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1 Summary of Proposed Research

The objective of the proposed research is to develop deterministic global optimization algorithms for non-
convex dynamic optimization. Problems considered under this formulation include, but are not limited to,
classical variational calculus problems, optimal control problems, and mixed-integer dynamic optimization
problems. We propose to develop rigorously proven algorithms guaranteeing theoretical convergence to the
global minimum of such problems.

Many modern algorithms for deterministic global optimization in algebraic spaces rely on the notion
of convex underestimators for generating rigorous lower bounds on the minimum of nonconvex functions.
Convex underestimators are extraordinarily useful in a branch and bound framework because they possess the
property that any minimum is guaranteed to be global. Several well known procedures exist for constructing
convex underestimators when the functional form of an optimization problem in Euclidean space is known
explicitly and can be manipulated symbolically. Unfortunately, none of these methods are directly applicable
to optimization problems involving dynamic systems. Here, we propose a novel optimization technique in
which the functional forms of the integrand and embedded differential equations are utilized to develop a new
convexity theory enabling the generation of convex underestimators for nonconvex dynamic programs. A
remarkable consequence of this approach is that the aforementioned known symbolic convex underestimators
in algebraic spaces can be directly harnessed to construct convex underestimators for dynamic optimization
problems.

The proposed research can be divided into two fundamental paradigms: the composite function approach
and the variational approach. The composite function approach relies on the ability to transform a dynamic
optimization problem into an algebraic optimization problem via the composition of the solution to an
embedded dynamic system with a convex relaxation of the objective function. The variational approach
derives convex underestimators for dynamic systems on linear spaces of functions and then seeks to solve these
optimization problems via an augmented form of the Euler-Lagrange equations as derived via the classical
calculus of variations. While both approaches clearly depend on different optimality conditions to guarantee
local minimums, they share in common the branch and bound framework to converge to a global minimum.
Furthermore, both approaches rely upon the generation, by standard techniques, of convex underestimators
for integrands in order to derive relaxations of the nonconvex integral objective functions. Thus, both the
composite function approach and the variational approach can be viewed as separate applications of a unified
convexity theory for dynamic systems.

This research will yield fundamental contributions to dynamic optimization via the development of a
convexity theory for dynamic embedded optimization problems and via the development of methods for the
construction of convex underestimators for dynamic optimization problems. This theory will lead to a series
of practical deterministic global optimization algorithms for the solution of these problems. Furthermore,
the underlying theory governing the solution of these problems will guarantee global optimality. Moreover,
this rigorous guarantee of global optimality for dynamic programs will have a profound influence on many
industrial applications. For example, in the area of process operations, there is hope for solving problems
such as formal safety verification, the synthesis of integrated batch processes, and the design of major process
transients such as start-up and shut-down procedures. However, the scope of this research will not be limited
merely to the chemical industries. It is believed that because these solution methods depend only on the
mathematical structure of the dynamic program at hand, the developed techniques will be readily extendable
to dynamic optimization problems encountered in almost all branches of the pure and applied sciences.



2 Introduction

Strong economic incentives exist for conducting process operations in the most efficient manner possible,
particularly in the commodities sectors. With globalization of the world economy, these incentives will
become even greater in the future. Moreover, an increasingly demand driven and competitive global economy
is motivating many chemical and biological products to be manufactured in campaign continuous processes.
These are flexible continuous processes that produce a variety of different but related products or grades of
product. Each individual product is made during a short, demand driven campaign, and then a changeover
occurs to a new product or grade; this cycle continues repeatedly. One example includes polymer processes
where many different molecular weight grades are produced in a single plant. Another example is in fertilizer
processes where many different N/K /P mixes are demanded by the market on a fluctuating basis. Campaign
continuous processes may spend up to 50% of their total operating time in transitions between steady-
states; thus, the performance of the process during these transients becomes as crucial as the steady-state
performance. Therefore, consideration of operability and transient issues simultaneously with steady-state
issues must be thoroughly addressed in order to achieve the most economic overall process design.

Another particularly important aspect of the study of dynamic systems is the relevance to environmental
concerns. Most of the environmental impact of any continuous process is typically created during major
transient, including off specification product, high energy consumption, waste products from suboptimal
reactor operating conditions, etc. This derives from the fact that steady-state design has become such a
refined art that processes producing large quantities of waste at steady-state have become economically
unviable. Process safety is another area in which process transients play a crucial role. A much wider variety
of hazardous situations can develop in a plant that experiences frequent transients and constant changeovers;
thus, much more careful and thorough attention must be paid to mitigating these hazards.

A majority of chemical and biological products are manufactured in processes that are operated in an
inherently transient manner rather than at some nominal steady-state. Examples include batch processes,
semi-continuous processes, and periodic process that operate at a cyclic steady-state. The design of inherently
transient systems is in essence an exercise in optimal process operation. The batch mode of operation is
the preferred method of manufacturing in the synthetic pharmacuetical, biotechnology, specialty polymers,
electronic materials, and specialty agrochemicals industries. Moreover, much speculation presently exists
that product design will emerge as the new paradigm of chemical engineering, and the related new chemical
products will all be manufactured via batch processes. All of these considerations motivate research on
design procedures for optimizing the performance of inherently transient manufacturing systems.

This proposal focuses on problems in process operations for which a detailed, typically nonlinear, differ-
ential equation model is employed to describe the behavior of the physical system. Often, one is interested in
determining input profiles or parameters for a dynamic model for the purpose of optimizing the operation of
a system over some period of time according to a specified performance metric. Such problems are referred to
as dynamic optimization problems or open-loop optimal control problems. Examples include determination
of optimal operating profiles for batch unit operations [59]; determination of optimal plantwide recipes for
batch processes [20]; fitting of chemical reaction kinetics parameters to data [16]; determination of optimal
changeover policies [29]; the determination of catalyst blend profiles for PFRs [47]; optimal drug scheduling
for cancer chemotherapy [51]; process safety analysis [1]; optimization of chemical vapor deposition processes
[58]; in principle, model predictive control with a continuous time model; etc.

One of the primary distinctions between optimizing a dynamic system and optimizing an algebraic sys-
tem is that the optimization variables in a dynamic system lie in an infinite dimensional space while the
optimization variables in an algebraic system lie in a finite dimensional space. For this reason, the methods
employed for solving algebraic systems cannot be immediately extended to solving dynamic systems. The
techniques utilized for solving dynamic systems fall under two broad frameworks: variational methods and
discretization methods. The sequel addresses these two methods separately expounding upon the virtues
and deficiencies of each.

The first technique, the variational approach, encompasses the classical methods of the calculus of varia-
tions and many of the modern methods of optimal control. These methods approach the problem in the infi-
nite dimensional space and attempt to determine stationary functions via the solution of the Euler-Lagrange
equations. The variational approach for solving dynamic optimization problems is extremely attractive be-



cause by solving the optimization problem in the infinite dimensional space, the problem can be solved in its
original form without any mathematical transformations. Hence, the solution is guaranteed to be a rigorous
solution to the original problem. Despite this benefit, the variational approach has several large drawbacks.
Inherently, the Euler-Lagrange equations are difficult to solve numerically because they amount to a two
point boundary value problems. Complicating this issue is the addition of Lagrangian inequality constraints
on the state variables, an omnipresent artifact of practical optimal control problems. Many efforts have been
made to address the solution of variational calculus and optimal control problems subject to bounded states
beginning with the work of Valentine [71]. Among many other authors, determining necessary conditions
for variational problems with inequality constrained state variables has been addressed by Dreyfus [23],
Berkovitz [15], Chang [19], Speyer and Bryson [67], and Jacobson and Lele [40, 41]. Additionally, as noted,
most of the work concerning variational problems with inequality constrained state variables has been in
determining necessary conditions yielding stationary functions. However, any global optimization scheme re-
quires that optimality conditions be both necessary and sufficient because the set of solutions satisfying only
necessary conditions is actually a superset of the set containing all minimizing functions. In fact, not only
does satisfying a necessary condition not yield the global minimum, the satisfaction of this condition does not
guarantee even that a local minimum has been found. Unfortunately, the necessary and sufficient conditions
are known only to match identically for the special case of unconstrained convex problems. Recently, Singer
et al. [66] have proven that for convex variational problems subject to convex state inequality constraints,
the necessary and sufficient conditions guaranteeing a minimum differ from each other only slightly. Future
work addressing the variational approach will focus on closing this gap in the optimality conditions for the
purpose of globally solving nonconvex dynamic optimization problems via a branch and bound algorithm
based on convex relaxation.

In addition to the variational approach for solving dynamic optimization problems, there is another ap-
proach based upon discretization. While discretization has the disadvantage that it is only an approximation
of the infinite dimensional problem, it possesses the tremendous advantage that it transforms the original
infinite dimensional problem into a problem lying at least partially in a finite space; therefore, the problem
can often be solved by standard nonlinear programming methods. Discretization can be subdivided into
two broad classifications known as simultaneous and sequential. The simultaneous method is a complete
discretization of both state and control variables often achieved via collocation [70, 56]. While completely
transforming a dynamic system into a system of algebraic equations, simultaneous discretization has the
unfortunate side effect of generating a multitude of additional variables yielding large, unwieldy nonlinear
programs (NLPs) that are impractical to solve. Sequential discretization is usually achieved via control
parameterization [63, 68] in which the control variable profiles are approximated by a collection of basis
functions in terms of a finite set of real parameters. These parameters then become the decision variables in
a dynamic embedded NLP. Function evaluations are provided to this NLP via numerical solution of a fully
determined initial value problem (IVP), which is given by fixing the control profiles. This method has the
advantages of yielding a relatively small NLP and exploiting the robustness and efficiency of modern IVP
and sensitivity solvers [49, 28].

It has been known for a number of years that dynamic optimization problems encountered in chemical
engineering applications exhibit multiple local minima almost pathologically [12, 48, 47]. This property,
which can be attributed to nonconvexity of the functions participating in most chemical engineering models,
implies that standard local optimization methods will often yield suboptimal solutions to problems. Sub-
optimality can have direct economic, safety, and environmental impacts if a suboptimal operating policy is
implemented on a real process. The classical approach to nonconvex variational problems is to reformulate
them so that they are convex and then apply the relevant necessary and sufficient Euler-Lagrange conditions
[69]. However, only a very few small problems are accessible to such analysis. This deficiency has motivated
researchers to develop global optimization algorithms for nonconvex dynamic optimization problems. Of
particular interest are deterministic global optimization algorithms, or those methods rigorously proving the
finite convergence of the algorithm to global optimality. The usage of these algorithms therefore guarantees
the optimal operating policy has been found for the considered formulation.

A great deal of research has been devoted to the application of stochastic optimization methods to over-
come convergence only to local minima. In chemical engineering, this body of research has been dominated
by Banga and co-workers (e.g., [12, 18]) and Luus and co-workers (e.g., [48, 47]). While these methods often



perform better than those mentioned above, they are typically very computationally expensive, and they
typically have difficulty with highly constrained problems because they tend not to converge to solutions at
which multiple constraints are active. Most importantly, however, even the best stochastic search method
cannot guarantee locating the global solution in a finite number of iterations.

Galperin and Zheng [34] have developed a method for globally optimizing optimal control problems via
a measure theory approach. Their contribution to dynamic optimization is based upon their previous work
[33] in which they propose a global algorithm for solving nonlinear observation and identification problems.
This method requires determining the Lebesgue measure of level sets of the objective function. While this
technique theoretically guarantees determination of a global minimum, implementation for large problems
is impractical due to the sampling required for generating level sets.

As previously discussed, one of the most important industrial applications of dynamic systems is to
model the changing of operating conditions of a chemical process. Often, the chemicals produced during the
changeover are unsuitable for market. Therefore, a very important dynamic optimization problem consists of
determining the control procedure that minimizes the time required to switch from one operating condition
to another. Canon et al. [17] have examined this problem and have outlined a solution technique for problems
obeying a special structure. For final time minimization of a linear time-invariant system with piecewise
constant controls subject to endpoint constraints, they have shown that via a time discretization approach,
the problem can be reformulated as a sequence of linear programs. Because linear programs are inherently
convex, their method achieves a global solution for the reformulated problem.

Many modern, general methods for deterministic global optimization in Fuclidean spaces rely on the
notion of a convex underestimator for a nonconvex function [52]. As the name implies, a convex underes-
timator is a convex function that underestimates a nonconvex function on the set of interest. The highest
possible convex underestimator is termed the convex envelope of the nonconvex function [27]. Because con-
vex underestimating problems can be solved to guaranteed global optimality, they are employed to generate
rigorous lower bounds on nonconvex problems. For this reason, convex underestimators are ideally suited as
the relaxations required by a deterministic global branch-and-bound algorithm for solving nonconvex NLPs
[52, 27, 39]. Floudas and co-workers have demonstrated that a convex underestimator can be constructed for
any twice continuously differentiable nonconvex function via a shift of the diagonal elements of the Hessian
matrix of the nonconvex function [50]. The shift parameter, «, is utilized in conjunction with a branch-and-
bound algorithm for the global solution of NLPs; this NLP solution technique has been termed aBB. In later
work, Floudas et al. demonstrated a method by which rigorous values for & may be computed via interval
analysis [4, 3], provided the functional form of the algebraic optimization problem is known explicitly as an
elementary function and can be manipulated symbolically.

Building upon the aBB framework, Esposito and Floudas [26, 25] describe what is probably the first
practical algorithm for the deterministic global optimization of dynamic systems. Subject to mild assump-
tions, they have shown that an NLP with a dynamic embedded system (potentially derived from the control
parameterization of a dynamic optimization) is twice continuously differentiable; hence, similarly to BB, a
shift parameter for the Hessian can be found to yield a convex underestimator for any nonconvexities. This
shift parameter, denoted £, is used in conjunction with a branch-and-bound algorithm to solve a dynamic
embedded NLP; this technique has been termed SBB. As previously discussed, the rigorous calculation of a
Hessian shift parameter requires the explicit functional form of the function to be underestimated. However,
in a dynamic embedded problem, the functional dependence of the objective function and constraints on the
control parameters is rarely known explicitly. Rather, the functional dependence is implied computationally
by the numerical integration of the dynamic embedded system. Hence, except in analytically tractable prob-
lems, the interval analysis methods for generating rigorous § parameters are not applicable. To circumvent
this problem, several heuristic methods have been proposed to compute 5. Unfortunately, all of the proposed
methods rely either on arbitrary selection of # or on sampling to determine estimates of the true Hessian
matrix. Not only is this method of calculating 8 not rigorous, in fact, these methods cannot even provide
guarantees that the derived underestimator is convex over the entire region of interest. Furthermore, in
order to generate a reasonable value for 3, the Hessian matrix requires a relatively large number of sampled
points. Because the size of the sampling space grows exponentially with the number of decision variables,
practical implementation of /BB would become intractable rather quickly.

In recent years, there has been growing interest in problems in process design and operations that can



be formulated as dynamic optimization problems coupled with integer decisions; these problems are known
as mixed-integer dynamic optimization (MIDO) problems [6, 7]. Binary or integer decision variables are
often introduced in an optimization formulation to represent the inclusion or exclusion of elements in design,
discontinuities in the model, and temporal sequencing decisions. If the underlying model is dynamic, such
a formulation yields a MIDO problem. Examples thusfar reported in the literature include the synthesis of
integrated batch processes [6, 7], the interaction of design and control and operations [53, 54, 64], kinetic
model reduction [57, 8], and the design of batch distillation columns [65]. Similarly, problems in safety
verification have been formulated as a mixed-integer optimization problem with a linear, discrete time model
[22]; use of a more realistic nonlinear, continuous time model would directly yield a MIDO formulation. One
should note that the use of a deterministic global optimization scheme is absolutely vital here, for formal
safety verification requires a rigorous proof that the formulated safety property is satisfied by the model.

In addition to the recent interest in MIDO problems, there has also been growing interest in the op-
timization of dynamic systems containing discontinuities (events); these problems are termed hybrid dis-
crete/continuous systems. As an example, these formulations can be used to design major process transients
such as start-up and shut-down procedures [31, 14]. The most interesting class of problems are those in which
the sequence of discontinuities along the optimal trajectory can vary with parameters in the decision space,
and the optimal sequence of events is sought; such optimization problems have been shown to be nonsmooth
[31, 32]. This suggests a MIDO formulation for hybrid discrete/continuous dynamic optimization in which
binary variables are introduced to represent the different sequences of events that can occur [14]. Recently,
it has been proposed to address the optimal design of campaign continuous processes via a combination of
MIDO and hybrid dynamic optimization formulations [13].

Standard algorithms for general mixed-integer nonlinear optimization in Euclidean spaces assume that the
participating functions are convex [36, 24, 30]. It is well known that if such algorithms are applied to problems
in which the participating functions are nonconvex, the algorithm converges to arbitrary suboptimal solutions
[45, 61, 11]. Convergence to such arbitrarily suboptimal solutions is far worse than convergence to a local
minimum because the algorithms add constraints during the solution process that arbitrarily exclude portions
of the search space. These observations extend identically to MIDO problems [6, 7]; however, this has not
stopped several authors from applying these unsuitable algorithms to MIDO problems indiscriminately [53,
54, 64, 65], although one wonders about the utility of the answers found. Deterministic global optimization
is really the only valid method to solve both mixed-integer optimization and MIDO problems. In recent
years, a number of general deterministic global optimization algorithms have emerged for the solution of
mixed-integer nonlinear programs and integer nonlinear programs in which the participating functions are
nonconvex [61, 2, 42, 43, 44]. Although these algorithms are completely rigorous, they all rely on explicit
knowledge of the functional form of the optimization problem in a Euclidean space. Hence, none of these
algorithms are immediately applicable to dynamic embedded optimization problems.

The purpose of the proposed research is to develop deterministic global optimization algorithms for
nonconvex dynamic embedded optimization, MIDO, nonconvex variational, and nonconvex optimal control
problems. The proposed methods are based on novel extensions of convexity theory to dynamic optimization
problems for use in the generation of convex relaxations. These convex underestimators will then be utilized
in a conventional branch-and-bound framework to generate a deterministic algorithm for solving dynamic
optimization to global optimality. The ultimate goal of the project is to use the derived theory to develop
practical computer implementations of these algorithms to solve large scale dynamic optimization problems.
This goal has only recently become feasible. Because our novel convexity theory requires the generation of
standard convex underestimators for algebraic functions on Euclidean spaces, any algorithm would ideally
automate this process of determining elementary convex underestimators. Recently, Smith [21] has developed
an algorithm for decomposing complex elementary functions into simpler functions for which the convex
underestimators are known. Moreover, Adjiman et al. have shown that the determination of the « for the
aBB algorithm can be performed automatically [3]. Building on the work of Smith et al. and Adjiman et al.,
Gatzke and co-workers have developed a code that enables convex underestimators for elementary functions
to be determined automatically from FORTRAN source code [35]. It is anticipated that these automatic
convexification techniques will prove indispensible in the generation of any fully automated deterministic
global optimization algorithm for dynamic optimization problems.



3 Global Optimization with Linear Dynamic Embedded Systems

3.1 Problem Statement

In the following section, a novel deterministic method for globally solving dynamic optimization problems
with linear dynamic systems embedded is developed. Additionally, in this section, much of the convexity
theory required throughout the proposal will also be developed. We begin by stating the problem in its
general form.

Problem 3.1.1. Let Y be a nonempty compact convex subset of R, X C R™ such that x(t,y) € X
YV (t,y) € [to,tf] xY, X' C R™ such that x'(t,y) € X'V (t,y) € [to,ts] xY. Consider the following problem:

ty

min F(y) = ¢(x(ts,y),x'(t,¥),y) + t ft,x(t,y), x'(t,y),y) dt

subject to
x' = A(t)x+ B(t)y + p(t)
Eox(to) + Eex(ty) = Cy +d
g(y) <0

where y € Y; f is a continuous mapping f : [to,tf] x X x X' x Y — R, ¢ is a continuous mapping
$: X x X'xY = R; gis a convex mapping g : Y — R?; the functions A(t), B(t), and p(t) are continuous
on [to,ts]; and there are exactly m boundary equations. Additionally, for the set G = {y | g(y) < 0}, we
require that Y NG # 0.

Remark. While the problem formulation allows for a general boundary condition, a more familiar initial
value formulation is achieved if Eg =1 and Ef = 0, where I is the identity matrix and 0 is the zero matrix.
Additionally, the sets Y, X, and X' are used throughout the paper. Unless otherwise specified, the definition
of these sets is unchanged from that in Problem 3.1.1 above.

3.2 Existence of a Minimum to Problem 3.1.1

Existence of a minimum for Problem 3.1.1 is addressed sequentially. First, the existence of a solution to
the embedded dynamic system is discussed. Once this existence is demonstrated, a brief discussion of the
solution to the dynamic system is presented. This naturally leads to a proof of the continuity of F(y) on Y,
which immediately implies the existence of a minimum to Problem 3.1.1.

According to Theorem 6.1 [10], a solution to the embedded linear boundary value problem exists and is
unique provided the matrix Q = Eq+E¢®(ty,t0) is nonsingular, where ®(tz,to) is the transition matrix. We
are interested only in those problems for which a solution to the dynamic embedded system exists; therefore,
Q is assumed to be nonsingular throughout. Having established existence, we turn our attention to the
functional form of the solution. From linear systems theory [46], the following provides a general solution to
the differential equation:

t t
x(t,y) = ®(tto)x(t0,y) + [ ®(t.B()y dr+ [ @t () dr, 1)
tg tO
where ®(t, ) is the transition matrix, which is the solution of the matrix differential equation
d
%(I)(t)to) :A(t)(}(t)tﬂ)a v t,

where ®(to,tp) = I. Solving for the boundary condition and substituting the initial condition into Equation



1 results in

ty
C_Ef/ ®(ty, 7)B(r) dr |+

to

X(tay) = {§(t7t0)(E0 + Efé(tfatO))_l

ts
d_Ef/ ®(ty, )p(r) dr|+

to

/t &(t, 7)B(1) dT}y + ®(t,t0)(Eo + Ee®(ts,t0)) *

to

/<I>(t,7')p(7') dr. (2)

to

The importance of the above equation is that the solution to the differential equations, x(¢,y), is merely an
affine function of y possessing the following structural form:

x(t,y) = M(t)y +n(t), (3)

where M and n reduce to constant valued matrices for fixed time.

We now prove the existence of a minimum to Problem 3.1.1. In order to accomplish this task, the
continuity of F(y) must be established. Proposition 3.2.1 below satisfies this requirement. As a corollary to
this proposition, the existence of a minimum to Problem 3.1.1 is established.

Proposition 3.2.1. Consider the following functional:

ty

F(y) = ft,x(t,y),x'(t,y),y) dt

to

subject to
x' = A(t)x + B(t)y + p(t)
Eox(to) + Efx(tf) =Cy +d.

where y € Y; x(t,y) € X; x'(t,y) € X'; f is a continuous mapping f : [to,ty] x X x X' xY — R; the
functions A(t), B(t), and p(t) are continuous on [to, tr]; and there are exactly m boundary equations. If the
above conditions are satisfied, then F(y) is continuous on'Y .

Proof. As previously demonstrated, Equation 2 is the solution to the above system of differential equations.
Clearly, this equation is continuous on [to,ts] X Y, a compact space. We show that [tg,tf] x ¥ is indeed
compact. Suppose {T,} is any open covering of [tg,t¢] and that {G,} is any open covering of Y. Then by
the definition of compactness, there exist finite subcoverings {Ty,, .., T4, } of [to, ] and {Ga,,- .., Ga, } Of
Y. Therefore, {To} x {G4} is an open covering of [to, tf] XY and {Ty,,. .., T4, } X {Gay,---,Ga, } provides a
finite subcovering of [tg,¢s] x Y. This methodology is trivially extended to higher order Cartesian products.
Now, by Theorem 4.14 [60], x([to,ts] x Y) and x'([to, t¢] X ¥) are compact. The following approximation is
valid for all y,yo € Y:

Fo) -Fooll = |/ " x(6 ), X (), ¥) — F(tx(t y0), X' (,Y0), Vo) di
S /t ’ |f(t7x(t7Y)7xl(tvy)7Y) - f(t7x(thO)7xl(t7YO)7YO)| dt.

Because f is continuous on a compact space, by Theorem 4.19 [60], f is uniformly continuous on this compact

space. By definition, given tfito > 0, there exists a ' > 0 such that

70x(63),% (1), 3) = £(1%(830) X (0:30), Y0l < 5

for |(t,X(t,y),X1(t,y),y) - (tax(t7YO)7xl(t7YO)7y0)| < 61 v Y,.Yo €Y.



By uniform continuity of x(¢,y) on [to,tf]xY and x'(¢,y) on [to, t;]xY, we can replace |(¢,x(¢,y),x'(t,¥),y)—
(t,x(t,y0),x'(t,¥0),y0)| < ¢’ simply with |y — yo| < ¢ for some 6 > 0. Using the estimate for the integral
above, we now have

|F(y) — F(yo)|

IN

/ T 1F (L x(t ), X (ty),y) — £t x(t,v0), X' (. yo), yo) | dt

to

ts € €
/ dt = (tf—to) =c
to ty —to ty —to

for ly —yo| <0 Vy,yo€VY.

Therefore, by definition, F'(y) is continuous.

Corollary 3.2.2. There exists a minimum to Problem 3.1.1

Proof. The objective function F(y) as defined in Problem 3.1.1 is trivially continuous by Theorem 4.9 [60]
and the above proposition. That is, F'(y) is the sum of the continuous functions ¢(x(tz,y),x'(tf,y),y) and
:Of flt,x(t,y),x'(t,y),y) dt. By definition, F' is a mapping from the nonempty compact space Y N G into

R. Therefore, by Theorem 4.16 [60], the existence of a minimum to Problem 3.1.1 is guaranteed.
O

At this point, the existence of a minimum to Problem 3.1.1 as been established by demonstrating the
existence and uniqueness of a solution to the embedded dynamic system and asserting Weierstrass’ Theorem
concerning the existence of a minimum of a continuous function on a nonempty compact set. Our attention
is now turned to an algorithmic method for determining the point y at which this minimum value of the
objective function occurs. The idea behind solving Problem 3.1.1 is to apply standard algebraic convex
underestimator techniques to construct a branch and bound algorithm. Clearly, the objective is a function
only of a vector from a Euclidean space. Thus, standard branch and bound techniques are applicable.
However, it is not immediately evident how to treat convexity of the dynamic embedded system. Therefore,
the following portion of this exposition focuses on the theoretical framework requisite for generating convex
underestimators for Problem 3.1.1.

3.3 Convexity and Convex Underestimators

For the purposes of this discussion, the functions and variables are assumed to be either real or real vectored.
Additionally, we will always assume that any integrand is a Riemann integrable function. We begin by
defining algebraic convexity.

Definition 3.3.1. Let f : S — R, where S is a nonempty convex set in R”. The function f is said to be
convex on S if

fx+ (1= X)x0) < Af(x) + (1= A)f(x0)
for each x, xo € S and for each A € (0,1).

Having established our working definition for convexity, we are now prepared to derive a convex under-
estimator for Problem 3.1.1. Due to complexity, the derivation is performed sequentially. The first lemma
below illustrates that the composition of a convex function on a set D' and an affine function on a set D
remains convex on D. Immediately following the first lemma is another lemma that extends the standard
monotonicity result of the Riemann integral to a parameter embedded integral. These facts are tantamount
to deriving a convex underestimator for the objective function in Problem 3.1.1.

Lemma 3.3.2. Let I CR™, J CR", g: I — R be a function convex on I, and h: J — R™ be an affine
function of the form h(y) = Ay + b, where range(h) C I. Then, the composite function f : R* — R is
defined as f(y) = g[h(y)] and is a convezx function on J.



Proof. Given A € (0,1), by the definition of convexity, we have
gAx 4+ (1 = N)xp) < Ag(x) + (1 —N)g(xo) Vx,%x0 €I
However, by hypothesis, range(h) C I. Therefore, we have
gINB(y) + (1 = Mh(yo)] < Aglh(y) + (1 — Ng(h(yo)] V h,hy € I,
We now perform the following algebraic operations:

g[Ah(y) + (1 = Mh(yo)] = g[A(Ay +b)+ (1 - A)(Ayo + b)]
= g[Ay + Ab + Ay — AAyo — Ab + b]
= g[A(Ay + (1= N)yo) + b]
= ghQy +(1=XNyo)] Yy, yo€J,

where the change of sets is evident from the definition of the mapping h. Therefore,

glh(Ay + (1 = Nyo)] < Ag[h(y)] + (1 = Nglh(yo)] Y y,yo € J,

which by definition shows that g[h(y)] is convex on J.
O

Lemma 3.3.3. Lety €Y, t € [to,tf], and f1, fo : [to,tf] x Y — R such that f1, fo are integrable. Denote y
fived by y. If
fl(tvz)SfQ(taz) v(taz)e[tmtf]xy

then
ty ty

Fi(y) = fi(t,y) dt < fa(t,y) dt =Fx(y) VyeY.

to to

Proof. Choose any fixed y € Y. By hypothesis,

filt,y) < falt,y) V (t,y) € [to, ts] x Y.

Because y is fixed, fi and f> are only functions of ¢ on [to,t;]. Therefore, we apply Theorem 6.12(b) [60]
directly to yield.

ty ty
fl(tvz) dt S f2(tvz) dt.

to to
Because the above inequality holds for any y € V', it holds for all y € V.
O

The following is the fundamental theorem for generating a convex underestimator for Problem 3.1.1. It
illustrates that convexity of the integrand implies convexity of the integral. The theorem makes use of the
notion of partial convexity as defined by Troutman [69]. As a reminder to the reader, partial convexity re-
quires convexity in all variables after holding time fixed (denoted by t). Additionally, before the presentation
of the fundamental theorem, two new sets must be defined. These sets enable the theorem to be applied to
time varying regions. The purpose of this seemingly insignificant addition will be made abundantly clear in
the discussion of bounds tightening.

Definition 3.3.4. We define the following sets
X@) ={x(t,y) |y €Y, tfixed € [to,ts]}
X'(t) ={x'(t.y) |y €Y, tfixed € [to,ts]}

x= |J x@
t€lto,tys]
X= {J X
t€lto,tys]

It is clear that X C X and X' C X'.



Theorem 3.3.5. Consider the following function:

F) = [ £t x(ty).x (ty),y) di

to

subject to
x' = At)x+ B(t)y + p(t)
Eox(to) + EfX(tf) =Cy +d.
where y € Y; x(t,y) € X; x'(t,y) € X'; f is a mapping f : [to,t;] x X x X' xY — R; the functions
A(t), B(t), and p(t) are continuous on [to,tr]; and there are exactly m boundary equations. If f(t,x,x',y)
is convex on X(t) x X'(t) x Y V t € [to,tf], then F(y) is convex on Y.

Proof. For fixed t, by Equation 3, we have that x(¢,y) is an affine function of y. Furthermore, by inspection,
one observes that x’ is also an affine function of y. By hypothesis, the integrand f(¢,x,x’,y) is convex on
X(t) x X'(t) x Y V t € [to,tf]. Therefore, we assert Lemma 3.3.2 yielding f convex on [to,ts] X ¥ for each
fixed ¢. Given X € (0,1), by the definition of convexity (on [ty,ts] x Y for each fixed t), we have

flt,x(t, Ay + (1= Nyo), x'(t, Ay + (1 = A)yo), Ay + (1 = A)yo] <
/\f(t>x(t7Y)7XI(t;Y);Y) + (1 - /\)f(t)X(t7YO)>X’(t;YO)>yO) v (t7Y)7 (t>y0) € [tovtf] xY.

From Lemma 3.3.3, the above equation implies

t
f Fltx(E Ay + (1= Nyo), X' (£, Ay + (1 = N)yo), Ay + (1 — N)yo] dt <
to
ts ts
Af(tax(tay)axl(ta)I):)I) dt + / (1 - A)f(taX(t7YO)7XI(t7y0)7y0) dt v Y,Yo € Y.

to to

which upon inspection is simply
FQAy + (1= MNyo) < AF(y) + (1= N)F(yo) Vy,yo€Y.

Thus, by definition, F'(y) is convex on Y.
O

Corollary 3.3.6. Consider the function F(y) and constraints as described in the theorem above with the
relazation that f(t,x,x',y) is nonconvezr. If

ut,x(t,y),x'(t,y),y) < f(t,x(t,y),x'(t,y),y) VY (t,y) € [to,ts] xY
and if u is convex on X(t) x X'(t) x Y V t € [to,ty], then U(y) < F(y) Vy €Y and U(y) is conver on Y,
where

Uly) = / "t x(t,y), % (1), y) db.

to

Proof. The proof is immediately evident from Theorem 3.3.5 above and Lemma 3.3.3.
O

Remark. The above corollary is the fundamental result that enables one to derive a convex underestimator
for Problem 3.1.1. Clearly, the corollary states that a convex underestimator for the integrand (on X(t) x
X'(t)xY Vt € [to, ty]) generates a convex underestimator for the integral (on Y'). While the corollary does not
require the continuity of u(t,x(t,y),x'(t,y),y) to prove that U(y) is a convex underestimator, continuity of
u(t,x(t,y),x'(t,y),y) is necessary to establish the existence of a minimum to the underestimating problem.
Fortunately, this generally poses no difficulty as the standard methods used to derive convex underestimators
for the integrand provide continuous functions. The addition of ¢ in the problem formulation provides no
further complication. Because ¢ is defined as a continuous function for a fixed time, a convex underestimator
is found for ¢ via Lemma 3.3.2 and standard methods. The sum of convex functions remains convex.
Thus, the sum of a convex underestimator for ¢ and a convex underestimator for the integral is a convex
underestimator for the objective function.
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3.4 Bounds Tightening

One of the convergence criteria for any branch-and-bound algorithm is that the bounding operation is
consistent (finitely consistent for finite termination) [38]. For algorithmic convergence, this statement implies
that at every step, any unfathomed partition element can be further refined, and any decreasing sequence of
successively refined partition elements satisfies the requirement that at the limit of the sequence, the lower
bound equals the upper bound. From this statement, one infers that convergence is assisted by employing the
highest possible lower bounding functions. As previously discussed, the lower bounding functions utilized in
our algorithm are convex underestimators. By definition, the highest convex underestimator for a function
is its convex envelope.

Obviously, using the convex envelope of a function for its convex underestimator would yield the best
convergence results. Often, however, computing the convex envelope of a function is a prohibitively expensive
task. Therefore, alternate techniques are employed for constructing convex underestimators, which may or
may not yield convex envelopes. Several current methods exist for the generation of convex underestimators
for functions; the methods employed in our algorithm are attributed to McCormick [52] and Adjiman [4].
While we restrict ourselves to the discussion of these two convex relaxation techniques, one should note
that any method for deriving a convex underestimator that does not require the addition of new infinite
dimensional variables to the objective function is applicable. The reason we require this restriction is that
the addition of new infinite dimensional variables transforms the search space from a finite dimensional space
to an infinite dimensional space hence requiring a variational optimization technique. We note, however,
that terms (even integrals) containing only elements from Y may still be underestimated via a technique
requiring the addition of new variables. A short example below illustrates the difficulty of employing a
convex relaxation method that introduces new infinite dimensional variables to the objective function.

Example 3.4.1. Consider the following dynamic optimization problem with a linear dynamic embedded
system:

tr

min F(y) = / x1 - T2 dt
Yy to

subject to constraints of the same form as those of Problem 3.1.1. Al-Khayyal and Falk [5] give the convex
envelope of a bilinear term on any rectangle in R2. In order to increase the smoothness of the convex
underestimating problem, this result is often applied by introducing a new variable w and inequalities to the
formulation. This yields the following convex relaxation:

ty
Uly,w) :/ w dit
to

subject to the original constraints and the new constraints

w > ay(t) w2 + 2y (1) 71— 2{ (t) 23 (t)
w >z (t) @2 + 2§ () - 21 — 27 (t) - 25 (1)
w € C[to,tf],

where C[to,ts] represents the space of continuous functions on the interval [to,¢]. Without introducing the
new variable w, the embedded ODEs and boundary conditions allow the elimination of x € (C'[to,ts])™
from the objective function enabling us to consider only an optimization problem on Y N G. Unfortunately,
the newly added Lagrangian inequalities on w do not permit the elimination of w from the convex relaxation.
Hence, the optimization problem must be considered on the space (Y NG) x C[to, t7] subject to the Lagrangian
inequality constraints. Problems of this nature are addressed by the variational approach in section 5.

One common feature of the aforementioned convex relaxation methods is the requirement that the do-
mains of the functions are bounded. In fact, both the quality and the domain of applicability of the un-
derestimator is directly dependent upon these requisite bounds. The optimization parameter in Problem
3.1.1 is the variable y, which is an element of the bounded space Y, a nonempty compact convex subset of
R™. Obviously, in the branch and bound framework, the refined partitions are generated by branching and
possibly reducing the feasible solution space Y. Therefore, the bounds for y are fixed by the branch and
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bound algorithm. However, the bounds for x(¢,y) are not specified, but rather implied by the solution of the
embedded system. Clearly, from Corollary 3.3.6, the highest derived lower bounding convex underestimator
for the integrand f(¢,x(t,y),x'(t,y),y) is sought. In this case, highest refers not necessarily to the convex
envelope, but rather the highest convex underestimator that can be derived from the methods of McCormick
and Adjiman in conjunction with Corollary 3.3.6. We now make a formal definition of highest derived convex
underestimator and tightest bounds.

Definition 3.4.2. Define the set X, whose elements are from a function space, to be the set of all bounds
on x(t,y) such that no solutions to the embedded differential equations for the specified boundary condi-
tions are excluded V (t,y) € [to,ts] X Y. Suppose that u(t,x(¢,y),x'(t,y)) is a convex underestimator for
some function f(t,x(t,y),x'(t,y)) such that u(t,x(t,y),x'(t,y)) is derived from the bounds (x*,xY) € X.
u(t,x(t,y),x'(t,y)) is the highest derived convex underestimator if for any other convex underestimator
u*(t,x(t,y),x'(t,y)) derived by the same method but with any bounds (x*,xV™) € X, we have that

u(t,x(t,y),x'(t,y)) > u"(t,x(ty),x'(ty)) V(&) € [to,ts] x Y-
In this case, we call (x¥,xY) the tightest bounds (for this method).

Using Definition 3.4.2 above, we state the following proposition, which directly implies a method for de-
termining the tightest bounds via interval analysis. The proposition is merely a restatement of the properties
of the convex underestimators derived by McCormick and Adjiman. The proof of the following proposition
as it relates to McCormick’s work is found in McCormick [52]. The proof of the following proposition as it
relates to Adjiman’s underestimators is found in the previous work of Androulakis et al. [9] and Maranas
and Floudas [50].

Proposition 3.4.3. For the convex underestimator methods of McCormick and Adjiman, suppose the convex
underestimator u*(t,x(t,y),x'(t,y)) is derived from the bounds (x™*,xY™). If the interval [x“"(t),xV"(£)]
were reduced to the interval [xV(t),xY(t)] such that ¥ (t) > F"(t) and 2V (t) < 2V (t) V t € [to, tf], then
the convexr underestimator derived on (x¥,xY) is a higher derived convexr underestimator than the convex
underestimator derived on (x“",xY").

From Proposition 3.4.3 above, one directly infers that the tightest bounds for a method are found point-
wise by

[« (1), 2f (t)] = arg min{Jz} (1) —2f (©)] : [x"(@), x" (O] € KO} Vielto,tf,1<i<m  (4)

Additionally, any convex underestimator obeying the property of Proposition 3.4.3 has the same tightest
bounds independent of the method employed to construct the convex underestimator itself. This follows
immediately from Definition 3.4.2 and Equation 4. Because all of the convex relaxation techniques leading
to convergent branch-and-bound algorithms obey Proposition 3.4.3, Equation 4 could alternatively be used
as the definition for tightest bounds.

We now return to the problem of calculating the tightest bounds for the solution of the embedded dynamic
system. As stated previously, the bounds for x(¢,y) are implied by the bounds on y, for clearly the bounds
on x(t,y) should not be chosen smaller than the solution envelope to the embedded dynamic system. That
is, we require (x,xY) € X. The following theorem illustrates a method for calculating the tightest bounds
for x(t,y). Letters in square brackets will be used to denote intervals. A bold variable in square brackets
represents either a vector or matrix of intervals.

Theorem 3.4.4. Consider the following set of differential equations and boundary conditions:

x' = A(t)x + B(t)y + p(t)
Eox(t0) + Eex(ty) = Cy +d,

Ify € Y = [yL,yY], then the tightest bounds for the solution to the differential equations are given pointwise
in time as the natural interval extension (to'Y) of Equation 2.
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Proof. The functional form of the solution to the differential equation is given by Equation 3. For any fixed
t € [to,tf], we write
x(t,y) = M(t)y +n(t), (5)
where M(t) and n(t) are constants for each fixed t. We now take the interval extension of Equation 5 to
yield
(x](£, [y]) = M(d)[y] + n(2), (6)
where [y] is the interval [y’,yY]. We note that since Equation 5 is a rational function, Equation 6 is a
natural interval extension (i.e., Equation 6 is identically Equation 5 with the variables replaced by intervals
and the algebraic operations replaced by interval arithmetic operations). Thus, because Equation 6 above
is a rational interval function and a natural interval extension of x(t,y), by Corollary 3.1 [55], we have that

X(t [y]) € x| [yD, (7)

where X(¢,[y]) represents the range of the function x(¢,y) over the interval [y]. Furthermore, because
[x](, [y]) is a natural interval extension of a rational function in which each variable occurs only once and
to the first power, we have that Equation 7 holds with equality. Because ¢t was fixed arbitrarily for any
t € [to,ts], Equation 7 holds pointwise with equality for all ¢ € [to, tf].

O

Corollary 3.4.5. For the differential equations defined in Theorem 3.4.4, the tightest bounds for x'(t,y)
are given pointwise in time by the following interval equation:

X'](t, [y]) = (A()M(t) + B(t))[y] + A(t)n(t) + p(t).

Proof. The functional form of the solution to the differential equation is given by Equation 3. For any fixed
t € [to,ts], we substitute Equation 3 into the differential equations to yield

x' = A(t)(M(t)y +n(t)) + B(t)y + p(t)-

The above equation must be factored to yield

x'(t,y) = (A@M() + B(®))y + AH)n(t) + p(®).
We now take the interval extension of the above equation to yield

x'|(t, [y]) = (A(H)M(t) + B(1))[y] + A(t)n(t) + p(t). (8)

By an identical argument as in the proof of Theorem 3.4.4, we now have that Equation 8 is a natural interval
extension of a rational function in which each variable occurs only once and to the first power. Thus,

x'(t, [y]) = X't [y])-

Because t was fixed arbitrarily for any ¢ € [to, t], the above equation holds pointwise for all ¢ € [to,tf].
O

Remark. It is worth commenting on what is meant by the bounds being given by the pointwise natural
interval extension to a function. Take for example Equation 6. At each fixed ¢, for [y] = [y*,y"] we have
[x](t, [y]) = [x¥(t),xY(t)]. The lower bound is then constructed pointwise by x(t) = x%(¢) for each t € [to, t/]
and the upper bound is then constructed pointwise by x(t) = xV(t) for each ¢t € [to,t;].

Having elucidated a method for calculating the tightest bounds, a final brief corollary is added to demon-
strate that these tightest bounds are continuous.

Corollary 3.4.6. The tightest bounds x(t) and xY(t) as determined from Theorem 3.4.4 are continuous
on [t(),tf].

Proof. The proof follows immediately from Equation 3, the above theorem, and interval arithmetic.
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Remark. By a similar argument, the tightest bounds on x'(¢,y) are also continuous.

A small example is now presented to illustrate the application of Theorem 3.4.4 for calculating the tightest
bounds for a linear dynamic embedded system.

Example 3.4.7. Consider the following system of linear differential equations:

] =19
Th = —x1
z1(0) =0, 22(0) =y
/S [_17 1]

The above system may be solved analytically with the following solution:
z1(t,y) = ysin(t) and x2(t,y) = ycos(t). (9)
For any fixed t € [to,ts], we have the natural interval extensions of Equation 9:
[x1] = [-1,1]sin(¢) and [z2] =[-1,1]cos(?).

Because the solution for x; and z» are very similar, we will restrict the remainder of this example to the
discussion only of the tightest bounds for x;. The tightest bounds are now found pointwise by the following
formula:

zF(t) = min{—1sin(t), 1sin(t)} and zY(t) = max{—1sin(t), 1sin(t)} VtE€ [to, /]

A plot of the tightest bounds for z; is found below. One very interesting point concerning the graph is that
the upper and lower bounds for x; intersect at ¢ = nw, n € N. Clearly, this implies that regardless of the
value for the parameter y, the solution to the differential equation is fixed at z = 0. For this example, the
solution to the differential equations was obtained analytically. However, for typical problems, the analytic
solution to the embedded ODE system will not be known. Therefore, the tightest bounds must be obtained
numerically from Equation 2. Two obstacles exists in obtaining the tightest bounds numerically. First,
the numerical integration step is potentially very difficult and computationally expensive. Second, due to
numerical error in the integration, steps must be taken to ensure that the bounds exclude all of X except
the tightest bounds.

The following proposition links the idea of the highest derived underestimator for an algebraic function
to the highest derived underestimator for an integral.

Proposition 3.4.8. Consider the problem formulation of Corollary 8.3.6. If u(t,x(t,y),x'(t,y)) provides
the highest convex underestimator with tightest bounds [x(t),xY(t)] for f(t,x(t,y),x'(t,y)), then U(y) is
the highest convex underestimator for F(y) with the same tightest bounds.

Proof. The proposition is immediately evident from Definition 3.4.2 and Lemma 3.3.3. O

Remark. It should also be clear that if one method yields a higher derived convex underestimator for
the integrand than another method, the underestimator for the integral of the former is higher than the
underestimator for the integral of the latter in accordance with the construction of Corollary 3.3.6. By this
analysis, the convex envelope (in conjunction with the tightest bounds) for the integrand yields the highest
possible convex underestimator for the integral that can be constructed via the method of Corollary 3.3.6.

At this point, a concrete example is presented to help solidify the theory presented above.

Example 3.4.9. Consider the following nonconvex integral:

1
min F(y) = / —z? dt
¥ 0
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Figure 1: The tightest bounds for z;.

subject to
' =-2z+y
z(0) =1
yeY =10,1]

reX=[0,1] Ytelo,1].

In order to construct a convex underestimator, we consider the integrand as a function on X. Since the
integrand is a univariate concave function, its convex envelope on X is the secant connecting the two end
points of X. Utilizing Corollary 3.3.6 yields the following convex underestimator for F'(y):

L _ (U2 o (D)2
Ul(y) :/0 %(m—#) — (z1)? dt.

Using the upper and lower bounds given in the problem statement, we have the following as our convex
underestimator for F(y):

1
Uy(y) = / 2 dt.
0

While U,s(y) yields a rigorous convex underestimator for F'(y), the underestimator is a rather weak one.
Employing Theorem 3.4.4, we know that the tightest possible bounds are given by z%(t) = z(t,0) and
zY(t) = x(t,1). Because the embedded differential equation is analytically solvable, we have that

:L’L (t) — ef2t

ef2t + 1
B .

Using these tightest possible time varying bounds on z (by inspection, we see that [zZ(¢),zY (¢)] C [0,1]V ¢ €
[0, 1]), we construct the following convex underestimator for F'(y):

2Y(t) =

dt.

L _3pe 4t 4 76 4 g2t 4y — 2t
U (y) = .
0 et -2
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The nonconvex integrand and its two underestimators are illustrated below in Figure 2. It is important
to note that while analytical solutions to the embedded differential equation and integrals were known and
utilized for the construction of this example, neither is actually necessary for the construction of convex
underestimators. Rather, to find the tightest bounds, the system may be numerically integrated to yield the
matrix M(¢) and the vector n(t) (see Equation 3) for each fixed ¢ as chosen adaptively by the integrator.
Additionally, F(y) or U(y) must be determined numerically pointwise in y in conjunction with the branch-
and-bound algorithm.

— F(y)

Function and Underestimators

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 2: F(y) and its convex underestimators U,s(y) and U (y).

3.5 Future Work in Linear Dynamic Embedded Systems

While much of the underlying convexity theory has already been developed, there still remains a wide body
of unexplored research in global optimization with linear dynamic embedded systems. One area of primary
concern is the implementation of a global optimization algorithm for Problem 3.1.1. From the above material,
it should be obvious that standard branch-and-bound [27, 39] and branch-and-reduce [61, 62] methods for
nonconvex NLPs can be applied to the optimization of dynamic optimizations with linear dynamic systems
embedded. While the convergence properties of McCormick’s underestimators and the aBB underestimators
have been proven in algebraic spaces [52, 50|, this property has yet to be proven for the dynamic case.
Additionally, while it can be shown trivially that the convex envelope for the integrand yields the best
possible convex underestimator in accordance with Corollary 3.3.6, we are currently unsure if the convex
envelope for the integrand implies the convex envelope of the integral. Clearly, this would be a powerful result
as it would imply that obtaining the convex envelope for the integrand and subsequently utilizing Corollary
3.3.6 to generate a convex underestimator would theoretically yield the tightest possible underestimators
for the integral and hence the fastest possible convergence for the branch-and-bound algorithm. Obviously,
much work remains in the details and testing of an algorithmic procedure to implement the already developed
theory.

As presented, the composite function approach establishes a method for solving problems in which the
parameters y are continuous variables. This makes the method ideal for solving control parameterization
representations of optimal control problems with linear dynamic systems embedded. Moreover, the formula-
tion of Problem 3.1.1 is ideally suited to be extended to handling y in an integer space. A number of general
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algorithms have emerged in recent years for the solution of MINLPs and INLPs in which the participating
functions are nonconvex [61, 2, 42, 43, 44]. All of these methods rely on convex underestimators constructed
on sets formed from the continuous relaxations of the integer variables. Hence, the theoretical framework
above can be utilized to solve specific classes of MIDO problems.

In addition to the above challenges remaining, there are several other research areas yet to be explored.
First, in its current formulation, Problem 3.1.1 can only handle a system of ordinary differential equations.
We believe, however, that it can be shown that a system of linear differential algebraic equations always
has a solution affine in y. Hence, Lemma 3.3.2 will be applicable to DAE systems, which will broaden
the range of problems directly solvable with the above developed theory. Second, we will explore methods
encompassing problems in which the final time is allowed to vary. Inherently, this adds nonlinearity to the
problem; thus, either we will seek a reformulation method to solve the problem directly in its linear form, or
we will seek to solve the problem via the methods to be developed in Section 4. Finally, we will examine the
influence of both equality and inequality path constraints on the system. Equality path constraints obviously
will be handled by the techniques developed for solving DAEs. Inequality path constraints, on the other
hand, will require a more sophisticated solution technique employing either the introduction of isoperimetric
constraints on the integral violation of the path constraints or the enforcement of path constraints at a finite
number of points in time.

4 Global Optimization with Nonlinear Dynamic Embedded Sys-
tems

This task will harness the composite function approach of the previous section to develop a global solution
method for optimization problems with a nonlinear dynamic system embedded. For the sake of brevity, we
will only examine the case of a simple formulation with a single state variable, but the extension to more
general cases is evident. The problem is stated below in its general form.

Problem 4.0.1. Let Y be a nonempty compact convex subset of R, X C R such that z(t,y) € X V (¢t,y) €
[to,tr] x Y. Consider the following problem:

subject to

where f is a nonconvex continuous mapping f : X — R, h is a Lipschitz continuous mapping h : [to,ts] x
X xY — R, and g is a convex mapping g : Y — R?. Additionally, for the set G = {y | g(y) < 0}, we
require that Y NG # 0.

In order to construct a convex underestimator, convexity of the integrand is only required for fixed
t. McCormick [52] proposed the following method for constructing convex underestimators. Consider the
composite function f[z(y)], where f is a continuous function of a single variable, and z(y) is a continuous
function of n variables. Suppose that the convex envelope e of f is known on some interval [a, b] of interest;
this additionally implies that its minimum on this interval may be computed. Suppose also that a convex
function ¢ and a concave function C' are known such that

cy) <z(y) <C(y) VyeY.
Then, a convex underestimating function for flz(y)]ony € Y N{y | a < z(y) < b} is given by

e(mid[e(y), C(y), 2minl),
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where zpmin € [a,b] is a point at which f attains its minimum on [a,b] and mid(z, 22, 23) is the function
that selects the middle value of its three scalar arguments. McCormick [52] also introduced the notion of a
factorable programming representation, which employs the above result recursively in order to apply it to a
very broad class of functions.

We propose to apply McCormick’s result to the construction of convex underestimators for nonlinear
dynamic embedded problems such as Problem 4.0.1. We will assume that the convex envelope of the integrand
f on any scalar interval can be constructed. Consider the solution to the embedded initial value problem
z(t,y). Suppose for each fixed ¢ we have a pair of dynamic systems whose solutions ¢(¢,y) and C(t,y) satisfy
the following:

c(t,y) <z(t,y) <C(t,y) V()€ [to,ts] xY. (10)

Then, if ¢(¢,y) is partially convex and C(¢,y) is partially concave, we can use these functions to construct the
desired convex underestimator for the integrand via McCormick’s method. Suppose an analytical solution
for z:(t,y) is obtainable. Then, ¢(t,y) and C(t,y) could be constructed by inspection. However, for realistic
problems, the analytical solution to the nonlinear dynamic embedded system will rarely be known. Therefore,
we seek an alternative solution.

Suppose that c(¢,y) and C(t,y) are the solutions to linear dynamic systems. We have already established
that such solutions are affine with respect to y. By definition, affine functions are both convex and concave;
hence, ¢(t,y) and C(t,y) would trivially satisfy the requirements of convexity and concavity respectively.
Suppose that we have the following linear system subject to the same initial condition as z':

' =A(t)c+ B(t)y + p(t)

such that
At)e(t,y) + B(t)y +p(t) < h(t,z(t,y),y) V (Ly) € [to,ts] x Y.

Clearly, the following must be valid (although this is not to be confused with a solution technique for solving
the ODE):

2(t,y) = / Wt,2(t,y),y) di + oy

to
t
ct,y) = | Alt)c+B(t)y +p(t) dt +qTy.

to
By Lemma 3.3.3, the left hand part of Equation 10 is satisfied. Analogously, an overestimating linear dynamic
system C'(t,y) could be found yielding a valid inequality for the right hand side of Equation 10. We therefore
propose to seek methods for rigorously calculating the functions c(¢,y) and C(t,y) for multivariate state
equations. This can be accomplished either by generating linear differential systems whose solutions obey the
properties of Equation 10 or by utilizing interval extensions to ODEs to bound the solution space of x(t,y)
and determine c(t,y) and C(t,y) based on these bounds. Additionally, we will consider complications similar
to those in the linear embedded dynamic programs such as extensions to DAEs, state inequality bounds, etc.

5 Variational Approach

Until now, we have only considered solving discretizations of variational calculus and optimal control prob-
lems via control parameterizaton. However, often times, one may wish to solve the dynamic program in the
original infinite dimensional space. Because variational problems are solved in an infinite dimensional space,
the approach is very different from those previously considered. Despite these differences, the two different
approaches are amalgamated to form a cohesive whole by the notions of convexity and convex underestima-
tors. We will therefore begin our analysis by examining how convexity extends into an infinite dimensional
space. Again, for brevity, we only consider a univariate variational problem; extensions to multivariate cases
are feasible, but not trivial. Additionally, in this section, we assume that all functions have continuous partial
derivatives with respect to their arguments. This enables us to employ the following working definition of
convexity.
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Definition 5.0.2. The real valued function f will be convex on D C R? if it has continuous partial derivatives
on D and satisfies the inequality

f(x) > f(x0) + Vf(x0) - (x —x0), vV x,%X0 € D

In variational problems, the objective is actually a functional that maps elements of an infinite dimensional
function space to real values. Of particular interest are integral functionals on linear spaces of functions.
Integral functionals are functionals that map a linear space of functions to a real value via a definite integral.
We define convexity on a linear space of functions X in the following manner (6J(z;v) is the Gateaux
variation of J at x in the direction v).

Definition 5.0.3. A functional J on a set D C X is said to be [strictly] convex on D provided that when
xz and  +v € D then §.J(x;v) is defined and J(x + v) — J(z) > 0J(x;v) [with equality if and only if v=0,
where O is the unique vector such that cO =0z =0, Vz € X, c € R].

Convexity is an important notion in optimization algorithms in a finite algebraic space because convexity
implies that any stationary point found is a global minimum (the unique global minimum for strict convexity).
As expected, an analogous result exists for the minimization of convex functionals, as stated in the following
proposition.

Proposition 5.0.4. If J is [strictly] conver on D C X then each xo € D for which §J(zo;v) =0,V zo+v € D
minimizes J on D [uniquely].

Proof. By the definition of convexity, we have J(x + v) — J(z) > 6J(z;v). By hypothesis zo € D makes
0J(zo;v) = 0. Hence, we have
J(xg +v) — J(xg) > 6J(x0;v) =0

[with equality iff v = O]. But clearly, all admissible z € D can be written as xzo + v since by hypothesis the
above inequality holds V z¢ + v. Thus, x = zp + v and

J(2) = J(zo)

[with equality iff @ = xo], which by definition implies 2y minimizes J on D [uniquely].
O

Note that the above Proposition illustrates the fundamental principle that minimization of convex func-
tionals occurs for the function that makes the Gateaux variation equal to zero.

Utilizing the above theoretical developments, we are in a position to now create convex underestimators
for variational problems. At the heart of this analysis is the following fundamental theorem, which links
convexity and underestimation of real functions to convexity and underestimation of integral functionals.
One should note the similarity between this theorem and Theorem 3.3.5 and Corollary 3.3.6.

Theorem 5.0.5. Let the functionals

b b
Flz) = / fta@),2'(0)dt  and  U(z) = / u(t,o(t), 2 () dt
be defined on the set
D = {x € C'[a,b]; (x(t),2'(t)) € D C R?}.
If u(t,z,x") is partially convex on [a,b] x D and
u(t,z,z') < f(t,z,x"), V fized t € [a,b] and x(t),z'(t) € D

then U(x) is convex on D and U(z) < F(z). That is, if u(t,z,z’

,x,z') is a convex underestimator for f(t,x,z")
on [a,b] x D, then U(x) is a convex underestimator for F(x) on

)
D.
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Proof. When z, z + v € D, then by partial convexity, we have that at each ¢ € (a,b), the convexity of u
yields
ult,z +v, 2" +0') —u(t,z,2’) > u.(t,z, 2" v + up (t, z,2" )0

The above equation is integrated to yield

S u(t,2() +v(#), 2 (£) + o' (£) — u(t, 2(t), 2" () dt >
b
/ wg (t, z(t), 2 (8)v(t) + ugp (t, x(t), ' (#))V' (t)dt ¥V z € D.

However, this is equivalent to
U(x+v)—U(z) > oU(z;v),

which by Definition 5.0.3 shows that U (x) is convex. It remains to show that U(z) < F(z), but this is evident
from the comparison theorem for integrals [60] because by assumption, we have that u(t, z,z') < f(t, =, z'),
VY fixed t € [a,b], and z(t), '(t) € D.

O

Remark. This theorem enables any known method for convex underestimation of real functions to be
harnessed in the convex underestimation of integral functionals. We note that because we are already
optimizing in an infinite dimensional space, we are not limited to methods that do not introduce new
variables.

The standard method of determining a stationary function for a variational problem is to solve the Euler-
Lagrange equations (e.g. [69]). In the classical derivation of the Euler-Lagrange equations, the state variable
is unbounded. However, as we have previously seen, deriving convex underestimators in algebraic spaces often
requires bounds on the state variables; therefore, the standard Euler-Lagrange equations are inadequate for
our task. Beginning with the work of Valentine [71] early in the last century, many authors have attempted to
derive new necessary conditions for determining stationary functions for variational problems. We restate the
fact that in order to construct a rigorous procedure for determining a global minimum to an optimization
problem, the optimality conditions must be both necessary and sufficient. Merely satisfying a necessary
condition does not even imply local minimality. However, to the best of the author’s knowledge, prior to this
work, no one has produced a generally suitable sufficiency condition for variational problems with bounded
state variables. We present the proof of sufficiency below in two steps. First, a lemma is proven demonstrating
that the minimization of a Lagrangian augmented function yields the minimum to the original state bounded
problem. The theorem that follows presents the sufficiency condition for optimizing a variational problem
with a bounded state variable.

Lemma 5.0.6. Suppose f = f(t,%(t),&'(t)) and g = g(t,&(t),2' (¢ )) are continuous on [a b] x R? and there
s

exists a function A(t) € Cla,b], for which zo minimizes F(z) = f f(t,&(t), 2 (t)) dt on D C C[a,b] where

f def f+ Ag. Then zo minimizes F(z f ft,z(t),z'(t)) dt on D under the following constraints:

1. g(t,z(t),2'(t)) <0, t€(a,b)
2. \t) >0, te(a,b)

3. Mt)g(t, &o(t), #) (1))

Proof. If & € @, the following will be true by the definition of a minimum:

0

F(2)

bA bA
F(@) + / (gt &), 8 () dt > F(éo) + / A(D)g(t, dolt), &) (¢)) dt

Y%

3
8>
|
3
8>
=)
IV

b
/ (A9t 20 (1), (1)) = AD)g(t, #(2), #'(¢))) dt

a
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By the constraint 3,
b

P@»ﬂ@@z—/@@ﬁ@mﬁm»w

a

Due to the nonnegativity of A(¢), constraint 1 may be multiplied by A(t) without altering the sign of the
inequality

AlHg(t,2(8),'(£) 0.
It immediately follows that
F(&) > F(&o)-

O

Remark. Although the product ;\(t)g(t, Z(t), '(t)) may only be piecewise continuous, this poses no difficulty
to integration provided there exist only finitely many points of discontinuity (cf. Rudin [60]).

The following Theorem states the sufficiency condition for minimizing a bounded convex functional.

Theorem 5.0.7. For a domain D of R? suppose that f(t,z(t),z'(t)) € C*([a,b] x D) is convez, and we wish
to minimize

on
D = {&(t) € C'[a,b] : £(a) = a1, #(b) = by },
subject to the inequality constraint
g(t,2(t)) <0,  te(ad),

where g(t, &) is also convez on [a,b]xR. For any &9 € D satisfying the inequality, the following conditions are
sufficient to guarantee a minimum: There exists a A(t) € Cla,b] such that A(t) > 0 and A(t)g(t, zo(t)) = 0.
Additionally, for all intervals excluding corner points the following equation must be satisfied:

d

2o (620(), 80(1)) = fut, 20 (1), 2(8) = A(£)g (¢, 2o (1))-

At any corner point c, the following condition must hold:
fz’ (C_) i'O(C_)) i':)(c_)) = fz’ (C+) i'0(C+)) i.:)(c_+_))

Proof. First, construct the functional

b
F#) :/ F(t5(8), 8 () + A(B)g(t, #(1)) dt on D.

Lemma 5.0.6 above establishes that a minimizing solution to F(i) will also be a minimizing solution for
F (&) under the given inequality constraint and hypothesis. Therefore, it will be sufficient to demonstrate
that #o(t) minimizes F(z). By hypothesis, we have @ € C''[a, b], and we also have the following condition of
stationarity at non-corner points:

%fz'(t,f(t),if'(t) — falt, £(1), ' () = A(t)ga (¢, £(1))-

Moreover, by assumption, we also have

ft,20(t), 26(t) = f(t,20(t), 26(t) + A(t)g(t, @),

which is convex at non-corner points. Additionally by hypothesis, #q satisfies the stated corner condition at
any corner point. Therefore, by Theorem 7.12 [69], & provides a minimum for F' and hence F.
O
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Remark. It should be noted that the differential equation defining optimality is the first Euler-Lagrange
equation for the modified function F(i“) Additionally, while the above theorem is proven only for one
constraint, it should be obvious that the same theorem can trivially be extended to multiple constraints
provided the constraints are nonintersecting. This follows because the minimum g (¢) cannot exist at multiple
distinct points simultaneously. Thus, when Zo(t) lies on one constraint, the multiplier for any other constraint
is simply 0.

Hestenes [37] presents a very similar necessary condition that differs only slightly from our sufficiency
condition in the Weierstrass-Erdmann corner condition. One of the primary focuses of the research in
this area will be to close this small gap between necessity and sufficiency, yielding an optimality condition
appropriate for global optimization.

To this point, we have presented a method for the generation of convex underestimators for varia-
tional problems and a theorem yielding sufficiency for minimality of these convex underestimating problems.
However, several large difficulties remain before a global optimization algorithm for nonconvex variational
problems can be implemented. First and foremost is the reliable numerical solution of the Euler-Lagrange
equations, which take the form of two-point boundary value problems. We propose to perform a thorough
evaluation of existing techniques for solving two-point boundary value problems and then either implement
one of these methods or derive a method of our own. Second, we propose to utilize convex underestimators
in a branch-and-bound framework to solve variational problems to global minimality. However, unlike in the
composite function approach, the branching would be required to be performed on an infinite dimensional
space. This poses a large difficulty because due to the nature of an infinite dimensional space, there is not an
obvious method for dividing the space into usable subregions. Finally, we propose to address other smaller
details such as extending the problem scope to address multiple states, isoperimetric constraints, optimal
control problems, etc.

6 Conclusions

The objective of the proposed research is to generate practically implementable algorithms for globally
optimizing dynamic programs. Dynamic optimization problems compose an extremely important class of
problems in the chemical industries as well as industries relevant to other engineering disciplines. A few
examples of such applications were listed: optimization of batch processes, process changeovers, process
safety verification, etc. In addition to this list, the proposed optimization techniques will be able to solve
mixed-integer dynamic optimization problems such as kinetic model reductions.

The strategy for optimizing dynamic programs has been categorized into two fundamental paradigms:
the composite function approach and the variational approach. The composite function approach utilizes the
composition of two functions to reduce the optimization problem from an infinite dimensional function space
to a finite dimensional algebraic space. The composite function approach is further divided into two methods
that exploit the structure of the dynamic system embedded to facilitate the solution of the problem; these
two structures are linear dynamic systems embedded and nonlinear dynamic systems embedded. Currently, a
large body of work has already been developed for optimizing dynamic problems with linear dynamic systems
embedded. A convexity theory has been developed that employs readily available algebraic convex relaxation
techniques to generate convex underestimators for the dynamic optimization problems. This enables these
problems to be solved within a conventional branch-and-bound or branch-and-reduce framework. The task
of optimizing problems subject to nonlinear dynamic systems embedded is not as well developed as the linear
case. However, it is believed that McCormick’s underestimation techniques in conjunction with the theory
for linear dynamic systems embedded will eventually lead to a concrete algorithm for the global optimization
of dynamic programs with nonlinear dynamic systems embedded. Both subclasses of the composite function
approach are ideally suited for solving optimal control problems via control parameterization. It is therefore
believed that the completion of this research will have a profound impact on solving many important dynamic
optimization problems.

The other broad framework, the variational approach, is also designed to solve dynamic optimizations
to global optimality; however, unlike the composite function approach, the variational approach attacks
the optimization problem in the original infinite dimensional space. While the variational approach is
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very attractive because it does not require the discretization of the original problem, solving optimization
problems in an infinite dimensional space poses many serious difficulties. Among all of the difficulties,
three stand out as being of particular interest. First, the solution of variational problems consists primarily
of solving the Euler-Lagrange equations, which unfortunately take the form of difficult to solve two-point
boundary value problems. The second dilemma is in finding a necessary and sufficient condition for state
space constrained variational problems. Although we have already derived a sufficiency condition based upon
convexity results, there still exists a narrow gap between our sufficiency condition and the previously known
necessary condition. Finally, we have proposed that the methodology for solving the variational problems
will consist of a branch-and-bound framework. However, it is currently unclear how to branch in an infinite
dimensional functional space.
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