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1 Abstract

The purpose of this report is to provide a justification for the following modeling assumptions

• Spatially uniform temperature

• Neglecting radial effects in the mass and species balances (1-d)

• Convective flow (neglecting axial diffusion for mass and species-balance)

• Pseudo-steady-state species balances

used in our intermediate fidelity models in [5, 4, 3]. We largely follow the notation in [6], as well as some

of the scaling techniques presented there. We assume that we can look sequentially at the assumptions; we

first consider the assumption regarding the uniform temperature for a transient problem without gas flow

and steady-state problems with gas flow; we then discuss the mass and species balances used, assuming a

uniform temperature.
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2 Uniform Temperature in the Stack

Our models assume a stack with a uniform temperature (reactor, fuel cell and burner share the same

temperature). This was motivated by the fact that heat transfer at this scale is quite fast and the micro-

fabricated devices of interest are based on silicon, which is a relatively good heat conductor. Another

motivation were our simulations of the reactors of Arana and Jensen [2, 1] and photographs by the same

authors suggesting an approximately uniform temperature for reactors with catalyst support under proper

operation. For the models considered this approximation is valid for all units; note that a lumped model is

used for the fluidic connections. For drastically different approaches, e.g., homogeneous combustion [7, 8]

this assumption may not be appropriate, or only valid in subregions.

2.1 Steady-State Case

2.1.1 Scaling Analysis

Because thermal conductivity in silicon is much higher than in the gas phase, catalyst support structures

(posts, slabs, etc.) result in significantly increased heat transfer. As an approximation to describe this

increase we are using volume-averaged values; assuming a volume ratio of gas/solid 1:1 and a good conductor

for the catalyst support, the average heat conductivity is approximately half of the solid. Also the small

length between catalyst support in the radial direction allows approximate thermal equilibrium between the

gas and solid (locally).

Convection versus conduction

The ratio of convection and conduction is given by

kav

cp,g ρg u L
≈

10W/m/K

103J/kg/K× 0.5kg/m3 × 1m/s× 10−3m
≈ 10,

where we have used conservative estimates; conduction (in the silicon-structures) is therefore much more

important than convection (through the gas phase).

Estimation of maximal temperature difference
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The maximal temperature within a reactor is essentially determined by the ratio of heat transfer within the

reactor and heat losses to the ambient. Because of the high temperatures, heat losses to the ambient are

dominated by radiation and the heat transfer per unit area can be approximated as ε σSB T 4
if , where ε is

the product of emissivity and view factor, σSB = 5.67× 10−8W/m2/K4 the Stefan-Boltzmann constant and

Tif the temperature at the interface. Heat transfer inside the reactor is characterized by the (average) heat

conductivity kav divided by the characteristic length L. Therefore the maximal temperature difference can

be estimated as

∆T =
ε σSB T 4

ifL

kav
≈

0.1× 5.67× 10−8W/m2/K4 × 13004K4 × 5 × 10−3m

10W/m/K
≈ 10K,

where we have used conservative estimates. This justifies the assumption of uniform temperature.

2.1.2 3d-CFD Duct-Reactor Simulation

Here we examine the effect of averaging the heat conductivity and the assumption of uniform temperature

using a duct-reactor, of width and height 500µm and length 2.5mm, pictured in Figure 1.1. Our model also

includes a 1mm long inlet and outlet to the reactor; we assume that the reactor contains 4 Si-slabs as catalyst

support which cover 2
5 of the width. We assume an inlet velocity of 1m/s. For the simulations we used the

finite element package Femlab, and Navier-Stokes equations with variable density and conduction-convection

equations for the energy balance. The chemistry was not modeled, but rather a heat generation term was

used.2 Heat losses to the ambient were considered as boundary conditions.

Figure 1 shows that using volume-averaged heat conductivity instead of explicitly modeling the slabs

qualitatively and quantitatively captures the effect of increased heat transfer of the catalyst support structure;

also the temperature within the reactor portion is essentially uniform. Modeling the slabs explicitly increases

the modeling and computational requirements significantly and makes convergence much more demanding.

For the volume-averaged model we explore three cases for the heat generation, namely constant, linear

1Exploring the symmetry we only model a quarter of the geometry
2When the slabs are modeled explicitly this is introduced as a surface term; for the volume averaged model a volume heat

generation is used.
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Figure 1: Geometry and temperature profiles for explicit modeling of catalyst support (left) and lumped
model (right). Note that for the temperature profiles, a stretching of the axis is performed.

and exponential dependence on the axial coordinate3. In Figure 2 the temperature is plotted along the axial

coordinate for these three cases as well as the case with explicit modeling of the slabs. The temperature

in the reactor portion is essentially uniform, while in the inlet and outlet (where no Si-structure is present)

there is a temperature gradient; also the differences between the different heat generation terms are relative

small.

3The integral of the heat generation is the same in all cases
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Figure 2: Temperature profiles for explicit and average modeling of slabs.

2.1.3 2d-CFD Reactor Simulation with volume-averaged heat conductivity

Here we briefly discuss the results of computational fluid dynamic analysis of a reactor by Arana and Jensen.4

The reactor geometry along with the obtained temperature profiles are shown in Figure 3; it should be noted

that the reactor design while similar to the ones described in [2, 1] has a different gas flow pattern; here the

two portions of the reactor (for endothermic and exothermic reaction respectively) are cocentric, as opposed

to parallel as in the design described in the references. For the simulations we used the finite element package

Femlab, and Navier-Stokes equation with variable density and conduction-convection for the energy balance.

The chemistry was not modeled, but rather a heat generation and heat consumption term was introduced,

based on complete conversion. Also the catalyst support was not modeled, but rather a volume-averaged

heat conductivity was used. One sees in Figure 3 that without catalyst support (k = kg) there is a significant

temperature gradient, while with catalyst support (k = kav) the temperature difference within the reactor

is relatively small. Note that the temperature profiles are plotted in a stretched geometry.

4The modeling details, e.g., boundary conditions, solvers used, convergence scheme, discretization are out of the scope of
this report.
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Figure 3: Reactor geometry and temperature profiles obtained by CFD simulation corresponding to reactor
with and without catalyst support

2.2 Transient Case

In this subsection we examine the assumption of uniform temperature in the transient case. We consider

two geometries:

1. A cubic stack of length L with all but one sides/faces adiabatic and we apply a heat load Q̇ on the

other side/face, Figure 4. For this geometry we develop a two-dimensional and a three-dimensional

model in FEMLAB.

2. A cubic stack of length L, in which a small heating element is placed in the middle, Figure 5. For this

geometry we develop a three-dimensional model in FEMLAB.
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It should be noted that the considered geometries are extreme cases; for good reactor designs the heat

generation (and consumption) should be distributed in space and the resulting characteristic length for heat

conduction is much smaller than the reactor dimensions. The magnitude of the heat load is chosen to heat

the stack within a time τ from Ti to Tf ; its numerical value is approximately 1W. We ignore flow through

the system and take average physical properties. For both geometries we perform an analysis based on [6].
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Stack

L=5mm

Figure 4: Stack with a heating element in the top

Heating element

Stack

L=5mm

l=0.1mm

Figure 5: Stack with a heating element in the middle

2.2.1 Scaling Analysis

Neglecting the convective flow and assuming constant physical properties the energy balance reads

ρcp
∂T

∂t
= k∇2T (1)

We nondimensionalize equation (1) by using the following scaling

• The temperature is nondimensionalized, so that the initial temperature corresponds to a value of 0

and the final temperature to a value of 1: T̃ = T−Ti

Tf−Ti
.

• The time is nondimensionalized so that the initial time corresponds to a value of 0 and the final time
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to a value of 1 t̃ = t
τ .

• The space vector is nondimensionalized by dividing through the characteristic length L: x̃ = x

L .

We therefore obtain

ρcp
Tf − Ti

τ

∂T̃

∂t̃
= k

Tf − Ti

L2
∇̃2T̃

⇒
∂T̃

∂t̃
=

k

ρcp

τ

L2
∇̃2T̃

=
α τ

L2
∇̃2T̃ (2)

When the ratio α τ
L2 is high, corresponding to a fast heat transport relative to the time scale of change, the

temperature in the stack can be considered uniform in space (the term ∇̃2T̃ needs to be very small, since it

is multiplied by a very large number). In the micro-SOFC we have (physical properties for Silicon)

• ρ ≈ 2300kg/m3

• cp ≈
20J/mol/K
0.028kg/mol ≈ 700J/kg/K.

• k ≈ 145− 32W/m/K in the considered temperature range T = 300− 1000K

• τ ≈ 100s

• L ≈ 1mm − 5mm,

so that the ratio α τ
L2 takes values in the order of 10− 1000. For characteristic lengths in the order of cm the

ratio can be in the order of 1.

2.2.2 FEMLAB simulation

The transient two- and three- dimensional simulations in FEMLAB validate the previous analysis; the

geometries appear of nearly uniform temperature. The parameters used were:

• L = 5mm
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• k = 70W/m/K, corresponding to an average between air and Silicon

• ρ = 1100kg/m3, corresponding to an average between air and Silicon

• cp = 700J/kg/K

As boundary conditions we include heat losses to the ambient; a uniform temperature of 300K is taken as

the initial condition.

2.2.3 Heating element on top

A movie of the heating is not informative, because, for a temperature range 300−1000K, the box appears to

have completely uniform temperature (uniform color) and we therefore plot the temperature range at given

times. In Figure 6 note the plotted temperature interval is approximately 1K.

Figure 6: Two dimensional model with heating element on top

2.2.4 Heating element in the middle

Only around the small box there is a small region with temperature gradient; depending on the physical

properties used (Si at 1000K, Si at 300K, volumetric average of Si and air) there is a 15-50K difference in

this small region. The bulk of the stack has uniform temperature (less than 5K difference). In Figure 7 we

plot the temperature for two regions at a simulation time of 70s. Note that the two regions have a different
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scale; for the region around the heating box we use a temperature range of 15K, whereas for the outside

region an interval of 0.1K.

Figure 7: 3d with heating element in the middle
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3 1st Order Kinetics Tube Reactor

Here we will discuss the following assumptions, assuming a uniform temperature

1. Neglecting radial effects (1d mass and species balances with an average velocity given from mass

balance)

2. Neglecting axial diffusion

3. Pseudo-steady-state species balances

The motivation for the PFR assumptions, was that preliminary 2d and 3d steady-state simulations with

FEMLAB (performed in May 2003) had shown a PFR type behavior; although the flow is laminar the

species diffusion is sufficiently fast to assure a constant profile in radial direction, but slow enough, so that

axial diffusion can be neglected. The pseudo-steady state balance are motivated from the fact that due to

the small scales one can neglect the hold-up in the reactor.

For simplicity we will assume 1st order kinetics and uniform temperature with the model reaction

A → 2 B,

with molecular masses MA = 10 g/mol and MB = MA/2. As a reactor we are using a duct of height

0.2mm and length 5mm5, which based on the inlet speed of 1m/s results in a nominal residence time of 5ms.

We assume first order kinetics in the component A with a reaction rate, following the Arrhenius law with

k0 = 3 × 104/s and EA = 2 × 104J/mol.

3.1 Scaling Analysis

3.1.1 Pseudo-steady-state mass balance

The continuity equation is:

∂ρ

∂t
+ ∇ · (ρv) = 0. (3)

5Dimensions based on the reactor designs by Arana [2, 1].
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We nondimensionalize equation (3) by using the following scaling

• The time is nondimensionalized as t̃ = t
τ so that the initial time corresponds to a value of 0 and the

final time to a value of 1.

• The density is non-dimensionalized, so that for ambient temperature (T0 = 300K) and pure component

B, i.e., a composition y0 = (0, 1), the density corresponds to 1: ρ̃(T,y) = ρ(T,y)
ρ(T0,y0)

. The nondimen-

sionalized density can vary from 2 (ambient temperature, pure A), to 1/3 (elevated temperature, pure

B).

• The space vector is nondimensionalized by dividing through the characteristic length L: x̃ = x

L .

• The velocity is nondimensionalized by dividing through the nominal uin (at ambient temperature):

ṽ = v

uin
.

and we obtain

L

uin τ

∂ρ̃

∂t
+ ∇̃ · (ρ̃ ṽ) = 0. (4)

Since we have L ≈ 5×10−3m (taking in x direction), τ ≈ 100s, uin ≈ 1m/s, we obtain L
uin τ � 1 and we can

assume pseudo-steady state, or neglect the hold-up in the reactor. This can be also explained by the fact

that the residence time is much smaller than the time scale of change. Note also that the reference value for

the density does not appear in equation (4).

Additional notes:

• If there is a drastic change in the modeling assumptions, e.g., heating time very fast, or some other

fast transient, this analysis needs to be revisited

• For material constraints the short transient period might be important
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3.1.2 Pseudo-steady-state species balance

Omitting the diffusion term ∇J, the effect of which is analyzed in section 3.1.3 and assuming 1st order

Arrhenius kinetics the species balance equation reads

∂C

∂t
+ C ∇ · v + v · ∇C = C k0 exp

(

−
EA

R T

)

. (5)

Equation (5) is linear in C, so we don’t need to worry about reference point and the non-dimensionalization

gives6:

L

τuin

∂C̃

∂t̃
+ C̃ ∇̃ · ṽ + ṽ · ∇̃C̃ =

C̃ k0

τ uin
exp

(

−
EA

R T

)

. (6)

For the numerical values considered we obtain L
uin τ � 1 and we can assume pseudo-steady state. In

general we cannot neglect the term C̃ ∇̃ · ṽ; also since gas expands with the production of species B, the

velocity in the term ṽ · ∇̃C̃ is a function of the reactor coordinate (the residence time is lower than the

nominal residence time, calculated based on inlet density).

3.1.3 1d convective flow

In our models we assume convective flow, neglecting axial diffusion and we use one-dimensional spatial

distribution assuming a uniform profile in the radial direction, due to fast radial diffusion. The validity of

these assumptions depends on three non-dimensional numbers

1. The ratio of height to length, here in the order of 1/100. The influence of this ratio is not trivial, but

it seems that a small ratio justifies the assumptions.

2. The ratio of convection to diffusion in the axial direction (Pe= u L
D ≈

1m/s 5×10−3m
2×10−5m2/s ≈ 250). Since this

is very large, neglecting axial diffusion is a valid approximation.

3. The Damkoehler number, expressed as the ratio of reaction to diffusion k d2

D = d2

1/k D ≈
(50×10−6m)2

1×10−3s×2×10−5m2/s ≈

0.1. So the Damkoehler number is quite small and concentration gradients in radial direction are small.

6Note that for different order kinetics the reaction term C̃ k0

τ uin
would contain a reference concentration.
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Note that we used d = 50µm, as opposed to the tube height, because we assume the presence of catalyst

support and the diffusion needs to occur between those supports.

An equivalent analysis can be performed based on the influence of four characteristic times

1. Reaction time 1
k ≈ 1ms.

2. Diffusion time in radial direction d2

D ≈
(50×10−6m)2

2×10−5m2/s ≈ 0.1ms.

3. Diffusion time in axial direction L2

D ≈
(5×10−3m)2

2×10−5m2/s ≈ 1s.

4. Residence time in reaction L
v ≈ 5ms.

3.2 Simulations

For the following simulations it should be noted that we did not model surface reactions. In order to so, one

would need to specify the catalyst support structure.

3.2.1 FEMLAB 2d transient simulation

We formulate a two-dimensional transient problem with a given temperature profile in time T = 300 + 10 t

for a time period t = 0 − 70s and two modes7

1. Navier-Stokes equation with varying density in the continuity equation (denoted “Non-isothermal

Navier Stokes” in FEMLAB)

• The density is calculated as a function of temperature and concentration ρ = Pamb

R T (y MA + (1 −

y) MB)

• A constant viscosity of η = 2.2 × 10−5Pa s is assumed. However, since here we are not interested

in pressure drops the viscosity is of little importance. The flow development is quite fast, and for

developed flow the profile does not depend on the viscosity.

• The molar fraction is calculated as a function of the temperature and concentration C R T
Pamb

.

7Formulating a one-dimensional problem in FEMLAB seems to be very hard or impossible for the transient problem.
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• Boundary condition at inlet: specified velocity u = uin
T

Tamb
.

• Boundary condition at outlet: convective flow.

• Boundary condition at wall: no slip condition.

• Initial condition P = Pamb, u = 0, v = 0.

2. Conservative binary convection/diffusion

• A constant diffusion coefficient of D = 2 × 10−5m2/s.

• Boundary condition at inlet: specified concentration c = Pamb/(R T ), corresponding to pure A.

• Boundary condition at outlet: convective flow.

• Boundary condition at wall: zero flux.

• Initial condition C = Pamb/(R T ), corresponding to pure A. This is not necessarily the most

plausible assumption, but other initial conditions caused convergence problems. Moreover the

initial conditions only affect the first ms.

• First order Arrhenius kinetics C k0 exp
(

− EA

R T

)

.

There are some convergence problems at the first integration step, especially when the non-conservative

equation was used instead (see section 3.2.3 for an explanation of this equation), which might suggest a

high index problem and which raises some doubts about the results. For the comparison in section 3.2.5 the

conversion at the outlet is calculated as

ζ = 1 −

R

d

y=0
u(x=L,y) c(x=L,y)dy
R

d

y=0
u(x=L,y)dy

R

d

y=0
u(x=0,y) c(x=0,y)dy

R

d

y=0
u(x=0,y) dy

(7)

3.2.2 FEMLAB 2d steady state

In order to isolate the effect of neglecting the transient term we formulate a two dimensional quasi-steady

state model, where we use the Navier-Stokes equation with varying density and the conservative convec-

tion/diffusion equation, similarly to the transient model. The comparison is performed in section 3.2.5.
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The two dimensional model also allows to check the effect of using a one-dimensional model, by examining

the profile in radial direction. Figure 8 shows the molfraction profile across the radial direction at various

temperatures for three axial positions in the reactor, namely at 0.1, 0.5 and 1.0 of the reactor length. The

profile is not constant in the cross-section, so the PFR assumption is only approximately valid.
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Figure 8: Concentration profile from FEMLAB

3.2.3 FEMLAB 1d steady state simulation

By assuming that diffusion in the radial direction is sufficiently fast, one can average over the radial direction.

We neglect the transient term (quasi-steady-state assumption), we assume Fick diffusion and formulate a

one-dimensional model in FEMLAB using the diffusion-convection equation (see also footnote 7)

C
∂u

∂x
+ u

∂C

∂x
= C k0 exp

(

−
EA

R T (t)

)

− D
∂C2

∂x2
, (8)

where the velocity u can be written as a function of the concentration C. FEMLAB provides two options

for the diffusion equation; in the so called non-conservative formulation the term C ∂u
∂x is omitted; in the
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conservative formulation the complete equation (8) is used. Neglecting this term leads to significant mistakes

because of the gas dilatation with reaction. We therefore used the conservative mode with a varying density.

3.2.4 ABACUSS 1d transient simulation

We formulated a one-dimensional spatially-discretized transient model in the process simulator ABACUSS

[9, 10]. The mass and species balances are formulated as

∂u

∂x
=

1

T

∂T

∂t
+

r

ρ̃

∂yA

∂t
= −u

∂yA

∂x
+

r

ρ̃
(−1 − yA)

∂yB

∂t
= −u

∂yB

∂x
+

r

ρ̃
(2 − yB)

ρ̃ =
P

R T
, (9)

where ρ̃ is the molar density and r the reaction rate. The temperature profile is given as an input variable

T = Tamb + 10 t, and its time derivative ∂T
∂t needs to be inserted directly, otherwise a high index problem is

created. We use backward finite differences, e.g., ∂z
∂x = zi−zi−1

δx , with a fixed stepsize δx in the axial direction.

As initial conditions for the molfractions we assume yA(x 6= 0, t = 0) = 0, yB(x, t = 0) = 18 and as boundary

conditions we assume yA(x = 0, t) = 1 and a velocity u = uin ∗ T/Tamb.

To analyze the effects of discretization we are setting the reaction rate to zero and using mesh of different

size. Figure 9 shows the molar fraction at half the reactor length as a function of time for the first milliseconds

using different size mesh, with 100, 1,000 and 10,000 points. Since we do not consider diffusion, the correct

profile would be a step function from 0 to 1 at time 2.5ms. As expected coarse discretization introduces

numerical diffusion. To be on the safe side we therefore use 10,000 grid points for the results presented in

section 3.2.5. All changes occur within ms, corresponding to the residence time, and then the influence of

the initial conditions is eliminated.

8This initial condition corresponds to complete conversion before the startup and also allows to observe the effect of the
short transient.
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3.2.5 Comparison of the results

In Figure 10 we compare the conversion at the outlet as a function of temperature calculated by the various

models, ordered with decreasing number of ignored terms. Based on our numerical experiments we observe

the following

• The effect of neglecting the transient terms is indeed very small. The comparison of transient and

steady-state two dimensional models shows a very small difference while the results from transient and

steady-state one dimensional models are so close to each other that one can hardly distinguish between

them.

• The effect of axial diffusion is also small, as can be seen by the comparison of 1d ABACUSS and 1d

Femlab model as well as by varying the diffusion coefficient in the Femlab model (not shown here).

• The effect of averaging the concentration 2d → 1d is in the order of a few % (comparison of 2d and 1d

models), which is certainly acceptable9.

9Even with the existence of a precise kinetic mechanism we can not be sure about the reaction rate, since the catalyst load
may not be accurately known.

18



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 300  400  500  600  700  800  900  1000

O
ut

le
t c

on
ve

rs
io

n 
(a

ve
ra

ge
d 

ov
er

 r
ad

ia
l d

ire
ct

io
n)

Temperature in [K]

Comparison of the solutions regarding the outlet conversion

FEMLAB 1d steady, variable density, conservative
Abacuss 1d finite diff transient

FEMLAB 2d steady variable density conservative
FEMLAB 2d transient variable density conservative

Figure 10: Comparison of conversion at the outlet as a function of the reactor temperature for the different
models.

References

[1] L. R. Arana, S. B. Schaevitz, A. J. Franz, M. A. Schmidt, and K. F. Jensen. A microfabricated

suspended-tube chemical reactor for thermally efficient fuel processing. Journal of Microelectromechan-

ical Systems, 12(5):600–612, 2003.

[2] Leonel R. Arana. High-Temperature Microfluidic Systems for Thermally-Efficient Fuel Processing. PhD

thesis, Massachusetts Institute of Technology, 2003.
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