeotropes and heteroazeotropes at a pressure of � atm� Ex�

perimental values were obtained from ����� The literature indicated that the benzene�

ethanol�heptane azeotrope does not exist above ���� atm� although� the NRTL model

parameters employed did predict this ternary azeotrope at � atm� The value reported

in Table ��� is at ���� atm� The thick lines in Figures ��� through ��� correspond

to the heterogeneous branches and the dashed regions denote where the liquid phase

fraction is outside its physical bounds of zero and unity� The thin lines in these �g�

ures correspond to homogeneous branches� Circles in these diagrams correspond to

bifurcation points and the diamonds appear at intersection points� All bifurcation

diagrams in this section were constructed at a pressure of one bar �the computed

values are only slightly di
erent than those in the table computed at one atm
�

	
�
� Benzene�Ethanol�Water System

At one bar� this system exhibits two binary homogeneous azeotropes� one binary

heteroazeotrope� and a ternary heteroazeotrope� The binary homogeneous water�

ethanol branch bifurcates o
 the lower boiling ethanol branch �the binary azeotrope is

minimum boiling
 at � � ������ Similarly� the minimum boiling binary homogeneous

benzene�ethanol branch also bifurcates o
 the lower boiling ethanol branch at � �

������� As shown in chapter �� this must occur� Notice that this second bifurcation

occurs at a relatively small value for �� By using the exact criteria for a bifurcation

on a homogeneous branch� equation �����
� there is no chance of missing bifurcations

close to zero by stepping over them on the �rst step� The more interesting branches for

this mixture bifurcate o
 the pure benzene branch� Figure ��� contains a bifurcation

diagram showing the branches bifurcating o
 this branch�

A spurious homogeneous benzene�water branch bifurcates o
 the pure benzene

branch at � � ������� Along this branch� an intersection point is identi�ed at

� � ����� from which the actual binary benzene�water heteroazeotrope is obtained us�

ing the heterogeneous homotopy map� Also identi�ed on the spurious binary branch is

���



Table �
�� Experimental and computed values for azeotropes and heteroazeotropes
at a pressure of � atm� Heteroazeotropes are denoted by boldface�

Experimental Experimental Computed Computed

Components Composition Temp� 	K
 Composition Temp� 	K


Benzene� 	���������������
 ������ 	���������������
 ������

Ethanol� ����������������	 �
��
� ����������������	 �
����

Water 	���������������
 ������ 	���������������
 ������

�����
������
��������	 ��
��� �����������
���������	 ������

Ethyl Acetate� 	���������������
 ������ 	���������������
 ������

Ethanol� ����

����������	 �
���� �����
����������	 �

���

Water 	���������������
 ������ 	���������������
 ������

	��������������������
 ������ 	��������������������
 ������

Water� ������
�����
���	 ������ �����
������
���	 ��
���

Acetone� 	���������������
 ������ 	���������������
 ������

Chloroform ����������



�������	 ������ ����
�����
������
���	 ������

Toluene� 	���������������
 ������ 	���������������
 ������

Ethanol� ���

�����������	 ������ ���

���������
�	 ������

Water 	���������������
 ������ 	���������������
 ������

���������������������	 �
���� ����������
��
�������	 �
���


Benzene� 	���������������
 ������ 	���������������
 ������

Isopropanol� ����������������	 �
��
� ����������������	 �
����

Water 	���������������
 ������ 	���������������
 ������

�����������
������

�	 ������ ������������
��������	 ��
�
�

Methanol� 	���������������
 ������ 	���������������
 ������

Benzene� 	���������������
 ������ Not Predicted at � atm �

Heptane �����

���������	 ������ ����������������	 ������

N�A N�A 	��������������������
 ������

a bifurcation point onto a spurious homogeneous ternary branch at � � ������ Moving

forward in � from this bifurcation point� a spurious homogeneous ternary azeotrope

is obtained which lies outside the physical composition space� Moving in the reverse

direction from the bifurcation point� an intersection with a heterogeneous ternary

branch is identi�ed at � � ����� from which the actual ternary heteroazeotrope is ob�

tained� In this example� the ternary heteroazeotrope can also be obtained through a

bifurcation on the binary heterogeneous branch �this bifurcation occurs at � � �����
�

There are two additional bifurcation points on the spurious ternary branch as shown

in Figure ��� �this �gure includes the pure ethanol branch and the ethanol�benzene

���



Table �
�� Experimental and computed values for azeotropes and heteroazeotropes
at a pressure of � atm� Heteroazeotropes are denoted by boldface�

Experimental Experimental Computed Computed

Components Composition Temp� 	K
 Composition Temp� 	K


Benzene� 	�����������������
 ������ 	�����������������
 ������

Ethanol� ������������������	 �
��
� ������������������	 �
����

Water� 	�����������������
 ������ 	�����������������
 ������

Heptane �����
������
����������	 ��
��� �����������
�����������	 ������

	�����������������
 ������ Not Predicted at � atm �

N�A N�A 	�����������������
 ������

	P � �
�� atm
 	����������������������
 ������ 	����������������������
 ������

N�A N�A �������
�������
��	 ����
�

N�A N�A �����
�����������������	 �
����

����������	
�
���		���������
 �����
 ����	�����	�	���������������
 ������

Benzene� 	�����������������
 ������ 	�����������������
 ������

Ethanol� ������������������	 �
��
� ������������������	 �
����

Water� 	�����������������
 ������ 	�����������������
 ������

Cyclohexane �����
������
����������	 ��
��� �����������
�����������	 ������

	�����������������
 ������ 	�����������������
 ������

	�����������������
 ������ 	�����������������
 ������

������������������	 �
���� ������������������	 �
����

�������

�������������
	 ������ �����������������������	 ����
�

	����������������������
 ������ 	����������������������
 ������

�����
����		
����	

����
���
 ������ ����������	�������������
�	�
 ������

branch that bifurcates o
 it
� The �rst occurs at the turning point of the spurious

ternary branch where there is an intersection with a homogeneous benzene�ethanol

branch at � � ������ This turning point occurs on the boundary of S and thus�

corollary � in chapter � is not violated� In addition� the point at which the spurious

ternary branch crosses xB � � �� � �����
 corresponds to an intersection with a

homogeneous ethanol�water branch� Higher dimensional branches can typically be

obtained through bifurcations on several lower dimensional branches� However� the

theory developed in chapter � indicates where the bifurcations can be found� limiting

the amount of branch tracking required� Finally� since the spurious ternary azeotrope

lies outside the physical composition space� the ternary heteroazeotrope can also be

obtained by a third� independent mechanism by using the spurious azeotrope homo�

���
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Benzene−Ethanol−Water System, P = 1.0 bar

Figure ���� Benzene mole fraction versus the homotopy parameter for ternary sys�
tem� benzene� ethanol� and water� Thin lines are homogeneous curves and thick lines
are heterogeneous curves�

topy map described in chapter � �this is referred to as mechanism � in section ���
�

The homotopy paths connecting the heteroazeotropes to the spurious homogeneous

azeotropes using the spurious homotopy map� equation �����
� is shown in Figure ����

	
�
� Ethyl Acetate�Ethanol�Water System

At one bar� this system exhibits two homogeneous binary azeotropes� one binary

heteroazeotrope� and a homogeneous ternary azeotrope� As in the system above� the

homogeneous ethanol�water branch bifurcates o
 the pure ethanol branch� Figure ���

contains a bifurcation diagram showing the branches bifurcating o
 the pure ethyl

acetate branch�

The �rst bifurcation point o
 the pure ethyl acetate branch �at � � ������


corresponds to the ethyl acetate�ethanol branch from which the homogeneous binary

���
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Benzene−Ethanol−Water System, P = 1.0 bar

Figure ���� Benzene mole fraction versus the homotopy parameter for ternary sys�
tem� benzene� ethanol� and water� Thin lines are homogeneous curves and thick lines
are heterogeneous curves�

azeotrope is obtained� A bifurcation point is identi�ed on this binary branch at

� � ����� which corresponds to a ternary branch from which the homogeneous ternary

azeotrope is obtained� A second bifurcation point is identi�ed along the pure ethyl

acetate branch at � � ����� which corresponds to a spurious homogeneous ethyl

acetate�water branch� At � � ����� on this spurious branch an intersection point is

identi�ed from which the actual ethyl acetate�water heteroazeotrope is obtained�

Section ����� also contains an example of this ternary mixture� There it is shown

how a ternary heteroazeotrope is readily predicted at a di
erent pressure by moving

slightly past � � � on the ternary homogeneous branch�
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Figure ���� Homotopy paths connecting heteroazeotropes to spurious homogeneous
azeotropes for the benzene� ethanol� and water system at ��� bar�

	
�
� Water�Acetone�Chloroform System

At one bar� this system exhibits one homogeneous binary azeotrope� one binary het�

eroazeotrope� and a ternary heteroazeotrope� Figure ��� contains a bifurcation dia�

gram showing the branches bifurcating o
 the pure chloroform branch from which all

solutions are obtained�

The �rst bifurcation point �� � �����
 identi�ed along the pure chloroform branch

corresponds to the spurious chloroform�water branch� Along this branch an intersec�

tion point is identi�ed at � � ����� from which the actual binary heteroazeotrope

is obtained� In addition� a bifurcation point is identi�ed along the spurious binary

branch at � � ���� which corresponds to a spurious ternary branch� Three intersec�

tion points are identi�ed along the spurious ternary branch �� � ����� ���� and ����
�

all of which correspond to the same heterogeneous ternary branch� Two heterogeneous

ternary solutions are identi�ed on this branch� one physical and the other nonphysical
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Figure ���� Ethyl acetate mole fraction versus the homotopy parameter for ternary
system� ethyl acetate� ethanol� and water� Thin lines are homogeneous curves and
thick lines are heterogeneous curves�

�the liquid phase fraction lies outside the range zero and unity
� Note that in this case�

the ternary heterogeneous branch cannot be obtained through a bifurcation on the

binary heterogeneous branch� However� this is consistent with the theory in chapter �

in that the ternary heterogeneous branch is obtainable through an intersection with a

ternary spurious branch �under reasonable assumptions� all heteroazeotropes will be

obtained either through intersections with spurious homogeneous branches or through

bifurcations on lower dimensional heterogeneous branches
� The second bifurcation

point on the pure chloroform branch �� � �����
 leads to an actual homogeneous

chloroform�acetone azeotrope�
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Figure ���� Chloroform mole fraction versus the homotopy parameter for ternary
system� water� acetone� and chloroform� Thin lines are homogeneous curves and thick
lines are heterogeneous curves�

	
�
	 Toluene�Ethanol�Water System

At one bar� this system exhibits two homogeneous binary azeotropes� one binary het�

eroazeotrope� and one ternary heteroazeotrope� The binary ethanol�water azeotrope

is obtained just as it was in the previous systems containing these two components�

via a bifurcation on the pure ethanol branch� In addition� the homogeneous toluene�

ethanol branch bifurcates o
 the pure ethanol branch� Figure ��� contains a bifurca�

tion diagram showing the branches bifurcating o
 the pure water branch�

The spurious homogeneous toluene�water branch bifurcates o
 the pure water

branch at � � ������� This example again shows the importance of using exact

value for the bifurcation ��s� Along this branch an intersection with the binary

heterogeneous branch and another bifurcation point are identi�ed� � � ����� and

������ respectively� The actual binary heteroazeotrope and a spurious homogeneous

ternary azeotrope are obtained from these two points� A second intersection point
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Toluene−Ethanol−Water System, P = 1.0 bar

Figure ��
� Water mole fraction versus the homotopy parameter for ternary system�
toluene� ethanol� and water� Thin lines are homogeneous curves and thick lines are
heterogeneous curves�

is identi�ed along the spurious ternary branch from which the corresponding ternary

heteroazeotrope is obtained� As with the benzene�ethanol�water system� the ternary

heteroazeotrope can also be obtained through a bifurcation on the binary heteroge�

neous branch and through the spurious azeotrope homotopy map �mechanisms � and

�
� Furthermore� the point at which the spurious ternary branch crosses xW � �

corresponds to an intersection with the homogeneous toluene�ethanol branch which

bifurcates o
 the pure ethanol branch and leads to the toluene�ethanol azeotrope at

� � �� The dramatic di
erence between this bifurcation diagram and bifurcation

diagram of the physically similar mixture� benzene� ethanol� and water� is due to the

fact that at a pressure of one bar� T s
B � T s

W � T s
T � where T

s denotes the boiling tem�

perature� In the benzene�ethanol�water mixture the spurious homogeneous branches

bifurcate o
 the lower boiling benzene branch� whereas in this example� these bi�

furcations occur on the pure water branch� Like the benzene�ethanol�water system�

���



the spurious ternary azeotrope in this mixture lies outside the physical composition

space and is thus obtainable with the spurious homotopy map� Figure ��� contains

the homotopy branches associated with this map�
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toluene
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1 0

ethanolwater
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heteroazeotropes

spurious azeotropes

Figure ���� Homotopy paths connecting heteroazeotropes to spurious homogeneous
azeotropes for the toluene� ethanol� and water system at ��� bar�

	
�
� Benzene�Isopropanol�Water System

At one bar� this system exhibits two binary azeotropes� a binary heteroazeotrope�

and a ternary heteroazeotrope� Figure ��� contains a bifurcation diagram showing

the branches bifurcating o
 the pure benzene branch�

The �rst bifurcation point on the pure benzene branch �� � ������
 corresponds

to the spurious benzene�water branch� along which an intersection point is identi�ed

at � � ����� that leads to the actual binary heteroazeotrope� The second bifurcation

point on the pure benzene branch �� � �����
 corresponds to a benzene�isopropanol
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Figure ���� Benzene mole fraction versus the homotopy parameter for ternary sys�
tem� benzene� isopropanol� and water� Thin lines are homogeneous curves and thick
lines are heterogeneous curves�

branch� leading to an actual binary azeotrope� The close proximity of these two bi�

furcation points on the pure benzene branch again illustrates the importance of using

the exact criteria for bifurcation points� Clearly� it would be very easy to completely

miss these two bifurcation points by jumping over them �causing a cancellation in

the sign change of the determinant of the Jacobian
 with even a fairly small stepsize�

Along the binary heterogeneous branch� a bifurcation point is identi�ed at � � �����

which corresponds to a ternary heterogeneous branch� from which the actual ternary

heteroazeotrope is obtained� Note� however� in this case the spurious ternary branch

is not obtainable through bifurcations on lower dimensional homogeneous branches�

The spurious ternary branch is identi�ed �drawn as a medium thickness line in Fig�

ure ���
 by monitoring the s�component on the ternary heterogeneous branch and

this spurious ternary branch lies completely outside the physical composition space�

C� As with the water�acetone�chloroform system above� this is consistent with the

���



theory in chapter � in that the ternary heterogeneous branch is obtainable through a

bifurcation on a lower dimensional heterogeneous branch� Furthermore� even though

the ternary spurious homogeneous azeotrope is not obtainable from the lower dimen�

sional homogeneous branches� the ternary heteroazeotrope is still obtained through

mechanism � �using the spurious homotopy map
� Figure ��� contains the homotopy

branches associated with this mechanism for obtaining the ternary heteroazeotrope�
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Figure ���� Homotopy paths connecting heteroazeotropes to spurious homogeneous
azeotropes for the benzene� isopropanol� and water system at ��� bar�

	
�
� Methanol�Benzene�Heptane System

At a pressure of bar� the phase equilibrium model employed in this calculation

predicts the methanol�benzene�heptane mixture exhibits a homogeneous methanol�

benzene azeotrope� a methanol�heptane heteroazeotrope� and a ternary homogeneous

azeotrope� Experimental data was not available for the ternary azeotrope� Experi�
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Figure ����� Methanol mole fraction versus the homotopy parameter for ternary
system� methanol� benzene� and heptane�

mental data did indicate that a homogeneous benzene�heptane azeotrope exists� how�

ever� this azeotrope was not predicted by the phase equilibrium model� Section �����

contains an example where the techniques developed in chapter � are applied to this

mixture to determine the conditions under which this missing azeotrope is predicted�

Figure ���� contains the bifurcation diagram for this mixture� All predicted

azeotropes and heteroazeotropes are obtained from the pure methanol branch�

The �rst bifurcation on the pure methanol branch �� � �����
 leads to a spurious

methanol�heptane azeotrope� The intersection point with the binary heterogeneous

branch occurs very close to � � � �identi�ed by the diamond in Figure ����
� Along

this spurious homogeneous branch� a bifurcation point is identi�ed at � � �����

which leads to the ternary homogeneous azeotrope� The second bifurcation point

on the pure methanol branch �� � �����
 corresponds to a branch leading to the

methanol�benzene azeotrope�

���



	
�

 Benzene�Ethanol�Water�Heptane System

The algorithm for computing homogeneous and heterogeneous azeotropes described

in this thesis computes them in a hierarchical manner� ternary azeotropes are com�

puted from binary branches� quaternary azeotropes from ternary branches� and so on�

This is not generally a problem because we often desire all homogeneous and hetero�

geneous azeotropes predicted by the phase equilibrium model� An advantage of this

approach is that we may use precomputed information from previously examined sys�

tems when analyzing higher dimensional systems� For example� in section ������ the

benzene� ethanol� and water system was examined and all homogeneous and hetero�

geneous azeotropes were computed� In this section� heptane is added to this mixture�

Along the heterogeneous benzene�ethanol�water branch� computed in section ������ a

bifurcation point corresponding to a heterogeneous quaternary branch was identi�ed

at � � ������ This branch led to the stable quaternary heteroazeotrope� Figure ��

�� contains the bifurcation diagram for this mixture with the additional quaternary

heterogeneous branch�

The benzene�water� benzene�water�ethanol� and benzene�ethanol�water�heptane

heteroazeotropes are obtained from the pure benzene branch� The ethanol�benzene�

ethanol�benzene�heptane� ethanol�heptane� and ethanol�water homogeneous azeotropes

and a ethanol�heptane�water heteroazeotrope are obtained from the pure ethanol

branch� Finally� a heptane�water heteroazeotrope is obtained from the pure hep�

tane branch� As shown in Table ���� no exerimental data was found for several of

azeotropes and heteroazeotropes in this mixture� These solutions do� however� satisfy

the necessary and su�cient conditions for homogeneous and heterogeneous azeotropy�

	
�
� Benzene�Ethanol�Water�Cyclohexane System

At a pressure of one bar� a mixture of benzene� ethanol� water� and cyclohexane

exhibit four homogeneous binary azeotropes� two heterogeneous binary azeotropes�

one homogeneous ternary azeotrope� two heterogeneous ternary azeotropes� and a

quaternary heteroazeotrope �see Table ���
� A very rich bifurcation diagram can be
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Figure ����� Benzene mole fraction versus the homotopy parameter for quaternary
system� benzene� ethanol� water� and heptane�

constructed from the pure benzene branch� From this diagram� shown in Figure �����

the following heteroazeotropes are obtained� benzene�water� benzene�water�ethanol�

benzene�water�cyclohexane� and benzene�water�cyclohexane�ethanol� In addition� a

benzene�cyclohexane homogeneous azeotrope is obtained�

Three binary bifurcation points are obtained o
 the pure ethanol branch leading

to homogeneous ethanol�cyclohexane� ethanol�benzene� and ethanol�water azeotropes�

A stable ethanol�cylohexane�benzene homogeneous azeotrope and a spurious ethanol�

cyclohexane�water azeotrope are obtained from the ethanol�cylcohexane binary branch�

An intersection point is identi�ed along this spurious branch leading to the stable

ethanol�cyclohexane�water heteroazeotrope� The cyclohexane�water heteroazeotrope

is obtained from the spurious cyclohexane�water branch which bifurcates o
 the pure

cyclohexane branch�
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Figure ����� Benzene mole fraction versus the homotopy parameter for quaternary
system� benzene� ethanol� water� and cyclohexane�

��� Changes in Phase Equilibrium Structure

In this section� examples associated with the extensions of the heteroazeotrope �nding

algorithm discussed in chapter � are presented� There is limited experimental data on

azeotropes and heteroazeotropes at the pressures computed in this section� However�

all solutions obtained satisfy the necessary and su�cient conditions for homogeneous

and heterogeneous azeotropy �subject to the limitations of the model and parameters

employed
�

	
�
� Chloroform�Methanol System

A mixture of chloroform and methanol will form a homogeneous azeotrope at a pres�

sure of one bar� The homogeneous homotopy branch associated with this minimum

boiling binary azeotrope bifurcates o
 the pure chloroform branch at � � ������

���



However� a chloroform�methanol bifurcation point also appears on the pure methanol

branch at a value of � � ������� This branch does not lead to a binary azeotrope

since it is unable to cross � � � in order to reach � � �� As pressure is increased�

the value of � at the bifurcation point decreases on the pure chloroform branch and

increases on the pure methanol branch� At a pressure of ��� bar� the bifurcation

points on both branches occur at � � �� At higher pressures� the bifurcation point

on the chloroform branch occurs at � � � and the bifurcation point on the methanol

branch occurs at � � �� Thus� the branch associated with the binary azeotrope now

bifurcates o
 the pure methanol branch� Figure ���� contains the bifurcation diagram

for this system at three di
erent pressures�
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Figure ����� Bifurcation diagram for the chloroform�methanol system at pressures
of ��� bar� ��� bar� and ��� bar�

This behavior can be explained physically by looking at the boiling temperatures

of pure chloroform and methanol as a function of pressure� As shown in chapter

�� the minimum boiling chloroform�methanol azeotrope will be obtained through a

bifurcation on the lower boiling component�s branch� At a pressure less than ��� bar�

���



chloroform has a lower boiling point than methanol� At ��� bar� both chloroform

and methanol have computed boiling points of ����� K� At pressures greater than ���

bar� methanol boils at a lower temperature than chloroform� Figure ���� contains

the T�xy diagram for the chloroform�methanol system�

T-xy diagram for Chloroform/Methanol

Chloroform Mole Fraction
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

65
67

.5
70

72
.5

75
77

.5
80

82
.5

85
T

em
pe

ra
tu

re
 C

P = 2.0 bar

P = 1.789 bar

P = 1.5 bar

Figure ����� T�xy diagram for the chloroform�methanol system at ��� bar� �����
bar� and ��� bar�

	
�
� Acetone�Ethanol System

At a pressure of one bar� a binary acetone�ethanol azeotrope is not predicted� How�

ever� if the pure acetone branch is extended beyond � � �� a bifurcation point corre�

sponding to an acetone�ethanol branch is identi�ed at � � ���� This value of � at the

bifurcation point decreases with increasing pressure and equals unity at a pressure of

��� bar� At this point� the acetone�ethanol azeotrope emerges from the pure acetone

vertex�

���



	
�
� Water���Butoxyethanol System

A mixture of water and ��butoxyethanol forms a homogeneous azeotrope at a pres�

sure of one bar� An intersection with a heterogeneous branch is identi�ed along the

binary homogeneous branch at � � ����� Following this heterogeneous branch to

� � �� a solution is found that satis�es the necessary conditions for heteroazeotropy

except for the fact that the liquid phase fraction equals ����� Figure ���� contains

a diagram showing how the intersection point varies with pressure� The intersection

point crosses � � � at a pressure of ���� bar� At this pressure� the azeotropic point

on the vapor�liquid equilibrium surface just touches the liquid�liquid region� The

water���butoxyethanol mixture exhibits both an upper and a lower critical solution

temperature� However� the point at which the heteroazeotrope leaves through the top

of the liquid�liquid region was not predicted with this model� A better description of

the vapor phase nonideality may rectify this de�ciency�
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Figure ����� Pressure versus the value of � at the intersection point for the water�
��butoxyethanol system�
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Figure ���
� Ethyl acetate mole fraction versus the homotopy parameter at ���
bar for ternary system� ethyl acetate� ethanol� and water� Thin lines are homoge�
neous curves and thick lines are heterogeneous curves� The continuation is performed
beyond � � � in this �gure�

	
�
	 Ethyl Acetate�Ethanol�Water System

As shown in section ������ at a pressure of one bar� a mixture of ethyl acetate� ethanol�

and water exhibits a homogeneous ethanol�water azeotrope� a heterogeneous ethyl

acetate�water azeotrope� and a homogeneous ternary azeotrope� In bifurcation di�

agram shown in Figure ���� the continuation was stopped at � � �� Figure ����

contains the same bifurcation diagram except with the continuation performed be�

yond � � � on the ternary homogeneous branch�

If an intersection search is performed beyond � � �� an intersection with a ternary

heterogeneous branch is located at � � ������ The corresponding heterogeneous

ternary branch crosses � � � with a value of s equal to ������ Figure ���� contains a

diagram showing how this intersection point varies with pressure�

At a pressure of approximately ���� bar� the intersection point occurs at � � �
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Figure ����� Pressure versus the value of � at the intersection point for the ethyl
acetate� ethanol� water system�

corresponding to the pressure where the azeotropic composition on the liquid�vapor

equilibrium surface just touches the liquid�liquid binodal �which exhibits an upper

critical solution temperature for this system
�

	
�
� Water�����Dichloroethane System

A mixture of water and ����dichloroethane forms a heteroazeotrope at one bar� The

intersection point varies as a function of pressure as shown in Figure ����� At a pres�

sure of approximately ����� bar� the heteroazeotrope leaves the liquid�liquid region

and the heteroazeotrope becomes a homogeneous azeotrope�
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Figure ����� Pressure versus the value of � at the intersection point for the water�
����dichloroethane system�

	
�
� Tetrahydrofuran�Water System

The NRTL activity coe�cient model� extended Antoine vapor pressure correlation�

and ideal gas model predict that a mixture of tetrahydrofuran �THF
 and water� which

exhibits both a LCST and an UCST� does not form an azeotrope or heteroazeotrope

at pressures less than approximately ���� bar� forms a homogeneous azeotrope at

pressures between ���� bar and ��� bar� forms a heteroazeotrope between ��� bar and

���� bar� and forms a homogeneous azeotrope above ���� bar� Figure ���� shows how

the location of the intersection point on the spurious homogeneous binary branch

varies with pressure� Figure ���� shows the same diagram with the region around

� � � �the region of interest
 enlarged� This system is di
erent from the others in

this paper in that there are two disconnected intersection point curves� The curve

associated with the intersection points found at pressures less than approximately

��� bar lie on a curve that does not cross � � � except at a non�physical solution at
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Figure ����� Pressure versus the value of � at the intersection point for the THF�
water system�

approximately �� bar� This curve does not provide much useful information except for

suggesting a second curve exists� However� it may be possible that the two intersection

point curves are connected via a complex curve that bifurcates o
 the low pressure

curve at the turning point at � � ����� This connection in the complex domain

was not explored� however� since the second curve is easily found by performing the

intersection point search at a single pressure above ��� bar�

	
�

 Water�Acetone�Chloroform System

As shown in section ������ at a pressure of one bar� a mixture of water� acetone�

and chloroform forms a water�chloroform heteroazeotrope� a homogeneous acetone�

chloroform azeotrope� and a ternary heteroazeotrope� Figure ��� contains the bifur�

cation diagram for this system constructed at one bar� The single intersection point

on the spurious water�chloroform homogeneous branch does not cross � � � for any

���
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Figure ����� Pressure versus the value of � at the intersection point for the THF�
water system� Enlarged region of interest at � � ��

pressure� There are three intersection points on the ternary homogeneous branch�

Figure ���� shows how these intersection points vary with pressure�

At one bar� the intersection points on the ternary branch at � � ���� and � � ����

actually lie on the same intersection point curve� At pressures above approximately

���� bar� three intersection points appear on the ternary branch� At a pressure of

���� bar� two of the intersection points disappear and as pressure is decreased� the

intersection point �originally at � � ���� at one bar
 crosses � � � at approximately

���� bar� At this point� the heteroazeotrope becomes a homogeneous azeotrope�

	
�
� Methanol�Benzene�Heptane System

The heteroazeotrope �nding algorithm was applied to this mixture in section �����

and it was found that an additional ternary azeotrope was predicted but the benzene�

heptane azeotrope was not predicted using the extended Antoine vapor pressure cor�
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Figure ����� Pressure versus the value of � at the intersection point for the water�
acetone� chlorofrom system�

relation and the NRTL activity coe�cient model with parameters obtained from ����

This system is further analyzed here due to this discrepancy�

First� topological consistency will be checked for both the experimental values

and the values computed in section ������ Figure ���� contains a diagram showing

the relative boiling temperatures of the pure components and azeotropes identi�ed

experimentally� Although the benzene�heptane azeotrope has a measured boiling tem�

perature equal to that of pure benzene� it is assumed that this is due to experimental

error and that the azeotrope has a slightly lower boiling point �and is thus a mini�

mum boiling azeotrope and not a non�elementary arm�chair �xed�point
� According

to this �gure� the pure components are all stable nodes and have indices equal to

�� �I�� � � and I�� � �
� the two homogeneous azeotropes� methanol�benzene and

benzene�heptane� are saddle nodes with indices �� �I�� � �
� and the binary het�

eroazeotrope is an unstable node with index �� �I�� � �
� Applying the topological
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Figure ����� Gibbs composition simplex containing measured boiling temperatures
�K
 of the azeotropes present in the methanol� benzene� and heptane system at �
atm�

consistency test described in chapter �� we �nd
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and thus� topological consistency is satis�ed for these measured values�

Figure ���� contains the Gibbs composition simplex showing the computed boiling

temperatures of the pure components and azeotropes predicted in section ������ In this

case� the methanol and heptane vertices are stable nodes with indices �� �I�� � �
�

the benzene vertex is a saddle node �I�� � �
� the methanol�heptane heteroazeotrope

and methanol�benzene azeotrope are saddle nodes �I�� � � and I�� � �
� and the

ternary azeotrope is an unstable node with index �� �I�� � � and I�� � �
� Again�
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Figure ����� Gibbs composition simplex containing computed boiling temperatures
�K
 of the azeotropes present in the methanol� benzene� and heptane system at �
atm�

applying the topological consistency test� we �nd

nX
k��

�k�I�k � I�k 

�
� ���
n�� � �

��I�� � I�� 
 � ��I
�
� � I�� 
 � ��I

�
� � I�� 


�
� ���
n�� � �

���� �
 � ���� �
 � ���� �

�
� ���
n�� � �

�� � � � � � � ���
� � � � ��

and thus� topological consistency is also satis�ed for these computed values�

Unfortunately� the topological consistency test is not much help in this situation�

Figure ���� contains the Txy�diagram for the benzene�heptane mixture� Notice that

it appears as though a binary azeotrope should emerge from the pure benzene vertex

�dT�dxB is nearly tangent at this point
� This suggest that under slight pressure

variation� the azeotrope should be found� At a pressure of � atm� the benzene�

heptane bifurcation point on the pure benzene branch occurs at � � ���� and pressure

must be increased to approximately ��� atm in order for this bifurcation point to
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Figure ����� Txy�diagram for a mixture of benzene and heptane at a pressure of �
atm�

move to � � � �the case where the binary azeotrope emerges from the pure benzene

vertex
� Given the shape of the Txy�diagram and the experimental data indicating the

presence of a binary azeotrope� this required pressure change is clearly not reasonable�

However� by analyzing the sensitivity of the location of this bifurcation point to the

parameters in the Antoine vapor pressure correlation for heptane� it is found that a

slight perturbation in the �rst Antoine correlation parameter� C��H � results in a large

change in the location of the bifurcation value for �� Figure ���� contains a diagram

showing C��H versus the bifurcation value of � �the location of the bifurcation point

on the pure benzene branch corresponding to the benzene�heptane branch
� Table

��� contains the results of the azeotrope �nding algorithm after changing the value of

C��H from ������ to �������

The indices of the �xed�points in this system are the same as the original computed

values except that benzene is now a stable node �thus� I�� � � and I
�
� � �
 and the
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First Antoine Correlation Parameter for Heptane

versus Bifurcation Value of Homotopy Parameter

Figure ����� Bifurcation value of � �the location of the bifurcation point on the
pure benzene branch corresponding to the benzene�heptane branch
 versus the �rst
parameter in the Antoine correlation for heptane at a pressure of � atm�

new benzene�heptane azeotrope is a saddle node �I�� � �
� Thus�

nX
k��

�k�I�k � I�k 

�
� ���
n�� � �

��I�� � I�� 
 � ��I
�
� � I�� 
 � ��I

�
� � I�� 


�
� ���
n�� � �

���� �
 � ���� �
 � ���� �

�
� ���
n�� � �

�� �� � � � � � ���
� � � � ��

and topological consistency is satis�ed for the new set of computed values� This

small change in the value of C��H results in the prediction of the benzene�heptane

azeotrope without signi�cantly changing the values of the other azeotropes contained

in the system� However� the e
ect of perturbing C��H changes the computed boiling

temperature of heptane from ������ K to ������ K� A better approach would be to
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Table �
�� Experimental and computed values for azeotropes and heteroazeotropes
at a pressure of � atm for the methanol� benzene� heptane mixture� First Antoine
Correlation parameter for heptane changed to ������� Heteroazeotropes are denoted
by boldface�

Experimental Experimental Computed Computed

Components Composition Temp� 	K
 Composition Temp� 	K


Methanol� 	���������������
 ������ 	���������������
 ������

Benzene� 	���������������
 ������ 	���������������
 ������

Heptane �����

���������	 ������ ���������������
	 ������

N�A N�A 	��������������������
 ������

examine the location of the benzene�heptane bifurcation point while adjusting several

parameters in such a way that the predicted heptane boiling temperatures remains

near its experimental value�

In summary� the ability to predict the bifurcation and intersection points associ�

ated with incipient azeotropes and heteroazeotropes and determining the sensitivity

of these points to the model parameters is a very powerful tool when estimating

physical property parameters� The technique provides a systematic means of explor�

ing the phase equilibrium structure and the capabilities �or limitations
 of the phase

equilibrium model�
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Part II

Computational Di�erentiation
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Chapter �

Overview of Computational

Di�erentiation

��� Introduction

The previous part of this thesis discusses topics important in the analysis of het�

eroazeotropic systems� in particular� the computation of the azeotropes and het�

eroazeotropes present in a multicomponent mixture and the e�cient calculation of

changes in phase equilibrium structure with respect to system and	or property model

parameters� This part of the thesis� Computational Di
erentiation� discusses an im�

portant topic in the simulation and optimization of heteroazeotropic systems �or any

system for that matter
� namely the calculation of numerical derivatives� This section

provides some motivation of why numerical derivatives are required in calculations

and discusses the advantages of obtaining them accurately and e�ciently� This is

followed by a discussion of several ways to compute numerical derivatives with the

computer� including hand�coding� �nite di
erence approximation� reverse polish nota�

tion evaluation� symbolic di
erentiation� and automatic di
erentiation� This chapter

is concluded with a discussion on equation�oriented process simulation� an applica�
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tion where careful attention to the way derivatives are represented and computed can

make a substantial impact�

The following chapter discusses the technique of automatic di
erentiation in more

detail� This is followed by a chapter describing a new class of automatic di
erentiation

techniques developed in this thesis� Finally� this section of the thesis is concluded

with a chapter containing numerical comparisons between symbolic di
erentiation

and automatic di
erentiation and several examples illustrating the improvements to

automatic di
erentiation as a result of this thesis�

Approximations to derivatives are required in many numerical procedures� For

example� Newton�s method for solving a system of nonlinear equations� f�x
 � ��

requires the Jacobian matrix of the residuals in the recursion formula�

xk�� � xk �
�
rf�xk


���
f�xk
�

Another example is the integration of di
erential�algebraic equations �DAEs
 and

sti
 ordinary di
erential equations �ODEs
 using a linear multistep method such as

those utilizing the backard di
erentiation formulas �BDF
����� Solving a DAE or

ODE� f� 'y� y� t
 � �� using the BDF method requires the evaluation of the following

iteration matrix�

�
�f
�y




 � � �f
� 'y

�
�

Numerical derivatives are also required in parametric sensitivity calculations� con�

tinution methods� and many optimization algorithms� This list can be expanded to

�ll the remainder of this thesis� The performance of all of these methods is often dra�

matically improved by using accurate values for the derivatives obtained e�ciently�

The topic of this part of the thesis is computational di
erentiation� By computa�

tional di
erentiation� we mean some process by which derivatives are obtained with

a computer� The term numerical derivatives refers to the actual values used to ap�
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proximate derivatives� and they are obtained with some computational di
erentiation

method�

When derivatives are obtained with a computer� error may be introduced in two

forms� truncation error and roundo
 error� If the derivative is obtained by truncating

a Taylor series expansion of the original expression� truncation error is introduced

due to the fact that the numerical derivative is only an approximation of the exact

derivative� On the other hand� roundo
 error is the unavoidable consequence of

performing the evaluation with the �nite precision arithmetic of a computer�

Two approaches for the calculation of derivatives that have been widely used in the

past are hand�coding and �nite di
erence approximations� Hand�coding of derivatives

is primarily used when the system of equations is relatively small and the derivative

expressions are easily derived� In contrast� �nite di
erence approximations are pri�

marily used for large and	or complex systems of equations� The disadvantages of these

two approaches� discussed in later sections� has led to the exploration of alternative

means for obtaining numerical derivatives� Since the ����s� researchers have realized

that derivatives can be obtained automatically and exactly �to roundo
 error
 with

the computer by applying the simple rules of di
erentiation �product rule� quotient

rule� etc�
 to some computer representation of the expression to be di
erentiated�

Three such approaches commonly used are symbolic di
erentiation� reverse polish

notation �RPN
 evaluation� and� more recently� automatic di
erentiation� Symbolic

di
erentiation computes derivatives by applying the rules of di
erentiation to a tree

representation of the equations� generating new expressions �trees
 for each partial

derivative desired� RPN evaluation simultaneously computes function and deriva�

tive values from the reverse polish notation form of the expression� In contrast to

the two former approaches� which work with equations� automatic di
erentiation was

originally designed for the di
erentiation of computer programs written in languages

such as C and FORTRAN� Derivatives are obtained by applying the chain�rule to the

sequence of elementary arithmetic operations contained in a subroutine for the com�

putation of function values� All three approaches above are carried out automatically

by the computer and are thus suitable for large problems that would be di�cult and
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error prone to di
erentiate by hand� Furthermore� the numerical derivatives obtained

in these three approaches� as well as hand�coding� are exact �to roundo
 error
 and�

thus� free of truncation error� The following section discusses these �ve approaches

in more detail�

��� Approaches to the Computation of Derivatives

�
�
� Hand�coded Derivatives

One way to obtain the derivatives of a set of functions is to derive the analytic

expressions by hand and then code a subroutine for their computation� This approach

has the advantage that the derivatives are exact �to roundo
 error
 and through

careful coding of the expresssions� their evaluation can be quite e�cient� However�

this approach is tedious� extremely time consuming� and very error prone for complex

and	or large�scale equation systems� It is not practical for most problems of interest�

yet it is still commonly employed in practice and can be attributed to many of the

headaches experienced by members of the simulation community�

�
�
� Finite�Di�erence Approximation of Derivatives

A common alternative to hand�coding is numerical approximation of derivatives by

�nite di
erences� One example is the simple forward di
erence approximation�

�fi
�xj

�
fi�x � hjej
� fi�x


hj

where ej is the j�th Cartesian basis vector and hj is the perturbation in variable

xj� The truncation error associated with this approximation is O�jhjj
 �not includ�

ing roundo
 error
� A more accurate approximation is the centered �nite di
erence
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approximation�

�fi
�xj

�
fi�x� hjej
� fi�x� hjej


�hj
�

The advantage of this over the previous approximation is that the trunctation error

is O�h�j
 �not including roundo
 error
� however� it costs roughly twice as much to

evaluate� Finite di
erence approximation has the advantage that it is trivial to code

and can use existing subroutines for the computation of function values� One problem

with this approach lies with the tradeo
 between truncation error and roundo
 error�

For large perturbations� the truncation error is signi�cant� As the perturbation is

reduced to minimize truncation error� the e
ect of roundo
 error becomes greater�

There is an optimal perturbation for computing the derivative� however� this optimal

perturbation is di�cult to determine and varies with di
erent functions and vari�

able values and� as a result� it is often selected in an ad hoc� suboptimal manner�

Furthermore� even with the optimal perturbation� the number of signi�cant digits

in the value of the derivative is much less than that of the original function value�

This loss of accuracy is not acceptable in many applications� Another problem with

�nite di
erences is that the cost of computing the Jacobian is n � � times the cost

of evaluating the set of functions for the forward �nite di
erence approximation and

�n times the cost of evaluating the set of functions for the centered �nite di
erence

approximation� where n is the number of variables� This may be prohibitively ex�

pensive for large systems of equations� Curtis� Powell� and Reid made the crucial

observation that in the case where the Jacobian is sparse and the sparsity pattern is

known explicitly� the columns of the Jacobian can be grouped into nc 
 n structurally

orthogonal groups �two columns are structurally orthogonal if they do not both have

nonzero entries in the same row
 ����� The cost of the Jacobian evaluation is reduced

because variables in the same group may be perturbed simultaneously� As a result�

the cost of the Jacobian evaluation is nc � � times the cost of evaluating the set of

functions for the forward �nite di
erence approximation and �nc times the cost of

evaluating the set of functions for the centered �nite di
erence approximation� This
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is referred to as the CPR algorithm and can be viewed as a graph coloring algorithm�

Let f � Rn �
 R
m denote a system of nonlinear equations and suppose we want to

estimate its Jacobian matrix rf�x
 � R
m�n using �nite di
erences in the minimum

number of evaluations of f�x
 �it is assumed that it is more e�cient to evaluate f�x


as a whole rather than component by component
� This problem can be formulated

in general as follows� Determine vectors d�� d�� � � � � dp � R
n such that Ad�� Ad��

� � � � Adp determines A � R
m�n directly with minimum p� Note that for the CPR

algorithm� p � nc and

�di
j �

��
� � if variable xj is in group i

� otherwise�
����


The general problem above amounts to partitioning the columns of A into p column

groups such that each column belongs to exactly one group� This problem can be

related to the graph coloring problem ���� and the chromatic number of the graph is

equal to the minimum value for p� Determination of the chromatic number of a graph

�and hence� minimum number of evaluations required to estimate rf�x
 by �nite

di
erences
 is NP�complete� however� approximate algorithms such as LFO �largest�

�rst ordering
� SLO �smallest�last ordering
� and IDO �incidence�degree
 ordering

can be used to obtain column grouping yielding improved performance over the CPR

algorithm ����� Having computed the vectors di� i � �� � � � � p� the Jacobian can be

estimated� Compute rf�x
di as follows�

rf�x
di � f�x � di
� f�x
 �O�kdik
� ����


for i � �� � � � � p� By construction� rf�x
d�� rf�x
d�� � � � � rf�x
dp uniquely deter�

mine rf�x
� Obviously� for large� sparse problems this saving can be dramatic and

should be employed whenever possible� Unfortunately� accuracy is not a
ected by

this technique�
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�
�
� RPN Evaluation of Derivatives

The standard in�x form of an equation corresponds to the usual way of writing a

mathematical expression� Using this representation of an equation within the com�

puter has the advantages that it is a very compact form of storage and it is easy for

the user to read the expression� For example� the expression

�x� � y
�y� � �


may be represented within the computer using in�x notation by the following se�

quence of �fteen identi�ers� �� x� � � �� �� y� 
� �� �� y� � � �� �� �� 
� The disadvantage

of the in�x notation is that it is di�cult to identify the operands of the various op�

erators automatically with the computer and evaluation and di
erentiation of this

form of the expression is extremely cumbersome� requiring several passes through

the expression� An alternative to the in�x representation of an expression is reverse

polish notation �RPN
� familar to those who have used a Hewlett�Packard calculator�

Using RPN� the expression above may be stored in computer memory as the following

sequence of eleven identi�ers� x� �� � � y� �� y� �� � � �� �� �� This representation is

compact� yet preserves most of the information about the expression that is present

in the tree notation described in the following section� An expression stored in RPN

form is evaluated with the use of a stack� A stack is a �rst in� last out data structure

where elements are pushed onto the top of the stack and removed by popping them

from the top of the stack� Starting from the left of an RPN expression and moving

right� constants and variables are pushed onto the stack� When a binary operator is

encountered� the two top elements are popped from the stack� and the binary opera�

tion is performed on these values� This result is then pushed onto the stack� resulting

in a new stack with one less element� If a unary operator or function is encountered�

the top element of the stack is popped� the operation is performed� and the result

is pushed onto the stack� When the entire expression has been processed� the stack

contains a single element� the value of the expression� In order to di
erentiate an
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RPN expression� a second derivative stack is used in parallel with the main stack

described above� If a constant is pushed onto the main stack� its derivative� �� is

pushed onto the derivative stack� If a variable is pushed onto the main stack� its

derivative� � or � depending upon which variable we are di
erentiating with respect

to� is pushed onto the derivative stack� When operators are encountered in the RPN

expression� the derivatives of these operators� de�ned by the simple rules of di
erenti�

ation� are applied� These derivative operators� in general� operate on elements of both

the main stack and second stack� and thus� derivatives and functions are evaluated

simultaneously� If the n partial derivatives of a vector�valued function f � Rn �
 R

are required� then n � � stacks must be maintained� Derivatives obtained with this

method are exact �free from truncation error
 and the time complexity of the RPN

evaluation is similar to that of interpreted symbolic derivative evaluation �described

below
� For a detailed discussion of RPN evaluation see ���� and ������

�
�
	 Symbolic Di�erentiation

An alternative to hand�coding of derivatives� �nite di
erence approximations� and

RPN evaluation is symbolic di
erentiation� Symbolic di
erentiation is used in soft�

ware packages such as REDUCE ����� MACSYMA ����� and Maple ����� These com�

puter algebra packages have experienced widespread use due to their ability to perform

such operations as polynomial factorization� simpli�cation� symbolic integration� and

other formula manipulations� in addition to di
erentiation� They are designed to

be general purpose tools capable of handling large�scale problems requiring the au�

tomation of algebraic computation� In the symbolic environment� the mathematical

expressions can be represented as rooted directed trees� A directed tree is a connected

acyclic directed graph �digraph
 where removal of one of the edges results in a dis�

connected digraph� A rooted tree is a tree where one of the vertices is distinguished

as the root� The interior vertices of the trees representing expressions are intrinsic

functions �sin� exp� etc�
 or binary and unary operators ��� �� 	� �� etc�
 with one

or two edges pointing to their operands� The leaves of the tree �vertices without any
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children
 are either literals �e�g�� ���� ���� 	
 or variables� The precedence relationship

of the expression is preserved in the structure of the tree� For example� the equation

y �
sin�x�
ln�x�x�x�
 � cos�x�
x

�
�

exp�x�x�
 � �
����


is shown in tree form in Figure ����

3

5

66

��� 7� ���

���

5

68

6

6

�� ��

�9

�

�9�� ���� ���

Figure ���� Tree form of equation ����


The tree is a clear but wasteful representation of an expression� Notice that there

are three distinct vertices representing x� and x� and two vertices representing x��

In practice� the actual graph of equation ����
 would have one vertex allocated for

each variable present in the expression and all operands containing these variables

would point to the same vertex� Furthermore� notice the product x�x� appears twice

in ����
� This too can be represented by a single subgraph� further reducing the mem�

ory required to store the symbolic form of the equation� By exploiting these common

subexpressions� the expression can be represented as a directed acyclic graph �DAG
�

The task of identifying and exploiting the common subexpressions is a common task

when hand�coding expressions in FORTRAN or C �performed when intermediate vari�
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ables are introduced to avoid writing the same subexpression several times
� However�

the task of identifying the common subexpressions present in an abitrary collection

of graphs is a combinatorial problem and accounts for the majority of the cost associ�

ated with generating FORTRAN code from expressions generated in Maple� Common

subexpressions not only reduce amount of memory required to represent an expression

in computer memory� but can also be exploited in the evaluation of an expression� as

will be shown below�

The data structure representing DAG vertices in computer memory must have the

following �elds� a �eld specifying the vertex type �literal� variable� addition operator�

multiplication operator� etc�
� pointers to the left and right children of the vertex� and�

if the vertex is a literal or a variable� a real�valued �eld containing the current value�

A formula represented in computer memory as a graph using the data structures

described above may be evaluated using the recursive algorithm shown in Figure ����

Real Evaluate� v 

� if v � literal or variable then
� � Simply return the value of the vertex
� return value�v� #
� elseif v � addition operator then
� � Return the sum of the operands� the left and right children
� return Evaluate�left�v�
 � Evaluate�right�v�
 #
� elseif v � multiplication operator then

�
���

� � Similar code for other binary operators and unary functions

��
���

�� end

Figure ���� Recursive algorithm for evaluating the graph form of a symbolic expres�
sion�

Procedure Evaluate takes the vertex data structure as an argument� v� and

returns the numeric value of the subexpression rooted at the argument� The expres�

sion value�v� accesses the value �eld of v� Expression left�v� and right�v� access the

left and right children of v� When Evaluate is called with the root vertex as an
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argument� the return value is the value of the expression represented by the DAG�

Procedure Evaluate makes no attempt to exploit the occurrence of common subex�

pressions present in an equation graph� This can be performed very easily by adding

two additional �elds to the vertex data structure� a boolean �eld indicating whether

or not the vertex is a common subexpression and an binary variable �ag to indicate

whether or not the subgraph rooted at the common subexpression has already been

computed for the current set of variable values� A simple preprocessing step based on

a depth��rst search can be used to �nd and mark the common subexpression vertices

present in the graph �this task is considered in more detail in chapter � and is thus�

omitted here
� An additional global binary integer variable is also employed for this

common subexpression exploitation� At the beginning of a calculation �e�g�� DAE

integration� solution of a system of nonlinear equations� etc�
� the global binary vari�

able is set to unity and the �ags of all common subexpression vertices present in the

graph are set to zero� Each time any of the values of the variables are modi�ed� the

global binary variable is changed from zero to unity or unity to zero� depending on

its current value� As the residual vector and	or Jacobian matrix are evaluated and a

common subexpression is encountered during the interpretive evaluation of a graph ��

the vertex �ag is compared to the global binary variable� If the values are equal then

the common subexpression has been previously encountered and the precomputed

value of the subexpression is returned� otherwise� the subexpression is evaluated� this

resulting value is stored in the common subexpression vertex� and the vertex �ag is

set equal to the global variable� ensuring that each time this common subexpression is

encountered later �and the independent variable values have not changed
� the value

will not be recomputed� As shown in chapter �� this modi�cation can yield substan�

tial improvements when both the residual vector and Jacobian matrix are evaluated

at the same values for the independent variables�

The symbolic expression can be di
erentiated by applying the simple rules of dif�

�Evaluating the symbolic form of an expression held in computer memory is referred to as inter�
pretive evaluation� The alternative is to write a subroutine containing the expression which can be
evaluated by calling the compiled routine�
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ferentiation recursively to the DAG� For example� consider the product rule� d�u�v
 �

v � du � u � dv� The di
erentiation operator is applied recursively to the subexpres�

sions u and v� which may be complicated subgraphs of the graph representing u � v�

Note that the subexpressions u and v appear both in the original expression u � v

and the derivative of this expression� This observation can be exploited in a symbolic

environment by not creating new subgraphs for u and v in the derivative expression�

but simply sharing the same subgraphs in the original formula� Thus� the original

expression and its partial derivatives form an interconnected collection of DAGs�

Once the derivative expresssions have been generated� there are several ways in

which numerical values may be obtained� One way is to apply the recursive algo�

rithm described above for evaluating a graph to each derivative expression� This

approach will be referred to as the interpretive approach for symbolic derivative eval�

uation� Alternatively� the graph form of the expressions can be used to generate a

C or FORTRAN subroutine for derivative evaluation �the graph is converted to in�x

notation and written to a �le
� This resulting subroutine may be compiled and linked

to code requiring the numerical derivatives� The residual and derivative expressions

may be optimized both at the code generation level �common subexpression identi�

�cation
 and during compilation� Once the residual and Jacobian subroutines have

been compiled� the evaluation of the residual vector and Jacobian matrix using this

approach is much faster than if the evaluation were performed using the interpre�

tive approach� As a result� the compiled approach is prefered when residual vectors

and Jacobian matrices are required repeatedly �as is the case with an iterative equa�

tion solver or integrator
� Most symbolic computation packages provide utilities for

generating subroutines from symbolically derived derivative expressions� There are�

however� situations where interpretive evaluation is a better choice �see section ���

on equation�oriented process simulation
�

The advantage of symbolic di
erentiation is that the derivatives are exact �free

from truncation error
� If� however� the original expression contains quotients or

functions� the resulting expressions for the partial derivatives are often much more

complex than the original function� As a result� in a naive implementation of sym�
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bolic di
erentiation �no common subexpression evaluation
� the cost of computing a

gradient is roughly n times the cost of evaluating the function� where n is the number

of variables in the function� Performance is improved by optimizing the DAGs and

performing common subexpression evaluation� however� this still often falls short of

the performance of automatic di
erentiation� discussed in the following section�

�
�
� Automatic Di�erentiation

Three prerequisites for a di
erentiation method are given by Iri ����� it should be

fast �low complexity with respect to the computation of what is being di
erentiated
�

it should be free from truncation error� and it should be able to be performed auto�

matically� The methods discussed previously are de�cient in one or more of these

prerequisites� hand�coding of derivatives cannot be performed automatically� �nite

di
erence approximations are not exact nor� like symbolic or RPN derivatives� com�

puted very e�ciently� Automatic di
erentiation �AD
� a relatively recent technique

developed for the automatic computation of derivatives� does in fact have all of these

desired properties� A detailed discussion of AD will be deferred to the following

chapter� however� some of its advantages will be discussed here� Consider a general

nonlinear function� f � Rn �
 R� The cost of evaluating the gradient of f using �nite

di
erences is n�� times the cost of evaluating f alone �using the simple forward �nite

di
erence approximation
� The cost is roughly n times the cost of f alone when using

RPN evaluation or symbolic di
erentiation� Using the reverse mode of automatic

di
erentiation �described later
� the cost of evaluating the gradient is bounded above

by three times the cost of evaluating f alone� independent of the number of variables

or the functional form of f � Furthermore� it is possible to simultaneously compute

f � its gradient� and a relatively tight estimate of the roundo
 error generated during

the function evaluation at a cost bounded above by �ve times the cost of evaluating

f alone� AD was originally applied to the automated di
erentiation of computer

programs �e�g�� C functions or FORTRAN subroutines
 containing loops� conditional

statements� and other sophisticated programming structures� making AD a very �ex�
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ible and powerful technique� AD is discussed in detail in the following chapter� This

is followed by a chapter describing a new class of automatic di
erentiation techniques

developed in this thesis�

��� Equation
Oriented Process Simulators

Equation�oriented process simulation is one application where the careful selection

of a computational di
erentiation method can make a substantial impact and thus�

warrants some discussion� Furthermore� many of the di
erentiation techniques dis�

cussed and developed in this thesis have been implemented in the equation�oriented

process simulator ABACUSS��

�
�
� Process Flowsheet Simulation

Process �owsheet simulation packages have been around for approximately forty years�

These tools can be roughly broken down into two categories� modular simulators and

equation�oriented simulators� Prior to the development of these packages� simulation

was performed through the use of problem speci�c routines written by the modeler

in a procedural language such as FORTRAN� These subroutines were compiled and

linked to numerical routines to solve the particular problem at hand� Although this

process o
ers a great deal of �exibility� it is time consuming� error prone� and re�

quires a great deal of expertise on the part of the modeler� In light of this di�culty�

more advanced packages were developed to assist the modeler in process �owsheet

simulation� Among the �rst to be developed were modular simulators� In this frame�

work� the process model �owsheet is assembled by connecting speci�c modules from

a unit operation library� The advantage of selecting unit operations from a library

is that the user is freed of the time consuming task of writing code for each distinct

�ABACUSS �Advanced Batch And Continuous Unsteady�State Simulator� process modeling soft�
ware� a derivative work of gPROMS software� c��

� by Imperial College of Science� Technology�
and Medicine�
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unit operation appearing in the �owsheet model� Furthermore� these libraries form

information repositories� storing not only the model formulation but also custom tai�

lored solution algorithms for converging the unit operation in a numerical calculation�

Often� sophisticated graphical user interfaces �GUIs
 are provided to assist the user

in the construction of the �owsheet� There are two main approaches for perform�

ing a steady�state �owsheet simulation� the sequential modular and the simultaneous

modular approaches� Historically� the �owsheets were solved using the sequential

modular approach� Here� the inputs to a module are speci�ed and the unit operation

subroutine computes the outputs �using a robust custom tailored algorithm
 which

are then inputs to some other unit operation routine downstream in the �owsheet�

The disadvantage of this approach is that the solution strategy is strongly tied to the

topology of the �owsheet� Furthermore� recycles in the �owsheet present a problem

because the inputs to some unit operations are not known a priori� In such cases� the

�owsheet must be solved in an iterative fashion by !tearing" recycle streams� That

is� initial guesses are provided for variables associated with the torn recycle streams

and the �owsheet is solved in a sequential fashion to compute new estimates for these

unknown quantities� The process is continued until the di
erence between succes�

sive values for the unknown variables is su�ciently small� A great deal of research

has gone into developing solution strategies for improving the e�ciency and robust�

ness of recycle streams convergence� The sequential modular approach also performs

poorly when some of the inputs are not known a priori but are to be calculated by

specifying some of the outputs �the so�called design problem
� These !design specs"

are solved in an iterative manner� much like the convergence of the recycle streams�

The simultaneous modular approach was developed to remedy the shortcoming of

the sequential modular approach when applied to �owsheets with complicated recyle

streams and design speci�cations� In the simultaneous modular approach� the torn

recycle streams and design speci�cations are solved simultaneously �although there

are still nested iterations within the physical property and unit operation routines
�

The modular approach to �owsheet simulation has proven invaluable for steady�state

simulation and optimization problems� This is due in part to the enormous amount
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of research that has gone into developing �owsheet convergence strategies and to the

sophisticated� custom tailored solution algorithms within each of the unit operation

routines� The approach� however� has been less successful in solving dynamic simula�

tion problems� One reason for the limited success of the modular approach is that the

behavior of a dynamic system depends greatly on the physical characteristics �size�

geometry� etc�
 of the unit operations� Accurate predictions of the dynamic responses

requires very detailed dynamic models of the equipment� It is impossible for a mod�

ular simulation package to provide a complete library containing every possible unit

operation� in su�cient detail� required for a general process �owsheet� This de�ciency

has been one motivation for the development of equation�oriented process simulators�

In an equation�oriented environment� the user writes the �owsheet model using a

high�level equation�based symbolic language� Unlike !low�level" languages such as C

or FORTRAN� the languages provided by an equation�oriented simulator allow the

user to write models in a very clear and concise manner� Equations are written in

an input �le much as they would on a piece of paper� using a compact mathematical

notation� This �exible� high�level representation allows the model to be completely

decoupled from the solution procedure� And thus� a variety of numerical techniques

can be applied to the same �owsheet model� Furthermore� the equation�oriented rep�

resentation can be used as a repository for process knowledge� In the initial stages

of process developement� the process model is used as a tool for design� As knowl�

edge of the process grows� the model ideally becomes more sophisticated in order to

re�ect the increased understanding of the process� The process model can be used

for the initial design� start�up� simulations and optimizations during the lifetime of

the physical process� and for �nal decommissioning� The potential impact of an ac�

curate process model over the lifetime of the process greatly justi�es the initial cost

associated with properly modeling the plant�

Many equation�oriented process simulators allow procedures to be incorporated

into the �owsheet model �for example� gPROMS and SPEEDUP allow physical prop�

erties to be computed from pre�existing subroutine libraries
� Although this allows

the very rich collection of legacy models to be exploited� it has the disadvantage that
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many details are hidden within black box subroutines� For example� �hidden discon�

tinuities� within a subroutine can wreak havoc with the error control mechanisms of

DAE integrators ���� ��� and will cause completely wrong parametric sensitivities to

be computed ����� Discontinuities should be handled explicitly to ensure e�cient�

robust� and correct solution of the problem�

Although the equation�oriented simulator is superior to the modular simulator for

performing dynamic simulations� the opposite is true with steady�state simulations�

Equation�oriented simulators allow a very general representation of the model to

be written and� as a result� the solution procedures must also be very general �as

opposed to the custom tailored algorithms found in the unit operation modules of

a modular simulator
� Although� several strategies have been developed to improve

the robustness of steady�state simulations and the consistent initialization step of

dynamic simulations �including block decomposition and various tearing strategies
�

these calculations remain very di�cult to solve robustly�

Equation�oriented process simulators can be broken down into roughly two cat�

egories� complied architecture and interpretive architecture� In the compilied ar�

chitecture� the equations contained in the input �le are converted to a FORTRAN

subroutine that is compiled and linked to other numerical routines� In most packages�

symbolic derivatives are constructed from the symbolic form of the equations and a

FORTRAN subroutine for Jacobian evaluation is also constructed� In an interpre�

tive architecture� the symbolic form of the process model and Jacobian is maintained

in computer memory� These data structures are !interpreted" to provide numerical

values for the residual vectors and Jacobian matrix� as explained above� Although

evaluation of compiled expressions can be as much as an order of magnitude faster

than interpreted expressions� the interpretive architecture has proven invaluable in ap�

plications such as hybrid discrete	continuous dynamic simulation� Most �continuous�

processes exhibit a signi�cant degree of discrete behaviour� These discrete changes

are due to both operating conditions imposed on the process �e�g�� digital regula�

tory control� start�up or shut�down operations� equipment failure� and control system

set�point changes
 and to the particular representation of physico�chemical changes
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in the process model �e�g�� �ow reversals� phase change� and laminar	turbulent �ow

transitions
� Discrete changes occur at time events and state events� A time event is a

particular time where an event is known to happen �e�g�� �ll tank for thirty seconds
�

A state event� also referred to as an implicit discontinuity� is an event whose time of

occurrence is a function of the state of the system �e�g�� �ll tank until level reaches

one meter
� At each event� the functional form of the process model changes� When

performing a hybrid discrete	continuous simulation� events are detected �usually by

monitoring a discontinuity function which crosses zero at a particular event
� the

functional form is changed� the system is reinitialized� and the integration is contin�

ued with the new functional form of the model until the next event is encountered� In

most cases� the sequence of functional forms the model assumes during the course of

a simulation is not known a priori �due to the occurrence of implicit discontinuities
�

Furthermore� the number of di
erent functional forms of the model is exponential

in the number of implicit discontinuities present� These properties of the hybrid dis�

crete	continuous simulation problem make the compiled architecture less practical for

most problems� It is possible to create general subroutines that imbed all functional

forms of the system of equations associated with IF and CASE equation� however�

for a general schedule �a set of discrete actions imposed on a continuous model
� the

resulting subroutine will be very large and complex� Furthermore� the implementa�

tion of such a routine that embeds all possible functional forms of the model would

be di�cult and error prone� Although� the interpretive architecture is attractive due

to the capability to rapidly switch between functional forms at a discontinuity� it also

introduces some complications that were not as important in the compiled architec�

ture� As stated above� interpretive evaluation of equation and derivative graphs is

much more costly than compiled evaluation� During normal calcuations with com�

piled code� the majority of the cost is often associated with the LU factorization of

some iteration matrix �this is why modern BDF integration codes try to use a pre�

viously factorized Jacobian matrix for as many steps as possible
� In an interpretive

architecture �and� indeed� even the compiled architecture
� the residual and Jacobian

evaluations can account for a substantial fraction of the overall calculation cost �this
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is particularly true for parametric sensitivity calculations as shown in chapter �
�

Furthermore� substantially more memory is required to represent an equation system

and Jacobian matrix in computer memory than as a compiled subroutine� limiting

the size of systems that can be handled� The remainder of this part of the thesis

discusses improvements that can be made in both the way the equation system and

Jacobian are represented and evaluated in an interpretive architecture� Modi�cations

tailored to this environment have yieled substantial performance in many calculations

performed within this type of process simulators�

��� Conclusion

Several computational di
erentiation approaches have been discussed in this chap�

ter� It is concluded that AD o
ers several advantages over other� more traditional�

methods for computing numerical derivatives� Also discussed is the topic of equation�

oriented process simulation� This topic is illustrated because it is an application where

the careful selection of a di
erentiation method can have a substantial impact both in

the size of the problems that may be handled and the performance of the calculations

performed� The next chapter of this thesis discusses the topic of AD in more detail�

This is followed by a chapter describing the improvements to AD developed in this

thesis� This part of the thesis is then concluded with a chapter containing numerical

examples illustrating the improvement�
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Chapter �

Automatic Di�erentiation

As discussed in the previous section� automatic di
erentiation �AD
 represents a

class of very powerful analytical di
erentiation techniques� In this chapter� AD is

discussed in detail� First� the idea of representing a computation as a sequence

of elementary operations is described and the concept of a computational graph is

introduced� Second� a description of the forward and reverse modes of automatic

di
erentiation �both scalar and several vector versions
 is presented� This is followed

by a description of how the reverse mode of AD may be used to obtain relatively tight

estimates of the roundo
 error associated with the computation of a function� This

chapter is concluded with a section containing a brief history� literature review� and

a list of several implementations of AD available� The following chapter discusses the

contributions made to this �eld by this work�

��� Computational Graph and Accumulation

This section introduces the idea of representing a system of equations as a sequence

of elementary operations and introduces the concept of a computational graph �CG
�

In addition� a small example is presented motivating the use of AD over other com�

putational di
erentiation techniques�
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Most systems of equations of interest can be expressed as a sequence of N ele�

mentary operations and assignments to elementary variables�

for j � � to N

vj � vj�vi
i�Aj

end

where

Aj � f�� �� � � � � j � �g ����


is the set of indices of the arguments of elementary operation j� Typically� the

elementary operation is a binary or unary operator ��� �� �� �
 or a unary function

�sin� cos� ln� etc�
� in which case Aj consists of one or two elements� The analysis

presented in this thesis� however� applies to elementary operations which are functions

of any arbitrary number of previously computed elementary variables� The elementary

operations may be executed in any order provided that all arguments of any particular

operation have been previously computed� The order of operations corresponds to

di
erent indexing of the elementary variables� Other sources in the literature impose

the following ordering on the elementary variables� vj � xj for j � �� � � � � n are

the independent variables� vj � zj� for j � n � �� � � � � n � p are the intermediate

variables� and vj � yj for j � n � p � �� � � � � n � p �m are the dependent variables

of the system of equations f � Rn �
 R
m represented as a sequence of elementary

operations� The intermediate variables simply allow the evaluation of y � f�x


to be broken down into a sequence of elementary operations� For most systems

of equations of interest� p is much greater that n � m� This discussion does not

impose a restriction on the elementary variable indexing since di
erent orderings can

be extracted from a graph representation of a system of equations more e�ciently#

all that is required is that i � j� 	i � Aj� Thus� we denote the set of indices of
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independent variables as I � f�� �� � � � � n� p �mg� the set of indices of dependent

variables as D � f�� �� � � � � n� p�mg� and the set indices of intermediate variables

as E � f�� �� � � � � n� p�mg� These index sets have the following properties� I �

D � I � E � D � E � �� I � D � E � f�� �� � � � � n� p�mg� jIj � n� jDj � m�

jEj � p� where j�j denotes the cardinality of the set� and N � n � m � p� These

properties may require the insertion of elementary assignments into the elementary

operation list� Representing a computation as a sequence of elementary operations is

a routine task for anyone who programs in languages such as C or FORTRAN� where

complex expressions are regularly broken down into several computational steps by

the introduction of intermediate variables� This is done to not only make the coding

of the complex expression easier to understand �and� therefore� debug
 but also to

avoid repeated computation of the same quantity�

Equation ����
�

y �
sin�x�
 ln�x�x�x�
 � cos�x�
x

�
�

exp�x�x�
 � �
�

�shown as a tree in Figure ���
 can be computed by the following sequence of elemen�

tary operations�

v� � x�

v� � x�

v� � x�

v� � v�v�

v� � v�v�

v� � �

v� � sin�v�


v� � ln�v�


v� � cos�v�
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v�� � vv	�

v�� � v�v�

v�� � v�v��

v�� � exp�v�


v�� � �

v�� � v�� � v��

v�� � v�� � v��

v�� � v���v��

y � v��

The relationship between a sequence of elementary operations and the DAG repre�

sentation of a systems of equations is very close� each interior vertex in the DAG

corresponds to an elementary operation� The remainder of this section discusses

how the partial derivatives of an expression represented as a sequence of elementary

operations may be obtained�

Let V � I � D � E denote the complete index set� For each vj� j � �V � I
� we

de�ne the elementary partial derivative as�

dj�i �
�vj
�vi

i � Aj� ����


For the majority of elementary operations encountered� these partial derivatives are

well�de�ned and continuous in some neighborhood of the elementary function�s ar�

guments� Some obvious exceptions are logarithms� square root operations� and in�

verse trigonometric functions with arguments outside their respective domains� Key

assumptions are made on the cost of evaluating an elementary operation and its

associated elementary partial derivatives in the following section and used for the

complexity analysis throughout the remainder of this part of the thesis�

The partial derivative of y with respect to x� can be computed from the represen�
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tation of f�x
 shown above and the associated elementary partial derivatives using

the chain rule�

�y

�x�
�

�v��
�v��

�v��
�v��

�v��
�v�

�v�
�v�

�
�v��
�v��

�v��
�v��

�v��
�v�

�v�
�v�

�v�
�v�

�v�
�v�

�
�v��
�v��

�v��
�v��

�v��
�v�

�v�
�v�

� d�����d�����d����d��� � d�����d�����d����d���d���d��� � d�����d�����d����d����

The elementary partial derivatives are computed using the simple rules of di
eren�

tiation such as the product rule and the quotient rule as well as the rules for dif�

ferentiating the standard functions such as sin� cos� and ln� For example� consider

v�� � v���v�� shown in the elementary operation form of equation ����
� The elemen�

tary partial derivatives are� �v����v�� � ��v�� and �v����v�� � �v���v��� The DAG

form of an equation where the edges have been labeled with the elementary partial

derivatives will be referred to as a computational graph �CG
� Figure ��� contains the

CG of equation ����
�
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Figure 
��� Computational graph form of equation ����


In general� the partial derivative of y � f�x
� where f is represented as a compu�
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tational graph� is given by

�y

�xi
�

X
P�P	xi�f


Y
e�P

�elementary partial derivative attached to e
 � ����


where P�xi� f
 is the set of all paths connecting the root vertex of f to the independent

variable vertex xi in the computational graph and the elementary partial derivative

at edge e� connecting vi and vj� is di�j� Equation ����
 is simply the chain rule�

Notice that the CG of and equation contains all information required to evaluate and

expression and all of its partial derivatives�

The discussion above explains how a general system of nonlinear equations can be

represented as a sequence of elementary operations and how the partial derivatives of

these equations can be extracted from the computational graph �the basis for all of

the AD methods discussed in this thesis
� At �rst it may seem counter�intuitive that

automatic di
erentiation should perform any better than other analytical derivative

evaluation techniques� such as symbolic di
erentiation� After all� the same quantities

are being computed and the form of the partial derivative expressions are given by

the elementary rules of di
erentiation which apply to all techniques� This section is

concluded with a small example comparing symbolic di
erentiation to one variant of

automatic di
erentiation� the scalar sweep reverse mode� The details of this technique

will be discussed in detail in the following section�

Consider the simple nonlinear equation

z � xy � cos�xy
� ����


An optimized graph of this equation is shown in Figure ���� Applying the rules of

di
erentiation to graph shown in Figure ��� results in the following expressions�

�z��x � cos�xy
 � y � �xy
 � �� sin�xy
 � y
 ����


�z��y � cos�xy
 � x� �xy
 � �� sin�xy
 � x
 ����
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Figure 
��� Directed acyclic graph �DAG
 of equation ����
�

The DAG of the original expression and partial derivatives are shown in Figure ����

Note that the term � sin�xy
 appears twice in the partial derivative expressions� It is

possible to include rules in the symbolic di
erentiation code that recognize this possi�

bilty and only generate one expression for � sin�xy
� however� handling these special

cases can dramatically increase the cost associated with the symbolic di
erentiation�

Furthermore� the identi�cation and removal of these redundant expressions from an

arbitrary graph a posteriori is a combinatorial process�

Suppose the evaluation sequence for computing z� �z��x� and �z��y were ex�

tracted from the graph shown in Figure ���� Based on this graph� the minimum

number of operations required to compute these quantities is

�� � xy

�� � cos���


z � ����

�z��x � ��y � ���� sin���
y


�z��y � ��x � ���� sin���
x
�

requiring a total of eight multiplies� two additions� two unary minuses� one cos� and
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Figure 
��� Directed acyclic graph �DAG
 of equation ����
 and partial derivatives
����
 and ����
�

two sin� Even if the redundant expressions were identi�ed and handled properly�

the cost would be decreased by one sin and one unary minus evaluation� By inspec�

tion� we can see that the partial derivative expressions can be further simpli�ed to

reduce the cost of the evaluation� however� to perform this automatically with the

computer would require symbolic transformation and common subexpression identi�

�cation� which� as mentioned above� is quite expensive� Optimizations such as these

account for a substantial fraction of the time associated with compiling large residual

routines with the optimization �ags turned on� Similar problems occur when generat�

ing FORTRAN code from within symbolic manipulation codes such as Maple� where

for reasonably small problems �less than ��� equations
� computer memory �and user

patience
 is exhausted before the code is generated�

Figure ��� contains the computational graph of equation ����
� Applying one vari�

ant of the chain�rule �equation ����

 results in the following sequence of operations
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Figure 
��� Computational graph �CG
 of equation ����
�

for computing z� �z��x� and �z��y�

v� � xy

v� � cos�v�


z � v�v�

d��� � � sin�v�


� � d��� � d���d���

�z��x � �d���

�z��y � �d���

requiring a total of �ve multiplies� one addition� one unary minus� one cos� and one sin�

Even in this trivial example� the way in which the partial derivatives are computed

can have a signi�cant impact on the cost of the evaluation�

�
�
� Memory Savings

Another observation that can be made in the previous example problem is that the

memory required to represent an expression and its partial derivatives is much less
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when stored as a CG rather than a family of DAGs �compare Figure ��� to Figure

���
� The number of vertices required to represent the original equation and partial

derivatives as a CG is �ve for the original expression and two additional vertices for

the non�trivial elementary partial derivative� d��� � � sin�v�
� The number of ver�

tices required for the DAG representation is �ve for the original expression and an

additional twelve for the partial derivatives �or nine if the term � sin�xy
 is repre�

sented once
� This di
erence is signi�cant and is especially important from within an

interpretive environment where the graph data structures are persistent throughout

the course of a calculation� This dramatic saving is due to the fact that much of the

information required to compute the partial derivative is stored implicitly in the CG�

that is� we know a priori that we must multiply elementary partial derivatives along

paths and sum these products over all paths connecting a root vertex to a particular

independent variable vertex# on the other hand� this information must be stored ex�

plicitly in the DAG representation� Figure ��� contains an example of the elementary

partial derivatives associated with some basic binary operators� In the case of the
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Figure 
��� Elementary partial derivatives associated with binary operators� �� ��
�� and ��

addition and subtraction operator� only one unity vertex and one minus unity vertex

needs to be allocated for the entire system of equations� No additional vertices need
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to be allocated for the multiplication operator and only three additional vertices need

to be allocated for the division operator� The substantial memory savings provided

by the CG representation are further illustrated in chapter � of this thesis�

��� Forward and Reverse Modes

Obtaining partial derivatives using the computational graph and equation ����
 is

referred to as accumulation and is simply the application of the chain�rule� Various

modes of AD can be developed by performing this accumulation in di
erent orders�

The two basic modes are the forward and reverse sweeps� First the scalar variants of

the forward and reverse modes will be discussed� followed by a discussion of several

vector sweep versions�

A key assumption is now made on the evaluation of an elementary operation and

its associated elementary partial derivatives� This assumption will provide the basis

for several complexity bounds derived later�

Assumption � Elementary operations and their elementary partial derivatives are

evaluated such that

� 

costfgj � gj � �j � rvj�vi
i�Aj

g

costfvj�vi
i�Aj
g


 �� ����


where �j is an arbitrary scalar� gj is an arbitrary vector of dimension jAjj� and r

denotes the vector of partial derivatives with respect to the jAjj arguments of vj�

In other words� the calculation of the vector of elementary partial derivatives of an

operation multiplied by an arbitrary scalar and added to an arbitrary vector is no more

expensive than three times the cost of evaluating the elementary operation alone �����

As stated in ����� this bound is very reasonable for single�processor machines even

taking into account memory accesses# it is rather conservative for most arithmetic

binary operators and elementary functions and tight for multiplication �with the

assumption that addition is half the cost of multiplication
� The situation is better
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for a multiprocessor� For example� the dot product elementary operation will require

at least log� jAjj cycles� whereas its gradient incrementation is a SAXPY which can

be computed in O��
 time� Furthermore� several independent elementary operations

can be parallelized over multiple processors� However� the discussion in this text

will be limited to single�processor machines and thus provide an upper bound on the

accumulation costs�

�
�
� Scalar Accumulation

Consider the system of equations y � f�x
� f � Rn �
 R
m � and assume this system

of equations is represented as a sequence of elementary operations� Let J�x
� J �

R
n �
 R

m�n � denote the Jacobian matrix of this system of equations� Suppose the

independent variables� x � R
n � are di
erentiable with respect to some parameter

and this di
erentiation is denoted by x	� By the chain�rule� we have the recurrence

relationship�

v	j �
X
i�Aj

dj�iv
	
i � R� ����


By Assumption �� the cost of computing v	j for all j � V is bounded by

� 

costfy	 � J�x
x	g

costff�x
g

 �� ����


where costff�x
g �
P

j�V costfvj�vi
i�Aj
g� The evaluation of J�x
x	 in this manner is

referred to as a forward sweep� The term !forward" refers to the fact that the Jacobian

is constructed� or accumulated� from the elementary partial derivatives by moving

forward through the list of elementary operations from vertex � to vertex N � jVj��

The full Jacobian matrix can be obtained through n forward sweeps with x	 initialized

to each of the n Cartesian basis vectors in Rn � As a result� the cost of evaluating the

�This is due to the fact that the summation in ����� is for i � Aj and i � j for all i�
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Jacobian is bounded above by �n times the cost of evaluating f�x
 alone� a result much

worse than computing the Jacobian matrix through �nite di
erence approximation�

�It should be noted that the methods for computing Jacobian matrices in this chapter

are free of truncation error�


In the forward sweep� or forward mode� of automatic di
erentiation� we begin

at the independent variable vertices and work up to dependent variables vertices�

Alternatively� we can de�ne a new set�

Si � fi � j 
 n�m � p j i � Ajg �����


�in the graph representation j is in Si if vertex vj is a parent of vertex vi
 and de�ne

a new recurrence relationship�

�vi �
X
j�Si

dj�i�vj � R� �����


where �vi �
�
�vi
�yTf�x
 � R represents the sensitivity of the system of equations with

respect to elementary variable vi with a �xed adjoint weight vector �y � R
m � As above�

the cost of computing the �vi�s for all i � V is bounded above by

� 

costf�x � �yTJ�x
g

costff�x
g

 �� �����


The Jacobian can be evaluated by performingm reverse sweeps with the �y�s initialized

to each of the m Cartesian basis vectors in Rm � In this case� the list of operations is

traversed in the opposite order of the forward sweep� hence� reverse sweep� or reverse

mode� The cost of evaluating the Jacobian in this manner is bounded above by �m

times the cost of evaluating f�x
 alone� Again� this is unacceptable in most cases�

Note however that the gradient of a single equation in the system� say fj�x
� can

be evaluated in a single reverse sweep with �y initialized to ej� The reverse mode

of automatic di
erentiation is optimal for gradient evaluations� Furthermore� it is

���



possible to compute a relatively tight bound on the roundo
 error associated with

a function evaluation in addition to its gradient at a small multiple of the cost of

evaluating the function alone ���� �see section ���
�

The memory required to accumulate the Jacobian matrix using the forward mode

is the same as the memory required to evaluate the set of residuals� However� the

memory required to accumulate the Jacobian matrix using the reverse mode is O�jVj


larger than that of the residual evaluation� This is due to the storage of adjoint

quantities during Jacobian accumulation�

The ine�ciencies of the scalar sweeps above are due to the fact that many of

the v	j and �vj� j � V� are zero �especially early in the calculation
 and� thus� there

are many needless multiplications and additions of zero performed� The next section

discusses how these unnecessary multiplications and additions can be eliminated by

performing vector sweeps�

�
�
� Vector Accumulation

The recurrence relationships ����
 and �����
 can be written in vector form as

rvj �
X
i�Aj

dj�irvi � R
n �����


and

�vi �
X
j�Si

dj�i�vj � R
m � �����


respectively� where �vi � ��y���vi� �y���vi� � � � � �ym��vi
� By initializing rvj� j � I�

or �vi� j � D� to the appropriate Cartesian basis vectors in Rn or Rm and initializing

all other rvj or �vi to zero� the entire Jacobian can be evaluated in a single forward or

reverse sweep� The additional memory required for the vector sweeps is O�n jVj
 for

the forward mode and O�m jVj
 for the reverse mode� Furthermore� the ratio of the
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cost of evaluating the Jacobian to the cost of evaluating f�x
 using the vector sweeps is

still bounded above by �n for the forward mode and �m for the reverse mode� however�

the vector sweep versions will out perform the corresponding scalar sweep versions due

to the fact that the vector version passes through the elementary operation list once�

eliminating duplicate computations� That is� if the entire Jacobian is constructed

with one pass through the elementary operation list �as opposed to constructing the

Jacobian a column at a time with the forward mode or a row at a time with the reverse

mode
 there will be no duplicate passes through common sections of the operations

list �i�e�� sequences of elementary operations that are common to more than one

dependent or independent variable
� As with the scalar sweeps� the ine�ciency of the

vector sweep forward and reverse modes is due to multiplication and addition of zero

entries in the rvj�s and the �vi�s�

Sparse Vector Accumulation

One obvious way to eliminate the unnecessary operations is to work with sparse vector

data structures for rvj and �vi ����� By only performing the necessary operations in

the vector recurrence relations �����
 and �����
� we �nd that the cost of evaluating

the Jacobian using the sparse vector sweep version of the forward mode is bounded

above by ��n times the cost of evaluating f�x
 alone and the cost of evaluating the

Jacobian using the sparse vector sweep version of the reverse mode is bounded above

by � �m times the cost of evaluating f�x
 alone� where �n and �m are the maximum

number of nonzero entries in any row and in any column of the Jacobian matrix�

respectively� One disadvantage of this approach� however� is the overhead associated

with the need for indirect addressing for the sparse vector representation of rvj and

�vi�

To illustrate the Jacobian evaluation techniques described above consider the fol�
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lowing system of nonlinear equations�

f� � b�x� � x� � x�x� �����


f� � sin�x�
� x�x�
x�
x�

�����


f� � x�x�
x�
x�
� �x� � b�
 �����


f� � b�x� �
x�
x�
� b�� �����


This system of equations is shown as a DAG in Figure ���� Each vertex in the equation
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Figure 
�
� Directed acylic graph of system of equations �����
� �����
�

graph corresponds to an elementary operation with the left and right children as the

arguments� Given this representation of a system of equations along with a list of

the dependent variable vertices� the algorithm shown in Figure ���� based on the

depth��rst search� can be used to label the vertices of the graph� In this algorithm�

the left and right children of vertex v are denoted by left�v� and right�v�� respectively�

In addition� it is assumed that each vertex in the graph has an integer �eld� denoted

by index�v�� that holds the index of the vertex�

The complexity of IndexVertices is O�jVj
 �the complexity of depth��rst search

is proportional to the number of vertices and edges in an arbitrary graph� however�

in an equation DAG� the number of edges is roughly twice the number of vertices�
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IndexVertices�v�CurrentIndex

� � Recursively set children labels�
� if �left�v� �� NULL
 and �index�left�v�� � �
 then
� IndexVertices�left�v��CurrentIndex

� end

� if �right�v� �� NULL
 and �index�right�v�� � �
 then
� IndexVertices�right�v��CurrentIndex

� end

� � Set label of argument�
� if v �� constant then
�� index�v� � CurrentIndex

�� CurrentIndex � CurrentIndex � �
�� end

Figure 
��� Algorithm for enumerating vertices based on depth��rst search�

jVj� Prior to calling procedure IndexVertices� the index �eld of all vertices in the

graph are initialized to zero and the variable CurrentIndex is initialized to unity�

Procedure IndexVertices is then called with each dependent variable vertex as an

argument� Figure ��� shows the graph of equations �����
������
 with vertices labeled

with the indices obtained from procedure IndexVertices and edges labeled with

the elementary partial derivatives� The index sets for the graph in Figure ��� are�
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Figure 
��� Computational graph of system of equations �����
������
�

I � f�� �� �g� D � f�� ��� ��� ��g� and E � f�� �� �� �� �� ��� ��� ��� ��� ��g� The vertices
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corresponding to the constants b�� b�� b�� and b� are not labeled due to the fact that

they do not participate in the Jacobian evaluation other than for the calculation of

elementary partial derivatives�

Once the elementary partial derivatives have been computed� the information con�

tained in the computational graph is all that is required for computing the Jacobian

matrix� In the case of the vector forward mode� the recurrence relationship �����


is executed in the order of increasing vertex indices� The execution order for the

forward mode is shown in Figure ���� In the case of the vector reverse mode� the

recurrence relationship �����
 is executed in the order of decreasing vertex indices�

The execution order for the reverse mode is shown in Figure ����� Note that for this

example� �n � n and �m � m�

rv� � e� � ��� �� �


rv� � d���rv� � ��� d���rv
�
�� �


rv� � e� � ��� �� �


rv� � d���rv� � d���rv� � �d���rv
�
�� d���rv

�
�� �


rv� � d���rv� � d���rv� � �d���rv
�
� � d���rv

�
� � d���rv

�
�� �


rv� � d���rv� � d���rv� � �d���rv
�
�� d���rv

�
� � d���rv

�
�� �


rv� � d���rv� � �d���rv
�
�� �� �


rv� � e� � ��� �� �


rv� � d���rv� � d���rv� � ��� d���rv
�
� � d���rv

�
�
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�
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Figure 
��� Vector sweep forward mode evaluation of Jacobian of equations �����
�
�����
� The vector components are denoted by rvj � �rv�j � � � � �rv

n
j 
�

���



�v�� � e� � ��� �� �� �


�v�� � d������v�� � ��� �� �� d������v
�
��


�v�� � d������v�� � ��� �� �� d������v
�
��
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�
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Figure 
���� Vector sweep reverse mode evaluation of Jacobian of equations �����
�
�����
� The vector components are denoted by �vi � ��v

�
i � � � � � �v

n
i 
�

The operation count for the sparse vector forward mode is �� multiplications and

� additions �not including the cost of evaluating the elementary partial derivatives
�

The operation count for the sparse vector reverse mode is �� multiplications and �

additions� Of course� it is possible to eliminate ten trivial multiplications by unity

in the forward mode and seven trivial multiplications in the reverse mode� however�

this selective skipping is di�cult within this framework� Furthermore� these trivial

operations become neglibible as the problem size is increased� This small example is

not to compare performance of the various modes of AD since for small dense prob�

lems the forward and reverse sweep implementations� as well as the other approaches

described in the following chapter� require roughly the same number of operations�

If sparse vector operations were not performed� the operation count would be ��
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multiplications and �� additions for the forward mode and �� multiplications and ��

additions for the reverse mode�

Compressed Vector Accumulation

The indirect addressing required by the sparse vector sweep versions of the forward

and reverse mode not only incurs additional overhead but also dramatically reduces

the possibility of parallelization and vectorization� An alternative to the sparse im�

plementation is based on grouping the columns and rows into structurally orthogonal

sets� This is illustrated for the forward mode of AD in ���� Two columns of a matrix

are structurally orthogonal if they do not have nonzero entries in the same row� Sim�

ilarly� two rows of a matrix are structurally orthogonal if they do not have nonzero

entries in the same column� As discussed in the previous chapter� this technique is

also used to improve the performance of �nite di
ence approximation of Jacobian

matrices when the occurrence information is known explicitly� Suppose there are �n

structurally orthogonal columns in J�x
 � R
m�n and �n 
 �n 
 n� The vector rvj in

the recurrence relationship �����
 can be compressed into a �n component vector� The

Jacobian matrix can then be computed using recurrence relationship �����
 with rvj�

j � I� initialized to ek� where k is the structurally orthogonal group variable j is a

member of� and all other rvj initialized to zero� Upon completion of the sweep� rvj�

j � D� contain the partial derivatives of equation j with respect to variables in each

of the �n groups and the Jacobian is compressed into an m� �n dimension matrix� The

Jacobian can be uncompressed� using the occurrence information and column group

information� at a small fraction of the cost of evaluating the Jacobian� Similarly�

suppose there are �m structurally orthogonal rows in J�x
 with �m 
 �m 
 m� The

sensitivity vector� �vi� can be compressed into �m components and the Jacobian matrix

can be evaluated using the recurrence relationship �����
 with �vi� i � D� initialized to

ek �where row i is in group k
 and all other �vi initialized to zero� Upon completion

of a reverse sweep� �vi� i � I� contain partial derivatives of equations in each of the �m

groups with respect to independent variable i and the Jacobian is compressed into an
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�m� n dimension matrix� Again� the cost of uncompressing the Jacobian is minimal�

This version of the vector sweep forward and reverse mode computes the Jacobian

matrix at cost bounded above by ��n �for the forward mode
 and � �m �for the reverse

mode
 times the cost of evaluating f�x
 alone� The additional memory over the scalar

sweep versions is O��n jVj
 for the forward mode and O� �m jVj
 for the reverse mode�

Both the time and space complexity of this version of the vector sweep forward and

reverse modes is larger than the sparse vector forward and reverse modes� however�

the e�ciency of the two methods depends greatly on the particular problem at hand

and the computing environment where the computations are being performed�

��� Rounding Error Estimation

In addition to favorable time complexity for gradient calculations� the reverse mode

of automatic di
erentiation has the ability to provide relatively tight estimates on the

roundo
 error associated with the computation of a function ����� Let  vj denote

the roundo
 error associated with the computation of the j�th elementary operation

of a scalar�valued function f � Let $vj and $vi� i � Aj� denote the computed values of

vj and vi� The roundo
 error is estimated as follows�

 vj � $vj�$vi
i�Aj
� vj�vi
i�Aj

�����


� vj�$vi
i�Aj
� vj�vi
i�Aj

� $vj�$vi
i�Aj
� vj�$vi
i�Aj

If the roundo
 error is su�ciently small� the �rst two terms of equation �����
 can be

approximated by a �rst�order Taylor series�

vj�$vi
i�Aj
� vj�vi
i�Aj

�
X
i�Aj

�vj
�vi
 vi �����


���



Thus�

 vj �
X
i�Aj

�vj
�vi
 vi � �vj� �����


where �rst term is the error propagated to vertex j from previous computations and

�vj � $vj�$vi
i�Aj
� vj�$vi
i�Aj

is the error generated at vertex j� By applying �����
 all

the way up to the root vertex� the total accumulated roundo
 error in the evaluation

of f is given by

 f �

n�pX
j��

�f

�vj
� �vj �����


Assuming no error in the input data� the absolute roundo
 error is bounded by

j f j 
 �

n�pX
j�n��





 �f�vj




 � jvjj � �

n�pX
j�n��

j�vjj � jvjj �����


where � is the machine precision and j�vjj 
 � jvjj� If the absolute error in the input

data is known� the total absolute error associated in the computation of f is bounded

by

j f j 
 �

n�pX
j�n��

j�vjj � jvjj�
nX

j��

j�vjj � j xjj � �����


Using the reverse mode� the cost of computing a function� its gradient� and an estimate

of the roundo
 error is bounded above by six times the cost of computing the function

alone� These roundo
 error estimates can be used� for example� in the stopping

criteria for iterative solution methods�
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��� Literature Review

The literature associated with automatic di
erentiation is quite extensive� The ori�

gins of the forward mode of AD can be traced back to the late ����s and early ����s

in the work of Beda ���� and Wengert ������ The book by Rall ���� gives an excellent

description of the work done in AD between the ����s and ����� Speelpenning was

the �rst to observe that the reverse mode of AD can out perform the forward mode

in many cases ������ Resulting from a thesis originally aimed at optimizing the code

generated by the forward mode by common subexpression sharing� he realized that

optimal gradient code can be obtain directly from the graph without optimization�

The choice between the forward and reverse modes for Jacobian evaluations� how�

ever� is not apparent and depends on the particular problem at hand� An excellent

discussion of AD is presented by Griewank in �����

Automatic di
erentiation has been aimed primarily at the di
erentiation of pro�

grams �containing conditional statements� loops� etc�
� Two distinct approaches are

used for automatic di
erentiation� pre�compilation and operator overloading� In the

precompliler approach� the user provides a subroutine in a language such as C or

FORTRAN for the calculation of a set of equations� The precompiler breaks down

the arithmetic operations in this subroutine into a set of elementary arithmetic op�

erations and computes the elementary partial derivatives for these operations� With

this information� a new subroutine is generated which computes the residuals and

the Jacobian� This new subroutine can be compiled and linked to other programs�

Some automatic di
erentiation procompilers currently available are� JAKEF �����

GRESS ����� PADRE� ����� and ADIFOR ����� The second approach makes use of

the operator overloading capability of many modern programming languages such as

C��� Ada� and PASCAL�SC� Using operator overloading� the programmer can de�ne

new data types and rede�ne arithmetic operators and intrinsic functions taking these

new data types as arguments so that the compiler generates the additional instruc�

tions required for the Jacobian evaluation� Some automatic di
erentiation packages

employing operator overloading are� ADOL�C ����� BC� ����� and GC� �����
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Chapter 	

A New Class of Automatic

Di�erentiation Methods

In this chapter� a new class of di
erentiation methods� known as �subgraph reduc�

tion�� developed in this thesis is presented� By virtue of considering di
erentiation

methods from within an interpretive equation�oriented simulator� we have taken a

!graph centered" approach� that is� the equation graph has been the basis for the

algorithms developed rather than considering the elementary operation sequence and

using the graph to illustrate the ideas� This graph centered approach has led to a

novel method for AD that is particularly advantageous for use within an interpretive

equation�oriented simulator� The basic approach is described in the �rst part of this

chapter� This is followed by temporal and spatial complexity analysis� Finally� each

variant of the approach is described in detail in the implementation section� Both

interpreted and compiled versions of the algorithm are described� Numerical compar�

isons illustrating the advantages of this new approach are presented in the following

chapter�
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	�� Subgraph Reduction Approach

Consider the system of equations�

y� � sin��x�x�
 ����


y� � � � �x�x� �
�Y

j��

xj ����


y� � �x�x� �
�Y

j��

xj � x� � x�x� ����


y� � �x�x� � xx
� � ����


The DAG of this system is shown in Figure ���� To reiterate� the interior vertices of
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Figure ���� DAG representation of equations ����
�����
�

the graph correspond to the elementary operations with the children corresponding

to the arguments� The edges in this graph point from operator to operand� Vertices

without any children correspond to independent variables and constants� Vertices

without any parents correspond to the dependent variables� With the edges labeled

with the elementary partial derivatives� the partial derivatives of the dependent vari�

ables with respect to the independent variables can be easily extracted from the

graph using some variant of automatic di
erentiation described in the previous chap�
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ter� A partial derivative is simply the sum over all paths connecting the dependent

variable vertex to the independent variable vertex of the products of the elementary

partial derivatives along these paths� The order in which these sums and products

are performed is what basically distinguishes between the various modes of automatic

di
erentiation�

Note that the DAG shown in Figure ��� contains several subgraphs that are shared

by several equations� the subgraph rooted at vertex �� is shared by equations ����


and ����
� The subgraph rooted at vertex � is shared by equations ����
 and ����


and the subgraph rooted at vertex ��� The subgraph rooted at vertex � is shared by

the subgraphs rooted at vertices � and �� Finally� the subgraph rooted at vertex � is

shared by the subgraphs rooted at vertices � and ��� As before� the subgraphs rooted

at vertices �� �� �� and �� will be referred to as common subexpressions of equation

system ����
�����
� Independent variable vertices v� and v� also have multiple incident

edges� however� they are not considered common subexpressions in this discussion�

If the scalar sweep version of the forward and reverse modes are used to com�

pute the Jacobian� the accumulation is performed column�by�column or row�by�row�

Common subexpressions present a problem in this case due to the fact that there

will be repeated calculations as the Jacobian is assembled� Re�evaluation of common

subexpressions during Jacobian evaluation can be avoided by assembling the entire

Jacobian matrix simultaneously using the sparse or compressed vector versions of the

forward and reverse mode�

This chapter describes a new approach for Jacobian accumulation that obviates

the need for performing vector accumulations by replacing certain sections of the

graph with simpli�ed graphs� This allows the Jacobian to be accumulated e�ciently

through a series of scalar accumulations� Like the automatic di
erentiation tech�

niques described in the previous chapter there are two basic variants of this subgraph

simpli�cation or reduction approach� the forward and reverse modes� These two basic

modes are discussed in the following section� This is then followed by a discussion

of a hybrid approach where di
erent variants are applied to di
erent regions of the

graph�
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This approach requires a graph representation of a system of equations� This

requirement does not present a problem since most systems of equations of interest�

even when represented as a general FORTRAN subroutine� can be readily and auto�

matically converted to an equation graph� This will be discussed in more detail in

the implementation section of this chapter�



�
� Reverse Mode

Like the other versions of the reverse mode discussed in the previous chapter� this

version accumulates the elementary partial derivatives by moving through the ele�

mentary operation list from operation N down to operation � or� equivalently� from

the dependent variable vertices at the top of the CG down to the independent variable

vertices at the bottom� The de�nition of a common subexpression is di
erent for the

reverse and forward modes of the subgraph reduction approach�

De�nition � In the reverse mode� a common subexpression is de�ned as a vertex in

a subgraph reachable from more than one dependent variable vertex�

Unfortunately� this de�nition overcounts the number of common subexpressions present

in a graph �each vertex contained in a subgraph rooted at a common subexpression

vertex will be considered a common subexpression
� A more precise de�nition is

needed for the common subexpression vertices that are of interest in this chapter�

First� de�ne the following vertex dependent variable index set�

Od �v
 � fj � D j vertex v is reachable from dependent

variable vertex vjg ����


where D is the set of indices of the dependent variables� For example� for the

graph shown in Figure ���� Od �v��
 � f��g� Od �v�
 � f��� ��g� and Od �v�
 �

f��� ��� ��� ��g� Next� de�ne the vertex dependent variable and common subexpres�
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sion index set�

Od �v
 � fj � V j vertex v is reachable from dependent

variable or common subexpression vertex vjg ����


By constructing Od ��
 for each vertex in the graph in a speci�c order �described

below
� this set can be used to de�ne the common subexpression vertices�

De�nition � Vertex vk is a common subexpression if Od �vi
 �� Od �vj
 for at least

one pair of i� j � Sk�

Recall that in section ���� an elementary operation in the elementary operation list

form of an equation system corresponds to an interior vertex in the DAG represen�

tation of the system� Furthermore� the indexing of the elementary operations was

de�ned such that the indices of all arguments of an elementary operation are less

than the index of the elementary operation itself� that is� i � j 	i � Aj �this ensures

all elementary variables in an argument list have been precomputed
� If the vertices

in the corresponding equation graph are indexed in a similar manner �in this case� the

index of a vertex v is greater than the indices of all vertices contained in the subgraph

rooted at v
� then this ordering along with de�nition � above can be used to identify

the common subexpressions� The vertices are visited in the order of decreasing value

of index� At each vertex vj� Od �vj
 is constructed from its parents index sets as

follows�

Od �vj
 � �i�SjOd �vi
 � ����


If during the construction of the index set the condition in de�nition � is satis�ed� vj is

�agged as a common subexpression� By visiting the vertices in the order of decreasing

value of index� the de�nition of a common subexpression above is well�posed� Figures

���� ���� and ��� contain example graphs where the dependent variable and common

���



subexpression vertex index set has been constructed for each vertex in the graph�

The common subexpression vertices are highlighted in the graph�
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Figure ���� Common subexpression identi�cation� Example ��

De�nition � is used in the example above where vertices �� �� �� and �� in the

graph in Figure ��� are identi�ed as common subexpressions� If the scalar sweep

version of the reverse mode were applied to this graph� the accumulation below these

vertices would be performed several times as the Jacobian was accumulated row�by�

row� The reverse mode of the subgraph reduction approach avoids these redundant

calculations by replacing the subgraphs rooted at common subexpression vertices with

simpli�ed graphs containing single edges pointing from the common subexpression

vertex to each of the independent variables contained in the subgraph� The !not�

so�elementary" partial derivatives attached to each of these new edges is equal to

the partial derivative of the common subexpression with respect to the independent

variable the edge points to� Figure ��� contains an equation graph before and after this

subgraph reduction� The common subexpression vertices in this graph are identi�ed

by squares� �Notice that although vertex � in Figure ��� has two incident edges� it is

���
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Figure ���� Common subexpression identi�cation� Example ��

not considered a common subexpression due to the fact that it is reachable from only

a single dependent variable vertex�
 The order in which the graph reduction problem

is performed is extremely important� In the graph contained in Figure ���� vertex

� is a common subexpression that is reachable from common subexpression vertex

��� Similarly� vertex � is a common subexpression vertex that is reachable from both

common subexpressions � and ��� This observation de�nes a ranking for the common

subexpressions�

De�nition � Given two common subexpression vertices vi and vj� rank �vi� � rank �vj�

if vi is reachable from vj�

For the graph in Figure ���� rank �v�� � rank �v�� � rank �v���� By simplifying the

subgraphs rooted at the common subexpressions in the order of decreasing rank�

redundant calculations are avoided by using precomputed information� Once all of

the subgraphs rooted at common subexpressions have been simpli�ed in a hierarchical

���
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Figure ���� Common subexpression identi�cation� Example ��

manner� the Jacobian can be computed e�ciently through a series of scalar reverse

sweep accumulations� The details of this process are discussed in the implementation

section later in this chapter�



�
� Special Handling of Linear Equations

As described in chapter �� the cost of computing the gradient of a function using the

reverse mode of automatic di
erentiation is bounded from above by three times the

cost of computing the function alone� In contrast� the cost of computing a gradient

using symbolic di
erentiation is roughly n times the cost of computing the func�

tion where n is the number of independent variables�� Although the reverse mode of

automatic di
erentiation out performs symbolic di
erentiation in many cases� the sit�

�This becomes a relatively loose upper bound when common subexpression evaluation is
employed�
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Figure ���� Equation graph before and after subgraph simpli�cation�

uation is di
erent for linear equations� the cost of evaluating a linear equation and its

gradient using symbolic di
erentiation is essentially the same as the cost of evaluating

the linear equation alone �the symbolic derivatives are simply constants
� whereas�

the same bound as above holds for the reverse mode� This observation is particu�

larly important in process simulation where many of the equations encountered are

linear �conservation equations� summation of mole fraction constraints� etc�
� Linear

equations can be handled in a similar manner as common subexpression vertices in

the approach described above� Given the graph of a system of equations� the �rst

step is to identify the linear equations and linear subgraphs of nonlinear equations�

This can be performed simultaneously with the common subexpression processing

���



with very little additional cost �see implementation section
� Once these equations

are identi�ed� their constant gradients can be computed and saved� This is identical

to reducing the subgraphs rooted at common subexpression vertices� When a linear

equation or subgraph is encountered during a Jacobian evaluation� its gradient is

simply assigned rather than computed� As shown in the implementation section� this

special handling of linear equations can be readily incorporated �particularly in the

interpretive implementation
 into the framework discussed in this chapter�



�
� Forward Mode

The forward mode version of the subgraph reduction approach� like the other forward

mode versions of automatic di
erentiation discussed in this thesis� accumulates the

elementary partial derivatives by moving through the elementary operation list from

operation � to operation N or� equivalently� from the independent variable vertices at

the bottom of the CG up to the dependent variable vertices at the top� As mentioned

above� the common subexpression is de�ned di
erently for the forward mode of the

subgraph reduction approach�

De�nition � A common subexpression for the forward mode version of the subgraph

reduction approach is de�ned as an interior vertex that has at least two operands that

are functions of independent variables�

To make this de�nition more precise� de�ne the following vertex independent variable

index set�

Oi �v
 � fj � I j independent variable vertex vj is contained in

the graph rooted at vertex vg ����


where I is the set of indices of the independent variables� For example� for the

graph shown in Figure ���� Oi �v��
 � f�� �� �g� Oi �v�
 � f�� �� �� �g� and Od �v�
 �

���



f�� �g� Vertex vk is a common subexpression vertex if there exists at least two i� j �

Ak� such that Oi �vi
 �� � and Oi �vj
 �� �� Obviously� this de�nition will result in

many more vertices de�ned as common subexpressions than the reverse mode of the

subgraph reduction approach� Because of the di
erent order in which the vertices

are encountered during the accumulation for the forward and reverse modes� the

de�nition of common subexpressions in each case is not symmetric� This di
erence

will become apparent in the implementation section in this chapter�



�
	 Hybrid Approaches

As shown in section ���� the temporal complexity �computational cost
 of the reverse

and forward modes of the subgraph reduction approach are related to the number of

common subexpressions in the graph� The fact that these common subexpressions

are de�ned di
erently for each mode� indicates that one implementation may perform

better than the other depending on the structure of the graph of the system of equa�

tions of interest �see Figure ���
� Alternatively� it may be advantageous to apply both

modes to di
erent regions of the graph in order to achieve improved performance over

exclusive application of either the forward or reverse mode�

One simple algorithm is to examine the common subexpressions in the graph

with large independent and dependent variable index sets� The number of operations

required for both the forward and reverse modes can be readily extracted from the

graph and the di
erence in the number of operations and memory requirements can

be used as a basis to determine which mode is better suited for this region of the

graph�



�
� Markowitz Criteria Approach

A second !graph�oriented" approach has recently been presented in the literature

����� In this work� the authors view the Jacobian accumulation as a vertex elimi�

nation problem and solve it using a greedy heuristic� The results of this paper are

���



summarized below� Figure ��� contains an example where two vertices are succes�

sively eliminated from a graph� The Jacobian accumulation process can be viewed
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Figure ��
� Vertex elimination problem� Vertices v� and v� are successively elimi�
nated from the graph�

as a vertex elimination process where all intermediate vertices in the graph are elim�

inated� resulting in a bipartite graph with the dependent variable vertices on the top

and the independent variable vertices at the bottom�

Consider the following recurrence relation �originally shown in equation ����

�

v	j �
X
i�Aj

dj�iv
	
i� ����


For the Jacobian accumulation problem� removing vertex vk from the CG is equivalent

to eliminating it from the reucurrence above� For all j � Sk� substitute

v	j � dj�k � v
	
k �

X
k 
�i�Aj

dj�iv
	
i

�
X
i�Ak

dj�kdk�i � v
	
i �

X
k 
�i�Aj

dj�iv
	
i

�
X
i� �Aj

$dj�i � v
	
i�

���



where $Aj � Ak � Aj � fkg� and

$dj�i � dj�i � dj�k � dk�i

for all index pairs j � Si and i � Ak� The number of multiplications performed at

vertex k during the elimination process is equal to the Markowitz count�

mark�k
 � jAkj � jSkj � �����


Furthermore� one addition is performed each time a new edge is constructed �see

Figure ��� where an additional edge connecting v� to v� is introduced
� Hence� the

cost of computing a vertex when viewed as a vertex elimination problem is related to

the Markowitz count as follows�

cost�J�x

 �
X
i�E

mark�i
� �����


Of course� mark�i
 corresponds to the Markowitz count when vertex i is eliminated

which� of course� may change during the course of the elimination� The ideal elimi�

nation order is the one that minimizes �����
� however� the solution to this problem

is conjectured to be NP�hard� The authors chose a greedy heuristic to solve this

problem approximately�

This is a very elegant and insightful way of viewing the Jacobian accumulation

process� The problem with this approach� as stated by the authors� is that the ap�

proach requires signi�cantly more memory than either the forward or reverse vector

sweep versions of automatic di
erentiations� Furthermore� the additional cost associ�

ated with determining the elimination ordering is not included� which� as the authors

suggest� is substantial� Both of these problems make this approach appear less attrac�

tive� particularly when the accumulation sequence may change several times over the

course of a calculation �as is the case with hybrid discrete	continuous simulation
�

���



	�� Implementation

The details of the algorithms described in this chapter are discussed here� As men�

tioned above� this approach requires a graph representation of the system of equations

of interest� If the approach is applied within some symbolic programming environ�

ment �e�g�� Maple� SPEEDUP� and ABACUSS
 then this graph is already available�

having been constructed from the in�x notation form of the equations provided by

the user directly from the keyboard �Maple
 or through an input �le �SPEEDUP and

ABACUSS
� If the system of equations is in the form of a C or FORTRAN subroutine�

the graph can be readily constructed by moving sequentially through the statement

list� Arbitrarily complex DAGs can be constructed through the use of intermediate

variables that take the form of common subexpressions within the graph�

Compiled and interpreted implementations will be described� In the compiled

mode� the equation graph is an intermediate data structure from which the accumu�

lation sequence is extracted and written to a �le that can be compiled and linked to

other routines to provide residual and derivative values� Once this new routine has

been constructed� the memory associated with the computational graph can be recov�

ered� In the interpreted mode� the equation graph is persistent and used throughout

the course of the particular calculation being performed� This di
erence results in

slightly modi�ed algorithms� tailored to each of the two architectures�

The algorithms described below take an equation graph !as is"� meaning that

common subexpression vertices are already present in the graph and there is no at�

tempt to identify others� The search for common subexpressions is a combinatorial

problem and has been the focus of much research in the past ����� The identi�cation

and exploitation of common subexpressions can o
er signi�cant speed and memory

improvements for many problems� however� this problem can be handled as a prepro�

cessing step to the di
erentiation algorithm�

LetG � �V�E
 denote the computational graph of the equation system f � Rn �


R
m where V denotes the set of vertices and E denotes the set of edges� As stated in

the previous chapter� the graph representation and the elementary operation represen�

���



tation of a system of equations are closely related� each vertex in the computational

graph represents an elementary operation �this requires the introduction of elementary

assignments for each independent and dependent variable
� See the Computational

Graph and Accumulation section in chapter � for a description of the elementary

operation list representation� Using the notation in that section� there are a total of

jVj vertices �n � jIj independent variable vertices and m � jDj dependent variable

vertices
 in G� For this discussion� assume that the system of equations can be broken

down into elementary operations corresponding to binary and unary operators �e�g��

�� �� �� etc�
 and unary functions �e�g�� sin� cos� exp� etc�
� In this case� the number

of edges in G is bounded above by twice the number of vertices� This observation is

relevant when analyzing the complexity of the steps involved in this algorithm� The

direction of the edges in G point from operator to operand� however� the vertex data

structures also contain a parent list �that is� a list of all vertices that point to them
�

Let P�vk
 � fvigi�Sk denote the parent list of vertex vk where the set Sk is de�ned

by �����
�



�
� Compiled Implementation

In this case� computational graph G is a temporary data structure used to generate

code for Jacobian and residual evaluation� The code generation is broken down into

two distinct phases� a
 graph preprocessing and b
 extraction of the accumulation

sequence �the actual code generation step
� Obviously� the case will be di
erent for

both the forward and reverse mode�

Reverse Mode

The preprocessing step results in a list of common subexpressions� sorted by rank� that

is used during the subsequent code generation step� For this phase of the algorithm� it

is assumed that the data structures representing the graph vertices contain an integer

�eld used for indexing and a boolean �ag used to indicate whether or not the vertex is

a common subexpression� The preprocessing for the reverse mode can be summarized

���



in the following steps�

�� Initialize the index �eld of all vertices in the graph to zero�

�� Index vertices in G by calling IndexVertices �see Figure ���
 from each de�

pendent variable vj� j � D� and store vertices in a list� L� sorted by decreasing

value of the index�

�� Determine dependent variable and common subexpression vertex index set�

Od �vk
� for each k � L �in decreasing order of index
� and

�� Identify all common subexpressions and store in a list sorted by decreasing value

of rank�

To illustrate the algorithm� the computational graph of the system of equations�

f� � b�x� � x� � x�x� �����


f� � sin�x�
� x�x�
x�
x�

�����


f� � x�x�
x�
x�
� �x� � b�
 �����


f� � b�x� �
x�
x�
� b�� �����


is shown in Figure ���� This is the same system examined in the previous chapter

�shown as a DAG in Figure ���
� Initialization of the index �eld of all vertices in the

graph can be performed using a depth��rst search and has complexity O�jVj
� The

indexing of the variables is performed using the depth��rst search based algorithm�

IndexVertices� shown in Figure ��� in chapter �� This initial indexing is used to

sort the vertices for later processing and to rank the common subexpressions identi�

�ed later� The common subexpression rank is related to the index by the following

relation�

rank �vi� � rank �vj� if i � j�

���
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Figure ���� Computational graph of system of equations �����
������
�

This is due to the fact that IndexVertices numbers vertices below vertex v be�

fore numbering vertex v itself� The CG shown in Figure ��� has vertices indexed

in this manner� The storing of vertices in the sorted list can be accomplished by

adding an additional vertex pointer �eld to the vertex data structure and can be per�

formed simultaneously while indexing� �Actually� creating the list while performing

the indexing results in an ordering opposite that required by the reverse mode�
 The

complexity of this step �including the reversing of the list
 is O�jVj
� The next step

is to construct the dependent variable and common subexpression index set for each

vertex in V� As mentioned earlier� the dependent variable and common subexpression

index set of a vertex is related to the dependent variable and common subexpression

index sets of its parents by

Od �v
 � �u�P	v
Od �u
 �

Let L�G
 denote the sorted list of vertices generated in the �rst step of the prepro�

cessing phase of the algorithm �for the example above� the �rst entry of this list is v���

the second is v��� and so on down to v�
� First� the dependent variable and common

subexpression index sets of the dependent variables are constructed�

for each k � D do

���



Od �vk
 � fkg #

end

Obviously� the complexity of this step is O�jDj
� The dependent variable and common

subexpression index set is then constructed for each vertex in the graph by moving

through the vertex list in decreasing order of index�

for each vk � L�G
 do

Od �vk
 � �u�P	vk
Od �u
 #

if vk is a common subexpression �as de�ned in de�nition �
 then

Od �vk
 � Od �vk
 � fkg #

Flag vk as a common subexpression #

Insert vk into common subexpression list #

end

end

Common subexpressions can be easily identi�ed while the dependent variable and

common subexpression index sets are constructed� a common subexpression is a

vertex that has at least two parents with distinct dependent variable and common

subexpression index sets �the order in which the vertices are encountered ensures this

de�nition is not circular
� In addition� by moving through the vertex list in reverse

order� common subexpressions are inserted into the front of a second list as they are

identi�ed� This common subexpression list is already sorted in the order of decreasing

value of common subexpression rank by virtue of the order in which the vertices are

examined� A �ag is set in each common subexpression vertex so that they can be

easily identi�ed during subsequent processing� A very pessimistic upper bound for

the common subexpression identi�cation is O��� jVj
 where � is equal to the number

of common subexpressions and dependent variables contained in the graph� however�

for non�pathological or sparse problems� this step is extemely fast even for very large

systems �requiring a fraction of a second for systems containing tens of thousands of

equations
�

���



After the preprocessing step� we have a sorted list of common subexpression ver�

tices� Let CS denote this list� For the graph shown in Figure ����

CS � fv�� v��g�

All memory required to hold the dependent variable and common subexpression index

sets can be recovered at this point� The basic idea of the code generation step is to cre�

ate lists of vertices in an order that they will be encountered during the accumulation

phase� The algorithm for generating these lists� ReverseAccumulationList� is

shown in Figure ���� This algorithm assumes the vertex data structure has a boolean

�eld named encountered and accessed in the usual manner �e�g�� encountered�v�
�

ReverseAccumulationList�L�v

� � If vertex has already been encountered� return�
� if encountered�v� � true then

� return #
� else

� encountered�v� � true #
� end

� if v � independent variable or common subexpression then
� � Insert this vertex to the front of the list�
� InsertVertex�L�v
 #
�� return

�� end

�� � Recursively visit left and right children and �ag paths�
�� ActivePath�v�left�v�
 #
�� ReverseAccumulationList�L�left�v�
 #
�� ActivePath�v�right�v�
 #
�� ReverseAccumulationList�L�right�v�
 #
�� � Insert this vertex to the front of list�
�� InsertVertex�L�v
 #
�� end

Figure ���� Algorithm for generating a list of vertices in the order required by the
reverse mode�

���



Procedure ReverseAccumulationList constructs a list of vertices in a reverse

order� that is� the order they will be encountered during a reverse scalar sweep� The

procedure InsertVertex simply inserts a vertex to the front of list L� The proce�

dure ActivePath simply �ags the edge between vertex v and its children as being

active �a vertex �eld is assumed to be available for this
� This �ag is used during

the subsequent code generation phase� The complexity of ReverseAccumulation�

List is proportional to the number of vertices contained in the subgraph rooted at

the argument vertex� Let L�vk
 denote the list constructed by calling ReverseAc�

cumulationList with L initialized to � and v � vk �and the encountered �eld in all

vertices in the subgraph rooted at vk set to false
� The following lists are generated

from vertices v�� v��� v��� v��� v��� and v��

L�v�
 � fv�� v�� v�g�

L�v��
 � fv��� v�� v�� v�� v�g�

L�v��
 � fv��� v��� v��� v�� v��� v�g�

L�v��
 � fv��� v��� v�� v��g�

L�v��
 � fv��� v��� v�� v�g� and

L�v�
 � fv�� v�� v�� v�� v�� v�g�

These lists contain the vertices in the order in which the accumulation would be

performed using the reverse mode to compute the gradient of the subexpression rooted

at each of the argument vertices� For example� the following sequence of operations

���



can be generated given the list L�v��
 above�

�v�� � �

�v�� � d����� � �v��

�v�� � d����� � �v��

�v� � d���� � �v��

�f���x� � �v�

�v�� � d����� � �v��

�v� � d���� � �v�� � d���� � �v��

�f���x� � �v�

The subgraph rooted at vertex v�� does not contain common subexpressions and thus

the gradient may be e�ciently computed through a scalar sweep� The exploitation

of the common subexpressions is illustrated later in this section where the entire

Jacobian of equations �����
������
 is constructed�

Pseudocode for computing the accumulation sequence is shown in Figure ���� The

arguments of procedure ReverseAccumulation are a list of vertices� L� generated

as described above� a gradient vector� rf � a constant vector� g� and a scalar� ��

Here it is assumed that the vertex data structures have the following �elds� a real

variable� adjoint� and two vertex pointers for the left and right elementary partial

derivatives� The procedure GetNextVertex simply removes the next vertex in the

list and returns it� Function d�u�v
 simply returns the value of the elementary partial

derivative attached to the edge connecting vertices u and v� The set P 	�v
 denotes

the subset of parents of v that are active and is de�ned as

P 	�v
 � fu � P�v
 j Path between u and v is active�g

���



ReverseAccumulation�L�rf �g��

� � Copy the constant vector g into the gradient vector rf �
� rf � g #
� � Initialize the dependent variable vertex adjoint to the constant �
� v � GetNextVertex�L
 #
� adjoint�v� � � #
� � Move through the list until empty�
� while L �� � do
� v � GetNextVertex�L
 #
� adjoint�v� � � #
�� � Loop over the active parents�
�� for each u � P 	�v
 do
�� adjoint�v� � adjoint�v� � d�u�v
 � adjoint�u� #
�� end

�� if v � independent variable xj then
�� �rf
j � �rf
j� adjoint�v� #
�� else if v � common subexpression then
�� rf � rf� adjoint�v� � rv #
�� end

�� end

Figure ���� Algorithm for reverse accumulation from vertex list�

where the path is �agged as active during the list construction� The paths are �agged

as active during the vertex list construction due to the fact that during a particular

gradient evaluation� when a common subexpression is encountered� not every parent

is involved� only those associated with the graph of the vertex whose gradient is

desired� For example� when evaluating the gradient of vertex v�� in Figure ��� and

vertex v�� is encountered� only the edge connecting v�� and v�� is active while the

edge connecting v�� to v�� is not �the opposite holds when evaluating the gradient of

vertex v��
�

On line �� of ReverseAccumulation� it is assumed that the gradients of all

common subexpressions contained in the graph rooted at the argument vertex have

been precomputed �i�e�� the graph has been previously reduced
� The order in which

ReverseAccumulation is called during a Jacobian evaluation �described below


ensures this will be the case� If the list� L� was constructed from the dependent

���



variable vertex corresponding to the graph of f � Rn �
 R� then the following

quantity will be computed upon completion of ReverseAccumulation�

g � �rf�

Notice that all operations in ReverseAccumulation are scalar operations except

for the SAXPY operation on line ��� This can be handled in one of several ways�

First� rf can be represented as dense n vector� in which case the complexity at this

step would be O�n
� However� for large� sparse problems� there will be many un�

necessary calculations performed� Alternatively� the independent variable index sets

for all dependent variable and common subexpression vertices can be precomputed

�O��n jVj
 complexity assuming only unary and binary operators and functions are

contained in the graph
 and sparse vector operations can be performed� Although

this was cited as a de�ciency of the sparse vector implementations of the forward

and reverse modes� it should be noted that in the subgraph reduction approach� this

indirect addressing is only performed at the common subexpression vertices and inde�

pendent variables� not at every vertex contained in the subgraph rooted at a common

subexpression as it would in the sparse vector implementations� Finally� if the ap�

proach were implemented in a vector computer� it may be advantageous to use the

compressed vector ideas described in the previous chapter� In this case� rf would

be a dense �n dimensional vector� As with the vector implementations of the forward

and reverse modes� the optimal representation of rf depends both on the problem at

hand and the computer architecture in which the computations are being performed�

Code for the gradient evaluation can readily be generated using a modi�ed version

of ReverseAccumulation# instead of computing the adjoints� lines of code corre�

sponding to the operations being performed are written to a �le� Given the procedures

described above� the code generation phase of the algorithm can be summarized as

follows�

���



Initial Phase � Residual and Elementary Partial Derivative Evaluation

The �rst step is to extract the elementary operation list from the graph and write the

computational sequence to a �le� As a result� residuals are computed simultaneously

with the Jacobian� Second� the expressions for the elementary partial derivatives are

written to the �le �these calculations use some of the elementary variables computed

during the residual evaluation
�

Subgraph Reduction Phase � Common Subexpression Gradient Evalua�

tion

It is assumed that the encountered �eld of all vertices in the computational graph

of the system of equations of interest have been initialized to false and the active

�elds of all edges have been initialized to non�active� The complexity of this step is

proportional to the number of vertices and edges in the graph �O�jVj
 if only unary

and binary operators and functions are present
�

For each common subexpression in the list CS �in the order of decreasing rank


perform the following steps�

�� Call procedure ReverseAccumulationList to generate a list of vertices L�

�� Call the modi�ed ReverseAccumulation procedure to generate code for

computing the gradient of the common subexpression �in this case� g is set to

zero and � is set to unity
� and

�� For all vertices in L� reset the encountered �eld to false and the active �eld of

its edges to non�active �obviously this step is proportional to the number of

vertices in L plus the number of edges associated with these vertices
�

The precomputed elementary partial derivatives are used in this accumulation se�

quence� The steps above correspond to reducing the subgraphs rooted at the com�

mon subexpression vertices� Performing these steps in the order of decreasing common
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subexpression rank ensures that the gradient of every common subexpression encoun�

tered in ReverseAccumulation will have had code for its evaluation previously

written�

Jacobian Accumulation Phase � Dependent Variable Gradient Evaluation

Once the graph has been reduced in the step above� the full Jacobian can be con�

structed evaluating the gradient of each dependent variable vertex�

For each dependent variable vertex� vk� k � D� perform the following steps�

�� Call procedure ReverseAccumulationList to generate a list of vertices L�

�� Call the modi�ed ReverseAccumulation procedure to generate code for

computing the equation gradient �Jacobian row
� If g �� � and � �� � then the

quantity computed will be � times the current row of the Jacobian plus g�

�� For all vertices contained in L� reset the encountered �eld to false and the

active �eld of its edges to non�active�

The gradient of each dependent variable is independent of the gradients of the other

dependent variables and thus� the order in which the dependent variables are exam�

ined does not matter�

Applying this approach to equations �����
������
 results in the accumulation

sequence shown in Figures ����� ����� and ����� The computation of the residuals

and elementary partial derivatives have been omitted in this example� Furthermore�

some of the trivial initializations �e�g�� line � of ReverseAccumulation
 have been

omitted�

The operation count required to compute the Jacobian is �� multiplications and �

additions �not including the evaluation of the elementary partial derivatives
� This is

roughly the same as the sparse vector forward and reverse described in the previous

section �however� in this framework� it is much easier to avoid trivial multiplications

by unity
� This is not a surprise since it is expected that the sparse and compressed

vector techniques and the subgraph reduction approach will perform similarly for
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Common subexpression v�

�v���x� � d���

�v���x� � d���

Common subexpression v��

�v� � d����

�v� � d��� � �v�

�v����x� � �v�

�v� � d��� � �v�

�v����x� � �v�

�v� � d����

�v����x� � �v� � �v���x�

�v����x� � �v����x� � �v� � �v���x�

Figure ����� Reverse mode subgraph reduction of computational graph shown in
Figure ����

small� dense problems without complicated subgraphs rooted at common subexpres�

sion vertices� As stated in the previous chapter� this example problem is not used to

compare the performance of the various approaches� Examples are contained in the

following chapter that illustrate the improvement o
ered by the subgraph reduction

approach�

Forward Mode

The preprocessing step for the forward mode of the subgraph reduction approach

also results in a list of common subexpressions� sorted by rank� that is used during

the subsequent code generation phase� The preprocessing can be summarized in the

following steps�

�� For each vertex in the graph� initialize the index �eld to zero� the encountered

�eld to false� and the active �elds of all edges to non�active�

�� Index vertices in G by calling IndexVertices �see Figure ���
 from each de�

pendent variable vj� j � D� and store vertices in a list sorted by increasing value
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Gradient of equation f�

�v� � �

�v� � d��� � �v�

�v� � d��� � �v�

�f���x� � �v� � �v���x�

�f���x� � �v� � �v���x�

�v� � d��� � �v�

�f���x� � �f���x� � �v�

�v� � d��� � �v�

�v� � d��� � �v�

�f���x� � �f���x� � �v�

Gradient of equation f�

�v�� � �

�v�� � d����� � �v��

�f���x� � �v�� � �v����x�

�f���x� � �v�� � �v����x�

�f���x� � �v�� � �v����x�

�v� � d���� � �v��

�v� � d��� � �v�

�f���x� � �f���x� � �v�

Figure ����� Reverse mode subgraph reduction approach applied to computational
graph shown in Figure ��� after subgraph reduction �continued in next �gure
�

of the index �this is achieved by appending the vertices to the end of a list
�

�� Determine the independent variable index set� Oi �vk
� for each k � V� and

�� Identify all common subexpressions and store in a list sorted by decreasing value

of rank�

These steps are described in detail below�

As with the reverse mode� the cost of initializing the �elds of all vertices in the

graph is O�jVj
� Furthermore� the vertex indexing and list construction can be per�

formed simultaneously in O�jVj
 time by appending the vertices to the end of the list
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Gradient of equation f�

�v�� � �

�v�� � d����� � �v��

�v� � d���� � �v��

�f���x� � �v�

�v�� � d����� � �v��

�f���x� � �f���x� � �v�� � �v����x�

�f���x� � �v�� � �v����x�

�f���x� � �v�� � �v����x�

Gradient of equation f�

�v�� � �

�v�� � d����� � �v��

�v�� � d����� � �v��

�v� � d���� � �v��

�f���x� � �v�

�v�� � d����� � �v��

�v� � d���� � �v�� � d���� � �v��

�f���x� � �v�

Figure ����� Reverse mode subgraph reduction approach applied to computational
graph shown in Figure ��� after subgraph reduction �continued
�

as they are indexed� For the forward mode� rank and index are related as follows�

rank �vi� � rank �vj� if i � j�

The next step is to construct the independent variable index set for each vertex in V�

The independent variable index set of a vertex is related to the independent variable

index sets of its children by

Oi �vk
 � �j�Ak
Oi �vj
 �
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Let L�G
 denote the sorted list of vertices generated in the �rst step of the prepro�

cessing phase of the algorithm �for the graph shown in Figure ���� the �rst entry of

this list is v�� the second is v�� and so on up to v��
� First� the index sets of the

independent variables are constructed�

for each k � I do

Oi �vk
 � fkg #

end

The independent variable index set is then constructed for each vertex in the graph

by moving through the vertex list in increasing order of index �this ensures that the

de�nition of common subexpression for the forward mode is not circular
�

for each vk � L�G
 do

Oi �vk
 � �j�Ak
Oi �vj
 #

if vk is a common subexpression �as de�ned in de�nition �
 then

Flag vk as a common subexpression #

Append vk to the end of the common subexpression list #

end

end

The complexity of this step is O��n� jVj
 where �n is the maximum number of nonzeros

in any row of the Jacobian matrix� The factor of �n� is due to the fact that� in an

arbitrary graph� each vertex may have �n children each of which have index sets of

cardinality �n� However� the complexity of this step will be O��n jVj
 if only unary and

binary operators and functions are present in the graph� As with the reverse mode

implementation� this bound is pessimistic� Once again� common subexpressions can

be easily identi�ed while the independent variable index sets are constructed with

little additional cost� a common subexpression is a vertex that has at least two

children vertices with nonempty independent variable index sets� By moving through

the vertex list in forward order� common subexpressions are inserted into the front of

a second list as they are identi�ed� A �ag is set in each common subexpression vertex

so that they can be easily identi�ed during subsequent processing� The independent
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variable index sets associated with the dependent variables contains the Jacobian

occurrence information� Let CS denote the common subexpression list� For the

example shown in Figure ���� the common subexpression list will be

CS � fv��� v��� v��� v�� v�� v�g�

As with the reverse mode� the preprocessing results in a sorted list of common

subexpression vertices which is used in the subsequent code generation phase� The

memory required to hold the independent variable index sets can again be recovered�

Like the reverse mode� the accumulation sequence will be generated from lists ex�

tracted from the graph in the proper order� For the forward mode� the algorithm for

generating these lists� ForwardAccumulationList� is shown in Figure ����� The

ForwardAccumulationList�L�v�vo

� � If vertex has already been encountered� return�
� if encountered�v� � true then

� return #
� else

� encountered�v� � false #
� end

� � If vertex is not original vertex� append to end of list�
� if v �� vo then
� AppendVertex�L�v
 #
�� end

�� � Return if we�ve reached the end of a chain�
�� if v � dependent variable or

� v � common subexpression and v �� vo
 then
�� return #
�� end

�� � Recursively visit all parents of vertex v�
�� for each u � P�v
 do
�� ActivePath�u�v
 #
�� ForwardAccumulationList�L�u�vo
 #
�� end

Figure ����� Algorithm for generating a list of vertices for the forward mode�
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arguments of ForwardAccumulationList are a vertex list� L� the current vertex

to be processed� v� and the original vertex from which ForwardAccumulation�

List was called� vo� Procedure ActivePath simply �ags the edge connecting u and

v as being active �a �eld in the vertex data structure is assumed to be available for

this
� This �ag is used during the subsequent code generation phase� Once the list

has been constructed using ForwardAccumulationList� the vertices in the list

must be sorted in the order of increasing value of index� This step can be performed

in O�l log� l
 time� where l is the number of entries in the list� Let L�vk
 denote the

list generated by calling ForwardAccumulationList with vk as an argument� For

the example shown above� the lists generated from the common subexpressions would

be �after sorting
�

L�v��
 � fv��g�

L�v��
 � fv��g�

L�v��
 � fv��� v��g�

L�v�
 � fv��g�

L�v�
 � fv�g� and

L�v�
 � fv�� v��g�

�����


Applying the procedure to each of the independent variable vertices results in the

following lists�

x� � L�v�
 � fv�� v�� v�� v��� v��� v��g�

x� � L�v�
 � fv�� v�� v�� v�� v��g� and

x� � L�v�
 � fv�� v��� v��� v��g�

�����
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Pseudocode for computing the forward accumulation sequence is shown in Figure

����� The arguments to ForwardAccumlation are a list of vertices� L� generated

ForwardAccumulation�L� $f �v

� � Loop through vertex list�
� v	 � � #
� while L �� � do
� u� GetNextVertex�L
 #
� � Sum over all active paths�
� u	 �

P
w�A�

u
d�u� w
w	 #

� if �u � common subexpression and u �� v
 then
� � Incorporate precomputed sensitivity vector�

� $f � $f � u	$u #
�� else if u � dependent variable fi then

�� $fi � $fi � u	 #
�� end

�� end

Figure ����� Algorithm for forward accumulation from vertex list�

as described above� a sensitivity vector� $f � and the vertex corresponding to the sensi�

tivity vector �i�e�� $f � �f��v and v is either a common subexpression or independent

variable vertex
� The summation term involves only elements associated with paths

from v to the current vertex �these are �agged by procedure ActivePath during

the list construction
� Upon completion of this procedure� $f contains the following

information�

$f � h
�f�
�v

� � � � �
�fm
�v

i�

As with the reverse mode� $f can be represented as a dense m vector� a compressed

�m vector� or a sparse vector depending on the problem and computer environment at

hand� If the sparse or compressed vector approach is applied� then the independent

variable index set of each dependent variable and common subexpression must be

determined a priori�
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Code for the accumulation can be readily generated using a modi�ed form of

ForwardAccumulation� where� like the reverse mode� lines of code are written to

a �le rather than actually performing the computation� The code generation phase

is similar to the reverse mode and consists of the following phases�

Initial Phase � Residual and Elementary Partial Derivative Evaluation

As with the reverse mode� the �rst step is to extract the elementary operation list

from the graph and write the computational sequence for residual and elementary

partial derivative evaluation to a �le�

Subgraph Reduction Phase � Common Subexpression Sensitivity Evalu�

ation

It is assumed that the encountered �eld of all vertices in the computational graph

of the system of equations of interest has been initialized to false and the active

�elds of all edges have been initialized to non�active� The complexity of this step is

proportional to the number of vertices and edges in the graph �O�jVj
 if only unary

and binary operators and functions are present
�

For each common subexpression in the list CS �in the order of decreasing rank


perform the following steps�

�� Call procedure ForwardAccumulationList to generate a list of vertices L�

�� Call the modi�ed ForwardAccumulation procedure to generate code for

computing the sensitivity of the dependent variables with respect to the current

common subexpression� and

�� For all vertices contained in L� reset the encountered �eld to false and the

active �eld of its edges to non�active �like the reverse mode� this step is pro�

portional to the number of vertices in L plus the number of edges associated

with these vertices
�
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The precomputed elementary partial derivatives are used in this accumulation se�

quence� The steps above correspond to reducing the subgraphs above the common

subexpression vertices� Performing these steps in the order of decreasing common

subexpression rank ensures that the sensitivity vector of every common subexpres�

sion encountered in ForwardAccumulation will have had code for its evaluation

previously written�

Jacobian Accumulation Phase � Column Evaluation

Once the graph has been reduced in the step above� the full Jacobian can be con�

structed by evaluating the sensitivity of dependent variable vertices with respect to

each independent variable vertex �i�e�� constructing the Jacobian column�by�column
�

For each independent variable vertex� vk� k � I� perform the following steps�

�� Call procedure FowardAccumulationList to generate a list of vertices L�

�� Call the modi�ed ForwardAccumulation procedure to generate code for

computing the Jacobian column�

�� For each vertex in L� reset the encountered �eld to false and the active �eld

of its edges to non�active�

Like the reverse mode� the order in which the independent variables are processed

does not matter�

Applying this approach to equations �����
������
 results in the accumulation

sequence shown in Figures ����� ����� and ���� contain the accumulation sequence

that can be extracted from the CG shown in Figure ����

The Jacobian is accumulated column�by�column with �� multiplications and �

additions� In the forward mode of the subgraph reduction approach� trivial multipli�

cations by unity are easily eliminated which accounts for the lower operation count

than the other AD approaches examined with this example problem�
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Common subexpression v��

�f���v�� � d�����

Common subexpression v��

�f���v�� � d����� � �f���v��

Common subexpression v��

�f���v�� � d�����

�f���v�� � d�����

Common subexpression v�

�f���v� � d���� � �f���v��

�f���v� � d���� � �f���v��

Common subexpression v�

�f���v� � d���

Common subexpression v�

�f���v� � d��� � �f���v�

�f���v� � d���� � �f���v��

�f���v� � d���� � �f���v��

Figure ����� Forward mode subgraph reduction of computational graph shown in
Figure ����



�
� Interpreted Implementation

In the previous section� algorithms are presented describing how code can be gen�

erated for Jacobian evaluation by extracting the accumulation sequence from the

graph� These same algorithms can be applied within an interpretive architecture as

well� However� a slightly di
erent implementation of the reverse mode of the sub�

graph reduction approach has be found more attractive in an interpretive architecture�

particularly when applied to the hybrid discrete	continuous simulation problem�

First� suppose there is a symbolic form of the computational graph of a system of

equations of interest available� Procedure ReverseMode shown in Figure ���� can
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First column of Jacobian matrix�

�f���x� � d��� � �f���v�

�f���x� � �f���x� � d��� � �f���v�

�f���x� � d��� � �f���v�

�f���x� � d��� � �f���v�

v	� � d���

v	�� � d���� � v
	
�

�f���x� � �f���x� � v	��
v	�� � d����

v	�� � d����� � v
	
��

�f���x� � �f���x� � v	��

Second column of Jacobian matrix�

v	� � d���

�f���x� � d��� � �f���v�

�f���x� � d��� � �f���v�

�f���x� � d��� � �f���v�

v	� � d��� � v
	
�

�f���x� � �f���x� � v	�
�f���x� � �f���x� � d��� � �f���v�

�f���x� � �f���x� � d��� � �f���v�

�f���x� � d���� � �f���v��

Figure ���
� Forward mode subgraph reduction approach applied to the CG shown
in Figure ��� after subgraph reduction �continued in next �gure
�

be used to compute the Jacobian of the system of equations row�by�row by calling

this procedure from each of the dependent variable vertices� If ReverseMode is

called with v initialized to the root vertex of the graph representing f � Rn �
 R�

�v initialized to the scalar �� and rf initialized to the constant vector g� then the

following quantity is computed�

g � � � rf�

���



Third column of Jacobian matrix�

�f���x� � d��� � �f���v�

�f���x� � d��� � �f���v�

v	�� � d����

�f���x� � d���� � �f���v��

v	�� � d����� � v
	
��

�f���x� � �f���x� � v	�� � �f���v��

Figure ����� Forward mode subgraph reduction approach applied to the CG shown
in Figure ��� after subgraph reduction �continued
�

Procedure ReverseMode is simply a recursive implementation of the chain�rule�

�y

�xi
�

X
P�P	xi�f


Y
e�P

�elementary partial derivative attached to e
 � �����


where P�xi� f
 is the set of all paths connecting the root vertex and independent

variable vertex xi in the computational graph and the elementary partial derivative

at edge e� connecting vi and vj� is di�j� The products in this formula are performed

on lines � and � of ReverseMode� Here� the run�time stack is employed to hold

these quantities as they are being computed� The summation part of the chain�rule

formula above is performed on line �� This recursive implementation has been found

to be very e�cient when applied in an interpretive architecture� Furthermore� the

normal scalar sweep version of the reverse mode requires O�jVj
 memory to store the

vertex adjoints� whereas in this implementation� by employing the run�time stack of

the computer� the memory requirements are reduced to O�log��jVj

 �the depth of the

graph
 on average�� The disadvantage of this approach� however� is that the accumu�

lation below subgraphs rooted at common subexpression vertices will be performed

several times� This drawback can be remedied by applying the techniques discussed in

this chapter� First� it is assumed that the vertex data structures have an integer rank

�eld and two integer pointers into a real workspace array �this real workspace is used

�Of course it is possible to create pathological problems which are simply long chains of unary
operations� in which case� the depth of the graph is O�jVj��

���



ReverseMode� v� �v� rf 

� if v � independent variable xj then
� � Accumulate elementary partial derivative product
� � in appropriate position of gradient vector�
� rf �j��rf �j� � �v
� elseif v � binary operator then
� � Compute adjoint quanities for left and right child vertices�
� �vleft � �v � �v��left �v�
� �vright � �v � �v��right �v�
� � Pass adjoints down to child vertices�
�� ReverseMode�left�v���vleft�rf

�� ReverseMode�right�v���vright�rf

�� elseif v � unary operator or intrinsic function then

��
���

�� � Code similar to above�

��
���

�� end

Figure ����� Recursive version of scalar sweep reverse mode of automatic di
eren�
tiation�

to hold the sparse gradients of the dependent variables and common subexpressions
�

As in the compiled implementation of the reverse mode� the Jacobian evaluation is

broken down into two steps� a preprocessing phase and an accumulation phase� The

preprocessing phase� described below� simply identi�es and ranks common subexpres�

sions and allocates the workspace required to hold their sparse gradients� A modi�ed

version of ReverseMode is then used to accumulate the equation gradients�

The preprocessing phase can be summarized in the following steps�

�� Initialize the rank �eld of all vertices in the graph to zero�

�� Call procedure Dfs�Rank �see Figure ����
 from each dependent variable ver�

tex� vk� k � D� to set the vertex rank �elds�

�� Identify all common subexpressions and store in a list sorted by decreasing value

of rank �see below
�
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�� For each common subexpression vertex and each dependent variable vertex�

determine the independent variable index set �the dimensionality of the index

sets is the amount of memory that must be allocated in the real workspace
�

and

�� Allocate the sparse gradient workspace by setting the workspace pointers of

each common subexpression and dependent variable vertex�

Dfs�Rank�v

� if v � independent variable or constant then
� return #
� end

� rank�v� � rank�v� � � #
� Dfs�Rank�left�v�
 #
� Dfs�Rank�right�v�
 #
� end

Figure ����� Depth��rst search �DFS
 algorithm for setting the rank �eld of the
graph vertices for subsequent common subexpression identi�cation and ranking�

The children of a vertex are encountered at least as many times as their parents

in procedure Dfs�Rank� A common subexpression vertex� in this case� is de�ned as

a vertex v such that

rank�v� � rank�u� for at least one u � P�v
�

Furthermore� the value of the rank �eld gives the relative ordering of the common

subexpressions present in the graph� Since a child of a vertex is encountered at least as

many times during Dfs�Rank as its parents� if common subexpression u is contained

in the graph of common subexpression v then rank�u� � rank�v�� which is precisely

the de�nition of ranking for the reverse mode�

The de�nition of common subexpression and algorithm for identifying them is

di
erent for the compiled version of the reverse mode than the interpretive version
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described here� This di
erence� which results in more common subexpressions for the

interpretive version� is due to the way the vertices are encountered during the DFS�

based ReverseMode �and the modi�ed version of this routine for the subgraph

reduction approach� ModifiedReverseMode� described below
� This discrepancy

between the de�nitions of common subexpressions for the compiled and interpretive

versions is discussed later in this section�

Let CS denote the sorted list of common subexpression vertices� The next step

is to determine the independent variable index sets of the common subexpressions in

CS and the dependent variable vertices� vk� k � D� This occurrence information is

used to determine how much space must be allocated in the real workspace array used

to hold sparse gradients and required when performing the sparse vector operations

performed in the subsequent accumulation step� The complexity of constructing these

index sets is O��n� jVj
 for the same reasoning described in the forward mode compiled

implementation� As before� the complexity will be O��n jVj
 if only unary and binary

operators are present in the graph� The independent variable index sets should be

constructed in the following order� common subexpressions in the order of decreas�

ing rank and then dependent variable vertices �this ensures the same part of the

graph will only be encountered once during the construction of the index sets
� Upon

completion of the preprocessing step� we have a sorted list of common subexpres�

sion vertices� workspace allocated for the storage of the common subexpression and

dependent variable vertex gradients� and the independent variable index sets �occur�

rence information
 required to perform the sparse vector operations� The workspace

used to compute the dependent variable gradients should be the actual array used

to hold the Jacobian matrix �thereby eliminating the need for copying the computed

Jacobian and also reducing the amount of space required for its computation
� Fur�

thermore� typical sparse LU decomposition routines �e�g�� MA�� ����
 require more

real workspace than the amount needed to hold the sparse Jacobian matrix� This ad�

ditional workspace can be used to store the common subexpression gradients during

the Jacobian evaluation and thus� very little additional memory is required for this

approach� The modi�ed version of ReverseMode is shown in Figure ����� This
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is identical to the previous version except for the fact that it is assumed that the

common subexpression gradients have been precomputed �i�e�� their subgraphs have

been reduced
 and can be incorporated into the equation gradient via the chain�rule

�line � of ModifiedReverseMode
�

ModifiedReverseMode� v� �v� rf

� if v � common subexpression vertex then
� � Incorporate gradient of common subexpression vertex� rv�
� � into rf by means of the chain rule�
� rf �rf � �v � rv
� elseif v � independent variable xj then
� � Accumulate elementary partial derivative product
� � in appropriate position of gradient vector�
� rf �j��rf �j� � �v
� elseif v � binary operator then
�� � Compute adjoint quantities for left and right child vertices�
�� �vleft � �v � �v��left �v�
�� �vright � �v � �v��right �v�
�� � Pass adjoints down to child vertices�
�� ModifiedReverseMode�left�v���vleft�rf

�� ModifiedReverseMode�right�v���vright�rf

�� elseif v � unary operator or intrinsic function then

��
���

�� � Code similar to above�

��
���

�� end

Figure ����� Recursive version of scalar sweep reverse mode of automatic di
eren�
tiation with common subexpression vertex elimination�

The Jacobian accumulation step can be summarized as follows�

�� Compute common subexpression gradients in the order of decreasing value of

rank by calling ModifiedReverseMode from each vertex in CS and

�� Compute the dependent variable gradients �the Jacobian rows
 by callingMod�

ifiedReverseMode from each dependent variable vertex� vk� k � D�
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Performing the gradient computations in the order described above ensures that each

time a common subexpression is encountered in ModifiedReverseMode� its gra�

dient will have been precomputed�

As stated above� the de�nition of common subexpression is di
erent for the com�

piled and interpretive versions of the reverse mode of the subgraph reduction ap�

proach� This is due to the fact that by using the DFS�based ModifiedReverse�

Mode and by storing the vertex adjoints in the run�time stack� the accumulation

along the edges between a dependent variable vertex and a common subexpression

vertex contained in its graph is independent for each path connecting these two ver�

tices �the same holds for common subexpression vertices and higher ranking common

subexpression vertices contained in the same subgraph
� To illustrate this� consider

the fragment of a computational graph shown in Figure ����� Suppose that vertices

��
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Figure ����� Fragment of a computational graph� Vertices v�� and v�� correspond
to dependent variables�

v�� and v�� correspond to dependent variables and that a complicated graph lies below

v��� For both the compiled and interpretive versions of the reverse mode� v�� will be
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considered a common subexpression� Now suppose we are computing the gradient of

common subexpression v�� �i�e�� reducing this portion of the graph
� The following

operations would be carried out in the compiled implementation�

�v�� � �

�v�� � d����� � �v��

�v�� � d����� � �v��

�v�� � d����� � �v�� � d����� � �v��
���

Vertex v�� is encountered once and the accumulation below this vertex is carried out

in the usual manner� Now consider the evaluation of the gradient of vertex v�� using

ModifiedReverseMode� The accumulation �products of the elementary partial

derivatives
 would be carried out along the left path to v�� from v�� and below then

the accumulation would be carried out along the right path to v�� from v�� and below

a second time� Clearly� this is just the redundancy we are trying to avoid� In the

interpretive version of the reverse mode of the subgraph reduction approach� vertex

v�� will also be considered a common subexpression and its gradient will have been

precomputed� The disadvantage� however� is that the chain�rule operation will be

performed twice at this vertex when evaluating the gradient of common subexpression

v��� This can be avoided through the use of lists �in which case� the operations for both

the compiled and interpretive implementations of this approach will be the same
�

however� the additional advantages described below often warrants these occasional

redundant operations�

The advantages of this interpretive version of the reverse mode are as follows�

First� the special handling of the common subexpressions allows the e�cient recursive

implementation of the reverse mode to be applied without fear of the accumulation

being performed below the common subexpressions multiple times� Second� there is

substantial memory savings by storing sparse vectors only at the common subexpres�
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sion vertices� and the memory required to store the vertex adjoints is O�log��jVj

�

Furthermore� if memory is limited� only a portion of the common subexpressions can

be handled� resulting in less optimal� yet still improved� performance� Simple graph

analysis can be used to determine which common subexpression should be discarded�

In addition� linear equations can be handled very e�ciently and in a consistent man�

ner in this approach� Linear equations and linear subgraphs of nonlinear equations

can be identi�ed during the common subexpression search at little additional cost�

The linear subgraphs are determined in a recursive manner �through a call to a mod�

i�ed Dfs�Rank
# a subgraph rooted at v is linear if v is an addition operator and

both of its children are linear� or v is a multiplication operator and one of its children

is a constant and the other is linear �or constant
� or v is a function and its argument

is a constant� etc� Sparse gradients can be allocated for these linear equations that

can be computed once a priori and used for every subsequent Jacobian evaluation�

This has been found to yield signi�cant performance improvements for typical process

models containing several linear equations as shown in chapter �� Lastly� but particu�

larly important for Jacobian evaluations required during a hybrid discrete	continuous

simulation� is the preprocessing step is very e�cient �taking a fraction of a second

for problems containing several tens of thousands of equations
� In a hybrid dis�

crete	continuous simulation� the functional form of the process model may change

many times over the course of a calculation� E�cient preprocessing can have a sub�

stantial impact on the overall calculation times in this situation� The disadvantage

of this approach �as opposed to the compiled implementation above
� however� is

that the chain�rule operation will be performed as many times as the common subex�

pression is encountered �as described above
� This leads to some ine�ciency if the

common subexpression is encountered multiple times during a single gradient calcu�

lation �the operations are not redundant if the common subexpression is encountered

multiple times during di
erent gradient evaluations
� However� in most cases� this

ine�ciency is more than compensated for by the other advantages of this approach�

�In fact� very little �if any� additional memory is required if the workspace used in the LU
factorization routines is employed to hold these sparse vectors�
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	�� Analysis of the Subgraph Reduction Approach

In this section� the memory requirements and operation count of the new approaches

are analyzed� Let cost��
 and space��
 denote the number of operations required and

the amount of memory required� respectively� when computing some quantity� These

are di
erent than the asymptotical bounds shown elsewhere in this thesis �denoted

by O��

 in the they represent the exact cost �arithmetic operations� indirect ad�

dressing� memory accesses� etc�
 and space� The temporal and spatial complexity

analysis described below does not take into account the space required to store the

computational graph or the cost associated with evaluating the elementary partial

derivatives�



�
� Reverse Mode

In the case of the sparse vector implementation of the reverse mode� the following

bounds hold �����

space�rf�x

 
 �m � space�f�x

 �����


cost�rf�x

 
 � �m � cost�f�x

� �����


where space�f�x

 is O�jVj
� As stated in chapter �� both of these bounds are some�

what pessimistic� especially in the case of systems of equations with large� sparse

Jacobian matrices�

In the case of the reverse mode implementation of the subgraph reduction ap�

proach� the amount of space required to evaluate the Jacobian matrix is

space�rf�x

 
 space�f�x

 �
NcsX
j��

�nj�s �����


where Ncs is the number of common subexpressions in the graph� �s is the space

required to hold a single partial derivative� and �nj is the number of independent
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variables contained in common subexpression j� the cardinality of the independent

variable index set� Oi �vj
� The summation term accounts for the sparse gradients

stored at the common subexpression vertices� If dense vectors are used then �nj

is replaced by n and if compressed vectors are used then �nj is replaced by �n� the

number of structurally orthogonal columns in the Jacobian matrix� In the case of

the interpretive version� the term space�f�x

 �the space required to hold the vertex

adjoints
 is replaced by a term proportional to the height of the computational graph�

In order to derive the operation count bound� consider the three equations represented

by the equation graph shown in Figure ��� �after subgraph reduction
� Equation f�

is rooted at vertex ��� equation f� is rooted at vertex ��� and equation f� is rooted at

vertex ��� Suppose these equations are evaluated such that common subexpressions

are not recomputed� When f� is evaluated� values of the subexpressions rooted at

vertices � and �� are stored� When f� is evaluated� the previously computed value

stored at vertex �� is used� Similarly� the value stored at vertex � is used when

evaluating f�� Figure ���� shows which vertices are encountered during each equation

evaluation�

�� �� �9
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�� ��
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Figure ����� Vertices encountered during residual and Jacobian evaluation�

Using the new approach� the cost of evaluating the gradient of f�� rf�� is bounded
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above by � times the cost of evaluating f� �this includes setting up the new edge

values during the subgraph simpli�cation
 plus the cost of the chain�rule operation

at common subexpression vertex �� �when a common subexpression is encountered�

the precomputed gradient is incorporated into the Jacobian row via the chain�rule

( see line �� of the algorithm for reverse accumulation in the subgraph reduction

approach� Figure ���
� Denote the cost of the chain�rule operation at vertex �� by

Ccr
��� This cost depends on the particular variation of the reverse mode of the subgraph

reduction approach applied �e�g�� sparse� compressed� or dense vector representation

of the gradients
 and the computer environment in which the computations are being

performed �e�g�� a serial or a vector computer
� The cost of evaluating rf� is bounded

above by � times the cost of evaluating f� �exploiting common subexpressions in the

evaluation
 plus the cost of the chain�rule operation at vertex ��� Finally� the cost of

evaluating rf� is bounded above by � times the cost of evaluating f� plus the cost of

the chain�rule operation at vertex �� Ccr
� � The cost of evaluating the entire Jacobian

is

cost�rf�x

 � cost�rf�
 � cost�rf�
 � cost�rf�
 �����



 � � cost�f�
 � Ccr
�� � � � cost�f�
 � Ccr

�� � � � cost�f�
 � Ccr
�


 � � cost�f
 �
NcsX
j��

�mjC
cr
j

where �mj is the number of equations that contain common subexpression j� that is�

the cardiality of the dependent variable index set� Od �vj
� If sparse vector operations

are performed at the common subexpression vertices� the cost of the chain�ruling

at a common subexpression vertex is equal to the number of independent variables

contained in the common subexpression multiplied by the cost of the operation a �
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a� b � c �denote this cost by �c
�� Thus� the cost of a Jacobian evaluation is

cost�rf�x

 
 � � cost�f�x

 �
NcsX
j��

�mj�nj�c� �����


If the Jacobian evaluation is performed on a vector computer� it may be advanta�

geous to represent the common subexpression gradients as compressed �n dimensional

vectors� in which case� an O��
 SAXPY call can be employed�



�
� Forward Mode

In the case of the sparse vector implementation of the forward mode� the following

bounds hold �����

space�rf�x

 
 �n � space�f�x

 �����


cost�rf�x

 
 ��n � cost�f�x

� �����


Like the sparse reverse mode� these bounds are somewhat pessimistic�

In the case of the forward mode implementation of the new approach� the amount

of space required to evaluate the Jacobian matrix is�

space�rf�x

 
 space�f�x

 �
NcsX
j��

� �mj � �
�s �����


where Ncs is the number of common subexpressions �as de�ned for the reverse mode


in the graph and �mj is the number of dependent variables reachable from common

subexpression j �i�e�� the cardinality of the dependent variable vertex set� Od �vj

�

The �rst term above� space�f�x

� accounts for the intermediate variable stored at

the graph vertices �the w	 in Figure ����

 and the second term accounts for the

�This cost should also include the cost of the indirect addressing of the sparse vectors and all
memory accesses required�
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additional memory required to hold the common subexpression adjoints� The cost of

a Jacobian evaluation is given by�

cost�rf�x

 
 � � cost�f�x

 �

N�

csX
j��

�mj�nj�c �����


where N�
cs is the number of common subexpression vertices de�ned for the forward

mode�

In the remainder of this section� the operation count and the spatial complexity of

the sparse vector reverse mode and the reverse mode version of the new approach will

be compared� Similar arguments hold for the comparison between the sparse forward

mode and the forward mode of the new approach� Suppose an equation graph contains

a common subexpression vertex v shared by �mv equations� In addition� suppose there

are no other common subexpression vertices in the subgraph rooted at v and v is not

contained in the subgraph of another common subexpression vertex �v will be referred

to as an isolated common subexpression
� Let G�v
 denote the subgraph rooted at

v� The amount of memory used in G�v
 for the sparse vector implementation is

Nv �mv�s� where Nv is the total number of vertices in G�v
 and �s is de�ned above�

The amount of memory used in the new approach is �Nv � � � �nv
�s� where �nv is the

number of independent variables contained in G�v
� The quantity Nv � � accounts

for the storage of adjoints �this memory can be recovered once the subgraph has

been reduced
 and �nv accounts for the sparse gradient stored at v� Since there are at

least �nv vertices in G�v
 �the independent variables
� Nv � �nv� In addition� �mv � �

since v is a common subexpression� Thus� Nv �mv�s � �Nv � � � �nv
�s� Now suppose

an additional common subexpression vertex� u� is added to G�v
� The amount of

memory required by the sparse vector reverse mode increases by Nu� �mu�s where Nu is

the number of vertices in G�u
 and � �mu � jOd �u
�Od �v
j is number of additional

equations u is common to� The additional memory required by the new approach

is ��nu � �
�s �or zero if Od �u
 � Od �v

� Again� Nu � �nv and� thus� for � �mu � ��

less additional memory is required for the new approach� However� since � �mu may
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equal zero� it is possible to construct simple computational graphs that require less

memory for Jacobian evaluation with the sparse vector reverse mode than with the

new approach� However� as the common subexpressions become larger and more

complex �where memory usage becomes an issue
� the memory savings of the new

approach become dramatic� In order to compare the computational performance of

the sparse vector reverse mode and the new approach� consider a computational graph

with a single isolated common subexpression vertex v which contains �nv independent

variables and is shared by �mv equations� The cost of accumulating the elementary

partial derivatives above v is the same for both approaches since this step is simply

a series of scalar multiplications and additions� The cost below v is bounded above

by � �mv � cost�v
 for the sparse vector reverse mode and bounded above by � � cost�v


for the new approach� There is an additional cost at v for the new approach due to

the chain�rule operation� This cost is �mv�nv�c� where �c is the same as de�ned above�
�

The di
erence between the two approaches is

 C � C� � C�

� � �mvK � cost�v
� � �mv�nv�c� �K � cost�v



where C� is the cost of accumulating the Jacobian using the sparse vector reverse

mode� C� is the cost using the new approach� and � � K 
 � is some constant that

changes the inequality in the bound for the cost below v to an equality� What is

important is that the cost below v for the sparse vector reverse mode is precisely �mv

times greater than the new approach� The cost of the new approach is less when

 C � �

�This is an overestimate since the actual number of additions depends on the occurrence infor�
mation of the equations containing the common subexpression�
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or

cost�v
 �
�mv�nv�c

�K� �mv � �

�

For large complicated subexpressions� cost�v
 will be large and K will be close to

unity� Thus� we can expect the new approach to perform substantially better when

the common subexpressions are large and complex �see Figure ���
� The two ap�

proaches perform similarly for simple common subexpressions since both cost�v
 and

�nv are small� Extending this comparison to the forward mode version of the sub�

graph reduction approach and the sparse vector sweep version of the forward mode is

straightforward� By analogy� the forward mode of the subgraph reduction approach

will perform better if the subgraphs above common subexpression vertices are large

and complicated� This analysis provides a metric for deciding how to reduce various

parts of the computational graph in a hybrid mode for the subgraph reduction ap�

proach# the cost �time and space
 can be determined for both the forward and reverse

mode at each common subexpression vertex to decide how each portion of the graph

should be reduced�

	�� Conclusions

A new class of automatic di
erentiation techniques are developed in this thesis� This

approach can be applied to both the forward and reverse modes� resulting in some�

times dramatically lower operation counts and memory requirements than other ap�

proaches for computational di
erentiation� This approach requires a graph of the

system of equations of interest� which can be readily and e�ciently generated from

most representations of the system of equations� The algorithms required to generate

the accumulation sequence for the Jacobian evaluation are e�cient both in terms of

temporal and spatial complexity� allowing very large� complex systems of equations

to be considered� Furthermore� a simple and e�cient graph analysis can be used to
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determine which version of our new approach is best suited to a given problem or if a

hybrid algorithm may yield bene�cial results� Of particular importance is the e�cient

interpretive implementation of the reverse mode of the subgraph reduction approach�

As shown in the following chapter� this modi�cation dramatically reduces the meme�

ory requirements and improves the computational e�ciency associated with Jacobian

evaluation when applied within an interpretive architecture equation�oriented simu�

lator�

���



Chapter 


Numerical Examples

��� Comparison of Automatic Di�erentiation and

Symbolic Di�erentiation

The various approaches for residual and Jacobian evaluation described in chapters

�� �� and � were implemented in the software package ABACUSS�� ABACUSS is

an equation�oriented process simulator capable of e�cient symbolic manipulation

of large�scale systems of nonlinear equations� A particularly important feature of

ABACUSS is the ability to simulate combined discrete	continuous processes� When

simulating such processes� it is convenient to use an interpretive architecture which

allows for rapid switching between di
erent functional forms of the process model

that occur at discontinuities in the problem� If compiled code were used for residual

and Jacobian evaluations� a new residual and Jacobian subroutine would have to be

generated each time the system of equations changed at a discontinuity� Alterna�

tively� subroutines for all possible systems of equations could be generated a priori

�ABACUSS �Advanced Batch And Continuous Unsteady�State Simulator� process modeling soft�
ware� a derivative work of gPROMS software� c��

� by Imperial College of Science� Technology�
and Medicine�
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resulting in much faster simulation execution� The disadvantage of this approach is

the number of possible systems of equations grows exponentially with the number of

discontinuities in the problem� making this approach infeasible for all but the most

trivial examples� Thus� these various residual	Jacobian evaluation approaches are

performed in an interpretive manner� It is important to emphasize� however� that the

complexity bounds described in chapters � and � consider only the number of arith�

metic operations and memory accesses required to compute the system of equations

and partial derivatives� They do not� however� take into account the various overheads

associated with carrying out the calculations in an interpretive environment�

Comparisons of �ve approaches for residual and Jacobian evaluation are shown

below� In approach �� the Jacobian is computed by symbolic di
erentiation and the

residual and partial derivative expressions are evaluated without taking advantage

of common subexpressions� Approach � also evaluates the symbolic expressions for

the residuals and partial derivatives� however� common subexpressions are exploited

in the evaluation� Approach � computes the residuals the same way as approach ��

however� the Jacobian matrix is evaluated using the recursive reverse mode of au�

tomatic di
erentiation shown in Figure ����� The Jacobian is constructed row by

row from each dependent variable node� Approach � uses the recursive implemen�

tation of the subgraph reduction approach of automatic di
erentiation �see Figure

����
 with special handling of linear equations� Finally� approach � uses the sparse

vector implementation of the reverse mode� All numerical calculations shown below

were performed on a Hewlett�Packard ����	��� workstation� Table ��� contains a

summary of the various approaches used�

The various approaches described above are used to evaluate the residuals and

Jacobian matrix of thirteen example problems� Table ��� contains the dimensions of

these systems of equations and the memory required to store the symbolic system of

equations and Jacobian� The second through sixth columns of this table contain the

dimensions of the systems of equations� n is the number of variables� m is the total

number of equations� mlinear is the number of equations that are linear� nz is the

number of entries in the Jacobian matrix that are not identically zero� and ncs is the
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Table �
�� Description of computational di
erentiation methods tested�

Residual Jacobian
Approach Evaluation Method Evaluation Method

Interpreted graph� Symbolic expressions�
� no exploitation of no exploitation of

common subexpressions� common subexpressions�
Interpreted graph� Symbolic expressions�

� with exploitation of with exploitation of
common subexpressions� common subexpressions�
Interpreted graph� Basic recursive scalar

� with exploitation of sweep reverse mode�
common subexpressions�
Interpreted graph� Recursive reverse mode of

� with exploitation of subgraph reduction approach
common subexpressions� with handling of linear equations�
Interpreted graph�

� with exploitation of Sparse vector sweep reverse mode�
common subexpressions�

number of common subexpressions present in the system of equations� The remaining

two columns contain the number of vertices in the graph representing the system of

equations and the partial derivative information� The �rst two approaches are based

on symbolically generated derivatives and� thus� require the same number of vertices

to represent the system of equations and Jacobian� Similarly� the remaining three

approaches are all based on the computational graph representation of a system of

equations and require the same number of vertices�

Table ��� shows the performance of the various approaches� Columns � through

� contain the time� in microseconds� for a residual and Jacobian evaluation� Table

��� contains the ratio of the time for a Jacobian evaluation to the time for a residual

evaluation�

The �rst four systems of equations in the Tables ��� and ��� are contrived highly

nonlinear equations illustrating the performance capable with the reverse mode of au�

tomatic di
erentiation applied in a symbolic environment� The equations are shown

in Appendix F� The �rst problem consists of a single highly nonlinear equation with�

out any common subexpressions� In this problem� there are no linear equations or
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Table �
�� Dimensions of the systems of equations examined and memory allocated
for each of the various graphs�

System dimensions Total number of vertices
Symbolic Computational

System n m mlinear nz ncs expressions graph

Pathological � � � � � � �� ��
Pathological � �� �� � ��� � ���� ���
Pathological � ��� ��� � ������ � ������ �����
Pathological � ��� ��� � ��� � ������ �����
UNIQUAC ��� ��� �� ����� � ����� �����
NRTL ��� ��� ��� ����� � ������ �����

Bubble Point ��� ��� �� ����� � ������ �����
Flash Vessel ��� ��� �� ����� �� ������ �����
Helmholtz �� � � �� � ��� ���
Valve �� �� �� ��� � ��� ���
Weir � � � �� � �� ��
PSA ����� ����� ��� ������ �� ������� ������

Batch Column ����� ����� ����� ������ ��� ������� ������

common subexpressions which is why approach � takes same amount of time as ap�

proach �� The performance of the subgraph reduction reverse mode �approach �


is particularly dramatic in problems � and � which contain several highly nonlinear

equations with complicated common subexpressions� The overhead of operating in

an interpretive environment is particularly evidenced by the poor performance of the

sparse vector reverse mode �approach �
 for this problem� The remaining nine systems

of equations are common chemical engineering examples� UNIQUAC and NRTL are

activity coe�cient models which compute activity coe�cients for a ten component

system� Bubble Point computes the bubble point temperature of a ten component

system using the UNIQUAC model for the liquid phase activity coe�cients� Flash

Vessel models the operation of a �ash vessel for a ten component system� Liquid

phase nonideality is modelled with the UNIQUAC model� Helmholtz computes the

Helmholtz free energy of a �ve component system� Valve is a set of equations describ�

ing the �ow through a bu
er tank that has a linear inlet valve and an equal�percentage

outlet valve� Weir models the �lling of a tank with a weir� PSA is a partial di
eren�

tial equation model of a pressure swing adsorption system containing two columns�
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Table �
�� Timing for residual and Jacobian evaluation�

Timings in microseconds
System � � � � �

Pathological � ��� ��� �� �� ���
Pathological � ������ ����� ����� ����� �����
Pathological � ������� ������� ������ ������ �������
Pathological � ������ ������ ������ ������ ������
UNIQUAC ������ ������ ������ ������ ������
NRTL ������ ������ ������ ������ ������

Bubble Point ������ ������ ������ ������ ������
Flash Vessel ������ ������ ������ ������ ������
Helmholtz ��� ��� ��� ��� ���
Valve ��� ��� ��� ��� ���
Weir �� �� �� �� ��
PSA ������� ������� ������� ������� �������

Batch Column ������� ������� ������� ������� �������

Backward �nite di
erences are used for the spatial discretization� Finally� Batch Col�

umn is an index � DAE �di
erential�algebraic equation
 formulation of a �ve tray

batch distillation column separating �ve components� Liquid phase activity coe��

cients are computed using the UNIQUAC model� Before the residuals and Jacobian

matrix were evaluated� the index was reduced to � by di
erentiating a subset of the

algebraic equations� This index reduction results in new equations that share com�

mon subexpressions with the equations in the original index � formulation� In this

problem� the common subexpressions are� however� relatively simple and exploiting

them does not signi�cantly reduce the cost of the Jacobian evaluation as shown by

the di
erence between the timings for approaches � and �� In all cases� the subgraph

reduction reverse mode of automatic di
erentiation with special handling of linear

equations and common subexpressions performs signi�cantly better than the other

evaluation methods� Since typical chemical engineering problems contain a signi�cant

number of linear equations �mass and energy balances� summation of mole fractions�

etc�
� it is important to handle these equations properly� This is particularly evident

in the Valve and Weir example problems� In these cases� approaches � and � do

not perform as well as approach �� The linear equation and common subexpression
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Table �
�� Ratio of time for Jacobian evaluation to time for a residual evaluation�

costfrfg	costffg
System � � � � �

Pathological � ���� ���� ���� ���� ����
Pathological � ����� ����� ����� ���� �����
Pathological � ���� ���� ���� ���� ����
Pathological � ���� ���� ���� ���� ����
UNIQUAC ���� ���� ���� ���� ����
NRTL ���� ���� ���� ���� ����

Bubble Point ���� ���� ���� ���� ����
Flash Vessel ���� ���� ���� ���� ����
Helmholtz ���� ���� ���� ���� ����
Valve ���� ���� ���� ���� ����
Weir ���� ���� ���� ���� ����
PSA ���� ���� ���� ���� ����

Batch Column ���� ���� ���� ���� ����

analysis is very inexpensive and can be performed easily in a symbolic environment�

Finally� note that the ratio of the time for a Jacobian evaluation to the time for a

residual evaluation� shown in Table ���� are for most cases well below the upper bound

given for the approaches tested� This is typical for sparse problems� The ratios for

approaches � and � are the similar to those expected from compiled code� The other

ratios in this table are higher than that possible in compiled code due to overhead of

working in an interpretive environment�

The comparisons shown above illustrate the superior performance of automatic

di
erentiation compared to the other evaluation methods performed on symbolic ex�

pressions� The typical chemical engineer� however� is often more concerned about

calculations other than simple residual and Jacobian evaluations� The next example

compares the approaches above when they are applied to evaluate residuals and Ja�

cobians during the solution of a DAE and its parametric sensitivity equations� Maly

and Petzold ���� have developed a new exact algorithm for dynamic sensitivity cal�

culations that avoids the need to factor the Jacobian matrix de�ning the sensitivity

equations at each integration step� This advance o
ers signi�cant speed improve�

ments over existing methods ����� which require a Jacobian factorization at each step
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to calculate accurate sensitivities ���� �the original method of ���� e
ectively solves a

perturbed sensitivity system� the solution of which can not be guaranteed to lie within

some distance of the true sensitivity system
� Even though the method of Maly and

Petzold does not require a Jacobian factorization at each step� analytic evaluation

of the sensitivity equations �i�e�� their residuals
 will require one or more Jacobian

evaluations per step �although this number is unrelated to the number of parameters

for which sensitivities are required
� Hence� while this new method is more e�cient�

we have observed that for realistically sized problems ����������� equations
� the re�

peated Jacobian evaluations at each step make up a signi�cant fraction of the overall

computational costs� This example thus shows the signi�cant improvements in overall

solution time that the methods introduced in chapters � and � can yield�

The problem examined is the pressurization	blowdown operation of a two column

pressure swing adsorption system �PSA in Table ���
� The calculations are performed

using ABACUSS and DSL��S ���� ���� which is a modi�ed form of DASSL ���� with

the sparse linear algebra solver MA�� ���� embedded� The �rst example shown in

Table ��� determines the sensitivity to the temperature in one column� The second

example determines the sensitivity to the temperatures in each of the columns� Each

of these examples determine the sensitivities during a thirty second operation� The

second through �fth columns of Table ��� contain the number of integration steps�

residual evaluations� Jacobian factorizations� and sensitivity residual evaluations� re�

spectively� required for the calculation� Finally� the remaining four columns contain

the time� in seconds� required for the sensitivity calculation� In this example� only

approaches �� �� �� and � are used to compute the residuals and Jacobian�

Table �
�� Sensitivity calculation results�

Sensitivity calculation statistics Timings in seconds
Number of Resid� Jacobian Sensitivity
parameters Steps Eval� Fact� Resid� Eval� � � � �

� ��� ��� �� ��� ������ ������ ������ ������
� ��� ��� �� ����� ������ ������ ������ ������

As expected� approach � performs signi�cantly better than the other evaluation
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methods� This example shows the importance of evaluating residuals and Jacobians

e�ciently� A Jacobian evaluation is required for each Jacobian factorization and each

sensitivity residual evaluation� When these evaluations are performed by interpreting

symbolic expressions� the cost of this evaluation may be signi�cant compared to the

cost of factorization� which is typically considered to dominate the cost of a numerical

calculation� However� the empirically observed complexity of factorizations is nearly

linear� rather than the much more pessimistic asymptotic analysis�

��� Comparison of Subgraph Reduction and Sparse

Vector Approaches

Several example problems are compared to illustrate the performance of the various

approaches described in this thesis� The �rst problem� PSA� is a model of a pres�

sure swing adsorption system also examined in the previous section� Backward �nite

di
erence spatial discretization of this problem converts the PDE into a set of di
er�

ential	algebraic equations �DAEs
� This problem was tested for several re�nements

of the discretization� UNIQUAC is an activity coe�cient model which computes the

activity coe�cients for a �fty component system� The number of equations is much

greater than �fty due to the large number of intermediate variables required for the

calculation� The last problem� BATCHCOLUMN� is an index�� model of a batch

distillation column� An equivalent index�� model is generated automatically through

a series of di
erentiations� increasing the number of common subexpressions present

in the problem� Tables ��� and ��� contain a summary of the problem dimensions�

memory requirements� and operation counts for four approaches �summarized in Ta�

ble ���� the reverse mode of our new approach �subgraph reduction reverse mode or

SRRM
� the sparse vector reverse mode �SRM
� the forward mode of our new ap�

proach �subgraph reduction forward mode or SRFM
� and the sparse vector forward

mode �SFM
�
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Table �

� Summary of approaches tested�

Approach Description

SRRM Subgraph reduction� reverse mode
SRM Sparse vector sweep reverse mode
SRFM Subgraph reduction� forward mode
SFM Sparse vector sweep forward mode

Table ��� contains the dimensions of the various systems of equations examined

and the amount of memory required to hold the vertex gradients and adjoints� In this

table� n is the number of variables� m is the number of equations� nz is the number

of entries in the Jacobian matrix that are not identically zero� ccs is the number of

common subexpressions �as de�ned for the reverse mode
 in the equation graph� and

the remaining four columns contain the total number of entries required to hold the

vertex gradients and adjoints� Table ��� contains the number of operations required

to accumulate the entire Jacobian using the various approaches� The numbers given

in this table are the number of multiplications and additions shown as an ordered

pair� �multiplies�adds
� These numbers do not include the cost of evaluating the

elementary partial derivatives since this cost is the same for each approach� The total

time for performing the graph analysis steps described in chapter � was less than

���� seconds on an HP ��� workstation� Linear equations were not exploited �by

precomputing their constant gradients a priori
 in any of these examples�

Table �
�� Dimensions of the systems of equations examined and memory allocated
for each of the various graphs�

System dimensions Total number of entries
System n m nz ncs SRRM SRM SRFM SFM

PSA� N���� ����� ����� ������ �� ������ ������ ������ ������
PSA� N���� ����� ����� ������ �� ������ ������ ������ �������
PSA� N���� ������ ������ ������ �� ������� ������� ������� �������
PSA� N���� ������ ������ ������� �� ������� ������� ������� �������
UNIQUAC ����� ����� ������ � ������ ������ ������ �������

BATCHCOLUMN ������ ������ ������ ����� ������ ������ ������ �������

As shown in Tables ��� and ���� our new approaches require less memory and

perform fewer operations than the other approaches� In the case of the PSA prob�

lem� the operations count of the SRFM approach grows closer to that of the SRRM
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Table �
�� Number of operations during Jacobian accumulation �multiplies�adds
�

System SRRM SRM SRFM SFM

PSA� N���� 	����������
 	����������
 	����������
 	����������

PSA� N���� 	�����������
 	������������
 	�����������
 	������������

PSA� N���� 	������������
 	������������
 	������������
 	������������

PSA� N���� 	������������
 	������������
 	������������
 	������������

UNIQUAC 	����������
 	����������
 	����������
 	�����������


BATCHCOLUMN 	����������
 	����������
 	����������
 	����������


approach� This is due to the fact that the common subexpression size does not grow

dramatically with the number of edges pointing to the common subexpression� Since

the cost of the SRFM approach increases with the number of edges pointing to the

common subexpression� the savings become less dramatic� Although the operation

counts for each of the approaches described above are somewhat similar� measuring

only arithmetic operations does not take into account a distinct advantage of the

subgraph reduction approaches� namely� limiting the sparse vector operations to only

the common subexpression vertices� The remainder of this section presents a small

example where the operation counts between the various approaches are dramatically

di
erent�

As described in the previous section� the new version of the reverse mode should

perform better than the others for problems with large common subexpressions� The

next example is the simple system of equations�

xj � �
nX
i��

xi
xj j � �� � � � � n� ����


The subgraph of the common subexpression vertex in this system�
Pn

i�� xi� grows with

the size of the problem� The four approaches are applied to this problem for di
erent

values of n� Figure ��� contains a plot of the number of multiplies required during the

Jacobian accumulation �not counting elementary partial derivative evaluation
 versus

the dimension of the system�

As shown in Figure ���� the reverse mode version of the new approach performs

signi�cantly better than the other approaches as the size of the common subexpression

increases�
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Figure ���� Number of multiplies versus system size for system ����
�
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Part III

A Homotopy Approach for

Nonconvex Nonlinear Optimization
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Chapter �

A Homotopy Approach for

Nonconvex Nonlinear Optimization

The rapid progress being made in the speed and memory of computer resources is

allowing mathematical models describing chemical processes to become increasingly

complex� The advent of such models requires that more sophisticated algorithms be

employed in order to obtain a solution� The poor performance of the locally con�

vergent algorithms used in current process simulators when applied to these complex

problems warrants� in many cases� the use of the more powerful� globally convergent

algorithms� Highly nonlinear mathematical models also pose a particular a problem to

current optimization methods� Experience has shown that state�of�the�art optimiza�

tion algorithms� such as SQP ���� ��� and the MINOS	Augmented package ����� have

di�culty converging highly nonlinear problems� The problem is further complicated

when nonlinear inequality constraints de�ne nonconvex feasible regions� In addition

to convergence problems� multiple local optima are generally a result of highly non�

linear objective functions and constraints� The approach described in this part of the

thesis is motivated by the following facts� ��
 increasingly complex models are being

used to describe chemical process unit operations more accurately� ��
 the improved

disturbance rejection capabilities of modern control strategies is making it possible to

���



operate a chemical process closer to �and possibly within
 complex solution regimes�

and ��
 there is now a widespread use of equation�oriented process simulators in the

chemical process industries� These simulators generally have the symbolic form of the

set of equations describing a �owsheet model explicitly available to manipulate� This

opens the door to new approaches to �owsheet optimization not possible when current

optimization algorithms were being developed� This chapter discusses an alternative

approach to nonlinear optimization� In this approach� the necessary conditions for

local optimality of a nonlinear optimization problem are reformulated as a system of

nonlinear equations and solved using the �globally convergent� homotopy continuation

method� Theoretically� this approach has the following bene�ts� ��
 homotopy con�

tinuation methods can locate solutions where other locally convergent methods fail�

��
 there is a possibility of locating multiple points satisfying the necessary condition

for local optimality� and ��
 the system of equations remains sparse� Unfortunately�

several numerical problems were encountered when this method was applied to the

large problems for which it was intended� This chapter describes the approach men�

tioned above for nonlinear optimization� presents some small example problems� and

concludes with a discussion as to why the method failed for the large�scale systems

of interest�


�� Introduction

Over the past several decades� process modeling technologies have been proven an

invaluable tool in the development and optimization of chemical processes� Originally�

modular simulators dominated this technology� however� equation�oriented simulators

are increasingly being used due to their �exibility in de�ning a model and their

superior ability over modular simulators to solve optimization and dynamic problems

�see chapter �
� A recent trend seen in equation�oriented simulators is the use of

an interpretive architecture ��� ����� Process simulators based on an interpretive

architecture maintains the symbolic form of the process model in computer memory
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where it is available to manipulate throughout the solution sequence� This feature

allows for the exploration of combined symbolic and numeric algorithms� algorithms

which combine numerical aspects with symbolic manipulation for constructing the

problem and	or enhancing numerical calculations�

As chemical companies and process contractors strive to remain competitive� the

�owsheet models employed while designing a process or studying an existing one are

becoming increasingly detailed� accurate� and complex� The more accurately a sim�

ulation re�ects the actual process� less pilot plant information is required and better

cost estimates may be given to the customer� The impact of this is that models

are becoming increasingly di�cult to solve even as computer architecture continues

to improve� In addition� even when a more accurate model is employed� nonlinear

programs are constrained to avoid complex solution regimes� possibly preventing op�

eration at !better" steady�states� At one time� this was acceptable because the PID

controllers used were generally not capable of controlling within these possibly un�

stable regimes� However� as control strategies become more advanced �for example

the model predictive controller
 the improved disturbance rejection may make oper�

ation within such regimes realizable� The complex solution spaces of these models

are characterized by hysteresis� multiple steady�state solutions �stable and unstable
�

and possibly periodic or chaotic behavior� The classic example of multiple steady�

state solutions in process models is the exothermic reaction� Consider the simple

exothermic series reaction�

A �
 B �
 C� ����


carried out in a nonadiabatic CSTR� Farr and Aris ���� identi�ed up to seven steady�

state solutions and twenty�three solution diagrams� In addition to exothermic re�

actions� autocatalytic� enzyme� and aerobic fermentation reactions typically exhibit

multiple solutions and hysteresis under some operating conditions� However� reactors

are not the only unit operation that exhibit this complex behavior� Intricate sepa�

ration schemes are also known to have multiple steady�state solutions� For example�
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interlinked distillation systems have been shown to separate ternary mixtures more

e�ciently than multiple� separate distillation columns ����� ����� By applying homo�

topy continuation� Chavez et al�determined multiple steady�state solutions for three

di
erent interlinked column con�gurations ����� As described in chapter �� heteroge�

neous azeotropic distillation columns also exhibit multiple steady�states� In the work

of Kovach and Seider ���� and Widagdo et al������� multiple solutions were found as a

second liquid phase was added to the trays� In addition� it was necessary to employ

homotopy continuation to converge the model near limit points�

Supercritical extractors are another example of a unit operation exhibiting a com�

plex solution space� The �uid in this process is near its critical point and thus small

variations in operating conditions may cause abrupt phase change� In addition� mul�

tiple solutions may exist when operating within the two phase region� Cygnarowicz

and Seider studied the extraction of acetone from water with supercritical CO� �����

For high solvent	feed ratios at a given pressure �greater than the critical pressure of

CO�
 two solutions were obtained� corresponding to local and global minima of the

utility cost� Nonlinearities arise not only in unit operations� but also in �owsheet

integrated to achieve greater thermodynamic e�ciency �����

Homotopy continuation techniques have been used to determine solutions to sys�

tems of equations where Newton or quasi�Newton methods fail� either due to poor

starting guesses or singularities� Although homotopy continuation methods can be

traced back to ���� in the work of Lahaye� they have only been applied to chemical en�

gineering problems within the last decade� While homotopy continuation techniques

are generally more computationally expensive than the locally convergent Newton or

quasi�Newton methods� they nevertheless have been successfully applied to relatively

large problems� In the calculations involving the interlinked distillation systems de�

scribed above ����� three�hundred and �fty equations were solved ��fty percent of the

equations were nonlinear and contained transcendental terms
� Book ���� used homo�

topy continuation to solve the Williams�Otto plant model� containing �ve units� nine

streams� and six species� The nonlinear partition of this model involved �� equations�

Book also used homotopy continuation to simulate a distillation column model� where
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the nonlinear portion consisted of nine�hundred and seventeen equations� Homotopy

continuation has also been applied to parametric optimization� Vasudevan et al�used

arti�cial parameter homotopy continuation to connect a known KKT point of a non�

linear program with one set of parameters to an unknown KKT point of the same

problem but with a second set of parameters ������ The parameters of interest in the

objective function and constraints are replaced by�

ci � �bi � ��� �
ai i � �� � � � � np

where np is the number of parameters being considered� ai is the value of parameter i

in the known problem� and bi is the value of parameter i in the desired problem� The

KKT necessary conditions are converted to a system of nonlinear equations using the

same procedure as described in section ���� Homotopy continuation is applied to this

system of equations� allowing � to vary from zero �the original problem
 to unity �the

desired problem
�

Equation�oriented process simulation technology has steadily improved over the

last several years� As these simulators grow in popularity� they are being used to

model increasingly complex processes such as those described above� Optimization

problems on �owsheets containing these complex unit operations generally contain

highly nonlinear constraints and may contain multiple local optima� One example is

the minimization of the utility costs for a supercritial extraction process ����� Suc�

cessive quadratic programming �SQP
 was applied to a model of this �owsheet from

several di
erent initial guesses and two minima were found� The multiple optima

were due to the retrograde e
ect of the supercritical �uid� In addition to the oc�

currence of multiple optima� supercritical extractors operate near the critical point

of a substance� Applying Newton�s method near the critical point results in many

convergence failures�

The topic of this part of the thesis is nonlinear optimization� The following section

contains a description of some current optimization techniques� This is followed by an

alternative strategy based on homotopy continuation� This approach will be shown
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to be related to SQP� This part of the thesis will be concluded with some examples

of this approach as well as some pitfalls encountered when applying it to large�scale

systems�


�� General Strategies for Nonlinear Optimization

Consider the general nonlinear programming problem�

�NLP
 minimize f�x
 ����


subject to h�x
 � � ����


g�x
 � � ����


where x � R
n � f � Rn �
 R� h � Rn �
 R

m �m � n
� and g � Rn �
 R
p � Here

f is the objective function and h and g are the equality and inequality constraints�

respectively� For a typical process �owsheet optimization problem� h includes the

MESH �Material balance� Equilibrium� Summation of mole	mass fractions� and Heat

balance
 equations� design constraints� and any other equations required to model the

�owsheet� and g represents the allowable limits for the operation of the process� A

typical �owsheet optimization problem is large and sparse� Unlike the sparse banded

matrices obtained from the discretization of a di
erential operator� the sparsity pat�

tern of a �owsheet model does not show any structure� The objective function is

usually economic and the constraints are generally highly nonlinear� In addition� the

constraints generally contain several non�smooth functions� Two types of non�smooth

functions occur in �owsheet models� those with non�smoothness due to actual physical

phenomena and those in which the non�smoothness is due to modeling abstractions�

Some examples of the former type are� the heat of vaporization of a compound at the

critical temperature and phase and �ow transitions� An example of the second type

is physical property models� In general� physical property models contain a certain

amount of empiricism and are only valid within a certain range of state variables#
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thus� the functions are usually piecewise continuous� The inequality constraints keep

the process within an acceptable operating range� For example� pressures must be

bounded away from the design pressure of vessels� compositions must be bound away

from �ammable or explosive regions� and product composition must satisfy purity

speci�cations�

Subject to a suitable constraint quali�cation� the �rst�order necessary condition

for a candidate point to be a local optimum of NLP are the Karush�Kuhn�Tucker

�KKT
 conditions� For the nonlinear programming problem above� the KKT condi�

tions are�

rf�x�
�rh�x�
T�� �rg�x�
Tu� � � ����


h�x�
 � � ����


�u�
Tg�x�
 � � ����


g�x�
 � � ����


u� � � ����


where u and � are the KKT multipliers� Conditions ����
 through ����
 are the

complementarity conditions�

The �rst optimization strategy considered is the feasible�path approach� Currently�

a popular feasible�path algorithm is the generalized reduced gradient method ���� The

generalized reduced gradient method belongs to a class of nonlinear optimization

techniques known as Newton�type approaches� In these approaches� gradient infor�

mation is used to generate a sequence of descent directions such that the objective

function is lowered at each iteration� The algorithm is terminated �hopefully at a

minimum
 when the search direction vector has a su�ciently small magnitude� In

the feasible�path strategy� the equality and inequality constraints are satis�ed at each

iteration� Thus� in the case of �owsheet optimization� the entire �owsheet model

must be converged at every iteration� The ine�ciency of this requirement has led

to the next strategy considered� the infeasible�path approach� The previous approach
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required the equality and inequality constraints to be satis�ed at each iteration of

the optimization algorithm� In the infeasible�path approach� the equality constraints

are converged simultaneously with the optimization problem� It is still important to

satisfy the inequality constraints at each iteration since they may be formulated so

that the problem avoids singularities that may be present� Two popular infeasible�

path strategies are the SQP �Successive Quadratic Programming
 ���� ��� and MI�

NOS	Augmented package ����� These methods are discussed below�

�
�
� Successive Quadratic Programming

SQP has been successfully applied to many optimization problems� In this approach�

a series of quadratic optimization subproblems are solved to obtain search �or descent


directions� Consider the nonlinear programming problem above� The QP �Quadratic

Program
 subproblems are of the form�

�QP
 minimized f�xk
 � rf�xk
Td�
�

�
dTrxxL�x

k� uk� �k
d �����


subject to h�xk
 � rh�xk
d � � �����


g�xk
 � rg�xk
d � � �����


where rxxL�x
k� uk� �k
 is the Hessian of the Lagrangian� The Lagrangian is given by�

L�x� u� �
 � f�x
� �Th�x
� uTg�x
� �����


Using the Hessian of the Lagrangian in the objective function gives some additional

information about the curvature of the constraints that the normal second�order Tay�

lor series expansion of f�x
 does not provide� In most implementations of SQP� a

positive de�nite approximation of the Hessian of the Lagrangian is employed� This

approximation� updated during the iterative process using� for example� the BFGS

�Broyden� Fletcher� Goldfarb� and Shanno
 update formula� approaches the actual
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Hessian of the Lagrangian as the algorithm converges to a solution� Using this ap�

proximation has the following advantages� ��
 the positive de�nite matrix ensures the

QP subproblem is well�posed and ��
 the approximation formula does not required

second�order partial derivatives� In the case of a modular simulator� these partial

derivatives would� in general� be evaluated using �nite di
erences� This requirement

would be prohibitively expensive�

The search direction obtained by solving this QP subproblem is the same as the

direction obtained by applying Newton�s method to the KKT necessary conditions

�considering only the active inequality constraints and their multipliers
� Similar

to Newton�s method for solving systems of nonlinear equations� this method will not

converge unless the algorithm is initialized su�ciently close to the solution� To achieve

global convergence� a merit function or trust region strategy may be employed� One

example of a merit function is the l��penalty function�

��x#

 � f�x
 � 


�
pX
i��

maxf�� gi�x
g�
mX
i��

jhi�x
j

�

where the parameter 
 is set to a value greater than the largest �absolute value


KKT multiplier� At each iteration� a stepsize� �� is chosen such that ��x � �d#



is minimized� The SQP algorithm has been shown to require relatively few function

evaluations compared to other techniques� making it ideal for modular simulators�

where function evaluations are expensive� Let x� denote a solution of the original

nonlinear program� If x� is a regular KKT point� �x�� u�� ��
 satis�es the second�

order su�ciency conditions �the projection of the Hessian of the Lagrangian onto the

null�space of the active constraints is positive de�nite
� and the algorithm is initialized

su�ciently close to the solution� superlinear convergence is obtained �����

One problem associated with the SQP method is that the QP subproblem may not

have a feasible region� and hence no solution� if the linearized constraints are incon�

sistent at any particular iteration� For example� linearizing the constraint x���x
�
� � �

at the origin results in the inconsistent requirement �� � �� In addition� nonconvex
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constraints not satis�ed at the current iterate may also cause this to happen� This

problem can be avoided by relaxing the constraints� thereby creating an arti�cial fea�

sible region� allowing the algorithm to continue ���� ���� ���� The QP subproblem is

reformulated as�

�QP
 minimized f�xk
 �rf�xk
Td�
�

�
dTrxxL�x

k� uk� �k
d�

M�� � ����
 �����


subject to h�xk
��� �
 �rh�xk
d � � �����


g�xk
��� �
 �rg�xk
d � � �����


� � � �����


where M is a large positive number� If � � �� the original QP subproblem is feasible�

For � � � 
 �� the search direction will cause the constraints to be violated and

it will be necessary to perform some correction for the violated constraints after

the step is taken in the SQP iteration� Finally� if � � � and d � �� it will be

necessary to reinitialize the SQP algorithm� This relaxation technique has no rigorous

mathematical justi�cation and is subject to failure for some problems� As the size of

the nonlinear program increases� the QP subproblem becomes computationally very

expensive� Three approaches for improving the e�ciency of the QP are given below�

In situations where obtaining an exact Hessian of the Lagrangian matrix is ex�

pensive� the approximation described above is generally employed� However� there

are two major problems associated with the BFGS update� Bk� ��
 it may become

ill�conditioned and ��
 it is dense �even though rxxL may be sparse
� The �rst

problem is corrected by scaling the variables when necessary� Biegler and Cuthrell

�����
 determined when scaling was necessary by monitoring the condition number

of Bk� The second problem� which limits the size of problems to less than about ����

variables� may be mitigated by using decomposition techniques ���� ����� The decom�

position approach is based on the observation that in many �owsheet optimization

problems� the number of degrees of freedom �n�m
 is relatively small compared to

���



n� Decomposition strategies exploit this situation by solving a smaller quadratic pro�

gram in the null�space of the linearized active constraints� A generic reduced�space

SQP algorithm has essential four phases� ��
 an initialization phase to determine an

initial feasible point and to partition the variables into m dependent variables and

n � m independent variables� ��
 calculate the search direction for the dependent

variables using linear algebra� ��
 compute the search direction for the independent

variables from the smaller QP subproblem� and ��
 perform a line search� Steps ��
�

��
� and ��
 are performed iteratively� Step ��
 may be applied during the course of

the iterative process if a QP subproblem becomes infeasible� If sparse linear algebra

techniques are used in step ��
� this decomposition strategy extends the size of the

nonlinear program that can be solved to several thousand as long as the number of

degrees of freedom remains relatively small �less than a few hundred
�

There arise many situations where the number of degrees of freedom is not small�

This occurs in� for example� continuous optimal control problems� multiperiod design�

and data reconciliation� If di
erential equations are present in the constraints� they

are generally reduced to a set of algebraic equations by using �nite di
erence equations

����� the method of weighted residuals ����� or orthogonal collocation ����� This process

results in a large number of unknowns and� thus� increases the degrees of freedom of

the nonlinear program� In addition� even if the number of degrees of freedom is small

relative to the size of the system� the actual number may be quite large� If this is the

case� using the dense BFGS update is too computationally expensive� An alternative

technique to large�scale SQP is described by Betts ����� In this case� the large� sparse

Hessian of the Lagrangian is used instead of the dense BFGS update� To ensure the

QP subproblem is well�posed� the Hessian of the Lagrangian is modi�ed as follows�

rxx
�L�x� u� �
 � rxxL�x� u� �
 � ��j�j� �
I

where rxxL�x� u� �
 is the exact Hessian of the Lagrangian� � is the Gerschgorin

bound for the most negative eigenvalue of rxxL�x� u� �
� and � � ��� �� is the Lev�

enberg parameter� A trust region strategy is used to ensure � 
 � as the algo�

���



rithm converges to a solution� In this approach� the QP subproblem is solved using

a technique based on the Schur�complement method of Gill et al������ The Schur�

complement method makes it possible to infer whether or not the projected Hessian

is positive de�nite� If necessary� the Levenberg parameter is adjusted to ensure the

matrix remains positive de�nite during the iteration process�

A third approach for large�scale SQP is described by Sargent et al������ In addi�

tion to some minor modi�cations made to several aspects of the SQP algorithm� an

interior�point algorithm is employed in the QP subproblem� In this approach� the

exact Hessian of the Lagrangian is employed to take advantage of the sparsity of the

system� The interior point algorithm requires the projection of the Hessian of the

Lagrangian onto the null space of active constraints to be non�negative de�nite� To

ensure this� the symmetric factorization of rxxL � LDLT is modi�ed as follows�

�D
ii � maxf�� �D
iig i � �� � � � � n�

�
�
� MINOS

A second state�of�the�art optimization algorithm is the MINOS	Augmented package

����� MINOS has been applied successfully to large� sparse problems that are mostly

linear� In general� more function evaluations are required than with SQP� making

MINOS less apt to be used with modular simulators and other situations where func�

tion and derivative evaluations are expensive� This algorithm is� however� easily

adapted to equation�oriented simulators and has been implemented in ASCEND ����

and SPEEDUP ����� Like SQP� MINOS is an infeasible path� Newton�type approach�

The inequality constraints are converted to equalities by including slack variables

with the appropriate sign �determined by their bounds
� At each iteration� the con�

straints are linearized and a complete optimization is performed with the augmented

Lagrangian as the objective function �in contrast to the quadratic approximation used

in SQP
� By projecting the gradient of the objective function onto the null�space of

the linearized constraints� unconstrained optimization techniques may be employed

���



�as long as the variables are monitored so they do not leave their bounds
�

In general� the MINOS	Augmented package performs well for large� sparse� mostly

linear problems� Since a full optimization is performed in the space of linearized

constraints at each iteration� function and gradient evaluations are extensive� making

this algorithm best suited for situations where these calculations are very e�cient

�e�g�� equation�oriented simulators
�

Currently� SQP ���� is considered to be one of the most e�cient methods for solving

general nonlinear programming problems� However� SQP has trouble converging

highly nonlinear constraints and it is designed to �nd a single optimal point� In

addition� SQP is only applicable when there are fewer than a few hundred degrees

of freedom� Ideally� we would like to have an optimization algorithm that can be

applied to problems that SQP has di�culty converging� has the ability to �nd multiple

local optima� and is capable of solving large problems with many degrees of freedom�

One such approach� discussed in this chapter� is to convert the Karush�Kuhn�Tucker

conditions� the �rst�order necessary conditions for a local optima� into an equivalent

set of nonlinear equations and solve these equations using the globally convergent

homotopy continuation method� This approach was �rst proposed by Sun and Seider

������ In the research proposed here� nonparametric optimization problems will be

considered� The KKT necessary conditions will be converted to a system of nonlinear

equations using Mangasarian�s theorem which guarantees complementary slackness�

The arti�cial parameter di
erential arclength homotopy continuation method will be

applied to this system of equations� This method is capable of determining solutions

not obtainable with Newton�type methods� In addition� it is possible to track out

multiple �possibly all
 KKT points from a single starting point� Finally this problem

remains sparse throughout the calculation� Since the KKT necessary conditions are

used� some post�processing will be necessary to determine which type of stationary

points were obtained�
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�� Homotopy Approach for Nonlinear Optimiza


tion

The problem with solving the necessary conditions for optimality of a nonlinear pro�

gramming problem �the KKT conditions� ����
�����

 directly using some iterative

method is that they are a mixed system of nonlinear equations and inequalities� So�

lutions to equations ����
�����
� if found� may or may not be KKT points depending

on the sign of the inequality residuals and associated KKT multipliers� The following

theorem due to Mangasarian allows the complementarity conditions to be converted

into an equivalent system of nonlinear equations

Theorem � �Mangasarian�

Let � be any strictly increasing function from R into R �a � b � ��a
 � ��b

�

and let ���
 � �� Then z solves the complementarity problem

z � �

g�z
 � �

zT g�z
 � �

for z � R
m and g � Rm �
 R

m if and only if

��jg� � z�j
� ��g�
� ��z�
 � �

���

��jgm � zmj
� ��gm
� ��zm
 � ��

���



With this theorem� the KKT conditions may be represented by the following set

of nonlinear equations�

rf�x
�rh�x
T� �rg�x
Tu � � �����


h�x
 � � �����


��jgi�x
� uij
� ��gi�x

� ��ui
 � � i � �� � � � � m �����


Every solution satisfying equations �����
������
 is a KKT point of the original NLP�

In this work� these equations are solved using homotopy continuation

�
�
� Homotopy Continuation

Homotopy continuation has been used in the past to solve systems of equations when

a good initial guess is not known a priori or when the equations contain many singu�

larities� Suppose F �x
 � � is the set of equations we are interested in solving� One

popular homotopy is the convex linear homotopy given by�

H�x� �
 � �F �x
 � ��� �
G�x
 �����


where � is the homotopy parameter and G�x
 is set of equations which has a known

solution G�x�
 � �� The idea behind homotopy continuation is to begin at � � � and

x � x�� where H�x�� �
 � �� and track the homotopy path given by H�x� �
 � � to

� � � and x � x�� a solution of F �x
 � �� Chapter � describes a similar application

of homotopy continuation� however� in chapter �� the systems of equations at � � �

and � � � had physical signi�cance# the system at � � � corresponded to an ideal

representation of phase equilibrium� the system at � � � corresponded to a nonideal

representation� and � corresponded to a deformation from ideality� The physical

homotopies in chapter � gave rise to bifurcations in the homotopy branches that

were exploited in the computation of azeotropes and heteroazeotropes� As will be

���



shown below� these bifurcation will typically not be encountered for the homotopies

described in this chapter�

One homotopy� which is robust for solving general sets of nonlinear equations� is

the Newton homotopy�

H�x� �
 � F �x
� ��� �
F �x�
 �����


In this case� G�x
 � F �x
 � F �x�
� Another popular homotopy is the �xed�point

homotopy�

H�x� �
 � �F �x
 � ��� �
�x� x�
 �����


Here� G�x
 � x� x��

We are interested in under what conditions a smooth� non�bifurcating path� c��
 �

H����
� exists and connects H�x�� �
 and H�x�� �
� where x� is a solution to F �x�
 �

�� the system of equation whose solution we desire� The question of whether or not a

smooth path exists is answered by the following theorem presented in Allgower and

Georg ����

Theorem � Let zero be a regular value of H�x� �
� i�e��
�
rH



 �H
��

�
has maximal

rank n 	 �x� �
 � H����
 � f�x� �
 j H�x� �
 � �� x � R
n � � � Rg� Then the curve� c�

de�ned by H�x� �
 � �� satis�es one of the following two conditions


�� The curve c is di�eomorphic to a circle �i�e� there is a period T � � such that

c�s�
 � c�s�
 if and only if s� � s� is an integer multiple of T �

�� The curve c is di�eomorphic to the real line �i�e�� c is injective and c has no

accumulation points for s �
 �� �

���



Thus� if � is a regular value of H�x� �
� the curves will be smooth and non�

bifurcating� According to the parameterized Sard�s theorem ����� the set of x�� where

H�x�� �
 � �� such that � is not a regular value of H�x� �
 are in a set of measure

zero� A set of measure zero in Rn is a subset of Rn that can be contained in the union

of neighborhoods� in R
n � with total volume smaller than any positive number� The

probability of selecting� at random� an item from a set of measure zero is zero� Thus�

as long as x� is chosen at random� independent of the structure of the problem� the

homotopy path will be smooth and non�bifurcating with probability ��

The second question� when does the homotopy path cross � � �� holds when�

�� the Jacobian matrix�
�
rxH



 �H
��

�
� has maximal rank n on the set

S � f�x� �
 j H�x� �
 � �� x � R
n � � 
 � � �g�

�� H�x� �
 � � has a unique solution x��

�� the set S is bounded�

The �rst item above will be true� with probablity �� if x� is chosen at random�

The second item will be true if G�x
 has a single solution� x�� This is always the

case for the �xed�point homotopy� equation �����
� however� the Newton homotopy�

equation �����
� may have multiple solutions at � � �� corresponding to roots of the

equation F �x
 � F �x�
� A theorem by Smale ����� provides conditions when the

Newton homotopy crosses � � ��

Theorem � �Smale�

Let D � R
n and F � Rn �
 R

n satisfy the assumptions below


�� F is a C� �map�

�� D � R
n is open and bounded and �D� the boundary of D� is a connected C�

manifold of Rn �


� � is a regular value of F �

���



�� F �x
 �� � 	 x � �D�

�� the Jacobian rF �x
 is nonsingular 	 x � �D� and

�� the Newton direction �rF �x
��F �x
 is not tangent to �D at x � �D�

Let x� � �D be chosen such that � is a regular value of the map H�x� �
 � F �x
 �

�� � �
F �x�
 �recall that by Sard�s theorem� if x� is chosen at random� � will be

a regular value of H�x� �
 with probability ��� Let Cx� be the connected component

of f�x� �
 j H�x� �
 � �� x � R
n � � � Rg� Finally� let s � R �
 �x�s
� ��s

 be a

parameterization of Cx� such that

�� x��
 � x� and ���
 � ��

�� 'x��
 points into D� where 'x � dx�ds�

Then there is a parameter s� � � such that

�� x�s
 � D for � � s � s��

�� x�s�
 � �D�


� ��s�
 � ��

Consequently� the curve Cx� passes through D � f�g in an odd number of points

�x�� �
 � D � f�g with F �x�
 � ��

Thus� provided some conditions� the Newton homotopy will locate at least one� and

possibly more� solutions of F �x
 � ��

���



The theorems above establish conditions for the existence of a smooth� non�

bifurcating homotopy path connecting � � � and � � �� The following discussion

describes how this path is tracked numerically��

The homotopy path described above is tracked using a calculation known as dif�

ferential arclength continuation� This algorithm was introduced by Klopfenstein �����

First� the variables �x� �
 are parameterized with respect to arclength� s�

H�x�s
� ��s

 � �� �����


This equation is then di
erentiated with respect to arclength to obtain the following

set of equations�

�
rxH�x� �
 �H���

��� dx
ds

d�
ds

�
A � � �����


�dx�ds and d��ds are the tangents on the path at the current point
� Arclength is

de�ned by

�
dx

ds

	T �
dx

ds

	
�

�
d�

ds

	�

� �� �����


The last two equations above are combined to form the following fully�determined

system�

�
� rxH�x� �
 �H���

�dx�ds
T d��ds

�
A
�
� dx

ds

d�
ds

�
A �

�
� �

�

�
A � �����


This system is solved� using the tangent at the previous point within the matrix� for

�The task of numerically tracking a path is described in chapter � using a locally parameterized
continuation process� A di�erent technique is employed in this chapter and an automatic scaling
algorithm is developed that better handles the numerical problems encountered in this work� Scaling
was not a problem encountered during the continuation with the homotopies of chapter ��

���



the tangent at the current point� The next point on the curve is given by

xk�� � xk � hk
�
dx

ds

	k

�����


�k�� � �k � hk
�
d�

ds

	k

�����


where hk is the current stepsize� This predicted point is brought closer to the path

using Newton�s method with corrector steps orthogonal to the previous tangent�

�
� rxH�x� �


�H
���

dx
ds

�T d�
ds

�
A
�
� �x

��

�
A � �

�
� H

�

�
A �����


xj�� � xj � �xj �����


�j�� � �j � ��j �����


The subscript in equations �����
 and �����
 refer to the j�th corrector iteration� By

parameterizing with respect to arclength� a monotonically increasing parameter of

the curve� it is possible to trace the path through turning points�

The discussion above contains conditions under which the homotopy path exists

and how it can be tracked numerically� According to theorem �� if zero is a regular

value of H�x� �
 then the path will be connected� Even if the path is connected� it

may be connected at ��� Lin ���� provides conditions for when the homotopy path

is connected at ���

�� If � �
 � as xi �
 �� and xi�Fi �
 � then the homotopy path is connected

at �xi and � � ��

�� If x �
 $x as � �
 ��� The homotopy path is connected at x � $x and

� � ���

These conditions determine how the path can be connected at the opposite in�nity�

In order to facilitate the detection of when a variable approaches an asymptote�

���



Seader et al� ���� developed two mapping functions which map �����
 �
 ���� �
�

$yi �
�yi

� � y�i
�����


and

$yi �
yiq
�� y�i

�����


By taking the predictor step in the mapped space� it is easy to tell when a branch

must be switched using the criteria ��
 and ��
 above�

�
�
� Summary of Homotopy Approach

The approach described in this chapter is simple� use symbolic transformation tech�

niques to transform an NLP into an equivalent system of nonlinear equations �using

Mangasarian�s theorem to handle the complementarity condition
 and solve the re�

sulting system for multiple solutions using either a Newton homotopy or a �xed point

homotopy with variable mappings�


�� Comparison with SQP

SQP has been applied successfully to a wide variety of nonlinear optimization prob�

lems� A relationship between the approach described in this chapter and SQP is

shown below�

First� consider the Newton homotopy given in equation �����
� Di
erentiating

���



with respect to s�

rF �x

dx

ds
� F �x�


d�

ds
� �� �����


Combining this equation with equation �����
 set to zero� we obtain�

dx

ds
� �

d��ds

�� �
rF �x
��F �x
� �����


Now consider the global Newton method� The global Newton method can be inter�

preted as the integration of the autonomous ODE system�

dx

dt
� �rF �x
��F �x
� �����


A damped Newton method� given by the iteration formula�

xk�� � xk � �krF �xk
��F �xk
� �����


can be obtained by a �rst�order explicit integration of equation �����
 with a stepsize�

�k� chosen such that kF �xk��
k 
 kF �xk
k� The direction given by equation �����


is the same as the direction given in equation �����
� Allgower and Georg ��� show

that unlike the global Newton method� calculations remain stable near singular points

with the Newton homotopy�

Now consider the nonlinear programming problem given in equations ����
�����
�

���



The KKT conditions may be expressed as�

rf�x
�rh�x
T � �rgA�x

TuA � rxL�x� �� uA
 � � �����


h�x
 � � �����


gA�x
 � � �����


�uA � �
 �����


where gA�x
 denotes the set of active inequality constraints� This system of nonlinear

equations may be solved using a damped Newton method�

�
BBBBBB�

rxxL�x� �� u
 �rh�x
T �rgA�x
T

rh�x
 � �

rgA�x
 � �

�
CCCCCCA

�
BBBBBB�

�x

��

�u

�
CCCCCCA
� �

�
BBBBBB�

rxL

h�x


gA�x


�
CCCCCCA

�����


�����


xj�� � xj � �j�xj �����


�j�� � �j � �j��j �����


uj�� � uj � �j�uj �����


As described earlier� SQP converges to an optimum by obtaining search directions

from the solution of a QP subproblem formed by taking quadratic approximations

of the objective function and linearization of the constraints� The current point is

updated by moving in the direction obtained in the QP by a stepsize determined by

the minimization of some merit function� It can be shown that the search directions�

���



��x� ��� �u
� obtained by solving system �����
 above are exactly the same as the

search directions obtained in the QP subproblem of the SQP method� thus� SQP can

be interpreted as applying a damped Newton method to the KKT conditions of the

original problem�

A relationship between the damped Newton method and homotopy continuation

is shown above� Since SQP may interpreted as applying a damped Newton method

to the KKT conditions of the original problem� there is a relationship between SQP

and the homotopy continuation approach for solving NLPs� There are� however� sev�

eral di
erences� Stepsize for the SQP method is chosen by minimizing a scalar merit

function or a trust region strategy� whereas stepsize for the homotopy continuation

approach is determined by the curvature of the path� by the number of corrector

iterations required to bring the predicted point back to the path� or by some other

stepsize algorithm� Most implementations of the SQP method use a positive�de�nite

approximation of the Hessian of the Lagrangian� rxxL�x� �� u
� to ensure that the

search directions move the iterates to a bene�cial KKT point �i�e�� KKT point corre�

sponding to a local minimum
� whereas in the homotopy continuation approach the

analytical Hessian of the Lagrangian used and solutions may or may not correspond to

local minima� The quadratic program subproblem of the SQP method determines the

active constraints� whereas the homotopy continuation approach uses Mangasarian�s

theorem to ensure the complementary slackness condition is satis�ed at the solutions�

The SQP method will converge to a single KKT point� the homotopy approach may

potentially compute several KKT points� The damped and global Newton methods�

and thus� the SQP method are unstable in complex solution spaces� This is not a

���



problem for the homotopy approach� Finally� the approximation of the Hessian of the

Lagrangian used in the SQP method �usually� the Broyden� Fletcher� Goldfarb� and

Shanno �BFGS
 update
 is dense regardless of the sparsity of the analytical Hessian

which seriously limits the size of the NLP that can be solved�


�� Implementation

The approach described in this chapter applies homotopy continuation to a set of

nonlinear equations equivalent to the KKT conditions� These equations� ����
�����
�

are a mixture of model equations and partial derivatives� Requiring the user to

derive these equations by hand would be impractical and extremely error prone� This

is where symbolic manipulation technology plays a pivotal role� making the method

practical for large systems of equations�

This algorithm has been implemented in the process simulator ABACUSS����� As

described in chapter �� ABACUSS is a large�scale� equation�oriented process simulator

based on an interpretive architecture� The user writes an optimization problem in

the form of equations ����
�����
 in an input �le� These equations are stored in

computer memory as a directed acyclic graph when the input �le is translated� In

addition� partial derivatives are calculated and also stored within the equation graph

�see part � of this thesis
� Flowsheet models are generally very large ���������������

equations is typical
� however� the Jacobian of these equation is very sparse� Thus�

�ABACUSS �Advanced Batch And Continuous Unsteady�State Simulator� process modeling soft�
ware� a derivative work of gPROMS software� c��

� by Imperial College of Science� Technology�
and Medicine�
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only partial derivatives that are not identically zero are computed and sparse linear

algebra routines are employed in the continuation calculations ����� The homotopy

continuation algorithm used to �nd the KKT points requires subroutines that return

the current values of equations �����
������
 and the Jacobian of these equations�

�
BBBBBB�

rxxL�x� �� u
 �rh�x
T �rg�x
T

rh�x
 � �

rx)�x� u
 � ru)�x� u


�
CCCCCCA

�����


where L�x� �� u
 is the Lagrangian de�ned previously and

)i�x� u
 � ��jgi�x
� uij
� ��gi�x

� ��ui
 �����


are the Mangasarian constraints� The actual equations �����
������
 are� however�

not constructed symbolically� When a residual or Jacobian evaluation is required�

the values are computed by combining the various terms in the equation�


�� Algorithm Improvements

Amajor advantage of the equation�oriented simulator is that it allows the user to write

models independently of the numerical algorithms that will be applied to them� This

�exibility has the disadvantage that the equations may not be in a form that is ideal

for the solution algorithm� A common example of this is variable scaling� A typical

model of a chemical process will have variables representing energy and concentrations

���



and these variables often di
er by several orders of magnitude� Even if the variables

are initially the same order of magnitude� they may change signi�cantly along the

homotopy path� This observation presents a problem to the arclength continuation

algorithm described above� Let y � �x� �
� The next point on the curve is predicted

by�

yk�� � yk � hk
�
dy

ds

	k

�����


where �dy�ds
k is obtained by solving the linear system �����
 at the current point

yk� The arclength constraint�

�
dy

ds

	T �
dy

ds

	
� � �����


implies that jdyi�dsj 
 � 	i� Thus�



yk��i � yki


 � 

hk









�
dyi
ds

	k





 
 

hk

 	i �����


Now suppose that yk��i � ��� and yk��j � ���� �yk��i may represent the internal

energy inside a reactor and yk��j may represent the concentration of some chemical

species in that reactor
� This causes di�culty in the stepsize calculation algorithm� If

the stepsize is chosen such that the large magnitude variables are tracked e�ciently�

i�e��



yk��i � yki


 � ���
���



the stepsize will be very large� resulting in far more corrector iterations since the

variables with smaller magnitude will be further from the path after the predictor

step� A more serious problem is that the solution may jump to another branch on

the path� In addition� most stepsize algorithms require the user to specify an upper

bound for the calculated stepsize� If the variables have large di
erences in magnitude

anywhere along the path� it is very di�cult for the users to specify a priori a reasonable

upper bound for the stepsize� In order to improve the stepsize selection� the variables

are scaled to be order one quantities for the predictor step� Let y denote the original

variables and Y denote the scaled variables� Select scaling factors such that

Yj � 
jyj � O��
 	j�

The arclength criteria must be satis�ed in this new space� thus�

dYj
d$s

�
dYj
dyj

dyj
ds

ds

d$s
�����


� 
j
dyj
ds

ds

d$s
�����


where $s denotes the arclength in the new space� To obtain ds�d$s�

�
dY

d$s

	T �
dY

d$s

	
�

X
i


�i

�
dyi
ds

	� �
ds

d$s

	�

� � �����


ds

d$s
�

�qP
i 


�
i �dyi�ds


�
�����


���



Thus�

dYj
d$s
�


jqP
i 


�
i �dyi�ds


�

dyj
ds

�����


The tangent in the original space is obtained as described previously� The stepsize is

computed in this new space�

This procedure was tested on the following problem�

�����
� x

����

��
� �����y� � ����� �����


�����
� x

����

��
� �����y� � ����� �����


From the initial point� �x�� y�
 � ����� �
� all four solutions were obtained on a single

path� A plot of y versus � is shown in �gure ����
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Figure ���� y versus �

Table ��� contains the number of steps� from the starting point� taken to reach

���



each solution and the total number of factorizations of the Jacobian matrix required

for both the scaled and unscaled cases�

Table �
�� Comparison of continuation with and without variable scaling for equa�
tions �����
 and �����


with scaling without scaling
Solution steps fact� steps fact�
� �� �� �� ��
� �� �� �� ��
� �� ��� �� ���
� �� ��� �� ���
� ��� ��� ��� ���

In the case where the variables were scaled� approximately two corrector iterations

were required per step� indicating that the predicted point was not too far from the

path� In the case where the variables were not scaled� approximately six corrector

iterations were required per step� thus� the variables were much further from the path�

Although� it did not happen in this case� when the predicted variables are far from

the path� there is a much greater chance of unwanted branch switching� An additional

advantage of the variable scaling is that an upper bound for the step size of ��� was

used for a great variety of problems� whereas in the case where the variables were not

scaled� several attempts were made for each problem to �nd a suitable upper bound

for the stepsize�


�	 Nonlinear Optimization Example

A simple nonlinear programming problem exhibiting multiple local optima is the

minimization of the Himmelblau function ����� The two cases examined� both uncon�
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strained and constrained� are shown below�

min
x

�x�� � x� � ��

� � �x� � x�� � �


� �����


and

min
x

�x�� � x� � ��
� � �x� � x�� � �

� �����


s�t� x� � x� � � �����


Using a Newton homotopy� all nine solutions of the unconstrained case were obtained

from the starting point x� � ������
� Of the nine �xed�points� four are local minima�

one is a local maxima� and four are saddle�points� To determine the type of �xed�

point� the eigenvalues of the Hessian of the objective function were examined� A

summary of the calculation is shown in table ����

Table �
�� Summary of results for problem �����

x� x� type steps fact�
����� ����� minimum �� ��
����� ����� saddle �� ��
����� ������ minimum �� ���
������ ������ saddle ��� ���
������ ������ maximum ��� ���
����� ����� saddle ��� ���
������ ����� minimum ��� ���
������ ������ saddle ��� ���
������ ������ minimum ��� ���

Using the same homotopy� all seven solutions of the constrained case were obtained

from the starting point x� � ��� �
 and u � ��� A plot of x� versus � is shown in �gure

���



��� and a plot of x� versus � is shown in �gure ���� Of the seven �xed�points� three

are local minima� two are local maxima� and two are saddle�points� To determine the

type of �xed�point� the eigenvalues of the Hessian of the Lagrangian were examined�

A summary of the calculation is shown in table ����

Table �
�� Summary of results for problem ����������

x� x� u type steps fact�
����� ����� ����� minimum �� ���
����� ����� ����� saddle �� ���
����� ������ ����� minimum ��� ���
������ ������ ����� saddle ��� ���
������ ������ ����� maximum ��� ���
������ ������ ����� maximum ��� ����
������ ������ ������ minimum ��� ����
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The function used for the Mangasarian equations �����
 was ��z
 � z�� which

is the simplest function that is C� and satis�es the requirements given in Magasar�

ian�s theorem� This is the same function used by Vasudevan ����� in the parametric

optimization of an optimal�fuel orbital problem�
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�� Problems with Approach

Although the homotopy continuation approach looks promising in theory� there are

several problems associated with its implementation� One problem with the �xed�

point homotopy with mappings �equations �����
 and �����

 is that when the vari�

ables approach in�nity� a few elements of the Jacobian matrix become very large and

the matrix becomes highly ill�conditioned� This leads to inaccurate predictors and

correctors which cause the path to be lost� The reasons causing the ill�conditioning

are not remedied by row and column scaling and there are no large�scale� sparse QR

factorization routines that would make the factorization more stable� In the case of

the Newton homotopy� equation �����
� the homotopy path often goes o
 to in�nity

before reaching � � �� For some problems� several attempts had to be made to �nd a

suitable starting point but with limited success� Another problem with this approach

is that variable bounds have to be included as inequality constraints� Unlike the SQP

���



method which handles bound violations by truncating the stepsize� including the ad�

ditional constraints drastically increases the dimension of the system for problems

with many variable bounds� Finally� all �xed�points of equations �����
������
 are

obtained� This requires post�processing to determine whether or not the solution is

a local minimum�

In short� the approach described in this chapter was originally intended for large�

scale� highly nonlinear optimization problems with the hope of obtaining several �pos�

sibly all
 KKT points� The problems described above� including the lack of theoretical

guarantees all KKT points will be obtained� were the impetus for deciding to change

directions in the research� The two main techniques used in this phase of the research

were symbolic transformation	di
erentiation and homotopy continuation� These ap�

proaches were applied with far greater success in the techniques developed in the �rst

two parts of this thesis�


�
 Conclusions

The approach described in this chapter has the potential to be an e
ective alternative

to SQP for nonlinear optimization� First� unlike the damped Newton method which

is applied in SQP� homotopy continuation calculations are stable near singular points�

Second� homotopy continuation is capable of systematically generating multiple so�

lutions� whereas the SQP method is designed to �nd a single local optimal point�

Finally� the SQP method is able to handle problems where the number of degrees

of freedom are less than a few hundred� In the case of the homotopy continuation

���



method� the system of equations solved is sparse� thereby allowing large problems to

be solved when sparse linear algebra routines are employed� Although this approach

seems promising� there have been several problems associated with its implementa�

tion as mentioned above� First� the theorems given in section ����� simply provide

conditions for when the homotopy path connecting � � � and � � � exists� This

path depends on the initial point x� and in many cases� several attempts have to be

made to �nd a suitable starting point� Using a �xed�point homotopy with mappings

to recover from an unbounded branch by switching to the opposite in�nity has prob�

lems due to the ill�conditioning of the Jacobian matrix when the variables become

very large� Finally� the fact that the variable bounds must be included as inequality

constraints will� in some cases� make the problem very large�
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Chapter ��

Conclusions

Several topics relevant to the design and simulation of heteroazeotropic systems have

been developed in this thesis� Speci�cally� an algorithm for computing the homo�

geneous and heterogeneous azeotropes present in a multicomponent mixture and an

e�cient class of techniques for analytical derivative evaluation have been developed�

A necessary task when analyzing and designing azeotropic and heteroazeotropic

systems is the a priori determination of all homogeneous and heterogeneous azeotropes

present in a multicomponent mixture� The technique described in chapter �� under

reasonable assumptions� will compute all homogeneous and heterogeneous azeotropes

predicted by the phase equilibrium model employed� The technique is independent

of both the representation of the nonideality of the mixture and the topology of the

liquid�liquid region� Furthermore� the approach can be extendend to handle any num�

ber of liquid and	or solid phases in equilibrium �provided there is a suitable model

available that can compute the chemical potential of a solid in a solid solution
� The

approach can also be extended �as described in chapter �
 to systematically and ef�
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�ciently explore the phase equilibrium structure of a multicomponent mixture under

system and	or property parameter variation� including the capability of detecting in�

cipient homogeneous and heterogeneous azeotropes �i�e�� azeotropes that do not exist

under current conditions or property parameter values but may exist under di
er�

ent conditions
 and the determination of the bifurcation values where they appear�

disappear� or switch between each other� This capability of exploring the phase equi�

librium structure is a very powerful tool for the modeler� assisting in the speci�cation

of the conditions under which to perform a simulation and the interpretation of the

simulation results� and for the experimentalist while �tting property model parame�

ters� providing a systematic and e�cient means of exploring of the capabilities and

limitations of the phase equilibrium model�

The second major topic of this research is relevent to the simulation of het�

eroazeotropic systems� A new class of automatic di
erentiation techniques� known as

the subgraph reduction approach� have been developed that both increase the speed

in which analytical derivatives are computed and reduce the amount of space required

for storing and computing the Jacobian matrix of a system of equations� Further�

more� an e�cient interpretive version of the reverse mode of the subgraph reduction

approach has been developed that dramatically improves the e�ciency �increased

speed and reduced memory requirements
 of derivative evaluation within an inter�

pretive simulator architecture compared to existing approaches� Due to the e�cient

preprocessing step of this interpretive implementation� this approach is ideally suited

for hybrid discrete	continuous simulation�

���



���� Future Directions and Recommendations

Chapter � of this thesis provides a general framework for computing univariate ther�

modynamic states� The examples contained in this thesis consisted of homogeneous

azeotropes and heteroazeotropes of systems with two immiscible liquid phase in equi�

librium� In principle� the framework can be extended to more than two liquid phases

in equilibirium� systems exhibiting eutectics� systems exhibiting heterogeneous reac�

tive azeotropes� etc� The examination of eutectics is currently limited due to the lack

of a suitable model that is capable of computing the chemical potential of a solid in

a continuous solid solution� Provided such a model is available� the homotopy map

would correspond to a deformation from the ideal solubility of the solid components

to that predicted by the nonideal chemical potential model�

The extensions to the heteroazeotrope �nding algorithm described in chapter �

can be used while estimating property model parameters and determining the sen�

sitivity of the phase equilibrium model with respect to these parameters� This is

brie�y explained in section ������ The technique described in chapter � can be used

while parameters are being �t to the experimental data and if azeotropes and het�

eroazeotropes are not predicted by the model under the current set of parameters�

the location of the bifurcation or intersection point corresponding to the azeotrope

or heteroazeotrope that is not predicted �inside the physical composition space
 can

be used to systematically adjust the parameters�

The ability to determine how an azeotrope or heteroazeotrope varies with sys�

tem parameters is very useful when designing separation systems� The techniques
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developed in this thesis not only allows the modeler to determine how the azeotropic

states vary� but also provides e�cient means for predicting when an azeotrope or

heteroazeotrope appears by monitoring the location of bifurcation and intersection

points associated with nonphysical branches� This technique obviates the need for

performing a computationally expensive phase stability test many times during the

design study which would be otherwise necessary in order to determine when the new

azeotropes or heteroazeotropes appear�

Although the area of heteroazeotropic simulation and analysis has been studied

extensively in the past� there are several areas in need of improvement� Currently�

in order to correctly construct heterogeneous residue curve maps and perform het�

eroazeotropic dynamic simulation� a phase stability test must be performed at each

step during the integration �and on every tray of a heteroazeotropic column
� To

guarantee correctness of the residue curves and column pro�les� a computationally

expensive phase stability test such as that of McDonald or Stadtherr must be applied�

The cost of such calculations is a strong motivation to develop novel� more e�cient

techniques� An alternative approach may be to construct convex regions containing

the heterogeneous regions in state space� This can be performed as a preprocessing

step using the techniques developed in chapter � of this thesis� The location of the

trajectory relative to these regions can be used to determine whether or not a more

expensive phase stability test should be employed to accurately determine the point

at which one or more additional phases appear or disappear� For a certain class of

systems it may be possible to decide when it is necessary to perform a phase sta�

bility test by monitoring the bifurcation and intersection points associated with the
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heteroazeotrope �nding algorithm of nonphysical branches�

Another area of intersest is heteroazeotropic batch distillation� Heteroazeotropic

distillation is typcially carried out as a continuous process� Processes in the phar�

maceutical industry� however� are largely batch in nature� Furthermore� in order to

exploit solvent recovery techniques� it may be necessary to combine various streams

in a process �or multiple processes
 that split into multiple liquid phases� The ability

to perform heterogeneous batch distillation would greatly increase the separations

possible�

The automatic di
erentiation techniques developed in this thesis have been suc�

cessfully applied within an interpretive architecture� Theoretical analysis has been

performed to bound the operation count and memory requirements required for com�

piled implementations of the subgraph reduction approach� however� there are ac�

tually several more considerations than simply these bounds� For example� a gen�

eral residual subroutine containing the system of equations of interest typically con�

tains programming structures such as IF equations� DO loops� embedded subrou�

tine	function calls� etc�� which complicate the matter of generating an equation graph

required by the subgraph reduction approach� IF equations can be represented in the

graph as through the use of conditional vertices� with children correponding to the

true and false conditions of the logical expression� Through the use of these condi�

tional vertices� conditional accumulation sequences can be generated for the Jacobian

evaluation� DO loops can be handled in a couple of ways� First� the loops can be

!unrolled"� creating a sequence of normal assignments from which the graph can be

constructed� Alternatively� the sparse vector implementations of the forward or re�
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verse modes can be applied to the subset of equations contained within the loop� This

would allow the compiler to perform loop optimizations �a very sophisticated class of

techniques
 on this portion of the code� The best alternative would depend on the

structure of the code contained within the loop and the optimizations possible when

unrolling the loop� Embedded subroutines and functions can be handled in a recur�

sive manner� performing the automatic di
erentiation algorithm to the embedded

subroutines and functions� replacing these subroutine and function calls with calls to

subroutines that also evaluate the derivatives of the code contained in the original

subroutine� and incorporation of these derivatives into the entire Jacobian via the

chain�rule� In short� the rich structure of a general subroutine o
ers several compli�

cations and opportunities when applying the techniques of automatic di
erentiation

to generate derivative code�

In addition� the hybrid techniques brie�y mentioned in chapter � can be further

developed to reduce the operation count or memory requirement �or both
� In ad�

dition� the graph can be analyzed to determine an accumulation sequence that is

suitable on a parallel computer�

Another interesting application of automatic di
erentiation is to combine the ac�

cumulation of derivatives from the computational graph with interval arithmetic�

Interval Jacobians and Hessians are used in many calculations �e�g�� interval New�

ton	generalized bisection techniques for solving nonlinear systems of equations� global

nonlinear optimization� etc�
� Furthermore� the order in which the interval operations

are performed can dramatically e
ect the !tightness" of the interval extension �recall

that� as described in chapter �� the interval extension of a function overapproximates

���



the image set of the function
� By analyzing the computational graph� it may be

possible to extract accumulation sequences that minimize the width of the interval

extension of a Jacobian or Hessian�
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Appendix A

Derivation of the Homogeneous

and Heterogeneous Residue Curve

Maps

A�� Homogeneous Residue Curve Maps

Suppose we have a quantity L of liquid with composition x contained in a vessel� Next�

suppose we boil o
 a quantity V with composition y� The change in the quantity

and composition of the liquid is thus� L� L and x� x� Applying a species mass

balance�

xL � �x � x
�L� L
 � yV� �A��


���



Since� by an overall mass balance� V �  L�

xL � �x� x
�L� L
 � y L

� xL� x L � xL� x L � y L� �A��


Rearranging�

L x � x L� y L� x L� �A��


Dividing by  L�L�

 x

 L�L
� x� y � x� �A��


Taking the limit as  L�L
 � �and thus�  x
 �
�

lim
�L
L��

 x

 L�L
�

dx

d�
� x� y� �A��


where d� � dL�L� The quantity � can be interpreted as a dimensionless �warped

time� required to evaporate the contents in the vessel� It can also be interpreted as a

dimensionless height in a packed column operating at total re�ux ����� Note that the

direction of increasing � on the residue curves de�ned by �A��
 corresponds to the

direction of increasing temperature along the curve �implicitly de�ned by the residue

curve map
�
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A�� Heterogeneous Residue Curve Maps

Suppose we have a mixture of nL immiscible liquid phases in equilibrium in a vessel�

The amount contained in each liquid phase is L	i
 with composition x	i
� i � �� � � � � nL�

Suppose we boil o
 a quantity V with composition y� which is in equilibrium with

the nL liquid phases� Applying a species mass balance�

nLX
i��

x	i
L	i
 �

nLX
i��

�x	i
 � x	i

�L	i
 � L	i

 � yV� �A��


The overall mass balance indicates V �
PnL

i�� L
	i
� thus�

nLX
i��

x	i
L	i
 �

nLX
i��

�x	i
 � x	i

�L	i
 � L	i

 � y

nLX
i��

 L	i
� �A��


Expanding the equation above and cancelling terms� we have�

� � �
nLX
i��

�x	i
 L	i

 �

nLX
i��

� x	i
L	i

�
nLX
i��

� x	i
 L	i

 � y

nLX
i��

 L	i
� �A��


Now� de�ne the overall liquid composition as

xoLo �

nLX
i��

x	i
L	i
 �A��


where Lo �
PnL

i�� L
	i
 is the total number of moles of liquid originally present in the

vessel� Substituting the overall composition and quantity into �A��
�

 xoLo � xo Lo � y Lo � xo Lo� �A���
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As above� divide by  Lo�Lo and take the limit as  Lo�Lo 
 � �noting the  xo 
 �
�

lim
�Lo
Lo��

 xo

 Lo�Lo
�

dxo

d�
� xo � y� �A���


The dimensionless �warped time�� �� has the same interpretation as in the homoge�

neous case above�
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Appendix B

Proof of Lemma �

The necessary conditions are trivial� Assume that we are on a k�ary branch and there

is a bifurcation point� corresponding to an intersection between the k�ary branch and

a �k � �
�ary branch� at $�� Without loss of generality� assume that the necessary

conditions for a bifurcation point are satis�ed for j � k��� By de�nition� on a k�ary

branch the following conditions always hold

�A���
 xj �� � for all j � �� � � � � k�

�A���
 �j � � for all j � �� � � � � k� and

�A���
 xj � � for all j � k � �� � � � � n�

Similarly� along a �k � �
�ary branch the following hold

�A���
 xj �� � for all j � �� � � � � k � ��

�A���
 �j � � for all j � �� � � � � k � �� and

�A���
 xj � � for all j � k � �� � � � � n�
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Let �c	i
��
 denote an i�ary branch� At the intersection of a k�ary and a �k � �
�ary

branch�

�c	k
�$�
 � �c	k��
�$�
 � �x�$�
� T �$�
� ��$�

� �B��


Since �j � �j��c��

� on the k�ary branch� �A���
 and �B��
 imply

�k��c	k
�$�

 � �k����c	k��
�$�

 � ��

Furthermore� on the �k � �
�ary branch� �A���
 and �B��
 imply

xk���$�
 � ��

As above� without loss of generality� assume that the necessary and su�cient

conditions are satis�ed for j � k � �� Necessary and su�cient conditions for a

bifurcation from a �k � �
�ary branch onto a k�ary branch at $� are

�A���
 xk���$�
 � ��

�A���
 dxk���d�



	��	

�� ��

�A���
 rank r �F �$�
 � N � � where N � n� �� and

�A����
 � �F��xk��



	��	

� R�r�k��

�F �$�

 where r�k��
 denotes partial derivatives with

respect to all variables except xk���
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To prove su�ciency we must simply show that at there are two distinct tangents

at �c�$�
 where dxk���d� � � on one tangent and dxk���d� �� � on the other �this

second tangent is known at the bifurcation point when the �k��
�ary branch is being

tracked
� Let P	i
 � R
	N��
�N denote the projection matrix that removes the i�th

entry of the vector it multiplies �P	i
 is formed by simply removing the i�th row of

the identity matrix in RN�N 
� Let �G � P	k��

�F � The Jacobian matrix of �G is equal

to the Jacobian matrix of �F with the �k � �
�th row removed� Since at � � $� the

�k � �
�th row of r �F is zero�

rank r �G�$�
 � rank r �F �$�
 � N � ��

Furthermore� condition �A����
 implies

rank r�k���
�G�$�
 � N � ��

Thus� r�k���
�G�$�
 � R

	N��
�N has the maximal rank of N � �� Now� at � � $��

�F �$�
 � ��

Di
erentiating with respect to ��

r �F �$�

d�c

d�
� �

���



and

r �G�$�

d�c

d�
� r�k���

�G�$�

d�c�k���

d�
�

� �G

�xk��





	��	

dxk��
d�

� � �B��


where �c�k��� denotes the N dimensional vector formed by removing the �k � �
�th

element from �c �i�e�� �c�k��� � P	k��
�c
� Taking � to be arclength along the curve� the

following constraint is also imposed

�
d�c

d�

	T �
d�c

d�

	
�

�
d�c�k���

d�

	T �
d�c�k���

d�

	
�

�
dxk��
d�

	�

� �� �B��


Setting dxk���d� � �� we see that �B��
 and �B��
 become

r�k���
�G�$�


d�c�k���

d�
� ��

d�c�k���

d�

	T �d�c�k���

d�

	
� �

and uniquely de�ne d�c�k����d�� Condition �A���
 implies that �j�$�
 �� � for all j �

k��� � � � � n and thus all variables xk��� � � � � xn remain �xed at zero on both branches

that intersect at $��

���



Appendix C

Proof of Lemma �

As in Appendix �� assume that we are currently on a k�ary branch where the following

holds�

�A���
 xj �� � for all j � �� � � � � k�

�A���
 xIj �� � for all j � �� � � � � k�

�A���
 xIIj �� � for all j � �� � � � � k� and

�A���
 xj � xIj � xIIj � � for all j � k � �� � � � � n�

The necessary condition for a bifurcation from a k�ary heterogeneous branch to a

�k � �
�ary heterogeneous branch at a point �co�$�
 is

xj�$�
 � � for some j � f�� � � � � kg� �C��


���



Without loss of generality� assume xk�$�
 � � on the k�ary branch� The necessary

condition follows from the fact that at the bifurcation point�

�co�$�
	k��
 � �c
o�$�
	k
 � �x�$�
� x

I�$�
� xII�$�
� T �$�
� s�$�
� ��$�

 �C��


where the subscript denotes the dimensionality �the number of nonzero mole fraction

elements
 of the branch�

The necessary condition for a bifurcation from a �k � �
�ary branch to a k�ary

branch at a point �co�$�
�

h
s�$�
� �

i
��Ij �
$�
�

h
s�$�
� �KI

j �
$�

i
��IIj �

$�
 � � for some j � fk� � � � � ng� �C��


follows from �C��
 and the fact that the condition above holds on the k�ary branch

when xj��
� k 
 j 
 n� crosses zero at the bifurcation point�

Proof of the necessary and su�cient conditions is similar to the homogeneous case�

As mentioned above� assume that the intersection between the �k� �
�ary and k�ary

heterogeneous branches occur where xk � �� Necessary and su�cient conditions for

a transcritical bifurcation point at $� are�

�A���
 xk�$�
 � ��

�A���
 dxk�d�



	��	

�� ��

�A���
 rank r �F o�$�
 � No � � where No � �n � �� and

�A���
 � �F o��xk



	��	

� R�r�k

�F o�$�

 where r�k
 denotes partial derivatives with re�

���



spect to all variables except xk�

Again� to prove su�ciency� we must show that two tangents exist at $�� one with

dxk�d� � dxIk�d� � dxIIk �d� � � and the other where these tangent components are

nonzero �this second tangent is known at the bifurcation point
� Condition �A���


implies the dimensionality of the null�space of r �F o��
 is two� Furthermore� as shown

in section ������ rows k� k � n� and k � �n are linearly dependent� Therefore� one of

these rows can be removed without changing the rank of the matrix� Let �Go � P	k

�F o

where P	k
 is de�ned in Appendix �� Thus�

rank r �Go�$�
 � rank r �F o�$�
 � No � � �C��


and r �Go�$�
 � R
	No��
�	No��
 has maximal rank� As before� let r�k�

�Go denote the

Jacobian matrix with respect to all variables except xk� Condition �A���
 implies

rank r�k�
�Go�$�
 � No � �� �C��


At �co�$�
� the following hold�

�F o�$�
 � � �C��


P	k

�F o�$�
 � �Go�$�
 � �� �C��


���



Di
erentiating�

r �Go�$�

d�co

d�
� r�k�

�Go�$�

d�co�k�
d�

�
� �Go

�xk





	��	

dxk
d�
� �� �C��


Similar to the homogeneous case� equation �C��
 along with the arclength constraint�

�
d�co�k�
d�

	T �d�co�k�
d�

	
�

�
dxk
d�

	�

� � �C��


and assumption �A���
 imply there exists two tangent vectors at $�� one with dxk�d� �

� and the other with dxk�d� �� �� On �c
o��
� the following hold�

xk � �KI
kx

I
k �C���


xk � sxIk � ��� s
xIIk �C���


These imply that both dxIk�d� and dx
II�d� have zero and non�zero values at $��

���



Appendix D

Proof all binary heteroazeotropes

will be computed with the

homotopy method

In this appendix� a proof is presented that guarantees all binary heteroazeotropes

will be computed using the homotopy method described in this paper� This proof is

necessary since if a k�ary �k � �
 heteroazeotrope were obtained through a series of

bifurcations on lower dimensional heterogeneous branches� we must have at least a

binary heterogeneous branch initially� This is not a problem for the homogeneous case

since the k�ary azeotropes are obtained through a series of bifurcations originating

from a pure component branch which can always be constructed�

Figure D�� contain a schematic of a xy�diagram for a mixture exhibiting a het�

eroazetrope� By applying the same analysis as in section ��� for the homogeneous

���



�
�

� �

�

�

�

�

Figure D��� Schematic of an xy�diagram for a binary mixture exhibiting a het�
eroazeotrope�

azeotropes� we see that there will always be a bifurcation point on the pure component

branch of the lower boiling species in the binary mixture� Furthermore� continuity

of the K�value implies that there will always be at least one spurious homogeneous

azeotrope corresponding to the heteroazeotrope� It is reasonable to assume that

�HE
i �  Hvap

i � i � �� �� �D��


and that the following quantities�

�
� ln ��
�x�

	
x��T�P

and

�
� ln ��
�x�

	
x��T�P

�D��


do not simultaneously vanish at any point in S� Thus� according to theorem �� the

binary homotopy branch passing through the bifurcation point will be di
eomorphic

to the real line in the interior of S and will leave S through � � � at the spurious

binary azeotrope�

���



If a binary heteroazeotrope exists then the heterogeneous branch passing through

the heteroazeotrope will enter So� �The heterogeneous branch will not be tangent

at the side of So where � � � since the heteroazeotrope is necessarily an unstable

node�����
 Furthermore� if zero is a regular value of the the binary heterogeneous

map in the interior of So then the heterogeneous branch will leave through the side

of So de�ned by s � � or � �provided multiple heteroazeotropy does not occur in So


since there is no solution at xi � �� i � �� �� Thus� the heterogeneous branch will

pass through the spurious binary branch which is reachable from a pure component

branch and the binary heteroazeotrope will be computable through the homotopy

method�

���



Appendix E

Rank of Jacobian of Heterogeneous

Homotopy Map

This appendix provides a discussion of the rank of the Jacobian of the heterogeneous

homotopy map� As described in Chapter �� zero being a regular value of this ho�

motopy map� along with a couple of other reasonable assumptions on the homotopy

path� will guarantee that the homotopy method will compute all heteroazeotropes

predicted by the phase equilibrium model of interest�

The Jacobian of the heterogeneous homotopy map is shown in equation �����
�

The �rst �n columns are partial derivatives with respect to x� xI � and xII � respectively�

The remaining three columns are partial derivatives with respect to T � s� and ��

respectively �assuming pressure is held �xed
� The heterogeneous branches are far

more complex than their homogeneous counterparts� This complexity is also re�ected

���



in the heterogeneous Jacobian�

r �F o	x�xI �xII �T�s��
�

�
BBBBBBBBBBBBBBBBBBBBBBBB�

I � �F o
� 
�x

I � � �F o
� 
�T � � �F o

� 
��

� � �F o
� 
�x

I � �F o
� 
�x

II � �F o
� 
�T � � �F o

� 
��

I �sI 	s��
I � xII�xI �

eT � � � � �

� eT � � � �

�
CCCCCCCCCCCCCCCCCCCCCCCCA

�E��


�see Chapter � for a de�nition of the various terms
� In this appendix� the �rst �n

columns of the matrix will be analyzed� First� de�ne

A �

�
BBBBBB�

I � �F o
� ��x

I �

� � �F o
� ��x

I � �F o
� ��x

II

I �sI �s� �
I

�
CCCCCCA

�E��


and

�A �

�
BBBBBB�

A

eT � �

� eT �

�
CCCCCCA
� �E��


���



The matrix A can be further decomposed to

A �

�
BBBBBB�

I �diagf�ig��diagfxIiK
I
i gG

I �

� �diagf��Ii g��diagfx
I
i �

I
i gG

I �diagf��IIi g��diagfxIIi �IIi gGII

I �sI 	s��
I

�
CCCCCCA

�E��


�

�
BBBBBB�

I �diagf�ig �

� �diagf��Ii g �diagf��IIi g

I �sI 	s��
I

�
CCCCCCA
� �

�
BBBBBB�

� diagfxIiK
I
i gG

I �

� diagfxIi �
I
i gG

I diagfxIIi �IIi gGII

� � �

�
CCCCCCA
�E��


� *� �B� �E��


By inspection� we see that N �*
 is spanned by

z �

�
BBBBBB�

x

xI

xII

�
CCCCCCA
�

Furthermore� if rank
�
GI
�
� rank

�
GII

�
� n � � then N �A
 is also spanned by z� If

�A is multiplied by z� we have

Az � �

eTx �� �

eTxI �� �

when x and xI lie within the physical composition space� Thus� the �rst �n columns

���



of the Jacobian of the heterogeneous homotopy map are independent in the interior

of So�

���



Appendix F

Example Problems from Chapter 


The following equations were developed to illustrate the signi�cant increase in per�

formance of the reverse mode of automatic di
erentiation applied in a symbolic in�

terpretive environment�

Problem �

sin�cos�x� y � z
	
 � �

� � x�y�zexyz
� � �A��


Problem �

yi � �
nX

j��

�xj � ln�x�

nX
k��

xk


�xi � ln�x�x�

 � �A��


�
nX

j��

�xj � ex�

xi 	i � �� ���� n

���



where x� y � Rn�

Problem �

xi�� � 
 �
nX
j��

yj
 � �
nX

j��

yjzj
ln�zi � � � 
�
 	i � �� ���� n �A��


� �
nX

j��

�
 � yjxj
 �A��



 � �
nX

j��

�
� � �zj

yi � ixii �A��


where �� 
� � � R and x� y� z � Rn�

Problem �

xi � �

��
����

P �
�
��y
�
�
����
i 
zi��i � �
��P

�
�
��y
�
�
��
i 
 � �A��


�
��
����

P �
�
��y
�
�
����
i zi � ��qiP � ��wiP 
��

�
i � �i P 	i � �� ���� n

where ��� ��� ��� 
� P �  P � R and w� x� y� z� �� � � Rn�
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