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Abstract
In this thesis, an open-loop numerical dynamic optimization method for a class of dynamic
systems is developed. The structure of the governing equations of the systems under consid-
eration change depending on the values of the states, parameters and the controls. Therefore,
these systems are called systems with varying structure. Such systems occur frequently in
the models of electric and hydraulic circuits, chemical processes, biological networks and
machinery. As a result, the determination of parameters and controls resulting in the op-
timal performance of these systems has been an important research topic. Unlike dynamic
optimization problems where the structure of the underlying system is constant, the dynamic
optimization of systems with varying structure requires the determination of the optimal evo-
lution of the system structure in time in addition to optimal parameters and controls. The
underlying varying structure results in nonsmooth and discontinuous optimization problems.

The nonsmooth single shooting method introduced in this thesis uses concepts from non-
smooth analysis and nonsmooth optimization to solve dynamic optimization problems in-
volving systems with varying structure whose dynamics can be described by locally Lipschitz
continuous ordinary or differential-algebraic equations. The method converts the infinite-
dimensional dynamic optimization problem into an nonlinear program by parameterizing
the controls. Unlike the state of the art, the method does not enumerate possible structures
explicitly in the optimization and it does not depend on the discretization of the dynamics.
Instead, it uses a special integration algorithm to compute state trajectories and derivative
information. As a result, the method produces more accurate solutions to problems where
the underlying dynamics is highly nonlinear and/or stiff for less effort than the state of the
art.

The thesis develops substitutes for the gradient and the Jacobian of a function in case
these quantities do not exist. These substitutes are set-valued maps and an elements of these
maps need to be computed for optimization purposes. Differential equations are derived
whose solutions furnish the necessary elements. These differential equations have discon-
tinuities in time. A numerical method for their solution is proposed based on state event
location algorithms that detects these discontinuities. Necessary conditions of optimality



for nonlinear programs are derived using these substitutes and it is shown that nonsmooth
optimization methods called bundle methods can be used to obtain solutions satisfying these
necessary conditions. Case studies compare the method to the state of the art and investigate
its complexity empirically.

Thesis Supervisor: Paul I. Barton
Title: Lammot du Pont Professor of Chemical Engineering
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Chapter 1

Introduction

A new dynamic optimization method is developed in this thesis that can be applied to a

class of dynamic systems whose structure changes depending on the state, parameters, and

controls. First, an overview of these systems and applicable dynamic optimization methods

is presented. Then, the approach of this thesis is explained. Finally, the contents of the

subsequent chapters are summarized.

1.1 Dynamic Systems with Varying Structure

A deterministic dynamic system whose governing equations change instantaneously when the

system’s states, parameters, and time satisfy certain conditions is called a system with varying

structure in this thesis. Such systems occur frequently in the mathematical description

of electrical circuits, hydraulic systems, machinery, chemical process plants, and biological

networks. For example, the constitutive equations of a check valve change depending on the

upstream and downstream pressures. If the downstream pressure is larger than the upstream

pressure, there is no flow through the valve. Otherwise, the flow rate through the valve is

a function of the pressure difference. Diodes in electric circuits display analogous behavior.
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A mechanical example is backlash in gears. In this case, the governing equations change

abruptly when gear teeth lose or gain contact. These systems also form when computer

implemented logic rules and controllers are used to govern the behavior of physical systems.1

Two components make up the state of these systems. One component comprises the

continuous states which evolve according to differential or difference equations in subsets of

the Euclidean spaces. The other component comprises the discrete states, which evolve in

discrete sets such as the integers.

Various modeling paradigms have been proposed to describe systems with varying struc-

ture. Hybrid automata [3, 38], hybrid bond graphs [73], state-transition networks [7], com-

plementarity systems [99], differential variational inequalities [80], the unified framework for

hybrid control [20], mixed logical dynamical systems [13], differential automata [104] and

switching systems [62] are some of the paradigms available in the literature. Note that some

of these paradigms can be analyzed using the theory of ordinary differential equations [26]

or differential inclusions [5, 37].

In this thesis, the nomenclature of the hybrid system paradigm in [57, 56] is adopted

for the general discussion of systems with varying structure. In this paradigm, a set of

governing equations is called a mode. Each mode is associated with an integer index. The

mode comprises ordinary differential equations or differential-algebraic equations that govern

the evolution of the continuous states. The hybrid mode trajectory is a sequence of these

indices in strict time order of the modes encountered during the evolution of the system.

It is the trajectory of the discrete state of the system. The length of the hybrid mode

trajectory is the number of elements in the hybrid mode trajectory. Given an element of

this sequence, its predecessor mode is the mode immediately before and the successor mode

is the mode immediately after in the hybrid mode trajectory. Corresponding to the hybrid

mode trajectory, there is a hybrid time trajectory which contains subsets of the time interval

1For a comprehensive collection of examples see [32].
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called epochs. For each element of the hybrid mode trajectory, there exists an epoch in the

hybrid time trajectory. A mode is active and governs the evolution of the system during its

corresponding epochs in the hybrid time trajectory. The value of the discrete state changes

when a transition occurs. A transition occurs at the earliest time at which the corresponding

logical condition called a transition condition on the states, parameters and controls of the

system is satisfied. A transition is explicit if the timing, predecessor and successor modes

are known before the state trajectories are computed. Otherwise, a transition is implicit. A

transition is autonomous if the corresponding logical conditions of the transition depend on

the states of the system. A transition is controlled if the transition occurs in response to a

control input. Transition functions determine the successor mode and initial conditions of

the continuous states for the evolution in the next epoch.

The mechanics of mode switching complicates the analysis of systems with varying struc-

ture. It is possible to observe situations where the discrete state changes infinitely often

at a given value of time, preventing the further evolution of the continuous states. This

phenomenon is called deadlock. It is also possible that the number of transitions eventually

becomes infinite while time remains finite. This phenomenon is called Zeno behavior. Exam-

ples and detailed discussion of these behaviors can be found [38, 116, 52, 75]. The existence

of solutions and continuous dependence of the solutions on initial conditions can be proven

for special cases [65, 80, 110, 37, 26].

The discrete state helps determine the mode of the system. In some systems with vary-

ing structure, if the continuous states are known, then the active mode can be determined

without knowledge of the discrete state. Example (1.1.1) describes a system where a dis-

crete state is necessary and Example (1.1.2) contains a system where it is not. The accurate

computation of the continuous state trajectories evolving according to continuous-time dy-

namics requires the detection of instants when the active mode changes. At these instants,

the vector fields are possibly discontinuous and continuous-time integration algorithms either
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fail or become inefficient when trying to integrate over these discontinuities while satisfying

integration error tolerances. Special integration methods and numerical codes have been

developed for this purpose. See [11, 74, 80] for further discussion.

Example 1.1.1 (Pressure Relief Valve). A pressure relief valve is used to reduce the pressure

inside a vessel, P , to an acceptable maximum value. The relief valve opens if the pressure

inside the vessel is higher than Ph and closes when the pressure inside the vessel is less

than Pl. Ph > Pl holds in order to prevent the relief valve from opening and closing too

rapidly and wearing out unnecessarily. In this system, if the pressure of the vessel is such

that Pl < P < Ph holds, then it cannot be determined whether the valve is open or closed

without the aid of the discrete state. The reason for this ambiguity is the fact that P can

satisfy this condition irrespective of the state of the valve.

Example 1.1.2 (Tank with Outlet Flow). Consider a tank with an inlet flow at the bottom

and an outlet flow at height H . Assume that there is a check valve at the inlet and the

outlet flow discharges to the atmosphere through a valve. Let h be the liquid level in the

tank. Then, the dynamics of the system can be written as

Fin(t, P ) =















0 if P − h(t, P ) ≤ 0,

Cv
P−h(t,P )√

|P−h(t,P )|+kb

otherwise,

Fout(t, P ) =















0 if h(t, P ) ≤ H,

Cv
h(t,P )−H√

|h(t,P )−H|+kb

otherwise,

ḣ(t, P ) = (Fin(t, P ) − Fout(t, P ))/A, ∀t ∈ (t0, tf ], h(t0, P ) = 0,

where P is the inlet pressure measured in the height of liquid, Fin is the inlet flow rate, Fout

is the outlet flow rate, A is the cross section of the tank, Cv is the valve coefficient and kb is

a small regularization constant. The quantity, z/(
√

|z| + kb) approximates
√

z if z ≫ kb and
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z/
√

kb if z ≈ 0 for z ≥ 0. Unlike the square root function, it is continuous and differentiable

at zero. This regularization is necessary to avoid theoretical and numerical issues caused by

the behavior of the square root function at zero.

Suppose h(t∗, P ) = H . A unique ḣ(t∗, P ) can still be computed because the system

with varying structure is equivalent to an ordinary differential equation with a continuous

right-hand side at this point.

1.2 Dynamic Optimization of Systems with Varying

Structure

Systems with varying structure are ubiquitous in economically important engineering sys-

tems. Therefore, the development of dynamic optimization methods to determine optimal

performance of these systems has been the subject of research for some time. Open loop and

closed loop dynamic optimization methods have been developed. In this thesis, open loop

methods are of primary interest. In this section, these methods are reviewed.

The dynamic optimization methods for systems with varying structure need to determine

the optimal hybrid mode trajectory and the corresponding hybrid time trajectory in order

to determine the optimal continuous state trajectories and controls. In general, the hybrid

mode and time trajectories depend on the controls. This dependence causes nonsmooth-

ness and discontinuous behavior [8, 84]. Therefore, standard dynamic optimization methods

[17, 21] that assume continuous differentiability cannot be directly applied to these prob-

lems. Derivatives of the states with respect to the parameters of the system in the form of

parametric forward sensitivities [44] and parametric adjoint sensitivities [24] may not always

exist. An instance of nonsmoothness can be found in Example 1.2.1.
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Example 1.2.1 (Nonsmooth Control Example). Consider the dynamic system

ẏ(t, p) =















−y(t, p) + u(t, p) if y ≤ 0

y(t, p) + u(t, p) if y > 0

, ∀t ∈ (0, tf ],

u(t, p) =















−y0e−t∗

1−e−t∗ if t ∈ [0, t∗)

p if t ∈ [t∗, tf ]

,

y(0, p) = y0, y0 < 0, p ∈ R.

For the given initial condition and u(t, p), y(t∗, p) = 0 holds. The choice of dynamics at

t = t∗, depends on the value of p. If p = 0, then y(t, p) = 0 holds for all t ∈ [t∗, tf ]. If p < 0,

then y(t, p) = −pe−(t−t∗) + p = p(1 − e−(t−t∗)). If p > 0, then y(t, p) = p(e(t−t∗) − 1) for all

t ∈ [t∗, tf ]. As a result, y(tf , p) is

y(tf , p) =































p
(

1 − e−(tf−t∗)
)

if p < 0,

0 if p = 0,

p
(

e(tf−t∗) − 1
)

if p > 0.

Note that y(tf , ·) is continuous but not differentiable at p = 0.

Maximum principles [86, 103, 101] analogous to Pontryagin’s Maximum Principle [21]

have been developed for the case where the hybrid mode trajectory does not depend on

the controls. Necessary conditions of optimality for special cases have been developed that

allow the hybrid mode trajectory to vary [25, 111]. These apply only if the dynamics of the

system can be expressed as ordinary differential equations satisfying a Lipschitz condition

or a differential inclusion of certain structure. These conditions use elements of nonsmooth

analysis [25, 92] which extend the concept of the derivative to nonsmooth functions. Except
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for the conditions in [101], these conditions currently do not appear to be amenable to

numerical computation to solve dynamic optimization problems.

In [101, 23], two-stage approaches are discussed where in the first stage the necessary

conditions are used to solve a dynamic optimization problem for a constant hybrid mode

trajectory. The first-stage resembles multistage problems considered in [21] and is a con-

tinuously differentiable problem. In the second stage, the hybrid mode trajectory is altered

while the number of elements in the trajectory is kept constant. The first stage is repeated

using the updated hybrid mode trajectory. The entire two-stage process is repeated until all

possible hybrid mode trajectories are processed. This method is a combinatorial algorithm.

If the number of elements in the hybrid mode trajectory is ne and the number of possible

modes is nm, the algorithm processes (nm)ne mode sequences. Similar two-stage approaches

have been proposed in [114] and [41].

Sufficient conditions for the existence of parametric forward sensitivities and paramet-

ric adjoint sensitivities are given in [94, 39, 95]. In addition to the constant hybrid mode

trajectory requirement, a transversality condition is required to hold at each transition and

only one transition can occur at any given time. It is also shown that the states are continu-

ously differentiable functions of the parameters in this case [39]. Computation of parametric

forward sensitivities derived in [39] can be carried out with the integration algorithms in

[108, 36].

The most common approach to enumerate hybrid mode trajectory candidates of fixed

length is to use integer variables. Systems whose modes consist of discrete-time linear systems

are considered in [13] and systems whose modes consist of continuous-time linear systems

are considered, for example, in [102, 106]. In these approaches, nonlinear dynamics are lin-

earized. Continuous-time dynamics are discretized using a scheme such as the forward Euler

method. Note that each linearization increases the number of candidate modes, nm. These

methods divide the time horizon into nt subintervals. Hence, they consider hybrid mode
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trajectories of length nt. The sizes of these subintervals correspond to integration steps in

case of continuous-time linear dynamics. For each mode candidate, a binary variable is used

at each subinterval to keep track if a mode is active during that subinterval. The binary vari-

able’s value is one if the mode is active and zero otherwise. Additional constraints prevent

more than one mode to be active on a subinterval. The final formulation is a mixed-integer

linear program, (MILP), and can be solved to global optimality. Solvers for MILP problems

enumerate candidate hybrid mode trajectories implicitly by taking advantage of the linear

structure of the mathematical program [16]. In the case of continuous-time dynamics, the

MILP solver also acts as the integration algorithm. The main drawback of this method

in the case of continuous-time dynamics is the approximation error in the computed state

trajectories caused by linearization and discretization. Note that features that enable inte-

gration algorithms to provide accurate solutions such as adjusting integration time steps to

satisfy error tolerances cannot be implemented. In order to reduce this approximation error,

relatively large nt and nm values have to be used. This adversely effects the solution times of

the solver. The solution times of MILP problems scale worst-case exponentially with nt and

nm [106]. Hence, this approach is not very suitable for problems with nonlinear continuous-

time dynamics and nonlinear constraints. An example of this behavior can be seen in the

Cascading Tank Case Study in Chapter 8. An attempt to handle nonlinear continuous-time

dynamics is made in [7] without using linearization. The resultant formulation is a mixed-

integer nonlinear program, (MINLP). This approach is not practical because current MINLP

solvers cannot handle problems of the size obtained by this approach. Note that the MILP

approach is used in closed-loop applications as well.

In [57, 56, 55] systems with varying structure capable of only explicit transitions are

considered. Continuous-time linear systems constitute the modes. Integer variables are used,

but the continuous-time linear dynamics are not discretized. The number of transitions

is constant. Auxiliary dynamic systems are constructed to underestimate the objective
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value. Using the parametric sensitivity results in [39], special integration algorithms, and

the auxiliary dynamic systems, these nonconvex problems are solved deterministically to ǫ−

global optimality. This approach does not suffer from approximation errors; however, it is

currently limited to problems with a few states and parameters and explicit transitions.

An alternative approach to alter the hybrid mode trajectory is to formulate mathematical

programs with equilibrium constraints, (MPEC) [12, 90]. Real-valued variables that satisfy

special constraints called complementarity conditions are used. The time horizon is parti-

tioned into nt subintervals called finite elements. On each finite element, the continuous-

time dynamics are discretized using Radau collocation. The active mode on each finite

element is determined by the complementarity conditions at the ends of these subintervals.

Since complementarity conditions violate optimization regularity conditions called constraint

qualifications, special methods are required to solve these problems. In this approach, the

nonlinear programming solver acts as the integration algorithm as well. This results in less

accurate computation of the state trajectories. A relatively large value for nt needs to be

used if the underlying dynamics are nonlinear or stiff. As a result, this approach produces

very large optimization problems mandating large-scale optimization solvers. The nonlin-

ear nonconvex programs are solved to obtain stationary points. In this approach it is not

clear what the value of nt should be to obtain accurate solutions. Even though there are

convergence results for the use of Radau collocation on finite elements when the dynamics

are sufficiently continuously differentiable [53], it is an open question whether these results

apply when used in conjunction with complementarity constraints. The Electrical Circuit

Case Study in Chapter 8 illustrates this problem. The determination of a value for nt and

convergence is an issue in the MILP approach for continuous-time dynamics as well.

Numerical optimization methods that do not explicitly use derivative information such as

derivative-free methods [6], genetic algorithms or stochastic methods [38] can be applied to

the solution of dynamic optimization problems involving systems with varying structure, [38].
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Most of these methods are heuristic and require more effort to provide a solution compared

to derivative-based methods on problems where derivative information is available.

The MILP, MPEC and derivative-free approaches do not solve for the necessary condi-

tions of optimality. Either these are not available or they are not amenable to numerical

computation. They directly try to minimize the objective. Hence, they are direct dynamic

optimization methods. In addition, in all these methods, the controls are parameterized.

Finally, a dynamic programming based approach can be found in [45]. This approach

suffers from the curse of dimensionality and is not suitable for problems with more than

three or four states.

1.3 Nonsmooth Optimization of Dynamic Systems with

Varying Structure

In this thesis, an open loop dynamic optimization method for a class of dynamic systems

with varying structure is developed that does not discretize the continuous-time dynamics

as part of the optimization formulation and that does not enumerate candidate hybrid mode

trajectories. The method does not assume any a priori information about the hybrid mode

trajectory except that the length should be finite.

The method is applicable to problems where the controls are real-valued and the dynamics

of the system with varying structure can be reduced to an ordinary differential equation

satisfying local Lipschitz continuity and piecewise continuous differentiability2 assumptions.

Instances of such systems can be found in Example 1.1.2 and Chapter 8. Note that for this

class of systems, crucial properties such as the existence and uniqueness of solutions and

continuous dependence on initial conditions are established by classical theory [26].

The method is in the class of direct single shooting methods (see [17] for a classification

2In this thesis, piecewise continuously differentiable functions are continuous functions.
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of numerical methods) and it is called the nonsmooth single shooting method. Instead of

discretizing the dynamics and using an optimization algorithm to solve for the continuous

state trajectories, a specialized and efficient numerical integration algorithm [108] is used

to compute trajectories accurate within integration tolerances. Therefore, the method is

a single shooting method. In this approach, the real-valued controls are approximated by

functions depending on finitely many parameters. This enables the conversion of the dynamic

optimization problem into a nonlinear program (NLP) as in [105, 40]. This approach allows

the handling of path and point constraints in a unified manner. The resultant NLP is a

nonsmooth mathematical program. Therefore, concepts from nonsmooth analysis [25, 92, 35]

are used in place of the gradient where it does not exist and nonsmooth optimization [54, 66]

methods are applied to solve the resultant NLP.

The resultant basic nonsmooth NLP formulation is

min
p∈P

J(p) =

∫ tf

t0

h0(t,p,u(t,p),x(t,p))dt + H0(tf ,p,u(tf ,p),x(tf ,p)) (1.3.1)

s.t.

∫ tf

t0

hi(t,p,u(t,p),x(t,p))dt + Hi(tf ,p,u(tf ,p),x(tf ,p)) ≤ 0, ∀i ∈ {1, . . . , nc},

ẋ(t,p) = f(t,p,u(t,p),x(t,p)), ∀t ∈ (t0, tf ],

x(t0,p) = f0(p),

where p are the real-valued parameters; nc is a finite positive integer, u are the controls; x

are the continuous states; f , f0, hi and Hi are piecewise continuously differentiable functions

for all i ∈ {0, . . . , nc}. Note that in this approach, inequality path constraints of the form

g(t,p,u(t,p),x(t,p)) ≤ 0, ∀t ∈ [t0, tf ] are handled by converting them into the following

point constraints,

∫ tf

t0

max(0, g(t,p,u(t,p),x(t,p))dt ≤ 0
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or

∫ tf

t0

max(0, g(t,p,u(t,p),x(t,p))2)dt ≤ 0.

The approach developed in this thesis can handle multistage problems where at each stage

the dynamics of the system are governed by disparate vector fields that satisfy the piecewise

continuous differentiability requirement. In addition, the dynamics can be governed by

certain classes of differential-algebraic equations. In the remainder of this thesis, the controls

are omitted from the formulations of the dynamics and mathematical programs since they

are functions of the parameters and time only.

1.4 Overview

The contents of the subsequent chapters of this thesis are:

Chapter 2: This chapter is a review of nonsmooth analysis necessary for the theoretical

developments in this thesis. The generalized gradient [25] of a function and the linear

Newton approximation [35] of a function are used at points where the gradient of the

function does not exist. Unlike the gradient, these entities are set-valued maps. For

instance, it can be shown that ∂py(tf , p), the generalized gradient of the function y(tf , ·)

defined in Example 1.2.1 at p is,

∂py(tf , p) =































(

1 − e−(tf−t∗)
)

if p < 0,

[(

1 − e−(tf−t∗)
)

,
(

e(tf−t∗) − 1
)]

if p = 0,

(

e(tf−t∗) − 1
)

if p > 0.

The importance of the generalized gradient stems from the fact that it can be used

to formulate necessary conditions of optimality and determine descent directions in
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numerical optimization methods for nonsmooth problems [25, 54]. The generalized

Jacobian and gradient coincide with the usual Jacobian and gradient for continuously

differentiable functions. The generalized gradient of a function is unique. The linear

Newton approximation, on the other hand, is not unique. It represents a class of set-

valued maps that contain the generalized gradient or generalized Jacobian. Its main

use to date has been in the solution of nonsmooth algebraic equations. In this thesis, it

is used to replace the generalized gradient/generalized Jacobian when these quantities

cannot be computed for an optimization algorithm.

Specifically, Chapter 2 contains a review of derivatives, elementary set-valued and

convex analysis. It contains the definitions, basic properties and calculus rules of

the linear Newton approximation and generalized Jacobian/gradient. In addition, the

classes of functions of interest are introduced. Implicit function theorems for these

functions are stated. The chapter ends with demonstrative examples.

Chapter 3: The numerical solution of (1.3.1) requires that an element of the generalized

Jacobians and linear Newton approximations of the objective and constraint functions

be computable for each parameter value. In order to apply the calculus rules of the

generalized Jacobian and the linear Newton approximation, an element of the general-

ized Jacobian or linear Newton approximation of the map η 7→ x(t, η) at p is required.

However, the explicit form of this map is generally not known. Computing numerically

an element of the generalized Jacobian or linear Newton approximation of the map

η 7→ x(t, η) at p is the main challenge of this thesis.

In this chapter, sufficient conditions for the existence of the gradient of the map η 7→

x(t, η) are derived using the generalized Jacobian and results from [25]. The functions

involved in (1.3.1) are assumed to be locally Lipschitz continuous. These sufficient

conditions result in trajectories along which ∂px(t,p), the generalized Jacobian of the

map η 7→ x(t, η) at p, is a singleton set. Loosely, the key condition is that the
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trajectory (p,x(·,p)) visit the points of nondifferentiability in the domain of f only at

times that constitute a measure zero subset of the time horizon [t0, tf ].

Forward and adjoint parametric sensitivity differential equations are derived. These

differential equations resemble results in [44, 24] and [39, 95]. However, unlike results

in [44, 24], the right-hand sides of these differential equations comprise functions that

are discontinuous in time and their solutions exist in the sense of Carathéodory. Unlike

results in [39, 95], invariance of the hybrid mode trajectory and transversality at each

transition are not required. Also multiple transitions can occur at one time.

The results are extended to differential-algebraic equations using nonsmooth implicit

function theorems and to multistage systems. The chapter ends with demonstrative

examples.

Chapter 4: This chapter considers trajectories where the assumptions of Chapter 3 do not

hold. In this case, one must consider differential inclusions. The solutions of these

differential inclusions define sets which may or may not contain the desired generalized

Jacobian information. Restricting the functions involved in (1.3.1) to the class of

semismooth functions, sharper results are obtained using results from [81]. Note that

semismooth functions include piecewise continuously differentiable functions. In this

case, a linear Newton approximation can be defined whose value at a point contains the

value of the generalized Jacobian of the map η 7→ x(t, η). The results of this chapter

reduce to the results in Chapter 3 if the assumptions of that chapter in addition to the

semismoothness assumption hold.

Elements of the linear Newton approximations can be computed using integration for-

ward in time as in forward parametric sensitivities or using integration backwards

in time as in adjoint parametric sensitivities. The results are extended to certain

differential-algebraic systems using an implicit function theorem for semismooth func-

tions. The extension to multistage systems are derived. Finally, a demonstrative
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example is presented.

Chapter 5: A computational method to obtain an element of the linear Newton approxi-

mations defined in Chapter 4 is described in this chapter. The differential equations

defining elements of the linear Newton approximations are possibly discontinuous at

times when the state trajectory passes through points of nondifferentiability in the

domain of the right-hand sides. In order to detect these discontinuities, a structural

assumption is made that in essence makes all functions in (1.3.1) piecewise continuously

differentiable functions. The structural assumption places the points of nondifferentia-

bility on the boundaries of open sets which can be represented by the zero-level sets

of certain functions. These functions are used in conjunction with state event location

algorithms [83] to determine time points at which discontinuities occur. The struc-

tural assumption also allows the use of more efficient methods to compute an element

of the linear Newton approximations. An implementation with available software to

compute simultaneously the states and an element of the associated linear Newton

approximations using integration forward in time is presented.

Chapter 6: It is known for some time that numerical algorithms for continuously differ-

entiable optimization problems can get stuck at arbitrary nondifferentiable points or

experience numerical difficulties when applied to nonsmooth optimization problems

[61]. Furthermore, the stationarity conditions for continuously differentiable optimiza-

tion problems do not hold for nonsmooth problems. Therefore special methods are

required.

Bundle methods are nonsmooth optimization algorithms that use the generalized gra-

dients of the objective and constraint functions to compute stationary points of non-

convex programs [54, 66]. The stationarity conditions are formulated using the gener-

alized gradients of the objective and constraint functions and reduce to the well-known

Karush-Kuhn-Tucker (KKT) conditions if the objective and constraints are continu-
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ously differentiable [25, 54].

Bundle methods use a set of generalized gradients obtained at nearby points to compute

a direction of descent and a specialized line search algorithm to construct this set

efficiently. The set of generalized gradients is called the the bundle. The use of the

extra information furnished by the bundle prevents these methods from getting stuck

at arbitrary nondifferentiable points. In terms of convergence, bundle methods produce

a sequence of iterates whose limit points are stationary.

In this chapter, extended stationary conditions are formulated using the linear Newton

approximations defined in Chapter 4. This formulation is possible because the values

of these linear Newton approximations contain the values of the generalized gradients.

It is shown that using these linear Newton approximations instead of the generalized

gradients results in a nonsmooth optimization algorithm that produces a sequence of

iterates whose limits points satisfy the extended stationarity conditions. In essence,

one set-valued map is replaced with another that has similar properties. The bundle

method is formally stated.

The key result in the convergence proof is the finite termination of the specialized line

search algorithm. The rest of the proof is the same as the proofs in [54] with the linear

Newton approximation replacing the generalized gradient. Therefore, only a summary

of the proof is placed in the Appendix.

Chapter 7: The nonsmooth single shooting method is formally developed in this chapter.

The results of the previous chapters are used to assemble the method.

Convergence of the approximate controls to the solution of the original dynamic opti-

mization problem is discussed. Using the results in [105, 40], it can be shown that if the

optimal approximate controls convergence to a function as the number of parameters

increases, then that function is an optimal control of the original dynamic optimization

problem. Similarly, if the optimal objective values corresponding to the approximate
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controls converge, the limit is the optimal objective value of the original problem.

The section also contains a technique to solve minimum time problems. The sensitivity

results of the previous chapters deal with parameters of the dynamic system only.

Minimum time problems can be solved by transforming time into a state variable.

Then, the initial time and the difference between the final and initial times become

parameters of the transformed system.

Chapter 8: Case studies are collected in this chapter. The performance of the MILP, MPEC

and derivative-free methods are compared to the performance of the nonsmooth single

shooting method. It is shown that the nonsmooth single shooting method provides

more accurate solutions to problems involving systems whose dynamics are highly

nonlinear and exhibit stiffness for less effort. An empirical complexity analysis is

carried out. The results strongly suggest that the nonsmooth single shooting method

scales polynomially with the number of states and number of parameters.

Chapter 9: The contributions of this thesis are summarized in this chapter. The main con-

tribution of this thesis is the development of the nonsmooth single shooting method.

The novelty of this method stems from the fact that explicit discretization of the dy-

namics in the optimization formulation and enumeration of the hybrid mode trajectory

are not used. The parametric sensitivity results in Chapters 3 and 4 are new. The use

of a bundle method in conjunction with linear Newton approximations is new. The

detailed comparison of the MPEC approach, MILP approach and nonsmooth single

shooting method is new. This is the first comparison that considers accuracy of the so-

lutions in addition to the effort to obtain solutions. The empirical complexity analysis

of the nonsmooth single shooting method is new.

The chapter also discusses possible future directions of research.
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Chapter 2

Preliminaries

This chapter provides a brief summary of the necessary mathematical background for the

developments presented in this thesis. The chapter focuses on results in nonsmooth analysis

for locally Lipschitz continuous functions. These results depend on derivatives, convex sets,

convex functions and set-valued maps. Therefore the chapter begins with a brief review of

results in differentiation, set-valued maps and convex analysis. The chapter concludes with

examples to illustrate some of the reviewed concepts.

2.1 Notation

In this document, symbols printed in boldface represent vector and matrix-valued quantities.

Let O and S be sets in a metric space. O\S is {u ∈ O : u /∈ S}. int (O) is the interior

and cl (O) is the closure of O. bd (O) is the boundary of O and it is equal to cl (O)\O. O is

a singleton if it has exactly one element.

Let n be a finite positive integer. S ⊂ R
n is a set of measure zero in R

n if it has Lebesgue

measure zero.

Let O be the set {oi}n
i=1 where n is a positive integer (possibly equal to ∞) and oi are
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elements of an arbitrary set. Then, ind(oi, O), the index of oi, is i and s(O), the number of

elements in O, is n. If n = ∞ then {oi}n
i=1 is equivalent to {oi}.

Let O ⊂ R
n×m. If A ∈ O, then Ai,j represents the element occupying the ith row and

and jth column of A where i ∈ {1, . . . , n} and j ∈ {1, . . . , m}. AT is the transpose of A.

‖A‖, the norm of A, is
√

∑n
i=1

∑m
j=1 |Ai,j|2. Let A ∈ R

n×m and B ∈ R
m×p, then AB is the

n× p matrix that is the product of A and B. [AT B] is an m× (n + p) matrix such that for

all i = 1, . . . , m, Ci,j = AT
i,j if 1 ≤ j ≤ n and Ci,j = Bi,(j−n) if n < j ≤ n + p. If A ∈ R

n×n is

invertible, then A−1 represents the inverse.

The elements of R
n are column vectors. If v ∈ R

n and u ∈ R
m, then (v,u) is equivalent

to [vT uT]T.

In is the n×n identity matrix. ei is the ith column of In. 0 represents any matrix whose

elements are all zero.

Let Z ⊂ R
n×m and α ∈ R. Then αZ represents the set {αz : z ∈ Z}. Let Y ⊂ R

n×m.

Then Z + Y represents the set {z + y : z ∈ Z, y ∈ Y }.

2.2 The Gâteaux, Partial, Fréchet and Strict Deriva-

tives

The results in this section are from Chapter 3 in [76] unless otherwise stated.

Let m and n be finite positive integers and X be an open subset of R
n. Let L(Rn, Rm)

denote the space of continuous linear transformations from R
n to R

m. Let fi : X → R for

i = 1, . . . , m and f : X → R
m : y 7→ (fi(y), . . . , fm(y)). Let x ∈ X, x = (xi, . . . , xn) where

xi ∈ R.

Definition 2.2.1 (The Directional Derivative). Let v ∈ R
n. Then f ′(x;v), the direc-
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tional derivative or Gâteaux differential of f at x in the direction v, is defined by

f ′(x;v) = lim
t↓0

f(x + tv) − f(x)

t
.

f is directionally differentiable at x if f ′(x;v) exists for all v ∈ R
n.

Definition 2.2.2 (The Gâteaux Derivative). If f ′(x;v) exists for all v ∈ R
n at x and

there exists a continuous linear transformation A(x) ∈ L(Rn, Rm) such that f ′(x;v) =

A(x)v, ∀v ∈ R
n then f is Gâteaux differentiable at x and A(x) is the unique Gâteaux

derivative of f at x.

Equivalently f is Gâteaux differentiable at x if there exists a continuous linear transfor-

mation A(x) ∈ L(Rn, Rm) such that for any v ∈ R
n,

lim
t↓0

‖f(x + tv) − f(x) − tA(x)v‖
t

= 0.

In the remainder of this document, if f is Gâteaux differentiable at x, then it will be

called differentiable at x.

Definition 2.2.3 (The Jacobian, the Gradient and the Partial Derivative). Jf(x),

the Jacobian of f at x, is an m × n matrix of the form













∂f1

∂x1
(x) · · · ∂f1

∂xn
(x)

...
...

∂fm

∂x1
(x) · · · ∂fm

∂xn
(x)













.

where each ∂fi

∂xj
(x) is called the partial derivative of fi with respect to xj at x and satisfies

∂fi

∂xj
(x) = lim

t↓0

fi(x + tej) − fi(x)

t
.
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If m = 1, the gradient of f at x is ∇f(x) and it is equal to Jf(x)T.

If f is Gâteaux differentiable at x ∈ X, then A(x) = Jf(x).

Let O ⊂ X be a neighborhood of x ∈ X. If f is Gâteaux differentiable at every z ∈ O

and the mapping z 7→ Jf(z) is continuous on O, then f is continuously Gâteaux differentiable

at x. If O = X, then f is a continuously Gâteaux differentiable function. This is denoted by

f ∈ C1(X). In the remainder of this document, continuous differentiability is a synonym for

continuous Gâteaux differentiability.

Let {si}n
i=1 be a set where each si and n are finite positive integers. Let Xi be an open

subset of R
si, xi ∈ Xi for all i ∈ {1, . . . , n} and x = (x1, . . . ,xn). Let f be a function

from Πn
i=1Xi to R

m. If k ∈ {1, . . . , n}, then Jkf(x) is the Gâteaux derivative of the func-

tion f(x1, . . . ,xk−1, ·, xk+1, . . . ,xn) at x. If f is a scalar-valued function, then ∇kf(x) is

equivalent to Jkf(x)T.

Definition 2.2.4 (The Fréchet Derivative). f is Fréchet differentiable at x ∈ X if there

exists a unique A(x) ∈ L(Rn, Rm) such that,

lim
v→0

‖f(x + v) − f(x) − A(x)v‖
‖v‖ = 0.

holds. A(x) is called the Fréchet derivative of f at x.

Definition 2.2.5 (The Strict Derivative). f is strictly differentiable at x ∈ X if there

exists a unique A(x) ∈ L(Rn, Rm) such that,

lim
(y,v)→(x,0)

f(y + v) − f(y) −A(x)v

‖v‖ = 0.

holds. A(x) is called the strict derivative of f at x (page 132 in [19]).

Equivalently, f is strictly differentiable at x ∈ X if there exists a unique A(x) ∈ L(Rn, Rm)
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such that

lim
(y, t)→(x,0+)

f(y + tv) − f(y) − tA(x)v

t
= 0

holds for all v ∈ R
n and the convergence is uniform for v in compact sets (page 30 in [25]).

Example 2.9.6 contains the proof of the equivalence of these two definitions.

2.2.1 Properties

The results in this section are from Chapter 3 in [76] unless otherwise stated.

1. Even if f is Gâteaux differentiable at x ∈ X, it may not be continuous at x. However,

if f is Fréchet differentiable at x, then it is continuous at x.

2. The existence of the Jacobian at x ∈ X does not imply the existence of a Gâteaux, strict

or Fréchet derivative. Only if the Jacobian is a continuous function in the neighborhood

of x, Fréchet differentiability can be deduced from Theorem 9.21 in [96].

3. If f is Fréchet differentiable at x ∈ X, then it is also Gâteaux differentiable. The

Fréchet and Gâteaux derivatives are equal in this case.

4. If f is strictly differentiable at x ∈ X, then it is also Fréchet differentiable at x. The

strict and the Fréchet derivatives are the equal in this case.

5. If f is continuously Gâteaux differentiable at x, then it is Fréchet differentiable at x.

This follows from the fact that the partial derivatives of f are continuous functions and

per Theorem 9.21 in [96], Fréchet differentiability follows. Note that differentiability

in [96] is equivalent to Fréchet differentiability.
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6. Let f : R
n → R

m and g : R
m → R

p be Fréchet differentiable at x and f(x), respectively.

Then g ◦ f is Fréchet differentiable at x. If f is only Gâteaux differentiable at x then

g ◦ f is Gâteaux differentiable at x.

2.2.2 Mean Value Theorem for Differentiable Functions

Theorem 2.2.6 (Mean Value Theorem for Gâteaux Differentiable Functions). If

f : [a, b] → R is continuous and Gâteaux differentiable on (a, b), then there is a point

x ∈ (a, b) such that f(b) − f(a) = (b − a)∇f(x)(Theorem 5.10 in [96]).

2.3 Set-valued Maps

The results of this section are mainly from [35]. Let X ⊂ R
n and Y ⊂ R

m in the remainder

of this section.

Definition 2.3.1 (Set-valued Map). A set-valued map S : X ⇉ Y is a map from the set

X to the subsets of the set Y .

gph(S), the graph of S, is the set {(x,y) ∈ X × Y : y ∈ S(x)}.

dom(S), the domain of S, is the set {x ∈ X : S(x) 6= ∅}.

rge(S), the range of S, is the set {y ∈ Y : ∃x ∈ X with y ∈ S(x)}.

Instead of considering S : X ⇉ Y , one can consider S : R
n

⇉ R
m by defining S(x) = ∅

if x is not in X. The domain and the range do not change after this extension.

Definition 2.3.2 (Closed Set-valued Map). Let S be a set-valued map from X to Y .

Let {xi} ⊂ R
n be a sequence such that xi → x. Let {yi} ⊂ R

m be such that yi ∈ S(xi) and

yi → y. If y ∈ S(x) for any sequences {xi} and {yi} such as described, then S is closed at

x. S is a closed set-valued map if it is closed at all x ∈ X.
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Definition 2.3.3 (Locally Bounded Set-valued Map). Let S be a set-valued map

from X to Y . S is locally bounded at x if there exists, O, a neighborhood of x such that

∪
z ∈ O ∩ dom(S)

S(z) is bounded. S is a locally bounded set-valued map if it is locally bounded at

all x ∈ X.

Definition 2.3.4 (Upper Semicontinuity of Set-valued Maps). Let S be a set-valued

map from X to Y . S is upper semicontinuous at x if for all open sets V ⊂ R
m such that

S(x) ⊂ V , there exists O, a neighborhood of x such that for all z ∈ O, S(z) ⊂ V holds. S

is an upper semicontinuous set-valued map if S is upper semicontinuous at all x ∈ X.

Definition 2.3.5 (Lower Semicontinuity of Set-valued Maps). Let S be a set-valued

map from X to Y . S is lower semicontinuous at x ∈ R
n if for every open set V such that

S(x)∩V 6= ∅, there exists O, a neighborhood of x such that for all z ∈ O, S(z)∩V 6= ∅ holds.

S is a lower semicontinuous set-valued map if S is lower semicontinuous at all x ∈ X.

Definition 2.3.6 (Continuity of Set-valued maps). Let S be a set-valued map from

X to Y . S is continuous at x ∈ X if it is lower and upper semicontinuous at x. S is a

continuous set-valued map if S is continuous at all x ∈ X.

Remark 2.3.7 (Upper and Lower Semicontinuity of Functions). The concept of upper

semicontinuity defined for set-valued maps does not coincide with the concept of upper and

lower semicontinuity defined for functions.

Let X be a subset of R
n and x∗ be a limit point of X.

The limit inferior of f : X → R at x∗ is

lim inf
x→x∗

f(x) = sup
σ>0

inf{f(x) : x ∈ X, 0 < ‖x − x∗‖ < σ}.
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The limit superior of f : X → R is

lim sup
x→x∗

f(x) = inf
σ>0

sup{f(x) : x ∈ X, 0 < ‖x − x∗‖ < σ}.

Note that lim inf
x→x∗

f(x) ≤ lim sup
x→x∗

f(x). Also f is continuous at x∗ if and only if lim inf
x→x∗

f(x) =

lim sup
x→x∗

f(x) = f(x∗).

Let x∗ ∈ X. f : X → R is upper semicontinuous at x∗ if lim sup
x→x∗

f(x) ≤ f(x∗) and

lower semicontinuous at x∗ if lim inf
x→x∗

f(x) ≥ f(x∗). A function that is both upper and lower

semicontinuous at a point is continuous at that point.

If a function is continuous at a point, it is also continuous at that point as a set-valued

map. If a function is upper or lower semicontinuous at a point then it is neither upper nor

lower semicontinuous at that point as a set-valued map.

2.3.1 Properties of Set-valued Maps

Let S be a set-valued mapping from X to Y .

1. If S is closed and locally bounded at x, then it is upper semicontinuous at x.

2. S is closed if and only if its graph is a closed set.

3. If S is lower semicontinuous at x, then for every {xi} ⊂ X such that xi → x and every

y ∈ S(x), there exists a sequence {yi} such that yi → y and yi ∈ S(xi).

4. If S is upper semicontinuous at x ∈ X, then for every scalar ǫ, there exists O, a

neighborhood of x, such that for all z ∈ O, S(z) ⊂ S(x)+ ǫB(0, 1) where B(0, 1) is the

unit ball in R
m.
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2.4 Elementary Convex Analysis

The results of this section are mainly from [15].

2.4.1 Convex Sets

Definition 2.4.1 (Convex Set). A set C ∈ R
n is convex if for all α ∈ (0, 1), αx+(1−α)y

is in C whenever x and y are in C. The empty set and any singleton set are convex.

Properties of Convex Sets

1. Let I = {1, . . . , k} where k is a positive integer (possibly ∞). Let Ci be a convex

subset of R
n for all i ∈ I. Then ∩k

i=1Ci is a convex set.

2. If C ⊂ R
n is convex, then int (C) and cl (C) are convex sets.

3. If C1 ⊂ R
n and C2 ⊂ R

n are convex sets, then α1C1 + α2C2 is a convex set where α1

and α2 are scalars.

Definition 2.4.2 (Convex Combination). Let I = {1, . . . , k} where k is a positive

integer (possibly ∞). Let xi ∈ R
n for all i ∈ I. A convex combination of the vectors {xi}k

i=1

is
∑k

i=1 αixi where for all i ∈ I, αi ∈ R, αi ≥ 0 and
∑k

i=1 αi = 1.

Definition 2.4.3 (Convex Hull). The convex hull of a nonempty set C ⊂ R
n is the

intersection of all convex sets containing C and is denoted by conv (C).

conv (C) is also equal to the set {∑k
i=1 αixi : αi ∈ R, αi ≥ 0,

∑k
i=1 αi = 1, xi ∈ C, k ∈

{1, 2, . . .}}.

Definition 2.4.4 (Closed Convex Hull). The closed convex hull of a nonempty set C ⊂ R
n

is the intersection of all closed convex sets containing C and is denoted by cl (conv (C)).
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The closed convex hull is also the closure of the convex combinations of the elements of

C ⊂ R
n. Note that the closure and convex hull operations are not in general interchangeable.

If the set C is bounded, then the operations are interchangeable.

Theorem 2.4.5 (Carathéodory’s Theorem). Let C be a nonempty subset of R
n. Then

any x ∈ conv (C) can be represented as a convex combination of n+1 not necessarily different

elements of C.

Theorem 2.4.6 (Projection onto Closed Convex Sets). The closest point of a convex

set C ⊂ R
n to a point x ∈ R

n is called the projection of x on C and is denoted by pC(x). A

unique minimizer, ({pC(x)} = argmin
y ∈ C

‖x−y‖), always exists if C is closed and nonempty. In

addition, z = pC(x) if and only if 〈x−z,v−z〉 ≤ 0, ∀v ∈ C and ‖pC(x)−pC(y)‖ ≤ ‖x−y‖

holds for all x,y ∈ R
n.

Definition 2.4.7 (Hyperplane). Ha,b, a hyperplane in R
n, is the set {x ∈ R

n : aTx = b}

where a ∈ R
n and b is a scalar.

The sets {x : aTx > b} and {x : aTx ≥ b} are the open and closed positive halfspaces,

respectively, associated with H. Analogously, {x : aTx < b} and {x : aTx ≤ b} are the

open and closed negative halfspaces, respectively, associated with H.

Theorem 2.4.8 (Supporting Hyperplane Theorem). Let C be a nonempty convex sub-

set of R
n and x ∈ C\int (C). Then there exists a hyperplane Ha,b such that aTx = b and

aTx ≤ aTy, ∀y ∈ C.

2.4.2 Convex Functions

Definition 2.4.9 (Convex Function). f : C → R is a convex function if C ⊂ R
n is

a convex set and for any x ∈ C and y ∈ C and all α ∈ (0, 1), f(αx + (1 − α)y) ≤

αf(x) + (1 − α)f(y) holds.
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The epigraph of f , epi(f) is the set {(x, y) : x ∈ C, y ∈ R, f(x) ≤ y}.

Let C ⊂ R
n be a convex set. Then f : C → R is a convex function if and only if epi(f)

is a convex subset of R
n+1.

Definition 2.4.10 (Strictly Convex Function). f : C → R is strictly convex function if

it is a convex function and for any x ∈ C and y ∈ C and all α ∈ (0, 1), f(αx + (1−α)y) <

αf(x) + (1 − α)f(y) holds.

Definition 2.4.11 (The Subgradient and Subdifferential). Let C be a convex subset

of R
n and f : C → R be a convex function.

g ∈ R
n is a subgradient of f at x ∈ int (C) if

f(y) ≥ f(x) + 〈g,x− y〉, ∀y ∈ C.

holds. The existence of a subgradient is guaranteed by Theorem 2.4.8 if epi(f)is considered

as a convex subset of R
n+1. Note that it is possible to obtain g such that ‖g‖ = +∞ at

x /∈ int (C). Therefore only x ∈ int (C) are considered in the above definition.

∂f(x), the subdifferential of f at x ∈ int (C) is the set of all subgradients of f at x.

∂f(x) is a convex, compact subset of R
n and ∂f is an upper semicontinuous set-valued map

at x ∈ int (C).

2.5 Locally Lipschitz Continuous Functions

Let n and m be finite positive integers. Let X be a subset of R
n.

Definition 2.5.1 (Lipschitz Continuity). f : X → R
m is a Lipschitz continuous function

on X if there exists K ∈ [0, +∞) such that ‖f(x) − f(y)‖ ≤ K‖x − y‖, ∀x,y ∈ X.

Definition 2.5.2 (Local Lipschitz Continuity). f : X → R
m is locally Lipschitz contin-

uous at x ∈ int (X) if there exists a constant K ∈ [0, +∞) and O, a neighborhood of x, such
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that ‖f(z) − f(y)‖ ≤ K‖z − y‖, ∀z,y ∈ O. f is a locally Lipschitz continuous function if it

is locally Lipschitz continuous at all x ∈ X.

2.5.1 Properties of Locally Lipschitz Continuous Functions

The following are standard results that can be found easily in the literature [25, 92].

1. Local Lipschitz continuity does not imply Lipschitz continuity. For example, f : R →

R : x 7→ x2 is a locally Lipschitz continuous function but not a Lipschitz continuous

function.

2. Differentiable functions may not be locally Lipschitz continuous (See Example 2.9.7).

3. If f : X → R
m is continuously differentiable at x ∈ X, then it is locally Lipschitz

continuous at x.

4. If f : X → R
m is locally Lipschitz continuous and Gâteaux differentiable at x ∈ X,

then it is also Fréchet differentiable.

5. If f : X → R
m is strictly differentiable at x ∈ X, then it is locally Lipschitz continuous

at x (Proposition 2.2.1 in [25]).

6. Let f : X → R
m and g : X → R

m be locally Lipschitz continuous at x. Then f + g is

locally Lipschitz continuous at x.

7. Let f : X → R
m and g : R

m → R
l be locally Lipschitz continuous at x and f(x),

respectively. Then g ◦ f is locally Lipschitz continuous at x.

8. Let f : X → R and g : X → R be locally Lipschitz continuous at x. Then fg is locally

Lipschitz continuous at x.
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9. (Rademacher’s Theorem, [92]) Let X be an open subset of R
n. If f : X → R

m is

a locally Lipschitz continuous function on X then it is differentiable at all x ∈ X\S

where S is a measure zero subset of X, and X\S is dense in X.

10. Let X be an open convex subset of R
n. If f : X → R is a convex and bounded function,

then f is a locally Lipschitz continuous function on X.

11. f : X → R is strictly differentiable in a neighborhood of x if and only if it is con-

tinuously differentiable on that neighborhood of x (Corollary of Proposition 2.2.4 in

[25]).

12. F : X → R
m is strictly differentiable in a neighborhood of x if and only if it is

continuously differentiable on that neighborhood of x.

Proof. Let F(x) = (f1(x), . . . , fm(x)). If F is strictly differentiable in a neighborhood

of x, then each fi are strictly differentiable on that neighborhood. Hence each fi is

continuously differentiable on that neighborhood per the previous item. As a result F

is continuously differentiable on that neighborhood. If F is continuously differentiable

on a neighborhood of x, then fi are continuously differentiable on that neighborhood.

Hence fi are strictly differentiable on that neighborhood. Strict differentiability of F

on that neighborhood follows.

2.6 Nonsmooth Analysis for Locally Lipschitz Contin-

uous Functions

In this section, relevant results of nonsmooth analysis for finite dimensional Euclidean spaces

are summarized. The results are mainly from [25].
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In the remainder of this section, let X ⊂ R
n and f : X → R be locally Lipschitz

continuous at x ∈ X with Lipschitz constant K. Let O be the corresponding neighborhood

of x and S be the measure zero subset of O such that if z ∈ S, ∇f(z) does not exist.

2.6.1 The Generalized Directional Derivative

Definition 2.6.1 (The Generalized Directional Derivative). Let v ∈ R
n. f o(x;v), the

generalized directional derivative at x in the direction v (page 25 in [25]) is

f o(x;v) = lim sup
(y, t)→(x,0+)

f(y + tv) − f(y)

t
. (2.6.1)

Properties of Generalized Directional Derivatives

1. The mapping v 7→ f o(x;v) is finite, convex and satisfies |f o(x;v)| ≤ K‖v‖ on R
n. In

addition, the mapping v 7→ f o(x;v) is Lipschitz continuous with constant K on R
n.

2. The mapping (x,v) 7→ f o(x;v) is an upper semicontinuous function.

3. f o(x;−v) = −f o(x;v).

4. f o(x; 0) = 0.

2.6.2 The Generalized Gradient

Definition 2.6.2 (The Generalized Gradient). If f is locally Lipschitz continuous at x,

then the function v 7→ f o(x;v) is a finite convex function from R
n to R. Per the Supporting

Hyperplane Theorem (Theorem 2.4.8), there exists a vector ζ such that f o(x;v)−f o(x; 0) ≥

〈ζ,v〉, ∀v ∈ R
n. ∂f(x), the generalized gradient at x, is the set of all such ζ ∈ R

n (page 27
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in [25]). Formally, it is the set

{ζ ∈ R
n : f o(x;v) ≥ 〈ζ,v〉, ∀v ∈ R

n}.

This definition can be used to define the generalized gradient of scalar functions whose

domains are subsets of arbitrary Banach spaces using the Hahn-Banach Theorem.

An alternative definition applicable to functions whose domains are subsets of finite-

dimensional Euclidean spaces uses the gradient of the functions.

Definition 2.6.3 (The Generalized Gradient II). Let Q ⊂ O be any set of measure zero.

Let {xi} be any sequence such that xi ∈ O\(S ∪ Q) for all i and xi → x. Let {∇f(xi)}

be the corresponding sequence of gradients and { lim
i→∞

∇f(xi)} be the set of the limits of all

convergent sequences, {∇f(xi)}. Then ∂f(x), the generalized gradient of f at x, is the

convex hull of the set { lim
i→∞

∇f(xi)} (Theorem 2.5.1 in [25]). Formally,

∂f(x) = conv
(

{ lim
i→∞

∇f(xi) : xi → x, xi ∈ O\(S ∪ Q)}
)

. (2.6.2)

Properties of the Generalized Gradient

1. ζ ∈ ∂f(x) if and only if f o(x;v) ≥ 〈ζ,v〉, ∀v ∈ R
n.

2. ∂f(x) is a nonempty, convex and compact subset of R
n and if ζ ∈ ∂f(x) then ‖ζ‖ ≤ K.

3. For every v ∈ R
n, f o(x;v) = max

ζ∈∂f(x)
{〈ζ,v〉}.

4. The set-valued map ∂f is locally bounded and uppersemicontinuous at x.

5. If f is a convex and finite function on O, then the generalized gradient at x ∈ O is

equal to the subdifferential at x.

6. If f is differentiable at x, then ∇f(x) ∈ ∂f(x).
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7. If f is strictly differentiable at x, then ∂f(x) = {∇f(x)}.

8. If the directional derivative exists in the direction v ∈ R
n, then f

′

(x;v) = 〈ζ,v〉 for

some ζ ∈ ∂f(x).

9. Let O be an open subset of R
n and g : O → R be a locally Lipschitz continuous function

which attains a minimum or maximum at x ∈ O, then 0 ∈ ∂f(x) (Proposition 2.3.2

in [25]).

Mean Value Theorem for Locally Lipschitz Continuous Functions

Theorem 2.6.4 (Mean Value Theorem for Locally Lipschitz Continuous Func-

tions). Let x,y ∈ R
n and f be locally Lipschitz continuous on an open set containing the

line segment L = {u : u = λx + (1− λ)y, λ ∈ (0, 1)}. Then, there exists a point u∗ ∈ L and

ζ ∈ ∂f(u∗) such that f(y) − f(x) = 〈ζ,y − x〉 (Theorem 2.3.7 in [25]).

Regularity

If f : R
n → R is locally Lipschitz continuous at x ∈ X, it is also (Clarke) regular at x if

1. for all v, the directional derivative exists, and

2. for all v, f
′

(x;v) = f o(x;v).

If f is convex and finite in a neighborhood of x ∈ X, then it is regular at x. If f is strictly

differentiable or continuously differentiable at x ∈ X, then it is regular at x.

Calculus Rules for the Generalized Gradient

Let f : X → R and gi : X → R be locally Lipschitz continuous at x ∈ X for all i ∈

{1, . . . , N} where N is a finite integer.

1. If α ∈ R then ∂(αf)(x) = α∂f(x).
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2. ∂

(

N
∑

i=1

gi

)

(x) ⊂
N
∑

i=1

∂gi(x). Equality holds if all but at most one of the gi are strictly

differentiable at x. Equality holds if all gi are regular at x.

3. If αi ∈ R for all i ∈ {1, . . . , N}, then

∂(

N
∑

i=1

αigi)(x) ⊂
N
∑

i=1

αi∂gi(x).

Equality holds if all but at most one of the gi are strictly differentiable at x. Equality

holds if all gi are regular at x and each αi is nonnegative.

4. ∂(g1g2)(x) ⊂ g2(x)∂g1(x) + g1(x)∂g2(x). If g2(x) ≥ 0, g1(x) ≥ 0 and g1, g2 are both

regular at x then equality holds and g1g2 is regular at x.

5. Suppose g2(x) 6= 0, then

∂

(

g1

g2

)

(x) ⊂ g2(x)∂g1(x) − g1(x)∂g2(x)

g2
2(x)

.

If g1(x) ≥ 0, g2(x) > 0 and if g1,−g2 are both regular at x then equality holds and

g1/g2 is regular at x.

6. Let h(x) = max{gi(x), . . . , gN(x)}. Let I(x) ⊂ {1, . . . , N} denote the set of indices i

for which h(x) = gi(x). Then

∂h(x) ⊂ conv





⋃

i∈I(x)

∂gi(x)



. (2.6.3)

If gi are regular at x for all i ∈ I(x), then h is regular at x and

∂h(x) = conv





⋃

i∈I(x)

∂gi(x)



. (2.6.4)
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(Proposition 2.3.12 in [25]).

2.6.3 The Generalized Jacobian

Let X be an open subset of R
n and F : X → R

m be such that F(y) = (fi(y), . . . , fm(y))

where each fi : X → R is a locally Lipschitz continuous function on X. Let O be a

neighborhood of x such that the Lipschitz constant of each fi on O is Ki. Then F is locally

Lipschitz continuous at x with Lipschitz constant K =
√
∑m

i=1 K2
i and JF(y) exists for all

y ∈ O\S where S is a measure zero subset of O per Rademacher’s Theorem.

Definition 2.6.5 (The Generalized Jacobian). Let Q ⊂ O be any set of measure zero.

Let {xi} be any sequence such that xi ∈ O\(S ∪ Q)† for all i and xi → x. Let {JF(xi)}

be the corresponding sequence of Jacobians and { lim
i→∞

JF(xi)} be the set of the limits of all

convergent sequences, {JF(xi)}. The generalized Jacobian of F at x, ∂F(x), is the convex

hull of { lim
i→∞

JF(xi)} (Definition 2.6.1 in [25]). In short,

∂F(x) = conv
(

{ lim
i→∞

JF(xi) : xi → x, xi ∈ O\(S ∪ Q)}
)

. (2.6.5)

Properties of the Generalized Jacobian

1. ∂F(x), x ∈ X is a nonempty, compact and convex subset of R
m×n.

2. The set-valued mapping ∂F is locally bounded and uppersemicontinuous at x ∈ X.

3. ‖Z‖ ≤ K holds for all Z ∈ ∂F(x) and x ∈ X.

4. ∂F(x) ⊂ {A : A ∈ R
m×n, aT

i ∈ ∂fi(x), i = 1, . . . , m} where ai is the ith row of A

and x ∈ X.

†Clarke does not mention the set Q when defining the generalized Jacobian in [25]. The indifference of
the generalized Jacobian to a set of measure zero is proven in [113].
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5. If m = 1 then the set containing the transposes of all the elements of the generalized

Jacobian of F at x ∈ X is the generalized gradient of F at x ∈ X.

6. If F is differentiable at x ∈ X, then JF(x) ∈ ∂F(x).

7. If F is strictly differentiable at x ∈ X, then ∂F(x) = {JF(x)}(Corollary 3.8 in [78]).

Chain Rules for the Generalized Jacobian and Gradient

Theorem 2.6.6. Let f = g ◦ F where F : R
m → R

n and g : R
n → R are locally Lipschitz

continuous at x and F(x), respectively, then

∂f(x) ⊂ conv
(

{(ζTA)T, ζ ∈ ∂g(F(x)), A ∈ ∂F(x)}
)

.

If g is strictly differentiable at F(x) then equality holds (Theorem 2.6.6 in [25]).

Theorem 2.6.7. Let F : R
m → R

n and G : R
n → R

p with F and G locally Lipschitz

continuous at x and F(x), respectively, then

∂(G ◦ F)(x) ⊂ conv ({AB, A ∈ ∂G(F(x)), B ∈ ∂F(x)}).

Equality holds if G is strictly differentiable at x (Theorem 4 in [48] and Theorem 4.3 in

[78]).

Mean Value Theorem for Generalized Jacobians

Theorem 2.6.8 (Mean Value Theorem for Generalized Jacobians). Let U be a convex

open subset of R
n and F : U → R

m be a locally Lipschitz continuous function on U . Let

x ∈ U , y ∈ U and L̄ = {u : u = λx + (1 − λ)y, λ ∈ [0, 1]} Then F(y) − F(x) ∈

conv
(

{Z(y − x) : Z ∈ ∂F(u), u ∈ L̄}
)

(Proposition 2.6.5 in [25]).
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2.6.4 The Partial Generalized Gradient and Jacobian

Let {si}n
i=1 be a set where each si and n are finite positive integers. Let Xi ⊂ R

si be an open

set, xi ∈ Xi for all i ∈ {1, . . . , n} and x = (x1, . . . ,xn). Let F be a function from Πn
i=1Xi

to R
m, k ∈ {1, . . . , n} and F(x1, . . . ,xk−1, ·, xk+1, . . . ,xn) be a locally Lipschitz continuous

function on Ok, a neighborhood of xk. Then

∂kF(x) = conv
(

{ lim
i→∞

JkF(zi) : xk,i → xk, xk,i ∈ Ok\(Sk ∪ Qk)}
)

where zi = (x1, . . . ,xk−1,xk,i, xk+1, . . . ,xn), Qk is any measure zero subset of Ok and Sk is

the set of points in Ok such that JkF(xi, . . . ,xk−1,u,xk+1, . . . ,xn) does not exist if u ∈ Sk.

If m = 1 then the set containing the transposes of all the elements of the generalized

Jacobian, ∂kF (x), is the generalized gradient of the function F (x1, . . . ,xk−1, ·, xk+1, . . . ,xn)

at x.

Definition 2.6.9 (The Projection of the Generalized Jacobian). Let F : X1×X2 → R
p

where X1 and X2 are open subsets of R
n and R

m, respectively. Let F be locally Lipschitz

continuous at (x1,x2) where x1 ∈ X1 and x2 ∈ X2. Then π2∂F(x1,x2) is the set {M ∈

R
p×m : ∃N ∈ R

p×n such that [N M] ∈ ∂F(x1,x2)}. Analogously, π1∂F(x1,x2) is the set

{M ∈ R
p×n : ∃N ∈ R

p×m such that [M N] ∈ ∂F(x1,x2)}.

Theorem 2.6.10. Let F : X1 ×X2 → R
p where X1 and X2 are open subsets of R

n and R
m,

respectively. Let F be locally Lipschitz continuous at (x1,x2) where x1 ∈ X1 and x2 ∈ X2.

Then ∂1F(x1,x2) ⊂ π1∂F(x1,x2).

Proof. The result follows from Theorem 3.2 in [78]. Note that in the statement of this

theorem, ∂f(p) represents ∂F(x1,x2) and the subspace L represents R
n. ∂f(p)|L, the re-

striction of ∂f(p) to the subspace L in this case corresponds to π1∂F(x1,x2). ∂Lf(p) is an

intermediate construct that contains ∂1F(x1,x2) as stated on page 57 in [78].
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Definition 2.6.11 (The Projection of the Generalized Gradient). Let f : X1 ×

X2 → R where X1 and X2 are open subsets of R
n and R

m, respectively. Let f be locally

Lipschitz continuous at (x1,x2) where x1 ∈ X1 and x2 ∈ X2. Then π2∂f(x1,x2) is the set

{M ∈ R
m : ∃N ∈ R

n such that (N,M) ∈ ∂f(x1,x2)}. Analogously, π1∂f(x1,x2) is set

{M ∈ R
n : ∃N ∈ R

m such that (M,N) ∈ ∂f(x1,x2)}.

Theorem 2.6.12. Let f : X1 × X2 → R where X1 and X2 are open subsets of R
n and R

m,

respectively. Let f be locally Lipschitz continuous at (x1,x2) where x1 ∈ X1 and x2 ∈ X2.

Then ∂1f(x1,x2) ⊂ π1∂f(x1,x2) (Proposition 2.3.16 in [25]).

2.6.5 Implicit Function Theorem for Locally Lipschitz Continuous

Functions

The next theorem is an implicit function theorem summarizing the necessary results for

subsequent developments (Corollary of Theorem 7.1.1 on page 256 in [25] and Theorem 1.5

in [28]).

Theorem 2.6.13 (Implicit Function Theorem for Locally Lipschitz Functions).

Let X1 and X2 be open subsets of R
n and R

m, respectively. Let x1 ∈ X1 and x2 ∈ X2. Let

H : X1 × X2 → R
m be locally Lipschitz continuous at (x1,x2).

Let π2∂H(x1,x2) be the set {M ∈ R
m×m : ∃N ∈ R

m×n such that [N M] ∈ ∂H(x1,x2)}.

Let π2∂H(x1,x2) be maximal, i.e., each element of π2∂H(x1,x2) is invertible.

If H(x1,x2) = 0, then there exists O1, a neighborhood of x1, and a locally Lipschitz con-

tinuous function G from O1 to R
m such that G(x1) = x2 and H(u,G(u)) = 0, for all u ∈ O1.

If ∂H(x1,x2) = {[(J1H(x1,x2) J2(H(x1,x2)]}, then ∂G(x1) = {−J2H(x1,x2)
−1J1H(x1,x2)}.
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2.7 Piecewise Continuously Differentiable (PC1) Func-

tions

The results in this section can be found in [91] and [98].

Definition 2.7.1 (PC1 Functions). Let X be an open subset of R
n. F : X → R

m is

a piecewise continuously differentiable function on X, denoted by F ∈ PC1(X), if F is a

continuous function on X and for every x ∈ X there exists a neighborhood O ⊂ X and a

finite set of selection functions, {Fi : O → R
m, Fi ∈ C1(O)}k

i=1, such that for all y ∈ O,

F(y) ∈ {Fi(y)}k
i=1. Let Oi = {y ∈ O : Fi(y) = F(y)} for each i ∈ {1, . . . , k}. A selection

function, Fi, is essentially active at x if x ∈ cl (int (Oi)). I(F,x), the set of essentially

active function indices at x is the set of indices i ∈ {1, . . . , k} such that Fi is essentially

active at x.

2.7.1 Properties of PC1 Functions

1. If F ∈ PC1(X), then there exists a set of selection functions that are essentially active

at x ∈ X (Proposition 4.1.1 in [98]).

2. If F ∈ PC1(X), then F is locally Lipschitz continuous at all x ∈ X. The Lipschitz

constant is the maximum of the Lipschitz constants of the essentially active selection

functions.

3. If F ∈ PC1(X), then ∂F(x) = conv ({JFi(x) : i ∈ I(F,x)}).

2.7.2 Implicit Function Theorem for PC1 Functions

Definition 2.7.2 (Complete Coherent Orientation). Let Y1 and Y2 be open subsets of

R
n and R

m, respectively. Let y1 ∈ Y1 and y2 ∈ Y2. Let H : Y1 ×Y2 → R
m be a PC1 function
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, and let {Hi : i ∈ I(H, (y1,y2))} be the set of essentially active selection functions at

(y1,y2). Let Λ(y1,y2) be the set of all m × m matrices M with the property that there

exist matrices Mk ∈ {J2Hi(y1,y2) : i ∈ I(H, (y1,y2))} where k = 1, . . . , m such that the

kth row of M coincides with the kth row of Mk. Then H is completely coherently oriented

with respect to Y2 at (y1,y2) if all matrices M ∈ Λ(y1,y2) have the same non-vanishing

determinantal sign (Definition 16 in [91]).

Theorem 2.7.3 (Implicit Function Theorem for PC1 Functions). Let Y1 and Y2 be

open subsets of R
n and R

m, respectively. Let y1 ∈ Y1 and y2 ∈ Y2. Let H : Y1 × Y2 → R
m

be a PC1 function that is completely coherently oriented with respect to Y2 at (y1,y2). If

H(y1,y2) = 0, then there exists a neighborhood, O, of y1 and a PC1 function, G : O → R
m

such that G(y1) = y2 and H(z,G(z)) = 0 for all z ∈ O (Corollary 20 in [91]).

2.8 Semismooth Functions

Semismooth and related functions comprise a group of functions for which nonsmooth opti-

mization methods with provable convergence can be devised. Nonsmooth Newton methods

exist to solve nonsmooth equations involving vector-valued semismooth functions.

2.8.1 Bouligand Differentiable Functions

The results in this section can be found in [35].

Definition 2.8.1 (The Bouligand Derivative). Let X be an open subset of R
n. Then

F : X → R
m is Bouligand differentiable (B-differentiable) at x ∈ X if F is locally Lipschitz

continuous and directionally differentiable at x. The function F′(x; ·) is called the Bouligand

derivative (B-derivative) of F at x (Definition 3.1.2 in [35]).
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Theorem 2.8.2. Let X be an open subset of R
m. F : X → R

m be B-differentiable at x ∈ X.

Then the limit

lim
y→x

F(y) − F(x) − F′(x;y − x)

‖x − y‖ = 0

holds (Proposition 3.1.3 in [35]).

Theorem 2.8.3 (Chain Rule for Bouligand Differentiable Functions). Let X be an

open subset of R
n. Let F : X → R

m and G : R
m → R

p be B-differentiable at x ∈ X and

F(x) respectively. Then H ≡ G ◦ F is B-differentiable at x and the B-derivative is

H′(x;d) = G′(F(x);F′(x;d)), ∀d ∈ R
n.

(Proposition 3.1.6 in [35]).

Properties of Bouligand Differentiable Functions

Let X be an open subset of R
m in this section.

1. If F : X → R
m is B-differentiable at x ∈ X, then F′(x; ·) is a Lipschitz function from

R
n to R

m.

2. If F : X → R
m is B-differentiable at x ∈ X, and F′(x; ·) is a linear function, then F is

Fréchet differentiable at x.

3. If F : X → R
m ∈ PC1(X), then it is B-differentiable at all x ∈ X.

4. Let X be a convex set and f : X → R be a finite convex function on X. Then f is

B-differentiable at all x ∈ X.
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2.8.2 Scalar-Valued Semismooth Functions

In the remainder of this section, let X be an open subset of R
n and f : X → R be locally

Lipschitz continuous at x ∈ X.

Definition 2.8.4 (Scalar-valued Semismooth Function). f is semismooth at x ∈ X

if for each d ∈ R
n and for all sequences {tk} ⊂ R, {vk} ⊂ R

n and {gk} ⊂ R
n such that

tk 6= 0, ∀k, tk ↓ 0, vk/tk → 0 and gk ∈ ∂f(x + tkd + vk), the sequence {〈gk,d〉} has exactly

one accumulation point [71]. If f is semismooth for all x ∈ X, then it is a semismooth

function.

Definition 2.8.5 (Weakly Upper Semismooth Functions). f is weakly upper semis-

mooth [70] at x if for each d ∈ R
n and for any sequences {tk} ⊂ R and {gk} ⊂ R

n such that

tk > 0, ∀k, tk ↓ 0 and gk ∈ ∂f(x + tkd) the following holds:

lim inf
k→∞

〈gk,d〉 ≥ lim sup
tk↓0

f(x + tkd) − f(x)

tk
. (2.8.1)

Definition 2.8.6 (Upper Semidifferentiable Functions). f is upper semidifferentiable

at x if and only if for all d ∈ R
n, for all sequences {tk} ⊂ R and {gk : gk ∈ ∂f(x + tkd)}

such that tk > 0, ∀k and tk ↓ 0, there exist subsequences whose indices are in the set K ⊂ N

such that

lim inf
k→∞
k∈K

f(x + tkd) − f(x)

tk
− 〈gk,d〉 ≤ 0 (2.8.2)

holds [18].

Properties of Scalar-Valued Semismooth Functions

Let X be an open subset of R
n in the remainder of this section.
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1. Definition 2.8.4 and the fact that the generalized gradient is a locally bounded set-

valued mapping imply that all sequences {〈gk,d〉} as described converge to the same

limit.

Let L be the accumulation point mentioned in Definition 2.8.4. The sequence {〈gk,d〉}

is bounded because the generalized gradient is locally bounded. Assume there exists

a subsequence that does not converge to L. By the Bolzano-Weierstrass Theorem

(Theorem 2.42 in [96]), this subsequence has a converging subsequence. If the limit of

this subsequence is not L, then the semismoothness assumption is violated. Hence all

sequences {〈gk,d〉}, converge to L.

2. If f is semismooth at x ∈ X then f ′(x;d) exists for ∀d ∈ R
n and is equal to lim

k→∞
〈gk,d〉

for any sequences as described in Definition 2.8.4 (Lemma 2 in [71]).

3. If f is semismooth in a neighborhood of x ∈ X, then f ′(x;d) = lim
tk↓0

f ′(x+tkd;d) for any

sequence {tk} such that tk > 0 for all k and tk → 0. Note that due to semismoothness

in a neighborhood of x, for small enough tk, f ′(x+ tkd;d) exists and is equal to 〈gk,d〉

where gk ∈ ∂f(x + tkd). By semismoothness {〈gk,d〉} converges to a limit which is

f ′(x;d).

4. Let f : X → R and g : X → R be locally Lipschitz continuous and semismooth

functions on X. Then g + f and αg where α ∈ R are semismooth functions [71].

5. Let F : X → R
n : y 7→ (f1(y), . . . , fm(y)) where fi : X → R, i = 1, . . . , m are locally

Lipschitz continuous and semismooth at x ∈ X. Let g : R
m → R be locally Lipschitz

continuous and semismooth at F(x). Then g ◦ F is locally Lipschitz continuous and

semismooth at x (Theorem 5 in [71]).

6. If f : X → R is a semismooth function then it is strictly differentiable for all x ∈ X\S

where S is a measure zero subset of X [88].
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7. If f : X → R is a finite and convex function in a neighborhood of x ∈ X, then it is

semismooth at x.

8. If f : X → R is semismooth at x ∈ X, then it is weakly upper semismooth at x [70].

9. If f : X → R is weakly upper semismooth at x ∈ X, then it is directionally differen-

tiable at x [70].

10. If f is weakly upper semismooth at x, then it is upper semidifferentiable at x. If

f : X → R is upper semidifferentiable at x ∈ X, and is directionally differentiable at

x, then it is weakly upper semismooth at x [18].

11. Upper semidifferentiability is a sufficient condition for line search algorithms in nons-

mooth optimization methods to terminate finitely [54, 66].

12. If F : X → R ∈ PC1(X), then it is a semismooth function [35].

2.8.3 Vector-valued Semismooth Functions

The concept of semismoothness is extended to functions F : R
n → R

m using the generalized

Jacobian [89].

In the remainder of this section, let X be an open subset of R
n and F : X → R

m be a

locally Lipschitz continuous function.

Definition 2.8.7 (Vector-valued Semismooth Functions). Let d ∈ R
n, {tk} and {vk}

be any sequences such that tk ∈ R, tk > 0 ∀k, vk ∈ R
n, tk ↓ 0 and vk/tk → 0. Let

xk = x + tkd + vk and dk = d + vk/tk. F : X → R
m is semismooth at x ∈ X if for

each d ∈ R
n and for all sequences {xk} and {Vk} such that for all k, Vk ∈ ∂F(xk), the

sequence {Vkdk} has exactly one accumulation point [89]. F is a semismooth function if F

is semismooth at all x ∈ X.
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Properties of Vector-valued Semismooth Functions

1. As in the scalar-valued semismooth function case, all sequences {Vkdk} converge to

the same limit because the generalized Jacobian is a locally bounded set-valued map.

2. If F : X → R
m is semismooth at x, then the directional derivative exists for all d ∈ R

n

and F′(x,d) = Vd where V ∈ ∂F(x) [89].

3. If F : X → R
m is semismooth at x

lim
k→∞

F(x + tkdk) − F(x)

tk
= lim

k→∞
Vkdk = F′(x;d) (2.8.3)

holds [89].

4. F : X → R
m is semismooth at x if and only if each element of F is semismooth [35].

5. Let F : X → R
m be semismooth at x and G : R

m → R
p be semismooth at F(x). Then

G ◦ F is semismooth at x [35].

6. If F : X → R
m ∈ PC1(X), then it is a semismooth function [35].

2.8.4 A Restricted Definition of Semismoothness

In the subsequent chapters, a restricted definition of semismoothness is used. In order to

be semismooth at x ∈ X, F : X → R
m needs to be Bouligand differentiable on an open

neighborhood of x in addition to satisfying conditions in Definitions 2.8.4 and 2.8.7. This

restriction does not affect the results concerning semismooth functions presented so far. This

restricted definition of semismoothness is automatically satisfied by the data used for this

work. The reason for this restriction is to better align the exposition with key results from

the literature on which the results in this document depend.

66



An equivalent definition under the stated restriction of semismoothness using Bouligand

derivatives is as follows:

Definition 2.8.8. Let X be an open subset of R
n. Let F : X → R

m be a locally Lipschitz

continuous function on O, a neighborhood of x ∈ X. Let F be a directionally differentiable

function on O. F is semismooth at x if there exists a function ∆ : (0, +∞) → [0, +∞) such

that lim
z↓0

∆(z) = 0 and for any y ∈ O\{x}

F′(y;y − x) − F′(x;y − x)

‖y − x‖ ≤ ∆(‖y − x)‖)

holds [35].

The following theorem establishes the connection between previous definitions of semis-

moothness and Definition 2.8.8.

Theorem 2.8.9. Let F : X → R
m be a locally Lipschitz continuous and B-differentiable

function on O, a neighborhood of x. Then the following statements are equivalent (Theorem

7.4.3 in [35]).

1. F is semismooth at x.

2. For y ∈ O\{x},

lim
y→x

F′(y;y − x) − F′(x;y − x)

‖y − x‖ = 0

holds.

3. Let {xk} ∈ O\{x} be any sequence such that lim
k→∞

xk → x. Let {Vk} be any sequence

such that for all k, Vk ∈ ∂F(xk). Then for all sequences {xk} and {Vk} as described,

lim
k→∞

F′(x;xk − x) − Vk(xk − x)

‖x − xk‖
= 0
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holds.

4. For all sequences {xk} and {Vk} as described in the previous item,

lim
k→∞

F(xk) −Vk(xk − x) − F(x)

‖x − xk‖
= 0

holds.

Theorem 2.8.9 elucidates the most important properties of semismooth functions. Due

to Bouligand differentiability, F′(x;y − x) provides a good approximation of F(y) for all y

sufficiently close to x. In addition, F′(x;y − x) can be approximated well using an element

of ∂F(y).

2.8.5 The Linear Newton Approximation

Definition 2.8.10 (Newton Approximation). Let X be an open subset of R
n. Let F :

X → R
m be a locally Lipschitz function on X. F has a Newton approximation at a point

x ∈ X if there exists O ⊂ X, a neighborhood of x and a function ∆ : (0, +∞) → [0, +∞) with

lim
z→0+

∆(z) = 0 such that for every y ∈ O, there is a family of functions A(y) called a Newton

approximation, whose members map R
n to R

m and satisfy the following two properties:

1. A(y, 0) = 0 for every A(y, ·) ∈ A(y).

2. For any y ∈ O\{x} and for any A(y, ·) ∈ A(y)

‖F(y) + A(y,x − y) − F(x)‖
‖y − x‖ ≤ ∆(‖y − x‖)

holds (Definition 7.2.2 in [35]).

Definition 2.8.11 (The Linear Newton Approximation). Let X be an open subset of

R
n. Let F : X → R

m be a locally Lipschitz function on X. Let Γ : X ⇉ R
m×n be an upper
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semicontinuous set-valued map at x ∈ X and Γ(y) be a compact set for all y ∈ X. Assume

there exists a function ∆ as defined in Definition 2.8.10. If for any y ∈ X\{x} and for any

M ∈ Γ(y),

‖F(y) + M(x − y) − F(x)‖
‖y − x‖ ≤ ∆(‖y − x‖)

holds, then Γ(x) is a linear Newton approximation of F at x (Definition 7.5.13 in [35]).

It is possible that there exists more than one linear Newton approximation for a given

function unlike the generalized Jacobian and generalized gradient. The linear Newton ap-

proximation construct is used to solve nonsmooth equations and its properties suffice to

devise methods to solve these equations using Newton-type methods. The nonuniqueness of

the Newton approximation helps overcome cases where the generalized Jacobian cannot be

computed easily when solving nonsmooth equations and allows the development of different

methods with varying properties to solve these equations. The linear Newton approxima-

tion by itself does not carry useful information for optimization purposes. The subsequent

developments couple the generalized Jacobian and the Newton approximation to overcome

situations where an element of the generalized Jacobian cannot not be computed to devise

numerical optimization methods.

Similar to the generalized Jacobian, the linear Newton approximation has calculus and

chain rules. Unlike the generalized Jacobian, these rules always involve equalities and not

inclusions. In this respect, the linear Newton approximation behaves like the Jacobian.

Theorem 2.8.12 (Chain Rule for the Linear Newton Approximation). Let X be an

open subset of R
n. Let F : X → R

m and G : R
m → R

p be locally Lipschitz continuous at

x ∈ X and F(x), respectively. Let ΓF and ΓG be the linear Newton approximations of F
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and G at x and F(x), respectively. Then

ΓH : X ⇉ R
p×n : y Z⇒ {AB : A ∈ ΓG(F(y)), B ∈ ΓF(y)} (2.8.4)

is a linear Newton approximation of H ≡ G ◦ F at x ∈ X. (Theorem 7.5.17 in [35]) †.

Properties of Linear Newton Approximation

1. Let X be an open subset of R
n. Let F : X → R

m be locally Lipschitz function on X.

Let ΓF be the linear Newton approximation of F at x. Then S : X ⇉ R
m×n : y Z⇒

conv (ΓF(y)) is a linear Newton approximation of F at x (Lemma 9 in [81]).

2. Let F : X → R
m be locally Lipschitz continuous and semismooth at x ∈ X. Then ∂F

is a linear Newton approximation of F at x (Proposition 7.5.16 in [35]).

Calculus Rules for the Linear Newton Approximation

1. Let X be an open subset of R
n. Let F : X → R

m and G : X → R
m be locally Lipschitz

continuous at x ∈ X. Let ΓF : X ⇉ R
m×n and ΓG : X ⇉ R

m×n be the linear Newton

approximations of F and G at x, respectively.

Then ΓH : X ⇉ R
m×n : y Z⇒ α1ΓF(y) + α2ΓG(y) is a linear Newton approximation

of the function α1F + α2G at x ∈ X where α1 and α2 are scalars.

2. Let X be an open subset of R
n. Let f : X → R and g : X → R be locally Lipschitz

continuous at x. Let Γf : X ⇉ R
1×n and Γg : X ⇉ R

1×n be the linear Newton

approximations of f and g at x respectively. Then the following rules hold:

(a) Γh : X ⇉ R
1×n : y Z⇒ f(y)Γf(y) + g(y)Γg(y) is a linear Newton approximation

of the function f + g at x ∈ X.

†Theorem 7.5.17 considers the function G ◦ F where F : R
n → R

m and G : R
m → R

n. The proof holds
for the general case where G : R

m → R
p.
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(b) Γh : X ⇉ R
2×n : y Z⇒ Γf(y) × Γg(y) is a linear Newton approximation of the

function (f, g) at x ∈ X.

(c) If g(x) 6= 0, then

Γh : X ⇉ R
1×n : y Z⇒ g(y)Γf(y)− f(y)Γg(y)

g2(y)

is a linear Newton approximation of f/g at x.

(d) If y ∈ X, let

Γ(y) =































Γf(y) if f(y) > g(y)

Γf(y) ∪ Γg(y) if f(y) = g(y)

Γg(y) if g(y) > f(y).

(2.8.5)

Then Γh : X ⇉ R
1×n : y Z⇒ Γ(y) is a linear Newton approximation of the

function max(f, g) at x.

2.9 Examples

Example 2.9.1. Let S : R ⇉ R be:

S(x) =































[−1, 1] if x = 0,

{1} if x > 0,

{−1} if x < 0.

S is upper semicontinuous at 0, but not lower semicontinuous. Let O = (−0.5, 0.5). Even

though S(0) ∩ O 6= ∅, S(y) ∩ O = ∅ for all y ∈ R\{0}. S is a locally bounded and closed

set-valued map.
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Example 2.9.2. Let S : R ⇉ R be

S(x) =































(−1, 1) if x = 0,

{1} if x > 0,

{−1} if x < 0.

S is not upper semicontinuous at zero. S is a locally bounded but not a closed set-valued

map.

Example 2.9.3. Let S : R ⇉ R be

S(x) =































[−1, +∞) if x = 0,

{1} if x > 0,

{−1} if x < 0.

S is upper semicontinuous at 0, but not lower semicontinuous (see Example 2.9.1). S is a

closed but not locally bounded set-valued map.

Example 2.9.4. Let S : R ⇉ R be

S(x) =































{0} if x = 0,

[1,−1] if x > 0,

[2,−2] if x < 0.

S is not upper semicontinuous at zero but it is lower semicontinuous at zero. It is locally

bounded at zero, but not closed at zero.
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Example 2.9.5. Let S : R ⇉ R be

S(x) =































[1,−1] if x = 0,

∅ if 2 > |x| > 0,

{1} if |x| ≥ 2.

S is upper semicontinuous at zero, but is not lower semicontinuous at zero. It is locally

bounded at zero. It is closed at zero.

Example 2.9.6. This example proves the equivalence of the two definitions of strict differ-

entiability in Definition 2.2.5.

Let f : X → R
m where X is an open subset of R

n. First assume that

lim
(y, t)→(x,0+)

f(y + tv) − f(y) − tA(x)v

t
= 0 (2.9.1)

holds for all v and the convergence is uniform for v in compact sets.

Let {v̄k} ∈ R
n be a sequence such that v̄k → 0 and for all k, v̄k 6= 0. Let tk = ‖v̄k‖,

tkvk = v̄k, and vk = v1 + wk. Note that vk is a unit vector. Let {yk} ∈ R
n be such that

lim
k→∞

yk = x and yk 6= x for all k.

Then

‖f(yk + v̄k) − f(yk) − A(x)v̄k‖
‖v̄k‖

=

‖f(yk + tk(v1 + wk)) − f(yk) − tkA(x)(v1 + wk)‖
tk

≤
‖f(yk + tkv1) − f(yk) − tkA(x)(v1)‖

tk
+

‖f(yk + tk(v1 + wk)) − f(yk + tkv1) − tkA(x)(wk)‖
tk

.

The first term converges to zero by assumptions as k → ∞. Note that v1 + wk and v1 are
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elements of the set C = {u : ‖u‖ = 1, u ∈ R
n} which is a compact set. In addition,

‖f(yk + tk(v1 + wk)) − f(yk + tkv1) − tkA(x)(wk)‖
tk

=
∥

∥

∥

∥

f(yk + tk(v1 + wk)) − f(yk) − tkA(x)(v1 + wk)

tk
− f(yk + tkv1) − f(yk) − tkA(x)(v1)

tk

∥

∥

∥

∥

.

This last quantity can be made arbitrarily small for all v1 + wk ∈ C by picking a large

enough k due to uniform convergence on compact sets. Hence

lim
(y,v)→(x,0)

f(y + v) − f(y) −A(x)v

‖v‖ = 0.

Conversely, assume

lim
(y,v)→(x,0)

f(y + v) − f(y) − A(x)v

‖v‖ = 0 (2.9.2)

holds.

Let v0 ∈ R
n\{0}. Let v = tv0 where t ∈ R and t > 0. Then (2.9.2) becomes

lim
(y,t)→(x,0+)

f(y + tv0) − f(y) − tA(x)v0

t‖v0‖
= 0 (2.9.3)

which implies (2.9.1) since ‖v0‖ is a positive constant.

Let v1 ∈ R
n\{0} and v2 ∈ R

n\{0}. Assume v1 ∈ C and v2 ∈ C where C is a compact

subset of R
n. Consider

f(y + tv1) − f(y) − tA(x)v1

t
− f(y + tv2) − f(y) − tA(x)v2

t
=

f(y + tv1) − f(y + tv2) − tA(x)(v1 − v2)

t
=

f(ȳ + t(v1 − v2)) − f(ȳ) − tA(x)(v1 − v2)

t
.
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Since (2.9.2) holds, then for any ǫ > 0,

∥

∥

∥

∥

f(ȳ + t(v1 − v2)) − f(ȳ) − tA(x)(v1 − v2)

t

∥

∥

∥

∥

≤ 2ǫM

holds for t small enough and ȳ close enough to x where M is the bound on the magnitudes

of the elements of C. This condition holds for any v1 and v2 in C. Hence (2.9.1) converges

uniformly for v in a compact set.

Example 2.9.7. Let h : R → R be

h(x) =















x2 sin(1/x2) if x 6= 0,

0 if x = 0.

h is a differentiable function and its derivative is

∇h(x) =















2x sin(1/x2) − 2
x

cos(1/x2) if x 6= 0,

0 if x = 0.

However, h is not locally Lipschitz continuous at zero. Let n = 1, 3, . . . ,∞ and xn =
√

2
πn

. Then h(xn) ∈ {− 2
πn

, 2
πn
}. Let xn+1 =

√

2
π(n+1)

. Note that h(xn+1) = 0, |h(xn) −

h(xn+1)| = 2
πn

and |xn−xn+1| =
√

2
π
( 1√

n
− 1√

n+1
) =

√

2
π

1
(
√

n2+n)(
√

n+1+
√

n)
. The ratio |h(xn)−

h(xn+1)|/|xn − xn+1| is
√

2
π

√

(

1 + 1
n

)

(
√

n + 1 +
√

n). This ratio goes to infinity as n → ∞

which shows that h is not locally Lipschitz continuous in a neighborhood of zero.

Example 2.9.8. Let g : R → R be

g(x) =















x2 sin(1/x) if x 6= 0,

0 if x = 0.
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This function is differentiable at zero. The derivative is

∇g(x) =















2x sin(1/x) − cos(1/x) if x 6= 0,

0 if x = 0.

g is locally Lipschitz continuous at zero. Let x1 and x2 be two points in an ǫ neighborhood

of zero. By the mean value theorem for differentiable functions there exists an x3 ∈ [−ǫ, ǫ]

such that g(x1) − g(x2) = ∇g(x3)(x1 − x2). ∇g is bounded. Let K = sup
y∈[−ǫ,ǫ]

{∇g(y)}. Then

|g(x1) − g(x2)| = K|x1 − x2| holds on (−ǫ, ǫ) and g is locally Lipschitz continuous at zero.

The generalized gradient of g obtained using Definition 2.6.3 is:

∂g(x) =















{2x sin(1/x) − cos(1/x)} if x 6= 0,

[−1, 1] if x = 0.

The generalized gradient is not a singleton at zero where the function is differentiable. Hence

g is not strictly differentiable at zero.

go(0; v) = |v| because by definition, ∀v ∈ R, go(0; v) = max
ζ∈∂g(0)

{〈ζ, v〉}. Since g is differen-

tiable at zero, it is directionally differentiable at zero and g′(0; v) = 0. Therefore, g is not

regular at zero.

Let n = 1, . . . ,∞ and xn = 1
πn

. Let gn ∈ ∂g(xn) and d = 1. The sequence {〈gn, d〉} is not

convergent because 〈gn, d〉 is 1 if n is odd and −1 if n is even. Hence, g is not semismooth

at zero.

g is not weakly upper semismooth at zero. For the aforementioned sequence, the left-

hand side of (2.8.1) is −1 and the right-hand side is 0 due to the existence of the derivative

at 0.

g is not upper semidifferentiable at zero. Let n = 1, 3, . . . ,∞ and xn = 1
πn

. Let gn ∈

∂g(xn) and d = 1. Then the limit in (2.8.2) is 1.
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Example 2.9.9. Let f : R → R be [18]

f(x) =































0 if x ≤ 0,

x sin(ln(ln(1/x))) if 0 < x ≤ 1/2,

1
2
sin(ln(ln(1/2))) if 1

2
< x.

f is locally Lipschitz continuous at all x ∈ R\{0}. In order to determine local Lipschitz

continuity at zero, the following three cases are analyzed separately where z, y ∈ (−ǫ, ǫ) and

ǫ < 1/2.

1. Case z > 0, y ≤ 0. In this case, |f(y) − f(z)| = |f(z)| ≤ |z| because | sin(u)| ≤ 1.

Since |z − y| ≥ |z|, |f(y) − f(z)| ≤ |z − y| holds.

2. Case z ≤ 0, y ≤ 0. 0 = |f(y)− f(z)| ≤ |z − y| holds trivially.

3. Case z > 0, y > 0. f is continuously differentiable on (ǫ, 0). The derivative is ∇f(x) =

sin(ln(ln(1/x))) − cos(ln(ln(1/x)))(1/ ln(1/x)). Hence K = 2 is a Lipschitz constant

for f on this interval.

As a result, f is locally Lipschitz continuous at zero with Lipschitz constant K = 2.

f is not directionally differentiable at zero. For 0 < x < ǫ, consider the difference

x sin(ln(ln(1/x))) − 0

x − 0
= sin(ln(ln(1/x))).

This difference does not converge to a limit as x → 0 and therefore f is not directionally

differentiable at zero. As a result it is not semismooth nor weakly upper semismooth at zero.

However, f is upper semidifferentiable at zero. Let the sequence {xk} be such that for

all k, 0 < xk < 1/2 and lim
k→∞

xk = 0. Let d = 1. Note that ∂f(xk) = {sin(ln(ln(1/xk))) −
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cos(ln(ln(1/xk)))(1/ ln(1/xk))}. At zero, the limit (2.8.2) becomes

lim
k→∞

xk sin(ln(ln(1/xk))) − 0

xk − 0
− sin(ln(ln(1/xk))) + cos(ln(ln(1/xk)))(1/ ln(1/xk)) =

lim
k→∞

cos(ln(ln(1/xk)))(1/ ln(1/xk)) = 0.

Since the above holds for any d > 0 and the conditions for upper semidifferentiability holds

trivially at zero if d < 0, f is upper semidifferentiable at zero.

Example 2.9.10. Let f : R → R : x 7→ 1 − e|x|. Note that f ∈ PC1(R) with selection

functions; f1 : R → R : x 7→ 1 − ex and f2 : R → R : x 7→ 1 − e−x. Therefore f is a locally

Lipschitz continuous and semismooth function.

The generalized gradient of f is

∂f(x) =































{−ex} if x > 0,

{e−x} if x < 0,

[−1, 1] if x = 0.

In order to determine whether the function is regular at zero, the generalized directional

derivative

f o(0; v) = lim sup
(y, t)→(0,0+)

(1 − e|y+tv|) − (1 − e|y|)

t

needs to be calculated for v ∈ R and y ∈ R\{0}. The limit supremum is obtained as the

supremum of the limits of sequences classified into four groups depending on the signs of

y + tv and y.
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1. Case y > 0 and y + tv > 0. Let ft : (−ǫ, ǫ) → R be

ft(y) = ey 1 − etv

t
.

Note that for all t > 0, lim
y→0

ft(y) = (1 − etv)/t holds. Let f0 : (−ǫ, ǫ) → R be

f0(y) = −vey. Then, for all y ∈ (−ǫ, ǫ), lim
t↓0

ft(y) = f0(y) holds per l’Hospital’s rule.

In addition, define Mt as;

Mt = sup
y∈[−ǫ,ǫ]

|ft(y) − f0(y)|

Mt = eǫ

∣

∣

∣

∣

1 − etv

t
+ v

∣

∣

∣

∣

and lim
t↓0

Mt = 0. As a result of this uniform convergence lim
t↓0

lim
y→0

ft(y) = lim
y→0

lim
t↓0

ft(y) =

−v. Uniform convergence also implies lim
(y,t)→(0,0+)

ft(y) = −v because

|ft(y) − f0(0)| ≤ |ft(y) − f0(y)| + |f0(y) − f0(0)|

and both terms on the right can be made arbitrarily small by letting t be small enough.

Hence, if y > 0, t > 0 and y + tv > 0,

lim sup
(y, t)→(0,0+)

(1 − e|y+tv|) − (1 − e|y|)

t
= −v.

2. Case y < 0 and y + tv < 0. In this case, let ft : (−ǫ, ǫ) → R be

ft(y) = e−y 1 − e−tv

t
.

Then for all t > 0, limy→0 ft(y) = (1 − e−tv)/t holds. Let f0 : (−ǫ, ǫ) → R be

f0(y) = ve−y. Note that for all y ∈ (−ǫ, ǫ), lim
t↓0

ft(y) = f0(y) holds per l’Hospital’s rule.
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Per similar analysis as in the previous case, it can be deduced that if y < 0, t > 0 and

y + tv < 0,

lim sup
(y, t)→(0,0+)

(1 − e|y+tv|) − (1 − e|y|)

t
= v.

3. Case y < 0 and y + tv > 0. Note that

e−y − ey+tv

t
≤ e−y − e−y−tv

t
.

Hence

lim sup
(y, t)→(0,0+)

e−y − ey+tv

t
≤ lim sup

(y, t)→(0,0+)

e−y − e−y−tv

t
,

lim sup
(y, t)→(0,0+)

e−y − ey+tv

t
≤ v.

4. Case y > 0 and y + tv < 0. In this case

ey − e−y−tv

t
≤ ey − ey+tv

t
.

Hence

lim sup
(y, t)→(0,0+)

ey − e−y−tv

t
≤ lim sup

(y, t)→(0,0+)

ey − ey+tv

t
,

lim sup
(y, t)→(0,0+)

ey − e−y−tv

t
≤ −v.

The supremum of the limits is |v| for all cases. Therefore f o(0; v) = |v|. The directional

derivative exists and is f ′(0; v) = −v if v ≥ 0 and f ′(0; v) = v, if v ≤ 0. The directional

derivative is not equal to the generalized directional derivative. Hence f is not regular at
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zero.

Usually, it is simpler to obtain the generalized gradient first and then obtain the gener-

alized directional derivative using the generalized gradient.

Example 2.9.11. Let x1 ∈ R and x2 ∈ R. Consider the function f : R
2 → R from [43]

which is defined as

f(x1, x2) = |x2
1 − sin(|x2|)|. (2.9.4)

f is plotted in Figure 2-1.

1

1
0-0.5

0

0.0

-1
-1

0.5

1.0

x1

x2

f(x1, x2)

Figure 2-1: (Example 2.9.11) Plot of f(x1, x2) = |x2
1 − sin(|x2|)| and of its contours.

f is a locally Lipschitz continuous function because it is a composition of locally Lipschitz

functions. Note that f ∈ PC1(R2). The selection functions of f are presented in Table 2.1.

In order to calculate ∂f(0, 0), properties of PC1 functions in Section 2.7.1 are used in

conjunction with the data in Table 2.2 to obtain ∂f(0, 0) = conv ({(0, 1), (0,−1)}). Note

that (0, 0) ∈ ∂f(0, 0).
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f(x1, x2) x2 ≥ 0 x2 < 0

x2
1 ≥ sin |x2| x2

1 − sin x2 x2
1 + sin x2

x2
1 < sin |x2| −x2

1 + sin x2 −x2
1 − sin x2

Table 2.1: (Example 2.9.11) The selection functions of |x2
1 − sin(|x2|)|.

∇f(x1, x2) x2 > 0 x2 < 0

x2
1 > sin |x2| (2x1,− cos x2) (2x1, cos x2)

x2
1 < sin |x2| (−2x1, cosx2) (−2x1,− cos x2)

Table 2.2: (Example 2.9.11) ∇f(x1, x2) at points where it is defined.

Example 2.9.12. Let tf = 5.0. Let x1 ∈ (0, 2π) and x2 ∈ (0.5, 4) Consider the function

f : (0, 2π) × (0.5, 4) → R [115] defined by

f(x1, x2) =































2tf sin(x1) if | cos(x1)| < x2

2tf
,

−x2 tan(x1)e
tf +

x2
2cos(x1) if − x2

2tf
≥ cos(x1),

g(x1, x2) if x2

2tf
≤ cos(x1)

, (2.9.5)

g(x1, x2) =































x2 tan(x1) + 2(tf − x2

2 cos(x1)
) if tan(x1) ≥ 1,

x2 tan(x1)e
tf− x2

2cos(x1) if tan(x1) ≤ −1,

h(x1, x2) if − 1 < tan(x1) < 1,

h(x1, x2) =































2tf − 4 ln
(

cos(x1)
sin(x1)

)

− x2

cos(x1)
+ x2 if

√

e
x2

2 cos(x1)
−tf ≤ tan(x1) < 1,

x2 tan(x1)e
1
2
(tf− x2

2 cos(x1)
)

if −
√

e
x2

2cos(x1)
−tf < tan(x1) <

√

e
x2

2 cos(x1)
−tf ,

−x2 tan2(x1)e
(tf− x2

2 cos(x1)
)

if −1 < tan(x1) ≤ −
√

e
x2

2cos(x1)
−tf .

The plot of f is in Figure 2-2. In order to analyze f , first open sets that partition its domain

will be constructed. Using these open sets, it will be shown that f ∈ PC1((0, 2π)× (0.5, 4)).
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4

30

-100

2 2

0

4
1

6

100

x1

f(x1, x2)

x2

Figure 2-2: (Example 2.9.12) Plot of f .

Let D = (0, 2π) × (0.5, 4). Let ǫ be a small positive constant. Let

A′
1 ={(x1, x2) ∈ D : cos(x1) − x2/(2tf) < ǫ},

A′′
1 ={(x1, x2) ∈ D : cos(x1) + x2/(2tf) > −ǫ},

A1 =A′
1 ∩ A′′

1,

A2 ={(x1, x2) ∈ D : cos(x1) + x2/(2tf) < ǫ},

A3 ={(x1, x2) ∈ D : cos(x1) − x2/(2tf) > −ǫ}.

The functions g1 : D → R : (x1, x2) 7→ cos(x1) − x2/tf and g2 : D → R : (x1, x2) 7→

cos(x1) + x2/tf are continuous functions. Let (x1, x2) ∈ A′
1, then using the continuity of g1,

it can be shown that, O ⊂ D, a neighborhood of (x1, x2), is a subset of A′
1. Therefore A′

1

is an open set. Using similar reasoning, it can be shown that A′′
1, A1, A2 and A3 are open

subsets of D.
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Let

B1 ={(x1, x2) ∈ A3 : tan(x1) > 1 + ǫ},

B2 ={(x1, x2) ∈ A3 : tan(x1) < −1 − ǫ},

B′
3 ={(x1, x2) ∈ A3 : tan(x1) < 1 + ǫ},

B′′
3 ={(x1, x2) ∈ A3 : tan(x1) > −1 − ǫ},

B3 =B′
3 ∩ B′′

3 .

Note that if (x1, x2) ∈ A3, then cos(x1) > 0, hence (x1, x2) 7→ tan(x1) is a continuous func-

tion from A3 to R. Using similar reasoning as before, it can be deduced that B1, B2, B
′
3, B

′′
3

and B3 are open sets.

Finally, let

C1 ={(x1, x2) ∈ B3 :

√

e
x2

2 cos(x1)
−tf − ǫ < tan(x1) < 1 + ǫ},

C2 ={(x1, x2) ∈ B3 : −
√

e
x2

2cos(x1)
−tf − ǫ < tan(x1) <

√

e
x2

2 cos(x1)
−tf + ǫ},

C3 ={(x1, x2) ∈ B3 : −1 − ǫ < tan(x1) ≤ −
√

e
x2

2cos(x1)
−tf + ǫ}.

The sets C1, C2 and C3 are open subsets of B3 per the same arguments as before.

The functions

h1 : C1 → R : (x1, x2) 7→ 2tf − 4 ln

(

cos (x1)

sin (x1)

)

− x2

cos (x1)
+ x2,

h2 : C2 → R : (x1, x2) 7→ x2 tan(x1)e
1
2
(tf− x2

2 cos(x1)
)
,

h3 : C3 → R : (x1, x2) 7→ −x2 tan2(x1)e
(tf− x2

2 cos(x1)
)
.

are continuously differentiable functions.
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Let (x∗
1, x

∗
2) ∈ B3 be such that

√

e
x∗2

2 cos(x∗1)
−tf

= tan(x∗
1). Then (x∗

1, x
∗
2) ∈ C1 ∩ C2 and

h1(x
∗
1, x

∗
2) = h2(x

∗
1, x

∗
2) = x2 for small enough ǫ. Hence h1 and h2 are selection functions of

h on the neighborhoods of points (x∗
1, x

∗
2) ∈ B3 at which

√

e
x∗
2

2 cos(x∗
1
)
−tf

= tan(x∗
1) holds.

Let (x∗
1, x

∗
2) ∈ B3 be such that −

√

e
x∗
2

2 cos(x∗1)
−tf

= tan(x∗
1). Then (x∗

1, x
∗
2) ∈ C2 ∩ C3 and

h2(x
∗
1, x

∗
2) = h3(x

∗
1, x

∗
2) = −x2 for small enough ǫ. Hence h2 and h3 are selection functions of

h on the neighborhoods of points (x∗
1, x

∗
2) ∈ B3 at which −

√

e
x∗
2

2 cos(x∗
1
)
−tf

= tan(x∗
1) holds.

As a result h ∈ PC1(B3).

Define the functions

g1 : B1 → R : (x1, x2) 7→ x2 tan(x1) + 2

(

tf − x2

2 cos(x1)

)

,

g2 : B2 → R : (x1, x2) 7→ x2 tan(x1)e
tf− x2

2cos(x1) ,

g3 : B3 → R : (x1, x2) 7→ h(x1, x2).

Note that g1 and g2 are continuously differentiable functions.

Let (x∗
1, x

∗
2) ∈ A3 be such that tan(x∗

1) = 1. Then (x∗
1, x

∗
2) ∈ B1 ∩ B3 and g1(x

∗
1, x

∗
2) =

g3(x
∗
1, x

∗
2) = h1(x

∗
1, x

∗
2) = x2 + 2tf − x2

cos(x1)
for small enough ǫ. Hence g1 and h1 are selection

functions of g on the neighborhoods of points (x∗
1, x

∗
2) ∈ A3 at which tan(x∗

1) = 1 holds.

Let (x∗
1, x

∗
2) ∈ A3 be such that tan(x∗

1) = −1. Then (x∗
1, x

∗
2) ∈ B2 ∩ B3 and g2(x

∗
1, x

∗
2) =

g3(x
∗
1, x

∗
2) = h3(x

∗
1, x

∗
2) = x2e

“

tf− x2
2 cos(x1)

”

for small enough ǫ. Hence h3 and g2 are selection

functions of g on the neighborhoods of points (x∗
1, x

∗
2) ∈ A3 at which tan(x∗

1) = −1 holds.

As a result, g ∈ PC1(A3).

Finally, define the functions

f1 : A1 → R : (x1, x2) 7→ 2tf sin(x1),

f2 : A2 → R : (x1, x2) 7→ −x2 tan(x1)e
tf +

x2
2cos(x1) ,
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f3 : A3 → R : (x1, x2) 7→ g(x1, x2).

Let (x∗
1, x

∗
2) ∈ D be such that − x2

2tf
= cos(x1). Then (x∗

1, x
∗
2) ∈ A1 ∩ A2 and f1(x

∗
1, x

∗
2) =

f2(x
∗
1, x

∗
2) = −x2 tan(x1) for small enough ǫ. Hence f1 and f2 are selection functions of f on

the neighborhoods of (x∗
1, x

∗
2) ∈ D at which − x2

2tf
= cos(x1) holds.

Let (x∗
1, x

∗
2) ∈ D be such that x2

2tf
= cos(x1). In this case (x∗

1, x
∗
2) ∈ A1 ∩ A3 and

f1(x
∗
1, x

∗
2) = f3(x

∗
1, x

∗
2) = x2 tan(x1) for small enough ǫ. In order to compute f3(x

∗
1, x

∗
2),

g1(x
∗
1, x

∗
2), g2(x

∗
1, x

∗
2), h2(x

∗
1, x

∗
2) need to be considered. The conditions

√

e
x2

2 cos(x1)
−tf ≤

tan(x1) < 1 and −1 < tan(x1) ≤ −
√

e
x2

2cos(x1)
−tf in (2.9.5) are violated in this case and

therefore h1(x
∗
1, x

∗
2) and h2(x

∗
1, x

∗
2) need not be considered.

As a result of this analysis, f ∈ PC1(D).
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Chapter 3

Parametric Sensitivity Analysis of

Dynamic Systems using the

Generalized Jacobian

The focus of this chapter is the existence of the derivative of the mapping η 7→ x(tf , η) at

p ∈ P, where x : [t0, tf ] ×P → X is the solution of the initial value problem:

ẋ(t,p) = f(t,p,x(t,p)), ∀t ∈ (t0, tf ], x(t0,p) = f0(p), ∀p ∈ P ⊂ R
np, (3.0.1)

where f : T × P ×X → R
nx , f0 : P → X̃ are locally Lipschitz continuous functions, T is an

open subset of R such that [t0, tf ] ⊂ T , X is an open subset of R
nx , X̃ is an open subset of

X , P is an open subset of R
np, np and nx are positive finite integers.

It is well known that the mapping η 7→ x(tf , η) at p ∈ P is a Lipschitz continuous

function on O, some neighborhood of p, and that it is differentiable for all η ∈ O\S where

S is a measure zero subset of O per Rademacher’s Theorem. However, conditions on x(·,p)

that imply differentiability of η 7→ x(tf , η) at p are not widely known.
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If f were a continuously differentiable function on an open set containing {(t,p, x(t,p)) :

t ∈ [t0, tf ]}, then continuous differentiability would follow from Gronwall’s classic result in

[44]. This condition may not hold for the systems under consideration. Examples 3.6.1 and

3.6.2 consider cases where an open set with the desired properties does not exist, yet the

mapping p 7→ x(tf ,p) is differentiable.

The sufficiency conditions follow from results in nonsmooth analysis and are based on

the concepts of the generalized gradient and Jacobian [25]. A brief primer on nonsmooth

analysis is presented in §3.1.

The results of this chapter define forward and adjoint sensitivity initial value problems

to be solved to obtain the aforementioned derivative. The forward sensitivity initial value

problem is a linear time-varying ordinary differential equation of the form

ζ̇(t) = M0(t)ζ(t) + M1(t), ∀t ∈ (t0, tf ], ζ(t0) = ζ0,

where M1 : [t0, tf ] → R
nx×np and M0 : [t0, tf ] → R

nx×nx are measurable and ζ : [t0, tf ] →

R
nx×np is an absolutely continuous function. This ordinary differential equation is solved

simultaneously with (3.0.1). Thus, the derivative is obtained by integrating nx×np additional

equations. When the derivative of the mapping η 7→
∫ tf

t0
g(t, η,x(t, η))dt with g a scalar-

valued function is sought, the integration of the adjoint sensitivity initial value problem

might be the computationally more efficient way to obtain the derivative. This is the case

especially if nx × np is significantly larger than nx + np. The adjoint, λ, is the solution of

the adjoint sensitivity initial value problem of the form

λ̇(t) = A0(t)λ(t) + A1(t), ∀t ∈ [t0, tf ), λ(tf) = λ0

where A0 : [t0, tf ] → R
nx×nx and A1 : [t0, tf ] → R

nx are measurable functions and λ :

[t0, tf ] → R
nx is an absolutely continuous function. The desired derivative is then computed
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as the solution of an integral of the form
∫ tf

t0
h(t, η,x(t, η), λ(t))dt. The adjoint method

requires the integration of nx + np equations backwards in time including the quadrature of

the integral. The development of forward and adjoint sensitivities in case f is continuously

differentiable is well known and can be found in [24] and [26].

The adjoint and forward sensitivity results for (3.0.1) are derived in §3.2 and extended

to a class of nonsmooth differential-algebraic equations in §3.3. Finally, results for a case

where the evolution of the states is governed by disparate nonsmooth differential-algebraic

equations in different time intervals is considered in §3.4.

The results of this chapter are most closely related to the works in [24], [93], [39], [95]

in addition to [44]. The adjoint sensitivity initial value problems are derived for index-1

and index-2 differential-algebraic equations for sufficiently differentiable equations in [24].

In this chapter, forward and adjoint sensitivity initial value problems for index-1 differential-

algebraic equations with locally Lipschitz equations are derived. The sensitivity and adjoint

systems derived in this chapter have discontinuous right-hand sides, unlike the results in

[24] and [44] and therefore require special treatment. In [93], the time interval in (3.0.1) is

divided into finitely many subintervals and for each subinterval the evolution of the states is

governed by different ordinary differential equations with continuously differentiable vector

fields. The times at which the differential equations switch depend on the parameters;

however, it is required that the number of subintervals and the order in which the equations

are solved is independent of the parameters in some neighborhood of p. The switching times

are the solution of continuously differentiable equations of time, parameters and states.

Discontinuities in the solution are allowed at switching times. Forward sensitivity equations

for this case are derived in [93] and adjoint sensitivity equations are derived in [95]. The

results in [93] are extended to differential-algebraic systems in [39]. In addition, an existence

and uniqueness theory is developed. Existence and uniqueness results are developed by

finite induction on the results in [44] and the implicit function theorem to compute the
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jumps in the adjoint and forward sensitivity trajectories at switching times. This is not the

approach used in this chapter. A subset of cases considered in this chapter can be analyzed

using results from the aforementioned papers. However, the results in this chapter do not

require invariance of the sequence of vector fields or a constant number of subintervals in a

neighborhood of p.

Implementation issues which are fully investigated in following chapters are summarized

in §3.5. Examples in §3.6 conclude the chapter.

3.1 Preliminaries

Definition 3.1.1. Let t0 ∈ R, tf ∈ R, X1 = [t0, tf ] and t ∈ X1. Let X2 be an open subset of

R
n and x2 ∈ X2. Let F : X1 ×X2 → R

m be a function such that F(t, ·) is a locally Lipschitz

continuous function for all t ∈ [t0, tf ]. Let wt : X1 → R
m×n be such that wt(t) ∈ ∂2F(t,x2)

for all t ∈ X1\S where S is a measure zero subset of X1. If the Lebesgue integral,
∫ tf

t0
wt(t)dt,

exists, then wt is a measurable selection of ∂2F(·,x2) on [t0, tf ].

A consequence of Theorem 2.7.2 in [25] is:

Theorem 3.1.2. Let g : X1 × X2 → R, where X1 and X2 are defined in Definition 3.1.1,

satisfy the following conditions:

1. For each x2 ∈ X2, g(·,x2) is a continuous function from X1 to R.

2. There exists a nonnegative Lebesgue integrable function, k : X1 → R such that for all

u,v ∈ X2, |g(t,u) − g(t,v)| ≤ k(t)‖u− v‖ for all t ∈ X1.

Let f : X2 → R : z 7→
∫ b

a
g(t, z)dt. Then f is locally Lipschitz continuous at all x2 ∈ X2.

Define W to be the set {w ∈ R
n×1 : w =

∫ tf
t0

wt(t)dt} where wt is any measurable selection

of ∂2g(·,x2) on [t0, tf ]. Then ∂f(x2) ⊂ W holds.
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The following is a pertinent restatement of Theorem 7.4.1 in [25].

Theorem 3.1.3. Let X1 and X2 be open connected subsets of R and R
n, respectively. Let

X̃2 be an open connected subset of X2. Let [t0, tf ] ⊂ X1. Let f : X1 × X2 → R
n be a locally

Lipschitz continuous function.

Let x : [t0, tf ] × X̃2 → X2 be such that x(·,x2) is the only function that satisfies

ẋ(t,x2) = f(t,x(t,x2)), ∀t ∈ (t0, tf ], x(t0,x2) = x2, ∀x2 ∈ X̃2.

Then x(tf , ·) is locally Lipschitz continuous at all x2 ∈ X̃2.

Let ζ : [t0, tf ]×X̃2 → R
n×n be such that ζ(·,x2) is the solution of the differential equation

ζ̇(t,x2) = M(t)ζ(t,x2), ∀t ∈ (t0, tf ], ζ(t0,x2) = In, ∀x2 ∈ X̃2,

where M is any measurable selection of ∂2f(·,x(·,x2)), a set-valued mapping from [t0, tf ] to

the subsets of R
n×n.

Let Φ(tf ,x2) be the set of ζ(tf ,x2) obtained from all possible measurable selections, M,

and R(tf ,x2) be the plenary hull of Φ(tf ,x2) i.e., R(tf ,x2) = {A ∈ R
n×n : vTAu ≤

max{vTBu : B ∈ Φ(tf ,x2)}, ∀(u,v) ∈ R
n × R

n}.

Then ∂2x(tf ,x2) ⊂ R(tf ,x2). Let S be a measure zero subset of [t0, tf ]. If ∂2f(t,x(t,x2))

is a singleton for all t ∈ [t0, tf ]\S, then R(tf ,x2) is a singleton. Let the single element be

J2x(tf ,x2). Then x(tf , ·) is strictly differentiable at x2 and J2x(tf ,x2) is the strict derivative.

3.1.1 Note on Notation and Assumptions

In the remainder of this chapter, nx, np and ny represent finite positive integers, t0 ∈ R, tf ∈

R and t0 ≤ tf .

X1, X2, X3, X4, X5 and X6 are open connected subsets of R, R
np, R

nx, R
ny , R

nx and R
ny
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respectively. X7 = X2 ×X3, X8 = X2 ×X3 ×X4 ×X5 and X9 = X4 ×X5. T = [t0, tf ] ⊂ X1.

In order to make the exposition more intuitive, the labels T , P, X , Y , Ẋ , W and Q will

be used instead of X1, X2, X3, X4, X5, X6 and X9. If the symbols t,p,x,y, ẋ, w, v, u and

q appear as subscripts, they represent the indices 1, 2, 3, 4, 5, 6, 7, 8 and 9.

3.2 Ordinary Differential Equations

In this section, sufficient conditions for the existence of adjoint and forward sensitivity tra-

jectories are derived for the solutions of ordinary differential equations.

Assumption 3.2.1. Let f : T ×P ×X → Ẋ and f0 : P → X̃ be locally Lipschitz continuous

functions where X̃ is an open connected subset of X . Let x : T ×P → X be such that x(·,p)

is the unique solution of the initial value problem

ẋ(t,p) = f(t,p,x(t,p)), ∀t ∈ (t0, tf ], x(t0,p) = f0(p), ∀p ∈ P. (3.2.1)

Remark 3.2.2. Let z : T × P → P : (t,p) 7→ p and v : T × P → P × X : (t,p) 7→

(z(t,p),x(t,p)) for the remainder of this chapter.

Theorem 3.2.3. Let Assumption 3.2.1 hold. Assume f0 is strictly differentiable at p ∈ P.

Let S be a measure zero subset of T . Assume ∂vf(t,v(t,p)) is a singleton for all t ∈ T\S.

Then the mapping η 7→ x(t, η) is locally Lipschitz continuous and strictly differentiable at

p ∈ P for all t ∈ T . Hence ∂px(t,p) is a singleton for all t ∈ T . Let ∂px(t,p) = {Jpx(t,p)}.

Then, Jpx(·,p) is the unique absolutely continuous function on T that satisfies

J̇px(t,p) = Ĵxf(t,v(t,p))Jpx(t,p) + Ĵpf(t,v(t,p)), ∀t ∈ (t0, tf ], (3.2.2)

Jpx(t0,p) = Jpf0(p).

92



Proof. Let g : T × P × X → R
np × Ẋ : (t, µ) 7→ (0, f(t, µ)). g is a locally Lipschitz

continuous function because it is the composition of locally Lipschitz continuous functions f

and h : R
nx → R

np+nx : u 7→ (0,u). If ∂vf(t, µ) is a singleton then ∂vg(t, µ)) is a singleton

per Theorem 2.6.7.

Consider the initial value problem:

ν̇(t, ν0) = g(t, ν(t, ν0)), ∀t ∈ (t0, tf ], ν(t0, ν0) = ν0, ν0 ∈ P × X̃ (3.2.3)

where ν : T × P × X̃ → P × X . Per Theorem 3.1.3, the mapping ν0 7→ ν(t, ν0) is locally

Lipschitz continuous at ν̄0 ∈ P×X̃ for all t ∈ [t0, tf ] if the solution ν(·, ν̄0) exists. ∂ν0ν(t, ν̄0)

(here, the subscript 7 is replaced with ν0) is contained in the plenary hull of the solutions of

the family of initial value problems:

ζ̇(t, ν̄0) = M(t)ζ(t, ν̄0), ∀t ∈ (t0, tf ], ζ(t0, ν̄0) = Inp+nx
(3.2.4)

where M is any measurable selection of ∂vg(·, ν(·, ν̄0)), a set-valued mapping from T to the

subsets of R
(np+nx)×(np+nx), of the form

M(t) =







0 0

Mp(t) Mx(t)







and Mx : T → R
nx×nx , Mp : T → R

nx×np are bounded measurable functions.

Suppose that ν̄0 = (p,x0) where x0 ∈ X̃ is such that ∂vg(t, ν(t, ν̄0)) is a singleton for all t

in T except for a subset S of measure zero. Then by Theorem 3.1.3, ∂ν0ν(t, ν̄0) is a singleton

for all t ∈ T . Let the single element and strict derivative of the mapping ν0 7→ ν(t, ν0) at
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ν̄0 be Jν0ν(t, ν̄0). Then (3.2.4) can be written as

J̇ν0ν(t, ν̄0) =







0 0

Ĵpf(t, ν(t, ν̄0)) Ĵxf(t, ν(t, ν̄0))






Jν0ν(t, ν̄0), ∀t ∈ (t0, tf ], (3.2.5)

Jν0ν(t0, ν̄0) = Inp+nx
.

Note that Ĵpf(·, ν(·, ν̄0)) and Ĵxf(·, ν(·, ν̄0)) differ from any measurable selections Mp and

Mx if t ∈ S only. Therefore using these quantities instead of the measurable selections does

not alter the value of Jν0ν(t, ν̄0).

If ν̄0 = (p, f0(p)), then ν(t, (p, f0(p))) = v(t,p), ∀(t,p) ∈ T × P satisfies (3.2.3). In

addition, ∂vg(t,v(t,p)) is a singleton for all t ∈ T\S, Mx(t) = Jxf(t,v(t,p)) and Mp(t) =

Jpf(t,v(t,p)) for all t ∈ T\S. Finally, ∂ν0ν(t, (p, f0(p))) is a singleton for all t ∈ T .

Let p ∈ P and w̄ ∈ X̃ . The mapping (u,w) 7→ (u, f0(u)) is strictly differentiable at

(p, w̄) and the derivative is

A0(p, w̄) =







Inp
0

Jf0(p) 0







because f0 is strictly differentiable at p. As a result, (u, f0(u)) 7→ ν(t, (u, f0(u))) is locally

Lipschitz continuous at (p, f0(p)) and ∂ν0ν(t, (p, f0(p))) is {Jν0ν(t, (p, f0(p))) A0(p, w̄)} per

Theorem 2.6.7.

Equation (3.2.5) is a linear ordinary differential equation that admits a matrix-valued

function Γ(t, τ) such that Jν0
ν(t, ν̄0) = Γ(t, τ)Jν0

ν(τ, ν̄0) = Γ(t, t0)Inp+nx
. Hence Jν0ν

(t, (p, f0(p)))A0(p, w̄) is Γ(t, t0)A0(p, w̄) and Jν0ν(t, (p, f0(p)))A0(p, w̄) is obtained as the

solution of (3.2.5) with the initial conditions Jν0ν(t0, ν̄0) = A0(p, w̄) and ν̄0 = (p, f0(p)).
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Let

Jν0ν(t, (p, f0(p))) =







ζA(t,p) ζB(t,p)

ζC(t,p) ζD(t,p)






, ∀(t,p) ∈ T × P,

where ζA : T ×P → R
np×np, ζB : T ×P → R

np×nx, ζC : T ×P → R
nx×np and ζD : T ×P →

R
nx×nx.

Multiplying out (3.2.5) and substituting v(t,p) for ν(t, (p, f0(p))) results in

ζ̇A(t,p) = 0, ∀t ∈ (t0, tf ], ζ̇B(t,p) = 0, ∀t ∈ (t0, tf ],

ζ̇C(t,p) = Ĵpf(t,v(t,p)ζA(t,p) + Ĵxf(t,v(t,p))ζC(t,p), ∀t ∈ (t0, tf ],

ζ̇D(t,p) = Ĵpf(t,v(t,p))ζB(t,p) + Ĵxf(t,v(t,p))ζD(t,p), ∀t ∈ (t0, tf ],

ζA(t0,p) = Inp
, ζB(t0,p) = 0,

ζC(t0,p) = Jf0(p), ζD(t0,p) = 0.

Note that ζC is the derivative of the map η 7→ x(t, η) at η = p. In addition, ζA(t,p) = Inp

for all t ∈ T . Renaming ζC(t,p) as Jpx(t,p), the following desired result is obtained:

J̇px(t,p) = Ĵxf(t,v(t,p))Jpx(t,p) + Ĵpf(t,v(t,p)), ∀t ∈ (t0, tf ],

Jpx(t0,p) = Jpf0(p).

Note that Ĵxf(·,v(·,p)) and Ĵpf(·,v(·,p)) are bounded and measurable functions on T .

Hence Jpx(·,p) is absolutely continuous on T per Theorem 3 in [37].

The next two theorems contain adjoint sensitivity results that consider two cases. In the

first theorem, the function G : P → R can be computed by integrating a locally Lipschitz

function on T . The second theorem considers the case when such a computation is not
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possible.

Theorem 3.2.4. Let the hypotheses of Theorem 3.2.3 hold. Let g : T × P × X → R be a

locally Lipschitz continuous function. Define G : P → R by

G(p) =

∫ tf

t0

g(t,v(t,p))dt.

Let Q be a measure zero subset of T . Let ∂vg(t,v(t,p)) be a singleton for all t ∈ T\Q.

Let λ : T → R
nx be a solution of the initial value problem,

λ̇(t) = −Ĵxf(t,v(t,p))Tλ(t) + ∇̂xg(t,v(t,p)), ∀t ∈ [t0, tf), λ(tf ) = 0. (3.2.6)

Then, λ is unique and absolutely continuous. In addition, G is locally Lipschitz continuous

and strictly differentiable at p and the strict derivative is

∇G(p) =

∫ tf

t0

∇̂pg(t,v(t,p)) − Ĵpf(t,v(t,p))Tλ(t)dt + Jpx(t,p)Tλ(t)
∣

∣

tf

t0
. (3.2.7)

Proof. The proof consists of applying the results of Theorem 3.1.2 and Theorem 3.2.3 to the

equivalent integral

G(p) =

∫ tf

t0

g(t,v(t,p)) − λ(t)T (f(t,v(t,p)) − ẋ(t,p)) dt.

Let ǫ > 0 and Γ(ǫ,p) = {(t, ṽ) ∈ T × R
np+nx : ‖ṽ − v(t,p)‖ < ǫ}. Note that there exists an

ǫ > 0 such that Γ(ǫ,p) ⊂ T × P × X because T × P × X is open and {(t,v(t,p)) : t ∈ T}

is a bounded subset of T × P × X . Since Γ(ǫ,p) is bounded and f and g are locally

Lipschitz continuous at all points in Γ(ǫ,p), there exists a Lipschitz constant, K, such that

‖g(t,v1) − g(t,v2)‖ ≤ K‖v1 − v2‖ and ‖f(t,v1) − f(t,v2)‖ ≤ K‖v1 − v2‖ for all (t,v1) ∈

Γ(ǫ,p), (t,v2) ∈ Γ(ǫ,p). In addition, ‖∇̂xg(t,v(t,p))‖ ≤ K and ‖∇̂pg(t,v(t,p))‖ ≤ K for
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all t ∈ T .

Since g(t, ·) is strictly differentiable for all t ∈ T\Q,

lim
si↓0

g(t,p,x(t,p) + sid) − g(t,p,x(t,p))

si

= ∇̂xg(t,v(t,p))Td

holds for all t ∈ T\Q and d ∈ R
nx . The quotient on the left is a bounded continuous function

of t for small enough si due to local Lipschitz continuity of g. Per the Lebesgue Dominated

Convergence Theorem it can be shown that ∇̂xg(·,v(·,p)) is a measurable function from T

to R
nx . Lebesgue integrability of ∇̂pg(·,v(·,p)) can be shown using the same arguments.

Ĵxf(·,v(·,p)) is a bounded measurable function of t because it differs from a bounded

measurable function Mx (as defined in Theorem 3.2.3) on a measure zero subset of T and

Ĵxf(t,v(t,p)) is zero for t in that set.

As a result, there exists a unique, bounded and absolutely continuous solution to (3.2.6)

in the sense of Carathéodory per Theorem 3 in [37], employing the trivial extension of (3.2.6)

from T to T obtained by defining λ̇(t) = 0 in case t /∈ T .

Per Theorem 3.2.3, the mapping η 7→ x(t, η) is locally Lipschitz continuous. Therefore

the mapping η 7→ v(t, η) is locally Lipschitz continuous at p for all t ∈ T . Let O ⊂ P be

the open set on which local Lipschitz continuity holds. Due to the continuous dependence

of v(t, η) on η ∈ O, one can pick an ǫp > 0 such that for all η ∈ O satisfying ‖η − p‖ < ǫp,

v(t, η) ⊂ Γ(ǫ,p).

Let p1 ∈ O and p2 ∈ O satisfy ‖p− p1‖ < ǫp and ‖p− p2‖ < ǫp. Then

x(t,p1) − x(t,p2) =

∫ t

t0

f(ζ,v(ζ,p1)) − f(ζ,v(ζ,p2))dζ + x(t0,p1) − x(t0,p2),

‖x(t,p1) − x(t,p2)‖ ≤
∫ t

t0

‖f(ζ,v(ζ,p1)) − f(ζ,v(ζ,p2))‖dζ + K0‖p1 − p2‖,

‖x(t,p1) − x(t,p2)‖ ≤
∫ t

t0

K‖p2 − p2‖ + K‖x(ζ,p1) − x(ζ,p2)‖dζ + K0‖p1 − p2‖
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hold where K0 is a Lipschitz constant of f0 in a neighborhood of p that contains p1 and p2.

Application of Gronwall’s Lemma produces

‖x(t,p1) − x(t,p2)‖ ≤ (K(t − t0) + K0)‖p1 − p2‖eK(t−t0).

Hence ‖g(t,v(t,p1))−g(t,v(t,p2)‖ ≤ (K+K2(tf −t0)+KK0)e
K(tf−t0)‖p1−p2‖, ∀t ∈ T .

The term (f(t,v(t,p)) − ẋ(t,p)) is identically zero for all values of p and t. As a result,

the hypotheses of Theorem 3.1.2 hold. Hence, η 7→ G(η) is locally Lipschitz continuous at p

and ∂G(p) ⊂ W where W = {w : w =
∫ tf

t0
wt(t)dt}, wt is a measurable selection of ∂pg̃(·,p)

and g̃(·,p) = g(·,v(·,p))− λ(·)T(f(·,v(·,p)) − ẋ(·,p)).

Let w̃t(t) = Jp(f(t,v(t,p)) − ẋ(t,p)). Then w̃t(t) = 0, ∀t ∈ T and

Jpẋ(t,p) = Jxf(t,v(t,p))Jpx(t,p) + Jpf(t,v(t,p)) = J̇px(t,p), ∀t ∈ T\S

per (3.2.2). Therefore, w̃t(t) is Ĵxf(t,v(t,p))Jpx(t,p)+ Ĵpf(t,v(t,p)) − J̇px(t,p).

Any measurable selection wt differs from ŵt only if t ∈ S ∪ Q where ŵt is

ŵt(t) = Jpx(t,p)T
∇̂xg(t,v(t,p)) + ∇̂pg(t,v(t,p)) − w̃t(t)

Tλ(t).

The integral of ŵt(t) is

∫ tf

t0

Jpx(t,p)T
∇̂xg(t,v(t,p)) + ∇̂pg(t,v(t,p)) − (3.2.8)

(

Ĵxf(t,v(t,p))Jpx(t,p) + Ĵpf(t,v(t,p)) − J̇px(t,p)
)T

λ(t)dt.

Since λ and Jpx(·,p) are absolutely continuous functions of t, integration by parts for the
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Lebesgue integral produces

∫ tf

t0

J̇px(t,p)Tλ(t)dt = Jpx(t,p)Tλ(t)
∣

∣

tf

t0
−
∫ tf

t0

Jpx(t,p)Tλ̇(t)dt. (3.2.9)

Combining (3.2.9) with (3.2.8) results in

∫ tf

t0

Jpx(t,p)T
∇̂xg(t,v(t,p)) + ∇̂pg(t,v(t,p)) − (3.2.10)

Jpx(t,p)TĴxf(t,v(t,p))Tλ(t) − Ĵpf(t,v(t,p))Tλ(t) − Jpx(t,p)Tλ̇(t)dt +

Jpx(t,p)Tλ(t)
∣

∣

tf

t0
.

After collecting terms multiplying Jpx(t,p) in (3.2.10) and substituting the right-hand side

expression in (3.2.6) for λ(t), the desired result in (3.2.7) is obtained. Strict differentiability

follows from the fact that all possible measurable selections wt differ from ŵt only if t is in

a measure zero subset of T , and therefore W is a singleton.

Theorem 3.2.5. Let the hypotheses of Theorem 3.2.3 hold. Let h : T0 × P × X → R be a

locally Lipschitz continuous function where T0 is an open subset of T such that tf ∈ T0.

Let G : P → R : η 7→ h(tf ,v(tf , η)) and assume ∂vh(tf ,v(tf ,p)) is a singleton

whose single element is (∇ph(tf ,v(tf ,p), ∇xh(tf ,v(tf ,p)) where ∇ph(tf ,v(tf ,p) ∈ R
np

and ∇xh(tf ,v(tf ,p)) ∈ R
nx.

Let Cx = ∇xh(tf ,v(tf ,p)) and Cp = ∇ph(tf ,v(tf ,p)). Let λ : T → R
nx be a solution

of the initial value problem:

λ̇(t) = − Ĵxf(t,v(t,p))Tλ(t), ∀t ∈ [t0, tf), λ(tf ) = −Cx. (3.2.11)

Then, it is unique and absolutely continuous. In addition, G is locally Lipschitz continuous
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and strictly differentiable at p and the derivative is

∇G(p) =

∫ tf

t0

−Ĵpf(t,v(t,p))Tλ(t)dt − Jpx(t0,p)Tλ(t0) + Cp. (3.2.12)

Proof. The existence, uniqueness and absolute continuity of λ follows from similar arguments

to those presented in Theorem 3.2.4.

G is locally Lipschitz continuous at p because it is the composition of locally Lipschitz

continuous functions h(tf , ·) and the locally Lipschitz continuous function v(tf , ·). Strict

differentiability follows from the fact that ∂vh(tf ,v(tf ,p)) is a singleton and v(tf , ·) is strictly

differentiable at p. The strict derivative is ∇G(p) = Jpx(tf ,p)TCx + Cp.

The expression

∫ tf

t0

J̇px(t,p)TCx− (3.2.13)

(Ĵxf(t,v(t,p))Jpx(t,p) + Ĵpf(t,v(t,p)) − J̇px(t,p))Tλ(t)dt +

Jpx(t0,p)TCx

is equal to Jpx(tf ,p)TCx regarding Cx as a constant because the term multiplying λ(t) is

identically zero as discussed in Theorem 3.2.4.

Jpx(·,p) and λ are absolutely continuous functions from T to R
nx×np and R

nx , respec-

tively, and therefore integration by parts for the Lebesgue integral produces

∫ tf

t0

J̇px(t,p)T(Cx + λ(t))dt = Jpx(t,p)T(Cx + λ(t))
∣

∣

tf

t0
−
∫ tf

t0

Jpx(t,p)Tλ̇(t)dt.

Hence, the expression (3.2.13) can be written as

∫ tf

t0

− (Ĵxf(t,v(t,p))Jpx(t,p) + Ĵpf(t,v(t,p)))Tλ(t) − Jpx(t,p)Tλ̇(t)dt+
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Jpx(t,p)T(Cx + λ(t))
∣

∣

tf

t0
+ Jpx(t0,p)TCx,

∫ tf

t0

Jpx(t,p)T(−Ĵxf(t,v(t,p))Tλ(t) − λ̇(t)) − Ĵpf(t,v(t,p))Tλ(t)dt + (3.2.14)

Jpx(tf ,p)T(Cx + λ(tf )) − Jpx(t0,p)Tλ(t0).

After substituting the right-hand side expression in (3.2.11) for λ̇, (3.2.14) becomes (3.2.12).

3.3 Differential-Algebraic Equations

Results in this section extend previous results to a subset of differential-algebraic equations.

Assumption 3.3.1. Let F : T × P × X × Y × Ẋ → R
nx+ny and F0 : P → X be locally

Lipschitz continuous functions. Let x : T × P → X , y : T × P → Y and ẋ : T × P → Ẋ be

such that they uniquely satisfy the initial value problem

0 = F(t,p,x(t,p),y(t,p), ẋ(t,p)), ∀t ∈ [t0, tf ], x(t0,p) = F0(p), ∀p ∈ P, . (3.3.1)

Let ẋ(t0, p̄) = ˙̄x and y(t0, p̄) = ȳ for some p̄ ∈ P where ˙̄x and ȳ are constants and sat-

isfy F(t0, p̄,x(t0, p̄),y(t0, p̄), ẋ(t0, p̄)) = 0. Assume that this condition uniquely determines

y(t0,p) and ẋ(t0,p) for all p ∈ P.

Remark 3.3.2. Let u : T ×P → P ×X ×Y × Ẋ : (t,p) 7→ (v(t,p),y(t,p), ẋ(t,p)) for the

remainder of this chapter.

Lemma 3.3.3. Let ηp ∈ P, ηx ∈ X , ηy ∈ Y, ηẋ ∈ Ẋ and η = (ηp, ηx, ηy, ηẋ).

Assume πq∂F(t, η) is maximal for all (t, η) ∈ T × P × X × Y × Ẋ . Then there exist

locally Lipschitz continuous functions: f : T × P × X → Ẋ and r : T × P × X → Y such

that 0 = F(t, ηp, ηx, r(t, ηp, ηx), f(t, ηp, ηx)) holds.
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If ∂F(t, η) is a singleton whose only member is

JF(t, η) =

[

JtF(t, η) JpF(t, η) JxF(t, η) JyF(t η) JẋF(t, η)

]

then f and r are strictly differentiable and the derivatives are the solutions of the equation,

[

JyF(t, η) JẋF(t, η)

]







Jtr(t, ηp, ηx) Jpr(t, ηp, ηx) Jxr(t, ηp, ηx)

Jtf(t, ηp, ηx) Jpf(t, ηp, ηx) Jxf(t, ηp, ηx)






=

−
[

JtF(t, η) JpF(t, η) JxF(t, η)

]

.

Proof. The result follows from Theorem 2.6.13.

Corollary 3.3.4. Let Assumption 3.3.1 and the assumptions of Lemma 3.3.3 hold. Let

u(t, p̄) be the unique solution of (3.3.1) if p = p̄. Then u(t, ·) is a locally Lipschitz continuous

function at p̄ for all t ∈ T .

Proof. Since the implicit function, f as defined in Lemma 3.3.3 is a locally Lipschitz continu-

ous function, v(t, ·) is a locally Lipschitz continuous function at p̄ for all t ∈ T per Theorem

3.1.3 considering the extended ODE in (3.2.3). The local Lipschitz continuity of y(t, ·) at

p̄ follows from the local Lipschitz continuity of the implicit function r(t, ·) at v(t, p̄) for all

t ∈ T and the local Lipschitz continuity of v(t, ·) at p̄ for all t ∈ T . The local Lipschitz

continuity of ẋ(t, ·) at p follows from the same reasoning using f instead of r. Since all

elements of u(t, ·) are locally Lipschitz continuous at p̄ so is u(t, ·) for all t ∈ T .

Lemma 3.3.5. Let Assumption 3.3.1 and the assumptions of Lemma 3.3.3 hold. Let ∂uF(t, η)

be a singleton whose element is

JuF(t, η) =

[

JpF(t, η) JxF(t, η) JyF(t, η) JẋF(t, η)

]

.
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Then f(t, ·) and r(t, ·) are strictly differentiable at (t, η). The derivatives satisfy

[

JyF(t, η) JẋF(t, η)

]







Jpr(t, ηp, ηx) Jxr(t, ηp, ηx)

Jpf(t, ηp, ηx) Jxf(t, ηp, ηx)






= −

[

JpF(t, η) JxF(t, η)

]

. (3.3.2)

Proof. If πq∂uF(t, η) were maximal, then the result of the lemma would follow from Theorem

2.6.13. However, it is not obvious that if πq∂F(t, η) is maximal, then πq∂uF(t, η) is maximal.

In order to arrive at the desired result, Theorem 3.2 in [78] is used. ∂f(p), L, and

∂f(p)|L (the restriction of ∂f(p) to the subspace L), correspond to ∂F(t, η), R
np×nx×ny×nx

and πu∂F(t, η), respectively. ∂Lf(p) is an intermediate construct that contains ∂Cg(0)

(see comment on page 57 in [78]). ∂Cg(0) corresponds to ∂uF(t, η) in this case. Hence,

∂uF(t, η) ⊂ πu∂F(t, η) and πq(πu∂F(t, η)) = πq∂F(t, η) ⊃ πq∂uF(t, η). As a result,

πq∂uF(t, η) is maximal.

Theorem 3.3.6. Let Assumption 3.3.1 and the assumptions of Lemma 3.3.3 hold. Let S be

a measure zero subset of T . Let ∂uF(t,u(t,p)) be a singleton for t ∈ T\S. Assume F0 is

strictly differentiable at p. Then ∂px(t,p) is a singleton for all t ∈ T . Let the single element

be Jpx(t,p). Then Jpx(·,p) is the unique absolutely continuous function on T that satisfies

∂uF(t,u(t,p)) = {[πvJuF(t,u(t,p)) πqJuF(t,u(t,p))]}, ∀t ∈ T\S

J(t,p) = − πqJuF(t,u(t,p))−1πvJuF(t,u(t,p)), ∀t ∈ T\S, (3.3.3)

J(t,p) =







Jpr(t,v(t,p)) Jxr(t,v(t,p))

Jpf(t,v(t,p)) Jxf(t,v(t,p))






, ∀t ∈ T\S,

J̇px(t,p) = Ĵxf(t,v(t,p))Jpx(t,p) + Ĵpf(t,v(t,p)), ∀t ∈ (t0, tf ], (3.3.4)

Jpx(t0,p) = JpF0(p)

where πvJuF(t,u(t,p)) ∈ R
(nx+ny)×(np+nx), πqJuF(t,u(t,p)) ∈ R

(nx+ny)×(ny+nx),
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Jpf(t,v(t,p)) ∈ R
nx×np, Jxf(t,v(t,p)) ∈ R

nx×nx, Jpr(t,v(t,p)) ∈ R
ny×np and Jxr( t,v(t,p))

∈ R
ny×nx.

Proof. Result follows from Theorem 3.2.3, Lemma 3.3.3 and Lemma 3.3.5.

Corollary 3.3.7. Let the hypotheses of Theorem 3.3.6 hold. Then y(·,p) and ẋ(·,p) are

strictly differentiable for all t ∈ T\S and the derivatives are

Jpy(t,p) = Jxr(t,v(t,p))Jpx(t,p) + Jpr(t,v(t,p)), ∀t ∈ T\S,

Jpf(t,p) = Jxf(t,v(t,p))Jpx(t,p) + Jpf(t,v(t,p)), ∀t ∈ T\S,

where Jpr, Jxr, Jpf and Jxf are as defined in Lemma 3.3.5.

Proof. The result is obtained by applying Theorem 2.6.7 to the implicit functions r and

f .

Remark 3.3.8. The results of Theorems 3.2.4 and 3.2.5 hold for the initial value problem

in (3.3.1) if Ĵxf and Ĵpf are obtained with Jxf and Jpf that are computed using (3.3.3).

The next theorem is an extension of Theorem 3.2.4 where g is a function from T × P ×

X × Y × Ẋ to R instead of T × P × X to R. The extended result is obtained by replacing

ẋ and y with the implicit functions f and r.

Theorem 3.3.9. Let the hypotheses of Theorem 3.3.6 hold. Let g : T ×P×X ×Y×Ẋ → R

be a locally Lipschitz continuous function. Let G : P → R be

G(p) =

∫ tf

t0

g(t,u(t,p))dt. (3.3.5)

Let Q be a measure zero subset of T . Let ∂ug(t,u(t,p)) be a singleton for all t ∈ T\Q.
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Let

Bx(t,u(t,p)) = ∇̂xg(t,u(t,p)) + Ĵxr(t,v(t,p))T
∇̂yg(t,u(t,p)) +

Ĵxf(t,v(t,p))T
∇̂ẋg(t,u(t,p)),

Bp(t,u(t,p)) = ∇̂pg(t,u(t,p)) + Ĵpr(t,v(t,p))T∇̂yg(t,u(t,p)) +

Ĵpf(t,v(t,p))T
∇̂ẋg(t,u(t,p)).

Let λ : T → R
nx be a solution of the initial value problem

λ̇(t) = −Ĵxf(t,v(t,p))Tλ(t) + Bx(t,u(t,p)), ∀t ∈ [t0, tf ), λ(tf) = 0. (3.3.6)

Then, it is unique and absolutely continuous. In addition, G is locally Lipschitz continuous

and strictly differentiable at p and the strict derivative is

∇G(p) =

∫ tf

t0

Bp(t,u(t,p)) − Ĵpf(t,v(t,p))Tλ(t)dt + Jpx(t,p)Tλ(t)
∣

∣

tf

t0
. (3.3.7)

Proof. The proof proceeds along similar lines as the proof of Theorem 3.2.4 considering the

equivalent integral

G(p) =

∫ tf

t0

g(t,v(t,p), r(t,v(t,p)), f(t,v(t,p)))− λ(t)T(f(t,v(t,p)) − ẋ(t,p))dt.

The existence and uniqueness of solutions to (3.3.6) can be shown using arguments similar

to those in Theorem 3.2.4.

The local Lipschitz continuity of G at p and the applicability of Theorem 3.1.2 follows

from arguments similar to those presented in Theorem 3.2.4.
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All measurable selections wt differ from ŵt on a set of measure zero where

ŵt(t) = Jpx(t,p)T
∇̂xg(t,u(t,p)) + ∇̂pg(t,u(t,p)) +

Jpx(t,p)TĴxr(t,v(t,p))T
∇̂yg(t,u(t,p)) + Ĵpr(t,v(t,p))T

∇̂yg(t,u(t,p))+

Jpx(t,p)TĴxf(t,v(t,p))T
∇̂ẋg(t,u(t,p)) + Ĵpf(t,v(t,p))T

∇̂ẋg(t,u(t,p)) −

w̃t(t)
Tλ(t),

ŵt(t) = Jpx(t,p)TBx(t,u(t,p)) + Bp(t,u(t,p)) − w̃t(t)
Tλ(t).

and w̃t is defined in Theorem 3.2.4. Applying integration by parts to J̇(t,p)Tλ(t) and

collecting terms multiplying Jpx(t,p) results in (3.3.7) and (3.3.6).

Since y and ẋ are strictly differentiable functions of the parameters only if t ∈ T\S, the

extension of Theorem 3.2.5 considers the case when tf ∈ T\S.

Theorem 3.3.10. Let the hypotheses of Theorem 3.3.6 hold. Let h : T0×P×X×Y×Ẋ → R

be a locally Lipschitz continuous function where T0 is an open subset of T such that tf ∈ T0.

Assume tf /∈ S.

Let G : P → R : η 7→ h(tf ,u(tf , η)) and assume ∂uh(tf ,u(tf ,p)) is a singleton whose

single element is (∇ph(tf ,u(tf ,p), ∇xh(tf ,u(tf ,p), ∇yh(tf ,u(tf ,p), ∇ẋh(tf ,u(tf ,p)) where

∇ph(tf ,u(tf ,p) ∈ R
np, ∇xh(tf ,u(tf ,p)) ∈ R

nx, ∇yh(tf , u(tf ,p)) ∈ R
ny and ∇ẋh(tf ,u(tf ,p))

∈ R
nx.

Let

Cx = Jxf(tf ,v(tf ,p))T
∇ẋh(tf ,u(tf ,p)) +

Jxr(tf ,v(tf ,p))T
∇yh(tf ,u(tf ,p)) + ∇xh(tf ,u(tf ,p)),

Cp = Jpf(tf ,v(tf ,p))T
∇ẋh(tf ,u(tf ,p)) +

Jpr(tf ,v(tf ,p))T
∇yh(tf ,u(tf ,p)) + ∇ph(tf ,u(tf ,p)).
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Let λ : T → R
nx be a solution of the initial value problem;

λ̇(t) = − Ĵxf(t,v(t,p))Tλ(t), ∀t ∈ [t0, tf), λ(tf) = −Cx. (3.3.8)

Then, it is unique and absolutely continuous. In addition, G is locally Lipschitz continuous

and strictly differentiable at p and the derivative is

∇G(p) =

∫ tf

t0

−Ĵpf(t,v(t,p))Tλ(t)dt − Jpx(t0,p)Tλ(t0) + Cp. (3.3.9)

Proof. The existence, uniqueness and absolute continuity of λ follows from similar arguments

to those presented in Theorem 3.2.4.

G is locally Lipschitz continuous at p because it is the composition of locally Lipschitz

continuous functions h(tf , ·) and the locally Lipschitz continuous function u(tf , ·). Strict

differentiability follows from the fact that ∂uh(tf ,u(tf ,p)) is a singleton and u(tf , ·) is strictly

differentiable at p. The strict derivative is

∇G(p) = J̇px(tf ,p)T
∇ẋh(tf ,u(tf ,p)) + Jpy(tf ,p)T

∇yh(tf ,u(tf ,p)) + (3.3.10)

Jpx(tf ,p)T
∇xh(tf ,u(tf ,p)) + ∇ph(tf ,u(tf ,p)).

J̇px(tf ,p) and Jpy(tf ,p) are equal to Jxf(tf ,v(tf ,p))Jpx(tf ,p)+ Jpf(tf ,v(tf ,p)) and Jxr

(tf ,v(tf ,p)) Jpx(tf ,p) + Jpr(tf ,v(tf ,p)), respectively. Substituting these expressions into

(3.3.10) and collecting the terms multiplying Jpx(tf ,p) results in

∇G(p) = Jpx(tf ,p)TCx + Cp.
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The expression

∫ tf

t0

J̇px(t,p)TCx − (Ĵxf(t,v(t,p))Jpx(t,p) + (3.3.11)

Ĵpf(t,v(t,p)) − J̇px(t,p))Tλ(t)dt + Jpx(t0,p)TCx

is equal to Jpx(tf ,p)TCx because the term multiplying λ(t) is identically zero as discussed

in Theorem 3.2.4. Jpx(·,p) and λ are absolutely continuous functions from T to R
nx×np and

R
nx , respectively, and therefore integration by parts for the Lebesgue integral produces

∫ tf

t0

J̇px(t,p)T(Cx + λ(t))dt = Jpx(t,p)T(Cx + λ(t))
∣

∣

tf

t0
−
∫ tf

t0

Jpx(t,p)Tλ̇(t)dt.

Hence, the expression (3.3.11) can be written as

∫ tf

t0

Jpx(t,p)T(−Ĵxf(t,v(t,p))Tλ(t) − λ̇(t)) − Ĵpf(t,v(t,p))Tλ(t)dt + (3.3.12)

Jpx(t,p)T(Cx + λ(t))
∣

∣

tf

t0
+ Jpx(t0,p)TCx.

After substituting the right-hand side expression in (3.3.8) for λ̇, (3.3.12) becomes the inte-

gral in (3.3.9).

3.4 Multistage Systems

The previous forward and adjoint sensitivity results will be extended to dynamic systems

whose evolutions are described by disparate differential-algebraic equations in consecutive

intervals of time.

Assumption 3.4.1. Let ne be a finite positive integer and I = {1, . . . , ne}. Let αi ∈ R,

βi ∈ R, αi < βi, ∀i ∈ I, αi+1 = βi, ∀i ∈ I\{ne}, −∞ < α1 < βne
< +∞. Let T =
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∪ne

i=1[αi, βi] and T ⊂ T . Let Ti be an open subset of T such that [αi, βi] ⊂ Ti for all i ∈ I. Let

xi : [αi, βi]×P → X , yi : [αi, βi]×P → Y, ẋi : [αi, βi]×P → Ẋ for all i ∈ I, x : T ×P → X ,

y : T ×P → Y and ẋ : T ×P → Ẋ . Assume Fi : Ti ×P ×X ×Y × Ẋ → R
nx+ny are locally

Lipschitz continuous functions for all i ∈ I. Assume F0
i : P ×X → X for all i ∈ I\{1} and

F0
1 : P → X are locally Lipschitz continuous functions.

The parametric sensitivities associated with the solutions of the initial value problem,

0 = Fi(t,p,xi(t,p),yi(t,p), ẋi(t,p)), ∀t ∈ [αi, βi], ∀i ∈ I, (3.4.1)

0 = x1(α1,p) − F0
1(p),

0 = xi(αi,p) − F0
i (p,xi−1(βi−1,p)), ∀i ∈ I\{1}, (3.4.2)

0 = x(t,p) − xi(t,p), ∀t ∈ [αi, βi), ∀i ∈ I,

0 = x(βne
,p) − xne

(βne
,p),

0 = y(t,p) − yi(t,p), ∀t ∈ [αi, βi), ∀i ∈ I,

0 = y(βne
,p) − yne

(βne
,p),

0 = ẋ(t,p) − ẋi(t,p), ∀t ∈ [αi, βi), ∀i ∈ I,

0 = ẋ(βne
,p) − ẋne

(βne
,p)

are the focus of this section.

Remark 3.4.2. x(·,p), y(·,p) and ẋ(·,p) might be discontinuous at t = αi with i > 1.

Remark 3.4.3. The results derived in this section are applicable with slight modifications to

the case where the number of states, number of algebraic variables as well as the domains of

the functions Fi and F0
i differ for each i ∈ I.

Assumption 3.4.4. Let ẋ(αi, p̄) = ˙̄xi and y(αi, p̄) = ȳi for all i ∈ I where ˙̄xi and ȳi

are constants. Assume that this condition is sufficient to uniquely determine ẋ(αi,p) and

y(αi,p) uniquely for all i ∈ I and for all p ∈ P.
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Assumption 3.4.5. Let (xi(·,p),yi(·,p), ẋi(·,p)), ∀i ∈ I be the unique solution of (3.4.1).

Let zi : [αi, βi]×P → P : (t,p) 7→ p, vi : [αi, βi]×P → P ×X : (t,p) 7→ ((zi(t,p)),xi(t,p))

and ui : [αi, βi]×P → P×X ×Y ×Ẋ : (t,p) 7→ (vi(t,p),yi(t,p), ẋi(t,p)). Let u : T ×P →

P×X ×Y ×Ẋ be such that u(t,p) = ui(t,p) for all t ∈ [αi, βi) and u(βne
,p) = une

(βne
,p).

Corollary 3.4.6. Let Assumptions 3.4.1 and 3.4.4 hold. Let the assumptions of Lemma

3.3.3 hold for all Fi, i ∈ I. Let (xi(·,p), yi(·,p), ẋi(·,p)), ∀i ∈ I be the solution of (3.4.1).

Then u(t, ·) is locally Lipschitz continuous at p for all t ∈ T .

Proof. Let ne = 1. Then u1(t, ·) is a locally Lipschitz continuous function at p for t ∈ [α1, β1]

per Corollary 3.3.4. Since the composition of locally Lipschitz continuous functions is locally

Lipschitz continuous and F0
2 is a locally Lipschitz continuous function, u2(α2, ·) is locally

Lipschitz continuous at p if ne = 2. Then u2(t, ·) for all t ∈ [α2, β2] is locally Lipschitz

continuous at p per Corollary 3.3.4. The final result follows from the repeated application

of Corollary 3.3.4 and composition rule for locally Lipschitz continuous functions for ne > 2

as has been done for the case ne ≤ 2.

Theorem 3.4.7. Let Assumptions 3.4.1 and 3.4.4 hold. Let the assumptions of Lemma

3.3.3 hold for for all i ∈ I. Let S be a measure zero subset of T . Let ∂uFi(t,ui(t,p)) be a

singleton for all t ∈ [αi, βi]\S and for all i ∈ I. Let ∂vF
0
i (vi(αi,p)) be a singleton for all

i ∈ I\{1} and ∂pF
0
1(p) be a singleton.

Then x(t, ·) is locally Lipschitz continuous and strictly differentiable at p for all t ∈ T .

Jpx(t,p), the single element of ∂px(t,p), is the unique function that satisfies

∂uFi(t,ui(t,p)) = {[πvJuFi(t,ui(t,p)) πqJuFi(t,ui(t,p))]}, ∀t ∈ [αi, βi]\S,

−Ji(t,p) = πqJuFi(t,ui(t,p))−1πvJuFi(t,ui(t,p)), ∀t ∈ [αi, βi]\S, (3.4.3)

Ji(t,p) =







Jpri(t,vi(t,p)) Jxri(t,vi(t,p))

Jpfi(t,vi(t,p)) Jxfi(t,vi(t,p))






, ∀t ∈ [αi, βi]\S,
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J̇pxi(t,p) = Ĵxfi(t,vi(t,p))Jpxi(t,p)+

Ĵpfi(t,vi(t,p)), ∀t ∈ (αi, βi], (3.4.4)

Jpx1(α1,p) = JpF
0
1(p),

Jpxi(αi,p) = JxF
0
i (vi−1(βi−1,p))Jpxi−1(βi−1,p)+

JpF
0
i (vi−1(βi−1,p)), ∀i ∈ I\{1}, (3.4.5)

Jpx(t,p) = Jpxi(t,p), ∀t ∈ [αi, βi), Jpx(βne
,p) = Jpxne

(βne
,p).

where πvJuFi(t,u(t,p)) ∈ R
(nx+ny)×(np+nx), πqJuFi(t,u(t,p)) ∈ R

(nx+ny)×(ny+nx),

Jpfi (t,vi(t,p)) ∈ R
nx×np, Jxfi( t,vi(t,p)) ∈ R

nx×nx, Jpri (t,vi(t,p))∈ R
ny×np and

Jxri(t,vi(t,p)) ∈ R
ny×nx, ∀i ∈ I. fi and ri are the locally Lipschitz continuous implicit

functions that satisfy Fi(t,p, xi(t,p), ri(t,vi(t,p)), fi(t,vi(t,p))) for all i ∈ I. Finally,

Jpxi(·,p) are absolutely continuous functions on [αi, βi]

Proof. Let ne = 1. Then the result holds per Theorem 3.3.6. If ne = 2, then the strict

derivative of the mapping η 7→ x2(α2, η) at p is obtained after applying Theorem 2.6.7 to

(3.4.2) and is (3.4.5). Equations (3.4.3), (3.4.4) hold for i = 2 per Theorem 3.3.6 because

∂uFi(t,ui(t,p)) is a singleton for all t ∈ [αi, βi]\S and η 7→ x2(α2, η) is strictly differentiable

at p. Hence the result holds for the case ne = 2. The case for ne > 2 can be proven

similarly by repeatedly applying Theorem 3.3.6 and noting that the mappings η 7→ xi(αi, η)

are strictly differentiable at p for all i ∈ I.

Remark 3.4.8. Jpx(·,p) might be discontinuous at t = αi with i ∈ I\{1}.

Corollary 3.4.9. Let the hypotheses of Theorem 3.4.7 hold. Then y(t, ·) and ẋ(t, ·) are

strictly differentiable at p for all t ∈ T\S and the derivatives are

Jpy(t,p) = Jxri(t,vi(t,p))Jpx(t,p) + Jpri(t,vi(t,p)), ∀t ∈ [αi, βi)\S, ∀i ∈ I,
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Jpẋ(t,p) = Jxfi(t,vi(t,p))Jpx(t,p) + Jpfi(t,vi(t,p)), ∀t ∈ [αi, βi)\S, ∀i ∈ I,

where Jxri, Jpri, Jxfi, Jpfi and Jpx are as defined in Theorem 3.4.7. In addition, if

βne
/∈ S, then y(βne

, ·) and ẋ(βne
, ·) are strictly differentiable at p and the derivatives are

Jpy(βne
,p) = Jxrne

(βne
,vne

(βne
,p))Jpx(βne

,p) + Jprne
(βne

,vne
(βne

,p)),

Jpẋ(βne
,p) = Jxfne

(βne
,vne

(βne
,p))Jpx(βne

,p) + Jpfne
(βne

,vne
(βne

,p))

Proof. The result follows from Corollary 3.3.7.

Remark 3.4.10. Theorem 3.4.7 can be extended to the case where F0
i are functions of ui−1

for i ∈ I\{1} with slight modifications. In order to guarantee the strict differentiability of

xi(αi, ·) at p, yi−1(βi, ·) and ẋi−1(βi, ·) need to be strictly differentiable at p. Hence, βi /∈ S

for all i ∈ I\{1} needs to hold.

The extensions of Theorems 3.3.9 and 3.3.10 follow next. The extensions require the

introduction of additional variables in order to relate the adjoint equations for each separate

time interval.

Theorem 3.4.11. Let the hypotheses of Theorem 3.4.7 hold. Define G : P → R as

G(p) =
ne
∑

i=1

∫ βi

αi

gi(t,ui(t,p))dt

where gi : Ti ×P ×X ×Y × Ẋ → R are locally Lipschitz continuous functions for all i ∈ I.

Let Q be a measure zero subset of T . Let ∂ugi(t,ui(t,p)) be a singleton for all t ∈ [αi, βi]\Q

for all i ∈ I.

Define for each i ∈ I:

Bx,i(t,ui(t,p)) = ∇̂xgi(t,ui(t,p)) + Ĵxri(t,vi(t,p))T
∇̂ygi(t,ui(t,p)) +
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Ĵxfi(t,vi(t,p))T
∇̂ẋgi(t,ui(t,p)), ∀t ∈ [αi, βi],

Bp,i(t,ui(t,p)) = ∇̂pgi(t,ui(t,p)) + Ĵpri(t,vi(t,p))T
∇̂ygi(t,ui(t,p)) +

Ĵpfi(t,vi(t,p))T
∇̂ẋgi(t,ui(t,p)), ∀t ∈ [αi, βi].

Let λi : [αi, βi] → R
nx be solutions of

λ̇i(t) = −Ĵxfi(t,vi(t,p))Tλi(t) + Bx,i, ∀t ∈ [αi, βi), ∀i ∈ I, (3.4.6)

λi(βi) = JxF
0
i+1(vi(t,p))Tλi+1(βi), ∀i ∈ I\{ne}, λne

(βne
) = 0.

where Jpfi(t,vi(t,p)), Jxfi(t,vi(t,p)), Jpri(t,vi(t,p)), and Jxri(t,vi(t,p)) are computed

using (3.4.3). Then, λi are unique and absolutely continuous.

In addition, G is locally Lipschitz continuous and strictly differentiable at p and the

derivative is

∇G(p) =

ne
∑

i=1

∫ βi

αi

Bp,i(t,ui(t,p)) − Ĵpfi(t,vi(t,p))Tλi(t)dt − (3.4.7)

ne−1
∑

i=1

λi+1(βi)
TJpF

0
i+1(vi(βi,p)) +

Jpxne
(βne

,p)Tλne
(βne

) − Jpx1(α1,p)Tλ1(α1).

Proof. Consider the equivalent definition of G,

G(p) =

ne
∑

i=1

∫ βi

αi

gi(t,ui(t,p)) − λi(t)
T(fi(t,vi(t,p)) − ẋi(t,p))dt +

ne−1
∑

i=1

µT
i

(

xi+1(βi,p) − F0
i+1(vi(βi,p))

)
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where µi ∈ R
nx for all i ∈ I\{ne}. Using Theorem 3.3.9, the relation

∇G(p) =

ne
∑

i=1

∫ βi

αi

Bp(t,ui(t,p)) − Ĵpfi(t,vi(t,p))Tλi(t)dt +

ne
∑

i=1

Jpxi(t,p)Tλi(t)
∣

∣

βi

αi
+

ne−1
∑

i=1

(

Jpxi+1(βi,p) − JpF
0
i+1(vi(βi,p))

)T
µi −

ne−1
∑

i=1

(

JxF
0
i+1(vi(βi,p))Jpxi(βi,p)

)T
µi

is obtained. The results (3.4.7) and (3.4.6) follow after relating λi to λi+1 by setting λi(βi) =

JxF
0
i+1(vi(βi,p))Tµi and µi = λi+1(βi) for i ∈ I\{ne} and λne

(βne
) = 0.

Theorem 3.4.12. Let the hypotheses of Theorem 3.4.7 hold. Let h : T0×P×X×Y×Ẋ → R

be a locally Lipschitz continuous function where T0 is an open subset of T such that tf ∈ T0.

Assume tf /∈ S (if h : T0 ×P × X → R, this assumption is not necessary).

Let G : P → R : η 7→ h(tf ,u(tf , η)) and assume ∂uh(tf ,u(tf ,p)) is a singleton

with element (∇ph(tf ,u(tf ,p), ∇xh(tf ,u(tf ,p), ∇yh(tf ,u(tf ,p), ∇ẋh(tf ,u(tf ,p)) where

∇ph(tf ,u(tf ,p) ∈ R
np, ∇xh(tf ,u(tf ,p)) ∈ R

nx, ∇yh(tf ,u(tf ,p)) ∈ R
ny and

∇ẋh(tf ,u(tf ,p)) ∈ R
nx.

Let

Cx = Jxfne
(tf ,vne

(tf ,p))T
∇ẋh(tf ,u(tf ,p)) +

Jxrne
(tf ,vne

(tf ,p))T
∇yh(tf ,u(tf ,p)) + ∇xh(tf ,u(tf ,p)),

Cp = Jpfne
(tf ,vne

(tf ,p))T
∇ẋh(tf ,u(tf ,p)) +

Jprne
(tf ,vne

(tf ,p))T
∇yh(tf ,u(tf ,p)) + ∇ph(tf ,u(tf ,p)).
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Let λi : [αi, βi] → R
nx be solutions of the initial value problems:

λ̇i(t) = − Ĵxfi(t,vi(t,p))Tλi(t), ∀t ∈ (αi, βi], (3.4.8)

λi(βi) = JxF
0
i+1(vi(t,p))Tλi+1(αi+1), ∀i ∈ I\{ne}, λne

(βne
) = −Cx.

where Jpfi(t,vi(t,p)), Jxfi(t,vi(t,p)), Jpri(t,vi(t,p)), and Jxri(t,vi(t,p)) are computed

using (3.4.3). Then λi are unique and absolutely continuous.

In addition, G is locally Lipschitz continuous and strictly differentiable at p and the

derivative is

∇G(p) =
ne
∑

i=1

∫ βi

αi

−Ĵpfi(t,vi(t,p))Tλi(t)dt −

ne−1
∑

i=1

JpF
0
i+1(vi(βi,p))Tλi+1(βi) − Jpx1(α1,p)Tλ1(α1) + Cp.

Proof. As in Theorem 3.3.10, G is locally Lipschitz continuous at p because it is the compo-

sition of locally Lipschitz continuous functions h(tf , ·) and the locally Lipschitz continuous

function u(tf , ·). Strict differentiability follows from the fact that ∂uh(tf ,u(tf ,p)) is a sin-

gleton and u(tf , ·) is strictly differentiable at p. The strict derivative is

∇G(p) = J̇px(tf ,p)T
∇ẋh(tf ,u(tf ,p)) + Jpy(tf ,p)T

∇yh(tf ,u(tf ,p)) +

Jpx(tf ,p)T
∇xh(tf ,u(tf ,p)) + ∇ph(tf ,u(tf ,p)).

Replacing J̇px(tf ,p) and Jpy(tf ,p) with the results in Corollary 3.4.9 produces

∇G(p) = Jpx(tf ,p)TCx + Cp.

Observe that Jpx(tf ,p)TCx is the derivative of x(tf , ·)TCx treating Cx as a constant at p
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and

x(tf ,p)TCx =

ne
∑

i=1

∫ βi

αi

fi(t,vi(t,p))TCxdt +

ne−1
∑

i=1

(xi+1(αi+1,p) − xi(βi,p))T Cx + x1(α1,p)TCx,

x(tf ,p)TCx =
ne
∑

i=1

∫ βi

αi

fi(t,vi(t,p))TCx − λi(t)
T(fi(t,vi(t,p)) − ẋi(t,p))dt +

ne−1
∑

i=1

(xi+1(αi+1,p) − xi(βi,p))T Cx + x1(α1,p)TCx.

hold. Let H : P → R : η 7→ x(tf , η)TCx. Then

∇H(p) =

ne
∑

i=1

∫ βi

αi

J̇pxi(t,p)TCx −

(Ĵxfi(t,vi(t,p))Jpxi(t,p) + Ĵpfi(t,vi(t,p)) − J̇pxi(t,p))Tλi(t)dt +

ne−1
∑

i=1

(Jpxi+1(αi+1,p) − Jpxi(βi,p))T Cx + Jpx1(α1,p)TCx.

Collecting terms containing J̇pxi(t,p) and using integration by parts as in Theorem 3.3.10

results in

∇H(p) =

ne
∑

i=1

∫ βi

αi

Jpxi(t,p)T(−Ĵxfi(t,vi(t,p))Tλi(t) − λ̇i(t)) −

Ĵpfi(t,vi(t,p))Tλi(t)dt + Jpxi(t,p)T(Cx + λi(t))
∣

∣

βi

αi
+

ne−1
∑

i=1

(Jpxi+1(αi+1,p) − Jpxi(βi,p))T Cx + Jpx1(α1,p)TCx,

∇H(p) =
ne
∑

i=1

∫ βi

αi

−Ĵpfi(t,vi(t,p))Tλi(t)dt + Jpxi(t,p)T(Cx + λi(t))
∣

∣

βi

αi
+

ne−1
∑

i=1

(Jpxi+1(αi+1,p) − Jpxi(βi,p))T Cx + Jpx1(α1,p)TCx,
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∇H(p) =
ne
∑

i=1

∫ βi

αi

−Ĵpfi(t,vi(t,p))Tλi(t)dt +

ne−1
∑

i=1

(

−Jpxi+1(αi+1,p)Tλi+1(αi+1) + Jpxi(βi,p)Tλi(βi)
)

+

Jpxne
(βne

,p)T (Cx + λne
(βne

)) − Jpx1(α1,p)Tλ1(α1).

Setting λi(βi) = JxF
0
i+1(vi(βi,p))Tλi+1(αi+1) for all i ∈ I\{ne}, λne

(βne
) = −Cx and using

(3.4.5) provides the desired result.

3.5 Comments on the Numerical Computation of For-

ward and Adjoint Sensitivities

In this section, the discussion focuses on computational issues for the adjoint and forward

sensitivities of solutions to the initial value problems (3.2.1) and (3.3.1).

In order to solve (3.3.1) where F is an arbitrary locally Lipschitz continuous function

requires a method to solve nonsmooth equations (see [35] for examples of nonsmooth equation

solvers) coupled with a numerical integration algorithm. Although, this is an interesting

avenue of research, it is not pursued here because many systems of interest have special

structures that allow the use of existing algorithms. Usually the right-hand side of (3.3.1)

is continuously differentiable on open subsets whose closures partition the domain and the

solution can be obtained using integration algorithms coupled with state event location

algorithms [83].

The computation of the forward and adjoint sensitivities require the set S = {t ∈ T :

∂uF(t,u(t,p)) is not a singleton} to be determined. In general, when solutions of (3.3.1)

are obtained numerically, it is not possible to determine whether S is a set of measure zero

because the numerical solution comprises values computed at finitely many elements of T
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which may or may not be elements of S. Another major issue is that the computation of the

generalized Jacobian of an arbitrary locally Lipschitz continuous function using definition

(2.6.5) is not computationally practical.

The initial value problem (3.2.1) has a continuous right-hand side; however, the corre-

sponding adjoint and forward sensitivity initial value problems are equations with discon-

tinuous right-hand sides (See Example 3.6.2). These discontinuities need to be detected and

located using, for example, state event location [83], for the efficient and accurate compu-

tation of the adjoint and forward sensitivity trajectories. Similar observations apply to the

adjoint and forward sensitivities of (3.3.1).

Finally, the adjoint and sensitivity initial value problems (3.3.4, 3.3.6, 3.3.8) and the

integrals (3.3.7, 3.3.9) require the computation of the derivatives of the implicit functions f

and r. This computation is achieved by solving (3.3.2) at each function evaluation, which

is computationally very costly. Ideally, auxiliary DAE systems analogous to those in [24]

should be solved.

In order to overcome these computational issues, additional assumptions on the structure

of F need to be imposed. For example, F can be continuously differentiable on open sets

whose closures partition the domain of F. The boundaries of these open sets can be the

zero-level sets of certain functions. These assumptions and their numerical implications are

discussed in the following chapters.

3.6 Examples

The first example is a case where the mapping η 7→ x(tf , η) is strictly but not continuously

differentiable at p.

Example 3.6.1. Let nx = 1, np = 2. Let T = [t0, tf ], P = R
2 and X = R and ∆t = tf − t0,
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Table 3.1: Solution and Generalized Gradients of Example 3.6.1

Case x(t,p) ∂px(t,p)

p1 > 0, p2 > 0 p1 · ep2∆t
{(

ep2∆t, p1 · ∆t · ep2∆t
)}

p1 > 0, p2 < 0 p1 · e−p2∆t
{(

e−p2∆t, −p1 · ∆t · e−p2∆t
)}

p1 < 0, p2 > 0 p1 · e−p2∆t
{(

e−p2∆t, −p1 · ∆t · e−p2∆t
)}

p1 < 0, p2 < 0 p1 · ep2∆t
{(

ep2∆t, p1 · ∆t · ep2∆t
)}

p1 = 0 0 conv
({(

ep2∆t, 0
)

,
(

e−p2∆t, 0
)})

p2 = 0 p1 conv ({(1, p1 · ∆t) , (1, −p1 · ∆t)})
p1 = 0, p2 = 0 0 {(1, 0)}

x : T ×P → X , f : T × P × X : (t, η, µ) 7→ |η2 · µ|. Consider the initial value problem

ẋ(t,p) = f(t,p, x(t,p)), ∀t ∈ (t0, tf ], x(t0,p) = p1.

Table 3.1 contains the solutions and generalized gradients as a function of the parameter

values. Note that at p = (0, 0), x(t, ·) is a strictly differentiable function. Gronwall’s

result [44] cannot be applied to conclude differentiability because the partial derivatives of

f are not continuous in any open set containing {(t, x(t,p),p) : t ∈ [t0, tf ]}={(t, 0, 0, 0) :

t ∈ [t0, tf ]}. The results in [94], [95] and [39] are also not applicable in this case. In the

neighborhood of p = (0, 0), the state evolves according to ẋ(0,p) = −p2x(0,p) or ẋ(0,p) =

p2x(0,p) depending on the parameters. Hence the sequence of vector fields encountered is

not invariant. Theorem 3.2.3 can be applied to deduce strict differentiability in this case.

The next example demonstrates the discontinuous nature of the sensitivity equations.

Example 3.6.2. Let T = [0, tf ], np = 2, nx = 1, P = R
2, X = R. Consider the dynamic
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system

ẋ(t,p) = max(p1 − x(t,p), 0) − max(x(t,p) − p2, 0), ∀t ∈ (0, tf ],

x(0,p) = 0, p1 > p2 > 0, p ∈ P.

where x : T × P → X . Let t∗ be such that x(t∗,p) − p2 = 0. If t∗ ≥ tf then x(t,p) =

p1 · (1 − e−t) for all t ∈ [0, tf ]. Let p be such that 0 < ln p1

p1−p2
≤ tf . Then t∗ = ln p1

p1−p2
and

x(t∗,p) = p2 = p1 · (1 − e−t∗).

In this case, Ĵxf and Ĵpf in (3.2.2) are

Ĵxf(t,v(t,p)) =































−1 if t ∈ (t0, t
∗),

0 if t = t∗,

−2 if t ∈ (t∗, tf ],

, Ĵpf(t,v(t,p)) =































(1, 0) if t ∈ (t0, t
∗),

(0, 0) if t = t∗,

(1, 1) if t ∈ (t∗, tf ].

Hence the sensitivity equations have a discontinuity at t∗. The time of discontinuity depends

on the parameter. Note that, in this case, S is a singleton set.

The next example involves piecewise continuously differentiable functions. These are

locally Lipschitz continuous functions that are almost everywhere continuously differentiable

and that have their own specific implicit function theorem [91, 98].

Example 3.6.3. Let Y = {y ∈ R
ny : yi ≥ 0, ∀i ∈ {1, . . . , ny}} and W = Y . Let x :

T × P → X , ẋ : T × P → Ẋ , y : T × P → Y , w : T × P → W, p ∈ P and t ∈ T .

Let V : T × P × X × Y × W × Ẋ → R
nx , Q : T × P × X → R

ny and V0 : P → X be

continuously differentiable functions. Let M ∈ R
ny×ny be a P-matrix, i.e., the determinant

of every principal minor is positive. Let ηp ∈ P , ηx ∈ X , ηy ∈ Y , ηẋ ∈ Ẋ , ηw ∈ W and

η = (ηp, ηx, ηy, ηw, ηẋ). Let JẋV(t, η) be invertible for all (t, η) ∈ T ×P×X ×Y×W×Ẋ .
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Consider the initial value problem

0 = V(t,p,x(t,p),y(t,p),w(t,p), ẋ(t,p)), ∀t ∈ [t0, tf ], (3.6.1)

0 = w(t,p) − My(t,p)) − Q(t,p,x(t,p)), ∀t ∈ [t0, tf ], (3.6.2)

0 ≤ wi(t,p), 0 ≤ yi(t,p), wi(t,p)yi(t,p) = 0, ∀i ∈ I, ∀t ∈ [t0, tf ], (3.6.3)

0 = x(t0,p) − V0(p), ∀p ∈ P, (3.6.4)

I = {1, . . . , ny}.

Let µy ∈ R
ny . The linear complementarity problem [27],

ηw = Mηy + µy, ηw,i ≥ 0, ηy,i ≥ 0, ηw,iηy,i = 0, ∀i ∈ I (3.6.5)

has exactly one solution for each µy ∈ R
ny because M is a P-matrix. Define the functions

W : R
ny × Y → R

ny and gi : W ×Y → R as

Wi(µy, ηy) = min(〈mi, ηy〉 + µy,i, ηy,i), ∀i ∈ I,

gi(ηw, ηy) = ηw,i − ηy,i, ∀i ∈ I.

where mi is the ith row of M. Then the linear complementarity problem (3.6.5) is equivalent

to the equations:

0 = W(µy, ηy), ηw = Mηy + µy.

Note that W is a piecewise continuously differentiable function. If W(µ̄y, η̄y) = 0, then

there exists a piecewise continuously differentiable function H : R
ny → Y , such that

W(µy,H(µy)) = 0, ∀µy ∈ R
ny (See Example 17 in [91]). Let η̄w = Mη̄y + µ̄y. De-
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fine the sets

I1(µ̄y) = {i ∈ I : gi(η̄w, η̄y) > 0},

I2(µ̄y) = {i ∈ I : gi(η̄w, η̄y) < 0},

I3(µ̄y) = {i ∈ I : gi(η̄w, η̄y) = 0}.

Then (3.6.5) can be written in the form

0 = R(I1(µ̄y), I2(µ̄y), I3(µ̄y))η̄y + K(I1(µ̄y), I2(µ̄y)I3(µ̄y))µ̄y,

η̄w = Mη̄y + µ̄y,

where

Ri(I1(µ̄y), I2(µ̄y), I3(µ̄y)) =































eT
i if i ∈ I1(µ̄y),

mi if i ∈ I2(µ̄y),

eT
i or mi if i ∈ I3(µ̄y),

Ki(I1(µ̄y), I2(µ̄y), I3(µ̄y)) =































0 if i ∈ I1(µ̄y),

eT
i if i ∈ I2(µ̄y),

eT
i or 0 if i ∈ I3(µ̄y),

Ri and Ki are the ith rows of R and K, respectively. Observe that R(I1(µ̄y), I2(µ̄y),

I3(µ̄y)) is invertible because M is a P-Matrix. If I3(µ̄y) is empty, then for (µy, ηy) in a

neighborhood of (µ̄y, η̄y)

0 = R(I1(µ̄y), I2(µ̄y), I3(µ̄y))ηy + K(I1(µ̄y), I2(µ̄y), I3(µ̄y))µy
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holds due to the continuity of W and gi. In this case, if µ̄y = Q(t,p,x(t,p)), η̄y = y(t,p),

η̄w = w(t,p), then the system of equations (3.6.1) to (3.6.4) are a set of continuously

differentiable hence strictly differentiable equations.

In the remainder, if i ∈ I3(µy), then it is treated as if i ∈ I2(µy) holds. Then I1(µy) ∪

I2(µy) = I. As a result, R and K can be written as R(µy) and K(µy). If µy depends on

other variables, those variables are substituted for µy.

Using the fact that the composition of locally Lipschitz continuous functions is locally

Lipschitz continuous, the existence of H and the invertibility of JẋV, it can be shown that

there exist locally Lipschitz continuous functions, f : T ×P ×X → Ẋ and r : T ×P ×X →

Y , such that 0 = V(t, ηp, ηx, r(t, ηp, ηx),Mr(t, ηp, ηx) + Q(t, ηp, ηx), f(t, ηp, ηx)). Then

existence and uniqueness of solutions to equations (3.6.1) to (3.6.4) can be analyzed using

results for ordinary differential equations to show that (x(·,p),y(·,p),w(·,p), ẋ(·,p)) is a

continuous function on T .

Let F : T ×P × X × Y ×W × Ẋ → R
ny × R

ny × R
nx be

F(t, η) =













V(t, η)

ηw − Mηy − Q(t, ηp, ηx)

R(t, ηp, ηx)ηy + K(t, ηp, ηx)Q(t, ηp, ηx)













.

Let the mapping ζ 7→ F(t, ζ) be differentiable at η, let the derivative be JuF(t, η) =

[A(t, η) B(t, η)] (the notation is modified here and the subscript u is associated with the

space P × X × Y ×W × Ẋ ) where

B(t, η) =













JyV(t, η) JwV(t, η) JẋV(t, η)

−M Iny
0

R(t, ηp, ηx) 0 0













, (3.6.6)
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A(t, η) =













JpV(t, η) JxV(t, η)

−JpQ(t, ηp, ηx) −JxQ(t, ηp, ηx)

K(t, ηp, ηx)JpQ(t, ηp, ηx) K(t, ηp, ηx)JxQ(t, ηp, ηx)













.

Let the solution of the system of equations (3.6.1) to (3.6.4) be (x(·,p),y(·,p), w(·,p),

ẋ(·,p)). Let u(t,p) = (p,x(t,p),y(t,p),w(t,p), ẋ(t,p)). Let S be the set {t : t ∈

T, gi(w(t,p),y(t,p)) = 0, for some i ∈ I}. If S is a measure zero subset of T and

B(t,u(t,p)) is invertible for all t ∈ T\S, then Theorem 3.3.6 can be used to obtain for-

ward sensitivities. Finally observe that K and R are constant as long as I1(t,v(t,p)) and

I2(t,v(t,p)) remain constant. If S is a set of measure zero, a ∈ S and b ∈ S and t /∈ S if

t ∈ (a, b), then due to the continuity of u(·,p), K and R are constant for t ∈ (a, b).
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Chapter 4

Parametric Sensitivity Analysis of

Dynamic Systems using Linear

Newton Approximations

In Chapter 3, sufficient conditions for the existence of the strict derivative were analyzed

for the mapping η 7→ x(tf , η) at p ∈ P, where x : [t0, tf ] × P → X was the solution of the

initial value problem:

ẋ(t,p) = f(t,p,x(t,p)), ∀t ∈ (t0, tf ], x(t0,p) = f0(p), ∀p ∈ P ⊂ R
np, (4.0.1)

where f and f0 were locally Lipschitz functions on their respective domains. Forward and

adjoint sensitivity initial value problems were derived. The results were extended to DAEs

that can be transformed into ODEs using the implicit function theorem for locally Lipschitz

continuous functions (Theorem 2.6.13). Finally, the results were extended to multistage

systems where at each stage the evolution of the states was governed by such a DAE.

The results in Chapter 3 required that the state trajectory visit points of nondifferen-
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tiability in the domain of f only at times that constitute a measure zero subset of the time

horizon, [t0, tf ]. In this chapter, the case where this requirement is not met is analyzed. In

this case, Theorem 3.1.3 states that ∂2x(t,x2) ⊂ R(tf ,x2), but provides no efficient means

to calculate an element of ∂2x(t,x2). The theorem does not state whether Φ(tf ,x2), the

set whose elements can be easily computed, contains ∂2x(t,x2) and it is not clear whether

R(tf ,x2) can be used as a surrogate for the generalized Jacobian.

In order to arrive at sharper results than Theorem 3.1.3 can provide, additional conditions

on the functions involved in (4.0.1) are imposed. The functions are assumed to be semismooth

in the restricted sense in addition to being locally Lipschitz continuous. As a consequence

of this assumption, linear Newton approximations that contain the generalized Jacobian of

the mapping η 7→ x(tf , η) can be derived and equations can be formulated to calculate an

element of these linear Newton approximations.

The results in this chapter depend on results in [42] and [81]. In §4.1, these results are

summarized. In §4.2, results are derived for (4.0.1) assuming f and f0 are semismooth in

the restricted sense. The results are extended to a set of DAEs using an implicit function

theorem for semismooth functions derived from results in [42]. Then, multistage DAEs are

considered. Finally, Example 3.6.3 is revisited.

4.1 Preliminaries

4.1.1 Note on Notation and Assumptions

In the remainder of this chapter, nx, np and ny represent finite positive integers, t0 ∈ R, tf ∈

R and t0 ≤ tf .

X1, X2, X3, X4, X5 and X6 are open connected subsets of R, R
np, R

nx , R
ny , R

nx and

R
ny , respectively. X7 = X2 × X3, X8 = X2 × X3 × X4 × X5, X9 = X4 × X5, X10 = X7 × R

and X11 = X3 × R. T = [t0, tf ] ⊂ X1.
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In order to make the exposition more intuitive, the labels T , P, X , Y , Ẋ , W and Q will

be used instead of X1, X2, X3, X4, X5, X6 and X9. If the symbols t,p,x,y, ẋ, w, v, u, q,

v̄ and x̄ appear as subscripts, they represent the indices 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11.

In the remainder of this chapter, semismoothness means semismoothness in the restricted

sense and if F is a scalar function, ∂F denotes its generalized Jacobian and not its generalized

gradient to make the exposition simpler. The topological degree and related concepts are

used to formulate conditions for the existence of implicit nonsmooth functions. Here, relevant

properties of the topological degree are summarized (see [35] for a more detailed treatment

of degree theory).

Definition 4.1.1 (Topological Degree). Let F : cl (Ω) → R
n be a continuous func-

tion where Ω is a nonempty bounded open subset of R
n. Let bd (Ω) = cl (Ω)\Ω. Let

y ∈ R
n\F(bd (Ω)). The degree of F on Ω at y is denoted by deg(F, Ω,y), takes integer

values and satisfies the following properties:

1. Let y ∈ R
n\F(bd (Ω)). If deg(F, Ω,y) 6= 0, then there exists, u∗ ∈ Ω, a solution to the

equation F(u) = y.

2. If y /∈ cl (F(Ω)), deg(F, Ω,y) = 0.

3. deg(I, Ω,y) = 1 if y ∈ Ω where I is the identity map.

4. deg(F, Ω,y) = deg(F, Ω1,y)+deg(F, Ω2,y) if Ω1 and Ω2 are two disjoint open subsets

of Ω and y /∈ F(cl (Ω)\(Ω1 ∪ Ω2)).

5. Let H : [0, 1] × bd (Ω) → R
n be a continuous function. Let H(0,x) = F(x) and

H(1,x) = G(x) for all x ∈ bd (Ω). If y /∈ H(t, bd (Ω)) for all t ∈ [0, 1], then

deg(F, Ω,y) = deg(G, Ω,y).

6. Let G be a continuous function on cl (Ω). deg(F, Ω,y) = deg(G, Ω,y) if

max
x∈cl(Ω)

‖F(x) −G(x)‖∞ ≤ dist∞(y,F(bd (Ω)))
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where ‖ · ‖∞ is the max norm and

dist∞(y,F(bd (Ω)) = inf
z∈F(bd(Ω))

‖z − y‖∞.

7. Let (y1,y2) ∈ R
n\F(bd (Ω)) × R

n\F(bd (Ω)). Then, deg(F, Ω,y1) = deg(F, Ω,y2) if

‖y1 − y2‖∞ ≤ dist∞(y1,F(bd (Ω))).

8. deg(F, Ω,y) = deg(F, Ω1,y) for every open subset Ω1 of Ω such that y /∈ F(Ω\Ω1).

9. Let y ∈ R
n\F(bd (Ω)). If Ω1 and Ω2 are two disjoint open sets whose union is Ω, then

deg(F, Ω,y) = deg(F, Ω1,y) + deg(F, Ω2,y).

10. Let y1 ∈ R
n\F(bd (Ω)). Let Ω′ be a nonempty bounded open subset of R

m. Let G :

cl (Ω′) → R
m be a continuous function and y2 ∈ R

m\G(bd (Ω′)), then

deg(F ×G, Ω × Ω′, (y1,y2)) = deg(F, Ω,y1)deg(G, Ω′,y2).

Definition 4.1.2 (Index of a function). Let F : cl (Ω) → R
n be a continuous function

where Ω is a nonempty bounded open subset of R
n. Let y∗ ∈ R

n\F(bd (Ω)). Let x∗ be an

isolated solution of the equation F(x) = y∗, i.e., F−1(y∗) ∩ cl (Ω1) = {x∗} where Ω1 is an

open subset of Ω containing x∗. Then

deg(F, Ω1,y
∗) = deg(F, Ω2,y

∗)

where Ω2 is a neighborhood of x∗ such that Ω2 ⊂ Ω1. In this case, the index of F at x∗

denoted by ind(F,x∗) takes the value deg(F, Ω1,y
∗) and satisfies the following properties

1. If x∗ is a Fréchet differentiable point of F, then ind(F,x∗) is equal to the signum of

the determinant of JF(x∗).
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2. If the equation F(x) = y∗ has finitely many solutions {x∗
i }k

i=1 in Ω, then deg(F, Ω,y∗) =
∑k

i=1 ind(F,x∗
i ).

Next, two extensions of the derivative similar to the generalized Jacobian are introduced.

They appear as intermediate quantities when deriving the necessary relations to compute

elements of the linear Newton approximations that contain the generalized Jacobian.

Definition 4.1.3 (B-Subdifferential). Let F : R
n → R

m be a locally Lipschitz continuous

function. Then, the B-subdifferential at x ∈ R is defined by

∂BF(x) =
⋂

δ>0

JF(cl ((x + δB(0, 1))) ∩ ΩF)

where ΩF is the set of points where F is differentiable and B(0, 1) the open unit ball in R
n.

Equivalently,

∂BF(x) =
{

lim
i→∞

JF(xi) : xi → x, xi ∈ ΩF

}

.

Definition 4.1.4 (BN Generalized Jacobian). Let F : R
n → R

m be a locally Lipschitz

continuous function. Then, the BN generalized Jacobian at x ∈ R is defined by

∂BNF(x) =
⋂

N :|N |=0

⋂

δ>0

JF(cl ((x + δB(0, 1))) ∩ (ΩF\N))

where |N | is the Lebesgue measure of set N and ΩF is the set of points where F is differen-

tiable.

The following Lemma summarizes the properties of the B-subdifferential and BN gener-

alized Jacobian. The results are from Lemma 5 in [81] and [35].

Lemma 4.1.5. Let F : R
n → R

m be a locally Lipschitz continuous function. Let x ∈ R
n.

Let ΩF be the set of points where F is differentiable. Then the following hold:

129



1. ∂BNF(x) ⊂ ∂BF(x) ⊂ ∂F(x).

2. conv
(

∂BF(x)
)

= ∂F(x).

3. conv
(

∂BNF(x)
)

= ∂F(x).

4. JF(y) ∈ ∂BF(y) for all y ∈ ΩF.

5. JF(y) ∈ ∂BNF(y) for all y ∈ ΩF\S where S is a measure zero subset of R
n.

6. ∂BF and ∂BNF are uppersemicontinuous, nonempty and compact-valued set-valued

maps from R
n to R

m×n.

7. If F ∈ PC1(O) where O is an open subset of R
n, then ∂BF(x) = {JFi(x) : i ∈ I(F,x)}

for all x ∈ O where I(F,x) is the set of essentially active function indices at x defined

in §2.7.

Definition 4.1.6 (The Projection of the B-Subdifferential and BN Generalized

Jacobian). Let F : X1×X2 → R
p where X1 and X2 are open subsets of R

n and R
m, respec-

tively. Let F be locally Lipschitz continuous at (x1,x2) where x1 ∈ X1 and x2 ∈ X2. Then

π2∂
BF(x1,x2) is the set {M ∈ R

p×m : ∃N ∈ R
p×n such that [N M] ∈ ∂BF(x1,x2)}. Analo-

gously, π1∂
BF(x1,x2) is the set {M ∈ R

p×n : ∃N ∈ R
p×m such that [M N] ∈ ∂BF(x1,x2)}.

The projection of the BN Generalized Jacobian is similarly defined with the B-subdifferential

replaced with the BN Generalized Jacobian.

The following is an implicit function theorem derived from Theorem 4 in [42] using

Corollary 4 in [42].

Theorem 4.1.7. Let X1 be an open subset of R
m and X2 be an open subset of R

n. Let

F : X1 × X2 → R
n be a semismooth function. Let x∗ ∈ X1, y∗ ∈ X2 and z∗ = (x∗,y∗). Let

F(z∗) = 0. Assume the following hold:

1. π2∂
BF(z∗) is coherently oriented, i.e, the determinants of all the matrices in π2∂

BF(z∗)

have the same nonzero sign α.

2. ind(h,y∗) = α where h : X2 → R
n : y 7→ F(x∗,y).
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Then, there exists, U , an open subset of X1×X2, W , an open subset of X1 and a semismooth

function G : W → X2 such that z∗ ∈ U and x∗ ∈ W , F(x,G(x)) = 0, (x,G(x)) ∈ U for all

x ∈ W .

The set-valued mapping ΓG : W ⇉ R
n×m defined by

ΓG(x) = conv
(

{−π2M
−1π1M : [π1M π2M] ∈ ∂BF(x,y), π1M ∈ R

n×m, π2M ∈ R
n×n}

)

is a linear Newton approximation of G at x such that ∂G(x̄) ⊂ conv (ΓG(x̄)) holds for all

x̄ ∈ W .

Proof. The first part of the Theorem follows from Theorem 4 in [42]. Note that Theorem

4 provides an implicit function that is semismooth in the original sense (Definition 2.8.7).

Semismoothness in the restricted sense follows from the fact that on an open neighborhood

W containing x∗, G, the implicit function is semismooth in the original sense which implies

that the implicit function is B-differentiable on that set per the properties of semismooth

functions.

In order to derive the linear Newton approximation ΓG, the result in Corollary 4 in [42]

is used as follows: Let H : X1 × X2 → X1 × X2 : (x,y) 7→ (x,F(x,y)). Then H is a

semismooth function on U as a composition of semismooth functions and

∂BH(x,y) =

















Im 0

π1M π2M






: [π1M π2M] ∈ ∂BF(x,y), π1M ∈ R

n×m, π2M ∈ R
n×n











is obtained using the definition of the B-subdifferential. In addition, H has a semismooth

inverse, H−1 : W × V → U where V is an open subset of R
n such that 0 ∈ V . This can be
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shown as in the proof of Theorem 4. Furthermore,

∂BH−1(x, 0) =

















Im 0

π1M π2M







−1

: [π1M π2M] ∈ ∂BF(x,G(x)), π1M ∈ R
n×m, π2M ∈ R

n×n











holds for all x ∈ W per Corollary 4 in [42]. Observe that







Im 0

π1M π2M







−1

=







Im 0

−π2M
−1π1M π2M

−1







and ∂H−1(x, 0) = conv
(

∂BH−1(x, 0)
)

.

The mapping η 7→ G(η) is equal to η 7→ (η, 0) 7→ H−1(η, 0) 7→ G(η). Then, using

Theorem 2.6.7,

∂G(x) ⊂ conv

















[

0 In

]

N







Im

0






: N ∈ ∂H−1(x, 0)

















is obtained. Since ∂H−1(x, 0) is a linear Newton approximation of the mapping (x, 0) 7→

(x,G(x)), the set ΓG : W ⇉ R
n×m defined by

ΓG(x) =











[

0 In

]

N







Im

0






: N ∈ ∂H−1(x, 0)











is a linear Newton approximation of G at x per Theorem 2.8.12 such that ∂G(x) ⊂

conv (ΓG(x)) holds for all x ∈ W . The result

ΓG(x) = conv
(

{−π2M
−1π1M : [π1M π2M] ∈ ∂BF(x,G(x)), π1M ∈ R

n×m, π2M ∈ R
n×n}

)

can be obtained using the fact that ∂H−1(x, 0) = conv
(

∂BH−1(x, 0)
)

and the definition of
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∂BH−1(x, 0).

The following theorems are used to derive linear Newton approximations to the map

η 7→ x(t, η).

Theorem 4.1.8. Let X1 and X2 be open connected subsets of R and R
n, respectively. Let X̃2

be an open connected subset of X2. Let T = [t0, tf ] ⊂ X1. Let f : X2 → R
n be semismooth.

Let x : [t0, tf ] × X̃2 → X2 be such that x(·,x2) is the only function that satisfies

ẋ(t,x2) = f(x(t,x2)), ∀t ∈ (t0, tf ], x(t0,x2) = x2, ∀x2 ∈ X̃2.

Then x(t, ·) is semismooth at x2 ∈ X̃2 for all t ∈ T (Theorem 8 in [81]).

Theorem 4.1.9. Let the assumptions of Theorem 4.1.8 hold. Assume Γf : X2 ⇉ R
n×n is

a linear Newton approximation of f on X2. Then, there exists a neighborhood O ⊂ X̃2 such

that, the set-valued map, Γ2 : T × O ⇉ R
n×n defined by

Γ2(t, η) = {Y(t, η) : Ẏ(t, η) ∈ conv (Γf(x(t, η)))Y(t, η), ∀t ∈ (t0, tf ], Y(t0, η) = In}

is a linear Newton approximation of x(t, ·) at x2 ∈ O for all t ∈ T (Theorem 11 in [81]).

Corollary 4.1.10. Let assumptions and definitions of Theorem 4.1.9 hold. In addition, let

Γf(y) = ∂f(y), ∀y ∈ X2. Then, the result of Theorem 4.1.9 holds. Let Γ2(t,x2), x2 ∈ O

be computed as in Theorem 4.1.9 with Γf(x(t,x2)) = ∂f(x(t,x2)). Then ∂BN
2 x(t,x2) ⊂

Γ2(t,x2) where ∂BN
2 x(t,x2) is the BN generalized Jacobian of the mapping η 7→ x(t, η) at

x2 (Corollary 12 in [81]). In addition, ∂2x(t,x2) ⊂ conv (Γ2(t,x2)) holds per Lemma 4.1.5.

Remark 4.1.11. The results of Corollary 4.1.10 still hold if Γf(x(t, η)) is replaced with

conv
(

Γ̄f(x(t, η))
)

where Γ̄f is a linear Newton approximation of f that satisfies ∂f(y) ⊂

conv
(

Γ̄f(x(y)
)

for all y ∈ X2.
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Definition 4.1.12 (The Projection of a Linear Newton Approximation). Let F :

X1 × X2 → R
p where X1 and X2 are open subsets of R

n and R
m, respectively. Let F

be semismooth at (x1,x2) where x1 ∈ X1 and x2 ∈ X2. Let ΓF be a linear Newton

approximation of F in a neighborhood of (x1,x2). Then π2ΓF(x1,x2) is the set {M ∈

R
p×m : ∃N ∈ R

p×n such that [N M] ∈ ΓF(x1,x2)}. Analogously, π1ΓF(x1,x2) is the set

{M ∈ R
p×n : ∃N ∈ R

p×m such that [M N] ∈ ΓF(x1,x2)}.

The following extends the definition of a measurable selection in Definition 3.1.1 to arbi-

trary set-valued maps with nonempty and closed images.

Definition 4.1.13 (Measurable Selection of Set-Valued Map). Let X be a closed or

open subset of R
n and S : X Z⇒ R

m be set-valued map such that S(x) is a non-empty closed

set for all x ∈ X. Let s : X 7→ R
m be a Lebesgue measurable function on X such that

s(x) ∈ S(x), ∀x ∈ X. Then s is a measurable selection of S on X. This is denoted by

s ∈ L(X,S).

The following result combines Theorem 8.1.3 and Proposition 8.2.1 in [5] and states

sufficient conditions for the existence of a measurable selection.

Theorem 4.1.14 (Existence of Measurable Selections of Upper Semicontinuous

Set-Valued Maps). Let X be a closed or open subset of R
n and S : X Z⇒ R

m be an upper

semicontinuous set-valued map such that S(x) is a non-empty closed set for all x ∈ X. Then

there exists a measurable selection s : X → R
m of S on X.

4.2 Ordinary Differential Equations

This section develops results for ordinary differential equations that satisfy the following

conditions.
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Assumption 4.2.1. Let f : T ×P ×X → Ẋ and f0 : P → X̃ be semismooth where X̃ is an

open connected subset of X . Let x : T × P → X be such that x(·,p) is the unique solution

of the initial value problem

ẋ(t,p) = f(t,p,x(t,p)), ∀t ∈ (t0, tf ], x(t0,p) = f0(p), ∀p ∈ P. (4.2.1)

Let Γf : T × P × X ⇉ R
(nx)×(1+np+nx) be a linear Newton approximation of f satisfying

∂f(µ) ⊂ conv (Γf(µ)) for all µ ∈ T × P ×X . In addition, let Γf0 : P ⇉ R
nx×np be a linear

Newton approximation of f0 such that ∂f0(η) ⊂ conv (Γf0(η)) for all η ∈ P.

Remark 4.2.2. Let z : T × P → P : (t,p) 7→ p and v : T × P → P × X : (t,p) 7→

(z(t,p),x(t,p)) for the remainder of this chapter.

Theorem 4.2.3. Let Assumption 4.2.1 hold. Then, the mapping η 7→ x(tf , η) is semismooth

at p. Let Γpx(tf ,p) be the set

{m(tf ,p) : ṁ(t,p) = πxGf(t,p)m(t,p) + πpGf (t,p), ∀t ∈ (t0, tf ], (4.2.2)

Gf (·,p) ∈ L(T, πvconv (Γf(·,v(·,p))),

Gf (t,p) = [πpGf (t,p) πxGf(t,p)], ∀t ∈ T,

πpGf(t,p) ∈ R
nx×np, πxGf (t,p) ∈ R

nx×nx , ∀t ∈ T,

m(t0,p) ∈ conv (Γf0(p))}.

Then Γpx(tf ,p) is a linear Newton approximation of the map η 7→ x(tf , η) at p and

∂px(tf ,p) ⊂ conv (Γpx(tf ,p))

holds.

Proof. Let ∆t = tf − t0. Let T̃ be a an open connected subset of T such that if t ∈ T̃ , then
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(t + ∆t) ∈ T and t0 ∈ T̃ . Let t̄0 ∈ T̃ , p̄ ∈ P, x̄0 ∈ X̃ and ν0 = (t̄0, p̄, x̄0).

Let νt : [0, ∆t] × T̃ × P × X → T , νp : [0, ∆t] × T̃ × P × X → P and νx : [0, ∆t] × T̃ ×

P × X → X be continuous functions and let ν(τ, ν0) = (νt(τ, ν0), νp(τ, ν0), νx(τ, ν0)). Let

νv(τ, ν0) = (νp(τ, ν0), νx(τ, ν0)). Let g : T × P ×X → R × R
np × Ẋ : µ 7→ (1, 0, f(µ)).

Consider the following augmented initial value problem:

ν̇(τ, ν0) = g(ν(τ, ν0)), ∀τ ∈ (0, ∆t], ν(0) = ν0. (4.2.3)

Note that:

νt(τ, ν0) = t̄0 + τ, ∀t̄0 ∈ T̃ , (4.2.4)

νp(τ, ν0) = p̄, ∀p̄ ∈ P. (4.2.5)

Observe that g is semismooth as a composition of functions that are semismooth. Therefore,

the mapping ν0 7→ ν(τ, ν0) is semismooth per Theorem 4.1.8 if a unique solution ν(τ, ν0)

exists. As a result, the mapping (p̄, x̄0) 7→ νx(τ, (t̄0, p̄, x̄0)) is semismooth for all t̄0 ∈ T̃ and

for all τ ∈ [0, ∆t].

Let ν̄0 = (t0,p, f0(p)). Then,

νx(τ, ν̄0) = x(τ + t0,p), (4.2.6)

(4.2.4) and (4.2.5) satisfy (4.2.3) with t̄0 = t0 and p̄ = p. Observe that for any given p ∈ P

and t̄0 = t0, (4.2.6) holds.

The mapping η 7→ f0(η) is semismooth per assumptions. Since the composition of

semismooth functions is semismooth, the semismoothness of the mapping η → x(t, η) at

p follows from the semismoothness of the mapping (p̄, x̄0) 7→ (νx(τ, (t0, p̄, x̄0)) and the

equivalence in (4.2.6).
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The generalized Jacobian of g at ν(t, ν0) is

∂g(ν(t, ν0)) =



































0

0

M













, M ∈ ∂f(ν(τ, ν0))























per Theorem 2.6.7. Define the set-valued mapping Γg : T̃ × P × X ⇉ R
(1+np+nx)×(1+np+nx)

by

Γg(ν(t, ν0)) =



































0

0

M













, M ∈ conv (Γf(ν(τ, ν0)))























.

Note that Γg is a linear Newton approximation of g per Theorem 2.8.12 and ∂g(ν(t, ν0)) ⊂

Γg(ν(t, ν0)) holds because of the assumptions.

Then, the set-valued map Γν0ν : [0, ∆t] × T̃ × P × X ⇉ R
(1+np+nx)×(1+np+nx) defined by

Γν0ν(τ, ν0) = {Y(τ, ν0) : Ẏ(ǫ, ν0) ∈ Γg(ν(ǫ, ν0))Y(ǫ, ν0), ∀ǫ ∈ (0, τ ], Y(0, ν0) = I1+np+nx
}

(4.2.7)

is a linear Newton approximation of the map µ 7→ ν(τ, µ) at ν0 for all τ ∈ [0, ∆t] and

∂ν0ν(τ, ν0) ⊂ conv (Γν0ν(τ, ν0)) per Corollary 4.1.10.

In order to derive a linear Newton approximation for the mapping (p̄, x̄0) 7→ (νp(τ, ν0), νx(τ, ν0))

for the case t̄0 = t0, the composition of the following three maps is considered:

1. (p̄, x̄0) 7→ (t0, p̄, x̄0). The generalized Jacobian of this map is a singleton and the single
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element is

A =







0

Inp+nx






.

The generalized Jacobian also defines a linear Newton approximation for this map

because the map is semismooth.

2. ν0 7→ ν(τ, ν0). Γν0ν(τ, ν0) is the linear Newton approximation of this map.

3. (νt(τ, ν0), νp(τ, ν0), νx(τ, ν0)) 7→ (νp(τ, ν0), νx(τ, ν0)). The generalized Jacobian of

this map is a singleton set with the following element

B =

[

0 Inp+nx

]

.

The generalized Jacobian also defines a linear Newton approximation for this map.

Per the chain rule for linear Newton approximations (Theorem 2.8.12), the set

{BMA : M ∈ Γν0ν(τ, ν0)}

is a linear Newton approximation of the map (p̄, x̄0) 7→ (νp(τ, ν0), νx(τ, ν0)) (Note that v0 is

used as an index instead of v here). Per the chain rule for the generalized Jacobian (Theorem

2.6.7) and the fact that ∂ν0ν(τ, ν0) ⊂ conv (Γν0ν(τ, ν0)),

∂v0νv(τ, ν0) ⊂ conv ({BMA : M ∈ ∂ν0ν(τ, ν0)}) ⊂ conv (Γv0νv(τ, ν0)) (4.2.8)

holds.

In order to compute an element of Γv0νv(τ, ν0) one can solve a reduced system of equa-

tions instead of (4.2.7). Let Z : [0, ∆t] → R
(1+np+nx)×(1+np+nx) be a measurable selection

of Γg(ν(·, ν0)) on [0, ∆t]. Then, Y(τ, ν0), an element of Γν0ν(τ, ν0), can be computed by
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solving

Ẏ(ǫ, ν0) = Z(ǫ)Y(ǫ, ν0), ∀ǫ ∈ (0, τ ], Y(0, ν0) = I1+np+nx
. (4.2.9)

The linear differential equation (4.2.9) admits a matrix-valued function Γ(τ, ǫ) such that

Y(τ, ν0) = Γ(τ, 0)I1+np+nx
. This implies that Y(τ, ν0)A = Γ(τ, 0)A. This in turn implies

that the product Y(τ, ν0)A can be computed by solving

Ẇ(ǫ, ν0) = Z(ǫ)W(ǫ, ν0), ∀ǫ ∈ (0, τ ], W(0, ν0) = A. (4.2.10)

The product of Z(0+)A has zero first row because the first row of Z(ǫ) is zero for all ǫ ∈ (0, ∆t]

and A has zero first row. As a result Ẇ(0+) has a zero first row. Since W(0) and Ẇ(0+)

have zero first rows, W(ǫ) has zero first row for any ǫ ∈ (0, τ ]. As a result, the first column

of Z(ǫ) has no effect on the evolution of W. In addition, the first row of Z(ǫ) has no effect

on the evolution of W.

The pre-multiplication with B removes the zero first row from W(τ) to produce an

(np + nx) × (np + nx) matrix, M(τ, ν0), which can be computed by solving the differential

equation

Ṁ(ǫ, ν0) = Z̃(ǫ)M(ǫ, ν0), ∀ǫ ∈ (0, τ ], M(0, ν0) = Inp+nx
. (4.2.11)

where

Z̃(ǫ) =







0

H(ǫ)






,
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and H : [0, ∆t] → R
nx×(np+nx) is a measurable selection of conv (πvΓf(ν(·, ν0))). Hence

Γv0νv(τ, ν0) = {M(τ, ν0) : Ṁ(ǫ, ν0) ∈ Z(ǫ, ν0)M(ǫ, ν0), ∀ǫ ∈ (0, τ ],M(0, ν0) = Inp+nx
}.

(4.2.12)

where

Z(ǫ, ν0) =

















0

N






: N ∈ πvconv (Γf(ν(ǫ, ν0)))











.

In order to derive a linear Newton approximation for the mapping η 7→ x(t, η), the

composition of the following functions is considered:

1. p̄ 7→ (p̄, f0(p̄)). A linear Newton approximation of this map is the set:

C =

















Inp

N






: N ∈ conv (Γf0(p̄))











per Theorem 2.8.12.

2. (p̄, x̄0) 7→ νv(τ, ν0). The linear Newton approximation for this map is Γv0νv(τ, ν0).

3. νv(τ, ν0) 7→ νx(τ, ν0). A linear Newton approximation of this mapping is the singleton

set whose single element is

D =

[

0 Inx

]

,

which is also the element of the singleton generalized Jacobian.

It can be shown that

∂pνx(τ, ν0) ⊂ conv ({DMN : M ∈ ∂v0νv(τ, ν0), N ∈ C}) ⊂ conv (Γpνx(τ, ν0))
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where

Γpνx(τ, ν0) = {DMN : M ∈ Γv0νv(τ, ν0), N ∈ C}

using the relation (4.2.8), Theorem 2.6.7 and Theorem 2.8.12. Setting the initial condition

to N ∈ C in (4.2.12) results in the set

Γpνv(τ, ν0) = {M(τ, ν0) : Ṁ(ǫ, ν0) ∈ Z(ǫ, ν0)M(ǫ, ν0), ∀ǫ ∈ (0, τ ],M(0, ν0) = N, N ∈ C}

which is a linear Newton approximation of the map p 7→ νv(τ, ν0) per arguments similar

to those used in the derivation of (4.2.10). Let M(τ, ν0) be an element of Γpνv(τ, ν0).

Pre-multiplication with D produces an nx × np matrix that contains the last nx rows of

M(τ, ν0).

Note that the elements in the first np rows of M(ǫ, ν0) are constant for all ǫ ∈ (0, τ ]

because the first np rows of any element of Z(ǫ, ν0) constitute a zero matrix. Therefore,

given Gf(·,p) ∈ L(T, πvconv (Γf(ν(·, ν0)))), and N ∈ C, an element of Γpνv(τ, ν0) can be

computed by







ṅ(ǫ, ν0)

ṁ(ǫ, ν0)






=







0

Gf(ǫ, p̄)













n(ǫ, ν0)

m(ǫ, ν0)






, ∀ǫ ∈ (0, ∆t], m(0, ν0) ∈ conv (Γf0(p̄)), n(0, ν0) = Inp

,

where n(ǫ, ν0) ∈ R
np×np and m(ǫ, ν0) ∈ R

nx×np. Let Gf(ǫ, p̄) = [πpGf (ǫ, p̄) πxGf (ǫ, p̄)]

where πpGf (ǫ, p̄) ∈ R
nx×np and πxGf(ǫ, p̄) ∈ R

nx×nx , then the evolution of m(ǫ, ν0) is

governed by

ṁ(ǫ, ν0) = πxGf(ǫ, p̄)m(ǫ, ν0) + πpGf (ǫ, p̄), ∀ǫ ∈ (0, ∆t], m(ǫ, ν0) ∈ conv (Γf0(p̄)).
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Hence

Γpνx(τ, ν0) = {m(τ, ν0) : ṁ(ǫ, ν0) = πxGf (ǫ, p̄)m(ǫ, ν0) + πpGf(ǫ, p̄), ∀ǫ ∈ (0, ∆t],

Gf(·, p̄) ∈ L(T, πvconv (Γf(ν(·, ν0))),

Gf(ǫ, p̄) = [πpGf (ǫ, p̄) πxGf(ǫ, p̄)], ∀ǫ ∈ [0, ∆t],

πpGf (ǫ, p̄) ∈ R
nx×np, πxGf(ǫ, p̄) ∈ R

nx×np, ∀ǫ ∈ [0, ∆t],

m(0, ν0) ∈ conv (Γf0(p̄))}.

If ν0 = (t0,p, f0(p)), then ν(τ, ν0) = (t,p,x(t,p)) where t = τ+t0. Note that ν0 is a function

of p only. Renaming the quantities appropriately, the desired result (4.2.2) is obtained.

Corollary 4.2.4. The set

H = {m(tf ,p) : ṁ(t,p) = πxGf(t,p)m(t,p) + πpGf (t,p), ∀t ∈ (t0, t],

Gf (·,p) ∈ L(T, ∂vf(·,v(·,p))),

Gf (t,p) = [πpGf(t,p) πxGf(t,p)], ∀t ∈ T,

πpGf(t,p) ∈ R
nx×np, πxGf(t,p) ∈ R

nx×nx, ∀t ∈ T,

m(t0,p) ∈ ∂f0(p̄)}

is a subset of conv (Γpx(tf ,p)).

Proof. The result follows from the fact that ∂vf(t,p,x(t,p)) ⊂ πv∂f(t,p,x(t,p)) ⊂

πvconv (Γf(t,p,x(t,p))) for all t ∈ [t0, tf ] per Theorem 2.6.10.

Remark 4.2.5. Let S be some measure zero subset of [t0, tf ]. Note that if πv∂f(t,p,x(t,p))

is a singleton for all t ∈ [t0, tf ]\S, then it can be deduced that Γpx(t,p) is a singleton and

therefore ∂px(t,p) is a singleton. This differs from the result in Theorem 3.2.3 which states

∂px(t,p) is a singleton if ∂vf(t,p,x(t,p)) is a singleton for all t ∈ [t0, tf ]\S. In order to
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recover the result in Theorem 3.2.3 in case ∂vf(t,p,x(t,p)) is a singleton for all t ∈ [t0, tf ]\S,

the result in Corollary 4.2.4 will be applied and ∂vf(·,p,x(t,p)) will be used to compute an

element of Γpx(t,p).

Theorem 4.2.6. Let the assumptions of Theorem 4.2.3 hold. Let g : T × P × X → R be a

semismooth function. Let G : P → R be defined by

G(η) =

∫ tf

t0

g(t, η,x(t, η))dt.

Then, the mapping η 7→ G(η) is semismooth at p.

Let Γg : T × P × X ⇉ R
1×(1+nx+np) be a linear Newton approximation of g such that

∂g(µ) ⊂ conv (Γg(µ)) for all µ ∈ T × P × X . Let ΓG : P ⇉ R
1×np be the set

{n(tf ,p) ∈ R
1×np : ṅ(t,p) = πxGg(t,p)m(t,p) + πpGg(t,p), ∀t ∈ (t0, tf ], n(t0,p) = 0,

Gg(·,p) ∈ L(T, πvconv (Γg(·,v(·,p))),

Gg(t,p) = [πpGg(t,p) πxGg(t,p)], ∀t ∈ T,

πpGg(t,p) ∈ R
1×np, πxGf (t,p) ∈ R

1×nx , ∀t ∈ T,

ṁ(t,p) = πxGf(t,p)m(t,p) + πpGf (t,p), ∀t ∈ (t0, tf ],

Gf(·,p) ∈ L(T, πvconv (Γf(·,v(·,p))), ∀t ∈ T,

Gf(t,p) = [πpGf(t,p) πxGf (t,p)], ∀t ∈ T,

πpGf (t,p) ∈ R
nx×np, πxGf(t,p) ∈ R

nx×nx , ∀t ∈ T,

m(t0,p) ∈ conv (Γf0(p))}.

Then ΓG is a linear Newton approximation of G at p and ∂G(p) ⊂ conv (ΓG(p)) holds.

Proof. Let xg : T ×P 7→ R be a continuous function. Let ν(t,p) = (x(t,p), xg(t,p)). Let h :

T ×P×X×R 7→ Ẋ ×R : (t̄, p̄, x̄, x̄g) 7→ (f(t̄, p̄, x̄), g(t̄, p̄, x̄)). Note that h is semismooth as a
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composition of semismooth functions g and f . Define Γ̃f : T ×P×X×R ⇉ R
(nx)×(1+np+nx+1)

by

Γ̃f(t̄, p̄, x̄, x̄g) = {[N 0] : N ∈ Γf(t̄, p̄, x̄)}.

Then, Γ̃f is a linear Newton approximation of the mapping (t̄, p̄, x̄, x̄g) 7→ f(t̄, p̄, x̄) per

Theorem 2.8.12. Define Γ̃g : T × P × X × R ⇉ R
1×(1+np+nx+1) by

Γ̃g(t̄, p̄, x̄, x̄g) = {[N 0] : N ∈ Γg(t̄, p̄, x̄)}.

Then, Γ̃g is a linear Newton approximation of the mapping (t̄, p̄, x̄, x̄g) 7→ g(t̄, p̄, x̄) per

Theorem 2.8.12. Let Γh : T × P × X × R ⇉ R
(nx+1)×(1+np+nx+1) be

Γh(t̄, p̄, x̄, x̄g) = conv























M

N






: M ∈ Γ̃f(t̄, p̄, x̄, x̄g), N ∈ Γ̃g(t̄, p̄, x̄, x̄g)
















.

Then Γh is a linear Newton approximation of h per Theorem 2.8.12 considering the chain

of mappings (µ) 7→ (f(µ), µ) 7→ (f(µ), g(µ)). Note that in this case

Γh(t̄, p̄, x̄, x̄g) =

















M

N






: M ∈ conv

(

Γ̃f(t̄, p̄, x̄, x̄g)
)

, N ∈ conv
(

Γ̃g(t̄, p̄, x̄, x̄g)
)











.

holds.

Consider the augmented ordinary differential equation:

ν̇(t,p) = h(t,p, ν(t,p)), ∀t ∈ (t0, tf ], ν(t0,p) = (f0(p), 0).

The mapping η 7→ ν(t, η) is semismooth for all t ∈ [t0, tf ] per Theorem 4.2.3. As a conse-
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quence, the mapping η 7→ G(η) is semismooth at p because G(η) = xg(tf , η).

Let G(·,p) ∈ L(T, πv̄Γh(·,p, ν(·,p))), G(t,p) = [πpG(t,p) πx̄G(t,p)], πpG(t,p) ∈

R
(nx+1)×np , πx̄G(t,p) ∈ R

(nx+1)×(nx+1) for all t ∈ T . Then, M̃(t,p), an element of Γpν(tf ,p),

can be computed by

˙̃M(t,p) = πx̄G(t,p)M̃(t,p) + πpG(t,p), ∀t ∈ (t0, tf ], M̃(t0,p) =







N

0






, N ∈ conv (Γf0(p))

per Theorem 4.2.3. This equation can be written as







ṁ(t,p)

ṅ(t,p)






=







πxGf(t,p) 0

πxGg(t,p) 0













m(t,p)

n(t,p)






+







πpGf(t,p)

πpGg(t,p)






, ∀t ∈ (t0, tf ],

m(t0,p) = N, n(t0,p) = 0, N ∈ conv (Γf0(p)).

where Gf and Gg represent measurable selections of πx̄conv (Γf(·,p,x(·,p))) and

πvconv (Γg(·,p,x(·,p))), respectively, on [t0, tf ]. Due to the zero column in πv̄G(t,p),

n(t,p) does not enter the computation of ṁ(ǫ,p) and ṅ(ǫ,p). Therefore, this equation

can be rewritten as

ṁ(t,p) = πxGf(t,p)m(t,p) + πpGf(t,p), ∀t ∈ (t0, tf ], m(t0,p) ∈ conv (Γf0(p)), (4.2.13)

ṅ(t,p) = πxGg(t,p)m(t,p) + πpGg(t,p), ∀t ∈ (t0, tf ], n(t0,p) = 0. (4.2.14)

Note that ∂pν(t,p) ⊂ conv (Γpν(t,p)) per Theorem 4.2.3. Let B ∈ R
1×(nx+1) and let

Bij = 0 for i = 1 for all j ∈ {1, . . . , nx}. Let Bij = 1 if j = nx + 1 and i = 1. Then

∂pxg(t,p) ⊂ conv ({BN : N ∈ ∂pν(t,p)}) ⊂ conv ({BN : N ∈ Γpν(t,p)}). (4.2.15)
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The set {BN : N ∈ Γpν(t,p)} corresponds to the set of all n(t,p) computed using (4.2.14)

which corresponds to the set Γpxg(tf ,p), a linear Newton approximation of the mapping

η 7→ xg(tf , η). Hence ∂pxg(tf ,p) ⊂ conv (Γpxg(tf ,p)) and ∂pxg(tf ,p) ⊂ conv (ΓG(p))

follows since xg(tf ,p) = G(p).

The next two theorems contain results analogous to Theorems 3.2.4 and 3.2.5.

Theorem 4.2.7. Let the hypotheses and definitions of Theorem 4.2.3 and Theorem 4.2.6

hold. Let λ : T → R
1×nx be a solution of the initial value problem,

λ̇(t) = −λ(t)πxGf (t,p) + πxGg(t,p), ∀t ∈ [t0, tf), λ(tf ) = 0. (4.2.16)

Then, λ is unique and absolutely continuous. Let J ∈ R
1×np be defined by

J =

∫ tf

t0

πpGg(t,p) − λ(t)πpGf (t,p)dt + λ(t)m(t,p)|tft0 (4.2.17)

where m(t,p) is computed using (4.2.2). Then J ∈ ΓG(p).

Proof. The measurability of πxGf (·,p) and πxGg(·,p) on [t0, tf ] follows from assumptions.

Their boundedness follows from the fact that Γf and Γg are bounded and upper semicontin-

uous set-valued mappings. Then λ : [t0, tf ] → R
1×nx is the unique and absolutely continuous

solution of (4.2.16) in the sense of Carathéodory per Theorem 3 in [37].

Redefine ṅ(t,p) in (4.2.14) by appending (4.2.13) to (4.2.14) using λ(t) to obtain

ṅ(t,p) = πxGg(t,p)m(t,p) + πpGg(t,p) − (4.2.18)

λ(t)(πxGf(t,p)m(t,p) + πpGf (t,p) − ṁ(t,p)), ∀t ∈ (t0, tf ],

n(t0,p) = 0.
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Equation (4.2.18) can be written in integral form as

n(tf ,p) =

∫ tf

t0

πxGg(t,p)m(t,p) + πpGg(t,p) − (4.2.19)

λ(t)(πxGf(t,p)m(t,p) + πpGf (t,p) − ṁ(t,p))dt.

Since λ and m(·,p) are measurable functions on [t0, tf ], the application of integration by

parts provides the relation

∫ tf

t0

λ(t)ṁ(t,p)dt = λ(t)m(t,p)|tft0 −
∫ tf

t0

λ̇(t)m(t,p)dt. (4.2.20)

Using the relation (4.2.20) in (4.2.19) and collecting terms multiplying m(t,p) results in

n(tf ,p) =

∫ tf

t0

(πxGg(t,p) − λ(t)πxGf(t,p) − λ̇(t))m(t,p)+ (4.2.21)

πpGg(t,p) − λ(t)πpGf (t,p)dt + λ(t)m(t,p)|tft0 .

The desired result is obtained after substituting the expression for λ̇ in (4.2.16) into (4.2.21).

Theorem 4.2.8. Let the hypotheses and definitions of Theorem 4.2.3 hold. Let h : T0 ×P ×

X → R be a semismooth function where T0 is an open subset of T such that tf ∈ T0. Let

G : P → R : η 7→ h(tf , η,x(tf , η)). Then G is semismooth at p.

Let Γvh : P × X ⇉ R
1×(np+nx) be a linear Newton approximation of the map (p̄, x̄) 7→

h(tf , p̄, x̄) such that ∂vh(tf , p̄, x̄) ⊂ conv (Γvh(tf , p̄, x̄)) in a neighborhood of (p,x(tf ,p)).

Let ΓG : p ⇉ R
1+np be the set

{CxN + Cp : [Cp,Cx] ∈ conv (Γvh(tf ,v(tf ,p))), Cp ∈ R
1×np,

Cx ∈ R
1×nx , N ∈ conv (Γpx(tf ,p))}.
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Then, ΓG is a linear Newton approximation of G at p per Theorem 2.8.12 such that ∂G(p) ⊂

conv (ΓG(p)) holds. Let [Cp,Cx] ∈ conv (Γvh(tf ,v(tf ,p))), Cp ∈ R
1×np, Cx ∈ R

1×nx. Let

λ : T → R
1×nx be a solution of the initial value problem,

λ̇(t) = −λ(t)πxGf (t,p), ∀t ∈ [t0, tf ), λ(tf) = −Cx. (4.2.22)

Then, λ is unique and absolutely continuous. Let J ∈ R
1×np be defined by

J =

∫ tf

t0

−λ(t)πpGf(t,p)dt − λ(t0)m(t0,p) + Cp (4.2.23)

where m(t,p) is computed using (4.2.2). Then J ∈ ΓG(p).

Proof. The semismoothness of G follows from the fact that the composition of semismooth

functions is semismooth.

The measurability of πxGf (·,p) on [t0, tf ] follows from assumptions. Its boundedness

follows from the fact that Γf is a bounded and upper semicontinuous set-valued mapping.

Then, λ : [t0, tf ] → R
1×nx is the unique and absolutely continuous solution of (4.2.22) in the

sense of Carathéodory per Theorem 3 in [37].

The generalized Jacobian of G at p satisfies ∂G(p) ⊂ conv (S) where S is the set

{AxB + Ap : [Ap,Ax] ∈ ∂vh(tf ,v(tf ,p)), Ap ∈ R
1×np, Ax ∈ R

1×nx , B ∈ ∂px(tf ,p)},

due to Theorem 2.6.7. Note that, ∂G(p) ⊂ conv (S) ⊂ conv (ΓG(p)) because ∂px(tf ,p) ⊂

conv (Γpx(tf ,p)) and ∂vh(tf ,v(tf ,p)) ⊂ conv (Γvh(tf ,v(tf ,p))) .

The product CxN can be written as

∫ tf

t0

Cxṁ(t,p)dt + Cxm(t0,p)
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where m(t,p) is computed using (4.2.2). Appending (4.2.13) to the integrand of this integral

produces

∫ tf

t0

Cxṁ(t,p) − λ(t)(πxGf (t,p)m(t,p) + πpGf(t,p)−ṁ(t,p))dt+ (4.2.24)

Cxm(t0,p).

Since λ and m(·,p) are measurable functions on [t0, tf ], the application of integration by

parts provides the relation

∫ tf

t0

(Cx + λ(t))ṁ(t,p)dt = (Cx + λ(t))m(t,p)|tft0 −
∫ tf

t0

λ̇(t)m(t,p)dt. (4.2.25)

Using the relation (4.2.25) in (4.2.24) and collecting terms multiplying m(t,p) results in

∫ tf

t0

(−λ(t)πxGf(t,p) − λ̇(t))m(t,p) − λ(t)πpGf (t,p)dt+

Cxm(t0,p) + (Cx + λ(t))m(t,p)|tft0 .

Substituting the expression for λ̇ provides the desired result.

4.3 Differential-Algebraic Equations

The differential-algebraic equations considered in this section satisfy the following assump-

tions.

Assumption 4.3.1. Let F : T ×P ×X ×Y ×Ẋ → R
nx+ny and F0 : P → X be semismooth

functions. Let x : T ×P → X , y : T ×P → Y and ẋ : T ×P → Ẋ be such that they uniquely
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satisfy the initial value problem

0 = F(t,p,x(t,p),y(t,p), ẋ(t,p)), ∀t ∈ [t0, tf ], x(t0,p) = F0(p), ∀p ∈ P. (4.3.1)

Let ΓF : T ×P×X ×Y×Ẋ ⇉ R
(nx+ny)×(1+np+nx+ny+nx) be a linear Newton approximation of

F such that ∂F(µ) ⊂ conv (ΓF(µ)) holds for all µ ∈ T ×P×X×Y×Ẋ . Let ΓF0 : P ⇉ R
nx be

a linear Newton approximation of F0 such that ∂F0(η) ⊂ conv (ΓF0(η)) holds for all η ∈ P.

Let ẋ(t0, p̄) = ˙̄x and y(t0, p̄) = ȳ for some p̄ ∈ P where ˙̄x and ȳ are constants and sat-

isfy F(t0, p̄,x(t0, p̄),y(t0, p̄), ẋ(t0, p̄)) = 0. Assume that this condition uniquely determines

y(t0,p) and ẋ(t0,p) for all p ∈ P.

In order to derive implicit functions for ẋ and y, the following additional assumptions

are made.

Assumption 4.3.2. In addition to Assumption 4.3.1, let the following hold

1. πq∂
BF(µ) is coherently oriented, i.e., the determinants of all matrices in πq∂

BF(µ)

have the same nonzero sign, α, for all µ ∈ T × P ×X × Y × Ẋ .

2. Let µ∗ = (t∗,v∗,q∗) where t∗ ∈ T , v∗ ∈ P × X and q∗ ∈ Y × Ẋ . Let hµ : Ẋ × Y →

R
nx+ny : q 7→ F(t∗,v∗,q). If F(µ∗) = 0, then index(hµ,q∗) = α.

Remark 4.3.3. Let u : T ×P → P ×X ×Y × Ẋ : (t,p) 7→ (v(t,p),y(t,p), ẋ(t,p)) for the

remainder of this chapter.

Lemma 4.3.4. Let ηp ∈ P, ηx ∈ X , ηy ∈ Y, ηẋ ∈ Ẋ and η = (ηp, ηx, ηy, ηẋ). Let

Assumptions 4.3.1 and 4.3.2 hold. Then, there exist semismooth functions f : T ×P×X → Ẋ

and r : T × P × X → Y such that 0 = F(t, ηp, ηx, r(t, ηp, ηx), f(t, ηp, ηx)) holds. Let

M = conv
(

{−B−1A, [A B] ∈ ∂BF(t, η),A ∈ R
(ny+nx)×(1+np+nx), B ∈ R

(ny+nx)×(ny+nx)}
)

.
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Then,

Γr(t, ηp, ηx) = conv

({[

Iny
0

]

M : M ∈ M

})

,

Γf(t, ηp, ηx) = conv

({[

0 Inx

]

M : M ∈ M

})

,

are linear Newton approximations of f and r such that ∂r(t, ηp, ηx) ⊂ conv (Γr(t, ηp, ηx))

and ∂f(t, ηp, ηx) ⊂ conv (Γf(t, ηp, ηx)) hold for all (t, ηp, ηx) ∈ T × P × X .

Proof. The set M is a linear Newton approximation of the mapping (t, ηp, ηx) 7→ (r(t, ηp, ηx),

f(t, ηp, ηx)) per Theorem 4.1.7 such that the generalized Jacobian of this map is a subset

of M . Then, the results follow from the application of Theorem 2.8.12 to M and Theorem

2.6.7 to the generalized Jacobian of the mapping (t, ηp, ηx) 7→ (r(t, ηp, ηx), f(t, ηp, ηx))

Corollary 4.3.5. Let Assumptions 4.3.1 and 4.3.2 hold. Let u(·, p̄) be formed from the

unique solution of (4.3.1). Then u(t, ·) is a semismooth function at p̄ ∈ P for all t ∈ [t0, tf ].

Proof. Since the implicit function, f as defined in Lemma 4.3.4 is a semismooth function,

v(t, ·) is a semismooth function at p̄ for all t ∈ T per Theorem 4.2.3. The semismoothness

of y(t, ·) at p̄ follows from the semismoothness of the implicit function r(t, ·) at v(t, p̄) for

all t ∈ T and the semismoothness of v(t, ·) at p̄ for all t ∈ T . The semismoothness of ẋ(t, ·)

at p follows from the same reasoning using f instead of r. Since all elements of u(t, ·) are

semismooth at p̄ so is u(t, ·) for all t ∈ T .

Theorem 4.3.6. Let Assumptions 4.3.1 and 4.3.2 hold. Let Γf : T ×P×X ⇉ R
nx×(1+np+nx)

be as defined in Lemma 4.3.4. Let Γpx(tf ,p) be the set

{m(tf ,p) : ṁ(t,p) = πxGf(t,p)m(t,p) + πpGf (t,p), ∀t ∈ (t0, tf ], (4.3.2)

Gf (·,p) ∈ L(T, πvconv (Γf(·,v(·,p))),

Gf (t,p) = [πpGf (t,p) πxGf(t,p)], ∀t ∈ T,
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πpGf(t,p) ∈ R
nx×np, πxGf (t,p) ∈ R

nx×nx , ∀t ∈ T,

m(t0,p) ∈ conv (Γf0(p))},

where Γf is defined in Lemma 4.3.4. Then Γpx(tf ,p) is a linear Newton approximation of

the map η 7→ x(tf , η) at p and

∂px(tf ,p) ⊂ conv (Γpx(tf ,p))

holds.

Proof. Result follows from Theorem 4.2.3, Lemma 4.3.4.

Corollary 4.3.7. Let Assumptions 4.3.1 and 4.3.2 hold.

1. Let Γpy : T × P ⇉ R
ny×np be defined by

Γpy(t,p) = {n(t,p) : πxGr(t,p)m(t,p) + πpGr(t,p),

Gr(t,p) ∈ conv (πvΓr(t,p,x(t,p))),

Gr(t,p) = [πpGr(t,p) πxGr(t,p)],

πpGr(t,p) ∈ R
ny×np,

πxGr(t,p) ∈ R
ny×nx ,

m(t,p) ∈ conv (Γpx(t,p))}, ∀t ∈ [t0, tf ],

where Γpx(t,p) is computed using (4.3.2) and Γr(t,p,x(t,p)) is defined in Lemma

4.3.4. Then, Γpy(t,p) is a linear Newton approximation of the map η 7→ y(t, η) at

p ∈ P and ∂py(t,p) ⊂ conv (Γpy(t,p)) holds.

2. Let Γpẋ : T × P ⇉ R
ny×np be defined by

Γpẋ(t,p) = {n(t,p) : πxGf(t,p)m(t,p) + πpGf (t,p),
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Gf (t,p) ∈ conv (πvΓf(t,p,x(t,p))),

Gf (t,p) = [πpGf (t,p) πxGf(t,p)],

πpGf(t,p) ∈ R
nx×np,

πxGf (t,p) ∈ R
nx×nx ,

m(t,p) ∈ conv (Γpx(t,p))}, ∀t ∈ [t0, tf ],

where Γpx(t,p) is computed using (4.3.2) and Γf(t,p,x(t,p)) is defined in Lemma

4.3.4. Then, Γpẋ(t,p) is a linear Newton approximation of the map η 7→ ẋ(t, η) at

p ∈ P and ∂pẋ(t,p) ⊂ conv (Γpẋ(t,p)) holds.

Proof. The first part of the results follow from applying Theorem 2.8.12 to the chain of

mappings p 7→ (p,x(t,p)) 7→ r(t,p,x(t,p)). The set

M =

















Inp

N






: N ∈ conv (Γpx(t,p))











is a linear Newton approximation for the mapping p 7→ (p,x(t,p)). Using conv (Γr(t,p,x(t,p)))

as the linear Newton approximation for the map (p,x(t,p)) 7→ r(t,p,x(t,p)) provides the

desired result. The second part of the results can be derived using the same reasoning.

Remark 4.3.8. The results in Theorems 4.2.6, 4.2.7 and 4.2.8 directly apply to the DAE

in (4.3.1) with Gf(·,p) a measurable selection of conv (Γf(·,p,x(·,p))) defined in Lemma

4.3.4.

The next three theorems extend the results in Theorems 3.3.9 and 3.3.10.

Theorem 4.3.9. Let the hypotheses of Theorem 4.3.6 hold. Let g : T ×P×X ×Y×Ẋ → R

be a semismooth function. Let Γg : T × P × X × Y × Ẋ → R
1×(1+np+nx+ny+nx) be a linear

Newton approximation of g such that ∂g(µ) ⊂ conv (Γg(µ)) for all µ ∈ T ×P ×X ×Y ×Ẋ .
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Let G : P → R be defined by

G(p) =

∫ tf

t0

g(t,u(t,p))dt.

Then, G is a semismooth function at p.

Let ΓG : P ⇉ R
1×np be the set

{n(tf ,p) ∈ R
1×np : ṅ(t,p) = Bx(t,u(t,p))m(t,p) + Bp(t,u(t,p)), ∀t ∈ (t0, tf ], n(t0,p) = 0,

Gg(·,p) ∈ L(T, πuconv (Γg(·,u(·,p))),

Gg(t,p) = [πpGg(t,p) πxGg(t,p) πyGg(t,p) πẋGg(t,p)], ∀t ∈ T,

πpGg(t,p) ∈ R
1×np , πxGf (t,p) ∈ R

1×nx , ∀t ∈ T,

πyGg(t,p) ∈ R
1×ny , πẋGg(t,p) ∈ R

1×nx , ∀t ∈ T,

ṁ(t,p) = πxGf(t,p)m(t,p) + πpGf (t,p), ∀t ∈ (t0, tf ],

Gf(·,p) ∈ L(T, πvconv (Γf(·,v(·,p))),

Gf(t,p) = [πpGf (t,p) πxGf (t,p)], ∀t ∈ T,

πpGf (t,p) ∈ R
nx×np, πxGf (t,p) ∈ R

nx×nx , ∀t ∈ T,

m(t0,p) ∈ conv (Γf0(p)),

Gr(·,p) ∈ L(T, πvconv (Γr(·,v(·,p))), ∀t ∈ T,

Gr(t,p) = [πpGr(t,p) πxGr(t,p)], ∀t ∈ T,

πpGr(t,p) ∈ R
ny×np, πxGr(t,p) ∈ R

ny×nx , ∀t ∈ T,

Bx(t,u(t,p)) = πxGg(t,p) +

πyGg(t,p)πxGr(t,p) + πẋGg(t,p)πxGf (t,p), ∀t ∈ T, (4.3.3)

Bp(t,u(t,p)) = πpGg(t,p) +

πyGg(t,p)πpGr(t,p) + πẋGg(t,p)πpGf(t,p), ∀t ∈ T} (4.3.4)
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where Γf(t,p,x(t,p)) and Γr(t,p,x(t,p)) is defined in Corollary 4.3.4. Then ΓG is a linear

Newton approximation of G at p and ∂G(p) ⊂ conv (ΓG(p)) holds.

Proof. Let g(t,u(t,p)) = g(t,v(t,p),y(t,p), ẋ(t,p)). Then, the result follows from the

application of Corollary 4.3.7 with Theorem 2.8.12, collecting terms multiplying m(t,p) and

the application of Theorem 4.2.6.

Theorem 4.3.10. Let the hypotheses of Theorem 4.3.6 and Theorem 4.3.9 hold. Let λ :

T → R
1×nx be a solution of the initial value problem,

λ̇(t) = −λ(t)πxGf(t,p) + Bx(t,u(t,p)), ∀t ∈ [t0, tf), λ(tf ) = 0.

Then, λ is unique and absolutely continuous. Let J ∈ R
1×np be defined by

J =

∫ tf

t0

Bp(t,u(t,p)) − λ(t)πpGf (t,p)dt + λ(t)m(t,p)|tft0

where m(t,p) is computed using (4.3.2), Bx(t,u(t,p)) and Bp(t,u(t,p)) are computed using

(4.3.3) and (4.3.4), respectively. Then J ∈ ΓG(p).

Proof. The proof is similar to the proof of Theorem 4.2.7 where πxGg(t,p) and πpGg(t,p)

are replaced with Bx(t,u(t,p)) and Bp(t,u(t,p)), respectively.

Theorem 4.3.11. Let the hypotheses of Theorem 4.3.6 hold. Let h : T0×P×X×Y×Ẋ → R

be a semismooth function where T0 is an open subset of T such that tf ∈ T0. Let G : P →

R : η 7→ h(tf ,u(tf , η)). Then G is semismooth at p.

Let Γuh : P × X × Y × Ẋ ⇉ R
1×(np+nx+ny+nx) be a linear Newton approximation of the

map ū 7→ h(tf , ū) such that ∂uh(tf , ū) ⊂ conv (Γuh(tf , ū)) in a neighborhood of u(tf ,p).

Let ΓG : p ⇉ R
1+np be the set

{MxNx + MyNy + MẋNẋ + Mp : [Mp Mx My Mẋ] ∈ conv (Γuh(tf ,u(tf ,p))),
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Mp ∈ R
1×np , Mx ∈ R

1×nx , My ∈ R
1×ny , Mẋ ∈ R

1×nx ,

Nx ∈ conv (Γpx(tf ,p)), Ny ∈ conv (Γpy(tf ,p)),

Nẋ ∈ conv (Γpẋ(tf ,p))}.

Then, ΓG is a linear Newton approximation of G at p ∈ P per Theorem 2.8.12 such that

∂G(p) ⊂ conv (ΓG(p)) holds.

Let Nx = m(tf ,p), Ny = πxGr(tf ,p)m(tf ,p)+πpGr(tf ,p), Nẋ = πxGf (tf ,p)m(tf ,p)+

πpGf (tf ,p), Cx = Mx + MyπxGr(tf ,p) + MẋπxGf(tf ,p), Cp = Mp + MyπpGr(tf ,p) +

MẋπpGf(tf ,p) where m(t,p) is computed using (4.3.2), πxGr(tf ,p), πpGr(tf ,p), πxGf(tf ,p)

and πpGf(tf ,p) are defined in Corollary 4.3.7.

Let λ : T → R
1×nx be a solution of the initial value problem,

λ̇(t) = −λ(t)πxGf (t,p), ∀t ∈ [t0, tf ), λ(tf) = −Cx.

Then, λ is unique and absolutely continuous. Let J ∈ R
1×np be defined by

J =

∫ tf

t0

−λ(t)πpGf(t,p)dt − λ(t0)m(t0,p) + Cp

where m(t,p) is computed as in Theorem 4.3.6. Then J ∈ ΓG(p).

Proof. The proof is the same as the proof of Theorem 4.2.8 except the redefined quantities

Cx and Cp.

4.4 Multistage Systems

The previous results are extended to dynamic systems whose evolutions are described by

disparate differential-algebraic equations in consecutive intervals of time.
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Assumption 4.4.1. Let ne be a finite positive integer and I = {1, . . . , ne}. Let αi ∈

R, βi ∈ R, αi < βi, ∀i ∈ I, αi+1 = βi, ∀i ∈ I\{ne}, −∞ < α1 < βne
< +∞. Let

T = ∪ne

i=1[αi, βi] and T ⊂ T . Let Ti be an open subset of T such that [αi, βi] ⊂ Ti for all

i ∈ I. Let xi : [αi, βi] × P → X , yi : [αi, βi] × P → Y, ẋi : [αi, βi] × P → Ẋ for all i ∈ I,

x : T×P → X , y : T×P → Y and ẋ : T×P → Ẋ . Assume Fi : Ti×P×X×Y×Ẋ → R
nx+ny

are semismooth functions for all i ∈ I. Assume F0
i : P × X → X for all i ∈ I\{1} and

F0
1 : P → X are semismooth functions. Assume there exists a linear Newton approximation

ΓFi : Ti × P × X × Y × Ẋ ⇉ R
(nx+ny)×(1+np+nx+ny+nx) such that ∂Fi(µ) ⊂ conv (ΓFi(µ))

holds for all µ ∈ Ti × P × X × Y × Ẋ for each i ∈ I. Assume there exists a linear Newton

approximation ΓF0
i : P × X ⇉ R

nx×(np+nx) such that ∂F0
i (µ) ⊂ conv (ΓF0

i (µ)) holds for

all µ ∈ P × X for all I\{1}. Finally, assume there exists ΓF0
1 : P ⇉ R

nx×np such that

∂F0
1(η) ⊂ conv (ΓF0

1(η)) holds for all η ∈ P.

The linear Newton approximations associated with the solutions of the initial value prob-

lem,

0 = Fi(t,p,xi(t,p),yi(t,p), ẋi(t,p)), ∀t ∈ [αi, βi], ∀i ∈ I, (4.4.1)

0 = x1(α1,p) − F0
1(p),

0 = xi(αi,p) − F0
i (p,xi−1(βi−1,p)), ∀i ∈ I\{1}, (4.4.2)

0 = x(t,p) − xi(t,p), ∀t ∈ [αi, βi), ∀i ∈ I,

0 = x(βne
,p) − xne

(βne
,p),

0 = y(t,p) − yi(t,p), ∀t ∈ [αi, βi), ∀i ∈ I,

0 = y(βne
,p) − yne

(βne
,p),

0 = ẋ(t,p) − ẋi(t,p), ∀t ∈ [αi, βi), ∀i ∈ I,

0 = ẋ(βne
,p) − ẋne

(βne
,p)
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are derived in this section.

Remark 4.4.2. x(·,p), y(·,p) and ẋ(·,p) might be discontinuous at t = αi with i > 1.

Remark 4.4.3. The results derived in this section are applicable with slight modifications to

the case where the number of states, number of algebraic variables as well as the domains of

the functions Fi and F0
i differ for each i ∈ I.

Assumption 4.4.4. Let ẋ(αi, p̄) = ˙̄xi and y(αi, p̄) = ȳi for all i ∈ I where ˙̄xi and ȳi

are constants. Assume that this condition is sufficient to uniquely determine ẋ(αi,p) and

y(αi,p) uniquely for all i ∈ I and for all p ∈ P.

Assumption 4.4.5. Let (xi(·,p),yi(·,p), ẋi(·,p)), ∀i ∈ I be the unique solution of (4.4.1).

Let zi : [αi, βi]×P → P : (t,p) 7→ p, vi : [αi, βi]×P → P ×X : (t,p) 7→ ((zi(t,p)),xi(t,p))

and ui : [αi, βi]×P → P×X ×Y ×Ẋ : (t,p) 7→ (vi(t,p),yi(t,p), ẋi(t,p)). Let u : T ×P →

P×X ×Y ×Ẋ be such that u(t,p) = ui(t,p) for all t ∈ [αi, βi) and u(βne
,p) = une

(βne
,p).

Corollary 4.4.6. Let Assumptions 4.4.1 and 4.4.4 hold. Let the assumptions of Lemma

4.3.4 hold for all i ∈ I. Let (xi(·,p), yi(·,p), ẋi(·,p)), ∀i ∈ I be the solution of (4.4.1).

Then, u(t, ·) is semismooth at p for all t ∈ T .

Proof. Let ne = 1. Then, u1(t, ·) is a semismooth function at p for t ∈ [α1, β1] per Corollary

4.3.5. Since the composition of semismooth functions is semismooth and F0
2 is a semismooth

function, u2(α2, ·) is semismooth at p if ne = 2. Then, u2(t, ·) for all t ∈ [α2, β2] is semis-

mooth at p per Corollary 4.3.5. The final result follows from the repeated application of

Corollary 4.3.5 and the composition rule for semismooth functions as has been done for the

case ne ≤ 2.

Theorem 4.4.7. Let Assumptions 4.4.1 and 4.4.4 hold. Let the hypotheses of Lemma 4.3.4

hold for all i ∈ I. Let fi and ri be the semismooth implicit functions that satisfy Fi(t,vi(t,p),

ri(t,vi(t,p)), fi(t,vi(t,p))) = 0 for all t ∈ [αi, βi] and for all i ∈ I.
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Let Γpx0,1(p) = ΓF0
1(p). Let Γpx0,i(p) be the set

{Mx,iNi−1 + Mp,i : [Mx,i Mp,i] ∈ conv
(

ΓF0
i (p,xi−1(p, βi−1))

)

, (4.4.3)

Mx,i ∈ R
nx×nx , Mp,i ∈ R

nx×np,Ni−1 ∈ conv (Γpxi−1(p, βi−1))}

for all i ∈ I\{1}.

Let Γpxi(βi,p) be the set

{mi(βi,p) : ṁi(t,p) = πxGf,i(t,p)mi(t,p) + πpGf,i(t,p), ∀t ∈ (αi, βi], (4.4.4)

Gf,i(·,p) ∈ L([αi, βi], πvconv (Γfi(·,vi(·,p))),

Gf,i(t,p) = [πpGf,i(t,p) πxGf,i(t,p)], ∀t ∈ [αi, βi],

πpGf,i(t,p) ∈ R
nx×np, πxGf,i(t,p) ∈ R

nx×nx, ∀t ∈ [αi, βi],

mi(αi,p) ∈ conv (Γpx0,i(p))}.

where Γfi is defined in Lemma 4.3.4 for all i ∈ I.

Let Γpx(t,p) = Γpxi(t,p) for all t ∈ [αi, βi) for all i ∈ I and Γpx(βne
,p) = Γpxne

(βne
,p).

Then, Γpx(t,p) is a linear Newton approximation of the map η 7→ x(t, η) at p ∈ P for all

t ∈ [αi, βi) and ∂px(t,p) ⊂ conv (Γpx(t,p)) holds for all t ∈ [αi, βi).

Proof. If ne = 1, then, the result follows from Theorem 4.3.6 by letting tf in that the-

orem take values in [αi, βi) and setting t0 = αi. In this case, ∂px(t,p) = ∂px1(t,p) ⊂

conv (Γpx1(t,p)) holds for all t ∈ [α1, β1]. Per Theorem 2.8.12, Γpx0,2(p) is a linear Newton

approximation of the map η 7→ x2(α2, η) at p. Per Theorem 2.6.7:

∂px2(α2,p) ⊂ conv
(

{MxN + Mp : N ∈ ∂px1(β1,p), [Mx Mp] ∈ ∂F0
2(p,x1(β1,p))}

)

holds where Mp ∈ R
np×nx and Mx ∈ R

nx×nx . Then, ∂px2(α2,p) ⊂ conv (Γpx0,2(p)) follows
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from the fact that ∂px1(β1,p) ⊂ conv (Γpx1(β1,p)) and ∂F0
2(p,x1(p, β1))

⊂ conv (ΓF0
2(β1,x1(p, β1))). Application of Theorem 4.3.6 after setting F = F2 and ΓF0(p) =

conv (Γpx0,2(p)) proves the result for ne = 2. The case for larger ne is proven by the repeated

application of Theorem 4.3.6 and Theorem 2.8.12 as has been done for the case ne = 2.

Theorem 4.4.8. Let the hypotheses of Theorem 4.4.7 hold. Define Gi : P → R as

Gi(p) =

∫ βi

αi

gi(t,ui(t,p))dt

where gi : Ti × P × X × Y × Ẋ 7→ R are semismooth functions for all i ∈ I. Then, Gi are

semismooth functions at p per Theorem 4.3.9.

Let G : P → R be defined by

G(η) =
ne
∑

i=1

Gi(η).

Then, G is a semismooth function at p ∈ P since the sum of semismooth functions is

semismooth.

Let ΓGi : P ⇉ R
1×np be the set

{ni(βi,p) ∈ R
1×np : ṅi(t,p) = Bx,i(t,ui(t,p))mi(t,p) + Bp,i(t,ui(t,p)), ∀t ∈ (αi, βi], n(αi,p) = 0,

Gg,i(·,p) ∈ L(T, πuconv (Γgi(·,ui(·,p))),

Gg,i(t,p) = [πpGg,i(t,p) πxGg,i(t,p) πyGg,i(t,p) πẋGg,i(t,p)], ∀t ∈ [αi, βi],

πpGg,i(t,p) ∈ R
1×np, πxGg,i(t,p) ∈ R

1×nx , ∀t ∈ [αi, βi],

πyGg,i(t,p) ∈ R
1×ny , πẋGg,i(t,p) ∈ R

1×nx , ∀t ∈ [αi, βi],

ṁi(t,p) = πxGf,i(t,p)mi(t,p) + πpGf,i(t,p), ∀t ∈ (αi, βi],

Gf,i(·,p) ∈ L(T, πvconv (Γfi(·,v(·,p))),

Gf,i(t,p) = [πpGf,i(t,p) πxGf,i(t,p)], ∀t ∈ [αi, βi],
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πpGf,i(t,p) ∈ R
nx×np, πxGf,i(t,p) ∈ R

nx×nx , ∀t ∈ [αi, βi],

mi(αi,p) ∈ conv (Γpx0,i(p)),

Gr,i(·,p) ∈ L(T, πvconv (Γri(·,v(·,p))), ∀t ∈ [αi, βi],

Gr,i(t,p) = [πpGr,i(t,p) πxGr,i(t,p)], ∀t ∈ [αi, βi],

πpGr,i(t,p) ∈ R
ny×np, πxGr,i(t,p) ∈ R

ny×nx, ∀t ∈ [αi, βi],

Bx,i(t,ui(t,p)) = πxGg,i(t,p) +

πyGg,i(t,p)πxGr,i(t,p) + πẋGg,i(t,p)πxGf,i(t,p), ∀t ∈ [αi, βi],

(4.4.5)

Bp,i(t,ui(t,p)) = πpGg,i(t,p) +

πyGg,i(t,p)πpGr,i(t,p) + πẋGg,i(t,p)πpGf,i(t,p), ∀t ∈ [αi, βi]}

(4.4.6)

where Γfi and Γri are defined in Lemma 4.3.4. Then ΓGi is a linear Newton approximation

of Gi at p and ∂Gi(p) ⊂ conv (ΓGi(p)) holds for all i ∈ I per Theorem 4.3.9 and Theorem

4.4.7.

Let ΓG(p) be

ΓG(p) =

ne
∑

i=1

conv (ΓGi(p)).

Then, ΓG is a linear Newton approximation of G and ∂G(p) ⊂ conv (ΓG(p)) holds since

∂G(p) ⊂
ne
∑

i=1

∂Gi(p).

For all i ∈ I, let λi : [αi, βi] → R
1×nx be a solution of the initial value problem

λ̇i(t) = − λi(t)πxGf,i(t,p) + Bx,i(t,u(t,p), ∀t ∈ (αi, βi], ∀i ∈ I,
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λi(βi) = λi+1(βi)Mx,i+1, ∀i ∈ I\{ne}, λne
(βne

) = 0.

Then, λi is absolutely continuous and unique. Let J be

ne
∑

i=1

∫ βi

αi

Bp,i(t,ui(t,p)) − λi(t)πpGf,i(t,p)dt −

ne−1
∑

i=1

λi+1(βi)Mp,i+1 + λne
(βne

)mne
(βne

,p) − λ1(α1)m1(α1,p)

where Mp,i+1, Mx,i+1 and m1(α1,p) are defined in Theorem 4.4.7. Then, J ∈ ΓG(p).

Proof. Applying Theorem 4.3.10 for each i ∈ I:

Ji =

∫ βi

αi

Bp,i(t,ui(t,p)) − λi(t)πpGf,i(t,p)dt + λi(t)mi(t,p)|βi

αi
(4.4.7)

is obtained with Ji ∈ ΓGi(p) where

λ̇i(t) = − λi(t)πxGf,i(t,p) + Bx,i(t,ui(t,p)), ∀t ∈ [αi, βi), λi(βi) = 0.

It can be seen from its derivation that (4.4.7) holds for any λ0 ∈ R
1×nx and λi(βi) = λ0. λ0

is set to the zero vector in order to avoid the computation of mi(βi,p).

Let J =
∑ne

i=1 Ji. Clearly, J ∈ ΓG(p) because Ji ∈ ΓGi(p). Then, J is equal to

ne
∑

i=1

∫ βi

αi

Bp,i(t,ui(t,p)) − λi(t)πpGf,i(t,p)dt + λi(t)mi(t,p)|βi

αi
. (4.4.8)

Note that mi+1(αi+1,p) is Mx,i+1mi(βi) + Mp,i+1 in view of (4.4.3) for some Mx,i+1 and

Mp,i+1 where Mx,i+1 and Mp,i+1 are defined in Theorem 4.4.7. Hence

−λi+1(αi+1)mi+1(αi+1,p) = −λi+1(αi+1)(Mx,i+1mi(βi) + Mp,i+1).
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Then, setting

λi+1(αi+1)Mx,i+1 = λi(βi)

allows the cancellation of terms in (4.4.8) and results in

ne
∑

i=1

∫ βi

αi

Bp,i(t,ui(t,p)) − λi(t)πpGf,i(t,p)dt −

ne−1
∑

i=1

λi+1(βi)Mp,i+1 + λne
(βne

)mne
(βne

,p) − λ1(α1)m1(α1,p).

Setting λne
(βne

) = 0 provides the desired result.

Corollary 4.4.9. Let the hypotheses of Theorem 4.4.7 hold.

1. Let Γpy : T × P ⇉ R
ny×np be defined by

Γpy(t,p) = {n(t,p) : πxGr,i(t,p)mi(t,p) + πpGr,i(t,p),

Gr,i(t,p) ∈ conv (πvΓri(t,p,x(t,p))),

Gr,i(t,p) = [πpGr,i(t,p) πxGr,i(t,p)],

πpGr,i(t,p) ∈ R
ny×np,

πxGr,i(t,p) ∈ R
ny×nx ,

mi(t,p) ∈ conv (Γpxi(βne
,p))}, ∀t ∈ [αi, βi), ∀i ∈ I,

Γpy(βne
,p) = {n(βne

,p) : πxGr,ne
(βne

,p)mne
(βne

,p) + πpGr,ne
(βne

,p),

Gr,ne
(βne

,p) ∈ conv (πvΓrne
(βne

,p,x(t,p))),

Gr,ne
(βne

,p) = [πpGr,ne
(βne

,p) πxGr,ne
(βne

,p)],

πpGr,ne
(βne

,p) ∈ R
ny×np,

πxGr,ne
(βne

,p) ∈ R
ny×nx,
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mne
(βne

,p) ∈ conv (Γpxne
(βne

,p))}

where Γpxi(t,p) is defined as in Theorem 4.4.7 and Γri is defined using Lemma 4.3.4

for all i ∈ I. Then, Γpy(t,p) is a linear Newton approximation of the map η 7→ y(t, η)

at p ∈ P and ∂py(t,p) ⊂ conv (Γpy(t,p)) holds.

2. Let Γpẋ : T × P ⇉ R
ny×np be defined by

Γpẋ(t,p) = {n(t,p) : πxGf,i(t,p)mi(t,p) + πpGf,i(t,p),

Gf,i(t,p) ∈ conv (πvΓfi(t,p,x(t,p))),

Gf,i(t,p) = [πpGf,i(t,p) πxGf,i(t,p)],

πpGf,i(t,p) ∈ R
nx×np,

πxGf,i(t,p) ∈ R
nx×nx ,

mi(t,p) ∈ conv (Γpxi(t,p))}, ∀t ∈ [αi, βi), ∀i ∈ I,

Γpẋ(βne
,p) = {n(βne

,p) : πxGf,ne
(βne

,p)mne
(βne

,p) + πpGf,ne
(βne

,p),

Gf,ne
(βne

,p) ∈ conv (πvΓfne
(βne

,p,x(βne
,p))),

Gf,ne
(βne

,p) = [πpGf,ne
(βne

,p) πxGf,ne
(βne

,p)],

πpGf,ne
(βne

,p) ∈ R
nx×np,

πxGf,ne
(βne

,p) ∈ R
nx×nx ,

mne
(βne

,p) ∈ conv (Γpxne
(βne

,p))}

where Γpxi(t,p) is defined as in Theorem 4.4.7 and Γfi is defined using Lemma 4.3.4

for all i ∈ I. Then, Γpẋ(t,p) is a linear Newton approximation of the map η 7→ ẋ(t, η)

at p ∈ P and ∂pẋ(t,p) ⊂ conv (Γpẋ(t,p)) holds.

Proof. Application of Theorem 2.8.12 to the implicit functions ri and fi produces Γpy and

Γpẋ, respectively. Application of Theorem 2.6.7 to ri and fi provides sets Mr and Mf
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such that ∂py(t,p) ⊂ conv (Mr) and ∂pẋ(t,p) ⊂ conv (Mf) hold. Then, it can be shown

that conv (Mr) ⊂ conv (Γpy(t,p)) and conv (Mf) ⊂ conv (Γpẋ(t,p)) using the fact that

∂fi(t,vi(t,p)) ⊂ conv (Γfi(t,vi(t,p))), ∂ri(t,vi(t,p)) ⊂ conv (Γri(t,vi(t,p))) and ∂px(t,p) ⊂

conv (Γpx(t,p)).

Theorem 4.4.10. Let the hypotheses of Theorem 4.4.7 hold. Let h : T0×P×X×Y×Ẋ → R

be a semismooth function where T0 is an open subset of T such that βne
∈ T0. Let G : P →

R : η 7→ h(βne
,u(βne

, η)). Then, G is semismooth at p.

Let Γuh : P × X × Y × Ẋ ⇉ R
1×(np+nx+ny+nx) be a linear Newton approximation of the

map ū 7→ h(βne
, ū) such that ∂uh(βne

, ū) ⊂ conv (Γuh(tf , ū)) in a neighborhood of u(βne
,p).

Let ΓG : p ⇉ R
1+np be the set

{AxNx + AyNy + AẋNẋ + Ap : [Ap Ax Ay Aẋ] ∈ conv (Γuh(βne
,u(βne

,p))),

Ap ∈ R
1×np, Ax ∈ R

1×nx , Ay ∈ R
1×ny , Aẋ ∈ R

1×nx ,

Nx ∈ conv (Γpx(βne
,p)), Ny ∈ conv (Γpy(βne

,p)),

Nẋ ∈ conv (Γpẋ(βne
,p))}

where Γpx(βne
,p) is defined in Theorem 4.4.7, Γpy(βne

,p) and Γpẋ(βne
,p) are defined in

Corollary 4.4.9. Then, ΓG is a linear Newton approximation of G at p ∈ P per Theorem

2.8.12 such that ∂G(p) ⊂ conv (ΓG(p)) holds.

Let Nx = mne
(βne

,p), Ny = πxGr,ne
(βne

,p)mne
(βne

,p) +πpGr,ne
(βne

,p), Nẋ = πxGf,ne
(βne

,p)

mne
(βne

,p) + πpGf,ne
(βne

,p), Cx = Ax + AyπxGr,ne
(βne

,p) + AẋπxGf,ne
(βne

,p), Cp =

Ap + AyπpGr,ne
(βne

,p) + AẋπpGf,ne
(βne

,p) where mne
(t,p) is computed using Theorem

4.4.7, πxGr,ne
(βne

,p), πpGr,ne
(βne

,p), πxGf,ne
(βne

,p) and πpGf,ne
(βne

,p) are defined in

Corollary 4.4.9.
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Let λi : [αi, βi] → R
1×nx be a solution of the initial value problem,

λ̇i(t) = −λi(t)πxGf,i(t,p), ∀t ∈ [αi, βi), ∀i ∈ I,

λi(βi) = λi+1(αi+1)Mx,i+1, ∀i ∈ I\{ne}, λne
(βne

) = −Cx.

Then, λ is unique and absolutely continuous. Let J ∈ R
1×np be defined by

J =
ne
∑

i=1

∫ βi

αi

−λi(t)πpGf,i(t,p)dt +
ne−1
∑

i=1

(−λi+1(αi+1)Mp,i+1) − λ1(α1)m1(α1,p) + Cp

where m1(α1,p), Mp,i+1 and Mx,i+1 are defined in Theorem 4.4.7. Then, J ∈ ΓG(p).

Proof. Let N be the set

{AxNx + AyNy + AẋNẋ + Ap : [Ap Ax Ay Aẋ] ∈ ∂uh(βne
,u(βne

,p)),

Ap ∈ R
1×np, Ax ∈ R

1×nx , Ay ∈ R
1×ny , Aẋ ∈ R

1×nx ,

Nx ∈ ∂px(βne
,p), Ny ∈ ∂py(βne

,p),

Nẋ ∈ ∂pẋ(βne
,p)}.

Then, using Theorem 2.6.7, it can be shown that ∂G(p) ⊂ conv (N) ⊂ conv (ΓG(p))

since ∂px(βne
,p) ⊂ conv (Γpx(βne

,p)), ∂py(βne
,p) ⊂ conv (Γpy(βne

,p)), ∂pẋ(βne
,p) ⊂

conv (Γpẋ(βne
,p)) and ∂uh(βne

,u(βne
,p)) ⊂ conv (Γuh(βne

,u(βne
,p))) holds.

Let J = Cxmne
(βne

,p) + Cp. Then, J ∈ ΓG(p) by the definition of ΓG(p).

Note that Cxmne
(βne

,p) is equal to

ne
∑

i=1

∫ βi

αi

Cxṁi(t,p)dt +

ne−1
∑

i=1

(Cxmi+1(αi+1,p) − Cxmi(βi,p)) + Cxm1(α1,p).
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This can be written as

ne
∑

i=1

∫ βi

αi

Cxṁi(t,p) − λi(t)(πxGf,i(t,p)mi(t,p) + πpGf,i(t,p) − ṁi(t,p))dt +

ne−1
∑

i=1

(Cxmi+1(αi+1,p) − Cxmi(βi,p)) + Cxm1(α1,p).

Applying integration by parts and collecting terms as done in Theorem 4.2.8 results in

ne
∑

i=1

∫ βi

αi

−λi(t)πpGf,i(t,p)dt + (Cx + λi(t))mi(t,p)|βi
αi

+

ne−1
∑

i=1

(Cxmi+1(αi+1,p) −Cxmi(βi,p)) + Cxm1(α1,p).

This expression can be simplified to

ne
∑

i=1

∫ βi

αi

−λi(t)πpGf,i(t,p)dt+

ne−1
∑

i=1

(−λi+1(αi+1)mi+1(αi+1,p) + λi(βi)mi(βi,p)) +

(Cx + λne
(βne

))mne
(βne

,p) − λ1(α1)m1(α1,p).

Note that mi+1(αi+1,p) = Mx,i+1mi(βi,p)+Mp,i+1 where Mx,i+1 and Mp,i+1 are as defined

in Theorem 4.4.7. Setting λi(βi) = λi+1(αi+1)Mx,i+1, and λne
(βne

) = −Cx, provides the

desired result.

4.5 Example

In this section, Example 3.6.3 is revisited. In order to analyze that example, the following

corollary to Theorem 2.7.3 is required.
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Corollary 4.5.1. Let Y1 and Y2 be open subsets of R
n and R

m, respectively. Let y1 ∈ Y1

and y2 ∈ Y2. Let H : Y1 × Y2 → R
m be a PC1 function that is completely coherently oriented

with respect to Y2 at (y1,y2). Suppose H(y1,y2) = 0. Let H̄ : Y2 → R
m : y 7→ H(y1,y). Let

α be the sign of the determinants in π2∂
BH(y1,y2) = {J2Hi(y1,y2) : i ∈ I(H, (y1,y2))}.

Then ind(H̄,y2) = α and the conditions of Theorem 4.1.7 are satisfied.

Proof. Let F : Y1 × Y2 → R
n+m : (x,y) 7→ (x,H(x,y)). F is a PC1 function in the

neighborhood of (y1,y2) with essentially active selection functions Fi : Y1 × Y2 → R
n+m :

(x,y) 7→ (x,Hi(x,y)), i ∈ I(H, (y1,y2)) and

∂BF(y1,y2) =

















Im 0

J1Hi(y1,y2) J2Hi(y1,y2)






: i ∈ I(H, (y1,y2))











.

Note that the elements of ∂BF(y1,y2) are coherently oriented because the determinant of

each element is equal to det(Im) × det(J2Hi(y1,y2)) due to the special structure of the

elements. Let the sign of det(J2Hi(y1,y2)) be α which is constant and nonzero for all

i ∈ I by the complete coherent orientation of H with respect to Y2. Since H is completely

coherently oriented with respect to Y2, F is completely coherently oriented with respect to

Y1 × Y2.

The B-derivative F′(y1,y2; ·) is a continuous piecewise linear function such that

∂BF′(y1,y2; 0) ⊂ ∂BF(y1,y2)

holds per Lemma 2 in [79]. Therefore, F′(y1,y2; ·) is completely coherently oriented at 0 with

respect to R
n+m. Per Corollary 19 in [91], F′(y1,y2; ·) is invertible at 0. Per the equivalence

of Conditions (ii) and (iii) in Theorem 5 in [91], F is invertible at y and ind(F, (y1,y2)) = ±1.

It can be shown as in the proof of Theorem 2 in [42], that the sign of ind(F, (y1,y2)) is α.

Finally, it can be shown that ind(F, (y1,y2)) = ind(H̄,y2) as in the proof of Theorem 4 in
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[42].

Example 4.5.2. Consider the dynamic system introduced in Example 3.6.3 where the com-

putation of the strict derivative of the mapping η 7→ x(t, η) is discussed. Here, however, the

computation of an element of Γpx(t,p) is discussed.

First note that the matrix B(t, η) defined in (3.6.6) has nonzero determinant because of

the triangular structure of the matrix and the invertibility of JẋV(t, η), Iny
and R(t, ηp, ηx).

The sign of det(B(t, η)) is equal to the sign of det(JẋV(t, η)) because the determinant of

Iny
and the sign of the determinant of any possible R(t, ηp, ηx) are both one. Assume that

the sign of the determinant of JẋV(t, η) is nonzero and constant on it domain.

Let

C(t, η) =













JtV(t, η) JpV(t, η) JxV(t, η)

−JtQ(t, ηp, ηx) −JpQ(t, ηp, ηx) −JxQ(t, ηp, ηx)

K(t, ηp, ηx)JtQ(t, ηp, ηx) K(t, ηp, ηx)JpQ(t, ηp, ηx) K(t, ηp, ηx)JxQ(t, ηp, ηx)













at points where F is differentiable.

Every element of ∂BF(t, η) has the same structure as [C(t, η) B(t, η)] but with different

R(t, ηp, ηx) and K(t, ηp, ηx) matrices due to the PC1 nature of F. It can be shown that F is

completely coherently oriented at (t, η) with respect to Y ×W × Ẋ using the fact that any

matrices in the set Λ(y1,y2) defined in Definition 2.7.2 differ only in the R(t, ηp, ηx) matrices

they contain. Since all possible R(t, ηp, ηx) have positive determinantal sign, complete

coherent orientation follows from the structure of B(t, η).

Per Corollary 4.5.1, the conditions for Lemma 4.3.4 hold. As a result, Theorem 4.3.6 can

be used to compute an element of Γpx(t,p).
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Chapter 5

Numerical Computation of the

Generalized Jacobians and Linear

Newton Approximations

In this chapter, the numerical computation of elements of the linear Newton approximations

and generalized Jacobians derived for the mapping η 7→ (x(tf , η),y(tf , η), ẋ(tf , η)) in Chap-

ters 3 and 4 is discussed. Two main issues need to be addressed in order to obtain accurate

numerical values. The first one is the computation of an element of the generalized Jaco-

bians or the linear Newton approximations of the functions in the right-hand sides of (4.2.1),

(4.3.1) and (4.4.1). The second one is the accurate numerical integration of the auxiliary

equations that define the generalized Jacobians and linear Newton approximations of the

mapping η 7→ (x(tf , η),y(tf ,p), ẋ(tf ,p)). As shown in Example 3.6.2, these auxiliary equa-

tions have discontinuous right-hand sides. ODE/DAE solvers that do not take into account

the discontinuous nature of these equations either cannot integrate these equations correctly

or become inefficient because they have to take too many time steps to satisfy integration

tolerances when discontinuities are encountered.
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An assumption on the structure of the right-hand side functions is made in the rest of this

thesis. The right-hand side functions become PC1 functions as a result and an element of

the generalized Jacobian of these functions can be readily computed using the properties of

PC1 functions (§2.7.1). The structural assumption divides the domain of the right-hand side

functions into subsets. The right-hand side functions are continuously differentiable on the

interior of these subsets and possibly nondifferentiable on the boundaries of these subsets.

This regularity in the placement of the nondifferentiable points allows the detection of the

discontinuities in the auxiliary equations using state event location algorithms [83].

The first section introduces the aforementioned structural assumption and discusses the

computation of the elements of the linear Newton approximations and generalized Jacobians

of the right-hand side functions. The second section discusses modifications to the auxiliary

equations in case the underlying dynamics is of the form (4.3.1) and (4.4.1) to improve the

efficiency of computation. In this case, the inversion of matrices is required to compute an

element of the linear Newton approximation or the strict derivative. This is undesirable

because it is computationally very inefficient. The structural assumption allows the use of

more efficient techniques that do not explicitly invert the matrices. The final section reviews

relevant aspects of state event location. Results in Chapter 3 require that the time points

at which the state trajectory visits nondifferentiable points in the domains of the right-hand

side functions constitute a set of measure zero. A numerical method to check this condition

is introduced.

5.1 Linear Newton Approximations of the Right-Hand

Side

Assumption 5.1.1. (Property M) Let X be a connected open subset of R
n. A locally Lips-

chitz continuous function F : X → R
m satisfies property M if the following hold:
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1. nD(F) is a finite positive integer, D(F) = {1, . . . , nD(F)}.

2. cl (X) = ∪nD(F)
i=1 cl (Ui) where Ui are open subsets of R

n such that if i′ 6= i′′, then Ui′ ∩

Ui′′ = ∅ for all i′, i′′ ∈ D(F).

3. Oi are open subsets of R
n such that cl (Ui) ⊂ Oi for all i ∈ D(F).

4. int (cl (Ui)) = Ui, ∀i ∈ D(F).

5. Ji(F) = {1, . . . , ni(F)} where ni(F) is a finite positive integer for all i ∈ D(F).

6. gi,j : Oi → R ∈ C1(Oi) for all i ∈ D(F) and for all j ∈ Ji(F).

7. gi : Oi → R : η 7→ max{gi,j(η), j ∈ Ji(F)} for all i ∈ D(F).

8. For all i ∈ D(F), gi(η) < 0, ∀η ∈ Ui, gi(η) = 0, ∀η ∈ cl (Ui)\Ui and gi(η) > 0, ∀η ∈

Oi\cl (Ui).

9. The set {η ∈ Oi : gi(η) = 0} constitutes a piecewise continuously differentiable mani-

fold of dimension n − 1 for all i ∈ D(F).

10. For each i ∈ D(F), there exists a function, Fi : Oi → R
m such that Fi ∈ C1(Oi) and

F(η) = Fi(η) for all η ∈ cl (Ui).

Remark 5.1.2. The functions gi,j defined in Assumption 5.1.1 are called discontinuity or

zero-crossing functions.

Remark 5.1.3. Item 4 is necessary to exclude any point, η ∈ cl (Ui)\Ui that has no neigh-

borhood containing points not in Ui.

Corollary 5.1.4. Suppose that F : X → R
m satisfies property M . Then F is a PC1 function

on X. Let η ∈ X. If gj(η) < 0 for some j ∈ D(F), then, the essentially active function

indices at η, I(F, η), is {j} and ∂F(η) = {JFj(η)}. If gj(η) = 0, for some j ∈ D(F),

then, there exists at least one more index k 6= j such that gk(η) = 0. Let K ⊂ D(F) be

the set containing all indices i ∈ K such that gi(η) = 0 holds. Then I(F, η) = K and

∂F(η) = conv ({JFi(η), i ∈ K}).

Proof. If gj(η) < 0 for some j ∈ D(F), then η ∈ Uj. Since Uj is open, there exists O, a
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neighborhood of η such that O ⊂ Uj . Hence I(F, η) = {j} and ∂F(η) = {JFj(η)}. If

gj(η) = 0, let O be any neighborhood of η such that O ⊂ X ⊂ ∪nD(F)
i=1 cl (Ui). O ∩ Uj is

nonempty because η ∈ cl (Uj). Therefore, there exists no O which is a subset of any Ui for

i ∈ D(F)\{j}. Otherwise, Uj∩Ui would be nonempty. This also implies that there is at least

one more index, k ∈ D(F) such that k 6= j and gk(η) = 0. Assume otherwise. Note that

η ∈ X and X is open. Since gj(η) = 0, η ∈ cl (Uj)\Uj per property M. Per property 4, every

neighborhood of η contains points not in Uj . Therefore, there exists no O, a neighborhood

of η, such that O ⊂ Uj . Hence η /∈ X because X is open but η is not an interior point of X.

Let K ⊂ D(F) contain all indices such that gi(η) = 0 if i ∈ K. Note that O ∩ Ui is

a nonempty open set for any neighborhood, O, of η for all i ∈ K because both sets are

open. Let Xi = {u ∈ O : Fi(u) = F(u)} for each i ∈ K. Then, O ∩ Ui ⊂ int (Xi). Note

that η ∈ cl (Ui), and therefore η is a limit point of O ∩ Ui. Hence η ∈ cl (O ∩ Ui). Since

cl (O ∩ Ui) ⊂ cl (int (Xi)) holds, η ∈ cl (int (Xi)). Therefore, I(F, η) = K and ∂F(η) =

conv ({JFi(η), i ∈ K}) per the definition of essentially active function indices.

Remark 5.1.5. In the remainder of this thesis, let Ωm(F) = (∪nD(F)
i=1 (cl (Ui)\Ui)) ∩ X =

X\ ∪nD(F)
i=1 Ui.

Consider (4.2.1). Assume f and f0 satisfy property M. Then f and f0 are PC1 functions

on their respective domains. Therefore,

∂f(η) = conv ({Jfi(η), i ∈ I(f , η)}), ∀η ∈ T × P ×X ,

∂f0(p) = conv ({Jf0,i(p), i ∈ I(f0,p)}), ∀p ∈ P,

where fi and f0,i correspond to the functions Fi defined in Assumption 5.1.1. In this case,

Assumption 4.2.1 holds with Γf = ∂f and Γf0 = ∂f0 since f and f0 are semismooth functions

(§2.8.5).

Note that ∂vf(η) ⊂ πv∂f(η) per Theorem 2.6.10. The assumptions of Theorem 3.2.3
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hold if S = {t ∈ [t0, tf ] : (t,p,x(t,p)) ∈ Ωm(f)} is a measure zero subset of [t0, tf ] and

p ∈ P\Ωm(f0). If t ∈ T\S, then (t,p,x(t,p)) ∈ Ui for some i ∈ I(f , (t,p,x(t,p))) and

∂vf(t,p,x(t,p)) = πv∂f(t,p,x(t,p)) = {Jvfi(t,p,x(t,p))} holds because f is continuously

hence strictly differentiable in this case.

Consider (4.3.1). Assume F and F0 satisfy property M. Then, F and F0 are PC1 functions

on their respective domains as in the ODE case and

∂F(η) = conv ({JFi(η), i ∈ I(F, η)}), ∀η ∈ T × P ×X × Y × Ẋ ,

∂F0(p) = conv ({JF0,i(p), i ∈ I(F0,p)}), ∀p ∈ P.

Then, Assumption 4.3.1 holds with ΓF = ∂F and ΓF0 = ∂F0 since F and F0 are semismooth

functions (§2.8.5). In this case

∂BF(η) = {JFi(η), i ∈ I(F, η)}

because F is a PC1 function. The assumptions of Theorem 3.3.6 hold if S = {t ∈ [t0, tf ] :

(t,p,x(t,p),y(t,p), ẋ(t,p)) ∈ Ωm(F)} is a measure zero subset of [t0, tf ] and p ∈ P\Ωm(F0).

As in the ODE case, if t ∈ T\S, then ∂uF(t,p,x(t,p),y(t,p), ẋ(t,p)) =

πu∂F(t,p,x(t,p),y(t,p), ẋ(t,p)) = {JuFi(t,p,x(t,p),y(t,p), ẋ(t,p))} holds for some i ∈

I(F, (t,p,x(t,p),y(t,p), ẋ(t,p))).

Assume g as defined in Theorem 4.3.10 satisfies property M. Then

∂g(η) = conv ({Jgi(η), i ∈ I(g, η)}), ∀η ∈ T × P ×X × Y × Ẋ

where the functions gi correspond to the functions Fi in the statement of Assumption 5.1.1

and the assumptions of Theorem 4.3.10 hold with Γg = ∂g. The assumptions of Theorem

3.3.9 hold if S = {t ∈ [t0, tf ] : (t,p,x(t,p),y(t,p), ẋ(t,p)) ∈ Ωm(g) ∪ Ωm(F)} is a measure
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zero subset of [t0, tf ] and p ∈ P\Ωm(F0). If t ∈ T\S, then ∂ug(t,p,x(t,p),y(t,p), ẋ(t,p)) =

πu∂g(t,p,x(t,p),y(t,p), ẋ(t,p)) = {Jugi(t,p,x(t,p),y(t,p), ẋ(t,p))} for some i ∈ I(g, (t,p,

x(t,p),y(t,p), ẋ(t,p))).

Let h as defined in Theorem 4.3.11 satisfy property M. The assumptions of Theorem

4.3.11 hold if Γuh = πu∂h where

∂h(η) = conv ({Jhi(η), i ∈ I(h, η)}), ∀η ∈ T0 × P × X × Y × Ẋ

and the hi correspond to the functions Fi in the statement of Assumption 5.1.1. Note that

∂h is a linear Newton approximation of h. Then using Theorem 2.8.12, it can be shown that

πu∂h is a linear Newton approximation of the mapping η 7→ h(tf , η).

The discussion for the multistage systems in (4.4.1) is similar to the DAE case and

therefore it is omitted.

5.2 Singleton and Non-Singleton Trajectories

Assume f and f0 in (4.2.1) satisfy property M. Let p ∈ P. Let x(t,p) be the solution

of (4.2.1). Let S = {t ∈ [t0, tf ] : (t,p,x(t,p)) ∈ Ωm(f)}. If S is a set of measure zero

and p ∈ P\Ωm(f0), then the solution is called a singleton trajectory otherwise it is called a

non-singleton trajectory. If the solution is a singleton trajectory, then the assumptions of

Theorem 3.2.3 are satisfied and ∂px(tf ,p) is a singleton set.

Figure 5-1 depicts examples of singleton trajectories and a non-singleton trajectory. For

clarity, the solutions of an ordinary differential equation of the form ẋ = f(t, x), x(0) = p

are shown where f satisfies property M. Different shaded areas represent the sets, {Ui}5
i=1

as described in the statement of Assumption 5.1.1. The functions {gi}5
i=1 are as defined in

Assumption 5.1.1. The functions {fi}5
i=1 correspond to the functions {Fi}nD(F)

i=1 .
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Trajectory A is a non-singleton trajectory because it tracks the boundary of U5 defined

by g5. Trajectory B and C are singleton trajectories. Trajectory C crosses one boundary at a

time whereas B crosses multiple boundaries at a time. In addition, trajectory B has a point

where the trajectory is tangent to the boundary of U5 at a point. Solutions of (4.2.1) display

x

t

x = f(t, x)
.

A

B

C

1U , f , g
11

U , f , g
2 2 2

U , f , g
3 3 3 U , f , g5 55

U , f , g
4 4 4

Figure 5-1: Examples of singleton and non-singleton trajectories.

the same behavior as shown in Figure 5-1. The forward sensitivity equations in Theorem

3.2.3 and the differential equations in Theorem 4.2.3 are possibly discontinuous when the

trajectory crosses boundaries (Trajectory B and C). These equations have continuous right-

hand sides when x(t,p) ∈ Ui for some i ∈ D(f) per property M. If the trajectory tracks

the boundary of Ui, using Jvfi(·,p,x(·,p)) as Gf(·,p) satisfies the requirements of Theorem

4.2.3. Since Jvfi is continuous, the right-hand sides of the differential equations defined by

4.2.2 are continuous as long as the trajectory tracks the boundary of a Ui under this choice.

In order to integrate these equations accurately, the time points at which (t,p,x(t,p)) ∈

Ωm(f) hold need to be determined. At these time points, gi(t,p,x(t,p) = 0 holds for some i.

State event location algorithms can be used to detect these time points of discontinuity using

the discontinuity functions. At the end of this chapter, a state event location algorithm is

reviewed that is used in the remainder of this thesis.
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In the remainder of this thesis, following assumption holds.

Assumption 5.2.1. Let (x(t,p),y(t,p), ẋ(t,p)) be the solution of (4.3.1). Then, (t0, tf ] =

⋃n(p)
k=1 Tk where n(p) is an integer and depends on p; Tk = (αk, βk] and αk < βk for all

k ∈ {1, . . . , n(p)}; α1 = t0, βn(p) = tf ; αk = βk−1 for all k ∈ {2, . . . , n(p)} and m(t,p) =

sk, ∀t ∈ Tk, sk ∈ D(F) holds and the solution of (4.3.1) satisfies

0 = Fm(tk ,p)(t,p,x(t,p),y(t,p), ẋ(t,p)), ∀t ∈ Tk, x(t0,p) = F0(p). (5.2.1)

for each p ∈ P.

This assumption is not unreasonable for the systems considered in this thesis. Further-

more, solutions of (4.2.1) and (4.3.1) exist for a parameter value irrespective of Assumption

5.2.1 because the right-hand sides of these equations are locally Lipschitz continuous. Issues

that arise with discontinuous systems such as Zeno or chattering behavior [10] do not arise

in these systems.

Remark 5.2.2. The quantities n(p), {Tk}n(p)
k=1 and {sk}n(p)

k=1 are not known a priori. They

are determined by the state event location and non-singleton trajectory detection algorithm,

which is discussed later in this chapter, during the integration of (4.3.1).

In the next section, computational improvements made possible by this assumption are

discussed and then the state event location and non-singleton trajectory detection algorithm

is presented.

5.3 Computational Improvements

In this section, computational improvements to the integration of an equation defined in

(4.3.2) are discussed. The improvements apply to (3.3.4) as well. In the remainder of this
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thesis, Assumption 5.2.1 is assumed to hold and all functions satisfy property M. In addition,

Assumptions 4.3.1 and 4.3.2 hold.

Let k, sk and m(·,p) be as defined in Assumption 5.2.1. Let {s′k}
n(p)
k=1 be such that

s′k ∈ D(g) for all k ∈ {1, . . . , n(p)}. Let u(t,p) be as defined in Remark 4.3.3. Then

JFm(t,p)(t,u(t,p)) ∈ ∂BF(t,u(t,p)) (5.3.1)

holds per property M. Note that on Tk, JFsk
(·,u(·,p)) is a continuous function of time

because x(·,p), ẋ(·,p) and y(·,p) are continuous functions of time and JFsk
is continuous.

Let M : T ×P Z⇒ R
(ny+nx)×(1+np+nx) be defined by

M(t,p) = conv
(

{−B−1A, [A B] ∈ ∂BF(t,u(t,p)),A ∈ R
(ny+nx)×(1+np+nx), B ∈ R

(ny+nx)×(ny+nx)}
)

.

Let the subscript ṽ be associated with the host space of T × P × X . If t ∈ Tk,

−JqFsk
(t,u(t,p))−1JṽFsk

(t,u(t,p)) ∈ M(t,p),

−[0 Inx
]JqFsk

(t,u(t,p))−1JṽFsk
(t,u(t,p)) ∈ Γf(t,p,x(t,p)), (5.3.2)

−[Iny
0]JqFsk

(t,u(t,p))−1JṽFsk
(t,u(t,p)) ∈ Γr(t,p,x(t,p)) (5.3.3)

hold where Γf , Γr are as defined in Lemma 4.3.4, JqFsk
(t,u(t,p)) ∈ R

(ny+nx)×(ny+nx) and

JṽFsk
(t,u(t,p)) ∈ R

(ny+nx)×(1+np+nx). Note that JqFsk
(·,u(·,p))−1JṽFsk

(t,u(·,p)) is a con-

tinuous function on Tk. The inverse of JqFsk
(t,u(t,p))−1 exists per Assumption 4.3.2.

JqFsk
(·,u(·,p))−1 is a continuous function of t because JqFsk

(·,u(·,p)) is continuous on

Tk (Theorem 9.8 in [96]). Hence, it is a measurable selection on Tk. Consider the set of

equations

ṁ(t,p) = πxGf (t,p)m(t,p) + πpGf(t,p),
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n(t,p) = πxGr(t,p)m(t,p) + πpGr(t,p),

where the elements of these equations are defined in Theorem 4.2.3 and Corollary 4.3.7. Using

the left-hand sides of (5.3.2) and (5.3.3) to define Gf and Gr, the following is obtained







ṁ(t,p)

n(t,p)






= πvH(t,p)







m(t,p)

Inp






(5.3.4)

where H(t,p) = −JqFsk
(t,u(t,p))−1JṽFsk

(t,u(t,p)) and πvH(t,p) represents the last np +

nx columns of H(t,p). Pre-multiplying both sides with JqFsk
(t,u(t,p)), the following is

obtained

JqFsk
(t,u(t,p))







ṁ(t,p)

n(t,p)






= −πvJṽFsk

(t,u(t,p))







m(t,p)

Inp







where πvJṽFsk
(t,u(t,p)) is the last np + nx columns of JṽFsk

(t,u(t,p)). The final form of

the equations is

JyFsk
(t,u(t,p))n(t,p)+JẋFsk

(t,u(t,p))ṁ(t,p) + (5.3.5)

JxFsk
(t,u(t,p))m(t,p) + JpFsk

(t,u(t,p)) = 0.

Equation (5.3.5) can be solved efficiently for the unknowns n(t,p) and ṁ(t,p) without

explicitly inverting JqFsk
(t,u(t,p)) using the numerical method described in [36].

Reverse integration of the quantities in Theorems 4.3.10 and 4.3.11 can be achieved

without explicitly inverting matrices as well.

Consider the integral in Theorem 4.3.9. An element of ΓG defined in Theorem 4.3.9 can
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be computed using the equation

ż(t,p) = Jxgs′
k
(t,u(t,p))m(t,p) + Jygs′

k
(t,u(t,p))n(t,p) + (5.3.6)

Jẋgs′
k
(t,u(t,p))ṁ(t,p) + Jpgs′

k
(t,u(t,p)), ∀t ∈ Tk, ∀k ∈ {1, . . . , n(p)},

z(t0,p) = 0,

where m, n and ṁ are computed using (5.3.5). Note that substituting the expressions for

n and ṁ, equations of the form in Theorem 4.3.9 are obtained.

Consider the following integral

∫ βk

αk

[Jxgs′
k
(t,u(t,p) Jygs′

k
(t,u(t,p)]







m(t,p)

n(t,p)






+ (5.3.7)

[Jẋgs′
k
(t,u(t,p) Jẏgs′

k
(t,u(t,p)]







ṁ(t,p)

ṅ(t,p)






+ Jpgs′

k
(t,u(t,p))dt

where the integrand is obtained by the application of Theorem 2.8.12 to gs′
k

and m, ṁ and

n are computed using (5.3.5). Note that ṅ : T × P → R
ny×np and Jẏgs′

k
: T → R

1×ny are

used as place holders. In addition Jẏgs′
k
(t) = 0, ∀t ∈ Tk since g does not depend on ẏ. Let

λk : [αk, βk] → R
1×(nx+ny) be an absolutely continuous function. Let λk(t) = (λk,x(t), λk,y(t))

where λk,x(t) ∈ R
1×nx and λk,y(t) ∈ R

1×ny . Appending (5.3.5) to (5.3.7) using λk, the

following is obtained:

∫ βk

αk

[Jxgs′
k
(t,u(t,p)) Jygs′

k
(t,u(t,p))]







m(t,p)

n(t,p)






+ (5.3.8)

[Jẋgs′
k
(t,u(t,p)) Jẏgs′

k
(t,u(t,p))]







ṁ(t,p)

ṅ(t,p)






+ Jpgs′

k
(t,u(t,p)) −
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λk(t)[JxFsk
(t,u(t,p)) JyFsk

(t,u(t,p))]







m(t,p)

n(t,p)






−

λk(t)[JẋFsk
(t,u(t,p)) JẏFsk

(t,u(t,p))]







ṁ(t,p)

ṅ(t,p)






−

λk(t)JpFsk
(t,u(t,p))dt.

Note that JẏFsk
(t,u(t,p)) = 0 because Fsk

is not a function of ẏ. Using integration by

parts (the arguments of the functions are omitted for clarity) results in

∫ βk

αk

[Jẋgs′
k
Jẏgs′

k
]







ṁ

ṅ






− λk[JẋFsk

JẏFsk
]







ṁ

ṅ






dt = (5.3.9)

∫ βk

αk

([Jẋgs′
k
Jẏgs′

k
] − λk[JẋFsk

JẏFsk
])







ṁ

ṅ






dt = λ̃k







m

n







∣

∣

∣

∣

∣

∣

∣

βk

αk

−
∫ βk

αk

˙̃
λk







m

n






dt. (5.3.10)

where λ̃k = ([Jẋgs′
k
Jẏgs′

k
]−λk[JẋFsk

JẏFsk
]). Let λ̃k(t) = (λ̃k,x(t), λ̃k,y(t)) where λ̃k,x(t) ∈

R
1×nx and λ̃k,y(t) ∈ R

1×ny . Substituting the expression in (5.3.10) into (5.3.8) produces

∫ βk

αk

([Jxgs′
k
Jygs′

k
] − λk[JxFsk

JyFsk
] − ˙̃

λk)







m

n






+ Jpgs′

k
− λkJpFsk

dt + λ̃k







m

n







∣

∣

∣

∣

∣

∣

∣

βk

αk

.

This expression is simplified by setting

˙̃
λk = −λk[JxFsk

JyFsk
] + [Jxgs′

k
Jygs′

k
], ∀t ∈ [αk, βk) (5.3.11)

˙̃
λk,x = −λk,xJxFsk

+ Jxgs′
k
, ∀t ∈ [αk, βk)

˙̃
λk,y = −λk,yJyFsk

+ Jygs′
k

= 0, ∀t ∈ [αk, βk).
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As a result, the equations

λ̃k,x − Jẋgs′
k

= λk,xJẋFsk
,

Jygs′
k

= λk,yJyFsk
,

are solved to determine λk. Since [JyFsk
JẋFsk

] is nonsingular per Assumption 5.1.1, the

above equations have a unique solution which is

λk = [λ̃k,x − Jẋgs′
k
Jygs′

k
][JẋFsk

JyFsk
]−1.

Substituting the solution into (5.3.11), the equation

˙̃
λk = [λ̃k,x − Jẋgs′

k
Jygs′

k
][JẋFsk

JyFsk
]−1[JxFsk

JyFsk
] + [Jxgs′

k
Jygs′

k
]

is obtained. Multiplying out the terms, a linear ordinary differential equation for λ̃k,x is

obtained with continuous right-hand side. Hence λ̃k,x is an absolutely continuous function.

Therefore λ̃k is an absolutely continuous function. As a result, λk is absolutely continuous

as defined.

If k = n(p), let λ̃k(βk) = 0, otherwise let λ̃k(βk) = λ̃k+1(αk+1). Then (5.3.6) can be

written as

ż(t,p) = Jpgs′
k
(t,u(t,p)) − (5.3.12)

λk(t)JpFsk
(t,u(t,p)), ∀t ∈ (αk, βk], ∀k ∈ {1, . . . , n(p)}, z(t0,p) = 0,

˙̃
λk(t) = −λk(t)[JxFsk

(t,u(t,p)) JyFsk
(t,u(t,p))]+

[Jxgs′
k
(t,u(t,p)) Jygs′

k
(t,u(t,p))], ∀t ∈ [αk, βk), ∀k ∈ {1, . . . , n(p)},
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λ̃k(βk) = λ̃k+1(αk+1), ∀k ∈ {1, . . . , n(p) − 1}, λ̃n(p)(βn(p)) = 0,

λ̃k,x(t) = λk,x(t)JẋFsk
(t,u(t,p)) + Jẋgs′

k
(t,u(t,p)), ∀t ∈ [αk, βk), ∀k ∈ {1, . . . , n(p)},

0 = λk,y(t)JyFsk
(t,u(t,p)) − Jygs′

k
(t,u(t,p)), ∀t ∈ [αk, βk), ∀k ∈ {1, . . . , n(p)}.

Consider the case in Theorem 4.3.11. Let Mp, Mx, My and Mẋ be constants as defined

in Theorem 4.3.11. Consider the integral

z(tf ,p) =

∫ tf

t0

Mxm(t,p) + Myn(t,p) + Mẋṁ(t,p) + Mpdt

where m, n and ṁ are computed using (5.3.5). Note that ż(tf ,p) is the quantity of interest

which is an element of ΓG defined in Theorem 4.3.11. Converting the integral to the form

in (5.3.8), the following integral on Tk is obtained

∫ βk

αk

[Mx My]







m(t,p)

n(t,p)






+ [Mẋ Mẏ]







ṁ(t,p)

ṅ(t,p)






+ Mp − (5.3.13)

λk(t)[JxFsk
(t,u(t,p)) JyFsk

(t,u(t,p))]







m(t,p)

n(t,p)






−

λk(t)[JẋFsk
(t,u(t,p)) JẏFsk

(t,u(t,p))]







ṁ(t,p)

ṅ(t,p)






−

λk(t)JpFsk
(t,u(t,p))dt,

where Mẏ ∈ R
1×ny , Mẏ = 0 and JẏFsk

(·,u(·,p)) = 0 for all t ∈ Tk. Following the same

procedure as before, the following equations are obtained:

ż(t,p) = Mp − λk(t)JpFsk
(t,u(t,p)), ∀t ∈ (αk, βk], ∀k ∈ {1, . . . , n(p)}, (5.3.14)
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z(t0,p) = 0,

˙̃
λk(t) = −λk(t)[JxFsk

(t,u(t,p)) JyFsk
(t,u(t,p))]+

[Mx My], ∀t ∈ [αk, βk), ∀k ∈ {1, . . . , n(p)},

λ̃k(βk) = λ̃k+1(αk+1), ∀k ∈ {1, . . . , n(p) − 1}, λ̃n(p)(βn(p)) = 0,

λ̃k,x(t) = λk,x(t)JẋFsk
(t,u(t,p)) + Mẋ, ∀t ∈ [αk, βk), ∀k ∈ {1, . . . , n(p)},

My = λk,y(t)JyFsk
(t,u(t,p)), ∀t ∈ [αk, βk), ∀k ∈ {1, . . . , n(p)}.

5.4 State Event Location and Detection of Non-singleton

Trajectories

The governing equations for systems with varying structure are implemented in a program-

ming language using logical expressions and if-then-else statements in order to compute

numerical values. Each logical condition corresponds to a discontinuity function. If the

value of the discontinuity function is less than or equal to zero, the logical condition is as-

sumed to be true and false otherwise. In order to determine m(tk,p), the state of these

logical conditions need to be determined.

The set of active discontinuity functions is the set of discontinuity functions corresponding

to the logical expressions that need to be checked in order to evaluate the right-hand sides

of (3.3.1) or (4.3.1) given (t,u(t,p)). The set of active discontinuity function indices is the

set of pairs corresponding to the indices of these functions and is denoted by A. The set of

active discontinuity function indices is constant for all t ∈ Tk. Therefore, the set of active

function indices corresponding to Tk is denoted by Ak.

Let Tk = (tk, tk+1]. When t = tk, Ak can be determined. However, at this point in time,
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tk+1 is not known. tk+1 is the time at which Ak changes and it is not known a priori. In order

to determine tk+1, the dynamics of the system are integrated for a time step assuming Ak is

constant. The integration of the dynamics assuming Ak is constant is called discontinuity-

locked integration [83]. Then, the discontinuity functions are analyzed in order to determine

whether the state of any of the logical conditions determining Ak changed during this time

step. The state of a logical condition changes if the corresponding discontinuity function

crosses zero. If any of these discontinuity functions crosses zero, the infimum of the times

at which such a crossing occurs is determined. The infimum corresponds to one of the roots

of the active discontinuity functions. This infimum is the value of tk+1. The process of

determining this infimum value is called state event location.

Consider the time interval, [tk, tk+1], during the integration of the dynamics. After ap-

pending (5.3.5) and the active discontinuity functions to the system dynamics,

0 = Fm(tk ,p)(t,u(t,p)), ∀t ∈ (tk, tk+1] (5.4.1)

zv,w(t,p) = gv,w(t,u(t,p)), ∀(v, w) ∈ Ak,

0 = JyFm(tk ,p)(t,u(t,p))n(t,p) + JẋFm(tk ,p)(t,u(t,p))ṁ(tk,p) +

JxFm(tk ,p)(t,u(t,p))m(t,p) + JpFm(tk ,p)(t,u(t,p)), ∀t ∈ (tk, tk+1]

is obtained. This set of equations is used for discontinuity-locked integration.

A variant of the state event location algorithm in [83] is used in this thesis to detect

zero crossings. The only difference is the root finding algorithm used. Note that, the right-

hand sides of the equations defining the elements of the linear Newton approximations and

generalized Jacobians are discontinuous at these zero crossings.

The state event location algorithm in [83] makes use of the properties of the integra-

tion algorithms for differential-algebraic systems. In this thesis, the backward differentiation

formula (BDF) ([4]) family of numerical integration algorithms is used. This family of inte-
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grators use polynomials to interpolate the state trajectories and all zv,w(·,p). Let q be the

order of the polynomials used. Let z̃v,w be the polynomial that approximates zv,w(·,p), on

the time interval [tk, tk+1]. This polynomial is ([83])

z̃v,w(t) =

q
∑

l=0

hl
k∇lz̃v,w(tk+1)

l!

(

t − tk+1

hk

)l

, ∀(v, w) ∈ Ak (5.4.2)

where hk = tk+1 − tk is the integration time step which is determined by the integration al-

gorithm, ∇l is the backward difference operator defined recursively such that ∇0zv,w(tk+1) =

zv,w(tk+1), ∇zv,w(tk+1) = zv,w(tk+1)−zv,w(tk) and ∇lzv,w(tk+1) = ∇l−1zv,w(tk+1)−∇l−1zv,w(tk).

The state event location algorithm uses the roots of these interpolating polynomials to de-

termine zero crossing times. The algorithm is discussed in detail in the following subsection.

The detection of non-singleton trajectories depends on the analysis of discontinuity func-

tions on the interval [tk, tk+1]. If there exists an interval of time in [tk, tk+1] such that one

of the active discontinuity functions is zero for all t in that interval, then the solution is a

non-singleton trajectory. Since the discontinuity functions are approximated by the inter-

polating polynomials defined in (5.4.2) on [tk, tk+1], these polynomials are used instead of

the discontinuity functions. A relaxed criterion introduced next is used to determine non-

singleton trajectories because these polynomials are only approximations to the discontinuity

functions.

Definition 5.4.1 (Numerically Non-singleton Trajectory). The solution of (4.3.1) is

a numerically non-singleton trajectory if there exists a k ∈ {1, . . . , n(p) − 1} and interval

∆ ⊂ cl (Tk), such that for some (v, w) ∈ Ak, |z̃v,w(t,p)| ≤ ǫa and | ˙̃zv,w(t,p)| ≤ ǫa hold for

all t ∈ ∆ where ǫa is the absolute error tolerance used in the BDF algorithm.

The non-singleton trajectory detection algorithm is used to determine if the solution is

a numerically non-singleton trajectory. The algorithm is discussed in Step 4 of the main

algorithm presented in the next section.
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5.4.1 The State Event Location and Non-singleton Trajectory De-

tection Algorithm

Step 1: Determine m(tk,p), Ak and tk+1 using the BDF algorithm and execute discontinuity

locked integration of (5.4.1) to form the interpolating polynomials defined by (5.4.2).

Step 2: In order to determine if m(tk,p) needs to change at some t ∈ [tk, tk+1], the real

roots of the polynomials {z̃v,w : (v, w) ∈ Ak} are used. The minimum of the real roots

of these polynomials is used as a candidate time at which m(tk,p) changes on [tk, tk+1].

There are two classes of polynomials to consider:

(a) A0
k = {(v, w) ∈ Ak : z̃v,w is a zero polynomial}.

(b) A1
k = {(v, w) ∈ Ak : z̃v,w is not a zero polynomial}.

Let τind((v,w),Ak) represent the minimum of the roots of the polynomial z̃v,w. Let

τind((v,w),Ak) = +∞ for all (v, w) ∈ A0
k. These discontinuity functions imply that

(t,u(t,p)) lies on the boundary of an open set Ui as defined in Assumption 5.1.1 for

t ∈ [tk, tk+1] and therefore are ignored. If A1
k is empty, then go to Step 4.

Determining τind((v,w),Ak) for (v, w) ∈ A1
k is more complicated. In theory, one can use

the Jenkins-Traub algorithm [51, 50] to compute all the roots of z̃v,w, (v, w) ∈ A1
k.

However, most of the time z̃v,w does not have any real roots or it has a unique zero

and the application of the Jenkins-Traub algorithm incurs unnecessary computational

cost. The algorithm described in this section uses elements from interval arithmetic

[1] to reduce the number of times the Jenkins-Traub algorithm is applied. Note that

the degree of z̃v,w can be at most 5 in this thesis because the BDF algorithm uses

polynomials whose degree is at most 5.

The algorithm scales the polynomials so that their domains are [0, 1] instead of [tk, tk+1].

Let the corresponding scaled polynomials be sv,w : [0, 1] → R, (v, w) ∈ A1
k. Let q be

the order of the polynomials and {Cn}q
n=0 be their coefficients.
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The root-finding algorithm applied to all (v, w) ∈ A1
k is:

R.1. Let 0 < ∆ < 1. Let l = 1, al = 0, bl = 1, Dl = [al, bl] and S = {Dl}.

R.2. If l > n(S), then stop. All intervals in S are analyzed.

R.3. Let

sv,w(Dl) =

q
∑

n=0

CnDn
l

be the enclosure of sv,w. The enclosure contains the range of sv,w for the domain

Dl. If 0 /∈ sv,w(Dl), then there is no root of sv,w on Dl. In this case, go to Step

R.9. Otherwise, go to Step R.4.

R.4. Let

ṡv,w(Dl) =

q
∑

n=1

n · Cn · Dn−1
l

be the enclosure of ṡv,w. If 0 ∈ ṡv,w(Dl), then the zeros of sv,w may not be regular

i.e. they may have multiplicity greater than one. In this case, if bl − al ≤ ∆, go

to Step R.7 and if bl − al ≥ ∆, go to Step R.8. If 0 /∈ ṡv,w(Dl), then go to Step

R.5.

R.5. Consider the Krawcyk operator [72];

K(Dl) = mid(Dl) −
sv,w(mid(Dl))

mid(ṡv,w(Dl))
+

(

1 − ṡv,w(Dl)

mid(ṡv,w(Dl))

)

(Dl − mid(Dl))

where mid is the midpoint operator to an interval. If K(Dl) ∩ Dl = ∅, then

there exists no zero of the polynomial sv,w in Dl. In this case, go to Step R.9. If

K(Dl) ⊂ int (Dl), then there exists a unique zero of sv,w in Dl. In this case, go

to Step R.6.

R.6. Apply Newton’s method to determine the unique zero in Dl. Go to Step R.9.
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R.7. Apply the Jenkins-Traub algorithm to find all zeros of sv,w in Dl. Go to Step

R.9.

R.8. Let Dn(S)+1 = [al, (al + bl)/2], Dn(S)+2 = [(al + bl)/2, bl] and set S = S ∪

{Dn(S)+1, Dn(S)+2}. Go to Step R.9.

R.9. Let l = l + 1 and go to Step R.2.

Set τind((v,w),Ak) to the minimum of the roots with odd multiplicity. If there are no such

real roots, set τind((v,w),Ak) = +∞. Roots with even multiplicity imply that (t,u(t,p))

touches but does not cross the boundary of some Ui where Ui is as defined in Assump-

tion 5.1.1.

Step 3: Let τ̄ = min
(v,w)∈Ak

{τind((v,w),Ak)}. If τ̄ = +∞, set the event time, τ ∗ to tk+1 and go

to Step 4. Otherwise, let (v̄, w̄) be such that τind((v̄,w̄),Ak) = τ̄ . Compute a consistent

event time, τ ∗ and η = (τ ∗, ηp, ηx, ηy, ηẋ) that satisfy

0 = Fm(tk ,p)(η),

ηp = p,

ηẋ =
α0ηx

τ ∗ − tk
+

q
∑

i=1

αix(tk+1−i,p)

τ ∗ − tk
,

±ǫg = gv̄,w̄(η)

as in [83] where ηp ∈ R
np, ηx ∈ R

nx , ηy ∈ R
ny , ηẋ ∈ R

nx , {αi}q
i=1 are the coefficients

of the BDF method, ǫg and its sign are determined as in [83]. Set tk+1 = τ ∗. Update

the polynomials z̃v,w for all (v, w) ∈ Ak using η. Go to Step 2.

Step 4: If A0
k is nonempty, then the trajectory is labeled as numerically non-singleton.

Otherwise, the active discontinuity functions are analyzed to determine if the conditions

of Definition 5.4.1 are satisfied for any of the active discontinuity functions.

The algorithm to check the conditions of Definition 5.4.1 employs interval arithmetic,
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bisection and the Jenkins-Traub algorithm. The algorithm scales the polynomials so

that their domains are [0, 1] instead of [tk, tk+1]. Let the corresponding scaled poly-

nomials be sv,w : [0, 1] → R, (v, w) ∈ A1
k. Let q be the order of the polynomials and

{Cn}q
n=0 be their coefficients. The following algorithm is applied to all elements of

{z̃v,w : (v, w) ∈ A1
k} to determine whether the solution is numerically non-singleton.

N.1 Let 0 < ∆ < 1. Let l = 1, al = 0, bl = 1, Dl = [al, bl] and S = {Dl}.

N.2 If l > n(S), then stop. All intervals in S are analyzed.

N.3 Let

sv,w(Dl) =

q
∑

n=0

CnDn
l

be the enclosure of sv,w. There are three cases to consider

• sv,w(Dl) ⊂ [−ǫa, ǫa]. In this case, the condition on sv,w holds. Go to Step N.5

to check if the condition on the derivative holds.

• [−ǫa, ǫa]∩ sv,w(Dl) = ∅. In this case, the range of the polynomial correspond-

ing to the domain Dl does not intersect [−ǫa, ǫa]. Go to Step N.7.

• [−ǫa, ǫa]∩ sv,w(Dl) 6= ∅ and sv,w(Dl)\[−ǫa, ǫa] 6= ∅. In this case, the enclosure

does not furnish enough information. If bl−al > ∆, go to Step N.6, otherwise

go to go to Step N.4.

N.4 In this step, the maximum and minimum values attained by sv,w on Dl are an-

alyzed. The extremal values are attained at t = al, t = bl and/or at t ∈ Dl

such that the necessary condition of optimality, ṡv,w(t) = 0 holds. In order to

determine such t, the Jenkins-Traub algorithm is used to find the real roots of

ṡv,w. Let s̄v,w be the maximum and sv,w denote the minimum values attained on

the interval Dl.

If [−ǫa, ǫa] ∩ [sv,w, s̄v,w] 6= ∅ go to Step N.5. Note that, this conditions is more
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relaxed than the condition in Definition 5.4.1 for zv,w. Otherwise, go to Step N.7.

N.5 The actions taken for sv,w are repeated in this step for ṡv,w.

N.5.1 Let m = 1, cm = al, dm = bl, Dl,m = [cm, dm] and Sl = {Dl,m}.

N.5.2 If m > n(Sl), then stop. All intervals in Sl are analyzed.

N.5.3 Let

ṡv,w(Dl,m) =

q
∑

n=1

n · Cn · Dn−1
l,m

be the enclosure of ṡv,w. There are three cases to consider

• If ṡv,w(Dl,m) ⊂ [−ǫa, ǫa], the trajectory is numerically non-singleton.

• If [−ǫa, ǫa] ∩ ṡv,w(Dl,m) = ∅, go to N.5.6.

• If [−ǫa, ǫa]∩ ṡv,w(Dl) 6= ∅ and ṡv,w(Dl,m)\[−ǫa, ǫa] 6= ∅, then there are two

options. If dm − cm > ∆, Go to Step N.5.5, otherwise go to N.5.4.

N.5.4 In this step, the maximum and minimum values attained by ṡv,w on Dl,m

are analyzed. The extremal values are attained at t = cm, t = dm and/or at

t ∈ Dl,m such that the necessary condition of optimality, s̈v,w(t) = 0 holds.

In order to determine such t, the Jenkins-Traub algorithm is used to find the

real roots of s̈v,w. Let ¯̇sv,w be the maximum and ṡv,w denote the minimum

values attained on the interval Dl,m.

If [−ǫa, ǫa] ∩ [ṡv,w, ¯̇sv,w] 6= ∅, then label the solution as numerically non-

singleton. Note that, this conditions is more relaxed than the condition in

Definition 5.4.1 for żv,w. Otherwise, go to Step N.7.

N.5.5 Let Dl,n(S)+1 = [cm, (cm + dm)/2], Dl,n(S)+2 = [(cm + dm)/2, dm] and set

S = S ∪ {Dl,n(S)+1, Dl,n(S)+2}. Go to Step N.5.6.

N.5.6 Let m = m + 1. Go to Step N.5.2.

N.6 Let Dn(S)+1 = [al, (al + bl)/2], Dn(S)+2 = [(al + bl)/2, bl] and set S = S ∪
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{Dn(S)+1, Dn(S)+2}. Go to Step N.7.

N.7 Let l = l + 1. Go to Step N.2.

Go to Step 5.

Step 5: Let k = k + 1. Go to Step 1.

The discussion on state event location and non-singleton trajectory detection directly

applies to the multistage case in (4.4.1). It also directly applies to the integral in Theorem

4.3.9. This integral can be computed by appending the integrand to (4.3.1) and considering

the augmented system.

5.5 Computational Methods Used in this Thesis

In the remainder of this thesis, the algorithm described in the previous section based on the

algorithm in [83] is used for state event location. The dynamics in (5.2.1) and the auxiliary

equations in (5.3.5) are integrated using the integration code DSL48SE ([36, 107, 108]).

The quantities in (5.3.5) are derived from (4.3.1) using automatic differentiation [43] code

DAEPACK [107]. The FORTRAN 77 code implementation of the equations in (4.3.1) is

processed by DAEPACK to generate the FORTRAN 77 code representing the equations in

(5.3.5) as well as the additional code to keep track of the states of the logical conditions

in the code discussed in §5.4. The implementation of the infrastructure to solve (5.3.12)

and (5.3.14) by reverse integration is a topic for future research. Implementations exist

when the data of the problem is sufficiently smooth [24]; however, there are no software

implementations that combine state event location and reverse integration.
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Chapter 6

Bundle Method using Linear Newton

Approximations

This chapter contains the development of a bundle-type nonsmooth optimization algorithm

to numerically solve the mathematical program

J(p) = min
p∈P

f(p), s.t. gi(p) ≤ 0, i = 1, . . . , nc. (6.0.1)

The bundle method developed in this chapter takes into account the fact that the gen-

eralized gradient of f and gi cannot be computed at all p ∈ P. The algorithm uses linear

Newton approximations (Definition 2.8.11) where the generalized gradient is not available.

In the remainder of this chapter, first, the necessary conditions of optimality for the

Lipschitzian optimization problem (6.0.1) are summarized. Then, a bundle method using

linear Newton approximations is developed.
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6.1 Necessary Conditions of Optimality for Lipschitzian

Optimization

Assumption 6.1.1. In the remainder of this chapter, program (6.0.1) satisfies the following:

1. nc and np are finite positive integers;

2. P is an open convex subset of R
n;

3. f : P → R, and gi : P → R, i = 1, . . . , nc are locally Lipschitz continuous and

semismooth functions.

Definition 6.1.2 (Unconstrained Local and Global Minima). The point p∗ ∈ P is an

unconstrained local minimum of the program

min
p∈P

f(p)

if there exists an ǫ > 0 such that f(p∗) ≤ f(p) holds for all p ∈ P satisfying ‖p − p∗‖ < ǫ.

p∗ ∈ P is an unconstrained global minimum if f(p∗) ≤ f(p) holds for all p ∈ P.

Theorem 6.1.3 (Necessary Conditions of Optimality for Unconstrained Optimiza-

tion Problems). Let Assumption 6.1.1 hold. If p∗ is an unconstrained local minimum of

min
p∈P

f(p),

then 0 ∈ ∂f(p∗) holds (Proposition 2.3.2 in [25]).

Theorem 6.1.4 (Direction of Descent for Unconstrained Optimization Problems).

Let Assumption 6.1.1 hold. Let {v} = arg min{‖ζ‖ : ζ ∈ ∂f(p)}.1 Assume v 6= 0. Let

d = −v. Then f(p + td) < f(p) holds for small enough positive t (Lemmas 2.10, 2.11 and

2.12 in [54]).

1Note that the solution of this program is the projection of the zero vector on the nonempty compact
convex set ∂f(p). Therefore, the solution exists and is unique per Theorem 2.4.6.
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Definition 6.1.5 (Feasible Set). The set of feasible points, S, is

S = {p ∈ P : gi(p) ≤ 0, ∀i ∈ {1, . . . , nc}}.

Assumption 6.1.6. The feasible set, S, is nonempty.

Definition 6.1.7 (Set of Active Constraints). Let p ∈ S. Then I(p), the set of active

constraints at p, is {i : gi(p) = 0, i ∈ {i, . . . , nc}}.

Definition 6.1.8 (Constrained Local and Global Minima). A point p∗ ∈ S is a

constrained local minimum of (6.0.1) if there exists an ǫ > 0 such that f(p∗) ≤ f(p) for all

p ∈ S satisfying ‖p−p∗‖ < ǫ holds. p∗ ∈ P is a constrained global minimum if f(p∗) ≤ f(p)

holds for all p ∈ S.

Theorem 6.1.9 (Necessary Conditions of Optimality for Constrained Optimiza-

tion Problems). Let Assumption 6.1.1 hold. If p∗ is a constrained local minimum of

(6.0.1), then there exist numbers and µi, i = 0, . . . , nc such that

0 ∈µ0∂f(p∗) +
nc
∑

i=1

µi∂gi(p
∗), (6.1.1)

0 6=|µ0| +
nc
∑

i=1

|µi|, (6.1.2)

0 =µigi(p
∗), ∀i ∈ {1, . . . , nc}, (6.1.3)

0 ≤µi, ∀i ∈ {0, . . . , nc} (6.1.4)

hold (Theorem 6.1.1 in [25]).

Since (6.1.2) holds, the additional condition

nc
∑

i=0

µi = 1
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can be imposed. This condition, (6.1.1) and (6.1.4) clearly show that the zero vector is

an element of the convex combinations of the elements of the generalized gradients of the

constraints and the objective at a local minimum of (6.0.1).

In order to exclude cases where µ0 = 0 in Theorem 6.1.9, constraint qualifications need

to be imposed on problem (6.0.1). If µ0 = 0, then the necessary conditions in Theorem 6.1.9

furnish no information about f . Two constraint qualifications relevant to the work in this

thesis are as follows.

Definition 6.1.10 (Cottle Constraint Qualification). Let p̄ ∈ S. Then the Cottle con-

straint qualification holds at p̄ if either gi(p̄) < 0, ∀i ∈ {1, . . . , nc} or 0 /∈

conv
(

⋃

i∈I(p̄) ∂gi(p̄)
)

.

Definition 6.1.11 (Slater Constraint Qualification). Let p̄ ∈ S. Then the Slater con-

straint qualification holds for (6.0.1) at p̄ if gi are convex functions for all i ∈ I(p̄) and there

exists a p̃ ∈ S such that gi(p̃) < 0 for all i ∈ I(p̄).

The constrained optimization program (6.0.1) is transformed locally into an uncon-

strained optimization program using the total constraint function and the improvement func-

tion.

Definition 6.1.12 (Total Constraint Function). The total constraint function, G : P →

R, is defined by

G(p) = max{gi(p), . . . , gnc
(p)}.

It is a locally Lipschitz continuous function and its generalized gradient at p satisfies

∂G(p) ⊂ ∂G̃(p)

where ∂G̃(p) = conv
(

⋃

i∈I(p) ∂gi(p)
)

per (2.6.3).
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Definition 6.1.13 (Improvement Function). Let p̄ ∈ S. Let the improvement function

at p̄, H : P → R, be defined by

H(p; p̄) = max{f(p) − f(p̄), G(p)}. (6.1.5)

Then, H is a locally Lipschitz continuous function and

∂H(p̄; p̄) ⊂ M̃(p̄)

holds [54] where

M̃(p̄) =































∂f(p̄) if G(p̄) < 0

conv
(

∂f(p̄) ∪ ∂G̃(p̄)
)

if G(p̄) = 0

∂G̃(p̄) if G(p̄) > 0.

Definition 6.1.14 (Stationary Point). A point p̄ ∈ S that satisfies (6.1.1), (6.1.2), (6.1.3)

and (6.1.4) or equivalently satisfies 0 ∈ M̃(p̄) is called a stationary point of problem (6.0.1)

[54].

Theorem 6.1.15. Let p∗ be a constrained local minimum of (6.0.1). Then 0 ∈ ∂H(p∗;p∗)

and 0 ∈ M̃(p∗) hold. In addition, there exist scalars µi, i = 0, . . . , nc such that (6.1.1),

(6.1.2), (6.1.3) and (6.1.4) hold (Lemma 2.15 in [54]).

Corollary 6.1.16 (Descent Direction for the Improvement Function). Let {v} =

arg min{‖ζ‖ : ζ ∈ ∂H(p̄; p̄)}2. Assume v 6= 0. Let d = −v. Then for small enough positive

t, H(p̄ + td; p̄) < H(p̄; p̄) holds.

The following is a restatement of Lemma 2.16 in [54].

2Note that the solution of this program is the projection of the zero vector on the nonempty compact
convex set ∂H(p̄; p̄). Therefore, the solution exists and is unique per Theorem 2.4.6.
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Theorem 6.1.17 (Necessary and Sufficient Conditions of Optimality for Convex

Programs). Let problem (6.0.1) be a convex program, i.e., f and gi for i = 1, . . . , nc are

convex functions. Assume that the Slater constraint qualification (6.1.11) holds at p̄ ∈ S.

Then, the following are equivalent:

1. p̄ is a constrained global minimum of (6.0.1);

2. 0 ∈ ∂H(p̄; p̄) = M̃(p̄) holds;

3. p̄ is a stationary point of (6.0.1);

4. the necessary conditions of optimality in Theorem (6.1.9) hold with µ0 6= 0.

6.2 Necessary Conditions of Optimality using Linear

Newton Approximations

In this section, necessary conditions of optimality using linear Newton approximations are

presented. In addition, a descent direction is obtained using linear Newton approximations.

Assumption 6.2.1. Assume program (6.0.1) satisfies the following:

1. f and each gi for i = 1, . . . , nc are semismooth functions in the restricted sense as

defined in Section 2.8.4.

2. There exists Γf , a linear Newton approximation of f , such that ∂f(p) ⊂ Γf(p) holds

for all p ∈ P. In addition, Γf(p) is a convex set for all p ∈ P.

3. For each gi, there exists Γgi, a linear Newton approximation of gi such that ∂gi(p) ⊂

Γgi(p) holds for all p ∈ P . In addition, Γgi(p) is a convex set for all p ∈ P.

Theorem 6.2.2 (Necessary Conditions of Optimality for Unconstrained Optimiza-

tion Problems using Linear Newton Approximations). Let Assumptions 6.1.1 and
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6.2.1 hold. If p∗ is a local minimum of the unconstrained optimization problem

min
p∈P

f(p)

then 0 ∈ Γf(p∗) holds.

Proof. The result follows from Theorem 6.1.3 and Assumption 6.2.1 noting that ∂f(p∗) ⊂

Γf(p∗).

Theorem 6.2.3 (Direction of Descent for Unconstrained Optimization Problems

using Linear Newton Approximations). Let Assumptions 6.1.1 and 6.2.1 hold. Let

{v} = arg min{‖ζ‖ : ζ ∈ Γf(p)}. Assume v 6= 0. Let d = −v. Then for small enough

positive t, f(p + td) < f(p) holds.

Proof. Γf(p) is a convex and compact set therefore the element of minimum norm, v, is

well-defined, unique and satisfies the following per Theorem 2.4.6

vTu ≥ vTv, ∀u ∈ Γf(p),

dTu ≤ dTv = −‖d‖2, ∀u ∈ Γf(p). (6.2.1)

Let t > 0. Then

f(p + td) − f(p) = tζ∗Td (6.2.2)

holds for some ζ∗ ∈ ∂f(p∗) where p∗ = p + αd and 0 < α < t per the Mean Value Theorem

for locally Lipschitz functions (Theorem 2.6.4).

Note that (6.2.2) implies

f(p + td) − f(p) ∈ {tζTd : ζ ∈ ∂f(p∗)}. (6.2.3)
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Since Γf is compact-valued and upper semicontinuous, for small enough t,

Γf(p∗) ⊂ Γf(p) +
‖d‖
2

B(0, 1) (6.2.4)

holds where B(0, 1) is the unit ball in R
n.

Let ζ ∈ ∂f(p∗) ⊂ Γf(p∗) and consider ζTd. For any such ζ, there exist a u ∈ Γf(p) per

(6.2.4) such that

ζTd ≤ uTd + ‖d‖2/2

holds. Using (6.2.1),

ζTd ≤ −‖d‖2 + ‖d‖2/2, ∀ζ ∈ ∂f(p∗)

is obtained. Combining with (6.2.3), the desired result;

f(p + td) − f(p) ≤ −t
‖d‖2

2

is obtained for small enough t. Hence d is a descent direction.

Remark 6.2.4. The above proof can be carried out using M̃(p) as defined in Definition

6.1.13 to show that the element of minimum norm of M̃(p) defines a descent direction.

The following is a technical lemma related to the compactness of the convex hull of a

compact set. It will be used repeatedly in the remainder of this chapter.

Lemma 6.2.5 (Convex Hull of a Compact Set). Let A ∈ R
n be a compact set. Then

conv (A) is a compact set.

Proof. The result holds trivially if A is empty or a singleton set. The boundedness of

conv (A) follows from the definition of the convex hull and the boundedness of A. In the
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remainder of the proof, it is shown that conv (A) is a closed set. Assume A is not empty. Let

x̄ be a limit point of A. Let {xk : xk ∈ conv (A)}∞k=1 be a sequence such that lim
k→∞

xk = x̄.

Per Carathéodory’s Theorem (Theorem 2.4.5), for all k, xk =
∑n+1

i=1 αk,iyk,i,
∑n+1

i=1 αk,i =

1, αk,i ≥ 0, ∀i ∈ {1, . . . , n + 1}, yk,i ∈ A, ∀i ∈ {1, . . . , n + 1} holds. Since {αk,i}∞k=1 and

{yk,i}∞k=1 are bounded sequences in R and R
n, there exists an infinite set J ⊂ {1, . . . ,∞}

such that for all i ∈ {1, . . . , n + 1}, lim
j→∞

αj,i = ᾱi, j ∈ J and lim
j→∞

yj,i = ȳi, j ∈ J holds

per the Bolzano-Weierstrass Theorem. Note that
∑n+1

i=1 ᾱi = 1 since
∑n+1

i=1 αj,i = 1 for all

j ∈ J . In addition, ȳi ∈ A for all i ∈ {1, . . . , n + 1} because A is compact. Then for j ∈ J ,

x̄ = lim
j→∞

xj =

n+1
∑

i=1

ᾱiȳi holds. This proves that x̄ ∈ conv (A). Hence conv (A) is compact.

Theorem 6.2.6 (Necessary Conditions of Optimality for Constrained Optimiza-

tion Problems using Linear Newton Approximations). Let Assumptions 6.1.1 and

6.2.1 hold. If p∗ is a constrained local solution of program (6.0.1), then there exist numbers

µ0 and µi, i = 1, . . . , nc such that

0 ∈µ0Γf(p∗) +
nc
∑

i=1

µiΓgi(p
∗), (6.2.5)

0 6=|µ0| +
nc
∑

i=1

|µi|, (6.2.6)

0 =µigi(p
∗), ∀i ∈ {1, . . . , nc}, (6.2.7)

0 ≤µi, ∀i ∈ {0, . . . , nc} (6.2.8)

hold.

Proof. The result follows from Theorem 6.1.9 and Assumption 6.2.1.

Definition 6.2.7 (Stationary Point in the Extended Sense). A point p ∈ S that

satisfies (6.2.5), (6.2.6), (6.2.7) and (6.2.8) is called a stationary point in the extended sense

of problem (6.0.1).
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In the remainder, the following constraint qualification similar to the Cottle constraint

qualification (Definition 6.1.10) is assumed to hold.

Definition 6.2.8 (Extended Cottle Constraint Qualification). Let p̄ ∈ S. Then the

extended Cottle constraint qualification holds at p̄ if either gi(p̄) < 0 ∀i ∈ {1, . . . , nc} or 0 /∈

conv
(

⋃

i∈I(p̄) Γgi(p̄)
)

.

Remark 6.2.9. Since conv
(

⋃

i∈I(p̄) Γgi(p̄)
)

contains conv
(

⋃

i∈I(p̄) ∂gi(p̄)
)

, the extended

Cottle constraint qualification implies the Cottle constraint qualification. If the constraint

functions are convex, the Cottle constraint qualification implies the Slater constraint quali-

fication [54].

In order to relate the improvement function to the necessary conditions of optimality,

the linear Newton approximation of the improvement function needs to be derived.

Corollary 6.2.10 (Linear Newton Approximation of the Total Constraint Func-

tion). Let G be as defined in Definition 6.1.12. Then ΓG : P ⇉ R
n defined by

ΓG(p) = conv





⋃

i∈I(p)

Γgi(p)





is a linear Newton approximation of G.

Proof. The result follows from the repeated application of (2.8.5) and the properties of linear

Newton approximations.

Corollary 6.2.11 (Linear Newton Approximation of the Improvement Function).

Let H be defined as in Definition 6.1.13. Then ΓH : P ⇉ R defined by

ΓH(p̄; p̄) =































Γf(p̄) if G(p̄) < 0

conv (Γf(p̄) ∪ ΓG(p̄)) if G(p̄) = 0

ΓG(p̄) if G(p̄) > 0

(6.2.9)
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is a linear Newton approximation of H at p̄.

Proof. Using (2.8.5), Γ̃H : P ⇉ R, a linear Newton approximation at p̄, defined by

Γ̃H(p̄; p̄) =































Γf(p̄) if G(p̄) < 0

Γf(p̄) ∪ ΓG(p̄) if G(p̄) = 0

ΓG(p̄) if G(p̄) > 0

is obtained. The desired result follows from ΓH(p̄; p̄) = conv
(

Γ̃H(p̄; p̄)
)

for all p̄ ∈ P.

Corollary 6.2.12. Let p∗ be a constrained local minimum of (6.0.1). Then 0 ∈ ΓH(p∗;p∗)

holds. In addition, there exist scalars µi, i = 0, . . . , nc such that (6.2.5), (6.2.6), (6.2.7) and

(6.2.8) hold.

Proof. Since p∗ is a constrained local minimum, 0 ∈ ∂H(p∗,p∗) holds per Theorem 6.1.15.

Since ∂H(p∗,p∗) ⊂ M̃(p∗) ⊂ ΓH(p∗;p∗) holds per Definition 6.1.13, Assumption 6.2.1 and

Corollary 6.2.11, the rest of the results follow using the set {µi}nc

i=0 whose existence is stated

in Theorem 6.1.15 in the expressions (6.2.5), (6.2.6), (6.2.7) and (6.2.8).

Corollary 6.2.13. Let p̄ ∈ S. Assume 0 ∈ ΓH(p̄; p̄). Then p̄ is a stationary point in the

extended sense of the program (6.0.1).

Proof. By definition of ΓH(p̄; p̄),

0 ∈ conv
(

Γf(p̄) ∪
(

∪i∈I(p̄) Γgi(p̄)
))

holds. Hence, there exist µi for i ∈ {0} ∪ I(p̄) such that

0 ∈ µ0Γf(p̄) +
∑

i∈I
µiΓgi(p̄),
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µi ≥ 0, ∀i ∈ {0} ∪ I(p̄),

∑

i∈{0}∪I(p̄)

µi = 1

hold. Let µi = 0 for all i ∈ {1, . . . , nc}\I(p̄). Then

µigi(p̄) = 0, ∀i ∈ {1, . . . , nc}

holds because if i ∈ I(p̄), then gi(p̄) = 0 holds. As a result, there exist scalars µi, i ∈

{0, . . . , nc} satisfying conditions (6.2.5), (6.2.6), (6.2.7) and (6.2.8).

The following descent direction for the improvement function is a result of Theorem 6.2.3.

Corollary 6.2.14 (Descent Direction for the Improvement Function). Let {v} = arg

min{‖ζ‖ : ζ ∈ ΓH(p̄; p̄)}.3. Assume v 6= 0. Let d = −v. Then for small enough positive t,

H(p̄ + td; p̄) < H(p̄; p̄) holds.

In order to compute a descent direction, an approximation of the improvement function

will be used in bundle methods. In this thesis, the approximation is a convex function that

has a subdifferential at p equal to ΓH(p;p).

Discussion of the properties of this approximation requires the following theorem (Lemma

2.5 in [54] which is a direct result of Theorems 2.8.2 and 2.8.6 in [25]).

Theorem 6.2.15 (Pointwise Maximum of Functions). Let Z be a compact subset of

R
n. Let z ∈ Z. Let hz : P → R be a member of a family of functions parameterized by z.

Let h : P → R be defined by

h(p) = max{hz(p), z ∈ Z}.

3Note that the solution of this program is the projection of the zero vector on the nonempty compact
convex set ΓH(p̄; p̄) Therefore, the solution exists and is unique per Theorem 2.4.6.
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Let M(p̄) = {z ∈ Z : h(p̄) = hz(p̄)}. Let O be a neighborhood of p̄. Assume:

1. For all z ∈ M(p̄), hz is a Lipschitz continuous function on O with the same Lipschitz

constant K.

2. h is finite at some p ∈ O.

3. hz is a continuous function from Z × O to R.

4. ∂hz is an upper semicontinuous set-valued mapping from Z × O to R
np.

Then:

1. h is locally Lipschitz continuous at p̄.

2. ∂h(p̄) ⊂ conv
(

∪z∈M(p̄)∂hz(p̄)
)

.

3. If hz for each z ∈ M(p̄) is regular at p̄, then h is regular at p̄ and ∂h(p̄) = conv
(

∪z∈M(p̄)∂hz(p̄)
)

.

In addition, h′(p̄;d) = max{〈ζ,d〉 : ζ ∈ ∂h(p̄)} for all d ∈ R
np.

Theorem 6.2.16 (Convex Approximation of the Improvement Function). Let p̄ ∈ P

and O be a neighborhood of p̄. Define

1. f̄ζ : O → R : p 7→ f(p̄) + 〈ζ,p− p̄〉 for each ζ ∈ Γf(p̄).

2. f̄ : O → R : p 7→ max{f̄ζ(p) : ζ ∈ Γf(p̄)}.

3. ḡi,ζ : O → R : p 7→ gi(p̄) + 〈ζ,p− p̄〉 for each ζ ∈ Γgi(p̄) and for all i ∈ {1, . . . , nc}.

4. ḡi : O → R : p 7→ max{ḡi,ζ(p) : ζ ∈ Γgi(p̄)}, for all i ∈ {1, . . . , nc}.

5. Ḡ : O → R : p 7→ max{ḡi(p) : i ∈ {1, . . . , nc}}.

6. H̄ : O → R : p 7→ max{f̄(p) − f̄(p̄), Ḡ(p)}. H̄ is called the convex approximation of

the improvement function.

Then:

1. f̄ is a convex function on O and ∂f̄ (p̄) = Γf(p̄).

2. ḡi is a convex function on O and ∂ḡi(p̄) = Γgi(p̄) for all i ∈ {1, . . . , nc}.

3. Ḡ is a convex function on O and ∂Ḡ(p̄) = conv
(

∪i∈Y(p̄)Γḡi(p̄)
)

where Y(p̄) = {i :

ḡi(p̄) = Ḡ(p̄), i ∈ {1, . . . , nc}}.

4. H̄ is a convex function on O and ∂H̄(p̄) = ΓH(p̄; p̄).
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5. Let d = −v where {v} = arg min{‖ζ‖ : ζ ∈ ∂H̄(p̄)}. If v 6= 0, then d is a descent

direction of H̄ at p̄.

Proof. Let K = max
{

‖ζ‖ : ζ ∈ Γf(p̄) ∪
(

∪i∈{1,...,nc}Γgi(p̄)
)}

. K is finite and well-defined

since the linear Newton approximations in the definition are all compact subsets of R
np and

nc is finite. Note that K is a Lipschitz constant for all f̄ζ and for all ḡi,ζ.

Observe that ∂ζf̄(p) = {ζ}, ζ ∈ Γf(p̄) and ∂ḡi,ζ(p) = {ζ}, ζ ∈ Γgi(p̄) for all i ∈

{i, . . . , nc}. (ζ,p) 7→ fζ(p) is a continuous function and (ζ,p) Z⇒ ∂fζ(p) is an upper semi-

continuous set-valued map because f̄ζ and ∇f̄ζ are continuous functions of (ζ,p). Similarly,

(ζ,p) 7→ gi,ζ(p) is a continuous and (ζ,p) Z⇒ ∂gi,ζ(p) is an upper semicontinuous map for

all i ∈ {1, . . . , nc}. Regularity of f̄ζ and ḡi,ζ follows from their continuous differentiability.

Convexity of f̄ζ and ḡi,ζ is a result of f̄ζ and ḡi,ζ being affine functions.

Hence f̄ and ḡi are Lipschitz continuous functions on O, regular at p̄, ∂f̄ (p̄) = conv (Γf(p̄))

and ∂ḡi(p̄) = conv (Γgi(p̄)) per Theorem 6.2.15. Since Γf(p̄) and Γgi(p̄) are convex sets per

Assumption 6.2.1, ∂f̄ (p̄) = Γf(p̄) and ∂ḡi(p̄) = Γgi(p̄) follows.

Let p1 ∈ O and p2 ∈ O. Let p3 ∈ {p : p = αp1 + (1−α)p2, α ∈ (0, 1)}. Let ζ3 ∈ ∂f̄ (p̄)

be such that f(p̄) + 〈ζ3,p3 − p̄〉 = f̄(p3). Then f(p̄) + 〈ζ3,p3 − p̄〉 = αf(p̄) + α〈ζ3,p1 −

p̄〉 + (1 − α)f(p̄) + (1 − α)〈ζ3,p2 − p̄〉 holds. f̄(p3) ≤ αf̄(p1) + (1 − α)f̄(p2) follows from

f(p̄) + 〈ζ3,p1 − p̄〉 ≤ f̄(p1) and f(p̄) + 〈ζ3,p2 − p̄〉 ≤ f̄(p2). Hence f̄ is a convex function.

The convexity of ḡi follows from the same reasoning.

Per (2.6.4), Ḡ is regular at p̄ , Lipschitz continuous on O and ∂Ḡ(p̄) = conv
(

∪i∈Y(p̄)Γḡi(p̄)
)

.

Convexity follows from the fact that the maximum of a finite number of convex functions is

convex.

Similar to the case Ḡ, H̄ is regular at p̄, Lipschitz continuous and convex on O. Note
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that H̄(p̄) = max{0, Ḡ(p̄)}. Per (2.6.4),

∂H̄(p̄) =































∂f̄ (p̄) if Ḡ(p̄) < 0

conv
(

∂f̄ (p̄) ∪
(

∪i∈Y(p̄)∂ḡi(p̄)
))

if Ḡ(p̄) = 0

conv
(

∪i∈Y(p̄)∂ḡi(p̄)
)

if Ḡ(p̄) > 0.

(6.2.10)

which is equal to (6.2.9).

d is a descent direction per Theorem 6.1.4.

Lemma 6.2.17. Let H̄ be as defined in Theorem 6.2.16. Then H̄(p̄+d) = max(〈ζ,d〉, ζ ∈

ΓH̄(p̄; p̄)) holds for p̄ ∈ S and for all d ∈ R
np.

Proof. Let ∆ = H̄(p̄ + d). First, assume f̄(p̄ + d) − f̄(p̄) > Ḡ(p̄ + d). Then, from the

definition of f̄ , it can deduced that ∆ = max(〈ζ,d〉, ζ ∈ ∂f̄ (p̄)). Now assume that for

some i ∈ Y(p̄), ḡi(p) > ḡj(p) holds for all j ∈ Y(p̄)\{i} and ḡi(p) > f̄(p̄ + d) − f̄(p̄).

Then, using the definition of ḡi and the fact that ḡi(p̄) = 0, it can be shown that ∆ =

max(〈ζ,d〉, ζ ∈ Γgi(p̄)).

Let J ⊂ Y(p̄) be such that ∆ = ḡj(p), ∀j ∈ J and ∆ > ḡi(p), ∀i ∈ Y(p̄)\J .

Then ∆ =
∑

i∈Y(p̄)

αi max(〈ζ,d〉, ζ ∈ Γgi(p̄)) holds where αi ≥ 0,
∑

i∈Y(p̄)

αi = 1. Note that

αi = 0, ∀i ∈ Y(p̄)\J . This can be written as

∆ = max





〈





∑

i∈Y(p̄)

αiζi



 ,d

〉

, ζi ∈ Γgi(p̄), 0 ≤ αi ≤ 1,
∑

i∈Y(p̄)

αi = 1, i ∈ Y(p)





or equivalently ∆ = max
(

〈ζ,d〉, ζ ∈ ∂Ḡ(p̄)
)

. Note that if ζ ∈ ∂Ḡ(p̄) such that ∆ = 〈ζ,d〉,

then ζ ∈ conv (∪i∈J Γgi(p̄)) otherwise ∆ > 〈ζ,d〉 has to hold.

If ∆ = f̄(p̄+d)−f̄ (p̄) as well, then ∆ = λ1 max(〈ζ,d〉, ζ ∈ ∂f̄ (p̄))+λ2max
(

〈ζ,d〉, ζi ∈ ∂Ḡ(p̄)
)

holds where λ1 ≥ 0, λ2 ≥ 0 and λ1 + λ2 = 1. This can be shown to be equivalent
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to max(〈ζ,d〉, ζ ∈ ΓH̄(p̄; p̄)) using the definition of ∂H̄(p̄) and the results in Theorem

6.2.16.

The following theorem elucidates the relationship between H̄ ′(p̄;d) and H ′(p̄; p̄;d), the

directional derivative of the improvement function. Note that H ′(p̄; p̄;d) exists for all d ∈

R
np because H is a composition of the max function, f and gi, i ∈ {1, . . . , nc} which are all

Bouligand differentiable at all p ∈ P as a result of Assumption 6.2.1. H̄ ′(p̄;d) exists for all

d ∈ R
np because H̄ is a finite convex function at p.

Corollary 6.2.18. Let Assumptions 6.1.1 and 6.2.1 hold. Let H be as defined in Definition

6.1.13 and H̄ as defined in Theorem 6.2.16. Let p̄ ∈ S. Then

H ′(p̄; p̄;d) ≤ H̄ ′(p̄;d), ∀d ∈ R
np,

H(p̄ + td; p̄) ≤ H(p̄; p̄) + tH̄ ′(p̄;d) + o(t),

where t is a positive scalar and o(t)/t → 0 as t ↓ 0.

Proof. H ′(p̄; p̄;d) ≤ Ho(p̄; p̄;d) per the definition of the generalized directional deriva-

tive (Definition 2.6.1). Note that Ho(p̄; p̄;d) = max{〈ζ,d〉, ζ ∈ ∂H(p̄; p̄)} and H̄ ′(p̄;d) =

H̄o(p̄;d) = max{〈ζ,d〉, ζ ∈ ΓH(p̄; p̄)} since H̄ is regular at p̄. H ′(p̄; p̄;d) ≤ H̄ ′(p̄;d), ∀d ∈

R
np follows because ∂H(p̄; p̄) ⊂ ΓH(p̄; p̄).

H(p̄ + td; p̄) = H(p̄; p̄) + tH ′(p̄; p̄;d) + o(t) holds per the definition of the directional

derivative. The result follows after substituting H̄ ′(p̄;d) for H ′(p̄; p̄;d).

Definition 6.2.19 (Feasible Descent Direction). d ∈ R
np is a feasible descent direction

for f at p with respect to S if (p + td) ∈ S for small enough positive t and d is a descent

direction with respect to f .

The next corollary motivates searching for a descent direction for H using H̄ .
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Corollary 6.2.20 (Feasible Descent Direction of H obtained from H̄). Let Assump-

tions 6.1.1 and 6.2.1 hold. Let H be as defined in Definition 6.1.13 and H̄ as defined in

Theorem 6.2.16. Let d be a descent direction for H̄ at p̄ ∈ S, i.e H̄(p̄+ td) < H̄(p̄) = 0 for

small enough t. Then d is a feasible descent direction for f at p̄ relative to S.

Proof. Note that p̄ ∈ S, H(p̄; p̄) = 0. Since d is a descent direction H̄ ′(p̄;d) < 0. Per

Corollary 6.2.18,

H(p̄ + td; p̄) ≤ H(p̄; p̄) + t(H̄ ′(p̄;d) + o(t)/t) (6.2.11)

holds. Since o(t)/t → 0 as t ↓ 0, for small enough t, H(p̄ + td; p̄) < H(p̄; p̄) = 0.

Since p̄ ∈ S, G(p̄) ≤ 0. Note that H(p̄; p̄) = max(f(p̄)− f(p̄), G(p̄)) = max(0, G(p̄)) =

0. In order for H(p̄ + td; p̄) < 0 to hold for sufficiently small t, f(p̄ + td) < f(p̄) and

G(p̄ + td) ≤ 0 have to hold simultaneously, proving the claim.

If all the elements of ∂H̄(p) were available, the following quadratic problem would furnish

a direction of descent.

Theorem 6.2.21. Let Assumptions 6.1.1 and 6.2.1 hold. Let H be as defined in Definition

6.1.13 and H̄ as defined in Theorem 6.2.16.

Let p̄ ∈ S and let {v} = arg min{‖ζ‖ : ζ ∈ ΓH(p̄; p̄)}.4 Let d∗ be a solution of

min
d∈R

np
H̄(p̄ + d) +

1

2
‖d‖2. (6.2.12)

Then:

1. d∗ exists and is unique.

2. d∗ = −v.

4v is well-defined per Theorem 2.4.6 because ΓH(p̄; p̄) is a nonempty compact and convex set and v is
the unique projection of the zero vector onto ΓH(p̄; p̄).
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3. H̄(p̄ + d∗) = H̄(p̄) − ‖d∗‖2.

4. H̄(p̄ + td∗) ≤ H̄(p̄) − t‖d∗‖2 for all t ∈ [0, 1].

5. d∗ 6= 0 if and only if 0 /∈ ΓH(p̄; p̄).

6. p̄ is an unconstrained global minimum of the function H̄ if and only if d∗ = 0.

7. If the extended Cottle constraint is satisfied at p̄ for problem (6.0.1) then p̄ is stationary

in the extended sense for (6.0.1) if and only if p̄ is a constrained global minimum of

min
p∈P

f̄(p), s.t. Ḡ(p) ≤ 0. (6.2.13)

8. Problem (6.2.12) is equivalent to the problem

min
∆,d

∆ +
1

2
‖d‖2 (6.2.14)

s.t. H(p̄; p̄) + 〈ζ,d〉 ≤ ∆, ∀ζ ∈ ΓH(p̄; p̄),

∆ ∈ R, d ∈ R
np.

Proof. Let V : R
np → R : d 7→ max{〈ζ,d〉 : ζ ∈ ΓH(p̄; p̄)} and J : R

np → R : d 7→

H̄(p̄ + d) + 1
2
‖d‖2. Note that

J(d) = H̄(p̄) + V (d) +
1

2
‖d‖2 = V (d) +

1

2
‖d‖2,

V (d) +
1

2
‖d‖2 ≥ −M‖d‖ +

1

2
‖d‖2

where M = max{‖ζ‖ : ζ ∈ ΓH(p̄; p̄)} per Lemma 6.2.17. Since −M‖d‖ + 1
2
‖d‖2 → +∞

as ‖d‖ → +∞, J(d) → +∞ as ‖d‖ → +∞. Therefore the minimum of (6.2.12) and a d∗

exists.

H̄(p̄)+V (d)+ 1
2
‖d‖2 is a strictly convex function because ‖d‖2 = dTd is strictly convex

and max{〈ζ,d〉, ζ ∈ ΓH(p̄; p̄)} is convex. Hence d∗ is unique.
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Note that V and ‖ · ‖2 are convex hence regular functions. As a result, the sum rules

in §2.6.2 hold with equality. Hence ∂J(d∗) = ∂V (d∗) + d∗ holds. In addition, at d∗,

0 ∈ ∂J(d∗) has to hold per Theorem 6.1.3. Therefore −d∗ ∈ ∂V (d∗). Since ∂V (d∗) =

{ζ ∈ ΓH(p̄; p̄) : V (d∗) = 〈ζ,d∗〉} per Theorem 6.2.15, −d∗ ∈ ΓH(p̄; p̄). Note that {ζ ∈

ΓH(p̄; p̄) : V (d∗) = 〈ζ,d∗〉} is a convex set. Let ζ1 ∈ ΓH(p̄; p̄) and ζ2 ∈ ΓH(p̄; p̄) such

that V (d∗) = 〈ζ1,d
∗〉 = 〈ζ2,d

∗〉 holds. Then V (d∗) = 〈α1ζ1 +α2ζ2,d
∗〉 holds for all α1 ≥ 0,

α2 ≥ 0 satisfying α1 + α2 = 1. Note that α1ζ1 + α2ζ2 ∈ ΓH(p̄; p̄) because ΓH(p̄; p̄) is a

convex set.

Let v̄ = −d∗. Note that V (d∗) = 〈v̄,d∗〉 = max{〈ζ,d∗〉 : ζ ∈ ΓH(p̄; p̄)} = −‖v̄‖2.

Hence 〈ζ, v̄〉 ≥ ‖v̄‖2 for all ζ ∈ ΓH(p̄; p̄) and v̄ = v per Theorem 2.4.6.

Since V (d∗) = −‖d∗‖2, H̄(p̄ + d∗) = H̄(p̄) − ‖d∗‖2. Note that V (td∗) = tV (d∗).

Therefore H̄(p̄ + td∗) = H̄(p̄) − t‖d∗‖2.

Item 5 follows from the fact that d∗ = −v. Item 6 follows from the fact if d∗ = 0, then

0 ∈ ΓH(p̄; p̄) and this implies that 0 ∈ ∂H̄(p̄). Since H̄ is a convex function, this condition

is necessary and sufficient for p̄ to be an unconstrained global minimum per Theorem 6.1.17.

Program (6.2.13) is a convex optimization problem. The necessary conditions of opti-

mality at p̄ can be shown to be 0 ∈ ∂H̄(p̄) or equivalently 0 ∈ ΓH(p̄; p̄). If the extended

Cottle constraint is satisfied at p̄ for problem (6.0.1), then the Cottle constraint qualification

(also the Slater constraint qualification) is satisfied for (6.2.13). Then p̄ ∈ S is a constrained

global minimum of (6.2.13) if and only if 0 ∈ ΓH(p̄; p̄) per Theorem 6.1.17.

Note that H̄(p̄ + d) = V (d). Let d∗ be the solution of (6.2.12). Let ∆∗ = V (d∗). Note

that (∆∗,d∗) is a feasible point for (6.2.14) and that (6.2.14) can be written as

min
∆,d

∆ +
1

2
‖d‖2 s.t. max{〈ζ,d〉, ζ ∈ ΓH(p̄, p̄)} − ∆ ≤ 0 (6.2.15)

which is a convex program. The generalized gradient of the objective (∆,d) 7→ ∆ + 1
2
‖d‖2
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is {(1,d)} because the objective is a continuously differentiable function. The generalized

gradient of the constraint (∆,d) 7→ max{〈ζ,d〉, ζ ∈ ΓH(p̄, p̄)} − ∆ is {(−1, ζ) : 〈ζ,d〉 =

V (d), ζ ∈ ΓH(p̄, p̄)}. Then the necessary condition of optimality at p̄ is

0 ∈ conv ({(1,d)}, {(−1, ζ) : ζ ∈ ΓH(p̄, p̄), 〈ζ,d〉 = V (d)}). (6.2.16)

Note that (2M‖d‖,d), d ∈ R
np where M = max{‖ζ‖ : ζ ∈ ΓH(p̄; p̄)} satisfies the con-

straint in (6.2.15) with strict inequality. Hence, the Slater constraint qualification holds for

(6.2.15). Then, the necessary conditions are also sufficient for optimality. Since −d∗ ∈ {ζ ∈

ΓH(p̄, p̄) : 〈ζ,d∗〉 = ∆∗}, (∆∗,d∗) is a constrained global minimum of (6.2.15) and (6.2.14).

Assume (∆̄, d̄) is another constrained global minimum of (6.2.15) where d̄ 6= d∗. Then

from the necessary condition of optimality (6.2.16), it can be deduced that −d̄ ∈ ΓH(p̄, p̄)

and V (d̄) = −‖d̄‖2. Then the optimal solution value is V (d̄)+ 1
2
‖d̄‖2 = −1

2
‖d̄‖2. Note that,

the optimal solution value is also V (d∗) + 1
2
‖d∗‖2 = −1

2
‖d∗‖2. ‖d∗‖ < ‖d̄‖ because −d∗ is

the element of minimum norm in ΓH(p̄, p̄) per item 2 and it is unique per Theorem 2.4.6.

Hence, (6.2.15) and (6.2.14) have a unique constrained global minimum which is (∆∗,d∗).

As a result, programs (6.2.14) and (6.2.12) are equivalent.

6.3 Bundle Method using Linear Newton Approxima-

tions

This section discusses a bundle method algorithm using linear Newton approximations in

detail. The algorithm is an extension of Algorithm 3.1 in Chapter 6 in [54] that uses linear

Newton approximations which satisfy Assumption 6.2.1. The proof of convergence follows

closely the proof of convergence of Algorithm 3.1 in Chapter 6 in [54] making modifications

that take into account the use of linear Newton approximations.
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The bundle method is an iterative algorithm. It requires an initial point p1 ∈ S and

produces an infinite sequence, {pk}, such that {pk} ∈ S and if pk 6= pk+1, then f(pk+1) <

f(pk). The algorithm produces a sequence {pk} such that if p̄ is an accumulation point of

{pk}, then p̄ ∈ S and 0 ∈ ΓH(p̄; p̄) holds, i.e p̄ is stationary in the extended sense per

Corollary 6.2.13. The algorithm requires that an element of Γf and ΓG be computable for

all p ∈ P.

Ideally, in order to generate pk+1 at the kth iteration, (6.2.12) should be solved to obtain

a descent direction and then a line search should be executed along this direction of descent.

In practice, given p ∈ P, every element of ΓH(p;p) is not known. Usually only a single

element can be computed. Therefore problem (6.2.12) cannot be solved to obtain a descent

direction in most applications. Instead an approximation of (6.2.12) is formulated using

elements from linear Newton approximations of neighboring points that are close enough.

These neighboring points comprise the second sequence of points {yk} ∈ P with y1 = p1.

The candidate direction obtained from the approximation of (6.2.12) is tested in a special

line search algorithm. The line search algorithm returns pk+1 and another point yk+1 which

is used to further improve the approximation to (6.2.12). It is possible that pk = pk+1 in

which case, the candidate direction is not a descent direction.

At the kth iteration not all points yj, j ∈ {1, . . . , k} are used to approximate (6.2.12).

First, as k increases, the distance between pk and yj with smaller indices j may be become

too large for a good approximation. Second, storing the information for all k points is

costly. At each iteration k, the algorithm uses two sets of indices Mf
k and MG

k such that

Mf
k ⊂ {1, . . . , k} and MG

k ⊂ {1, . . . , k}. In addition, k ∈ Mf
k and k ∈ MG

k . These sets define

bundles of points, hence the name bundle method. The method uses ζ
f
j , an element Γf(yj),

j ∈ Mf
k and ζG

j , an element of ΓG(yj), j ∈ MG
k to approximate (6.2.12).
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Define:

fk,j = f(yj) + 〈ζf
j ,pk − yj〉, ∀j ∈ {1, . . . , k}, (6.3.1)

Gk,j = G(yj) + 〈ζG
j ,pk − yj〉, ∀j ∈ {1, . . . , k}, (6.3.2)

sk,j = ‖yj − pk‖, ∀j ∈ Mf
k ∪ MG

k (6.3.3)

αf
k,j = max{|f(pk) − fk,j|, γf(sk,j)

2}, ∀j ∈ {1, . . . , k}, (6.3.4)

αG
k,j = max{|Gk,j|, γG(sk,j)

2}, ∀j ∈ {1, . . . , k}, (6.3.5)

where γG > 0 and γf > 0 are constants. Equations (6.3.1) and (6.3.2) define linearizations

of f and G at nearby points of pk. The quantities fk,j and Gk,j are called linearization

values. Equations (6.3.4) and (6.3.5) define a measure of the goodness of the linearizations.

These quantities are called locality measures. The smaller the locality measure for a given

linearization, the better the linearization approximates the improvement function in the

neighborhood of pk.

The sets Mf
k and MG

k are constructed such that

Mf
k = {j ∈ {1, . . . , k} : αf

k,j < ā} (6.3.6)

MG
k = {j ∈ {1, . . . , k} : αG

k,j < ā} (6.3.7)

hold where ā is a finite positive number. At the kth iteration of the algorithm, a pk+1 and

yk+1 are calculated. M̃f
k and M̃G

k , subsets of Mf
k and MG

k , respectively are determined such

that the sets Mf
k+1 = M̃f

k ∪ {k + 1} and MG
k+1 = M̃G

k ∪ {k + 1} satisfy (6.3.6) and (6.3.7),

respectively. The process of removing elements from the bundle is called distance resetting.

The following assumption is necessary to make sure that the sequences {pk}, {yk} and

their limit points are subsets of P.

Assumption 6.3.1. Let ā be a positive constant. Let X = {x ∈ R
n : ‖x−p‖2 ≤ ā,p ∈ S}.
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Then cl (X) ⊂ P holds.

The approximation of (6.2.12) is

min
∆,d

∆ +
1

2
‖d‖2 (6.3.8)

s.t. − αf
k,j + 〈ζf

j ,d〉 ≤ ∆, ∀j ∈ Mf
k ,

− αG
k,j + 〈ζG

j ,d〉 ≤ ∆, ∀j ∈ MG
k ,

d ∈ R
np, ∆ ∈ R.

The properties of problem (6.3.8) are summarized in the following lemmas.

Lemma 6.3.2. The program (6.3.8) satisfies the Slater constraint qualification for all k =

1, . . . ,∞.

Proof. Given pk, the points {yj : j ∈ Mf
k ∪MG

k } satisfy ‖pk−yj‖ ≤
√

ā for all j ∈ Mf
k ∪MG

k

per (6.3.6) and (6.3.7).

Let Z = z ∈ R
np : ‖pk − z‖ ≤

√
ā. Note that Z is a compact set. Therefore, due to the

upper semicontinuity of the linear Newton approximations and their compact-valuedness,

one can find a constant Ck such that ‖ζ‖ ≤ Ck holds for all ζ ∈ Γf(z) and ζ ∈ Γgi(z), i =

1, . . . , nc for all z ∈ Z. Assume that such constant does not exist. Let there exist an infinite

sequence {zi} ⊂ Z such that ‖ζi‖ > i where ζi ∈ Γf(zi). The choice of Γf is arbitrary. The

proof holds if any of the Γgi are used instead. Since Z is compact, {zi} has a convergent

subsequence in Z by the Bolzano-Weierstrass Theorem. Let the limit point be z̄ and the

converging subsequence be {zj}. Let O be a bounded open set such that Γf(z̄) ⊂ O.

By upper semicontinuity of Γf , there exists a neighborhood of z̄ such that ζj ∈ O. This

contradicts the fact that lim
j→∞

‖ζj‖ = +∞. Hence, there exists a Ck as described.

It is obvious that (6.3.8) is a convex optimization problem. Let d ∈ R
np. The point

(2Ck‖d‖,d) is a feasible point of (6.3.8) since ‖〈ζf
j ,d〉‖ ≤ Ck‖d‖ and ‖〈ζG

j ,d〉‖ ≤ Ck‖d‖
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hold for all j ∈ Mf
k ∪ MG

k and all locality measures are nonnegative. Note that in this

case, the inequalities in the constraints are satisfied strictly. Hence, the Slater constraint

qualification is satisfied.

Lemma 6.3.3. Problem (6.3.8) is a convex optimization problem. It has a unique solution.

Let the solution be (∆k,dk). Furthermore, there exist λk,j, j ∈ Mf
k , and µk,j, j ∈ MG

k

satisfying

(λk,j)(−αf
k,j + 〈ζf

j ,dk〉 − ∆k) = 0, ∀j ∈ Mf
k , (6.3.9)

(µk,j)(−αG
k,j + 〈ζG

j ,dk〉 − ∆k) = 0, ∀j ∈ MG
k , (6.3.10)

∑

j∈Mf
k

λk,j +
∑

j∈Mf
G

µk,j = 1, (6.3.11)

λk,j ≥ 0, ∀j ∈ Mf
k , µk,j ≥ 0, ∀j ∈ MG

k , (6.3.12)

dk = −





∑

j∈Mf
k

λk,jζ
f
j +

∑

j∈MG
k

µk,jζ
G
j



 , (6.3.13)

∆k = −



‖dk‖2 +
∑

j∈Mf
k

λk,jα
f
k,j +

∑

j∈MG
k

µk,jα
G
k,j



 . (6.3.14)

Finally, λk,j, j ∈ Mf
k , and µk,j, j ∈ MG

k satisfy the above conditions if and only if they

constitute a solution of the dual problem

min
λ,µ

1

2
‖d̃k‖2 +

∑

j∈Mf
k

λjα
f
k,j +

∑

j∈MG
k

µjα
G
k,j (6.3.15)

s.t.
∑

j∈Mf

k

λj +
∑

j∈Mf
G

µj = 1, (6.3.16)

λj ≥ 0, ∀j ∈ Mf
k , µj ≥ 0, ∀j ∈ MG

k ,
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where

d̃k = −





∑

j∈Mf
k

λjζ
f
j +

∑

j∈MG
k

µjζ
G
j



 . (6.3.17)

Proof. The convex nature of (6.3.8) is obvious. Since the Slater constraint qualification

holds per Lemma 6.3.2, equations (6.3.9), (6.3.10), (6.3.11), (6.3.12) and (6.3.13) follow from

the necessary and sufficient conditions of optimality for this problem. Equation (6.3.14)

is obtained after substituting (6.3.13) into (6.3.9) and (6.3.10) and summing up over all

j ∈ Mf
k ∪ MG

k .

The solution (∆k,dk) is unique. Let

Vf (d) = max(−αf
k,j + 〈ζf

j ,d〉, j ∈ Mf
k )

VG(d) = max(−αG
k,j + 〈ζG

j ,d〉, j ∈ MG
k ).

Then, problem (6.3.8) can be written as

min
d

1

2
‖d‖2 + max(VG(d), Vf(d))

where ∆k = max(VG(dk), Vf(dk)). This reformulation is possible because an optimal solution

of (6.3.8) has to satisfy at least one of the constraints with equality. Otherwise, the optimal

∆k can be further decreased, violating optimality. Note that VG and Vf are convex functions.

The maximum of two convex functions is convex. Since ‖d‖2 is strictly convex, (∆k,dk) is

unique.

The Lagrangian of (6.3.8) is

L(∆,d, λ, µ) = ∆ +
1

2
‖d‖2 +

∑

j∈Mf
k

(λj)(−αf
k,j + 〈ζf

j ,d〉 − ∆)+ (6.3.18)
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∑

j∈MG
k

(µj)(−αf
k,j + 〈ζG

j ,d〉 − ∆).

The dual function q is

q(λ, µ) = inf
∆,d

L(∆,d, λ, µ), s.t. λj ≥ 0, µj ≥ 0, ∀j ∈ Mf
k ∪ MG

k .

Note that q(λ, µ) is finite only if (6.3.16) holds. Otherwise, one can pick an arbitrarily large

negative ∆ to obtain q(λ, µ) = −∞. If (6.3.16) holds, then L(∆,d, λ, µ) becomes a strictly

convex function of d and the infimum becomes an unconstrained optimization problem. Due

to the strict convexity, there exists a unique solution, d̃k.

Note that,

∇dL(∆,d, λ, µ) = d +
∑

j∈Mf
k

λjζ
f
j +

∑

j∈Mf
k

µjζ
G
j .

Then the necessary condition of optimality ∇dL(∆,d, λ, µ) = 0 produces (6.3.17).

The dual problem becomes

max
λ,µ

−1

2
‖d̃k‖2 −

∑

j∈Mf
k

λjα
f
k,j −

∑

j∈MG
k

µjα
G
k,j

s.t.
∑

j∈Mf
k

λj +
∑

j∈Mf
G

µj = 1,

λj ≥ 0, ∀j ∈ Mf
k , µj ≥ 0, ∀j ∈ MG

k ,

once (6.3.17) is substituted into the expression for q(λ, µ). Replacing the max with the min,

provides the desired result.

The optimal solution value of (6.3.8) and (6.3.15) are equal by strong duality (Proposition

5.3.1 in [14]) and the solution of (6.3.15) are the multipliers satisfying (6.3.9), (6.3.10),
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(6.3.11), (6.3.12) and (6.3.13).

Lemma 6.3.3 shows that −dk is in the convex hull of the elements of the set of linear

Newton approximations. The objective of the dual problem implies that the effect of each

element is weighed by the corresponding locality measure. In order to minimize the objective

of the dual problem, λk,j and µk,j corresponding to larger values of locality measures should

be made as small as possible.

A new linearization needs to be added in case a direction of descent cannot be determined

with the available linearizations. The new linearization needs to significantly change dk+1

obtained as the solution of (6.3.15). Mathematical discussion of what is meant by significant

change is deferred for the latter part of this section where the convergence of the bundle

method is discussed.

If pk+1 6= pk, then the linearization values and locality measures need to be updated.

The linearization values can be updated as follows

fk+1,j = fk,j + 〈ζf
j ,pk+1 − pk〉, ∀j ∈ Mf

k ,

Gk+1,j = Gk+1,j + 〈ζG
j ,pk+1 − pk〉, ∀j ∈ MG

k .

In order to avoid storing the points {yk}, the locality measures are updated using

sk+1,j = sk,j + ‖pk − pk+1‖ if j ∈ Mf
k ∪ MG

k ,

sk+1,k+1 = ‖yk+1 − pk+1‖.

Note that ‖pk+1 − yj‖ ≤ sk+1,j for all j ∈ Mf
k+1 ∪ MG

k+1.

The number of ζ
f
j and ζG

j stored can be kept at a minimum using aggregation. Aggre-

gation combines the active constraints in the solution of (6.3.8) into two linear constraints,

one for the constraints using ζ
f
j and one for the constraints using ζG

j . Let λk and µk be
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the Lagrange multipliers that solve (6.3.15) at iteration k > 1. Assume distance resetting

has occurred at iteration k − 1. Then, the aggregate subgradients, vf
k and vG

k , are computed

as the convex combination of the ζ
f
j and ζG

j using the solution of (6.3.15). Since vf
k and

vG
k are convex combinations of the ζ

f
j and ζG

j , they satisfy the bound discussed in Lemma

6.3.2. The aggregate linearization values, f̃ v
k and G̃v

k, computed similarly. The aggregate

locality measures, α̃f,v
k and α̃G,v

k , can be considered as the locality measures of imaginary

points associated with aggregate subgradients and aggregate linearization values. The exact

computation of these values is described in the next section as well as the method to update

them from iteration to iteration.

Once the aggregate quantities are computed, they can be used in the next iteration of

the algorithm if distance resetting does not occur. If distance resetting occurs at the kth

iteration, then the aggregate quantities need to be discarded and (6.3.8) is again solved during

the next iteration. The aggregate quantities are discarded because they may be derived from

data obtained at points yj such that j /∈ Mf
k+1 ∪ MG

k+1. These points are too far away from

the next iterate, pk+1 and their linearizations do not carry relevant information anymore.

It is sufficient to consider the aggregate constraints in the (k + 1)th iteration and the

constraints associated with yk+1 to determine a descent direction as long as there is no

distance resetting. Hence at every iteration, (6.3.8) can be formulated using at most four

constraints. If distance resetting occurs in this case, then (6.3.8) has only two constraints

and one has effectively restarted the algorithm. The parameter ā can be chosen large enough

to prevent excessive distance resetting. Furthermore, arbitrary subsets of Mf
k and MG

k can

be incorporated into Mf
k+1 and MG

k+1 to minimize information loss due to distance resetting.

Let k̄ be the index of the most recent iteration during which distance resetting occurred.

Let k ≥ k̄ + 1. Let ra
k = 1 if distance resetting occurred in the previous iteration and ra

k = 0
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otherwise. Then using aggregate quantities at iteration k + 1, problem (6.3.8) becomes

min
∆,d

∆ +
1

2
‖d‖2 (6.3.19)

s.t. − αf
k+1,j + 〈ζf

j ,d〉 ≤ ∆, ∀j ∈ Mf
k+1,

− αf,v
k+1 + 〈vf

k ,d〉 if ra
k+1 = 0,

− αG
k+1,j + 〈ζG

j ,d〉 ≤ ∆, ∀j ∈ MG
k+1,

− αG,v
k+1 + 〈vG

k ,d〉 ≤ ∆, if ra
k+1 = 0,

d ∈ R
np, ∆ ∈ R,

where Mf
k+1 = {k + 1} ∪ M̃f

k , MG
k+1 = {k + 1} ∪ M̃G

k , M̃f
k and M̃G

k are arbitrary subsets of

Mf
k and MG

k respectively and

f v
k+1 = f̃ v

k + 〈vf
k ,pk+1 − pk〉,

Gv
k+1 = G̃v

k + 〈vG
k ,pk+1 − pk〉,

sf
k+1 = s̃f

k + ‖pk+1 − pk‖,

sG
k+1 = s̃G

k + ‖pk+1 − pk‖,

αf,v
k+1 = max{|f(pk) − f v

k+1|, γf(s
f
k+1)

2},

αG,v
k+1 = max{|Gv

k|, γG(sG
k+1)

2}.

The dual of (6.3.19) is

min
λk, µ, λv, µv

1

2
‖
∑

j∈Mf
k+1

λjζ
f
j + λvvf

k +
∑

j∈MG
k+1

µjζ
G
j + µvvG

k−1‖2+ (6.3.20)

∑

j∈Mf
k+1

λjα
f
k+1,j + λvαf,v

k+1 +
∑

j∈MG
k+1

µk+1α
G
k+1,j + µv

kα
G,v
k+1
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s.t.
∑

j∈Mf

k+1

λj + λv +
∑

j∈MG
k+1

µj + µv = 1,

λv ≥ 0, µv ≥ 0,

λj ≥ 0, ∀j ∈ Mf
k+1, µk,j ≥ 0, ∀j ∈ MG

k+1,

λv
k = µv

k = 0 if ra
k+1 = 1.

The bundle method described formally in the next section uses the aggregation technique.

6.3.1 Formal Statement of the Bundle Method with Linear New-

ton Approximations

Step 0: Initialize.

(a) Let ǫs ≥ 0.

(b) Let mL, mR, ā, t̄ be such that 0 < mL < mR < 1, ā > 0, 0 < t̄ ≤ 1.

(c) Let γf > 0 and γG > 0.

(d) Set k = 1, j = 1.

(e) Set ra
k = 1.

(f) Let pk ∈ S.

(g) Set yk = pk, sk,j = sf
k = sG

k = 0.

(h) Set Mf
k = {j}, ζ

f
j ∈ Γf(pk), vf

k−1 = ζ
f
j , fk,j = f v

k .

(i) Set MG
k = {j}, ζG

j ∈ ΓG(pk), vG
k−1 = ζG

j , Gk,j = Gv
k.

Step 1: Find Direction of Descent. Let λk, µk, λv
k and µv

k be the solution of the following

quadratic problem;

min
λ, µ, λv, µv

1

2

∥

∥

∥

∑

j∈Mf
k

λjζ
f
j + λvvf

k−1 +
∑

j∈MG
k

µjζ
G
j + µvvG

k−1

∥

∥

∥

2

+ (6.3.21)
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∑

j∈Mf

k

λjα
f
k,j + λvαf,v

k +
∑

j∈MG
k

µjα
G
k,j + µvαG,v

k (6.3.22)

s.t.
∑

j∈Mf

k

λj + λv +
∑

j∈MG
k

µj + µv = 1, (6.3.23)

λv ≥ 0, µv ≥ 0, λj ≥ 0, ∀j ∈ Mf
k , µj ≥ 0, ∀j ∈ MG

k ,

λv = µv = 0 if ra
k = 1,

where

αf
k,j = max{|f(pk) − fk,j|, γf(sk,j)

2}, j ∈ Mf
k ,

αG
k,j = max{|Gk,j|, γG(sk,j)

2}, j ∈ MG
k ,

αf,v
k = max{|f(pk) − f v

k |, γf(s
f
k)

2},

αG,v
k = max{|Gv

k|, γG(sG
k )2}.

Compute

νf
k =

∑

j∈Mf
k

λk,j + λv
k, νG

k =
∑

j∈MG
k

µk,j + µv
k.

If νf
k 6= 0, set λ̃k,j = λk,j/ν

f
k , j ∈ Mf

k , λ̃v
k = λv

k/ν
f
k .

If νf
k = 0, set λ̃k,k = 1, λ̃k,j = 0, j ∈ Mf

k \{k}, λ̃v
k = 0.

If νG
k 6= 0, set µ̃k,j = µk,j/ν

G
k , j ∈ MG

k , µ̃v
k = µv

k/ν
G
k .

If νG
k = 0, set µ̃k,k = 1, µ̃k,j = 0, j ∈ MG

k \{k}, µ̃v
k = 0.

If λv
k = µv

k = 0 then compute ak = max{sk,j : j ∈ Mf
k ∪ MG

k }.

Let

(vf
k , f̃

v
k , s̃f

k) =
∑

j∈Mf
k

λ̃k,j(ζ
f
j , fk,j, sk,j) + λ̃v

k(v
f
k−1, f

v
k , sf

k),
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(vG
k , G̃v

k, s̃
G
k ) =

∑

j∈MG
k

µ̃k,j(ζ
G
j , Gk,j, sk,j) + µ̃v

k(v
G
k−1, G

v
k, s

f
k),

vk = νf
k v

f
k + νG

k vG
k ,

dk = − vk,

α̃f,v
k = max{|f(pk) − f̃ v

k |, γf(s̃
f
k)

2},

α̃G,v
k = max{|G̃v

k|, γG(s̃G
k )2},

α̃v
k = νf

k α̃f,v
k + νG

k α̃G,v
k ,

∆k = − (‖dk‖2 + α̃v
k).

Step 2: Check Stopping Criterion. Set

wk =
1

2
‖vk‖2 + α̃v

k. (6.3.24)

If wk ≤ ǫs, terminate. Otherwise go to Step 3.

Step 3: Do Line Search Using Algorithm 6.3.1.1, find two step sizes tLk and tRk such that

tLk ≤ 1, 0 ≤ tLk ≤ tRk , pk+1 = pk + tLk dk, yk+1 = pk + tRk dk and

f(pk+1) ≤ f(pk) + mLtLk ∆k,

0 ≥ G(pk+1),

tRk = tLk if tLk ≥ t̄,

mR∆k ≤ − α(pk+1,yk+1) + 〈ζ(yk+1),dk〉 if tLk < t̄,

ā/2 ≥ ‖yk+1 − pk+1‖,
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where ζ(·) and α : P × P → R are defined as

ζ(y) ∈















Γf(y) if G(y) ≤ 0,

ΓG(y) if G(y) > 0,

α(x,y) =















max{|f(x) − f̄(x;y)|, γf‖x − y‖2} if G(y) ≤ 0,

max{|Ḡ(x;y)|, γG‖x − y‖2} if G(y) > 0,

f̄(x;y) = f(y) + 〈ζ(y),x− y〉 if G(y) ≤ 0,

Ḡ(x;y) = G(y) + 〈ζ(y),x− y〉 if G(y) > 0,

hold.

Step 4: Update Linearizations Select M̃f
k ⊂ Mf

k and M̃G
k ⊂ MG

k . Let Mf
k+1 = M̃f

k ∪

{k + 1} and MG
k+1 = M̃G

k ∪ {k + 1}. Let

ζ
f
k+1 ∈ Γf(yk+1),

ζG
k+1 ∈ ΓG(yk+1),

fk+1,k+1 = f(yk+1) + 〈ζf
k+1,pk+1 − yk+1〉,

fk+1,j = fk,j + 〈ζf
j ,pk+1 − pk〉, ∀j ∈ M̃f

k ,

f v
k+1 = f̃ v

k + 〈vf
k ,pk+1 − pk〉,

Gk+1,k+1 = G(yk+1) + 〈ζG
k+1,pk+1 − yk+1〉,

Gk+1,j = Gk,j + 〈ζG
j ,pk+1 − pk〉, ∀j ∈ M̃G

k ,

Gv
k+1 = G̃v

k + 〈vG
k ,pk+1 − pk〉,

sk+1,k+1 = ‖yk+1 − pk+1‖,

sk+1,j = sk,j + ‖pk+1 − pk‖, ∀j ∈ M̃f
k ∪ M̃G

k ,

sf
k+1 = s̃f

k + ‖pk+1 − pk‖,
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sG
k+1 = s̃G

k + ‖pk+1 − pk‖.

Step 5: Check Distance Resetting Criterion. Let ak+1 = max{ak+‖pk+1−pk‖, sk+1,k+1}.

If ak+1 ≤ ā then set ra
k+1 = 0 and go to Step 7. Otherwise set ra

k+1 = 1 and go to Step

6.

Step 6: Do Distance Reset. Remove the indices with smallest values in M̃f
k and M̃G

k

until

ak+1 = max{sk+1,j : j ∈ M̃f
k ∪ M̃G

k } ≤ ā/2

holds.

Step 7: Increment Counter. Set k = k + 1 and go to Step 7.

Algorithm 6.3.1.1 Line Search Algorithm Using Linear Newton Approximations

Require: ∆k < 0
Require: 0 < mL < mR < 1, ā > 0, 0 < t̄ ≤ 1.
Require: β ∈ (0, 0.5).
1: Let tLk = 0 and t = tu = 1.
2: while tLk 6= tu do
3: if f(pk + td) ≤ f(pk) + mLt∆k and G(pk + td) ≤ 0 then
4: Set tLk = t.
5: else
6: Set tu = t.
7: end if
8: if tLk ≥ t̄ then
9: Set tRk = tLk and return.

10: else if −α(pk + tLk dk,pk + tdk) + 〈ζ(pk + tdk),dk〉 ≥ mR∆k and tLk ≤ t̄ and (t −
tLk )‖dk‖ ≤ ā/2 then

11: Set tRk = t and return.
12: else
13: Let t ∈ [tLk + β(tu − tLk ), tu − β(tu − tLk )].
14: end if
15: end while
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6.3.2 Discussion and Convergence

The proposed algorithm terminates when wk ≤ ǫS. wk can be considered as a quantity

that measures the goodness of the approximation (6.2.12) via α̃v
k and the size of the element

of minimum norm via ‖vk‖2 in ΓH(pk;pk). If wk = 0, then 0 ∈ ΓH(pk;pk) holds. The

convergence proof shows that all accumulation points of {pk} are stationary in case ǫs = 0.

The proof is the same as the proof of Algorithm 3.1 in Chapter 6 in [54] where the linear

Newton approximation replaces the generalized gradient. Therefore, a summary of it, is

placed in the Appendix A.

In this chapter, the finite termination of the line search procedure is proved and the main

results are stated.

Line Search

In order to show that any accumulation point of the sequence {pk} is stationary, the finite

termination of the line search algorithm needs to be shown. The line search algorithm differs

from that of Algorithm 3.1 in Chapter 6 in [54] because linear Newton approximations are

used instead of the generalized gradient. The next lemma proves an important property of

linear Newton approximations that enables finite termination of Algorithm 6.3.1.1.

Lemma 6.3.4. Let Assumption 6.2.1 hold. Let p ∈ P. Let d ∈ R
np\{0}. Let {tk} ⊂ R be

such that tk > 0, ∀k, tk ↓ 0 and ζ
f
k ∈ Γf(p + tkd). Then

f ′(p;d) = lim
k→∞

〈ζf
k ,d〉. (6.3.25)

Let ζG
k ∈ ΓG(p + tkd). Then

G′(p;d) = lim
k→∞

〈ζG
k ,d〉. (6.3.26)
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Proof. Since Γf is a linear Newton approximation, for small enough t

∥

∥

∥
f(p + tkd) − f(p) − 〈ζf

k , tkd〉
∥

∥

∥
≤ ‖tkd‖∆(‖tkd‖)

and therefore

∥

∥

∥

∥

f(p + tkd) − f(p)

tk
− 〈ζf

k ,d〉
∥

∥

∥

∥

≤ ‖d‖∆(‖tkd‖)

holds. Since

lim
k→∞

f(p + tkd) − f(p)

tk
= f ′(p;d),

and

lim
k→∞

∥

∥

∥

∥

f(p + tkd) − f(p)

tk
− 〈ζf

k ,d〉
∥

∥

∥

∥

= 0 (6.3.27)

(6.3.25) follows. Since ΓG is a linear Newton approximation of G (Corollary 6.2.10), the

same reasoning proves (6.3.26).

From the definitions of wk and ∆k it can be seen that ∆k ≤ −wk. Since wk ≥ 0, ∆k ≤ 0.

Note that if ∆k = 0, then wk = 0 and the bundle method terminates before entering the

line search algorithm. Hence, the line search is always entered with ∆k < 0. Note that it is

possible that dk = 0 when entering the line search algorithm.

Theorem 6.3.5 (Convergence of Line Search Algorithm 6.3.1.1). Assume ∆k < 0.

Then the line search algorithm 6.3.1.1 terminates with two step sizes tLk and tRk such that

tLk ≤ 1, 0 ≤ tLk ≤ tRk and the points pk+1 = pk + tLk dk and yk+1 = pk + tRk dk satisfy

f(pk+1) ≤ f(pk) + mLtLk ∆k, (6.3.28)
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0 ≥ G(pk+1),

tRk = tLk if tLk ≥ t̄,

mR∆k ≤ − α(pk+1,yk+1) + 〈ζ(yk+1),dk〉 if tLk < t̄, (6.3.29)

ā/2 ≥ ‖yk+1 − pk+1‖,

where

ζ(y) ∈















Γf(y) if G(y) ≤ 0,

ΓG(y) if G(y) > 0,

α(x,y) =















max{|f(x) − f̄(x;y)|, γf‖x − y‖2} if G(y) ≤ 0,

max{|Ḡ(x;y)|, γG‖x − y‖2} if G(y) > 0,

f̄(x;y) = f(y) + 〈ζ(y),x− y〉 if G(y) ≤ 0,

Ḡ(x;y) = G(y) + 〈ζ(y),x− y〉 if G(y) > 0.

Proof. First assume that d = 0. Then the line search terminates immediately with tLk = 0,

tRk = 1 and pk+1 = pk = yk+1.

Consider the case d 6= 0 and assume that the line search does not terminate for con-

tradiction purposes. Let tj , tLk,j and tuj represent the values of t, tLk and tu after the jth

execution of Step 3. Then tj = tLk,j or tj = tuj .

Note that (tuj+1− tLk,j+1) ≤ (1−β)(tuj − tLk,j), {tuj } is a monotonically decreasing and {tLk,j}

is a monotonically increasing sequence such that tLk,j < tuj . Hence there exists a t̃ such that

tLk,j ↑ t̃ and tuj ↓ t̃.

Note that t̃ ≤ t̄ because tLk,j < t̄ for all j. Let TL = {t ≥ 0 : f(pk + tdk) ≤ f(pk) +

mLt∆k, G(pk + tdk) ≤ 0}. Since {tLk,j} ⊂ TL and TL is a closed set due to the continuity
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of f and G, t̃ ∈ TL. Hence

f(pk + t̃d) − f(pk) ≤ mLt̃∆k. (6.3.30)

and G(pk + t̃d) ≤ 0.

Since tuj /∈ TL, tuj ↓ t̃ and tLk,j → tuj , there exists an infinite set L ⊂ {1, . . . ,∞}, such that

tuj = tj > t̃ for all j ∈ L and

f(pk + tjd) − f(pk) > mLtj∆k, ∀j ∈ L. (6.3.31)

Subtracting (6.3.31) from (6.3.30),

f(pk + tjdk) − f(pk + t̃dk)

(tj − t̃)
> mL∆k, ∀j ∈ L

is obtained. Taking the limit as j → ∞ results in f ′(pk + t̃dk;dk) ≥ mL∆k.

For large enough j ∈ L, (tj − tLk,j)‖dk‖ < ā/2 because tj → t̃ and tLk,j → t̃.

First assume G(pk + tjdk) ≤ 0 for all j ∈ L. Then ζ(pk + tjdk) ∈ Γf(pk + tjdk) and

α(pk + t̃dk,pk + tjdk) = max{f(pk + t̃dk) − f(pk + tjdk) − (t̃ − tj)〈ζ(pk + tjdk),dk〉,

γf(tj − t̃)2‖dk‖2}

for all j ∈ L.

Since the algorithm does not terminate −α(pk + t̃dk,pk + tjdk) + 〈ζ(pk + tjdk),dk〉 <

mR∆k for all j ∈ L. Note that lim
j→∞

α(pk + t̃dk,pk + tjdk) = 0 because tj → t̃ and Γf is

locally bounded. Therefore

lim
j→∞

〈ζ(pk + tjdk),dk〉 ≤ mR∆k
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for j ∈ L. This implies that f ′(pk + t̃dk;dk) ≥ mL∆k > mR∆k ≥ limj→∞〈ζ(pk + tjdk),dk〉

since 0 < mL < mR < 1 and ∆k < 0. This is a contradiction with Lemma 6.3.4.

Assume G(pk + tjdk) > 0 for all j ∈ L. Then ζ(pk + tjdk) ∈ ΓG(pk + tjdk) and

α(pk + t̃dk,pk + tjdk) = max{G(pk + t̃dk) − G(pk + tjdk) − (t̃ − tj)〈ζ(pk + tjdk),dk〉,

γG(tj − t̃)2‖dk‖2}.

for all j ∈ L. As before,

lim
j→∞

〈ζ(pk + tjdk),dk〉 ≤ mR∆k

holds. However; since G(pk + t̃dk) ≤ 0,

lim
j→∞

G(pk + tjdk) − G(pk + t̃dk)

tj − t̃
≥ 0 > mL∆k > mR∆k.

Again this contradicts with Lemma 6.3.4. Hence the line search terminates in a finite number

of iterations.

When the line search terminates, one of the following cases hold:

1. tLk ≥ t̄. This case is the long serious step.

2. 0 < tLk < t̄. This case is the short serious step.

3. tLk = 0. This case is the null step.

Main Convergence Results

Theorem 6.3.6. Each accumulation point of the sequence {pk} generated by the bundle

method is stationary in the extended sense.

Corollary 6.3.7. If the level set P = {p ∈ P : f(p) ≤ f(p1)} is bounded, cl (P ) ⊂ P,
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and the final accuracy tolerance ǫs is positive, then the bundle method terminates in a finite

number of iterations.

6.3.3 Variants and Commentary

1. The generalized gradient can be replaced with linear Newton approximations satisfying

Assumption 6.2.1 in all the algorithms developed in [54] to produce algorithms that

converge to stationary points in the extended sense. Note that, one does not have to

alter a given bundle code to make it work with linear Newton approximations.

2. In the remainder of the thesis, the proximal bundle method ([64], [68]), a variant of

the developed algorithm is used to obtain numerical results. In the proximal bundle

algorithm ā is set to a large number to prevent reset and the quadratic problem

min
λ, µ, λv, µv

1

2σ
‖
∑

j∈Mf
k

λjζ
f
j + λvvf

k−1 +
∑

j∈MG
k

µjζ
G
j + µvvG

k−1‖2+ (6.3.32)

∑

j∈Mf
k

λjα
f
k,j + λvαf,v

k +
∑

j∈MG
k

µjα
G
k,j + µvαG,v

k

s.t.
∑

j∈Mf
k

λj + λv +
∑

j∈MG
k

µj + µv = 1,

λv ≥ 0, µv ≥ 0, λj ≥ 0, ∀j ∈ Mf
k , µj ≥ 0, ∀j ∈ MG

k ,

λv = µv = 0 if ra
k = 1,

is solved instead of (6.3.22). As a result, the candidate descent direction, dk and ∆k

become

dk = − 1

σ
vk,

∆k = −
(

1

σ
‖vk‖2 + α̃v

k

)

.
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Hence, the extra parameter σ allows control over the step size taken and is adjusted de-

pending on the progress of the bundle method algorithm [64]. Specifically, the software

described in [64] is used to produce numerical results.

3. Using the linear Newton approximation instead of the generalized gradient leads to the

loss of sharper results that can be obtained for bundle methods in case (6.0.1) is a con-

vex program. The relationship between convexity and linear Newton approximations

requires further research.
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Chapter 7

Nonsmooth Dynamic Optimization of

Systems with Varying Structure

This chapter describes a numerical method to solve nonsmooth nonlinear optimization prob-

lems where systems described by (4.4.1) are embedded as constraints.

The first section describes the numerical algorithm. The algorithm is assembled using

results presented in the previous chapters. The second section discusses an extension of

control parameterization ([40], [105]) from continuously differentiable vector fields to vector

fields satisfying Assumption 5.1.1. In this approach, an open loop optimal control problem

whose solution is a bounded measurable function is approximated by a sequence of nonlinear

programs whose solutions consist of parameters defining piecewise constant functions in time.

The convergence of the optimal solution values of the approximate problems to the optimal

solution value of the optimal control problem as well as the convergence of the approximate

solutions to the optimal control problem solution are discussed. The third section contains

a technique with which minimum time problems can be solved. The results in the previous

chapters can be applied to the solution of such problems once time is redefined as a continuous

state of the system and the time horizon a parameter. The final section contains a review
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of optimal control techniques related to the work in this thesis and a comparison with the

presented numerical method.

7.1 The Nonsmooth Single Shooting Method

7.1.1 Formulation and Assumptions

The numerical method aims to solve the program:

min
p∈P

J(p) =
ne
∑

k=1

∫ βk

αk

h0,k(t,p,x(t,p),y(t,p), ẋ(t,p))dt +

H0(p,x(βne
,p),y(βne

,p), ẋ(βne
,p)) (7.1.1)

s.t.
ne
∑

k=1

∫ βk

αk

hi,k(t,p,x(t,p),y(t,p), ẋ(t,p))dt +

Hi(p,x(βne
,p),y(βne

,p), ẋ(βne
,p)) ≤ 0, ∀i ∈ {1, . . . , nc},

0 = Fk(t,p,xk(t,p),yk(t,p), ẋk(t,p)), ∀t ∈ [αk, βk], ∀k ∈ K,

0 = x1(α1,p) − F0
1(p),

0 = xk(αk,p) − F0
k(p,xi−1(βi−1,p)), ∀k ∈ K\{1},

0 = x(t,p) − xk(t,p), ∀t ∈ [αk, βk), ∀k ∈ K,

0 = x(βne
,p) − xne

(βne
,p),

0 = y(t,p) − yk(t,p), ∀t ∈ [αk, βk), ∀k ∈ K,

0 = y(βne
,p) − yne

(βne
,p),

0 = ẋ(t,p) − ẋk(t,p), ∀t ∈ [αk, βk), ∀k ∈ K,

0 = ẋ(βne
,p) − ẋne

(βne
,p),

where
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• nc is a finite positive integer;

• ne is a finite positive integer, K = {1, . . . , ne};

• αk, βk for all k ∈ K are as defined in Assumption 4.4.1;

• Tk, P, X , Y , Ẋ are as defined in Assumption 4.4.1;

• The functions hi,k : Tk × P × X × Y × Ẋ → R and Hi : P × X × Y × Ẋ → R satisfy

Assumption 5.1.1 for all i ∈ {0, . . . , nc} and for all k ∈ K;

• x, ẋ, y, xk, ẋk, yk for all k ∈ K are as defined in Assumption 4.4.1;

• Fk, F0
k are as defined in Assumption 4.4.1 and satisfy Assumption 5.1.1 and the as-

sumptions of Lemma 4.3.4 for all k ∈ K.

Assumption 7.1.1. For all p ∈ P, the solution (x(·,p),y(·,p), ẋ(·,p)) exists.

It can easily be shown that (7.1.1) is a locally Lipschitz continuous and semismooth

optimization program using the properties of locally Lipschitz continuous and semismooth

functions, Theorems 4.4.7, 4.4.8, 4.4.10, 3.4.7, 3.4.11 and 3.4.12.

In essence, Program (7.1.1) can be rewritten as

min
p∈P

f0(p) s.t. fi(p) ≤ 0, ∀i ∈ {1, . . . , nc}, (7.1.2)

where fi are locally Lipschitz continuous and semismooth functions of p and

fi(p) =

ne
∑

k=1

∫ βk

αk

hi,k(t,p,x(t,p),y(t,p), ẋ(t,p))dt + Hi(p,x(tf ,p),y(t,p), ẋ(tf ,p))

holds for all i ∈ {0, . . . , nc}. Therefore, the bundle method described in Chapter 6 can be

used to solve (7.1.1). In order to apply this bundle method, an element of the linear Newton

approximations, Γf0 and Γfi, satisfying Assumption 6.2.1 need to be computed at p. This

in return, requires the computation of an element of Γpx(t,p), Γpy(t,p) and Γpẋ(t,p) as

defined in Theorem 4.4.7 and Corollary 4.4.9. The details of these computations are discussed
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next.

7.1.2 Computation of the elements of the linear Newton approx-

imations of Program (7.1.2)

Let

Zi(p) =
ne
∑

k=1

∫ βk

αk

hi,k(t,p,x(t,p),y(t,p), ẋ(t,p)), ∀i ∈ {0, . . . , nc}. (7.1.3)

Then an element of ΓpZi(p), a linear Newton approximation that satisfies ∂pZi(p) ⊂

conv (ΓpZi(p)), can be computed using Theorem 4.4.8. Another approach is to define the

additional states zi : T × P → R that evolve in time according to

żi(t,p) = hi,k(t,p,x(t,p),y(t,p), ẋ(t,p)), ∀t ∈ (αk, βk], ∀k ∈ K, ∀i ∈ {0, . . . , nc}, (7.1.4)

zi(α1,p) = 0, ∀i ∈ {0, . . . , nc}.

The additional states {zi}nc

i=0 and the corresponding equations in (7.1.4) can be appended

to the system states x to obtain the augmented states, x̃. Let x̃nx+i+1 = zi for all i =

0, . . . , nc. Theorem 4.4.7 can be used to compute an element of Γpx̃(tf ,p), a linear Newton

approximation which satisfies ∂px̃(tf ,p) ⊂ conv (Γpx̃(tf ,p)). Let Mi ∈ R
1×(nx+nc+1) for all

i ∈ {0, . . . , nc} be such that Mi,j = 0 for all j ∈ {1, . . . , nx+nc+1}\{nx+i} and Mi,nx+i = 1.

Note that Mi is the Jacobian of the mapping (x(tf ,p), (z0(tf ,p), . . . , znc
(tf ,p))) 7→ zi(tf ,p).

Let Γpzi(tf ,p) be the set

{MiA : A ∈ conv (Γpx̃(tf ,p))}.
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Then per Theorem 2.8.12, it is a linear Newton approximation of the mapping η 7→ zi(tf , η)

at p ∈ P. Since ∂px̃(tf ,p) ⊂ conv (Γpx̃(tf ,p)),

∂pzi(tf ,p) ⊂ {MiA : A ∈ conv (Γpx̃(tf ,p))}

holds per Theorem 2.6.7. In the rest of the thesis, this approach is used to compute elements

of the linear Newton approximations of zi.

Consider the mapping (x(tf ,p), (z0(tf ,p), . . . , znc
(tf ,p))) 7→ x(tf ,p). Let N ∈ R

nx×(nx+nc+1)

and N = [Inx
0]. Then, N is the Jacobian and therefore a linear Newton approximation of

this mapping. Let Γpx(tf ,p) be the set

{NA : A ∈ conv (Γpx̃(tf ,p))}.

Then Γpx(tf ,p) is a linear Newton approximation of the mapping η 7→ x(tf , η) at p ∈ P

per Theorem 2.8.12. It can be shown that ∂px(tf ,p) ⊂ conv (Γpx(tf ,p)) using Theorem

2.6.7 and the fact that ∂px̃(tf ,p) ⊂ conv (Γpx̃(tf ,p)).

Hence once an element of Γpx̃(tf ,p) is computed, an element of Γpx(tf ,p) can be recov-

ered using Theorem 2.8.12. An element of Γpẋ(tf ,p) and an element of Γpy(tf ,p) can be

computed using Corollary 4.4.9.

The necessary linear Newton approximation information for Hi can be computed using

Theorem 4.4.10. Alternatively, the chain rule for linear Newton approximations, Γpx(tf ,p),

Γpy(tf ,p) and Γpẋ(tf ,p) can be used. It can be shown that the set

S =


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is a linear Newton approximation of the mapping η 7→ (η,x(tf , η),y(tf , η), ẋ(tf , η)) at p ∈

P by applying Theorem 2.8.12. Theorem 2.6.7 and the fact that the aforementioned linear

Newton approximations contain the related generalized Jacobians can be used to show that

conv (S) contains the generalized Jacobian of the mapping η 7→ (η,x(tf , η),y(tf , η), ẋ(tf , η))

at p ∈ P.

Let wi : P → R : η 7→ Hi(η,x(tf , η),y(tf , η), ẋ(tf , η)). Let Γpwi(p) be the set

{AB : A ∈ ∂Hi(p,x(tf ,p),y(tf ,p), ẋ(tf ,p)), B ∈ conv (S)}.

∂Hi is the generalized Jacobian and a linear Newton approximation of the function Hi

because Hi is a semismooth function per Assumption 5.1.1. Hence Γpwi(p) is a linear

Newton approximation of the map η 7→ Hi(η,x(tf , η),y(tf , η), ẋ(tf , η)) at p ∈ P. The fact

that ∂pwi(p) ⊂ Γpwi(p) follows from Theorem 2.6.7 and the properties of S.

An element of ∂Hi(p,x(tf ,p),y(tf ,p), ẋ(tf ,p)) can be computed using the fact that

under Assumption 5.1.1, Hi is a PC1 function and the properties listed in §2.7.1.

Finally, Γfi defined by Γfi(p) = Γpzi(t,p) + Γwi(p) is a linear Newton approximation

of fi satisfying Assumptions 6.2.1 for all i ∈ {0, . . . , nc} per the calculus rules for the linear

Newton approximation (see §2.8.5).

7.1.3 Description of the Method

The nonsmooth single shooting method is an iterative method consisting of two main ele-

ments (Figure 7-1).

1. The Modified Bundle Method: During iteration k, the modified bundle method uses

the Objective and Constraint Evaluator to obtain fi(pk) and an element of Γfi(pk) for

all i ∈ {0, . . . , nc}. Then, the bundle method determines if pk satisfies the stationary

conditions in the extended sense. If it does, the single shooting method terminates.
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Figure 7-1: Nonsmooth Single Shooting Method.

Otherwise the modified bundle method updates pk to obtain pk+1 and the iterative

procedure continues.

2. The Objective and Constraint Evaluator: The ODE/DAE solver is used to compute

x̃(tf ,p) and an element of Γpx̃(tf ,p), Γpy(tf ,p) and Γpẋ(tf ,p) each, using methods

presented in Chapter 5. Then an element of Γfi(pk) for each {0, . . . , nc} is computed

as described in §7.1.2.

7.2 Control Parameterization

Program (7.1.1) can be used to provide approximate solutions to certain open loop optimal

control problems similar to those discussed in [40] and [105], where continuously differentiable

vector fields are considered. In this section, the main results in [40] and Chapter 6 in [105]

are extended to optimal control problems involving vector fields that satisfy Assumption

(5.1.1).
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An open loop optimal control problem seeks to find functions of time (controls) that

satisfy the constraints and minimize the objective. It is an infinite dimensional problem

because the solution is sought in some function space rather than in R
n. In practice, the

solution of many optimal control problems cannot be determined numerically. Instead, the

elements of the function space of interest are approximated by functions defined in terms of

a finite set of parameters, e.g., measurable functions are approximated by piecewise constant

functions.1 The solution of the optimal control problem is then sought in this class of

approximating functions. The advantage of this method is that the use of finitely many

parameters converts the infinite dimensional problem to a finite dimensional problem that

can be solved numerically. Under certain conditions, it can be shown that the solutions of

these finite dimensional problems converge to the optimal solution of the original problem

as the number of parameters is increased.

The section begins with a brief summary of the necessary background information. Then,

the control parameterization method is described. Finally, some results on the convergence

of the approximate controls to the original optimal control are presented.

7.2.1 Preliminaries

Let I be a subset of R with positive measure. Let n and p be positive integers. Let Lp(I, Rn)

denote the class of measurable functions from I to R
n for which the quantity

(
∫

I

‖f(t)‖pdt

)1/p

1The controls can be approximated by other functions than piecewise constant.
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is finite where f(t) = (f1(t), . . . , fn(t)) and ‖f(t)‖ =

√

√

√

√

n
∑

i=1

fi(t)2. Note that Lp(I, Rn) is a

Banach space with respect to the norm:

‖f‖p =

(
∫

I

‖f(t)‖pdt

)
1
p

.

A measurable function f : I → R
n is essentially bounded if there exists a positive number

C < +∞ such that the set S = {t ∈ I : ‖f(t)‖ > C} has Lebesgue measure zero. Let

‖f‖∞ = ess sup{‖f(t)‖ : t ∈ I}

where ess sup{‖f(t)‖ : t ∈ I} denotes the smallest C such that the set S = {t ∈ I :

‖f(t)‖ > C} has Lebesgue measure zero. L∞(I, Rn) denotes the class of essentially bounded

measurable functions from I to R
n. Note that L∞(I, Rn) is a Banach space with respect to

the norm ‖f‖∞. In addition, L∞(I, Rn) ⊂ L1(I, Rn).

A measurable function f belongs to Lloc
1 if

∫

I

‖f(t)‖dt < +∞ (7.2.1)

holds for all bounded I.

Lemma 7.2.1 (Gronwall’s Lemma). Let f : [0, +∞) → R and α : [0, +∞) → R be contin-

uous functions. Let f(t) ≥ 0 and α(t) ≥ 0. Let K ∈ Lloc
1 and K(t) ≥ 0 a.e. Assume:

f(t) ≤ α(t) +

∫ t

0

K(τ)f(τ)dτ.
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Then, for 0 ≤ t < +∞,

f(t) ≤ α(t) +

∫ t

0

e
R t

s
K(τ)dτK(s)α(s)ds

holds.

7.2.2 Description of Control Parameterization

The open loop optimal control problem of interest is:

min
ũ∈L∞(T,U)

J (ũ) =

∫ tf

t0

h0(t, ũ(t), x̃(t, ũ))dt + H0(x̃(tf , ũ)) (7.2.2)

s.t.

∫ tf

t0

hi(t, ũ(t), x̃(t, ũ))dt + Hi(x̃(tf , ũ)) ≤ 0, ∀i ∈ {1, . . . , nc},

˙̃x(t, ũ) = f(t, ũ(t), x̃(t, ũ)), ∀t ∈ (t0, tf ]\S, (7.2.3)

x̃(t0, ũ) = x0, (7.2.4)

where

• T = [t0, tf ],

• T is an open subset of R such that T ⊂ T ,

• nq, nx, nc are finite positive integers,

• U ⊂ R
nq , U = {w : cL

j ≤ wj ≤ cU
j , −∞ < cL

j < cU
j < +∞, ∀j ∈ {1, . . . , nq}},

• U is an open subset of R
nq such that U ⊂ U holds,

• L∞(T, U) is the set of essentially bounded measurable functions from T to U ,

• S is a set of measure zero subset of T ,

• x̃ : T × L∞(T, U) → R
nx is the continuous state of the system,

• f : T × U × R
nx → R

nx, hi : T × U × R
nx → R and Hi : R

nx → R satisfy Assumption

5.1.1 for all i ∈ {0, . . . , nc}.
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Remark 7.2.2. Path constraints of the form g(t, ũ(t), x̃(t, ũ)) ≤ 0, ∀t ∈ [t0, tf ] can be

incorporated into this formulation by considering the constraints

∫ tf

t0

max(0, g(t, ũ(t), x̃(t, ũ))dt ≤ 0

or

∫ tf

t0

max(0, g(t, ũ(t), x̃(t, ũ))2)dt ≤ 0.

The first constraint is nonsmooth whereas the second one is continuously differentiable if

g(t, ·) is continuously differentiable for all t ∈ [t0, tf ].

The solution of (7.2.2) if it exists is a measurable function which usually cannot be

obtained numerically. Even if a measurable solution is known, it may not make sense to im-

plement it in practice. Therefore, the measurable controls, ũ are approximated by piecewise

constant functions2 une : T × Pne → U of the form

une

j (t,p) = pk,j, ∀t ∈ [αk, βk), cL
j ≤ pk,j ≤ cU

j , ∀k ∈ {1, . . . , ne}, ∀j ∈ {1, . . . , nq},

une

j (tf ,p) = pne,j, ∀j ∈ {1, . . . , nq},

where ne, {αk}ne

k=1, {βk}ne

k=1 are as defined in Assumption 4.4.1 and Pne is an open subset of

R
nq×ne. Substituting une for ũ,

min
p∈Pne

Jne(p) =

∫ tf

t0

h0(t,u
ne(t,p),x(t,p))dt + H0(x(tf ,p))

s.t.

∫ tf

t0

hi(t,u
ne(t,p),x(t,p))dt + Hi(x(tf ,p)) ≤ 0, ∀i ∈ {1, . . . , nc},

ẋ(t,une(t,p)) = f(t,une(t,p),x(t,p)), ∀t ∈ (t0, tf ]\S,

2The measurable controls can be approximated by functions other than piecewise constant functions.
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x(t0,u
ne(t,p)) = x0,

is obtained. This program can be written in the form

min
p∈Pne

Jne(p) =

∫ tf

t0

h0(t,p,x(t,p))dt + H0(x(tf ,p)) (7.2.5)

s.t.

∫ tf

t0

hi(t,p,x(t,p))dt + Hi(x(tf ,p)) ≤ 0, ∀i ∈ {1, . . . , nc},

ẋ(t,p) = fk(t,p,x(t,p)), ∀t ∈ (αk, βk]\S, ∀k ∈ {1, . . . , ne},

x(t0,p) = x0

and can be solved using the nonsmooth single shooting method described in §7.1.

Convergence Results

In this section, the relationship between the approximate problem (7.2.5) and the original

formulation (7.2.2) is analyzed. The results are similar to the results presented in Chapter

6 in [105] and in [40].

In this section, the following additional assumption holds.

Assumption 7.2.3.

For any compact set Ω ⊂ U , there exists a positive constant K such that

‖f(t,v,w)‖ ≤ K(1 + ‖w‖) (7.2.6)

holds for all (t,v,w) ∈ [t0, tf ] × Ω × R
nx.

The following assumptions are made in [105] unlike the ones in this section:
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1. For any compact set Ω ⊂ U , there exists a positive constant K such that

‖f(t,v,w)‖ ≤ K(1 + ‖w‖)

holds for all (t,v,w) ∈ [t0, tf ] × Ω ×X .

2. f(·,v,w) and hi(·,v,w) are piecewise continuous on [t0, tf ] for each (v,w) ∈ U × R
nx

for all i ∈ {0, . . . , nc}. f(t, ·), hi(t, ·) and Hi are continuously differentiable on U ×R
nx

for all t ∈ [t0, tf ] and for all i ∈ {0, . . . , nc}.

The main result obtained in Chapter 6 in [105] can be obtained for the systems considered

in this section. First, the necessary terminology to state the main results in Chapter 6 in

[105] is introduced. Then, the main convergence results are stated. Later, the lemmas that

differ in the proofs are presented.

Let pne,∗ be an optimal solution of (7.2.5), Jne(pne,∗) be the corresponding optimal

solution value and une,∗ be the corresponding control. The convergence analysis makes use

of the ǫ-relaxed problem

min
p∈Pne

Jne

ǫ (p) =

∫ tf

t0

h0(t,p,x(t,p))dt + H0(x(tf ,p)) (7.2.7)

s.t.

∫ tf

t0

hi(t,p,x(t,p))dt + Hi(x(tf ,p)) ≤ ǫ, ∀i ∈ {1, . . . , nc},

ẋ(t,p) = fk(t,p,x(t,p)), ∀t ∈ (αk, βk]\S, ∀k ∈ {1, . . . , ne},

x(t0,p) = x0,

where ǫ is a positive real number. Let pne,ǫ,∗ be an optimal solution of (7.2.7) for a given

ne and ǫ, Jne
ǫ (pne,ǫ,∗) be the corresponding optimal solution value and une,ǫ,∗ be the corre-

sponding control. Results are obtained under the following regularity assumption:
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Assumption 7.2.4. There exists an integer n̄e such that

lim
ǫ↓0

Jne

ǫ (pne,ǫ,∗) = Jne(pne,∗),

uniformly with respect to ne ≥ n̄e.

The next two theorems are the main convergence results.

Theorem 7.2.5. Let Assumption (7.2.4) hold and suppose there exists an optimal solution

ũ∗ to problem (7.2.2). Then

lim
ne→∞

J (une,∗) = J (ũ∗).

Theorem 7.2.6. Let Assumption (7.2.4) hold. Suppose that

lim
ne→∞

une,∗(t,pne,∗) → ū(t), ∀t ∈ [t0, tf ]\S,

where S is a measure zero subset of [t0, tf ]. Then ū is an optimal solution of (7.2.2).

The proofs of the results are the same as the proof of Theorem 6.5.1 and Theorem 6.5.2 in

[105] with Lemma 7.2.7 replacing Lemma 6.4.2 in [105] and Lemma 7.2.8 replacing Lemma

6.4.3 in [105].

Lemma 7.2.7. Let {une}∞ne=1 be a bounded sequence of functions in L∞(T, U). Then, the

sequence {x̃(·,une)}∞ne=1 of corresponding solutions to (7.2.3) and (7.2.4) is also bounded and

in L∞(T, Rnx).

Proof. Equations (7.2.3) and (7.2.4) can be stated as

x̃(t,une) = x0 +

∫ t

t0

f(τ,une(t,pne), x̃(τ,une))dτ (7.2.8)
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for all t ∈ [t0, tf ]. Using property (7.2.6), one obtains

‖x̃(t,une)‖ ≤ ‖x0‖ +

∫ t

t0

K(1 + ‖x̃(τ,une)‖)dτ,

‖x̃(t,une)‖ ≤ ‖x0‖ + K(tf − t0) + K

∫ t

t0

‖x̃(τ,une)‖dτ.

Application of Gronwall’s Lemma results in

‖x̃(t,une)‖ ≤ (‖x0‖ + K(tf − t0))e
K(tf−t0), ∀t ∈ [t0, tf ].

Lemma 7.2.8. Let {une}∞ne=1 be a bounded sequence of functions in L∞(T, U) that converge

to a function ū a.e. on [t0, tf ]. Let {x̃(·,une)}∞ne=1 be the corresponding solutions to (7.2.3)

and (7.2.4). Then

lim
ne→∞

‖x̃(·,une) − x̃(·, ū)‖∞ = 0 (7.2.9)

and for each t ∈ [t0, tf ],

lim
ne→∞

‖x̃(t,une) − x̃(t, ū)‖ = 0

holds.

Proof. Let C0 satisfy ‖une‖∞ ≤ C0 for all ne ≥ 1. Per Lemma 7.2.7, there exists a constant

C1 such that ‖x̃(·,une)‖∞ ≤ C1 for all ne ≥ 1. Let X̄ = {v ∈ R
nx : ‖v‖ ≤ C1}.

Since f is a locally Lipschitz continuous function due to Assumption 5.1.1, U and X̄ are
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compact sets, there exists K1 such that the difference

‖x̃(t,une) − x̃(t, ū)‖ ≤
∫ tf

t0

‖f(τ,une(τ,pne), x̃(τ,une)) − f(τ, ū(τ), x̃(τ, ū))‖dτ

satisfies

‖x̃(t,une) − x̃(t, ū)‖ ≤
∫ tf

t0

K1‖x̃(τ,une)) − x̃(τ, ū)‖ + K1‖une(τ,pne) − ū(τ)‖dτ.

Applying Gronwall’s Lemma,

‖x̃(t,une) − x̃(t, ū)‖ ≤ K1e
K1(tf−t0)

∫ tf

t0

‖une(τ,pne) − ū(τ)‖dτ

is obtained and the desired results follow from the fact that une(t,pne) → ū(t) for all

t ∈ [t0, tf ]\S where S is a measure zero subset of [t0, tf ].

Remark 7.2.9. Assumption 7.2.3 is required to prove that the state trajectories remain

in a bounded subset of R
nx as proven in Lemma 7.2.7. Therefore this assumption can be

replaced with any other condition ensuring boundedness of the trajectories.

Remark 7.2.10. In practice, a suitable ne is determined by solving (7.2.5) repeatedly using

an increasing sequence of values for ne until Jne(pne,∗) stops changing significantly.

7.3 Minimum Time Problems

Formulation (7.1.1) does not cover situations where the duration of the time horizon needs

to be minimized. In addition, results in Chapters 3 and 4 do not directly apply to such

problems. In order to apply these results, the dynamics need to be transformed so that time

is a state.
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Consider the ordinary differential equation

ẋ(t,p) = f(t,p,x(t,p)), ∀t ∈ (t0, tf ], x(t0,p) = f0(p), ∀p ∈ P, (7.3.1)

where the equation satisfies Assumptions 4.2.1 and 5.1.1.

Redefine t as t : [0, 1] → R. Let ∆T = tf − t0. Let p̂ = (∆T, t0). Redefine p = (p, p̂).

Let t be the solution of the following initial value problem

dt

dτ
(τ,p) = ∆T, ∀τ ∈ (0, 1], t(0,p) = t0.

Hence t(τ,p) = τ∆T + t0. Note that

dx

dτ
(t(τ,p),p) = ẋ(t(τ,p),p) · dt

dτ
(τ,p)

holds per the chain rule for derivatives where t(τ,p) = τ∆T + t0. Then, the equations in

(7.3.1) can be written as

dx

dτ
(t(τ,p),p) = ∆T · f(t(τ,p),p,x(t(τ,p),p)), ∀τ ∈ (0, 1],

dt

dτ
(τ,p) = ∆T, ∀τ ∈ (0, 1],

t(0,p) = t0, x(t(0,p),p) = f0(p), ∀p ∈ P.

Let x̂ : [0, 1] × P → X be defined by x̂(τ,p) = x(t(τ,p),p). Then, the final form of the

equations becomes

dx̂

dτ
(τ,p) = ∆T · f(t(τ,p),p, x̂(τ,p)), ∀τ ∈ (0, 1],

dt

dτ
(τ,p) = ∆T, ∀τ ∈ (0, 1],

t(0,p) = t0, x̂(0,p) = f0(p), ∀p ∈ P.
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Let g : T × P × X → R
nx+1 be defined by g(ηt, ηp, ηx) = (∆T · f(ηt, ηp, ηx), ∆T ). It can

easily be shown that g satisfies Assumption 5.1.1. Note that this form of the dynamics is

amenable to be used in minimum time problems because the duration and initial time are

parameters of the ordinary differential equation.

This transformation can also be used on systems of the form

0 = F(t,p,x(t,p),y(t,p), ẋ(t,p)), ∀t ∈ [t0, tf ], x(t0,p) = F0(p), ∀p ∈ P, (7.3.2)

satisfying Assumptions 4.3.1, 4.3.2 and 5.1.1. The transformed dynamics are

0 = F(t(τ,p),p, x̂(τ,p), ŷ(τ,p), ˙̂x(τ,p)), ∀τ ∈ [0, 1],

dx̂

dτ
(τ,p) = ∆T · ˙̂x(τ,p), ∀τ ∈ (0, 1],

dt

dτ
(τ,p) = ∆T, ∀τ ∈ (0, 1],

t(0,p) = t0, x̂(0,p) = F0(p), ∀p ∈ P,

where x̂(τ,p) = x(t(τ,p),p), ŷ(τ,p) = y(t(τ,p),p), ˙̂x(τ,p) = ẋ(t(τ,p),p) and p is rede-

fined as in the ODE case.

In the multistage case, the final transformed equations become

0 = Fi(t(τ,p),p, x̂i(τ,p), ŷi(τ,p), ˙̂xi(τ,p)), ∀τ ∈ [i − 1, i], ∀i ∈ I,

dx̂i

dτ
(τ,p) = ∆Ti · ˙̂xi(τ,p), ∀τ ∈ (i − 1, i], ∀i ∈ I,

dt

dτ
(τ,p) = ∆Ti, ∀τ ∈ (i − 1, i], ∀i ∈ I,

t(0,p) = t0,

0 = x̂1(0,p) − F0
1(p),

0 = x̂i(i − 1,p) − F0
i (p, x̂i−1(i − 1,p)), ∀i ∈ I\{1},
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0 = x̂(τ,p) − x̂i(τ,p), ∀τ ∈ [i − 1, i), ∀i ∈ I,

0 = x̂(ne,p) − x̂ne
(ne,p),

0 = ŷ(τ,p) − ŷi(τ,p), ∀τ ∈ [i − 1, i), ∀i ∈ I,

0 = ŷ(ne,p) − ŷne
(ne,p),

0 = ˙̂x(τ,p) − ˙̂xi(τ,p), ∀τ ∈ [i − 1, i), ∀i ∈ I,

0 = ˙̂x(ne,p) − ˙̂xne
(ne,p),

where ∆Ti = βi − αi for all i ∈ I, the equations satisfy Assumption 4.4.1, the right-hand

side functions satisfy Assumption 5.1.1 and Fi satisfy Assumption 4.3.2 for all i ∈ I. Now,

formulation (7.1.1) can be rewritten using the transformed dynamics to solve minimum time

problems.

7.4 Dynamic Optimization Literature Review and Com-

parison with the State of the Art

In the previous sections, the nonsmooth single shooting method was introduced and its

application to dynamic optimization problems in the context of control parameterization

was presented. In this section, the place of this numerical algorithm within the state of

the art is discussed. The reader is referred to [17] for an excellent overview of the available

numerical methods in case the data of the problem is continuously differentiable.

Methods that solve the necessary conditions of optimality to determine an optimal control

are called indirect methods. Necessary conditions of optimality exist for the case where the

data of the problem is locally Lipschitz continuous ([25]). These conditions involve the

generalized gradient. As a result, the equations defining the optimal control are differential

inclusions. Currently, these conditions are not amenable to numerical computation. Hence,
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there are no indirect methods applicable to the dynamic optimization problems that can be

solved by the nonsmooth single shooting method.

Direct methods solve the optimal control problem by directly minimizing the objective.

The nonsmooth single shooting method introduced in §7.1 is therefore a direct method.

Direct methods usually convert the optimal control problem into a nonlinear mathematical

program similar to (7.2.5) using control parameterization and apply nonlinear optimization

techniques to obtain a solution. It is possible to use optimization methods that do not

require gradient information (derivative-free methods) in this approach. However, derivative-

free methods require significantly more time to solve problems compared to methods that

make use of gradient information where this information is available. An instance of this

behavior is presented in the Chemotherapy Scheduling Case Study in Chapter 8. Lastly,

these methods mostly lack proven convergence properties.

Numerical methods that only use an ODE/DAE solver to compute the state trajectories

and the derivative information are called sequential (single shooting) methods. Therefore,

the method in §7.1 is called a single shooting method. In these methods, most of the

computational time is spent solving the embedded dynamics and derivative information

with an ODE/DAE solver. The use of such a solver guarantees that the state trajectories

always satisfy the initial value problem for any parameter value. The number of variables

in the optimization problem is the smallest for this approach compared to other approaches.

However, single shooting methods can only solve problems whose embedded initial value

problems can be solved using an ODE/DAE solver. Hence, problems involving unstable

dynamics cannot be reliably solved using a single shooting method because the integration

error in the ODE/DAE solver grows unbounded.

The rest of the methods are called simultaneous methods because the integration of the

dynamics is accomplished with the aid of the optimization algorithm. Simultaneous meth-

ods that discretize the embedded initial value problem are called transcription (collocation)
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methods. In this approach, a discretization scheme such as Radau collocation on finite el-

ements is used to approximate the state trajectories. The discretization scheme results in

additional optimization variables that represent the values of the states at each time point of

the discretization. The optimization method determines the value of these variables as well

as those of the original ones. Therefore, these methods result in large optimization problems

even for systems with a small to medium number of states. The number of discretization time

points and grid that yields a sufficiently accurate approximation of the trajectories is not a

priori known. Therefore, the state trajectories obtained as a solution need to be checked by

comparing them to trajectories obtained with an ODE/DAE solver. In practice, however,

the number of discretization points is increased until the trajectories obtained stop changing

significantly. For problems involving stiff or highly nonlinear dynamics, this approach leads

to very large optimization problems. In addition, the large number of variables complicates

the determination of the initial values for the parameters. An example of this behavior can

be seen in the Electric Circuit Case Study in Chapter 8. Multiple shooting methods, which

are simultaneous methods, partition the time horizon into smaller intervals called epochs.

The initial conditions for the states used in the numerical integration of the dynamics for

each epoch become decision variables. The state trajectories over each epoch are computed

using an ODE/DAE solver using values for theses variables. Then, the optimization method

adjusts the values of these variables so that the states obtained at the end of each epoch are

consistent with the values of the variables that are the initial conditions for the following

epoch. Note that a direct (indirect) method can be sequential or simultaneous. Multiple

shooting methods were invented to overcome some of the drawbacks of single shooting meth-

ods. Unstable dynamic systems can be handled because the integration is carried out over

shorter intervals of time preventing the integration error from growing unbounded.

Finally, there are approaches based on dynamic programming. However, these approaches

require a lot of memory and computational effort. These approaches are suitable only for
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problems where the number of state variables is small or where a special structure is present.

Dynamic optimization problems of systems with varying structure that can be solved

using the nonsmooth single shooting method, can also be solved by direct single shoot-

ing methods that use derivative-free optimization algorithms and some direct transcription

methods ([102, 106], [12]). In transcription methods for systems with varying structure,

the vector field that determines the evolution of the system between two time points of

the discretization needs to be determined. This is a selection problem that can be han-

dled using integer variables as in [102, 106] or complementarity conditions as in [12]. In

order to solve practical problems with the integer approach, the underlying dynamics need

to be linear because the solvers can handle only linear constraints effectively. Nonlinear

dynamics result in nonlinear constraints. Hence, any nonlinearity in the system equations

needs to be linearized. This degrades the quality of the approximation of the state tra-

jectories. The resultant mathematical program is a mixed-integer linear program, (MILP).

The MPEC (Mathematical Programs with Equilibrium Constraints) approach in [12] uses

special constraints called complementarity conditions. This method can deal with nonlinear

dynamics. However, the complementarity conditions violate certain regularity conditions

called constraint qualifications. Therefore, the resultant mathematical programs require

special handling and optimization methods. Both approaches suffer from the shortcomings

of transcription methods. Examples of the MPEC approach are presented in the Electric

Circuit and the Cascading Tanks Case Studies. An example of the use of integer variables

is presented in the Cascading Tanks Case Study. The performance of these transcription

methods are compared to the nonsmooth single shooting method in Chapter 8.

Finally, the results in the previous chapters can be used to devise a nonsmooth multiple

shooting method. The rigorous development of this method is part of future research.
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Chapter 8

Case Studies

8.1 Electric Circuit

In this case study, the behavior of the nonsmooth single shooting method and the MPEC

approach presented in [12] is compared on a dynamic system exhibiting significant nonlinear

behavior and stiffness.

8.1.1 System Dynamics

The system is an the electrical circuit (Figure 8-1) consisting of the well-known FitzHugh-

Nagumo ([49]) electrical circuit used in modeling neurons connected in parallel with a diode

and resistor. The elements of the model are:

• t0: initial time in seconds; t0 = 0.0 s.

• tf : final time in seconds; tf = 60.0 s.

• T : time horizon in seconds; T = [t0, tf ]

• ∆T : the duration of time in seconds; ∆T = 60.0 s.

• ne: number of epochs used in control vector parameterization; ne = 2.

• K: the index set for the epoch; K = {1, . . . , ne}.
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Figure 8-1: Electric Circuit: Configuration.

• {Tk}ne

k=1: the time intervals for each epoch. Tk = [ak, bk) where ak = t0 + ∆T ·(k−1)
ne

and

bk = t0 + ∆T ·(k)
ne

for all k in K.

• {Ic,k}ne

k=1: control parameters of the system in amperes.

• p : the parameters to be adjusted. p = (Ic,1, . . . , Ic,ne
).

• P : the parameter set; P is an open subset of R
ne such that [0.00, 1.50]ne ⊂ P.

• v : T × P → R: the voltage of the circuit in volts.

• w : T ×P → R: the current through the inductor in amperes. In the remainder of the

case study unless otherwise noted, current refers to the current through the inductor.

• x : T × P → R
2 : (t,p) 7→ (v(t,p), w(t,p)) : is the continuous state of the system.

• X : the state space; X = R
2.

• vth: threshold voltage of the diode in volts; vth = −1.20V.

• Rd: internal resistance of the diode; Rd = 0.05Ω.

• C: capacitance of the capacitor in farads; C = 1.00F.

• (α, β): parameters of the tunnel diode; α = 1.00 A
V

and β = 1.00
3.00

A
V3 .

• L: inductance of the inductor in henries; L = 12.5H.

• R: resistance of the resistor in series with the inductor; R = 0.8Ω.
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• E: potential difference across the terminals of the battery in volts; E = 0.7V.

• I1 : T ×P → R: the current through the tunnel diode in amperes.

• I2 : T ×P → R: the current through the capacitor in amperes.

• I3 : T ×P → R: the current through the diode in amperes.

• Ic : T × P → R the external current applied to the circuit. Ic(t,p) = Ic,k, ∀t ∈ ∆Tk

and Ic(tf ,p) = Ic,ne
.

The numerical values of the parameters except the diode’s threshold voltage and its internal

resistance are the original numerical values of the FitzHugh-Nagumo model, although the

units may be different.

The tunnel diode in Figure 8-1 is a passive circuit element whose voltage and current

relationship is approximated by a third order polynomial. In the electrical circuit (Figure in

8-1), I1(t,p) and v(t,p) satisfy

I1(t,p) = βv3(t,p) − αv(t,p). (8.1.1)

The diode allows current to flow in one direction when the voltage across it is less than vth.

It determines I3(t,p) by

I3(t,p) = min

(

v(t,p) − vth

Rd
, 0

)

. (8.1.2)

Finally, I2(t,p) satisfies

I2(t,p) = Cv̇(t,p). (8.1.3)
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Kirchoff’s laws yield

Ic(t,p) = w(t,p) + I1(t,p) + I2(t,p) + I3(t,p), (8.1.4)

v(t,p) = Lẇ(t,p) + Rw(t,p) − E. (8.1.5)

Substituting (8.1.1), (8.1.2) and (8.1.3) into (8.1.4) and (8.1.5) and solving for v̇ and ẇ

produces the initial value problem

v̇(t,p) =
1

C

(

Ic(t,p) − min

(

v(t,p) − vth

Rth

, 0

)

− (βv3(t,p) − αv(t,p)) − w(t,p)

)

, ∀t ∈ (t0, tf ],

ẇ(t,p) =
1

L
(−Rw(t,p) + v(t,p) + E) , ∀t ∈ (t0, tf ],

v(t0,p) = 0.0, w(t0,p) = 0.0.

The electric circuit exhibits different behavior for different current input as shown in

Figures 8-2a and 8-2b. For low values of the input current, the circuit voltage spikes rapidly

and then decays rapidly to a value around −1.20V. For larger input currents, the system

shows oscillatory behavior. The presence of the diode causes a rapid change in the time

derivative of the voltage when the voltage drops below −1.20V. The difference caused in

the evolution of the states by the diode can be seen in in Figures 8-3a and 8-3b. Finally,

for large enough current values, oscillations vanish and the voltage reaches a value close to

1.00V. The evolution of the current occurs relatively slow compared to the evolution of the

voltage. This difference is especially pronounced at higher current values.

8.1.2 Dynamic Optimization Formulation

A dynamic optimization problem is solved to maximize the energy dissipated by the diode

by adjusting {Ic,k}ne

k=1.
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Figure 8-2: Electric Circuit: Voltage and current trajectories for different constant Ic.
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Figure 8-3: Electric Circuit: Difference in voltage and current trajectories between FitzHugh-
Nagumo and Electric Circuit Models if Ic(t,p) = 0.50A, ∀t ∈ [t0, tf ].

The power dissipated by the diode is

P (t,p) = I3(t,p)2Rd = min

(

v(t,p) − vth

Rd

, 0

)

(v(t,p) − vth).

Hence, the energy dissipated by the diode is computed by

Ṡ(t,p) = min

(

v(t,p) − vth

Rd
, 0

)

(v(t,p) − vth), ∀t ∈ (t0, tf ], S(t0,p) = 0.0.

The plot of S(tf , ·) is in Figure 8-4. S(tf , ·) is a nonconvex function of the parameters. The

function is fairly flat around (0, 0), (0, 1.5) and (1.5, 1.5). The function values are zero in the
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neighborhood of (1.50, 1.50). The voltage never becomes less than vth for parameter values

close to (1.50, 1.50). The function changes rapidly in the neighborhood of points (0.05, y)

where y ∈ [0, 1.5]. In this region, the evolution of the states transitions from non-oscillatory

to oscillatory behavior. The function has a global maximum at (1.5, 0.0) and a few local

maxima such as (0.076, 0.625).

0
0.25

0.5
0.75

1
1.25

1.5 0
0.25

0.5
0.75

1
1.25

1.5

0

0.5

1

1.5

2

2.5

3

I     [A]c,1
I     [A]c,2

S
(t

 ,
p

) 
[J

]
f

(a) Surface Plot

0
.9

7
4
0
5

0
.8

7
6
6
5

2.0455

0.097405

0.19481

0.29222

0.38962

0.487030.58443

0
.6

8
1
8
4

0
.6

8
1
8
4

0.77924

1
.0

7
1
5

0 0.25 0.5 0.75 1 1.25 1.5
0

0.25

0.5

0.75

1

1.25

1.5

I     [A]c,1

I 
  
  
 [

A
]

c
,2

(b) Contour Plot

Figure 8-4: Electric Circuit:Surface and contour plots of the dissipated energy by the diode

The formal statement of the dynamic optimization is

max
p∈P

J(p) = S(tf ,p) (8.1.6)

s.t. 0.00 ≤ Ic,k ≤ 1.50, Ic(t,p) = Ic,k, t ∈ ∆Tk, k ∈ K, Ic(tf ,p) = Ic,k,

v̇(t,p) =
1

C

(

Ic(t,p) − min

(

v(t,p) − vth

Rd

, 0

))

−

1

C

(

β v3(t,p) + αv(t,p) − w(t,p)
)

, ∀t ∈ (t0, tf ],

ẇ(t,p) =
1

L
(−Rw(t,p) + v(t,p) + E) , ∀t ∈ (t0, tf ],

Ṡ(t,p) = min

(

v(t,p) − vth

Rd
, 0

)

(v(t,p) − vth), ∀t ∈ (t0, tf ],

v(t0,p) = 0.0, w(t0,p) = 0.0, S(t0,p) = 0.

This problem is solved using the nonsmooth single shooting method developed in this thesis
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and the MPEC approach presented in [12].

8.1.3 Nonsmooth Single Shooting Method Results

The dynamic optimization problem (8.1.6) is solved with the method proposed in Chapter 7

for various initial guesses of for Ic,k for all k ∈ {1, 2}. For the integration of the dynamics and

auxiliary equations yielding derivative information DSL48SE ([108, 109, 36]) is used with

code generated by DAEPACK ([107]). The nonlinear program is solved using the proximal

bundle solver in [64] on a SUSE Linux 10 Virtual Machine with 1 GB of RAM and a 2.4 GHz

Intel Core Duo CPU. The absolute and relative tolerances used in simulation are 1 × 10−8

and 1× 10−8, respectively. The optimality tolerance for the bundle solver is set to 1× 10−6.

Problem (8.1.6) is solved using various initial guesses for p = (Ic,1, Ic,2). Table 8.1

summarizes the results for the test cases used in this study. The first column contains the

label of the case. “p0” and “p∗” represent the initial guess and final converged parameter

values, respectively. The values are tabulated in columns 5 and 6. Columns 3 and 4 contain

the initial and final objective values, respectively. Column 2 summarizes the termination

status of the bundle solver. The column CPU contains the times taken to solve problem

(8.1.6) numerically. NIT is the number of iterations done by the bundle solver and NFV is

the number of times the dynamics are simulated. The behavior of the nonsmooth single

Case Status J(p0) J(p∗) p0 p∗ CPU [s] NIT NFV

A Optimal 0.1786 0.1786 (0.000, 0.000) (0.000, 0.000) 0.05 1 1

B Optimal 0.1919 2.5325 (0.050, 0.050) (1.500, 0.000) 0.36 4 7

C Optimal 0.1166 2.5325 (1.400, 1.400) (1.500, 0.000) 0.43 6 6

D Optimal 0.3919 1.0649 (0.750, 1.250) (0.076, 0.625) 1.24 12 12

E Optimal 0.2590 1.0649 (1.000, 1.000) (0.076, 0.625) 3.60 14 21

F Optimal 0.7350 1.0649 (0.100, 1.250) (0.076, 0.625) 2.26 16 24

Table 8.1: Electric Circuit: Nonsmooth single shooting results
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shooting method is as expected. Due to the nonconvex nature of the objective, not all initial

guesses for p lead to the final parameters equal to (1.50, 0.00). The p∗ obtained correspond

to local maxima of the objective function.

8.1.4 MPEC Approach Results

MPEC Formulation

The transcription technique in [12] produces the mathematical program;

max
X

J(X) = Sne,nt
− µ∆ (8.1.7)

s.t: I3,k,i+1 = (1 − λk,i+1)

(

v−
k,i+1

Rd

)

, ∀k ∈ K, ∀i ∈ I\{nt}, (8.1.8)

ẇk,i+1 =
1

L
(vk,i+1 − Rwk,i+1 + E) , ∀k ∈ K, ∀i ∈ I\{nt}, (8.1.9)

v̇k,i+1 =
1

C

(

αvk,i+1 − βv3
k,i+1 + Ic,k + I3,k,i+1

)

, ∀k ∈ K, ∀i ∈ I\{nt}, (8.1.10)

Ṡk,i+1 = I2
3,k,i+1Rd, ∀k ∈ K, ∀i ∈ I\{nt}, (8.1.11)

wk,i+1 − wk,i = hk,iẇk,i+1, ∀k ∈ K, ∀i ∈ I\{nt}, (8.1.12)

vk,i+1 − vk,i = hk,iv̇k,i+1, ∀k ∈ K, ∀i ∈ I\{nt}, (8.1.13)

Sk,i+1 − Sk,i = hk,iṠk,i+1, ∀k ∈ K, ∀i ∈ I\{nt}, (8.1.14)

vk+1,1 = vk,nt
, ∀k ∈ K\{ne}, (8.1.15)

wk+1,1 = wk,nt
, ∀k ∈ K\{ne}, (8.1.16)

Sk+1,1 = Sk,nt
, ∀k ∈ K\{ne}, (8.1.17)

vk,i+1 − vth = v+
k,i+1 − v−

k,i+1, ∀k ∈ K, ∀i ∈ I\{nt}, (8.1.18)

z−k,i+1 = λk,i+1v
−
k,i+1, ∀k ∈ K, ∀i ∈ I\{nt}, (8.1.19)

z+
k,i+1 = (1 − λk,i+1)v

+
k,i+1, ∀k ∈ K, ∀i ∈ I\{nt}, (8.1.20)
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∆ =
ne
∑

k=1

nt
∑

i=2

(z−k,i + z+
k,i), (8.1.21)

0 ≤ v+
k,i, 0 ≤ v−

k,i, 0 ≤ λk,i ≤ 1.0, ∀k ∈ K, ∀i ∈ I, (8.1.22)

0 ≤ z−k,i, 0 ≤ z+
k,i, ∀k ∈ K, ∀i ∈ I, (8.1.23)

v1,1 = 0, w1,1 = 0, S1,1 = 0, (8.1.24)

0 ≤ Ic,k ≤ 1.50, ∀k ∈ K, (8.1.25)

1 × 10−6 ≤ hk,i ≤
5 × 60.0

ne · (nt − 1)
, ∀k ∈ K, ∀i ∈ I\{nt}, (8.1.26)

nt−1
∑

i=1

hk,i = 30.0, ∀k ∈ K, . (8.1.27)

where

• µ is the positive penalty parameter;

• nt is the number of finite elements in each epoch;

• I = {1, . . . , nt} is the index set for the finite elements;

• {{z−k,i}nt

i=1}ne

k=1 and {{z+
k,i}nt

i=1}ne

k=1 are the deviations from the complementarity condi-

tions in (8.1.19), (8.1.20), (8.1.22) and satisfy (8.1.23);

• ∆ is the total deviation from the complementarity conditions and is computed using

(8.1.21);

• {{λk,i}nt

i=1}ne

k=1, {{v+
k,i}nt

i=1}ne

k=1 and {{v−
k,i}nt

i=1}ne

k=1 are the complementarity variables;

• {{hk,i}nt

i=1}ne

k=1 are the time steps;

• {{vk,i}nt

i=1}ne

k=1 are the values of the voltage in epoch k and finite element i;

• {{wk,i}nt

i=1}ne

k=1 are the values of the current in epoch k and finite element i;

• {{Sk,i}nt

i=1}ne

k=1 are the values of the energy dissipated by the resistor in epoch k and

finite element i;

• and {{I3,k,i}nt

k=1}ne

i=1 are the values of the I3(t,p) in epoch k and finite element i;

• X = {{Ic,k}ne

k=1, {{z−k,i}nt

i=1}ne

k=1, {{z+
k,i}nt

i=1}ne

k=1, {{λk,i}nt

i=1}ne

k=1, {{v+
k,i}nt

i=1}ne

k=1,
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{{v−
k,i}nt

i=1}ne

k=1, {{wk,i}nt

i=1}ne

k=1, {{Sk,i}nt

i=1}ne

k=1, {{I3,k,i}nt

i=1}ne

k=1, {{hk,i}nt

i=1}ne

k=1}.

The differential equations of the circuit are discretized using an implicit Euler scheme and

are in (8.1.9), (8.1.10), (8.1.11), (8.1.12), (8.1.13) and (8.1.14). Equations (8.1.15), (8.1.16)

and (8.1.17) ensure continuity of the continuous states between epochs. Initial conditions are

in (8.1.24). The time steps are part of the solution of the mathematical program and satisfy

(8.1.26). In addition, the time steps in each epoch have to sum up to the epoch duration.

This requirement is stated in (8.1.27). The constraints on Ic,k are in (8.1.25).

Determination of nt

The number of finite elements in each epoch, nt determines the accuracy of approximation of

the implicit Euler discretization scheme. If nt is too small, the approximations to the state

trajectories obtained as the solution of (8.1.7) are not accurate. If nt is yet smaller, there

may not even exist a feasible solution.

A feasibility problem is solved to determine a suitable nt and obtain a feasible starting

point, X0. The constraint (8.1.25) is replaced with

Ic,k = 0.5, k ∈ K, (8.1.28)

and the objective of (8.1.7) is replaced with

min
X

J(X) = ∆. (8.1.29)

The feasibility problem is implemented in GAMS 23.1 and solved with the nonlinear

programming solver CONOPT [29, 30] to a final tolerance of 3.0 × 10−13 on a SUSE Linux

10 Virtual Machine with 1 GB of memory and a 2.4 GHz Intel Core Duo CPU. Solution of

the MPEC formulation has also been solved with the nonlinear programming solver IPOPT

[112]. However, the CPU times obtained are significantly worse than the ones obtained using
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CONOPT. Hence, they are omitted.

The feasibility problem is solved for different values of nt and various initial values of X0.

It is also solved for different values of Ic,k. Sample results are in Tables 8.2 to 8.3. Status is

the termination criteria of the solver. NVAR is the number of elements in X. NEQ is the

number of equations in (8.1.7). The column labeled CPU contains the amount of time taken

by the computer to solve the problem.

nt Status ∆ NVAR NEQ CPU [s]

101 Optimal 0.5173 2012 1407 4.73

201 Optimal 0.2599 4012 2807 9.47

301 Optimal 0.3365 6012 4207 15.07

401 Optimal 0.4038 8012 5607 27.28

501 Optimal 0.4304 10012 7007 34.58

Table 8.2: Electric Circuit: MPEC feasibility problem results, Ic,k = 0.50, ∀k ∈ K.

nt Status ∆ NVAR NEQ CPU [s]

101 Optimal 1.4362 2012 1407 6.99

201 Optimal 26.0653 4012 2807 12.03

301 Optimal 0.8762 6012 4207 52.07

401 Optimal 0.9754 8012 5607 69.02

501 Optimal 1.1229 10012 7007 135.67

Table 8.3: Electric Circuit: MPEC feasibility problem results, Ic,k = 1.50, ∀k ∈ K.

It is imperative that ∆ is zero. Even a small violation can result in grossly erroneous

state trajectories as can be seen in Figures 8-5a and 8-5b. This is the reason for the very

small termination tolerance.

In this study a zero ∆ could not be obtained using arbitrary X0. Therefore, an X0 is

derived from state trajectories obtained by simulating the dynamics for Ic,k = 1.0 for all
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Figure 8-5: Electric Circuit: Effect of nonzero complementarity deviations on voltage and
current, ∆ = 0.4304

k ∈ K and hk,i are set to 30/(nt − 1) where nt is varied. A feasibility problem is solved

for each nt. The results are tabulated in Table 8.4. Even if simulation results are used to

initialize the variables, the feasibility problem may have nonzero objective value. The state

nt Status ∆ NVAR NEQ CPU [s]

201 Optimal 0.0000 4012 2807 4.16

301 Optimal 0.0000 6012 4207 9.28

401 Optimal 0.0956 8012 5607 21.85

501 Optimal 0.6235 10012 7007 43.24

601 Optimal 0.1632 12012 8407 34.70

701 Optimal 0.0000 14012 9807 41.33

Table 8.4: Electric Circuit: MPEC feasibility problem results, Ic,k = 1.00, initialization with
simulation results.

trajectories obtained for the cases nt = 201, nt = 301 and nt = 701 are visually compared to

simulation results. It is found that if nt is set to 701, then the approximations to the state

trajectories obtained as the solution of the feasibility problem agree with simulation results

sufficiently.
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Optimization Results

The penalty parameter µ is set to 5. This value is determined by trial and error. If µ is too

small, then ∆ may not be zero at the optimal solution.

It is imperative that the initial values supplied to the nonlinear programming solver

represent a feasible or an almost feasible point. Otherwise, the solver is not able to provide

a feasible solution or a solution X such that ∆ is zero.

The optimization problem is implemented in GAMS 23.1 and solved with the nonlinear

programming solver CONOPT [29, 30] to a final tolerance of 3.0 × 10−13 on a SUSE Linux

10 Virtual Machine with 1 GB of memory and a 2.4 GHz Intel Core Duo CPU. Solution of

the MPEC formulation has also been solved with the nonlinear programming solver IPOPT

[112]. However, the CPU times obtained are significantly worse than the ones obtained using

CONOPT. Hence, they are omitted.

The results of the optimization runs are in Table 8.5. X0 is computed from data ob-

tained from the simulation of the dynamics with the given p0 values. J̄(p∗) is the value

of the objective obtained from the MPEC formulation. Table 8.6 contains the result of the

optimization runs with µ = 1. Note that ∆ is nonzero for Case D. For this example, the

value of µ does not affect the CPU time significantly. The CPU times are significantly more

than the CPU times in Table 8.1. The CPU times do not depend strongly on the termina-

tion tolerance of the solver. Table 8.7 contains the data for the optimization runs with a

termination tolerance of 1 × 10−7. The CPU times strongly depend on nt. Table 8.8 shows

the change in the solution times for Case E for different values of nt.

The quality of the approximation of the state trajectories also depend strongly on nt.

Figures 8-6, 8-7 and 8-8 show the effect of nt on the voltage and current trajectories. The

optimal parameters in Table 8.8 are simulated for the cases nt = 201, nt = 401 and nt = 701.

The curves marked as “Simulation” are the results obtained by simulation. The curves

marked as “MPEC” are the approximations obtained from the solution of (8.1.7). It is
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Case Status p0 p∗ J̄(p∗) ∆ CPU [s]

A Optimal (0.0000, 0.0000) (0.0000, 0.0000) 0.1680 0.0000 22.16

B Optimal (0.0500, 0.0500) (0.0657, 0.0000) 0.7902 0.0000 47.43

C Optimal (1.4000, 1.4000) (1.500, 0.0000) 2.5288 0.0000 168.17

D Optimal (0.7500, 1.2500) (0.0742, 0.6140) 1.0643 0.0000 41.95

E Optimal (1.0000, 1.0000) (0.0639, 0.0000) 0.8021 0.0000 176.00

F Optimal (0.1000, 1.2500) (0.0743, 0.6122) 1.0635 0.0000 24.44

Table 8.5: Electric Circuit: MPEC method optimization results, µ = 5, termination tolerance
is 3.0 × 10−13

Case Status p0 p∗ J̄(p∗) ∆ CPU[s]

A Optimal (0.0000, 0.0000) (0.0000, 0.0000) 0.1680 0.0000 15.29

B Optimal (0.0500, 0.0500) (0.0657, 0.0000) 0.7902 0.0000 87.00

C Optimal (1.4000, 1.4000) (1.5000, 0.0000) 2.5288 0.0000 137.00

D∗ Optimal (0.7500, 1.2500) (0.0733, 0.3144) 1000.0 25.1260 64.46

E Optimal (1.0000, 1.0000) (0.0639, 0.0000) 0.8021 0.0000 150.65

F Optimal (0.1000, 1.2500) (0.0743, 0.6122) 1.0635 0.0000 29.57

Table 8.6: Electric Circuit: MPEC method optimization results, µ = 1, termination tolerance
is 3.0 × 10−13

observed that a low nt is not sufficient to approximate the state trajectories accurately. The

choice of nt = 701 is justified if a high quality of approximation is important.

8.1.5 A Variant Dynamic Optimization Formulation

In this subsection, a variant of program (8.1.6) is solved. The constraint;

−0.0001 ≤ v(tf ,p) ≤ 0.0001 (8.1.30)
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Case Status p0 p∗ J̄(p∗) ∆ CPU[s]

A Optimal (0.0000, 0.0000) (0.0000, 0.0000) 0.1680 0.0000 19.97

B Optimal (0.0500, 0.0500) (0.0657, 0.0000) 0.7902 0.0000 45.67

C Optimal (1.4000, 1.4000) (1.5000, 0.0000) 2.5288 0.0000 158.28

D Optimal (0.7500, 1.2500) (0.0742, 0.6140) 1.0643 0.0000 41.25

E Optimal (1.0000, 1.0000) (0.0639, 0.0000) 0.8021 0.0000 159.20

F Optimal (0.1000, 1.2500) (0.0743, 0.6122) 1.0635 0.0000 23.04

Table 8.7: Electric Circuit: MPEC method optimization results, µ = 5, termination tolerance
is 1.0 × 10−7

nt Status p0 p∗ ∆ CPU[s]

201 Optimal (1.0000, 1.0000) (0.0623, 0.0695) 0.0000 7.69

301 Optimal (1.0000, 1.0000) (0.0648, 0.0706) 0.0000 11.69

401 Optimal (1.0000, 1.0000) (0.0654, 0.0718) 0.0000 14.74

501 Optimal (1.0000, 1.0000) (0.0633, 0.0000) 0.0000 56.65

601 Optimal (1.0000, 1.0000) (0.0636, 0.0000) 0.0000 92.10

701 Optimal (1.0000, 1.0000) (0.0639, 0.6122) 0.0000 159.20

Table 8.8: Electric Circuit: MPEC method optimization results for various values of nt for
Case E, µ = 5, termination tolerance is 1.0 × 10−7

is added to problem (8.1.6) and the corresponding constraint

−0.0001 ≤ vne,nt
≤ 0.0001

is added to (8.1.7). The resultant programs are solved using the nonsmooth single shooting

method and the MPEC approach.
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Figure 8-6: Electric Circuit: Difference between MPEC predicted voltage and current tra-
jectories and simulation for Case E and nt = 201.
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Figure 8-7: Electric Circuit: Difference between MPEC predicted voltage and current tra-
jectories and simulation for Case E and nt = 401.

Nonsmooth Single Shooting Method

The dynamic optimization problem is solved using an exact penalty formulation since the

bundle solver used does not support nonlinear constraints directly. Further details of the

exact penalty approach in nonsmooth optimization can be found in [87]. The penalized

objective of (8.1.6) is

J(p) = S(tf ,p) + µ max(0, v(tf ,p) − 0.0001) + µ max(−0.0001 − v(tf ,p), 0)
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Figure 8-8: Electric Circuit: Difference between MPEC predicted voltage and current tra-
jectories and simulation for Case E and nt = 701.

where µ is the penalty parameter. A sequence of dynamic optimization programs is solved

where the penalty parameter is increased. Let l be the index of the optimization problem

solved. The penalty parameter for problem l is µ(l) = 40·l. Problem l is solved to optimality.

If the solution is not a feasible point for (8.1.6) with the additional constraint (8.1.30), then

l is set to l + 1, and the next program is solved. Otherwise, the solution is stationary in

the extended sense for the problem (8.1.6) with the additional constraint (8.1.30). This can

be derived as in [87] using the linear Newton approximations of the functions instead of the

generalized gradients and the extended Cottle constraint qualification introduced in Chapter

6. The existence of a finite penalty parameter requires further research.

For the integration of the dynamics and auxiliary equations DSL48SE ([108], [109] [36])

is used with code generated by DAEPACK [107]. The nonlinear program is solved by the

proximal bundle solver in [64] on a SUSE Linux 10 Virtual Machine with 1 GB of RAM and

a 2.4 GHz Intel Core Duo CPU. The absolute and relative tolerances used in simulation are

1 × 10−8 and 1 × 10−8, respectively. The optimality tolerance for the bundle solver is set to

1 × 10−6. The results are summarized in Table 8.9.
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Case Status J(p∗) p0 p∗ v(tf ,p) CPU [s] NIT NFV

A Optimal 0.1738 (0.000, 0.000) (0.0000, 1.2782) 0.0000 8.48 77 138

B Optimal 0.7122 (0.050, 0.050) (0.07179, 1.3036) 0.0000 13.33 120 152

C Optimal 0.1738 (1.400, 1.400) (0.0000, 1.2782) 0.0000 3.86 56 60

D Optimal 0.7128 (0.750, 1.250) (0.07369, 0.4135) 1.5230 × 10−5 49.64 343 540

E Optimal 0.7122 (1.000, 1.000) (0.07150, 1.3036) 0.0000 4.13 38 48

F Optimal 0.7112 (0.100, 1.250) (0.07820, 0.4121) 4.372 × 10−5 21.55 203 236

Table 8.9: Electric Circuit: Nonsmooth single shooting results for variant problem.

MPEC Approach

For the MPEC approach, the modified program is solved for various values of nt and the

MPEC predicted trajectories are compared to the trajectories obtained from the simulation

of the optimal parameters furnished by the MPEC approach. The initial parameter guess

is (1.00, 1.00) for all optimization runs. The variables are initialized using simulation data.

The optimization problem is implemented in GAMS 23.1 and solved with the nonlinear

programming solver CONOPT [29, 30] to a final tolerance of 1.0 × 10−7 on a SUSE Linux

10 Virtual Machine with 1 GB of memory and a 2.4 GHz Intel Core Duo CPU. Solution of

the MPEC formulation has also been solved with the nonlinear programming solver IPOPT

[112]. However, the CPU times obtained are significantly worse than the ones obtained using

CONOPT. Hence, they are omitted.

The results are in Table 8.10. The column labeled “v(tf ,p)” contains the final voltage

obtained by simulation of the dynamics using the optimal parameter values in the column la-

beled “p∗”. Note that there is significant difference between vne,nt
and v(t,p). The difference

between the final voltage predicted by the MPEC approach and the simulation decreases as

the nt increases. Even though the complementary condition deviations are zero, there is

gross error in estimating the voltage trajectory as can be seen in Figure 8-9. Unless a com-
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nt Status p∗ J̄(p∗) ∆ vne,nt
v(tf ,p

∗) CPU [s]

201 Optimal (0.06477, 0.3878) 0.7103 0.00 0.0000 0.9460 7.19

401 Optimal (0.06824, 0.4001) 0.7108 0.00 0.0000 0.6400 39.89

701 Optimal (0.06955, 0.4064) 0.7118 0.00 0.0000 0.4240 62.01

801 Optimal (0.06979, 0.4075) 0.7116 0.00 0.0000 0.3800 87.38

1001 Optimal (0.07005, 0.4088) 0.7121 0.00 0.0000 0.3177 195.70

Table 8.10: Electric Circuit: MPEC method optimization results for the variant dynamic
optimization problem for various values of nt for Case E, µ = 5, termination tolerance is
1.0 × 10−7.

parison with a simulation is carried out, the error in the MPEC predicted state trajectories

cannot be detected.

0 10 20 30 40 50 60
-1.5

-1

-0.5

0

0.5

1

1.5

2

Time [s]

V
o

lt
a

g
e

 [
V

]

MPEC

Simulation

(a) nt = 201

Simulation

MPEC

0 10 20 30 40 50 60
-1.5

-1

-0.5

0

0.5

1

1.5

2

Time [s]

V
o

lt
a

g
e

 [
V

]

(b) nt = 801

Figure 8-9: Electric Circuit: Difference between MPEC predicted voltage trajectories and
simulation for Case E and nt = 201 and nt = 801.

Finally, an MPEC formulation was developed using third order Radau collocation. CONOPT

was not able to solve this formulation.

8.1.6 Conclusion

The Electric Circuit Case Study involves a relatively simple dynamic optimization problem.

The effort to solve this problem using the MPEC approach was significantly more than the

nonsmooth single shooting method.

277



The nonsmooth single shooting method required coding the model in FORTRAN77 and

using the automatic code generation tool DAEPACK to generate the additional equations

to obtain derivative information. Work had to be done to integrate the bundle solver and

the routines used to simulate the dynamics. Running the optimization solver required no

additional significant effort. It was observed that more than 95% of the solution times of the

nonsmooth single shooting method were used to solve the initial value problem and compute

an element of the linear Newton approximations.

The MPEC approach required the manual discretization of the dynamics and imple-

mentation in the GAMS environment. Determination of nt required substantial time. The

determination of a value for nt guaranteeing a good approximation to the state trajectories

does not appear to be possible without comparison to the simulation output for problems

with highly nonlinear dynamics. In this regard, the MPEC approach does not seem to be a

standalone method. Finding a good initial starting point for the solver was not possible by

solving a feasibility problem. Instead, initial starting points were derived from simulation

data. It was observed that if a good starting point is not provided to the solver, a feasible

solution or a solution with zero ∆ could not be obtained. A significant amount of time was

spent to provide good starting points derived from simulation data.

The nonlinear and relatively stiff dynamics mandated the use of a relatively large nt to

approximate the state trajectories acceptably. This led to longer solution times than the

solution times of the nonsmooth shooting method. It was observed that if ∆ could not be

driven to zero, gross errors in the approximation of the state trajectories could occur even for

small values of ∆. In this regard, the MPEC approach is fragile. It is known that collocation

methods produce state trajectories that are not realistic if constraints in the mathematical

program representing dynamics are not satisfied. In the case of varying dynamics, the error

incurred may be even more because the incorrect set of equations governing the dynamics

between two time points may be selected. Even if a good starting point is provided, the
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MPEC method may fail to produce realistic state trajectories and fail as can be seen in

Table 8.6.

The MPEC approach may provide misleading results as can be seen in the solution of the

variant dynamic optimization problem. Even though the voltage trajectories predicted by

the MPEC approach looked reasonable and correct, comparison to simulation revealed gross

errors. The nonsmooth shooting method should be used in dynamic optimization problems

involving highly nonlinear and stiff dynamics and constraints on the transient behavior. In

these problems, the accuracy obtained in the computation of the state trajectories using an

initial value problem solver is crucial in obtaining a correct result.

8.2 Cascading Tanks: Empirical Complexity Analysis

The empirical scaling of the CPU times required by the nonsmooth single shooting algorithm

introduced in Chapter 7 is investigated using a literature example described in [106].

8.2.1 System Dynamics

The system considered in this case study is originally presented in [106] for the empirical

complexity analysis of the MILP approach to solving dynamic optimization problems involv-

ing systems with varying structure. A set of prismatic tanks with constant cross-sections

connected in series using check valves to prevent flow in the reverse direction (Figure 8-10)

constitute the model. The detailed listing of the elements of the system and the dynamic

optimization formulation is as follows:

• t0: initial time in seconds, t0 = 0.0 s.

• tf : final time in seconds, tf = 100.0 s.

• T : time interval in seconds; T = [t0, tf ]

• ∆T : the duration in seconds; ∆T = 100.0 s.
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Figure 8-10: Cascaded Tanks Configuration.

• nT : the number of tanks connected in series; 3 ≤ nT ≤ 16.

• I: the set of tank indices, I = {1, . . . , nT}. Tank i + 1 is downstream of tank i and

flow from tank i + 1 to tank i is prevented by the connecting check valve.

• {Ai}nT

i=1: the cross sectional area of the tanks in m2. Ai = 3/nT m2 for all i in I.

• {Hi}nT

i=2: the height of the feed pipe connecting tank i− 1 to tank i. Hi = 0.5m for all

i ∈ I\{1}.

• ne: number of epochs used in the control vector parameterization; 6 ≤ ne ≤ 100.

• K: the set of epoch indices; K = {1, . . . , ne}.

• {Tk}ne

k=1: the time intervals for each epoch. Tk = [αk, βk) where αk = t0 + ∆T (k−1)
ne

and

βk = t0 + ∆T (k)
ne

for all k in K.

• {{wk,i}ne

k=1}nT

i=0: the valve openings. 0.25 ≤ wk,i ≤ 1.25 for all k ∈ K and for all

i ∈ I ∪ {0}.

• np: number of parameters; np = ne · (nT + 1).

• p : the parameter vector. p ∈ R
np and wk,i = pi·ne+k, k ∈ K and i ∈ I ∪ {0}.

• P : the parameter set. P is an open subset of R
np such that [0.25, 1.25]np ⊂ P.

• wi : T × P → R: the controls of the system for all i ∈ I ∪ {0}. wi(t,p) = wi,k, ∀t ∈
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Tk, ∀i ∈ I ∪ {0} and wi(tf ,p) = wne,i, ∀i ∈ I ∪ {0}.

• hi : T ×P → R: the liquid height in the tank with index i for all i ∈ I in m.

• h : T × P → R
nT : the vector of liquid heights which is the continuous state of the

system, h(t,p) = (hi(t,p), . . . , hnT
(t,p)).

• X : the state space. X = R
nT .

• C0: valve constant of valve 0 in m3/s; C0 = 0.1 m3/s.

• {Ci}nT

i=1: valve constant of valve i in m2.5/s; Ci = 0.1 m2.5/s.

• Fi : T ×P ×X → R, the outlet flow rate from tank i in m3/s for all i ∈ I.

• F0 : T ×P → R, the inlet flow rate to tank 1 in m3/s.

• kr: a positive regularization constant, kr = 0.0001 m.

• hL: the lower bound on acceptable liquid heights in m, hL = 0.7 m.

• hU : the upper bound on acceptable liquid heights in m, hU = 0.8 m.

The numerical values except for kr are from [106].

The equations that govern the evolution of the cascaded tanks system are:

ḣi(t,p) =
1

Ai
(Fi−1(t,p) − Fi(t,p)), ∀t ∈ (t0, tf ], (8.2.1)

F0(t,p) = C0w0(t,p), ∀t ∈ [t0, tf ], (8.2.2)

Fi(t,p) = Ciwi(t,p)
∆hi(t,p)

√

|∆hi(t,p)| + kr

, ∀t ∈ [t0, tf ], (8.2.3)

∆hi(t,p) =















∆̄hi(t,p) if ∆̄hi(t,p) ≥ 0,

0 if ∆̄hi(t,p) < 0,

, ∀i ∈ I\{nT}, (8.2.4)

∆̄hi(t,p) =















hi(t,p) − (hi+1(t,p) − Hi+1) if hi+1(t,p) > Hi+1,

hi(t,p) if hi+1(t,p) ≤ Hi+1,

, ∀i ∈ I\{nT}, (8.2.5)

∆hne
(t,p) = hne

(t,p), (8.2.6)

hi(t0,p) = 0.1, ∀i ∈ I. (8.2.7)
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Equation (8.2.1) represents conservation of mass assuming constant liquid density. Equation

(8.2.2) governs the flow through the inlet valve. The difference between the liquid heights

in consecutive tanks determines the flow between consecutive tanks. If the liquid height in

the downstream tank is less than the height of the feed pipe, then the liquid height in the

downstream tank does not affect the flow rate. This phenomena is captured in (8.2.5) and

(8.2.6). It is possible that for some initial conditions that the downstream liquid height is

large enough to force a flow in the reverse direction. In this case ∆hi(t,p) is negative. Since

the valves connecting the tanks are check valves, there can be no reverse flow. This situation

is captured in (8.2.4). The flow relation used in (8.2.3) is an approximation of the square

root function. If ∆hi(t,p) is much larger than kr then the flow is approximately propor-

tional to
√

∆hi(t,p). When ∆hi(t,p) is very small, the flow relation becomes approximately

∆hi(t,p)/
√

kr. As a result, the function y 7→ y/(
√

|y| + kr) is continuously differentiable in

the neighborhood of 0. The equations are not locally Lipschitz continuous if this regular-

ization is not made. The model equations differ in this point from those presented in [106].

Finally, (8.2.7) determines the initial conditions of the state.

8.2.2 Dynamic Optimization Formulation

The aim of the dynamic optimization problem is to bring the liquid heights to values between

hL and hU and minimize the deviation of the liquid heights from this range. Given hi(t,p),

the deviation is max(0, hL−hi(t,p), hi(t,p)−hU ). The total deviation of liquid height i is the

integral of the deviation at t over the interval [t0, tf ]. Therefore, the dynamic optimization

problem is:

min
p∈P

J(p) =

nT
∑

i=1

∫ tf

t0

max(0, hL − hi(t,p), hi(t,p) − hU)dt (8.2.8)

s.t.0.25 ≤ wk,i ≤ 1.25, ∀k ∈ K, ∀i ∈ Icup{0}.
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where hi(t,p) are computed using (8.2.1)-(8.2.7). Note that the objective function can be

computed by adding auxiliary states zi : T × P → R to (8.2.1)-(8.2.7) whose evolutions are

governed by

żi(t,p) = max(0, hL − hi(t,p), hi(t,p) − hU), ∀t ∈ (t0, tf ], ∀i ∈ I, (8.2.9)

zi(t0,p) = 0, ∀i ∈ I. (8.2.10)

As a result X becomes R
2nT .

The final form of the optimization problem is

min
p∈P

J(p) =

nT
∑

i=1

zi(tf ,p) (8.2.11)

s.t : 0.25 ≤ wi,k ≤ 1.25, ∀k ∈ K, ∀i ∈ I, .

where zi are computed using (8.2.1)-(8.2.7) and (8.2.9)-(8.2.10).

8.2.3 Scaling of the Nonsmooth Single Shooting Method with Re-

spect to Number of Tanks and Number of Epochs

In this section empirical complexity analysis results are presented. Theoretical complex-

ity analysis of bundle methods does not currently exist. Therefore, the complexity of the

nonsmooth shooting method is analyzed empirically.

Problem (8.2.8) is solved for different values of nT and ne values to determine empirically

how the solution times of the nonsmooth shooting method scales. The study is similar to

the empirical complexity analysis in [106] carried out for the MILP approach that can be

used to solve dynamic problem (8.2.8).

For the integration of the dynamics and the auxiliary equations, DSL48SE ([108, 109, 36])
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is used with code generated by DAEPACK ([107]). The nonlinear program is solved by the

proximal bundle solver in [64] on a SUSE Linux 10 Virtual Machine with 1 GB of RAM

and a 2.4 GHz Intel Core Duo CPU using two sets of tolerances summarized in Table 8.11.

The valve openings are initialized at the lower bound value of 0.25. All optimization runs

Label Absolute Tolerance Relative Tolerance Optimality Tolerance

R 1.0 × 10−6 1.0 × 10−6 1.0 × 10−4

T 1.0 × 10−7 1.0 × 10−7 1.0 × 10−5

Table 8.11: Cascading Tanks: Simulation and optimization tolerances.

terminate satisfying the optimality tolerance. The solution obtained for the case ne = 10

and nT = 3 and the corresponding state trajectories are shown in Figures 8-11 and 8-12,

respectively. The raw data obtained from the multiple optimization runs are documented
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Figure 8-11: Cascading Tanks: Optimal valve openings for nT = 3.0 and ne = 10.

284



0 10 20 30 40 50 60 70 80 90 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time [s]

L
iq

u
id

 L
e

v
e

l 
[m

]

h3

h2

h1

Figure 8-12: Cascading Tanks: Plot of optimal state trajectories for nT = 3.0 and ne = 10.

in Tables 8.12 and 8.13. The column with the label “total” contains the total number of

equations integrated. This number is the sum of the number of original equations of the

system and the associated sensitivity equations. The column with label “ndf” contains the

number of discontinuity functions. Note that for each state zi, two discontinuity functions

are required. The first tank requires no discontinuity function and the last one requires only

one. All other tanks require two discontinuity functions to compute the associated sensitivity

equations. The total number of equations equals (2nT + ndf) · (np + 1) where ndf stands for

the number of discontinuity functions. This case study has a special structure. The total

number of equations is a quadratic function of the number of tanks and a linear function of

the parameters because np = ne · (nT + 1). The column with the label “J(p∗)” contains the

optimal solution values. The seconds taken to solve the dynamic optimization problem is

in the “CPU” column. The “NIT” column contains the number of iterations carried out by

the bundle solver. Finally, the “NFV” column contains the number of times the integrator

is called to solve the problem. R and T denote the two sets of tolerances used. Note that

the integration method used exploits the block lower triangular structure of the state and

sensitivity equations ([36]) to efficiently solve these equations.

The optimal solution values do not change appreciably with the tolerances. On the other
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nT np
NEQ J(p∗) CPU [s] NIT NFV

total ndf R T R T R T R T
3 40 656 10 14.41 14.42 11.54 13.99 51 47 52 48
4 50 1122 14 19.30 19.29 24.32 39.65 56 73 57 74
5 60 1708 18 24.48 24.45 31.06 53.34 46 63 47 64
6 70 2414 22 29.67 29.67 64.66 99.27 65 78 66 79
7 80 3240 26 35.08 35.07 89.38 145.64 61 80 66 81
8 90 4186 30 40.68 40.67 121.63 177.97 68 75 69 76
9 100 5252 34 46.31 46.33 205.98 214.95 76 64 77 65
10 110 6438 38 52.13 52.13 278.79 430.00 79 104 80 106
11 120 7744 42 58.01 58.00 339.81 550.53 75 105 76 106
12 130 9170 46 63.90 63.88 507.94 718.60 95 111 96 112
13 140 10716 50 69.87 69.88 636.29 790.66 92 92 93 93
14 150 12382 54 75.98 75.93 789.95 1538.94 94 156 95 157
15 160 14168 58 82.10 82.10 1091.52 1488.33 125 125 126 126
16 170 16074 62 88.35 88.31 1288.12 2422.15 105 174 106 175

Table 8.12: Cascading Tanks: Optimization run data for ne = 10 and different numbers of
tanks.

hand, the CPU times differ significantly with tolerances. The first reason is the increased

amount of time to simulate the dynamics using tighter simulation tolerances. The second

reason is the additional bundle solver iterations required to satisfy tighter optimality toler-

ances.

The functional dependence of CPU times on the number of epochs and number of tanks

is estimated by fitting functions to the data in Tables 8.12 and 8.13. It is determined that

the dependence of CPU times on nT and ne is not exponential by investigating the mappings

nT 7→ ln(τ(nT , ne)) for a fixed value of ne and ne 7→ ln(τ(nT , ne)) for a fixed value of nT

where τ(nT , ne) represents the CPU times. It is found that the growth of these mappings is

slower than linear, implying that the CPU time growth is slower than exponential growth.

It is assumed that the CPU time grows polynomially with ne and nT . The mappings

ln(n̄T ) 7→ ln(τ̄ (nT , ne)) for fixed ne and ln(n̄e) 7→ ln(τ̄(nT , ne)) for fixed nT are investigated

where n̄T = nT /3, n̄e = ne/10 and τ̄ (nT , ne) = τ(nT , ne)/τ(3, 10) in order to determine the

degree of the polynomial.
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ne np
NEQ J(p∗) CPU [s] NIT NFV

total ndf R T R T R T R T
5 20 336 10 14.75 14.77 6.90 9.71 56 60 57 61
8 32 528 10 14.97 14.88 7.36 25.19 41 109 42 110
10 40 656 10 14.41 14.42 11.54 13.96 51 47 52 48
15 60 976 10 14.25 14.22 22.29 40.23 59 83 60 84
20 80 1296 10 14.22 14.22 27.13 54.83 49 80 50 81
25 100 1616 10 14.19 14.19 36.56 47.49 48 50 49 51
30 120 1936 10 14.20 14.19 41.14 70.46 41 57 42 58
35 140 2256 10 14.19 14.19 57.63 65.51 46 43 47 44
40 160 2576 10 14.17 14.19 70.25 106.52 44 56 45 57
45 180 2896 10 14.18 14.18 80.84 121.34 43 54 44 55
50 200 3216 10 14.22 14.17 84.80 174.51 38 65 39 66
55 220 3536 10 14.17 14.17 133.35 175.39 53 56 54 57
60 240 3856 10 14.20 14.17 150.52 248.68 51 70 52 71
65 260 4176 10 14.17 14.19 178.26 203.92 54 50 55 51
70 280 4496 10 14.17 14.18 232.47 246.03 58 49 59 50
75 300 4816 10 14.17 14.17 204.93 295.53 47 53 48 55
80 320 5136 10 14.17 14.17 207.73 301.07 42 50 43 51
85 340 5456 10 14.18 14.18 224.83 302.09 42 44 43 45
90 360 5776 10 14.17 14.17 256.50 453.00 44 61 45 62
95 380 6096 10 14.25 14.17 275.62 530.23 43 65 44 66
100 400 6416 10 14.17 14.17 379.66 617.44 55 71 56 72

Table 8.13: Cascading Tanks: Optimization run data for nT = 3 and different numbers of
epochs

The curve fitting results are shown in Figures 8-13 and 8-14. Detailed information can

be found in Tables 8.15 and 8.14. The column with the label “SSE” contains the sum of the

squared errors, the columns with labels “R2” and “R̄2” contain the R-squared and adjusted

R-squared values, respectively. Finally the “RMSE” contains the root mean squared error.

The results suggest that the CPU time to obtain a solution is a cubic function of the

number of tanks and at most a quadratic function of the number of epochs. The polynomials

fitted to the data are shown in Figures 8-15 and 8-16. Additional information can be found

in Tables 8.16 and 8.17.
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Figure 8-13: Cascading Tanks: Plot of τ̄ versus n̄T and τ̄ versus n̄e for the relaxed tolerance
case.
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Figure 8-14: Cascading Tanks: Plot of τ̄ versus n̄T and τ̄ versus n̄e tight tolerance case.

8.2.4 Conclusion

The complexity of the nonsmooth single shooting method is investigated using a literature

problem introduced in [106]. It is observed that the CPU times strongly depend on simulation

and optimality tolerances used. In addition, for this literature example, it is determined that

the time required to solve the dynamic optimization problem grows polynomially with the

number of tanks hence states and the number of epochs. The dependence on the number

of tanks is cubic and the dependence on the number of epochs is quadratic. The number

of equations integrated depends quadratically on the number of tanks hence the number of

states and the number of equations integrated depends linearly on the number of parameters
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Figure 8-15: Cascading Tanks: Plot of CPU time versus nT and ne for the relaxed tolerance
case.
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Figure 8-16: Cascading Tanks: Plot of CPU time versus nT and ne for the tight tolerance
case.

for this example.

8.3 Cascading Tank: Comparison with the MPEC Ap-

proach

The dynamic optimization problem (8.2.8) is solved using the MPEC approach [12] and the

solution times are compared to the nonsmooth shooting method solution times.
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y = p1x + p2

Coefficients
SSE R2 R̄2 RMSE

99% Confidence Intervals
p1 p2 p1 p2

R 2.8753 −0.24197 0.2796 0.9903 0.9895 0.1526 [2.6248, 3.1257] [−0.5314, 0.0474]
T 2.9295 −0.08688 0.5407 0.9821 0.9806 0.2123 [2.5811, 3.2779] [−0.4893, 0.3156]

Table 8.14: Cascading Tanks: Curve fitting results for the natural logarithm of the normal-
ized CPU times versus natural logarithm of the normalized number of states.

y = p1x + p2

Coefficients
SSE R2 R̄2 RMSE

99% Confidence Intervals
p1 p2 p1 p2

R 1.4819 −0.14959 0.3727 0.9788 0.9775 0.1481 [1.3399, 1.6465] [−0.4450, 0.0652]
T 1.3162 −0.01854 1.2750 0.9536 0.9512 0.2591 [1.1257, 1.5068] [−0.6061, 0.2353]

Table 8.15: Cascading Tanks: Curve fitting results for the natural logarithm of the normal-
ized CPU times versus natural logarithm of the normalized number of epochs.

The MPEC formulation of the dynamic optimization problem (8.2.11) is

min
X

J(X) =

ne
∑

k=1

nt
∑

j=2

nT
∑

i=1

dt(uL
k,j,i + uH

k,j,i) + µ∆ (8.3.1)

s.t: hk,j,i = hL − uL
k,j,i, ∀k ∈ K, ∀j ∈ J , ∀i ∈ I, (8.3.2)

hk,j,i = hU + uH
k,j,i, ∀k ∈ K, ∀j ∈ J , ∀i ∈ I, (8.3.3)

uH
k,j,i ≥ 0, uL

k,j,i, ≥ 0, ∀k ∈ K, ∀j ∈ J , ∀i ∈ I, (8.3.4)

hk,j+1,i+1 − Hi+1 = ∆h̄+
k,j+1,i+1 − ∆h̄−

k,j+1,i+1, ∀k ∈ K, ∀j ∈ J̄ , ∀i ∈ Ī, (8.3.5)

p1,k,j+1,i+1 = (1 − λk,j+1,i+1)∆h̄+
k,j+1,i+1, ∀k ∈ K, ∀j ∈ J̄ , ∀i ∈ Ī, (8.3.6)

p2,k,j+1,i+1 = λk,j+1,i+1∆h̄−
k,j+1,i+1, ∀k ∈ K, ∀j ∈ J̄ , ∀i ∈ Ī, (8.3.7)

∆hk,j+1,i = hk,j+1,i − λk,j+1,i+1∆h̄+
k,j+1,i+1, ∀k ∈ K, ∀j ∈ J̄ , ∀i ∈ Ī, (8.3.8)

∆h̄+
k,j,i ≥ 0, ∆h̄−

k,j,i ≥ 0, ∀k ∈ K, ∀j ∈ J , ∀i ∈ I, (8.3.9)

0.0 ≤ λk,j,i ≤ 1.0, ∀k ∈ K, ∀j ∈ J , ∀i ∈ I, (8.3.10)

∆hk,j+1,i = ∆h+
k,j+1,i − ∆h−

k,j+1,i, ∀k ∈ K, ∀j ∈ J̄ , ∀i ∈ Ī, (8.3.11)
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y = p1x
2 + p2x + p3

Coefficients
SSE R2 R̄2 RMSE

p1 p2 p3

R 0.024557 0.88696 −0.54644 8263 0.9640 0.9600 21.43
T 0.06280 −1.0661 34.35 2.334 × 104 0.9613 0.9570 36.01

99% Confidence Intervals
p1 p2 p3

R [0.0068, 0.0423] [−0.9836, 2.7525] [−41.1879, 40.0951]
T [0.0330, 0.09260] [−4.2100, 2.0777] [−0.3396, 1.0266]

Table 8.16: Cascading Tanks: Curve fitting results for the CPU times versus number of
epochs.

y = p1x
3 + p2x

2 + p3x + p4

Coefficients
SSE R2 R̄2 RMSE

p1 p2 p3 p4

R 0.54942 5.458 31.26 −49.733 5278 0.9977 0.9970 22.97
T 1.8844 33.658 227.63 −445.97 1.8143 × 105 0.9734 0.9734 134.6

99% Confidence Intervals
p1 p2 p3 p4

R [0.1603, 0.9386] [−16.6306, 5.7147] [−66.3452, 128.872] [−302.0056, 202.5392]
T [−0.3963, 4.1652] [−99.1404, 31.8236] [−344.44, 799.70] [−1924.5, 1032.0]

Table 8.17: Cascading Tanks: Curve fitting results for the CPU times versus number of
tanks.

p3,k,j+1,i = (1 − ωi,j+1,k)∆h+
k,j+1,i, ∀k ∈ K, ∀j ∈ J̄ , ∀i ∈ Ī, (8.3.12)

p4,k,j+1,i = ωi,j+1,k∆h−
k,j+1,i, ∀k ∈ K, ∀j ∈ J̄ , ∀i ∈ Ī, (8.3.13)

∆h+
k,j+1,nT

= hk,j+1,nT
, ∆h−

k,j+1,nT
= 0, ∀k ∈ K, ∀j ∈ J̄ , (8.3.14)

ωk,j+1,nT
= 1, ∀k ∈ K, ∀j ∈ J̄ , (8.3.15)

∆h+
k,j,i ≥ 0, ∆h−

k,j,i ≥ 0, ∀k ∈ K, ∀j ∈ J , ∀i ∈ I, (8.3.16)

0.0 ≤ ωk,j,i ≤ 1.0, ∀k ∈ K, ∀j ∈ J , ∀i ∈ I, (8.3.17)

Fk,j+1,i = Ciwk,i

ωi,j+1,k∆h+
k,j+1,i

√

ωk,j+1,i∆h+
k,j+1,i + kr

, ∀k ∈ K, ∀j ∈ J̄ , ∀i ∈ I, (8.3.18)

Fk,j+1,0 = C0wk,0; ∀k ∈ K, ∀j ∈ J̄ , (8.3.19)
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hk,j+1,i = hk,j,i + dt

(

Fk,j+1,i−1 − Fk,j+1,i

Ai

)

, ∀k ∈ K, ∀j ∈ J̄ , ∀i ∈ I, (8.3.20)

hk+1,1,i = hk,nt,i, ∀k ∈ K̄, ∀i ∈ I, (8.3.21)

∆ =
4
∑

l=1

ne
∑

k=1

nt
∑

j=2

nT
∑

i=1

pl,k,j,i,

pl,k,j,i ≥ 0, ∀l ∈ L, ∀k ∈ K, ∀j ∈ J , ∀i ∈ I,

0.25 ≤ wk,i ≤ 1.25, ∀k ∈ K, ∀i ∈ I,

h1,1,i = 0.1, ∀i ∈ I, (8.3.22)

where

• nt is the number of finite elements in each epoch;

• µ is the penalty parameter;

• Ī = I\{1}, J̄ = J \{nt}, K̄ = K\{ne}, L = {1, . . . , 4};

• {{{uL
k,j,i}nT

i=1}nt

j=1}ne

k=1 and {{{uH
k,j,i}nT

i=1}nt

j=1}ne

k=1 are the deviations of the liquid heights

from the desired interval;

• {{{hk,j,i}nT

i=1}nt

j=1}ne

k=1 are the values of the liquid levels at epoch k and finite element j;

• {{{{pk,j,i}nT

i=1}nt

j=1}ne

k=1}4
l=1 are the deviations from the complementarity conditions;

• ∆ is the sum of the deviations from the complementarity conditions;

• {{{∆h+
k,j,i}nT

i=1}nt

j=1}ne

k=1, {{{∆h−
k,j,i}nT

i=1}nt

j=1}ne

k=1, {{{λ+
k,j,i}nT

i=1}nt

j=1}ne

k=1, {{{∆h̄+
k,j,i}nT

i=1}nt

j=1}ne

k=1,

{{{∆h̄−
k,j,i}nT

i=1}nt

j=1}ne

k=1, {{{ω+
k,j,i}nT

i=1}nt

j=1}ne

k=1 are the complementarity variables;

• {{{Fk,j,i}ne

k=1}nt

j=1}}nT

i=0 are the inlet and outlet flows of the tanks at epoch k and finite

element j;

• dt is the time step;

• {{wk,i}ne

k=1}nT

i=0 are the valve openings;

• X is the set {{{wk,i}ne

k=1}nT

i=0, {{{Fk,j,i}ne

k=1}nt

j=1}}nT

i=0, {{{∆h+
k,j,i}nT

i=1}nt

j=1}ne

k=1,

{{{∆h−
k,j,i}nT

i=1}nt

j=1}ne

k=1, {{{λ+
k,j,i}nT

i=1}nt

j=1}ne

k=1, {{{∆h̄+
k,j,i}nT

i=1}nt

j=1}ne

k=1,
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{{{∆h̄−
k,j,i}nT

i=1}nt

j=1}ne

k=1, {{{ω+
k,j,i}nT

i=1}nt

j=1}ne

k=1, {{{{pk,j,i}nT

i=1}nt

j=1}ne

k=1}4
l=1,

∆, {{{hk,j,i}nT

i=1}nt

j=1}ne

k=1, {{{uL
k,j,i}nT

i=1}nt

j=1}ne

k=1, {{{uH
k,j,i}nT

i=1}nt

j=1}ne

k=1}.

The dynamics are discretized using an implicit Euler scheme and are represented by (8.3.20).

The inlet and outlet flows computed using (8.3.18) and (8.3.19). Continuity of the state

variables is ensured by (8.3.21). The complementarity conditions determining the height are

in (8.3.5)-(8.3.17). Equations (8.3.2) (8.3.3) and (8.3.4) determine the deviations of liquid

heights from the desired interval. Initial conditions for the states are in (8.3.22).

The program (8.3.1) is implemented in GAMS 23.1 and solved with the nonlinear pro-

gramming solver IPOPT ([112]) as is done in [12] to a final tolerance of 1.0 × 10−6 on a

SUSE Linux 10 Virtual Machine with 1 GB of memory and a 2.4 GHz Intel Core Duo CPU.

The program is solved for various numbers of tanks and epochs. The initial X0 is computed

from data obtained by simulating the dynamics with all valve openings equal to 0.25. The

number of finite elements, nt is set to 10.

The CPU Times and the objective values are compared to the results obtained using

the nonsmooth shooting method with relaxed tolerances. Figures 8-17 and 8-18 compare

the CPU times and objective values. The objective values for the MPEC are the values

computed by simulating the valve openings obtained as the solution of (8.3.1).
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Figure 8-17: Cascading Tanks: MPEC Approach vs. The Single Nonsmooth Shooting
Method for different numbers of tanks.
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Figure 8-18: Cascading Tanks: MPEC Approach vs. The Nonsmooth Single Shooting
Method for different numbers of epochs.

8.3.1 Conclusion

The objective values do not differ appreciably. The CPU times in case of varying tanks

favor the MPEC approach slightly. The CPU times in case of varying epoch numbers favor

the nonsmooth shooting method slightly. The cascading tank system has dynamics less

nonlinear and stiff than the electric circuit considered in previous sections. For this example,

the nonsmooth shooting method and the MPEC approach perform comparably.

8.4 Cascaded Tank Example: Comparison with the

MILP approach

In this section, the cascading tanks example is solved using a mixed integer linear program

(MILP) approach. Similar to the MPEC approach, the MILP approach discretizes the

dynamics. Unlike the MPEC approach, binary variables are used to select the vector field

with which the states evolve between two time points and the dynamics are linearized.
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8.4.1 MILP Formulation

In order to apply an MILP approach similar to the one described in [106], the valve equation

in (8.2.3) needs to be linearized. The set [0.25, 1.25] × [0.0, 1.0] is partitioned into subsets

Dp,q = [δwL
q , δwU

q ] × [δhL
p , δhU

p ] such that:

• Q = {1, . . . , nb}, P = {1, . . . , na}, q ∈ Q, p ∈ P;

• δwL
q = 0.25 + 1.00(q−1)

nb
, δwU

q = 0.25 + 1.00(q)
nb

, for all q ∈ Q;

• δhL
p = 1.00(p−1)

na
, δhU

p = 1.00(p)
na

, for all p ∈ P;

• w0
q = (δwL

q + δwU
q )/2, for all q ∈ Q;

• h0
p = (δhL

p + δhU
p )/2, for all p ∈ P;

• F : X1 × X2 → R : (x1, x2) 7→ 0.1x1
x2√

|x2|+kr

where X1 = R and X2 = R;

• F 0
p,q = F (h0

p, w
0
q), for all q ∈ Q, for all p ∈ P;

• JwFp,q = J1F (h0
p, w

0
q), for all q ∈ Q, for all p ∈ P;

• JhFp,q = J2F (h0
p, w

0
q) for all q ∈ Q, for all p ∈ P.

The valve equation is approximated by the linearization:

F (x1, x2) ≈ F 0
p,q + JwFp,q(x1 − w0

q) + JhFp,q(x2 − h0
p) if (x1, x2) ∈ Dp,q. (8.4.1)

Note that the approximation is a discontinuous mapping on D. The approximation is multi-

valued on the intersections of the boundaries of the Dp,q. Continuous approximations are

possible but require more partitions of the domain, leading to more binary variables. The

following MILP uses these linearizations and ensures that if the liquid level difference ∆hi

is zero, there is no flow irrespective of what the linearizations predict:

min
X

J(X) =

ne
∑

k=1

nT
∑

i=1

dt(uL
k,i + uH

k,i), (8.4.2)

hk,i = hL − uL
k,i, ∀k ∈ K, ∀i ∈ I,
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hk,i = hU + uH
k,i, ∀k ∈ K, ∀i ∈ I,

hk,i+1 − Hi = ∆h̄+
k,i + ∆h̄−

k,i, ∀k ∈ K̄, ∀i ∈ Ī,

0.0 ≥ ∆h̄+
k,i − βk,ihmax, ∀k ∈ K̄, ∀i ∈ Ī,

0.0 ≤ ∆h̄−
k,i + (1 − βk,i)hmax, ∀k ∈ K̄, ∀i ∈ Ī,

∆h̄+
k,nT

= 0.0, ∆h̄−
k,nT

= 0.0, βk,nT
= 0,

∆h̄+
k,i ≥ 0, 0, ∆h̄−

k,i ≤ 0.0, βk,i ∈ {0, 1}, ∀k ∈ K̄,

∆hk,i = hk,i − ∆h̄+
k,i, ∀k ∈ K̄, ∀i ∈ I,

∆hk,i ≥ 0.0, ∀k ∈ K̄, ∀i ∈ Ī,

∆hk,i = ∆h+
k,i + ∆h−

k,i, ∀k ∈ K̄, ∀i ∈ I, (8.4.3)

0.0 ≥ ∆h+
k,i − αk,ihmax, ∀k ∈ K̄, ∀i ∈ I, (8.4.4)

0.0 ≤ ∆h−
k,i + (1 − αk,i)hmax, ∀k ∈ K̄, ∀i ∈ I, (8.4.5)

∆h+
k,i ≥ 0.0, ∆h−

k,i ≤ 0.0, αk,i ∈ {0, 1}, ∀k ∈ K̄, ∀i ∈ I, (8.4.6)

F̄k,i,p,q = F 0
p,q + JwFp,q(wk,i − w0

q) + JhFp,q(∆h+
k,i − h0

p), (8.4.7)

∀k ∈ K̄, ∀i ∈ I, ∀p ∈ P, ∀q ∈ Q, (8.4.8)

F̃k,i ≤ F̄k,i,p,q + (1 − γk,i,p)Fmax + (1 − ηk,i,p)Fmax, (8.4.9)

∀k ∈ K̄, ∀i ∈ I, ∀p ∈ P, ∀q ∈ Q, (8.4.10)

F̃k,i ≥ F̄k,i,p,q − (1 − γk,i,p)Fmax − (1 − ηk,i,p)Fmax, (8.4.11)

∀k ∈ K̄, ∀i ∈ I, ∀p ∈ P, ∀q ∈ Q, (8.4.12)

δhk,i,p ≥ δhL
p γk,i,p, ∀k ∈ K̄, ∀i ∈ I, ∀p ∈ P, (8.4.13)

δhk,i,p ≤ δhU
p γk,i,p, ∀k ∈ K̄, ∀i ∈ I, ∀p ∈ P, (8.4.14)

δhk,i,p ≤ hmaxγk,i,p, ∀k ∈ K̄, ∀i ∈ I, ∀p ∈ P, (8.4.15)

δhk,i,p ≥ 0.0, γk,i,p ∈ {0, 1}, ∀k ∈ K̄, ∀i ∈ I, ∀p ∈ P, (8.4.16)
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∆hk,i =
na
∑

p=1

δhk,i,p, ∀k ∈ K̄, ∀i ∈ I, (8.4.17)

1 =

na
∑

p=1

γk,i,p, ∀k ∈ K̄, ∀i ∈ I, (8.4.18)

δwk,i,q ≥ δwL
q ηk,i,q, ∀k ∈ K̄, ∀i ∈ I, ∀q ∈ Q, (8.4.19)

δwk,i,q ≤ δwU
q ηk,i,q, ∀k ∈ K̄, ∀i ∈ I, ∀q ∈ Q, (8.4.20)

δwk,i,q ≤ wmaxηk,i,q, ∀k ∈ K̄, ∀i ∈ I, ∀q ∈ Q, (8.4.21)

δwk,i,q ≥ 0.0, ηk,i,q ∈ {0, 1}, ∀k ∈ K̄, ∀i ∈ I, ∀q ∈ Q, (8.4.22)

wk,i =

nb
∑

q=1

δwk,i,q, ∀k ∈ K̄, ∀i ∈ I, (8.4.23)

1 =

nb
∑

q=1

ηk,i,q, ∀k ∈ K̄, ∀i ∈ I, (8.4.24)

0.25 ≤ wk,i ≤ 1.25, ∀k ∈ K̄, ∀i ∈ I ∪ {0},

F̃k,i = F+
k,i + F−

k,i, ∀k ∈ K̄, ∀i ∈ I, (8.4.25)

0.0 ≥ F+
k,i − µk,iFmax, ∀k ∈ K̄, ∀i ∈ I, (8.4.26)

0.0 ≤ F−
k,i + (1 − µk,i)Fmax, ∀k ∈ K̄, ∀i ∈ I, (8.4.27)

F+
k,i ≥ 0.0, F−

k,i ≤ 0.0, µk,i ∈ {0, 1}, ∀k ∈ K̄, ∀i ∈ I, (8.4.28)

Fk,i ≤ αk,iKhmax, ∀k ∈ K̄, ∀i ∈ I, (8.4.29)

Fk,i ≤ K∆h+
k,i, ∀k ∈ K̄, ∀i ∈ I, (8.4.30)

Fk,i ≤ F+
k,i + (1 − αk,i)Khmax, ∀k ∈ K̄, ∀i ∈ I, (8.4.31)

Fk,i ≥ F+
k,i − (1 − αk,i)Khmax, ∀k ∈ K̄, ∀i ∈ I, (8.4.32)

Fk,0 = C0 · wk,0, ∀k ∈ K̄,

hk+1,i = hk,i +
dt

Ai

(Fk,i−1 − Fk,i), ∀k ∈ K̄, ∀i ∈ I,

0.0 ≤ hk,i ≤ 1.00,
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where

• K̄ = K\{ne}, Ī = I\{nT};

• {{hk,i}ne

k=1}nT

i=1 are the liquid levels at epoch k for tank i;

• {{uL
k,i}ne

k=1}nT

i=1 and {{uH
k,i}ne

k=1}nT

i=1 are the deviations of the liquid levels from the desired

interval at epoch k for tank i;

• {{wk,i}ne

k=1}nT

i=0 are the valve openings;

• Fmax and K are large numbers, hmax = 1.00;

• X represents all the unknown variables in program (8.4.2).

The constraint (8.4.3) decomposes the liquid level difference, ∆hi(t,p) at epoch k, into

a nonnegative number, ∆h+
k,i and a nonpositive number, ∆h−

k,i. Flow through valve i occurs

only if ∆h+
k,i ≥ 0. If ∆hk,i > 0, then, the constraints (8.4.3)- (8.4.6) are satisfied only if

∆h−
k,i = 0, ∆h+

k,i = ∆hk,i and αk,i = 1. If ∆hk,i < 0, then, these constraints are satisfied only

if ∆h+
k,i = 0, ∆h−

k,i = ∆hk,i and αk,i = 0. In case, ∆hk,i = 0, these constraints are satisfied if

∆h+
k,i = ∆h−

k,i = 0 and αk,i ∈ {0, 1}.

The constraints (8.4.13)-(8.4.24) determine which linearization to use by determining in

which subdomain (wk,i, ∆hk,i) is located. If (wk,i, ∆hk,i) ∈ Dp̄,q̄, then γk,i,p̄ = 1, ηk,i,p̄ = 1.

The constraints (8.4.18) and (8.4.24) ensure that there is only one p̄ and one q̄ such that

γk,i,p̄ = 1, ηk,i,p̄ = 1 hold given i ∈ I and k ∈ K̄. Using these γk,i,p̄ and ηk,i,q̄, constraints

(8.4.9) and (8.4.11) determine the flows from the appropriate linearizations.

Constraints (8.4.25)-(8.4.32) ensure that the flow Fk,i is positive or zero in case ∆h+
k,i = 0.

These constraints also enforce αk,i = 0 if ∆hk,i = 0.

8.4.2 MILP Approach Results

The MILP formulation (8.4.2) was implemented in GAMS 23.1 and solved with the MILP

solver CPLEX using a relative optimality gap of 0.01. The optimization runs were terminated

if the CPU times exceeded 10, 000 seconds. The formulation was solved for different numbers
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of tanks and epoch numbers using different numbers of linearizations. The CPU times of

these runs as well as the objective values obtained are in Figures 8-19, 8-20, 8-21, 8-22, 8-23

and 8-24. The logarithm of the CPU times is plotted because the CPU times vary over

a wide range. Note that in case na = 3 and nb = 3, some optimization runs had to be

terminated because the CPU times exceeded 10, 000 seconds. It can be seen that the CPU

times scale exponentially with the number of epochs and states. This behavior is expected

in the MILP approach.
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Figure 8-19: Cascading Tanks: MILP Approach CPU times and optimal objective values for
different numbers of epochs and na = 1, nb = 1.
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Figure 8-20: Cascading Tanks: MILP Approach CPU times and optimal objective values for
different numbers of epochs and na = 2, nb = 2.

In the objective plots J̄(p∗) denotes the objective values predicted by the MILP for-

mulation and J̄(p) denotes the objective values obtained by simulating the valve openings

obtained as a part of the solution of (8.4.2). The difference between J̄(p∗) and J(p∗) is due

to the approximation of the original nonlinear dynamics using linearizations and discretiza-
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Figure 8-21: Cascading Tanks: MILP Approach CPU times and optimal objective values for
different numbers of epochs and na = 3, nb = 3.
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Figure 8-22: Cascading Tanks: MILP Approach CPU times and optimal objective values for
different numbers of tanks and na = 1, nb = 1.

tion. As expected, the difference decreases if the number of linearizations and the number

of epochs is increased. However, in this case, the CPU times become prohibitively large.

The MILP predicted state trajectories and the actual trajectories obtained using simulation

of the optimal valve openings are in Figures 8-25, 8-26 and 8-27 for various number of lin-

earizations and ne = 60. It can be seen that if na = 3, nb = 3, ne = 60, the dynamics

are approximated well enough for the case nT = 3. The comparison of objective values

and CPU times for the case na = 3 and nb = 3 with the nonsmooth single shooting method

results using relaxed tolerances are in Figures 8-28 and 8-29. It is clear that for this example,

the nonsmooth single shooting method performs better.
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Figure 8-23: Cascading Tanks: MILP Approach CPU times and optimal objective values for
different numbers of tanks and na = 2, nb = 2.

3 4 5 6 7 8 9 10 11 12
-1

0

1

2

3

4

5

Number of Tanks

lo
g

1
0
(C

P
U

 T
IM

E
)

(a) CPU Time

3 4 5 6 7 8 9 10 11 12
0

50

100

150

200

Number of Tanks
O

b
je

c
ti

v
e

 

 

J(p*)

J(p*)

-

(b) Objective

Figure 8-24: Cascading Tanks: MILP Approach CPU times and optimal objective values for
different numbers of tanks and na = 3, nb = 3.

8.4.3 Conclusion

The MILP approach requires comparable to or more CPU time than the nonsmooth sin-

gle shooting method to produce acceptable approximations to the state trajectories of the

dynamic system. The CPU times of the MILP approach seem to scale exponentially with

the number of tanks and epochs as expected from the branch and bound algorithm used by

the MILP solver. The MILP approach can in theory find the global minimum of (8.4.2).

However, due to the CPU times required, the MILP approach can only be applied to small

numbers of tanks and epochs. The main issue is the large number of linearizations and

large number of epochs required to approximate the state trajectories reasonably well. For

problems with nonlinear constraints such as the one considered in the Tank Change Over

Case Study, not only the dynamics but also the nonlinear constraints need to be linearized,

leading to problems that are intractable in a reasonable amount of time.
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Figure 8-25: Cascading Tanks: State trajectories for nT = 3, ne = 60, na = 1, nb = 1.
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Figure 8-26: Cascading Tanks: State trajectories for nT = 3, ne = 60, na = 2, nb = 2.

The program (8.4.2) differs from the formulation discussed in [106]. In this study, the

big M method is used whereas in [106] a disjunctive formulation approach is applied. The

big M method was chosen because it is conceptually simpler and easier to implement. It

is known that the disjunctive formulation may result in fewer binary variables. However,

possible exponential growth of the CPU time with respect to number of tanks and number of

epochs is still observed in [106] even when the disjunctive formulation is used. The study in

[106] does not consider the quality of the approximation of the state trajectories and does not

compare simulation results to the solution of the formulated MILP. Even if the disjunctive

formulation is used, the question of how to approximate the nonlinear elements of the model

with linearizations well remains unanswered. A large number of epochs and linearization

points is possibly still required.

In [106], the dynamics of the system are linearized without taking into account physical

behavior. The linearizations used in [106] do not try to account for the fact that if ∆hk,i = 0

302



0 10 20 30 40 50 60 70 80 90 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time [s]

L
iq

u
id

 L
e

v
e

l 
[m

]

h
2

h
3

h
1

(a) MILP

0 10 20 30 40 50 60 70 80 90 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time [s]

L
iq

u
id

 L
e

v
e

l 
[m

]

h
3

h
1

h
2

(b) Simulation

Figure 8-27: Cascading Tanks: State trajectories for nT = 3, ne = 60, na = 3, nb = 3.

5 8 10 15 20 25 30 40 50 60
0

10

20

30

40

50

Number of Epochs

O
b

je
c

ti
v

e

 

 

MILP

Nonsmooth

(a) Objective

5 8 10 15 20 25 30 40 50 60
-2

-1

0

1

2

3

4

5

Number of Epochs

lo
g

1
0
(C

P
U

 T
IM

E
)

 

 

MILP

Nonsmooth

(b) CPU Time

Figure 8-28: Cascading Tanks: Comparison of objective values and CPU times between the
MILP approach and the nonsmooth single shooting method for varying epochs, nT = 3,
na = 3, nb = 3.

for some i ∈ I and some k ∈ K, then Fk,i should be zero. Therefore, the modeling approach

in [106] possibly incurs larger approximation error.

There have been attempts to use binary variables without linearizing the nonlinearities

in the dynamics [7]. This approach produces large scale mixed-integer nonlinear programs

(MINLPs). Currently, these programs cannot be solved within reasonable CPU times.

8.5 Tank Change Over

In this section, a dynamic optimization problem introduced in [9] is solved using the non-

smooth single shooting method using the transformation described in §7.3. The dynamic

optimization problem aims to find the optimal schedule to change the contents of a vessel

from CH4 to O2 in the shortest amount of time while avoiding an explosion and using N2 to
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Figure 8-29: Cascading Tanks: Comparison of objective values and CPU times between the
MILP approach and the nonsmooth single shooting method for varying numbers of tanks,
ne = 10, na = 3, nb = 3.

P,V,T,MT

P3,N3,uO2

O2

N2

CH4

P2,N2,uN2

P1,N1,uCH4

Pout,Nout,uout

Figure 8-30: Tank Change Over: Configuration.

flush CH4 out of the tank if necessary (Figure 8-30).

8.5.1 System Dynamics

The elements of the model are:

• t0: initial time in seconds; t0 = 0.0 s.

• tf : final time in seconds; t0 ≤ tf ≤ 800 s.

• T : time interval in seconds; T = [t0, tf ].

• ∆T : the duration in seconds; ∆T = tf − t0.

• ne: number of epochs used in the control vector parametrization; ne = {3, 4}.
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• K: the set of epoch indices; K = {1, . . . , ne}.

• {Tk}ne

k=1: the time intervals for each epoch. Tk = [αk, βk) where α1 = t0, βne
= tf ,

αk ≤ βk, ∀k ∈ K, βk+1 = αk, ∀k ∈ K\{ne}.

• {∆Tk}ne

k=1: epoch durations; ∆Tk = βk − αk, ∀k ∈ K, 0.0 s ≤ ∆Tk ≤ 200.0 s.

• J = {CH4 = 1, N2 = 2, O2 = 3}: the set of chemical species indices.

• J̄ = {CH4 = 1, N2 = 2, O2 = 3, out = 4}: the set of valve indices.

• {{uk,j}ne

k=1}4
j=1: the valve opening at epoch k for valve j, 0.0 ≤ uk,j ≤ 1.0, ∀k ∈ K, j ∈

J̄ .

• np: the number of parameters; np = 4 × ne + ne.

• p: the parameters to be adjusted, p = {{{uk,j}ne

k=1}4
j=1, {∆Tk}ne

k=1}.

• P : the parameter set. P is an open subset of R
np such that [0.0, 1.0]4ne×[0.0, 200.0]ne ⊂

P.

• Mj : T ×P → R, j ∈ J are the number of moles of each chemical species in the tank.

• x : T×P → R
3: the continuous state of the system; x(t,p) = (MCH4(t,p), MN2(t,p), MO2(t,p)).

• X : state space of the system. X = R
3.

• P : T ×P → R: the pressure in the tank in bars.

• uj : T × P → [0, 1], j ∈ J : the controls of the system. uj(t,p) = uk,j, ∀t ∈ Tk,

∀j ∈ J̄ , ∀k ∈ K. uj(tf ,p) = une,j, ∀j ∈ J̄ .

• V : the volume of the tank in m3.

• T : the temperature of the whole system in K.

• R: the universal gas constant in bar·m3

mol·K .

• Pj, j ∈ J̄ : supply and discharge pressures in bar.

• Cv,j , j ∈ J and Cv,out: valve constants in mol
s·bar

.

• kb: a small regularization constant in bar.

The values of the parameters of the system are given in Table 8.18.
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The equations describing the dynamics are:

Ṁj(t,p) = Nj(t,p) − Nout(t,p)yj(t,p), ∀j ∈ J , ∀t ∈ (t0, tf ], (8.5.1)

MT (t,p) =
∑

j∈J
Mj(t,p), ∀t ∈ [t0, tf ],

yj(t,p) =
Mj(t,p)

MT (t,p)
, ∀j ∈ J , ∀t ∈ [t0, tf ],

P (t,p) = MT (t,p)
RT

V
, ∀t ∈ [t0, tf ], (8.5.2)

Nj(t,p) =































0 if P (t,p)
Pj

≥ 1,

uj(t,p)Cv,j

√

Pj+P (t,p)

2

Pj−P (t,p)√
|Pj−P (t,p)|+kbPj

if 0.53 ≤ P (t,p)
Pj

< 1,

uj(t,p)CkCv,j
Pj√

2
0.85 if P (t,p)

Pj
< 0.53,

∀j ∈ J , ∀t ∈ [t0, tf ],

(8.5.3)

Nout(t,p) =































0 if Pout

P (t,p)
≥ 1,

uout(t,p)Cv,out

√

P (t,p)+Pout

2
P (t,p)−Pout√

|P (t,p)−Pout|+kbP (t,p)
if 0.53 ≤ Pout

P (t,p)
< 1,

uout(t,p)CkCv,out
P (t,p)√

2
0.85 if Pout

P (t,p)
< 0.53,

∀t ∈ [t0, tf ],

(8.5.4)

Ck =
0.47 ·

√
1.53

0.85 ·
√

0.47 + kb

,

MCH4(t0,p) = 900.0, MO2(t0,p) = 0.0, MN2(t0,p) = 0.0. (8.5.5)

Equation (8.5.1) represents mass conservation. The gases in the tank are assumed to be

perfectly mixed ideal gases and (8.5.2) is the ideal gas law. Equation (8.5.3) determines the

inlet flow rates depending on the inlet and tank pressures. If the tank pressure is higher

than the inlet pressure, there is no flow. If the tank pressure is low, then the flow is choked

and depends only on the inlet pressure. Otherwise the flow is non-choked and depends both

on the inlet and tank pressures. The flow out of the tank is governed by (8.5.4). The valve
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T 300.0 K V 3.0 m3

Cv,O2 8.0 mol
s·bar

Cv,CH4 8.0 mol
s·bar

Cv,N2 8.0 mol
s·bar

Cv,out 8.0 mol
s·bar

R 8.314 · 10−5 bar·m3

mol·K PO2 12.0 bar

PCH4 10.0 bar PN2 7.0 bar

Pout 2.0 bar kb 1.0 · 10−3 bar

Table 8.18: Tank Change Over: Model parameter values.

equations for non-choked flow are regularized using kb in order to have PC1 equations. Ck

is a constant to ensure continuity of the valve equations. The valve equations differ from

the equations presented in [9] due to the application of regularization. Finally, the initial

conditions are in (8.5.5).

8.5.2 Safe Operation Conditions for the Tank

There is a chance of forming an explosive mixture during the change over operation. If the

mole fractions satisfy the relation h(yCH4(t,p), yO2(t,p)) ≤ 0 where h : [0, 1] × [0, 1] → R is

defined by

h(v, w) =















∑5
i=1 αi(v · 100.0)i−4 − (1 − v − w) · 100.0 if v ∈ [0.03, 063]

0 if otherwise

then an explosion cannot occur. The coefficients are tabulated in Table 8.19. The function

h is discontinuous at v = 0.03 and v = 0.63. However, for optimization purposes the points

of interest are S = {(v, w) : h(v, w) ≥ 0} and they coincide with the points S ′ = {(v, w) :

max{h(v, w), 0} ≥ 0} where ĥ(v, w) = max{h(v, w), 0} is a PC1 function.
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α1 α2 α3 α4 α5

−4761.168938 892.159351 −35.94512586 93.63386543 −1.480461088

Table 8.19: Tank Change Over: Path constraint polynomial coefficients.

8.5.3 Dynamic Optimization Formulation

The goal is to achieve the tank change over in the shortest duration without causing an

explosion. The corresponding program is:

min
p∈P

J(p) = tf (8.5.6)

s.t. ĥ(yCH4(t,p), yO2(t,p)) ≤ 0, ∀t ∈ [t0, tf ], (8.5.7)

yO2(tf ,p) ≥ 0.999, yCH4(tf ,p) ≤ 0.001,

0.0 ≤ ∆Tk ≤ 200.0, ∀k ∈ K,

0.0 ≤ uk,j ≤ 1.0, ∀k ∈ K, ∀j ∈ J̄ ,

where the tank dynamics evolve according to equations discussed in §8.5.1.

The path constraint (8.5.7) needs to be enforced at all times. However, this is not prac-

tically possible. Instead, this constraint will be replaced with an end point constraint.

Note that ĥ is either zero or a positive number. Then if the constraint (8.5.7) holds

for almost all t ∈ [t0, tf ] then
∫ tf
0

ĥ(yCH4(t,p), yO2(t,p)) ≤ 0 except on a set of measure

zero. The state trajectories of the dynamic system are absolutely continuous functions of

time given piecewise constant controls. Since ĥ is a continuous function of its arguments,
∫ tf
0

ĥ(yCH4(t,p), yO2(t,p)) ≤ 0 implies that the path constraint is satisfied for all t ∈ [t0, tf ].

Formulation (8.5.6) is a nonsmooth optimization problem involving variable integration

intervals. The problem is converted into an equivalent problem with fixed integration inter-
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vals using the transformation in §7.3. The transformed dynamics are:

τ̇(ǫ,p) = ∆Tk, ∀ǫ ∈ (k − 1, k], ∀k ∈ K,

˙̂
Mj(ǫ,p) = ∆Tk(N̂j(ǫ,p) − N̂out(ǫ,p)ŷj(ǫ,p)), ∀j ∈ J , ∀ǫ ∈ (k − 1, k], ∀k ∈ K,

M̂T (ǫ,p) =
∑

j∈J
M̂j(ǫ,p), ∀ǫ ∈ [0, ne],

ŷj(ǫ,p) =
M̂j(ǫ,p)

M̂T (ǫ,p)
, ∀j ∈ J , ∀ǫ ∈ [0, ne],

P̂ (ǫ,p) = M̂T (ǫ,p)
RT

V
, ∀ǫ ∈ [0, ne],

N̂j(ǫ,p) =































0 if P̂ (ǫ,p)
Pj

≥ 1,

ûj(ǫ,p)Cv,j

√

Pj+P̂ (ǫ,p)

2

Pj−P̂ (ǫ,p)√
|Pj−P̂ (ǫ,p)|+kbPj

if 0.53 ≤ P̂ (ǫ,p)
Pj

< 1,

ûj(ǫ,p)CkCv,j
Pj√

2
0.85 if P̂ (ǫ,p)

Pj
< 0.53,

∀j ∈ J , ∀ǫ ∈ [0, ne],

N̂out(ǫ,p) =































0 if Pout

P ′(ǫ,p)
≥ 1,

ûout(ǫ,p)Cv,out

√

P̂ (ǫ,p)+Pout

2
P̂ (ǫ,p)−Pout√

|P̂ (ǫ,p)−Pout|+kbP̂ (ǫ,p)
if 0.53 ≤ Pout

P̂ (ǫ,p)
< 1,

ûout(ǫ,p)CkCv,out
P̂ (ǫ,p)√

2
0.85 if Pout

P̂ (ǫ,p)
< 0.53,

∀ǫ ∈ [0, ne],

Ck =
0.47 ·

√
1.53

0.85 ·
√

0.47 + kb

M̂CH4(0,p) = 900.0, M̂O2(0,p) = 0.0, M̂N2(0,p) = 0.0, τ(0,p) = t0,

where the following hold

Mj(τ(ǫ,p),p) = M̂j(ǫ,p), ∀j ∈ J , ∀ǫ ∈ [0, ne],

Nj(τ(ǫ,p),p) = N̂j(ǫ,p), ∀j ∈ J̄ , ∀ǫ ∈ [0, ne],

uj(τ(ǫ,p),p) = ûj(ǫ,p), ∀j ∈ J̄ , ∀ǫ ∈ [0, ne],

τ(ne,p) = tf =

ne
∑

k=1

∆Tk + t0.
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The final optimization formulation is

J(p) = min
p∈P

ne
∑

i=1

∆Tk (8.5.8)

s.t.

ne−1
∑

k=1

∫ k+1

k

∆Tkĥ(ŷCH4(ǫ,p), ŷO2(ǫ,p)dǫ ≤ 0, (8.5.9)

0.999 − ŷO2(ne,p) ≤ 0, (8.5.10)

ŷCH4(ne,p) − 0.001 ≤ 0, (8.5.11)

0.0 ≤ ∆Tk ≤ 200.0, ∀k ∈ K,

0.0 ≤ uk,j ≤ 1.0, ∀k ∈ K, ∀j ∈ J̄ ,

where the system evolves according to the transformed dynamics.

8.5.4 Nonsmooth Single Shooting Method Results

For the integration of the dynamics and associated sensitivity equations DSL48SE ([108, 109,

36]) is used with code generated by DAEPACK ([107]). The nonlinear program is solved by

the proximal bundle solver in [64] on a SUSE Linux 10 Virtual Machine with 1 GB of RAM

and a 2.4 GHz Intel Core Duo CPU. The absolute and relative integration tolerances are set

to 1 × 10−8. The proximal bundle solver optimality tolerance is set to 1 × 10−6.

The constraints (8.5.9), (8.5.11) and (8.5.10) are appended to the objective using exact

penalization to obtain the augmented objective

ne
∑

i=1

∆Tk + µ1 max(0.00, 0.999− ŷO2(ne,p)) + µ2 max(0.00, ŷCH4(ne,p) − 0.001)+

µ3

ne−1
∑

k=1

∫ k+1

k

∆Tkĥ(ŷCH4(ǫ,p), ŷO2(ǫ,p))dǫ.

where µ1, µ2 and µ3 are positive penalty parameters. The dynamic optimization program
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is solved repeatedly using monotonically increasing sequences of penalty parameters. The

sequence of penalty parameters are µ1(l) = 5000 · l, µ2(l) = 4000 · l and µ3(l) = 1000 · l where

l = 1, . . . ,∞ is the index of the dynamic optimization program solved. Each problem is

solved to optimality. If the solution of the lth problem is not a feasible point of the original

problem, l is set to l + 1 and the process is repeated. Otherwise, the solution of the lth

problem is stationary for the original problem (see the Electric Circuit Case Study (§8.1) for

more information on the exact penalty approach) and the process is terminated.

Three Epochs

The solutions of the program (8.5.8) for the case ne = 3 are presented in this section. The

initial parameter values are in Table 8.21 and the solution is in Table 8.20. The final objective

and constraint values are in Table 8.22. The solution is obtained in 75.80 seconds. The total

number of bundle solver iterations is 421 and the total number of times the dynamics are

simulated is 425. The optimal tank change over time obtained is close to the optimal change

over times reported in [9]. The number of times the dynamics are simulated are significantly

less than those reported in [9]. This is mainly due to the use of exact derivative information.

The initial and final mole fraction profiles corresponding to the initial parameters and

solution of program (8.5.8) are in Figures 8-32 and 8-31. The path constraint and the mole

fractions of CH4 and N2 are shown in Figure 8-33. The initial mole fractions and final mole

fractions are marked by arrows. Note that during operation, the system gets very close to

the unsafe zone. In order to minimize the change over time, it is expected that the system

operates close to the unsafe zone.

Four Epochs

This section contains the solution of the program (8.5.8) for the case ne = 4. The program

is solved in 536 seconds. The number of iterations carried out by the bundle solver is 1821
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k ∆Tk uk,CH4 uk,O2 uk,N2 uk,out

1 76.97 s 0.00 0.00 1.00 1.00

2 110.31 s 0.00 1.00 1.00 1.00

3 50.78 s 0.00 1.00 0.00 1.00

Table 8.20: Tank Change Over: Solution of program (8.5.8) for ne = 3.

k ∆Tk uk,CH4 uk,O2 uk,N2 uk,out

1 10.0 s 0.5 0.5 0.5 0.5

2 10.0 s 0.5 0.5 0.5 0.5

3 10.0 s 0.5 0.5 0.5 0.5

Table 8.21: Tank Change Over: Initial parameter values used to solve program (8.5.8) for
ne = 3.

J(p) Constraint (8.5.11) Constraint (8.5.10) Constraint (8.5.9)

Initial 30.00 0.5956 0.5950 10.3184

Final 238.06 −9.0 × 10−4 1.0 × 10−4 0.00

Table 8.22: Tank Change Over Case Study: Objective and constraint values of program
(8.5.8) for ne = 3.
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Figure 8-31: Tank Change Over: Final mole fraction profiles corresponding to the solution
of (8.5.8) for ne = 3.
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Figure 8-32: Tank Change Over: Initial mole fraction profiles corresponding to parameters
in Table 8.21 of program (8.5.8) for ne = 3.
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Figure 8-33: Tank Change Over: Plot of the path constraint and the mole fraction profiles
corresponding to the solution of (8.5.8) for ne = 3.
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k ∆Tk uk,CH4 uk,O2 uk,N2 uk,out

1 86.31 s 0.00 0.0240 0.6286 1.00

2 43.19 s 0.00 0.9791 0.0003 1.00

3 51.79 s 0.00 1.00 0.00 1.00

4 56.50 s 0.00 1.00 0.00 1.00

Table 8.23: Tank Change Over: Solution of program (8.5.8) for ne = 4.

k ∆Tk uk,CH4 uk,O2 uk,N2 uk,out

1 10.0 s 0.5 0.5 0.5 0.5

2 10.0 s 0.5 0.5 0.5 0.5

3 10.0 s 0.5 0.5 0.5 0.5

3 10.0 s 0.5 0.5 0.5 0.5

Table 8.24: Tank Change Over: Initial parameter values used to solve program (8.5.8) with
ne = 4.

and the number of times the dynamics were integrated is 1917. The solution and initial

parameter values are in Tables 8.23 and 8.24, respectively. The initial and final objective

and constraint values are in Table 8.25. There is no significant difference in the optimal tank

change over times between the ne = 3 and ne = 4 cases.

J(p) Constraint (8.5.11) Constraint (8.5.10) Constraint (8.5.9)

Initial 40.00 0.5223 0.5213 116.71

Final 237.79 6.6 × 10−5 9.7 × 10−5 0.00

Table 8.25: Tank Change Over: Objective and constraint values of program (8.5.8) with
ne = 4.
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Figure 8-34: Chemotherapy Scheduling: Configuration

8.5.5 Conclusion

The time taken to solve (8.5.8) depends strongly on the policy with which the penalty

parameters are updated. In this study, a very simple schedule of monotonically increasing

parameters is used. It is expected that more sophisticated penalty updating policies will

reduce the solution times.

8.6 Chemotherapy Scheduling Case Study

In this section, a modified version of the cell cycle specific chemotherapy model introduced

in [82] is used to determine an optimal chemotherapy drug schedule. The example is used

to compare the nonsmooth single shooting method with a derivative-free method.

8.6.1 System Dynamics

The elements of the model are:
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• t0: initial time in days; t0 = 1.0 day.

• tf : final time in days; tf = 31 day.

• T : time interval in days; T = [t0, tf ].

• ∆T : the duration in days; ∆T = tf − t0.

• ne: number of epochs used in the control vector parameterization; ne = 30.

• K: the set of epoch indices; K = {1, . . . , ne}.

• Tk: epoch k interval. Tk = [k, k + 1).

• ∆Tk: epoch duration, ∆Tk = 1, ∀k ∈ K.

• {uA,k}ne

k=1: drug A dosage in units of drug concentration, [D]; 0 ≤ uA,k ≤ 20.00.

• {uB,k}ne

k=1: drug B dosage in units of drug concentration, [D]; 0 ≤ uB,k ≤ 20.00.

• np: number of parameters, np = 2ne.

• p : the parameters to be adjusted. p = {{uA,k}ne

k=1, {uB,k}ne

k=1}.

• P : the parameter set, an open subset of R
2ne such that [0, 20]2ne ⊂ P.

• uA : T × P → [0, 20]: drug A schedule such that uA(t,p) = uA,k, ∀t ∈ tk, uA(tf ,p) =

uA,ne
.

• uB : T × P → [0, 20]: drug B schedule such that uB(t,p) = uB,k, ∀t ∈ tk, uB(tf ,p) =

uB,ne
.

• P : T ×P → R: the size of the proliferating cancer cell population in the tissue.

• Q : T × P → R: the size of the quiescent cancer cell population in the tissue.

• Y : T × P → R: the size of the healthy cell population in the tissue.

• vA : T × P → R: drug A concentration in the tissue.

• vB : T × P → R: drug B concentration in the tissue.

• x : T ×P → R
5: the continuous state of the system, x(t,p) = (P (t,p), Q(t,p), Y (t,p),

vA(t,p), vB(t,p)).

• X : the state space; X = R
5.
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The equations governing the system evolution are:

α = a − m − n,

Ṗ (t,p) = αP (t,p) + bQ(t,p) − FA(vA(t,p), P (t,p)), ∀t ∈ (t0, tf ], (8.6.1)

FA(vA(t,p), P (t,p)) =















0 if vA(t,p) − v̄A ≤ 0,

kA(vA(t,p) − v̄A)P (t,p) if vA(t,p) − v̄A ≥ 0,

, ∀t ∈ [t0, tf ],

Q̇(t,p) = mP (t,p) − bQ(t,p) − FB(vB(t,p), Q(t,p)), ∀t ∈ (t0, tf ], (8.6.2)

FB(vB(t,p), Q(t,p)) =















0 if vB(t,p) − v̄B ≤ 0,

kB(vB(t,p) − v̄B)Q(t,p) if vB(t,p) − v̄B ≥ 0,

, ∀t ∈ [t0, tf ],

Ẏ (t,p) = σY (t,p)(1 − Y (t,p)/K) − kAvA(t,p)Y − kBvB(t,p)Y (t,p)), ∀t ∈ (t0, tf ],

(8.6.3)

v̇A(t,p) = uA(t,p) − γAvA(t,p), ∀t ∈ (t0, tf ], (8.6.4)

v̇B(t,p) = uB(t,p) − γBvB(t,p), ∀t ∈ (t0, tf ], (8.6.5)

P (t0,p) = 2.00 × 1011, Q(t0,p) = 8.00 × 1011, Y (t0,p) = 1.00 × 1010, (8.6.6)

vA(t0,p) = 0.0, vB(t0,p) = 0.0. (8.6.7)

The equations describe the behavior of tumor cells and healthy cells in human tissue under

chemotherapy (Figure 8-34). The tissue comprises healthy cells, Y , proliferating tumor

cells, P , and quiescent tumor cells, Q. Chemotherapy comprises two drugs; A and B. uA and

uB are the chemotherapy drug schedules. vA and vB are the exponentially decaying drug

concentrations in the tissue. Tumor cells develop resistance to drugs. As a result, drugs

are effective against the tumor cells only if their concentrations in the tissue are above v̄A

and v̄B. A fraction, n, of proliferating cells die of natural causes and and a fraction, m, of

proliferating cells become quiescent cells. The increase in proliferating cell population by
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a 0.500 day−1 v̄A 10.000 [D]

m 0.218 day−1 v̄B 10.000 [D]

n 0.477 day−1 kA 8.400 × 10−3 day−1[D]−1

b 0.100 day−1 kB 8.400 × 10−3 day−1[D]−1

σ 0.100 day−1 K 1.0 × 1010 cells

γA 0.100 day−1 γB 0.100 day−1

Table 8.26: Chemotherapy Scheduling: Model Parameters

cell division is represented as another fraction, a, of the proliferating cell population. In

addition, a fraction, b of quiescent cells become proliferating cells. The tumor cell dynamics

are in (8.6.1) and (8.6.2). A logistic equation (8.6.3) governs the healthy cell population to

ensure that the number of healthy cells does not exceed the carrying capacity, K. The drug

concentrations in the tissue decrease with time according to (8.6.4) and (8.6.5). The initial

cell populations and drug concentrations are in (8.6.6) and (8.6.7). Numerical values for the

parameters are in Table 8.26. Most of the values are obtained from [31] where cell cycle

specific chemotherapy with a single drug and without drug resistance is considered.

8.6.2 Dynamic Optimization Formulation

The goal is to kill as many tumor cells as possible during a 30-day chemotherapy session and

still retain a minimum number of healthy cells at the end. The program:

min
p∈P

J(p) = P (tf ,p) + Q(tf ,p) (8.6.8)

s.t. Y (tf ,p) ≥ 1.0 × 108, (8.6.9)

vA(tf ,p) + vB(tf ,p) ≤ 10.0, (8.6.10)

0.0 ≤ uA,k ≤ 20.0, k ∈ K,

0.0 ≤ uB,k ≤ 20.0, k ∈ K,
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is solved to determine such a schedule. Constraint (8.6.9) ensures that the size of final

healthy cell population is above a certain size and constraint (8.6.10) ensures that the final

drug concentration is at an acceptable level.

8.6.3 Nonsmooth Single Shooting Method Results

DSL48SE is the IVP solver ([108, 109, 36]) used to integrate the dynamics and the auxiliary

equations to obtain an element of the linear Newton approximation. The auxiliary equations

are obtained using automatic differentiation algorithms implemented in DAEPACK ([107]).

The differential equations are integrated with an absolute tolerance of 1×10−8 and a relative

tolerance of 1 × 10−7.

The proximal bundle method in [64] is used to solve (8.6.8). A penalty approach to handle

(8.6.9) and (8.6.10) is used because the algorithm in [64] handles only linear constraints on

the decision variables. The objective of (8.6.8) is augmented with (8.6.9) and (8.6.10) to

obtain the modified objective

P (tf ,p) + Q(tf ,p) + µ max(Ymin − Y (tf ,p), 0) + µ max(vA(tf ,p) + vB(tf ,p) − 10.0, 0)

where µ is the penalty parameter. The modified program is successively solved two times

with increasing penalty parameter to an optimality tolerance of 1× 10−6. The drug dosages

are set to 2.0 initially. The penalty parameters used are {1000, 3000}. The total solution

time was 40.0 seconds on a SUSE Linux 10 Virtual Machine with 1 GB of RAM and a

2.4 GHz Intel Core Duo CPU. The bundle solver required 71 iterations and 78 calls to the

integrator.

The cell population numbers and constraint values at the beginning and end of the

treatment are in Table 8.27. The tumor cell population is reduced to about 11 percent of its

initial size. The drug schedules are shown in Figure 8-35a and Figure 8-35b. The preference
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Beginning of Treatment End of Treatment
Y 1.00 × 1010 cells 1.00 × 108 cells
Q 8.00 × 1011 cells 6.66 × 1010 cells
P 2.00 × 1011 cells 3.73 × 1010 cells
vA 0.00 [D] 0.00 [D]
vB 0.00 [D] 10.0 [D]

Table 8.27: Chemotherapy Schedule:Cell populations at the beginning and end of treatment

to use drug B is clearly seen. The effects of the drugs are proportional to the corresponding

cell populations. Therefore using drug B results in more effective treatment as the population

of quiescent cells is greater than that of proliferating cells. The drug concentrations are in

8-36a and 8-36b. The cell populations are in Figures 8-37a and 8-37b.
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Figure 8-35: Chemotherapy Schedule: Optimal drug schedules.

8.6.4 Derivative Free Method Results

The Mesh Adaptive Direct Search Method [6] is used to solve program (8.6.8). This method

does not require derivative information and unlike other derivative free methods there are

some theoretical convergence results for locally Lipschitz functions. The algorithm is imple-

mented in the software package NOMAD and the package can be found at http: //www.gerad.ca

/NOMAD.
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Figure 8-36: Chemotherapy Schedule: Drug concentrations in the tissue.
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Figure 8-37: Chemotherapy Schedule: Cell populations.

Initially, the algorithm did not achieve significant progress towards a solution after 2000

evaluations of the objective and constraints with the initial drug dosages set to 2.0. Therefore

the initial dosages were set to zero except the first 3 day dosages for drug B. These were

set to 20. The algorithm was run for 7500 evaluations of the objective and constraints. The

final tumor cell population obtained was 1.12 × 1011 cells, the final healthy cell population

was 0.996 × 108 cells and the final drug concentration in the healthy tissue was 10.19 [D].

The algorithm took 56 minutes to produce the results on a SUSE Linux 10 Virtual Machine

with 1 GB of RAM and a 2.4 GHz Intel Core Duo CPU. The data is summarized in Table

8.28. NFV is the number of times the dynamics are simulated and CPU Time is the time
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Nonsmooth Single Shooting Derivative Free

Y (tf ,p
∗) 1.00 × 108 cells 0.996 × 108 cells

Q(tf ,p
∗) + P (tf ,p

∗) 1.039 × 1011 cells 1.12 × 1011 cells

vA(tf ,p
∗) + vB(tf ,p

∗) 10.00 [D] 10.19 [D]

CPU Time [s] 40.0 s 3360.0 s

NFV 78 7500

Table 8.28: Chemotherapy Schedule: Comparison of Nonsmooth Single Shooting Method
and Derivative Free Method

taken by the processor to solve the problem.

8.6.5 Conclusion

It was found that even though it is easier to set up and run the derivative free method, the

solution time required to obtain an answer was significantly more. The nonsmooth shooting

method took 40 seconds to terminate with a solution satisfying the stationarity condition

where as the derivative free method took 56 minutes. The derivative-free method does not

have a termination criteria based on stationarity. It terminates once the number of iterations

or objective evaluations exceed their maximum values. In this case, the algorithm terminated

once 2500 objective and constraint evaluations were made. The final solution provided by

the derivative-free algorithm corresponds to a worse solution value than the one obtained

using the bundle method.

From the performance of the derivative-free method, it is clear that derivative information

should be used whenever available. Although, it is easier to set up a derivative-free method,

the use of automatic differentiation tools makes the difference in the effort to set up the

problem minimal. Therefore, for these problems, the use of derivative free methods is not

warranted.
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8.7 Notes

The performance of the nonsmooth single shooting method depends on the performance of

the integration algorithm and the bundle solver. Currently, the integration routine DSL48SE

([108, 109, 36]) is the only available routine that incorporates state event location algorithms

and the necessary infrastructure to integrate the sensivity equations. This integration routine

uses sparse matrix algebra techniques to effciently handle systems with a lot states. However,

the use of sparse matrix algebra techniques incurs setup costs. These costs are offset by the

gain in efficiency obtained when dealing with systems with a lot states. For the case studies

in this chapter, DSL48SE may not be the most efficient algorithm because the number of

states of the systems considered in these studies is relatively small.
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Chapter 9

Conclusions and Future Directions for

Research

In this thesis, the nonsmooth single shooting method, an open loop dynamic optimization

method for a class of systems with varying structure is developed. Unlike the state-of-the-art

methods, this method does not explicitly enumerate the hybrid mode trajectories and it does

not discretize the dynamics as a part of the optimization formulation. Instead a specialized

and efficient numerical integration algorithm [108] is used to compute the continuous state

trajectories accurate within integration tolerances.

The method converts the dynamic optimization problem into a nonlinear program by

parametrizing the controls. The resultant program is a nonsmooth optimization problem

due to the varying structure of the underlying dynamic systems. Therefore concepts from

nonsmooth analysis and methods from nonsmooth optimization are used. The main challenge

of this approach is determination of the replacement for the gradient. A custom set-valued

map is defined using the generalized Jacobian [25] which turns out to be a linear Newton

approximation [35]. Sensitivity initial value problems are derived to calculate an element of

this set-valued map.
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Stationarity conditions for optimization are defined in terms of this set-valued map. It

is shown that bundle methods can be used to obtain solutions satisfying these stationarity

conditions.

The performance of the nonsmooth single shooting method is compared to the state-

of-the-art methods. The nonsmooth shooting method provides more accurate answers for

equal or less effort than the state of the art in case the system dynamics are highly nonlinear

and/or exhibit stiffness. This is the result of using a numerical integration algorithm instead

of discretization as a part of the optimization formulation. An empirical investigation of

complexity is performed. The results strongly suggest that the method scales polynomially

with the number of states and parameters.

Finally, the thesis demonstrates that nonsmooth analysis and nonsmooth optimization

methods can be used to solve practical dynamic optimizaton problems.

The breakdown of the contributions per chapter is:

Chapter 3 : In this chapter, sufficient conditions for the existence of the strict derivative

(§2.2) of the map η 7→ x(t, η) in terms of the generalized Jacobian are derived where

x represents the continuous states of the system with varying structure.

The first part considers dynamics described by the ordinary differential equations in

(3.2.1). The forward and adjoint sensitivity initial value problems are derived to

compute the aforementioned derivative. The second part extends these results to

differential-algebraic systems described by (3.3.1) using the implicit function theo-

rem for locally Lipschitz continuous functions. The strict derivatives of the maps

η 7→ y(t, η) and η 7→ ẋ(t, η) are obtained where y are the algebraic variables. The

results are extended to multistage systems.

The parametric sensitivity results in this chapter are new. The sufficiency conditions

derived in this chapter are more general than those in [44]. They are more general

than the conditions in [39, 95] in case the underlying dynamics are described by locally
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Lipschitz continuous ODEs and DAEs.

Chapter 4 : It is not possible to compute the generalized Jacobian of the map η 7→ x(t, η)

for all possible values of η. Theorem 3.1.3 does not provide a means to compute the

generalized Jacobian in case the sufficiency conditions in Chapter 3 are not satisfied.

Therefore, a linear Newton approximation of the map η 7→ x(t, η) is derived under an

additional semismoothness assumption on the right-hand side functions. Formulae are

derived to compute an element of this linear Newton approximation using forward and

reverse integration in time. Linear Newton approximations of the maps η 7→ y(t, η)

and η 7→ ẋ(t, η) are derived. Results are extended to the multistage case. The values

of the linear Newton approximations defined contain the values of the generalized

Jacobians at all possible η. The results reduce to the results in Chapter 3 in case the

assumptions of that chapter hold in addition to the assumptions of this chapter.

The parametric sensitivity results based on linear Newton approximations are new.

Chapter 5 : The differential equations defining elements of the linear Newton approxima-

tions in Chapter 4 generally have right-hand sides that are discontinuous in time. The

time at which a discontinuity occurs needs to be detected and located for efficient and

accurate computation of these quantities using numerical integration. A numerical

method is described to detect these discontinuities using the state event location algo-

rithm in [83] and compute an element of the linear Newton approximations defined in

Chapter 4 simultaneously with the states. This algorithm works if the functions of the

right-hand side satisfy a structural assumption that in essence makes them PC1 (§2.7)

functions.

The numerical computation of linear Newton approximations using state event location

algorithms is new. Note that a method based on time stepping [99] is described in [81].

Chapter 6 : In this chapter, bundle methods [54, 66] are modified to use the linear Newton

approximations defined in Chapter 4. Extended stationarity conditions are defined
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using these linear Newton approximations and it is shown that the bundle method

produces a sequence of solutions whose limit points satisfy the extended stationary

conditions. It is shown that a direction of descent can be computed and that the special

line search algorithm of the bundle method converges if linear Newton approximations

are substituted for the generalized gradients. In essence, it is shown that the generalized

gradient can be replaced by the linear Newton approximations of Chapter 4.

The use of the linear Newton approximation in the context of nonsmooth optimization

is new. The use of linear Newton approximations in conjunction with bundle methods

is new.

Chapter 7 : The theoretical development of the nonsmooth single shooting method is in

this chapter. The control parametrization approach in [105, 40] is extended to the case

where the dynamics are governed by ordinary differential equations whose right-hand

sides are PC1 functions.

Chapter 8 : The performances and accuracy of solutions of the MILP, MPEC and nons-

mooth single shooting methods are compared using literature examples. This compar-

ison is the first of its kind to the best of the author’s knowledge. It is found that the

nonsmooth single shooting method provides the most accurate optimal state trajecto-

ries for less or comparable effort especially if the dynamics are highly nonlinear and/or

stiff.

Empirical complexity analysis of the nonsmooth shooting method is performed. Cur-

rently, it is not possible to carry out a theoretical complexity analysis because the-

oretical complexity analysis results do not exist for bundle methods and numerical

integration methods. The results strongly suggest that the method scales polynomi-

ally with the states and parameters.
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9.1 Future Directions for Research

9.1.1 Parametric Sensitivities, Their Computation and Use

Existence, computation and use of the second derivative

The second derivative of the objective and the constraints in (1.3.1) with respect to the

parameters is of practical interest. The second derivative can be used to improve the perfor-

mance of bundle methods. In [67], it is shown that a bundle method using second derivative

information [64, 63] outperforms the proximal bundle method in [64] significantly. Under

certain conditions, superlinear convergence can be proven for this method.

There are results on the existence of the second derivative for systems with varying struc-

ture [2]. These results depend on conditions similar to those in [39]. It is an open question

whether more general results can be achieved for piecewise twice continuously differentiable

vector fields.

Computing the second derivative requires additional computational effort. Therefore,

the efficient computation of the second derivative simultaneously with the first derivative is

important.1 It is an open question whether the advantages of using second derivatives offsets

the additional computational burden.

In [67], the second derivative of a nearby point is used as an approximation in case the

second derivative does not exist at a point. This might be a computationally expensive option

for dynamic optimization problems. The existence of a suitable replacement is another open

question.

1It is shown in [77] that directional second order derivatives are relatively cheap to compute.
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Efficient implementation of reverse integration to compute parametric sensitiv-

ities of systems with varying structure

There are dynamic optimization problems where the number of parameters is very large.

In this case, the linear Newton approximations can possibly be computed more efficiently

using reverse integration in time. A smaller number of equations need to be integrated.

However, reverse integration in time requires the storage of the state trajectories obtained

using forward integration.

Currently, numerical methods exist that are applicable to sufficiently smooth ODEs and

DAEs [85]. There exists no numerical method that uses the results in this thesis and [95]. The

theoretical development and implementation of such a numerical method and the comparison

of reverse integration to forward integration is another future direction of research.

Parametric sensitivities of linear program solutions with respect to the right-

hand side vector

Consider the linear program:

min
x

cTx s.t. Ax = b, x ≥ 0.

where x ∈ R
n, c ∈ R

n, b ∈ R
m, A ∈ R

m×n and n > m. Assume b ∈ B where B is an

open convex set. Assume that the solution set is a singleton for all b ∈ B. Let x∗ : B → R
n

represent the optimal solution of this linear program as a function of b. It is known that x∗

is a locally Lipschitz continuous function in this case [69].

Dynamic systems with linear programs embedded occur when biological agents are mod-

eled using the flux balance analysis (FBA) technique [58]. In this approach, the A matrix

of the linear program encodes the chemical reactions that take place inside biological agents

such as bacteria or yeast. x represents the rate at which each of the chemical species is
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produced. Note that there are more chemical species than linearly independent reactions.

The b vector represents the amount of material exchange between the organism and the en-

vironment. Usually, the objective is maximization of the growth of the organism. Depending

on the b vector, the chemical reactions that occur inside the organism change. An example

of a dynamic optimization problem with FBA models embedded can be found in [46].

The semismoothness property and the generalized Jacobian of the map η 7→ x∗(η) is of

interest. If an element of the generalized Jacobian of the map η 7→ x∗(η) can be computed,

then, the results in this thesis can be used to solve such problems. Currently, these problems

are solved using the MPEC approach. Due to the discretization of the dynamics, the size of

the FBA models used is limited, though.

9.1.2 Dynamic Optimization

Integer-valued controls

In [97], a method is described to handle integer-valued controls in continuous-time dynamic

optimization problems. The method relaxes the original problem with respect to the integer-

valued controls. The controls of the relaxed problem are approximated by functions described

by finitely many parameters. The approximate integer-valued controls are recovered using

special rounding off techniques from the solutions of the relaxed problems. The method is

shown to approximate the solution of the original problem arbitrarily close. The systems

considered do not contain autonomous transitions and for fixed integer-valued controls are

continuously differentiable. Combining the nonsmooth single shooting method with the

approach in [97] would enable the incorporation of integer-valued controls.

331



Nonsmooth multiple shooting method

Single shooting methods are not suitable for problems with unstable dynamics. In this case,

integration errors grow without bound and the state trajectories computed are not reliable.

In order to deal with such systems, multiple shooting methods have been devised [59, 60].

Multiple shooting methods can handle dynamic optimization problems of unstable systems

with end point constraints.

The results in this thesis can be used to develop a multiple shooting method. In multiple

shooting, the time horizon is partitioned into epochs. The dynamics are integrated separately

on each epoch. This decoupling is achieved by making the initial conditions for each epoch,

parameters of the dynamic optimization problem. Then, consistent parameters are obtained

as a part of the solution. The challenge is to handle these additional parameters efficiently

in the solution of the problem.

Optimization of convex programs

∂f(x2) = W holds in Theorem 3.1.2 if g(t, ·) is a convex function (See Theorem 2.7.2 in

[25]). In this case, W is equal to the subdifferential of f at x2. Consider the problem

min
p∈P

J(p) =

∫ tf

t0

h0(t,p,x(t,p))dt + H0(p,x(tf ,p)) (9.1.1)

s.t.

∫ tf

t0

hi(t,p,x(t,p))dt + Hi(p,x(tf ,p)) ≤ 0, ∀i ∈ {1, . . . , nc},

ẋ(t,p) = f(t,p,x(t,p)), ∀t ∈ (t0, tf ],

x(t0,p) = f0(p).

If the integrands in the objective and constraints can be shown to be convex functions of

p, then Theorem 2.7.2 in [25] can be used to compute an element of the subdifferential

of the corresponding integrals. Cases when this holds are of interest because if Hi, for all
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i ∈ {0, . . . , nc} are convex functions, then this program is a convex program. In this case,

bundle methods can be used to find the global minimum. The challenge is the computation of

an element of the generalized gradients of the integrands with respect to p when assumptions

of Theorem 3.2.3 do not hold.

Deterministic global optimization

The nonsmooth shooting method finds stationary points of the nonlinear programs. Prob-

lems involving few parameters may be solved to ǫ−global optimally using the approach in

[57, 56]. In this approach, convex nonlinear programs are constructed that underestimate the

objective value of the original nonlinear program. Then, a deterministic global optimization

method such as branch and bound [47] is used to obtain the ǫ−global solution.

The construction of the underestimating convex programs need to be investigated using

the ideas in [100]. Note that this research direction is linked to the optimization of convex

programs.

Necessary conditions of optimality

The relationship between the solutions of the nonsmooth NLPs representing dynamic opti-

mization problems and the necessary conditions of optimality in [25] are of interest.

9.1.3 Systems with Discontinuous Vector Fields

The extension of the nonsmooth single shooting method to discontinuous vector fields re-

quires research in several fields. Dynamic optimization problems involving these systems

may be discontinuous programs. Even if they are not discontinuous, they may not be locally

Lipschitz continuous programs anymore.
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Example 9.1.1 (Discontinuous Vector Field Example). Consider the dynamic system

g(p, x(t, p)) = x(t, p)3 − 5x(t, p)2 + 7x(t, p) − p,

ẋ(t, p) =















4 − x(t, p) if g(p, x(t, p)) ≤ 0, Mode 1

0.7x(t, p) if g(p, x(t, p)) ≥ 0, Mode 2

, ∀t ∈ (0, 3.0],

x(0, p) = −3.0, p ∈ [0, 7.5].

The vector field of this system is discontinuous at times when g(p, x(t, p)) = 0 holds. Note

that the number of real roots of the polynomial depends on p. This dependence determines

the number of transitions that occur during the evolution of the system. Figure 9-1 shows

the transition times as a function of p. The system experiences up to three transitions

during the time interval [0, 3.0]. If p < 2, only one transition occurs. The number of

transitions eventually becomes three for p ∈ [2, 3). At p = 3, two consecutive transitions

occur instantaneously at around 0.75 s. The transversality condition is violated at this

double transition. The number of transitions drops to one afterwards. Figure 9-2 depicts the
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Figure 9-1: Transition times as a function of p.

dependence of the final state on the parameters. The nonsmoothness at p = 3 is obvious.
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However, there exist 2 more points of nonsmoothness. These points correspond to the

parameter values where the hybrid mode trajectory changes. The state is not a locally

Lipschitz function at p = 3. This can be seen from the data in Figure 9-3. In Figure 9-3,

the natural logarithm of the magnitude of the derivative of the mapping η 7→ x(3, η) is

plotted. Note that the derivative is calculated using the results in [39]. The derivative is

discontinuous whenever the hybrid mode trajectory changes. At p = 3, the limit from the

left tends to infinity. This occurs because there is a division by zero in the computation

of the sensitivities whenever the transversality condition does not hold. Initial tentative
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Figure 9-2: −x(3.0, p) as a function of p.

results on sufficient conditions that guarantee local Lipschitz continuity and semismoothness

when the dynamics are discontinuous can be found in [115].

In order to extend the results to systems with discontinuous dynamics requires advances

in several fields:

1. Nonsmooth Analysis: The main issue is to determine a replacement for the generalized

gradient/Jacobian and the linear Newton approximation. There are extensions of the

generalized gradient to functions that are not locally Lipschitz continuous [25, 92].

Unlike the locally Lipschitz case, these set-valued maps can have empty images and
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crucial properties such as compactness and convexity of the images are not guaranteed.

These extensions have only been used as tools of analysis. Results pertaining to them

are few. Extensions to discontinuous functions have been proposed [34]. Extensions of

the generalized Jacobian do not exist. On a related note, functions that are not locally

Lipschitz continuous have not been studied as extensively. It is not clear what classes

of functions to expect when dealing with such systems. Experience suggests that the

functions of interest are those that are continuously differentiable on open sets, but

probably discontinuous or nonsmooth on the boundaries of these sets [22].

2. Nonsmooth Optimization: For efficient nonsmooth optimization, the use of a bundle

to approximate the set-valued maps replacing the gradient appears to be necessary

[22]. Bundle methods require semismoothness to operate efficiently. Replacement con-

ditions need to be developed. Necessary conditions of optimality for the non-Lipschitz

and discontinuous function cases exist [92, 33]. The practical applicability of these

conditions need to be analyzed.

3. Parametric Sensitivity Analysis: The existence of auxiliary equations of the form de-

veloped in Chapters 3 and 4 needs to be determined.
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Note that one can find examples in the literature where the MILP and MPEC approaches

have been applied to such systems in conjunction with discretization of the dynamics. Cur-

rently, there exists no theoretical support that the approximations of the state trajectories

converge to the state trajectories as the discretization gets finer grained.
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Appendix A

Convergence Proof of the Modified

Bundle Method

In this part, the convergence proof of the method described in Chapter 6 is summarized.

The proof is very similar to the proof of convergence of Algorithm 3.1 in Chapter 6 in

[54]. The main difference is that the generalized gradient is replaced with linear Newton

approximations satisfying Assumption 6.2.1.

A.1 Convergence Proof

The following lemma proves an important property of the aggregate quantities.

Lemma A.1.1. Let vf
k , f v

k+1, s
f
k+1,v

G
k , Gv

k+1, s
G
k+1 be as defined in §6.3.1. Then

(vf
k , f

v
k+1, s

f
k+1) ∈ conv

(

{(ζf
j , fk+1,j, sk+1,j) : j = 1, . . . , k}

)

, (A.1.1)

(vG
k , Gv

k+1, s
G
k+1) ∈ conv

(

{(ζG
j , Gk+1,j, sk+1,j) : j = 1, . . . , k}

)

hold.
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Proof. Assume that (A.1.1) holds for k − 1. Let λk, µk, λv
k and µv

k be the solutions of

(6.3.22). Then

vf
k =

∑

j∈Mf
k

λ̃k,jζ
f
j + λ̃v

kv
f
k−1, vG

k =
∑

j∈MG
k

µ̃k,jζ
G
j + µ̃v

kv
G
k−1.

Note that

∑

j∈Mf
k

λ̃k,j + λ̃v
k = 1,

∑

j∈MG
k

µ̃k,j + µ̃v
k = 1.

Hence vf
k ∈ conv

(

{ζf
j : j ∈ Mf

k }, {vf
k−1}

)

and vG
k ∈ conv

(

{ζG
j : j ∈ MG

k }, {vG
k−1}

)

. Since

vf
k−1 ∈ conv

(

{ζf
j : j ∈ 1, . . . , k − 1}

)

and vG
k−1 ∈ conv

(

{ζG
j : j ∈ 1, . . . , k − 1}

)

, vf
k ∈

conv
(

{ζf
j : j ∈ 1, . . . , k}

)

and vG
k ∈ conv

(

{ζG
j : j ∈ 1, . . . , k}

)

hold.

By definition,

f v
k+1 =

∑

j∈Mf
k

λ̃k,jfk,j + λ̃v
kf

v
k + 〈vf

k ,pk+1 − pk〉,

f v
k+1 =

∑

j∈Mf

k

λ̃k,jfk,j + λ̃v
kf

v
k + 〈

∑

j∈Mf

k

λ̃k,jζ
f
j + λ̃v

kv
f
k−1,pk+1 − pk〉,

f v
k+1 =

∑

j∈Mf

k

λ̃k,j(fk,j + 〈ζf
j ,pk+1 − pk〉) + λ̃v

k(f
v
k + 〈vf

k−1,pk+1 − pk〉).

f v
k+1 =

∑

j∈Mf
k

λ̃k,jfk+1,j + λ̃v
k(f

v
k + 〈vf

k−1,pk+1 − pk〉).

Since f v
k ∈ conv ({fk,j : 1, . . . , k − 1}), f v

k+1 ∈ conv ({fk,j : 1, . . . , k}) holds. Similarly

Gv
k+1 ∈ conv ({Gk,j : 1, . . . , k}) holds.

sf
k+1 is obtained as follows:

sf
k+1 = s̃f

k + ‖pk−1 − pk‖,
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sf
k+1 =

∑

j∈Mf

k

λ̃k,js
f
k,j + λ̃v

ks
f
k + ‖pk−1 − pk‖,

sf
k+1 =

∑

j∈Mf

k

λ̃k,j(s
f
k,j + ‖pk−1 − pk‖) + λ̃v

k(s
f
k + ‖pk−1 − pk‖)

sf
k+1 =

∑

j∈Mf
k

λ̃k,j(s
f
k+1,j) + λ̃v

k(s
f
k + ‖pk−1 − pk‖).

Since sf
k ∈ conv ({sk,j : 1, . . . , k − 1}), sf

k+1 ∈ conv ({sk,j : 1, . . . , k}) holds. Similarly

sG
k+1 ∈ conv ({sk,j : 1, . . . , k}) holds.

As a result (A.1.1) holds if (A.1.1) holds for k − 1. In order to complete the inductive

proof, (A.1.1) needs to hold for k = 1.

Let k = 1. Then vf
1 = ζ

f
1 and vG

1 = ζG
1 . f v

1 = f1,1, Gv
1 = G1,1, s̃f

1 = s1,1, s̃G
1 = s1,1. Note

that

f v
2 = f1,1 + 〈ζf

1 ,p2 − p1〉 = f2,1,

Gv
2 = G1,1 + 〈ζG

1 ,p2 − p1〉 = G2,1,

sf
2 = s1,1 + ‖p2 − p1‖ = s2,1,

sG
2 = s1,1 + ‖p2 − p1‖ = s2,1.

Hence (A.1.1) holds for k = 1.

Definition A.1.2. Let kr = max{j : j ≤ k, λv
j = µv

j = 0} and M̂f
k = {j : kr < j ≤ k}∪Mf

kr
.

M̂G
k = {j : kr < j ≤ k} ∪ MG

kr
.

The next lemma shows that the aggregate quantities are in the convex hull of the linear

Newton approximations, locality measures and linearization values computed since the last

reset.

Lemma A.1.3. Let k ≥ 1 and assume that the bundle method did not terminate before the
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kth iteration. Then, there exists numbers λ̂j and µ̂j satisfying

(vf
k , f̃ v

k , s̃f
k) =

∑

j∈M̂f
k

λ̂j(ζ
f
j , fk,j, sk,j), (A.1.2)

λ̂j ≥ 0,
∑

j∈M̂f
k

λ̂j = 1, (A.1.3)

ak = max{sk,j : j ∈ M̂f
k } (A.1.4)

‖pk − yj‖ ≤ ak ≤ ā, ∀j ∈ M̂f
k , (A.1.5)

and

(vG
k , G̃v

k, s̃
G
k ) =

∑

j∈M̂G
k

µ̂j(ζ
G
j , Gk,j, sk,j), (A.1.6)

µ̂k ≥ 0,
∑

j∈M̂f

k

µ̂k = 1, (A.1.7)

ak = max{sk,j : j ∈ M̂G
k } (A.1.8)

‖pk − yj‖ ≤ ak ≤ ā, ∀j ∈ M̂G
k . (A.1.9)

Proof. The proof for the results in (A.1.2), (A.1.3), (A.1.4) and (A.1.5) will be given. The

proof of for the results in (A.1.6), (A.1.7),(A.1.8) and (A.1.9) follows the same reasoning.

Note that Mf
k ⊂ M̂f

k . Let λ̃k,j = 0, ∀j ∈ M̂f
k \Mf

k . Then

(vf
k , f̃

v
k , s̃f

k) =
∑

j∈M̂f
k

λ̃k,j(ζ
f
j , fk,j, sk,j) + λ̃v

k(v
f
k−1, f

v
k , sf

k), (A.1.10)

holds. If λv
k = 0, then Mf

k = M̂f
k and (A.1.2), (A.1.3), (A.1.4) and (A.1.5) hold trivially with

λ̂k = λ̃k. Since ra
1 = 0, λv

1 = 0 and (A.1.2), (A.1.3), (A.1.4) and (A.1.5) hold for k = 1.

Assume that (A.1.2), (A.1.3), (A.1.4) and (A.1.5) hold for k = k̄. Assume that λ̃v
k̄+1

> 0.
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Observe that M̂f

k̄+1
= M̂f

k̄
∪ {k̄ + 1}. and

(vf

k̄
, f̃ v

k̄ , s̃f

k̄
) =

∑

j∈M̂f

k̄

λ̂j(ζ
f
j , fk̄,j, sk̄,j).

The following can be shown to hold using the same reasoning in Lemma A.1.1:

(vf

k̄
, f v

k̄+1, s
f

k̄+1
) =

∑

j∈M̂f

k̄

λ̂j(ζ
f
j , fk̄+1,j, sk̄+1,j).

Note that

(vf

k̄+1
, f̃ v

k̄+1, s̃
f

k̄+1
) =

∑

j∈M̂f

k̄+1

λ̃k̄+1,j(ζ
f
j , fk̄+1,j, sk̄+1,j) + λ̃v

k̄+1(v
f

k̄
, f v

k̄+1, s
f

k̄+1
),

(vf

k̄+1
, f̃ v

k̄+1, s̃
f

k̄+1
) =

∑

j∈M̂f

k̄+1

λ̃k̄+1,j(ζ
f
j , fk̄+1,j, sk̄+1,j) + λ̃v

k̄+1

∑

j∈M̂f

k̄

λ̂j(ζ
f
j , fk̄+1,j, sk̄+1,j).

Hence (A.1.2), (A.1.4), and (A.1.3) holds for k̄ + 1.

The following lemma uses Carathéodory’s Theorem (Theorem 2.4.5) to keep the sizes of

M̂f
k and M̂G

k less than np + 3.

Lemma A.1.4. Let k ≥ 1 and assume that the bundle method did not terminate before

the kth iteration. Let m = np + 3. Then there exist two sets of nonnegative scalars {λ̂i}m
i=1,

{µ̂i}m
i=1, and two sets of vectors whose elements are not necessarily unique, {(ȳf

k,i, ζ̄
f
k,i, f̄k,i, s̄

f
k,i)}m

i=1 ⊂

R
np × R

np × R × R, {(ȳG
k,i, ζ̄

G
k,i, Ḡk,i, s̄

G
k,i)}m

i=1 ⊂ R
np × R

np × R × R such that

(vf
k , f̃

v
k , s̃f

k) =

m
∑

i=1

λ̂i(ζ̄
f
k,i, f̄k,i, s̄

f
k,i),

m
∑

i=1

λ̂i = 1,

ζ̄
f
k,i ∈ Γf(ȳf

k,i), ∀i ∈ {1, . . . , m},

(ȳf
k,i, ζ̄

f
k,i, f̄k,i, s̄

f
k,i) ∈ {(yj, ζ

f
j , fk,j, sk,j) : j ∈ {1, . . . , k}}, ∀i ∈ {1, . . . , m},
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‖ȳf
k,i − pk‖ ≤ s̄f

k,i, ∀i ∈ {1, . . . , m},

max{s̄f
k,i : i ∈ {1, . . . , m}} ≤ ak ≤ ā,

and

(vG
k , G̃v

k, s̃
G
k ) =

m
∑

i=1

λ̂i(ζ̄
G
k,i, Ḡk,i, s̄

G
k,i),

m
∑

i=1

µ̂i = 1,

ζ̄G
k,i ∈ ΓG(ȳG

k,i), ∀i ∈ {1, . . . , m},

(ȳG
k,i, ζ̄

G
k,i, Ḡk,i, s̄

G
k,i) ∈ {(yj , ζ

G
j , Gk,j, sk,j) : j ∈ {1, . . . , k}}, ∀i ∈ {1, . . . , m},

‖ȳG
k,i − pk‖ ≤ s̄G

k,i, ∀i ∈ {1, . . . , m},

max{s̄G
k,i : i ∈ {1, . . . , m}} ≤ ak ≤ ā,

Proof. The result follows from the previous lemma, Lemma A.1.1 and Carathéodory’s The-

orem.

The next two lemmas discuss the asymptotic behavior of the representation in the pre-

vious lemmas.

Lemma A.1.5. Let m = np + 3. Suppose at p̄ ∈ P there exists a set of nonnegative scalars

{λ̂i}m
i=1, and a set of vectors {(ȳf

i , ζ̄
f
i , f̄i, s̄

f
i )}m

i=1 ⊂ R
np × R

np × R × R, satisfying

(v̄f , f̄ v, s̄f) =

m
∑

i=1

λ̂i(ζ̄
f
i , f̄i, s̄

f
i ),

m
∑

i=1

λi = 1, (A.1.11)

ζ̄
f
i ∈ Γf(ȳf

i ), ∀i ∈ {1, . . . , m},

f̄i = f(ȳf
i ) + 〈ζ̄f

i , p̄− ȳf
i 〉,

‖ȳf
i − p̄‖ ≤ s̄f

i , s̄f
i ≥ 0, ∀i ∈ {1, . . . , m}, (A.1.12)

γf s̄
f = 0, γf > 0.
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Then v̄f ∈ Γf(p̄).

Proof. Since s̄f = 0, and s̄f
i ≥ 0, there exists i such that s̄f

i = 0. If s̄f
i 6= 0, then λ̂i = 0 per

(A.1.11). p̄ = ȳf
i if λ̂i 6= 0 per (A.1.12). Then, if λ̂i > 0, ζ̄

f
i ∈ Γf(p̄). Per (A.1.11) and

convexity of Γf(p̄), v̄f ∈ Γf(p̄).

Lemma A.1.6. Let m = np + 3 and suppose at p ∈ P, there exists a set of nonnegative

scalars {µ̂i}m
i=1, and a set of vectors {(ȳG

i , ζ̄G
i , Ḡi, s̄

G
i )}m

i=1 ⊂ R
np × R

np × R × R, satisfying

(v̄G, Ḡv, s̄G) =
m
∑

i=1

µi(ζ̄
G
i , Ḡi, s̄

G
i ), (A.1.13)

µi ≥ 0, ∀i ∈ {1, . . . , m},
m
∑

i=1

µi = 1,

ζ̄G
i ∈ ΓG(ȳG

i ), ∀i ∈ {1, . . . , m}, (A.1.14)

‖ȳG
i − p̄‖ ≤ s̄G

i , s̄G
i ≥ 0, ∀i ∈ {1, . . . , m}, (A.1.15)

Ḡi = G(ȳG
i ) + 〈ζ̄G

i , p̄− ȳG
i 〉, ∀i ∈ {1, . . . , m}, (A.1.16)

max{G(p̄), 0} = Ḡv, (A.1.17)

γGs̄G = 0, γG > 0. (A.1.18)

Then v̄G ∈ ΓG(p̄) and G(p) ≥ 0.

Proof. Since s̄G = 0, and s̄G
i ≥ 0, there exists i such that s̄G

i = 0. If s̄G
i 6= 0, then µ̂i = 0 per

(A.1.13). p̄ = ȳG
i if µ̂i 6= 0 per (A.1.15). Then, if µi > 0, ζ̄G

i ∈ ΓG(p̄). Per (A.1.13) and

convexity of ΓG(p̄), v̄G ∈ ΓG(p̄).

Note that

0 = max{G(p̄), 0} − Ḡv =

m
∑

i=1

µi(max{G(p̄), 0} − Ḡi})

0 =
m
∑

i=1

µi(max{G(p̄), 0} − (G(ȳG
i ) + 〈ζ̄G

i , p̄− ȳG
i 〉)),
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0 =
m
∑

i=1

µi(max{G(p̄), 0} − G(p̄)),

0 =max{G(p̄), 0} − G(p̄),

because if p̄ 6= ȳG
i holds for some i, then sG

i > 0 must hold. This implies that µ̂i = 0 in this

case per (A.1.13), (A.1.15) and (A.1.18). Hence G(p̄) ≥ 0.

Following theorem discusses the case when the bundle method terminates after finitely

many iterations with ǫs = 0.

Theorem A.1.7. If the modified bundle method terminates at the iteration k and ǫs = 0,

then the point pk is stationary in the extended sense on S.

Proof. Since wk = 0, vk = 0, νf
k α̃f,v

k = 0, νG
k α̃G,v

k = 0. The algorithm produces only pk that

are feasible. Therefore pk is feasible and G(pk) ≤ 0.

Assume νf
k 6= 0. Then α̃f,v

k = 0. Lemmas A.1.4 and A.1.5 yield

vf
k = 0, vf

k ∈ Γf(pk).

Let νG
k 6= 0 Then α̃G,v

k = 0. Lemmas A.1.4 and A.1.6 yield

vG
k = 0, vG

k ∈ ΓG(pk), G(pk) = 0.

Then vk ∈ ΓH(pk;pk). Note that νG
k = 0 and νf

k = 0 cannot occur due to the constraint

(6.3.23).

Remark A.1.8. In the remainder, it is assumed that ǫ = 0 and that the modified bundle

generates an infinite sequence {pk} such that wk > 0 for all k.
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Lemma A.1.9. Assume p̄ ∈ P is a limit point of the sequence {pk}. Then there exists

K ⊂ N, v̄f ∈ R
np and v̄G ∈ R

np such that

lim
k∈K, k→∞

pk = p̄, lim
k∈K, k→∞

vf
k = v̄f , lim

k∈K, k→∞
vG

k = v̄G. (A.1.19)

In addition, if lim
k∈K, k→∞

α̃f,v
k = 0, then v̄f

k ∈ Γf(p̄). If lim
k∈K, k→∞

α̃G,v
k = 0, then v̄G

k ∈ ΓG(p̄)

and G(p̄) ≥ 0.

Proof. There exists K0 ⊂ N such that lim
k∈K0, k→∞

pk = p̄ because p̄ is a limit point. Per

Lemma A.1.4 and the fact that ā is finite, it can be deduced that there exists an infinite

subset K1 ⊂ K0 such that

lim
k∈K1, k→∞

ȳf
k,i = ȳf

i , lim
k∈K1, k→∞

ȳG
k,i = ȳG

i

holds for all i ∈ 1, . . . , m where m, ȳf
k,i and ȳG

k,i are as defined in Lemma A.1.4. By the local

boundedness and upper semicontinuity of Γf and ΓG, there exists and infinite set K2 ⊂ K1

such that

lim
k∈K2, k→∞

ζ̄
f
k,i = ζ̄

f
i ∈ Γf(ȳf

i ), lim
k∈K2, k→∞

ζ̄G
k,i = ζ̄G

i ∈ ΓG(ȳf
i )

hold. This also implies that

lim
k∈K2, k→∞

f̄k,i = f̄i, lim
k∈K2, k→∞

Ḡk,i = Ḡi

per the definition of f̄k,i and Ḡk,i. Since λk and µk are bounded, there exists an infinite set

K3 ⊂ K2 such that

lim
k∈K3, k→∞

λk,i = λ̄i, lim
k∈K3, k→∞

µk,i = µ̄i
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hold. Finally, there exists K4 ⊂ K3 such that

lim
k∈K4, k→∞

sf
k,i = s̄f

i , lim
k∈K4, k→∞

sG
k,i = s̄G

i

because sf
k,i and sG

k,i are bounded. Letting K = K4 and using Lemma A.1.4, (A.1.19) can be

shown.

If lim
k∈K, k→∞

α̃f,v
k = 0, then v̄f

k ∈ Γf(p̄) follows from Lemma A.1.5. Similarly, if lim
k∈K, k→∞

α̃G,v
k = 0,

then v̄G
k ∈ ΓG(p̄) and G(p̄) ≥ 0 follows from Lemma A.1.6.

Lemma A.1.10. Let p̄ ∈ P. Assume there exists an infinite sequence J ⊂ N such that

lim
j∈J , j→∞

pj = p̄, lim
j∈J , j→∞

wj = 0.

Then 0 ∈ ΓH(p̄, p̄) and p̄ ∈ S.

Proof. By (6.3.24) and the boundedness of νf
j and νG

j ,

lim
j∈J , j→∞

vj = 0, lim
j∈J , j→∞

α̃f,v
j = 0, lim

j∈J , j→∞
α̃G,v

j = 0

hold. Then Lemma A.1.9 yields v̄f
j ∈ Γf(p̄) and v̄G

j ∈ ΓG(p̄) and G(p̄) ≥ 0. Since pj ∈ S

and S is closed, p̄ ∈ S.

In order to prove stationarity in the extended sense, given a sequence {pj} converging to

p̄, it is sufficient to show that the corresponding sequence {wj} converges to zero per Lemma

A.1.10.

The next lemma shows that if you have a sequence {pj} converging to p̄ by taking

infinitely many long serious steps, then p̄ is stationary in the extended sense.

Lemma A.1.11. Assume there exists an infinite set J ⊂ N such that pj → p̄ if j ∈ J .

Then f(pk) ↓ f(p̄), and tLk ∆k → 0 for k ∈ N. In addition, if there exists an infinite sequence
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J̄ ⊂ J such that tLj ≥ t̂ > 0 for all j ∈ J̄ , then wj → 0 for j ∈ J̄ holds and p̄ is stationary

in the extended sense.

Proof. The bundle method produces an infinite sequence {pk} such that f(pk+1) ≤ f(pk).

Given any large enough k, there exists j1
k and j2

k in J such that j1
k ≤ k < j2

k . Then

f(pj1
k
) ≥ f(pk) ≥ f(pj2

k
) holds. Since pj → p̄ if j ∈ J , f(pj1

k
) − f(pj2

k
) → 0 and therefore

f(pk)−f(pj2
k
) → 0. Then |f(p̄)−f(pk)| ≤ |f(p̄)−f(pj2

k
)|+ |f(pj2

k
)−f(pk)| and the desired

result follows as k → ∞.

Observe that

0 ≤ −tLk ∆k ≤ f(pk) − f(pk+1)

mL

and f(pk) − f(pk+1) → 0. Therefore tLk ∆k → 0.

Since tLj ∆j → 0 and tLj ≥ t̂ > 0 for j ∈ J̄ , ∆j → 0 and therefore wj → 0 for j ∈ J̄ .

Stationarity follows from Lemma A.1.10.

Corollary A.1.12. Suppose there exist p̄ ∈ P and an infinite sequence J ⊂ N such that

pj → p̄ for j ∈ J . Assume lim inf
k→∞

max(‖pk − p̄‖, wk) ≥ ǭ > 0. Then tLj → 0 for j ∈ J .

Proof. The condition lim inf
k→∞

max(‖pk − p̄‖, wk) ≥ ǭ > 0 and pj → p̄ for j ∈ J imply that

wk > 0 for k large enough. Per Lemma A.1.11, tLj ∆j → 0. Since for large enough j, wj > 0,

∆j < −ǭ for large enough j. Therefore, tLj → 0 for j ∈ J .

In order to prove that an accumulation point is stationary, it has to be shown that if

tLj → 0, wj → 0.

The following lemma relates the solution of the quadratic direction finding problem

(6.3.22) to ∆k and wk.
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Lemma A.1.13. Define

ŵk =
1

2
‖vk‖2 + α̂k,

∆̂k = −
(

‖vk‖2 + α̂k

)

,

α̂k = νf
k α̂f,v

k + νG
k α̂G,v

k ,

α̂f,v
k =

∑

j∈Mf
k

λ̃k,jα
f
k,j + λ̃v

kα
f,v
k ,

α̂G,v
k =

∑

j∈MG
k

µ̃k,jα
G
k,j + µ̃v

kα
G,v
k .

Then

0 ≤ α̃f,v
k ≤ α̂f,v

k , 0 ≤ α̃G,v
k ≤ α̂G,v

k ,

0 ≤wk ≤ ŵk, ∆k ≤ −wk ≤ 0, ∆̂k ≤ ∆k ≤ 0

hold.

Proof. Note that

|f(pk) − f̃ v
k | = |

∑

j∈Mf

k

λ̃j(f(pk) − fk,j) + λ̃v
kf

v
k |,

γf(s̃
f
k)

2 = γf(
∑

j∈Mf

k

λ̃jsk,j + λ̃v
ks

f
k)

2 ≤ γf(
∑

j∈Mf

k

λ̃js
2
k,j + λ̃v

k(s
f
k)

2
)

The last inequality follows from Jensen’s Inequality. Hence

α̃f,v
k ≤

∑

j∈Mf
k

λ̃j max(|f(pk) − fk,j|, γfs
2
k,j) + λ̃v

k max(|f(pk) − f v
k |, γfs

f
k)

2) = α̂f,v
k

holds. The inequality α̃G,k
v ≤ α̂G,v

k follows from similar reasoning. The rest of the inequalities
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follow from the definitions of the quantities.

The next lemma relates the termination criteria at iteration k to the termination criteria

at iteration k + 1 in case no reset occurs and no long serious step is taken.

Lemma A.1.14. Suppose that tLk−1 < t̄ and ra
k = 0 for some k > 1. Let

ζk =















ζ
f
k if yk ∈ S

ζG
k otherwise

αv
k = νf

k−1α
f,v
k + νG

k−1α
G,v
k .

Let ΦC : R → R be defined by

ΦC(x) = x − (1 − mR)2 x2

8C2

where C is any number that satisfying

C ≥ max(‖vk−1‖, ‖ζk‖, α̃v
k−1, 1). (A.1.20)

Then

wk ≤ ŵk ≤ ΦC(wk−1) + |αv
k − α̃v

k−1|

holds.

Proof. The proof is the same as the proof of Lemma 4.7 in Chapter 6 in [54]. Therefore it

is omitted for brevity.

Lemma A.1.15. For any ǫw > 0 and C > 0, there exists numbers ǫa and N̄ ≥ 1 such that
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for any sequences of numbers ti satisfying

0 ≤ ti+1 ≤ ΦC(ti) + ǫa, i ≥ 1, 0 ≤ ti ≤ 4C2, (A.1.21)

ti ≤ ǫw holds for all i ≥ N̄ .

Proof. Proof is the same as proof of Lemma 4.12 in Chapter 3 in [54].

Lemma A.1.14 and A.1.15 imply that wj → 0 if tLj → 0 for some infinite set J ⊂ N

provided that for sufficiently many iterations N̄ ,

1. a local bound of the form (A.1.20) exists;

2. no distance resetting occurs;

3. |αv
j − α̃v

j−1| ≤ ǫa

4. and tLj−1 ≤ t̄ holds.

The next lemma provides a finite C so that (A.1.20) is satisfied.

Lemma A.1.16. Let

ζk =















ζ
f
k if yk ∈ S,

ζG
k otherwise,

αk =















max(|f(pk) − fk,k|, γf‖pk − yk‖2) if yk ∈ S,

max(|Gk,k|, γG‖pk − yk‖2) otherwise,

For each k ≥ 1

max{‖vk‖, α̃v
k} ≤ max{1

2
‖ζk‖2 + αk,

√

‖ζk‖2 + 2αk}.
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Let p̄ ∈ P and B = {p ∈ P : ‖p− p̄‖ ≤ 2ā}. Let

Cg = sup {‖ζ‖ : ζ ∈ ΓH(p;p), p ∈ B} ,

Cα = sup {α(p1,p2) : p1 ∈ B, p2 ∈ B} ,

C = max

{

1

2
C2

g + Cα,
√

C2
g + 2Cα, 1

}

.

Then C is finite and

C ≥ max(‖vk−1‖, ‖ζk‖, α̃v
k−1, 1).

holds if ‖pk − p̄‖ ≤ ā.

Proof. The proof of the lemma is almost identical to the proof of Lemma 5.4.8 on page

261 in [54]. Instead of using the local boundedness of the generalized gradient, the local

boundedness of the linear Newton approximation is used to derive Cg.

The next lemma states that the difference |αv
j−α̃v

j−1| goes to zero under certain conditions.

Lemma A.1.17. Suppose that there exists p̄ ∈ P and an infinite set J ⊂ N such that

pj → p̄ and ‖pj+1 − pj‖ → 0 if j ∈ J . Then the sequences {vf
j } and {vG

j } are bounded for

j ∈ J and

lim
j∈J , j→∞

|αf,v
j+1 − α̃f,v

j | → 0,

lim
j∈J , j→∞

|αG,v
j+1 − α̃G,v

j | → 0,

lim
j∈J , j→∞

|αv
j+1 − α̃v

j | → 0

hold.

Proof. Proof is the same as in Lemma 5.4.9 on page 262 in [54] therefore it is omitted.
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The following lemma establishes the fact that if there exists p̄ ∈ P and an infinite set

J ⊂ N such that pj → p̄ for j ∈ J , then ‖pj − pj+1‖ → 0 for j ∈ J .

Lemma A.1.18. Suppose that there exists p̄ ∈ P and an infinite set J ⊂ N such that

pj → p̄ for j ∈ J and lim inf
k→∞

max(‖pk − p̄‖, wk) ≥ ǭ > 0. Then for any fixed integer m ≥ 0

there exists a jm such that for any integer n ∈ [0, m]

lim
j∈J , j→∞

|pj+n − p̄‖ = 0,

lim
j∈J , j→∞

tLk+n = 0,

wk+n ≥ ǭ/2, ∀j > jm, j ∈ J .

Moreover, for any numbers ĵ, N̂ and ǫa, there exists a number j̃ ≥ ĵ, j̃ ∈ J , such that

wk ≥ ǭ/2 for j̃ ≤ k ≤ j̃ + Ñ, (A.1.22)

C ≥ max(‖vk−1‖, ‖ζk‖, α̃v
k−1, 1) for j̃ ≤ k ≤ j̃ + Ñ, (A.1.23)

|αv
k − α̃v

k−1| ≤ ǫa for j̃ ≤ k ≤ j̃ + Ñ, (A.1.24)

tLk < t̄ for j̃ ≤ k ≤ j̃ + Ñ. (A.1.25)

where C is defined in Lemma A.1.16.

Proof. This is the same as Lemma 4.15 on page 119 in [54].The proof is omitted for brevity.

Lemma A.1.19. Suppose there exists p̄ ∈ P and an infinite set J ⊂ N such that pj → p̄

for j ∈ J , then lim infk→∞ max(‖pk − p̄‖, wk) → 0.

Proof. Assume for contradiction purposes that lim infk→∞ max(‖pk − p̄‖, wk) ≥ ǭ > 0. Let

ǫw = ǭ/2 > 0 and choose ǫa and N̄ as specified in Lemma A.1.15 where C is the constant
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defined in Lemma A.1.16. Let Ñ = 10N̄ . Using the previous lemma, choose j̃ satisfying

(A.1.22)-(A.1.25) and

j̃+Ñ
∑

k=j̃

‖pk+1 − pk‖ ≤ ā/4. (A.1.26)

Suppose there exists a number k̂ satisfying j̃ ≤ k̂ ≤ j̃ + Ñ − 2N̄ such that ra
k = 0 for all

k ∈ [k̂, k̂ + N̄ ]. Then (A.1.23), (A.1.24) and (A.1.25), Lemma A.1.14, Lemma A.1.15 imply

that wk ≤ ǫw = ǭ/2 for some k ∈ [k̂, k̂ + N̄ ] which contradicts (A.1.22) and the assumption

that ra
k = 0 for all k ∈ [k̂, k̂ + N̄ ]. Hence for any k̂ such that j̃ ≤ k̂ ≤ j̃ + Ñ − 2N̄ holds,

ra
k = 1 for some k ∈ [k̂, k̂ + N̄ ].

Let j̃ = k̂. Let rkl
= 1 for some kl ∈ [j̃, j̃+N̄ ]. Then ak1 ≤ ā/2. Since ‖yk+1−pk+1‖ ≤ ā/2

due to the line search rules and

ak+1 = max{ak + ‖pk+1 − pk‖, ‖yk+1 − pk+1‖} ≤ max{ak + ‖pk+1 − pk‖, ā/2},

ak ≤ 3/4ā ≤ ā follows using (A.1.26). Hence no reset occurs for k ∈ [kl + 1, kl + 1 + N̄ ].

However, k̂ = kl + 1 satisfies j̃ ≤ k̂ ≤ j̃ + Ñ − 2N̄ and therefore there has to be a reset for

k ∈ [k̂, k̂ + N̄ ]. This is a contradiction. Hence lim infk→∞ max(‖pk − p̄‖, wk) → 0 has to

hold.

Theorem A.1.20. Each accumulation point of the sequence {pk} generated by the bundle

method is stationary in the extended sense.

Proof. The proof follows from Lemma A.1.19 and Lemma A.1.10.

Corollary A.1.21. If the level set P = {p ∈ P : f(p) ≤ f(p1)} is bounded, cl (P ) ⊂ P,

and the final accuracy tolerance ǫs is positive, then the bundle method terminates in a finite

number of iterations.
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Proof. The boundedness of the level set P implies that there exists an infinite set J ⊂ N

and p̄ such that pj → p̄ if j ∈ J per the Bolzano-Weierstrass Theorem. Then per Lemma

A.1.19, wj → 0 for j ∈ J . Hence for large enough j, wj ≤ ǫs. This implies that for large

enough k, wk ≤ ǫs.

356



Bibliography

[1] Interval Methods for Systems of Equations. Cambridge University Press, Cambridge,
England, 1990.

[2] M. U. Akhmet. On the smoothness of solutions of impulsive autonomous systems.
Nonlinear Analysis, 60:311–324, 2005.

[3] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P. H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138(1):3–34, 1995.

[4] U. M. Ascher and L. R. Petzold. Computer Methods for Ordinary Differential Equations
and Differential-Algebraic Equations. SIAM, Philadelphia, 1998.

[5] J. Aubin and H. Frankowska. Set-Valued Analysis. Birkhauser, Boston, 1990.

[6] C. Audet and J.E. Dennis JR. Analysis of Generalized Pattern Searches. SIAM Journal
of Control and Optimization, 13(3):889–903, 2003.

[7] M. P. Avraam, N. Shah, and C.C. Pantelides. Modelling and Optimisation of General
Hybrid Systems in the Continuous Time Domain. Computers and Chemical Engineer-
ing, 22(Suppl):S221–S228, 1998.

[8] P. I. Barton, J. R. Allgor, W. F. Feehery, and S. Galán. Dynamic optimization in a
discontinuous world. Industrial & Engineering Chemistry Research, 37(3):966 – 981,
1998.

[9] P. I. Barton, J. R. Banga, and S. Galán. Optimization of hybrid discrete/continuous
dynamic systems. Computers & Chemical Engineering, 24(9–10):2171 – 2182, 2000.

[10] P. I. Barton and C. K. Lee. Modeling, simulation, sensitivity analysis, and optimization
of hybrid systems. ACM Trans. Model. Comput. Simul., 12(4):256–289, 2002.

[11] P. I. Barton and C. C. Pantelides. Modeling of combined discrete/continuous processes.
AIChE Journal, 40:966–979, 1994.

[12] B. T. Baumrucker and L. T. Biegler. MPEC strategies for the optimization of a class
of hybrid dynamic systems. Journal of Process Control, 19:1248–1256, 2009.

357



[13] A. Bemporad and M. Morari. Control of systems integrating logic, dynamics, and
constraints. Automatica, 35:407–427, 1999.

[14] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, Massachusetts,
1995.

[15] D. P. Bertsekas. Convex Optimization Theory. Athena Scientific, Belmont, Mas-
sachusetts, 2009.

[16] D. Bertsimas and J. N. Tsiklis. Introduction to Linear Optimization. Athena Scientific,
Belmont, Massachusetts, 1997.

[17] J. T. Betts. Survey of numerical methods for trajectory optimization. Journal of
Guidance Control and Dynamics, 21(2):193–207, 1998.

[18] A. Bihain. Optimization of Upper Semidifferentiable Functions. Journal of Optimiza-
tion Theory and Applications, 44(4):545–568, December 1984.

[19] J. M. Borwein and A. S. Lewis. Convex analysis and nonlinear optimization: theory
and examples. New York, 2009.

[20] Michael S. Branicky, Vivek S. Borkar, and Sanjoy K. Mitter. A Unified Framework for
Hybrid Control: Model and Optimal Control Theory. IEEE Transactions on Automatic
Control, 43(1):31–45, January 1998.

[21] A. E. Bryson and Y. Ho. Applied Optimal Control. Taylor & Francis, Bristol, PA
19007 USA, 1975.

[22] J. V. Burke, A. S Lewis, and M. L. Overton. Approximating Subdifferentials by
Random Sampling of Gradients. Accepted to: SIAM Journal of Control, October
2003.

[23] P. E. Caines and M. S. Shaikh. Optimality zone algorithms for hybrid systems: Ef-
ficient algorithms for optimal location and control computation. In J .Hespanha and
A. Tiwari, editors, Hybrid Systems: Computation and Control, volume 3927 of Lecture
Notes in Computer Science, pages 123 – 137. Springer, 2006.

[24] Y. Cao, S. Li, L. Petzold, and R. Serban. Adjoint Sensitivity Analysis for Differential-
Algebraic Equations: The Adjoint DAE system and its numerical solution. SIAM
Journal of Scientific Computing, 24(3):1076 – 1089, 2003.

[25] F. H. Clarke. Optimization and Nonsmooth Analysis. Number 5 in Classics in Applied
Mathematics. SIAM, Philadelphia, 1990.

[26] E. A. Coddington and N. Levinson. Theory of Ordinary Differential Equations. Mc-
Graw Hill Co., Inc., New York, 1955.

358



[27] R. W. Cottle, J. S. Pang, and R. E. Stone. The Linear Complementarity Problem.
Number 60 in Classics in Applied Mathematics. SIAM, Philadelphia, 2009.

[28] A. L. Dontchev and R. T. Rockafellar. Robinson’s implicit function theorem and its
extensions. Mathematical Programming, 117(1-2):129–147, 2009.

[29] Arne Drud. CONOPT: a GRG code for large sparse dynamic nonlinear optimization
problems. Mathematical Programming, 31(2):153–191, 1985.

[30] Arne Drud. CONOPT Solver Manual. GAMS Development Corporation, Washington,
DC, 2004.

[31] P. Dua, V. Dua, and E. N. Pistikopoulos. Optimal delivery of chemotherapeutic agents
in cancer. Computers & Chemical Engineering, 32(1-2):99–107, JAN-FEB 2008.

[32] K. El-Rifai. Robust adaptive control of switched systems. PhD thesis, Massachussetts
Institute of Technology, 2007.

[33] Y. M. Ermoliev and V. I. Norkin. On nonsmooth and discontinuous problems of
stochastic systems optimization. European Journal of Operational Research, 101:230–
244, 1997.

[34] Y. M. Ermoliev, V. I. Norkin, and R. J-B Wets. The Minimization of Semicontin-
uous Functions: Mollifier subgradients. SIAM Journal of Control and Optimization,
33(1):149–167, January 1995.

[35] F. Facchinei and J. S. Pang. Finite-Dimensional Variational Inequalities and Comple-
mentarity Problems. Springer, New York, 2003.

[36] W. F. Feehery, J. E. Tolsma, and P. I. Barton. Efficient sensitivity analysis of large-scale
differential-algebraic systems. Applied Numerical Mathematics, 25(1):41–54, 1997.

[37] A. F. Filippov. Differential Equations with Discontinuous Righthand Sides. Springer,
New York, 1988.

[38] S. Galán and P. I. Barton. Dynamic optimization of hybrid systems. Computers &
Chemical Engineering, 22, Suppl:S183–S190, 1998.

[39] S. Galán, W. F. Feehery, and P. I. Barton. Parametric sensitivity functions for hybrid
discrete/continuous systems. Applied Numerical Mathematics, 31:17–47, 1999.

[40] C. J. Goh and K. L. Teo. Control parametrization: A unified approach to optimal
control problems with general constraints. Automatica, 24(1):3–18, 1988.

[41] K. Gökbayrak and C. Cassandras. Hybrid Controllers for Hierarchically Decomposed
Systems. In B. Krogh and N. Lynch, editors, Hybrid Systems: Computation and
Control, volume 1790 of Lecture Notes in Computer Science, pages 117–129. Springer
Verlag, 2000.

359



[42] M. S. Gowda. Inverse and Implicit Function Theorems for H-Differentiable and Semis-
mooth functions. Optimization Method and Software, 19(5):443–461, 2004.

[43] A. Griewank. Evaluating Derivatives: Principles and Techniques of Algorithmic Dif-
ferentiation. Number 19 in Frontiers in Applied Mathematics. SIAM, Philadelphia,
2000.

[44] T. H. Gronwall. Note on derivatives with respect to a parameter of the solutions of a
system of differential equations. Annals of Mathematics, 20:292–296, 1919.

[45] S. Hedlund and A. Rantzer. Convex dynamic programming for hybrid systems. IEEE
Transactions on Automatic Control, 47(9):1536–1540, September 2002.

[46] J. L. Hjersted and M. A. Henson. Optimization of fed-batch sacchoromyces cerevisia
fermentation using dynamic flux balance models. Biotechnology Progress, 22:1239–
1248, 2006.

[47] R. Horst and H. Tuy. Global Optimization: Deterministic Approaches. Springer, Berlin,
3. edition, 1996.

[48] C. Imbert. Support functions of the Clarke generalized Jacobian and of its plenary
hull. Nonlinear Analysis, 49(8):1111–1125, 2002.

[49] E. M. Izhikevich. Dynamical Systems in Neuroscience: The Geometry of Excitability
and Bursting. The MIT Press, Cambridge, MA, 2007.

[50] M. A. Jenkins. Algorithm 493 Zeros of a Real Polynomial [C2]. ACM Transactions on
Mathematical Software, 1(2):178–189, 1975.

[51] M. A. Jenkins and J. F. Traub. A three-stage algorithm for real polynomials using
quadratic iteration. SIAM Journal of Numerical Analysis, 7(4):545–566, 1970.

[52] K. H. Johansson, M. Egerstedt, J. Lygeros, and S. Sastry. On the regularization of
Zeno hybrid automata. Systems & Control Letters, 38:141–150, 1999.

[53] S. Kameswaran and L. T. Biegler. Convergence rates for direct transcription of optimal
control problems using collocation at Radau points. Computational Optimization and
Applications, 41:81–126, 2008.

[54] K. C. Kiwiel. Methods of Descent for Nondifferentiable Optimization, volume 1133 of
Lecture Notes in Mathematics. Springer-Verlag, New York, 1985.

[55] C. K. Lee. Global Optimization of Hybrid Systems. PhD thesis, Massachusetts Institute
of Technology, 2006.

[56] C. K. Lee and P. I. Barton. Global optimization of linear hybrid systems with varying
transition times. SIAM Journal on Control and Optimization, 47(2):791–816, 2008.

360



[57] C. K. Lee, A. P. Singer, and P. I. Barton. Global optimization of linear hybrid systems
with explicit transitions. Systems & Control Letters, 51(5):363–375, April 2004.

[58] J. M. Lee, E. P Gianchandani, and J. A. Papin. Flux balance analysis in the era of
metabolomics. In Briefings in Bioinformatics, volume 7, pages 140–150. 2006.

[59] D. B. Leineweber, I. Bauer, H. G. Bock, and J. P. Schlöder. An efficient multiple
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[64] L. Lukšan and Vlček J. Algorithm 811: NDA: Algorithms for nondifferentiable opti-
mization. ACM Transactions on Mathematical Software, 27(2):193–213, June 2001.

[65] J. Lygeros, K. H. Johansson, S. N. Simić, J. Zhang, and S. S. Sastry. Dynamical
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