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Abstract

In this thesis, an open-loop numerical dynamic optimization method for a class of dynamic
systems is developed. The structure of the governing equations of the systems under consid-
eration change depending on the values of the states, parameters and the controls. Therefore,
these systems are called systems with varying structure. Such systems occur frequently in
the models of electric and hydraulic circuits, chemical processes, biological networks and
machinery. As a result, the determination of parameters and controls resulting in the op-
timal performance of these systems has been an important research topic. Unlike dynamic
optimization problems where the structure of the underlying system is constant, the dynamic
optimization of systems with varying structure requires the determination of the optimal evo-
lution of the system structure in time in addition to optimal parameters and controls. The
underlying varying structure results in nonsmooth and discontinuous optimization problems.

The nonsmooth single shooting method introduced in this thesis uses concepts from non-
smooth analysis and nonsmooth optimization to solve dynamic optimization problems in-
volving systems with varying structure whose dynamics can be described by locally Lipschitz
continuous ordinary or differential-algebraic equations. The method converts the infinite-
dimensional dynamic optimization problem into an nonlinear program by parameterizing
the controls. Unlike the state of the art, the method does not enumerate possible structures
explicitly in the optimization and it does not depend on the discretization of the dynamics.
Instead, it uses a special integration algorithm to compute state trajectories and derivative
information. As a result, the method produces more accurate solutions to problems where
the underlying dynamics is highly nonlinear and/or stiff for less effort than the state of the
art.

The thesis develops substitutes for the gradient and the Jacobian of a function in case
these quantities do not exist. These substitutes are set-valued maps and an elements of these
maps need to be computed for optimization purposes. Differential equations are derived
whose solutions furnish the necessary elements. These differential equations have discon-
tinuities in time. A numerical method for their solution is proposed based on state event
location algorithms that detects these discontinuities. Necessary conditions of optimality



for nonlinear programs are derived using these substitutes and it is shown that nonsmooth
optimization methods called bundle methods can be used to obtain solutions satisfying these
necessary conditions. Case studies compare the method to the state of the art and investigate
its complexity empirically.

Thesis Supervisor: Paul I. Barton
Title: Lammot du Pont Professor of Chemical Engineering
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Chapter 1

Introduction

A new dynamic optimization method is developed in this thesis that can be applied to a
class of dynamic systems whose structure changes depending on the state, parameters, and
controls. First, an overview of these systems and applicable dynamic optimization methods
is presented. Then, the approach of this thesis is explained. Finally, the contents of the

subsequent chapters are summarized.

1.1 Dynamic Systems with Varying Structure

A deterministic dynamic system whose governing equations change instantaneously when the
system’s states, parameters, and time satisfy certain conditions is called a system with varying
structure in this thesis. Such systems occur frequently in the mathematical description
of electrical circuits, hydraulic systems, machinery, chemical process plants, and biological
networks. For example, the constitutive equations of a check valve change depending on the
upstream and downstream pressures. If the downstream pressure is larger than the upstream
pressure, there is no flow through the valve. Otherwise, the flow rate through the valve is

a function of the pressure difference. Diodes in electric circuits display analogous behavior.
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A mechanical example is backlash in gears. In this case, the governing equations change
abruptly when gear teeth lose or gain contact. These systems also form when computer
implemented logic rules and controllers are used to govern the behavior of physical systems.*

Two components make up the state of these systems. One component comprises the
continuous states which evolve according to differential or difference equations in subsets of
the Fuclidean spaces. The other component comprises the discrete states, which evolve in
discrete sets such as the integers.

Various modeling paradigms have been proposed to describe systems with varying struc-
ture. Hybrid automata [3, 38], hybrid bond graphs [73], state-transition networks [7], com-
plementarity systems [99], differential variational inequalities [80], the unified framework for
hybrid control [20], mixed logical dynamical systems [13], differential automata [104] and
switching systems [62] are some of the paradigms available in the literature. Note that some
of these paradigms can be analyzed using the theory of ordinary differential equations [26]
or differential inclusions [5, 37].

In this thesis, the nomenclature of the hybrid system paradigm in [57, 56] is adopted
for the general discussion of systems with varying structure. In this paradigm, a set of
governing equations is called a mode. Each mode is associated with an integer index. The
mode comprises ordinary differential equations or differential-algebraic equations that govern
the evolution of the continuous states. The hybrid mode trajectory is a sequence of these
indices in strict time order of the modes encountered during the evolution of the system.
It is the trajectory of the discrete state of the system. The length of the hybrid mode
trajectory is the number of elements in the hybrid mode trajectory. Given an element of
this sequence, its predecessor mode is the mode immediately before and the successor mode
is the mode immediately after in the hybrid mode trajectory. Corresponding to the hybrid

mode trajectory, there is a hybrid time trajectory which contains subsets of the time interval

'For a comprehensive collection of examples see [32].
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called epochs. For each element of the hybrid mode trajectory, there exists an epoch in the
hybrid time trajectory. A mode is active and governs the evolution of the system during its
corresponding epochs in the hybrid time trajectory. The value of the discrete state changes
when a transition occurs. A transition occurs at the earliest time at which the corresponding
logical condition called a transition condition on the states, parameters and controls of the
system is satisfied. A transition is explicit if the timing, predecessor and successor modes
are known before the state trajectories are computed. Otherwise, a transition is implicit. A
transition is autonomous if the corresponding logical conditions of the transition depend on
the states of the system. A transition is controlled if the transition occurs in response to a
control input. Transition functions determine the successor mode and initial conditions of

the continuous states for the evolution in the next epoch.

The mechanics of mode switching complicates the analysis of systems with varying struc-
ture. It is possible to observe situations where the discrete state changes infinitely often
at a given value of time, preventing the further evolution of the continuous states. This
phenomenon is called deadlock. 1t is also possible that the number of transitions eventually
becomes infinite while time remains finite. This phenomenon is called Zeno behavior. Exam-
ples and detailed discussion of these behaviors can be found [38, 116, 52, 75]. The existence
of solutions and continuous dependence of the solutions on initial conditions can be proven

for special cases [65, 80, 110, 37, 26].

The discrete state helps determine the mode of the system. In some systems with vary-
ing structure, if the continuous states are known, then the active mode can be determined
without knowledge of the discrete state. Example (1.1.1) describes a system where a dis-
crete state is necessary and Example (1.1.2) contains a system where it is not. The accurate
computation of the continuous state trajectories evolving according to continuous-time dy-
namics requires the detection of instants when the active mode changes. At these instants,

the vector fields are possibly discontinuous and continuous-time integration algorithms either
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fail or become inefficient when trying to integrate over these discontinuities while satisfying
integration error tolerances. Special integration methods and numerical codes have been

developed for this purpose. See [11, 74, 80] for further discussion.

Example 1.1.1 (Pressure Relief Valve). A pressure relief valve is used to reduce the pressure
inside a vessel, P, to an acceptable maximum value. The relief valve opens if the pressure
inside the vessel is higher than P, and closes when the pressure inside the vessel is less
than P,. P, > P, holds in order to prevent the relief valve from opening and closing too
rapidly and wearing out unnecessarily. In this system, if the pressure of the vessel is such
that P, < P < P, holds, then it cannot be determined whether the valve is open or closed
without the aid of the discrete state. The reason for this ambiguity is the fact that P can

satisfy this condition irrespective of the state of the valve.

Example 1.1.2 (Tank with Outlet Flow). Consider a tank with an inlet flow at the bottom
and an outlet flow at height H. Assume that there is a check valve at the inlet and the
outlet flow discharges to the atmosphere through a valve. Let h be the liquid level in the

tank. Then, the dynamics of the system can be written as

0 if P — h(t, P) <0,
P—h(t,P) .
\ c, V=TT otherwise,
4
0 if h(t, P) < H,
Fout(tv P) =
h(t,P)—H .
\ (o NS otherwise,

h(t, P) = (Fi,(t, P) — Fou(t, P)) /At € (to, ts], h(to, P) =0,

where P is the inlet pressure measured in the height of liquid, F}, is the inlet flow rate, F,;
is the outlet flow rate, A is the cross section of the tank, C, is the valve coefficient and kj, is

a small regularization constant. The quantity, z/(1/|z| + k) approximates 1/z if z > k;, and
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2/ ky if z = 0 for z > 0. Unlike the square root function, it is continuous and differentiable
at zero. This regularization is necessary to avoid theoretical and numerical issues caused by

the behavior of the square root function at zero.

Suppose h(t*, P) = H. A unique h(t*,P) can still be computed because the system
with varying structure is equivalent to an ordinary differential equation with a continuous

right-hand side at this point.

1.2 Dynamic Optimization of Systems with Varying

Structure

Systems with varying structure are ubiquitous in economically important engineering sys-
tems. Therefore, the development of dynamic optimization methods to determine optimal
performance of these systems has been the subject of research for some time. Open loop and
closed loop dynamic optimization methods have been developed. In this thesis, open loop

methods are of primary interest. In this section, these methods are reviewed.

The dynamic optimization methods for systems with varying structure need to determine
the optimal hybrid mode trajectory and the corresponding hybrid time trajectory in order
to determine the optimal continuous state trajectories and controls. In general, the hybrid
mode and time trajectories depend on the controls. This dependence causes nonsmooth-
ness and discontinuous behavior [8, 84]. Therefore, standard dynamic optimization methods
[17, 21] that assume continuous differentiability cannot be directly applied to these prob-
lems. Derivatives of the states with respect to the parameters of the system in the form of
parametric forward sensitivities [44] and parametric adjoint sensitivities [24] may not always

exist. An instance of nonsmoothness can be found in Example 1.2.1.
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Example 1.2.1 (Nonsmooth Control Example). Consider the dynamic system

;

‘ —y(t,p) +u(t,p) ify<0
y(tap) = ; Vt € (Oatf]>
y(t,p) +u(t,p) ify>0

\
(

—we " if e [0, )
U(t,p) = )

P if t € [t*, 1]

\

y(O,p) = Yo, Yo < O, pE R.

For the given initial condition and wu(¢,p), y(t*,p) = 0 holds. The choice of dynamics at
t =t*, depends on the value of p. If p = 0, then y(¢,p) = 0 holds for all ¢t € [t*,¢;]. If p <O,
then y(t,p) = —pe~ ) 4 p = p(1 — e 1)), If p > 0, then y(t,p) = p(e®*) — 1) for all

t € [t*,¢/]. As a result, y(ts,p) is

4

p(l—e W) ifp <0,

y(tr,p) =<0 if p=0,

p(e=—1) ifp>0.

\

Note that y(ts,-) is continuous but not differentiable at p = 0.

Maximum principles [86, 103, 101] analogous to Pontryagin’s Maximum Principle [21]
have been developed for the case where the hybrid mode trajectory does not depend on
the controls. Necessary conditions of optimality for special cases have been developed that
allow the hybrid mode trajectory to vary [25, 111]. These apply only if the dynamics of the
system can be expressed as ordinary differential equations satisfying a Lipschitz condition
or a differential inclusion of certain structure. These conditions use elements of nonsmooth

analysis [25, 92] which extend the concept of the derivative to nonsmooth functions. Except
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for the conditions in [101], these conditions currently do not appear to be amenable to

numerical computation to solve dynamic optimization problems.

In [101, 23], two-stage approaches are discussed where in the first stage the necessary
conditions are used to solve a dynamic optimization problem for a constant hybrid mode
trajectory. The first-stage resembles multistage problems considered in [21] and is a con-
tinuously differentiable problem. In the second stage, the hybrid mode trajectory is altered
while the number of elements in the trajectory is kept constant. The first stage is repeated
using the updated hybrid mode trajectory. The entire two-stage process is repeated until all
possible hybrid mode trajectories are processed. This method is a combinatorial algorithm.
If the number of elements in the hybrid mode trajectory is n, and the number of possible
modes is n,,, the algorithm processes (n,,)" mode sequences. Similar two-stage approaches

have been proposed in [114] and [41].

Sufficient conditions for the existence of parametric forward sensitivities and paramet-
ric adjoint sensitivities are given in [94, 39, 95]. In addition to the constant hybrid mode
trajectory requirement, a transversality condition is required to hold at each transition and
only one transition can occur at any given time. It is also shown that the states are continu-
ously differentiable functions of the parameters in this case [39]. Computation of parametric
forward sensitivities derived in [39] can be carried out with the integration algorithms in
(108, 36].

The most common approach to enumerate hybrid mode trajectory candidates of fixed
length is to use integer variables. Systems whose modes consist of discrete-time linear systems
are considered in [13] and systems whose modes consist of continuous-time linear systems
are considered, for example, in [102, 106]. In these approaches, nonlinear dynamics are lin-
earized. Continuous-time dynamics are discretized using a scheme such as the forward Euler
method. Note that each linearization increases the number of candidate modes, n,,. These

methods divide the time horizon into n; subintervals. Hence, they consider hybrid mode
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trajectories of length n;. The sizes of these subintervals correspond to integration steps in
case of continuous-time linear dynamics. For each mode candidate, a binary variable is used
at each subinterval to keep track if a mode is active during that subinterval. The binary vari-
able’s value is one if the mode is active and zero otherwise. Additional constraints prevent
more than one mode to be active on a subinterval. The final formulation is a mized-integer
linear program, (MILP), and can be solved to global optimality. Solvers for MILP problems
enumerate candidate hybrid mode trajectories implicitly by taking advantage of the linear
structure of the mathematical program [16]. In the case of continuous-time dynamics, the
MILP solver also acts as the integration algorithm. The main drawback of this method
in the case of continuous-time dynamics is the approximation error in the computed state
trajectories caused by linearization and discretization. Note that features that enable inte-
gration algorithms to provide accurate solutions such as adjusting integration time steps to
satisfy error tolerances cannot be implemented. In order to reduce this approximation error,
relatively large n; and n,, values have to be used. This adversely effects the solution times of
the solver. The solution times of MILP problems scale worst-case exponentially with n; and
N, [106]. Hence, this approach is not very suitable for problems with nonlinear continuous-
time dynamics and nonlinear constraints. An example of this behavior can be seen in the
Cascading Tank Case Study in Chapter 8. An attempt to handle nonlinear continuous-time
dynamics is made in [7] without using linearization. The resultant formulation is a mized-
integer nonlinear program, (MINLP). This approach is not practical because current MINLP
solvers cannot handle problems of the size obtained by this approach. Note that the MILP

approach is used in closed-loop applications as well.

In [57, 56, 55| systems with varying structure capable of only explicit transitions are
considered. Continuous-time linear systems constitute the modes. Integer variables are used,
but the continuous-time linear dynamics are not discretized. The number of transitions

is constant. Auxiliary dynamic systems are constructed to underestimate the objective
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value. Using the parametric sensitivity results in [39], special integration algorithms, and
the auxiliary dynamic systems, these nonconvex problems are solved deterministically to e—
global optimality. This approach does not suffer from approximation errors; however, it is

currently limited to problems with a few states and parameters and explicit transitions.

An alternative approach to alter the hybrid mode trajectory is to formulate mathematical
programs with equilibrium constraints, (MPEC) [12, 90]. Real-valued variables that satisfy
special constraints called complementarity conditions are used. The time horizon is parti-
tioned into n; subintervals called finite elements. On each finite element, the continuous-
time dynamics are discretized using Radau collocation. The active mode on each finite
element is determined by the complementarity conditions at the ends of these subintervals.
Since complementarity conditions violate optimization regularity conditions called constraint
qualifications, special methods are required to solve these problems. In this approach, the
nonlinear programming solver acts as the integration algorithm as well. This results in less
accurate computation of the state trajectories. A relatively large value for n; needs to be
used if the underlying dynamics are nonlinear or stiff. As a result, this approach produces
very large optimization problems mandating large-scale optimization solvers. The nonlin-
ear nonconvex programs are solved to obtain stationary points. In this approach it is not
clear what the value of n; should be to obtain accurate solutions. Even though there are
convergence results for the use of Radau collocation on finite elements when the dynamics
are sufficiently continuously differentiable [53], it is an open question whether these results
apply when used in conjunction with complementarity constraints. The Electrical Circuit
Case Study in Chapter 8 illustrates this problem. The determination of a value for n; and

convergence is an issue in the MILP approach for continuous-time dynamics as well.

Numerical optimization methods that do not explicitly use derivative information such as
derivative-free methods [6], genetic algorithms or stochastic methods [38] can be applied to

the solution of dynamic optimization problems involving systems with varying structure, [38].
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Most of these methods are heuristic and require more effort to provide a solution compared
to derivative-based methods on problems where derivative information is available.

The MILP, MPEC and derivative-free approaches do not solve for the necessary condi-
tions of optimality. Either these are not available or they are not amenable to numerical
computation. They directly try to minimize the objective. Hence, they are direct dynamic
optimization methods. In addition, in all these methods, the controls are parameterized.

Finally, a dynamic programming based approach can be found in [45]. This approach
suffers from the curse of dimensionality and is not suitable for problems with more than

three or four states.

1.3 Nonsmooth Optimization of Dynamic Systems with
Varying Structure

In this thesis, an open loop dynamic optimization method for a class of dynamic systems
with varying structure is developed that does not discretize the continuous-time dynamics
as part of the optimization formulation and that does not enumerate candidate hybrid mode
trajectories. The method does not assume any a priori information about the hybrid mode
trajectory except that the length should be finite.

The method is applicable to problems where the controls are real-valued and the dynamics
of the system with varying structure can be reduced to an ordinary differential equation
satisfying local Lipschitz continuity and piecewise continuous differentiability? assumptions.
Instances of such systems can be found in Example 1.1.2 and Chapter 8. Note that for this
class of systems, crucial properties such as the existence and uniqueness of solutions and
continuous dependence on initial conditions are established by classical theory [26].

The method is in the class of direct single shooting methods (see [17] for a classification

2In this thesis, piecewise continuously differentiable functions are continuous functions.
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of numerical methods) and it is called the nonsmooth single shooting method. Instead of
discretizing the dynamics and using an optimization algorithm to solve for the continuous
state trajectories, a specialized and efficient numerical integration algorithm [108] is used
to compute trajectories accurate within integration tolerances. Therefore, the method is
a single shooting method. In this approach, the real-valued controls are approximated by
functions depending on finitely many parameters. This enables the conversion of the dynamic
optimization problem into a nonlinear program (NLP) as in [105, 40]. This approach allows
the handling of path and point constraints in a unified manner. The resultant NLP is a
nonsmooth mathematical program. Therefore, concepts from nonsmooth analysis [25, 92, 35]
are used in place of the gradient where it does not exist and nonsmooth optimization [54, 66]

methods are applied to solve the resultant NLP.

The resultant basic nonsmooth NLP formulation is

min J(p) =/fho(t,p,U(t,p),X(t,p))dHHo(tf,p, u(ty,p),x(ts,p)) (1.3.1)

peEP to

Ly
s.t./ hi(t,p,u(t,p),x(t,p))dt + Hi(ts, p,ults, p),x(ty,p)) <0, Vie {1,...,n.},
to

x(t,p) = f(t, p,u(t, p),x(t,p)), Vt € (to, ty],

X(t07 p) = fo(p),

where p are the real-valued parameters; n. is a finite positive integer, u are the controls; x
are the continuous states; f, fy, h; and H; are piecewise continuously differentiable functions
for all i € {0,...,n.}. Note that in this approach, inequality path constraints of the form
g(t,p,u(t,p),x(t,p)) <0, Vt € [to,ts] are handled by converting them into the following

point constraints,

ly
/ max(0, g(t, p, u(t, p), x(t, p))dt < 0
to
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or

ly
/ max(0, g(¢, p, u(t, p), x(t, p)))dt < 0.
to

The approach developed in this thesis can handle multistage problems where at each stage
the dynamics of the system are governed by disparate vector fields that satisfy the piecewise
continuous differentiability requirement. In addition, the dynamics can be governed by
certain classes of differential-algebraic equations. In the remainder of this thesis, the controls
are omitted from the formulations of the dynamics and mathematical programs since they

are functions of the parameters and time only.

1.4 Overview

The contents of the subsequent chapters of this thesis are:

Chapter 2: This chapter is a review of nonsmooth analysis necessary for the theoretical
developments in this thesis. The generalized gradient [25] of a function and the linear
Newton approzimation [35] of a function are used at points where the gradient of the
function does not exist. Unlike the gradient, these entities are set-valued maps. For
instance, it can be shown that 9,y(ty, p), the generalized gradient of the function y(ts,-)

defined in Example 1.2.1 at p is,

(

(1—e =) if p <0,

Opy(tr,p) = [(1—e &) (=) —1)] ifp=0,

(etr=) — 1) if p > 0.

\

The importance of the generalized gradient stems from the fact that it can be used

to formulate necessary conditions of optimality and determine descent directions in
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numerical optimization methods for nonsmooth problems [25, 54]. The generalized
Jacobian and gradient coincide with the usual Jacobian and gradient for continuously
differentiable functions. The generalized gradient of a function is unique. The linear
Newton approximation, on the other hand, is not unique. It represents a class of set-
valued maps that contain the generalized gradient or generalized Jacobian. Its main
use to date has been in the solution of nonsmooth algebraic equations. In this thesis, it
is used to replace the generalized gradient/generalized Jacobian when these quantities
cannot be computed for an optimization algorithm.

Specifically, Chapter 2 contains a review of derivatives, elementary set-valued and
convex analysis. It contains the definitions, basic properties and calculus rules of
the linear Newton approximation and generalized Jacobian/gradient. In addition, the
classes of functions of interest are introduced. Implicit function theorems for these
functions are stated. The chapter ends with demonstrative examples.

Chapter 3: The numerical solution of (1.3.1) requires that an element of the generalized
Jacobians and linear Newton approximations of the objective and constraint functions
be computable for each parameter value. In order to apply the calculus rules of the
generalized Jacobian and the linear Newton approximation, an element of the general-
ized Jacobian or linear Newton approximation of the map n — x(¢,n) at p is required.
However, the explicit form of this map is generally not known. Computing numerically
an element of the generalized Jacobian or linear Newton approximation of the map
n — x(t,m) at p is the main challenge of this thesis.

In this chapter, sufficient conditions for the existence of the gradient of the map n —
x(t,m) are derived using the generalized Jacobian and results from [25]. The functions
involved in (1.3.1) are assumed to be locally Lipschitz continuous. These sufficient
conditions result in trajectories along which dpx (¢, p), the generalized Jacobian of the

map n — x(t,m) at p, is a singleton set. Loosely, the key condition is that the
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trajectory (p,x(-,p)) visit the points of nondifferentiability in the domain of f only at
times that constitute a measure zero subset of the time horizon [y, t¢].

Forward and adjoint parametric sensitivity differential equations are derived. These
differential equations resemble results in [44, 24] and [39, 95]. However, unlike results
in [44, 24], the right-hand sides of these differential equations comprise functions that
are discontinuous in time and their solutions exist in the sense of Carathéodory. Unlike
results in [39, 95], invariance of the hybrid mode trajectory and transversality at each
transition are not required. Also multiple transitions can occur at one time.

The results are extended to differential-algebraic equations using nonsmooth implicit
function theorems and to multistage systems. The chapter ends with demonstrative
examples.

Chapter 4: This chapter considers trajectories where the assumptions of Chapter 3 do not
hold. In this case, one must consider differential inclusions. The solutions of these
differential inclusions define sets which may or may not contain the desired generalized
Jacobian information. Restricting the functions involved in (1.3.1) to the class of
semismooth functions, sharper results are obtained using results from [81]. Note that
semismooth functions include piecewise continuously differentiable functions. In this
case, a linear Newton approximation can be defined whose value at a point contains the
value of the generalized Jacobian of the map n — x(¢,n). The results of this chapter
reduce to the results in Chapter 3 if the assumptions of that chapter in addition to the
semismoothness assumption hold.

Elements of the linear Newton approximations can be computed using integration for-
ward in time as in forward parametric sensitivities or using integration backwards
in time as in adjoint parametric sensitivities. The results are extended to certain
differential-algebraic systems using an implicit function theorem for semismooth func-

tions. The extension to multistage systems are derived. Finally, a demonstrative
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example is presented.

Chapter 5: A computational method to obtain an element of the linear Newton approxi-
mations defined in Chapter 4 is described in this chapter. The differential equations
defining elements of the linear Newton approximations are possibly discontinuous at
times when the state trajectory passes through points of nondifferentiability in the
domain of the right-hand sides. In order to detect these discontinuities, a structural
assumption is made that in essence makes all functions in (1.3.1) piecewise continuously
differentiable functions. The structural assumption places the points of nondifferentia-
bility on the boundaries of open sets which can be represented by the zero-level sets
of certain functions. These functions are used in conjunction with state event location
algorithms [83] to determine time points at which discontinuities occur. The struc-
tural assumption also allows the use of more efficient methods to compute an element
of the linear Newton approximations. An implementation with available software to
compute simultaneously the states and an element of the associated linear Newton
approximations using integration forward in time is presented.

Chapter 6: It is known for some time that numerical algorithms for continuously differ-
entiable optimization problems can get stuck at arbitrary nondifferentiable points or
experience numerical difficulties when applied to nonsmooth optimization problems
[61]. Furthermore, the stationarity conditions for continuously differentiable optimiza-
tion problems do not hold for nonsmooth problems. Therefore special methods are
required.

Bundle methods are nonsmooth optimization algorithms that use the generalized gra-
dients of the objective and constraint functions to compute stationary points of non-
convex programs [54, 66]. The stationarity conditions are formulated using the gener-
alized gradients of the objective and constraint functions and reduce to the well-known

Karush-Kuhn-Tucker (KKT) conditions if the objective and constraints are continu-
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ously differentiable [25, 54].
Bundle methods use a set of generalized gradients obtained at nearby points to compute
a direction of descent and a specialized line search algorithm to construct this set
efficiently. The set of generalized gradients is called the the bundle. The use of the
extra information furnished by the bundle prevents these methods from getting stuck
at arbitrary nondifferentiable points. In terms of convergence, bundle methods produce
a sequence of iterates whose limit points are stationary.
In this chapter, extended stationary conditions are formulated using the linear Newton
approximations defined in Chapter 4. This formulation is possible because the values
of these linear Newton approximations contain the values of the generalized gradients.
It is shown that using these linear Newton approximations instead of the generalized
gradients results in a nonsmooth optimization algorithm that produces a sequence of
iterates whose limits points satisfy the extended stationarity conditions. In essence,
one set-valued map is replaced with another that has similar properties. The bundle
method is formally stated.
The key result in the convergence proof is the finite termination of the specialized line
search algorithm. The rest of the proof is the same as the proofs in [54] with the linear
Newton approximation replacing the generalized gradient. Therefore, only a summary
of the proof is placed in the Appendix.

Chapter 7: The nonsmooth single shooting method is formally developed in this chapter.
The results of the previous chapters are used to assemble the method.
Convergence of the approximate controls to the solution of the original dynamic opti-
mization problem is discussed. Using the results in [105, 40], it can be shown that if the
optimal approximate controls convergence to a function as the number of parameters
increases, then that function is an optimal control of the original dynamic optimization

problem. Similarly, if the optimal objective values corresponding to the approximate
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controls converge, the limit is the optimal objective value of the original problem.
The section also contains a technique to solve minimum time problems. The sensitivity
results of the previous chapters deal with parameters of the dynamic system only.
Minimum time problems can be solved by transforming time into a state variable.
Then, the initial time and the difference between the final and initial times become
parameters of the transformed system.

Chapter 8: Case studies are collected in this chapter. The performance of the MILP, MPEC
and derivative-free methods are compared to the performance of the nonsmooth single
shooting method. It is shown that the nonsmooth single shooting method provides
more accurate solutions to problems involving systems whose dynamics are highly
nonlinear and exhibit stiffness for less effort. An empirical complexity analysis is
carried out. The results strongly suggest that the nonsmooth single shooting method
scales polynomially with the number of states and number of parameters.

Chapter 9: The contributions of this thesis are summarized in this chapter. The main con-
tribution of this thesis is the development of the nonsmooth single shooting method.
The novelty of this method stems from the fact that explicit discretization of the dy-
namics in the optimization formulation and enumeration of the hybrid mode trajectory
are not used. The parametric sensitivity results in Chapters 3 and 4 are new. The use
of a bundle method in conjunction with linear Newton approximations is new. The
detailed comparison of the MPEC approach, MILP approach and nonsmooth single
shooting method is new. This is the first comparison that considers accuracy of the so-
lutions in addition to the effort to obtain solutions. The empirical complexity analysis
of the nonsmooth single shooting method is new.

The chapter also discusses possible future directions of research.
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Chapter 2

Preliminaries

This chapter provides a brief summary of the necessary mathematical background for the
developments presented in this thesis. The chapter focuses on results in nonsmooth analysis
for locally Lipschitz continuous functions. These results depend on derivatives, convex sets,
convex functions and set-valued maps. Therefore the chapter begins with a brief review of
results in differentiation, set-valued maps and convex analysis. The chapter concludes with

examples to illustrate some of the reviewed concepts.

2.1 Notation

In this document, symbols printed in boldface represent vector and matrix-valued quantities.
Let O and S be sets in a metric space. O\S is {u € O : u ¢ S}. int (O) is the interior
and cl (O) is the closure of O. bd (O) is the boundary of O and it is equal to cl (O)\O. O is
a singleton if it has exactly one element.
Let n be a finite positive integer. S C R" is a set of measure zero in R" if it has Lebesgue
measure Zzero.

Let O be the set {0;}; where n is a positive integer (possibly equal to co) and o; are
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elements of an arbitrary set. Then, ind(o;, O), the index of 0;, is i and s(O), the number of
elements in O, is n. If n = oo then {o;}!, is equivalent to {o;}.
Let O Cc R™™. If A € O, then A;; represents the element occupying the 7th row and

and jth column of A where i € {1,...,n} and j € {1,...,m}. AT is the transpose of A.

|A|, the norm of A, is \/Z?:l > i1 |Ai % Let A € R™™ and B € R™?, then AB is the
n X p matrix that is the product of A and B. [AT B] is an m X (n + p) matrix such that for
alli=1,...,m, Ci; = Al;if 1 <j<nand C;; = B (j_n) if n <j <n+p If AcR™™is
invertible, then A~! represents the inverse.

The elements of R™ are column vectors. If v € R” and u € R™, then (v, u) is equivalent
to [vF uT]T.

I, is the n x n identity matrix. e; is the ith column of I,,. 0 represents any matrix whose

elements are all zero.

Let Z C R™™ and a € R. Then aZ represents the set {az : z € Z}. Let Y C R™™.

Then Z + Y represents the set {z+y:z€ Z, y e Y}.

2.2 The Gateaux, Partial, Fréchet and Strict Deriva-

tives

The results in this section are from Chapter 3 in [76] unless otherwise stated.

Let m and n be finite positive integers and X be an open subset of R"”. Let L(R™, R™)
denote the space of continuous linear transformations from R™ to R™. Let f; : X — R for
i=1,....mand f: X - R" :y— (fi(y),..., fm(y)) Let x € X, x = (x;,...,2,) where

[L’Z‘GR.

Definition 2.2.1 (The Directional Derivative). Let v € R™. Then f'(x;v), the direc-
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tional derivative or Gateaux differential of £ at x in the direction v, is defined by

f —f
f'(x;v) = lim (x+1v) — £(x) :
t10 t

f is directionally differentiable at x if £'(x;v) exists for all v € R™.

Definition 2.2.2 (The Gateaux Derivative). If f'(x;v) ezists for all v € R" at x and
there exists a continuous linear transformation A(x) € L(R™ R™) such that f'(x;v) =
A(x)v, Yv € R" then f is Gateauzr differentiable at x and A(x) is the unique Gateaux
derivative of £ at x.

Equivalently £ is Gateaux differentiable at x if there exists a continuous linear transfor-
mation A(x) € L(R",R™) such that for any v € R",

lim If(x 4+ tv) — f(x) — tA(x)v]| _
t10 t

0.

In the remainder of this document, if f is Gateaux differentiable at x, then it will be

called differentiable at x.

Definition 2.2.3 (The Jacobian, the Gradient and the Partial Derivative). Jf(x),

the Jacobian of f at x, is an m x n matrix of the form

0, 0,
) G
O fm Ofm
Fex) o G

where each ngj_(X) is called the partial derivative of f; with respect to x; at x and satisfies

af; ) = lim fi(x +te;) — fi(X).

X
Ox; t10 t
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If m = 1, the gradient of f at x is V f(x) and it is equal to Jf(x)T.

If f is Gateaux differentiable at x € X, then A(x) = Jf(x).

Let O C X be a neighborhood of x € X. If f is Gateaux differentiable at every z € O
and the mapping z — Jf(z) is continuous on O, then f is continuously Gateaux differentiable
at x. If O = X, then f is a continuously Gateaux differentiable function. This is denoted by
f € C'(X). In the remainder of this document, continuous differentiability is a synonym for
continuous Gateaux differentiability.

Let {s;}", be a set where each s; and n are finite positive integers. Let X; be an open
subset of R%, x; € X; for all i € {1,...,n} and x = (xy,...,x,). Let f be a function
from II7_, X; to R™. If k € {1,...,n}, then J.f(x) is the Gateaux derivative of the func-
tion f(xy,...,Xk_1,", Xga1,.-.,X,) at x. If f is a scalar-valued function, then V, f(x) is

equivalent to Jy f(x)T.

Definition 2.2.4 (The Fréchet Derivative). f is Fréchet differentiable at x € X if there
exists a unique A(x) € L(R",R™) such that,
)~ )~ AGOv]

v=0 vl

holds. A(x) is called the Fréchet derivative of f at x.

Definition 2.2.5 (The Strict Derivative). f is strictly differentiable at x € X if there

ezists a unique A(x) € L(R",R™) such that,

(y,v)—(x,0) vl

holds. A(x) is called the strict derivative of £ at x (page 132 in [19]).

Equivalently, £ is strictly differentiable atx € X if there exists a unique A(x) € L(R™,R™)
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such that

lim fly +tv) —f(y) —tA(x)v
(y, t)—(x,0T) t

=0

holds for all v.€ R™ and the convergence is uniform for v in compact sets (page 30 in [25]).

Example 2.9.6 contains the proof of the equivalence of these two definitions.

2.2.1 Properties

The results in this section are from Chapter 3 in [76] unless otherwise stated.

1. Even if f is Gateaux differentiable at x € X, it may not be continuous at x. However,

if f is Fréchet differentiable at x, then it is continuous at x.

2. The existence of the Jacobian at x € X does not imply the existence of a Gateaux, strict
or Fréchet derivative. Only if the Jacobian is a continuous function in the neighborhood

of x, Fréchet differentiability can be deduced from Theorem 9.21 in [96].

3. If f is Fréchet differentiable at x € X, then it is also Gateaux differentiable. The

Fréchet and Gateaux derivatives are equal in this case.

4. If £ is strictly differentiable at x € X, then it is also Fréchet differentiable at x. The

strict and the Fréchet derivatives are the equal in this case.

5. If f is continuously Gateaux differentiable at x, then it is Fréchet differentiable at x.
This follows from the fact that the partial derivatives of f are continuous functions and
per Theorem 9.21 in [96], Fréchet differentiability follows. Note that differentiability

in [96] is equivalent to Fréchet differentiability.
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6. Let f : R™ — R™ and g : R™ — RP be Fréchet differentiable at x and f(x), respectively.
Then g o f is Fréchet differentiable at x. If f is only Gateaux differentiable at x then

g o f is Gateaux differentiable at x.

2.2.2 Mean Value Theorem for Differentiable Functions

Theorem 2.2.6 (Mean Value Theorem for Gateaux Differentiable Functions). If

f ot la,b] — R is continuous and Gateaux differentiable on (a,b), then there is a point

x € (a,b) such that f(b) — f(a) = (b —a)V f(x)(Theorem 5.10 in [96]).

2.3 Set-valued Maps

The results of this section are mainly from [35]. Let X C R™ and Y C R™ in the remainder

of this section.

Definition 2.3.1 (Set-valued Map). A set-valued map S : X =Y is a map from the set
X to the subsets of the set Y .

gph(S), the graph of S, is the set {(x,y) € X xY : y € S(x)}.
dom(8S), the domain of S, is the set {x € X : S(x) # 0}.

rge(S), the range of S, is the set {y € Y : Ix € X withy € S(x)}.

Instead of considering S : X = Y, one can consider S : R" = R™ by defining S(x) = ()

if x is not in X. The domain and the range do not change after this extension.

Definition 2.3.2 (Closed Set-valued Map). Let S be a set-valued map from X to Y.
Let {x;} C R"™ be a sequence such that x; — x. Let {y;} C R™ be such that'y; € S(x;) and
yvi — y. If y € S(x) for any sequences {x;} and {y;} such as described, then S is closed at

x. S is a closed set-valued map if it is closed at all x € X.
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Definition 2.3.3 (Locally Bounded Set-valued Map). Let S be a set-valued map
from X to Y. S is locally bounded at x if there exists, O, a neighborhood of x such that
U S(z) is bounded. S is a locally bounded set-valued map if it is locally bounded at

z € O N dom(S)
allx € X.

Definition 2.3.4 (Upper Semicontinuity of Set-valued Maps). Let S be a set-valued
map from X toY. S is upper semicontinuous at x if for all open sets V. C R™ such that

S(x) C V, there exists O, a neighborhood of x such that for allz € O, S(z) C V holds. S

1 an upper semicontinuous set-valued map if S is upper semicontinuous at all x € X.

Definition 2.3.5 (Lower Semicontinuity of Set-valued Maps). Let S be a set-valued
map from X toY. S is lower semicontinuous at x € R™ if for every open set V' such that

S(x)NV £ 0, there exists O, a neighborhood of x such that for allz € O, S(z)NV # () holds.

S is a lower semicontinuous set-valued map if S is lower semicontinuous at all x € X.

Definition 2.3.6 (Continuity of Set-valued maps). Let S be a set-valued map from
X toY. S is continuous at x € X if it is lower and upper semicontinuous at x. S is a

continuous set-valued map if S is continuous at all x € X.

Remark 2.3.7 (Upper and Lower Semicontinuity of Functions). The concept of upper
semicontinuity defined for set-valued maps does not coincide with the concept of upper and

lower semicontinuity defined for functions.
Let X be a subset of R" and x* be a limit point of X.

The limit inferior of f: X — R at x* is

liminf f(x) =supinf{f(x): x € X, 0 < ||x —x"|| < o}.

xX—x* >0
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The limit superior of f: X — R is

limsup f(x) = ir;%sup{f(x) xeX, 0< ||lx—x"|| <o}

X—X

Note that liminf f(x) < limsupf(x). Also f is continuous at x* if and only if lim inf f(x) =

%
X=X X—X

limsup f(x) = f(x7).

X—X

Let x* € X. f: X — R is upper semicontinuous at x* if limsup f(x) < f(x*) and

X—X

lower semicontinuous at x* if liminf f(x) > f(x*). A function that is both upper and lower

X—X*

semicontinuous at a point is continuous at that point.

If a function is continuous at a point, it is also continuous at that point as a set-valued
map. If a function is upper or lower semicontinuous at a point then it is neither upper nor

lower semicontinuous at that point as a set-valued map.

2.3.1 Properties of Set-valued Maps

Let S be a set-valued mapping from X to Y.
1. If § is closed and locally bounded at x, then it is upper semicontinuous at x.
2. § is closed if and only if its graph is a closed set.

3. If S is lower semicontinuous at x, then for every {x;} C X such that x; — x and every

y € S(x), there exists a sequence {y;} such that y; — y and y; € S(x;).

4. If § is upper semicontinuous at x € X, then for every scalar e, there exists O, a
neighborhood of x, such that for all z € O, S(z) C S(x) + €B(0, 1) where B(0, 1) is the

unit ball in R™.
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2.4 Elementary Convex Analysis

The results of this section are mainly from [15].

2.4.1 Convex Sets

Definition 2.4.1 (Convex Set). A set C' € R" is convez if for all « € (0,1), ax+(1—a)y

s in C' whenever x and'y are in C. The empty set and any singleton set are convez.

Properties of Convex Sets

1. Let Z = {1,...,k} where k is a positive integer (possibly co). Let C; be a convex

subset of R” for all i € Z. Then NF_,C; is a convex set.
2. If C C R™ is convex, then int (C') and cl (C') are convex sets.

3. If C; € R™ and Cy C R™ are convex sets, then a;C + axCsy is a convex set where oy

and oy are scalars.

Definition 2.4.2 (Convex Combination). Let Z = {1,... k} where k is a positive
integer (possibly o). Let x; € R™ for alli € Z. A convex combination of the vectors {x;}¥_,

is Zle a;x; where for alli € Z, a; € R, a; > 0 and Zle o; = 1.

Definition 2.4.3 (Convex Hull). The convex hull of a nonempty set C C R™ is the
intersection of all convex sets containing C' and is denoted by conv (C').
conv (C') is also equal to the set {Zle X o €R, o >0, Zle =1 x€C, ke

1,2,...}}.

Definition 2.4.4 (Closed Convex Hull). The closed convez hull of a nonempty set C' C R"

is the intersection of all closed convex sets containing C' and is denoted by cl (conv (C)).
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The closed convex hull is also the closure of the convex combinations of the elements of
C C R™. Note that the closure and convex hull operations are not in general interchangeable.

If the set C'is bounded, then the operations are interchangeable.

Theorem 2.4.5 (Carathéodory’s Theorem). Let C' be a nonempty subset of R™. Then
any x € conv (C) can be represented as a convex combination of n+1 not necessarily different

elements of C.

Theorem 2.4.6 (Projection onto Closed Convex Sets). The closest point of a convex

set C' C R™ to a point x € R™ is called the projection of x on C' and is denoted by pc(x). A

unique minimizer, ({pc(x)} = argmin||x—yl|| ), always ezists if C' is closed and nonempty. In
yeCl

addition, z = pco(x) if and only if (x—z,v—2z) <0, Vv € C and ||pc(x) —pc(y)|| < ||x—¥]|
holds for all x,y € R™.

Definition 2.4.7 (Hyperplane). H,;, a hyperplane in R", is the set {x € R" : a’x = b}
where a € R™ and b is a scalar.

The sets {x : a"x > b} and {x: a"x > b} are the open and closed positive halfspaces,
respectively, associated with H. Analogously, {x : aTx < b} and {x : aTx < b} are the

open and closed negative halfspaces, respectively, associated with H .

Theorem 2.4.8 (Supporting Hyperplane Theorem). Let C' be a nonempty convez sub-
set of R" and x € C\int (C). Then there exists a hyperplane Ha,y such that a®x = b and

a'x <aly, Vy e C.

2.4.2 Convex Functions

Definition 2.4.9 (Convex Function). f : C — R is a convex function if C C R"™ is

a conver set and for any x € C andy € C and all « € (0,1), flax+ (1 — a)y) <
af(x)+ (1 —a)f(y) holds.
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The epigraph of f, epi(f) is the set {(x,y) :x € C, y € R, f(x) <y}.
Let C C R™ be a convex set. Then f: C — R is a convez function if and only if epi(f)

is a convex subset of R"1.

Definition 2.4.10 (Strictly Convex Function). f: C' — R is strictly convex function if
it is a convex function and for anyx € C andy € C and all o € (0,1), f(ax+ (1 —a)y) <
af(x)+ (1 —a)f(y) holds.

Definition 2.4.11 (The Subgradient and Subdifferential). Let C' be a convexr subset
of R" and f : C'—= R be a convex function.

g € R" is a subgradient of [ at x € int (C') if

fly) > f(x)+(g,x—y), Vy € C.

holds. The existence of a subgradient is guaranteed by Theorem 2.4.8 if epi( f)is considered
as a convexr subset of R™1. Note that it is possible to obtain g such that ||g|| = +oo at
x ¢ int (C). Therefore only x € int (C') are considered in the above definition.

Of(x), the subdifferential of f at x € int (C) is the set of all subgradients of f at x.
Of(x) is a convex, compact subset of R™ and Of is an upper semicontinuous set-valued map

at x € int (C).

2.5 Locally Lipschitz Continuous Functions

Let n and m be finite positive integers. Let X be a subset of R"™.

Definition 2.5.1 (Lipschitz Continuity). f : X — R™ is a Lipschitz continuous function
on X if there exists K € [0,400) such that ||f(x) — f(y)|| < K||x—y], Vx,y € X.

Definition 2.5.2 (Local Lipschitz Continuity). f : X — R™ is locally Lipschitz contin-

uous at x € int (X)) if there ezists a constant K € [0,400) and O, a neighborhood of X, such
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that |f(z) — f(y)|| < K||z — y||, Vz,y € O. { is a locally Lipschitz continuous function if it

15 locally Lipschitz continuous at all x € X.

2.5.1 Properties of Locally Lipschitz Continuous Functions

The following are standard results that can be found easily in the literature [25, 92].

1. Local Lipschitz continuity does not imply Lipschitz continuity. For example, f : R —
R : z +— 22 is a locally Lipschitz continuous function but not a Lipschitz continuous

function.
2. Differentiable functions may not be locally Lipschitz continuous (See Example 2.9.7).

3. If £f: X — R™ is continuously differentiable at x € X, then it is locally Lipschitz

continuous at x.

4. If £ : X — R™ is locally Lipschitz continuous and Gateaux differentiable at x € X,

then it is also Fréchet differentiable.

5. If f: X — R™ is strictly differentiable at x € X, then it is locally Lipschitz continuous

at x (Proposition 2.2.1 in [25]).

6. Let f: X — R™ and g : X — R™ be locally Lipschitz continuous at x. Then f + g is

locally Lipschitz continuous at x.

7. Let f : X — R™ and g : R™ — R! be locally Lipschitz continuous at x and f(x),

respectively. Then g o f is locally Lipschitz continuous at x.

8. Let f: X - R and g: X — R be locally Lipschitz continuous at x. Then fg is locally

Lipschitz continuous at x.
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9. (Rademacher’s Theorem, [92]) Let X be an open subset of R". If f : X — R™ is
a locally Lipschitz continuous function on X then it is differentiable at all x € X\S

where S is a measure zero subset of X, and X'\ S is dense in X.

10. Let X be an open convex subset of R”. If f : X — R is a convex and bounded function,

then f is a locally Lipschitz continuous function on X.

11. f : X — R is strictly differentiable in a neighborhood of x if and only if it is con-
tinuously differentiable on that neighborhood of x (Corollary of Proposition 2.2.4 in
[25]).

12. F : X — R™ is strictly differentiable in a neighborhood of x if and only if it is

continuously differentiable on that neighborhood of x.

Proof. Let F(x) = (f1(x),..., fm(x)). If F is strictly differentiable in a neighborhood
of x, then each f; are strictly differentiable on that neighborhood. Hence each f; is
continuously differentiable on that neighborhood per the previous item. As a result F
is continuously differentiable on that neighborhood. If F is continuously differentiable
on a neighborhood of x, then f; are continuously differentiable on that neighborhood.
Hence f; are strictly differentiable on that neighborhood. Strict differentiability of F

on that neighborhood follows. O

2.6 Nonsmooth Analysis for Locally Lipschitz Contin-
uous Functions

In this section, relevant results of nonsmooth analysis for finite dimensional Euclidean spaces

are summarized. The results are mainly from [25].
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In the remainder of this section, let X C R"™ and f : X — R be locally Lipschitz
continuous at x € X with Lipschitz constant K. Let O be the corresponding neighborhood

of x and S be the measure zero subset of O such that if z € S, V f(z) does not exist.

2.6.1 The Generalized Directional Derivative

Definition 2.6.1 (The Generalized Directional Derivative). Let v € R". f°(x;v), the

generalized directional derivative at x in the direction v (page 25 in [25]) is

fO(X; V) _ hm sup f(y + tV) - f(y) ]
(v, )—(x,01) t

(2.6.1)

Properties of Generalized Directional Derivatives

1. The mapping v — f°(x; V) is finite, convex and satisfies | f°(x;v)| < K||v|| on R". In

addition, the mapping v — f°(x;Vv) is Lipschitz continuous with constant K on R™.

2. The mapping (x, V) — f°(x;Vv) is an upper semicontinuous function.

3. folx;—v) = —fo(x;v).

4. f°(x;0) =0.

2.6.2 The Generalized Gradient

Definition 2.6.2 (The Generalized Gradient). If f is locally Lipschitz continuous at x,
then the function v — f°(x;Vv) is a finite convex function from R™ to R. Per the Supporting
Hyperplane Theorem (Theorem 2.4.8), there exists a vector ¢ such that f°(x;v)— f°(x;0) >

(¢,v),Yv € R". 0f(x), the generalized gradient at x, is the set of all such { € R™ (page 27
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in [25]). Formally, it is the set
{CeR": fo(x;v) > (¢, v), Vv eR"}.

This definition can be used to define the generalized gradient of scalar functions whose
domains are subsets of arbitrary Banach spaces using the Hahn-Banach Theorem.
An alternative definition applicable to functions whose domains are subsets of finite-

dimensional Euclidean spaces uses the gradient of the functions.

Definition 2.6.3 (The Generalized Gradient II). Let Q C O be any set of measure zero.
Let {x;} be any sequence such that x; € O\(SU Q) for all i and x; — x. Let {V f(x;)}
be the corresponding sequence of gradients and {zliglo V f(xi)} be the set of the limits of all
convergent sequences, {V f(x;)}. Then 0f(x), the generalized gradient of f at x, is the
convex hull of the set {}E&Vf(xf)} (Theorem 2.5.1 in [25]). Formally,

J0f(x) = conv ({hm Vix): xi—x, x;, € 0\(SU Q)}) (2.6.2)

1— 00

Properties of the Generalized Gradient
1. ¢ € 0f(x) if and only if f°(x;v) > (¢, v), Vv € R".
2. 0f(x) is a nonempty, convex and compact subset of R" and if { € df(x) then |||| < K.

3. For every v € R", f’(x;v) = max {({,v)}.
¢edf(x)

4. The set-valued map 0f is locally bounded and uppersemicontinuous at x.

5. If f is a convex and finite function on O, then the generalized gradient at x € O is

equal to the subdifferential at x.

6. If f is differentiable at x, then V f(x) € 9f(x).
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7. If f is strictly differentiable at x, then 0f(x) = {V f(x)}.

8. If the directional derivative exists in the direction v € R”, then f'(x;v) = ({,v) for

some ¢ € Jf(x).

9. Let O be an open subset of R” and g : O — R be a locally Lipschitz continuous function
which attains a minimum or maximum at x € O, then 0 € Jf(x) (Proposition 2.3.2
in [25]).
Mean Value Theorem for Locally Lipschitz Continuous Functions
Theorem 2.6.4 (Mean Value Theorem for Locally Lipschitz Continuous Func-
tions). Let x,y € R" and f be locally Lipschitz continuous on an open set containing the
line segment L ={u:u=Ax+ (1 =Ny, € (0,1)}. Then, there exists a point u* € L and
¢ € 0f(u*) such that f(y) — f(x) = ({,y — x) (Theorem 2.3.7 in [25]).
Regularity
If f:R™— R is locally Lipschitz continuous at x € X, it is also (Clarke) reqular at x if
1. for all v, the directional derivative exists, and
2. for all v, f'(x;v) = fo(x;v).
If f is convex and finite in a neighborhood of x € X, then it is regular at x. If f is strictly
differentiable or continuously differentiable at x € X, then it is regular at x.
Calculus Rules for the Generalized Gradient

Let f: X — R and g; : X — R be locally Lipschitz continuous at x € X for all 7 €

{1,..., N} where N is a finite integer.

1. If & € R then 0(af)(x) = adf(x).
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N N
2. 0 Z gi | (x) C Z 0g;(x). Equality holds if all but at most one of the g; are strictly

i=1 i=1
differentiable at x. Equality holds if all g; are regular at x.

3. If a; e Rforalli € {1,..., N}, then

N N
00>~ nig)(x) C > a;0gi(x).
i=1 i=1
Equality holds if all but at most one of the g; are strictly differentiable at x. Equality

holds if all g; are regular at x and each «; is nonnegative.

4. 0(g192)(x) C g2(x)0g1(x) + g1(x)Ig2(x). If go(x) > 0, g1(x) > 0 and gy, go are both

regular at x then equality holds and ¢,¢s is regular at x.

5. Suppose g2(x) # 0, then

91 () ¢ 29 (x) = 91(x)995(x)
8(92)( ) € 95(x) '

If g1(x) > 0, go(x) > 0 and if g;,—g2 are both regular at x then equality holds and

g1/ g is regular at x.

6. Let h(x) = max{g;(x),...,gn(x)}. Let Z(x) C {1,..., N} denote the set of indices i
for which h(x) = g;(x). Then

Oh(x) C conv | | ] 9gi(x) |. (2.6.3)
1€Z(x)
If g; are regular at x for all i € Z(x), then h is regular at x and

Oh(x) = conv | | J dgi(x) |. (2.6.4)
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(Proposition 2.3.12 in [25]).

2.6.3 The Generalized Jacobian

Let X be an open subset of R” and F : X — R™ be such that F(y) = (fi(y),.- ., fu(y))
where each f; : X — R is a locally Lipschitz continuous function on X. Let O be a
neighborhood of x such that the Lipschitz constant of each f; on O is K;. Then F is locally
Lipschitz continuous at x with Lipschitz constant K = \/m and JF(y) exists for all

y € O\S where S is a measure zero subset of O per Rademacher’s Theorem.

Definition 2.6.5 (The Generalized Jacobian). Let Q) C O be any set of measure zero.
Let {x;} be any sequence such that x; € O\(SUQ)" for all i and x; — x. Let {JF(x;)}

be the corresponding sequence of Jacobians and {lim JF(x;)} be the set of the limits of all

1— 00

convergent sequences, {JF(x;)}. The generalized Jacobian of F at x, OF(x), is the convex

hull of { im JF(x;)} (Definition 2.6.1 in [25]). In short,

JF (x) = conv ({lim JF(x;): x; — x, x; € O\(SU Q)}) (2.6.5)

Properties of the Generalized Jacobian

1. OF(x), x € X is a nonempty, compact and convex subset of R™*",
2. The set-valued mapping OF is locally bounded and uppersemicontinuous at x € X.
3. ||Z]] < K holds for all Z € 0F(x) and x € X.

4. OF(x) C {A: A e R™" al € 9f;(x), i = 1,...,m} where a; is the ith row of A

and x € X.

fClarke does not mention the set Q when defining the generalized Jacobian in [25]. The indifference of
the generalized Jacobian to a set of measure zero is proven in [113].
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5. If m = 1 then the set containing the transposes of all the elements of the generalized

Jacobian of F' at x € X is the generalized gradient of F' at x € X.
6. If F is differentiable at x € X, then JF(x) € 0F(x).

7. If F is strictly differentiable at x € X, then OF (x) = {JF(x)}(Corollary 3.8 in [78]).

Chain Rules for the Generalized Jacobian and Gradient

Theorem 2.6.6. Let f = go F where F : R™ — R” and g : R® — R are locally Lipschitz

continuous at x and F(x), respectively, then

df(x) C conv ({(¢TA)", ¢ € 99(F(x)), A € IF(x)}).

If g is strictly differentiable at F(x) then equality holds (Theorem 2.6.6 in [25]).

Theorem 2.6.7. Let F : R™ — R"” and G : R® — RP with ¥ and G locally Lipschitz

continuous at x and F(x), respectively, then
J(G o F)(x) C conv ({AB, A € 0G(F(x)), B € 0F(x)}).

Equality holds if G is strictly differentiable at x (Theorem 4 in [48] and Theorem 4.3 in
[78]).

Mean Value Theorem for Generalized Jacobians

Theorem 2.6.8 (Mean Value Theorem for Generalized Jacobians). Let U be a convex
open subset of R™ and F : U — R™ be a locally Lipschitz continuous function on U. Let
x €U, yeUad L ={u: u=xXx+(1—-Ny,\ € [0,1]} Then F(y) — F(x) €
conv ({Z(y —x) : Z € 9F(u), u € L}) (Proposition 2.6.5 in [25]).
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2.6.4 The Partial Generalized Gradient and Jacobian

Let {s;}"_, be a set where each s; and n are finite positive integers. Let X; C R* be an open
set, x; € X; for all i € {1,...,n} and x = (xy,...,%X,). Let F be a function from 1" , X;
to R™ ke {l,...,n} and F(xy,...,Xp_1,", Xg+1,--.,X,) be a locally Lipschitz continuous
function on Oy, a neighborhood of x;. Then

OcF(x) = conv ({‘lim JiF(z;) © Xpi — Xp, Xg; € Op\(Sk U Qk)})

1— 00

where z; = (X1, ..., Xp—1,Xki» Xkt1s-- -, Xn), @k Is any measure zero subset of Oy and Sy is
the set of points in Oy such that J,F(x;,...,Xx_1,0, Xps1,-..,X,) does not exist if u € Si.

If m = 1 then the set containing the transposes of all the elements of the generalized
Jacobian, O F(x), is the generalized gradient of the function F'(X1,..., Xk 1, ", Xki1,s---5Xpn)

at x.

Definition 2.6.9 (The Projection of the Generalized Jacobian). LetF : X; x X, — RP
where X1 and X5 are open subsets of R™ and R™, respectively. Let F be locally Lipschitz
continuous at (X1,Xs) where x; € X; and X € X5. Then m0F(x1,x3) is the set {M €
RP*™ - N € RP*" such that [N M] € OF(x1,x2)}. Analogously, m 0F (x1,x2) is the set
{M € RP*"™ : 3N € RP*™ such that [M N] € OF(x1,x3)}.

Theorem 2.6.10. Let F : X; x Xy — RP where X1 and X5 are open subsets of R™ and R™,
respectively. Let F be locally Lipschitz continuous at (Xi1,Xs) where X1 € X7 and x3 € Xs.

Then 01F(x1,x5) C m0F(x1,X3).

Proof. The result follows from Theorem 3.2 in [78]. Note that in the statement of this
theorem, Jf(p) represents OF(x;,x3) and the subspace L represents R". 0f(p)|r, the re-
striction of Jf(p) to the subspace L in this case corresponds to m0F (x1,%2). Jpf(p) is an

intermediate construct that contains 0,F (x;, X2) as stated on page 57 in [78]. O
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Definition 2.6.11 (The Projection of the Generalized Gradient). Let f : X; X
X5 — R where Xy and Xy are open subsets of R™ and R™, respectively. Let [ be locally
Lipschitz continuous at (x1,X3) where x; € X1 and x9 € Xy. Then m0f(x1,X2) is the set
{M € R™ : IN € R” such that (N,M) € 0f(x1,%x2)}. Analogously, m0f(x1,%2) is set
{M € R": IN € R™ such that (M,N) € 0f(x1,%2)}.

Theorem 2.6.12. Let f: X; x X9 — R where X, and X5 are open subsets of R™ and R™,
respectively. Let f be locally Lipschitz continuous at (x1,X2) where x; € X7 and x5 € Xs.

Then 0y f(x1,x2) C mOf(x1,%2) (Proposition 2.53.16 in [25]).

2.6.5 Implicit Function Theorem for Locally Lipschitz Continuous

Functions

The next theorem is an implicit function theorem summarizing the necessary results for
subsequent developments (Corollary of Theorem 7.1.1 on page 256 in [25] and Theorem 1.5
in [28]).

Theorem 2.6.13 (Implicit Function Theorem for Locally Lipschitz Functions).
Let Xy and X5 be open subsets of R™ and R™, respectively. Let x; € X1 and X9 € X5. Let
H: X, x Xo — R™ be locally Lipschitz continuous at (X1,X3).

Let mo0H(x1,X2) be the set {M € R™™ : AN € R™" such that [N M] € 0H(xy,X32)}.
Let my0H(x1,X2) be mazximal, i.e., each element of moOH (x1,x3) is invertible.

If H(xy,%x5) = 0, then there ezists O, a neighborhood of x1, and a locally Lipschitz con-
tinuous function G from Oy to R™ such that G(x1) = x2 and H(u, G(u)) = 0, for allu € O;.
IfOH(x1,x3) = {[(J1H(xy, x2) Jo(H(x1,%2)]}, then 0G(x;) = {—JoH(x1, x2) I H(x;,%2) }
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2.7 Piecewise Continuously Differentiable (PC') Func-
tions
The results in this section can be found in [91] and [98].

Definition 2.7.1 (PC' Functions). Let X be an open subset of R*. F : X — R™ is
a piecewise continuously differentiable function on X, denoted by F € PCY(X), if F is a
continuous function on X and for every x € X there exists a neighborhood O C X and a
finite set of selection functions, {F; : O — R™, F; € C1(O)}r_,, such that for all y € O,
F(y) € {Fi(y)}r,. Let O; = {y € O : Fi(y) = F(y)} for each i € {1,...,k}. A selection
function, ¥, is essentially active at x if x € cl(int (0;)). Z(F,x), the set of essentially
active function indices at x is the set of indices i € {1,...,k} such that F; is essentially

active at X.

2.7.1 Properties of PC' Functions

1. If F € PC'(X), then there exists a set of selection functions that are essentially active

at x € X (Proposition 4.1.1 in [98]).

2. If F € PCY(X), then F is locally Lipschitz continuous at all x € X. The Lipschitz
constant is the maximum of the Lipschitz constants of the essentially active selection

functions.

3. If F € PC'(X), then OF (x) = conv ({JF;(x) : i € Z(F,x)}).

2.7.2 Implicit Function Theorem for PC! Functions

Definition 2.7.2 (Complete Coherent Orientation). Let Y; and Yy be open subsets of

R and R™, respectively. Lety, € Yy andys € Ys. Let H:Y; x Yy — R™ be a PC* function
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,and let {H; : i € Z(H, (y1,y2))} be the set of essentially active selection functions at
(y1,¥2). Let A(y1,y2) be the set of all m x m matrices M with the property that there
exist matrices My € {JoH;(y1,y2) : ©« € Z(H, (y1,y2))} where k = 1,...,m such that the
kth row of M coincides with the kth row of My. Then H is completely coherently oriented
with respect to Yy at (y1,y2) if all matrices M € A(y1,y2) have the same non-vanishing

determinantal sign (Definition 16 in [91]).

Theorem 2.7.3 (Implicit Function Theorem for PC' Functions). Let Y} and Y be
open subsets of R™ and R™, respectively. Let y; € Y1 and yo € Yy. Let H: Y] x Yo — R™
be a PC' function that is completely coherently oriented with respect to Yy at (y1,y2). If
H(yi,y2) = 0, then there exists a neighborhood, O, of y1 and a PC function, G : O — R™
such that G(y1) = y2 and H(z,G(z)) = 0 for allz € O (Corollary 20 in [91]).

2.8 Semismooth Functions

Semismooth and related functions comprise a group of functions for which nonsmooth opti-
mization methods with provable convergence can be devised. Nonsmooth Newton methods

exist to solve nonsmooth equations involving vector-valued semismooth functions.

2.8.1 Bouligand Differentiable Functions

The results in this section can be found in [35].

Definition 2.8.1 (The Bouligand Derivative). Let X be an open subset of R". Then
F: X — R™ is Bouligand differentiable (B-differentiable) at x € X if F is locally Lipschitz
continuous and directionally differentiable at x. The function ¥'(x;-) is called the Bouligand

derivative (B-derivative) of F at x (Definition 3.1.2 in [35]).
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Theorem 2.8.2. Let X be an open subset of R™. F : X — R™ be B-differentiable at x € X.

Then the limit

i F9) —F(x) = Fllxy — %)

=0
y—x Ix =yl

holds (Proposition 3.1.3 in [35]).

Theorem 2.8.3 (Chain Rule for Bouligand Differentiable Functions). Let X be an
open subset of R". Let F : X — R™ and G : R™ — RP be B-differentiable at x € X and

F(x) respectively. Then H = G o F is B-differentiable at x and the B-derivative is

H'(x;d) = G/(F(x); F'(x;d)), ¥d € R".

(Proposition 3.1.6 in [35]).

Properties of Bouligand Differentiable Functions

Let X be an open subset of R™ in this section.

1. If F: X — R™ is B-differentiable at x € X, then F/(x;-) is a Lipschitz function from
R™ to R™.

2. If F: X — R™ is B-differentiable at x € X, and F/(x;-) is a linear function, then F is

Fréchet differentiable at x.

3. I F: X — R™e PC(X), then it is B-differentiable at all x € X.

4. Let X be a convex set and f : X — R be a finite convex function on X. Then f is

B-differentiable at all x € X.

62



2.8.2 Scalar-Valued Semismooth Functions

In the remainder of this section, let X be an open subset of R™ and f : X — R be locally

Lipschitz continuous at x € X.

Definition 2.8.4 (Scalar-valued Semismooth Function). f is semismooth at x € X
if for each d € R™ and for all sequences {tx} C R, {vi} C R™ and {gr} C R"™ such that
te #0, Vk, t, | 0, v/t — 0 and g, € Of (x +tpd + Vi), the sequence {(gr,d)} has ezactly
one accumulation point [71]. If f is semismooth for all x € X, then it is a semismooth

function.

Definition 2.8.5 (Weakly Upper Semismooth Functions). f is weakly upper semis-
mooth [70] at x if for each d € R™ and for any sequences {t;,} C R and {gr} C R"™ such that
ty >0, Vk, t;, | 0 and gy € Of (x + txd) the following holds:

lim inf (g, d) > limsup foct ted) = J1x) (2.8.1)

t10 ty

Definition 2.8.6 (Upper Semidifferentiable Functions). f is upper semidifferentiable
at x if and only if for all d € R™, for all sequences {t;.} C R and {gy. : gr € Of(x + t;d)}

such that t, > 0, Vk and t;, | 0, there exist subsequences whose indices are in the set K C N

such that
d) —
lim inf f(XH’“t A (2.8.2)
hek g
holds [18].

Properties of Scalar-Valued Semismooth Functions

Let X be an open subset of R" in the remainder of this section.
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. Definition 2.8.4 and the fact that the generalized gradient is a locally bounded set-
valued mapping imply that all sequences {(gx,d)} as described converge to the same
limit.

Let L be the accumulation point mentioned in Definition 2.8.4. The sequence {(gx, d)}
is bounded because the generalized gradient is locally bounded. Assume there exists
a subsequence that does not converge to L. By the Bolzano-Weierstrass Theorem
(Theorem 2.42 in [96]), this subsequence has a converging subsequence. If the limit of
this subsequence is not L, then the semismoothness assumption is violated. Hence all

sequences {(gy,d)}, converge to L.

. If f is semismooth at x € X then f’(x;d) exists for Vd € R" and is equal to klim (g, d)

for any sequences as described in Definition 2.8.4 (Lemma 2 in [71]).

. If f is semismooth in a neighborhood of x € X, then f'(x;d) = lirl%f’(x+tkd; d) for any
tg

sequence {tx} such that ¢, > 0 for all £ and ¢, — 0. Note that due to semismoothness

in a neighborhood of x, for small enough ¢, f'(x+txd; d) exists and is equal to (g, d)

where g € 0f(x + t,d). By semismoothness {(gy,d)} converges to a limit which is
f'(x;d).

.Let f: X — R and g : X — R be locally Lipschitz continuous and semismooth

functions on X. Then g + f and ag where o € R are semismooth functions [71].

Lt F: X - Rty — (fi(y),..., fm(y)) where f; : X — R,i=1,...,m are locally
Lipschitz continuous and semismooth at x € X. Let g : R™ — R be locally Lipschitz
continuous and semismooth at F(x). Then g o F is locally Lipschitz continuous and

semismooth at x (Theorem 5 in [71]).

. If f: X — R is a semismooth function then it is strictly differentiable for all x € X\ S

where S is a measure zero subset of X [88].
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10.

11.

12.

If f: X — R is a finite and convex function in a neighborhood of x € X, then it is

semismooth at x.
If f: X — R is semismooth at x € X, then it is weakly upper semismooth at x [70].

If f: X — R is weakly upper semismooth at x € X, then it is directionally differen-
tiable at x [70].

If f is weakly upper semismooth at x, then it is upper semidifferentiable at x. If
f X — R is upper semidifferentiable at x € X, and is directionally differentiable at

x, then it is weakly upper semismooth at x [18].

Upper semidifferentiability is a sufficient condition for line search algorithms in nons-

mooth optimization methods to terminate finitely [54, 66].

If F: X - R € PCYX), then it is a semismooth function [35].

2.8.3 Vector-valued Semismooth Functions

The concept of semismoothness is extended to functions F : R" — R™ using the generalized

Jacobian [89)].

In the remainder of this section, let X be an open subset of R” and F : X — R™ be a

locally Lipschitz continuous function.

Definition 2.8.7 (Vector-valued Semismooth Functions). Let d € R", {t;} and {vy}

be any sequences such that t, € R, tp > 0 Vk, v, € R", t,, | 0 and vi/ty, — 0. Let

Xp = X+ d+ vy and dy = d + vi/ti. F : X — R™ is semismooth at x € X if for

each d € R™ and for all sequences {xy} and {Vy} such that for all k, Vi € OF(xy), the

sequence {Vidi} has exactly one accumulation point [89]. F is a semismooth function if F

18 semismooth at all x € X.
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Properties of Vector-valued Semismooth Functions

1. As in the scalar-valued semismooth function case, all sequences {Vdy} converge to

the same limit because the generalized Jacobian is a locally bounded set-valued map.

2. If F: X — R™ is semismooth at x, then the directional derivative exists for all d € R"”

and F'(x,d) = Vd where V € 0F(x) [89].

3. I F: X — R™ is semismooth at x

lim T ZFO) g - P k) (2.8.3)

k—o0 tk k—o00

holds [89].
4. F : X — R™ is semismooth at x if and only if each element of F is semismooth [35].

5. Let F : X — R™ be semismooth at x and G : R™ — RP be semismooth at F(x). Then

G o F is semismooth at x [35].

6. f F: X — R™ e PC'(X), then it is a semismooth function [35].

2.8.4 A Restricted Definition of Semismoothness

In the subsequent chapters, a restricted definition of semismoothness is used. In order to
be semismooth at x € X, F : X — R™ needs to be Bouligand differentiable on an open
neighborhood of x in addition to satisfying conditions in Definitions 2.8.4 and 2.8.7. This
restriction does not affect the results concerning semismooth functions presented so far. This
restricted definition of semismoothness is automatically satisfied by the data used for this
work. The reason for this restriction is to better align the exposition with key results from

the literature on which the results in this document depend.
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An equivalent definition under the stated restriction of semismoothness using Bouligand

derivatives is as follows:

Definition 2.8.8. Let X be an open subset of R". Let F : X — R™ be a locally Lipschitz
continuous function on O, a neighborhood of x € X. Let ¥ be a directionally differentiable
function on O. F is semismooth at x if there exists a function A : (0,+00) — [0, +00) such

that lii%l A(z) =0 and for any y € O\{x}

F(y;y —x) - F(xy —x) .
e~ < A(lly =x)l)

holds [35].

The following theorem establishes the connection between previous definitions of semis-

moothness and Definition 2.8.8.

Theorem 2.8.9. Let F : X — R™ be a locally Lipschitz continuous and B-differentiable
function on O, a neighborhood of x. Then the following statements are equivalent (Theorem

7.4.3 in [35]).
1. F is semismooth at x.

2. Fory € O\{x},

i 3y —%) —Flxy —x) _
y—x ly — Il

holds.

3. Let {x}} € O\{x} be any sequence such that klim x, — x. Let {V} be any sequence
such that for all k, Vi € OF(xy). Then for all sequences {x;} and {Vy} as described,

lim F/(x;x; — x) — Vi(x — X)

=0
ko0 I3 = x|
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holds.

4. For all sequences {x;} and {Vy} as described in the previous item,

lim F(x;) — Vi(x, —x) — F(x)

=0
k—o00 ||X—Xk||

holds.

Theorem 2.8.9 elucidates the most important properties of semismooth functions. Due
to Bouligand differentiability, F'(x;y — x) provides a good approximation of F(y) for all y

sufficiently close to x. In addition, F'(x;y — x) can be approximated well using an element

of OF(y).

2.8.5 The Linear Newton Approximation

Definition 2.8.10 (Newton Approximation). Let X be an open subset of R". Let F :
X — R™ be a locally Lipschitz function on X. ¥ has a Newton approximation at a point
x € X if there exists O C X, a neighborhood of x and a function A : (0, +00) — [0, 4+00) with
Zlirgl+ A(z) = 0 such that for everyy € O, there is a family of functions A(y) called a Newton
approzimation, whose members map R"™ to R™ and satisfy the following two properties:

1. A(y,0) =0 for every A(y,-) € A(y).
2. For anyy € O\{x} and for any A(y,-) € A(y)

|F(y) + Aly,x —y) = F(x)|| < A(

ly —xI)
ly = x|

holds (Definition 7.2.2 in [35]).

Definition 2.8.11 (The Linear Newton Approximation). Let X be an open subset of

R". Let F : X — R™ be a locally Lipschitz function on X. Let I' : X == R™™ be an upper
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semicontinuous set-valued map at x € X and I'(y) be a compact set for ally € X. Assume
there exists a function A as defined in Definition 2.8.10. If for any y € X\{x} and for any
M e I'(y),

[F(y) + M(x —y) - Fx)|
ly — x|

< A(lly =xl)

holds, then I'(x) is a linear Newton approzimation of ¥ at x (Definition 7.5.13 in [35]).

It is possible that there exists more than one linear Newton approximation for a given
function unlike the generalized Jacobian and generalized gradient. The linear Newton ap-
proximation construct is used to solve nonsmooth equations and its properties suffice to
devise methods to solve these equations using Newton-type methods. The nonuniqueness of
the Newton approximation helps overcome cases where the generalized Jacobian cannot be
computed easily when solving nonsmooth equations and allows the development of different
methods with varying properties to solve these equations. The linear Newton approxima-
tion by itself does not carry useful information for optimization purposes. The subsequent
developments couple the generalized Jacobian and the Newton approximation to overcome
situations where an element of the generalized Jacobian cannot not be computed to devise

numerical optimization methods.

Similar to the generalized Jacobian, the linear Newton approximation has calculus and
chain rules. Unlike the generalized Jacobian, these rules always involve equalities and not

inclusions. In this respect, the linear Newton approximation behaves like the Jacobian.

Theorem 2.8.12 (Chain Rule for the Linear Newton Approximation). Let X be an
open subset of R". Let F : X — R™ and G : R™ — RP be locally Lipschitz continuous at

x € X and F(x), respectively. Let T'F and I'G be the linear Newton approximations of F
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and G at x and F(x), respectively. Then

TH: X =R .y {AB: A € IG(F(y)), B € [F(y)} (2.8.4)

is a linear Newton approzimation of H= G oF at x € X. (Theorem 7.5.17 in [35]) T.

Properties of Linear Newton Approximation

1. Let X be an open subset of R". Let F : X — R™ be locally Lipschitz function on X.
Let I'F be the linear Newton approximation of F at x. Then § : X = R™" 1y =

conv (I'F(y)) is a linear Newton approximation of F at x (Lemma 9 in [81]).

2. Let F : X — R™ be locally Lipschitz continuous and semismooth at x € X. Then OF

is a linear Newton approximation of F at x (Proposition 7.5.16 in [35]).

Calculus Rules for the Linear Newton Approximation

1. Let X be an open subset of R”. Let F : X — R™ and G : X — R™ be locally Lipschitz
continuous at x € X. Let ['F : X = R and I'G : X = R"™*"™ be the linear Newton

approximations of F and G at x, respectively.

Then TH : X = R™" 1y & ay'F(y) + ae'G(y) is a linear Newton approximation

of the function a1 F 4+ ax G at x € X where a; and ay are scalars.

2. Let X be an open subset of R". Let f: X — R and g : X — R be locally Lipschitz
continuous at x. Let I'f : X = RY™” and I'g : X = R™" be the linear Newton

approximations of f and g at x respectively. Then the following rules hold:

(a) Th: X =Ry = f(y)['f(y)+ 9(y)Tg(y) is a linear Newton approximation

of the function f+g¢g at x € X.

tTheorem 7.5.17 considers the function G o F where F : R® — R™ and G : R™ — R”. The proof holds
for the general case where G : R" — RP.
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(b) Th : X = R¥>" .y = I'f(y) x I'g(y) is a linear Newton approximation of the

function (f,g) at x € X.

(c) If g(x) # 0, then

L'f(y) = f(y)Tg(y)

Th: X 5 Ry o 40

9*(y)
is a linear Newton approximation of f/g at x.
(d) Ify € X, let
(Ff (¥) if f(y) > g(y)
P(y) = Tfy)uTgly) if f(y) = g(y) (2.8.5)
Ly(y) ifg(y) > f(y)-

\

Then Th : X = R : y & I'(y) is a linear Newton approximation of the

function max(f,g) at x.

2.9 Examples

Example 2.9.1. Let S: R = R be:

4

[—1,1] ifa =0,

Sx)=q{1}  ifz>0,

{-1} ifz <O.

S is upper semicontinuous at 0, but not lower semicontinuous. Let O = (—0.5,0.5). Even
though S(0) N O # 0, S(y) NO = for all y € R\{0}. S is a locally bounded and closed

set-valued map.
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Example 2.9.2. Let S: R = R be

(

(-1,1) ifz =0,

S(z) =4 {1} if > 0,

{—-1} ifz<0.
\

S is not upper semicontinuous at zero. S is a locally bounded but not a closed set-valued

map.

Example 2.9.3. Let S: R = R be

(

[—1,400) ifz =0,

S(z) = 4 {1} if x> 0,

(-1} if 2 < 0.
\

S is upper semicontinuous at 0, but not lower semicontinuous (see Example 2.9.1). S is a

closed but not locally bounded set-valued map.

Example 2.9.4. Let S: R = R be

4

{0}  ifz=0,

S(x) =< 1,-1] ifz>0,

2,—2] ifz<0.

\

S is not upper semicontinuous at zero but it is lower semicontinuous at zero. It is locally

bounded at zero, but not closed at zero.
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Example 2.9.5. Let S: R = R be

;

1,-1] ifz=0,
S(z) =470 if2 > |z| >0,

1 iffa > 2.

\

S is upper semicontinuous at zero, but is not lower semicontinuous at zero. It is locally

bounded at zero. It is closed at zero.

Example 2.9.6. This example proves the equivalence of the two definitions of strict differ-

entiability in Definition 2.2.5.

Let f : X — R™ where X is an open subset of R". First assume that

fly +tv) —f(y) —tA(x)v

1m
(v; )= (x,0%) t

—0 (2.9.1)

holds for all v and the convergence is uniform for v in compact sets.

Let {vr} € R" be a sequence such that v;, — 0 and for all k, v}, # 0. Let t, = ||vi/l,
tkvy = Vi, and vy = v + wy. Note that vy is a unit vector. Let {yx} € R"™ be such that

klim yvir = x and y; # x for all k.

Then

1f(yx + Vi) — f(yr) — AX)Vi]

95|
£ Cys + tx(vi + wi)) = £(yx) = e AR (Vi + wi) || _
tr -
[£(yx + tevi) — £(yx) — tA(X) (V1) N ECye + te(va + wi)) — £(yr + teve) — B A ) (W) ||
tk tk

The first term converges to zero by assumptions as k — oo. Note that vi + wj and vy are
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elements of the set C'={u: ||u|]| =1, u € R"} which is a compact set. In addition,

[E(yr + te(vi +wy)) — £(yr + tevi) — . A(X) (wy) ||

Tk
H f(yk + tk(Vl + Wk)) — f(yk) — tkA(X)(Vl + Wk) _ f(yk + tkvl) — f(yk) — tkA(X)(Vl) ‘ .
tk tk

This last quantity can be made arbitrarily small for all vi + w;, € C by picking a large

enough £ due to uniform convergence on compact sets. Hence

lim =0.
(v:v)—(x,0) vl
Conversely, assume
f —f(y)— A
m Y EV ) ARV (2.9.2)
(y:v)—(x,0) v

holds.

Let vo € R"\{0}. Let v = tvy where ¢t € R and ¢ > 0. Then (2.9.2) becomes

lim f(y +tvo) — f(y) — tA(x)vo
(y,6)—(x,0+) tfvoll

=0 (2.9.3)

which implies (2.9.1) since ||vy|| is a positive constant.

Let vi € R"\{0} and v, € R"\{0}. Assume v; € C' and vy € C where C is a compact
subset of R"™. Consider

fly +tvi) —f(y) —tA(x)vy  f(y +tve) — f(y) — tA(x)vy

t t B
fly +tvi) — f(y + tvy) — tA(x)(v1 — v3) _

t
£(y +t(vi—va)) — £(¥) — tA(x)(v1 — Vz).

t
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Since (2.9.2) holds, then for any € > 0,

< 2eM

H f(y +t(vi —v2)) — £(y) —tA(x)(vi — v2)
t

holds for ¢ small enough and y close enough to x where M is the bound on the magnitudes
of the elements of C'. This condition holds for any v; and v, in C. Hence (2.9.1) converges

uniformly for v in a compact set.

Example 2.9.7. Let h : R — R be

?sin(1/2%) ifx #0,
h(z) =
0 it x = 0.

h is a differentiable function and its derivative is

2xsin(1/2?) — 2cos(1/2?) ifx #0,
Vh(z) =
0 itx=0.

However, h is not locally Lipschitz continuous at zero. Let n = 1,3,...,00 and x,, =

\/=. Then h(z,) € {—=, 2} Let x4, = Mﬁ- Note that h(z,41) = 0, |h(x,) —
h(@n)| = 2 and |2, — 2| = \/g(ﬁ— L) — ﬁwm&mw The ratio [h(z,) —
W pi1)|/|Xn — Tyl 18 \/g, /(14 1)(v/n+1+ y/n). This ratio goes to infinity as n — oo

which shows that h is not locally Lipschitz continuous in a neighborhood of zero.

Example 2.9.8. Let g: R — R be

r?sin(1/x) ifx # 0,

0 ifz=0.
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This function is differentiable at zero. The derivative is

2xsin(1l/x) —cos(1/z) if x # 0,
Vy(z) =

0 ifz=0.

g is locally Lipschitz continuous at zero. Let x; and x5 be two points in an € neighborhood

of zero. By the mean value theorem for differentiable functions there exists an x5 € [—¢, €|

such that g(z1) — g(z2) = Vg(z3)(x1 — 22). Vg is bounded. Let K = sup {Vg(y)}. Then
yE[—e.e]

lg(x1) — g(x2)| = K|z1 — 22| holds on (—¢, €) and ¢ is locally Lipschitz continuous at zero.

The generalized gradient of g obtained using Definition 2.6.3 is:

2z sin(1l/xz) — cos(1/x if x #£0,
Ba(z) = { (1/x) (1/2)}
[—1,1] if 2 = 0.

The generalized gradient is not a singleton at zero where the function is differentiable. Hence
g is not strictly differentiable at zero.

g°(0;v) = |v| because by definition, Vv € R, ¢°(0;v) = (C,v)}. Since g is differen-

Cea%){
tiable at zero, it is directionally differentiable at zero and ¢’(0;v) = 0. Therefore, g is not
regular at zero.

Letn=1,...,00 and z,, = . Let g, € 9g(x,) and d = 1. The sequence {(g,, d)} is not
convergent because (g,,d) is 1 if n is odd and —1 if n is even. Hence, g is not semismooth
at zero.

g is not weakly upper semismooth at zero. For the aforementioned sequence, the left-
hand side of (2.8.1) is —1 and the right-hand side is 0 due to the existence of the derivative
at 0.

g is not upper semidifferentiable at zero. Let n = 1,3,...,00 and z, = ﬂ—ln Let g, €

0g(x,,) and d = 1. Then the limit in (2.8.2) is 1.
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Example 2.9.9. Let f : R — R be [18]

(

0 if x <0,

f(@) = { zsin(In(In(1/z))) if0<z<1/2,

\%sin(ln(ln(1/2))) 1f% <1

f is locally Lipschitz continuous at all € R\{0}. In order to determine local Lipschitz
continuity at zero, the following three cases are analyzed separately where 2,y € (—¢, €) and

e<1/2.

1. Case z > 0, y < 0. In this case, [f(y) — f(2)| = |f(2)] < |2| because |sin(u)| < 1.

Since |z —y| > |2, [f(y) — f(2)] < |z —y| holds.
2. Case 2 <0,y <0. 0=|f(y) — f(2)| <|z— y]| holds trivially.

3. Case z > 0,y > 0. f is continuously differentiable on (¢,0). The derivative is V f(x) =
sin(In(In(1/x))) — cos(In(In(1/x)))(1/In(1/z)). Hence K = 2 is a Lipschitz constant

for f on this interval.

As a result, f is locally Lipschitz continuous at zero with Lipschitz constant K = 2.
f is not directionally differentiable at zero. For 0 < x < ¢, consider the difference

zsin(In(ln(1/z))) = 0

po = sin(In(In(1/z))).

This difference does not converge to a limit as * — 0 and therefore f is not directionally

differentiable at zero. As a result it is not semismooth nor weakly upper semismooth at zero.

However, f is upper semidifferentiable at zero. Let the sequence {x;} be such that for

all k, 0 < x, < 1/2 and klim xp = 0. Let d = 1. Note that df(z)) = {sin(In(In(1/xy))) —
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cos(In(In(1/xy)))(1/In(1/xy))}. At zero, the limit (2.8.2) becomes

lim %k sin(In(In(1/xx))) — 0
k—oo Ty — O

khj& cos(In(In(1/xx)))(1/In(1/xy)) = 0.

—sin(In(In(1/xy))) + cos(In(In(1/xx)))(1/In(1/xy)) =

Since the above holds for any d > 0 and the conditions for upper semidifferentiability holds

trivially at zero if d < 0, f is upper semidifferentiable at zero.

Example 2.9.10. Let f : R — R : 2 +— 1 — ¢l?l. Note that f € PC'(R) with selection
functions; fi : R = R:x+—1—-¢eand fo : R - R : 2 +— 1—¢e " Therefore f is a locally

Lipschitz continuous and semismooth function.

The generalized gradient of f is

4
{—e"} ifz >0,

Of(x) = {e "} ifz <0,

(1,1 ifz=0.

\

In order to determine whether the function is regular at zero, the generalized directional

derivative

1 — elyttvly — (1 — el
f°(0;v) = limsup (1—e il G
(5, )—(0,0%) t

needs to be calculated for v € R and y € R\{0}. The limit supremum is obtained as the
supremum of the limits of sequences classified into four groups depending on the signs of

y + tv and y.
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1. Case y > 0 and y+tv > 0. Let f; : (—¢,¢) — R be

_ Lty
yl e

fily) =e P

Note that for all t > 0, lin%ft(y) = (1 —€"™)/t holds. Let fy : (—e,¢) — R be
y—>
fo(y) = —veY. Then, for all y € (—e¢,¢€), ltilr(l)l fi(y) = fo(y) holds per 'Hospital’s rule.

In addition, define M, as;

M; = sup |fi(y) — fo(y)]

yE[—€e]
1 _ etv

t

M, = e° + v

and lim M; = 0. As a result of this uniform convergence lim lim f;(y) = lim lim f,(y) =
t]0 t|0 y—0 y—0 t|0

—v. Uniform convergence also implies ~ lim  f;(y) = —v because
(y,6)—(0,0%)

[fe(y) = fo(O)] < [fe(y) = fo(w) + | fo(y) — fo(0)]

and both terms on the right can be made arbitrarily small by letting ¢ be small enough.

Hence, if y > 0,¢t > 0 and y + tv > 0,

lim sup (1= el = (1 = €M) = —v
(y, )—(0,0+) t

2. Case y < 0 and y + tv < 0. In this case, let f; : (—€,¢) — R be

Then for all t > 0, lim, fi(y) = (1 — e ™)/t holds. Let fo : (—€,¢) — R be

fo(y) = ve™ Y. Note that for all y € (—e,€), 1tiif(l)1ft(y) = fo(y) holds per I'Hospital’s rule.
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Per similar analysis as in the previous case, it can be deduced that if y < 0, ¢ > 0 and
y+tv <0,
(1 — elvttoly — (1 — elvh

lim sup = .
(y, )—(0,0+) t

3. Case y < 0 and y + tv > 0. Note that

e Y — ey-l-tv e~ Y — e—y—tv
<

t - t
Hence
e Y — ey-l-tv e Y — e—y—tv
limsup ——— < limsup ——F7——,
(y, )—(0,0+) t (y, )—(0,0+) t
e Y — 6y+tu
limsup —— <w.
(y, )—(0,0%) t

4. Case y > 0 and y + tv < 0. In this case

eV — e—y—tv eY — ey-l—tv
<

t - t
Hence
e¥ — e Yt eV — eyttv
limsup —— < limsup ———,
(v, )—(0,0+) ¢ (v H—00+) 1
ey _ e—y—tv
limsup ——— < —w.
(5, )—(0,0%) t
The supremum of the limits is |v| for all cases. Therefore f°(0;v) = |v|. The directional
derivative exists and is f/(0;v) = —v if v > 0 and f'(0;v) = v, if v < 0. The directional

derivative is not equal to the generalized directional derivative. Hence f is not regular at
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zZero.

Usually, it is simpler to obtain the generalized gradient first and then obtain the gener-

alized directional derivative using the generalized gradient.

Example 2.9.11. Let z; € R and 23 € R. Consider the function f : R?> — R from [43]
which is defined as

f(z1,29) = |27 — sin(|za])]. (2.9.4)

f is plotted in Figure 2-1.

flz1, x2)

Figure 2-1: (Example 2.9.11) Plot of f(x1,25) = |2? — sin(|z3|)| and of its contours.

f is a locally Lipschitz continuous function because it is a composition of locally Lipschitz
functions. Note that f € PC*(R?). The selection functions of f are presented in Table 2.1.
In order to calculate 9f(0,0), properties of PC' functions in Section 2.7.1 are used in
conjunction with the data in Table 2.2 to obtain df(0,0) = conv ({(0,1), (0, —1)}). Note
that (0,0) € 9f(0,0).
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f(.flfl,.l’g) ) Z 0 Ty < 0

22 >sin|z| | 2 —sinxy | 2% 4 sinzy
2 _ 2 2
x7 < sin || ] +sinxy | —x] —sinxy

Table 2.1: (Example 2.9.11) The selection functions of |2? — sin(|zs])|.

V f(x1,x9) x9 >0 9 <0

2?2 > sin |xo] | (221, — cos 1) (221, cos o)

23 < sin|z| | (=21, cosxq) | (—221, — cos xo)

Table 2.2: (Example 2.9.11) V f(x, z2) at points where it is defined.

Example 2.9.12. Let t; = 5.0. Let 2y € (0,27) and x5 € (0.5,4) Consider the function

f:(0,27) x (0.5,4) — R [115] defined by

4

2t sin(zy) if | cos(z1)| < ;—i,
[z, 22) =  —a, tan(xl)etf“wz%zl) if — 25‘;—? > cos(z1),
g(x1, z2) if ;t—zf < cos(z1)

\
(

xg tan(z1) + 2(ty — 5584)  if tan(ay) > 1,

9(@1,22) = 4 3y tan(a:l)etf_%ozﬁzﬂ if tan(z;) < —1,
h(ﬂ?l,l’g) if —1< tan(ml) < 1,
\
4
2ty —4 1n (ij((jll))) ~ oty T2 iV eTeostn H < tan(zy) < 1,

logp— %2 / T2 / T2 __
h(xl,fEQ) = T tan(xl)QZ(tf 2005(;121)) lf _ e 2cos(x) tf <tan(l’1) < e 2cos(x1) tf’

tp—s—2 . /S T2 4
—X tan2(x1)€( f 2c05(zl)) 1f -1 < tan(l'l) S _ e 2cos(z1) f.

\

The plot of f is in Figure 2-2. In order to analyze f, first open sets that partition its domain

will be constructed. Using these open sets, it will be shown that f € PC'((0,2m) x (0.5,4)).
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Figure 2-2: (Example 2.9.12) Plot of f.

Let D = (0,27) x (0.5,4). Let € be a small positive constant. Let

1 ={(x1,22) € D : cos(x1) — x2/(2ty) < €},
T ={(z1,22) € D: cos(z1) + 22/ (2t5) > —e},
A, —A/ //
Ay ={(x1,3) € D : cos(z1) + xa/(2t5) < €},

Az ={(z1,22) € D : cos(z1) — x2/(2ty) > —€}.

The functions ¢; : D — R @ (x1,29) — cos(xy) — z2/ty and g2 : D — R @ (21,23) —
cos(x1) + xg/ty are continuous functions. Let (z1,x9) € A}, then using the continuity of gy,
it can be shown that, O C D, a neighborhood of (zi,25), is a subset of A}]. Therefore A}

is an open set. Using similar reasoning, it can be shown that A}, A;, A, and Az are open

subsets of D.
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Let

By ={(z1,25) € Ag : tan(zy) > 1+ €},
By ={(z1,15) € Az : tan(z;) < —1 — €},
B, ={(x1,x9) € Az : tan(z1) < 1+ €},
B} ={(x1,15) € Az : tan(zy) > —1 — €},

By =B,N B

Note that if (z1,x9) € Az, then cos(x;) > 0, hence (x1,z3) — tan(z;) is a continuous func-
tion from Az to R. Using similar reasoning as before, it can be deduced that By, Bs, B}, BY

and Bjs are open sets.

Finally, let

Cy ={(z1,22) € By : |/ ezeostan U ¢ < tan(z;) < 1+ €},
02 :{(x17x2> E B3 I \/ €2coi%x1)_tf — € < tan<x1) < \/ choZ%xl)_tf + 6}7
Cs ={(z1,22) € B3: —1 —¢€ < tan(z;) < —V e2coz%w1)_tf + €}

The sets C1,Csy and (3 are open subsets of Bs per the same arguments as before.

The functions

cos (1) )
1 | — (w1, 22) — ! I (sin (1’1)) cos (1) e

Lop,—__ %2
hy: Cy — R : (x1,29) — X9 tan(xl)e2( ! 2oos(ac1>)’

hs : Cg —R: (Il,LE‘Q) = —X9 tan2(l’1)€(tf_2002%$1)).

are continuously differentiable functions.
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13 B
Let (x%,2%) € Bs be such that V e2e=D "= tan(x}). Then (z7],z3) € C, N Cy and
hy(z7, 25) = ho(x7, x3) = x5 for small enough e. Hence h; and hsy are selection functions of

[ =5
h on the neighborhoods of points (27, 25) € Bs at which V e?<=¢1) Y= tan(z7) holds.

X

Let (z7,23) € Bs be such that — G tan(x}). Then (z7,25) € Cy N C5 and
ho(z7, x5) = hs(x}, x3) = —x5 for small enough e. Hence hy and hg are selection functions of
h on the neighborhoods of points (x}, z%) € B3 at which —V e#%z’f)_tf = tan(z7) holds.

As a result h € PC'(B3).

Define the functions

g1: B1 — R : (21, 29) — zotan(xy) + 2 <tf — ﬁa)) ,
1

g2 : Bo = R (21, 22) = 22 tan(xl)etf_#%wl)’

g3 : B3 — R : (21, 19) — h(xy, 22).

Note that g; and gy are continuously differentiable functions.
Let (z7,25) € A3 be such that tan(x}) = 1. Then (z7,2}) € By N Bs and ¢y (27, 25) =

gs(x7, 2%) = hy(a}, x5) = 29 + 2ty — —22 ) for small enough e. Hence ¢g; and h; are selection

cos(z1

functions of ¢ on the neighborhoods of points (z7, 23) € A3 at which tan(z}) = 1 holds.
Let (xf,z3) € Az be such that tan(z}) = —1. Then (a7}, 23) € Bo N By and go(a7, x3) =
gs(x3,x5) = hs(af,zd) = l’ge(tf ~set) for small enough e. Hence h3 and g, are selection

functions of ¢ on the neighborhoods of points (7, 25) € A3 at which tan(x}) = —1 holds.
As a result, g € PC'(A3).

Finally, define the functions

fit Al = R (21, 22) — 2tgsin(x),

fo:As = R (2, 29) — —x9 tan(ml)etﬁ?coi%xl),
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fs:Ag —R: ($17$2) = g(%,%z)-

Let (z7,2%) € D be such that —;—i = cos(z1). Then (z],z3) € A1 N Ay and fi(z], 23) =
fa(a7, ) = —x9 tan(xy) for small enough e. Hence f; and fy are selection functions of f on
the neighborhoods of (z7],z3) € D at which —3* = cos(x;) holds.

25

Let (x%,23) € D be such that ;—i = cos(x1). In this case (z7,23) € A; N A; and
filxy, x3) = f3(xf,25) = zotan(xy) for small enough e. In order to compute f3(z7,x3),
g1(x3,x3), ga(xt, xh), ho(xy,x3) need to be considered. The conditions Vezetan Tt <
tan(r;) < 1 and —1 < tan(z;) < —V eZosten 1 in (2.9.5) are violated in this case and

therefore hy(x7, z%) and hy(x}, 23) need not be considered.

As a result of this analysis, f € PCY(D).
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Chapter 3

Parametric Sensitivity Analysis of
Dynamic Systems using the

Generalized Jacobian

The focus of this chapter is the existence of the derivative of the mapping n — x(t;,n) at

p € P, where x : [tg,tf] x P — X is the solution of the initial value problem:
X(ta p) - f(ta p,X(t, p))v \V/t S (t07tf]a X(t07 p) = fO(p)v \V/p € P - Rn,,’ (301)

where f: 7 X P x X — R f, : P — X are locally Lipschitz continuous functions, 7 is an
open subset of R such that [to,tf] C 7, X is an open subset of R™, X is an open subset of

X, P is an open subset of R"», n, and n, are positive finite integers.

It is well known that the mapping n — x(t;,m) at p € P is a Lipschitz continuous
function on O, some neighborhood of p, and that it is differentiable for all n € O\S where
S is a measure zero subset of O per Rademacher’s Theorem. However, conditions on x(-, p)

that imply differentiability of n — x(tf, 1) at p are not widely known.
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If £ were a continuously differentiable function on an open set containing {(t, p, x(¢,p)) :
t € [to,tr]}, then continuous differentiability would follow from Gronwall’s classic result in
[44]. This condition may not hold for the systems under consideration. Examples 3.6.1 and
3.6.2 consider cases where an open set with the desired properties does not exist, yet the
mapping p — x(ts, p) is differentiable.

The sufficiency conditions follow from results in nonsmooth analysis and are based on
the concepts of the generalized gradient and Jacobian [25]. A brief primer on nonsmooth
analysis is presented in §3.1.

The results of this chapter define forward and adjoint sensitivity initial value problems
to be solved to obtain the aforementioned derivative. The forward sensitivity initial value

problem is a linear time-varying ordinary differential equation of the form

C(t) = Mo(t)¢(t) + My(t), Vt € (to,ts], C(to) = Co,

where M; : [tg,tf] — R™*" and M, : [to,t;] — R™*"* are measurable and ¢ : [to, tf] —
R™*™ is an absolutely continuous function. This ordinary differential equation is solved
simultaneously with (3.0.1). Thus, the derivative is obtained by integrating n, xn, additional
equations. When the derivative of the mapping n — H)f g(t,m,x(t,m))dt with g a scalar-
valued function is sought, the integration of the adjoint sensitivity initial value problem
might be the computationally more efficient way to obtain the derivative. This is the case
especially if n, x n, is significantly larger than n, + n,. The adjoint, X, is the solution of

the adjoint sensitivity initial value problem of the form

A(t) = Ag()A(E) + Ay (t), Yt € [to,tr), Alts) = Ao

where Ay : [to,t;] — R™*™ and Ay : [to,t;] — R™ are measurable functions and X :

[to,tf] — R™ is an absolutely continuous function. The desired derivative is then computed
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as the solution of an integral of the form ftl;f h(t,n,x(t,n), A(t))dt. The adjoint method
requires the integration of n, + n, equations backwards in time including the quadrature of
the integral. The development of forward and adjoint sensitivities in case f is continuously

differentiable is well known and can be found in [24] and [26].

The adjoint and forward sensitivity results for (3.0.1) are derived in §3.2 and extended
to a class of nonsmooth differential-algebraic equations in §3.3. Finally, results for a case
where the evolution of the states is governed by disparate nonsmooth differential-algebraic

equations in different time intervals is considered in §3.4.

The results of this chapter are most closely related to the works in [24], [93], [39], [95]
in addition to [44]. The adjoint sensitivity initial value problems are derived for index-1
and index-2 differential-algebraic equations for sufficiently differentiable equations in [24].
In this chapter, forward and adjoint sensitivity initial value problems for index-1 differential-
algebraic equations with locally Lipschitz equations are derived. The sensitivity and adjoint
systems derived in this chapter have discontinuous right-hand sides, unlike the results in
[24] and [44] and therefore require special treatment. In [93], the time interval in (3.0.1) is
divided into finitely many subintervals and for each subinterval the evolution of the states is
governed by different ordinary differential equations with continuously differentiable vector
fields. The times at which the differential equations switch depend on the parameters;
however, it is required that the number of subintervals and the order in which the equations
are solved is independent of the parameters in some neighborhood of p. The switching times
are the solution of continuously differentiable equations of time, parameters and states.
Discontinuities in the solution are allowed at switching times. Forward sensitivity equations
for this case are derived in [93] and adjoint sensitivity equations are derived in [95]. The
results in [93] are extended to differential-algebraic systems in [39]. In addition, an existence
and uniqueness theory is developed. Existence and uniqueness results are developed by

finite induction on the results in [44] and the implicit function theorem to compute the
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jumps in the adjoint and forward sensitivity trajectories at switching times. This is not the
approach used in this chapter. A subset of cases considered in this chapter can be analyzed
using results from the aforementioned papers. However, the results in this chapter do not
require invariance of the sequence of vector fields or a constant number of subintervals in a
neighborhood of p.

Implementation issues which are fully investigated in following chapters are summarized

in §3.5. Examples in §3.6 conclude the chapter.

3.1 Preliminaries

Definition 3.1.1. Let ty € R, t; € R, X = [to,tf] andt € X;. Let Xy be an open subset of
R™ and x5 € Xo. Let F: X1 x Xy — R™ be a function such that ¥F(t,-) is a locally Lipschitz
continuous function for all t € [to,ts]. Let wy : X1 — R™ ™ be such that w(t) € 0.F(t,%2)
for allt € X1\S where S is a measure zero subset of X1. If the Lebesgue integral, ftif w,(t)dt,

exists, then wy is a measurable selection of 05F(-,X3) on [to,ts].
A consequence of Theorem 2.7.2 in [25] is:

Theorem 3.1.2. Let g : X1 x X9 — R, where X; and X5 are defined in Definition 3.1.1,

satisfy the following conditions:
1. For each x5 € Xy, g(+,X2) is a continuous function from X to R.

2. There exists a nonnegative Lebesque integrable function, k : X1 — R such that for all

u,v e Xy, |g(t,u) —g(t,v)| < k(t)|lu—v]| forallt € X;.

Let f: Xo >R :z— f;g(t,z)dt. Then f is locally Lipschitz continuous at all xo € X5.
Define W to be the set {w € R"™*! : w = ftzf w,(t)dt} where wy is any measurable selection

of 02g(+,x2) on [to,tf]. Then Of(x2) C W holds.
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The following is a pertinent restatement of Theorem 7.4.1 in [25].

Theorem 3.1.3. Let X; and X5 be open connected subsets of R and R™, respectively. Let
Xg be an open connected subset of Xo. Let [to,ts] C Xy. Let £ : X; x Xy — R™ be a locally
Lipschitz continuous function.

Let x : [to, tf] X X, — X, be such that x(-,x,) is the only function that satisfies
x(t,%5) = £(t,x(t,%3)), Vt € (to,ts], x(to,x2) = X2, Vx5 € Xy

Then x(ty,-) is locally Lipschitz continuous at all xo € X,.

Let € : [to, ] x Xy — R™™ be such that (-, Xy) is the solution of the differential equation
é(t,Xg) = M<t>C(t7X2)7 Vt € (t07tf]7 C(to,Xg) = Inv vX2 € X27

where M is any measurable selection of Qof (-, x(-,X2)), a set-valued mapping from [to,ty] to
the subsets of R™ ™.

Let ®(ty,x2) be the set of {(ts,xa) obtained from all possible measurable selections, M,
and R(t,x2) be the plenary hull of ®(ty,x2) i.e., R(t;,x2) = {A € R™" : vTAu <
max{viBu: B € ®(t;,x,)},V(u,v) € R" x R"}.

Then 0yx(tf,x2) C R(ty,X3). Let S be a measure zero subset of [to, ts]. If Oof(t,x(t,%2))
is a singleton for all t € [ty,tf]\S, then R(ty,x2) is a singleton. Let the single element be

Jox(tr,x2). Thenx(tys,-) is strictly differentiable at x5 and Jox(ts,X2) is the strict derivative.

3.1.1 Note on Notation and Assumptions

In the remainder of this chapter, n,, n, and n, represent finite positive integers, t, € R, t; €
R and ty < ty.

X1, X, X3, X4, X5 and Xg are open connected subsets of R, R", R R™, R and R™
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respectively. X7 = X2 X Xg, Xg = X2 X X3 X X4 X X5 and Xg = X4 X X5. T = [to,tf] C Xl-
In order to make the exposition more intuitive, the labels 7, P, X, Y, X, W and Q will
be used instead of X, Xs, X3, Xy, X5, X¢ and Xy. If the symbols ¢, p,x,y, X, w, v, u and

q appear as subscripts, they represent the indices 1,2,3,4,5,6,7,8 and 9.

3.2 Ordinary Differential Equations

In this section, sufficient conditions for the existence of adjoint and forward sensitivity tra-

jectories are derived for the solutions of ordinary differential equations.

Assumption 3.2.1. Let £ : T X P x X — X and fy : P — X be locally Lipschitz continuous
functions where X is an open connected subset of X. Letx : T x P — X be such that x(-,p)

is the unique solution of the initial value problem
x(t,p) =f(t,p,x(t,p)), Vt € (to,ts], x(to,p) = fo(p), Vp € P. (3.2.1)

Remark 3.2.2. Letz : TxP - P : (t,p)—pandv : T xXP — PxX: (tp) —

(z(t,p),x(t,p)) for the remainder of this chapter.

Theorem 3.2.3. Let Assumption 3.2.1 hold. Assume fy is strictly differentiable at p € P.
Let S be a measure zero subset of T'. Assume Oyf(t,v(t,p)) is a singleton for allt € T\S.

Then the mapping n — x(t,n) is locally Lipschitz continuous and strictly differentiable at
p € P forallt € T. Hence Opx(t,p) is a singleton for allt € T'. Let Opx(t,p) = {Jpx(t,p)}.

Then, Jpx(-,p) is the unique absolutely continuous function on T that satisfies

Jox(t,p) = Jof(t, v(t, p))Ipx(t,p) + If(t, v(t, p)), Vt € (to, 1], (3.2.2)

Jpx(t07 p) = pr0<p)'
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Proof. Let g : T x P x X — R™ x X : (t,u) — (0,f(t,pu)). g is a locally Lipschitz
continuous function because it is the composition of locally Lipschitz continuous functions f
and h : R™ — R™*" :u — (0,u). If O,f(¢, u) is a singleton then 0,g(t, p)) is a singleton

per Theorem 2.6.7.

Consider the initial value problem:

vt 1) = gt v(t, 1)), Vt € (to, ts], v(to, o) =10, y € P X X (3.2.3)

where v : T X P x X — P x X. Per Theorem 3.1.3, the mapping vy — v(t, 1) is locally
Lipschitz continuous at oy € P x X for all t € [ty, ] if the solution v(-, &) exists. 0,,v(t, D)
(here, the subscript 7 is replaced with 1) is contained in the plenary hull of the solutions of

the family of initial value problems:

C(t, o) = M(1)C(¢, 1), Vi € (to. 1], Cto, Do) =Ly 1, (3.2.4)

where M is any measurable selection of dyg(-, v(+, 7)), a set-valued mapping from 7" to the

subsets of R(wHne)x(nptnz) " of the form

and My : 1" — R"*"= M, : T" — R"*"™ are bounded measurable functions.

Suppose that 7y = (p,xo) where xo € X is such that d,g(t, v(t, 7)) is a singleton for all ¢
in T" except for a subset S of measure zero. Then by Theorem 3.1.3, 0,,v(t, 1) is a singleton

for all t € T. Let the single element and strict derivative of the mapping vy — v(t, 1) at
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vy be J,,v(t, ). Then (3.2.4) can be written as

. 0 0
It o) = T v(t, o), Vit € (to, L], (3.2.5)

~ A

Jpf(t,v(t,m)) JxE(t, v(t o))

JVOV(to, 170) = Inp-l-nz’

Note that Jof(-,v(-, %)) and Juf(-, v (-, 7)) differ from any measurable selections My, and
M, if t € S only. Therefore using these quantities instead of the measurable selections does

not alter the value of J, v(t, ).

If vy = (p,fo(p)), then v(t, (p,fo(p))) = v(t,p), V(t,p) € T x P satisfies (3.2.3). In
addition, d,g(t, v(t,p)) is a singleton for all t € T\ S, Mx(t) = J«f(t,v(t,p)) and My (t) =

Jpof(t,v(t,p)) for all t € T\S. Finally, 0,,v(t, (p,fo(p))) is a singleton for all ¢ € T..

Let p € P and w € X. The mapping (u,w) — (u,fy(u)) is strictly differentiable at

(p, W) and the derivative is

I, 0
Jfo(P) 0

because fy is strictly differentiable at p. As a result, (u,fy(u)) — v(¢, (u,fy(u))) is locally

Lipschitz continuous at (p, fo(p)) and d,,v (¢, (p, fo(p))) is {J, v (¢, (p, fo(p))) Ao(p, W)} per
Theorem 2.6.7.

Equation (3.2.5) is a linear ordinary differential equation that admits a matrix-valued
function I'(¢,7) such that J, v(t, ) = (¢, 7)J,v(7,00) = T(t,to)Ln, 4n,. Hence J, v
(t, (p, fo(p)))Ao(p, W) is I'(t, o) Ao(p, W) and Ju, (¢, (p. fo(p))) Ao(P, W) is obtained as the

solution of (3.2.5) with the initial conditions J,,v(to, Iy) = Ae(p, W) and 1y = (p, fo(p)).
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Let

Tuwlt, (0 o) = | P PN e P,

CC(tv p) CD(TH p)

where (o : T XP —- R ™ (g :TxP—R» " (o:TxP—R"™ and {p: T xP —

R X7

Multiplying out (3.2.5) and substituting v (¢, p) for v(¢, (p, fo(p))) results in

Ca(t,p) = 0,V € (to, t5], {a(t,p) = 0,V € (to, ty],

Colt,p) = Jpf(t, v(t, P)Calt, p) + It (1, v(t, p))Co(t, ), Vi € (to, 1],
Co(t,p) = Jpf(t, v(t,p))Ca(t, p) + Iuf (8, v (1, P))Co(t, ), VE € (to, 1],
Calto,p) = L, Ca(to, p) =0,

Colto, p) = Ifo(p), ¢p(te, p) = 0.

Note that (¢ is the derivative of the map i — x(t,n) at n = p. In addition, {a(¢,p) = 1,

for all t € T. Renaming (¢, p) as Jpx (¢, p), the following desired result is obtained:

Jox(t,p) = Jof(t,v(t, p))Ipx(t,p) + If(t, v(t, p)), Vt € (to, 1],

JpX(t07 p) = prO(p)'

Note that Juf(-,v(-,p)) and J,f(-,v(-,p)) are bounded and measurable functions on 7.

Hence Jpx(+, p) is absolutely continuous on 7" per Theorem 3 in [37]. O

The next two theorems contain adjoint sensitivity results that consider two cases. In the
first theorem, the function G : P — R can be computed by integrating a locally Lipschitz

function on T. The second theorem considers the case when such a computation is not
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possible.

Theorem 3.2.4. Let the hypotheses of Theorem 3.2.3 hold. Let g : 7 X P x X — R be a

locally Lipschitz continuous function. Define G : P — R by

Let @ be a measure zero subset of T'. Let Oyg(t,v(t,p)) be a singleton for allt € T\Q.

Let A : T — R"™ be a solution of the initial value problem,
)\(t) = —jxf(t,v(t,p))T)\(t) + @xg(t,v(t,p)), Vt € [to,tf), A(ty) = 0. (3.2.6)

Then, X is unique and absolutely continuous. In addition, G is locally Lipschitz continuous

and strictly differentiable at p and the strict derivative is
ty N
VG(p) = / Vog(t,v(t,p)) = Tpf (t, v(t,p) TA@)dE + Tpx(t, p)"A®)]] . (3.27)
to

Proof. The proof consists of applying the results of Theorem 3.1.2 and Theorem 3.2.3 to the

equivalent integral

G(p) = / Tt v(tp)) — A(D)T (E(t, v(t, p)) — k(t, p)) dt.

to

Let € > 0 and I'(¢e,p) = {(¢t,v) € T x R™*" . |v — v(t,p)|| < €}. Note that there exists an
€ > 0 such that I'(e, p) C 7 x P x X because 7 x P x X is open and {(t,v(t,p)) : t € T}
is a bounded subset of 7 x P x X. Since I'(¢,p) is bounded and f and ¢ are locally
Lipschitz continuous at all points in I'(¢, p), there exists a Lipschitz constant, K, such that
lg(t,v1) — g(t, vo)|| < K||vi — vo| and [|£(¢,v1) — £(¢, va)|| < K||vy — vo|l for all (¢,vy) €

T(e,p), (t,v2) € T(e, p). In addition, |Vyg(t, v(t,p))| < K and ||Vyg(t, v(t,p))| < K for
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allt e T.

Since ¢(t, ) is strictly differentiable for all t € T\ @,

i - » My t7 -
hIl% g(tvpux(tup) + 5 d) g(t p X( p)) — ng(t,V(t,p))Td
Si S;

holds for all t € T\@ and d € R"*. The quotient on the left is a bounded continuous function
of t for small enough s; due to local Lipschitz continuity of g. Per the Lebesgue Dominated
Convergence Theorem it can be shown that Vyg(-,v(-,p)) is a measurable function from T

to R™. Lebesgue integrability of ﬁpg(-, v(-,p)) can be shown using the same arguments.

A

Jxf(,v(-,p)) is a bounded measurable function of ¢ because it differs from a bounded
measurable function M, (as defined in Theorem 3.2.3) on a measure zero subset of T and
J.f(t,v(t,p)) is zero for t in that set.

As a result, there exists a unique, bounded and absolutely continuous solution to (3.2.6)
in the sense of Carathéodory per Theorem 3 in [37], employing the trivial extension of (3.2.6)
from T to 7 obtained by defining A(t) = 0 in case t ¢ 7.

Per Theorem 3.2.3, the mapping n — x(¢,n) is locally Lipschitz continuous. Therefore
the mapping 1 — v(t,n) is locally Lipschitz continuous at p for all ¢ € T. Let O C P be
the open set on which local Lipschitz continuity holds. Due to the continuous dependence
of v(t,m) on m € O, one can pick an ¢, > 0 such that for all n € O satistying ||n — p|| < €,
v(t,n) C I'(¢,p).

Let p; € O and ps € O satisty ||p — pi1|| < ¢, and ||p — p2|| < ¢,. Then

x(t,p1) = x(t, ps) = /tt £(¢, v(¢, p1)) — £(C, v(C, p2))dC + x(to, p1) — X(to, P2),

1x(t, p1) — x(t, p2)|| < /t 1£(¢, v(¢, p1)) — £(¢, v(C, p2)) 1dC + Kol p1 — P2,

t
[x(t, p1) — x(t, p2)|| < / Klp2 — p2|| + K[|x(¢, p1) — x(¢, p2)[|d¢ + Kol|p1 — P2
to

97



hold where K is a Lipschitz constant of f; in a neighborhood of p that contains p; and ps.

Application of Gronwall’s Lemma produces

Ix(t, pa) = x(t P2)|| < (K (2 = to) + Ko) [pr — pall e’

Hence [lg(t, v(t, p1)) —g(t, v(t, p2) | < (K +EK>(tr—to) + K Ko)e" 1 =)||py —py||, V¥t € T.

The term (f(¢,v(t,p)) — Xx(t,p)) is identically zero for all values of p and t. As a result,
the hypotheses of Theorem 3.1.2 hold. Hence, i — G(n) is locally Lipschitz continuous at p
and 0G(p) C W where W = {w : w = ftzf w(t)dt}, wy is a measurable selection of 0,4(-, p)

and g(-,p) = g(-,v(-,p)) = A()T(f(,v(-, p)) — X(-, p))-

Let wy(t) = Jp(f(t, v(t,p)) — %(t,p)). Then W,(t) =0, Vt € T and
Jox(t,p) = I f(t,v(t,p))Ipx(t,p) + Jpf(t,v(t,p)) = Jpx(t,p), ¥t € T\S

per (3.2.2). Therefore, W, (t) is I f(t, v(t,p))Ipx(t, p)+ Jpf(t, v(t, p)) — Jpx(t, ).

Any measurable selection w; differs from w; only if t € S U Q where wy; is

Wi(t) = Jpx(t, )" Vig(t, v(t, p)) + Vpg(t, v(t, p)) — Wi(t) "A(H).

The integral of wy(t) is

[ 3x(0.0) g1 0.) + Tyl ) - (3.2:5)

to

(jxf(t, v(t, p))Jox(t, p) + JoE(t, v(t.p)) — Jox(t, p))T A(t)dt.

Since A and Jpx(-, p) are absolutely continuous functions of ¢, integration by parts for the
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Lebesgue integral produces

t .

/ L 3x(t ) AW = Tpx(t, )AL - / "3x(tp)TAMd.  (3.2.9)

to to

Combining (3.2.9) with (3.2.8) results in

| 3ux(t.p) Vgt v (e ) + Vpgltv(t.p) - (3.2.10)

Jox(t, p) LI E(t, v(t, p))TA() — Jpf(t, v(t, )" A(t) — Ipx(t, p) T A(t)dt +

Tpx(t.p)"A)],) -

After collecting terms multiplying Jpx (¢, p) in (3.2.10) and substituting the right-hand side
expression in (3.2.6) for A(t), the desired result in (3.2.7) is obtained. Strict differentiability
follows from the fact that all possible measurable selections w; differ from w; only if ¢ is in

a measure zero subset of T, and therefore W is a singleton. O

Theorem 3.2.5. Let the hypotheses of Theorem 3.2.3 hold. Let h: Ty x P x X — R be a

locally Lipschitz continuous function where Ty is an open subset of T such that t; € Ty.

Let G : P — R : n +— h(ty,v(ty,m)) and assume Oyh(ts,v(ts, p)) is a singleton
whose single element is (Vph(ty, v(ts, p), Vxh(ty, v(ts, p)) where Voh(ts, v(ty, p) € R™
and Vxh(ts,v(ts, p)) € R™.

Let Cx = Vxh(ty,v(ts,p)) and Cp, = Vh(ty, v(ts,p)). Let X: T — R™ be a solution

of the initial value problem:
A(t) = — jxf(t,v(t,p))T)\(t),Vt € [to,tf), A(ty) = —Cx. (3.2.11)

Then, it is unique and absolutely continuous. In addition, G is locally Lipschitz continuous
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and strictly differentiable at p and the derivative is

tf .

VG (p) = / —Jof(t,v(t, p)) " A(t)dt — Ipx(to, P) " Alty) + Cp. (3.2.12)
to

Proof. The existence, uniqueness and absolute continuity of A follows from similar arguments

to those presented in Theorem 3.2.4.

G is locally Lipschitz continuous at p because it is the composition of locally Lipschitz
continuous functions h(ts,-) and the locally Lipschitz continuous function v(ty,-). Strict
differentiability follows from the fact that 0, h(ts, v(tr, p)) is a singleton and v(ty, ) is strictly

differentiable at p. The strict derivative is VG(p) = Jpx(ts,p) Cx + Cp.
The expression
tr
/to Jox(t,p)TCyx— (3.2.13)
(IE(t, v (1, 0))Ipx(t, p) + Tpf(t, V(¢ P)) — Jpx(t. ) A()dt +

Jpx(th p)TCx

is equal to Jpx(ts, p)TCy regarding Cy as a constant because the term multiplying A() is

identically zero as discussed in Theorem 3.2.4.

Jpx(-, p) and A are absolutely continuous functions from 7" to R"**"» and R"*, respec-

tively, and therefore integration by parts for the Lebesgue integral produces

/t Y 3 x(t, )T (C 4 A0t = Tox(t, ) (G + A" — /t 7 3 x(t p) At

0

Hence, the expression (3.2.13) can be written as

/ - (I (t, vt P)Ipx(t, p) + Tpf (1, v (1)) TA(E) — Ipx(t, p)TA(t)di+

to
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Jpx(t,p)"(Cx + A(t))],” + Ipx(to, p)"C,

/ thpX(t, D) (=Jo (6, vt P)TAE) — A1) — Tpf(t, v(t, p))TA(t)dt + (3.2.14)

to

Jpx(tr, P)" (Cx + Alty)) — Jpx(to. p) " Alto).

After substituting the right-hand side expression in (3.2.11) for A, (3.2.14) becomes (3.2.12).
U

3.3 Differential-Algebraic Equations

Results in this section extend previous results to a subset of differential-algebraic equations.

Assumption 3.3.1. Let F : T x P x X x Y X X — Rt gnd Fo: P — X be locally
Lipschitz continuous functions. Let x - TXP = X, y:TxP—Y andx:T xP — X be

such that they uniquely satisfy the initial value problem

0="F( p,x(t,p),y(t p),x(t p)), Vt € [to, ], x(to,p) = Fo(p), VP € P,. (3.3.1)

Let x(to,p) = x and y(to,p) = y for some p € P where X and y are constants and sat-
isfy F(to, p,x(to, P),y(to, P), X(to,P)) = 0. Assume that this condition uniquely determines

y(to,p) and x(ty,p) for allp € P.

Remark 3.3.2. Let u: T xP - P x X x Y x X : (t,p) — (v(t,p),y(t,p),x(t,p)) for the

remainder of this chapter.

Lemma 3.3.3. Letn, € P, nx € X, ny €V, nx € X andn = (Mp, Nx, My, M) -
Assume mqF(t,m) is mazimal for all (t,n) € T x P x X x Y x X. Then there exist

locally Lipschitz continuous functions: £: T X P x X — X andr : T X P x X — Y such
that 0 = F(t, np, Nx, 7(t, Mp, Nx), £(, Mp, Mx)) holds.
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If OF(t,m) is a singleton whose only member is

then f and r are strictly differentiable and the derivatives are the solutions of the equation,

Jor(t,mp,mx)  Jpr(t,Mp, k) Ixx(t, Mp, Mx)
JyF(t,n) J<F(t,n) =
th(ta Mp> nx) pr<t7 MNp; nx) fo(t, MNp; 77X)

o JtF(t> 77) JPF(ta 77) JXF(ta 77) ’

Proof. The result follows from Theorem 2.6.13. O

Corollary 3.3.4. Let Assumption 3.3.1 and the assumptions of Lemma 3.53.3 hold. Let
u(t,p) be the unique solution of (3.3.1) if p = p. Thenu(t,-) is a locally Lipschitz continuous

function at p for allt € T.

Proof. Since the implicit function, f as defined in Lemma 3.3.3 is a locally Lipschitz continu-
ous function, v(¢,-) is a locally Lipschitz continuous function at p for all ¢ € T' per Theorem
3.1.3 considering the extended ODE in (3.2.3). The local Lipschitz continuity of y(¢,-) at
p follows from the local Lipschitz continuity of the implicit function r(¢,-) at v(¢, p) for all
t € T and the local Lipschitz continuity of v(¢,-) at p for all ¢ € T. The local Lipschitz
continuity of %x(¢,-) at p follows from the same reasoning using f instead of r. Since all

elements of u(t,-) are locally Lipschitz continuous at p so is u(t,-) for all t € T.. O

Lemma 3.3.5. Let Assumption 3.3.1 and the assumptions of Lemma 3.3.3 hold. Let 0,F(t,n)

be a singleton whose element is

JuF(t,n) = |J,F(t,n) I F(t,n) I,F(t,n) JF(t,n)| -
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Then £(t,) and x(t,-) are strictly differentiable at (t,n). The derivatives satisfy

3Bt k@] | B Ty e s 2
Jpf(t: 7p, 1) I (t, 7, 1)
Proof. If mq0,F (¢, ) were maximal, then the result of the lemma would follow from Theorem
2.6.13. However, it is not obvious that if 7,0F (¢, n) is maximal, then 740,F (¢, n) is maximal.
In order to arrive at the desired result, Theorem 3.2 in [78] is used. Jf(p), L, and
Jdf(p)|L (the restriction of Jf(p) to the subspace L), correspond to OF(t,n), R">me>myxne
and 7,0F(t,n), respectively. 9pf(p) is an intermediate construct that contains 9%g(0)
(see comment on page 57 in [78]). 9“g(0) corresponds to 9,F(¢,m) in this case. Hence,
0uF(t,m) C m0F(t,n) and 7q(m,0F (t,m)) = 7 0F(t,n) D 740uF(t,m). As a result,

TqOuF (t,m) is maximal. O

Theorem 3.3.6. Let Assumption 3.3.1 and the assumptions of Lemma 3.3.3 hold. Let S be
a measure zero subset of T'. Let O,F(t,u(t,p)) be a singleton fort € T\S. Assume Fy is
strictly differentiable at p. Then Opx(t, p) is a singleton for allt € T. Let the single element

be Jpx(t,p). Then Jpx(-,p) is the unique absolutely continuous function on T that satisfies

OuF(t, u(t,p)) = {[mvJuF(t, u(t, p)) mqJuF(t, u(t, p))]}, vt € T\S

J(t,p) = — mJuF(t,u(t,p)) 'm J F(t,u(t,p)), vVt € T\S, (3.3.3)

Jtp) = Jpr(t,v(t,p)) Jur(t,v(t,p)) VeT\s

Jpf(t,v(t,p)) Juf(t,v(t, p))
Jox(t,p) = Iuf(t,v(t, p))Ipx(t, p) + Jpf(t, v(t, p)), Vt € (to, 1], (3.3.4)

Jpx(t07 p) = JpFO(p)

where m JJ F(t,u(t,p)) € RMetm)x(ptna) o JuF(t,u(t,p)) € R (e tny)x(nytne)
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Jpf(t,v(t,p)) € R=*™ J. f(t,v(t,p)) € R™*" Jor(t,v(t,p)) € R™*™ and Jxr(t,v(t,p))

€ R™wxna
Proof. Result follows from Theorem 3.2.3, Lemma 3.3.3 and Lemma 3.3.5. O

Corollary 3.3.7. Let the hypotheses of Theorem 3.3.6 hold. Then y(-,p) and x(-,p) are

strictly differentiable for allt € T\S and the derivatives are

Jpy(t,p) = Jur(t, v(1,p))Jpx(t, p) + Jpr(t, v(L,p)), ¥t € T\S,

Jpof(t,p) = Juf(t, v(t, p))Jpx(t, p) + Jpf(t,v(t,p)), YVt € T\S,

where Jpr, Jyer, Jof and Jif are as defined in Lemma 3.5.5.

Proof. The result is obtained by applying Theorem 2.6.7 to the implicit functions r and
f. O

Remark 3.3.8. The results of Theorems 3.2.4 and 3.2.5 hold for the initial value problem

in (3.3.1) if Juf and Jof are obtained with J.f and Jof that are computed using (3.3.3).

The next theorem is an extension of Theorem 3.2.4 where g is a function from 7 x P x
X x Y x X to R instead of T x P x X to R. The extended result is obtained by replacing

x and y with the implicit functions f and r.

Theorem 3.3.9. Let the hypotheses of Theorem 3.3.6 hold. Let g: T xPxXxYx X — R

be a locally Lipschitz continuous function. Let G : P — R be

Glp) = / 7 (bt p))dt. (3.3.5)

to
Let Q) be a measure zero subset of T'. Let 0ug(t,u(t,p)) be a singleton for all t € T\Q.
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Let

B.(t,u(t,p)) = Vxg(t,u(t,p)) + Jxx(t,v(t,p))"Vyg(t, u(t,p)) +
J£(t,v(t.p) " Vig(t,u(t,p)),
B,(t,u(t,p)) = Vpg(t.u(t,p)) + Jpr(t, v(t,p)) Vyg(t, ult, p)) +

Jof(t,v(t,p)) " Vig(t, ult, p)).

Let X :T'— R™ be a solution of the initial value problem
A(t) = =3 (t,v(t,p)"A(t) + Bx(t, u(t, p)), Vt € [to,17), Alts) = 0. (3.3.6)

Then, it is unique and absolutely continuous. In addition, G is locally Lipschitz continuous

and strictly differentiable at p and the strict derivative is

VG(p) :/tf B, (t,u(t,p)) — Jpf(t,v(t,p)TA()dt + I x(t,p)TA(t) Z)‘ : (3.3.7)

to

Proof. The proof proceeds along similar lines as the proof of Theorem 3.2.4 considering the

equivalent integral

G(p) = / fg(tV(t,p),r(t,V(t,p)),f(tV(t,p))) — AT (£(t,v(t, p)) — %(t, p))dt.

to

The existence and uniqueness of solutions to (3.3.6) can be shown using arguments similar

to those in Theorem 3.2.4.

The local Lipschitz continuity of G at p and the applicability of Theorem 3.1.2 follows

from arguments similar to those presented in Theorem 3.2.4.
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All measurable selections w; differ from w; on a set of measure zero where

A~

Wi(t) = Jpx(t,p)" Vg (t,u(t, p)) + Vpy(t, ult, p)) +

Jpx(t,p) " Jx(t, v(, )" Vyg(t,ult, p)) + Jpr(t, v(t.p)) " Vyg(t, ult, p))+
Jpx(t,p) " Tf(8, v (¢, ) Vg (t.u(t, p)) + Jpf (1 v(t, )" Vig(t ult, p)) —
we(t)TA(L),

Wi(t) = Jpx(t, p) 'Bx(t,u(t, p)) + Bp(t, u(t, p)) — Wi (t) "A(t).

and w, is defined in Theorem 3.2.4. Applying integration by parts to J(¢, p)TA(t) and

collecting terms multiplying J,x(¢, p) results in (3.3.7) and (3.3.6). O

Since y and % are strictly differentiable functions of the parameters only if ¢t € T\ S, the

extension of Theorem 3.2.5 considers the case when ¢ty € T\ S.

Theorem 3.3.10. Let the hypotheses of Theorem 3.5.6 hold. Let h : TyxPx X xYxX — R
be a locally Lipschitz continuous function where 1y is an open subset of T such that t; € Ty.
Assume ty ¢ S.

Let G : P — R :mw— h(ty,u(ty,n)) and assume Ozh(ts,u(ty, p)) is a singleton whose
single element is (Vph(ts,u(ts, p), Vxh(ts,u(ts, p), Vyh(ts, u(ts, p), Vih(ts, u(ty, p)) where
Voh(ty,u(ty,p) € R™, Vih(tr,u(ty, p)) € R™, Vyh(ts, u(ty,p)) € R™ and Vih(ts, u(ts, p))
€ R,

Let

Cx = Juf(ty, v(ts, p) " Vih(ty, ulty, p)) +

Jax(ts, v(t, p) " Vyh(ts, ults,p)) + Vih(ts, u(ty, p)),
Cp = Jpf(ty, v(ts, p)) Vih(ts, u(ty, p)) +

Jpr(ts, v(ts, ) Vyh(ts, ults, p)) + Vph(ts, ults, p)).
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Let A : T — R"™ be a solution of the initial value problem;
}\(t) =— jxf(t,v(t,p))T)\(t),Vt € [to,tf), A(ty) = —Cx. (3.3.8)

Then, it is unique and absolutely continuous. In addition, G is locally Lipschitz continuous

and strictly differentiable at p and the derivative is

VG(p) = / ! —Jf(t, v(t, p)TA()dt — Tox(to, p) " A(to) + Cp. (3.3.9)

to

Proof. The existence, uniqueness and absolute continuity of A follows from similar arguments

to those presented in Theorem 3.2.4.

G is locally Lipschitz continuous at p because it is the composition of locally Lipschitz
continuous functions h(ts,-) and the locally Lipschitz continuous function u(ty,-). Strict
differentiability follows from the fact that dyh(ts, u(ty, p)) is a singleton and u(ty, ) is strictly

differentiable at p. The strict derivative is

VG(p) = jpx(tf> p)TVxh(tf’ u(tf’ p)) + Jp}’(tﬁ p)TVyh(tf’ u(tf> p)) + (3'3'10)

Jox(tr, p) " Vh(ts u(ty, p)) + Vph(ty, u(ts, p)).

Jpx(t,p) and Jpy(ts, p) are equal to Jxf(ts, v(ts, p))Jpx(ts, p)+ Jpf(ts, v(ts, p)) and Jyr
(tr,v(ty,p)) Jpx(ts,p) + Jpr(ts, v(ts, p)), respectively. Substituting these expressions into

3.3.10) and collecting the terms multiplying J,x (¢, p) results in
pA\YSf

VG(p) = Jpx(ts, p) Cyx + Cp.
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The expression

/ttfjpx(t, p)TCy — (I f(t,v(t, p))Tpx(t,p) + (3.3.11)

A .

Jpf(t, v(t, p)) — Jpx(t, )" A(t)dt + Jpx(to, p)" Cx

is equal to J,x(ts, p)T Cx because the term multiplying A(¢) is identically zero as discussed
in Theorem 3.2.4. J,x(-, p) and A are absolutely continuous functions from 7" to R"**"» and

R™  respectively, and therefore integration by parts for the Lebesgue integral produces

/ttf Jpx(t, p) (Cx + A(1))dt = Jpx(t, p)T (Cx + )\(t))};f — /t ' Jox(t, p) " A(t)dt.

0

Hence, the expression (3.3.11) can be written as

/ thpX(t, P) T (=Jof(t, v(t, p)TA({) — A(t)) — T (L, v(t, p))TA(t)dt + (3.3.12)

to

Jpx(t, )" (Cx + A())];] + Tpx(to, p) " Cx.

After substituting the right-hand side expression in (3.3.8) for X, (3.3.12) becomes the inte-

gral in (3.3.9). O

3.4 Multistage Systems

The previous forward and adjoint sensitivity results will be extended to dynamic systems
whose evolutions are described by disparate differential-algebraic equations in consecutive

intervals of time.

Assumption 3.4.1. Let n. be a finite positive integer and I = {1,... ,n.}. Let o; € R,
ﬁi S R, o < 61'7 Vi € I, Qi1 = ﬁi, Vi € I\{ne}, -0 < o < 6%5 < 400, LetT =
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U, [, Bi]) and T C T. Let T; be an open subset of T such that [, 5;) C T; for alli € I. Let
Xt o, Bi]XP — X,y [ag, Bi|xP — Y, %; : [ai, ] xP — X foralli € T, x : TxP — X,
y:TxP—)Y and x: T xP — X. AssumeFi:’Z;xPxXxyxXe]R"”"y are locally
Lipschitz continuous functions for all i € T. Assume FY : P x X — X for alli € T\{1} and

FY: P — X are locally Lipschitz continuous functions.

The parametric sensitivities associated with the solutions of the initial value problem,

0 =F;(t,p,x;(t,p),yi(t,p),Xi(t,p)), Vt € oy, 5], Vi € T, (3.4.1)
0 = x;(a1,p) — Fi(p),

0 = x;(i, p) — F}(p,xi-1(8i-1,p)), Vi € T\{1}, (3.4.2)
0 =x(t,p) — xi(t,p), Vt € [y, 3;), Vi € Z,

0 = x(fn, P) = Xn. (B, P),

0=y(t,p) —yi(t,p), Vt € [, 3;), Vi € T,

0 =y(Bne: P) = Yne (Bne, P);

0= x(t,p) — xi(t,p), V¢ € [ou, 3:), Vi € T,

0= X(ﬁne, p) - Xne (/Gnea p)

are the focus of this section.
Remark 3.4.2. x(-,p), y(-,p) and x(-, p) might be discontinuous at t = a; with i > 1.

Remark 3.4.3. The results derived in this section are applicable with slight modifications to
the case where the number of states, number of algebraic variables as well as the domains of

the functions ¥; and F? differ for each i € T.

Assumption 3.4.4. Let x(o;,P) = %X; and y(o;,P) = yi for all i € T where X; and y;
are constants. Assume that this condition is sufficient to uniquely determine x(«;, p) and

y(ci, p) uniquely for alli € T and for all p € P.
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Assumption 3.4.5. Let (x;(-,p),y:(-,P), %i(-, P)), Vi € I be the unique solution of (3.4.1).
Letz; : [og, Bi] x P — P (t,p) = P, Vi : [, B] x P — P x X : (t,p) = ((z:(t,p)), xi(t, P))
and w; : [0y, Bi| X P = P XX XY XX :(t,p) — (vi(t,p),yi(t,p), %i(t,p)). Letu:T xP —
Px X xYxX besuch that u(t, p) = w(t, p) for all t € [ay, 3) and u(B,,,p) = Up. (Bp., D).

Corollary 3.4.6. Let Assumptions 3.4.1 and 3.4.4 hold. Let the assumptions of Lemma
3.3.3 hold for all¥;, i € T. Let (x;(-,p), yi(-,P), Xi(-,P)), Vi € L be the solution of (3.4.1).

Then u(t,-) is locally Lipschitz continuous at p for allt € T.

Proof. Let n, = 1. Then u,(¢,-) is a locally Lipschitz continuous function at p for t € [ay, (1]
per Corollary 3.3.4. Since the composition of locally Lipschitz continuous functions is locally
Lipschitz continuous and F9 is a locally Lipschitz continuous function, uy(as,-) is locally
Lipschitz continuous at p if n, = 2. Then uy(¢,-) for all ¢ € [ag, (5] is locally Lipschitz
continuous at p per Corollary 3.3.4. The final result follows from the repeated application
of Corollary 3.3.4 and composition rule for locally Lipschitz continuous functions for n, > 2

as has been done for the case n, < 2. O

Theorem 3.4.7. Let Assumptions 3.4.1 and 3.4.4 hold. Let the assumptions of Lemma
3.8.8 hold for for alli € T. Let S be a measure zero subset of T'. Let 0,F;(t,u;(t,p)) be a
singleton for all t € [ay, B;]\S and for all i € I. Let O,FY(v;(ci,p)) be a singleton for all
i € I\{1} and O,F}(p) be a singleton.

Then x(t,-) is locally Lipschitz continuous and strictly differentiable at p for allt € T.

Jpx(t, p), the single element of OpXx(t,p), is the unique function that satisfies

OuFi(t, wi(t,p)) = {[mvJuFi(t, wi(t, p)) mqJuFi(t, wi(t, p))]}, ¥ € [ai, BI\S,

—Ji(t,p) = mJuFi(t, wi(t, p)) 'm  JuFi(t, (¢, p)), Vt € [ay, Bi]\S, (3.4.3)

3tp) = Jpri(t,vi(t,p)) Jxri(t,vi(t,p)) Vi€ o, B\S.

prz‘ (t, Vi(t, p)) foi(tv Vi(tv p))
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Jpxi(t, p) = Jufi(t, vi(t, p))Ipxi(t, )+
It vi(t,p)), Yt € (i, B, (3.4.4)
Jpxi (a1, p) = J,F)(p),
Jpxi(;, p) = IF) (Vi1 (Bio1, ) IpXi 1 (Bic1, )+
JoF) (Vi (i1, p)), Vi € T\{1}, (3.4.5)

Jpx(t> p) = Jpxz( ) vVt € [aw ﬁz) px(ﬁnea p) = Jpxne (ﬁnea p)

where w J Fi(t,u(t,p)) € ROetm)xtne) o J Fi(t,ut,p)) € ROetm)xytne)
Jofi (t,vi(t,p)) € R™* ™ J.f( t,vi(t,p)) € R™*" Jor; (t,vi(t,p))e R™*™ and
Jxri(t,vi(t,p)) € R " Y € Z. f; and r; are the locally Lipschitz continuous implicit
functions that satisfy ¥F;(t,p, x;(t,p), ri(t,vi(t,p)), i(t,vi(t,p))) for all i € T. Finally,

Jpxi(+, p) are absolutely continuous functions on [, 3]

Proof. Let n, = 1. Then the result holds per Theorem 3.3.6. If n, = 2, then the strict
derivative of the mapping 1 — xs(ag,n) at p is obtained after applying Theorem 2.6.7 to
(3.4.2) and is (3.4.5). Equations (3.4.3), (3.4.4) hold for i = 2 per Theorem 3.3.6 because
OuFi(t,u;(t, p)) is a singleton for all t € [ay, 5;]\S and i — Xa(aw, n) is strictly differentiable
at p. Hence the result holds for the case n. = 2. The case for n, > 2 can be proven
similarly by repeatedly applying Theorem 3.3.6 and noting that the mappings n — x;(a;, 1)

are strictly differentiable at p for all i € 7. !

Remark 3.4.8. J,x(-, p) might be discontinuous at t = oy with i € T\{1}.

Corollary 3.4.9. Let the hypotheses of Theorem 3.4.7 hold. Then y(t,-) and x(t,-) are

strictly differentiable at p for allt € T\S and the derivatives are

Joy(t,p) = Jxri(t, vi(t,p))Jpx(t, p) + Jpri(t, vi(t, p)), Vt € oy, 5;)\S, Vi € T,
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Jpx(t,p) = Jxfi(t, vi(t, p))Ipx(t, p) + Jpfi(t, vi(t, p)), Vt € [, 5:)\S, Vi € T,

where Jxr;, Jpr;, Jxfi, Jpfi and Jpx are as defined in Theorem 5.4.7. In addition, if

Bn. &S, then y(Bn,,-) and X(5,,,-) are strictly differentiable at p and the derivatives are

JpY (Bnes P) = Ixtn. (Bues Vi, (Bue, P))IpX(Bres P) + IpTne (Baes Vi (Bnes P)),

JoX(Bn., P) = Ixfn. (Bues Vi, (Bue, P))IpX(Bres P) + Ipbu. (Baes Vi (Bnes P))

Proof. The result follows from Corollary 3.3.7. O

Remark 3.4.10. Theorem 3.4.7 can be extended to the case where F? are functions of w;_4
for i € T\{1} with slight modifications. In order to guarantee the strict differentiability of
X (v, +) at p, yi1(0s, ) and X;_1(5;, ) need to be strictly differentiable at p. Hence, 3; ¢ S

for all i € T\{1} needs to hold.
The extensions of Theorems 3.3.9 and 3.3.10 follow next. The extensions require the

introduction of additional variables in order to relate the adjoint equations for each separate

time interval.

Theorem 3.4.11. Let the hypotheses of Theorem 3.4.7 hold. Define G : P — R as

Ne

Bi
G(p) = Z/ 9i(t, wi(t, p))dt

1=1

where g; - T x P x X x Y x X — R are locally Lipschitz continuous functions for alli € T.
Let Q) be a measure zero subset of T'. Let 0y9;(t, u;(t,p)) be a singleton for allt € [a;, 5;]\Q
foralli e Z.

Define for each i € T:

Bx,i(tv ui(ta p)) = ﬁxgz(fﬂ ui(tv p)) + jxri(tv Vi(t7 p))Tﬁng(t ui(tv p)) +
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jxfi(tvvi(tap))Tﬁxgi(tvui(tp))v vt € [, Bil,

Bp,i(t,u(t,p)) = Vpgi(t, wi(t, p)) + jpri(@Vz'(t, P))Tﬁygi(t, u;(t,p)) +

jpfi (ta Vi (ta p))Tﬁxgl(ty ul(t7 p))? \V/t € [aia /62]
Let A; : oy, Bi] — R™ be solutions of

Ai(t) = =J£i(t, vi(t, p)) " Ni(t) + By, VE € [, Bi), Vi € T, (3.4.6)

Xi(B1) = IuFLy (vilt, p) " A1 (8), Vi € IT\{n.}, An,(Bn,) = 0.

where Jpfi(t, vi(t,p)), Jxfi(t,vi(t,p)), Jpri(t, vi(t,p)), and Jxr;(t,vi(t,p)) are computed

using (3.4.3). Then, X; are unique and absolutely continuous.

In addition, G is locally Lipschitz continuous and strictly differentiable at p and the

derivative s

VGp) - /@- By(t, wi(t, p)) — Jpfi(t, vi(t, p)) A (E)dt — e
i A1 (8:) TpF (Vi B, p) +

JpXn, (Bn., p)T)‘ne (Bn.) — Jpxi(a, p)T)\l (7).

Proof. Consider the equivalent definition of G,

e 1B
Gl) = [ it p) ~ A0 (6t vt ) — e, p)) +

i=1 Y%

ne—1

Z IJJ;F (Xi+1(/8ia p) — F?+1 (vi(Bs, p)))
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where p; € R™ for all i € Z\{n.}. Using Theorem 3.3.9, the relation

e Bi R
VG(e) =3 [ Byltw(t.p)) - Jubitvi(t.p) N0 +

Z Jpxi(t7 p>T>‘Z(t)
i=1
ne—1

S (Tpxiea (B, p) — IpFY (Vi3 ))) " i —
=1

ne—1

S (IF (vi B p)Ipxi(5i, D)) b

i=1

52‘. i
a;

is obtained. The results (3.4.7) and (3.4.6) follow after relating A; to A;41 by setting A\;(3;) =
JxFY  (vi(Bi,p)) s and p; = X1 (6;) for i € Z\{n.} and X, (8,.) = 0. O

Theorem 3.4.12. Let the hypotheses of Theorem 3.4.7 hold. Let h : Tyx Px X xYx X — R
be a locally Lipschitz continuous function where 1y is an open subset of T such that t; € Tj.
Assume ty ¢ S (if h: Ty x P x X — R, this assumption is not necessary).

Let G : P — R : n — h(ty,u(ty,n)) and assume Ozh(ts,u(ty, p)) is a singleton
with element (Vph(tp,u(ty, p), Vxh(ts,u(ty,p), Vyh(ts, u(ty,p), Vih(ts, u(ty, p)) where
Vph(ts,uty,p) € R, Vih(tyu(ty,p)) € R"™, Vyh(tyu(ty,p)) € R™ and
Vih(ts,u(ty,p)) € R™.

Let

Cx - fone (tf, Ve (tf> p))TVxh'(tfa u(tfa p)) +
Jxrne (tfv Ve (tfv p)>TVyh(tf7 u(tfv p)) + Vxh(tfv u(tfv p))v
CP = prne (tf7 Vne (tfu p))TVXh'(tfv u(tfa p)) _'_

Jprne (tfv Ve (tfv p)>TVyh(tf7 u(tfv p)) + Vph(tfv u(tfv p))
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Let X\; : [y, Bi] — R™ be solutions of the initial value problems:

/\z(t) = - jxfi(ta vi(t,p) " Ai(t), Vt € (as, Bi], (3.4.8)

Ai(Bi) = JXF?H(Vi(t» P) T Ais1 (i), Vi € I\{n.}, A, (Bn.) = —Cx.

where Jpfi(t, vi(t,p)), Jxfi(t,vi(t,p)), Jpri(t, vi(t,p)), and Jxr;(t,vi(t,p)) are computed

using (3.4.3). Then A; are unique and absolutely continuous.

In addition, G is locally Lipschitz continuous and strictly differentiable at p and the

derivative s

e Bi
VGp) =Y / T Tpb it p) A -

Ne—1

Z JpF?H(Vi(ﬂia p))TAi—l—l(ﬂi) — Jpxi(ay, p)T>\1(Oé1) + Cp.
i=1

Proof. As in Theorem 3.3.10, G is locally Lipschitz continuous at p because it is the compo-
sition of locally Lipschitz continuous functions h(ty,-) and the locally Lipschitz continuous
function u(ty, ). Strict differentiability follows from the fact that dyh(ts, u(ts, p)) is a sin-

gleton and u(ty, -) is strictly differentiable at p. The strict derivative is

VG(p) - ij(tf, p)Tvxh(tfa u(tf> p)) + pr(tf> p)TVyh(tf> u(tf> p)) +

Jpx(t7, )" Vih(ts, u(ty, p)) + Vph(ts, ulty, p)).
Replacing J pX(tr, p) and Jpy(ts, p) with the results in Corollary 3.4.9 produces
VG(p) = Jpx(ts, p) Cyx + Cp.

Observe that Jpx(t;, p)TCx is the derivative of x(¢y,-)TCy treating Cyx as a constant at p
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and

e Bi

x(t;,p) Cx =Y / £,(t,vi(t,p)) " Cydt +
i=1 v
ne—1

Z (xix1(air1, p) = %i(B:,p))" Cx + X1 (a1, p)"Cy,

e Bi
x(ty.p)" 2/ (6 it D))" — M) (6 (1, vilt, D)) — (¢, )t +

Z (Xiv1(@iv1, P) — xi(Bi, p))T Cx + x1 (a1, p)" Cx.

i=1

hold. Let H : P — R : n — x(t;,n)TCx. Then

e Bi
- Z / JpXi (tv p)TCx -
i=1 7

(Jofi(t, vi(t, 2)Tpxi(t, p) + Tpfi(t, vi(t, p)) — Tpxi(t, P)) T Ai(t)dt +

ne—1

Z (JpXit1(aiv1, ) — Ipxi(Bi, P))T Cx + Jpxa(an, p)' Cx.

i=1

Collecting terms containing J pXi(t, p) and using integration by parts as in Theorem 3.3.10

results in

Ne Bi R '
ZZ / | Jox () T (= Jxfs (£, vi(t, p)) A1) — Ai(t)) —

Jpfi(t,vi(t,p)) " Ni(t)dt + Jpx,(t, p)T(C, + )]

ne—1

Z (IpXit1 (i1, ) — Ipxi(Bi, P))T Cx + Jpxi(au, p)' Cx,

i=1

_|_

(67

Ne Bi
VH®E) =Y [Tt vilp) A+ T p) (ot M)+

Z (Jpxi—i-l(ai-i-la p) - Jpxi(ﬁia p))T Cx + Jpxl (Oél, p)TCx>

=1
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e Bi
V H(p) :Z / —Jofi(t,vi(t, p)) " Ni(t)dt +

ne—1

Z JpXit1(it1, P) Nip1 (i) + Jpxi(3, P)T)\i(ﬂi)) +

IpXn, (Bns P)" (Cx + A (Bn,)) — Jpxi (o1, p) T Ar(ov).

Setting X;(3;) = JxFY, (vi(Bi, P)) T Aiga (i) for all i € T\{n.}, A, (B,.) = —Cx and using
(3.4.5) provides the desired result. O

3.5 Comments on the Numerical Computation of For-

ward and Adjoint Sensitivities

In this section, the discussion focuses on computational issues for the adjoint and forward
sensitivities of solutions to the initial value problems (3.2.1) and (3.3.1).

In order to solve (3.3.1) where F is an arbitrary locally Lipschitz continuous function
requires a method to solve nonsmooth equations (see [35] for examples of nonsmooth equation
solvers) coupled with a numerical integration algorithm. Although, this is an interesting
avenue of research, it is not pursued here because many systems of interest have special
structures that allow the use of existing algorithms. Usually the right-hand side of (3.3.1)
is continuously differentiable on open subsets whose closures partition the domain and the
solution can be obtained using integration algorithms coupled with state event location
algorithms [83].

The computation of the forward and adjoint sensitivities require the set S = {t € T :
OuF (t,u(t,p)) is not a singleton} to be determined. In general, when solutions of (3.3.1)
are obtained numerically, it is not possible to determine whether S is a set of measure zero

because the numerical solution comprises values computed at finitely many elements of T
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which may or may not be elements of S. Another major issue is that the computation of the
generalized Jacobian of an arbitrary locally Lipschitz continuous function using definition
(2.6.5) is not computationally practical.

The initial value problem (3.2.1) has a continuous right-hand side; however, the corre-
sponding adjoint and forward sensitivity initial value problems are equations with discon-
tinuous right-hand sides (See Example 3.6.2). These discontinuities need to be detected and
located using, for example, state event location [83], for the efficient and accurate compu-
tation of the adjoint and forward sensitivity trajectories. Similar observations apply to the
adjoint and forward sensitivities of (3.3.1).

Finally, the adjoint and sensitivity initial value problems (3.3.4, 3.3.6, 3.3.8) and the
integrals (3.3.7, 3.3.9) require the computation of the derivatives of the implicit functions f
and r. This computation is achieved by solving (3.3.2) at each function evaluation, which
is computationally very costly. Ideally, auxiliary DAE systems analogous to those in [24]
should be solved.

In order to overcome these computational issues, additional assumptions on the structure
of F need to be imposed. For example, F can be continuously differentiable on open sets
whose closures partition the domain of F. The boundaries of these open sets can be the
zero-level sets of certain functions. These assumptions and their numerical implications are

discussed in the following chapters.

3.6 Examples

The first example is a case where the mapping 1 — x(t, n) is strictly but not continuously

differentiable at p.

Example 3.6.1. Let n, =1, n, =2. Let T = [to, 7], P = R* and X = R and At = t; — 1o,
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Table 3.1: Solution and Generalized Gradients of Example 3.6.1
Case z(t,p) dpx(t, p)

P 00| eS| (e A )]

pr>0, pp <0 | pp-e P2 {(eP2A —p; - At-e7P2A) )

p1 <0, pp>0|p-e P {(e7P22t, —py - At - e P28) )

p1 <0, pp<0]| pp-ep2p {(e722%, py - At - er22) )
=0 0 conv ({(e”22%, 0), (77241, 0)})
p2=0 P conv ({(1, p1 - At), (1, —p1 - At)})

p1=0,p2=0 0 {(1,0)}

x:TXxP—X, f:TXPxX:(t,n,u)— |ne-pl. Consider the initial value problem

l’(t,p) = f(t,p,x(t,p)), vt € (thtf]? l’(to,p) = DP1-

Table 3.1 contains the solutions and generalized gradients as a function of the parameter
values. Note that at p = (0,0), z(¢,-) is a strictly differentiable function. Gronwall’s
result [44] cannot be applied to conclude differentiability because the partial derivatives of
f are not continuous in any open set containing {(¢,z(t,p),p) : t € [to,tf]}={(¢,0,0,0) :
t € [to,ts]}. The results in [94], [95] and [39] are also not applicable in this case. In the
neighborhood of p = (0,0), the state evolves according to (0, p) = —p2x(0, p) or (0, p) =
p2x(0, p) depending on the parameters. Hence the sequence of vector fields encountered is

not invariant. Theorem 3.2.3 can be applied to deduce strict differentiability in this case.

The next example demonstrates the discontinuous nature of the sensitivity equations.

Example 3.6.2. Let T' = [0,#s], n, = 2, n, = 1, P = R?, X = R. Consider the dynamic
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system

&(t,p) = max(p; — z(¢,p),0) — max(z(t, p) — p2,0),Vt € (0,],

z(o>p):0a p1>p2>07 pep

where z : T'x P — X. Let t* be such that z(t*,p) —p, = 0. If t* > t; then z(¢t,p) =

p1-(1—e?) forall t € [0,tf]. Let p be such that 0 < In

<ts. Then t* = lnl’% and

p1
—p2 — pP1—p2

p1

z(t,p)=py=p1- (1 —e").
In this case, Jyf and jpf in (3.2.2) are

( 4

1 ift € (fo, ), (1,0) ift € (£, 1),

JSEvEP) =3 0 ift=t, o Ipf(t,V(L,P) =14 (0,0) ift =t
o it e (1,1, (1,1) it e (4]
\ \

Hence the sensitivity equations have a discontinuity at t*. The time of discontinuity depends

on the parameter. Note that, in this case, S is a singleton set.

The next example involves piecewise continuously differentiable functions. These are
locally Lipschitz continuous functions that are almost everywhere continuously differentiable

and that have their own specific implicit function theorem [91, 98].

Example 3.6.3. Let Y = {y € R™ : y; > 0,¥i € {1,...,n,}} and W = Y. Let x :
TXP X, %x:TxP X, y:TxP -V w:TxP—->W o pecPandteT.
Lt VT XPXXXYXWXX >R" Q:TxPxX —Rwand Vo: P — X be
continuously differentiable functions. Let M € R"™*"™ be a P-matrix, i.e., the determinant
of every principal minor is positive. Let n, € P, nx € X, ny, € V, nx € X, Nw € VW and
N = (Mp, M, My> Mw, Ms)- Let IV (¢, 1) be invertible for all (£,17) € T xPx X x Y x W x X.
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Consider the initial value problem

0=V(t,p,x(t,p),y(t,p), w(t,p),X(t,p)), V € [to, 1], (3.6.1)
0 =w(t,p) — My(t,p)) — Q(t, p. x(t,p)), Vt € [to, ty], (3.6.2)
0 <wi(t,p), 0 <wi(t, p),wilt,p)yi(t, p) = 0,Vi € I, Vt € [to, tg], (3.6.3)
0 = x(to, p) — Vo(p), Vp € P, (3.6.4)
T={1,...,n,}.

Let py, € R™. The linear complementarity problem [27],

Nw=Mny + py,Nwi >0, 1y >0, nwiny: =0, Vi€l (3.6.5)

has exactly one solution for each py, € R™ because M is a P-matrix. Define the functions

W: R xY—-R"andg: Wx)Y—R as

Wiy, my) = min((my, ny) + pyi, Myi), Vi € Z,

gl(nWa ny) - 77w7i - T]y,i, \V/Z - I

where m; is the ith row of M. Then the linear complementarity problem (3.6.5) is equivalent

to the equations:

0= W(“ya ny)a Nw = Mny + My

Note that W is a piecewise continuously differentiable function. If W(fy,n,) = 0, then
there exists a piecewise continuously differentiable function H : R™ — ) such that

Wi(py,H(py)) = 0, YV, € R™ (See Example 17 in [91]). Let 1y = Mny, + fty. De-
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fine the sets

Il(ﬁ'y) ={iel: gi(ﬁwaﬁy) > 0},
I2(ﬁ'y) ={iel: gi(ﬁwaﬁy) < 0},

IB(F_"y) ={iel: gi(ﬁwaﬁy) =0}

Then (3.6.5) can be written in the form

0= R(Il (F_"y)aI2(F_"y)aIS(F_"y))ﬁy + K(Il (F_"y)aI2(F_"y)I3(F_"y))ﬂya

ﬁw - Mﬁy + p’ya
where

e-T ifi € Il(/]/y)a

Ri(Zi(fry), Zo(fty ), Zs(fry)) = § m, ifi € Io(fay),

ef orm; ifi€Z3(fay),

;

0 if i € Ty (jiy),

Ki(Zi(y), oy ), Is(iny)) = § ef if i € Ip(jay),

7

el or 0 ifi€ Zz(fay),

\

R; and K; are the ith rows of R and K, respectively. Observe that R(Z;(fty), Zo(fty),
Z5(fty)) is invertible because M is a P-Matrix. If Z3(f,) is empty, then for (py,ny) in a

neighborhood of (i, 7y)

0 = R(Zi(fty), Io(fry), Zs(fry))ny + K(Z1(fry), Zo(fry ), Z3(f2y ) ) by
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holds due to the continuity of W and g¢;. In this case, if iy, = Q(¢, p,x(t,p)), Ny = y(t,p),
Nw = W(t,p), then the system of equations (3.6.1) to (3.6.4) are a set of continuously

differentiable hence strictly differentiable equations.

In the remainder, if i € Z3(py ), then it is treated as if ¢ € Zy(py) holds. Then Z;(py,) U
Tr(py) = Z. As aresult, R and K can be written as R(py) and K(uy). If g, depends on

other variables, those variables are substituted for p,.

Using the fact that the composition of locally Lipschitz continuous functions is locally
Lipschitz continuous, the existence of H and the invertibility of J4V, it can be shown that
there exist locally Lipschitz continuous functions, f : 7 x Px X — X andr: T x P x X —
Y, such that 0 = V (¢, Mp, Nx, £(t, Mp, Nx), Mr(t, np, Nx) + Q(t, Mp, Mx), £(¢,Mp, Mx)). Then
existence and uniqueness of solutions to equations (3.6.1) to (3.6.4) can be analyzed using
results for ordinary differential equations to show that (x(-,p),y(-,p),w(:,p),%X(-,p)) is a

continuous function on 7.

Let F:TXxPXxXxYxWxXX — Rw x Rw x R% he

Vi(t,m)
F(tv "7) = Nw — M'r’y - Q(tu Np; 77x)

R(t7 Mo, nx)ny + K(t, Np, nx)Q(tv MNp, 77X)

Let the mapping ¢ — F(¢,() be differentiable at m, let the derivative be J,F(t,n) =
[A(t,m) B(t,n)] (the notation is modified here and the subscript u is associated with the
spacerXxnyxX)Where

B(t,n) = -M I, 0 : (3.6.6)
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JpV(t,n) TV (t,m)
A(t777) = _JpQ(t7np7T’X) _JXQ(t7np7nX)

K(t, 15, 1x)JpQ(t, Mp, k) K (t, Mp, 1) I Q (2, p, 1)

Let the solution of the system of equations (3.6.1) to (3.6.4) be (x(-,p),y(:,p), W(-,p),
x(,p)). Let u(t,p) = (p,x(t,p),y(t,p),w(t,p),%(t,p)). Let S be the set {t : t €
T, gi(w(t,p),y(t,p)) = 0, forsome ¢ € Z}. If S is a measure zero subset of 7" and
B(t,u(t,p)) is invertible for all ¢ € T\ S, then Theorem 3.3.6 can be used to obtain for-
ward sensitivities. Finally observe that K and R are constant as long as Z;(t, v(¢,p)) and
Z5(t,v(t,p)) remain constant. If S is a set of measure zero, a € S and b € S and t ¢ S if

t € (a,b), then due to the continuity of u(-, p), K and R are constant for t € (a,b).
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Chapter 4

Parametric Sensitivity Analysis of
Dynamic Systems using Linear

Newton Approximations

In Chapter 3, sufficient conditions for the existence of the strict derivative were analyzed
for the mapping n — x(t;,m) at p € P, where x : [tg, ] X P — X was the solution of the

initial value problem:
x(t,p) =f(t,p,x(t,p)), Vt € (to,t], x(to,p) = fo(p), Vp € P C R"™, (4.0.1)

where f and f; were locally Lipschitz functions on their respective domains. Forward and
adjoint sensitivity initial value problems were derived. The results were extended to DAEs
that can be transformed into ODEs using the implicit function theorem for locally Lipschitz
continuous functions (Theorem 2.6.13). Finally, the results were extended to multistage

systems where at each stage the evolution of the states was governed by such a DAE.
The results in Chapter 3 required that the state trajectory visit points of nondifferen-
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tiability in the domain of f only at times that constitute a measure zero subset of the time
horizon, [tg,ts]. In this chapter, the case where this requirement is not met is analyzed. In
this case, Theorem 3.1.3 states that 0yx(t,x3) C R(tr,x2), but provides no efficient means
to calculate an element of 0,x(t,%x3). The theorem does not state whether ®(t;,x,), the
set whose elements can be easily computed, contains dyx(¢,%5) and it is not clear whether
R(tf,x2) can be used as a surrogate for the generalized Jacobian.

In order to arrive at sharper results than Theorem 3.1.3 can provide, additional conditions
on the functions involved in (4.0.1) are imposed. The functions are assumed to be semismooth
in the restricted sense in addition to being locally Lipschitz continuous. As a consequence
of this assumption, linear Newton approximations that contain the generalized Jacobian of
the mapping i — x(tf,n) can be derived and equations can be formulated to calculate an
element of these linear Newton approximations.

The results in this chapter depend on results in [42] and [81]. In §4.1, these results are
summarized. In §4.2, results are derived for (4.0.1) assuming f and f; are semismooth in
the restricted sense. The results are extended to a set of DAEs using an implicit function
theorem for semismooth functions derived from results in [42]. Then, multistage DAEs are

considered. Finally, Example 3.6.3 is revisited.

4.1 Preliminaries

4.1.1 Note on Notation and Assumptions

In the remainder of this chapter, n,, n, and n, represent finite positive integers, to € R, t; €
R and tg < ty.

X1, Xo, X3, Xy, X5 and Xg are open connected subsets of R, R™, R" R"™ R™ and
R™ | respectively. X7 = X5 x X3, Xg = Xo X X3 x Xy X X5, Xg =X, x X5, X10=X7 xR
and X1 = X5 x R. T = [ty, 4] C X;.
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In order to make the exposition more intuitive, the labels 7, P, X, ¥, X, W and Q will
be used instead of X, Xy, X3, X4, X5, X¢ and Xy. If the symbols ¢,p,x,y, X, w, v, u, q,

v and X appear as subscripts, they represent the indices 1,2,3,4,5,6,7,8,9, 10 and 11.

In the remainder of this chapter, semismoothness means semismoothness in the restricted
sense and if F' is a scalar function, F denotes its generalized Jacobian and not its generalized
gradient to make the exposition simpler. The topological degree and related concepts are
used to formulate conditions for the existence of implicit nonsmooth functions. Here, relevant
properties of the topological degree are summarized (see [35] for a more detailed treatment

of degree theory).

Definition 4.1.1 (Topological Degree). Let F : cl(Q2) — R" be a continuous func-
tion where Q is a nonempty bounded open subset of R™. Let bd(Q) = cl(Q)\Q. Let
y € R"\F(bd (). The degree of F on Q at y is denoted by deg(F,Q,y), takes integer

values and satisfies the following properties:

1. Lety € R"\F(bd (2)). Ifdeg(F,Q,y) # 0, then there exists, u* € 2, a solution to the
equation F(u) =y.

2. If y ¢ cl(F(Q)), deg(F,Q,y) = 0.

3. deg(I,Q,y) =1 if y € Q where I is the identity map.

4. deg(F,Qy) = deg(F,Q1,y) +deg(F,Qs,y) if U and Qs are two disjoint open subsets
of Q and 'y ¢ F(cl(2)\(2; UQy)).

5. Let H : [0,1] x bd (©2) — R™ be a continuous function. Let H(0,x) = F(x) and
H(1,x) = G(x) for all x € bd (). Ify ¢ H(t,bd(Q)) for all t € [0,1], then
deg(F,Q,y) = deg(G, Q,y).

6. Let G be a continuous function on cl(£2). deg(F,Qy) = deg(G,Q,y) if

max [F(x) = G(x)lloe < disteo(y, F(bd (2)))

xecl(Q
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where || - || s the maz norm and

disto(y, F(bd (Q)) = ZeFi(gg(Q)) 1 = ¥l oo

7. Let (y1,y2) € R"\F(bd (2)) x R"\F(bd (R2)). Then, deg(F,Q,y;) = deg(F,Q,ys) if
171 — yalloo < disteo(y1, F(bd (2))).

8. deg(F,Q,y) = deg(F,Qy,y) for every open subset 2y of 2 such that'y ¢ F(Q\Q).
9. Lety € R"\\F(bd(Q)). If Q1 and Qy are two disjoint open sets whose union is Q, then
deg(F,Q,y) = deg(F, Q1,y) + deg(F, Qs,y).
10. Let y; € R"\F(bd (Q2)). Let Q' be a nonempty bounded open subset of R™. Let G :
cl () — R™ be a continuous function and yo € R™\G(bd ('), then

deg(F x G,Q x ', (y1,y2)) = deg(F, Q,y1)deg(G, ', y2).

Definition 4.1.2 (Index of a function). Let F : cl(©2) — R"™ be a continuous function
where Q is a nonempty bounded open subset of R™. Let y* € R*"\F(bd (2)). Let x* be an
isolated solution of the equation F(x) = y*, i.e., F7 (y*) Ncl(Qy) = {x*} where Q is an

open subset of € containing x*. Then
deg(F,Qy,y") = deg(F,Qs,y")

where €y is a neighborhood of x* such that Q5 C 4. In this case, the index of F at x*

denoted by ind(F,x*) takes the value deg(F,Q,y*) and satisfies the following properties

1. If x* is a Fréchet differentiable point of ¥, then ind(F,x*) is equal to the signum of

the determinant of JF(x*).
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2. If the equation F(x) = y* has finitely many solutions {x;}*_, in Q, then deg(F,Q,y*) =
>, ind(F,x}).

Next, two extensions of the derivative similar to the generalized Jacobian are introduced.
They appear as intermediate quantities when deriving the necessary relations to compute

elements of the linear Newton approximations that contain the generalized Jacobian.

Definition 4.1.3 (B-Subdifferential). Let F : R™ — R™ be a locally Lipschitz continuous

function. Then, the B-subdifferential at x € R is defined by
OPF(x) = () JF(cl ((x + 0B(0,1))) N Q)
5>0

where Qp is the set of points where F is differentiable and B(0, 1) the open unit ball in R™.

Equivalently,

OPF(x) = {lim JF(x;) 1 x; — x, x; € QF} :

71— 00

Definition 4.1.4 (BN Generalized Jacobian). Let F : R" — R™ be a locally Lipschitz

continuous function. Then, the BN generalized Jacobian at x € R is defined by

""F(x)= () ()IF(c((x+B(0,1))) N (2w\N))

N:|N|=06>0

where |N| is the Lebesgue measure of set N and Qg is the set of points where F is differen-

tiable.

The following Lemma summarizes the properties of the B-subdifferential and BN gener-

alized Jacobian. The results are from Lemma 5 in [81] and [35].

Lemma 4.1.5. Let F : R® — R™ be a locally Lipschitz continuous function. Let x € R™.

Let Qg be the set of points where F is differentiable. Then the following hold:
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1. 9°NF(x) C 9PF(x) C OF ().

conv (0PF(x)) = OF (x).

conv (9PVF(x)) = OF(x).
JF(y) € 0PF(y) for ally € Qp.
JE(y)

OBF and 0PNF are uppersemicontinuous, nonempty and compact-valued set-valued

€ OBNF(y) for ally € Qp\S where S is a measure zero subset of R™.

.03.0‘4:\9@?\5

maps from R™ to R™*™.
7. IfF € PCY(O) where O is an open subset of R™, then OPF (x) = {JF;(x) : i € Z(F,x)}
for all x € O where Z(F,x) is the set of essentially active function indices at x defined

in §2.7.

Definition 4.1.6 (The Projection of the B-Subdifferential and BN Generalized
Jacobian). Let F : X; x Xy — RP where Xy and X5 are open subsets of R™ and R™, respec-
tively. Let ¥ be locally Lipschitz continuous at (X1,Xs) where x; € X1 and x5 € Xo. Then
0P F(x1,%3) is the set {M € RP*™ : IN € RP*™ such that [N M] € 0PF (x1,x2)}. Analo-
gously, mOPF(xy,%y) is the set {M € RP*™ : AN € RP*™ such that [M N] € 9PF(x;,%3)}.
The projection of the BN Generalized Jacobian is similarly defined with the B-subdifferential

replaced with the BN Generalized Jacobian.

The following is an implicit function theorem derived from Theorem 4 in [42] using

Corollary 4 in [42].

Theorem 4.1.7. Let X; be an open subset of R™ and X, be an open subset of R™. Let
F: X; x Xo — R"™ be a semismooth function. Let x* € X1, y* € Xy and z* = (x*,y*). Let
F(z*) = 0. Assume the following hold:
1. m0PF(z*) is coherently oriented, i.e, the determinants of all the matrices in m0PF (z*)
have the same nonzero sign .

2. ind(h,y*) = a where h: Xy — R" : y — F(x*)y).
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Then, there exists, U, an open subset of X1 x Xo, W, an open subset of X1 and a semismooth
function G : W — Xy such that z* € U and x* € W, F(x,G(x)) =0, (x,G(x)) € U for all
xeW.

The set-valued mapping I'G : W = R™™ defined by
I'G(x) = conv ({-mM'mM: [m;M mM] € 0°F(x,y), mM € R”™, M € R"*"})

is a linear Newton approzimation of G at x such that 0G(X) C conv (I'G(X)) holds for all
xeW.

Proof. The first part of the Theorem follows from Theorem 4 in [42]. Note that Theorem
4 provides an implicit function that is semismooth in the original sense (Definition 2.8.7).
Semismoothness in the restricted sense follows from the fact that on an open neighborhood
W containing x*, (G, the implicit function is semismooth in the original sense which implies
that the implicit function is B-differentiable on that set per the properties of semismooth

functions.

In order to derive the linear Newton approximation I'G, the result in Corollary 4 in [42]
is used as follows: Let H : Xj x Xy — X; x Xy : (x,y) — (x,F(x,y)). Then H is a
semismooth function on U as a composition of semismooth functions and

L., 0
OPH(x,y) = : [mM mM] € 0°F(x,y), mM € R™™ m,M € R™"

71'1M 772M

is obtained using the definition of the B-subdifferential. In addition, H has a semismooth

inverse, H™! : W x V — U where V is an open subset of R" such that 0 € V. This can be
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shown as in the proof of Theorem 4. Furthermore,

-1

L. 0
OPH '(x,0) = : [mM mM] € 0°F(x, G(x)), mM € R™™ w,M € R"™"
7'('1M 71'2M

holds for all x € W per Corollary 4 in [42]. Observe that

1
M wM —WQM_ITHM 772M_1

and OH ! (x,0) = conv (0°H!(x,0)).

The mapping 7 — G(n) is equal to n — (n,0) — H™(n,0) — G(n). Then, using
Theorem 2.6.7,

L,
0G(x) C conv [0 In] N :N € 0H '(x,0)
0

is obtained. Since OH !(x,0) is a linear Newton approximation of the mapping (x,0)

(x, G(x)), the set I'G : W = R™ defined by
L,
I'G(x) = {0 j[n] N :N € 0H '(x,0)
0

is a linear Newton approximation of G at x per Theorem 2.8.12 such that dG(x) C

conv (I'G(x)) holds for all x € W. The result
I'G(x) = conv ({-mM'mM: [m;M mM] € 0°F(x, G(x)), mM € R, m,M € R™"})

can be obtained using the fact that 9H™!(x,0) = conv (0PH™!(x,0)) and the definition of
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OPH ! (x,0). O

The following theorems are used to derive linear Newton approximations to the map
n — x(t,n).
Theorem 4.1.8. Let X, and X, be open connected subsets of R and R™, respectively. Let Xo

be an open connected subset of Xo. Let T = [to,ts] C Xy. Let f: Xy — R™ be semismooth.

Let x : [to, ts] x Xy — Xy be such that x(-,%y) is the only function that satisfies
X(t,Xg) = f(X(t,XQ)), Vt € (to,tf], X(to,Xg) = X2, VXQ S Xg.

Then x(t,-) is semismooth at xy € Xy for allt € T (Theorem 8 in [81]).

Theorem 4.1.9. Let the assumptions of Theorem 4.1.8 hold. Assume I'f : X9 == R"™™" s
a linear Newton approximation of £ on X5. Then, there exists a neighborhood O C X, such

that, the set-valued map, I's : T x O = R™™"™ defined by

Po(t,m) ={Y(t,n) : Y(t,m) € conv (Tf(x(t,1)))Y (¢, m), Vt € (to, 1], Y(to,n) =10}

is a linear Newton approzimation of x(t,-) at xo € O for allt € T (Theorem 11 in [81]).

Corollary 4.1.10. Let assumptions and definitions of Theorem 4.1.9 hold. In addition, let
I'f(y) = 0f(y),Vy € Xy. Then, the result of Theorem 4.1.9 holds. Let I'5(t,Xs), x2 € O
be computed as in Theorem 4.1.9 with Tf(x(t,x2)) = Of(x(t,x3)). Then 08Vx(t,x3) C
[y(t,x2) where OPNx(t,xy) is the BN generalized Jacobian of the mapping n — x(t,m) at
xo (Corollary 12 in [81]). In addition, Oyx(t,%2) C conv (I'y(¢,x2)) holds per Lemma 4.1.5.

Remark 4.1.11. The results of Corollary 4.1.10 still hold if I'f(x(¢,n)) is replaced with
conv (I'f(x(t,n))) where I'f is a linear Newton approximation of f that satisfies Of (y) C
conv (I'f(x(y)) for all y € X,.
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Definition 4.1.12 (The Projection of a Linear Newton Approximation). Let F :
Xy x Xog — RP where Xy and Xy are open subsets of R™ and R™, respectively. Let F
be semismooth at (x1,X3) where x; € X; and xo € Xy. Let I'F be a linear Newton
approzimation of ¥ in a neighborhood of (x1,X2). Then ml'F(x1,x3) is the set {M €
RP*™ - IN € RP*™ such that [N M] € T'F(x1,%2)}. Analogously, mI'F(x1,x2) is the set
{M € RP*" : 3N € RP*™ such that [M N] € I'F(x1,X3)}.

The following extends the definition of a measurable selection in Definition 3.1.1 to arbi-

trary set-valued maps with nonempty and closed images.

Definition 4.1.13 (Measurable Selection of Set-Valued Map). Let X be a closed or
open subset of R and S : X & R™ be set-valued map such that S(x) is a non-empty closed
set for all x € X. Lets : X — R™ be a Lebesgue measurable function on X such that
s(x) € S(x),Vx € X. Then s is a measurable selection of S on X. This is denoted by
se L(X,S).

The following result combines Theorem 8.1.3 and Proposition 8.2.1 in [5] and states

sufficient conditions for the existence of a measurable selection.

Theorem 4.1.14 (Existence of Measurable Selections of Upper Semicontinuous
Set-Valued Maps). Let X be a closed or open subset of R™ and S : X & R™ be an upper
semicontinuous set-valued map such that S(x) is a non-empty closed set for allx € X. Then

there exists a measurable selection s : X — R™ of S on X.

4.2 Ordinary Differential Equations

This section develops results for ordinary differential equations that satisfy the following

conditions.
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Assumption 4.2.1. Let f : T X P x X — X and fy : P — X be semismooth where X is an
open connected subset of X. Let x : T x P — X be such that x(-,p) is the unique solution

of the initial value problem

x(t,p) = f(t,p,x(t,p)), Vt € (to,ts], x(to,p) = fo(p), VP € P. (4.2.1)

Let T'f : T x P x X = R=)xUtmtna) pe o linear Newton approzimation of f satisfying
of(p) C conv (I'f(w)) for allp € T x P x X. In addition, let I'fy : P =2 R™*™ be a linear

Newton approzimation of £y such that 0fy(n) C conv (I'fy(n)) for allm € P.

Remark 4.2.2. Letz : TxP — P : (t,p)—pandv : T xXP — PxX: (t,p) —

(z(t,p),x(t,p)) for the remainder of this chapter.

Theorem 4.2.3. Let Assumption 4.2.1 hold. Then, the mappingn — x(t,m) is semismooth

at p. Let Upx(ts, p) be the set

{m(ts,p) : 1(t, p) = mxGy(t, P)m(t, p) + Gyt p), Vi € (f0, 1), (12.2)
Gy(,p) € L(T, myconv (I'f (-, v (-, p))),
G(t,p) = [mpG(t,p) G (1, D)), VE € T,
mp,Gr(t,p) € R 1w, Gs(t,p) € R"™*" Vt €T,

m(ty, p) € conv (I'fy(p))}.

Then T'px(ts, p) is a linear Newton approximation of the map n — x(tr,m) at p and

Opx(ty, p) C conv (I'px(ts, p))

holds.

Proof. Let At =t; —1t,. Let T be a an open connected subset of 7 such that if ¢ € 7, then
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(t+At)eTandtyeT. Letto e T,p e P, X € X and vy = (o, P, Xo).

Let v : [0,A] x T X P XX =T, vy : [0,At) x T x Px X — P and vy : [0,At] x T x
P x X — X be continuous functions and let v(7,vy) = (Vi (T, 1), Vp(T, 1), Vx(T, 1p)). Let
vy (1,10) = (Wp (7, 10), Ux(T,10)). Let g : T X P x X - R xR™ x X : v (1,0,f(p)).

Consider the following augmented initial value problem:

v(T,vy) = gv(r, wv)), v € (0,At], v(0) = 1. (4.2.3)

Note that:
vi(t,v) =t + 7,V €T, (4.2.4)
vp(T,10) =P, VP € P. (4.2.5)

Observe that g is semismooth as a composition of functions that are semismooth. Therefore,
the mapping vy — v(7, 1) is semismooth per Theorem 4.1.8 if a unique solution v(7, 1)
exists. As a result, the mapping (P, Xo) — v« (T, (to, P, X0)) is semismooth for all ¢; € T and
for all 7 € [0, At].

Let vy = (to, p, fo(p)). Then,

v (T, 9) = X(7 + to, D), (4.2.6)

(4.2.4) and (4.2.5) satisfy (4.2.3) with ty = t; and p = p. Observe that for any given p € P
and tg = tg, (4.2.6) holds.

The mapping n +— f3(n) is semismooth per assumptions. Since the composition of
semismooth functions is semismooth, the semismoothness of the mapping n — x(¢,n) at
p follows from the semismoothness of the mapping (p,Xo) — (vx(T, (to, P,X0)) and the

equivalence in (4.2.6).
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The generalized Jacobian of g at v(t, 1) is

og(v(t,v)) = 0|, Meodf(v(r,))

M

per Theorem 2.6.7. Define the set-valued mapping I'g : 7 x P x X — RO+nptna)x(14nptns)
by

0
Ig(v(t,v)) = 0|, M € conv(I'f(v(r,v)))

M

Note that I'g is a linear Newton approximation of g per Theorem 2.8.12 and dg(v(t,vy)) C

I'g(v(t, 1)) holds because of the assumptions.

Then, the set-valued map Iy, v : [0, At] x T x P x X =3 RU+m+na)x(+nptna) defined by

Lo (r,10) = {Y (1, 10) : Y(e, 1) € I'g(v(e, 1)) Y (e, 1),Ve € (0,7], Y(0,1) = L4 qn, }
(4.2.7)

is a linear Newton approximation of the map p — v(7r, u) at vy for all 7 € [0, At] and

O (7, 1) C conv (I'y,v(1,1y)) per Corollary 4.1.10.

In order to derive a linear Newton approximation for the mapping (p, Xo) — (Vp (7, v0), (T, 1))

for the case ty = t(, the composition of the following three maps is considered:

1. (p,Xo) — (to, P, Xo). The generalized Jacobian of this map is a singleton and the single
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element is

0
A —

I”p+nz

The generalized Jacobian also defines a linear Newton approximation for this map
because the map is semismooth.

2. vy — v(1,1y). I'yv(1,1p) is the linear Newton approximation of this map.

3. (W(T,v0),vp(T, 1), Ux(T, 1)) — (Vp(T,10),vx(T,10)). The generalized Jacobian of

this map is a singleton set with the following element

B = {0 Inp+nm] .

The generalized Jacobian also defines a linear Newton approximation for this map.

Per the chain rule for linear Newton approximations (Theorem 2.8.12), the set
{BMA :MeTl',v(r,v)}

is a linear Newton approximation of the map (p,Xo) — (Vp (T, 10), vx(T, 1)) (Note that vy is
used as an index instead of v here). Per the chain rule for the generalized Jacobian (Theorem

2.6.7) and the fact that d,,v(7, 1) C conv (I'y, (T, 1)),
Ovoy (T, 1) C conv ({BMA : M € 0,,v(7,1)}) C conv (I'y vy (T, 1)) (4.2.8)

holds.

In order to compute an element of I'y vy (7, ) one can solve a reduced system of equa-
tions instead of (4.2.7). Let Z : [0, At] — RUFmne)x(4m+na) he a measurable selection

of I'g(v(-,1vp)) on [0,At]. Then, Y(7,1p), an element of I'y,v(7,1p), can be computed by
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solving

Y(e,vy) = Z(e)Y (€,1), Ve € (0,7], Y(0,10) = Lisn, 4, (4.2.9)

The linear differential equation (4.2.9) admits a matrix-valued function I'(7,€) such that
Y (7,v9) = I'(7,0)Li1p,4n,. This implies that Y (7,19)A = I'(7,0)A. This in turn implies

that the product Y (7,19)A can be computed by solving

W (e, 1) = Z(e)W (e, 1), Ve € (0,7], W(0,1) = A. (4.2.10)

The product of Z(07)A has zero first row because the first row of Z(e) is zero for all € € (0, At]
and A has zero first row. As a result W(0) has a zero first row. Since W(0) and W(0)
have zero first rows, W (e) has zero first row for any € € (0,7]. As a result, the first column
of Z(e) has no effect on the evolution of W. In addition, the first row of Z(e) has no effect

on the evolution of W.

The pre-multiplication with B removes the zero first row from W(7) to produce an

(ny, + ny) % (n, + n,) matrix, M(7, 1), which can be computed by solving the differential

equation
M(e, vy) = Z(€)M(e, 1), Ve € (0,7], M(0,11) =1, 40, (4.2.11)
where
. 0
Z(e) = ,
H(e)



and H : [0, At] — R"%*(+72) 5 4 measurable selection of conv (7, I'f(v(-,1,))). Hence

Lo (T, 10) = {M(1,10) : M(e, 1) € Z(€,v9)M(€, 1), Ve € (0,7], M(0,19) =L, 41, }-
(4.2.12)

where

0
Z(e,vg) = : N € myconv (I'f(v(e, 1))

N

In order to derive a linear Newton approximation for the mapping 1 — x(¢,n), the
composition of the following functions is considered:
1. p— (p,fo(p)). A linear Newton approximation of this map is the set:

I,
C= “| : N € conv (T'fy(p))

N

per Theorem 2.8.12.
2. (p,Xo) — Vy(T, ). The linear Newton approximation for this map is I'y vy (7, 1).
3. vy(T, 1) — vy (T, ). A linear Newton approximation of this mapping is the singleton

set whose single element is

D= [0 Im} ;

which is also the element of the singleton generalized Jacobian.

It can be shown that

OpVx (T, 1) C conv ({DMN : M € 0,,vy(T,10), N € C}) C conv (I'pvk(T, 1))
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where

Fovk(T,10) = {DMN: M € I'y vy (7,1), N € C}

using the relation (4.2.8), Theorem 2.6.7 and Theorem 2.8.12. Setting the initial condition

to N € C in (4.2.12) results in the set

Fovy (T, 10) = {M(7,10) : M(e, 1) € Z(e,v9)M(e, 1), Ve € (0,7], M(0,4) =N, N € C}

which is a linear Newton approximation of the map p — vy (7,14) per arguments similar
to those used in the derivation of (4.2.10). Let M(7, 1) be an element of I'zvy (7, 1y).
Pre-multiplication with D produces an n, X n, matrix that contains the last n, rows of

M(T, Vo).

Note that the elements in the first n, rows of M(e, 1) are constant for all e € (0, 7]
because the first n, rows of any element of Z(e, 1) constitute a zero matrix. Therefore,
given G¢(-,p) € L(T, myconv (I'f(v(-,14)))), and N € C, an element of I'yvy (7, 1) can be
computed by

n(e, Vo) 0 n(e, 1)
= , Ve € (0,At], m(0,vy) € conv (I'fy(p)), n(0,1p) =1,,,

m(e, 1) Gy(e,p)| |mle, vp)

where n(e,vy) € R™ ™ and m(e, 1) € R™*™. Let Gy(e,p) = [mpG(€,p) mxG(€,P)]
where 7,Gf(e,p) € R™*™ and mxGy(e,p) € R™*™ then the evolution of m(e, 1) is

governed by

(e, vy) = mxGy(e, p)m(e, v) + 7w Gy(e, p), Ve € (0, At], m(e, 1) € conv (I'f(p)).
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Hence

Tovk(T,10) = {m(7, 1) : m(e, 1) = wGr(e, p)m(e, 1) + mpGr(e, p), Ve € (0, At],
Gs(-,p) € L(T,myconv (I'f(v (-, 1y))),
Gy(e,p) = [mpGy(e, p) mxGy(e, p)], Ve € [0, At],
7, Gr(e,p) € R™ " m,Gs(e, p) € R™ "™ Ve € [0, At],

m(0, ) € conv (Tf,(p))}.

If vy = (to, p, fo(p)), then v(1,14) = (t, p,x(t, p)) where t = 7+t,. Note that v is a function

of p only. Renaming the quantities appropriately, the desired result (4.2.2) is obtained. [

Corollary 4.2.4. The set

H =A{m(t;,p) : m(t,p) = 7xG(t,p)m(t, p) + Gy (t, p), Vi € (o, 1],
Gy (-, p) € L(T,0vE(-, v(-, p))),
Gy(t,p) = [mpGy(t, p) mxGy(t, p)], Vt €T,
wpGy(t,p) € R 7w, Gy(t,p) € R™ " VvVt eT,

m(to, p) € ofo(P)}

is a subset of conv (I'px(ts, p)).

Proof. The result follows from the fact that O,f(¢,p,x(¢t,p)) C mOf(t,p,x(t,p)) C

myconv (I'f(¢, p,x(¢,p))) for all ¢t € [ty, ] per Theorem 2.6.10. O

Remark 4.2.5. Let S be some measure zero subset of [ty,tf]. Note that if 7,0f(¢, p, x(t, p))
is a singleton for all ¢ € [to,t;]\\S, then it can be deduced that I'yx(¢, p) is a singleton and
therefore dpx(t, p) is a singleton. This differs from the result in Theorem 3.2.3 which states

Opx(t,p) is a singleton if 0,f(¢, p,x(¢,p)) is a singleton for all ¢ € [t,t;]\S. In order to
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recover the result in Theorem 3.2.3 in case 0,f(¢, p, x(¢, p)) is a singleton for all ¢ € [tg, ]\ S5,

the result in Corollary 4.2.4 will be applied and 0,f(-, p, x(¢, p)) will be used to compute an

element of I'yx(¢, p).

Theorem 4.2.6. Let the assumptions of Theorem 4.2.3 hold. Let g : 7 x P x X — R be a
semismooth function. Let G : P — R be defined by

G(n) = /tf g(t,m,x(t,m))dt.

to

Then, the mapping n — G(n) is semismooth at p.
LetTg : T x P x X =% R*(Hnetm) be o linear Newton approzimation of g such that
dg(p) C conv (T'g(w)) for allp € T x P x X. Let TG : P = R™™ be the set

{n(t;,p) € R™™ :q(t,p) = mxG,(t, p)m(t, p) + 7, G, (¢, p), Vt € (to,tf], n(ty, p) = 0,
Gy(-,p) € L(T, myconv (I'g(-, v(-, p))),
Gy(t, p) = [mpGy(t,p) mxGy(t, p)], VE €T,
G, (t,p) € RV m,G(t,p) € R”"™ Vt €T,
m(t, p) = mxGy(t, p)m(t, p) + mpGy(t, p), Vt € (to, ty],
G(-,p) € L(T,myconv (I'f(-,v(-,p))), Vt € T,
Gy(t,p) = [mpGy(t, p) mxGy(t, p)], VE €T,
m,Gr(t,p) € R m,Gs(t,p) € R"™" " Vt €T,

m(ty, p) € conv (I'fy(p))}.

Then I'G is a linear Newton approzimation of G at p and OG(p) C conv (I'G(p)) holds.

Proof. Let x4 : T'x P +— R be a continuous function. Let v(t,p) = (x(¢,p), z,4(t,p)). Let h:

TxPxX xR XxR: (,p,%,7,) — (f(f,p, %), 9(f,p,X)). Note that h is semismooth as a
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composition of semismooth functions g and f. Define I'f : 7 x P x X xR = R(%)x(+nptnat1)

by

I'f(t,p,x,z,) = {[N 0] : N eTIf({,p,x)}.

Then, I'f is a linear Newton approximation of the mapping (Z,p, X, z,) — f(t,p,x) per

Theorem 2.8.12. Define g : 7 x P x X x R = RI*(Hnptnatl) by

Lg(t,p,x,7,) = {[NO0]: NeTIg(t,p,x)}.

Then, I'g is a linear Newton approximation of the mapping (t,p,x,%,) — g(t,p,X) per

Theorem 2.8.12. Let Th : 7 x P x X x R = Rrat)x(4np+na+1) 1,4

_ M - L
I'h(t, p, X, Z4) = conv M eI'f(t,p,x,z,), Nelg(t,p, X, 7,)
N

Then T'h is a linear Newton approximation of h per Theorem 2.8.12 considering the chain

of mappings (u) — (f(p), p) — (f(e), g(p)). Note that in this case

_ M - L
I'h(t,p,x,7,) = : M € conv (Ff(t, p, X, @)), N € conv (Fg(t, P, X, @))
N

holds.
Consider the augmented ordinary differential equation:
V(tu p) = h(t7 b, V(tv p))7Vt S (t07tf]7 V(t(b p) = (fO(p)7 0)

The mapping 1 — v(t,n) is semismooth for all ¢ € [to, tf] per Theorem 4.2.3. As a conse-
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quence, the mapping n — G(n) is semismooth at p because G(n) = x,(ts,n).

Let G(v p) < £<T7 77\7Fh<'7 D, V('7 p)))? G(tv p) = [ﬂ-pG(tv p) ﬂ-iG(tv p)]v TrpG(tv p) €
RO=+Dxm - G(t,p) € RU=TDx(atD) for all ¢ € T. Then, M(t, p), an element of Ipv(t s, p),

can be computed by

- - - N
M(t,p) = mxG(t,p)M(t,p) + mp G(t, p),Vt € (to,ts], M(to,p) = , N € conv (T'fy(p))
0
per Theorem 4.2.3. This equation can be written as
m(t,p 7 Gs(t,p) O| [m(t,p 7o G(t,p
(tp)| _ 7t p) (,p) L™ 7t p) VEE (tort].
n(ta p) Wng(t7 p) 0 n(ta p) 7.‘-I)G'g(ta P)

m(ty,p) = N, n(ty,p) =0, N € conv (I'fy(p)).

where G; and G, represent measurable selections of mgzconv (I'f(-,p,x(-,p))) and
myconv (I'g(-, p,x(-, p))), respectively, on [tg,tf]. Due to the zero column in myG(t,p),
n(t,p) does not enter the computation of m(e,p) and n(e,p). Therefore, this equation

can be rewritten as

l’h(t, p) = Wfo(t, p)m(t, p) + Wpr(t, p)a AS (t0> tf]’ m(t0> p) € conv (FfO(p))> (4'2'13)

n(t,p) = 7xGy(t,p)m(t, p) + 7o G,(t, p), Vt € (to.tf], n(to,p) =0. (4.2.14)

Note that d,v(t,p) C conv ([pv(t,p)) per Theorem 4.2.3. Let B € R+ and let

Bjj=0fori=1forall je {1,...,n,}. Let B;j =1if j =n, +1 and i = 1. Then

Opy(t,p) C conv ({BN: N € 0pv(t,p)}) Cconv({BN: N el',v(t,p)}). (4.2.15)
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The set {BN : N € I',v(t, p)} corresponds to the set of all n(¢, p) computed using (4.2.14)
which corresponds to the set I'yzy(tf, p), a linear Newton approximation of the mapping
n = zg(tf> 77) Hence apxg(tfa p) C conv (szg(tf> p)) and ang(tf> p) C conv (FG(p))

follows since z4(tr, p) = G(p). O

The next two theorems contain results analogous to Theorems 3.2.4 and 3.2.5.

Theorem 4.2.7. Let the hypotheses and definitions of Theorem 4.2.3 and Theorem 4.2.6

hold. Let A : T — RY™" be a solution of the initial value problem,
A(t) = =X() G (t,p) + 7xG,y(t,p), Vt € [to, ts), A(t;) = 0. (4.2.16)
Then, X is unique and absolutely continuous. Let J € RY™™ be defined by

J= /tf wpGy(t, p) — A(t)7p G4 (t, p)dt + A(t)m(t, p) Z’; (4.2.17)

to

where m(t,p) is computed using (4.2.2). Then J € T'G(p).

Proof. The measurability of wxG (-, p) and 7 G, (-, p) on [to, ts] follows from assumptions.
Their boundedness follows from the fact that I'f and I'g are bounded and upper semicontin-
uous set-valued mappings. Then X : [tg, t;] — R is the unique and absolutely continuous

solution of (4.2.16) in the sense of Carathéodory per Theorem 3 in [37].

Redefine n(t, p) in (4.2.14) by appending (4.2.13) to (4.2.14) using A(¢) to obtain

ﬁ(ta p) = ﬂng(t, p)m(t, p) + ﬂ-PGg(tv p) o (4218>
A(t)(mxGy(t, p)m(t, p) + mpG(t, p) — m(t, p)), VE € (to, L],

n<t07 p) =0.
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Equation (4.2.18) can be written in integral form as

n(t;.p) = / "7xGy (8, p)m(t, p) + 7y Gy (t, D) — (4.2.19)

to

A(8)(me G (¢, p)ml(t, p) + m Gy (¢, ) — 1ia(t, p) .

Since XA and m(-,p) are measurable functions on [ty, ], the application of integration by

parts provides the relation

/ Ayt p)dt — At)ym(t, )" — / 7 A(tym(t. pdt. (4.2.20)

to to

Using the relation (4.2.20) in (4.2.19) and collecting terms multiplying m(¢, p) results in

n(ty,p) = /tf (7xGy (£, P) = ()G (t, p) — A(t))m(t, p)+ (4.2.21)

to

ﬂ-PGg(t? p) - A(t)ﬂ-pr(t? p)dt + A(t)m<t7 p) i(l)c :

The desired result is obtained after substituting the expression for X in (4.2.16) into (4.2.21).

O

Theorem 4.2.8. Let the hypotheses and definitions of Theorem 4.2.3 hold. Let h : Ty X P x
X — R be a semismooth function where Ty is an open subset of T such that t; € Ty. Let
G:P—=R:nw hty,n,x(ty,n)). Then G is semismooth at p.
Let Tyh : P x X = R w+m) be g linear Newton approzimation of the map (p,X) —
h(ts, p,X) such that Oyh(ts, p,x) C conv (I'yvh(ts, p,X)) in a neighborhood of (p,x(ts,p)).
Let T'G : p = R be the set

{CxN + C,, : [Cp, Cy] € conv (I'yh(ts, v(ts, p))), Cp € RV,

Cy € R N € conv (I'px(ts,p))}-
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Then, I'G is a linear Newton approzimation of G at p per Theorem 2.8.12 such that 0G(p) C
conv (I'G(p)) holds. Let [Cp, Cx] € conv (I'vh(ts, v(ts, p))), Cp € RM>™ Cy € R, Let

AT — R be aq solution of the initial value problem,
A(t) = =X(t) G (t,p), Vt € [to, t;), A(t;) = —Cx. (4.2.22)
Then, X is unique and absolutely continuous. Let J € RY™™ be defined by

J= /tf —A(t)mpG(t, p)dt — A(to)m(to,p) + Cp (4.2.23)

to

where m(t,p) is computed using (4.2.2). Then J € I'G(p).

Proof. The semismoothness of G follows from the fact that the composition of semismooth
functions is semismooth.

The measurability of m«G(-,p) on [to, ;] follows from assumptions. Its boundedness
follows from the fact that I'f is a bounded and upper semicontinuous set-valued mapping.
Then, X : [to, t;] — R™" is the unique and absolutely continuous solution of (4.2.22) in the
sense of Carathéodory per Theorem 3 in [37].

The generalized Jacobian of G at p satisfies 0G(p) C conv (S) where S is the set
{AB+ A, [A, AL € 0uh(ty, v(ty,p)), Ap € R AL e RV™ B e dpx(ty,p)},

due to Theorem 2.6.7. Note that, dG(p) C conv (S) C conv (I'G(p)) because Opx(ts,p) C
conv (I'px(t, p)) and O h(ts, v(ts, p)) C conv (I'vh(ts, v(ts, p))) .
The product CxN can be written as

Ly
/ Coaia(t, p)dt + Cm(to, p)

to
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where m(¢, p) is computed using (4.2.2). Appending (4.2.13) to the integrand of this integral

produces

/tf Cixm(t, p) — A(t)(mxG(t, p)m(t, p) + 7w, G (t, p)—1a(t, p))dt+ (4.2.24)

to

me(t(b p)

Since A and m(-, p) are measurable functions on [to, ], the application of integration by

parts provides the relation

t

/ "(Co+ AWt p)dt = (Cx + A())m(t, p)[2 — / "AOm(p)dt.  (42.25)

to to

Using the relation (4.2.25) in (4.2.24) and collecting terms multiplying m(¢, p) results in

/ (ADmGy (D) — A(D)m(t,p) — (D), G (1, )i+

to

Cam(to, p) + (Cx + A(t)m(t, p),)

Substituting the expression for A provides the desired result. O

4.3 Differential-Algebraic Equations

The differential-algebraic equations considered in this section satisfy the following assump-

tions.

Assumption 4.3.1. Let F: T X P x X XY x X — R™=tw gnd Fo: P — X be semismooth

functions. Letx : TXxP — X,y :TxP —Y andx: T xP — X be such that they uniquely
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satisfy the initial value problem

0="F(t,p,x(t,p),y(t,p),x(t,p)), Vt € [to, tf], x(to,P) = Fo(p), Vp € P. (4.3.1)

LetTF : T X P x X xY x X = Rnetn)x(Utnptnetnytna) po g linear Newton approzimation of
F such that OF (p) C conv (I'F(p)) holds for allp € TxPxXxYxX. LetTFy : P = R"™ be
a linear Newton approximation of Fo such that 0Fy(n) C conv (I'Fo(n)) holds for allm € P.

Let x(tg,p) = X and y(to,p) =y for some p € P where X and y are constants and sat-
isfy F(to, p,x(to, D), y(to, ), X(to, P)) = 0. Assume that this condition uniquely determines

y(to,p) and x(to, p) for allp € P.

In order to derive implicit functions for x and y, the following additional assumptions

are made.

Assumption 4.3.2. In addition to Assumption 4.3.1, let the following hold
1. mqOPF(p) is coherently oriented, i.e., the determinants of all matrices in TOPF ()
have the same nonzero sign, o, for allp € T X P x X x Y x X.
2. Let p* = (t*,v*,q*) where t* € T, v € P x X and q* € Y X X. Let h, : X x) —

R q = F(t",v*, q). If F(p*) =0, then index(h,, q") = a.

Remark 4.3.3. Let u: T xP - P x X x Y x X : (t,p) — (v(t,p),y(t,p),x(t,p)) for the

remainder of this chapter.

Lemma 4.3.4. Letn, € P, nx € X, ny € Y, nx € X and np = (Mp, Nx, Ny, M%) Let
Assumptions 4.53.1 and 4.5.2 hold. Then, there exist semismooth functions f : TXPxX — X

andr: T x P x X — Y such that 0 = F(t,np, N, v(t, Np, Nx), £(t, Mp, Mx)) holds. Let

M = conv ({-B7'A, [A B] € 9°F(t,n), A € ROwime)xUinptne) B ¢ Rinutne)x(ytna)y)
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Then,

et o ({ [, o sl
e o ({[o 1. [t ),

are linear Newton approzimations of £ and r such that Or(t,mp,nx) C conv (I'r(t, np, Nx))

and Of (t, mp, nx) C conv (I'f (¢, np, mx)) hold for all (t,np,Mx) € T X P x X.

Proof. The set M is a linear Newton approximation of the mapping (¢, 9y, M%) — (r(t, p, Mx),
f(t,Mmp,mx)) per Theorem 4.1.7 such that the generalized Jacobian of this map is a subset
of M. Then, the results follow from the application of Theorem 2.8.12 to M and Theorem

2.6.7 to the generalized Jacobian of the mapping (¢, np, nx) — (r(t, Mp, Nx), £(t,Mp. Mx)) O

Corollary 4.3.5. Let Assumptions 4.3.1 and 4.53.2 hold. Let u(-,p) be formed from the

unique solution of (4.3.1). Then u(t,-) is a semismooth function at p € P for allt € [ty ty].

Proof. Since the implicit function, f as defined in Lemma 4.3.4 is a semismooth function,
v(t,-) is a semismooth function at p for all ¢t € T' per Theorem 4.2.3. The semismoothness
of y(t,-) at p follows from the semismoothness of the implicit function r(¢,-) at v(¢,p) for
all t € T and the semismoothness of v(t,-) at p for all ¢ € T'. The semismoothness of x(¢, -)
at p follows from the same reasoning using f instead of r. Since all elements of u(t,-) are

semismooth at p so is u(¢,-) for all t € T. O

Theorem 4.3.6. Let Assumptions 4.3.1 and 4.3.2 hold. Let T'f : T x P x X = R%x(+nptna)

be as defined in Lemma 4.3.4. Let 'pyx(ty, p) be the set

{m(t;, p) : m(t, p) = mxG (¢, p)m(t, p) + mpGy (L, p), Vt € (to, 1], (4.3.2)
Gy(-,p) € L(T, myconv (I'f(-, v(-, p))),

Gy(t,p) = [mpGy(t,p) mxGy(t,p)], VL € T,
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wpGi(t,p) € R mw Gs(t,p) € R™*" VYt eT,

m(ty, p) € conv (I'fy(p))},

where I'f is defined in Lemma 4.5.4. Then I'px(ts,p) is a linear Newton approzimation of

the map n — x(tg,m) at p and

Opx(ty, p) C conv (I'px(ts, p))

holds.
Proof. Result follows from Theorem 4.2.3, Lemma 4.3.4. O

Corollary 4.3.7. Let Assumptions 4.3.1 and 4.3.2 hold.
1. Let Iy : T x P = R™*"™ be defined by

Ipy(t,p) = {n(t,p) : 7xG,(t,p)m(t, p) + G, (¢, p),
G.(t,p) € conv (m,'r(t, p,x(t,p))),
G, (t,p) = [mpG.(t, p) mx G, (t, P)],
7o G, (t,p) € R™*"7,
G, (t,p) € R™*"e,

m(t, p) € conv (I'px(t,p))}, Vt € [to, ],

where T'px(t,p) is computed using (4.3.2) and I'r(t,p,x(t,p)) is defined in Lemma
4.8.4. Then, I'yy(t,p) is a linear Newton approzimation of the map n — y(t,m) at
p € P and Opy(t,p) C conv (I'py (¢, p)) holds.

2. Let T'px : T x P =2 R™*™ be defined by

pr(tv p) = {Il(t, p) : TrXGf(t? p)m(t, p) + ﬂ-PGf(t7 p),
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G(t,p) € conv (m, ['f(t, p,x(t, p))),
Gy(t,p) = [mpGy(t, p) mxGy(t, )],
mpGy(t, p) € R™7™,
7 Gy(t,p) € R"*"

m(t, p) € conv (I'px(t,p))}, VE € [to, ty],

where T'px(t,p) is computed using (4.3.2) and I'f(t,p,x(t,p)) is defined in Lemma
4.8.4. Then, I'pXx(t,p) is a linear Newton approzimation of the map n — x(t,m) at

p € P and 0p%x(t,p) C conv (I'yx(t, p)) holds.

Proof. The first part of the results follow from applying Theorem 2.8.12 to the chain of

mappings p — (p,x(t,p)) — r(t,p,x(t,p)). The set

I,
M = "| : N € conv (I'px(t, p))
N

is a linear Newton approximation for the mapping p — (p,x(t,p)). Using conv (I'r(¢, p,x(¢,p)))
as the linear Newton approximation for the map (p,x(¢,p)) — r(t, p,x(¢,p)) provides the

desired result. The second part of the results can be derived using the same reasoning. [J

Remark 4.3.8. The results in Theorems 4.2.6, 4.2.7 and 4.2.8 directly apply to the DAE
in (4.3.1) with G¢(-, p) a measurable selection of conv (I'f(-, p,x(-,p))) defined in Lemma
4.3.4.

The next three theorems extend the results in Theorems 3.3.9 and 3.3.10.

Theorem 4.3.9. Let the hypotheses of Theorem 4.3.6 hold. Let g: T xPx X xYxX — R
be a semismooth function. Let Tg: T x P x X x Y x X — R*Utnptnatnytne) po g lineqr

Newton approzimation of g such that dg(p) C conv (I'g(p)) for allp € T X P x X x Y x X.
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Let G : P — R be defined by

Then, G is a semismooth function at p.

Let TG : P = R™™ be the set

{n(ty,p) € R - (1, p) = By(t, u(t, p))m(t, p) + By(t,u(t, ), ¥t € (fo,t7], nlto, p) = 0,
Gy(-,p) € L(T, myconv (I'g(-, u(-, p))),
Gy(t,D) = [mpCoy 1, D) TGy (1, D) 7y Gy (D) 75Gy(£,B)], V1 € T,
G, (t,p) € RV m, G(t,p) € RV Vt €T,
m,G,(t,p) € RV™, mG,(t,p) e RV VteT,
m(t, p) = mGy(t,p)m(t, p) + 7 Gy (L, p), Vt € (to,ts],
Gy (-, p) € L(T, myconv (I'f(-, v(-, p))),
G;(t,p) = [mpGy(t, p) Gy (1)), V€ T,
m,Gr(t,p) € R m,Gs(t,p) € R"*" Vt €T,
m(to, p) € conv (I'fy(p)),
G.(-,p) € L(T,myconv (I'r(-,v(-,p))), Vt €T,
G.(t,p) = [mpG:(t, p) 7xG:(t,p)], VL € T,
7, G, (t,p) € R 7w, G, (t,p) € R Vt e T,
Bx(t,u(t,p)) = mxGy(t,p) +
7y Gy(t, p)TxG, (1, p) + TGy (t, p)7xGy(t,p), Vt €T, (4.3.3)
Bp(t,u(t,p)) = mpGy(t,p) +

Ty Gy(t, p)mp G (L, p) + mxGy(t, P)mpG(t,p), VE €T} (4.3.4)
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where Tf(t, p,x(t, p)) and I'r(t, p,x(t,p)) is defined in Corollary 4.3.4. Then I'G is a linear

Newton approzimation of G at p and IG(p) C conv (I'G(p)) holds.

Proof. Let g(t,u(t,p)) = g(t,v(t,p),y(t,p),x(t,p)). Then, the result follows from the
application of Corollary 4.3.7 with Theorem 2.8.12, collecting terms multiplying m(¢, p) and

the application of Theorem 4.2.6. O

Theorem 4.3.10. Let the hypotheses of Theorem 4.3.6 and Theorem 4.53.9 hold. Let X :

T — RY™"= be q solution of the initial value problem,
A(t) = =A(t)mG(t,p) + By(t, u(t,p)), Vt € [to, 1), A(t;) = 0.
Then, X is unique and absolutely continuous. Let J € RY™ be defined by

J= / ' B, (t, u(t,p)) — A(t)m,G(t, p)dt + A(t)m(t, p)|;!

to

where m(t, p) is computed using (4.3.2), Bx(t,u(t,p)) and By(t,u(t,p)) are computed using
(4.3.3) and (4.3.4), respectively. Then J € I'G(p).

Proof. The proof is similar to the proof of Theorem 4.2.7 where 7 G,(t,p) and 7, G, (¢, p)

are replaced with By (¢, u(t, p)) and By (¢, u(t, p)), respectively. O

Theorem 4.3.11. Let the hypotheses of Theorem 4.3.6 hold. Let h : TyxPx X xYxX — R
be a semismooth function where 1y is an open subset of T such that t; € Ty. Let G : P —
R :n— h(ty,u(ty,m)). Then G is semismooth at p.
Let Tyh : P x X x Y x X = RIX(wtnatnytne) o o linear Newton approzimation of the
map @ +— h(ty, ) such that Ouh(ty, 1) C conv (I'yh(ts, @) in a neighborhood of u(ts, p).
Let TG : p = R be the set

{MxNx + MyNy, + M;Ny + M, : [M, My My M| € conv (I'yh(ts, u(ts, p))),
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M, € R, M, € R My € R™™, My € R™",
N, € conv (T'px(ts,p)), Ny € conv (Ipy(ts, p)),

Ny € conv (I'px(tr, p))}-

Then, I'G s a linear Newton approximation of G at p € P per Theorem 2.8.12 such that
JG(p) C conv (I'G(p)) holds.

Let Ny = m(ty,p), Ny = 7 G, (t;, p)m(ts, p)+7p G, (t7, p), Nk = 7xGf(tr, p)m(ts, p)+
mpGy(ts, P), Cx = My + MymyG,(ty, p) + MxmxGy(ts, p), Cp = M + Mym, G, (¢, p) +
M7, Gf(ts, p) where m(t, p) is computed using (4.3.2), 7xG,(t7,p), mp G, (tr, P), 7xGs(ts, P)
and 7, Gf(ts, p) are defined in Corollary 4.5.7.

Let X : T — RY™" be q solution of the initial value problem,
A(t) = =A(t)m G (t,p), Vt € [to,t;), A(tf) = —Cy.
Then, X is unique and absolutely continuous. Let J € RY™ be defined by

J= / ! ()G (t, p)dt — A(to)m(to, p) + Cp

to
where m(t,p) is computed as in Theorem 4.3.6. Then J € I'G(p).

Proof. The proof is the same as the proof of Theorem 4.2.8 except the redefined quantities

Cx and Cy,. O

4.4 Multistage Systems

The previous results are extended to dynamic systems whose evolutions are described by

disparate differential-algebraic equations in consecutive intervals of time.
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Assumption 4.4.1. Let n. be a finite positive integer and T = {1,...,n.}. Let o; €
R, Bi e R, ay < Bi, Vi € Z, ayy1 = B, Vi € T\{n.}, —00 < oy < B, < +00. Let
T = Ul |y, Bi] and T C T. Let T; be an open subset of T such that [oy, 3;] C T; for all
i €. Letx;: [, Bi] x P — X, yi:]ai, ] xP =V, X : [0, 3] x P — X foralli € T,
X:TXP - X, y:TXxP—Yandx: TxP — X. Assume F; : TXxPXXxYxX — Rn=tny
are semismooth functions for all i € . Assume F? : P x X — X for all i € Z\{1} and
FY: P — X are semismooth functions. Assume there exists a linear Newton approvimation
IF, : T, x P X X x Y x X =3 ROwtn)x(tnptnatnytna) sych that OF;(pu) C conv (I'F; ()
holds for all p € T, x P x X x Y x X for each i € T. Assume there exists a linear Newton
approzimation TFY : P x X = RXwtne) gych that OF)(u) C conv (I'FY(u)) holds for
all p € P x X for all I\{1}. Finally, assume there exists TF? : P = R"*" gsych that
OF{(n) C conv (T'F{(n)) holds for alln € P.

The linear Newton approximations associated with the solutions of the initial value prob-

lem,

0="F;(t,p,xi(t,p),yi(t,p),%i(t,p)), Vt € [a;, i, Vi € T, (4.4.1)
0 = x;(a1,p) — Fi(p),

0 = x;(ai, p) — F} (P, xi-1(8i-1,p)), Vi € T\{1}, (4.4.2)
0 =x(t,p) — xi(t,p), Vt € [y, i), Vi € Z,

0 = x(fn, P) = Xn. (Bne, P),

0=y(t,p) —yi(t,p), Vt € [, 3;), Vi € T,

0=y (., P) = ¥n.(Pnc, P),

0 =x(t,p) — xi(t,p), Vt € [y, i), Vi € Z,

0 = %(Bn,,P) = Xn.(Bn., P)
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are derived in this section.
Remark 4.4.2. x(-,p), y(-,p) and x(-, p) might be discontinuous at t = a; with i > 1.

Remark 4.4.3. The results derived in this section are applicable with slight modifications to
the case where the number of states, number of algebraic variables as well as the domains of

the functions ¥; and FY differ for each i € T.

Assumption 4.4.4. Let x(o;,p) = %X; and y(o;, P) = yi for all i € T where X; and y;
are constants. Assume that this condition is sufficient to uniquely determine X(«;, p) and

y(ci, p) uniquely for all i € T and for all p € P.

Assumption 4.4.5. Let (x;(-,p),¥i(-,p),Xi(-, p)), Vi € T be the unique solution of (4.4.1).
Let z; : [0, B] X P — P+ (t,p) = P, Vi : [0q, Bi] x P = P x X = (t,p) = ((z(t, p)), xi(t, p))
and v, : [0y, B X P = P XX XY XX :(t,p) — (vi(t,p),yi(t,p), %i(t,p)). Letu:T xP —
Px X xYxX besuch that u(t, p) = w(t, p) for all t € [ay, 3) and u(B,.,p) = Up. (Bn., D).

Corollary 4.4.6. Let Assumptions 4.4.1 and 4.4.4 hold. Let the assumptions of Lemma
4.3.4 hold for alli € I. Let (x;(,p), yi(-,p), Xi(,P)), Vi € T be the solution of (4.4.1).

Then, u(t,-) is semismooth at p for allt € T

Proof. Let n, = 1. Then, u,(¢,-) is a semismooth function at p for ¢t € [ay, 3] per Corollary
4.3.5. Since the composition of semismooth functions is semismooth and F9 is a semismooth
function, uy(aw, ) is semismooth at p if n, = 2. Then, uy(¢,-) for all t € [ag, B3] is semis-
mooth at p per Corollary 4.3.5. The final result follows from the repeated application of
Corollary 4.3.5 and the composition rule for semismooth functions as has been done for the

case n, < 2. O

Theorem 4.4.7. Let Assumptions 4.4.1 and 4.4.4 hold. Let the hypotheses of Lemma 4.3./
hold for alli € Z. Let f; and r; be the semismooth implicit functions that satisfy ¥;(t, v;(t, p),

ri(t,vi(t,p)), fi(t, vi(t,p))) = 0 for all t € [a;, 3] and for all i € T.
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Let Tpxo1(p) = TFY(p). Let [pxo,(p) be the set

{M,;N;_1 + My, : [My; My;] € conv (I'F} (p,x;—1(p, Bi—1))), (4.4.3)

Mxﬂ' € ]anxnx’ Mpﬂ' € anxnp, Ni—l € conv (pri—l(p> ﬁz—l))}

for alli e T\{1}.

Let I'pyx;(6;, p) be the set

{m;(8;,p) : (¢, p) = mxGy,(t, p)my(t, p) + mpGpi(t, p), VE € (v, B, (4.4.4)
Gri(-p) € L([ay, Bi], myconv (Tfi(+, vi(+, p))),
Gyi(t,p) = [mpGrilt, p) mxGpi(t, )], Vi € [oi, Bi],
wpGyi(t,p) € R ™ 7, Gy i(t,p) € R™ " Vit € [, Gi],

m;(a;, p) € conv (I'pyx,(p))}-

where I'f; is defined in Lemma 4.3.4 for all i € L.

LetT'pyx(t,p) = I'pxi(t, p) for allt € [ay, 5;) foralli € T andU'px (5., P) = I'pXn, (Bn., P)-
Then, I'px(t,p) is a linear Newton approzimation of the map n — x(t,n) at p € P for all

t € oy, 0;) and Opx(t,p) C conv (I'pyx(t, p)) holds for all t € [, ().

Proof. 1f n, = 1, then, the result follows from Theorem 4.3.6 by letting t; in that the-
orem take values in [oy, §;) and setting ¢y = «;. In this case, dpx(t,p) = Opxi(t,p) C
conv (I'px; (¢, p)) holds for all ¢ € [ay, 51]. Per Theorem 2.8.12, I'yxo2(p) is a linear Newton

approximation of the map 1 — x3(ag,n) at p. Per Theorem 2.6.7:
dpxa(az, p) C conv ({MxN + M : N € 9,x; (61, p), [Mx Mp] € OF3(p,x:1(61,p))})

holds where M, € R™*" and M, € R"™*"+. Then, dpXa2(az,p) C conv (I'pxg2(p)) follows
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from the fact that Opxi(f1,p) <C  conv(Ipxi(B1,p)) and OFS(p,xi(p, 1))
C conv (TFS(B1, x1(p, 41))). Application of Theorem 4.3.6 after setting F = Fy and T'F%(p) =
conv (I'pxg 2(p)) proves the result for n, = 2. The case for larger n, is proven by the repeated

application of Theorem 4.3.6 and Theorem 2.8.12 as has been done for the case n, =2. 0O

Theorem 4.4.8. Let the hypotheses of Theorem 4.4.7 hold. Define G; : P — R as

Bi
Gi(p) = / gu(t, ui(t, p))dt

i

where g; : T X P X X x Y x X — R are semismooth functions for alli € . Then, G; are

semismooth functions at p per Theorem 4.3.9.

Let G : P — R be defined by

Then, G is a semismooth function at p € P since the sum of semismooth functions is
semismooth.

Let T'G; : P = RY™"™ be the set

{ny(8;,p) € RY™ 1 (¢, p) = Bui(t, wilt, p))my(t, p) + By i(t, ui(t, p)), V¢ € (ay, Bi], n(a;, p) = 0,
Gy,i(+,p) € L(T, muconv (Tgi (-, wi(-, p))),
Gy,i(t,p) = [mpGy,i(t, p) TxGyi(t, P) Ty Gyi(t, P) TGy i(t, P)], VE € [y, Bil,
7, G,i(t,p) € Rxm, =G, i(t,p) € RX"= vt e [, Bil,
Ty Ggi(t,p) € RV, m G, (t,p) € RV, Vit € [y, 3],
m;(t,p) = 7w Gyi(t, p)m;(t, p) + 7, Gyi(t, p), Vt € (o, Bil,
Gyi(-,p) € L(T, myconv (I'f; (-, v(-, p))),
Gyi(t,p) = [mpGrai(t, p) mxGyai(t, p)], Vt € [ai, Bi],
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wpGri(t,p) € R ™ 7,Gy,i(t, p) € R™" " Vit € [y, Bi],
m; (o, p) € conv (IpXo(P)),

G,.i(-,p) € L(T,myconv (I'r;(-, v(-, p))), Vt € [, Bil,
G.i(t,p) = [mpGri(t, p) mxGri(t, P)], VE € |y, 3],

7, Gt p) € R G, ,i(t, p) € R™™" Vit € [y, B,
Byi(t,wi(t, p)) = mxGyi(t, p) +

Trng,i (ta p)ﬂ-xGr,i (ta P) + Wng,i (ta P)Wfo,i(t> p)> Vt € [aia /6,],
(4.4.5)

Bpﬂ'(ta ui(t> p)) - ﬂ-pGgJ(ta p) +

Trng,i (ta p)ﬂ-pGT,i (ta P) + Wng,i (ta p)ﬂ-pr,i (ta p)a Vt € [aia ﬁz]}
(4.4.6)

where I'f; and T'r; are defined in Lemma 4.3.4. Then I'G; is a linear Newton approximation
of G; at p and 0G;(p) C conv (I'G;(p)) holds for all i € T per Theorem 4.3.9 and Theorem
447,

Let I'G(p) be
I'G(p) = Y _conv (I'G;(p)).
i=1
Then, I'G is a linear Newton approzimation of G and 0G(p) C conv (I'G(p)) holds since

0G(p) C Y 0Gi(p).

i=1
For alli € T, let \; : [y, B;] — RY™"= be a solution of the initial value problem

Al(t) = — )\Z(t)ﬂ'fo’Z(t, p) + Bx,i(t, u(t, p), vVt € (Oéi,ﬂi], Vi € I,

161



Ai(Bi) = Aip1(Bi) My i1, Vi € T\{n.}, A (Bn.) =0

Then, A; is absolutely continuous and unique. Let J be

e Bi
/ By (f, wi(t,p)) — Au(t)mpGia(t, p)dt —

i=1 Y

ne—1
Z Air1(Bi)Mp i1 + A, (Bn )My, (Bn,, P) — Ar(a1)my(ay, p)
i=1

where My i11, Mxit1 and my (a1, p) are defined in Theorem 4.4.7. Then, J € I'G(p).

Proof. Applying Theorem 4.3.10 for each ¢ € Z:
o (4.4.7)

Bi
is obtained with J; € I'G;(p) where

i(t) = — Ai(t)mxGyi(t,p) + Bxi(t, wi(t, p)), Vt € [, Bi), Xi(Bi) =0
It can be seen from its derivation that (4.4.7) holds for any Ag € R and X\;(3;) = Ag. Ao
is set to the zero vector in order to avoid the computation of m;(5;, p).

Let J =57, J;. Clearly, J € I'G(p) because J; € I'G;(p). Then, J is equal to
(4.4.8)

Bi
[e730

Ne Bi
Z/ Bpi(t,u;(t,p)) — XNi(t)mpGyi(t, p)dt + X (t)my(t, p)
i=1 Y%

Note that m; (i1, p) is My +1m;(5;) + Mp ;41 in view of (4.4.3) for some My ;41 and
M, ;41 where My ;11 and My, ;41 are defined in Theorem 4.4.7. Hence

_>‘i+1(ai+1)mi+l<ai+la P) = —Ai+1(04i+1)(Mx,i+1mi(ﬂi) + Mp,i+1)-
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Then, setting
Air1(@iv1) My = Ai( )

allows the cancellation of terms in (4.4.8) and results in

e Bi
3 / By (f, wi(t, p)) — Au(t)mp G (t, p)dt —
i=1 Y%

Ne—1

Y A1 (B)Mpitt + An (B, (Ba,, P) — Ai(a1)my (a1, p).
=1

Setting A, (3,.) = 0 provides the desired result.

Corollary 4.4.9. Let the hypotheses of Theorem 4.4.7 hold.

1. Let T'py : T x P =2 R™>*™ be defined by

Ioy(t,p) = {n(t,p) : 7xG.i(t, p)mi(t, p) + mp G, i(t, ),
G..i(t,p) € conv (m I'ri(¢, p, x(t, P))),
G,i(t,p) = [mp Gy i(t, p) <Gy i(t, P)],
7TpG'r7i(t, p) - Rnyxnp’
G, i(t,p) € R™*"
m;(t,p) € conv (I'px;(B,.,p))}, VE € [ay, (), Vi € T,
Loy (Bne, P) = {n(Bn.. P) : 7xGrn. (Bnes P)My, (B, P) + TG (B, P),
G (Bn., P) € conv (myI'ry, (B, , P, X(1, D)),
G (Bnes P) = [TpGrn. (Bne, P) xGrn, (B, P)),
TpGrn, (Bn., P) € R™X,

7Tx(}r,ne (ﬂnev p) € Rnyxnz’
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mne (6%«57 p) € conv (FPXTLe (/67167 p))}

where I'px;(t, p) is defined as in Theorem 4.4.7 and I'r; is defined using Lemma 4.3.4
foralli € Z. Then, I'py(t, p) is a linear Newton approzimation of the map n — y(t,n)
atp € P and dpy(t,p) C conv (I'py(t,p)) holds.

2. Let T'px : T x P =2 R™*"™ be defined by

Ipx(t,p) = {n(t,p) : mxGpi(t, p)mi(t, p) + mpGi(t, p),
Gy(t,p) € conv (7 I'fi(t, p, x(t, p))),
Gri(t,p) = [mpGri(t, p) mxGpi(t, p)),
mpGyi(t, p) € R™7 ",
mGyi(t,p) € R™™,
m,(t,p) € conv (I'px;(t,p))}, Vt € [ay, 5;),Vi € T,
Ipx(Bn., P) = {n(B., P) : 7xGpn, (Bn.s P)M, (Br, P) + TG pn, (Bne s P),
G fne(Bne: P) € conv (my Iy, (B, P, X(Bn. P))),
G e (Bne, P) = [MpGrne (Bnes P) TG pn (B, P)],
TG, (Bne, P) € R™7,
TG, (Bn., P) € R™ 7",

mne (ﬁnev p) € conv (prne (6”&7 p)>}

where I'px;(t, p) is defined as in Theorem 4.4.7 and I'f; is defined using Lemma 4.3.4
foralli € Z. Then, I'yx(t,p) is a linear Newton approximation of the map n — x(t,n)

atp € P and 0p%(t,p) C conv (I'p%(t, p)) holds.

Proof. Application of Theorem 2.8.12 to the implicit functions r; and f; produces I'pyy and

I'px, respectively. Application of Theorem 2.6.7 to r; and f; provides sets M, and M;
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such that Opy(t,p) C conv (M,) and 9px(t,p) C conv (M) hold. Then, it can be shown
that conv (M,) C conv (I'yy(¢,p)) and conv (My) C conv (I'px(¢,p)) using the fact that
Ofi(t, vi(t,p)) C conv (I'fi(t, vi(t, p))), Or;(t, vi(t, p)) C conv (I'r;(t, vi(t, p))) and dpx(t, p) C

conv (I'px(t, p)). O

Theorem 4.4.10. Let the hypotheses of Theorem 4.4.7 hold. Let h : TyxPx X xYxX — R
be a semismooth function where Ty is an open subset of T such that 3,, € Ty. Let G : P —

R :n— h(Bn.,u(Bn.,n)). Then, G is semismooth at p.

Let Tyh : P x X x Y x X = RIX(wtnatnytne) o g linear Newton approzimation of the

map U +— h(f,,, ) such that Oyh(B,,, 1) C conv (I'yh(ts, @) in a neighborhood of u(f,.,p).

Let TG : p = RY™ be the set

{AxNx + AyNy + AxNi + AL [Ap Ax Ay Ay € conv (I'wh(B,,, u(B.. P))),
A, e RV AL e R Ay e RP™ ) Ay € RV
Ny € conv (I'px(8,., p)), Ny € conv (I'py(B,., P)),

Ny € conv (UpX (S, )}

where I'yX(Bn,, p) is defined in Theorem 4.4.7, Upy(Bn., P) and I'pyX(B,,,p) are defined in
Corollary 4.4.9. Then, I'G is a linear Newton approzimation of G at p € P per Theorem
2.8.12 such that OG(p) C conv (I'G(p)) holds.

Let Ny = my, (B, P), Ny = 7xGrn (Bne, P)0, (B, P) +7 G (B, ), Noe = 705G pin, (B, P)
M, (Gne, P) + TpGrne (Gne, D), Cx = Ax + Ay Gr (Ones P) + Astx G (Bn. P), Cp =
A, + Ay, G (B, P) + Axtp G, (B, P) where my, (t,p) is computed using Theorem
44-T, TG, (Bnes ), ®pGrne (Bne, P), TxGpn (Bne, P) and 7, G g, (B, p) are defined in
Corollary 4.4.9.
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Let A : [y, Bi] — RY™™ be a solution of the initial value problem,

Ai(t) = =X ()7 G4(t, p), Vt € [y, ), Vi € T,

Ai(Bi) = Nip1(@ip1) My i1, Vi € T\{n.}, A, (Bn.) = —Cx.

Then, X is unique and absolutely continuous. Let J € RY™™ be defined by
Nne—1

J = Z/ (t)mpGyi(t, p)dt + Z Ait1(@ir1)Mp i) — A(ar)my (a1, p) + Cp

where my (a1, p), Mpit1 and My ;1 are defined in Theorem 4.4.7. Then, J € I'G(p).

Proof. Let N be the set

{AxNx + AyNy + AxNx + Ap . [Ap Ax Ay Ax] € auh(/@nea u(/@nea p))>
A, e RV AL e R A, e RV Ay € RV
NX € apx(/@nea p)a Ny € apY(ﬁNea p)a

Nx € apx(/@nea p)}

Then, using Theorem 2.6.7, it can be shown that dG(p) C conv(N) C conv (I'G(p))
since. IpX(f,,p) C conv (IpX(Fn,, P)); Y (Fn.,P) C conv (Ipy(Fn,; P)); FpX(Bn.,P) C
conv (I'pyx(0,., p)) and Ouh(By, , u(B,,, p)) C conv (I'yh (B, , u(B,,, p))) holds.
Let J = Cym,, (8,.,p) + Cp. Then, J € T'G(p) by the definition of I'G(p).
Note that Cym,, (f3,.,p) is equal to
Ne B; ne—1
Z/ C mz ,p dt + Z C mz—l—l(az—i-la p) mei(/@ia p)) + mel(ala p)

i=1
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This can be written as

Ne Bi
Z/ Cumm; (¢, p) — Ai(0) (mx G (t, p)my(t, p) + mp G (, P) (t,p))dt +
=1 Y %

ne—1
Z (mei—i-l(ai-‘rla P) - mei(ﬁh p)) + mel (Oél, p)

1=1

Applying integration by parts and collecting terms as done in Theorem 4.2.8 results in

i+

e Bi
/ ()Gt p)dt 4 (Cy + Xi(t))my (L, p)

i=1 Y

ne—1
Z (mei—i-l(ai-i-la p) - mei (/Bla p)) + mel (ala p)

i=1
This expression can be simplified to

e Bi
> / — X\ ()7, G f.i(t, p)di+

i=1

Ne—1
Z (=it (i) myr (aipn, ) + Ai(8:)my (55, p)) +

1=1

(Cx + A (Bn.)) My, (B, P) — Ar(ar)my (ay, p).

Note that m; 1 (ait1, p) = My i+1m; (5, p) + Mp ;41 where My ;41 and M, ;44 are as defined
—Cy, provides the

in Theorem 4.4.7. Setting A;(8;) = Ait1(i1)Mxiv1, and A, (5n.)
O

desired result.
4.5 Example
In this section, Example 3.6.3 is revisited. In order to analyze that example, the following

corollary to Theorem 2.7.3 is required.
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Corollary 4.5.1. Let Y7 and Yy be open subsets of R™ and R™, respectively. Let y; € Y;
andy, € Ys. Let H: Y] x Yy — R™ be a PC* function that is completely coherently oriented
with respect to Ys at (y1,y2). Suppose H(y1,y2) =0. Let H: Y, — R™ : y — H(yy,y). Let
a be the sign of the determinants in m0PH(y1,y2) = {JoHi(y1,y2) : i € Z(H, (y1,¥2))}-

Then ind(H,y;) = a and the conditions of Theorem 4.1.7 are satisfied.

Proof. Let F : Y] x Yy, — R"™™ : (x,y) — (x,H(x,y)). F is a PC! function in the
neighborhood of (yi,ys) with essentially active selection functions F; : Y7 x Y5 — R™™™ :

(x,y) = (x,Hi(x,y)), i € Z(H, (y1,y>)) and

N I, 0 |
8 F(Yh}’z) == ol GI(H7(y17y2))
JiH;(y1,y2) J2Hi(y1,y2)

Note that the elements of °F(yi,y2) are coherently oriented because the determinant of
each element is equal to det(I,,) x det(JoH;(y1,y2)) due to the special structure of the
elements. Let the sign of det(JoH;(y1,y2)) be a which is constant and nonzero for all
1 € Z by the complete coherent orientation of H with respect to Y5. Since H is completely
coherently oriented with respect to Y5, F is completely coherently oriented with respect to
Y, x Y.

The B-derivative F/(y1,y2; ) is a continuous piecewise linear function such that

OPF'(y1,y2;0) C OPF(y1,y2)

holds per Lemma 2 in [79]. Therefore, F'(y1,y2;-) is completely coherently oriented at 0 with
respect to R"*™. Per Corollary 19 in [91], F/(y1,y2; ) is invertible at 0. Per the equivalence
of Conditions (ii) and (iii) in Theorem 5 in [91], F is invertible at y and ind(F, (y1,y2)) = £1.
It can be shown as in the proof of Theorem 2 in [42], that the sign of ind(F, (y1,y2)) is a.

Finally, it can be shown that ind(F, (y1,y2)) = ind(H, y3) as in the proof of Theorem 4 in
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[42). O

Example 4.5.2. Consider the dynamic system introduced in Example 3.6.3 where the com-
putation of the strict derivative of the mapping n — x(t,n) is discussed. Here, however, the
computation of an element of I'yx(¢, p) is discussed.

First note that the matrix B(¢,n) defined in (3.6.6) has nonzero determinant because of
the triangular structure of the matrix and the invertibility of JxV(¢,n), I,, and R(t, np, 1x).
The sign of det(B(t,m)) is equal to the sign of det(J;V(¢,n)) because the determinant of
I,, and the sign of the determinant of any possible R(t, np, 7x) are both one. Assume that
the sign of the determinant of J;V(¢,m) is nonzero and constant on it domain.

Let

J/V(t,n) JpV(t,n) JV(t,n)
C(t,n) = —J.Q(t, Mp, ) —~JoQ(t. mp, M%) —JQ(t, Mp, M)
K(t,mp, mx)J:Q(t, p, k) K(t,Mp, 1) IpQ(t, Mp, M) K(t, Mp, 11x) I Q(t, Mp, Mx)

at points where F is differentiable.

Every element of 9PF(t,n) has the same structure as [C(¢,n) B(t,n)] but with different
R(t, mp, nx) and K(t, 1, mx) matrices due to the PC* nature of F. It can be shown that F is
completely coherently oriented at (¢,m) with respect to Y x W X X using the fact that any
matrices in the set A(yq,y2) defined in Definition 2.7.2 differ only in the R(¢, ., 1x) matrices
they contain. Since all possible R(t,mp,nx) have positive determinantal sign, complete
coherent orientation follows from the structure of B(¢,n).

Per Corollary 4.5.1, the conditions for Lemma 4.3.4 hold. As a result, Theorem 4.3.6 can

be used to compute an element of I',x(¢, p).
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Chapter 5

Numerical Computation of the
Generalized Jacobians and Linear

Newton Approximations

In this chapter, the numerical computation of elements of the linear Newton approximations
and generalized Jacobians derived for the mapping n — (x(tf,n),y(tr, n),%(t,n)) in Chap-
ters 3 and 4 is discussed. T'wo main issues need to be addressed in order to obtain accurate
numerical values. The first one is the computation of an element of the generalized Jaco-
bians or the linear Newton approximations of the functions in the right-hand sides of (4.2.1),
(4.3.1) and (4.4.1). The second one is the accurate numerical integration of the auxiliary
equations that define the generalized Jacobians and linear Newton approximations of the
mapping n — (x(tr,n),y(ts,p), x(ts,p)). As shown in Example 3.6.2, these auxiliary equa-
tions have discontinuous right-hand sides. ODE/DAE solvers that do not take into account
the discontinuous nature of these equations either cannot integrate these equations correctly
or become inefficient because they have to take too many time steps to satisfy integration

tolerances when discontinuities are encountered.
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An assumption on the structure of the right-hand side functions is made in the rest of this
thesis. The right-hand side functions become PC' functions as a result and an element of
the generalized Jacobian of these functions can be readily computed using the properties of
PC! functions (§2.7.1). The structural assumption divides the domain of the right-hand side
functions into subsets. The right-hand side functions are continuously differentiable on the
interior of these subsets and possibly nondifferentiable on the boundaries of these subsets.
This regularity in the placement of the nondifferentiable points allows the detection of the
discontinuities in the auxiliary equations using state event location algorithms [83].

The first section introduces the aforementioned structural assumption and discusses the
computation of the elements of the linear Newton approximations and generalized Jacobians
of the right-hand side functions. The second section discusses modifications to the auxiliary
equations in case the underlying dynamics is of the form (4.3.1) and (4.4.1) to improve the
efficiency of computation. In this case, the inversion of matrices is required to compute an
element of the linear Newton approximation or the strict derivative. This is undesirable
because it is computationally very inefficient. The structural assumption allows the use of
more efficient techniques that do not explicitly invert the matrices. The final section reviews
relevant aspects of state event location. Results in Chapter 3 require that the time points
at which the state trajectory visits nondifferentiable points in the domains of the right-hand
side functions constitute a set of measure zero. A numerical method to check this condition

is introduced.

5.1 Linear Newton Approximations of the Right-Hand
Side

Assumption 5.1.1. (Property M) Let X be a connected open subset of R™. A locally Lips-

chitz continuous function ¥ : X — R™ satisfies property M if the following hold:
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1. np(F) is a finite positive integer, D(F) ={1,...,np(F)}.

2. (X)) =UE el (U;) where U; are open subsets of R such that if i # i, then Uy N
Uy =0 for all i',7" € D(F).

O; are open subsets of R™ such that cl(U;) C O; for all i € D(F).

int (cl(U;)) = U;, Vi € D(F).

Ji(F) =A{1,...,n;(F)} where n;(F) is a finite positive integer for all i € D(F).

gij: O; = R e CYO;) for alli € D(F) and for all j € J;(F).

gi: Or — R 1 — max{gi(m), j € Ji(F)} for all i € D(F).

For all i € D(F), g:(n) <0, Yn € U;, gi(n) =0, Vn € cl(U)\U; and g;(n) >0, Vn €
O:\cl(Uj;).

ST S S

9. The set {n € O; : g;(n) = 0} constitutes a piecewise continuously differentiable mani-
fold of dimension n — 1 for all i € D(F).
10. For each i € D(F), there exists a function, F; : O; — R™ such that F; € C1(O;) and

F(n) =F;(n) for all n € cl(U;).

Remark 5.1.2. The functions g, ; defined in Assumption 5.1.1 are called discontinuity or

zero-crossing functions.

Remark 5.1.3. Item 4 is necessary to exclude any point, n € cl (U;)\U; that has no neigh-

borhood containing points not in U;.

Corollary 5.1.4. Suppose that F : X — R™ satisfies property M. Then F is a PC* function
on X. Letn € X. If gj(n) < 0 for some j € D(F), then, the essentially active function
indices at m, Z(F,n), is {j} and OF(n) = {JF;(n)}. If g;(n) = 0, for some j € D(F),
then, there ezists at least one more index k # j such that gp(n) = 0. Let K C D(F) be
the set containing all indices i € K such that g;(n) = 0 holds. Then Z(F,n) = K and
JF(n) = conv ({JF;(n),i € K}).

Proof. 1f g;(n) < 0 for some j € D(F), then n € U;. Since U; is open, there exists O, a
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neighborhood of n such that O C U;. Hence I(F,n) = {j} and 0F(n) = {JF;(n)}. If
g;(n) = 0, let O be any neighborhood of i such that O C X C urr®el ;). 0n U; is
nonempty because ) € cl(U;). Therefore, there exists no O which is a subset of any U; for
i € D(F)\{j}. Otherwise, U;NU; would be nonempty. This also implies that there is at least
one more index, k € D(F) such that k # j and gr(n) = 0. Assume otherwise. Note that
n € X and X is open. Since g;(n) = 0, n € cl(U;)\U; per property M. Per property 4, every
neighborhood of 1 contains points not in U;. Therefore, there exists no O, a neighborhood
of n, such that O C U,. Hence i ¢ X because X is open but 7 is not an interior point of X.

Let £ C D(F) contain all indices such that g;(n) = 0 if ¢ € K. Note that O N U; is
a nonempty open set for any neighborhood, O, of i for all © € I because both sets are
open. Let X; = {u € O : F;(u) = F(u)} for each i € K. Then, O N U; C int (X;). Note
that n € cl(U;), and therefore n is a limit point of O N U;. Hence n € cl(ONU;). Since
cd(ONU;) C cl(int (X;)) holds, n € cl(int (X;)). Therefore, Z(F,n) = K and 0F(n) =

conv ({JF;(n),7 € K}) per the definition of essentially active function indices. O

Remark 5.1.5. In the remainder of this thesis, let Q,,(F) = (U?fl(F)(cl(Ui)\Ui)) NX =
x\ure® o,

Consider (4.2.1). Assume f and f, satisfy property M. Then f and f, are PC! functions

on their respective domains. Therefore,

of(n) = conv ({Jf;(n),i € Z(f,n)}), V/n € T x P x X,

oo (p) = conv ({Jfyi(p),i € Z(fo,p)}), VP € P,

where f; and f,; correspond to the functions F; defined in Assumption 5.1.1. In this case,
Assumption 4.2.1 holds with I'f = 0f and I'fy = 0f; since f and f;; are semismooth functions
(§2.8.5).

Note that o,f(n) C m0f(n) per Theorem 2.6.10. The assumptions of Theorem 3.2.3
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hold if S = {t € [to,ts] : (t,p,x(¢t,p)) € Qn(f)} is a measure zero subset of [t,tf] and
p € P\Q,(f). If t € T\S, then (t,p,x(t,p)) € U; for some i € Z(f, (t,p,x(t,p))) and
of(t,p,x(t,p)) = mof(t,p,x(t,p)) = {Jfi(t,p,x(t,p))} holds because f is continuously
hence strictly differentiable in this case.

Consider (4.3.1). Assume F and Fy satisfy property M. Then, F and F are PC! functions

on their respective domains as in the ODE case and

OF(n) = conv ({JFi(n),i e Z(F,m)}), ¥Yn € T x P x X x Y x X,

IFy(p) = conv ({JF;(p),i € Z(Fo.p)}), Vp € P.

Then, Assumption 4.3.1 holds with I'F = JF and I'F, = JF since F and F are semismooth

functions (§2.8.5). In this case

0"F(n) = {IFi(n),i € Z(F,n)}

because F is a PC' function. The assumptions of Theorem 3.3.6 hold if S = {t € [to, /] :
(t,p,x(t,p),y(t,p), x(t,p)) € 2, (F)} is a measure zero subset of [ty, 7] and p € P\Q,,(Fo).
As in the ODE case, if ¢t € T\S, then O,F(t,p,x(t,p),y(t,p),x(t,p)) =
mOF(t, p,x(t, ), y(t,p), X(t,p)) = {JuFi(t,p,x(t,p), y(¢, p),%(¢,p))} holds for some i €
Z(F, (¢, p, x(t, p),y(t, p), x(1, p)))-

Assume ¢ as defined in Theorem 4.3.10 satisfies property M. Then

dg(n) = conv ({Jgi(n),i € Z(g,m)}), N € T x P x X x Y x X

where the functions g; correspond to the functions F; in the statement of Assumption 5.1.1
and the assumptions of Theorem 4.3.10 hold with I'¢ = dg. The assumptions of Theorem

3.3.9 hold if S = {t € [to, ts] : (t,p,x(t,p),y(t,P). %x(t,p)) € Ln(g) UL, (F)} is a measure
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zero subset of [to, tf] and p € P\Q,,(Fy). Ift € T\ S, then 0,9(t, p,x(t,p),y(t,p),%x(t,p)) =
ma0g(t, P, x(t, ), ¥ (¢, P), X(t, p)) = {Jugi(t, P, x(t,p), ¥ (t. P), X(¢, p))} for some i € I(g, (¢, p,
x(t,p),y(t,p),X(t,p)))-

Let h as defined in Theorem 4.3.11 satisfy property M. The assumptions of Theorem
4.3.11 hold if I'yh = 7,0h where

Oh(n) = conv ({Jhi(n),i € Z(h,m)}), Y € Ty x Px X x Y x X

and the h; correspond to the functions F; in the statement of Assumption 5.1.1. Note that
Oh is a linear Newton approximation of h. Then using Theorem 2.8.12, it can be shown that
muOh is a linear Newton approximation of the mapping n +— h(t;,n).

The discussion for the multistage systems in (4.4.1) is similar to the DAE case and

therefore it is omitted.

5.2 Singleton and Non-Singleton Trajectories

Assume f and fy in (4.2.1) satisfy property M. Let p € P. Let x(t,p) be the solution
of (4.2.1). Let S = {t € [to,tf] : (t,p,x(t,p)) € Q,(f)}. If S is a set of measure zero
and p € P\, (fy), then the solution is called a singleton trajectory otherwise it is called a
non-singleton trajectory. If the solution is a singleton trajectory, then the assumptions of
Theorem 3.2.3 are satisfied and dpx(ts, p) is a singleton set.

Figure 5-1 depicts examples of singleton trajectories and a non-singleton trajectory. For
clarity, the solutions of an ordinary differential equation of the form & = f(t,z), z(0) = p
are shown where f satisfies property M. Different shaded areas represent the sets, {U;}?_,
as described in the statement of Assumption 5.1.1. The functions {g;}?_; are as defined in

Assumption 5.1.1. The functions {f;}?_, correspond to the functions {Fi}?:Dl(F).
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Trajectory A is a non-singleton trajectory because it tracks the boundary of Us defined
by g5. Trajectory B and C are singleton trajectories. Trajectory C crosses one boundary at a
time whereas B crosses multiple boundaries at a time. In addition, trajectory B has a point

where the trajectory is tangent to the boundary of Us at a point. Solutions of (4.2.1) display

Figure 5-1: Examples of singleton and non-singleton trajectories.

the same behavior as shown in Figure 5-1. The forward sensitivity equations in Theorem
3.2.3 and the differential equations in Theorem 4.2.3 are possibly discontinuous when the
trajectory crosses boundaries (Trajectory B and C). These equations have continuous right-
hand sides when x(t,p) € U; for some i € D(f) per property M. If the trajectory tracks
the boundary of U;, using Jf;(-, p,x(-, p)) as G(-, p) satisfies the requirements of Theorem
4.2.3. Since J.f; is continuous, the right-hand sides of the differential equations defined by
4.2.2 are continuous as long as the trajectory tracks the boundary of a U; under this choice.

In order to integrate these equations accurately, the time points at which (¢, p,x(t,p)) €
,,(f) hold need to be determined. At these time points, g;(¢, p, x(¢, p) = 0 holds for some 1.
State event location algorithms can be used to detect these time points of discontinuity using
the discontinuity functions. At the end of this chapter, a state event location algorithm is

reviewed that is used in the remainder of this thesis.

177



In the remainder of this thesis, following assumption holds.

Assumption 5.2.1. Let (x(¢,p),y(t,p), %x(t,p)) be the solution of (4.3.1). Then, (to,ts] =
Z(:pl) Ty where n(p) is an integer and depends on p; T, = (ay, Bk] and oy < By for all

kEe{l,....n(p)}; a1 = to, Bup) = ty; i = Br—1 for all k € {2,...,n(p)} and m(t,p) =
Sk, Vt € Ty, sp € D(F) holds and the solution of (4.3.1) satisfies

0= Fm(tk,p) (tv p, X(tv p)7 y(tv p)7 X(t7 p))v vt € Tk7 X(t07 p) = FO(p) (521>

for each p € P.

This assumption is not unreasonable for the systems considered in this thesis. Further-
more, solutions of (4.2.1) and (4.3.1) exist for a parameter value irrespective of Assumption
5.2.1 because the right-hand sides of these equations are locally Lipschitz continuous. Issues
that arise with discontinuous systems such as Zeno or chattering behavior [10] do not arise

in these systems.

Remark 5.2.2. The quantities n(p), {Tx}'F) and {s;}I®) are not known a priori. They
are determined by the state event location and non-singleton trajectory detection algorithm,

which is discussed later in this chapter, during the integration of (4.3.1).

In the next section, computational improvements made possible by this assumption are
discussed and then the state event location and non-singleton trajectory detection algorithm

is presented.

5.3 Computational Improvements

In this section, computational improvements to the integration of an equation defined in

(4.3.2) are discussed. The improvements apply to (3.3.4) as well. In the remainder of this
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thesis, Assumption 5.2.1 is assumed to hold and all functions satisfy property M. In addition,
Assumptions 4.3.1 and 4.3.2 hold.

Let k, s, and m(-,p) be as defined in Assumption 5.2.1. Let {s;};‘(jﬁ be such that
s, € D(g) for all k € {1,...,n(p)}. Let u(t,p) be as defined in Remark 4.3.3. Then

JF,p)(t, u(t, p)) € 0”F(t,u(t,p)) (5.3.1)

holds per property M. Note that on T}, JF, (-, u(-,p)) is a continuous function of time
because x(-, p), X(-,p) and y(-, p) are continuous functions of time and JF;, is continuous.

Let M : T x P = Rwtna)x(4nptna) he defined by
M(t,p) = conv ({—B_lA, [A B] € 0°F(t,u(t,p)), A € Riwtna)xUtmin:) g ¢ R("ﬁ"””)x("“"w)}).
Let the subscript v be associated with the host space of 7 x P x X. If t € Ty,

_JqFSk (t’ u(t> p))_lJOFsk (t’ u(t> p)) € M(ta p)a
0L, J34F (t,u(t, ) TeFy, (1, ult, p)) € TE(t p.x(1. D). (53.2)

—[I,, 0]J4F,, (¢, u(t,p))_lJf,Fsk (t,u(t,p)) € I'r(t, p,x(t,p)) (5.3.3)

hold where I'f, I'r are as defined in Lemma 4.3.4, J F,, (t,u(t, p)) € R(vtna)x(mu+ne) and
JiF,, (t,u(t,p)) € Rmwna)x(+mtne) - Note that JoFs, (-, u(-,p)) " JeFs, (t, u(-, p)) is a con-
tinuous function on Tj. The inverse of JFy, (t,u(t,p))™" exists per Assumption 4.3.2.
JoFs, (-,u(-,p))~! is a continuous function of ¢ because J4Fs (-, u(-,p)) is continuous on
T} (Theorem 9.8 in [96]). Hence, it is a measurable selection on T}. Consider the set of

equations

m(t,p) = mGy(t,p)m(t,p) + 7, Gy (t, p),
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n<t7 p) = 7TxGr (t7 p)m(t, p) + TrpGT(t7 p)7

where the elements of these equations are defined in Theorem 4.2.3 and Corollary 4.3.7. Using

the left-hand sides of (5.3.2) and (5.3.3) to define Gy and G, the following is obtained

0P| ) [P (5.3.4)

n(t,p) L,

where H(t, p) = —J Fs, (t,u(t,p)) ' J:Fs, (t,u(t,p)) and w,H(t, p) represents the last n, +
n, columns of H(¢,p). Pre-multiplying both sides with J,Fy, (t,u(t,p)), the following is

obtained

JaFs, (£, u(t, p)) ltp) = —m JF, (¢, u(t, p)) m{t.p)

n(t,p) L,

where 7w, J¢F;, (t,u(t, p)) is the last n, + n, columns of J;F, (¢, u(t, p)). The final form of

the equations is

JyF., (t,u(t,p))n(t, p)+IF,, (t, u(t,p))m(t, p) + (5.3.5)

JXFSk (t> u(ta p))m(t, p) + Jstk (t’ u(t> p)) =0.

Equation (5.3.5) can be solved efficiently for the unknowns n(¢,p) and m(t, p) without

explicitly inverting JoFs, (¢, u(t, p)) using the numerical method described in [36].

Reverse integration of the quantities in Theorems 4.3.10 and 4.3.11 can be achieved

without explicitly inverting matrices as well.

Consider the integral in Theorem 4.3.9. An element of I'G defined in Theorem 4.3.9 can
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be computed using the equation

Z(ta p) = ngs}C (t’ u(t> p))m(t, p) + Jygs;C (t’ u(t> p))n(t, p) + (536)
J:’cgs}c (t’ u(t> p))fn(t, p) + Jpgs}C (t’ u(t> p))> Vt € Tka Vk € {1a RS n(p)},

Z(t0> p) = 07

where m, n and m are computed using (5.3.5). Note that substituting the expressions for

n and m, equations of the form in Theorem 4.3.9 are obtained.

Consider the following integral

Bk m(t’ p>
/ [Jxgs; (1, u(t, p) Iygs, (¢, u(t, p)] + (5.3.7)
o n(t, p)

m(t, p)
[ngsg (tu u(tv p) Jygsk (tv U(t, p)] + Jpgs; (tv U(t, p))dt

n(t,p)

where the integrand is obtained by the application of Theorem 2.8.12 to gy and m, m and
n are computed using (5.3.5). Note that 01 : T x P — R™*™ and Jygy : T — R™™ are
used as place holders. In addition Jygg (t) = 0,Vt € T} since g does not depend on y. Let
At o, B — R MaFm0) he an absolutely continuous function. Let Ay () = (Mg (t), Ary(t))
where Ay, (t) € R and Ay, (t) € R™™. Appending (5.3.5) to (5.3.7) using A, the

following is obtained:

O m(t, p)
/ [Jxgs; (t,u(t, p)) Jygs, (£, ult, p))] + (5.3.8)
%k n(t, p)

[Jicgs;C (t’ u(t> p)) J}"gs; (t’ u(t> p))] . + Jpgs;C (t’ u(t> p)) -
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Ax(8)[I<F,, (8, u(t, p)) Iy F., (¢, u(t, p))] m(tp))
| n(t,p) |
m(t, p)

e (0)[I<Fs, (¢, u(t, p)) JyFs, (¢, u(t, p))] _
| 2(t,p) |

Ak (t)JpFs, (1, u(t, p))dt.

Note that JyF,, (¢,u(t,p)) = 0 because F,, is not a function of y. Using integration by

parts (the arguments of the functions are omitted for clarity) results in

Bk m m
/ [ngs’ Jygsk] - Ak[Jszk JyFsk] dt = (539)
(652 n n
Bk
Bk m . |m B . |m
/ (9, I395] — Me[I<F s, IyFS,]) dt = Xy — / Ak dt. (5.3.10)
Ok n n g n
Qg

where Ay = (295, Iygs ] = Ae[JxFs, JyFy]). Let ;\k(t) = (:\kx(t)> S\ky(t)) where :\kx(t) S

R and A, (t) € R, Substituting the expression in (5.3.10) into (5.3.8) produces

Bk
Bk - m ~
/ ([ngs;C Jygs;ﬁ] - Ak[Jszk JyFsk] - Ak) + Jpgs}C - AkaFskdt + Ak
(0% n n
ag
This expression is simplified by setting
Xk - _Ak[Jszk JyFsk] + [Jx.gs;C JygszL Vt € [alwﬁk) (5311)

S\k,x = _Ak,meFsk + ngsfﬁv vVt € [akvﬂk)

xk,y = _Ak,nyFsk + JyQS;c = 0, YVt € [Oék, 6k)
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As a result, the equations

Xk,ac - ngs}C - Ak,xJXFska

Jygs}C = Ak,nyFsk s

are solved to determine Aj. Since [JyF J<F, ] is nonsingular per Assumption 5.1.1, the

above equations have a unique solution which is
i = Moo — Jxgy Iyg5][IxFs, JyF, )70
Substituting the solution into (5.3.11), the equation
M = e = Jxgyy Jygy JTFo, IyF ) [TFs TF) + [Ty, Tyoy)]

is obtained. Multiplying out the terms, a linear ordinary differential equation for S\kx is
obtained with continuous right-hand side. Hence S\M is an absolutely continuous function.

Therefore A, is an absolutely continuous function. As a result, A; is absolutely continuous

as defined.

If k = n(p), let Ax(Bk) = 0, otherwise let Ap(fr) = Aps1(ps1). Then (5.3.6) can be

written as

2(t,p) = Jpgs, (t, u(t, p)) — (5.3.12)
Ak(OIF,, (tu(t,p)), Vt € (o, B, Yk € {1,...,n(p)}, z(to, p) = 0,
Ai(t) = =Xi(t)[IxFs, (8, u(t. p)) JyFs, (fu(t, p))]+
[Ixgs, (8, ult, p)) Iy gy, (t,ult, p))], VI € [aw, i), Yk € {1,....n(p)},
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S\k(ﬂk) = 5\k—l—l(ak+1>7 Vk € {17 o 7n(p> - 1}7 5‘n(p) (ﬁn(p)) =0,
S\k,x(t) = )‘k,x(t)JXFsk(ta u( )) + ngs (t u( ap)) Vit € [akaﬁk) vk € {1> s >n(p)}>

0= Ay (D) JyFs, (8, ult, p)) = Jygs (4, ult, p)), VE € |ag, Br), Yk € {1,...,n(p)}.

Consider the case in Theorem 4.3.11. Let M, M,, M, and My be constants as defined

in Theorem 4.3.11. Consider the integral
ty
2(tsp) = [ Mum(t.p) + Myn(t.p) + Muri(t,p) + Myt
to

where m, n and m are computed using (5.3.5). Note that z(t;, p) is the quantity of interest
which is an element of I'G defined in Theorem 4.3.11. Converting the integral to the form

n (5.3.8), the following integral on T}, is obtained

/ﬁk[M" My it + [My My ltp) + M, — (5.3.13)
b (t:p) A(t, p)
Ac(D[IF,, (8, u(t, p)) I, F., (¢, u(t, p))] m(t,p)|
| n(t,p) |
Ar(O)[JF,, (tu(t, p)) Iy F., (t,u(t, p))] m(tp)|
| (t,p) |

Ak (t)IpFs, (t, u(t, p))dt,

where My € R My = 0 and J;F,, (-,u(-,p)) = 0 for all ¢ € T}. Following the same

procedure as before, the following equations are obtained:

2(t,p) = My — Ap()I,Fy, (£, ult, p)), Vt € (an, Bil, VE € {1,...,n(p)},  (5.3.14)
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z(to, p) = 0,
Ae(t) = =X (6)[I<Fs, (8, u(t, p)) IyF, (¢, ult, p))]+
[Mx My], YVt € [Ozk,ﬁk), Vk € {1, C. ,n(p)},

Xk(ﬁk) = Xk-i-l(oqf-i-l% Vk € {1> oo >n(p) - 1}? Xn(p) (ﬁn(p)) = 0?
Sk,x(t) - Ak,x(t)Jszk (t, u(t, p)) + MX> \V/t S [aka ﬁk)a Vk € {17 cee an(p)}a

M, = A, (O3, F,, (t,u(t,p)), Vt € [aw, Br), Yk € {1,....n(p)}.

5.4 State Event Location and Detection of Non-singleton

Trajectories

The governing equations for systems with varying structure are implemented in a program-
ming language using logical expressions and if-then-else statements in order to compute
numerical values. Each logical condition corresponds to a discontinuity function. If the
value of the discontinuity function is less than or equal to zero, the logical condition is as-
sumed to be true and false otherwise. In order to determine m(tx,p), the state of these
logical conditions need to be determined.

The set of active discontinuity functionsis the set of discontinuity functions corresponding
to the logical expressions that need to be checked in order to evaluate the right-hand sides
of (3.3.1) or (4.3.1) given (t,u(t,p)). The set of active discontinuity function indices is the
set of pairs corresponding to the indices of these functions and is denoted by A. The set of
active discontinuity function indices is constant for all ¢ € Tj. Therefore, the set of active
function indices corresponding to T}, is denoted by Aj.

Let Ty = (tx, tgr1]. When t = ¢, Ay can be determined. However, at this point in time,
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tra1 is not known. ti,q is the time at which A changes and it is not known a priori. In order
to determine t;, 1, the dynamics of the system are integrated for a time step assuming Ay, is
constant. The integration of the dynamics assuming Ay is constant is called discontinuity-
locked integration [83]. Then, the discontinuity functions are analyzed in order to determine
whether the state of any of the logical conditions determining A; changed during this time
step. The state of a logical condition changes if the corresponding discontinuity function
crosses zero. If any of these discontinuity functions crosses zero, the infimum of the times
at which such a crossing occurs is determined. The infimum corresponds to one of the roots
of the active discontinuity functions. This infimum is the value of ¢;,.;. The process of

determining this infimum value is called state event location.

Consider the time interval, [ty, 1], during the integration of the dynamics. After ap-

pending (5.3.5) and the active discontinuity functions to the system dynamics,

0 = Fo (£ 0(t, D)), Vi € (b, tosi] (5.4.1)
Zv,w (t7 p) = Gow (tv U(t, p))7 V(’U, U)) c Alm
0 = JyFo,p) (L, u(t,p))n(t, p) + JxF o, p) (4, u(t, p))m(t, p) +

J Fm(tk P)( (tv p)) ( 7p> +J Fm(tk p)(t u( 7p)) Vt € (tk7tk+1]

is obtained. This set of equations is used for discontinuity-locked integration.

A variant of the state event location algorithm in [83] is used in this thesis to detect
zero crossings. The only difference is the root finding algorithm used. Note that, the right-
hand sides of the equations defining the elements of the linear Newton approximations and

generalized Jacobians are discontinuous at these zero crossings.

The state event location algorithm in [83] makes use of the properties of the integra-
tion algorithms for differential-algebraic systems. In this thesis, the backward differentiation

formula (BDF) ([4]) family of numerical integration algorithms is used. This family of inte-
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grators use polynomials to interpolate the state trajectories and all z,, (-, p). Let ¢ be the
order of the polynomials used. Let Z,, be the polynomial that approximates z,,(-,p), on

the time interval [tg, tx41]. This polynomial is ([83])

q 1 vl ~ l

B W2, W (t t—t

NOEE ; ( k+1)( h:“) , Y(v,w) € Ay (5.4.2)
=0

where hy = tp11 — tx is the integration time step which is determined by the integration al-
gorithm, V! is the backward difference operator defined recursively such that V°z, ,,(tj.1) =
Zow(trt1)s Vo (ea1) = Zow(test) —2ow(te) and Vi o (Ge1) = VI 2 0 (Ee1) =V 200 (Er).
The state event location algorithm uses the roots of these interpolating polynomials to de-
termine zero crossing times. The algorithm is discussed in detail in the following subsection.

The detection of non-singleton trajectories depends on the analysis of discontinuity func-
tions on the interval [t, tx41]. If there exists an interval of time in [ty, fx41] such that one
of the active discontinuity functions is zero for all ¢ in that interval, then the solution is a
non-singleton trajectory. Since the discontinuity functions are approximated by the inter-
polating polynomials defined in (5.4.2) on [t, tx41], these polynomials are used instead of
the discontinuity functions. A relaxed criterion introduced next is used to determine non-
singleton trajectories because these polynomials are only approximations to the discontinuity

functions.

Definition 5.4.1 (Numerically Non-singleton Trajectory). The solution of (4.3.1) is
a numerically non-singleton trajectory if there exists a k € {1,...,n(p) — 1} and interval
A C cl(Ty), such that for some (v,w) € Ay, |Zpw(t,P)| < €a and |Z,(t, P)| < €, hold for

all t € A where €, is the absolute error tolerance used in the BDF algorithm.

The non-singleton trajectory detection algorithm is used to determine if the solution is
a numerically non-singleton trajectory. The algorithm is discussed in Step 4 of the main

algorithm presented in the next section.
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5.4.1 The State Event Location and Non-singleton Trajectory De-

tection Algorithm

Step 1: Determine m(ty, p), Ax and t5,1 using the BDF algorithm and execute discontinuity
locked integration of (5.4.1) to form the interpolating polynomials defined by (5.4.2).
Step 2: In order to determine if m(¢x, p) needs to change at some t € [tg,tg41], the real
roots of the polynomials {Z, ,, : (v,w) € Ay} are used. The minimum of the real roots
of these polynomials is used as a candidate time at which m(¢x, p) changes on [tg, t41].
There are two classes of polynomials to consider:
(a) A? = {(v,w) € A : Z,. is a zero polynomial}.
(b) A ={(v,w) € Ay : Z,, is not a zero polynomial}.
Let Tind((w,w),4,) Tepresent the minimum of the roots of the polynomial Z,,. Let
Tind((v,w),4,) = +oo for all (v,w) € Ag. These discontinuity functions imply that
(t,u(t,p)) lies on the boundary of an open set U; as defined in Assumption 5.1.1 for
t € [tg, trs1) and therefore are ignored. If A} is empty, then go to Step 4.
Determining Tind((v,w),4,) for (v,w) € .A,lc is more complicated. In theory, one can use
the Jenkins-Traub algorithm [51, 50] to compute all the roots of Z,,, (v,w) € Aj}.
However, most of the time Z,, does not have any real roots or it has a unique zero
and the application of the Jenkins-Traub algorithm incurs unnecessary computational
cost. The algorithm described in this section uses elements from interval arithmetic
[1] to reduce the number of times the Jenkins-Traub algorithm is applied. Note that
the degree of Z,, can be at most 5 in this thesis because the BDF algorithm uses
polynomials whose degree is at most 5.
The algorithm scales the polynomials so that their domains are [0, 1] instead of [tg, t541].
Let the corresponding scaled polynomials be s, ., : [0,1] — R, (v,w) € A;. Let ¢ be

the order of the polynomials and {C,,}!_, be their coefficients.
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The root-finding algorithm applied to all (v, w) € A} is:

R.1.
R.2.
R.3.

R.4.

R.5.

R.6.

Let 0 < A< 1. Letl= 1, a; :0, b = 1, D, = [al,bl] and S = {Dl}
If [ > n(S), then stop. All intervals in S are analyzed.
Let

be the enclosure of s, ,,. The enclosure contains the range of s, ,, for the domain
D,. If 0 ¢ s,.,(D;), then there is no root of s,, on D;. In this case, go to Step
R.9. Otherwise, go to Step R.4.

Let

q
Sow(D) =Y n-Cy- D!
n=1

be the enclosure of $,,,. If 0 € $,,,(D;), then the zeros of s,, may not be regular
i.e. they may have multiplicity greater than one. In this case, if b, — a; < A, go
to Step R.7 and if b, — a; > A, go to Step R.8. If 0 ¢ $,,,(D;), then go to Step
R.5.

Consider the Krawcyk operator [72];

K(D;) = mid(D;) — % + (1 - %) (D — mid(Dy))

where mid is the midpoint operator to an interval. If K(D;) N D; = (), then
there exists no zero of the polynomial s, ,, in D;. In this case, go to Step R.9. If
K(D,) C int (D), then there exists a unique zero of s, , in D;. In this case, go
to Step R.6.

Apply Newton’s method to determine the unique zero in D;. Go to Step R.9.
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R.7. Apply the Jenkins-Traub algorithm to find all zeros of s,, in D;. Go to Step
R.9.

R.8. Let Dys)41 = |a, (ar + b)) /2], Dysyre = [(ar + b;)/2,b] and set S = S U
{Dn(sy+1, Dn(s)+2}- Go to Step R.9.

R.9. Let [ =1+ 1 and go to Step R.2.

Set Tind((v,w),4,) to the minimum of the roots with odd multiplicity. If there are no such

real roots, set Tiuq((v,uw),4,) = +00. Roots with even multiplicity imply that (¢, u(t, p))

touches but does not cross the boundary of some U; where U; is as defined in Assump-

tion 5.1.1.

Step 3: Let 7 = (U’I%ienAk{de((U,w),Ak)}. If 7 = 400, set the event time, 7 to t;41 and go
to Step 4. Otherwise, let (v, w) be such that Tia(s,m),.4,) = 7. Compute a consistent

event time, 7 and n = (7%, np, Nx, Ny, Nx) that satisfy

0= Fm(tk,p) ("7)7

np - p7
QoNx n zq: a;X(tg41-i, P)
x T — tk i1 T — tk '
teg = go,0(N)

as in [83] where n, € R™, n, € R™, ny, € R™, ny, € R™, {o;}L, are the coefficients
of the BDF method, €, and its sign are determined as in [83]. Set t;+1 = 7*. Update
the polynomials Z,,, for all (v,w) € Ay using n. Go to Step 2.

Step 4: If A} is nonempty, then the trajectory is labeled as numerically non-singleton.
Otherwise, the active discontinuity functions are analyzed to determine if the conditions
of Definition 5.4.1 are satisfied for any of the active discontinuity functions.

The algorithm to check the conditions of Definition 5.4.1 employs interval arithmetic,
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bisection and the Jenkins-Traub algorithm. The algorithm scales the polynomials so
that their domains are [0, 1] instead of [t, x41]. Let the corresponding scaled poly-
nomials be s, : [0,1] — R, (v,w) € A}. Let ¢ be the order of the polynomials and
{CL}E_, be their coefficients. The following algorithm is applied to all elements of
{Zpw : (v,w) € AL} to determine whether the solution is numerically non-singleton.
N1 Lt 0<A<1l Letl=1,a,=0,b=1, D, = [a,b] and S = {D,}.

N.2 If I > n(S), then stop. All intervals in S are analyzed.

N.3 Let

q
Souw(D1) =Y CuD}
n=0

be the enclosure of s, ,,. There are three cases to consider

e s,.,(D;) C [—€4, €. In this case, the condition on s, ,, holds. Go to Step N.5
to check if the condition on the derivative holds.

o [—€4, €] NSyw(D;) = 0. In this case, the range of the polynomial correspond-
ing to the domain D; does not intersect [—e,, €,]. Go to Step N.7.

o [—€u,€a) NSyuw(Dy) # 0 and s, (D;)\[—€a, €a] # 0. In this case, the enclosure
does not furnish enough information. If b, —a; > A, go to Step N.6, otherwise
go to go to Step N.4.

N.4 In this step, the maximum and minimum values attained by s,,, on D; are an-
alyzed. The extremal values are attained at t = a;, t = b, and/or at t € D,
such that the necessary condition of optimality, $,,(f) = 0 holds. In order to
determine such ¢, the Jenkins-Traub algorithm is used to find the real roots of
Spw- Let 5,, be the maximum and Svw denote the minimum values attained on
the interval D;.

If [—€a, €a] N [S4.4) Svw] 7# 0 go to Step N.5. Note that, this conditions is more
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relaxed than the condition in Definition 5.4.1 for 2, ,,. Otherwise, go to Step N.7.
N.5 The actions taken for s, ,, are repeated in this step for s, .

N.5.1 Let m =1, ¢, = a;, dy, = by, Dyyyy = €, diy] and S; = { Dy, }.

N.5.2 If m > n(S5)), then stop. All intervals in 5; are analyzed.

N.5.3 Let

Svao(Dim) = Zn Cn- D},

be the enclosure of s, ,,. There are three cases to consider
o If 8, ,(Dim) C [—€4, €], the trajectory is numerically non-singleton.
o If [—€4, €0 NSpw(Dim) = 0, go to N.5.6.
o If [—€4, €] NSy (Dy) # 0 and Sy 4 (Dym)\[—€a, €a] # 0, then there are two
options. If d,,, — ¢, > A, Go to Step N.5.5, otherwise go to N.5.4.
N.5.4 In this step, the maximum and minimum values attained by $,,, on Dy,
are analyzed. The extremal values are attained at t = ¢,,, t = d,, and/or at
t € Dy, such that the necessary condition of optimality, §,.,(t) = 0 holds.
In order to determine such ¢, the Jenkins-Traub algorithm is used to find the
real roots of §,,. Let §v7w be the maximum and §, ,, denote the minimum
values attained on the interval D ,,.
If [—€q,€) N [g‘v,w,;)vw] # (), then label the solution as numerically non-
singleton. Note that, this conditions is more relaxed than the condition in
Definition 5.4.1 for 2, ,. Otherwise, go to Step N.7.
N.5.5 Let Dyns)+1 = [Cmy (em + i) /2], Dinesy+2 = [(¢m + dm)/2,dy] and set
S = S U{Dns)+1: Dinesy+2}- Go to Step N.5.6.
N.5.6 Let m =m + 1. Go to Step N.5.2.

N.6 Let Dn(S)+1 = [al,(al + bl)/Q], Dn(5)+2 = [(CL[ -+ bl)/Q,bl] and set S = S U
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{Dn(s)41, Dn(s)+2}- Go to Step N.7.
N.7 Let [ =14 1. Go to Step N.2.
Go to Step 5.
Step 5: Let k =k + 1. Go to Step 1.
The discussion on state event location and non-singleton trajectory detection directly
applies to the multistage case in (4.4.1). It also directly applies to the integral in Theorem
4.3.9. This integral can be computed by appending the integrand to (4.3.1) and considering

the augmented system.

5.5 Computational Methods Used in this Thesis

In the remainder of this thesis, the algorithm described in the previous section based on the
algorithm in [83] is used for state event location. The dynamics in (5.2.1) and the auxiliary
equations in (5.3.5) are integrated using the integration code DSL48SE ([36, 107, 108]).
The quantities in (5.3.5) are derived from (4.3.1) using automatic differentiation [43] code
DAEPACK [107]. The FORTRAN 77 code implementation of the equations in (4.3.1) is
processed by DAEPACK to generate the FORTRAN 77 code representing the equations in
(5.3.5) as well as the additional code to keep track of the states of the logical conditions
in the code discussed in §5.4. The implementation of the infrastructure to solve (5.3.12)
and (5.3.14) by reverse integration is a topic for future research. Implementations exist
when the data of the problem is sufficiently smooth [24]; however, there are no software

implementations that combine state event location and reverse integration.
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Chapter 6

Bundle Method using Linear Newton

Approximations

This chapter contains the development of a bundle-type nonsmooth optimization algorithm

to numerically solve the mathematical program

J(p) =min f(p), st. ¢i(p) <0,i=1,...,n,. (6.0.1)

PEP

The bundle method developed in this chapter takes into account the fact that the gen-
eralized gradient of f and g; cannot be computed at all p € P. The algorithm uses linear

Newton approximations (Definition 2.8.11) where the generalized gradient is not available.

In the remainder of this chapter, first, the necessary conditions of optimality for the
Lipschitzian optimization problem (6.0.1) are summarized. Then, a bundle method using

linear Newton approximations is developed.
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6.1 Necessary Conditions of Optimality for Lipschitzian
Optimization

Assumption 6.1.1. In the remainder of this chapter, program (6.0.1) satisfies the following:
1. n. and n, are finite positive integers;
2. P is an open convex subset of R™;
3. f P —=R,and g, : P — R, © = 1,...,n. are locally Lipschitz continuous and

semismooth functions.

Definition 6.1.2 (Unconstrained Local and Global Minima). The point p* € P is an

unconstrained local minimum of the program

min f(p)

if there exists an € > 0 such that f(p*) < f(p) holds for all p € P satisfying ||p — p*|| < €.

p* € P is an unconstrained global minimum if f(p*) < f(p) holds for all p € P.

Theorem 6.1.3 (Necessary Conditions of Optimality for Unconstrained Optimiza-

tion Problems). Let Assumption 6.1.1 hold. If p* is an unconstrained local minimum of

min f(p),

pPEP

then 0 € Of(p*) holds (Proposition 2.5.2 in [25]).

Theorem 6.1.4 (Direction of Descent for Unconstrained Optimization Problems).
Let Assumption 6.1.1 hold. Let {v} = argmin{|[¢|]| : ¢ € 0f(p)}.} Assume v # 0. Let
d = —v. Then f(p+td) < f(p) holds for small enough positive t (Lemmas 2.10, 2.11 and

2.12 in [54)).

I'Note that the solution of this program is the projection of the zero vector on the nonempty compact
convex set df(p). Therefore, the solution exists and is unique per Theorem 2.4.6.
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Definition 6.1.5 (Feasible Set). The set of feasible points, S, is

S={peP: gi(p) <0, Viec{l,...,n.}}.

Assumption 6.1.6. The feasible set, S, is nonempty.

Definition 6.1.7 (Set of Active Constraints). Let p € S. Then Z(p), the set of active

constraints at p, is {i: ¢;(p) =0, 1 €{i,...,n.}}.

Definition 6.1.8 (Constrained Local and Global Minima). A point p* € S is a
constrained local minimum of (6.0.1) if there exists an € > 0 such that f(p*) < f(p) for all

p € S satisfying ||[p—p*|| < € holds. p* € P is a constrained global minimum if f(p*) < f(p)
holds for all p € S.

Theorem 6.1.9 (Necessary Conditions of Optimality for Constrained Optimiza-
tion Problems). Let Assumption 6.1.1 hold. If p* is a constrained local minimum of

(6.0.1), then there exist numbers and p;, i =0,...,n, such that

0 €uodf (P*) + D 11dg:(p"), (6.1.1)
=1
0 #lol + Y |, (6.1.2)
=1
Oz,ulgl(p*), Vi € {1,,nc}, (613)
0 <, Vi €{0,....n} (6.1.4)

hold (Theorem 6.1.1 in [25]).

Since (6.1.2) holds, the additional condition

Z pi =1
i=0
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can be imposed. This condition, (6.1.1) and (6.1.4) clearly show that the zero vector is
an element of the convex combinations of the elements of the generalized gradients of the
constraints and the objective at a local minimum of (6.0.1).

In order to exclude cases where g = 0 in Theorem 6.1.9, constraint qualifications need
to be imposed on problem (6.0.1). If ;9 = 0, then the necessary conditions in Theorem 6.1.9
furnish no information about f. Two constraint qualifications relevant to the work in this

thesis are as follows.

Definition 6.1.10 (Cottle Constraint Qualification). Let p € S. Then the Cottle con-
straint qualification holds at p if either g(p) < 0, Vi € {l,....,n.} or 0 ¢
conv (UieI(ﬁ) 8g2-(f))).

Definition 6.1.11 (Slater Constraint Qualification). Let p € S. Then the Slater con-

straint qualification holds for (6.0.1) at p if g; are convex functions for alli € Z(p) and there

exists a p € S such that ¢;(p) <0 for all i € Z(p).

The constrained optimization program (6.0.1) is transformed locally into an uncon-
strained optimization program using the total constraint function and the improvement func-

tion.

Definition 6.1.12 (Total Constraint Function). The total constraint function, G : P —

R, is defined by

G(p) = max{g;(p); - -, In.(P)}-

It is a locally Lipschitz continuous function and its generalized gradient at p satisfies

dG(p) C 9G(p)

where OG(p) = conv (UieI(p) 8gi(p)> per (2.6.3).
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Definition 6.1.13 (Improvement Function). Let p € S. Let the improvement function

atp, H: P — R, be defined by

H(p;p) = max{f(p) — f(P),G(p)}- (6.1.5)

Then, H 1is a locally Lipschitz continuous function and

OH(p;p) C M(p)

holds [54] where

p

af(p) if G(p) <0
M) = { conv (af(p) U aé(p)) it G(p) = 0

9G (p) if G(p) > 0.

\

Definition 6.1.14 (Stationary Point). A point p € S that satisfies (6.1.1), (6.1.2), (6.1.3)
and (6.1.4) or equivalently satisfies 0 € M(P) is called a stationary point of problem (6.0.1)
[54]-

Theorem 6.1.15. Let p* be a constrained local minimum of (6.0.1). Then 0 € OH (p*; p*)

and 0 € M(p*) hold. In addition, there exist scalars p;,i = 0,...,n, such that (6.1.1),
(6.1.2), (6.1.3) and (6.1.4) hold (Lemma 2.15 in [54]).

Corollary 6.1.16 (Descent Direction for the Improvement Function). Let {v} =
argmin{||¢|| : ¢ € OH(p; p)}?. Assumev #0. Letd = —v. Then for small enough positive
t, Hp+td;p) < H(p;p) holds.

The following is a restatement of Lemma 2.16 in [54].

2Note that the solution of this program is the projection of the zero vector on the nonempty compact
convex set OH (p; p). Therefore, the solution exists and is unique per Theorem 2.4.6.
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Theorem 6.1.17 (Necessary and Sufficient Conditions of Optimality for Convex
Programs). Let problem (6.0.1) be a convexr program, i.e., f and g; for i = 1,...,n. are
convex functions. Assume that the Slater constraint qualification (6.1.11) holds at p € S.
Then, the following are equivalent:

1. p is a constrained global minimum of (6.0.1);

2. 0 € OH(p;p) = M(p) holds;
3. P is a stationary point of (6.0.1);

4. the necessary conditions of optimality in Theorem (6.1.9) hold with py # 0.

6.2 Necessary Conditions of Optimality using Linear

Newton Approximations

In this section, necessary conditions of optimality using linear Newton approximations are

presented. In addition, a descent direction is obtained using linear Newton approximations.
Assumption 6.2.1. Assume program (6.0.1) satisfies the following:

1. f and each g; for i = 1,...,n. are semismooth functions in the restricted sense as

defined in Section 2.8.4.

2. There exists T'f, a linear Newton approximation of f, such that Of(p) C I'f(p) holds

for all p € P. In addition, I'f(p) is a convex set for all p € P.

3. For each g;, there exists I'g;, a linear Newton approximation of g; such that 0g;(p) C

Lg;(p) holds for all p € P . In addition, I'g;(p) is a convex set for all p € P.

Theorem 6.2.2 (Necessary Conditions of Optimality for Unconstrained Optimiza-

tion Problems using Linear Newton Approximations). Let Assumptions 6.1.1 and
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6.2.1 hold. If p* is a local minimum of the unconstrained optimization problem

min f(p)

then 0 € I' f(p*) holds.

Proof. The result follows from Theorem 6.1.3 and Assumption 6.2.1 noting that df(p*) C

L'f(p*). O

Theorem 6.2.3 (Direction of Descent for Unconstrained Optimization Problems
using Linear Newton Approximations). Let Assumptions 6.1.1 and 6.2.1 hold. Let
{v} =argmin{|[{]| : ¢ € I'f(p)}. Assume v # 0. Let d = —v. Then for small enough

positive t, f(p+1td) < f(p) holds.

Proof. T'f(p) is a convex and compact set therefore the element of minimum norm, v, is

well-defined, unique and satisfies the following per Theorem 2.4.6

viu>vlv, Yu e I'f(p),

d™u < d"v = —||d||?, Yu e Tf(p). (6.2.1)

Let ¢ > 0. Then

flp+td) — f(p) =t¢"d (6.2.2)

holds for some ¢* € Jf(p*) where p* = p+ad and 0 < o < t per the Mean Value Theorem
for locally Lipschitz functions (Theorem 2.6.4).

Note that (6.2.2) implies

fp+1td) — f(p) € {t¢"d: ¢ €df(p)} (6.2.3)
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Since I'f is compact-valued and upper semicontinuous, for small enough t,

Id]]

Lfp*) cT'f(p) + TB(O’ 1) (6.2.4)

holds where B(0, 1) is the unit ball in R™.
Let ¢ € Of(p*) C I'f(p*) and consider ¢*d. For any such ¢, there exist a u € I'f(p) per
(6.2.4) such that

¢'d <u'd+|d|*/2

holds. Using (6.2.1),

¢td < —[|d* + [|d][*/2,¥¢ € 0 (p7)

is obtained. Combining with (6.2.3), the desired result;

RN 1
fp+1td) — fp) < 17
is obtained for small enough t. Hence d is a descent direction. O

Remark 6.2.4. The above proof can be carried out using M(p) as defined in Definition

6.1.13 to show that the element of minimum norm of M (p) defines a descent direction.

The following is a technical lemma related to the compactness of the convex hull of a

compact set. It will be used repeatedly in the remainder of this chapter.

Lemma 6.2.5 (Convex Hull of a Compact Set). Let A € R" be a compact set. Then

conv (A) is a compact set.

Proof. The result holds trivially if A is empty or a singleton set. The boundedness of

conv (A) follows from the definition of the convex hull and the boundedness of A. In the
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remainder of the proof, it is shown that conv (A) is a closed set. Assume A is not empty. Let
X be a limit point of A. Let {x; : x; € conv (A)}?2, be a sequence such that lim x; = X.

k=00
Per Carathéodory’s Theorem (Theorem 2.4.5), for all k, x;, = Z?:ll O iV k iy Z::rll i =
1, ag;, > 0,Vi € {1,....n+ 1}, yr; € A Vi € {1,...,n+ 1} holds. Since {ay;}?2, and
{yr.i}s2, are bounded sequences in R and R"™, there exists an infinite set J C {1,..., 00}
such that for all ¢ € {1,...,n + 1}, jliqrgoajvi =q; j € J and Jllr&yj7i =¥, 7€ J holds
per the Bolzano-Weierstrass Theorem. Note that 32" a@; = 1 since Y75 ay; = 1 for all
j € J. In addition, y; € A for all i € {1,...,n+ 1} because A is compact. Then for j € 7,

n+1
X = lim x; = Z @;y; holds. This proves that x € conv (A). Hence conv (A) is compact. [

Jmee i=1
Theorem 6.2.6 (Necessary Conditions of Optimality for Constrained Optimiza-
tion Problems using Linear Newton Approximations). Let Assumptions 6.1.1 and

6.2.1 hold. If p* is a constrained local solution of program (6.0.1), then there exist numbers

o and p;, ©=1,...,n. such that

0 cpof(0%) + 3 nilar(p"), (625
i=1
0 Il + 3, (6.2
i=1
0 =p;ig:(p*), Vi€ {1,...,n.}, (6.2.7)
0 <p;, Vi € {0,...,n.} (6.2.8)
hold.
Proof. The result follows from Theorem 6.1.9 and Assumption 6.2.1. !

Definition 6.2.7 (Stationary Point in the Extended Sense). A point p € S that
satisfies (6.2.5), (6.2.6), (6.2.7) and (6.2.8) is called a stationary point in the extended sense
of problem (6.0.1).
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In the remainder, the following constraint qualification similar to the Cottle constraint

qualification (Definition 6.1.10) is assumed to hold.

Definition 6.2.8 (Extended Cottle Constraint Qualification). Let p € S. Then the
extended Cottle constraint qualification holds at p if either g;(p) < 0Vi € {1,...,n.} or0 ¢
conv <Ui€I(ﬁ) ng(p)).

Remark 6.2.9. Since conv (Uiej(ﬁ) Fg,-(f))) contains conv (UieI(ﬁ) 8gi(f))), the extended
Cottle constraint qualification implies the Cottle constraint qualification. If the constraint

functions are convex, the Cottle constraint qualification implies the Slater constraint quali-

fication [54].

In order to relate the improvement function to the necessary conditions of optimality,

the linear Newton approximation of the improvement function needs to be derived.

Corollary 6.2.10 (Linear Newton Approximation of the Total Constraint Func-
tion). Let G be as defined in Definition 6.1.12. Then I'G : P = R" defined by

I'G(p) = conv U Lgi(p)

i€Z(p)

1s a linear Newton approximation of G.

Proof. The result follows from the repeated application of (2.8.5) and the properties of linear

Newton approximations. O

Corollary 6.2.11 (Linear Newton Approximation of the Improvement Function).

Let H be defined as in Definition 6.1.13. Then I'H : P = R defined by

p

I'f(p) if G(p) <0
I'H(p;p) = { conv (I'f(p) UTG(P)) if G(p) =0 (6.2.9)
I'G(p) if G(p) >0
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s a linear Newton approximation of H at p.

Proof. Using (2.8.5), TH : P = R, a linear Newton approximation at p, defined by

(

I'f(p) if G(p) <0
FH(p;p) = { T'f(p) UTG(p) if G(p) =0

I'G(p) ifG(p) >0

\

is obtained. The desired result follows from I'H (p; p) = conv (fH (p; 13)) forallpeP. O

Corollary 6.2.12. Let p* be a constrained local minimum of (6.0.1). Then 0 € I'H(p*; p*)
holds. In addition, there exist scalars p;,i =0, ... ,n. such that (6.2.5), (6.2.6), (6.2.7) and
(6.2.8) hold.

Proof. Since p* is a constrained local minimum, 0 € 9H (p*, p*) holds per Theorem 6.1.15.
Since 9H (p*, p*) C M(p*) C TH(p*; p*) holds per Definition 6.1.13, Assumption 6.2.1 and
Corollary 6.2.11, the rest of the results follow using the set {u;}7, whose existence is stated

in Theorem 6.1.15 in the expressions (6.2.5), (6.2.6), (6.2.7) and (6.2.8). O

Corollary 6.2.13. Let p € S. Assume 0 € 'H(p;p). Then p is a stationary point in the

extended sense of the program (6.0.1).

Proof. By definition of T'H(p; p),

0 € conv (Ff(f)) U (UieI(ﬁ) ng(f))))

holds. Hence, there exist p; for i € {0} UZ(p) such that

0 € ul'f(p) + Z 1il'g:(P),

1€l
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Z pi =1

ic{0}UZ(p)

hold. Let p; =0 for alli € {1,...,n.}\Z(p). Then

,ulgl(f)) = 0, Vi € {1, .. .,nc}

holds because if i € Z(p), then g;(p) = 0 holds. As a result, there exist scalars p;, i €
{0,...,n.} satisfying conditions (6.2.5), (6.2.6), (6.2.7) and (6.2.8). O

The following descent direction for the improvement function is a result of Theorem 6.2.3.

Corollary 6.2.14 (Descent Direction for the Improvement Function). Let {v} = arg
min{||{|| : ¢ € TH(p;p)}.>. Assume v # 0. Let d = —v. Then for small enough positive t,
H(p+td;p) < H(p;p) holds.

In order to compute a descent direction, an approximation of the improvement function
will be used in bundle methods. In this thesis, the approximation is a convex function that
has a subdifferential at p equal to I'H (p; p).

Discussion of the properties of this approximation requires the following theorem (Lemma

2.5 in [54] which is a direct result of Theorems 2.8.2 and 2.8.6 in [25]).

Theorem 6.2.15 (Pointwise Maximum of Functions). Let Z be a compact subset of
R™ Letz € Z. Let h, : P — R be a member of a family of functions parameterized by z.
Let h: P — R be defined by

h(p) = max{h,(p), z € Z}.

3Note that the solution of this program is the projection of the zero vector on the nonempty compact
convex set I'H(p; p) Therefore, the solution exists and is unique per Theorem 2.4.6.
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Let M(p) ={z € Z: h(p) = h,(DP)}. Let O be a neighborhood of p. Assume:
1. For allz € M(p), hy, is a Lipschitz continuous function on O with the same Lipschitz
constant K.
2. h is finite at some p € O.
3. hy is a continuous function from Z x O to R.
4. Ohy is an upper semicontinuous set-valued mapping from Z x O to R".
Then:
1. h is locally Lipschitz continuous at p.
2. Oh(p) C conv (Upenm(p)0hz(P)).
3. If hy, for eachz € M(P) is reqular at p, then h is reqular at p and Oh(p) = conv (UzeM(l—,)ﬁhz(p)).
In addition, h'(p;d) = max{({,d) : ¢ € Oh(p)} for alld € R™.

Theorem 6.2.16 (Convex Approximation of the Improvement Function). Letp € P
and O be a neighborhood of p. Define
1. fe:O—=R:pw f(p)+(¢,p— D) for each ¢ € Tf(P).
2. f:0—=R:p—max{fe(p): ¢C€Tf(P)}
3. Gi¢c:O—=R:p— g(p)+(¢,p—p) for each ¢ € Tg;(p) and for all i € {1,...,n.}.
4. Gi: O —=R:pr—max{g.¢(p): ¢€lg(p)}, forallie{l,...,n.}.
5 G:0—R:p—max{g(p): i € {1,...,n.}}.
6. H:O — R :p+— max{f(p) — f(p),G(p)}. H is called the convex approzrimation of
the tmprovement function.
Then:
1. f is a convex function on O and Of(p) = T'f(P).
2. g; is a convex function on O and 0g;(p) = L'g;(p) for alli € {1,...,n.}.
3. G is a convex function on O and G(p) = conv (Uieyp)I'g:(p)) where Y(p) = {i :
g:(p) = G(p), i € {1,...,nc}}.
4. H is a convex function on O and OH(p) = I'H(p; p).
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5. Let d = —v where {v} = argmin{||¢|| : ¢ € 0H(P)}. Ifv # 0, then d is a descent

direction of H at p.

.....

since the linear Newton approximations in the definition are all compact subsets of R™ and

n. is finite. Note that K is a Lipschitz constant for all f¢ and for all g, ¢.

Observe that dcf(p) = {C}.¢ € T/(p) and 9g.¢(p) = {¢}.C € Tgi(p) for all i €

{i,....n.}. (¢,p) — fe(p) is a continuous function and (¢, p) = Of¢(p) is an upper semi-
continuous set-valued map because fe and V f¢ are continuous functions of (¢, p). Similarly,
(¢,p) — gic(p) is a continuous and (¢, p) = J¢;¢(p) is an upper semicontinuous map for
all i € {1,...,n.}. Regularity of fs and ;¢ follows from their continuous differentiability.

Convexity of fe and g;¢ is a result of fe and g; ¢ being affine functions.

Hence f and g; are Lipschitz continuous functions on O, regular at p, 9f(p) = conv (I'f(p))
and 0g;(p) = conv (I'g;(p)) per Theorem 6.2.15. Since I'f(p) and I'g;(p) are convex sets per
Assumption 6.2.1, df(p) = I'f(p) and 9g;(p) = L'gs(p) follows.

Let py €O andps € 0. Let ps € {p: p=ap:+ (1 —a)ps,a € (0,1)}. Let {3 € Of(p)
be such that f(p) + (¢s,ps — P) = f(ps). Then f(p) + (¢s,ps — P) = af(P) + a(ls, p1 —
p) + (1 —a)f(p) + (1 — a)(¢s, p2 — P) holds. f(ps) < af(p1) + (1 — @) f(pz) follows from

fP)+ (¢, p1 — ) < f(p1) and f(p) + (3, p2 — P) < f(p2). Hence f is a convex function.

The convexity of g; follows from the same reasoning.

Per (2.6.4), G is regular at p , Lipschitz continuous on O and dG(p) = conv (Uiey(l—,)ng(p)).
Convexity follows from the fact that the maximum of a finite number of convex functions is

convex.

Similar to the case G, H is regular at p, Lipschitz continuous and convex on O. Note
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that H(p) = max{0,G(p)}. Per (2.6.4),

of(p) if G(p) <0
OH (P) = { conv (0 (P) U (Uiey(p)03:(p))) it G(p) =0 (6.2.10)
| conv (Uieys)05:(P)) if G(p) >0
which is equal to (6.2.9).
d is a descent direction per Theorem 6.1.4. 0

Lemma 6.2.17. Let H be as defined in Theorem 6.2.16. Then H(p+d) = max((¢,d), ¢ €
T'H(p;p)) holds for p € S and for all d € R".

Proof. Let A = H(p + d). First, assume f(p +d) — f(p) > G(p + d). Then, from the
definition of f, it can deduced that A = max((¢,d), ¢ € df(p)). Now assume that for
some i € Y(p), gi(p) > g;(p) holds for all j € Y(P)\{i} and gi(p) > f(P +d) — f(P).
Then, using the definition of g; and the fact that g;(p) = 0, it can be shown that A =
max((¢, d), ¢ € Tgi(p)).

Let J C Y(p) be such that A = g;(p), Vj € J and A > gi(p), Vi € Y(p)\JT.
Then A = Z a;max((¢,d), ¢ € I'g;(p)) holds where o; > 0, Z a; = 1. Note that

i€(p) i€(p)
a; =0, Vi € Y(p)\J. This can be written as

A = max (<<Z aici) ,d>, GeTaP), 0<a <1, Y ai=1, z‘ey(p))

i€Y(p)

or equivalently A = max ((¢,d), ¢ € 9G(p)). Note that if ¢ € dG(p) such that A = (¢, d),
then ¢ € conv (U;e 7I'g;(p)) otherwise A > (¢, d) has to hold.
IfA = f(p+d)—f(p) as well, then A = A max((¢, d), ¢ € 0f(p))+Aemax ((¢,d), ¢ € G (D))

holds where A\ > 0, Ay > 0 and A\ + Ay = 1. This can be shown to be equivalent
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to max({¢,d), ¢ € TH(p;p)) using the definition of H(p) and the results in Theorem
6.2.16. U

The following theorem elucidates the relationship between H'(p;d) and H'(p; p;d), the
directional derivative of the improvement function. Note that H'(p;p;d) exists for all d €
R™ because H is a composition of the max function, f and g¢;, i € {1,...,n.} which are all
Bouligand differentiable at all p € P as a result of Assumption 6.2.1. H'(p;d) exists for all

d € R™ because H is a finite convex function at p.

Corollary 6.2.18. Let Assumptions 6.1.1 and 6.2.1 hold. Let H be as defined in Definition
6.1.13 and H as defined in Theorem 6.2.16. Let p € S. Then

where t is a positive scalar and o(t)/t — 0 ast | 0.

Proof. H'(p;p;d) < H°(p;p;d) per the definition of the generalized directional deriva-
tive (Definition 2.6.1). Note that H°(p;p;d) = max{(¢,d),¢ € 0H(p;p)} and H'(p;d) =
He(p;d) = max{(¢,d),¢ € TH(p; p)} since H is regular at p. H'(p;p;d) < H'(p;d), Vd €
R™ follows because OH (p;p) C 'H(p; p)-

H(p+1td;p) = H(p;p) + tH'(p;p;d) + o(t) holds per the definition of the directional

derivative. The result follows after substituting H’(p;d) for H'(p; p;d). a

Definition 6.2.19 (Feasible Descent Direction). d € R™ is a feasible descent direction
for f at p with respect to S if (p +td) € S for small enough positive t and d is a descent

direction with respect to f.

The next corollary motivates searching for a descent direction for H using H.
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Corollary 6.2.20 (Feasible Descent Direction of H obtained from H). Let Assump-
tions 6.1.1 and 6.2.1 hold. Let H be as defined in Definition 6.1.13 and H as defined in
Theorem 6.2.16. Let d be a descent direction for H atp € S, i.e H(p+td) < H(p) = 0 for

small enough t. Then d is a feasible descent direction for f at p relative to S.

Proof. Note that p € S, H(p;p) = 0. Since d is a descent direction H'(p;d) < 0. Per

Corollary 6.2.18,
H(p +td;p) < H(p; p) + t(H'(p; d) + o(t)/1) (6.2.11)

holds. Since o(t)/t — 0 as t | 0, for small enough ¢, H(p + td; p) < H(p;p) = 0.
Since p € 5, G(p) < 0. Note that H(p; p) = max(f(p) — £(), G(p)) = max(0, G(p)) =
0. In order for H(p + td;p) < 0 to hold for sufficiently small ¢, f(p + td) < f(p) and

G(p + td) < 0 have to hold simultaneously, proving the claim. O

If all the elements of OH (p) were available, the following quadratic problem would furnish

a direction of descent.

Theorem 6.2.21. Let Assumptions 6.1.1 and 6.2.1 hold. Let H be as defined in Definition
6.1.13 and H as defined in Theorem 6.2.16.
Let p € S and let {v} = argmin{|[¢||: ¢ € TH(p;p)}.* Let d* be a solution of

o Lo
Jnin H(p+d)+ §||d|| : (6.2.12)

Then:
1. d* exists and is unique.

2. d* = —v.

4

v is well-defined per Theorem 2.4.6 because I'H (p; p) is a nonempty compact and convex set and v is
the unique projection of the zero vector onto I'H (p; p).
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H(p+d*) = H(p) — [ld*|*.
H(p +td*) < H(p) — t||d*||? for all t € [0,1].
d* # 0 if and only if 0 ¢ TH(p; p).

p is an unconstrained global minimum of the function H if and only if d* = 0.

NS G e

If the extended Cottle constraint is satisfied at p for problem (6.0.1) then p is stationary

in the extended sense for (6.0.1) if and only if p is a constrained global minimum of

minf(p), s.t. G(p) < 0. (6.2.13)

pPEP

8. Problem (6.2.12) is equivalent to the problem

: Lo
I£}£A+§||d|| (6.2.14)

st. Hp;p) + (¢, d) < A, V¢ € TH(p; p),

AeR, deR"™.

Proof. Let V : R — R :d +— max{(¢,d) : ¢ € 'H(p;p)} and J : R”» — R :d —
H(p+d)+ 3| d|* Note that

J(d) = A(p) + V(d) + [d* = V(d) + 5[],

1 1
V(d) + 5lldl* = =M + [l

where M = max{||¢|| : ¢ € TH(p;p)} per Lemma 6.2.17. Since —M||d|| + 3||d||* — +oo
as ||d|| — +o0, J(d) — +o0 as ||d|| — +o00. Therefore the minimum of (6.2.12) and a d*

exists.

H(p)+V(d)+3||d|* is a strictly convex function because ||d||* = d™d is strictly convex

and max{(¢,d), ¢ € 'H(p;p)} is convex. Hence d* is unique.
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Note that V and || - ||* are convex hence regular functions. As a result, the sum rules
in §2.6.2 hold with equality. Hence 0J(d*) = 0V(d*) + d* holds. In addition, at d*,
0 € 0J(d*) has to hold per Theorem 6.1.3. Therefore —d* € 9V (d*). Since OV (d*) =
{¢ e TH(p;p) : V(d*) = (¢,d*)} per Theorem 6.2.15, —d* € I'H(p;p). Note that {¢ €
I'H(p;p) : V(d*) = (¢,d*)} is a convex set. Let {; € I'H(p;p) and ¢, € I'H(p; p) such
that V(d*) = (¢1,d*) = ({2, d*) holds. Then V(d*) = (11 + a2y, d*) holds for all ag > 0,
ay > 0 satisfying ag + as = 1. Note that oy + a2y € I'H(p; p) because I'H(p; p) is a
convex set.

Let v. = —d*. Note that V(d*) = (v,d*) = max{(¢,d*) : ¢ € TH(p;p)} = —||v[*
Hence (¢, v) > ||v|]? for all ¢ € TH(p;p) and v = v per Theorem 2.4.6.

Since V(d*) = —||d*||?>, H(p + d*) = H(p) — ||d*||>. Note that V(td*) = tV(d*).
Therefore H(p +td*) = H(p) — t||d*||*.

Item 5 follows from the fact that d* = —v. Item 6 follows from the fact if d* = 0, then
0 € 'H(p;p) and this implies that 0 € 9H (p). Since H is a convex function, this condition

is necessary and sufficient for p to be an unconstrained global minimum per Theorem 6.1.17.

Program (6.2.13) is a convex optimization problem. The necessary conditions of opti-
mality at p can be shown to be 0 € dH (p) or equivalently 0 € I'H(p;p). If the extended
Cottle constraint is satisfied at p for problem (6.0.1), then the Cottle constraint qualification
(also the Slater constraint qualification) is satisfied for (6.2.13). Then p € S is a constrained

global minimum of (6.2.13) if and only if 0 € I'H(p; p) per Theorem 6.1.17.

Note that H(p +d) = V(d). Let d* be the solution of (6.2.12). Let A* = V(d*). Note

that (A*,d*) is a feasible point for (6.2.14) and that (6.2.14) can be written as
1
min A + 5||d||2 s.t. max{(¢,d), ¢ e TH(p,p)} — A <0 (6.2.15)

which is a convex program. The generalized gradient of the objective (A, d) — A + 3||d||?

213



is {(1,d)} because the objective is a continuously differentiable function. The generalized
gradient of the constraint (A,d) — max{(¢,d), ¢ € 'H(p,p)} — Ais {(—1,¢) : (¢.d) =

V(d), e TH(p,p)}. Then the necessary condition of optimality at p is

0 € conv ({(1,d)},{(—-1,¢): ¢ € 'H(p,p), (¢,d) =V (d)}). (6.2.16)

Note that (2M||d|,d), d € R™ where M = max{||C|| : ¢ € 'H(p;p)} satisfies the con-
straint in (6.2.15) with strict inequality. Hence, the Slater constraint qualification holds for
(6.2.15). Then, the necessary conditions are also sufficient for optimality. Since —d* € {¢ €
I'H(p,p): (¢,d*) = A*}, (A*,d*) is a constrained global minimum of (6.2.15) and (6.2.14).

Assume (A, d) is another constrained global minimum of (6.2.15) where d # d*. Then
from the necessary condition of optimality (6.2.16), it can be deduced that —d € T'H(p, p)
and V(d) = —||d||*>. Then the optimal solution value is V(d)+ 3d||> = —3||/d||?. Note that,
the optimal solution value is also V(d*) + 1||d*||* = —1||d*||>. ||d*|| < ||d|| because —d* is
the element of minimum norm in I'H (p, p) per item 2 and it is unique per Theorem 2.4.6.
Hence, (6.2.15) and (6.2.14) have a unique constrained global minimum which is (A*, d*).

As a result, programs (6.2.14) and (6.2.12) are equivalent. O

6.3 Bundle Method using Linear Newton Approxima-

tions

This section discusses a bundle method algorithm using linear Newton approximations in
detail. The algorithm is an extension of Algorithm 3.1 in Chapter 6 in [54] that uses linear
Newton approximations which satisfy Assumption 6.2.1. The proof of convergence follows
closely the proof of convergence of Algorithm 3.1 in Chapter 6 in [54] making modifications

that take into account the use of linear Newton approximations.
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The bundle method is an iterative algorithm. It requires an initial point p; € S and
produces an infinite sequence, {py}, such that {px} € S and if py # pry1, then f(pry1) <
f(px). The algorithm produces a sequence {py} such that if p is an accumulation point of
{pr}, then p € S and 0 € T'H(p;p) holds, i.e p is stationary in the extended sense per
Corollary 6.2.13. The algorithm requires that an element of I'f and I'G be computable for

all p e P.

Ideally, in order to generate pgy1 at the kth iteration, (6.2.12) should be solved to obtain
a descent direction and then a line search should be executed along this direction of descent.
In practice, given p € P, every element of ['H(p;p) is not known. Usually only a single
element can be computed. Therefore problem (6.2.12) cannot be solved to obtain a descent
direction in most applications. Instead an approximation of (6.2.12) is formulated using
elements from linear Newton approximations of neighboring points that are close enough.

These neighboring points comprise the second sequence of points {y;} € P with y; = p;.

The candidate direction obtained from the approximation of (6.2.12) is tested in a special
line search algorithm. The line search algorithm returns p;,; and another point y.; which
is used to further improve the approximation to (6.2.12). It is possible that py = pgi1 in

which case, the candidate direction is not a descent direction.

At the kth iteration not all points y;, j € {1,...,k} are used to approximate (6.2.12).
First, as k increases, the distance between p, and y; with smaller indices j may be become
too large for a good approximation. Second, storing the information for all k£ points is
costly. At each iteration k, the algorithm uses two sets of indices M, ,f and MS such that
M/ c{1,...,k} and ME C {1,...,k}. In addition, k € M/ and k € MC. These sets define
bundles of points, hence the name bundle method. The method uses ¢ jf , an element I'f(y;),

j € M/ and ¢S, an element of I'G(y;), j € M{ to approximate (6.2.12).
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Define:

fri=Fy) + (¢ pe—ys), Vi€ {1,... .k}, (6.3.1)
Grj=Gly;) + (¢ pe —yj), Vie{l,... .k}, (6.3.2)
sij = lly; — pell, Vi € M U M (6.3.3)
of ; = max{|f(pr) = feil,vr(skg)?}, Vi € {1,... K}, (6.3.4)
of ; = max{|Gy |, va(se,)’}, Vi € {1,..., k}, (6.3.5)

where 75 > 0 and 7 > 0 are constants. Equations (6.3.1) and (6.3.2) define linearizations
of f and G at nearby points of py. The quantities f;; and Gy ; are called linearization
values. Equations (6.3.4) and (6.3.5) define a measure of the goodness of the linearizations.
These quantities are called locality measures. The smaller the locality measure for a given
linearization, the better the linearization approximates the improvement function in the
neighborhood of py.

The sets M, ,f and M are constructed such that

M ={je{l,....k}: o], <a} (6.3.6)

M{={je{l,...,k}: of; <a} (6.3.7)

hold where a is a finite positive number. At the kth iteration of the algorithm, a pyy; and
Yri1 are calculated. ]\NJ,{ and M < subsets of M,{ and M, respectively are determined such
that the sets M,fﬂ = M/ U{k+1} and ME = ME U {k + 1} satisfy (6.3.6) and (6.3.7),
respectively. The process of removing elements from the bundle is called distance resetting.

The following assumption is necessary to make sure that the sequences {px}, {yx} and

their limit points are subsets of P.

Assumption 6.3.1. Let a be a positive constant. Let X = {x e R": ||[x—p||* < a,p € S}.
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Then ¢l (X) C P holds.

The approximation of (6.2.12) is

. L,
ril’lglA“_ §||d|| (6.3.8)
st.—af+ (¢, d) <A Ve M,
—af +(¢F,d) <A, Ve M,

deR"™, Ae€R.

The properties of problem (6.3.8) are summarized in the following lemmas.

Lemma 6.3.2. The program (6.3.8) satisfies the Slater constraint qualification for all k =

1,...,00.

Proof. Given py, the points {y; : 7 € M UME} satisfy ||pr —y;|| < Va for all j € M UME
per (6.3.6) and (6.3.7).

Let Z =z € R™ : ||p, —z|| < V/a. Note that Z is a compact set. Therefore, due to the
upper semicontinuity of the linear Newton approximations and their compact-valuedness,
one can find a constant Cy such that ||| < C) holds for all { € I'f(z) and ¢ € I'g;(z), i =
1,...,n.for all z € Z. Assume that such constant does not exist. Let there exist an infinite
sequence {z;} C Z such that ||{;|| > i where ¢; € I'f(2z;). The choice of I'f is arbitrary. The
proof holds if any of the I'g; are used instead. Since Z is compact, {z;} has a convergent
subsequence in Z by the Bolzano-Weierstrass Theorem. Let the limit point be z and the
converging subsequence be {z;}. Let O be a bounded open set such that I'f(z) C O.
By upper semicontinuity of I'f, there exists a neighborhood of z such that {; € O. This
contradicts the fact that ]ll)rgo |¢;]| = +o0. Hence, there exists a Cj, as described.

It is obvious that (6.3.8) is a convex optimization problem. Let d € R™. The point
(2Cx||d||, d) is a feasible point of (6.3.8) since ||(¢/,d)|| < Cy|ld|| and [[(¢F,d)|| < C|d|
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hold for all j € M,f U M and all locality measures are nonnegative. Note that in this
case, the inequalities in the constraints are satisfied strictly. Hence, the Slater constraint

qualification is satisfied. O

Lemma 6.3.3. Problem (6.3.8) is a convex optimization problem. It has a unique solution.

Let the solution be (Ag,dy). Furthermore, there exist A\, j € M,f, and g, j € ME

satisfying
(M) (—af; + (¢ di) — Ay) =0, Vj € M, (6.3.9)
S N+ > ey =1, (6.3.11)
jeMf jeMl
Ak =0, V) € M/f7 pry >0, Vj € M, (6.3.12)
de=—| > s+ D g | (6.3.13)
jeM; JEME
Ap=— | lIdll®+ Y Mgl + > mwge; | - (6.3.14)
jeM] jeMg

Finally, N\ ;, J € M,f, and pxj, j € MS satisfy the above conditions if and only if they

constitute a solution of the dual problem

N
i 5 ldill® + > Nali+ Y pag; (6.3.15)
7 jeM; jeMg
stoY N+ > =1, (6.3.16)
jeM] jeM,

)\jZO, VJEM]fa ,U/jZOu VJEMkGu
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where

de=—[ D> N¢T+ D0 uicd |- (6.3.17)

jeM] jeMg

Proof. The convex nature of (6.3.8) is obvious. Since the Slater constraint qualification
holds per Lemma 6.3.2, equations (6.3.9), (6.3.10), (6.3.11), (6.3.12) and (6.3.13) follow from
the necessary and sufficient conditions of optimality for this problem. Equation (6.3.14)
is obtained after substituting (6.3.13) into (6.3.9) and (6.3.10) and summing up over all
je Ml uME.

The solution (Ag,dy) is unique. Let

Vi(d) = max(—a{;j + (ij,d), jE Mg)

Vo(d) = max(—a,gj + ( jG,d), jE MkG)
Then, problem (6.3.8) can be written as
N ST
min  ||d||” + max(Ve(d), Vy(d))

where Ay, = max(Vg(dy), Vy(dy)). This reformulation is possible because an optimal solution
of (6.3.8) has to satisfy at least one of the constraints with equality. Otherwise, the optimal
Ay can be further decreased, violating optimality. Note that Vi and V; are convex functions.
The maximum of two convex functions is convex. Since ||d||? is strictly convex, (A, dy) is

unique.

The Lagrangian of (6.3.8) is

LA A ) = At Al + 30 () (—of, + (¢ d)— A)+ (6.3.18)

J
cmf
jeM]
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> () (=af,; +(¢f ) - A).

NG
JEM,

The dual function q is
g p) = inf L(A,d, X ), st 0 20, 1y 20, Vj € MU ME.

Note that g(\, p) is finite only if (6.3.16) holds. Otherwise, one can pick an arbitrarily large
negative A to obtain ¢(X, u) = —oo. If (6.3.16) holds, then £(A,d, A, i) becomes a strictly
convex function of d and the infimum becomes an unconstrained optimization problem. Due

to the strict convexity, there exists a unique solution, d;.

Note that,

Val(Ad A p)=d+ Y Nl + Y et

jeM} jeM]

Then the necessary condition of optimality V4£L(A,d, A, u) = 0 produces (6.3.17).

The dual problem becomes

1 -~
max —olldefl* = D No; = > mal

jeM; JEME
s.t. E >\j + E i = 1,
jeM jeEML

>\j207 VJEM;{, ,ujZO, vjeMka

once (6.3.17) is substituted into the expression for q(A, pt). Replacing the max with the min,

provides the desired result.

The optimal solution value of (6.3.8) and (6.3.15) are equal by strong duality (Proposition
5.3.1 in [14]) and the solution of (6.3.15) are the multipliers satisfying (6.3.9), (6.3.10),
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(6.3.11), (6.3.12) and (6.3.13). O

Lemma 6.3.3 shows that —d is in the convex hull of the elements of the set of linear
Newton approximations. The objective of the dual problem implies that the effect of each
element is weighed by the corresponding locality measure. In order to minimize the objective
of the dual problem, Ay ; and p, ; corresponding to larger values of locality measures should
be made as small as possible.

A new linearization needs to be added in case a direction of descent cannot be determined
with the available linearizations. The new linearization needs to significantly change d;,
obtained as the solution of (6.3.15). Mathematical discussion of what is meant by significant
change is deferred for the latter part of this section where the convergence of the bundle
method is discussed.

If pxi1 # Pr, then the linearization values and locality measures need to be updated.

The linearization values can be updated as follows

sy = feg + (¢ Pesr — ), Vi € MY,

Gri1j = Gy + (€ Prs1 — Pr), Vi € M
In order to avoid storing the points {yy}, the locality measures are updated using

Ske1g = Skj + [Pr — Pra || i j € M UMY,

Sk+1,k+1 = ||Yk+1 - Pk+1||-

Note that ||pr+1 — ¥, < skt for all j € M,fﬂ UM,
The number of ij and C]-G stored can be kept at a minimum using aggregation. Aggre-
gation combines the active constraints in the solution of (6.3.8) into two linear constraints,

one for the constraints using ij and one for the constraints using CjG . Let Ay and py be
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the Lagrange multipliers that solve (6.3.15) at iteration & > 1. Assume distance resetting
has occurred at iteration k — 1. Then, the aggregate subgradients, V,{ and v{, are computed
as the convex combination of the ij and ¢§ using the solution of (6.3.15). Since V,J: and
v are convex combinations of the C]f and CJG, they satisfy the bound discussed in Lemma
6.3.2. The aggregate linearization values, f,f and éz, computed similarly. The aggregate
locality measures, &;"" and &,f’”, can be considered as the locality measures of imaginary
points associated with aggregate subgradients and aggregate linearization values. The exact

computation of these values is described in the next section as well as the method to update

them from iteration to iteration.

Once the aggregate quantities are computed, they can be used in the next iteration of
the algorithm if distance resetting does not occur. If distance resetting occurs at the kth
iteration, then the aggregate quantities need to be discarded and (6.3.8) is again solved during
the next iteration. The aggregate quantities are discarded because they may be derived from
data obtained at points y; such that j ¢ M,{H U M,?H. These points are too far away from

the next iterate, piy1 and their linearizations do not carry relevant information anymore.

It is sufficient to consider the aggregate constraints in the (k + 1)th iteration and the
constraints associated with yx,; to determine a descent direction as long as there is no
distance resetting. Hence at every iteration, (6.3.8) can be formulated using at most four
constraints. If distance resetting occurs in this case, then (6.3.8) has only two constraints
and one has effectively restarted the algorithm. The parameter a can be chosen large enough
to prevent excessive distance resetting. Furthermore, arbitrary subsets of M, ,f and ME can

f

be incorporated into Mj, and M, to minimize information loss due to distance resetting.

Let k be the index of the most recent iteration during which distance resetting occurred.

Let k> k+ 1. Let ri = 1 if distance resetting occurred in the previous iteration and 7§ = 0

222



otherwise. Then using aggregate quantities at iteration k + 1, problem (6.3.8) becomes

1
IE?EA " §||d||2 (6.3.19)
s.t. — akH] <C d) <A, VJGMk+1>
— O‘k+1 + <Vk,d> if rp =0,
- akGH,j + ( ]G,d> <A, Vje Mg,
—alh+ v d) <A ifrg,, =0,

deR", AeR,

where M,fﬂ = {k+1}u M/, MG, = {k+1}UME, M and ME are arbitrary subsets of

M, ,f and ME respectively and

fro = f2+ (v, Prar — Pr),

Z+1 = G’% + <V1§a Pi+1 — Pk),

S£+1 = §£ + ||Prt+1 — Pl

st =57 + |Prer — pall,

O‘£7+1 = max{|f(px) — flz)+1|77f(5£+1>2}7

O‘kG+v1 = max{|G}], ”YG(SkG+1)2}'

The dual of (6.3.19) is

, min I N Hxvi+ Y i+ ptvg 1P+ (6.3.20)
ks M )
JEMk jeMI?Jrl
v G G,v
Z Aj %+1; + A %+1 + Z [Uk+100 41 Hp
]EM]£+1 ]EMk
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Y NN DY =1,

JEMk ]eMkJrl
A" >0, p’ >0,
)\] Z O,VJ c Mkf_i_lu Mk, 5 Z O,VJ S MICG-FD

o=l =0ifr,, = 1.

The bundle method described formally in the next section uses the aggregation technique.

6.3.1 Formal Statement of the Bundle Method with Linear New-

ton Approximations

Step 0: Initialize.

Let v¢ > 0 and v > 0.

d) Set k=1,7=1.
f) Let pr € S.
g Setyk:pk,skj:sizsgzo.

Set Mg = {j} Cf Eff(pk) Vk 1= Cju fkj f/f

)

)

)

)
() Set ¢ = 1.
(f)

)

)

) Set Mi? = {j}, ¢ € TG(py), viiy = C(F, Grj = G

Step 1: Find Direction of Descent. Let Ay, py, A} and p; be the solution of the following

quadratic problem;

2
SONCHNVE+ D iy +u”v,?_1H + (6.3.21)

A, W, )\” , uv 2H ) -
]EM,{ JEM,,
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Z A a,” + Ao + Z 150 + ptal”’ (6.3.22)

jeM] jeMS
St NFN D it =1, (6.3.23)
jeM JEMY

AU >0, 4t >0, A\, >0,V5 € M, pu; >0, € ME,

AN =p"=0ifr; =1,

where
ag,j = max{|f(pr) — frjl, Vs (sx)%}, J € M{,
O‘kG,j =max{|Gr;|, va(si)}, J € MY,
af’ =max{|f(ps) — fil,7s(s)*},
G v
a, " =max{|G}l,v6(sy)?}-
Compute

vl = Z Mej + AL V= Z kg + b
jeM] jeMg
If ] #0, set My = My /v, € ML, No= Xy /vl
If ] =0, set M\pp =1, Ap; =0, j € MI\{k}, A\u = 0.
If v # 0, set fix; = pu/Vis § € MY, i, = pi /v
If v =0, set fipp =1, fin; =0, j € MZ\{k}, i} = 0.
If A\} = pj = 0 then compute ay = max{s;;:j € le UM}
Let

VA ED = D M€l frgskg) + MV fE D).

Ve
JEM;,
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it

(v, G380 = D (€ Gy sig) + (v, G, sl
jeMg
\= l/,fVl]: + I/kGV]?,
dy = — vy,
af” = max{|f(px) — {17,507,
&g = max{|G}|,va(5¢)%},
ap = vial" + i,
Ay, == ([ldill* + a).

Step 2: Check Stopping Criterion. Set
(6.3.24)

1 ~v

If w;, < €, terminate. Otherwise go to Step 3.
Step 3: Do Line Search Using Algorithm 6.3.1.1, find two step sizes t& and ¢ such that

th < 1,0 <ty <t pri1 =Pk + tidy, Yey1 = pr + tidy and

FPrr1) < f(pr) + moti Ay,

0 2 G(Pk+1)>
th =ty ifty > 1,

mrAE < — a(Prt1, Yit1) + (C(Vit1), di) if t;% < t,

a/2 > ||yes1 — Prtll;
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where ¢(-) and a: P x P — R are defined as

(

If(y) ifG(y) <0,
¢(y) €
PGly) ifG(y) >0,
a(x,y) = max{|f(x) = f(x;y)|,v/llx = y[I’} ifG(y) <0,
ma{[Glay)l el -y} G >0,

fxy) = f(y)+ Cly),x—y) if G(y) <0,

Gxy) =Gy) + €(y),x—y)if G(y) >0,

hold.
Step 4: Update Linearizations Select M} < M/ and M c MS. Let M,fﬂ = M/ U

{k+1} and MZ , = MS U {k +1}. Let

¢l € T (Yin),
CI?+1 € L'G(yrt1),
Serrhrr = f(Yeer) + <C1{+17 Pkl — Ykt1);
ferrg = frg + (¢l Perr — Pi), Vi € MY,
feo = T2+ (Vi presr — P,
Grrthir = G(Yri1) + (€, Prst — Yat1),
Gri1y = Gry + (¢ Prs1 — Pi), Vj € MY,
1 = GZ + <VI§a Prt1 — Pk),
Sk+1,k+1 = ||Yk+1 - Pk+1||,
Skaty = Sk + IPer1 — Pill, V5 € M U M,

S£+1 = §£ + |Prt+1 — Pl
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SkG+1 = 51? + [|Pk+1 — Prl|-

Step 5: Check Distance Resetting Criterion. Let a1 = max{ar+||Pr+1—Pk/|, Sk+1,6+1}-
If ar41 < @ then set r;,; = 0 and go to Step 7. Otherwise set r¢,; = 1 and go to Step
6.

Step 6: Do Distance Reset. Remove the indices with smallest values in M,f and MC

until
Ap4+1 = maX{Slﬂ.Lj D J € Mg U ME} < C_L/2

holds.

Step 7: Increment Counter. Set £k = k£ + 1 and go to Step 7.

Algorithm 6.3.1.1 Line Search Algorithm Using Linear Newton Approximations
Require: A, <0
Require: 0 <m; <mp<1l,a>0,0<t<1.
Require: 3 € (0,0.5).
1: Let th: =0and t = t* = 1.
2. while t& # t* do

3. if f(pr +td) < f(px) + mptAy and G(pg + td) < 0 then
4: Set t& =t.

5. else

6: Set t* = t.

7. end if

8: if t&' > 1 then

9: Set tf = t£ and return.

10:  else if —a(pg + tEdy, pr + tdg) + ({(pr + tdy),dy) > mrAy and t£ < ¢ and (¢t —
t9)||dx|| < a/2 then

11: Set tf =t and return.

12:  else

13: Let t € [t + B(t* — th), t* — B(t* — th))].
14:  end if

15: end while
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6.3.2 Discussion and Convergence

The proposed algorithm terminates when wy < eg. wi can be considered as a quantity
that measures the goodness of the approximation (6.2.12) via &} and the size of the element
of minimum norm via ||vg||? in TH(pg;px). If wy = 0, then 0 € TH(py; px) holds. The
convergence proof shows that all accumulation points of {py} are stationary in case €5 = 0.
The proof is the same as the proof of Algorithm 3.1 in Chapter 6 in [54] where the linear
Newton approximation replaces the generalized gradient. Therefore, a summary of it, is
placed in the Appendix A.

In this chapter, the finite termination of the line search procedure is proved and the main

results are stated.

Line Search

In order to show that any accumulation point of the sequence {py} is stationary, the finite
termination of the line search algorithm needs to be shown. The line search algorithm differs
from that of Algorithm 3.1 in Chapter 6 in [54] because linear Newton approximations are
used instead of the generalized gradient. The next lemma proves an important property of

linear Newton approximations that enables finite termination of Algorithm 6.3.1.1.

Lemma 6.3.4. Let Assumption 6.2.1 hold. Let p € P. Let d € R™\{0}. Let {t;,} C R be
such that ty, > 0, Vk, tx | 0 and Cl{ elf(p+trd). Then

f'(p:d) = lim (¢].d). (6.3.25)
Let ¢ € TG(p + tyd). Then
G'(p;d) = lim (¢f,d). (6.3.26)
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Proof. Since I'f is a linear Newton approximation, for small enough ¢

| £+ ted) = £p) = (¢l tu) | < Nl A (el

and therefore

Hf(ertkd)—f(p)

: - (] < panagnan
k

holds. Since

i @ T td) = f(p)

Jim. » = f'(p;d),
and
Jim H fp+ t’f) —I®) e d)H —0 (6.3.27)
i h

(6.3.25) follows. Since I'G is a linear Newton approximation of G (Corollary 6.2.10), the

same reasoning proves (6.3.26). O

From the definitions of wy and Ay it can be seen that A, < —wy. Since wy > 0, A < 0.
Note that if A, = 0, then wy = 0 and the bundle method terminates before entering the
line search algorithm. Hence, the line search is always entered with A, < 0. Note that it is

possible that d; = 0 when entering the line search algorithm.

Theorem 6.3.5 (Convergence of Line Search Algorithm 6.3.1.1). Assume Aj < 0.
Then the line search algorithm 6.5.1.1 terminates with two step sizes t- and tf such that

th <1, 0 <tF < tl and the points pri1 = P + tEdy and y, 1 = pi + thidy satisfy

FPri1) < f(pr) + mpti Ay, (6.3.28)
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0 Z G(pk—l-l)v
ty =ty ifty > 1,
meAg < — a(Pri1, Y1) + (C(Yer), di) if by <, (6.3.29)

a/2 > ||yes1 — Pl

where

Lfly) ifG(y) <0,

I'G(y) ifG(y) >0,

¢y) €

max{|f(x) — f(x; ), ¢llx -y} i G(y) <0,

max{|G(x;y)],7¢llx — ¥} if G(y) >0,

a(x,y) =

fxy)=fly)+ (ly).x—y) if Gly) <0,

G(xy) =G(y)+ C(y),x—y) if G(y) > 0.

Proof. First assume that d = 0. Then the line search terminates immediately with t£ = 0,

tl? =1 and pry1 = Pk = Yk+1-

Consider the case d # 0 and assume that the line search does not terminate for con-

tradiction purposes. Let t;, t£. and t% represent the values of ¢, tL and t* after the jth

7j
execution of Step 3. Then t; =t or t; = t}.

Note that (t4,, —tf ;1) < (1—=0)(ty —tg;), {t}} is a monotonically decreasing and {t ;}
is a monotonically increasing sequence such that tﬁvj < ty. Hence there exists a t such that
tﬁj Tt and 5] t.

Note that ¢ < £ because tf; < ¢ for all j. Let TL = {t > 0: f(p +tdi) < f(px) +

mptAg, G(pr +tdg) < 0}. Since {t;,;} C TL and T'L is a closed set due to the continuity
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of fand G, t € TL. Hence
flpr +1d) — f(pr) < mrtAy, (6.3.30)

and G(py, +td) < 0.

Since t§ ¢ TL, t§ | t and tﬁvj — 1§, there exists an infinite set L C {1,...,00}, such that

t;%:tj>t~forallj€Land
fpre +t;d) — f(pr) > mpt; Ay, Vj € L. (6.3.31)

Subtracting (6.3.31) from (6.3.30),

tidy) — td
flpe 1) = Jloe 1) o ny e

(t; —1)

is obtained. Taking the limit as j — oo results in f'(pg + tdy; dy) > mpAy.
For large enough j € L, (t; — t ;)||dx|| < @/2 because t; — t and ty; — t.

First assume G(py +t;d;) <0 for all j € L. Then ((px +t;dy) € I'f(pi + t;d)) and

a(pr + tdy, pr + t;dy) = max{ f(pr + tdi) — f(Pr + t;di) — (£ — ;) (C(pr + t;di), di),

Yty — )7[lde]l”}

forall j € L.

Since the algorithm does not terminate —a(py, + tdy, px + t;di) + (C(pr + tjdi), di) <

mprAy, for all j € L. Note that lim a(py, + tdy, pr + t;dx) = 0 because t; — ¢ and T'f is

J—0

locally bounded. Therefore

]i_{go@(Pk +t5dy), di) < mpAy
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for j € L. This implies that f'(py, + tdy; dy) > mpA, > mrAy > lim; o (C(pr + t;dg), dy)
since 0 < my < mgr <1 and A, < 0. This is a contradiction with Lemma 6.3.4.

Assume G(py +t;dy) > 0 for all j € L. Then {(py + t;dx) € I'G(py, + t;di) and

a(py + tdy, pr + t;di) = max{G(py + tdi) — G(pr + t;di) — (t — t;){(C(pr + t;di), dy),

ety — )2 e}
for all j € L. As before,

lim (¢(px + t;di), di) < mpAy

j—00
holds. However; since G(py + td;) < 0,

Jj—00 tj - t~

>0> mLAk > mRAk.

Again this contradicts with Lemma 6.3.4. Hence the line search terminates in a finite number

of iterations. O

When the line search terminates, one of the following cases hold:
1. tb > t. This case is the long serious step.
2. 0 < tf < t. This case is the short serious step.

3.tk =0. This case is the null step.

Main Convergence Results

Theorem 6.3.6. Each accumulation point of the sequence {py} generated by the bundle

method is stationary in the extended sense.

Corollary 6.3.7. If the level set P = {p € P : f(p) < f(p1)} is bounded, cl(P) C P,
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and the final accuracy tolerance €4 is positive, then the bundle method terminates in a finite

number of iterations.

6.3.3 Variants and Commentary

1. The generalized gradient can be replaced with linear Newton approximations satisfying
Assumption 6.2.1 in all the algorithms developed in [54] to produce algorithms that
converge to stationary points in the extended sense. Note that, one does not have to
alter a given bundle code to make it work with linear Newton approximations.

2. In the remainder of the thesis, the prozimal bundle method ([64], [68]), a variant of
the developed algorithm is used to obtain numerical results. In the proximal bundle

algorithm a is set to a large number to prevent reset and the quadratic problem

: 1 v v
o min oIl NG AL D G v (6.3.32)
R jeMf jeME
v fv v G
Z Ajag,j + A oz£ + Z ,ujozgj + puay,
jeM] jEME
s.t. Z Aj+ A+ Z i+ pt =1,

jeM] jeMg

A >0, 4 >0, A\ >0,¥5 € M/, u; >0,¥j € MZ,

N =p"=0ifr] =1,
is solved instead of (6.3.22). As a result, the candidate descent direction, dj and Ay

become

1
dk = — — Vg,
g

1 ~v
A= — <—||Vk||2 + ak) :
o
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Hence, the extra parameter o allows control over the step size taken and is adjusted de-
pending on the progress of the bundle method algorithm [64]. Specifically, the software
described in [64] is used to produce numerical results.

. Using the linear Newton approximation instead of the generalized gradient leads to the
loss of sharper results that can be obtained for bundle methods in case (6.0.1) is a con-
vex program. The relationship between convexity and linear Newton approximations

requires further research.
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Chapter 7

Nonsmooth Dynamic Optimization of

Systems with Varying Structure

This chapter describes a numerical method to solve nonsmooth nonlinear optimization prob-

lems where systems described by (4.4.1) are embedded as constraints.

The first section describes the numerical algorithm. The algorithm is assembled using
results presented in the previous chapters. The second section discusses an extension of
control parameterization ([40], [105]) from continuously differentiable vector fields to vector
fields satisfying Assumption 5.1.1. In this approach, an open loop optimal control problem
whose solution is a bounded measurable function is approximated by a sequence of nonlinear
programs whose solutions consist of parameters defining piecewise constant functions in time.
The convergence of the optimal solution values of the approximate problems to the optimal
solution value of the optimal control problem as well as the convergence of the approximate
solutions to the optimal control problem solution are discussed. The third section contains
a technique with which minimum time problems can be solved. The results in the previous
chapters can be applied to the solution of such problems once time is redefined as a continuous

state of the system and the time horizon a parameter. The final section contains a review

237



of optimal control techniques related to the work in this thesis and a comparison with the

presented numerical method.

7.1 The Nonsmooth Single Shooting Method

7.1.1 Formulation and Assumptions

The numerical method aims to solve the program:

min J Z/ hOk y Py X ,p),y(t,p),X(t,p))dt +

pPEP

Ho(p, X(Bn., P), ¥ (Bne, P), X(Bn., P)) (7.1.1)

Te

B
s.t.Z/ hix(t, p,x(t,p),y(t,p),%(t,p))dt +
k=1"Y%

Hi(p, (81, ), ¥ (Bnes P), X(Bn. ) <0, Vi € {1,... nc},

0 = Fy(t, p,xi(t, p), yi(t, P), %k(t, ), VE € o, O], Vk € K,
0 = x;(a1,p) — Fi(p),
0 = xi(ax, p) = FL(p, X1 (Bi-1,p)), Yk € K\{1},
0 =x(t,p) — xx(t,p), Vt € [ag, Bk), Vk € K,

= X(bn., P) = Xn.(Bn., P),
0 =y(t,p) — yx(t,p), Vt € o, Br), Vk € K,

= ¥(Bne: P) = ¥ (Bue: P),
0 =x(t,p) — xx(t,p), Vt € [, Br), Yk € K,

= X(Bu,, P) — Xn, (Bnes D),

where
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e 1. is a finite positive integer;

e 1, is a finite positive integer, K = {1,...,n.};

e «ay, O for all k € IC are as defined in Assumption 4.4.1;

o 7, P, X, ), X are as defined in Assumption 4.4.1;

° Thefunctionshi,k:’];xPx)c'xyx?ﬁ'—ﬂRandHi:PxXxyx?ﬁ'HRsatisfy
Assumption 5.1.1 for all 7 € {0, ..., n.} and for all k£ € K;

® X, X, V¥, Xg, Xg, yi for all £ € K are as defined in Assumption 4.4.1;

e F;, F{ are as defined in Assumption 4.4.1 and satisfy Assumption 5.1.1 and the as-

sumptions of Lemma 4.3.4 for all k£ € K.
Assumption 7.1.1. For all p € P, the solution (x(-,p),y(-,p),X(-,p)) exists.

It can easily be shown that (7.1.1) is a locally Lipschitz continuous and semismooth
optimization program using the properties of locally Lipschitz continuous and semismooth

functions, Theorems 4.4.7, 4.4.8, 4.4.10, 3.4.7, 3.4.11 and 3.4.12.

In essence, Program (7.1.1) can be rewritten as

gleig fo(p) s.t. fi(p) <0, Vie{l,...,n.}, (7.1.2)

where f; are locally Lipschitz continuous and semismooth functions of p and

Ne Bk
fl(p) = Z / hi,k(ta b, X(tv p)7 y(tv p)7 X(tv p))dt + Hz(pa X(tf7 p)7 y(ta p)? X(tﬁ p))

holds for all i € {0,...,n.}. Therefore, the bundle method described in Chapter 6 can be
used to solve (7.1.1). In order to apply this bundle method, an element of the linear Newton
approximations, I'fy and I'f;, satisfying Assumption 6.2.1 need to be computed at p. This
in return, requires the computation of an element of I'yx(¢,p), ['py(¢,p) and I'px(t,p) as

defined in Theorem 4.4.7 and Corollary 4.4.9. The details of these computations are discussed
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next.

7.1.2 Computation of the elements of the linear Newton approx-

imations of Program (7.1.2)

Let

ne Bk
Zip) =Y / hix(t, pX( ), y (4 P), X(E, D), Vi € {0, . no}. (7.1.3)

k=1" %

Then an element of I'yZ;(p), a linear Newton approximation that satisfies 0pZ;(p) C
conv (I'pZ;(p)), can be computed using Theorem 4.4.8. Another approach is to define the

additional states z; : T' x P — R that evolve in time according to

Zi(t,p) = hik(t,p,x(t,p),y(t,p), x(t, p)),Vt € (a, Bx), Yk € K, Vi€ {0,...,n.}, (7.1.4)

zi(on,p) =0, Vi € {0,...,n.}.

The additional states {z;}i<, and the corresponding equations in (7.1.4) can be appended
to the system states x to obtain the augmented states, x. Let X, ;41 = 2z for all i =
0,...,n. Theorem 4.4.7 can be used to compute an element of I';X(t, p), a linear Newton
approximation which satisfies 9,%(t;,p) C conv ([px(ts, p)). Let M; € R (Metnetl) for a]]
i €40,...,n.} besuch that M;; =0forall j € {1,..., ny+n.+1}\{n,+i} and M, ,,,1; = 1.
Note that M, is the Jacobian of the mapping (x(t7, p), (20(tf, P); - - - Zn.(tr, P))) — 2i(ts, P)-

Let I'pzi(t, p) be the set

{M;A : A € conv (I'px(ts,p))}-
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Then per Theorem 2.8.12, it is a linear Newton approximation of the mapping n — z;(ts, n)

at p € P. Since 9pX(ts,p) C conv (I'px(ts, p)),

Opzi(ty,p) C {M;A : A € conv (I'pX(ts,p))}

holds per Theorem 2.6.7. In the rest of the thesis, this approach is used to compute elements
of the linear Newton approximations of z;.

Consider the mapping (x(t7, p), (20(tf, P); - - - » zn.(ts, P))) + X(ts,p). Let N € Rnex(ratnetl)
and N = [I,, 0]. Then, N is the Jacobian and therefore a linear Newton approximation of

this mapping. Let I'yx(t7, p) be the set

{NA : A € conv (I'pyx(ts,p))}-

Then I'pyx(tf, p) is a linear Newton approximation of the mapping n — x(t;,m) at p € P
per Theorem 2.8.12. It can be shown that dpx(ty,p) C conv (I'px(ts, p)) using Theorem
2.6.7 and the fact that 0pX(ts, p) C conv (I'pyX(tf, p)).

Hence once an element of I'yX(¢s, p) is computed, an element of I';x(¢7, p) can be recov-
ered using Theorem 2.8.12. An element of I'yx(¢s, p) and an element of I',y (¢, p) can be
computed using Corollary 4.4.9.

The necessary linear Newton approximation information for H; can be computed using
Theorem 4.4.10. Alternatively, the chain rule for linear Newton approximations, I'yx(ts, p),

Ipy(ty, p) and I'px(ts, p) can be used. It can be shown that the set

L,

P

S = : A € conv (I'px(ts,p)), B € conv (I'py(tr, p)), C € conv (I'pX(ts,p))
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is a linear Newton approximation of the mapping n — (n,x(t;,n),y(ts,n),x(tf,n)) at p €
P by applying Theorem 2.8.12. Theorem 2.6.7 and the fact that the aforementioned linear
Newton approximations contain the related generalized Jacobians can be used to show that
conv (5) contains the generalized Jacobian of the mapping n — (n,x(t,n),y(ts,n), %x(tf, 1))
at p € P.

Let w; : P = R:npw— H;(n,x(tr,m),y(tr,m),%x(ty,n)). Let 'pw;(p) be the set

{AB: A € 0H;(p,x(ts,p),y(ts,p), %x(ts,p)), B € conv (S5)}.

OH; is the generalized Jacobian and a linear Newton approximation of the function H;
because H; is a semismooth function per Assumption 5.1.1. Hence I'yw;(p) is a linear
Newton approximation of the map n — H;(n,x(t;,m),y(tr,n),%x(tf,n)) at p € P. The fact
that dpw;(p) C I'pw;(p) follows from Theorem 2.6.7 and the properties of S.

An element of 0H;(p,x(ts,p),y(tr, P),%(t,p)) can be computed using the fact that
under Assumption 5.1.1, H; is a PC! function and the properties listed in §2.7.1.

Finally, I'f; defined by I'f;(p) = I'pzi(t, p) + I'w;(p) is a linear Newton approximation
of f; satisfying Assumptions 6.2.1 for all 7 € {0,...,n.} per the calculus rules for the linear

Newton approximation (see §2.8.5).

7.1.3 Description of the Method

The nonsmooth single shooting method is an iterative method consisting of two main ele-
ments (Figure 7-1).

1. The Modified Bundle Method: During iteration k, the modified bundle method uses

the Objective and Constraint Evaluator to obtain f;(px) and an element of I' f;(py) for

all i € {0,...,n.}. Then, the bundle method determines if p;, satisfies the stationary

conditions in the extended sense. If it does, the single shooting method terminates.
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Figure 7-1: Nonsmooth Single Shooting Method.

Otherwise the modified bundle method updates p; to obtain pxy; and the iterative
procedure continues.

2. The Objective and Constraint Evaluator: The ODE/DAE solver is used to compute
x(ty,p) and an element of I'yX(tf, p), I'py(ts, p) and I'yx(ts, p) each, using methods
presented in Chapter 5. Then an element of I'f;(py) for each {0, ... ,n.} is computed
as described in §7.1.2.

7.2 Control Parameterization

Program (7.1.1) can be used to provide approximate solutions to certain open loop optimal
control problems similar to those discussed in [40] and [105], where continuously differentiable
vector fields are considered. In this section, the main results in [40] and Chapter 6 in [105]
are extended to optimal control problems involving vector fields that satisfy Assumption

(5.1.1).
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An open loop optimal control problem seeks to find functions of time (controls) that
satisfy the constraints and minimize the objective. It is an infinite dimensional problem
because the solution is sought in some function space rather than in R". In practice, the
solution of many optimal control problems cannot be determined numerically. Instead, the
elements of the function space of interest are approximated by functions defined in terms of
a finite set of parameters, e.g., measurable functions are approximated by piecewise constant

functions.!

The solution of the optimal control problem is then sought in this class of
approximating functions. The advantage of this method is that the use of finitely many
parameters converts the infinite dimensional problem to a finite dimensional problem that
can be solved numerically. Under certain conditions, it can be shown that the solutions of

these finite dimensional problems converge to the optimal solution of the original problem

as the number of parameters is increased.

The section begins with a brief summary of the necessary background information. Then,
the control parameterization method is described. Finally, some results on the convergence

of the approximate controls to the original optimal control are presented.

7.2.1 Preliminaries

Let I be a subset of R with positive measure. Let n and p be positive integers. Let £,(I,R"™)

denote the class of measurable functions from [ to R™ for which the quantity

([ircora) "

'The controls can be approximated by other functions than piecewise constant.
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is finite where f(t) = (f1(t),..., fu(t)) and ||f(¢)| =

Zfi(t)? Note that £,(/,R") is a
i=1

Banach space with respect to the norm:

nmpz(jmﬂOWﬁ)?

A measurable function f : I — R" is essentially bounded if there exists a positive number

C' < +o0 such that the set S ={t € [ : ||f(t)|| > C'} has Lebesgue measure zero. Let

[£]]oc = ess sup{|[f(%)

|:tel}

where ess sup{||f(¢)|| : ¢ € I} denotes the smallest C' such that the set S = {t € I :
|£(¢)|| > C'} has Lebesgue measure zero. L(I,R™) denotes the class of essentially bounded
measurable functions from I to R"™. Note that L., (I,R") is a Banach space with respect to

the norm ||f||«. In addition, L. (I,R") C £,(I,R").

A measurable function f belongs to £ if

JE@lat < +o0 (7.2.1)

holds for all bounded I.

Lemma 7.2.1 (Gronwall’s Lemma). Let f :[0,4+00) — R and a : [0, +00) — R be contin-

uous functions. Let f(t) >0 and a(t) > 0. Let K € L° and K(t) > 0 a.e. Assume:

f(t) < a(t) +/0 K(1)f(r)dr.
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Then, for 0 <t < +o0,
¢ t
ft) < alt) —I—/ els K(T)dTK(s)a(s)ds
0

holds.

7.2.2 Description of Control Parameterization

The open loop optimal control problem of interest is:

Lmin T(@) = /t:f ho(t, (1), X(t, 0))dt + Ho(X(ty, ) (7.2.2)
St. /ttf ha(t, 6(t), X(t, 0))dt + Hy(X(t7, @) < 0, Vi € {1,... ,n.}.
x(t &) = £(¢, 6(t), X(£, @), V¢ € (o, 7]\S, (7.2.3)
%(to, @) = Xo, (7.2.4)
where
o« T = [to,)],

e 7 is an open subset of R such that T"C 7,

® n,, ng, n. are finite positive integers,

UCR"™ U= {w: cfgwjgc?, —oo<c]L<c§]<+oo, Vie{l,...,n.}},

U is an open subset of R™ such that U C U holds,

L(T,U) is the set of essentially bounded measurable functions from 7 to U,

S is a set of measure zero subset of T',

x:T X Lo(T,U) — R™ is the continuous state of the system,
o f T xXUXR"™ —-R"™ h;: 7T xUxR"™ — R and H; : R"™ — R satisfy Assumption
5.1.1 for all i € {0,...,n.}.
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Remark 7.2.2. Path constraints of the form g(¢,u(t),x(t,u)) < 0, Vt € [to,ts] can be

incorporated into this formulation by considering the constraints

/ttf max(0, g(t, u(t), %(t,0))dt < 0

0

or

/ttf max(()’ g(t’ ﬁ(t)’ 5((15, ﬁ))z)dt < 0.

The first constraint is nonsmooth whereas the second one is continuously differentiable if

g(t,-) is continuously differentiable for all ¢ € [to, tf].

The solution of (7.2.2) if it exists is a measurable function which usually cannot be
obtained numerically. Even if a measurable solution is known, it may not make sense to im-
plement it in practice. Therefore, the measurable controls, t are approximated by piecewise

constant functions? u™ : T' x P" — U of the form

ui*(t,p) = prj, Vt € o, Br), C]L < pry < cg»], VEe{l,....n.}, Vj €{l,...,ng},

wi(ty, P) = Pnejs Vi €4{L,. . ng},
where n., {ag}re,, {Ok}ie, are as defined in Assumption 4.4.1 and P™ is an open subset of

R™a*"  Substituting u™e for u,

min 7(0) = [ halt. w1 p) x(0 B+ Hilx(tr.p)

n
pEP™e 0

tr
s.t./ hi(t,u"(t,p),x(t,p))dt + H;(x(t;,p)) <0, Vi e {1,...,n.},

to

X(t> u'" (t> p)) = f(t> u" (t> p)> X(t> p))> Vt € (t()? tf]\Sv

2The measurable controls can be approximated by functions other than piecewise constant functions.
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X(t(], u" (t7 p)) = X,

is obtained. This program can be written in the form

min J"(p) =/fho(t,p,X(t,p))dt+Ho(X(tf>p)) (7.2.5)

pEPm™e to

ty
s.t./ hi(t,p,x(t,p))dt + H;(x(tf,p)) <0, Vi € {1,...,n.},

X(tap) - fk(t7p>x(t7p))> Vi € (aka/@k]\sa vk € {17 e 'ane}>

x(to, P) = Xo

and can be solved using the nonsmooth single shooting method described in §7.1.

Convergence Results

In this section, the relationship between the approximate problem (7.2.5) and the original
formulation (7.2.2) is analyzed. The results are similar to the results presented in Chapter
6 in [105] and in [40].

In this section, the following additional assumption holds.

Assumption 7.2.3.

For any compact set Q) C U, there exists a positive constant K such that
[, v, W)l < K(1+[[wl) (7.2.6)
holds for all (t,v,w) € [to,ts] X 2 x R".

The following assumptions are made in [105] unlike the ones in this section:
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1. For any compact set 2 C U, there exists a positive constant K such that
(¢, v, w)l| < K(1+[[w])

holds for all (t,v,w) € [to,tf] x 2 x X.
2. f(-,v,w) and h;(-, v, w) are piecewise continuous on [ty,ts| for each (v,w) € U x R"*
for alli € {0,...,n.}. £(¢,-), hi(t,-) and H; are continuously differentiable on U x R™*

for all t € [to,t¢] and for all i € {0,...,n.}.

The main result obtained in Chapter 6 in [105] can be obtained for the systems considered
in this section. First, the necessary terminology to state the main results in Chapter 6 in
[105] is introduced. Then, the main convergence results are stated. Later, the lemmas that

differ in the proofs are presented.

Let p"* be an optimal solution of (7.2.5), J"¢(p™*) be the corresponding optimal
solution value and u™* be the corresponding control. The convergence analysis makes use

of the e-relaxed problem

min J(p) :/fho(t>P>X(t>P))dt+H0(X(tf>P)) (7.2.7)

pEPme to

Ly
s.t./ hi(t,p,x(t,p))dt + H;(x(t;,p)) <€ Vie{l,...,n.},

X(tap) = fk(t7p>x(t7p))> Vi € (aka/@k]\sa vk € {17 e 'ane}>

X(t07 p) = X,

where € is a positive real number. Let p™“* be an optimal solution of (7.2.7) for a given
ne and €, J'(p"“*) be the corresponding optimal solution value and u"*“* be the corre-

sponding control. Results are obtained under the following regularity assumption:

249



Assumption 7.2.4. There exists an integer n. such that

lim J7 (") = " (p"),

uniformly with respect to ne, > n,.
The next two theorems are the main convergence results.

Theorem 7.2.5. Let Assumption (7.2.4) hold and suppose there exists an optimal solution

u* to problem (7.2.2). Then

lim J(u"*) = J(a").

Ne—00

Theorem 7.2.6. Let Assumption (7.2.4) hold. Suppose that

lim u"*(¢t,p"") — a(t), Vt € [to, tf]\S,

Ne—00

where S is a measure zero subset of [to,ts]. Then  is an optimal solution of (7.2.2).

The proofs of the results are the same as the proof of Theorem 6.5.1 and Theorem 6.5.2 in
[105] with Lemma 7.2.7 replacing Lemma 6.4.2 in [105] and Lemma 7.2.8 replacing Lemma
6.4.3 in [105].

Lemma 7.2.7. Let {u"}°

ne=1

be a bounded sequence of functions in Lo (T,U). Then, the

sequence {X(-,u")}°_, of corresponding solutions to (7.2.3) and (7.2.4) is also bounded and

in Loo(T,R"™=).

Proof. Equations (7.2.3) and (7.2.4) can be stated as

t
x(t,u") = xg +/ f(r,u(t, p"), x(r,u"))dr (7.2.8)

to
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for all t € [to,ts]. Using property (7.2.6), one obtains

t
[%(¢, u")[| < [[xol] +/ K1+ |x(r,u")l))dr,
to

t
%, 0| < [Ixoll + £(ts — to) +K/ [%(7,u")||dT.
to
Application of Gronwall’s Lemma results in

1%t u™)|| < (lxoll + K (7 — to))e™ 1), t € [to, 1],

Lemma 7.2.8. Let {u"}>

oo_1 be a bounded sequence of functions in Loo(T,U) that converge

to a function @ a.e. on [to,ts]. Let {X(-,u™)}>°_, be the corresponding solutions to (7.2.3)

and (7.2.4). Then

lim [|%x(-,u") —x(-,0)[|ec =0 (7.2.9)

Ne—00

and for each t € [to,ty],

lim [|x(¢,u") —x(t,u)| =0

Ne—00

holds.

Proof. Let Cy satisfy ||[u™||. < Cp for all n, > 1. Per Lemma 7.2.7, there exists a constant

C} such that ||x(-,u™)|| < C) for all n, > 1. Let X = {veR™: ||v| < C,}.
Since f is a locally Lipschitz continuous function due to Assumption 5.1.1, U and X are
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compact sets, there exists K; such that the difference
ty
[%(t, u™) —x(t, 0)[| < / [£(r, u" (7, p™), x(7,u"™)) — £(7,u(7),x(7, 0))||d7

to

satisfies
Ly

[x(t,u™) —x(t, 0)|| < / Ky|[x(r,u™)) = x(m, 0)[| + Kifju" (7, p™) — a(7)||dr.
to
Applying Gronwall’s Lemma,

ly
I%(t, u) — (¢, @)|| < Kkt / lu" (7, p™) — a(7)||dr

to

is obtained and the desired results follow from the fact that u™(¢,p™) — u(t) for all

t € [to,ts]\S where S is a measure zero subset of [to, t/]. O

Remark 7.2.9. Assumption 7.2.3 is required to prove that the state trajectories remain
in a bounded subset of R"* as proven in Lemma 7.2.7. Therefore this assumption can be

replaced with any other condition ensuring boundedness of the trajectories.

Remark 7.2.10. In practice, a suitable n, is determined by solving (7.2.5) repeatedly using

an increasing sequence of values for n, until J"<(p"=*) stops changing significantly.

7.3 Minimum Time Problems

Formulation (7.1.1) does not cover situations where the duration of the time horizon needs
to be minimized. In addition, results in Chapters 3 and 4 do not directly apply to such
problems. In order to apply these results, the dynamics need to be transformed so that time

18 a state.
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Consider the ordinary differential equation

x(t,p) = f(t,p,x(t, p)), Vt € (to,ty], x(to,p) = fo(p), VP € P, (7.3.1)

where the equation satisfies Assumptions 4.2.1 and 5.1.1.
Redefine t as ¢t : [0,1] — R. Let AT =t; —ty. Let p = (AT, ). Redefine p = (p,p).

Let t be the solution of the following initial value problem

dt

d_T(T’ p) = AT, V7 € (0,1], t(0,p) = to.

Hence t(7,p) = TAT + to. Note that

X (1(7.p). p) = X(1(r.p). D) - - (7.p)

holds per the chain rule for derivatives where t(7,p) = TAT + t;. Then, the equations in

(7.3.1) can be written as

dx

d—T(t(T, p),p) = AT - f(t(r,p), p, x(t(7,p),p)), V7 € (0,1],
dt

_(7_7 p) = AT> VT € (Oa 1]7
dr

t(Ov p) = to, X(t(ov p)7 p) = fO(p)7 vp eP.

Let x : [0,1] x P — X be defined by x(7,p) = x(t(7,p),p). Then, the final form of the

equations becomes

d_fc
dr
dt

— = AT 1
dT(T’ p) , V7 e (0,1],

t(O, p) = to, )A((O, p) = fo(p), Vp e P.

(r,p) = AT - f(t(r,p), p,X(7, p)), V7 € (0,1],
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Let g: 7 x P x X — R™*! be defined by g(n:, p, mx) = (AT - £(ni, p, <), AT). It can
easily be shown that g satisfies Assumption 5.1.1. Note that this form of the dynamics is
amenable to be used in minimum time problems because the duration and initial time are

parameters of the ordinary differential equation.

This transformation can also be used on systems of the form

0= F(ta p,X(t, p)7 y(tv p),X(t, p))? vt S [t(]vtf]? X(t07 p) = FO(p>7 VP € Pv (732>

satisfying Assumptions 4.3.1, 4.3.2 and 5.1.1. The transformed dynamics are

0 =F(t(r,p),p.X(7,p), ¥(,p), X(7,p)), V7 € [0,1],

X p) = AT -k(r,p), ¥r € (0, 1],

dr
dt

_(7_7 p) = AT) VT € (O> 1]7
dr

t(07 p) = t07 2(07 p) = FO(p)7 vp € 7)7

where %X(7,p) = x(t(7,p), p), ¥(7,P) = y(t(7,p). p), X(7,P) = %X(¢(r,p), p) and p is rede-
fined as in the ODE case.

In the multistage case, the final transformed equations become

0= Fz(t(7-7 p),p,ii(T, p)vyi(7—7 p)a);ci(Tv p))v VT € [7' - 177;]7 Vi € Iv

C(l;i(ﬂ p) = AT, - X;(7,p), VT € (i — 1,i, Vi € T,
5—;(7, p) = AT, Vr e (i —1,4], Vi € T,
t(0,p) = to,
0 =%(0,p) — F{(p),

0
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0 =x(7,p) —xi(7,p), VT € [i — 1,1), Vi € Z,
0 = X(n¢, P) — X, (Ne, P)
0=y(r,p) —yi(r,p), VT € [i — 1,0), Vi € Z,
0 = y(ne, P) — ¥n.(ne, P),
0 = x(,p) — x;(7,p), Vr € [i — 1,i), Vi e T,
0 = X(ne, p) — Xy, (ne, P),

where AT; = (; — o, for all i € Z, the equations satisfy Assumption 4.4.1, the right-hand
side functions satisfy Assumption 5.1.1 and F; satisfy Assumption 4.3.2 for all i € Z. Now,
formulation (7.1.1) can be rewritten using the transformed dynamics to solve minimum time

problems.

7.4 Dynamic Optimization Literature Review and Com-

parison with the State of the Art

In the previous sections, the nonsmooth single shooting method was introduced and its
application to dynamic optimization problems in the context of control parameterization
was presented. In this section, the place of this numerical algorithm within the state of
the art is discussed. The reader is referred to [17] for an excellent overview of the available
numerical methods in case the data of the problem is continuously differentiable.

Methods that solve the necessary conditions of optimality to determine an optimal control
are called indirect methods. Necessary conditions of optimality exist for the case where the
data of the problem is locally Lipschitz continuous ([25]). These conditions involve the
generalized gradient. As a result, the equations defining the optimal control are differential

inclusions. Currently, these conditions are not amenable to numerical computation. Hence,
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there are no indirect methods applicable to the dynamic optimization problems that can be

solved by the nonsmooth single shooting method.

Direct methods solve the optimal control problem by directly minimizing the objective.
The nonsmooth single shooting method introduced in §7.1 is therefore a direct method.
Direct methods usually convert the optimal control problem into a nonlinear mathematical
program similar to (7.2.5) using control parameterization and apply nonlinear optimization
techniques to obtain a solution. It is possible to use optimization methods that do not
require gradient information (derivative-free methods) in this approach. However, derivative-
free methods require significantly more time to solve problems compared to methods that
make use of gradient information where this information is available. An instance of this
behavior is presented in the Chemotherapy Scheduling Case Study in Chapter 8. Lastly,

these methods mostly lack proven convergence properties.

Numerical methods that only use an ODE/DAE solver to compute the state trajectories
and the derivative information are called sequential (single shooting) methods. Therefore,
the method in §7.1 is called a single shooting method. In these methods, most of the
computational time is spent solving the embedded dynamics and derivative information
with an ODE/DAE solver. The use of such a solver guarantees that the state trajectories
always satisfy the initial value problem for any parameter value. The number of variables
in the optimization problem is the smallest for this approach compared to other approaches.
However, single shooting methods can only solve problems whose embedded initial value
problems can be solved using an ODE/DAE solver. Hence, problems involving unstable
dynamics cannot be reliably solved using a single shooting method because the integration

error in the ODE/DAE solver grows unbounded.

The rest of the methods are called simultaneous methods because the integration of the
dynamics is accomplished with the aid of the optimization algorithm. Simultaneous meth-

ods that discretize the embedded initial value problem are called transcription (collocation)

256



methods. In this approach, a discretization scheme such as Radau collocation on finite el-
ements is used to approximate the state trajectories. The discretization scheme results in
additional optimization variables that represent the values of the states at each time point of
the discretization. The optimization method determines the value of these variables as well
as those of the original ones. Therefore, these methods result in large optimization problems
even for systems with a small to medium number of states. The number of discretization time
points and grid that yields a sufficiently accurate approximation of the trajectories is not a
priori known. Therefore, the state trajectories obtained as a solution need to be checked by
comparing them to trajectories obtained with an ODE/DAE solver. In practice, however,
the number of discretization points is increased until the trajectories obtained stop changing
significantly. For problems involving stiff or highly nonlinear dynamics, this approach leads
to very large optimization problems. In addition, the large number of variables complicates
the determination of the initial values for the parameters. An example of this behavior can
be seen in the Electric Circuit Case Study in Chapter 8. Multiple shooting methods, which
are simultaneous methods, partition the time horizon into smaller intervals called epochs.
The initial conditions for the states used in the numerical integration of the dynamics for
each epoch become decision variables. The state trajectories over each epoch are computed
using an ODE/DAE solver using values for theses variables. Then, the optimization method
adjusts the values of these variables so that the states obtained at the end of each epoch are
consistent with the values of the variables that are the initial conditions for the following
epoch. Note that a direct (indirect) method can be sequential or simultaneous. Multiple
shooting methods were invented to overcome some of the drawbacks of single shooting meth-
ods. Unstable dynamic systems can be handled because the integration is carried out over

shorter intervals of time preventing the integration error from growing unbounded.

Finally, there are approaches based on dynamic programming. However, these approaches

require a lot of memory and computational effort. These approaches are suitable only for
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problems where the number of state variables is small or where a special structure is present.

Dynamic optimization problems of systems with varying structure that can be solved
using the nonsmooth single shooting method, can also be solved by direct single shoot-
ing methods that use derivative-free optimization algorithms and some direct transcription
methods ([102, 106], [12]). In transcription methods for systems with varying structure,
the vector field that determines the evolution of the system between two time points of
the discretization needs to be determined. This is a selection problem that can be han-
dled using integer variables as in [102, 106] or complementarity conditions as in [12]. In
order to solve practical problems with the integer approach, the underlying dynamics need
to be linear because the solvers can handle only linear constraints effectively. Nonlinear
dynamics result in nonlinear constraints. Hence, any nonlinearity in the system equations
needs to be linearized. This degrades the quality of the approximation of the state tra-
jectories. The resultant mathematical program is a mixed-integer linear program, (MILP).
The MPEC (Mathematical Programs with Equilibrium Constraints) approach in [12] uses
special constraints called complementarity conditions. This method can deal with nonlinear
dynamics. However, the complementarity conditions violate certain regularity conditions
called constraint qualifications. Therefore, the resultant mathematical programs require
special handling and optimization methods. Both approaches suffer from the shortcomings
of transcription methods. Examples of the MPEC approach are presented in the Electric
Circuit and the Cascading Tanks Case Studies. An example of the use of integer variables
is presented in the Cascading Tanks Case Study. The performance of these transcription
methods are compared to the nonsmooth single shooting method in Chapter 8.

Finally, the results in the previous chapters can be used to devise a nonsmooth multiple

shooting method. The rigorous development of this method is part of future research.
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Chapter 8

Case Studies

8.1 Electric Circuit

In this case study, the behavior of the nonsmooth single shooting method and the MPEC
approach presented in [12] is compared on a dynamic system exhibiting significant nonlinear

behavior and stiffness.

8.1.1 System Dynamics

The system is an the electrical circuit (Figure 8-1) consisting of the well-known FitzHugh-
Nagumo ([49]) electrical circuit used in modeling neurons connected in parallel with a diode
and resistor. The elements of the model are:

e ty: initial time in seconds; tg = 0.0 s.

ts: final time in seconds; ¢ = 60.0 s.

T time horizon in seconds; 1" = [to, t]

AT': the duration of time in seconds; AT = 60.0 s.

e n.:. number of epochs used in control vector parameterization; n, = 2.

IC: the index set for the epoch; K = {1,...,n.}.
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Figure 8-1: Electric Circuit: Configuration.

{T}pe: the time intervals for each epoch. T} = [ay, b;) where a; =ty + %’Z”_l) and
by = to + 22 for all k in K.
{Icr}ie,: control parameters of the system in amperes.
p : the parameters to be adjusted. p = (Lc1,. .., Len.)-
P : the parameter set; P is an open subset of R" such that [0.00, 1.50]" C P.
v:T x P — R: the voltage of the circuit in volts.
w: T x P — R: the current through the inductor in amperes. In the remainder of the
case study unless otherwise noted, current refers to the current through the inductor.
x:TxP—R:(t,p) — (v(t,p),w(t,p)) : is the continuous state of the system.
X: the state space; X = R2.
vg,: threshold voltage of the diode in volts; vy, = —1.20V.
R,: internal resistance of the diode; R; = 0.05¢2.
C": capacitance of the capacitor in farads; C' = 1.00F.
1.00 A

(o, B): parameters of the tunnel diode; v = 1.00 % and = %vf"

(=]

L: inductance of the inductor in henries; L = 12.5H.

R: resistance of the resistor in series with the inductor; R = 0.82.
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E: potential difference across the terminals of the battery in volts; £ = 0.7V.

e [ : T xP — R: the current through the tunnel diode in amperes.

e [,:T x P — R: the current through the capacitor in amperes.

e [3: T x P — R: the current through the diode in amperes.

e [.: T xP — R the external current applied to the circuit. [.(t,p) = I.x, Vt € AT}

and I.(t;,p) = Iep,-

The numerical values of the parameters except the diode’s threshold voltage and its internal
resistance are the original numerical values of the FitzHugh-Nagumo model, although the

units may be different.

The tunnel diode in Figure 8-1 is a passive circuit element whose voltage and current
relationship is approximated by a third order polynomial. In the electrical circuit (Figure in

8-1), I,(t,p) and v(t, p) satisfy

L(t,p) = pv*(t,p) — av(t,p). (8.1.1)

The diode allows current to flow in one direction when the voltage across it is less than vy,.

It determines I3(t,p) by

I;(t, p) = min (W, 0) . (8.1.2)
d
Finally, I5(t, p) satisfies



Kirchoft’s laws yield

[c(t> p) = w(ta p) + [1(t7 p) + [2(t7 p) + I3(t> p)> (814)

v(t,p) = Lu(t,p) + Rw(t,p) — E. (8.1.5)

Substituting (8.1.1), (8.1.2) and (8.1.3) into (8.1.4) and (8.1.5) and solving for v and w

produces the initial value problem

0(t.9) = & (1(tp) = min (“EPIZ0) = (30(0,p) — ) — wt ) ) € (1]
(t,p) =  (~Rult,p) +v(t,0) + ), Vi € (t0.t,),

,U(th p) - 007 w(th p) = 0.0.

The electric circuit exhibits different behavior for different current input as shown in
Figures 8-2a and 8-2b. For low values of the input current, the circuit voltage spikes rapidly
and then decays rapidly to a value around —1.20V. For larger input currents, the system
shows oscillatory behavior. The presence of the diode causes a rapid change in the time
derivative of the voltage when the voltage drops below —1.20V. The difference caused in
the evolution of the states by the diode can be seen in in Figures 8-3a and 8-3b. Finally,
for large enough current values, oscillations vanish and the voltage reaches a value close to
1.00V. The evolution of the current occurs relatively slow compared to the evolution of the

voltage. This difference is especially pronounced at higher current values.

8.1.2 Dynamic Optimization Formulation

A dynamic optimization problem is solved to maximize the energy dissipated by the diode

by adjusting {/Z.}p<;-
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Figure 8-2: Electric Circuit: Voltage and current trajectories for different constant I..
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Figure 8-3: Electric Circuit: Difference in voltage and current trajectories between FitzHugh-
Nagumo and Electric Circuit Models if 1.(t, p) = 0.50A, Vt € [to, tf].

The power dissipated by the diode is

m’ 0) (v(t, P) — ven).

P(tv p) = I3(t7 p)2Rd = min (
R,

Hence, the energy dissipated by the diode is computed by

. . v(t,p) —v
S(t,p) = min (%dthﬂ) (v(t,p) — vin), Vt € (to,ts], S(to,p) = 0.0.

The plot of S(ts,-) is in Figure 8-4. S(t,-) is a nonconvex function of the parameters. The

function is fairly flat around (0, 0), (0,1.5) and (1.5, 1.5). The function values are zero in the
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neighborhood of (1.50,1.50). The voltage never becomes less than vy, for parameter values
close to (1.50,1.50). The function changes rapidly in the neighborhood of points (0.05,y)
where y € [0, 1.5]. In this region, the evolution of the states transitions from non-oscillatory
to oscillatory behavior. The function has a global maximum at (1.5,0.0) and a few local

maxima such as (0.076,0.625).

»
o W

S(tp) [J]

e ————

o h ; |
0 15 0 . . 0.75
Ie;1 [A]

(a) Surface Plot (b) Contour Plot

Figure 8-4: Electric Circuit:Surface and contour plots of the dissipated energy by the diode

The formal statement of the dynamic optimization is

maxJ(p) = S(ts,p) (8.1.6)

pPEP

$.t.0.00 < Iy < 1.50, L(t,p) = I, t € ATy, k € K, L(ty, p) = Loy,

o(t,p) = é <Ic(t,p) — min (U(t’rgid_%,o)) _

é (Bv°(t,p) + av(t,p) —w(t,p)), Vt € (to, ty],

0(t,p) = 7 (~Ruw(t,p) +v(t,p) + B), ¥t € (to,17],

‘ (v(t,p) — Uin

S(tap) = min R 70) (U(tap) - 'Uth)> vt € (t0>tf]a
d

v(to,p) = 0.0, w(ty,p) = 0.0, S(ty,p) = 0.

This problem is solved using the nonsmooth single shooting method developed in this thesis
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and the MPEC approach presented in [12].

8.1.3 Nonsmooth Single Shooting Method Results

The dynamic optimization problem (8.1.6) is solved with the method proposed in Chapter 7
for various initial guesses of for 1., for all k € {1,2}. For the integration of the dynamics and
auxiliary equations yielding derivative information DSL48SE (108, 109, 36]) is used with
code generated by DAEPACK ([107]). The nonlinear program is solved using the proximal
bundle solver in [64] on a SUSE Linux 10 Virtual Machine with 1 GB of RAM and a 2.4 GHz
Intel Core Duo CPU. The absolute and relative tolerances used in simulation are 1 x 107%
and 1 x 1078, respectively. The optimality tolerance for the bundle solver is set to 1 x 107°.

Problem (8.1.6) is solved using various initial guesses for p = (I.1,I.2). Table 8.1
summarizes the results for the test cases used in this study. The first column contains the

" and “p*” represent the initial guess and final converged parameter

label of the case. “pg’
values, respectively. The values are tabulated in columns 5 and 6. Columns 3 and 4 contain
the initial and final objective values, respectively. Column 2 summarizes the termination
status of the bundle solver. The column CPU contains the times taken to solve problem
(8.1.6) numerically. NIT is the number of iterations done by the bundle solver and NFV is

the number of times the dynamics are simulated. The behavior of the nonsmooth single

Case | Status | J(po) | J(p*) Po p* CPU [s] | NIT | NFV
A Optimal | 0.1786 | 0.1786 | (0.000,0.000) | (0.000,0.000) 0.05 1 1
B | Optimal | 0.1919 | 2.5325 | (0.050,0.050) | (1.500,0.000) | 0.36 | 4 | 7
C Optimal | 0.1166 | 2.5325 | (1.400,1.400) | (1.500,0.000) 0.43 6 6
D | Optimal | 0.3919 | 1.0649 | (0.750,1.250) | (0.076,0.625) | 1.24 | 12 | 12
E Optimal | 0.2590 | 1.0649 | (1.000,1.000) | (0.076,0.625) 3.60 14 21
F Optimal | 0.7350 | 1.0649 | (0.100,1.250) | (0.076,0.625) 2.26 16 24

Table 8.1: Electric Circuit: Nonsmooth single shooting results
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shooting method is as expected. Due to the nonconvex nature of the objective, not all initial

guesses for p lead to the final parameters equal to (1.50,0.00). The p* obtained correspond

to local maxima of the objective function.

8.1.4 MPEC Approach Results
MPEC Formulation

The transcription technique in [12] produces the mathematical program;

max J(X) = Spom, — pA

v, .
s.t: ]3,k,z'+1 = (1 — )\k,i+1) < ]E;li_l) , Vk € ]C,V’L c I\{nt},

) 1 .
W ip1 = 17 (Ugiv1 — Rwg i1 + ), Yk € K, Vi € T\{n:},

Uk it1 = é (Oévk,i+1 — ﬂvl‘z,i“ + 1.+ 137k,2-+1) , Vk € IC,Vi € T\{n,},
Skit1 = I3 i1 Ra, Y € K, Vi € T\{n,},

Wi i+1 — Wk = hg g iv1, Yk € KK, Vi € T\{n},
Uk,it1 — Uk = NieiOkiv1, Yk € K, Vi € T\{n},
Skyi+1 — Ski = hiiSkiv1, Yk € K,Vi € T\{n:},
Vkt1,1 = Ukme, Vh € K\{nc},

Wit1,1 = Wiy, YK € K\{nc},

Sk41.1 = Sk, Yk € K\{ne},

Vkit1 — U, = U]:Z-_l_l — Upis1s VK EK, Vi€ Z\{n},
Zhit1 = MitlVhip, VR €K, Vi € Z\{n},

z,j’iﬂ =(1- )\k,i_i_l)/ul—;i_,’_l, VE € K, Vi € T\{n},
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(8.1.8)

(8.1.9)
(8.1.10)
(8.1.11)
(8.1.12)
(8.1.13)
(8.1.14)
(8.1.15)
(8.1.16)
(8.1.17)
(8.1.18)
(8.1.19)

(8.1.20)



where

Ne Nt
A = (zk_z + Z]::i),
—1 =2

v,j;i, 0<wvg,;, 0< A <10,V e K, Vi €T,

Ed

o
IA

o
IA

2 0 < z,ifi, Vk e K,Viel,
1 =0, wip =0, Si; =0,
0< I, <150, Vk € K,

5 % 60.0

1% 1070 < g < — o
T T ne s (ng—1)

ne—1

> hii =300, Vk €K, .

1=1

1 is the positive penalty parameter;

n; is the number of finite elements in each epoch;

.,n¢} is the index set for the finite elements;

VEk e K, Vi € T\{n},

(8.1.21)

(8.1.22)
(8.1.23)
(8.1.24)
(8.1.25)

(8.1.26)

(8.1.27)

moee, and {{z,}7,}7e, are the deviations from the complementarity condi-

tions in (8.1.19), (8.1.20), (8.1.22) and satisfy (8.1.23);

(8.1.21);
o {{ ki

n Ne

A is the total deviation from the complementarity conditions and is computed using

ey, Hudi beey and {{v, 3, bee, are the complementarity variables;

o {{hpi}it}re, are the time steps;

b {{Ukz

" e, are the values of the voltage in epoch k and finite element i;

o {{wy i}t }ie, are the values of the current in epoch k and finite element 4;

o {{Ski}it
finite element i;
o and {{l54.}

o X {Iertpe 17{{zk2 Y {{lez i ther H
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L hhe, are the values of the energy dissipated by the resistor in epoch k& and

‘,}ie, are the values of the I3(t, p) in epoch k and finite element i;

nt Ne + Ne
i=1S k=1 {{U/“ i=1Sk=1>



Hoeshiti bz Hweatita ey, {SkariZi iz, {{smabiti beze HPwa ity b b
The differential equations of the circuit are discretized using an implicit Euler scheme and
are in (8.1.9), (8.1.10), (8.1.11), (8.1.12), (8.1.13) and (8.1.14). Equations (8.1.15), (8.1.16)
and (8.1.17) ensure continuity of the continuous states between epochs. Initial conditions are
in (8.1.24). The time steps are part of the solution of the mathematical program and satisfy
(8.1.26). In addition, the time steps in each epoch have to sum up to the epoch duration.

This requirement is stated in (8.1.27). The constraints on I.j are in (8.1.25).

Determination of n;

The number of finite elements in each epoch, n; determines the accuracy of approximation of
the implicit Euler discretization scheme. If n; is too small, the approximations to the state
trajectories obtained as the solution of (8.1.7) are not accurate. If n; is yet smaller, there
may not even exist a feasible solution.

A feasibility problem is solved to determine a suitable n; and obtain a feasible starting

point, Xy. The constraint (8.1.25) is replaced with
L, =05 kek, (8.1.28)
and the objective of (8.1.7) is replaced with
min J(X) = A, (8.1.29)

The feasibility problem is implemented in GAMS 23.1 and solved with the nonlinear
programming solver CONOPT [29, 30] to a final tolerance of 3.0 x 107! on a SUSE Linux
10 Virtual Machine with 1 GB of memory and a 2.4 GHz Intel Core Duo CPU. Solution of
the MPEC formulation has also been solved with the nonlinear programming solver IPOPT

[112]. However, the CPU times obtained are significantly worse than the ones obtained using
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CONOPT. Hence, they are omitted.

The feasibility problem is solved for different values of n;, and various initial values of Xj.
It is also solved for different values of I. ;. Sample results are in Tables 8.2 to 8.3. Status is
the termination criteria of the solver. NVAR is the number of elements in X. NEQ is the
number of equations in (8.1.7). The column labeled CPU contains the amount of time taken

by the computer to solve the problem.

ny | Status A NVAR | NEQ | CPU [s]
101 | Optimal | 0.5173 | 2012 | 1407 4.73
201 | Optimal | 0.2599 | 4012 | 2807 9.47
301 | Optimal | 0.3365 | 6012 | 4207 | 15.07
401 | Optimal | 0.4038 | 8012 | 5607 | 27.28
501 | Optimal | 0.4304 | 10012 | 7007 | 34.58

Table 8.2: Electric Circuit: MPEC feasibility problem results, I.; = 0.50,Vk € K.

ny | Status A NVAR | NEQ | CPU [4]
101 | Optimal | 1.4362 | 2012 | 1407 6.99
201 | Optimal | 26.0653 | 4012 | 2807 | 12.03
301 | Optimal | 0.8762 | 6012 | 4207 | 52.07
401 | Optimal | 0.9754 | 8012 | 5607 | 69.02
501 | Optimal | 1.1229 | 10012 | 7007 | 135.67

Table 8.3: Electric Circuit: MPEC feasibility problem results, I.; = 1.50,Vk € K.

It is imperative that A is zero. Even a small violation can result in grossly erroneous
state trajectories as can be seen in Figures 8-5a and 8-5b. This is the reason for the very
small termination tolerance.

In this study a zero A could not be obtained using arbitrary X,. Therefore, an X is

derived from state trajectories obtained by simulating the dynamics for /., = 1.0 for all
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Figure 8-5: Electric Circuit: Effect of nonzero complementarity deviations on voltage and

current, A = (0.4304

k € K and hy,; are set to 30/(n, — 1) where n, is varied. A feasibility problem is solved

for each n;. The results are tabulated in Table 8.4. Even if simulation results are used to

initialize the variables, the feasibility problem may have nonzero objective value. The state

ny | Status A NVAR | NEQ | CPU [s]
201 | Optimal | 0.0000 | 4012 | 2807 | 4.16
301 | Optimal | 0.0000 | 6012 | 4207 9.28
401 | Optimal | 0.0956 | 8012 | 5607 | 21.85
501 | Optimal | 0.6235 | 10012 | 7007 | 43.24
601 | Optimal | 0.1632 | 12012 | 8407 | 34.70
701 | Optimal | 0.0000 | 14012 | 9807 | 41.33

Table 8.4: Electric Circuit: MPEC feasibility problem results, I.; = 1.00, initialization with

simulation results.

trajectories obtained for the cases n; = 201, n, = 301 and n; = 701 are visually compared to

simulation results. It is found that if n; is set to 701, then the approximations to the state

trajectories obtained as the solution of the feasibility problem agree with simulation results

sufficiently.
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Optimization Results

The penalty parameter p is set to 5. This value is determined by trial and error. If u is too
small, then A may not be zero at the optimal solution.

It is imperative that the initial values supplied to the nonlinear programming solver
represent a feasible or an almost feasible point. Otherwise, the solver is not able to provide
a feasible solution or a solution X such that A is zero.

The optimization problem is implemented in GAMS 23.1 and solved with the nonlinear
programming solver CONOPT [29, 30] to a final tolerance of 3.0 x 107! on a SUSE Linux
10 Virtual Machine with 1 GB of memory and a 2.4 GHz Intel Core Duo CPU. Solution of
the MPEC formulation has also been solved with the nonlinear programming solver IPOPT
[112]. However, the CPU times obtained are significantly worse than the ones obtained using
CONOPT. Hence, they are omitted.

The results of the optimization runs are in Table 8.5. X is computed from data ob-
tained from the simulation of the dynamics with the given py values. J(p*) is the value
of the objective obtained from the MPEC formulation. Table 8.6 contains the result of the
optimization runs with 4 = 1. Note that A is nonzero for Case D. For this example, the
value of ;1 does not affect the CPU time significantly. The CPU times are significantly more
than the CPU times in Table 8.1. The CPU times do not depend strongly on the termina-
tion tolerance of the solver. Table 8.7 contains the data for the optimization runs with a
termination tolerance of 1 x 10~7. The CPU times strongly depend on n,. Table 8.8 shows
the change in the solution times for Case E for different values of n;.

The quality of the approximation of the state trajectories also depend strongly on n,.
Figures 8-6, 8-7 and 8-8 show the effect of n; on the voltage and current trajectories. The
optimal parameters in Table 8.8 are simulated for the cases n; = 201, n, = 401 and n; = 701.
The curves marked as “Simulation” are the results obtained by simulation. The curves

marked as “MPEC” are the approximations obtained from the solution of (8.1.7). It is
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Case | Status Po p* J(p*) A CPU [s]
A Optimal | (0.0000,0.0000) | (0.0000,0.0000) | 0.1680 | 0.0000 | 22.16
B | Optimal | (0.0500,0.0500) | (0.0657,0.0000) | 0.7902 | 0.0000 | 47.43
C Optimal | (1.4000,1.4000) | (1.500,0.0000) | 2.5288 | 0.0000 | 168.17
D Optimal | (0.7500,1.2500) | (0.0742,0.6140) | 1.0643 | 0.0000 | 41.95
E Optimal | (1.0000, 1.0000) | (0.0639,0.0000) | 0.8021 | 0.0000 | 176.00
F Optimal | (0.1000, 1.2500) | (0.0743,0.6122) | 1.0635 | 0.0000 | 24.44

Table 8.5: Electric Circuit: MPEC method optimization results, u = 5, termination tolerance

is 3.0 x 10713

Case | Status Po p* J(p*) A CPU[s]

A | Optimal | (0.0000,0.0000) | (0.0000,0.0000) | 0.1680 | 0.0000 | 15.29

B Optimal | (0.0500,0.0500) | (0.0657,0.0000) | 0.7902 | 0.0000 87.00

C Optimal | (1.4000, 1.4000) | (1.5000,0.0000) | 2.5288 | 0.0000 | 137.00

D* | Optimal | (0.7500,1.2500) | (0.0733,0.3144) | 1000.0 | 25.1260 | 64.46
Optimal | (1.0000,1.0000) | (0.0639,0.0000) | 0.8021 | 0.0000 | 150.65

F Optimal | (0.1000, 1.2500) | (0.0743,0.6122) | 1.0635 | 0.0000 | 29.57

Table 8.6: Electric Circuit: MPEC method optimization results, 4 = 1, termination tolerance
is 3.0 x 10713

observed that a low n; is not sufficient to approximate the state trajectories accurately. The

choice of n; = 701 is justified if a high quality of approximation is important.

8.1.5 A Variant Dynamic Optimization Formulation

In this subsection, a variant of program (8.1.6) is solved. The constraint;

—0.0001 < v(ts, p) < 0.0001 (8.1.30)
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Case | Status Po p* J(p*) A CPU[s]
A Optimal | (0.0000,0.0000) | (0.0000,0.0000) | 0.1680 | 0.0000 | 19.97
B Optimal | (0.0500,0.0500) | (0.0657,0.0000) | 0.7902 | 0.0000 | 45.67
C Optimal | (1.4000, 1.4000) | (1.5000,0.0000) | 2.5288 | 0.0000 | 158.28
D Optimal | (0.7500, 1.2500) | (0.0742,0.6140) | 1.0643 | 0.0000 | 41.25
E Optimal | (1.0000, 1.0000) | (0.0639,0.0000) | 0.8021 | 0.0000 | 159.20
F Optimal | (0.1000, 1.2500) | (0.0743,0.6122) | 1.0635 | 0.0000 | 23.04

Table 8.7: Electric Circuit: MPEC method optimization results, u = 5, termination tolerance

is 1.0 x 1077
ny | Status Po p* A CPUs]
201 | Optimal | (1.0000,1.0000) | (0.0623,0.0695) | 0.0000 7.69
301 | Optimal | (1.0000, 1.0000) | (0.0648,0.0706) | 0.0000 | 11.69
401 | Optimal | (1.0000, 1.0000) | (0.0654,0.0718) | 0.0000 | 14.74
501 | Optimal | (1.0000,1.0000) | (0.0633,0.0000) | 0.0000 | 56.65
601 | Optimal | (1.0000, 1.0000) | (0.0636,0.0000) | 0.0000 | 92.10
701 | Optimal | (1.0000,1.0000) | (0.0639,0.6122) | 0.0000 | 159.20
Table 8.8: Electric Circuit: MPEC method optimization results for various values of n; for

Case E, . = 5, termination tolerance is 1.0 x 10~7

is added to problem (8.1.6) and the corresponding constraint

is added to (8.1.7). The resultant programs are solved using the nonsmooth single shooting

~0.0001 < vy, , < 0.0001

method and the MPEC approach.
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Figure 8-6: Electric Circuit: Difference between MPEC predicted voltage and current tra-
jectories and simulation for Case E and n; = 201.
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Figure 8-7: Electric Circuit: Difference between MPEC predicted voltage and current tra-
jectories and simulation for Case E and n; = 401.

Nonsmooth Single Shooting Method

The dynamic optimization problem is solved using an exact penalty formulation since the
bundle solver used does not support nonlinear constraints directly. Further details of the

exact penalty approach in nonsmooth optimization can be found in [87]. The penalized

objective of (8.1.6) is

J(p) = S(ts, p) + pmax(0,v(ts, p) — 0.0001) + g max(—0.0001 — v(ts, p),0)
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Figure 8-8: Electric Circuit: Difference between MPEC predicted voltage and current tra-
jectories and simulation for Case E and n;, = 701.

where p is the penalty parameter. A sequence of dynamic optimization programs is solved
where the penalty parameter is increased. Let [ be the index of the optimization problem
solved. The penalty parameter for problem [ is p(1) = 40-[. Problem [ is solved to optimality.
If the solution is not a feasible point for (8.1.6) with the additional constraint (8.1.30), then
[ is set to [ + 1, and the next program is solved. Otherwise, the solution is stationary in
the extended sense for the problem (8.1.6) with the additional constraint (8.1.30). This can
be derived as in [87] using the linear Newton approximations of the functions instead of the
generalized gradients and the extended Cottle constraint qualification introduced in Chapter

6. The existence of a finite penalty parameter requires further research.

For the integration of the dynamics and auxiliary equations DSL48SE ([108], [109] [36])
is used with code generated by DAEPACK [107]. The nonlinear program is solved by the
proximal bundle solver in [64] on a SUSE Linux 10 Virtual Machine with 1 GB of RAM and
a 2.4 GHz Intel Core Duo CPU. The absolute and relative tolerances used in simulation are
1 x 1078 and 1 x 1078, respectively. The optimality tolerance for the bundle solver is set to

1 x 107%. The results are summarized in Table 8.9.
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Case | Status | J(p*) Po p* v(ty, p) CPU [s] | NIT | NFV
A Optimal | 0.1738 | (0.000,0.000) | (0.0000,1.2782) 0.0000 8.48 77 138
B Optimal | 0.7122 | (0.050,0.050) | (0.07179,1.3036) 0.0000 13.33 120 | 152
C Optimal | 0.1738 | (1.400,1.400) | (0.0000,1.2782) 0.0000 3.86 56 60
D Optimal | 0.7128 | (0.750,1.250) | (0.07369,0.4135) | 1.5230 x 107> | 49.64 343 | 540
E Optimal | 0.7122 | (1.000,1.000) | (0.07150, 1.3036) 0.0000 4.13 38 48
F | Optimal | 0.7112 | (0.100,1.250) | (0.07820,0.4121) | 4.372 x 105 | 2155 | 203 | 236

Table 8.9: Electric Circuit: Nonsmooth single shooting results for variant problem.

MPEC Approach

For the MPEC approach, the modified program is solved for various values of n; and the
MPEC predicted trajectories are compared to the trajectories obtained from the simulation
of the optimal parameters furnished by the MPEC approach. The initial parameter guess
is (1.00, 1.00) for all optimization runs. The variables are initialized using simulation data.
The optimization problem is implemented in GAMS 23.1 and solved with the nonlinear
programming solver CONOPT [29, 30] to a final tolerance of 1.0 x 10~7 on a SUSE Linux
10 Virtual Machine with 1 GB of memory and a 2.4 GHz Intel Core Duo CPU. Solution of
the MPEC formulation has also been solved with the nonlinear programming solver IPOPT
[112]. However, the CPU times obtained are significantly worse than the ones obtained using

CONOPT. Hence, they are omitted.

The results are in Table 8.10. The column labeled “v(t;,p)” contains the final voltage
obtained by simulation of the dynamics using the optimal parameter values in the column la-
beled “p*”. Note that there is significant difference between v, ,, and v(¢, p). The difference
between the final voltage predicted by the MPEC approach and the simulation decreases as
the n; increases. Even though the complementary condition deviations are zero, there is

gross error in estimating the voltage trajectory as can be seen in Figure 8-9. Unless a com-
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ng Status p* JP) | A | vun |v(ty,p*) | CPU [s]
201 | Optimal | (0.06477,0.3878) | 0.7103 | 0.00 | 0.0000 | 0.9460 7.19
401 | Optimal | (0.06824,0.4001) | 0.7108 | 0.00 | 0.0000 | 0.6400 39.89
701 | Optimal | (0.06955,0.4064) | 0.7118 | 0.00 | 0.0000 | 0.4240 62.01

( )
( )

801 | Optimal
1001 | Optimal

0.06979,0.4075) | 0.7116 | 0.00 | 0.0000 | 0.3800 87.38
0.07005,0.4088) | 0.7121 | 0.00 | 0.0000 | 0.3177 | 195.70

Table 8.10: Electric Circuit: MPEC method optimization results for the variant dynamic
optimization problem for various values of n; for Case E, p = 5, termination tolerance is
1.0 x 1077,

parison with a simulation is carried out, the error in the MPEC predicted state trajectories

cannot be detected.

Voltage [V]

40 50 60

30
Time [s]

(a) ny = 201

Figure 8-9: Electric Circuit: Difference between MPEC predicted voltage trajectories and
simulation for Case E and n; = 201 and n; = 801.

Finally, an MPEC formulation was developed using third order Radau collocation. CONOPT

was not able to solve this formulation.

8.1.6 Conclusion

The Electric Circuit Case Study involves a relatively simple dynamic optimization problem.
The effort to solve this problem using the MPEC approach was significantly more than the

nonsmooth single shooting method.
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The nonsmooth single shooting method required coding the model in FORTRAN77 and
using the automatic code generation tool DAEPACK to generate the additional equations
to obtain derivative information. Work had to be done to integrate the bundle solver and
the routines used to simulate the dynamics. Running the optimization solver required no
additional significant effort. It was observed that more than 95% of the solution times of the
nonsmooth single shooting method were used to solve the initial value problem and compute

an element of the linear Newton approximations.

The MPEC approach required the manual discretization of the dynamics and imple-
mentation in the GAMS environment. Determination of n; required substantial time. The
determination of a value for n; guaranteeing a good approximation to the state trajectories
does not appear to be possible without comparison to the simulation output for problems
with highly nonlinear dynamics. In this regard, the MPEC approach does not seem to be a
standalone method. Finding a good initial starting point for the solver was not possible by
solving a feasibility problem. Instead, initial starting points were derived from simulation
data. It was observed that if a good starting point is not provided to the solver, a feasible
solution or a solution with zero A could not be obtained. A significant amount of time was

spent to provide good starting points derived from simulation data.

The nonlinear and relatively stiff dynamics mandated the use of a relatively large n; to
approximate the state trajectories acceptably. This led to longer solution times than the
solution times of the nonsmooth shooting method. It was observed that if A could not be
driven to zero, gross errors in the approximation of the state trajectories could occur even for
small values of A. In this regard, the MPEC approach is fragile. It is known that collocation
methods produce state trajectories that are not realistic if constraints in the mathematical
program representing dynamics are not satisfied. In the case of varying dynamics, the error
incurred may be even more because the incorrect set of equations governing the dynamics

between two time points may be selected. Even if a good starting point is provided, the
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MPEC method may fail to produce realistic state trajectories and fail as can be seen in
Table 8.6.

The MPEC approach may provide misleading results as can be seen in the solution of the
variant dynamic optimization problem. Even though the voltage trajectories predicted by
the MPEC approach looked reasonable and correct, comparison to simulation revealed gross
errors. The nonsmooth shooting method should be used in dynamic optimization problems
involving highly nonlinear and stiff dynamics and constraints on the transient behavior. In
these problems, the accuracy obtained in the computation of the state trajectories using an

initial value problem solver is crucial in obtaining a correct result.

8.2 Cascading Tanks: Empirical Complexity Analysis

The empirical scaling of the CPU times required by the nonsmooth single shooting algorithm

introduced in Chapter 7 is investigated using a literature example described in [106].

8.2.1 System Dynamics

The system considered in this case study is originally presented in [106] for the empirical
complexity analysis of the MILP approach to solving dynamic optimization problems involv-
ing systems with varying structure. A set of prismatic tanks with constant cross-sections
connected in series using check valves to prevent flow in the reverse direction (Figure 8-10)
constitute the model. The detailed listing of the elements of the system and the dynamic
optimization formulation is as follows:

e ty: initial time in seconds, tg = 0.0 s.

e t4: final time in seconds, ty = 100.0 s.

e T': time interval in seconds; 1" = [to, t/]

e AT': the duration in seconds; AT = 100.0 s.
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Figure 8-10: Cascaded Tanks Configuration.

e np: the number of tanks connected in series; 3 < ny < 16.

e 7: the set of tank indices, Z = {1,...,ny}. Tank i+ 1 is downstream of tank ¢ and
flow from tank ¢ 4+ 1 to tank ¢ is prevented by the connecting check valve.

o {A;}7: the cross sectional area of the tanks in m?. A; = 3/ny m? for all 4 in Z.

o {H;}!7,: the height of the feed pipe connecting tank ¢ — 1 to tank i. H; = 0.5m for all
i€ Z\{1}.

e n.:. number of epochs used in the control vector parameterization; 6 < n., < 100.

e [C: the set of epoch indices; KK = {1,...,n.}.

o {1} }}e,: the time intervals for each epoch. T}, = [ay, Ox) where oy, = to + %”Z_l) and
B = to + 22E for all & in K.

o {{wy,;}ie }i%: the valve openings. 0.25 < wy,; < 1.25 for all £ € K and for all

ie€ZU{0}.

n,: number of parameters; n, = n. - (np + 1).

p : the parameter vector. p € R™ and wg; = Pin.+k, k € K and ¢ € ZU {0}.

P : the parameter set. P is an open subset of R such that [0.25,1.25|"» C P.

e w; : T'x P — R: the controls of the system for all i € ZU {0}. w;(t,p) = wix, Vt €
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Ty, Vi e ZU{0} and w;(ts,p) = wy, 4, Vi € TU{0}.

e h;: T x P — R: the liquid height in the tank with index ¢ for all ¢ € Z in m.

e h: T xP — R": the vector of liquid heights which is the continuous state of the
system, h(t,p) = (hi(t,p),. .., hn, (£, D))

e X': the state space. X = R"T.

e (Cy: valve constant of valve 0 in m?/s; Cp = 0.1 m3/s.

e {C;}'7,: valve constant of valve i in m?®/s; C; = 0.1 m*®/s.

o [;: T xP xX — R, the outlet flow rate from tank 7 in m?/s for all i € .

o [,: T x P — R, the inlet flow rate to tank 1 in m3/s.

e k.. a positive regularization constant, k. = 0.0001 m.

e hy: the lower bound on acceptable liquid heights in m, hy, = 0.7 m.

e hy: the upper bound on acceptable liquid heights in m, Ay = 0.8 m.

The numerical values except for k, are from [106].

The equations that govern the evolution of the cascaded tanks system are:

hu(t,B) = (Fia(t,p) = Fi(t, p)), Ve € (o, 1], (5.2.1)
Fo(t, p) = Cow()(t, p), vVt € [t(), tf], (822)

4

vVt € [to,tf], (823)

VIAR(E, D)+ k-

Ahi(t p) = Vi e T\{nr, (8.2.4)
0 it Ahi(t,p) <0,
_ hi(t,p) = (hix1(t,p) — Hiy1) if hipa(t, p) > Higr,
Ahi(t,p) = ! ' ’ Y VieT\nr}, (82.5)
hi(t,p) if hip1(t,p) < Hiyr,
Ah, (t,p) = h, (t,p), (8.2.6)
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Equation (8.2.1) represents conservation of mass assuming constant liquid density. Equation
(8.2.2) governs the flow through the inlet valve. The difference between the liquid heights
in consecutive tanks determines the flow between consecutive tanks. If the liquid height in
the downstream tank is less than the height of the feed pipe, then the liquid height in the
downstream tank does not affect the flow rate. This phenomena is captured in (8.2.5) and
(8.2.6). It is possible that for some initial conditions that the downstream liquid height is
large enough to force a flow in the reverse direction. In this case Ah;(t,p) is negative. Since
the valves connecting the tanks are check valves, there can be no reverse flow. This situation
is captured in (8.2.4). The flow relation used in (8.2.3) is an approximation of the square
root function. If Ah,(¢,p) is much larger than k. then the flow is approximately propor-
tional to \/m . When Ah,(t, p) is very small, the flow relation becomes approximately
Ahi(t,p)/Vk,. As aresult, the function y — y/(/]y| + k) is continuously differentiable in
the neighborhood of 0. The equations are not locally Lipschitz continuous if this regular-
ization is not made. The model equations differ in this point from those presented in [106].

Finally, (8.2.7) determines the initial conditions of the state.

8.2.2 Dynamic Optimization Formulation

The aim of the dynamic optimization problem is to bring the liquid heights to values between
hy, and hy and minimize the deviation of the liquid heights from this range. Given h;(t, p),
the deviation is max(0, hy —h;(t, p), hi(t,p) —hy). The total deviation of liquid height 7 is the
integral of the deviation at ¢ over the interval [to,ts]. Therefore, the dynamic optimization
problem is:

nrt tf
min J(p) =Y / max(0, by, — hit, p), hi(t, p) — hu)dt (8.2.8)
i=1 7o

PEP

5.t.0.25 < wy,; < 1.25, Vk € K, Vi € Zeup{0}.
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where h;(t,p) are computed using (8.2.1)-(8.2.7). Note that the objective function can be
computed by adding auxiliary states z; : 7' x P — R to (8.2.1)-(8.2.7) whose evolutions are

governed by

%i(t,p) = max(0, hy, — hi(t,p), hi(t,p) — hy), YVt € (to, tf], Vi € I, (8.2.9)

zi(to,p) =0,Vi € . (8.2.10)

As a result X becomes R?"7 .

The final form of the optimization problem is

nr

min J(p) = Y _ zl(ty.p) (8.2.11)

ep
P i=1

st:025 <w;, <1.25, VEe K, VieZ,.

where z; are computed using (8.2.1)-(8.2.7) and (8.2.9)-(8.2.10).

8.2.3 Scaling of the Nonsmooth Single Shooting Method with Re-

spect to Number of Tanks and Number of Epochs

In this section empirical complexity analysis results are presented. Theoretical complex-
ity analysis of bundle methods does not currently exist. Therefore, the complexity of the
nonsmooth shooting method is analyzed empirically.

Problem (8.2.8) is solved for different values of ny and n. values to determine empirically
how the solution times of the nonsmooth shooting method scales. The study is similar to
the empirical complexity analysis in [106] carried out for the MILP approach that can be

used to solve dynamic problem (8.2.8).

For the integration of the dynamics and the auxiliary equations, DSL48SE ([108, 109, 36])
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is used with code generated by DAEPACK ([107]). The nonlinear program is solved by the
proximal bundle solver in [64] on a SUSE Linux 10 Virtual Machine with 1 GB of RAM
and a 2.4 GHz Intel Core Duo CPU using two sets of tolerances summarized in Table 8.11.

The valve openings are initialized at the lower bound value of 0.25. All optimization runs

Label | Absolute Tolerance | Relative Tolerance | Optimality Tolerance
R 1.0 x 1076 1.0 x 1076 1.0 x 10~*
T 1.0 x 1077 1.0 x 1077 1.0 x 107°

Table 8.11: Cascading Tanks: Simulation and optimization tolerances.

terminate satisfying the optimality tolerance. The solution obtained for the case n. = 10
and np = 3 and the corresponding state trajectories are shown in Figures 8-11 and 8-12,

respectively. The raw data obtained from the multiple optimization runs are documented

Valve Opening
Valve Opening

0 0 10 20 30 40 50 60 70 80 90 100 o 10 20 30 40 50 60 70 80 20 100
Time [s]

(b) w1 (t7 p)

Time [s]

(a) wo(t, p)

Valve Opening

. . . . . 1 .
0 10 20 30 40 50 60 70 80 % 100
Time [s]

| . . . . . , . .
0 10 20 30 40 50 60 70 80 90 100
Time [s]

(C) w2 (tv p) (d) w3 (tv p)

Figure 8-11: Cascading Tanks: Optimal valve openings for ny = 3.0 and n. = 10.
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Figure 8-12: Cascading Tanks: Plot of optimal state trajectories for ny = 3.0 and n, = 10.

in Tables 8.12 and 8.13. The column with the label “total” contains the total number of
equations integrated. This number is the sum of the number of original equations of the
system and the associated sensitivity equations. The column with label “ndf” contains the
number of discontinuity functions. Note that for each state z;, two discontinuity functions
are required. The first tank requires no discontinuity function and the last one requires only
one. All other tanks require two discontinuity functions to compute the associated sensitivity
equations. The total number of equations equals (2nr + ndf) - (n, + 1) where ndf stands for
the number of discontinuity functions. This case study has a special structure. The total
number of equations is a quadratic function of the number of tanks and a linear function of

7

the parameters because n, = n. - (ny + 1). The column with the label “J(p*)” contains the
optimal solution values. The seconds taken to solve the dynamic optimization problem is
in the “CPU” column. The “NIT” column contains the number of iterations carried out by
the bundle solver. Finally, the “NFV” column contains the number of times the integrator
is called to solve the problem. R and T denote the two sets of tolerances used. Note that

the integration method used exploits the block lower triangular structure of the state and

sensitivity equations ([36]) to efficiently solve these equations.

The optimal solution values do not change appreciably with the tolerances. On the other
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NEQ J(p*) CPU [¢] NIT NEFV
total | ndf R T R T R T R T
3 40 656 10 | 14.41 | 14.42 11.54 13.99 51 | 47 | 52 | 48
4 | 50 | 1122 | 14 | 19.30 | 19.29 | 24.32 39.65 56 | 73 | 57 | T4
5 1 60 | 1708 | 18 | 24.48 | 24.45 | 31.06 53.34 | 46 | 63 | 47 | 64
6 | 70 | 2414 | 22 | 29.67 | 29.67 | 64.66 99.27 | 65 | 78 | 66 | 79
7
8
9

nr np

80 | 3240 | 26 | 35.08 | 35.07 | 89.38 | 145.64 | 61 | 80 | 66 | 81
90 | 4186 | 30 | 40.68 | 40.67 | 121.63 | 17797 | 68 | 75 | 69 | 76
100 | 5252 | 34 | 46.31 | 46.33 | 205.98 | 214.95 | 76 | 64 | 77 | 65
10 | 110 | 6438 | 38 | 52.13 | 52.13 | 278.79 | 430.00 | 79 | 104 | 80 | 106
11 | 120 | 7744 | 42 | 58.01 | 58.00 | 339.81 | 550.53 | 75 | 105 | 76 | 106
12 | 130 | 9170 | 46 | 63.90 | 63.88 | 507.94 | 718.60 | 95 | 111 | 96 | 112
13 | 140 | 10716 | 50 | 69.87 | 69.88 | 636.29 | 790.66 | 92 | 92 | 93 | 93
14 | 150 | 12382 | 54 | 75.98 | 75.93 | 789.95 | 1538.94 | 94 | 156 | 95 | 157
15 | 160 | 14168 | 58 | 82.10 | 82.10 | 1091.52 | 1488.33 | 125 | 125 | 126 | 126
16 | 170 | 16074 | 62 | 88.35 | 88.31 | 1288.12 | 2422.15 | 105 | 174 | 106 | 175

Table 8.12: Cascading Tanks: Optimization run data for n, = 10 and different numbers of
tanks.
hand, the CPU times differ significantly with tolerances. The first reason is the increased
amount of time to simulate the dynamics using tighter simulation tolerances. The second
reason is the additional bundle solver iterations required to satisfy tighter optimality toler-
ances.

The functional dependence of CPU times on the number of epochs and number of tanks
is estimated by fitting functions to the data in Tables 8.12 and 8.13. It is determined that
the dependence of CPU times on ny and n. is not exponential by investigating the mappings
nr — In(r(nr,ne)) for a fixed value of n, and n, — In(r(nr,n.)) for a fixed value of ny
where 7(nr, n.) represents the CPU times. It is found that the growth of these mappings is
slower than linear, implying that the CPU time growth is slower than exponential growth.

It is assumed that the CPU time grows polynomially with n. and ny. The mappings
In(nr) — In(7(nr, ne)) for fixed n. and In(n.) — In(7(nr,ne)) for fixed ny are investigated
where ny = nr/3, n. = n./10 and 7(ngp,n.) = 7(nr,n.)/7(3,10) in order to determine the

degree of the polynomial.
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Table 8.13: Cascading Tanks

epochs

The curve fitting results are shown in Figures 8-13 and 8-14. Detailed information can
be found in Tables 8.15 and 8.14. The column with the label “SSE” contains the sum of the
squared errors, the columns with labels “R?” and “R?” contain the R-squared and adjusted

R-squared values, respectively. Finally the “RMSE” contains the root mean squared error.

The results suggest that the CPU time to obtain a solution is a cubic function of the
number of tanks and at most a quadratic function of the number of epochs. The polynomials

fitted to the data are shown in Figures 8-15 and 8-16. Additional information can be found

in Tables 8.16 and 8.17.

: Optimization run data for ny = 3 and different numbers of
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o
y =2.8753x - 0.24197 3.5

H H H H i i i H 5 . i . |
0 0.2 0.4 0.6 0.8 1 12 14 1.6 18 0 05 1 15 2 25
In(iiy) In(ig)

(a) nr (b) 7e

Figure 8-13: Cascading Tanks: Plot of 7 versus nr and 7 versus 7, for the relaxed tolerance
case.
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In(y) In(fe)
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Figure 8-14: Cascading Tanks: Plot of 7 versus ny and 7 versus n, tight tolerance case.

8.2.4 Conclusion

The complexity of the nonsmooth single shooting method is investigated using a literature
problem introduced in [106]. It is observed that the CPU times strongly depend on simulation
and optimality tolerances used. In addition, for this literature example, it is determined that
the time required to solve the dynamic optimization problem grows polynomially with the
number of tanks hence states and the number of epochs. The dependence on the number
of tanks is cubic and the dependence on the number of epochs is quadratic. The number
of equations integrated depends quadratically on the number of tanks hence the number of

states and the number of equations integrated depends linearly on the number of parameters
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Figure 8-15: Cascading Tanks: Plot of CPU time versus nr and n. for the relaxed tolerance
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Figure 8-16: Cascading Tanks: Plot of CPU time versus nr and n, for the tight tolerance

case.

for this example.

8.3 Cascading Tank: Comparison with the MPEC Ap-

proach

The dynamic optimization problem (8.2.8) is solved using the MPEC approach [12] and the

solution times are compared to the nonsmooth shooting method solution times.



Y =p1T+p2

Coefficients SSE R 72 RMSE 99% Confidence Intervals

b1 P2 P1 P2
R | 2.8753 | —0.24197 | 0.2796 | 0.9903 | 0.9895 | 0.1526 | [2.6248,3.1257] | [—0.5314,0.0474]
T | 2.9295 | —0.08688 | 0.5407 | 0.9821 | 0.9806 | 0.2123 | [2.5811,3.2779] | [—0.4893,0.3156]

Table 8.14: Cascading Tanks: Curve fitting results for the natural logarithm of the normal-

ized CPU times versus natural logarithm of the normalized number of states.

Y =pix +p2
Coefficients SSE R 22 | RMSE 99% Confidence Intervals
b1 P2 p1 P2
R | 1.4819 | —0.14959 | 0.3727 | 0.9788 | 0.9775 | 0.1481 | [1.3399,1.6465] | [—0.4450, 0.0652]
T | 1.3162 | —0.01854 | 1.2750 | 0.9536 | 0.9512 | 0.2591 | [1.1257,1.5068] | [—0.6061, 0.2353]

Table 8.15: Cascading Tanks: Curve fitting results for the natural logarithm of the normal-
ized CPU times versus natural logarithm of the normalized number of epochs.

The MPEC formulation of the dynamic optimization problem (8.2.11) is

min J

X

Ne

nt nr

(X) = Z Z Z dt(ug ;; + ufs ;) + pA

k=1 j=2 i=1

5.t higi = hy —uf,, Yk €K, Vi€ J,VieT,

hiji =ho +up,;, Yk € K, Vj € J Vi€,

up >0, up ., >0, Ve K, Vje J,Viel,

AT
hij1,i01 — Hipr = Ah

— Ah

kj+1,i+1

k,j+1,i+1>

Prigirivt = (1= Negrir) AR, VREK, Vi€ T, Vi €T,

Pok gttt = Mot A 50, V€K, Vi€ T, Vi€ T,

Ahgjiri = hejari = Mrjrrint A0 4000, YE €K, Vi€ T, Vi e T,

N

k7j7l

khjil

>0, Ah..>0VkeK,VjeT, Viel,

00< ;i <10,Vke K, VjeJ, Viel,

Ahk,j—i—l,i

= AR — Ahy,

k41 kit VEEK, Vi€ J.Viel,
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(8.3.1)

(8.3.2)
(8.3.3)

(8.3.4)

VkeK,VjeJ,VicZ, (8.3.5)

(8.3.6)
(8.3.7)
(8.3.8)
(8.3.9)
(8.3.10)

(8.3.11)




Y = p1a” + pott + ps
Coefficients SSE R 72 RMSE
y4! P2 D3

R | 0.024557 | 0.88696 | —0.54644 8263 0.9640 0.9600 21.43

T | 0.06280 | —1.0661 34.35 2.334 x 10* | 0.9613 0.9570 36.01
99% Confidence Intervals

b1 P2 b3
R [0.0068, 0.0423] [—0.9836, 2.7525] [—41.1879, 40.0951]
T [0.0330, 0.09260] [—4.2100, 2.0777] [—0.3396, 1.0266]

Table 8.16: Cascading Tanks: Curve fitting results for the CPU times versus number of

epochs.
y = p1a’ + por® + psx + py
Coeflicients SSE R 72 RMSE
b1 b2 b3 P4
R | 0.54942 | 5.458 31.26 —49.733 5278 0.9977 | 0.9970 22.97
T | 1.8844 | 33.658 | 227.63 | —445.97 | 1.8143 x 10° | 0.9734 | 0.9734 134.6
99% Confidence Intervals
P1 b2 P3 P4

R | [0.1603,0.9386] [—16.6306,5.7147] [—66.3452,128.872] | [—302.0056, 202.5392]
T | [-0.3963,4.1652] | [—99.1404, 31.8236] [—344.44,799.70] [—1924.5,1032.0]

Table 8.17: Cascading Tanks: Curve fitting results for the CPU times versus number of

tanks.

Pkt = (1 —wijpp)ARL o, VR €K, Vje T, Viel,
Pajj+ii = Wijr1plhy ;5 VR €K, V) € JViel,

Ah;

k?j"_lvnT

Ah;,

k?j"_lvnT

= hkz,j—i—l,nTa =0, Vk € IC) v] € jv

Writime =1, Vk €K, Vj € J,

Ah .

k:)j7l

>0, Ay, >0Vke K, VjeJ, VieT,
0.0 <wiyi < LOVEEK, Vi€ T, Viel,

+
k,j+1,

+
\/wk,j-‘rLiAhk,j—H,z’ + k.

Frj+10 = Cowko; Yk € K, Vj € T,

Wi 5 Ah —
gLk Vkek, Vjied VieT,

sz,j—i—l,i = Ciwk:,i
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(8.3.12)
(8.3.13)
(8.3.14)
(8.3.15)
(8.3.16)

(8.3.17)

(8.3.18)

(8.3.19)




Frjt14-
B jors = hkhj,i“_dt( kj+1,i—1

— F,
A;

P11 = Nikneir Yk € K, Vi € T,

4 Ne Nt

nr

Z Z Zpl,k,j,ia

=1 k=1 j=2

i=1

’J'*“')  Vkek,VjeJ, YieI, (83.20)

(8.3.21)

Dikji >0, Vie L, Vke K, VjeJ, Viel,

0.25 < wy,; < 1.25, Vk € K, Vi € T,

hlvl,i - 01, VZ c I,

where

(8.3.22)

e 1, is the number of finite elements in each epoch;

e i is the penalty parameter;
o T=T\{1}, J = I\{n}, K=K\ {n.}, L={1,....4};
i {{{uka 1= l}k 1 and {{{uka i=

from the desired interval,

i bee, are the deviations of the liquid heights

o {{{hk;i L1 }ee, are the values of the liquid levels at epoch & and finite element j;

b {{{{pkw} 1}

L}, are the deviations from the complementarity conditions;

e A is the sum of the deviations from the complementarity conditions;

® {{{Ahka i ?tl}k
{{H{Ah 1 e

o {{{Frjitrcy ;Ltzl}}i:TO

element 7j;

e (t is the time step;

1 {{{Ahka l}k 1 {{{AZM it ;Lt1}k 1 {{{Ahka i ?tl}k 1

1 {{{Wk”} t1}

, are the complementarity variables;

are the inlet and outlet flows of the tanks at epoch k and finite

o {{wg;}re i, are the valve openings;

e X is the set {{{wm}Z;

Lo H{{Fkjiti

b iz, {{{AR HE LRy

{{{Ahka l}k 1’ {{{Aka ?1 ;Lt l}k 1’ {{{Ahka ?1 ;Ltl}k 1
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{H{AR; iy ey {H{wi e ie Hllprs i o s Y
A, {{{hkyz l}k 1 {{{uk]z l}k 1 {{{uk]z 1}

The dynamics are discretized using an implicit Euler scheme and are represented by (8.3.20).
The inlet and outlet flows computed using (8.3.18) and (8.3.19). Continuity of the state
variables is ensured by (8.3.21). The complementarity conditions determining the height are
n (8.3.5)-(8.3.17). Equations (8.3.2) (8.3.3) and (8.3.4) determine the deviations of liquid
heights from the desired interval. Initial conditions for the states are in (8.3.22).

The program (8.3.1) is implemented in GAMS 23.1 and solved with the nonlinear pro-
gramming solver IPOPT ([112]) as is done in [12] to a final tolerance of 1.0 x 107% on a
SUSE Linux 10 Virtual Machine with 1 GB of memory and a 2.4 GHz Intel Core Duo CPU.
The program is solved for various numbers of tanks and epochs. The initial X is computed
from data obtained by simulating the dynamics with all valve openings equal to 0.25. The
number of finite elements, n, is set to 10.

The CPU Times and the objective values are compared to the results obtained using
the nonsmooth shooting method with relaxed tolerances. Figures 8-17 and 8-18 compare
the CPU times and objective values. The objective values for the MPEC are the values

computed by simulating the valve openings obtained as the solution of (8.3.1).
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Figure 8-17: Cascading Tanks: MPEC Approach vs. The Single Nonsmooth Shooting
Method for different numbers of tanks.
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Figure 8-18: Cascading Tanks: MPEC Approach vs. The Nonsmooth Single Shooting
Method for different numbers of epochs.

8.3.1 Conclusion

The objective values do not differ appreciably. The CPU times in case of varying tanks
favor the MPEC approach slightly. The CPU times in case of varying epoch numbers favor
the nonsmooth shooting method slightly. The cascading tank system has dynamics less
nonlinear and stiff than the electric circuit considered in previous sections. For this example,

the nonsmooth shooting method and the MPEC approach perform comparably.

8.4 Cascaded Tank Example: Comparison with the

MILP approach

In this section, the cascading tanks example is solved using a mixed integer linear program
(MILP) approach. Similar to the MPEC approach, the MILP approach discretizes the
dynamics. Unlike the MPEC approach, binary variables are used to select the vector field

with which the states evolve between two time points and the dynamics are linearized.
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8.4.1 MILP Formulation

In order to apply an MILP approach similar to the one described in [106], the valve equation
in (8.2.3) needs to be linearized. The set [0.25,1.25] x [0.0,1.0] is partitioned into subsets

D, = [dwk, swl] x [6h%, 5hY] such that:

e O={1l,....m}, P=A{1,....,n.}, g€ Q, pEP;
o dwl =025+ 22D 5yl = 0.25 + L2209 for all g € Q;

ny

o Ohk = LOP=D §pl — L) for all p € P;

Na

wg — (5qu 4 5w§])/2, for all ¢ € Q;

hO = (hL + 6RY) /2, for all p € P;

F: Xl X X2 —R: (1'1,1’2) = O]_[L’l\/lx?w where Xl =R and X2 = ]R,

Fz?,q = F(hngg)a for all q < Q, for all pE 77;

Jwbpq = JlF(hg,wg), for all ¢ € Q, for all p € P;

InFpq = JF(h), w)) for all ¢ € Q, for all p € P.

The valve equation is approximated by the linearization:
F([L’l,l’g) ~ Fpog + JwFpg(ZL'l - wg) + Jthg([L’g — hg) if (1'1,1’2) € Dp7q. (841)

Note that the approximation is a discontinuous mapping on D. The approximation is multi-
valued on the intersections of the boundaries of the D, ,. Continuous approximations are
possible but require more partitions of the domain, leading to more binary variables. The
following MILP uses these linearizations and ensures that if the liquid level difference Ah;

is zero, there is no flow irrespective of what the linearizations predict:

Ne N

min J(X) = SO dt(ug, +ufly, (8.4.2)

k=1 i=1

iy = hy —ug,;, Yk € K, Vi€ T,
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hiy = hu +ugy, Vk € K, Vi € T,

hiivr — Hy = AW+ Ah,, Ve e K, Vi e T,
0.0 > AR, — Brihmax, Yk € K, Vi €T,

0.0 < Ahp; 4 (1= Bri)hmax, YRk €K, Vie T,
Ahf,. =00, Ah, = 0.0, Brn, =0,
Ahf;>0,0, Ahy; <0.0, B € {0,1}, Vk € K,
Ahy; = hi; — A, V€K, Vi € T,

Ahy; > 0.0, Vk e K, Vi € T,

Ahg; = Ahf, + Ahy,, Ve K, Vie T, (8.4.3)
0.0 > ALS; — apihmax, Yk € K, Vi€ T, (8.4.4)
0.0 < Ahp; 4 (1 = i) hmax, VE € K, Vi € T, (8.4.5)
ARl > 0.0, Ahy, <00, ag; € {0,1}, VE € K, Vi € T, (8.4.6)
Fripag = Fpy+ JuFpq(wii —w)) + JnFpo(AWL, — 1), (8.4.7)
VkeK,VieI VpeP, Vqge Q, (8.4.8)
Fk,i < Fripa+ (1= Yip) Frnae + (1 = Miip) Frnaa (8.4.9)
VEe K, VieTI, VpeP, VqgeQ, (8.4.10)
Fri 2 Fripg— (1= ip)Fnae — (1= Mhip) Frae, (8.4.11)
VEe K, VieTI, VpeP, VqgeQ, (8.4.12)
Ship > Ohb iy, Yk €K, Vi € T, Vp € P, (8.4.13)
Shiip < Oh) Viip, Yk €K, Vi €L, Vp € P, (8.4.14)
Shiip < PmaxVhip, Yk €K, Vi €I, Vp € P, (8.4.15)
Shiip > 0.0, veip €{0,1}, Vk €K, Vi € Z, Vp € P, (8.4.16)
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Ahpi =Y Ohpip, ¥k € K, Vi €T,

p=1

1= Z%,z‘,p,Vk e, Viel,

p=1

Wi > 5w§nk7i7q, Vk e K, VieZ, Vqe Q,
Wi g < 5w§]nk,i,q, Vk e K, Vi eI, Vq € Q,

5wk,i,q S WmazMk,i,q» Vk € Kj, Vi € I, VQ € Qv

SWhiq > 0.0, Meig €10,1}, VkEK, Vi €T, Vg € Q,

p
Wei = Y Owpig Yk €K, Vi €T,

g=1

np
1= Zﬂk,i,q, Vk e K, VieT,

q=1
0.25 < wy; < 1.25, Vk € K, Vi € ZU {0},
Froi=F,+F_,VkeK,VieT,
0.0 > Ff; = pikiFmae, Yk €K, Vi €T,
0.0 < F;+ (1= pini) Frnaw, VE €K, Vi €T,
5 >0.0, F; <00, € {0,1}, VE€ K, Vi e T,
Fri < apiKhma,, Vk € K, Vi € T,
Fri < KAWL, Yk e K, Viel,
Fri < Ff 4+ (1= o) Khinaa, Yk € K, Vie T,
Fri > Ff— (1= i) Khinaa, Yk €K, Vie T,
Fro=Co-wyy, Yk € K,

dt

Pt = by + Z(Fm_l — Fy.), Vk € K, Viel,

0.0 < hy; < 1.00,
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(8.4.18)

(8.4.19)
(8.4.20)
(8.4.21)

(8.4.22)

(8.4.23)

(8.4.24)

(8.4.25)
(8.4.26)
(8.4.27)
(8.4.28)
(8.4.29)
(8.4.30)
(8.4.31)

(8.4.32)



where

o ©=K\{n}, T =T\{n}:

o {{hg;}pe,}i*, are the liquid levels at epoch k for tank i;

o {{ug, by ity and {{u] }p< 117, are the deviations of the liquid levels from the desired

interval at epoch k for tank 7;

o {{wy,;}re,}1, are the valve openings;

e [, and K are large numbers, h,,,, = 1.00;

e X represents all the unknown variables in program (8.4.2).

The constraint (8.4.3) decomposes the liquid level difference, Ah;(t,p) at epoch k, into
a nonnegative number, Ah;i and a nonpositive number, Ah, ;. Flow through valve i occurs
only if Ak, > 0. If Ahy; > 0, then, the constraints (8.4.3)- (8.4.6) are satisfied only if
Ah,;i =0, Ah,:i = Ahy,; and oy ; = 1. If Ahy; < 0, then, these constraints are satisfied only
if Ah,ii =0, Ah,;i = Ahy,; and oy ; = 0. In case, Ahy; = 0, these constraints are satisfied if
Ahy ;= Ahy ;= 0 and oy € {0, 1}.

The constraints (8.4.13)-(8.4.24) determine which linearization to use by determining in
which subdomain (wy;, Ahy;) is located. If (wy;, Ahy;) € Dyg, then o5 =1, npip = 1.
The constraints (8.4.18) and (8.4.24) ensure that there is only one p and one ¢ such that
Yiip = 1, Meip = 1 hold given i € 7 and k € K. Using these 7y, and 1,4, constraints
(8.4.9) and (8.4.11) determine the flows from the appropriate linearizations.

Constraints (8.4.25)-(8.4.32) ensure that the flow Fj; is positive or zero in case Ah; = 0.

These constraints also enforce ay,; = 0 if Ahy; = 0.

8.4.2 MILP Approach Results

The MILP formulation (8.4.2) was implemented in GAMS 23.1 and solved with the MILP
solver CPLEX using a relative optimality gap of 0.01. The optimization runs were terminated

if the CPU times exceeded 10, 000 seconds. The formulation was solved for different numbers
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of tanks and epoch numbers using different numbers of linearizations. The CPU times of
these runs as well as the objective values obtained are in Figures 8-19, 8-20, 8-21, 8-22, 8-23
and 8-24. The logarithm of the CPU times is plotted because the CPU times vary over
a wide range. Note that in case n, = 3 and n, = 3, some optimization runs had to be
terminated because the CPU times exceeded 10,000 seconds. It can be seen that the CPU

times scale exponentially with the number of epochs and states. This behavior is expected

in the MILP approach.

[ NG3)

25 30 40 40 50 6
Number of Epochs

(a) CPU Time (b) Objective

Iog,(CPU TIME)
Objective

| I I I I
“ 5 810 15 20 50 60 0 5 810 15 20 25 30
Number of Epochs

Figure 8-19: Cascading Tanks: MILP Approach CPU times and optimal objective values for
different numbers of epochs and n, =1, n, = 1.

T T T
q ey
. 1 . I I
25 30 40 50 60 40 50 60
Number of Epochs

(a) CPU Time (b) Objective

N
=

e

Objective
4N W oW
o o (=] o
P— 77—

o
T

1og, ,(CPU TIME)

°
T

o w
T

5 810 15 20

25 30
Number of Epochs

I L L
5 810 15 20

Figure 8-20: Cascading Tanks: MILP Approach CPU times and optimal objective values for
different numbers of epochs and n, = 2, n, = 2.

In the objective plots J(p*) denotes the objective values predicted by the MILP for-
mulation and J(p) denotes the objective values obtained by simulating the valve openings
obtained as a part of the solution of (8.4.2). The difference between J(p*) and .J(p*) is due

to the approximation of the original nonlinear dynamics using linearizations and discretiza-
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Figure 8-21: Cascading Tanks: MILP Approach CPU times and optimal objective values for
different numbers of epochs and n, = 3, n, = 3.
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Figure 8-22: Cascading Tanks: MILP Approach CPU times and optimal objective values for
different numbers of tanks and n, = 1, ny, = 1.

tion. As expected, the difference decreases if the number of linearizations and the number
of epochs is increased. However, in this case, the CPU times become prohibitively large.
The MILP predicted state trajectories and the actual trajectories obtained using simulation
of the optimal valve openings are in Figures 8-25, 8-26 and 8-27 for various number of lin-
earizations and n, = 60. It can be seen that if n, = 3, n, = 3, n. = 60, the dynamics
are approximated well enough for the case np = 3.  The comparison of objective values
and CPU times for the case n, = 3 and n;, = 3 with the nonsmooth single shooting method
results using relaxed tolerances are in Figures 8-28 and 8-29. It is clear that for this example,

the nonsmooth single shooting method performs better.
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Figure 8-23: Cascading Tanks: MILP Approach CPU times and optimal objective values for
different numbers of tanks and n, = 2, n, = 2.
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Figure 8-24: Cascading Tanks: MILP Approach CPU times and optimal objective values for
different numbers of tanks and n, = 3, n, = 3.

8.4.3 Conclusion

The MILP approach requires comparable to or more CPU time than the nonsmooth sin-
gle shooting method to produce acceptable approximations to the state trajectories of the
dynamic system. The CPU times of the MILP approach seem to scale exponentially with
the number of tanks and epochs as expected from the branch and bound algorithm used by
the MILP solver. The MILP approach can in theory find the global minimum of (8.4.2).
However, due to the CPU times required, the MILP approach can only be applied to small
numbers of tanks and epochs. The main issue is the large number of linearizations and
large number of epochs required to approximate the state trajectories reasonably well. For
problems with nonlinear constraints such as the one considered in the Tank Change Over
Case Study, not only the dynamics but also the nonlinear constraints need to be linearized,

leading to problems that are intractable in a reasonable amount of time.
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Figure 8-25: Cascading Tanks: State trajectories for ny = 3, n, = 60, n, = 1, n, = 1.
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Figure 8-26:

Cascading Tanks: State trajectories for ny = 3, n. = 60, n, = 2, n, = 2.

The program (8.4.2) differs from the formulation discussed in [106]. In this study, the
big M method is used whereas in [106] a disjunctive formulation approach is applied. The
big M method was chosen because it is conceptually simpler and easier to implement. It
is known that the disjunctive formulation may result in fewer binary variables. However,
possible exponential growth of the CPU time with respect to number of tanks and number of
epochs is still observed in [106] even when the disjunctive formulation is used. The study in
[106] does not consider the quality of the approximation of the state trajectories and does not
compare simulation results to the solution of the formulated MILP. Even if the disjunctive
formulation is used, the question of how to approximate the nonlinear elements of the model
with linearizations well remains unanswered. A large number of epochs and linearization
points is possibly still required.

In [106], the dynamics of the system are linearized without taking into account physical

behavior. The linearizations used in [106] do not try to account for the fact that if Ahy; =0
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Figure 8-27: Cascading Tanks: State trajectories for ny = 3, n, = 60, n, = 3, n, = 3.
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Figure 8-28: Cascading Tanks: Comparison of objective values and CPU times between the
MILP approach and the nonsmooth single shooting method for varying epochs, ny = 3,
Nng = 3, ny = 3.
for some ¢ € 7 and some k € K, then Fj,; should be zero. Therefore, the modeling approach
in [106] possibly incurs larger approximation error.

There have been attempts to use binary variables without linearizing the nonlinearities
in the dynamics [7]. This approach produces large scale mixed-integer nonlinear programs

(MINLPs). Currently, these programs cannot be solved within reasonable CPU times.

8.5 Tank Change Over

In this section, a dynamic optimization problem introduced in [9] is solved using the non-
smooth single shooting method using the transformation described in §7.3. The dynamic
optimization problem aims to find the optimal schedule to change the contents of a vessel

from CHy4 to Og in the shortest amount of time while avoiding an explosion and using Ny to
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Figure 8-29: Cascading Tanks: Comparison of objective values and CPU times between the
MILP approach and the nonsmooth single shooting method for varying numbers of tanks,
ne = 10, n, = 3, ny = 3.
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Figure 8-30: Tank Change Over: Configuration.

flush CH4 out of the tank if necessary (Figure 8-30).

8.5.1 System Dynamics

The elements of the model are:

e {(: initial time in seconds; o = 0.0 s.

ty: final time in seconds; ¢y < t; < 800 s.

e T': time interval in seconds; 17" = [to, t].

AT' the duration in seconds; AT =ty — to.

n.: number of epochs used in the control vector parametrization; n. = {3,4}.
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e [C: the set of epoch indices; K = {1,...,n.}.

o {T}}pc,: the time intervals for each epoch. Ty = [ay, Br) where oy = to, [, = ty,
ar < By, Yk € K, Bra1 = a, Yk € K\{n.}.

o {AT}}ye,: epoch durations; ATy, = B — ay, Yk € IC, 0.0 s < AT}, < 200.0 s.

e 7 ={CH; =1,Ny =2 0y = 3}: the set of chemical species indices.

o J={CHy=1,Ny =20, =3,0out = 4}: the set of valve indices.

o {{ur;}po,}j=1: the valve opening at epoch k for valve j, 0.0 < wu; < 1.0,V € K, j €
J.

e n,: the number of parameters; n, =4 x n, + ne.

e p: the parameters to be adjusted, p = {{{ux;}1=,}j—1, {ATk}e, }-

e P :the parameter set. P is an open subset of R™» such that [0.0, 1.0]*" x[0.0, 200.0]™ C
P.

o M;:TxP —R, jeJ are the number of moles of each chemical species in the tank.

e x: T'xP — R3: the continuous state of the system; x(¢, p) = (Mcu, (t, p), Mx,(t, ), Mo, (t,P)).

e X: state space of the system. X = R3.

e P:T x P — R: the pressure in the tank in bars.

e u; : T xP — [0,1], j € J: the controls of the system. wu;(t,p) = uy;, Vt € T,
Vi e J,Vk € K. uj(ty,p) =u,,j, Vi€ J.

3

e |/: the volume of the tank in m®.

e T the temperature of the whole system in K.

bar-m?
mol-K *

e R: the universal gas constant in

o I j¢€ J: supply and discharge pressures in bar.

mol
s-bar *

e C,;, j€Jand C, oy valve constants in

e k. a small regularization constant in bar.

The values of the parameters of the system are given in Table 8.18.
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The equations describing the dynamics are:

M](tap) = N](tap) - Nout(tap)yj(t7p)> \V/] S \77 Vi € (thtf]’ (851)
Mr(t,p) = ZMj(t,P), vt € [to, ty],
jeg
M;(t.p) .
(t,p) = —L"—%,V Vit € [to,t
yj(ap) MT(t,p)7 j€\77 6[07 f]v
RT
P(t,p) = MT(tup)77 Vit € [to, ty], (8.5.2)
4
o P(tv )
0 if Pjp >1,
N.(t = , ./ BitPp) bi—P(t.p) : P(t,p) Vi e YVt € [tg. t
i(tP) = u;(t, p)C; T e, 053 T <L J, [to, t],
PJ 1 )
| 4(t, P)CiCuy 50.85 if ZE2) < 0.53,
(8.5.3)
3 Pout
0 if Pltp) = L,
Now(t,p) = Pt.p)+Pout P(t.p)— Pour i Pout Vit € [to, tf],
+(t,p) Uout (£, P)Coont 2 V/|P(t.p)—Pout|+ky P(t,p) if0.53 < Pip < 1 o, &
\uout(t,p)C’kaut%O.% if s < 0.53,

o _ 047 VI53
085 V04Tt Ry

MCH4(T,0, p) = 9000, M02 (to, p) = 00, ]\41\]2 (to, p) =0.0.

(8.5.4)

(8.5.5)

Equation (8.5.1) represents mass conservation. The gases in the tank are assumed to be

perfectly mixed ideal gases and (8.5.2) is the ideal gas law. Equation (8.5.3) determines the

inlet flow rates depending on the inlet and tank pressures. If the tank pressure is higher

than the inlet pressure, there is no flow. If the tank pressure is low, then the flow is choked

and depends only on the inlet pressure. Otherwise the flow is non-choked and depends both

on the inlet and tank pressures. The flow out of the tank is governed by (8.5.4). The valve
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T 300.0 K 1% 3.0 m?
Cy.0 8.0 ol Cy.cH, 8.0 ol
Co.N, 8.0 ol Cy.out 8.0 ol

R | 83141073k | po 12.0 bar
Pen, 10.0 bar Py, 7.0 bar
P 2.0 bar ky 1.0- 1073 bar

Table 8.18: Tank Change Over: Model parameter values.

equations for non-choked flow are regularized using k; in order to have PC! equations. C
is a constant to ensure continuity of the valve equations. The valve equations differ from
the equations presented in [9] due to the application of regularization. Finally, the initial

conditions are in (8.5.5).

8.5.2 Safe Operation Conditions for the Tank

There is a chance of forming an explosive mixture during the change over operation. If the
mole fractions satisfy the relation h(ycm, (£, P), yo,(t,p)) < 0 where h : [0,1] x [0,1] — R is
defined by

52 ai(v - 100.0)1 — (1 — v — w) - 100.0 if v € [0.03,063]
h(v,w) =

0 if otherwise

then an explosion cannot occur. The coefficients are tabulated in Table 8.19. The function
h is discontinuous at v = 0.03 and v = 0.63. However, for optimization purposes the points
of interest are S = {(v,w) : h(v,w) > 0} and they coincide with the points S’ = {(v,w) :

max{h(v,w),0} > 0} where h(v,w) = max{h(v,w),0} is a PC' function.
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aq €%) (6%} Oy (€75

—4761.168938 | 892.159351 | —35.94512586 | 93.63386543 | —1.480461088

Table 8.19: Tank Change Over: Path constraint polynomial coefficients.

8.5.3 Dynamic Optimization Formulation

The goal is to achieve the tank change over in the shortest duration without causing an
explosion. The corresponding program is:

min J(p) = t; (8.5.6)

pPEP

~

s.t. h(yCH4(t, p),y02 (t, p)) <0, Vte [to, tf], (857)
Yo, (ty, p) = 0.999, yem, (¢, p) < 0.001,
0.0 < AT}, <200.0, Vk € K,

0.0 <wu,; <10, VkeK, VjedT,

where the tank dynamics evolve according to equations discussed in §8.5.1.

The path constraint (8.5.7) needs to be enforced at all times. However, this is not prac-
tically possible. Instead, this constraint will be replaced with an end point constraint.
Note that A is either zero or a positive number. Then if the constraint (8.5.7) holds
for almost all ¢ € [ty,ts] then f(ff h(ycw, (£, D), Yo, (t,p)) < 0 except on a set of measure
zero. The state trajectories of the dynamic system are absolutely continuous functions of
time given piecewise constant controls. Since h is a continuous function of its arguments,

fotf fL(yCH4(t, P), Yo, (t,p)) <0 implies that the path constraint is satisfied for all t € [to, ¢f].

Formulation (8.5.6) is a nonsmooth optimization problem involving variable integration

intervals. The problem is converted into an equivalent problem with fixed integration inter-
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vals using the transformation in §7.3. The transformed dynamics are:

7(e,p) = ATy, Ve € (k—1,k],Vk € K,

~ A

Mj(eap) = ATk(Nj(Eap) - Nout(eap)gj(€> p))> \V/] € \77 Ve S (k - 1ak]> Vk € ICa
MT(Evp) - ZMj(Evp)a \V/E S [Oane]a
jeT

~ Mj(€7p> .
: = Iy . Ve €10, n,],
7;(e, p) T(ep) jeJ, Veec[0,n]

7€ P
f’(e,p) = MT(e,p)g, Ve € [0, n.),
(o if Zop) >,
Ni(e,p) = (e, p)C 1) L) \/P]f?;if;;pikbpj if 0.53 < PGP < 1, Vj € 7, Ve € [0,nd],
15 (6, D) ChCo 5085 if 262 < 0,53,
0 if priey = 1.
Nowt (€, ) = 3 tigus (€, P) Clp g | ZERL ot \/|ﬁ<67}:§i2j:bﬁ<s,p> if 0.53 < feus <1, Ve € [0,nc],
| Gout (€, P) CiCuout Pepl) 85 if e < 0.53,
0.47 -/1.53

C p—
" 085 V04T + Ky
Me, (0, p) = 900.0, Mo, (0,p) = 0.0, Mx,(0,p) = 0.0, 7(0,p) = t,,

where the following hold

~

Mj(T(Evp)vp) = Mj(E,p), VJ € j, Ve € [Oune]u
Nj(T(Evp)vp) = Nj(E,p), VJ € j, Ve € [Oune]u

uj(r(e, p), p) = 4;(e,p),Vj € J, Ve € [0,n.],

T(ne,p) =ty = ZATk + tp.
k=1
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The final optimization formulation is

= mi AT, D.
J(p) mg; i (8.5.8)
ne—1 k+1 .
st [ ATu(ion,(e.p).do (e, p)de < 0. (8.5.9)
k=1 7k
0.999 — Go, (ne, p) < 0, (8.5.10)
Ycn, (ne, p) — 0.001 <0, (8.5.11)

0.0 < AT, < 200.0, Vk € K,

0.0 <u,; <1.0, VkeK, Vj € J,

where the system evolves according to the transformed dynamics.

8.5.4 Nonsmooth Single Shooting Method Results

For the integration of the dynamics and associated sensitivity equations DSL48SE ([108, 109,
36]) is used with code generated by DAEPACK ([107]). The nonlinear program is solved by
the proximal bundle solver in [64] on a SUSE Linux 10 Virtual Machine with 1 GB of RAM
and a 2.4 GHz Intel Core Duo CPU. The absolute and relative integration tolerances are set
to 1 x 1078, The proximal bundle solver optimality tolerance is set to 1 x 1075,

The constraints (8.5.9), (8.5.11) and (8.5.10) are appended to the objective using exact

penalization to obtain the augmented objective

Z ATy + pp max(0.00,0.999 — go, (ne, p)) + w2 max(0.00, Jcp, (ne, p) — 0.001)+

=1

ne—1 k+1 .
U3 Z / ATkh<gCH4 (67 p)7 QOQ (67 p)>d€
k

where 11, ps and pug are positive penalty parameters. The dynamic optimization program
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is solved repeatedly using monotonically increasing sequences of penalty parameters. The
sequence of penalty parameters are (1) = 50001, po(l) = 4000- 7 and p3(l) = 1000-[ where
[ =1,...,00 is the index of the dynamic optimization program solved. Each problem is
solved to optimality. If the solution of the [th problem is not a feasible point of the original
problem, [ is set to [ + 1 and the process is repeated. Otherwise, the solution of the [th
problem is stationary for the original problem (see the Electric Circuit Case Study (§8.1) for

more information on the exact penalty approach) and the process is terminated.

Three Epochs

The solutions of the program (8.5.8) for the case n, = 3 are presented in this section. The
initial parameter values are in Table 8.21 and the solution is in Table 8.20. The final objective
and constraint values are in Table 8.22. The solution is obtained in 75.80 seconds. The total
number of bundle solver iterations is 421 and the total number of times the dynamics are
simulated is 425. The optimal tank change over time obtained is close to the optimal change
over times reported in [9]. The number of times the dynamics are simulated are significantly
less than those reported in [9]. This is mainly due to the use of exact derivative information.

The initial and final mole fraction profiles corresponding to the initial parameters and
solution of program (8.5.8) are in Figures 8-32 and 8-31. The path constraint and the mole
fractions of CH; and Ny are shown in Figure 8-33. The initial mole fractions and final mole
fractions are marked by arrows. Note that during operation, the system gets very close to
the unsafe zone. In order to minimize the change over time, it is expected that the system

operates close to the unsafe zone.

Four Epochs

This section contains the solution of the program (8.5.8) for the case n. = 4. The program

is solved in 536 seconds. The number of iterations carried out by the bundle solver is 1821
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k ATy | WecH, | Uk0, | Uk Ny | Uk out

1 1 7.97s | 0.00 | 0.00 | 1.00 | 1.00

2 | 110.31s| 0.00 | 1.00 | 1.00 | 1.00

3 | 50.78s | 0.00 | 1.00 | 0.00 | 1.00

Table 8.20: Tank Change Over: Solution of program (8.5.8) for n, = 3.

k | ATy | upcn, | Weo, | UkNy | Uk out

1 |110.0s| 0.5 0.5 0.5 0.5

2 1100s| 0.5 0.5 0.5 0.5

3 |100s| 0.5 0.5 0.5 0.5

Table 8.21: Tank Change Over: Initial parameter values used to solve program (8.5.8) for
Ne = 3.

J(p) | Constraint (8.5.11) | Constraint (8.5.10) | Constraint (8.5.9)

Initial | 30.00 0.5956 0.5950 10.3184

Final | 238.06 —9.0 x 10~ 1.0 x 1074 0.00

Table 8.22: Tank Change Over Case Study: Objective and constraint values of program
(8.5.8) for n, = 3.

T T T T
Epoch 1 ' Epoch 2 : Epoch 3

| | | |
1) 50 100 150 200
Time [s]

Figure 8-31: Tank Change Over: Final mole fraction profiles corresponding to the solution
of (8.5.8) for n, = 3.
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Figure 8-32: Tank Change Over: Initial mole fraction profiles corresponding to parameters
in Table 8.21 of program (8.5.8) for n. = 3.
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Figure 8-33: Tank Change Over: Plot of the path constraint and the mole fraction profiles
corresponding to the solution of (8.5.8) for n, = 3.
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k | ATy | upcH, | ko, | kN, | Ukout

1 [86.31s| 0.00 |0.0240 | 0.6286 | 1.00

2 [ 43.19s | 0.00 |0.9791 | 0.0003 | 1.00

3 | 51.79s | 0.00 1.00 0.00 | 1.00

4 156.50s | 0.00 1.00 0.00 | 1.00

Table 8.23: Tank Change Over: Solution of program (8.5.8) for n, = 4.

k | ATy | upcny | W0, | Uk Ny | Uk out

1 110.0s| 0.5 0.5 0.5 0.5

10.0s| 0.5 0.5 0.5 0.5

10.0s| 0.5 0.5 0.5 0.5

W | W N

10.0s| 0.5 0.5 0.5 0.5

Table 8.24: Tank Change Over: Initial parameter values used to solve program (8.5.8) with
ne = 4.

and the number of times the dynamics were integrated is 1917. The solution and initial
parameter values are in Tables 8.23 and 8.24, respectively. The initial and final objective
and constraint values are in Table 8.25. There is no significant difference in the optimal tank

change over times between the n, = 3 and n. = 4 cases.

J(p) | Constraint (8.5.11) | Constraint (8.5.10) | Constraint (8.5.9)

Initial | 40.00 0.5223 0.5213 116.71

Final | 237.79 6.6 x 107° 9.7 x 107° 0.00

Table 8.25: Tank Change Over: Objective and constraint values of program (8.5.8) with
ne = 4.

314



Drug A

Proliferating

Dormant cancer cells, P

cancer cells,

Healthy cells, Y

Figure 8-34: Chemotherapy Scheduling: Configuration

8.5.5 Conclusion

The time taken to solve (8.5.8) depends strongly on the policy with which the penalty
parameters are updated. In this study, a very simple schedule of monotonically increasing
parameters is used. It is expected that more sophisticated penalty updating policies will

reduce the solution times.

8.6 Chemotherapy Scheduling Case Study

In this section, a modified version of the cell cycle specific chemotherapy model introduced
in [82] is used to determine an optimal chemotherapy drug schedule. The example is used

to compare the nonsmooth single shooting method with a derivative-free method.

8.6.1 System Dynamics

The elements of the model are:
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to: initial time in days; to = 1.0 day.

ty: final time in days; t; = 31 day.

T time interval in days; T = [to, tf].

AT': the duration in days; AT = t; — 1.

n.: number of epochs used in the control vector parameterization; n, = 30.

IC: the set of epoch indices; K = {1,...,n.}.

Ty: epoch k interval. Ty, = [k, k + 1).

AT} epoch duration, AT, =1, Vk € K.

{uar}pe,: drug A dosage in units of drug concentration, [D]; 0 < uy4 < 20.00.
{up}pc,: drug B dosage in units of drug concentration, [D]; 0 < up; < 20.00.

n,: number of parameters, n, = 2n..

p : the parameters to be adjusted. p = {{uax}rs,, {unr}tic,}-

P : the parameter set, an open subset of R*"e such that [0,20]** C P.

ug: T x P —[0,20]: drug A schedule such that us(t,p) = wag, Vt € ty, ua(ty, p) =
UA p, -

up : T x P —[0,20]: drug B schedule such that ug(t,p) = upgy, Vt € ty, up(ts,p) =
UB.n, -

P : T x P — R: the size of the proliferating cancer cell population in the tissue.

Q@ :T x P — R: the size of the quiescent cancer cell population in the tissue.

Y : T x P — R: the size of the healthy cell population in the tissue.

va: T x P — R: drug A concentration in the tissue.

v : T'x P — R: drug B concentration in the tissue.

x : TxP — R5: the continuous state of the system, x(¢,p) = (P(t,p), Q(t,p), Y (¢, p),
va(t, p), vs(t, p)).

X : the state space; X = R®.
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The equations governing the system evolution are:

a=a—m—n,

P(t> p) = OéP(t, p) + bQ(ta p) - FA(UA(t> p)> P(t> p))>Vt € (t()atf]? (861)
0 if UA(t> p) — 04 < O>

FA(UA(t7p>7P(t7p>> = 7Vt € [t07tf]7
ka(va(t,p) —0a)P(t,p)  ifva(t,p) —0a 20,

Q(ta p) = mP(ta p) - bQ(t> p) - FB('UB(ta p)a Q(ta p))? vt e (th tf]? (862)
0 if vg(t, p) — T < 0,

Fp(vp(t,p),Q(t, p)) = Vit € [to, ],
]{IB(’UB(t,p) —@B)Q(t,p) ifUB(t,p) —’(_JB Z 0,

Y(ta p) = UY(ta p)(l - Y(ta p)/K) - kAUA(ta p)Y - kB'UB(ta p)Y(t> p))>Vt € (th tf]a

(8.6.3)
0a(t,p) = ua(t,p) — vava(t,p), vVt € (to, t¢], (8.6.4)
Up(t,p) = up(t,p) — vpus(t,p), vt € (to, ts], (8.6.5)
P(to, p) = 2.00 x 10", Q(to, p) = 8.00 x 10", Y (t,p) = 1.00 x 10'°, (8.6.6)
va(to,p) = 0.0, vp(ty,p) = 0.0. (8.6.7)

The equations describe the behavior of tumor cells and healthy cells in human tissue under
chemotherapy (Figure 8-34). The tissue comprises healthy cells, Y, proliferating tumor
cells, P, and quiescent tumor cells, (). Chemotherapy comprises two drugs; A and B. u4 and
up are the chemotherapy drug schedules. v4 and vg are the exponentially decaying drug
concentrations in the tissue. Tumor cells develop resistance to drugs. As a result, drugs
are effective against the tumor cells only if their concentrations in the tissue are above v4
and vg. A fraction, n, of proliferating cells die of natural causes and and a fraction, m, of

proliferating cells become quiescent cells. The increase in proliferating cell population by
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a | 0.500 day " | v4 10.000 [D]

m | 0218 day~" | v 10.000 [D]

n | 0477 day " | ka | 8.400 x 1073 day ' [D] !
b |0.100 day ' | kp | 8.400 x 103 day '[D] !
o [0.100day ' | K 1.0 x 10" cells

74 | 0.100 day ™" | v5 0.100 day "

Table 8.26: Chemotherapy Scheduling: Model Parameters

cell division is represented as another fraction, a, of the proliferating cell population. In
addition, a fraction, b of quiescent cells become proliferating cells. The tumor cell dynamics
are in (8.6.1) and (8.6.2). A logistic equation (8.6.3) governs the healthy cell population to
ensure that the number of healthy cells does not exceed the carrying capacity, K. The drug
concentrations in the tissue decrease with time according to (8.6.4) and (8.6.5). The initial
cell populations and drug concentrations are in (8.6.6) and (8.6.7). Numerical values for the
parameters are in Table 8.26. Most of the values are obtained from [31] where cell cycle

specific chemotherapy with a single drug and without drug resistance is considered.

8.6.2 Dynamic Optimization Formulation

The goal is to kill as many tumor cells as possible during a 30-day chemotherapy session and

still retain a minimum number of healthy cells at the end. The program:

min J(p) = P(ts,p) + Q(ty, p) (8.6.8)
s.t. Y(ty,p) > 1.0 x 10°, (8.6.9)
UA(tf,p) —|—’UB(tf,p) < 100, (8610)

0.0 < uay < 20.0, k € K,

0.0 < upp < 20.0, k € K,
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is solved to determine such a schedule. Constraint (8.6.9) ensures that the size of final
healthy cell population is above a certain size and constraint (8.6.10) ensures that the final

drug concentration is at an acceptable level.

8.6.3 Nonsmooth Single Shooting Method Results

DSLA8SE is the IVP solver ([108, 109, 36]) used to integrate the dynamics and the auxiliary
equations to obtain an element of the linear Newton approximation. The auxiliary equations
are obtained using automatic differentiation algorithms implemented in DAEPACK ([107]).
The differential equations are integrated with an absolute tolerance of 1 x 10~® and a relative
tolerance of 1 x 1077,

The proximal bundle method in [64] is used to solve (8.6.8). A penalty approach to handle
(8.6.9) and (8.6.10) is used because the algorithm in [64] handles only linear constraints on
the decision variables. The objective of (8.6.8) is augmented with (8.6.9) and (8.6.10) to

obtain the modified objective

P(tf> p) + Q(tf> p) + :umaX(Ymin - Y(tfa p)a O) + ,umaX(UA(tfa p) + UB(tf> p) - 100a O)

where p is the penalty parameter. The modified program is successively solved two times
with increasing penalty parameter to an optimality tolerance of 1 x 107¢. The drug dosages
are set to 2.0 initially. The penalty parameters used are {1000,3000}. The total solution
time was 40.0 seconds on a SUSE Linux 10 Virtual Machine with 1 GB of RAM and a
2.4 GHz Intel Core Duo CPU. The bundle solver required 71 iterations and 78 calls to the
integrator.

The cell population numbers and constraint values at the beginning and end of the
treatment are in Table 8.27. The tumor cell population is reduced to about 11 percent of its

initial size. The drug schedules are shown in Figure 8-35a and Figure 8-35b. The preference
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Beginning of Treatment | End of Treatment
Y 1.00 x 10 cells 1.00 x 108® cells
Q 8.00 x 10" cells 6.66 x 100 cells
P 2.00 x 10* cells 3.73 x 10" cells
VA 0.00 [D] 0.00 D]
UB 0.00 [D] 10.0 [D]

Table 8.27: Chemotherapy Schedule:Cell populations at the beginning and end of treatment

to use drug B is clearly seen. The effects of the drugs are proportional to the corresponding
cell populations. Therefore using drug B results in more effective treatment as the population
of quiescent cells is greater than that of proliferating cells. The drug concentrations are in

8-36a and 8-36b. The cell populations are in Figures 8-37a and 8-37b.
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Figure 8-35: Chemotherapy Schedule: Optimal drug schedules.

8.6.4 Derivative Free Method Results

The Mesh Adaptive Direct Search Method [6] is used to solve program (8.6.8). This method
does not require derivative information and unlike other derivative free methods there are
some theoretical convergence results for locally Lipschitz functions. The algorithm is imple-

mented in the software package NOMAD and the package can be found at http: //www.gerad.ca
/NOMAD.
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Figure 8-36: Chemotherapy Schedule: Drug concentrations in the tissue.
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Figure 8-37: Chemotherapy Schedule: Cell populations.

Initially, the algorithm did not achieve significant progress towards a solution after 2000
evaluations of the objective and constraints with the initial drug dosages set to 2.0. Therefore
the initial dosages were set to zero except the first 3 day dosages for drug B. These were
set to 20. The algorithm was run for 7500 evaluations of the objective and constraints. The
final tumor cell population obtained was 1.12 x 10! cells, the final healthy cell population
was 0.996 x 108 cells and the final drug concentration in the healthy tissue was 10.19 [D].
The algorithm took 56 minutes to produce the results on a SUSE Linux 10 Virtual Machine
with 1 GB of RAM and a 2.4 GHz Intel Core Duo CPU. The data is summarized in Table

8.28. NFV is the number of times the dynamics are simulated and CPU Time is the time
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Nonsmooth Single Shooting | Derivative Free
Y(ts, p*) 1.00 x 10® cells 0.996 x 108 cells
Q(ts,p*) + P(ts, p*) 1.039 x 10 cells 1.12 x 10 cells
valty, p*) + va(ts, p*) 10.00 [D] 10.19 [D]
CPU Time [s] 40.0 s 3360.0 s
NFV 78 7500

Table 8.28: Chemotherapy Schedule: Comparison of Nonsmooth Single Shooting Method
and Derivative Free Method

taken by the processor to solve the problem.

8.6.5 Conclusion

It was found that even though it is easier to set up and run the derivative free method, the
solution time required to obtain an answer was significantly more. The nonsmooth shooting
method took 40 seconds to terminate with a solution satisfying the stationarity condition
where as the derivative free method took 56 minutes. The derivative-free method does not
have a termination criteria based on stationarity. It terminates once the number of iterations
or objective evaluations exceed their maximum values. In this case, the algorithm terminated
once 2500 objective and constraint evaluations were made. The final solution provided by
the derivative-free algorithm corresponds to a worse solution value than the one obtained
using the bundle method.

From the performance of the derivative-free method, it is clear that derivative information
should be used whenever available. Although, it is easier to set up a derivative-free method,
the use of automatic differentiation tools makes the difference in the effort to set up the
problem minimal. Therefore, for these problems, the use of derivative free methods is not

warranted.
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8.7 Notes

The performance of the nonsmooth single shooting method depends on the performance of
the integration algorithm and the bundle solver. Currently, the integration routine DSL48SE
([108, 109, 36]) is the only available routine that incorporates state event location algorithms
and the necessary infrastructure to integrate the sensivity equations. This integration routine
uses sparse matrix algebra techniques to effciently handle systems with a lot states. However,
the use of sparse matrix algebra techniques incurs setup costs. These costs are offset by the
gain in efficiency obtained when dealing with systems with a lot states. For the case studies
in this chapter, DSL48SE may not be the most efficient algorithm because the number of

states of the systems considered in these studies is relatively small.
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Chapter 9

Conclusions and Future Directions for

Research

In this thesis, the nonsmooth single shooting method, an open loop dynamic optimization
method for a class of systems with varying structure is developed. Unlike the state-of-the-art
methods, this method does not explicitly enumerate the hybrid mode trajectories and it does
not discretize the dynamics as a part of the optimization formulation. Instead a specialized
and efficient numerical integration algorithm [108] is used to compute the continuous state

trajectories accurate within integration tolerances.

The method converts the dynamic optimization problem into a nonlinear program by
parametrizing the controls. The resultant program is a nonsmooth optimization problem
due to the varying structure of the underlying dynamic systems. Therefore concepts from
nonsmooth analysis and methods from nonsmooth optimization are used. The main challenge
of this approach is determination of the replacement for the gradient. A custom set-valued
map is defined using the generalized Jacobian [25] which turns out to be a linear Newton
approximation [35]. Sensitivity initial value problems are derived to calculate an element of

this set-valued map.
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Stationarity conditions for optimization are defined in terms of this set-valued map. It
is shown that bundle methods can be used to obtain solutions satisfying these stationarity

conditions.

The performance of the nonsmooth single shooting method is compared to the state-
of-the-art methods. The nonsmooth shooting method provides more accurate answers for
equal or less effort than the state of the art in case the system dynamics are highly nonlinear
and /or exhibit stiffness. This is the result of using a numerical integration algorithm instead
of discretization as a part of the optimization formulation. An empirical investigation of
complexity is performed. The results strongly suggest that the method scales polynomially

with the number of states and parameters.

Finally, the thesis demonstrates that nonsmooth analysis and nonsmooth optimization

methods can be used to solve practical dynamic optimizaton problems.
The breakdown of the contributions per chapter is:

Chapter 3 : In this chapter, sufficient conditions for the existence of the strict derivative
(§2.2) of the map m — x(t,n) in terms of the generalized Jacobian are derived where
x represents the continuous states of the system with varying structure.

The first part considers dynamics described by the ordinary differential equations in
(3.2.1). The forward and adjoint sensitivity initial value problems are derived to
compute the aforementioned derivative. The second part extends these results to
differential-algebraic systems described by (3.3.1) using the implicit function theo-
rem for locally Lipschitz continuous functions. The strict derivatives of the maps
n — y(t,n) and n — %x(t,m) are obtained where y are the algebraic variables. The
results are extended to multistage systems.

The parametric sensitivity results in this chapter are new. The sufficiency conditions
derived in this chapter are more general than those in [44]. They are more general

than the conditions in [39, 95] in case the underlying dynamics are described by locally
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Lipschitz continuous ODEs and DAEs.

Chapter 4 : It is not possible to compute the generalized Jacobian of the map n — x(t,n)
for all possible values of 1. Theorem 3.1.3 does not provide a means to compute the
generalized Jacobian in case the sufficiency conditions in Chapter 3 are not satisfied.
Therefore, a linear Newton approximation of the map n — x(¢,n) is derived under an
additional semismoothness assumption on the right-hand side functions. Formulae are
derived to compute an element of this linear Newton approximation using forward and
reverse integration in time. Linear Newton approximations of the maps n — y(¢,n)
and m — %x(t,n) are derived. Results are extended to the multistage case. The values
of the linear Newton approximations defined contain the values of the generalized
Jacobians at all possible 1. The results reduce to the results in Chapter 3 in case the
assumptions of that chapter hold in addition to the assumptions of this chapter.

The parametric sensitivity results based on linear Newton approximations are new.

Chapter 5 : The differential equations defining elements of the linear Newton approxima-
tions in Chapter 4 generally have right-hand sides that are discontinuous in time. The
time at which a discontinuity occurs needs to be detected and located for efficient and
accurate computation of these quantities using numerical integration. A numerical
method is described to detect these discontinuities using the state event location algo-
rithm in [83] and compute an element of the linear Newton approximations defined in
Chapter 4 simultaneously with the states. This algorithm works if the functions of the
right-hand side satisfy a structural assumption that in essence makes them PC! (§2.7)
functions.

The numerical computation of linear Newton approximations using state event location
algorithms is new. Note that a method based on time stepping [99] is described in [81].
Chapter 6 : In this chapter, bundle methods [54, 66] are modified to use the linear Newton

approximations defined in Chapter 4. Extended stationarity conditions are defined

327



using these linear Newton approximations and it is shown that the bundle method
produces a sequence of solutions whose limit points satisfy the extended stationary
conditions. It is shown that a direction of descent can be computed and that the special
line search algorithm of the bundle method converges if linear Newton approximations
are substituted for the generalized gradients. In essence, it is shown that the generalized
gradient can be replaced by the linear Newton approximations of Chapter 4.

The use of the linear Newton approximation in the context of nonsmooth optimization
is new. The use of linear Newton approximations in conjunction with bundle methods
is new.

Chapter 7 : The theoretical development of the nonsmooth single shooting method is in
this chapter. The control parametrization approach in [105, 40] is extended to the case
where the dynamics are governed by ordinary differential equations whose right-hand
sides are PC' functions.

Chapter 8 : The performances and accuracy of solutions of the MILP, MPEC and nons-
mooth single shooting methods are compared using literature examples. This compar-
ison is the first of its kind to the best of the author’s knowledge. It is found that the
nonsmooth single shooting method provides the most accurate optimal state trajecto-
ries for less or comparable effort especially if the dynamics are highly nonlinear and/or
stiff.

Empirical complexity analysis of the nonsmooth shooting method is performed. Cur-
rently, it is not possible to carry out a theoretical complexity analysis because the-
oretical complexity analysis results do not exist for bundle methods and numerical
integration methods. The results strongly suggest that the method scales polynomi-

ally with the states and parameters.
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9.1 Future Directions for Research

9.1.1 Parametric Sensitivities, Their Computation and Use

Existence, computation and use of the second derivative

The second derivative of the objective and the constraints in (1.3.1) with respect to the
parameters is of practical interest. The second derivative can be used to improve the perfor-
mance of bundle methods. In [67], it is shown that a bundle method using second derivative
information [64, 63] outperforms the proximal bundle method in [64] significantly. Under

certain conditions, superlinear convergence can be proven for this method.

There are results on the existence of the second derivative for systems with varying struc-
ture [2]. These results depend on conditions similar to those in [39]. It is an open question
whether more general results can be achieved for piecewise twice continuously differentiable

vector fields.

Computing the second derivative requires additional computational effort. Therefore,
the efficient computation of the second derivative simultaneously with the first derivative is
important.? It is an open question whether the advantages of using second derivatives offsets

the additional computational burden.

In [67], the second derivative of a nearby point is used as an approximation in case the
second derivative does not exist at a point. This might be a computationally expensive option
for dynamic optimization problems. The existence of a suitable replacement is another open

question.

Tt is shown in [77] that directional second order derivatives are relatively cheap to compute.
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Efficient implementation of reverse integration to compute parametric sensitiv-

ities of systems with varying structure

There are dynamic optimization problems where the number of parameters is very large.
In this case, the linear Newton approximations can possibly be computed more efficiently
using reverse integration in time. A smaller number of equations need to be integrated.
However, reverse integration in time requires the storage of the state trajectories obtained
using forward integration.

Currently, numerical methods exist that are applicable to sufficiently smooth ODEs and
DAEs [85]. There exists no numerical method that uses the results in this thesis and [95]. The
theoretical development and implementation of such a numerical method and the comparison

of reverse integration to forward integration is another future direction of research.

Parametric sensitivities of linear program solutions with respect to the right-

hand side vector

Consider the linear program:
minc'xst. Ax=b, x > 0.

where x € R", ¢ € R", b € R™, A € R™" and n > m. Assume b € B where B is an
open convex set. Assume that the solution set is a singleton for all b € B. Let x* : B — R"
represent the optimal solution of this linear program as a function of b. It is known that x*
is a locally Lipschitz continuous function in this case [69].

Dynamic systems with linear programs embedded occur when biological agents are mod-
eled using the flur balance analysis (FBA) technique [58]. In this approach, the A matrix
of the linear program encodes the chemical reactions that take place inside biological agents

such as bacteria or yeast. x represents the rate at which each of the chemical species is
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produced. Note that there are more chemical species than linearly independent reactions.
The b vector represents the amount of material exchange between the organism and the en-
vironment. Usually, the objective is maximization of the growth of the organism. Depending
on the b vector, the chemical reactions that occur inside the organism change. An example

of a dynamic optimization problem with FBA models embedded can be found in [46].

The semismoothness property and the generalized Jacobian of the map 1 — x*(n) is of
interest. If an element of the generalized Jacobian of the map 1 — x*(n) can be computed,
then, the results in this thesis can be used to solve such problems. Currently, these problems
are solved using the MPEC approach. Due to the discretization of the dynamics, the size of
the FBA models used is limited, though.

9.1.2 Dynamic Optimization

Integer-valued controls

In [97], a method is described to handle integer-valued controls in continuous-time dynamic
optimization problems. The method relaxes the original problem with respect to the integer-
valued controls. The controls of the relaxed problem are approximated by functions described
by finitely many parameters. The approximate integer-valued controls are recovered using
special rounding off techniques from the solutions of the relaxed problems. The method is
shown to approximate the solution of the original problem arbitrarily close. The systems
considered do not contain autonomous transitions and for fixed integer-valued controls are
continuously differentiable. Combining the nonsmooth single shooting method with the

approach in [97] would enable the incorporation of integer-valued controls.
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Nonsmooth multiple shooting method

Single shooting methods are not suitable for problems with unstable dynamics. In this case,
integration errors grow without bound and the state trajectories computed are not reliable.
In order to deal with such systems, multiple shooting methods have been devised [59, 60].
Multiple shooting methods can handle dynamic optimization problems of unstable systems
with end point constraints.

The results in this thesis can be used to develop a multiple shooting method. In multiple
shooting, the time horizon is partitioned into epochs. The dynamics are integrated separately
on each epoch. This decoupling is achieved by making the initial conditions for each epoch,
parameters of the dynamic optimization problem. Then, consistent parameters are obtained
as a part of the solution. The challenge is to handle these additional parameters efficiently

in the solution of the problem.

Optimization of convex programs

Of(x2) = W holds in Theorem 3.1.2 if ¢(t,-) is a convex function (See Theorem 2.7.2 in

[25]). In this case, W is equal to the subdifferential of f at x,. Consider the problem

min J(p) :/fho(t>P>X(t>P))dt+H0(P>X(tfap)) (9.1.1)

peP to

ty
s.t./ hi(t,p,x(t,p))dt + H;(p,x(tr,p)) <0, Vi € {1,...,n.},

to
x(t,p) = f(t,p,x(t,p)), Vt € (to,ty],

x(to, P) = fo(p).

If the integrands in the objective and constraints can be shown to be convex functions of
p, then Theorem 2.7.2 in [25] can be used to compute an element of the subdifferential

of the corresponding integrals. Cases when this holds are of interest because if H;, for all
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i € {0,...,n.} are convex functions, then this program is a convex program. In this case,
bundle methods can be used to find the global minimum. The challenge is the computation of
an element of the generalized gradients of the integrands with respect to p when assumptions

of Theorem 3.2.3 do not hold.

Deterministic global optimization

The nonsmooth shooting method finds stationary points of the nonlinear programs. Prob-
lems involving few parameters may be solved to e—global optimally using the approach in
[57, 56]. In this approach, convex nonlinear programs are constructed that underestimate the
objective value of the original nonlinear program. Then, a deterministic global optimization
method such as branch and bound [47] is used to obtain the e—global solution.

The construction of the underestimating convex programs need to be investigated using
the ideas in [100]. Note that this research direction is linked to the optimization of convex

programs.

Necessary conditions of optimality

The relationship between the solutions of the nonsmooth NLPs representing dynamic opti-

mization problems and the necessary conditions of optimality in [25] are of interest.

9.1.3 Systems with Discontinuous Vector Fields

The extension of the nonsmooth single shooting method to discontinuous vector fields re-
quires research in several fields. Dynamic optimization problems involving these systems
may be discontinuous programs. Even if they are not discontinuous, they may not be locally

Lipschitz continuous programs anymore.
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Example 9.1.1 (Discontinuous Vector Field Example). Consider the dynamic system

9(p, x(t,p)) = x(t,p)* — 5x(t,p)* + Ta(t, p) — p,

4—a(t,p) if g(p,x(t,p)) <0, Mode 1
i(t,p) = , vt € (0,3.0],

0.7x(t,p) if g(p,=(t,p)) >0, Mode 2

z(0,p) = —3.0, p € [0,7.5].

The vector field of this system is discontinuous at times when g(p, z(t,p)) = 0 holds. Note
that the number of real roots of the polynomial depends on p. This dependence determines
the number of transitions that occur during the evolution of the system. Figure 9-1 shows
the transition times as a function of p. The system experiences up to three transitions
during the time interval [0,3.0]. If p < 2, only one transition occurs. The number of
transitions eventually becomes three for p € [2,3). At p = 3, two consecutive transitions
occur instantaneously at around 0.75 s. The transversality condition is violated at this

double transition. The number of transitions drops to one afterwards. Figure 9-2 depicts the

@
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Figure 9-1: Transition times as a function of p.

dependence of the final state on the parameters. The nonsmoothness at p = 3 is obvious.
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However, there exist 2 more points of nonsmoothness. These points correspond to the
parameter values where the hybrid mode trajectory changes. The state is not a locally
Lipschitz function at p = 3. This can be seen from the data in Figure 9-3. In Figure 9-3,
the natural logarithm of the magnitude of the derivative of the mapping n — x(3,n) is
plotted. Note that the derivative is calculated using the results in [39]. The derivative is
discontinuous whenever the hybrid mode trajectory changes. At p = 3, the limit from the
left tends to infinity. This occurs because there is a division by zero in the computation

of the sensitivities whenever the transversality condition does not hold. Initial tentative

b NG i i | Mode sequences
i i Region A: 1,2
Region B: 1,2,1

b N B b | Region €:1,2,1,2

Region D: 1,2

'x(tf ’p)

b BN

6B B T

-7

Figure 9-2: —z(3.0,p) as a function of p.

results on sufficient conditions that guarantee local Lipschitz continuity and semismoothness

when the dynamics are discontinuous can be found in [115].

In order to extend the results to systems with discontinuous dynamics requires advances

in several fields:
1. Nonsmooth Analysis: The main issue is to determine a replacement for the generalized
gradient /Jacobian and the linear Newton approximation. There are extensions of the
generalized gradient to functions that are not locally Lipschitz continuous [25, 92].

Unlike the locally Lipschitz case, these set-valued maps can have empty images and
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Region A: 1,2
Region B: 1,2,1
Region C: 1,2,1,2
Region D: 1,2

In(l4px(3,p))

Figure 9-3: In|J,2(3.0, p)| as a function of p.

crucial properties such as compactness and convexity of the images are not guaranteed.
These extensions have only been used as tools of analysis. Results pertaining to them
are few. Extensions to discontinuous functions have been proposed [34]. Extensions of
the generalized Jacobian do not exist. On a related note, functions that are not locally
Lipschitz continuous have not been studied as extensively. It is not clear what classes
of functions to expect when dealing with such systems. Experience suggests that the
functions of interest are those that are continuously differentiable on open sets, but
probably discontinuous or nonsmooth on the boundaries of these sets [22].

. Nonsmooth Optimization: For efficient nonsmooth optimization, the use of a bundle
to approximate the set-valued maps replacing the gradient appears to be necessary
[22]. Bundle methods require semismoothness to operate efficiently. Replacement con-
ditions need to be developed. Necessary conditions of optimality for the non-Lipschitz
and discontinuous function cases exist [92, 33]. The practical applicability of these
conditions need to be analyzed.

. Parametric Sensitivity Analysis: The existence of auxiliary equations of the form de-

veloped in Chapters 3 and 4 needs to be determined.
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Note that one can find examples in the literature where the MILP and MPEC approaches
have been applied to such systems in conjunction with discretization of the dynamics. Cur-
rently, there exists no theoretical support that the approximations of the state trajectories

converge to the state trajectories as the discretization gets finer grained.
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Appendix A

Convergence Proof of the Modified

Bundle Method

In this part, the convergence proof of the method described in Chapter 6 is summarized.

The proof is very similar to the proof of convergence of Algorithm 3.1 in Chapter 6 in

[54]. The main difference is that the generalized gradient is replaced with linear Newton

approximations satisfying Assumption 6.2.1.

A.1 Convergence Proof

The following lemma proves an important property of the aggregate quantities.

Lemma A.1.1. Let v,]:,f,fﬂ,siﬂ,v,?, v, 89 be as defined in §6.5.1. Then

(V]J; flg—i-l? 8£+1) € conv <{(ij7 fk-i—l,ju Sk—i-l,j) : j = 17 ey k})a

(VgaGZ-i-luskG—i—l) € conv ({<C]'G7Gk+1,j75k+1,j> J=1.. 7k})

hold.
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Proof. Assume that (A.1.1) holds for k — 1. Let Ax, p, A} and p} be the solutions of
(6.3.22). Then

vi = Aky'ﬁf"‘)‘k"k V= Z fur €5+ RV
jeM] jeMg

Note that

S X+ =1, ) juy+ip=1

jeM] JEME
Hence v] € conv ({C]f . je M}, {V,]:_l}) and vi € conv ({¢5: j € M} {vi,}). Since
V,{_l € conv({(f: j e 1,...,k—1}> and v{ | € conv({CG jel,. k—l}), V,]: €
conv ({ij L j€ 1,...,k}> and v{ € conv ({¢§: je€1,... k}) hold.

By definition,

Jrr1 = Z Mejfrg + ML+ (VL Prat — P,

: f
JEM;}

fron =2 Mg F AL+ (Y Mgl + Xivi 1, pres — pa),

]EMf ]er

Jis = Z S\k,j(fk,j + <Cf7pk+1 —Pi)) + S\Z(f;: + <V/]:_1upk+1 — Px))-

jeM]

Jrv1 = Z )\k]fk—i-l] + )\k(fk <Vk 1> Prt1 = Pr))-

]EMf

Since fy € conv({fr,;: 1,...,k—1}), fi, € conv({fr;: 1,...,k}) holds. Similarly
Gy € conv ({Gry: 1,...,k}) holds.

s£ L 18 obtained as follows:

S£+1 Sk + ||Pr—1 — Pxl|;
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S£+1 = Z Xk,jsij + S‘Z‘Si +[Pe-1 — Prll,
jeM]

st = (st + 1Pkt — pall) + A(sE + [Py — pell)
jeM]

Sher = Y Meg(shirs) + M(s] + Ipret — pell)-

: f
JEM;,

Since s£ € conv({sg;: 1,...,k—1}), s£+1 € conv ({sg;: 1,...,k}) holds. Similarly

st € conv ({sg;: 1,...,k}) holds.
As a result (A.1.1) holds if (A.1.1) holds for £k — 1. In order to complete the inductive
proof, (A.1.1) needs to hold for k = 1.

Let £ = 1. Then V{ = C{ and V? = C1G flv = f171, thj = G171, 5{ = S1,1, 59 = S1,1- Note

that
fo=fia+ <C{7p2 —p1) = for1,
Gy =G+ <C1Gap2 —p1) = Gag,
f_ - _
sy =511+ ||P2 — p1l| = s2.1,
52G =511+ ||p2 — P1l| = s2.1.
Hence (A.1.1) holds for k = 1. O

Definition A.1.2. Letk, = max{j : j <k, \j = puf =0} and M ={j:k <j< k:}UM,fr.
ME ={j: k. <j<k}UME.

The next lemma shows that the aggregate quantities are in the convex hull of the linear
Newton approximations, locality measures and linearization values computed since the last
reset.

Lemma A.1.3. Let k > 1 and assume that the bundle method did not terminate before the
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kth iteration. Then, there exists numbers 5\]- and fi; satisfying

(vi, f.50) = Z j\j(Cf>fk,j,Sk,j), (A.1.2)
jent
A0 ) A=1, (A.1.3)
jen
ar = max{s;; : j € M/} (A.1.4)
Ipr —y;ll < ax < @, Vj € MY, (A.1.5)
and
(V1§7 ~Z’§G) = Z /’Aj“j(CjGaGk,jask,j)a (A16)
jeME
=0, Y i =1, (A.1.7)
jent
ar = max{sy; : j € M} (A.1.8)
Ipx — yill < ax <a, Vj € M. (A.1.9)

Proof. The proof for the results in (A.1.2), (A.1.3), (A.1.4) and (A.1.5) will be given. The

proof of for the results in (A.1.6), (A.1.7),(A.1.8) and (A.1.9) follows the same reasoning.
Note that M,{ C ]\}[,f Let Sqw- =0, Ve M,f\M,f Then
(v 50 = D0 M (¢l g swa) + MV, fis s, (A.1.10)
jent
holds. If \Y = 0, then M = M/ and (A.1.2), (A.1.3), (A.1.4) and (A.1.5) hold trivially with
Ae = A Since % =0, AV = 0 and (A.1.2), (A.1.3), (A.1.4) and (A.1.5) hold for k = 1.
Assume that (A.1.2), (A.1.3), (A.1.4) and (A.1.5) hold for k = k. Assume that X2 = > 0.

k+1
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Observe that M]fﬂ = ]\}[g U{k+1}. and

( ]];7 U>§£) Z )\j(C]]'cmfl_ﬁ,ﬁsl_ﬁ,j)'
jEN

The following can be shown to hold using the same reasoning in Lemma A.1.1:

( k’fk+1’ k-‘rl Z )‘ C]>fk+1]78k+l])

f
JEMk

Note that

v I
( k+1afk+1a k-‘,—l Z )‘k—i—l] C]?.fk+1j7sk+1j)+)\k+1( ]_g>fg+1a81‘€+1)7

f
jeM,c+1

(Vg+17f]_:+17 k-‘,—l Z >‘k+1] C]’fk—l—lj’Sk—l—lj _'_)‘ k+1 Z >\ CJ?fk+1_]7Sk+1j)

f f
jeM,c+1 ]GMk

Hence (A.1.2), (A.1.4), and (A.1.3) holds for k + 1. O

The following lemma uses Carathéodory’s Theorem (Theorem 2.4.5) to keep the sizes of

M,f and MC less than n, + 3.

Lemma A.1.4. Let k > 1 and assume that the bundle method did not terminate before
the kth iteration. Let m = n, + 3. Then there exist two sets of nonnegative scalars {\;}7,,

{}™, and two sets of vectors whose elements are not necessarily unique, {(y{;i, f,fl, Fris §£2) m,C

R™ x R x R x R, {(§5;: ¢ Grir 555) iy CR™ x R™ x R X R such that

Vk?fk:78k Z 5kl7fkl78kz ZS\
él{z < Ff(S’IJ;i)a Vie{l,...,m},
(ylj;i? Elf,ia f_k,ia §£7i) € {(yj,C]f, fk,j, SkJ) 1 J € {1, RN ]{Z}}, Vi € {1, - ,m},
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Iy, — pull < 5L, Vie{1,...,m},

maX{Eivi cied{l,....m}} <a <a,
and

(Vlg;a GZ) ng) = Zj\z(égza Gk,ia 55,2)7 Z,az = 1,
=1 i=1
élgz € FG(S’]?,Z)? \V/Z € {17 s am}>
(ygz’ékG,z?kagg,z) € {(Yj>CjGaGk,jaSk,j) : ] € {17 - '>k}}> Vi € {17 s am}>

maX{§gi: ic{l,...,m}} <a <a,

Proof. The result follows from the previous lemma, Lemma A.1.1 and Carathéodory’s The-

orem. ]

The next two lemmas discuss the asymptotic behavior of the representation in the pre-

vious lemmas.

Lemma A.1.5. Let m = n, + 3. Suppose at p € P there exists a set of nonnegative scalars

(Y, and a set of vectors {(y!, ¢, fi, 50 ™, C R™ x R™ x R x R, satisfying

=1 =1

¢l erfiyl), vief{1,....m},
fi=rEH+ b)),
Iy/ —pll <5/, 8/ >0, Vie{l,...,m}, (A.1.12)

’)/fgf =0, vy > 0.
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Then v/ € Tf(p).

Proof. Since 5/ = 0, and 5{ > 0, there exists ¢ such that 5{ =0. If 5{ = 0, then i =0 per
(A111). p =g/ if A; # 0 per (A.1.12). Then, if \; > 0, ¢/ € T'f(p). Per (A.1.11) and

convexity of I'f(p), v/ € T'f(p). O

Lemma A.1.6. Let m = n, + 3 and suppose at p € P, there exists a set of nonnegative

scalars {fi;}™,, and a set of vectors {(¥¥,¢%, Gy, 39)}m, C R x R™ x R x R, satisfying

(v9,G",59) = > w(lf, G5, (A.1.13)
=1
pi> OVie{l,...om} Y =1,
=1
¢ e IGEFY), Vie{l,...,m}, (A.1.14)
Iy§ —pll < 57, 57 >0, Vie {1,...,m}, (A.1.15)
Gi=GEH)+ (¢ p-y) Vie{l,...,m}, (A.1.16)
max{G(p),0} = G", (A.1.17)
7a5% = 0, 7o > 0. (A.1.18)

Then v¢ € T'G(p) and G(p) > 0.

Proof. Since 5% = 0, and 5 > 0, there exists i such that 5¢ = 0. If 3¢ # 0, then j1; = 0 per
(A.1.13). p =y if ji; # 0 per (A.1.15). Then, if y; > 0, & € I'G(p). Per (A.1.13) and
convexity of I'G(p), v¢ € T'G(p).

Note that

0 = max{G(p),0} — G = Zui(maX{G(I—))> 0} — Gi})

m

0=>  ui(max{G(p),0} — (G(y) + (¢F.p —¥))

=1
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m

0=> p(max{G(p),0} — G(p)),

i=1

0 =max{G(p),0} — G(p),

because if p # ¥ holds for some i, then s& > 0 must hold. This implies that fi; = 0 in this
case per (A.1.13), (A.1.15) and (A.1.18). Hence G(p) > 0. O

Following theorem discusses the case when the bundle method terminates after finitely

many iterations with €5 = 0.

Theorem A.1.7. If the modified bundle method terminates at the iteration k and e; = 0,

then the point py is stationary in the extended sense on S.

f7v
k

Proof. Since wy =0, vp = 0, V,fd =0, V,?d,f’v = 0. The algorithm produces only p;. that

are feasible. Therefore py, is feasible and G(py) < 0.

Assume V]]: # 0. Then 54,]:’” = 0. Lemmas A.1.4 and A.1.5 yield
v,{ =0, V]j: e I'f(pk).
Let ¥ # 0 Then de’v = 0. Lemmas A.1.4 and A.1.6 yield
v =0, v € I'G(pr), G(px) = 0.

Then v, € I'H(py; pr). Note that v = 0 and 1/,{ = 0 cannot occur due to the constraint

(6.3.23). O

Remark A.1.8. In the remainder, it is assumed that ¢ = 0 and that the modified bundle

generates an infinite sequence {py} such that wy > 0 for all k.
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Lemma A.1.9. Assume p € P is a limit point of the sequence {py}. Then there exists

K C N, v/ € R™ and v¢ € R™ such that

lim pr=p, lim V]]: =v/,  lim v{=vC (A.1.19)

keK, k—oo keK, k—oo keK, k—oco

In addition, if _lim al’ =0, then v € Tf(p). If o Jim ag’ =0, then v¢ € I'G(p)

and G(p) = 0.

Proof. There exists Ky C N such that . Khn];l pPr = P because p is a limit point. Per
eKop, k—oo
Lemma A.1.4 and the fact that a is finite, it can be deduced that there exists an infinite
subset Ky C Kj such that
kEKll,Hkl—>oo Yk,z yi, keKll,nl;l—wo yk,z yi

holds for all ¢ € 1,..., m where m, y,{vi and ygi are as defined in Lemma A.1.4. By the local
boundedness and upper semicontinuity of I'f and I'G, there exists and infinite set Ky C K,
such that

lim E/fz = éf = Ff(}_’zf% re lim EIsz = EZG < FG(}_’{)

keKo, k—oo Ko, k—oo

hold. This also implies that

lim fk,i = ﬁ', ) lim GkJ = Gz

keKso, k—oo €Ko, k—oo

per the definition of f;“ and C_Jlm-. Since A and py are bounded, there exists an infinite set

K3 C K5 such that



hold. Finally, there exists K4 C K3 such that

lim sﬁﬂ. =5/

. G
pem 3 lim sy,

keKy, k—oo 7

because sg’i and si; are bounded. Letting K = K and using Lemma A.1.4, (A.1.19) can be

shown.
If lim dg’v = 0, then \7‘,’: € I'f(p) follows from Lemma A.1.5. Similarly, if  lim dg’v =0,

keK, k—oo keK, k—oo
then v{ € I'G(p) and G(p) > 0 follows from Lemma A.1.6. O

Lemma A.1.10. Let p € P. Assume there exists an infinite sequence J C N such that

lim =D lim w; = 0.
jediimoo DI T P e AN 1

Then 0 € T'H(p,p) and p € S.

Proof. By (6.3.24) and the boundedness of I/]f and v,

. . - . -G
lim v;=0, lim a;.[’” =0, lim a&a;"=0
jej,j—>oo jEj,j—>OO jejv .7_>OO

hold. Then Lemma A.1.9 yields \7{ e I'f(p) and v§' € TG(p) and G(p) > 0. Since p; € S

and S is closed, p € S. O

In order to prove stationarity in the extended sense, given a sequence {p;} converging to
D, it is sufficient to show that the corresponding sequence {w,} converges to zero per Lemma
A.1.10.

The next lemma shows that if you have a sequence {p;} converging to p by taking

infinitely many long serious steps, then p is stationary in the extended sense.

Lemma A.1.11. Assume there exists an infinite set J C N such that p; — p if j € J.

Then f(px) | f(D), and tEA, — 0 for k € N. In addition, if there exists an infinite sequence
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J C J such that tJL >t>0 foraljeJ, then w; — 0 for j € J holds and p is stationary

in the extended sense.

Proof. The bundle method produces an infinite sequence {px} such that f(pr+1) < f(Px)-
Given any large enough k, there exists j; and j? in J such that ji < k < j2. Then
f(pj1) > f(pr) = f(pj2) holds. Since p; — pif j € J, f(p;1) — f(p;2) — 0 and therefore
f(pe) = f(pjz) = 0. Then [f(p) = f(pr)| < [f(P) = f(pj2)|+/(p)2) — f(pr)| and the desired

result follows as k — oo.

Observe that

f(Pr) — f(Pry1)

mr,

0< —thA, <

and f(pr) — f(Prr1) — 0. Therefore tEA; — 0.
Since tfA; — 0 and tF > t>0forje J,A; — 0and therefore w; — 0 for j € J.

Stationarity follows from Lemma A.1.10. O

Corollary A.1.12. Suppose there exist p € P and an infinite sequence J C N such that

p; — b forj € J. Assume lilzgrig}fmax(ﬂpk —pll,wx) > €>0. Thentt —0 forje J.

Proof. The condition lilgn inf max(||px — p||, wx) > € >0 and p; — p for j € J imply that
wy > 0 for k large enough. Per Lemma A.1.11, thj — 0. Since for large enough j, w; > 0,

A; < —¢ for large enough j. Therefore, th —0forjeJ. O

In order to prove that an accumulation point is stationary, it has to be shown that if
t]L — 0, w; — 0.

The following lemma relates the solution of the quadratic direction finding problem

(6.3.22) to Ay and wy,.
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Lemma A.1.13. Define

~

1y
wy = §||Vk|| + ay,

Ap= — (HVkH2 +5ék) )

A ~ f G ~G,
ap = V,{a}:”ijk a,,

~Afv 3 . f Yv o fv
= Ak + AR
jeMf

~Gw ~ G ~v Gy
O E ok, j - [
jeME

Then

hold.

Proof. Note that

1F(oe) = 1 =1 D N(F(Pr) = fug) + Ml

jeM]
3 3 \v \ v 2
VB = (O Nyswg + Misl)? < vp( D Aysiy + Ast))
jem/! jeM]

The last inequality follows from Jensen’s Inequality. Hence

ap’ < Y Njmax(|f(pr) — frsl vrst,) + Amax(|f(pe) — £l rst)?) = b
jeM]

holds. The inequality a$"* < o?,f’” follows from similar reasoning. The rest of the inequalities
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follow from the definitions of the quantities. O

The next lemma relates the termination criteria at iteration & to the termination criteria

at iteration k£ + 1 in case no reset occurs and no long serious step is taken.

Lemma A.1.14. Suppose that tf_, <t and r{ =0 for some k > 1. Let

¢l ifyres
Cr =

¢S otherwise
o = vl + vl

Let & : R — R be defined by

So(r) =2 —(1— mR)Q%
where C'is any number that satisfying
C > max(||vi—1|l, |Ckll, ap_q, 1). (A.1.20)
Then
wr < Wi < Po(wi—1) + o) — @),
holds.

Proof. The proof is the same as the proof of Lemma 4.7 in Chapter 6 in [54]. Therefore it

is omitted for brevity. O

Lemma A.1.15. For any €, > 0 and C' > 0, there exists numbers e, and N > 1 such that
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for any sequences of numbers t; satisfying

0<tis1 <Po(t;) +ea, i>1,0<t; <4C? (A.1.21)
t; < €y holds for alli > N.
Proof. Proof is the same as proof of Lemma 4.12 in Chapter 3 in [54]. O

Lemma A.1.14 and A.1.15 imply that w; — 0 if t]L — 0 for some infinite set J C N
provided that for sufficiently many iterations N,

1. alocal bound of the form (A.1.20) exists;

2. no distance resetting occurs;

3. |af —aj [ < e

4. and t]L_l < t holds.

The next lemma provides a finite C' so that (A.1.20) is satisfied.

Lemma A.1.16. Let

¢ ifyees,
Cr =
¢S otherwise,
;
N max(|f(px) = furl, vellPk — yill?) ifyi €5,
p =
\max(|Gk7k\,7GHpk - Yk||2) otherwise,

For each k > 1

. 1
max{ || vy, &} < max{§y|<;k||2 + o, V| Gll? + 20}
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LetpeP and B={p € P:|p—p| <2a}. Let

Cy = sup{| ¢l : ¢ €T'H(p;p), p € B},

C, = sup{a(p1,p2) : p1 € B, p2 € B},
1
C = max{§C§+C’a,,/C§+2Ca,l}.

Then C' is finite and
C > max(||vi_1l], [ICk]], af_q, 1)

holds if ||pr — p[| < a.

Proof. The proof of the lemma is almost identical to the proof of Lemma 5.4.8 on page
261 in [54]. Instead of using the local boundedness of the generalized gradient, the local

boundedness of the linear Newton approximation is used to derive C,. O
The next lemma states that the difference [af—&}_, | goes to zero under certain conditions.

Lemma A.1.17. Suppose that there exists p € P and an infinite set J C N such that

p; — P and |pj+1 — pjl| = 0 if j € J. Then the sequences {Vf} and {v§'} are bounded for

J€J and
Jim o —a)" =0,
JeT, j—00
: G, el
lim o)) — & — 0,
JET, j—00
lim |af,, —al]—0
jeJ,j—mo‘ Jt+1 J‘
hold.

Proof. Proof is the same as in Lemma 5.4.9 on page 262 in [54] therefore it is omitted. [
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The following lemma establishes the fact that if there exists p € P and an infinite set

J C N such that p; — p for j € J, then ||p; — pj11]| — 0 for j € J.

Lemma A.1.18. Suppose that there exists p € P and an infinite set J C N such that
p; — b forj e J and li;ninfmax(“pk —pl|l,wx) > €>0. Then for any fized integer m > 0
there exists a j, such that for any integer n € [0, m]
lim n—DP|l =0,
sedim Ipjen — P

lim &, =0
JETJ, j—00 ktn '

wk+nzg/2a vj>jmaj€j'

Moreover, for any numbers 7, N and €, there exists a number j > j, j € J, such that

wy > €/2 forj <k<j+N, (A.1.22)
C = max(||vi—1 |, [Cell, &y, 1) forj <k <j+N, (A.1.23)
ot — &b | < e, forj <k<j+N, (A.1.24)
th <t forj <k<j+N. (A.1.25)

where C' is defined in Lemma A.1.16.

Proof. This is the same as Lemma 4.15 on page 119 in [54].The proof is omitted for brevity.
]

Lemma A.1.19. Suppose there exists p € P and an infinite set J C N such that p; — p

for j € J, then liminfy_ . max(||px — p||, wx) — 0.

Proof. Assume for contradiction purposes that liminfy_ . max(||px — p||, wx) > € > 0. Let

€w = €/2 > 0 and choose ¢, and N as specified in Lemma A.1.15 where C is the constant
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defined in Lemma A.1.16. Let N = 10N . Using the previous lemma, choose j satisfying
(A.1.22)-(A.1.25) and
i+N

Z IPr+1 — Pill < @/4. (A.1.26)

k=j

Suppose there exists a number k satisfying j < k< j+ N — 2N such that ry = 0 for all
k € [k, k+ N]. Then (A.1.23), (A.1.24) and (A.1.25), Lemma A.1.14, Lemma A.1.15 imply
that wy, < €, = /2 for some k € [k, k + N] which contradicts (A.1.22) and the assumption
that 7 = 0 for all k£ € [/%,/%—i— N]. Hence for any k such that j < k< j+ N — 2N holds,
¢ =1 for some k € [k, k + NJ.

Let j = k. Let ry, = 1 for some k; € [j, j+N]. Then ay, < a/2. Since ||ypi1—pra1 | < a/2

due to the line search rules and

ap+1 = max{ay + [Per1 — Pill, [[Yr+1 — Prsall} < max{ay, + [Pes1 — pll, a/2},

ar, < 3/4a < a follows using (A.1.26). Hence no reset occurs for k € [k, + 1,k + 1 + N].
However, k= k; + 1 satisfies j < k < 5 + N — 2N and therefore there has to be a reset for

k € [k, k 4+ N]. This is a contradiction. Hence lim inf,_. max(||py — p||, wx) — 0 has to

hold. O

Theorem A.1.20. Each accumulation point of the sequence {py} generated by the bundle

method is stationary in the extended sense.
Proof. The proof follows from Lemma A.1.19 and Lemma A.1.10. O

Corollary A.1.21. If the level set P = {p € P : f(p) < f(p1)} is bounded, cl(P) C P,
and the final accuracy tolerance €4 is positive, then the bundle method terminates in a finite

number of iterations.
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Proof. The boundedness of the level set P implies that there exists an infinite set 7 C N
and p such that p; — p if j € J per the Bolzano-Weierstrass Theorem. Then per Lemma
A1.19, w; — 0 for j € J. Hence for large enough j, w; < €,. This implies that for large

enough £, wy < €. O
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