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Abstract
Distributions appear in many forms in models of chemical engineering systems. Such
distributions account for microscopic variability in the system while simultaneously
explaining its macroscopic properties. These macroscopic properties are often of
practical engineering interest. Thus, it is valuable to be able to characterize the
underlying distributions that affect them.

Recently, in the mathematical programming literature, it was shown that it is
possible to optimize a linear objective over a set of distributions by solving a specific
type of convex optimization problem called a semidefinite program (SDP). From
a theoretical perspective, SDPs can be solved efficiently. Furthermore, there exist
several off-the-shelf codes designed specifically to solve SDPs.

This thesis demonstrates how these theoretical and practical advancements can be
applied to chemical engineering problems featuring distributions. Broadly speaking,
it shows how, given limited information about a distribution, one can use SDPs to
calculate mathematically rigorous bounds on various descriptions of that distribution.

Two specific types of distributions are examined: particle size distributions and
probability distributions arising in stochastic chemical kinetics, with the majority
of the thesis covering the latter topic. The SDP-based bounding method described
herein provides a rigorous solution to the long-standing “moment closure problem”
arising in stochastic chemical kinetics. Moreover, it provides a means of analyzing
of stochastic chemical kinetic systems which cannot be effectively analyzed using
existing methods. The bounding method does have some limitations, and we present
several refinements of the method aimed at overcoming these limitations. Finally, we
discuss several ideas through which the bounding method may be further improved,
which have not yet been explored.

Thesis Supervisor: Paul I. Barton
Title: Lammont du Pont Professor of Chemical Engineering
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Baby steps... All I have to do

is take one little step at a time,

and I can do anything.

BOB WILEY
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Chapter 1

Introduction

1.1 Overview

Many models of chemical engineering systems feature a distribution – for example, a

crystal size distribution, molecular energy distribution, cell age distribution, probabil-

ity distribution, polymer chain length distribution, and so on [53]. Such distributions

account for microscopic variability in the system while simultaneously explaining its

macroscopic behavior. For example, the molecular energy distribution can be linked

to the temperature of a system [36]. Similarly, the dispersity of a polymer chain length

distribution can be correlated with its mechanical properties [44]. Such macroscopic

properties are often of practical engineering interest. Thus, it is valuable to be able

to characterize the underlying distributions that affect them.

Relatively recently, Lasserre [40] showed that it is possible to optimize over a

set of distributions by solving a specific type of convex optimization problem called

a semidefinite program (SDP). From a theoretical standpoint, SDPs can be solved

to 𝜖-optimality in polynomial time [71]. From a practical standpoint, there exist

several off-the-shelf solvers designed to handle SDPs specifically [66, 2, 76, 22]. This

situation has led prominent figures in the mathematical programming community to

make statements such as “semidefinite programs can be solved very efficiently, both

in theory and in practice” [71].

These theoretical and practical advances suggested that there may be something to
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be gained in applying SDPs to chemical engineering problems featuring distributions.

Broadly speaking, the goal of this thesis was to explore that possibility.

1.2 Thesis Contributions and Structure

This thesis demonstrates how, given limited information about a distribution, we can

use SDPs to calculate mathematically rigorous bounds on various descriptions of that

distribution. In particular, we consider two questions:

∙ Given only the moments of a particle size distribution, what other details of the

distribution can we infer?

∙ Given a stochastic chemical kinetic system, large enough that obtaining the

exact solution is intractable, can we bound the solution?

The answer to the first question constitutes a relatively small portion of the thesis.

It is covered entirely in Chapter 2. Specifically, in this chapter, we motivate the

analysis of particle size distributions. Then, we show how SDPs can be used to

bound the number of particles in an arbitrary size interval. Generalizing this result,

we show that they can also be used to bound the industrially relevant D10, D50, and

D90 of the distribution.

The answer to the second question accounts for the rest of the thesis. In Chapter

3, we review the background of stochastic chemical kinetics, including the moment

closure problem. We then show how SDPs can be used to bound the stationary

distribution of a stochastic chemical kinetic system. Specifically, we show how to

bound the mean molecular count of each species and the variance in this count.

Furthermore, we show how to bound the probability that the molecular count is in a

particular range.

In Chapter 4, we explain how all of the results from Chapter 3 can be generalized

to time-varying distributions. We show how each of the bounds mentioned in the

preceding paragraph can be computed at an arbitrary time 𝑡, not just in the limit as

𝑡 → +∞.
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In Chapter 5, we identify a weakness of the bounding method described in Chap-

ters 3 and 4, and we present an alternative formulation of the method that does not

exhibit the same weakness. This alternative formulation is based on expressing the

state of the system in terms of extents of reaction, rather than molecular counts.

In Chapter 6, we describe a simple refinement of the steady-state bounding method

described in Chapter 3, which hugely improves the quality of the bounds produced

in stochastic chemical kinetic systems with a specific structure.

Finally, in Chapter 7, we describe a strategy for dealing with the numerical issues

identified in previous chapters. In particular, we show how a prototypical bounding

SDP can be outer approximated by a linear program (LP). We show how this LP

approximation can be iteratively refined and intelligently initialized using the results

of an inaccurate optimal solution of the original SDP.

Each of these chapters corresponds to a paper that has either been published in

a peer-reviewed journal or is in preparation for submission.
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Chapter 2

Bounds on Particle Size

Distributions

Many chemical engineering processes involve a population of particles with a distribu-

tion of sizes that changes over time. Because calculating the time evolution of the full

particle size distribution (PSD) is computationally expensive, it is common to instead

calculate the time evolution of only finitely many moments of the distribution. The

problem with moments is that they provide only a summary description of the PSD.

In particular, they do not contain enough information to answer industrially relevant

questions such as: How many particles are there in the size range [a,b]? What is

the shape of the distribution? What is its D10? While these questions cannot be

answered exactly, in this chapter, we demonstrate that one can efficiently calculate

rigorous bounds on the answers by solving semidefinite programs.

The contents of this chapter were published as a peer-reviewed paper [12] in Chem-

ical Engineering Science.

2.1 Introduction

Many chemical engineering processes involve a population of particles with a distribu-

tion of sizes that changes over time. For example, crystallization, colloidal suspension

formation, catalyst attrition, polymerization, and aerosol formation all fit this general
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framework [53]. In each of these processes, the particle size distribution (PSD) can

have a large effect on macroscopic properties of engineering interest. For example,

for pharmaceutical crystals, the PSD affects the ease with which the crystals can be

filtered and compacted into tablets, thereby affecting the cost and processing time of

the pharmaceutical product [74, 50]. Moreover, once the drug has been introduced

to a patient’s system, its rate of dissolution (i.e. bioavailability) depends strongly on

the PSD. Thus, the PSD is tied to both the pharmaceutical’s efficacy and safety [6].

Because of the importance of the PSD in these diverse chemical engineering ap-

plications, many researchers have considered the question of how to model a PSD’s

time evolution. A common starting point is to describe the PSD using a number

density function, which changes over time according to a partial differential equation

(PDE). One can then solve the PDE to obtain a complete description of the PSD

at each point in time (in terms of the number density function). In some cases, the

PDE has an analytical solution. In most cases, though, the complexity of the model

requires a numerical solution. Many algorithms for numerical solution of the PDE

are available. However, they are computationally expensive, and usually too slow for

on-line applications.

For this reason, instead of modeling the entire PSD, it is common to model only

finitely many moments of the PSD. The advantage of this “method of moments” is

that we no longer have to solve a PDE; instead, we need only solve a system of ordinary

differential equations (ODEs) [32, 54]. This certainly reduces the computational

burden, but it comes at a cost: moments are only a summary description of the

PSD, i.e., they do not contain enough information to reconstruct all of its details.

This is because there are, in general, many PSDs corresponding to a given finite

set of moment values [46]. Thus, given only finitely many moments of an unknown

distribution, there is no clear answer to industrially relevant questions such as:

∙ How many particles have size in the range 𝑎 to 𝑏?

∙ What is the D10 of the distribution1?
1For those unfamiliar with this description of a PSD, it will be explained shortly
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∙ What is the qualitative shape of the distribution?

Faced with these questions, one might be tempted to apply one of the various

methods available for constructing a number density function with a specified finite set

of moments [11, 33, 8, 75]. With the resulting number density function, answering the

above questions would be trivial. However, the problem with this strategy should be

clear from the foregoing discussion: the calculated number density function describes

just one of the many PSDs with the specified moments. Accordingly, it would provide

just one of the many possible (valid) answers to each of the above questions, giving

us a false sense of certainty in our knowledge of the distribution.

In this chapter, we take a more rigorous approach. Acknowledging that recon-

structing a PSD from finitely many moments is an ill-posed inverse problem, we

make no attempt to answer the above questions exactly. Instead, we calculate prov-

able bounds on the answers. These bounds require only finitely many moments of

the distribution and no a priori knowledge of its shape. In principle, the moments

could be obtained through either simulation or experimental measurement. However,

due to the difficulties in accurately measuring the moments of a PSD [11], we expect

the methods of this chapter to be most valuable to the community concerned with

simulating moments.

The idea of bounding the PSD is not new. McGraw [45] and Shmakov [61] describe

methods for calculating bounds on PSDs by solving Linear Programs (LPs). These

methods have the appeal of flexibility and relative simplicity. However, the bounds

that they produce are not truly rigorous, as explained in Appendix A.

The bounding methods presented in this chapter attain true rigor by employing

more sophisticated mathematics. In particular, instead of solving LPs, we will calcu-

late bounds by solving Semidefinite Programs (SDPs) [71]. These SDPs are a natural

application of results from the mathematical literature regarding moments of positive

finite Borel measures (i.e., generalized distributions) [42]. While SDPs have been

applied in chemical engineering in the context of optimal control [70], to the best of

the authors’ knowledge, their natural application to particle size distributions has,

until now, gone unnoticed.
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2.1.1 Descriptions of PSDs

The foregoing section referenced several descriptions of PSDs. We now define these

descriptions more precisely, as they will be important in what follows.

Number Density Functions

In chemical engineering applications, a PSD is commonly described by a number

density function, 𝑓 . This 𝑓 is defined such that the integral
∫︀ 𝑏

𝑎 𝑓(𝑥)𝑑𝑥 gives the

number of particles with size in the range 𝑎 to 𝑏. Typically, this is a number per

unit volume (or mass) of the processing system. However, for the sake of brevity, we

will drop the qualifier “per unit volume...”. We will always be referring to a number

concentration rather than a total number, and this will be clear from the units given.

While the mathematical properties of the function 𝑓 are rarely explicitly stated,

it is always assumed (and reasonably so) that:

1. 𝑓(𝑥) is undefined for all 𝑥 < 0, because it doesn’t make physical sense to talk

about particles with negative size.

2. 𝑓 is nonnegative on R+, because you cannot have a negative count of particles

of any size.

3. The integral
∫︀+∞

0 𝑥𝑗𝑓(𝑥)𝑑𝑥 is well defined and finite for all 𝑗 ∈ {0, 1, 2, ...}. We

will see shortly that this implies that moments of 𝑓 are well defined and finite.

We will use the symbol 𝑀∞(R+) to denote the set of functions that satisfy the above

three properties. Occasionally, we will want to focus on those 𝑓 ∈ 𝑀∞(R+) which

are nonnegative only on a specific interval [𝑎, 𝑏] ⊂ R+ and zero elsewhere. We will

use the symbol 𝑀∞([𝑎, 𝑏]) to denote this subset of 𝑀∞(R+).

Cumulative Distribution Function

Closely related to the number density function is the cumulative distribution function

(CDF). The CDF is a function 𝐹 defined such that 𝐹 (𝑥) is the number of particles
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with size less than or equal to 𝑥. When a PSD is described by a number density

function 𝑓 , the CDF is given by

𝐹 (𝑥) =
∫︁ 𝑥

0
𝑓(𝑥′)𝑑𝑥′. (2.1)

The function 𝐹 is necessarily nondecreasing. This follows from its physical definition,

but it can also be seen as a consequence of the fact that 𝑓 is nonnegative.

D𝛼 Values

A PSD can also be described in terms of its D10, D50, and D90 values, which are

the 10th, 50th, and 90th percentiles of the distribution, respectively. There is some

ambiguity in the literature as to whether these percentiles are on a number or mass

basis. However, the mass basis convention seems to be more common, so this is the

convention we will adopt. To illustrate what we mean by “mass basis”, if we say

that the D10 of a PSD is 30 𝜇m, this means that 10% of the mass of the PSD is

attributable to particles with size less than or equal to 30 𝜇m. We generalize this

idea to define D𝛼 for an arbitrary 𝛼 ∈ [0, 100]. In particular, if the D𝛼 of a PSD is

𝑠, then 𝛼% of the mass of the PSD is attributable to particles with size less than or

equal to 𝑠.

D𝛼 values are not just of academic interest. In the pharmaceutical industry,

quality specifications are often expressed in terms of D10, D50, and D90 [19].

Moments

The 𝑗th moment of a PSD described by a number density function 𝑓 ∈ 𝑀∞(R+) is

defined as

𝜇𝑗 ≡
∫︁ +∞

0
𝑥𝑗𝑓(𝑥)𝑑𝑥, 𝑗 = 0, 1, 2, ... (2.2)

As discussed in the introduction, moments are a very common output of PSD sim-

ulations. Moreover, some moments can be measured [73, 11]. For these reasons,

moments are worthy of special attention. In the next section, we examine some of

their intriguing mathematical properties.
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2.2 Restrictions on Moment Sequences

We suspect it is intuitive to most readers that the moments of a PSD cannot be

arbitrary real numbers. Indeed, just by inspecting Equation (2.2) and considering

that 𝑓 must be nonnegative on R+, one can conclude that each moment of a PSD

described by 𝑓 must be nonnegative:

𝜇𝑗 ≥ 0, for all 𝑗 ∈ {0, 1, 2, ...}. (2.3)

In fact, there are far more subtle constraints that any PSD moment sequence must

satisfy. It turns out that an understanding of these constraints enables us to use the

moments to calculate bounds on other descriptions of the PSD. Thus, this section is

devoted to developing that understanding.

2.2.1 Notation

To describe the constraints on the moments of a PSD, we need to first define some

mathematical notation. Let N denote the set of natural numbers, {0, 1, 2, ...}. Let �̃�

represent an infinite moment sequence (𝜇0, 𝜇1, 𝜇2, ...). Then, for any 𝑛 ∈ N, the 𝑛th

order Hankel matrices of �̃� are defined, element-wise, as

H𝑛(�̃�)(𝑖, 𝑗) ≡ 𝜇𝑖+𝑗−2,

B𝑛(�̃�)(𝑖, 𝑗) ≡ 𝜇𝑖+𝑗−1, for all 𝑖, 𝑗 ∈ {1, ..., 𝑛 + 1}

C𝑛(�̃�)(𝑖, 𝑗) ≡ 𝜇𝑖+𝑗.

(2.4)
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If we write these matrices out in full, it becomes apparent that they are symmetric

and have a cross-diagonal pattern. For example,

H𝑛(�̃�) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜇0 𝜇1 𝜇2 . . . 𝜇𝑛

𝜇1 𝜇2 𝜇3 . . . 𝜇𝑛+1

𝜇2 𝜇3 𝜇4 . . . 𝜇𝑛+2
... ... ... . . . ...

𝜇𝑛 𝜇𝑛+1 𝜇𝑛+2 . . . 𝜇2𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R(𝑛+1)×(𝑛+1). (2.5)

For a symmetric matrix such as H𝑛(�̃�), the notation H𝑛(�̃�) ⪰ 0 means that H𝑛(�̃�)

is positive semidefinite, or all its eigenvalues are nonnegative. This is equivalent to

the statement

xTH𝑛(�̃�)x ≥ 0, for all x ∈ R𝑛+1. (2.6)

The statement H𝑛(�̃�) ⪰ 0 is a simple example of a linear matrix inequality (LMI)

[71].

2.2.2 LMI Constraints on Moments

With these definitions, we can now state the first central claim of this chapter, which

is closely related to Theorem 3.2 appearing in [42, Chapter 3] and Theorem 1.3 of

[62]:

Claim 1. If �̃� = (𝜇0, 𝜇1, 𝜇2, ...) is a moment sequence for a PSD, then �̃� must satisfy

H𝑛(�̃�) ⪰ 0 and B𝑛(�̃�) ⪰ 0, for all 𝑛 ∈ N. (2.7)

The proof of this claim is surprisingly simple and can be found in the Appendix.

What does Condition (2.7) mean? In short, it implies a large number of con-

straints on the sequence �̃�. In particular, one can show that Condition (2.7) implies

the nonnegativity of each 𝜇𝑗, which we already deduced (see Appendix). The remain-

ing constraints are complicated polynomials in �̃� and are much less intuitive. This

complexity is intriguing, but irrelevant for our present purposes. All that matters at
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present is that the constraints can be represented in the concise LMI form in which

they appear in Condition (2.7), and that this form is recognized by optimization codes

[28, 43].

Claim 1 is concerned with PSDs supported on (i.e., spread over) all of R+. How-

ever, as we will see shortly, we will also be interested in distributions confined to some

subset [𝑎, 𝑏] ⊂ R+, where 𝑎 and 𝑏 are bounds on the minimum and maximum particle

size, respectively. As with the distributions supported on all of R+, we also have a

necessary condition for the moments of confined PSDs:

Claim 2. Let 0 ≤ 𝑎 ≤ 𝑏. If �̃� = (𝜇0, 𝜇1, 𝜇2, ...) is a moment sequence for a PSD

where 𝑎 and 𝑏 are bounds on the minimum and maximum particle size, respectively,

then �̃� must satisfy

H𝑛(�̃�) ⪰ 0 and (𝑎 + 𝑏)B𝑛(�̃�) − C𝑛(�̃�) − 𝑎𝑏H𝑛(�̃�) ⪰ 0, for all 𝑛 ∈ N. (2.8)

The proof of this claim is similar to that of Claim 1.

2.3 Bounds on Various Descriptions of PSDs

We will now demonstrate how the LMI constraints on moment sequences described in

the previous section can be used to bound various numerical descriptions of a PSD.

In each of the sections below, we will assume that the only available description of the

PSD is its first 𝑚 + 1 moments 𝜇0, ..., 𝜇𝑚, presumably obtained through simulation.

2.3.1 Number of particles in a size interval

Suppose that we have a PSD for which we know only the moments 𝜇0, ..., 𝜇𝑚, and

that we would like to calculate the number of particles with size in the range 𝑎 to 𝑏,

inclusive. If we knew the number density function 𝑓 ∈ 𝑀∞(R+) describing the PSD,

we could readily obtain the desired quantity via the integral
∫︀ 𝑏

𝑎 𝑓(𝑥)𝑑𝑥. However,

given that we don’t know 𝑓 , the problem is more complicated. As suggested in the

introduction, the complication arises from the fact that there may be multiple number
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density functions 𝑓 ∈ 𝑀∞(R+) with the same moments 𝜇0, ..., 𝜇𝑚 but differing values

for the integral
∫︀ 𝑏

𝑎 𝑓(𝑥)𝑑𝑥. For this reason, the problem of calculating the number of

particles with size in the range [𝑎, 𝑏] given the moments 𝜇0, ..., 𝜇𝑚 is ill-posed.

The situation is not hopeless, though. Let 𝑁 represent the number of particles in

the range [𝑎, 𝑏]. That is, let 𝑁 ≡
∫︀ 𝑏

𝑎 𝑓(𝑥)𝑑𝑥. While we cannot precisely calculate 𝑁 ,

we will see that we can calculate bounds on 𝑁 . That is, we can calculate two numbers

𝑁𝐿 and 𝑁
𝑈 such that 𝑁𝐿 ≤ 𝑁 ≤ 𝑁

𝑈 , guaranteed.

The problem of calculating these bounds is closely related, mathematically, to

the problem of calculating bounds on the probability that a real-valued random vari-

able 𝑋, with specified moments 𝜇0, ..., 𝜇𝑚, realizes a value in a given interval [𝑎, 𝑏].

Lasserre [42, 41] provides an elegant solution to this problem, demonstrating that

the probability bounds can be obtained by solving semidefinite programs (SDPs).

Lasserre’s arguments are highly technical, being based on the mathematically sophis-

ticated concept of a positive finite Borel measure. The following section relies heavily

on ideas found in [42, 41]. However, in an effort to make these ideas more accessible to

a general chemical engineering audience, we avoid discussion of measures, presenting

the arguments instead in terms of more familiar number density functions.

The Upper Bound SDP

Let us first focus our attention on the upper bound, 𝑁
𝑈 . Let 𝑁𝑈 be the maximum2

value of
∫︀ 𝑏

𝑎 𝑓(𝑥)𝑑𝑥 obtained in considering all number density functions 𝑓 with the

moments 𝜇0, ..., 𝜇𝑚. This definition can be expressed formally as

𝑁𝑈 ≡ max
𝑓

∫︁ 𝑏

𝑎
𝑓(𝑥)𝑑𝑥

s.t. 𝑓 ∈ 𝑀∞(R+),∫︁ +∞

0
𝑥𝑗𝑓(𝑥)𝑑𝑥 = 𝜇𝑗, ∀𝑗 ∈ {0, ..., 𝑚}.

(2.9)

2Technically, the supremum of the values of
∫︀ 𝑏

𝑎
𝑓(𝑥)𝑑𝑥. However, we omit this technicality,

assuming that most readers will be more familiar with the term “maximum”.
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The decision variable of this optimization problem is a function 𝑓 rather than a

finite-dimensional vector.

Since the unknown number density function 𝑓 is an element of 𝑀∞(R+) and∫︀+∞
0 𝑓(𝑥)𝑑𝑥 = 𝜇𝑗 for all 𝑗 ∈ {0, ..., 𝑚}, it follows that 𝑓 is feasible for Problem (2.9).

Thus, 𝑁𝑈 is an upper bound on
∫︀ 𝑏

𝑎 𝑓(𝑥)𝑑𝑥 = 𝑁 , as desired. If we could calculate 𝑁𝑈 ,

we would be done. However, it is not obvious how to solve Problem (2.9).

Suppose that we decompose each 𝑓 ∈ 𝑀∞(R+) into 𝑓 = 𝑔 + ℎ, where both 𝑔 and

ℎ are nonnegative number density functions. We will require that 𝑔(𝑥) = 0 outside

of [𝑎, 𝑏]. In other words, 𝑔 is confined to [𝑎, 𝑏], in the sense described in the previous

section. We will require no such confinement for ℎ. Formally, we have 𝑔 ∈ 𝑀∞([𝑎, 𝑏])

and ℎ ∈ 𝑀∞(R+). We can then rewrite Problem (2.9) equivalently as

𝑁𝑈 = max
𝑔,ℎ

∫︁ 𝑏

𝑎
𝑔(𝑥)𝑑𝑥 +

∫︁ 𝑏

𝑎
ℎ(𝑥)𝑑𝑥

s.t. 𝑔 ∈ 𝑀∞([𝑎, 𝑏]), ℎ ∈ 𝑀∞(R+),∫︁ +∞

0
𝑥𝑗𝑔(𝑥)𝑑𝑥 +

∫︁ +∞

0
𝑥𝑗ℎ(𝑥)𝑑𝑥 = 𝜇𝑗, ∀𝑗 ∈ {0, ..., 𝑚}.

(2.10)

Furthermore, one can show that the above problem is equivalent to

𝑁𝑈 = max
𝑔,ℎ

∫︁ +∞

0
𝑔(𝑥)𝑑𝑥

s.t. 𝑔 ∈ 𝑀∞([𝑎, 𝑏]), ℎ ∈ 𝑀∞(R+),∫︁ +∞

0
𝑥𝑗𝑔(𝑥)𝑑𝑥 +

∫︁ +∞

0
𝑥𝑗ℎ(𝑥)𝑑𝑥 = 𝜇𝑗, ∀𝑗 ∈ {0, ..., 𝑚},

(2.11)

where the only change is in the objective function. (For a proof of this equivalence,

see the Appendix.)

Now, let 𝑦 = (𝑦0, 𝑦1, 𝑦2, ...) and 𝑧 = (𝑧0, 𝑧1, 𝑧2, ...) be the moment sequences for
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the functions ℎ and 𝑔, respectively. We can then write

𝑁𝑈 = max
𝑔,ℎ,𝑦,𝑧

𝑧0

s.t. 𝑔 ∈ 𝑀∞([𝑎, 𝑏]), ℎ ∈ 𝑀∞(R+),

𝑧𝑗 + 𝑦𝑗 = 𝜇𝑗, ∀𝑗 ∈ {0, ..., 𝑚},∫︁ +∞

0
𝑥𝑗𝑔(𝑥)𝑑𝑥 = 𝑧𝑗,

∫︁ +∞

0
𝑥𝑗ℎ(𝑥)𝑑𝑥 = 𝑦𝑗, ∀𝑗 ∈ N.

(2.12)

By Claims 1 and 2, we can conclude that 𝑦 and 𝑧 must necessarily satisfy Conditions

(2.7) and (2.8), respectively. We can thus add in these redundant conditions without

changing the feasible set of the optimization problem:

𝑁𝑈 = max
𝑔,ℎ,𝑦,𝑧

𝑧0

s.t. 𝑔 ∈ 𝑀∞([𝑎, 𝑏]), ℎ ∈ 𝑀∞(R+),

𝑧𝑗 + 𝑦𝑗 = 𝜇𝑗, ∀𝑗 ∈ {0, ..., 𝑚},∫︁ +∞

0
𝑥𝑗𝑔(𝑥)𝑑𝑥 = 𝑧𝑗,

∫︁ +∞

0
𝑥𝑗ℎ(𝑥)𝑑𝑥 = 𝑦𝑗, ∀𝑗 ∈ N,

H𝑛(𝑦) ⪰ 0, B𝑛(𝑦) ⪰ 0, ∀𝑛 ∈ N,

H𝑛(𝑧) ⪰ 0, (𝑎 + 𝑏)B𝑛(𝑧) − C𝑛(𝑧) − 𝑎𝑏H𝑛(𝑧) ⪰ 0, ∀𝑛 ∈ N.

(2.13)

The reader may naturally wonder where all this mathematical manipulation is

headed. After all, comparing Problems (2.13) and (2.9), it may seem that we have

only managed to complicate things. In fact, we have prepared ourselves for a crucial

step: the difficulty of Problem (2.9) is attributable to the decision variables 𝑔 and ℎ;

we now remove these variables from Problem (2.13), obtaining a simpler problem:

𝑁
𝑈 ≡ max

𝑦,𝑧
𝑧0

s.t. 𝑧𝑗 + 𝑦𝑗 = 𝜇𝑗, ∀𝑗 ∈ {0, ..., 𝑚},

H𝑛(𝑦) ⪰ 0, B𝑛(𝑦) ⪰ 0, ∀𝑛 ∈ N,

H𝑛(𝑧) ⪰ 0, (𝑎 + 𝑏)B𝑛(𝑧) − C𝑛(𝑧) − 𝑎𝑏H𝑛(𝑧) ⪰ 0, ∀𝑛 ∈ N.

(2.14)

In Problem (2.14), we are no longer requiring that the moment sequences 𝑦 and 𝑧
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correspond to number density functions. Of course, the moment sequences corre-

sponding to number density functions are still feasible, but the feasible set now also

includes moment sequences corresponding to distributions which cannot be described

by number density functions. For some readers, the idea of a distribution that cannot

be described by a number density function may be foreign. We will see an example

of such a distribution shortly. At present, though, all that matters is that we have

enlarged the set of feasible moment sequences. This means that Problem (2.14) is a

relaxation of Problem (2.13), and its optimal value is potentially greater. In terms of

the newly introduced symbol 𝑁
𝑈 , we have 𝑁

𝑈 ≥ 𝑁𝑈 . Thus, 𝑁
𝑈 serves as an upper

bound on the number of particles in the interval [𝑎, 𝑏]. It is perhaps not the tightest

upper bound, as a result of including those distributions which cannot be described

by number density functions. However, when we come to the examples, we will see

that the conservatism introduced by including these distributions is reasonable.

Problem (2.14) is not only visually simpler than Problem (2.13); it is also very

nearly an SDP. It differs from an SDP in two respects: first, the decision variables 𝑦

and 𝑧 are both infinite sequences; second, the last two lines of the problem statement

describe an infinite number of LMI constraints. Both of these difficulties can be

alleviated by truncating the sequences of LMI constraints. For example, instead of

requiring that H𝑛(𝑦) ⪰ 0 for all 𝑛 ∈ N, we will only require that H𝑘(𝑦) ⪰ 0 for

some specific 𝑘 ∈ N. One can show that this implies H𝑛(𝑦) ⪰ 0 for all 𝑛 ≤ 𝑘 (see

Appendix). The other three sequences of LMIs can be truncated similarly. We then

need only consider as many moments 𝑦0, ..., 𝑦𝑟 and 𝑧0, ..., 𝑧𝑟 as are needed to fill out the

resulting finite-dimensional Hankel matrices. In other words, the decision variables

become the truncated sequences 𝑦 = (𝑦0, ..., 𝑦𝑟) and 𝑧 = (𝑧0, ..., 𝑧𝑟) for some finite

𝑟 ∈ N.

Truncating the LMIs in this way results in an SDP. In principle, this SDP is a

relaxation of Problem (2.14), because we have relaxed constraints describing the fea-

sible set. However, if we are careful about how we truncate the LMIs, the resulting

SDP gives the same optimal value as Problem (2.14) (See Theorems 7.2(b) and 3.2 of

[42]). In particular, if we let 𝑘 = ⌈𝑚
2 ⌉, and 𝑟 = 2𝑘, then 𝑁

𝑈 is given by the following
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SDP:

𝑁
𝑈 = max

𝑦,𝑧
𝑧0

s.t. 𝑧𝑗 + 𝑦𝑗 = 𝜇𝑗, ∀𝑗 ∈ {0, ..., 𝑚},

H𝑘(𝑦) ⪰ 0, B𝑘−1(𝑦) ⪰ 0,

H𝑘(𝑧) ⪰ 0, (𝑎 + 𝑏)B𝑘−1(𝑧) − C𝑘−1(𝑧) − 𝑎𝑏H𝑘−1(𝑧) ⪰ 0.

(2.15)

Reviewing the inequalities we have established, we see

𝑁 ≤ 𝑁𝑈 ≤ 𝑁
𝑈

. (2.16)

Thus, 𝑁
𝑈 is an upper bound on 𝑁 , as desired. Moreover, because 𝑁

𝑈 is the optimal

value of an SDP, we can calculate it efficiently using optimization codes such as CVX

[28], using SeDuMi [66] as the underlying solver.

The Lower Bound SDP

Analogous to Problem (2.15), there is an SDP for calculating a lower bound on 𝑁 :

𝑁𝐿 ≡ min
𝑧,𝑦,𝑤

𝑧0

s.t. 𝑧𝑗 + 𝑦𝑗 + 𝑤𝑗 = 𝜇𝑗, ∀𝑗 ∈ {0, ..., 𝑚},

H𝑘(𝑧) ⪰ 0, B𝑘−1(𝑧) ⪰ 0,

H𝑘(𝑦) ⪰ 0, 𝑎B𝑘−1(𝑦) − C𝑘−1(𝑦) ⪰ 0,

H𝑘(𝑤) ⪰ 0, B𝑘−1(𝑤) − 𝑏H𝑘−1(𝑤) ⪰ 0.

(2.17)

The derivation of this SDP is similar to that of (2.15) (see Appendix). The primary

difference is that three number density functions and three corresponding moment

sequences (𝑧, 𝑦, 𝑤) are required.
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Scaling

As we will see in the coming examples, it is common for the moments of a PSD to range

over many orders of magnitude. This can lead to numerical difficulties if one attempts

to solve SDPs such as Problems (2.15) and (2.17) directly. Fortunately, there is an

approach for scaling the moments that alleviates these numerical difficulties: define

the scaled moments as 𝜇′
𝑗 ≡ (𝜇𝑗/𝜇0)𝑐𝑗 for 𝑗 ∈ {0, ..., 𝑚} and 𝑐 = 𝜇0/𝜇1. As described

in [34], this amounts to normalizing the PSD and then scaling the size domain. The

result is that the scaled moments are all approximately equal one (in fact, 𝜇′
0 = 𝜇′

1 = 1

exactly). Of course, since we’ve scaled the size domain, we must also scale the limits

of the interval [𝑎, 𝑏]. In particular, we let 𝑎′ ≡ 𝑐𝑎 and 𝑏′ ≡ 𝑐𝑏. This scaling of the

problem data results in a scaled SDP. For example, the scaled version of Problem

(2.15) is

𝑁
𝑈

𝜇0
= max

𝑦′,𝑧′
𝑧′

0

s.t. 𝑧′
𝑗 + 𝑦′

𝑗 = 𝜇′
𝑗, ∀𝑗 ∈ {0, ..., 𝑚},

H𝑘(𝑦′) ⪰ 0, B𝑘−1(𝑦′) ⪰ 0,

H𝑘(𝑧′) ⪰ 0, (𝑎′ + 𝑏′)B𝑘−1(𝑧′) − C𝑘−1(𝑧′) − 𝑎′𝑏′H𝑘−1(𝑧′) ⪰ 0.

(2.18)

Note that the optimal values has been divided by 𝜇0 to account for the normalization

of the PSD.

We will not discuss this scaling further, as it is just a matter of numerics. However,

in the examples that follow, whenever we speak of solving an SDP, it should be

understood that we mean the appropriately scaled SDP.

Example

The authors of [17] use the method of moments in combination with computational

fluid dynamics to describe the agglomeration and breakage of catalyst particles in a

fluidized bed reactor. In Figure 5 of that paper, they report the time-varying moments

of the catalyst PSD for one of their simulations. At the final time point, the moments
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are:

𝜇0 = 6.73 × 103 cm−3,

𝜇1 = 2.28 × 102 cm−2,

𝜇2 = 9.15 × 100 cm−1,

𝜇3 = 3.85 × 10−1.

(2.19)

Suppose we are interested in the number of particles with size in the range 85 𝜇m

to 150 𝜇m, which we will denote by 𝑁 . By solving Problem (2.15), we can compute

an upper bound on this quantity: 𝑁 ≤ 𝑁
𝑈 = 1.85 × 103 cm−3.

One might wonder about the quality of this bound. That is, one might wonder if

the calculated 𝑁
𝑈 is a gross overestimation of what is possible given the moments in

Equation (2.19), or if there does indeed exist a PSD which satisfies (2.19) and which

has 𝑁
𝑈 particles in the range 85 𝜇m to 150 𝜇m. In fact, there is such a distribution.

Consider the PSD in which there are exactly three different sizes represented:

𝑥1 = 85 𝜇m,

𝑥2 = 150 𝜇m,

𝑥3 = 428.04685945926 𝜇m,

(2.20)

with corresponding concentrations

𝑎1 = 5.46816164144708 × 102 cm−3,

𝑎2 = 1.308027852880654 × 103 cm−3,

𝑎3 = 4.875155982974638 × 103 cm−3.

(2.21)

One can verify that this PSD has the moments given by (2.19) (error < 1 × 10−9%).

Moreover, the number of particles with size between 85 𝜇m to 150 𝜇m is simply

𝑎1 + 𝑎2 = 1.85 × 103 cm−3. Comparing this value with 𝑁
𝑈 , we see that the calculated

upper bound is indeed tight; there is no overestimation.

In developing Problem (2.15), we allowed for distributions which cannot be de-
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scribed by a number density function and pointed out that doing so might introduce

reasonable conservatism into the bound 𝑁
𝑈 . The distribution of the previous para-

graph nicely illustrates this point. Technically speaking, this discrete distribution

cannot be described by a number density function3 Such an infinitely sharp bimodal

distribution is unlikely to be observed in any real industrial processing system. Thus,

considering the discrete distribution as a feasible solution introduces some conser-

vatism into the bound on the number of particles in the interval. It is, in some sense,

a “worst-case” bound. However, given that the worst-case discrete distribution is

physically well-defined (see the description in the previous paragraph) and matches

the specified moments (the only specification), we believe that this conservatism is

reasonable.

We can also use Problem (2.17) to compute a lower bound on 𝑁 . In this case, the

lower bound of 𝑁𝐿 = 1.12 × 10−5 cm−3 ≈ 0 cm−3 is trivial. The physical interpre-

tation, roughly speaking, is that there exists a PSD with the specified moments and

with no particles in the specified size range. In our experience, this will be the case

whenever the size interval under consideration is small relative the overall spread

of the distribution. If we expand our consideration to all particles in the interval

85 𝜇m to 450 𝜇m, we can solve Problem (2.17) to compute a nontrivial lower bound:

𝑁𝐿 = 1.77 × 103 cm−3.

2.3.2 Bounds on PSD histograms

The ability to calculate upper and lower bounds on the number of particles in an ar-

bitrary interval [𝑎, 𝑏] has some interesting implications. First, it allows us to generate

bounds on a PSD histogram. In principle, one could choose a sequence of intervals

[𝑎𝑖, 𝑏𝑖], corresponding to the bins of a histogram, and calculate the bounds 𝑁𝐿
𝑖 and

𝑁
𝑈

𝑖 for each bin. In practice, the lower bounds will usually be trivial, since, by design,

each histogram bin covers only a small fraction of the total spread of the distribution.

Thus, the lower bounds are omitted in Algorithm 1, which formalizes the idea.
3One could attempt to describe the distribution in terms of “Dirac Delta functions”. However,

the concept of a Dirac Delta function is mathematically inconsistent (see the Appendix for details).
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Algorithm 1 Generating a PSD Histogram
Input:

1. Moments 𝜇0, ..., 𝜇𝑚.
2. Estimate of the maximum particle size, 𝑥max (e.g. 4𝜇1/𝜇0).
3. Number of histogram bins, 𝑛.

Output: An upper bound 𝑁
𝑈
𝑖 on the number of particles in each bin.

Algorithm:
Set Δ𝑥 := 𝑥max/𝑛.
for 𝑖 = 1, ..., 𝑛 do

Set 𝑎𝑖 := (𝑖 − 1)Δ𝑥.
Set 𝑏𝑖 := 𝑖Δ𝑥.
Solve Problem (2.15) to calculate 𝑁

𝑈

𝑖 .
end for

Example

The authors of [60] model a hen egg-white lysozyme crystallization process, describing

the PSD using only its first five moments. Figure 6 of that paper provides the data

resulting from one of their moment simulations, and we can use this data to illustrate

the utility of Algorithm 1. Focusing on the final time point of the “true” (black)

curve, we can read off the moments of the final PSD:

𝜇0 = 1.1 × 103 mL−1,

𝜇1 = 1.8 × 101 cm/mL,

𝜇2 = 3.3 × 10−1 cm2/mL,

𝜇3 = 6.4 × 10−3 cm3/mL,

𝜇4 = 1.3 × 10−4 cm4/mL.

(2.22)

If we apply Algorithm 1 to the moments given in (2.22), using 𝑥max = 0.05 cm

and 𝑛 = 10. we get the graphical output shown in Figure 2-1. This output gives us

some idea of the shape of the underlying distribution, which is not apparent from the

moments alone.
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Figure 2-1: Upper bounds on each bin of a histogram for any PSD with moments

given by (2.22).

One must be careful about the interpretation of results such as those in Figure

2-1. The upper bounding bars are not, themselves, a histogram. Rather, the values of

𝑁
𝑈

𝑖 place bounds on the height of each bar of a histogram for any PSD with moments

given by (2.22).

2.3.3 Bounds on the CDF

The ability to calculate bounds on the number of particles in an arbitrary size interval

also allows us to calculate pointwise bounds on the cumulative distribution function

(CDF). Recall that the CDF evaluated at 𝑥 is nothing more than the number of par-

ticles with size less than or equal to 𝑥. In other words, it is the number of particles

in the interval [0, 𝑥]. We can thus calculate bounds on CDF(𝑥) by solving Problems

(2.15) and (2.17) for the special case where 𝑎 = 0 and 𝑏 = 𝑥. In this case, Problem

(2.15) reduces to
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𝑁
𝑈(𝑥) ≡ max

𝑦,𝑧
𝑧0

s.t. 𝑧𝑗 + 𝑦𝑗 = 𝜇𝑗, ∀𝑗 ∈ {0, ..., 𝑚},

H𝑘(𝑦) ⪰ 0, B𝑘−1(𝑦) ⪰ 0,

H𝑘(𝑧) ⪰ 0, 𝑥B𝑘−1(𝑧) − C𝑘−1(𝑧) ⪰ 0.

(2.23)

Moreover, while less obvious, it can be shown (see Appendix) that Problem (2.17)

reduces to

𝑁𝐿(𝑥) ≡ min
𝑧,𝑤

𝑧0

s.t. 𝑧𝑗 + 𝑤𝑗 = 𝜇𝑗, ∀𝑗 ∈ {0, ..., 𝑚},

H𝑘(𝑧) ⪰ 0, B𝑘−1(𝑧) ⪰ 0,

H𝑘(𝑤) ⪰ 0, B𝑘−1(𝑤) − 𝑥H𝑘−1(𝑤) ⪰ 0.

(2.24)

Suppose we solve Problems (2.23) and (2.24) for each 𝑥𝑖 in a set {𝑥𝑖}𝑛
𝑖=1 such that

each 𝑥𝑖 ≥ 0. We then have upper an lower bounds on the CDF at each point 𝑥𝑖.

This in itself is interesting information. However, it turns out that we can use this

information to compute something more interesting still. Since the CDF function is

necessarily a nondecreasing function, we can interpolate (in some sense) between the

points 𝑥𝑖 to construct functions CDF𝑈
𝑛 and CDF𝐿

𝑛 which are guaranteed to bound

the CDF function at every 𝑥 in the interval [0, max𝑖 𝑥𝑖]. Moreover, we can refine our

bounding functions as much as we like by introducing additional 𝑥𝑖 and calculating

the corresponding bounds on CDF(𝑥𝑖).

To see this, suppose, given a finite set of moments 𝜇0, ..., 𝜇𝑚, we solve Problems

(2.23) and (2.24) for some 𝑥1 ≥ 0, obtaining 𝑁
𝑈(𝑥1) and 𝑁𝐿(𝑥1), upper and lower

bounds, respectively, on CDF(𝑥1). Since the CDF is a nondecreasing function, we

can then immediately conclude that CDF(𝑥) ≤ 𝑁
𝑈(𝑥1) for all 𝑥 ∈ [0, 𝑥1]. By similar

reasoning, we can also conclude that CDF(𝑥) ≥ 𝑁𝐿(𝑥1) for all 𝑥 ∈ [𝑥1, +∞). We can
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then construct two functions CDF𝑈
1 and CDF𝐿

1 which bound the true CDF function

at every 𝑥 in the finite interval [0, 𝑥1]. In particular, we let

CDF𝐿
1 (𝑥) ≡

⎧⎪⎪⎨⎪⎪⎩
0, if 𝑥 ∈ [0, 𝑥1),

𝑁𝐿(𝑥1), if 𝑥 = 𝑥1,

(2.25)

and

CDF𝑈
1 (𝑥) ≡

{︂
𝑁

𝑈(𝑥1), if 𝑥 ∈ [0, 𝑥1]. (2.26)

Suppose we then evaluate 𝑁
𝑈(𝑥2) and 𝑁𝐿(𝑥2) for some 𝑥2 ∈ [0, 𝑥1). By the same

reasoning we applied to 𝑥1, we can conclude that CDF(𝑥) ≤ 𝑁
𝑈(𝑥2) for all 𝑥 ∈ [0, 𝑥2]

and that CDF(𝑥) ≥ 𝑁𝐿(𝑥2) for all 𝑥 ∈ [𝑥2, +∞). Moreover, we are guaranteed that

𝑁
𝑈(𝑥2) ≤ 𝑁

𝑈(𝑥1) and 𝑁𝐿(𝑥2) ≤ 𝑁𝐿(𝑥1) (see Appendix). With this information, we

can refine our bounding functions. In particular, we let

CDF𝐿
2 (𝑥) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, if 𝑥 ∈ [0, 𝑥2),

𝑁𝐿(𝑥2), if 𝑥 ∈ [𝑥2, 𝑥1),

𝑁𝐿(𝑥1), if 𝑥 = 𝑥1,

(2.27)

and

CDF𝑈
2 (𝑥) ≡

⎧⎪⎪⎨⎪⎪⎩
𝑁

𝑈(𝑥2), if 𝑥 ∈ [0, 𝑥2],

𝑁
𝑈(𝑥1), if 𝑥 ∈ (𝑥2, 𝑥1].

(2.28)

These “stair-step” functions are nondecreasing, like the unknown CDF they bound.

Graphically, they would look something like the cartoon functions shown in Figure

2-2.
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Figure 2-2: Cartoon example of the “stair-step” functions guaranteed to bound the

true CDF.

One can imagine generating bounds 𝑁
𝑈(𝑥𝑖) and 𝑁𝐿(𝑥𝑖) for additional test points

𝑥𝑖 in the interval [0, 𝑥1]. Each additional test point 𝑥𝑖 would subdivide one of the

current large steps into two smaller steps, thereby producing a smoother bounding

function.

This idea of constructing bounding functions can be formalized as an algorithm.

In particular, Algorithm 2 describes a procedure for constructing the upper bounding

function, CDF𝑈
𝑛 . The algorithm automatically selects a sequence of test points x =

(𝑥0, 𝑥1, ..., 𝑥𝑛), with the selection criterion given in the last line of the “for” loop.

Geometrically, each test point is selected as the midpoint of the current largest step4

; this helps to produce a relatively smooth bounding function. The procedure for

constructing the lower bounding function, CDF𝐿
𝑛 , is similar, and can be found in the

Appendix (Algorithm 6).

Example

The authors of [7] model an ice cream crystallization process, describing the PSD

using only its first four moments. Figure 6 of that paper provides the data resulting

from one of their moment simulations, and we can use this data to illustrate the
4In the algorithm, we use the symbol ”∈” rather than ”:=” to account for the possibility that

there may be multiple “largest steps”. This is unlikely to actually occur in practice. However, if it
does, the midpoint of any of these largest steps may be selected as the next midpoint.

51



Algorithm 2 Generating an upper bound on the CDF
Input:

1. Moments 𝜇0, ..., 𝜇𝑚.
2. Estimate of the maximum particle size, 𝑥max.
3. Number of test points, 𝑛.

Output: A function CDF𝑈
𝑛 which provides an upper bound for the true CDF on

the interval [0, 𝑥max].

Algorithm:
Set 𝑥1 := 0. Set 𝑢1 := 𝑥1.
Solve Problem (2.23) to calculate 𝑁

𝑈(𝑥1).
Set 𝑥2 := 𝑥max. Set 𝑢2 := 𝑥2.
Solve Problem (2.23) to calculate 𝑁

𝑈(𝑥2).
Set 𝑗* := 1.
for 𝑖 = 3, ..., 𝑛 do

Set 𝑥𝑖 := 1
2(𝑢𝑗* + 𝑢𝑗*+1).

Solve Problem (2.23) to calculate 𝑁
𝑈(𝑥𝑖).

Set u := sort(x).
Set 𝑗* ∈ arg max𝑗≤𝑖−1

{︁(︁
𝑁

𝑈(𝑢𝑗+1) − 𝑁
𝑈(𝑢𝑗)

)︁
(𝑢𝑗+1 − 𝑢𝑗)

}︁
end for
Set

CDF𝑈
𝑛 (𝑥) :=

⎧⎨⎩𝑁
𝑈(𝑢1), if 𝑥 = 0,

𝑁
𝑈(𝑢𝑗), if 𝑥 ∈ (𝑢𝑗−1, 𝑢𝑗].

(2.29)

utility of Algorithms 2 and 6. Focusing on an arbitrarily selected time point of 750

s, we can read off the following moment values:

𝜇0 = 7.2 × 1014 m−3,

𝜇1 = 6.1 × 109 m/m3,

𝜇2 = 5.9 × 104 m2/m3,

𝜇3 = 6.8 × 10−1 m3/m3.

(2.30)

If we apply Algorithms 2 and 6 to the moments given in (2.37), using 𝑥max =

4 × 10−5 m and 𝑛 = 10, we get the results shown in Figure 2-3. If we increase the

number of test points to 𝑛 = 30, we get the smoother curves shown in Figure 2-4. We

wish to emphasize that the true CDF is guaranteed to lie between the two bounding

52



functions. Moreover, these two functions provide an excellent qualitiative impression

of the shape of the PSD.
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Figure 2-3: Bounding functions for the CDF of a PSD with moments given in (2.19).

These bounding functions were generated using 𝑛 = 10 test points, and are thus

relatively rough.
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Figure 2-4: Increasing the number of test points to 𝑛 = 30 results in much smoother

bounding functions. Compare with Figure 2-3.

2.3.4 Bounds on D𝛼 values

Lastly, the ability to calculate bounds on the number of particles in an arbitrary

interval can be extended to allow us to calculate bounds on D10, D50, and D90

values.

Recall that D𝛼 = 𝑠 is equivalent to the statement that 𝛼 percent of the mass

of the PSD is attributable to particles with size less than or equal to 𝑠. Assuming

that 𝑓 is a number density function describing the PSD in terms of a characteristic

length, and that each particle can be described entirely by this characteristic length,

the foregoing statement can be expressed mathematically as

∫︀ 𝑠
0 𝑥3𝑓(𝑥)𝑑𝑥∫︀+∞

0 𝑥3𝑓(𝑥)𝑑𝑥
= 𝛼

100 . (2.31)

Now, if we don’t know the the true number density function 𝑓 describing the PSD,

and we know only the moments 𝜇0, ...., 𝜇𝑚, we are interested in the following question:

what is the minimum/maximum value of 𝑠 for which there exists a number density
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function 𝑓 which satisfies equation (2.31) and which has moments 𝜇0, ...., 𝜇𝑚? This

question can be formalized as an optimization problem. For example, the minimiza-

tion problem is

D𝛼𝐿(𝛼) ≡ min
𝑠,𝑓

𝑠

s.t. 𝑓 ∈ 𝑀∞(R+), 𝑠 ∈ R+,∫︀ 𝑠
0 𝑥3𝑓(𝑥)𝑑𝑥∫︀+∞

0 𝑥3𝑓(𝑥)𝑑𝑥
= 𝛼

100 ,

∫︁ +∞

0
𝑥𝑗𝑓(𝑥)𝑑𝑥 = 𝜇𝑗, ∀𝑗 ∈ {0, ..., 𝑚}.

(2.32)

It turns out that Problem (2.32) is difficult to solve directly, but we can make

progress if we invert the problem. Instead of asking “what is the minimum value of

𝑠 associated with 𝛼?” we will ask “what is the maximum value of 𝛼 associated with

𝑠?”. Then, the relevant optimization problem is

𝛼𝑈(𝑠) ≡ max
𝑓

100
∫︀ 𝑠

0 𝑥3𝑓(𝑥)𝑑𝑥∫︀+∞
0 𝑥3𝑓(𝑥)𝑑𝑥

s.t. 𝑓 ∈ 𝑀∞(R+),∫︁ +∞

0
𝑥𝑗𝑓(𝑥)𝑑𝑥 = 𝜇𝑗, ∀𝑗 ∈ {0, ..., 𝑚}.

(2.33)

Problem (2.33) is more tractable than Problem (2.32) essentially because it more

closely resembles the problems we’ve encountered before. In particular, it is similar

to Problem (2.9), with the only difference appearing in the objective function. Be-

cause of this similarity, we manipulate Problem (2.33) in much the same way that we

did Problem (2.9): decomposing 𝑓 into two functions 𝑔 and ℎ, with 𝑔 confined to the

interval [0, 𝑠]; adding in the necessary conditions for the moments of 𝑔 and ℎ; relaxing

the problem by removing the references to 𝑔 and ℎ altogether; and finally truncating

the LMI constraints. This manipulation results in the following SDP:
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𝛼𝑈(𝑠) ≡ max
𝑧,𝑦

(100/𝜇3)𝑧3

s.t. 𝑧𝑗 + 𝑦𝑗 = 𝜇𝑗, ∀𝑗 ∈ {0, ..., 𝑚},

H𝑘(𝑦) ⪰ 0, B𝑘−1(𝑦) ⪰ 0,

H𝑘(𝑧) ⪰ 0, 𝑠B𝑘−1(𝑧) − C𝑘−1(𝑧) ⪰ 0.

(2.34)

As before, we let 𝑘 = ⌈𝑚
2 ⌉.

By similar reasoning, one can derive the following SDP for calculating a lower

bound on the 𝛼 associated with a given 𝑠:

𝛼𝐿(𝑠) ≡ min
𝑧,𝑦

(100/𝜇3)𝑦3

s.t. 𝑧𝑗 + 𝑦𝑗 = 𝜇𝑗, ∀𝑗 ∈ {0, ..., 𝑚},

H𝑘(𝑦) ⪰ 0, B𝑘−1(𝑦) ⪰ 0,

H𝑘(𝑧) ⪰ 0, B𝑘−1(𝑧) − 𝑠H𝑘−1(𝑧) ⪰ 0.

(2.35)

These problems are interesting, but what about the original problem of calculating

bounds on D𝛼 for specific values of 𝛼? We are actually much closer to the solution

of this problem than one might suspect.

To see this, consider what happens if we solve Problems (2.34) and (2.35) for a

range of 𝑠 values and plot the resulting 𝛼𝑈(𝑠) and 𝛼𝐿(𝑠) values. We will get two

curves, 𝛼𝑈 and 𝛼𝐿. Roughly speaking, to obtain the desired bounds on D𝛼, all one

has to do is draw a horizontal line across the 𝛼𝑈 , 𝛼𝐿 plot so that it intersects the

vertical axis at 𝛼. The value of 𝑠 at which that line intersects the 𝛼𝑈 curve is D𝛼𝐿,

a lower bound on D𝛼; similarly, the value of 𝑠 at which that line intersects the 𝛼𝐿

curve is D𝛼
𝑈 , an upper bound on D𝛼. This idea is demonstrated in Figure 2-5.
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Figure 2-5: Cartoon example of the graphical analysis used to obtain (approximate)

bounds on D𝛼.

This graphical analysis may suffice for some purposes. However, if precision is

necessary, we can take advantage of the fact that 𝛼𝑈 and 𝛼𝐿 are nondecreasing func-

tions and calculate 𝜖-close outer approximations of D𝛼𝐿 and D𝛼
𝑈 , through an efficient

bisection procedure. The bisection procedure for D𝛼
𝑈 is shown in Algorithm 3; the

analogous procedure for D𝛼𝐿 can be found in the Appendix (Algorithm 7).

Example

In [52] paracetamol is crystallized from methanol and water, and the progress of

the crystallization is monitored by focused beam reflectance measurement (FBRM).

Specifically, the chord length distribution (CLD) is measured with FBRM, and this

CLD is used to back-calculate the first five moments of the PSD. Figure 1 of that

paper provides the data resulting from one such experiment, and we can use this data

to illustrate the utility of Algorithm 3 . Focusing on the final time point, we can read
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Algorithm 3 Generating an upper bound on D𝛼𝑈

Input:
1. Moments 𝜇0, ..., 𝜇𝑚.
2. The value of 𝛼 ∈ [0, 100] for which you want to calculate bounds on D𝛼.
3. A tolerance 𝜖 > 0.

Output: D𝛼
𝑈

𝜖 , which is an 𝜖-close upper bound on D𝛼
𝑈 . That is, it satisfies

D𝛼
𝑈

𝜖 − 𝜖 ≤ D𝛼
𝑈 ≤ D𝛼

𝑈

𝜖 . (2.36)

∙
Algorithm:
Set D𝛼𝑈

𝜖 := 0.
Set 𝑠 := 𝜇1/𝜇0.
Solve Problem (2.35) to obtain 𝛼𝐿(𝑠).
while 𝛼𝐿(𝑠) < 𝛼 do

Set D𝛼𝑈
𝜖 := 𝑠.

Set 𝑠 := 2𝑠.
Solve Problem (2.35) to obtain 𝛼𝐿(𝑠).

end while
Set D𝛼

𝑈

𝜖 := 𝑠.
while D𝛼

𝑈

𝜖 − D𝛼𝑈
𝜖 > 𝜖 do

Set 𝑠 := (D𝛼
𝑈

𝜖 + D𝛼𝑈
𝜖 )/2.

Solve Problem (2.35) to obtain 𝛼𝐿(𝑠).
if 𝛼𝐿(𝑠) ≥ 𝛼 then

Set D𝛼
𝑈 := 𝑠.

else
Set D𝛼𝑈 := 𝑠.

end if
end while

off the following moments of the PSD:

𝜇0 = 7.2 × 106 kg methanol−1,

𝜇1 = 1.2 × 103 m/kg methanol,

𝜇2 = 3.4 × 10−1 m2/kg methanol,

𝜇3 = 1.2 × 10−4 m3/kg methanol,

𝜇4 = 5.0 × 10−8 m4/kg methanol.

(2.37)
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Solving Problems (2.34) and (2.35) with the moments given in (2.37) for a range of

𝑠 values, we obtain the 𝛼𝑈 and 𝛼𝐿 curves shown in Figure 2-6. Drawing a horizontal

line at 𝛼 = 50, and dropping verticals where it crosses the 𝛼𝑈 and 𝛼𝐿 curves, we see

that D50𝑈 ≈ 5.8 × 10−4 m and D50𝐿 ≈ 2.6 × 10−4 m.

Applying Algorithm 3 to the moments given in (2.37), with 𝛼 = 50 and 𝜖 =

1×10−6, we obtain D50𝑈

𝜖 = 5.76×10−4 m. Note that this result is in agreement with

the graphical analysis demonstrated in Figure 2-6.
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Figure 2-6: Graphical analysis for obtaining (approximate) bounds on D50 for any

PSD with moments given by (2.37)

2.4 More Moments Lead to Tighter Bounds

The more moment values that are specified, the less uncertainty there is in the un-

derlying PSD. Thus, we would expect that knowing more moments of a PSD would

allow us to compute tighter bounds on its various descriptions. This is indeed the

case, as we demonstrate with the following example.
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2.4.1 Example

Suppose we have a PSD described by a log-normal number density function

𝑓(𝑥) = 𝑁

𝑥𝜎
√

2𝜋
exp

[︃
−(ln 𝑥 − 𝑀)2

2𝜎2

]︃
, (2.38)

where 𝑁 = 1000 particles per mL, 𝜎 = 0.25, 𝑀 = 0, and the particle size 𝑥 has units

of 𝜇m. The 𝑗th moment for this distribution is given by

𝜇𝑗 = 𝑁 exp
[︂
𝑗𝑀 + 1

2𝑗2𝜎2
]︂

(2.39)

With this expression, we can generate a partial moment sequence 𝜇0, ..., 𝜇𝑚 for any

desired value of 𝑚, and then apply Algorithms 2 and 6 to calculate pointwise bounds

on the CDF of the distribution. By using different values of 𝑚, we can see how the

quality of the bounds depends on the number of specified moments.

The results of such an experiment are shown in Figure 2-7. As expected, the

quality of the bounds improves as we increase the value of 𝑚. The most dramatic

improvement occurs in transitioning from 𝑚 = 1 to 𝑚 = 2. Thereafter, the improve-

ments are more subtle. Of course, the bounds continue to improve, but the benefit of

specifying each additional moment declines rapidly. In particular, the bounds com-

puted using 𝑚 = 17 (not shown) were not appreciably better than those computed

using 𝑚 = 6. With 𝑚 = 18, we began to encounter numerical difficulties.
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Figure 2-7: Pointwise CDF bounds calculated using Algorithms 2 and 6 with a varying

number of moments specified. On each plot, the blue curve is the lower bound, the

green curve is the upper bound, and the red curve is the analytical CDF.

2.5 Extensions

In this chapter, we have assumed that the moments of the PSD are known exactly.

However, it may be the case that there is some uncertainty in the moment values.

This uncertainty will likely be expressed in terms of a confidence interval, so that, for

each 𝑗 ∈ {0, ..., 𝑚}, we have 𝜇𝐿
𝑗 ≤ 𝜇𝑗 ≤ 𝜇𝑈

𝑗 with 𝐶% confidence.

It turns out that the method that we have described can handle this situation

quite nicely. In each of the SDPs we have described, one simply replaces the equality
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constraints with the corresponding inequality. For example, Problem (2.15) becomes

𝑁
𝑈 = max

𝑦,𝑧
𝑧0

s.t. 𝜇𝐿
𝑗 ≤ 𝑧𝑗 + 𝑦𝑗 ≤ 𝜇𝑈

𝑗 , ∀𝑗 ∈ {0, ..., 𝑚},

H𝑘(𝑦) ⪰ 0, B𝑘−1(𝑦) ⪰ 0,

H𝑘(𝑧) ⪰ 0, (𝑎 + 𝑏)B𝑘−1(𝑧) − C𝑘−1(𝑧) − 𝑎𝑏H𝑘−1(𝑧) ⪰ 0.

(2.40)

In fact, the method can also readily handle the more general situation where we

have confidence ellipsoids for the moments, so that 𝜇TV−1𝜇 ≤ 𝑟 with 𝐶% confidence,

for some positive definite covariance matrix V and positive scalar 𝑟. One cannot

simply substitute 𝜇TV−1𝜇 ≤ 𝑟 into the SDP, as the expression on the left-hand side

of the inequality is nonlinear with respect to 𝜇. However, by the Schur Complement

Lemma [5], 𝜇TV−1𝜇 ≤ 𝑟 is equivalent to

⎡⎢⎣ V 𝜇

𝜇T 𝑟

⎤⎥⎦ ⪰ 0, (2.41)

which is a linear matrix inequality. Thus, we can substitute it into the SDPs we have

described, replacing the equality constraints. For example, Problem (2.15) becomes

𝑁
𝑈 = max

𝑦,𝑧
𝑧0

s.t.

⎡⎢⎣ V 𝑦 + 𝑧

(𝑦 + 𝑧)T 𝑟

⎤⎥⎦ ⪰ 0,

H𝑘(𝑦) ⪰ 0, B𝑘−1(𝑦) ⪰ 0,

H𝑘(𝑧) ⪰ 0, (𝑎 + 𝑏)B𝑘−1(𝑧) − C𝑘−1(𝑧) − 𝑎𝑏H𝑘−1(𝑧) ⪰ 0.

(2.42)

In making these substitutions, one must be careful about the interpretation of the

resulting bounds. We can no longer say that the number of particles with size between

𝑎 and 𝑏 is less than or equal to 𝑁
𝑈 , guaranteed; we must qualify this statement by
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adding “with 𝐶% confidence”.

2.6 Conclusion

In this chapter, we have demonstrated that semidefinite programming has a natural

application to chemical engineering processes involving particle size distributions. In

particular, given finitely many moments of a PSD, one can use semidefinite program-

ming to obtain guaranteed bounds on several industrially relevant descriptions of the

PSD, including:

∙ the number of particles in an arbitrary size interval,

∙ a particle size histogram,

∙ the cumulative distribution function,

∙ D𝛼 values – in particular, D10, D50, and D90 values.

We have formulated SDPs and provided algorithms for calculating bounds on each of

these descriptions. Because semidefinite programming is a special case of convex opti-

mization, these bounds can be calculated efficiently (in tenths of seconds to seconds)

using freely available optimization codes.

As suggested in the introduction, the problem of calculating bounds on a PSD is

closely related to the well-studied problem of constructing a number density function

with a specified finite set of moments. Many methods exist for solving this problem.

Our own method does not replace these methods, but rather nicely complements

them. While the existing methods focus attention on a single PSD which satisfies a set

of moment constraints and is, in some sense, likely to occur, our method conservatively

considers all possible PSDs with the specified moments. Together, the two types of

methods give a more complete picture of the uncertainty surrounding the PSD.

The Matlab code used in the examples of this chapter is freely available for non-

commercial uses as “PSD Bounding Tools” at https://yoric.mit.edu/software.

Running this code requires that you have installed CVX, which is also freely available

at http://cvxr.com/cvx/download.
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Chapter 3

Bounds on Stochastic Chemical

Kinetic Systems at Steady State

The method of moments has been proposed as a potential means to reduce the di-

mensionality of the chemical master equation (CME) appearing in stochastic chemical

kinetics. However, attempts to apply the method of moments to the CME usually re-

sult in the so-called closure problem. Several authors have proposed moment closure

schemes, which allow them to obtain approximations of quantities of interest, such as

the mean molecular count for each species. However, these approximations have the

dissatisfying feature that they come with no error bounds. This chapter presents a

fundamentally different approach to the closure problem in stochastic chemical kinet-

ics. Instead of making an approximation to compute a single number for the quantity

of interest, we calculate mathematically rigorous bounds on this quantity by solv-

ing semidefinite programs (SDPs). These bounds provide a check on the validity of

the moment closure approximations, and are in some cases so tight that they effec-

tively provide the desired quantity. In this chapter, the bounded quantities of interest

are the mean molecular count for each species, the variance in this count, and the

probability that the count lies in an arbitrary interval. This chapter considers only

steady-state probability distributions. The dynamic problem is discussed in Chapter

4.

The contents of this chapter were published as a peer-reviewed paper [14] in the

65



Journal of Chemical Physics and as a part of the conference proceedings [13] of 27th

European Symposium on Computer Aided Process Engineering.

3.1 Introduction

Reacting chemical systems are traditionally modeled using deterministic rate equa-

tions. These equations implicitly assume that the state of the system is fully charac-

terized by the concentration (i.e., molecular count) of each species, and that future

concentrations are determined by the present concentrations. Of course, this is an

approximation, because, at the microscopic scale, reactions require molecular colli-

sions, and the frequency of these reactive collisions depends not only on the number of

molecules of each species, but also on their positions and velocities [26]. Accordingly,

if we predict future molecular counts of a reaction system based solely on present

molecular counts, ignoring the finer details of molecular positions and velocities, we

may find that the actual behavior of the physical system deviates from our prediction.

For systems in which the number of reacting molecules is large, the variations result-

ing from the microscopic details of molecular positions and velocities tend to average

out, so that the macroscopic system behaves in a predictable way. This accounts for

the success and widespread use of deterministic rate equations in describing the time

evolution of macroscopic reactive systems. However, when the number of reacting

molecules is small (i.e., on the order of 10s or 100s), deterministic rate equations

often fail to describe the system adequately, because the variations resulting from

the neglected microscopic details do not average out; they become a significant and

observable part of the system dynamics [47].

One way to deal with this situation is to model the microscopic details of the sys-

tem explicitly, expressing the state of the system in terms of the position and velocity

of every molecule, and then propagating the state through time by numerically inte-

grating Newton’s equations of motion. This is the paradigm of Molecular Dynamics.

While it can be highly accurate, it also usually computationally expensive and slow

[31].
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Another approach is to express the state of the system in terms of only the molec-

ular counts, and to account for the microscopic variation by modeling the system as a

stochastic process, where the state of the system at one instant in time does not fully

determine the state in the next instant [31]. This is the aim of Stochastic Chemical

Kinetics, which, more precisely, models reacting systems as continuous time discrete

state Markov processes.

In the Stochastic Chemical Kinetics paradigm, we assign a probability to each

reachable state of the system. Collectively, these probabilities define a probability

distribution. The way this distribution changes over time is elegantly described by

the Chemical Master Equation (CME). If we could solve this CME, we would have a

complete probabilistic description of the reaction system through time. In principle,

this solution should be easy to obtain as the CME is conceptually simple: it is a linear

time-invariant ordinary differential equation system. Yet, it is often quite difficult to

solve for the reason that it contains an extraordinarily large number of reachable

states and their corresponding unknown probabilities – even infinitely many [31].

The classical solution to this problem is to sample the reaction system using

Gillespie’s Stochastic Simulation Algorithm (SSA). While this algorithm is intuitively

appealing and very easy to implement, it is often too slow in practice [27]. This

is particularly true when the reaction system contains both fast and slow reactions.

Many variants of Gillespie’s algorithm have been developed with the aim of increasing

its speed. Most of these involve some approximation that renders their results inexact

and potentially misleading. Those that retain the exactness of Gillespie’s algorithm

remain fundamentally limited in that they must simulate every reaction [9].

Many other methods for approximately solving the CME have been proposed,

which aren’t based on Gillespie’s SSA. For example, the chemical Langevin equation

approach describes the time-evolution of the system using a stochastic differential

equation [37, 48]. The Finite State Projection (FSP) method [49] and its variants

[30, 72, 35] model only a finite subset of the reachable states explicitly, bounding the

error that is introduced in neglecting the remaining states. The system size expansion

approach splits the molecular counts into separate deterministic and fluctuating parts
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[69]. An overview of these and other methods is given by Schnoerr [59] and Higham

[31]. While these methods effectively reduce the computational burden required to

describe the stochastic chemical kinetic system, they are only approximations of the

CME model.

Yet another method for dealing with the large number of states appearing in

the CME is to model only finitely many moments of the time-varying probability

distribution. In principle, the moments could then be used to calculate quantities of

interest such as the mean count of molecules of each chemical species and the variances

in these counts. The difficulty with this approach is that the system of ordinary

differential equations describing how the moments change over time usually suffers

from the so-called “closure problem”, in which the time evolution of the moments up

to order 𝑚 depends on the values of moments up to order 𝑚 + 1.

To deal with this problem, various authors have proposed “closure scheme” ap-

proximations. For example, C. S. Gillespie[25] assumes that the unknown distribution

is normal; Smadbeck and Kaznessis[64] assume it is maximum entropy. With such

assumptions, the low-order moments determine the entire distribution (including the

high-order moments), and the closure problem is bypassed. One can then approximate

both dynamic trajectories and steady-state values for the moments. Unfortunately,

these are just approximations, with no bounds on error1. The approximation could

be good; on the other hand, it could be quite bad. These two scenarios are indistin-

guishable, unless some second, independent method is applied to the problem.

Recently, several authors [13, 56, 39, 24] (including ourselves) independently dis-

covered and proposed an alternative strategy: instead of making an approximation to

compute a single number for the quantity of interest, let us calculate mathematically

rigorous bounds on the quantity. These bounds are computed by solving semidefinite

programs (SDPs), where the decision variables are moments of the unknown distri-

bution. This idea of moment-based SDPs was popularized by Lasserre [42] in the
1One notable exception is the closure scheme described by Naghnaeian and Del Vecchio[51] which

can provide error bounds under the condition that the molecular count of each species present in the
system is bounded. However, the scalability of this method is doubtful from a theoretical perspective,
as it requires solving a linear program (LP) whose size is proportional to the number of reachable
states.
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mathematical literature. Its application to stochastic chemical kinetics is appealing

for three reasons: first, it makes no unprovable assumptions about the unknown dis-

tribution; second, it naturally fits the mathematical structure inherent in stochastic

chemical kinetics (e.g., polynomial propensity functions and linearity of the CME);

third, SDPs are convex optimization problems – meaning that, at least in theory,

they can be solved efficiently [71].

This chapter is a more-detailed, tutorial version of our original paper [13] on the

moment-based SDP approach to stochastic chemical kinetics. Many of the ideas it

contains can also be found in the other original papers [56, 39, 24]. However, the

present chapter also contains several novel elements:

∙ The systematic use of reaction invariants to further constrain the SDPs and thus

obtain tighter bounds for systems for which invariants exist (Section 3.2.3)

∙ The observation that the most basic instance of the moment-based SDP im-

plicitly relaxes the integrality requirement, and that it is possible to selectively

enforce this requirement to obtain tighter bounds (Sections 3.3.4, 3.4.2, 3.6.2,

and 3.8.2)

∙ A method of calculating the probability that the steady-state distribution as-

signs to a particular interval, which requires solving just one SDP and does not

resort to enumeration of the reachable states (Section 3.7)

∙ The observation that the above method can be generalized to calculate bounds

on the probability that the steady-state distribution assigns to an arbitrary

basic semi-algebraic set (Section 3.9)

Furthermore, we give additional examples to demonstrate the capabilities and weak-

nesses of the method. In particular, we include an example reaction system which is

considerably more complex than those appearing in the previous papers [13, 56, 39, 24]

in that it has 10 different species, 14 reactions, and 74 billion reachable states.
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3.2 Mathematical Background

3.2.1 Mathematical Notation

Throughout this thesis, the symbol N will be used to denote the set of natural numbers

{0, 1, 2, . . . }, the symbol Z will be used to denote the integers {. . . , −2, −1, 0, 1, 2, . . . },

and R will be used to denote the real numbers. Bold symbols will be used to rep-

resent vectors and matrices. The dimensions of these vectors and matrices will be

specified as they are introduced. The vector e𝑖 = (0, . . . , 1, . . . 0) is the 𝑖th coordinate

vector, in which all components are zero, except the 𝑖th component, which is 1. An-

gular brackets “⟨·⟩” will be used to denote an “expected value” or mean of a random

variable. The meanings of all other symbols should be clear from the context.

3.2.2 Stochastic Chemical Kinetics Notation

Consider a stochastic chemical kinetic system with 𝑁 distinct chemical species and

𝑅 reactions. The state of the system at time 𝑡 is described by the random vector

X(𝑡) = (𝑋1(𝑡), . . . , 𝑋𝑁(𝑡)) ∈ N𝑁 , where 𝑋𝑖(𝑡) ≥ 0 is the count of molecules of species

𝑖 present.

The state changes with the occurrence of each reaction. For example, if s𝑟 ∈ Z𝑁

is the vector of stoichiometric coefficients of reaction 𝑟, and the system is in state

x ∈ N𝑁 , then an occurrence of reaction 𝑟 takes the system to state x + s𝑟. By

chaining together multiple reactions, a system initially in state X(0) ≡ x0 ∈ N𝑁 can

reach many possible states – sometimes infinitely many. Let this set of reachable

states be denoted with the symbol 𝒳 . A generic member of this set will be denoted

x ∈ 𝒳 .

3.2.3 Invariants and Independent Species

The stoichiometry matrix for the system is constructed by bringing together the

stoichiometry vectors: S ≡ [s1 . . . s𝑅] ∈ Z𝑁×𝑅. Often, this matrix will have a non-

trivial left null space. Let {b1, . . . , b𝐿} ⊂ R𝑁 be a basis for this left null space. It
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can be shown that each of these vectors corresponds to an invariant of the reaction

system[20] – i.e., some linear combination of molecular counts that is constant with

time. In particular,

bT
𝑗 X(𝑡) = bT

𝑗 x0, ∀𝑗 ∈ {1, . . . , 𝐿}, ∀𝑡 ≥ 0. (3.1)

The previous papers [56, 39, 24] on moment-based SDPs in stochastic chemical

kinetics do not give a systematic method for dealing with reaction invariants. Most

of the examples appearing in these papers do not have reaction invariants. Those

that do are handled on an ad hoc basis (see Example 2 in Ghusinga et al[24]). Such

ad hoc solutions may not always be so obvious. Furthermore, if you were to take a

system with invariants and then apply the basic SDP paradigm described in those

papers without some modification to account for the invariants, the resulting bounds

would likely be poor. The reason for this, roughly speaking, is that the SDP would

be optimizing over distributions that are not only supported on the reachable states

x ∈ 𝒳 ⊂ N𝑁 , but also states that are not reachable, that is x ∈ N𝑁 such that x /∈ 𝒳 .

So having a systematic method for dealing with invariants is important. We will do

this by defining a set of independent species.

If we set

B ≡

⎡⎢⎢⎢⎢⎢⎣
bT

1
...

bT
𝐿

⎤⎥⎥⎥⎥⎥⎦ ∈ R𝐿×𝑁 , (3.2)

then Equation (3.1) can be expressed concisely as

BX(𝑡) = Bx0, ∀𝑡 ≥ 0. (3.3)

These equations imply that not all molecular counts 𝑋1, . . . , 𝑋𝑁 can vary indepen-

dently. To see this, let B̃ ∈ R𝐿×𝐿 be the matrix obtained by concatenating 𝐿 linearly

independent columns of B, and let X̃(𝑡) ∈ N𝐿 be the vector of the corresponding

components of X(𝑡). Similarly, let B̂ ∈ R𝐿×�̂� be the matrix obtained by concatenat-

ing the remaining 𝑁 − 𝐿 ≡ �̂� columns of B, and let X̂(𝑡) ∈ N�̂� be the vector of the
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corresponding components of X(𝑡). Then, Equation (3.3) can be rewritten as

B̃X̃(𝑡) + B̂X̂(𝑡) = B̃x̃0 + B̂x̂0, ∀𝑡 ≥ 0. (3.4)

By construction, B̃ is invertible, so if X̂(𝑡) is known, this equation can be solved for

X̃(𝑡):

X̃(𝑡) = x̃0 + B̃−1B̂(x̂0 − X̂(𝑡)), ∀𝑡 ≥ 0. (3.5)

Thus, specifying X̂ is enough to specify the state of the system. We can think of the

chemical species whose molecular counts are specified in the vector X̂ as being the

independent species, and those whose counts are specifed in X̃ as being the dependent

species. In general, there will be several possible ways to pick 𝐿 linearly independent

columns of B. This means that we have some flexibility in choosing which species to

treat as independent.

Every full-dimensional reachable state x ∈ 𝒳 ⊂ N𝑁 has a corresponding reduced

reachable state, x̂ ∈ N�̂� , obtained by selecting the counts of the independent species

from x. We will denote the set of all these reduced reachable states as 𝒳 ⊂ N�̂� .

Similarly, for every stoichiometry vector s𝑟 ∈ Z𝑁 , there is a corresponding reduced

stoichiometry vector ŝ𝑟 ∈ Z�̂� , obtained by selecting the components of s𝑟 correspond-

ing to the independent species.

Working in the reduced state space is computationally convenient because it fo-

cuses attention on the variables in the stochastic chemical kinetic system that are

actually independent and can thus reduce the dimension of the problems we want

to solve. For the sake of brevity, in what follows, we will often loosely refer to the

reduced state as simply the “state”. That we are in fact referring to the reduced state

should be clear from the context.

3.2.4 The Chemical Master Equation

Because of the stochastic nature of the system, there is some uncertainty as to the

(reduced) state at time 𝑡, and we express this uncertainty by assigning a probability
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Pr(X̂(𝑡) = x̂, 𝑡) ≡ 𝑃 (x̂, 𝑡) to each of the reachable states x̂ ∈ 𝒳 . This probability dis-

tribution 𝑃 (·, 𝑡) changes over time according to the chemical master equation (CME):

𝑑𝑃

𝑑𝑡
(x̂, 𝑡) =

𝑅∑︁
𝑟=1

[𝑃 (x̂ − ŝ𝑟, 𝑡)𝑎𝑟(x̂−ŝ𝑟) − 𝑃 (x̂, 𝑡)𝑎𝑟(x̂)],

∀x̂ ∈ 𝒳 ,

(3.6)

where 𝑎𝑟 is the “propensity function” of reaction 𝑟. The details of this propensity

function are described in Higham[31]. However, we want to point out two things:

first, 𝑎𝑟(·) is always a polynomial in x̂; second, 𝑎𝑟 is proportional to a rate constant 𝑐𝑟

for reaction 𝑟. This 𝑐𝑟 is not necessarily the same as the macroscopic rate constant 𝑘𝑟

one would use in deterministic chemical kinetics, but there is a connection between

the two constants. See Higham[31] and Gillespie[26] for details.

Note that the CME holds for all reachable states x̂ ∈ 𝒳 . So it is not just a single

equation but a whole system of equations. This system can be written concisely as

𝑑p
𝑑𝑡

(𝑡) = Gp(𝑡), (3.7)

where G is a time-invariant (infinitesimal generator) matrix whose elements are linked

to the propensity functions, and p is a vector of probabilities with one component

for each x̂ ∈ 𝒳 . While this equation is conceptually simple, there is a problem: as

we suggested earlier, there is often a huge number of reachable states x̂ ∈ 𝒳 . This

means that the vector p can have a very large (or even infinite) dimension, with G

being correspondingly large. The result is that it is impractical to solve Equation

(3.7) directly for stochastic chemical kinetic systems of any appreciable size.

3.2.5 Moments in Stochastic Chemical Kinetics

The probability distribution 𝑃 (·, 𝑡) can be characterized by its moments. In partic-

ular, for any multi-index j = (𝑗1, . . . , 𝑗�̂�) ∈ N�̂� we have a moment 𝜇j(𝑡) defined as

𝜇j(𝑡) ≡
∑︁
x̂∈𝒳

x̂j𝑃 (x̂, 𝑡), (3.8)
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where the sum is over the set 𝒳 of all reachable states, and x̂j = ∏︀�̂�
𝑘=1 �̂�𝑗𝑘

𝑘 is a

monomial. The order of the moment 𝜇j is defined as the sum |j| ≡ ∑︀�̂�
𝑘=1 𝑗𝑘. Notice

that the zeroth-order moment 𝜇0(𝑡) indexed by 0 = (0, . . . , 0) is simply the sum of

probabilities across all reachable states, so that 𝜇0(𝑡) = 1 for all times 𝑡.

A nice feature of moments is that, using just the low-order moments, we can ex-

press several quantities of interest that effectively summarize the distribution 𝑃 (·, 𝑡).

For example, the first-order moment 𝜇e𝑖
(𝑡) indexed by e𝑖 = (0, . . . , 1, . . . , 0) is the

mean molecular count for independent species 𝑖 ∈ {1, . . . , �̂�} at time 𝑡:

𝜇e𝑖
(𝑡) ≡

∑︁
x̂∈𝒳

x̂e𝑖𝑃 (x̂, 𝑡) =
∑︁
x̂∈𝒳

�̂�𝑖𝑃 (x̂, 𝑡) = ⟨�̂�𝑖(𝑡)⟩. (3.9)

The first-order moments can also be used with Equation (3.5) to express the mean

molecular count for each dependent species 𝑘 ∈ {1, . . . , 𝐿}. In particular, if we let

𝛽𝑘,𝑗 denote the element in the 𝑘th row and 𝑗th column of the matrix B̃−1B̂, then we

have

⟨�̃�𝑘(𝑡)⟩ =
∑︁
x̂∈𝒳

⎛⎝�̃�0,𝑘 +
�̂�∑︁

𝑗=1
𝛽𝑘,𝑗�̂�0,𝑗 −

�̂�∑︁
𝑗=1

𝛽𝑘,𝑗�̂�𝑗

⎞⎠𝑃 (x̂, 𝑡),

=
⎛⎝�̃�0,𝑘 +

�̂�∑︁
𝑗=1

𝛽𝑘,𝑗�̂�0,𝑗

⎞⎠−
�̂�∑︁

𝑗=1
𝛽𝑘,𝑗𝜇e𝑗

(𝑡).
(3.10)

Coming to the second-order moments, we see that 𝜇2e𝑖
(𝑡) is equal to ⟨�̂�2

𝑖 (𝑡)⟩. So,

𝜇e𝑖
(𝑡) and 𝜇2e𝑖

(𝑡) can be used together to compute the variance in the count of

molecules of independent species 𝑖 at time 𝑡:

𝜎2
𝑖 (𝑡) ≡ ⟨�̂�2

𝑖 (𝑡)⟩ − ⟨�̂�𝑖(𝑡)⟩2 = 𝜇2e𝑖
(𝑡) − 𝜇2

e𝑖
(𝑡). (3.11)

Similarly, the moments can be used to compute covariances between independent

species 𝑖 and 𝑗:
𝜎2

𝑖,𝑗(𝑡) ≡ ⟨�̂�𝑖(𝑡)�̂�𝑗(𝑡)⟩ − ⟨�̂�𝑖(𝑡)⟩⟨�̂�𝑗(𝑡)⟩

= 𝜇e𝑖+e𝑗
(𝑡) − 𝜇e𝑖

(𝑡)𝜇e𝑗
(𝑡).

(3.12)

The appeal of working with moments is that they allow us to bypass the problem

of high dimensionality that we encountered in Equation (3.7). We give up a complete
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description of the probability distribution 𝑃 (·, 𝑡) in the terms of the high-dimensional

vector p(𝑡) in favor of a summary description in terms of its low-order moments. In

principle, this trade-off allows us to compute properties of stochastic chemical kinetic

systems for which solving the CME more directly is computationally intractable.

3.2.6 The Closure Problem

As described by Smadbeck and Kaznessis[64], Sotiropoulos and Kaznessis[65], and

C.S. Gillespie[25], the CME can be used to derive a system of linear ordinary differ-

ential equations describing how the moments of the distribution 𝑃 (·, 𝑡) change over

time. For reaction systems containing at most first-order (i.e., unimolecular) reac-

tions, things work out nicely: we can pick an arbitrary 𝑚 ∈ N, and construct the

ODE describing how the moments up to order 𝑚 change over time:

𝑑𝜇𝐿

𝑑𝑡
(𝑡) = A𝐿𝜇𝐿(𝑡), (3.13)

where 𝜇𝐿(𝑡) is a vector of “low-order” moments order up to order 𝑚, and A𝐿 is a

constant matrix. However, if the reaction system contains any reactions of order

𝑞 > 1 (e.g., bimolecular reactions), then the ODE becomes

𝑑𝜇𝐿

𝑑𝑡
(𝑡) = A𝐿𝜇𝐿(𝑡) + A𝐻𝜇𝐻(𝑡), (3.14)

where 𝜇𝐻(𝑡) is a vector of “high-order” moments, order 𝑚 + 1 to 𝑚 + 𝑞 − 1 ≡ 𝑀 . So

the time derivatives of the low-order moments depend on high-order moments. This

is the infamous “closure problem”. It is unclear how to solve such a dynamic system.

The closure problem also frustrates even a relatively simple steady-state analysis.

What we’d like to do is set the left-hand side of Equation (3.14) equal to zero

0 = A𝐿𝜇𝐿,ss + A𝐻𝜇𝐻,ss, (3.15)

and solve for the steady-state moments 𝜇𝐿,ss and 𝜇𝐻,ss of the steady-state probability

distribution 𝑃ss(·) ≡ lim𝑡→+∞ 𝑃 (·, 𝑡). Assuming we could calculate the vector 𝜇𝐿,ss,
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we could extract the steady-state values of ⟨�̂�𝑖⟩ss ≡ 𝜇e𝑖,ss and (𝜎2
𝑖 )ss ≡ 𝜇2e𝑖,ss−𝜇2

e𝑖,ss for

each independent species 𝑖. The trouble is that Equation (3.15) is under-determined:

it has more unknowns than linearly independent equations. Even if we leverage our

a priori knowledge of probability distributions and set 𝜇0,ss = 1, one can show there

are still more unknowns than linearly independent equations. This means that the

system has infinitely many solutions, and we can’t simply solve for the steady-state

moments 𝜇𝐿,ss and 𝜇𝐻,ss.

3.2.7 Closure Scheme Approximations

As described in the introduction, various authors have proposed approximations to

deal with the closure problem. For example, C. S. Gillespie[25] assumes that the

unknown underlying distribution is normal; Smadbeck and Kaznessis[64] assume that

it has maximum entropy, given fixed values for the low-order moments. While these

schemes differ in their details, they are all fundamentally the same in that they assume

some functional relationship between the low- and high-order moments:

𝜇𝐻 ≡ f(𝜇𝐿) (3.16)

This function need not be explicit. For example, the maximum entropy approach

requires solving an optimization problem to evaluate f . Applying the assumed rela-

tionship to (3.14) gives the closed system

𝑑𝜇𝐿

𝑑𝑡
(𝑡) = A𝐿𝜇𝐿(𝑡) + A𝐻f(𝜇𝐿(𝑡)), (3.17)

which can be integrated numerically.

Similarly, applying the assumed relationship to (3.15) gives

0 = A𝐿𝜇𝐿,ss + A𝐻f(𝜇𝐿,ss). (3.18)

The idea is that if the function f is chosen appropriately, Equation (3.18), together

with 𝜇0,ss = 1, will have a unique solution.
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While there are arguments justifying the various closure schemes, ultimately, they

are all approximations, with no bounds on the errors they introduce. This is dis-

satisfying from a theoretical perspective. Furthermore, from a practical perspective,

it means that one must check the validity of any results obtained through closure

scheme approximations by also applying a second, independent method to the prob-

lem, such as Gillespie’s Stochastic Simulation Algorithm (SSA) [26]. This is less than

ideal. If we have to check the closure scheme results against SSA, why not just run

SSA in the first place, and be done with it? We’d prefer a method which retains the

computational benefits of moment-based methods, but which also stands on its own

and guarantees its own accuracy.

3.3 The Bounding Method

In this section, we describe a fundamentally different approach to dealing with the

closure problem. Instead of making an approximation to compute a single number

for each of the quantities of interest (means, variances, and so on), we will compute

mathematically rigorous bounds on their values.

Admittedly, knowing bounds on the quantities of interest is less useful than know-

ing the quantities themselves. However, guaranteed bounds on these quantities are

arguably more useful than estimates of their values with no bounds on the error.

Also, as we will see later, it is sometimes possible to calculate bounds so tight that

they effectively give us the desired quantities.

In this chapter, we will consider only the relatively simple steady-state analysis.

The extension to the dynamic analysis is discussed in Chapter 4.

3.3.1 The Paradigm

Suppose that we have a generic stochastic chemical kinetic system, characterized by

an initial state vector x0 ∈ N𝑁 , a stoichiometry matrix S ∈ Z𝑁×𝑅, and a vector

of rate constants c ∈ R𝑅. Assume that there is at least one reaction with order

greater than one, so that this system exhibits the closure problem when subjected
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to a moment analysis. Suppose that we have analyzed S to construct an invariant

matrix B ∈ R𝐿×𝑁 , as described in Section 3.2.3. Suppose further that have identified

the �̂� = 𝑁 − 𝐿 chemical species we wish to treat as independent and constructed

the matrices B̂ ∈ R𝐿×�̂� and B̃ ∈ R𝐿×𝐿. Finally, suppose that we have chosen a value

of 𝑚 ∈ N and constructed the matrices A𝐿 and A𝐻 described in Section 3.2.6. We

are interested in analyzing the properties of the steady-state distribution(s) of this

stochastic chemical kinetic system.

Consider the problem of bounding ⟨�̂�𝑖⟩ss, the mean count of molecules of indepen-

dent species 𝑖 at steady state. What we’d like to do is calculate two numbers ⟨�̂�𝑖⟩𝐿
ss

and ⟨�̂�𝑖⟩𝑈
ss such that

⟨�̂�𝑖⟩𝐿
ss ≤ ⟨�̂�𝑖⟩ss ≤ ⟨�̂�𝑖⟩𝑈

ss (3.19)

is guaranteed.

How could we calculate the upper bound, ⟨�̂�𝑖⟩𝑈
ss? Suppose that we write down

several mathematical constraints that the moment vector 𝜇ss of any steady-state

distribution supported on 𝒳 must necessarily satisfy – for example, 0 = A𝐿𝜇𝐿,ss +

A𝐻𝜇𝐻,ss from Section 3.2.6. Suppose that we then optimize over the set of vectors

𝜇 satisfying these necessary conditions, searching for the vector 𝜇 with the greatest

component 𝜇e𝑖
:

𝜇*
e𝑖

≡ max
𝜇

𝜇e𝑖

s.t. 𝜇 satisfies necessary steady-state

moment conditions.

(3.20)

Then, because every vector 𝜇ss corresponding to a steady-state distribution supported

on 𝒳 satisfies the necessary steady-state moment conditions, 𝜇ss is a feasible point

for this optimization problem. It follows that the optimal value 𝜇*
e𝑖

is an upper bound

on 𝜇e𝑖,ss = ⟨�̂�𝑖⟩ss, and we can set 𝜇*
e𝑖

≡ ⟨�̂�𝑖⟩𝑈
ss.

Following the same reasoning, we can calculate a lower bound on ⟨�̂�𝑖⟩ss by mini-

mizing over the set of vectors 𝜇 satisfying the necessary steady-state moment condi-

tions.
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It remains to be seen whether or not constructing and solving these optimization

problems is computationally tractable. The sole point of this section is a theoretical

one: if we could solve these optimization problems, we would have our bounds.

3.3.2 Necessary Steady-State Moment Conditions

What exactly are the necessary steady-state moment conditions appearing in Problem

(3.20)? We’ve already identified one:

0 = A𝐿𝜇𝐿 + A𝐻𝜇𝐻 . (3.21)

If we let A ≡ [A𝐿 A𝐻 ] and 𝜇𝑀 = (𝜇𝐿,𝜇𝐻), this can be written concisely as

0 = A𝜇𝑀 , (3.22)

where the subscript 𝑀 indicates that the vector 𝜇𝑀 contains all moments up to order

𝑀 (see Section 3.2.6).

The second, relatively obvious necessary condition is that the zeroth moment must

be one:

𝜇0 = 1. (3.23)

Next, we might reason that since all molecular counts must be nonnegative, all

mean molecular counts must also be nonnegative. With Equations (3.9) and (3.10),

this leads to

𝜇e𝑗
≥ 0, ∀𝑗 ∈ {1, ..., �̂�} (3.24)

for the independent species and

⎛⎝�̃�0,𝑘 +
�̂�∑︁

𝑗=1
𝛽𝑘,𝑗�̂�0,𝑗

⎞⎠−
�̂�∑︁

𝑗=1
𝛽𝑘,𝑗𝜇e𝑗

≥ 0, ∀𝑘 ∈ {1, . . . , 𝐿} (3.25)

for the dependent species.

Also, recalling our expressions for the variances and covariances given by Equa-
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tions (3.11) and (3.12), respectively, we can construct a covariance matrix, which we

know from probability theory must be positive semidefinite:

⎡⎢⎢⎢⎢⎢⎣
𝜇e1+e1 − 𝜇e1𝜇e1 . . . 𝜇e1+e�̂�

− 𝜇e1𝜇e�̂�

... . . . ...

𝜇e�̂� +e1 − 𝜇e�̂�
𝜇e1 . . . 𝜇e�̂� +e�̂�

− 𝜇e�̂�
𝜇e�̂�

⎤⎥⎥⎥⎥⎥⎦ ⪰ 0. (3.26)

Condition (3.26) is the first of several matrix inequalities that will appear in this

chapter. It must be understood that the generic matrix inequality M ⪰ 0 does not

imply the nonnegativity of each element of the matrix M ∈ R𝑛×𝑛. Rather, it states

that all of the eigenvalues of M are nonnegative. This is equivalent to the statement

that qTMq ≥ 0 for all q ∈ R𝑛. In this thesis, we will only state matrix inequalities

for symmetric real-valued matrices.

It turns out that Necessary Conditions (3.24) - (3.26) are all special instances of

a more general set of conditions that the moments of any steady-state distribution

must satisfy. These more general necessary conditions can be expressed concisely in

the form of the following matrix inequalities:

M0
𝑛(𝜇) ⪰ 0, (3.27)

Me𝑗

𝑛−1(𝜇) ⪰ 0, ∀𝑗 ∈ {1, . . . , �̂�}, (3.28)

⎛⎝�̃�0,𝑘 +
�̂�∑︁

𝑗=1
𝛽𝑘,𝑗�̂�0,𝑗

⎞⎠M0
𝑛−1(𝜇) −

�̂�∑︁
𝑗=1

𝛽𝑘,𝑗M
e𝑗

𝑛−1(𝜇) ⪰ 0,

∀𝑘 ∈ {1, . . . , 𝐿}.

(3.29)

The exact definitions of the matrices M0
𝑛(𝜇), M0

𝑛−1(𝜇), and Me𝑗

𝑛−1(𝜇) are unimpor-

tant for our present purposes, and have been deferred to Appendix B, where these

matrix inequalities are derived. What is important is that each of these matrices is

a linear function of the vector 𝜇. This means that each of the necessary conditions

(3.27) - (3.29) is a special type of matrix inequality known as a linear matrix inequal-
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ity (LMI). This is significant because the set of points satisfying a collection of linear

matrix inequalities is guaranteed to be a convex set. This gives us reason to believe

that we may be able to optimize efficiently over this set.

As suggested above, Necessary Conditions (3.24) - (3.26) are subsumed by Neces-

sary Conditions (3.27) - (3.29) in the sense that the former are implied by the latter

(see Appendix B). This means that if we specify (3.27) - (3.29) as necessary condi-

tions, it is unnecessary to also specify (3.24) - (3.26). So we may take as our list of

necessary conditions (3.22), (3.23), and (3.27) - (3.29).

3.3.3 A Semidefinite Program

If we use Necessary Conditions (3.22), (3.23), and (3.27) - (3.29) in Problem (3.20),

in place of the abstract statement “𝜇 satisfies necessary steady-state moment condi-

tions”, we obtain

⟨�̂�𝑖⟩𝑈
ss = max

𝜇
𝜇e𝑖

s.t. A𝜇𝑀 = 0,

𝜇0 = 1,

M0
𝑛(𝜇) ⪰ 0,

Me𝑗

𝑛−1(𝜇) ⪰ 0, ∀𝑗 ∈ {1, . . . , �̂�},

𝛼𝑘M0
𝑛−1(𝜇) −

�̂�∑︁
𝑗=1

𝛽𝑘,𝑗M
e𝑗

𝑛−1(𝜇) ⪰ 0,

∀𝑘 ∈ {1, . . . , 𝐿}.

(3.30)

Note that we have set 𝛼𝑘 ≡ �̃�0,𝑘 +∑︀�̂�
𝑗=1 𝛽𝑘,𝑗�̂�0,𝑗 for the sake of brevity.

So far, we have been deliberately vague about which moments appear in our vector

of decision variables 𝜇. In principle, we could treat every moment in the infinite

sequence {𝜇j : j ∈ N�̂�} as a decision variable. However, this would render numerical

solution of Problem (3.30) intractable. So we want to truncate this sequence at some

point. It is clear that 𝜇 must include at least those moments up to order 𝑀 , so that
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we can meaningfully enforce the constraint A𝜇𝑀 = 0. As explained in Appendix

B, the LMIs contain moments up to order 2𝑛, where 𝑛 ≡ ⌈𝑀
2 ⌉. Since 2𝑛 ≥ 𝑀 , it

is sufficient for our decision vector 𝜇 to include only those moments up to order 2𝑛.

The key point here is that we have only finitely many decision variables.

While the notation of Problem (3.30) may be somewhat daunting, the problem

has nice mathematical properties: the objective function is a (very simple) linear

function of the decision variables 𝜇, and the only constraints are linear equalities

and linear matrix inequalities. This is a semidefinite program (SDP) – a type of

convex optimization problem which can be solved efficiently both in theory and in

practice [71], using made-for-purpose software such as SeDuMi [66] and MOSEK

[2]. So solving the abstract Problem (3.20) is, in fact, computationally tractable.

We can readily calculate the desired upper bound on the mean molecular count of

independent species 𝑖. Furthermore, by simply changing the “max” to a “min”, we

can also calculate ⟨�̂�𝑖⟩𝐿
ss. Finally, by replacing the objective function with the final

line of Equation (3.10), we could also calculate bounds on the mean molecular counts

for each dependent species.

3.3.4 Conservatism in the Bounds

The bounds produced by SDP (3.30) (and its variations) may be conservative in the

sense that there is a gap between the quantity of interest ⟨�̂�𝑖⟩ss and the bound ⟨�̂�𝑖⟩𝑈
ss.

There are several sources of this conservatism, but they can all be thought of generally

as an omission of necessary conditions from SDP (3.30). This idea will become more

clear in the following discussion of the two most important sources of conservatism.

Choosing 𝑚 ∈ N

The first necessary condition appearing in SDP (3.30) is the equation A𝜇𝑀 = 0.

Recall from Section 3.2.6 that this equation sets to zero the time derivatives of all

moments up to order 𝑚 ∈ N. However, we know that for any true steady-state

distribution all moments are unchanging with time. Thus, A𝜇𝑀 = 0 enforces only
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a finite subset of an infinite sequence of necessary conditions on the steady-state

moments. By omitting the conditions specifying that the moments with order greater

than 𝑚 must have zero time derivatives, we are enlarging the feasible set of SDP

(3.30), admitting more moment vectors 𝜇 to the competition. This has the potential

to increase the optimal value ⟨�̂�𝑖⟩𝑈
ss of the SDP, leading to conservatism in the bound.

Now, recall that our choice of 𝑚 ∈ N was arbitrary. Given the foregoing argument,

it makes sense to choose 𝑚 as large as possible, reasoning that doing so might lead

to tighter bounds. However, there is a trade-off: a large value of 𝑚 implies that SDP

(3.30) becomes large in terms of both the number of constraints and variables. In

general, larger problems take longer to solve and are more prone to numerical issues.

So there’s a balance to be struck in choosing 𝑚. Our general strategy in what follows

will be to start by choosing a low value of 𝑚 and then increase it as necessary to

improve the quality of the bounds.

Relaxing the Integrality Requirement

Our aim in the Section 3.3.2 was to list necessary conditions for the moments 𝜇 of any

steady-state distribution supported on the discrete set of reachable states 𝒳 ⊂ N�̂� .

However, what we’ve actually done is list necessary conditions for the moments 𝜇 of

any steady-state distribution supported on the polyhedral set

𝒳 ≡

⎧⎪⎨⎪⎩x̂ ∈ R�̂� :
x̂ ≥ 0,

x̃0 + B̃−1B̂(x̂0 − x̂) ≥ 0

⎫⎪⎬⎪⎭ . (3.31)

In particular, the inequalities defining 𝒳 are reflected in LMIs (3.28) and (3.29).

By the construction of 𝒳 , we are guaranteed that 𝒳 is a subset of 𝒳 . This means

that Conditions (3.28) and (3.29) are also necessary for the moments 𝜇 of any steady-

state distribution supported on 𝒳 . That’s good – it means that solving SDP (3.30)

will, in fact, produce valid bounds, as we intended. The downside to having our

necessary conditions based on the superset 𝒳 is that we are including in the feasible

set of SDP (3.30) moment vectors 𝜇 corresponding to nonphysical distributions –
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namely, distributions which assign a nonzero probability to states x̂ ∈ 𝒳 which

imply non-integer molecular counts. This has the potential to introduce undesirable

conservatism into the bounds produced by solving SDP (3.30).

Given this potential for undesirable conservatism in the bounds, one might con-

sider adding further necessary conditions to exclude the nonphysical distributions and

focus attention on the moments of distributions supported on the discrete set 𝒳 . In

principle, this can be done (See Lasserre[42], Chapter 5). However, recall that the

fundamental problem with the CME is that there is usually a very large number of

states x̂ ∈ 𝒳 . If we attempt to add constraints to SDP (3.30) to restrict the sup-

port of the unknown steady-state distribution to 𝒳 , we find that we quickly have

an intractably large number of constraints. So the problem of high dimensionality

that we saw in Section 3.2.4 just manifests itself in a different way. As discussed

previously, the whole point of the moment-based analysis of stochastic chemical ki-

netics is to avoid this problem of high dimensionality. So we will not try to restrict

the support of the unknown steady-state distribution to the discrete set 𝒳 . We will

content ourselves with Necessary Conditions (3.28) and (3.29), thereby considering

the moments of all steady-state distributions supported on the larger set 𝒳 . This

constitutes a relaxation of the integrality requirement. We accept the conservatism

that is introduced through this relaxation as the price of computational tractability.

The SDPs described by Ghusinga et al[24], Kuntz et al[39], and Sakurai et al[56]

also implicitly relax the integrality requirement. However, there is no discussion of

this fact and its implications in those papers.

3.3.5 Scaling

One difficulty with using moments as decision variables in SDP (3.30) is that the

moments of a distribution often differ by orders of magnitude. This can make moment-

based SDPs ill-conditioned, leading to numerical difficulties[39, 18]. These difficulties

can be partially alleviated by appropriately scaling the decision variables. Since this

scaling procedure is a matter of numerics and is not central to the theory of this

chapter, we have deferred it to Appendix B. However, going forward, whenever we
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speak of solving SDP (3.30), it should be understood that we mean the appropriately

scaled version of SDP (3.30). These two SDPs are mathematically equivalent; it’s

just that the scaled version improves the performance of the solvers.

3.4 Mean-Bounding Examples

The previous section established that we can, in fact, calculate theoretically guaran-

teed bounds on the mean molecular counts for each species. However, it remains to

be seen if these bounds are actually useful.

Ideally, the bounds on any given mean molecular count would be equal, in which

case they would tell us the mean value exactly. The second-best scenario is that

the bounds are tight, in the sense that they have only a small gap between them,

bracketing the unknown mean in a relatively small range. What we really don’t want

is for there to be a large gap between the bounds, in which case there is still a lot of

uncertainty surrounding the value of the mean.

In the examples of this section, we will see that the quality of the bounds depends

on the characteristics of the stochastic chemical kinetic system.

3.4.1 Michaelis-Menten

The first example is a variant of the classical Michaelis-Menten system, taken from

Smadbeck and Kaznessis[64].

S + E
𝑐1

GGGGGBFGGGGG

𝑐2
S:E

S:E
𝑐3

GGGGGAP + E

P
𝑐4

GGGGGAS

(3.32)

In that paper, Smadbeck and Kaznessis calculate approximate values of ⟨S⟩ss and

⟨E⟩ss assuming initial molecular counts S = 10, E = 10, S:E = 0, and P = 0, fixed

rate constants 𝑐2 = 𝑐3 = 𝑐4 = 1 s−1, and 𝑐1 values ranging from 10−3 s−1 to 10−2 s−1.
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Figure 3-1: Bounds on the Michaelis-Menten system at steady state. The points
marked with circles and stars each correspond to the solution of an SDP and are
theoretically guaranteed bounds. The lines interpolated between these points are not
guaranteed bounds. They are included just to lead the eye.

We calculated bounds on ⟨S⟩ss and ⟨E⟩ss for these same conditions by repeatedly

solving SDP (3.30) and the corresponding minimization problem, taking 𝑚 = 2. The

results are shown in Figure 3-1. In this case, the bounds are so tight that they

effectively give the quantities ⟨S⟩ss and ⟨𝐸⟩ss for each value of 𝑐1. Increasing the value

of 𝑚 in an effort to obtain tighter bounds was deemed unnecessary.

Figure 3-1 is agreement with Smadbeck and Kaznessis’s Figure 3A. However, note

the difference in what is being plotted: Smadbeck’s Figure 3A provides an estimate

of ⟨S⟩ss and ⟨E⟩ss with no bound on the error, while Figure 3-1 provides guaranteed

bounds on ⟨S⟩ss and ⟨E⟩ss. Thus, Figure 3-1 contains more information.

3.4.2 Reversible Dimerization

The second example is a simple reversible dimerization reaction, also taken from

Smadbeck [64].

2A
𝑐1

GGGGGBFGGGGG

𝑐2
B (3.33)
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Figure 3-2: Bounds on the Reversible Dimerization system at steady state

Smadbeck calculates approximate values of ⟨A⟩ss assuming initial molecular counts

A = 10 and B = 0, a fixed rate constant 𝑐1 = 1 s−1 and 𝑐2 values ranging from

10−3 s−1 to 103 s−1.

We calculated bounds on ⟨A⟩ss for these same conditions by repeatedly solving

SDP (3.30) and the corresponding minimization problem taking 𝑚 = 2. The results

are shown in the top plot of Figure 3-2, along with an analytical solution provided

by McQuarrie[47].

The first thing to notice in this plot is that the bounds do, in fact, enclose the

analytical solution, supporting the validity of our theory.

The second thing to notice is that while the bounds are very tight for large values of

𝑐2, there is a non-negligible gap for small values. In an effort to eliminate this gap, we
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calculated the bounds again, taking 𝑚 = 4. While the bounds did tighten somewhat

for intermediate values of 𝑐2, the gap at the far left of the plot stubbornly persisted,

suggesting that it is attributable to something fundamental to the formulation of SDP

(3.30), and cannot be dealt with by simply increasing 𝑚.

This is indeed the case. The gap in Figure 3-2 is an example of the conservatism

introduced by relaxing the integrality requirement, as discussed in Section 3.3.4. It

is easiest to see this if we examine the limiting case where 𝑐2 = 0. In this limit, there

is no reverse reaction. This means that the reaction system can only be at steady

state if the forward reaction cannot occur. Since the forward reaction involves two

molecules of A, there are exactly two situations when it cannot occur: when there

are 0 molecules of A and when there is 1 molecule of A. Given the stoichiometry

and initial condition for this system, the latter situation is not possible. We can

see this by looking at the Invariant Equation (3.5) for this system, which reduces to

𝑥A + 2𝑥B = 10. Having 1 molecule of A implies 4.5 molecules of B – a nonphysical

noninteger number. This means, if 𝑐2 = 0, the only possible steady-state distribution

for this system is a Dirac distribution where all the probability is concentrated on

the point 𝑥A = 0. This implies perfectly tight bounds: ⟨A⟩𝑈
ss = ⟨A⟩𝐿

ss = 0. However,

because we relaxed the integrality requirement in our construction of SDP (3.30),

the state with 1 molecule of A is also allowed. This means that there is a second

distribution whose moments satisfy all the constraints of SDP (3.30), including the

steady-state constraint Ay = 0, namely the Dirac distribution centered on the point

𝑥A = 1, with corresponding mean ⟨A⟩ss = 1. The feasibility of the moments of this

distribution pushes the upper bound on the mean up to ⟨A⟩𝑈
ss = 1, creating a gap

between the bounds. In this way, relaxing the integrality requirement introduces

conservatism in the bounds. The situation is similar for 𝑐2 > 0, though not amenable

to the sort of analysis we have applied here. The gap vanishes as 𝑐2 → +∞, because,

in this limit, only the reverse reaction is relevant, and the only situation in which the

reverse reaction cannot occur is when there are 0 molecules of B (and 10 molecules

of A).

As suggested in Section 3.3.4, we consider the conservatism introduced through
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relaxing the integrality requirement to be an acceptable price to pay for computational

tractability. However, we recognize that in some cases it may be necessary to reduce

this conservatism, even at the expense of solving a slightly larger SDP. We can do this

by selectively adding LMIs reflecting the integrality requirement to SDP (3.30). For

example, by adding a single LMI to SDP (3.30) and repeating the previous analysis,

we can obtain the tighter bounds shown in the bottom plot of Figure 3-2. The details

of the construction of this LMI can be found in Appendix B.

This discussion of the gap in the bounds and how to deal with it is related to the

discussion of “non-unique stationary distributions” in the paper by Kuntz et al[39].

However, Kuntz describes a gap in the bounds only in the context of solving a Linear

Program (LP), where each decision variable corresponds to a particular reachable

state x ∈ 𝒳 . Thus, his interpretation of the source of the gap and subsequent

solution are quite different from our own. He does not address the possibility that

such a gap could be observed in solving a moment-based SDP.

3.4.3 Schlögl

The third example is the Schlögl model, also taken from Smadbeck and Kaznessis[64].

2X + A
𝑐1

GGGGGBFGGGGG

𝑐2
3X

B
𝑐3

GGGGGBFGGGGG

𝑐4
X

(3.34)

Species A and B are assumed to be present in large quantities and buffered, so that

their counts remain essentially constant with time. This means that X is the only

species of interest. The Schlögl model is a favorite toy problem because its steady-

state distribution for X is bimodal for some parameter values. Furthermore, there

are infinitely many reachable states, so there is no hope of analyzing the problem by

directly solving the CME.

Smadbeck and Kaznessis approximate values of ⟨X⟩ss, assuming 𝑐1𝑥A = 0.15 s−1,

𝑐2 = 1.5×10−3 s−1, 𝑐3𝑥B = 20 s−1, and 𝑐4 ranging from 2 s−1 to 5 s−1. We calculated

bounds on ⟨X⟩ss for these same conditions by repeatedly solving SDP (3.30) and
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the corresponding minimization problem, taking 𝑚 = 2. The resulting bounds were

surprising poor, with a large gap for all but the largest values of 𝑐4. However, we

found that by increasing the value of 𝑚, we could gradually improve the quality of

the bounds. This gradual improvement is shown in Figure 3-3, where we plot the

bounds for 𝑚 = 2, 𝑚 = 6, and 𝑚 = 10. For higher values of 𝑚, the improvement in

the bounds was negligible. At 𝑚 = 16, we began to encounter numerical difficulties.

The bounds associated with 𝑚 = 10 are tight for both high and low values of 𝑐4.

However, there is still a gap from about 𝑐4 = 3 s−1 to 𝑐4 = 4 s−1. Interestingly, this

is roughly the range of 𝑐4 values for which the steady-state distribution is bimodal,

given the assumed values of 𝑐1, 𝑐2 and 𝑐3 (see Appendix B). This might suggest that

the relative difficulty in obtaining tight bounds for this system is attributable to its

capacity to exhibit a bimodal steady-state distribution.

Figure 3-3 is in agreement with Smadbeck and Kaznessis’s Figure 5D. However,

again, it is important to notice the difference in what is being plotted: Smadbeck

and Kaznessis’s Figure 5D provides an estimate of ⟨X⟩ss with no bound on the error,

while Figure 3-3 provides guaranteed bounds on ⟨X⟩ss.

3.4.4 A Larger Example

So far, our examples have been concerned with small toy models from the literature.

The fourth example, shown in Figure 3-4, is one of our own creation, designed to

show that our bounding method can also be successfully applied to larger models

with features that frustrate other methods.

This system has 14 reactions and 10 chemical species. It includes unimolecular

and bimolecular reactions, reversible and irreversible reactions, fast and slow reac-

tions (rate constants given in Appendix B), and a reaction cycle. We assumed initial

molecular counts A = 100, F = 100, and zero for all other species. With this initial

condition, one can calculate (see Appendix B) that the number of reachable states

for this system is 74,816,108,146. So directly solving the CME for this system is in-

tractable. Furthermore, because the presence of both fast and slow reactions, studying

this system using the SSA algorithm (or any of its exact variants) is computationally
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Figure 3-3: Bounds on the Schlögl system at steady state
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Figure 3-4: A larger reaction system

inefficient.

As with the previous examples, we performed a sensitivity study, varying the rate

constant for A → B + C from 𝑐1 = 1 × 10−3 s−1 to 𝑐1 = 1 × 103 s−1, while calculating

bounds on ⟨A⟩ss, ⟨D⟩ss, and ⟨E⟩ss. The bounds were calculated by repeatedly solving

SDP (3.30), taking 𝑚 = 2 and 𝑚 = 4. The results are shown in Figure 3-5.

While there are small gaps in the bounds, on the whole, they are relatively tight,

effectively giving us the desired quantities ⟨A⟩ss, ⟨D⟩ss, and ⟨E⟩ss across the range of

𝑐1 values sampled. Thus, we see that the bounding method is not limited to small toy

models, but can also be successfully applied to a larger reaction system with features

that prevent effective analysis using other methods.

3.5 Variance Bounds

In the previous section, we have demonstrated that we can bound the mean count of

molecules of each species at steady-state. In this section, we show that we can also

bound the variances in each of these counts.
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Figure 3-5: Bounds on the larger reaction system in Figure 3-4 at steady state.
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3.5.1 An Upper-Bounding SDP

A natural starting point in attempting to bound the steady-state variance of species

𝑖 is to replace the objective function of SDP (3.30) with the expression given for 𝜎2
𝑖

in Equation (3.11). Doing so gives us the following optimization problem:

(𝜎2
𝑖 )𝑈

ss ≡ max
𝜇

𝜇2e𝑖
− 𝜇2

e𝑖

s.t. A𝜇𝑀 = 0,

𝜇0 = 1,

M0
𝑛(𝜇) ⪰ 0,

Me𝑗

𝑛−1(𝜇) ⪰ 0, ∀𝑗 ∈ {1, . . . , �̂�},

𝛼𝑘M0
𝑛−1(𝜇) −

�̂�∑︁
𝑗=1

𝛽𝑘,𝑗M
e𝑗

𝑛−1(𝜇) ⪰ 0,

∀𝑘 ∈ {1, . . . , 𝐿}.

(3.35)

By the same logic we applied in Section 3.3.1, the optimal value of Problem (3.35)

is a theoretically guaranteed upper bound on (𝜎2
𝑖 )ss.

However, the question remains as to whether or not we can actually solve Problem

(3.35) efficiently. Recall that the reason we can solve the mean-bounding Problem

(3.30) efficiently is that it is an SDP, with all the nice mathematical properties this

entails. Problem (3.35) is nearly an SDP, but not quite – the objective function is a

nonlinear function of the decision variables. At first, it may seem that this nonlinearity

would frustrate our attempts to solve Problem (3.35) efficiently. However, Problem

(3.35) can be reformulated as an SDP in just two steps.

The first step is to introduce a dummy decision variable 𝑠 and move the nonlin-
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earity to the constraints:

(𝜎2
𝑖 )𝑈

ss = max
𝜇,𝑠

𝑠

s.t. 𝑠 ≤ 𝜇2e𝑖
− 𝜇2

e𝑖

A𝜇𝑀 = 0,

𝜇0 = 1,

M0
𝑛(𝜇) ⪰ 0,

Me𝑗

𝑛−1(𝜇) ⪰ 0, ∀𝑗 ∈ {1, . . . , �̂�},

𝛼𝑘M0
𝑛−1(𝜇) −

�̂�∑︁
𝑗=1

𝛽𝑘,𝑗M
e𝑗

𝑛−1(𝜇) ⪰ 0,

∀𝑘 ∈ {1, . . . , 𝐿}.

(3.36)

Problems (3.36) and (3.35) are equivalent in the sense that they have the same optimal

value.

The second step is based on the following equivalence due to the Schur Comple-

ment Lemma [71]:

𝑠 ≤ 𝜇2e𝑖
− 𝜇2

e𝑖
⇐⇒

⎡⎢⎣ 𝜇2e𝑖
− 𝑠 𝜇e𝑖

𝜇e𝑖
1

⎤⎥⎦ ⪰ 0 (3.37)

The inequality on the right is an LMI. Substituting it into Problem (3.36) in place of
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𝑠 ≤ 𝜇2e𝑖
− 𝜇2

e𝑖
, we obtain an SDP for calculating an upper bound on (𝜎2

𝑖 )ss:

(𝜎2
𝑖 )𝑈

ss = max
𝜇,𝑠

𝑠

s.t.

⎡⎢⎣ 𝜇2e𝑖
− 𝑠 𝜇e𝑖

𝜇e𝑖
1

⎤⎥⎦ ⪰ 0

A𝜇𝑀 = 0,

𝜇0 = 1,

M0
𝑛(𝜇) ⪰ 0,

Me𝑗

𝑛−1(𝜇) ⪰ 0, ∀𝑗 ∈ {1, . . . , �̂�},

𝛼𝑘M0
𝑛−1(𝜇) −

�̂�∑︁
𝑗=1

𝛽𝑘,𝑗M
e𝑗

𝑛−1(𝜇) ⪰ 0,

∀𝑘 ∈ {1, . . . , 𝐿}.

(3.38)

3.5.2 A Lower-Bounding SDP?

In the case of the mean-bounding problem, we were able to convert the SDP for

obtaining the upper bound ⟨�̂�𝑖⟩𝑈
ss into an SDP for obtaining the lower bound ⟨�̂�𝑖⟩𝐿

ss

simply by changing the “max” to a “min”. One might suspect that we could do

something similar with SDP (3.38). However, the minimization version of SDP (3.38)

is meaningless. The reason for this is that the minimization versions of Problems

(3.35) and (3.36) are in general not equivalent. Thus, the argument in moving from

the minimization version of Problem (3.35) to the minimization version of SDP (3.38)

breaks down.

We cannot formulate a single SDP that is equivalent to Problem (3.35), because

the objective function of that problem is concave, and minimizing a concave function

is a nonconvex problem. Sakurai et al[56] point out that we can obtain a relaxed

lower bound on the variance by solving two SDPs successively. However, we will

not pursue this strategy here. We always have the trivial lower bound of (𝜎2
𝑖 )𝐿

ss = 0.

Furthermore, from a practical perspective, an upper bound on the variance (a measure

of uncertainty) seems more useful than a lower bound.
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3.6 Variance-Bounding Examples

We next apply SDP (3.38) to the example models appearing in Section 4.5, bounding

the variance of each species for which we previously bounded the mean. For each

example model, we assume the same initial molecular counts and rate constants as

before.

3.6.1 Michaelis-Menten

Repeatedly solving SDP (3.38) with 𝑚 = 2 for the Michaelis-Menten system (3.32),

we obtain the bounds shown in the top plot of Figure 3-6. The figure also shows the

exact variances obtained by solving the CME for this system. Comparing the bounds

with the exact variances, we see that the bounds are valid but that they are a bit

conservative for intermediate values of 𝑐1.

Repeating the analysis with 𝑚 = 4, we obtain the bounds shown in the bottom

plot of Figure 3-6. These bounds follow the CME-generated variances so closely that

the curves are indistinguishable.

3.6.2 Reversible Dimerization

Repeatedly solving SDP (3.38) with 𝑚 = 2 for the Reversible Dimerization system

(3.33), we obtain the bounds shown in the top plot of Figure 3-7. In this case, we have

an analytical solution for the steady-state variance [47], which we’ve also plotted in

Figure 3-7. This analytical solution makes two things clear: first, the bounds obtained

through SDP (3.38) are, in fact, valid over-estimators of the true variances; second,

the bounds are conservative for intermediate values of 𝑐2.

Repeating the analysis with 𝑚 = 4, we obtain the bounds shown in the bottom

plot of Figure 3-7. These bounds are tighter for the intermediate values of 𝑐2, closely

following the analytical curve. However, notice that a gap persists at the low end of

the 𝑐2 range. This gap can be traced to the conservatism introduced by relaxing the

integrality requirement, just like the gap we saw in Figure 3-2, in bounding the mean

for this system.
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Figure 3-6: Bounds on variances for the Michaelis-Menten system at steady state

98



10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

Figure 3-7: Bounds on variances for the Reversible Dimerization system at steady
state
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3.6.3 Schlögl

Repeatedly solving SDP (3.38) with 𝑚 = 2 for the Schlögl system (3.34), we obtain

the bounds shown in the top plot of Figure 3-8. Repeating the analysis with 𝑚 = 4,

we obtain the tighter bounds shown in the bottom plot of Figure 3-8.

The two bounding curves of Figure 3-8 are consistent with Smadbeck’s Figure

S7.4(b). However, taking the points of Smadbeck’s Figure S7.4(b) generated through

SSA as the true variance values, even the relatively tight bounds in the bottom panel

seem to be rather conservative. In some sense, this isn’t surprising, given that we had

to choose 𝑚 = 10 to obtain reasonably tight bounds on the mean for this system (see

Figure 3-3). This suggests that we would have to use similarly large values of 𝑚 to

obtain reasonably tight bounds on the variance. Unfortunately, when we attempted

to repeat the analysis with 𝑚 = 6, we encountered numerical issues. So, it seems that

this system’s capacity to exhibit a bimodal steady-state distribution makes it difficult

to obtain tight bounds for the variance as well as the mean. All this being said, we

wish to emphasize that while the bounds shown in Figure 3-3 are conservative, they

are still valid, theoretically guaranteed bounds.

3.6.4 A Larger Example

Repeatedly solving SDP (3.38) with 𝑚 = 2 for the larger reaction system in Figure

3-4, we obtain the bounds shown in Figure 3-9. When we attempted to repeat the

analysis with larger values of 𝑚, we encountered numerical difficulties.

3.7 Bounds on Probability

In the previous sections, we’ve seen that we can bound the mean and variance of

the molecular count of each species in the steady-state probability distribution. In

this section, we show that we can also calculate bounds on the probability that the

molecular count of independent species 𝑖 lies in a specific interval, [𝑥min, 𝑥max].
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Figure 3-8: Bounds on variances for the Schlögl system at steady state
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Figure 3-9: Bounds on variances for the larger reaction system in Figure 3-4 at steady
state.
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3.7.1 An Upper Bounding SDP

As with the mean and variance bounds, the key to calculating an upper bound on

the probability that �̂�𝑖 ∈ [𝑥min, 𝑥max] is an SDP:

𝑃ss(�̂�𝑖 ∈[𝑥min, 𝑥max])𝑈 ≡

max
y,z

𝑧0

s.t. Ay𝑀 + Az𝑀 = 0, 𝑦0 + 𝑧0 = 1,

M0
𝑛(y) ⪰ 0, M0

𝑛(z) ⪰ 0

Me𝑗

𝑛−1(y) ⪰ 0, Me𝑗

𝑛−1(z) ⪰ 0, ∀𝑗 ∈ {1, . . . , �̂�},

𝛼𝑘M0
𝑛−1(y) −

�̂�∑︁
𝑗=1

𝛽𝑘,𝑗M
e𝑗

𝑛−1(y) ⪰ 0, ∀𝑘 ∈ {1, . . . , 𝐿},

𝛼𝑘M0
𝑛−1(z) −

�̂�∑︁
𝑗=1

𝛽𝑘,𝑗M
e𝑗

𝑛−1(z) ⪰ 0, ∀𝑘 ∈ {1, . . . , 𝐿},

− M2e𝑖
𝑛−2(z) + (𝑥max + 𝑥min)Me𝑖

𝑛−2(z) − 𝑥min𝑥maxM0
𝑛−2(z) ⪰ 0,

(3.39)

The derivation of SDP (3.39) requires a lengthy explanation and is deferred to Ap-

pendix B.

While SDP (3.39) is certainly more complicated than the SDPs we’ve seen previ-

ously, it is just a variation on the same theme: again we have an equation involving

the A matrix, corresponding to the steady-state condition; again we have the specifi-

cation that the sum of probabilities must equal one; and again we have LMIs reflecting

constraints on the support of the distribution(s). The primary difference is that we

now have two moment vectors y and z, corresponding to two different distributions.

The other new element is the presence of the final LMI, which reflects the interval of

interest [𝑥min, 𝑥max].

To be clear, SDP (3.39) can be used to calculate upper bounds on probabilities only

for an independent species 𝑖 ∈ {1, . . . , �̂�}. In principle, we could derive a similar SDP

for calculating bounds for the dependent species. However, if you want to calculate

a bound for some dependent species 𝑘 ∈ {1, . . . , 𝐿}, it is probably simplest to just

102



choose your independent species differently, so that the species of interest is in that

set. Then, you can use SDP (3.39) without any modification or added complexity.

In the hopes of improving the quality of the bound produced by SDP (3.39), one

might consider adding LMIs to restrict the support of the underlying probability

distribution to the integer values in the interval [𝑥min, 𝑥max]. However, we found that

doing so had only a negligible effect.

3.7.2 A Lower Bounding SDP

One can also derive an SDP for calculating a lower bound on the probability that

�̂�𝑖 ∈ [𝑥min, 𝑥max]. However, our experience with this SDP is that it usually gives a

trivial bound of 𝑃ss(�̂�𝑖 ∈ [𝑥min, 𝑥max])𝐿 = 0 unless the interval [𝑥min, 𝑥max] is very

wide relative to the spread of the true steady-state probability distribution. So it is

of limited practical value.

3.7.3 Bounds on a Histogram

The ability to calculate an upper bound on the probability that the molecular count of

species 𝑖 lies between 𝑥min and 𝑥max is interesting in itself. But by chaining together

several such calculations, we can obtain something even more interesting: upper

bounds on a histogram describing the steady-state probability distribution. We simply

pick a set of intervals [𝑥min
(𝑗), 𝑥max

(𝑗)] and then solve SDP (3.39) for each interval.

The choice of the intervals [𝑥min
(𝑗), 𝑥max

(𝑗)] is arbitrary. However, there are a

few things to keep in mind when making this choice. First and most obviously, we

will want to choose the intervals so that they cover the most probable values of �̂�𝑖.

Analysis of the reaction stoichiometry as well as our bounds on ⟨�̂�𝑖⟩ss and (𝜎2
𝑖 )ss may

be helpful here. Second, the narrower the intervals, the better our bounds will resolve

the features of the unknown probability distribution (e.g., multiple modes). Third,

the unknown probability distribution is nonzero only on nonnegative integer values

of �̂�𝑖. This suggests that we should choose our intervals to be singletons [𝑥(𝑗), 𝑥(𝑗)],

where 𝑥min
(𝑗) = 𝑥max

(𝑗) = 𝑥(𝑗) and each 𝑥(𝑗) is a nonnegative integer molecular count.
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This singleton interval approach makes sense in the case when the range of molecular

counts that we care about is small. However, recall that we have to solve an SDP

for each interval. So, if the range of molecular counts that we care about is relatively

large, having an interval for each count may be impractical, because it requires us to

solve a large number of SDPs. In this case, we will select our intervals so that each

covers several molecular counts (i.e., 𝑥
(𝑗)
min < 𝑥(𝑗)

max). Certainly, we lose some resolution

in doing this, but it may be necessary to maintain computational tractability. In the

following examples, we will use both singleton and non-singleton intervals.

The method that we have described here is related to the linear programming

approach for calculating bounds on marginal distributions described by Kuntz et

al[39]. However, there are fundamental differences between the two methods. Kuntz’s

approach requires enumeration of part of the set of reachable states, and so there are

theoretical concerns about its scalability. In contrast, our method does not require

enumeration of any part of the set of reachable states. Furthermore, to compute an

upper bound on the probability associated with a particular reachable state, Kuntz’s

method requires the solution of an SDP followed by an LP, with ad hoc selection of

several parameters, including the “weight vector”, “state space truncation parameter”,

and the order of the moment used in the LP. In contrast, our method requires the

solution to just one SDP and has no analogous parameters.

3.8 Probability-Bounding Examples

We again revisit each of the example models we’ve seen previously. This time, instead

of varying one of the rate constants, we will fix the rate constants and vary the interval

[𝑥min, 𝑥max], solving SDP (3.39) for each interval. Doing so, we obtain upper bounds

on a histogram for any steady-state probability distribution. We will see that while

these bounds often substantially over-estimate the true histogram, they still give a

reasonable picture of its shape.
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3.8.1 Michaelis-Menten

For the Michaelis-Menten Model (3.32), we assume the same values for the rate

constants and initial counts stated in Section 3.4.1 – the one exception being 𝑐1,

which we now hold fixed at 𝑐1 = 1 s−1. We aim to obtain bounds on the molec-

ular count histogram for species S. Given the stoichiometry of the reaction system

and the initial condition, we see that the molecular count of S can take on at most

11 values, 𝑥S = 0, . . . , 10. Accordingly, we will pick our intervals as the singletons

[0, 0], [1, 1], . . . [10, 10]. Solving SDP (3.39) with 𝑚 = 2 and 𝑚 = 4 for each of these

“intervals” gives the upper bounding histograms shown in Figure 3-10.

For comparison, each of the plots in Figure 3-10 also shows the histogram of 𝑃 (𝑥S)

values for the true steady-state probability distribution, obtained through solving the

CME. For many values of 𝑥S, the bound 𝑃ss(𝑥S)𝑈 greatly exceeds the true probability

𝑃ss(𝑥S) . However, notice that the shape of the upper bounding histogram closely

follows that of the true histogram.

3.8.2 Reversible Dimerization

For the Reversible Dimerization Model (3.33), we assume the same values for the rate

constants and initial counts stated in Section 3.4.2 – the one exception being 𝑐2, which

we now hold fixed at 𝑐2 = 1 s−1. We aim to obtain bounds on the molecular count

histogram for species A. Given the stoichiometry of the reaction system and the initial

condition, we see that the molecular count of A is bounded above by 10 and bounded

below by 0. So again we will pick our intervals as the singletons [0, 0], [1, 1], . . . [10, 10].

Solving SDP (3.39) with 𝑚 = 2 and 𝑚 = 4 for each of these “intervals” gives the

upper bounding histograms shown in Figure 3-11. For comparison, each of the plots

in Figure 3-11 also shows the histogram of 𝑃ss(𝑥A) values for the true steady-state

probability distribution, obtained through solving the CME.

One curious feature of these plots is that for all odd 𝑥𝐴 we have 𝑃ss(𝑥A)𝑈 > 0 while

𝑃ss(𝑥A) = 0. This discrepancy, like the gaps in Figures 3-2 and 3-7, is attributable

to relaxing the integrality requirement. A simple analysis of the stoichiometry of the
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Figure 3-10: Bounds on a histogram for the Michaelis-Menten System at steady state
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Figure 3-11: Bounds on a histogram for the Reversible Dimerization System at steady
state

reaction system makes it clear that it is not actually possible to have odd counts

of A molecules, given the initial condition. So one could reasonably just skip over

solving SDP (3.39) for these “intervals”, knowing a priori that the upper bound on

probability is zero. However, we don’t do that here just to be clear that this sort of

parity analysis is not a built-in feature of SDP (3.39).

This parity issue aside, as with the previous example, the shape of the bounding

histogram closely follows that of the true histogram.
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Figure 3-12: Bounds on a histogram for the Schlögl System at steady state and
relative probabilities for the true distribution. See Appendix B for an explanation of
how the relative probabilities were calculated.

3.8.3 Schlögl

For the Schlögl System (3.34), we assume the same values for the rate constants and

initial counts stated in Section 3.4.3 – the one exception being 𝑐4, which we now hold

fixed at 𝑐4 = 3.5 s−1. We aim to obtain bounds on the molecular count histogram

for species X. Analyzing the reaction system, we see that there is no upper bound on

the molecular count of X. However, we see from Figure 3-3 that with 𝑐4 = 3.5 s−1,

the mean ⟨X⟩ is around 40. Accordingly, we will construct a bounding histogram

from 𝑥X = 0 to 𝑥X = 99, hoping that this range will be large enough to capture the

relevant features of the distribution. In principle, we could use singleton intervals

[0, 0], [1, 1], . . . , [99, 99] to obtain the bounding histogram, much as we did for the

previous two examples. However, this would require us to solve 100 SDPs. It could

be done, but the relatively large molecular counts of this reaction system make it

better suited to using non-singleton intervals. In particular, we will use the intervals

[0, 4], [5, 9], . . . , [95, 99], so that we need to solve only 20 SDPs. Solving SDP (3.39)

with 𝑚 = 2 for each of these intervals gives the upper bounding histogram shown in

Figure 3-12. When we attempted to construct a similar bounding histogram using

𝑚 = 4, we encountered numerical difficulties.
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Figure 3-13: Bounds on a histogram for the Schlögl System at steady state

The upper bounding histogram we see in Figure 3-12 has a distinctly different

character from those we saw in our previous two examples. In particular, it is multi-

modal. This is interesting because the true steady-state probability histogram for the

Schlögl model with the given parameter values is also multi-modal (see Figure 3-12)

.

Moreover, if we increase 𝑐4 to 5 s−1, and repeat the analysis, we obtain a unimodal

upper bounding histogram; and the true steady state histogram associated with this

parameter value is also unimodal (see Figure 3-13). This suggests that the upper

bounding histogram can serve as an indicator of multi-modality; for each peak in the

true steady state distribution, there is a corresponding peak in the upper bounding

histogram.

This is an intriguing idea. However, we must point out that it has its limitations.

In particular, notice that the central peak of the upper bounding histogram in Figure

3-12 has no corresponding peak in true steady-state histogram. This extra peak

seems to be an artifact of our bounding method, with no connection to the true

distribution. Thus, while the upper bounding histogram can be used as an indicator

of multi-modality, it may over-estimate the number of modes.
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Figure 3-14: Bounds on a histogram for the larger reaction system in Figure 3-4 at
steady state.

3.8.4 Larger Example

For the larger reaction system in Figure 3-4, we assume the same values for the rate

constants and initial counts stated in Section 3.4.4 – the one exception being 𝑐1, which

we now hold fixed at 𝑐1 = 1 s−1. We aim to obtain bounds on the molecular count

histogram for species A. From Figure 3-5, the mean ⟨A⟩ is around 24. Accordingly, we

will pick as intervals [0, 2], [3, 5], . . . , [57, 59], hoping that these 20 intervals will cover a

large enough range to capture the relevant features of the distribution. Solving SDP

(3.39) with 𝑚 = 2 for each of these intervals gives the upper bounding histogram

shown in Figure 3-14. When we attempted to obtain tighter bounds by repeating the

analysis with 𝑚 = 4, we encountered numerical difficulties.

Because of the complexity of the reaction system, we don’t know the true steady-

state distribution for the count of A molecules. However, using Figure 3-14, we may

speculate that it is unimodal and centered around 𝑥A ≈ 24.

3.9 Other Probability Bounds

The previous two sections focused on our ability to bound the probability that the

molecular count of independent species 𝑖 lies in a specific interval [𝑥min, 𝑥max]. How-
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ever, more generally, it is possible to bound the probability that the vector of molec-

ular counts X̂ lies in any basic semi-algebraic set, i.e., a set of the form

{x̂ ∈ R�̂� : 𝑔𝑗(x̂) ≥ 0, 𝑗 = 1, . . . , 𝐾}, (3.40)

where each 𝑔𝑗(·) for 𝑗 = 1, . . . , 𝐾 is a polynomial in x̂. The interval {x̂ ∈ R�̂� :

�̂�𝑖 ∈ [𝑥min, 𝑥max]} is merely a special case of this type of set, as it can be written

equivalently as {x̂ ∈ R�̂� : �̂�𝑖 − 𝑥min ≥ 0, 𝑥max − �̂�𝑖 ≥ 0}. Basic semi-algebraic sets

can also be used to describe polyhedra, discs, ellipses, and certain nonconvex and

disconnected sets. For example, they can be used to describe the sets corresponding

to the statements “the molecular counts of species A and B together do not exceed

10” or “the molecular count of species A is at least twice the molecular count of

species B squared”. It is not immediately obvious that bounding the probability of

such events would be useful – this is largely why we chose to focus on the interval

case – but it could be done.

The SDP for calculating an upper bound on the probability that the steady-state

distribution assigns to an arbitrary basic semi-algebraic set is just a variation of SDP

(3.39). Inspecting SDP (3.39), it is clear that the set of interest (in this case the

interval {x̂ ∈ R�̂� : �̂�𝑖 ∈ [𝑥min, 𝑥max]}) is reflected in the final LMI. To bound the

probability associated with an arbitrary basic semi-algebraic set, we have to derive

the LMIs corresponding to that set, and substitute them in place of the last LMI in

SDP (3.39). An explanation of the derivation of these LMIs is beyond the scope of

this chapter. However, Appendix B gives some insight. Further details can be found

in Chapter 3 of Lasserre’s book[42].

3.10 Size of the Semidefinite Programs

In this section, we tabulate the size of each of the SDPs considered in the previous

examples.

The factors determining the size of the SDP include:
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∙ the number of independent molecular species, �̂� ;

∙ the order of the highest-order reaction occuring in the system, 𝑞;

∙ the order of the highest-order moment whose time derivative we are setting

equal to zero, 𝑚;

∙ and the quantity being bounded (i.e., mean, variance, or bound on probability).

Our measures of the SDP size will include:

∙ the order of the highest-order moment that appears as a decision variable, ℎ;

∙ the number of decision variables, 𝑑;

∙ the number of linear constraints, 𝑙;

∙ the dimension of the largest matrix appearing in an LMI, 𝐿.

The connection between the factors determining the size and the measures ℎ, 𝑑,

𝑙, and 𝐿, requires some explanation and is deferred to Appendix B.

3.11 Conclusion

The proposed bounding method is a fundamentally different approach to the problem

of characterizing steady-state distributions in stochastic chemical kinetic systems. In

this chapter, it has been applied to calculate bounds on the mean count of molecules

of each species, variances in these counts, and the probability that the count lies in

a given interval – leading to bounding histograms. These bounds are mathemati-

cally rigorous and based on no approximations or unprovable assumptions about the

underlying probability distribution. This sets the bounding method apart from the

various moment closure schemes in the literature, which provide only estimates of the

quantities of interest, with no bounds on the error.

Admittedly, bounds on a quantity of interest are less useful than the value of

the quantity itself. However, guaranteed bounds are arguably more useful than an
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Model �̂� 𝑞 Bounded Quantity 𝑚 ℎ 𝑑 𝑙 𝐿

2 2

⟨�̂�𝑖⟩ss
2 4 15 6 6
4 6 28 15 10

Michaelis- (𝜎2
𝑖 )ss

2 4 16 6 6
Menten 4 6 29 15 10

𝑃ss(�̂�𝑖 ∈ [𝑥min, 𝑥max]) 2 4 30 6 6
4 6 56 15 10

1 2

⟨�̂�𝑖⟩ss
2 4 5 3 3
4 6 7 5 4

Reversible (𝜎2
𝑖 )ss

2 4 6 3 3
Dimerization 4 6 8 5 4

𝑃ss(�̂�𝑖 ∈ [𝑥min, 𝑥max]) 2 4 10 3 3
4 6 14 5 4

Schlögl 1 3

⟨�̂�𝑖⟩ss

2 4 5 3 3
6 8 9 7 5
10 12 13 11 7

(𝜎2
𝑖 )ss

2 4 6 3 3
4 6 8 5 4

𝑃ss(�̂�𝑖 ∈ [𝑥min, 𝑥max]) 2 4 10 3 3
4 6 14 5 4

7 2

⟨�̂�𝑖⟩ss
2 4 330 36 36
4 6 1716 330 120

Larger (𝜎2
𝑖 )ss

2 4 331 36 36
Example 4 6 1717 330 120

𝑃ss(�̂�𝑖 ∈ [𝑥min, 𝑥max]) 2 4 660 36 36
4 6 3432 330 120

Table 3.1: Sizes of the SDPs solved in the examples of this chapter.

estimate with unbounded error. Furthermore, as we saw in the case of several of the

mean-bounding examples, the bounds can be so tight that they effectively give the

quantity of interest.

The bounding method has its limitations. First, the bounds are not always as tight

as we would like for them to be. In principle, we could tighten them by increasing

𝑚 (increasing the number of moments whose time derivatives we are setting equal to

zero), or by selectively adding LMIs to partially enforce the integrality requirement.

However, both of these strategies increase the size of the SDP that must be solved.

We then confront the bounding method’s second major limitation: while SDPs in gen-

eral have nice theoretical properties, something about the structure of moment-based
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SDPs specifically seems to make them numerically ill-conditioned. This limits the

size of the systems that the bounding method can handle, with current SDP solver

technology. We hope that continued refinement of this technology (or perhaps devel-

opment of a solver specialized for moment-based SDPs) will extend the applicability

of the bounding method to ever larger systems.

In summary, we believe that the bounding method described in this chapter is

an interesting theoretical addition to the wide array of tools available for analyzing

stochastic chemical kinetic systems. We have demonstrated its potential by applying

it to a nontrivial reaction system with over 74 billion states. However, there are

some numerical issues that need to be worked out before the bounding method can

be reliably applied to larger systems of practical importance.

While this chapter has been concerned with applying the bounding method to

steady-state distributions, it can also be extended to dynamic distributions. This

extension will be the subject of Chapter 4.

3.12 Implementation Details

All numerical examples in this chapter were computed on a 64-bit Dell Precision

T3610 workstation with a 3.70 GHz Intel Xeon CPU. In each example, CVX [28]

was used to model the SDP, using the default tolerance (i.e. “precision”) settings.

SeDuMi [66] was used as the underlying solver.
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Chapter 4

Dynamic Bounds on Stochastic

Chemical Kinetic Systems Using

Semidefinite Programming

The contents of this chapter were published as a peer-reviewed paper [15] in the

Journal of Chemical Physics.

4.1 Introduction

In Chapter 3, we showed that the closure problem of stochastic chemical kinetics

can be partially overcome using moment-based semidefinite programs (SDPs). In

particular, we showed that moment-based SDPs can be used to calculate rigorous

bounds on various descriptions of the stochastic chemical kinetic system’s stationary

distribution(s) – for example, mean molecular counts, variances in these counts, and

so on. In this chapter, we show that these ideas can be extended to the corresponding

dynamic problem, calculating time-varying bounds on the same descriptions.
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4.2 Mathematical Background

This section is used primarily to introduce the notation that will be used in Sections

4.3 - 4.8. Many of the ideas contained herein are similar to the corresponding section

of Chapter 3. However, there are some key differences, most notably in our handling

of the invariants, which foreshadow developments later in the chapter.

4.2.1 Mathematical Notation

In this chapter, the symbols N, Z, R will be used to represent the natural numbers,

integers, and real numbers, respectively. For notational convenience, we will adopt

the definition of N that includes 0. We will use angular brackets “⟨·⟩” to represent

an “expected value” or mean of a random variable. Vectors and matrices will be

represented with bold symbols. The vector e𝑖 = (0, . . . , 1, . . . 0) is the 𝑖th coordinate

vector, in which all components are zero, except the 𝑖th component, which is 1. The

interpretations of all other symbols should be clear from the context in which they

appear.

4.2.2 Stochastic Chemical Kinetics Notation

As in Chapter 3, we will let 𝑁 ∈ N denote the number of distinct chemical species

in our reaction system, and let 𝑅 ∈ N denote the number of reactions. Furthermore,

we will model the state of the system at time 𝑡 with the random vector X(𝑡) =

(𝑋1(𝑡), . . . , 𝑋𝑁(𝑡)) ∈ N𝑁 , where 𝑋𝑖(𝑡) ≥ 0 is the count of molecules of species 𝑖

present. The vector s𝑟 ∈ Z𝑁 will contain the stoichiometric coefficients for reaction

𝑟 ∈ {1, . . . , 𝑅}. Concatenating these vectors together gives the stoichiometry matrix

S ≡ [s1 . . . s𝑅] ∈ Z𝑁×𝑅. This stoichiometric matrix together with the initial state of

the system X(0) ≡ x0 ∈ N𝑁 defines the set of all reachable states:

𝒳 ≡

⎧⎪⎨⎪⎩x ∈ N𝑁 :
x = x0 + Sy,

x ≥ 0, y ∈ N𝑅

⎫⎪⎬⎪⎭ . (4.1)
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4.2.3 Invariants and Independent Species

Let the vectors {b1, . . . , b𝐿} ⊂ R𝑁 form a basis for the left null space of the sto-

ichiometry matrix S. Each vector b𝑗 corresponds to an invariant of the reaction

system[20]. In particular,

bT
𝑗 X(𝑡) = 𝑓𝑗, ∀𝑗 ∈ {1, . . . , 𝐿}, ∀𝑡 ≥ 0, (4.2)

where each 𝑓𝑗 ∈ R is a constant which we will call the value of the 𝑗th invariant.

This is a small but significant deviation from Chapter 3, where Equation (4.2) was

written not in terms of invariant values but in terms of the initial state X(0). In

what follows, we will assume only that the invariant values {𝑓1, . . . , 𝑓𝐿} are known.

Precise knowledge of the initial state X(0) is unnecessary. Of course, knowledge of

X(0) might be used to calculate the invariant values {𝑓1, . . . , 𝑓𝐿}, via Equation (4.2).

However, the definition of the invariants does not depend explicitly on X(0). This

has some interesting implications regarding uncertainty in the initial state, which will

be explored further in Section 4.8.

If we set f ≡ (𝑓1, . . . , 𝑓𝐿), and

B ≡

⎡⎢⎢⎢⎢⎢⎣
bT

1
...

bT
𝐿

⎤⎥⎥⎥⎥⎥⎦ ∈ R𝐿×𝑁 , (4.3)

then Equation (4.2) can be expressed concisely as

BX(𝑡) = f , ∀𝑡 ≥ 0. (4.4)

These equations imply that the set of reachable states 𝒳 is contained in an affine

subspace, i.e., that 𝒳 ⊂ {x ∈ R𝑛 : Bx = f}. Furthermore, they imply that not

all molecular counts 𝑋1, . . . , 𝑋𝑁 can vary independently. In particular, following the
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same basic idea of Chapter 3, we can write

X̃(𝑡) = B̃−1f − B̃−1B̂X̂(𝑡), ∀𝑡 ≥ 0, (4.5)

where B̃ ∈ R𝐿×𝐿 is a matrix obtained by concatenating 𝐿 linearly independent

columns of B, and the matrix B̂ ∈ R𝐿×�̂� is obtained by concatenating the remaining

𝑁 − 𝐿 ≡ �̂� columns. Furthermore, the vector X̃(𝑡) ∈ N𝐿 consists of the components

of X(𝑡) corresponding to the columns of B̃, and, similarly, X̂(𝑡) ∈ N�̂� consists of the

components of X(𝑡) corresponding to the columns of B̂. Equation (4.5) allows us to

treat the components represented in the vector X̂ as the “independent species” and

the components represented in the vector X̃ as the “dependent species”.

4.2.4 A Reduced State Space

Since the molecular counts of the independent species determine the molecular counts

of the dependent species through Equation (4.5), each full-dimensional reachable state

x ∈ 𝒳 ⊂ N𝑁 is equivalent to a reduced reachable state, x̂ ∈ N�̂� , which specifies only

the molecular counts of the independent species. We will represent the set of all these

reduced reachable states as 𝒳 ⊂ N�̂� .

We know that the molecular counts of the independent species must be nonneg-

ative, so for any x̂ ∈ 𝒳 , we must have x̂ ≥ 0. Furthermore, we know that the

molecular counts of the dependent species must be nonnegative. By Equation (4.5),

this implies B̃−1f − B̃−1B̂x̂ ≥ 0. It follows that the set of reduced reachable states

𝒳 must be contained in the following polyhedral set:

𝒳 ≡

⎧⎪⎨⎪⎩x̂ ∈ R�̂� :
x̂ ≥ 0,

B̃−1f − B̃−1B̂x̂ ≥ 0

⎫⎪⎬⎪⎭ . (4.6)

For the sake of brevity, in what follows, we will often loosely refer to the “state” of

the system, meaning the “reduced reachable state”, x̂ ∈ 𝒳 . If we are instead talking

about the full-dimensional state x ∈ 𝒳 , this will be clear from the context.
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4.2.5 The Chemical Master Equation

As described in Chapter 3, we assign a probability Pr(X̂(𝑡) = x̂, 𝑡) ≡ 𝑃 (x̂, 𝑡) to each

of the reachable states x̂ ∈ 𝒳 . Taken together, this collection of probability values

constitutes a probability distribution 𝑃 (·, 𝑡) supported on the set of reachable states

𝒳 . This distribution changes over time according to the chemical master equation

(CME):
𝑑𝑃

𝑑𝑡
(x̂, 𝑡) =

𝑅∑︁
𝑟=1

[𝑃 (x̂ − ŝ𝑟, 𝑡)𝑎𝑟(x̂−ŝ𝑟) − 𝑃 (x̂, 𝑡)𝑎𝑟(x̂)],

∀x̂ ∈ 𝒳 ,

(4.7)

where ŝ𝑟 ∈ Z�̂� is the vector obtained by selecting only the components of the vector

s𝑟 ∈ Z𝑁 corresponding to the independent species, and 𝑎𝑟 is the “propensity function”

of reaction 𝑟 (see Higham[31] and Gillespie[26] for details). In the general case, the

propensity functions depend on all molecular counts, and are thus often written as

a function of the full-dimensional vector x ∈ N𝑁 . However, since the dependent

species can be expressed in terms of the independent species via x̃ = B̃−1f − B̃−1B̂x̂,

the propensity functions can be considered as functions of the independent species

x̂ ∈ N�̂� alone. In this chapter, we consider only the case of mass-action kinetics, which

implies that the propensity functions are polynomials of x̂. In principle, our method

can handle polynomials of arbitrarily high order (and even rational functions, if we

extend the results of Kuntz et al[39]), but we focus on the physically important special

case of second-order polynomials, assuming reactions requiring at most bimolecular

collisions.

If we specify an initial probability distribution 𝑃 (·, 0), the CME determines all

future probability distributions 𝑃 (·, 𝑡) for 𝑡 > 0. Often this initial distribution is

assumed to be a Dirac distribution, 𝑃 (·, 0) = 𝛿x̂0 , where all of the probability is

concentrated on a single state x̂0 ∈ 𝒳 . However, in principle, the initial distribution

could be supported on any subset of 𝒳 .

As described by several authors[49, 72], the CME can also be expressed as a linear
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time-invariant ordinary differential equation (LTI ODE):

𝑑p
𝑑𝑡

(𝑡) = Gp(𝑡), (4.8)

where p is a vector specifying the probability for each state x̂ ∈ 𝒳 , and G is the

time-invariant “infinitesimal generator” matrix describing how probability flows from

one state to another. Conceptually simple as this equation is, it is usually too large

to compute a numerical solution.

4.2.6 Moments in Stochastic Chemical Kinetics

The probability distribution 𝑃 (·, 𝑡) can be characterized by its moments, defined as

𝜇j(𝑡) ≡
∑︁
x̂∈𝒳

x̂j𝑃 (x̂, 𝑡), (4.9)

for any multi-index j = (𝑗1, . . . , 𝑗�̂�) ∈ N�̂� , where the sum is over the set 𝒳 of all

reachable states, and x̂j = ∏︀�̂�
𝑘=1 �̂�𝑗𝑘

𝑘 is a monomial. The order of the moment 𝜇j is

defined as the sum |j| ≡ ∑︀�̂�
𝑘=1 𝑗𝑘. Notice that 𝜇0(𝑡) = 1 for all times 𝑡.

The first-order moment 𝜇e𝑖
(𝑡) is the mean molecular count for independent species

𝑖 ∈ {1, . . . , �̂�} at time 𝑡:

𝜇e𝑖
(𝑡) ≡

∑︁
x̂∈𝒳

x̂e𝑖𝑃 (x̂, 𝑡) =
∑︁
x̂∈𝒳

�̂�𝑖𝑃 (x̂, 𝑡) = ⟨�̂�𝑖(𝑡)⟩. (4.10)

Furthermore, if we let 𝛽𝑘,𝑗 denote the element in the 𝑘th row and 𝑗th column of the

matrix B̃−1B̂, and 𝛼𝑘 equal the 𝑘th component of the vector B̃−1f , then Equation

(4.5) allows us to express the mean molecular count for each dependent species 𝑘 ∈
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{1, . . . , 𝐿}:

⟨�̃�𝑘(𝑡)⟩ =
∑︁
x̂∈𝒳

�̃�𝑘𝑃 (x̂, 𝑡),

=
∑︁
x̂∈𝒳

eT
𝑘

(︁
B̃−1f − B̃−1B̂x̂

)︁
𝑃 (x̂, 𝑡),

=
∑︁
x̂∈𝒳

⎛⎝𝛼𝑘 −
�̂�∑︁

𝑗=1
𝛽𝑘,𝑗�̂�𝑗

⎞⎠𝑃 (x̂, 𝑡),

= 𝛼𝑘 −
�̂�∑︁

𝑗=1
𝛽𝑘,𝑗𝜇e𝑗

(𝑡).

(4.11)

As for the second-order moments, we see that 𝜇e𝑖
(𝑡) and 𝜇2e𝑖

(𝑡) can be used

together to compute the variance in the count of molecules of independent species 𝑖

at time 𝑡:

𝜎2
𝑖 (𝑡) ≡ ⟨�̂�2

𝑖 (𝑡)⟩ − ⟨�̂�𝑖(𝑡)⟩2 = 𝜇2e𝑖
(𝑡) − 𝜇2

e𝑖
(𝑡). (4.12)

4.2.7 The Closure Problem

As described by several authors[64, 65, 25], the CME can be used to derive a system of

linear ordinary differential equations describing how the moments of the distribution

𝑃 (·, 𝑡) change over time. For reaction systems containing at most unimolecular (i.e.,

first-order) reactions, this equation can be written as

𝑑𝜇𝐿

𝑑𝑡
(𝑡) = A𝐿𝜇𝐿(𝑡) (4.13)

where 𝜇𝐿(𝑡) is a vector of “low-order” moments up to some arbitrary order 𝑚 ∈ N,

and A𝐿 is a constant square matrix of appropriate dimension. This simple ODE poses

no problem. However, for systems in which the highest order reaction is order 𝑞 > 1,

the ODE becomes
𝑑𝜇𝐿

𝑑𝑡
(𝑡) = A𝐿𝜇𝐿(𝑡) + A𝐻𝜇𝐻(𝑡), (4.14)

where 𝜇𝐻(𝑡) is a vector of “high-order” moments, order 𝑚 + 1 through 𝑚 + 𝑞 −

1 ≡ 𝑀 ; and A𝐻 is an appropriately sized constant matrix, usually non-square. In

the physically important special case where the reaction system contains at most
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bimolecular reactions (i.e., 𝑞 = 2), the vector 𝜇𝐻(𝑡) contains only moments of order

𝑚 + 1 = 𝑀 . What Equation (4.14) expresses is that the time derivatives of the

low-order moments depend not only on the values of the low-order moments but also

on the values of the high-order moments – which are themselves changing in time.

This is the case no matter what value of 𝑚 we pick as our arbitrary cut-off of what

to consider a “low-order” moment. It is unclear how to solve such a dynamic system.

This is the infamous “closure problem”.

4.3 Bounds on Dynamic Systems

In this section, we describe the main contribution of this chapter: a method for

calculating time-varying bounds on various quantities for stochastic chemical kinetic

systems. This method is an extension of our previous work on calculating steady-

state bounds for such systems[14], and some similarities will be apparent. However,

considering dynamics adds an element of complexity not found in our Chapter 3.

4.3.1 The Paradigm

Suppose that we have a generic stochastic chemical kinetic system, characterized by

a stoichiometry matrix S ∈ Z𝑁×𝑅 and a vector of rate constants c ∈ R𝑅. Assume

that there is at least one reaction with order greater than one, so that this system

exhibits the closure problem when subjected to a moment analysis. Suppose that we

have analyzed S to construct an invariant matrix B ∈ R𝐿×𝑁 , as described in Section

4.2.3, and that we know the associated invariant values f ∈ R𝐿. Suppose further

that have identified the �̂� = 𝑁 − 𝐿 chemical species we wish to treat as independent

and constructed the matrices B̂ ∈ R𝐿×�̂� and B̃ ∈ R𝐿×𝐿. Finally, suppose that we

have chosen a value of 𝑚 ∈ N and constructed the matrices A𝐿 and A𝐻 described

in Section 4.2.7. We are interested in analyzing the properties of the probability

distribution describing the stochastic chemical kinetic system at a particular time 𝑇 .

Consider the problem of bounding ⟨�̂�𝑖(𝑇 )⟩, the mean count of molecules of inde-

pendent species 𝑖 at time 𝑇 . What we’d like to do is calculate two numbers ⟨�̂�𝑖(𝑇 )⟩𝐿
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and ⟨�̂�𝑖(𝑇 )⟩𝑈 such that

⟨�̂�𝑖(𝑇 )⟩𝐿 ≤ ⟨�̂�𝑖(𝑇 )⟩ ≤ ⟨�̂�𝑖(𝑇 )⟩𝑈 (4.15)

is guaranteed.

First, let us focus on the upper bound, ⟨�̂�𝑖(𝑇 )⟩𝑈 . To calculate this bound, we will

write down several mathematical conditions that the moments 𝜇(𝑇 ) of the probability

distribution 𝑃 (·, 𝑇 ) must necessarily satisfy. We will then optimize over all of vectors

�̃� that satisfy these necessary conditions, searching for that vector which maximizes

�̃�e𝑖
(𝑇 ), the expression corresponding to the mean molecular count of independent

species 𝑖 (see Equation (4.10)). This optimization can be stated slightly more formally,

but still rather abstractly, as

⟨�̂�𝑖(𝑇 )⟩𝑈 ≡ max
�̃�(𝑇 )

�̃�e𝑖
(𝑇 )

s.t. �̃�(𝑇 ) satisfies necessary

moment conditions at time 𝑇.

(4.16)

Note that we are making a distinction between the true moment vector 𝜇(𝑇 ) at time

𝑇 , and the decision variable �̃�(𝑇 ), which is a proxy for 𝜇(𝑇 ). By construction, the

true moment vector 𝜇(𝑇 ) is a feasible point for this optimization problem. This

implies that the problem’s optimal value ⟨�̂�𝑖(𝑇 )⟩𝑈 is guaranteed to be an upper

bound on 𝜇e𝑖
(𝑇 ) = ⟨�̂�𝑖(𝑇 )⟩, the true mean molecular count of species 𝑖 at time 𝑇 .

Now, whether or not we can actually solve this problem remains to be seen. The

sole point of this section is a theoretical one: if we can solve the abstract optimization

problem above, we would have our desired upper bound.

Notice that the above reasoning is valid whether �̃�(𝑇 ) and 𝜇(𝑇 ) are considered

to be infinite sequences or vectors containing only finitely many moments. However,

for practical computations, we must work with finite vectors. So, going forward,

we will specify that �̃�(𝑇 ) contains only those moments up to order 2𝑛 ∈ N, where

𝑛 = ⌈𝑀
2 ⌉. The reason for this choice of 𝑛 is explained in detail in Chapter 3. Roughly

speaking, it ensures that we are explicitly representing enough moments to express
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the dynamics described by Equation (4.14).

4.3.2 Necessary Moment Conditions

What exactly are the necessary moment conditions appearing in Problem (4.16)?

First, we must have that the total probability is equal to one:

𝜇0(𝑇 ) = 1, (4.17)

Second, as explained in Chapter 3, the fact that the distribution 𝑃 (·, 𝑇 ) is sup-

ported on the set 𝒳 ⊂ 𝒳 implies that its moments 𝜇(𝑇 ) must satisfy a set of linear

matrix inequalities (LMIs):

M0
𝑛(𝜇(𝑇 )) ⪰ 0, (4.18)

Me𝑗

𝑛−1(𝜇(𝑇 )) ⪰ 0, ∀𝑗 ∈ {1, . . . , �̂�}, (4.19)

𝛼𝑘M0
𝑛−1(𝜇(𝑇 )) −

�̂�∑︁
𝑗=1

𝛽𝑘,𝑗M
e𝑗

𝑛−1(𝜇(𝑇 )) ⪰ 0,

∀𝑘 ∈ {1, . . . , 𝐿}.

(4.20)

The exact definitions of the matrices M0
𝑛(𝜇(𝑇 )), M0

𝑛−1(𝜇(𝑇 )), and Me𝑗

𝑛−1(𝜇(𝑇 )) can

be found in Appendix B, but are unimportant for the present discussion. What

is important is that these matrices are symmetric and linear with respect to their

arguments. Each LMI simply asserts that the matrices on the left-hand side of the

“⪰” must be positive semidefinite (i.e., have all nonnegative eigenvalues).

The set of vectors satisfying LMIs (4.18)-(4.20) is a mathematical cone. To sim-

plify the notation in what follows, will represent this cone concisely as 𝐶𝑛(𝛼,𝛽).

Thus,

𝜇(𝑇 ) ∈ 𝐶𝑛(𝛼,𝛽) (4.21)

is equivalent to LMIs (4.18)-(4.20).

Necessary Conditions (4.17) and (4.21) are notably lacking any information about
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the dynamics of the system. To obtain necessary conditions implied by the dynamics,

we make use of Equation (4.14), which holds for all times 𝑡. Suppose that we pick an

arbitrary 𝜌 ∈ R, multiply both sides of Equation (4.14) by 𝑒𝜌(𝑇 −𝑡), and then integrate

from 𝑡 = 0 to 𝑡 = 𝑇 :

∫︁ 𝑇

0
𝑒𝜌(𝑇 −𝑡) 𝑑𝜇𝐿

𝑑𝑡
(𝑡)𝑑𝑡

=
∫︁ 𝑇

0
𝑒𝜌(𝑇 −𝑡)(A𝐿𝜇𝐿(𝑡) + A𝐻𝜇𝐻(𝑡))𝑑𝑡.

(4.22)

Applying integration by parts to the left-hand side, we obtain

∫︁ 𝑇

0
𝑒𝜌(𝑇 −𝑡) 𝑑𝜇𝐿

𝑑𝑡
(𝑡)𝑑𝑡

= 𝑒𝜌(𝑇 −𝑡)𝜇𝐿(𝑡)|𝑇0 −
∫︁ 𝑇

0
(−𝜌)𝑒𝜌(𝑇 −𝑡)𝜇𝐿(𝑡)𝑑𝑡,

= 𝜇𝐿(𝑇 ) − 𝑒𝜌𝑇𝜇𝐿(0) + 𝜌
∫︁ 𝑇

0
𝑒𝜌(𝑇 −𝑡)𝜇𝐿(𝑡)𝑑𝑡.

(4.23)

We presume that the initial values of the low-order moments 𝜇𝐿(0) can be easily

computed from the initial distribution 𝑃 (·, 0) via Equation (4.9). This is true, for

example, if the initial molecular count is known exactly – which corresponds to an

initial probability distribution 𝑃 (·, 0) where all the probability is concentrated on a

single state x̂0, i.e., the Dirac distribution 𝛿x̂0 . However, it may also be the case that

we don’t know the initial molecular count exactly. In this case, our initial probability

distribution 𝑃 (·, 0) will be supported on several reachable states x̂ ∈ 𝒳 . Our method

can handle this situation, as well, as long as we can compute the moments 𝜇𝐿(0) (see

Section 4.8).

For the right-hand side, we can make use of the fact that the integral is a linear

operator to obtain

A𝐿

∫︁ 𝑇

0
𝑒𝜌(𝑇 −𝑡)𝜇𝐿(𝑡)𝑑𝑡 + A𝐻

∫︁ 𝑇

0
𝑒𝜌(𝑇 −𝑡)𝜇𝐻(𝑡)𝑑𝑡. (4.24)

If we define the generalized moments

𝑧
(𝜌)
j ≡

∫︁ 𝑇

0
𝑒𝜌(𝑇 −𝑡)𝜇j(𝑡)𝑑𝑡, ∀j ∈ N�̂� , (4.25)
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we can express Equation (4.22) concisely as

𝜇𝐿(𝑇 ) − 𝑒𝜌𝑇𝜇𝐿(0) + 𝜌z(𝜌)
𝐿 = A𝐿z(𝜌)

𝐿 + A𝐻z(𝜌)
𝐻 . (4.26)

Rearranging, we obtain the following necessary condition on 𝜇(𝑇 ):

𝜇𝐿(𝑇 ) − 𝑒𝜌𝑇𝜇𝐿(0) = (A𝐿 − 𝜌I)z(𝜌)
𝐿 + A𝐻z(𝜌)

𝐻 . (4.27)

Now, recall that we are deriving these necessary conditions with the intent of

using them as constraints in our abstract Problem (4.16). In particular, we would

like to write each necessary condition in terms of the decision variable proxy �̃�𝐿(𝑇 ).

For Necessary Conditions (4.17) and (4.21), this is straightforward. They translate

into the constraints

�̃�0(𝑇 ) = 1 (4.28)

and

�̃�(𝑇 ) ∈ 𝐶𝑛(𝛼,𝛽). (4.29)

For Necessary Condition (4.27), we are tempted to write the constraint

�̃�𝐿(𝑇 ) − 𝑒𝜌𝑇𝜇𝐿(0) = (A𝐿 − 𝜌I)z(𝜌)
𝐿 + A𝐻z(𝜌)

𝐻 . (4.30)

However, there is a problem here: while the vectors z(𝜌)
𝐿 and z(𝜌)

𝐻 are well-defined,

their values are unknown. This suggests that we should replace them with additional

proxies z̃(𝜌)
𝐿 and z̃(𝜌)

𝐻 , which will also be considered as decision variables in Problem

(4.16). Doing so allows us to write the following constraint, which, importantly, is

linear in the decision variables:

�̃�𝐿(𝑇 ) − 𝑒𝜌𝑇𝜇𝐿(0) = (A𝐿 − 𝜌I)z̃(𝜌)
𝐿 + A𝐻 z̃(𝜌)

𝐻 . (4.31)
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4.3.3 Necessary Conditions on the Generalized Moments

Now, by itself, Equation (4.31) isn’t very useful as a constraint on �̃�(𝑇 ), because it

is in terms of the unknown vector z̃(𝜌) ≡ (z̃(𝜌)
𝐿 , z̃(𝜌)

𝐻 ). It tells us only that �̃�𝐿(𝑇 ) −

𝑒𝜌𝑇𝜇𝐿(0) must be contained in the column space of the matrix [(A𝐿 − 𝜌I) A𝐻 ].

However, if we can constrain the set of possible z̃(𝜌) values, Equation (4.31) becomes

more useful to us. Our strategy for constraining the possible values of z̃(𝜌) will be

analogous to what we’ve done for �̃�(𝑇 ). We will first derive necessary conditions on

the generalized moments z(𝜌) and then translate them into constraints on z̃(𝜌).

The first constraint on the z̃(𝜌) values is derived from the fact that 𝜇0(𝑡) = 1 for

all times 𝑡 ∈ [0, 𝑇 ]. This implies

𝑧
(𝜌)
0 =

∫︁ 𝑇

0
𝑒𝜌(𝑇 −𝑡)𝜇0(𝑡)𝑑𝑡

=
∫︁ 𝑇

0
𝑒𝜌(𝑇 −𝑡)𝑑𝑡

=

⎧⎪⎪⎨⎪⎪⎩
𝑇 if 𝜌 = 0,

𝑒𝜌𝑇 −1
𝜌

otherwise.

(4.32)

which suggests the constraint

𝑧
(𝜌)
0 =

⎧⎪⎪⎨⎪⎪⎩
𝑇 if 𝜌 = 0,

𝑒𝜌𝑇 −1
𝜌

otherwise.

(4.33)

The second set of constraints is derived from LMIs (4.18) - (4.20). Since these

LMIs are derived solely from the fact that the unknown probability distribution is

supported on 𝒳 ⊂ 𝒳 , they hold not just at time 𝑇 , but also for all times 𝑡 ∈ [0, 𝑇 ].

For example, we have

M0
𝑛(𝜇(𝑡)) ⪰ 0, ∀𝑡 ∈ [0, 𝑇 ]. (4.34)

Multiplying both sides of the LMI by the nonnegative factor 𝑒𝜌(𝑇 −𝑡) and integrating
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over [0, 𝑇 ] maintains the LMI:

∫︁ 𝑇

0
𝑒𝜌(𝑇 −𝑡)M0

𝑛(𝜇(𝑡))𝑑𝑡 ⪰ 0. (4.35)

Furthermore, because the integral is a linear operator, and because M0
𝑛(·) is a linear

function of its argument, we can bring the integral inside:

M0
𝑛

(︃∫︁ 𝑇

0
𝑒𝜌(𝑇 −𝑡)𝜇(𝑡)𝑑𝑡

)︃
= M0

𝑛

(︁
z(𝜌)

)︁
⪰ 0. (4.36)

Following similar reasoning, we can show that

Me𝑗

𝑛−1(𝑧(𝜌)) ⪰ 0, ∀𝑗 ∈ {1, . . . , �̂�}, (4.37)

𝛼𝑘M0
𝑛−1(𝑧(𝜌)) −

�̂�∑︁
𝑗=1

𝛽𝑘,𝑗M
e𝑗

𝑛−1(𝑧(𝜌)) ⪰ 0,

∀𝑘 ∈ {1, . . . , 𝐿}.

(4.38)

LMIs (4.36) - (4.38) can be written concisely as

𝑧(𝜌) ∈ 𝐶𝑛(𝛼,𝛽). (4.39)

We have shown that membership in the cone 𝐶𝑛(𝛼,𝛽) is a necessary condition for

the vector 𝑧(𝜌). Accordingly, we will enforce this membership as a constraint on its

decision variable proxy �̃�(𝜌):

�̃�(𝜌) ∈ 𝐶𝑛(𝛼,𝛽). (4.40)

Recall that our choice of 𝜌 ∈ R was arbitrary. It follows that Necessary Conditions

(4.27), (4.32), and (4.39) can be written for any 𝜌 ∈ R. In fact, they hold for each

𝜌 in any subset ℛ ⊂ R. Furthermore, we can write constraints (4.31), (4.33), and

(4.40) for each 𝜌 in any subset ℛ ⊂ R.
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4.3.4 A Semidefinite Program

If we use constraints (4.28), (4.29), (4.31), (4.33), and (4.40) in place of the abstract

statement “�̃�(𝑇 ) satisfies necessary moment conditions at time 𝑇”, we obtain Problem

(4.41):

⟨�̂�𝑖(𝑇 )⟩𝑈 = max
�̃�(𝑇 ),

z̃(𝜌),∀𝜌∈ℛ

�̃�e𝑖
(𝑇 )

s.t. �̃�0(𝑇 ) = 1,

�̃�(𝑇 ) ∈ 𝐶𝑛(𝛼,𝛽),

z̃(𝜌) ∈ 𝐶𝑛(𝛼,𝛽), ∀𝜌 ∈ ℛ,

Equation (4.31) holds, ∀𝜌 ∈ ℛ,

Equation (4.33)holds, ∀𝜌 ∈ ℛ.

(4.41)

Note that the vectors z̃(𝜌) for all 𝜌 ∈ ℛ are decision variables in addition to the

vector �̃�(𝑇 ). As with the vector �̃�(𝑇 ), it is only necessary for these vectors to contain

moments up through order 2𝑛, where 𝑛 ≡ ⌈𝑀
2 ⌉.

With its linear objective function, linear equations, and LMIs, Problem (4.41) is a

special type of optimization problem called a Semidefinite Program (SDP). As with all

SDPs, Problem (4.41) is convex. Thus, at least in theory, we should be able to solve

it efficiently[71]. Doing so, we obtain the desired upper bound, ⟨�̂�𝑖(𝑇 )⟩𝑈 . Solving

the corresponding minimization problem, we obtain the lower bound, ⟨�̂�𝑖(𝑇 )⟩𝐿.

4.3.5 Irrelevance of Intermediate Time Points

One intriguing property of SDP (4.41) and its minimization counterpart is that they

can give us bounds on the mean molecular count of species 𝑖 at time 𝑡 = 𝑇 using only

knowledge of

∙ the reaction invariants (encoded in 𝛼 and 𝛽) and

∙ the distribution at time 𝑡 = 0 (encoded in the moments 𝜇𝐿(0) in Equation

(4.31)).
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In particular, to obtain the bounds at time 𝑡 = 𝑇 , it is not necessary to do any

calculations concerned with any intermediate time points, 𝑡 ∈ (0, 𝑇 ). Moreover, this

is true for any value of 𝑇 ∈ (0, +∞), no matter how large. We will revisit this idea

in Section 4.9.

4.3.6 Inspiration from Previous Work

The inspiration for the bounding method described in the preceding sections comes

from a paper by Bertsimas and Caramanis[3], in which moment-based SDPs are used

to bound the solutions of linear partial differential equations (PDEs). The central

idea of their method is to view the solution 𝑢(·) of the PDE as a distribution over

the problem domain Ω. Taking this view, they define the full moments

𝑚j ≡
∫︁

Ω
xj𝑢(x) (4.42)

and boundary moments

𝑏j ≡
∫︁

𝜕Ω
xj𝑢(x) (4.43)

of the distribution, where 𝜕Ω is some portion of the boundary. Starting from the linear

PDE and the associated boundary conditions, they derive linear equations that these

moments must satisfy. Furthermore, they derive LMIs that the moments must satisfy,

simply by virtue of being moments of a distribution supported on Ω. They then solve

an SDP to optimize over all vectors (m, b) which satisfy these necessary conditions,

searching for that vector which maximizes or minimizes some moment of interest.

Clearly, this is thematically similar to the bounding method we have proposed

for stochastic chemical kinetic systems. We now elaborate on this connection. In

considering the problem of stochastic chemical kinetics, we naturally focus on 𝑃 (·, 𝑡)

as a probability distribution over the reachable states 𝒳 for each time 𝑡 ∈ [0, 𝑇 ].

However, we can also think of the function 𝑃 (·, ·) as a generalized distribution over

both state space and time – that is, a distribution supported on the set Ω = 𝒳 ×

[0, 𝑇 ]. This 𝑃 (·, ·) is directly analogous to the function 𝑢(·) above. Furthermore,

130



the moments 𝜇j(0) and 𝜇j(𝑇 ) are analogous to the “boundary moments”, as they are

associated with the boundaries of Ω corresponding to 𝑡 = 0 and 𝑡 = 𝑇 . Finally, the

quantities 𝑧
(𝜌)
j are analogous to the “full moments” above.

This last analogy may not be so obvious, but it becomes clearer if we expand

Equation (4.25) using Equation (4.9). Doing so, we see that for any j ∈ N�̂� ,

𝑧
(𝜌)
j =

∫︁ 𝑇

0

∑︁
x̂∈𝒳

𝑒𝜌(𝑇 −𝑡)x̂j𝑃 (x̂, 𝑡)𝑑𝑡, (4.44)

which can be written more abstractly, closer to Bertsimas and Caramanis’s notation,

as

𝑧
(𝜌)
j =

∫︁
Ω

𝑒𝜌(𝑇 −𝑡)x̂j𝑃 (x̂, 𝑡), (4.45)

where, again, Ω = 𝒳 × [0, 𝑇 ]. When the equation for 𝑧
(𝜌)
j is written in this form, the

analogy with Equation (4.42) is obvious.

The reader might protest that a closer analogy to Equation (4.42) would be

𝑧
(𝜌)
j =

∫︁
Ω

𝑡𝜌x̂j𝑃 (x̂, 𝑡), (4.46)

and we agree. Our departure from the strict analogy is deliberate. As Bertsimas and

Caramanis point out, while moments are classically defined in terms of monomials,

we are free to define them in terms of other basis functions which may be better

suited to the problem at hand. This is exactly what we have done in our definition

of 𝑧
(𝜌)
j . Recall that the CME (4.8) is a linear time-invariant ODE:

𝑑p
𝑑𝑡

(𝑡) = Gp(𝑡).

Assuming that the number of reachable states |𝒳 | is finite, and assuming that G has

|𝒳 | distinct eigenvalues {𝜆𝑗}|𝒳 |
𝑗=1, the solution to this system can be written as

p(𝑡) =
|𝒳 |∑︁
𝑗=1

𝑎𝑗𝑒
𝜆𝑗𝑡v𝑗, (4.47)
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where the {v𝑗}|𝒳 |
𝑗=1 are the right eigenvectors of G, and the {𝑎𝑗}|𝒳 |

𝑗=1 are complex-valued

coefficients derived from the initial distribution p(0). In this case, the solution’s time-

variation has an exponential character. This strongly suggests that, in our efforts to

bound the solution, we should use basis functions which are also exponential with

respect to time. Furthermore, it strongly suggests that the coefficients 𝜌 appearing

in these basis functions should match the eigenvalues of the matrix G.

4.3.7 Choosing the Values of 𝜌

An obvious problem with the idea of choosing our values of 𝜌 to match the eigenvalues

of G is that there can be as many distinct eigenvalues as there are reachable states

– often a huge number. Recall that each value of 𝜌 ∈ ℛ has an associated collection

of decision variables z̃(𝜌) and constraints in SDP (4.41). It is not tractable to have

such a large number of variables and constraints; so we can only hope to use some

relatively small subset of the eigenvalues in defining the set ℛ.

This brings us to the question: which eigenvalues should we use? Our computa-

tional experience suggests that we should pick the values of 𝜌 to approximate the real

parts of the first several distinct eigenvalues of the matrix G when listed in order of

increasing magnitude. By the construction of G, one of these eigenvalues is guaran-

teed to be zero, so we will always have 𝜌 = 0 as one of our members of ℛ. Using

Gershgorin’s Circle Theorem[23], one can show that the nonzero eigenvalues of G all

have strictly negative real parts.

The next question is: how can we approximate the eigenvalues we’d like to use in

defining the set ℛ? There are several possible strategies. First, it may be possible

to construct a smaller instance of the problem we actually care about and use the

eigenvalues of the smaller system as a proxy for the eigenvalues of the larger problem.

For example, if the system we care about has an unmanageably large but finite num-

ber of reachable states, we could consider another instance of this system with the

same reactions but with fewer molecules in the initial state x0. Alternatively, it may

be possible to decompose one large reaction system into two (smaller) independent
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subsystems though the elimination of a single reaction. We can then approximate the

eigenvalues of each smaller system separately, and then use their union to approxi-

mate the eigenvalues of the original system. The G matrix corresponding to one of

these smaller systems might still be quite large. However, since it is also sparse, its

low-magnitude eigenvalues can feasibly be approximated using an iterative Krylov

subspace method[55]. This strategy is employed with measured success in Section

4.9. It may also be the case that the stoichiometry of the system is structured in such

a way that it guarantees infinitely many reachable states, regardless of the initial

state. In this case, the above strategy obviously won’t work. An alternative strategy

consists of picking several representative reachable states, evaluating the propensity

functions at these states, and setting ℛ to be the negatives of these values (being

certain to include 𝜌 = 0). This strategy is consistent with the observation that the

relevant eigenvalues are usually the same order of magnitude as the reaction rate con-

stants. However, it is clearly imprecise. Fortunately, as we will see in Section 4.5.3,

the bounding method is tolerant of inaccuracy in the estimates of the eigenvalues.

4.3.8 Bounds on Higher-Order Moments

Tracing the argument leading to the formulation of SDP (4.41), we see that the

exact identity of the objective function �̃�e𝑖
(𝑇 ) is not critical. This implies that we

can replace �̃�e𝑖
(𝑇 ) with other moment-based expressions to obtain bounds on other

quantities besides the mean molecular count of species 𝑖. For example, we can replace

�̃�e𝑖
(𝑇 ) with any moment �̃�j(𝑇 ) such that |j| ≤ 2𝑛, to obtain bounds on 𝜇j(𝑇 ) =

⟨X̂j(𝑇 )⟩. An example is given in Appendix C. More generally, we can readily bound

any quantity that can be expressed as an affine function of the moments 𝜇(𝑇 ), because

the substitution of such a function into the objective function of SDP (4.41) gives an

optimization problem that is still clearly an SDP.

4.3.9 Bounds on the Variance

In Section 4.2.6, we noted that the variance in the molecular count of species 𝑖 at
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time 𝑇 can be expressed in terms of the moments 𝜇(𝑇 ). In particular, 𝜎2
𝑖 (𝑇 ) =

𝜇2e𝑖
(𝑇 ) − 𝜇2

e𝑖
(𝑇 ). Given this situation, it is natural to wonder if one can obtain

bounds on the variance of species 𝑖 by simply substituting �̃�2e𝑖
(𝑇 ) − �̃�2

e𝑖
(𝑇 ) in place

of �̃�e𝑖
(𝑇 ) in SDP (4.41), giving Problem (4.48):

𝜎2
𝑖 (𝑇 )𝑈 = max

�̃�(𝑇 ),
z̃(𝜌),∀𝜌∈ℛ

�̃�2e𝑖
(𝑇 ) − �̃�2

e𝑖
(𝑇 )

s.t. �̃�0(𝑇 ) = 1,

�̃�(𝑇 ) ∈ 𝐶𝑛(𝛼,𝛽),

z̃(𝜌) ∈ 𝐶𝑛(𝛼,𝛽), ∀𝜌 ∈ ℛ,

Equation (4.31) holds, ∀𝜌 ∈ ℛ,

Equation (4.33)holds, ∀𝜌 ∈ ℛ.

(4.48)

Since the expression �̃�2e𝑖
(𝑇 ) − �̃�2

e𝑖
(𝑇 ) is not affine with respect to the moments 𝜇(𝑇 ),

Problem (4.48) is not an SDP, and it is not immediately obvious that we can solve

it. However, it can be reformulated as an SDP in two steps:

1. Replace the objective with a “dummy variable”, 𝑠, and add the constraint 𝑠 ≤

�̃�2e𝑖
(𝑇 ) − �̃�2

e𝑖
(𝑇 ).

2. Use the Schur complement lemma[71] to express this nonlinear inequality equiv-

alently as the LMI ⎡⎢⎣ �̃�2e𝑖
(𝑇 ) − 𝑠 �̃�e𝑖

�̃�e𝑖
1

⎤⎥⎦ ⪰ 0. (4.49)

Doing so gives an SDP for calculating an upper bound on the variance in the molecular
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count of species 𝑖 at time 𝑇 :

𝜎2
𝑖 (𝑇 )𝑈 = max

�̃�(𝑇 ),𝑠,

z̃(𝜌),∀𝜌∈ℛ

𝑠

s.t.

⎡⎢⎣ �̃�2e𝑖
(𝑇 ) − 𝑠 �̃�e𝑖

�̃�e𝑖
1

⎤⎥⎦ ⪰ 0,

�̃�0(𝑇 ) = 1,

�̃�(𝑇 ) ∈ 𝐶𝑛(𝛼,𝛽),

z̃(𝜌) ∈ 𝐶𝑛(𝛼,𝛽), ∀𝜌 ∈ ℛ,

Equation (4.31) holds, ∀𝜌 ∈ ℛ,

Equation (4.33) holds, ∀𝜌 ∈ ℛ.

(4.50)

It is important to note that changing the “max” to a “min” in SDP (4.50) does

not result in a useful lower bound on variance. This is related to the fact that

�̃�2e𝑖
(𝑇 ) − �̃�2

e𝑖
(𝑇 ) is a concave function of �̃�(𝑇 ). Further details can be found in

Chapter 3, in which we construct a similar SDP for bounding variances in the steady-

state distribution of a stochastic chemical kinetic system.

4.3.10 Conservatism in the Bounds

As described in Chapter 3, there are several sources of conservatism in the bounds

calculated by solving SDP (4.41) (and its variations). The first of these is related

to the fact that our choice of 𝑚, the cut-off of what we consider to be a “low-order”

moment, is somewhat arbitrary. The second source of conservatism is that the neces-

sary conditions appearing in SDP (4.41) in no way reflect the physical constraint that

the number of molecules of each species must be an integer. These sources of con-

servatism are discussed at length in Chapter 3, and the interested reader is referred

there for further details.

There is, however, one source of conservatism which cannot be found in Chapter

3 and which is unique to the dynamic problem. This conservatism comes from our

choice of the set ℛ. As we’ve already pointed out, Conditions (4.27) and (4.39)
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hold for all 𝜌 ∈ R. However, for Problem (4.41) to be computationally tractable, we

can only enforce these conditions for some finite subset ℛ ⊂ R. In a sense, we are

thus relaxing Conditions (4.27) and (4.39) for all 𝜌 ∈ R such that 𝜌 /∈ ℛ. Doing so

may introduce some conservatism in the resulting bounds. This suggests that adding

elements 𝜌 ∈ R to our set ℛ will improve the quality of the bounds. When we come

to the examples in Section 4.5, we will see that this is, in fact, the case.

4.3.11 Scaling

As pointed out in Chapter 3, one shortcoming of moment-based SDPs such as Problem

(4.41) is that they can give solvers numerical difficulties. This is especially true if the

SDPs are not appropriately scaled. We discuss some strategies for scaling in Chapter

3, so we will not go into details here. However, we do wish to point out that, if one

solves a sequence of bounding problems for increasing times 𝑇𝑗, the bounds at time

𝑇𝑗 could be helpful in appropriately scaling the problem for time 𝑇𝑗+1.

4.3.12 Practical Applications

Sakurai and Hori[57] have demonstrated how moment-based SDPs for bounding

the means and variances of steady-state distributions can be used in the design of

biologically-inspired stochastic chemical kinetic systems called “biocircuits”. Specifi-

cally, they use moment-based SDPs to synthesize a negative feedback biocircuit with

statistical design specifications, and then conduct a sensitivity analysis on this system.

The dynamic bounding method we have described above can be used in much the

same way. However, it allows for an even more sophisticated design analysis that also

accounts for dynamics.
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4.4 Toy Example

In this section, we apply SDPs (4.41) and (4.50) to a simple stochastic chemical

kinetic systems as a proof of concept. Consider the simple irreversible reaction

A + B
𝑐1

GGGGGAC (4.51)

with rate constant 𝑐1 = 1 s−1, and known initial molecular counts of A = 3, B = 4,

and C = 0. If we select A as the species to consider independent, this translates to an

initial probability distribution 𝑃 (·, 0) = 𝛿3, where all of the probability is concentrated

on the reduced state �̂� = 3. This system has only four reduced states (�̂� = 3, . . . , 0).

Thus, we can compute the infinitesimal generator matrix for this system,

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−12 0 0 0

12 −6 0 0

0 6 −2 0

0 0 2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.52)

and solve the CME directly. However, since this system features a bimolecular re-

action, it exhibits the closure problem when subjected to a moment analysis. These

features make this system a good first test for our bounding method.

4.4.1 Mean and Variance Bounds

If we repeatedly solve SDP (4.41) and its minimization counterpart for this sys-

tem, taking 𝑚 = 2 and ℛ = {0, −2} (the first two eigenvalues of G), we obtain

time-varying bounds on the mean molecular counts of each species. Similarly, if we

repeatedly solve SDP (4.50) for this system, with the same ℛ and 𝑚, we can obtain

time-varying upper bounds on variance for each molecular count. These bounds are

shown in the top and bottom panels, respectively, of Figure 4-1. For comparison, we

have also included the true means and variances computed by directly solving the

CME.
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As expected, the mean bounds do, indeed, enclose the true means; and the variance

upper bound does, indeed, exceed the true variance for all times 𝑡. This is consistent

with the theory of Section (4.3).

4.4.2 Increasing the value of 𝑚

Equation (4.31), which appears as a constraint in SDPs (4.41) and (4.50), is derived

from the expressions for the time derivatives of all moments up to order 𝑚. So, as

we increase the value of 𝑚, the number of constraints implied by Equation (4.31)

grows. Each of these additional constraints restricts the feasible set of SDPs (4.41)

and (4.50). We might reasonably suspect, then, that increasing the value of 𝑚 could

lead to tighter bounds. This is, indeed, the case. If we recalculate the bounds shown

in Figure 4-2 using 𝑚 = 3 instead of 𝑚 = 2, we obtain the slightly tighter bounds

shown in Figure 4-2 (compare the plots at 𝑡 = 4).

This is phenomenon is not specific to this example, but is a general feature of our

bounding method. Increasing the value of the parameter 𝑚 leads to monotonically

tighter bounds (see Appendix C for a proof). But there is a trade-off, because in-

creasing 𝑚 also leads to larger, more numerically unstable SDPs. This same trade-off

appeared in a slightly different form in the previous papers[13, 14, 56, 39, 24] on the

moment-based steady-state bounding method. It is worth noting that the trade-off

carries over to the dynamic extension. However, since the trade-off is well-documented

in the steady-state papers and not unique to the dynamic bounding method, we dis-

cuss it no further here.

4.4.3 Using more values of 𝜌

In Section 4.3.10, we noted that the choice of the set ℛ can affect the quality of the

resulting bounds. We demonstrate this by recalculating the bounds shown in Figure

4-2 with the enlarged set ℛ = {0, −2, −6}, including one more eigenvalue of G. The

results are shown in Figure 4-3. The bounds are noticeably tighter for both the means

and the variance, which is consistent with our prior reasoning.
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Figure 4-1: Time-varying bounds on System (4.51), calculated using ℛ = {0, −2}
and 𝑚 = 2. The points marked with circles and stars each correspond to the solution
of an SDP and are theoretically guaranteed bounds. The lines interpolated between
these points are not guaranteed bounds. They are included just to lead the eye. The
dashed lines are the true values, obtained through direct solution of the CME. The
bottom plot shows the variance in the molecular count of species A only, because the
variances of the other species are identical.
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Figure 4-2: Time-varying bounds on System (4.51), calculated using ℛ = {0, −2}
and 𝑚 = 3. Note that the bounds are tighter than those shown in Figure 4-1. This
is particularly true at long times.
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Figure 4-3: This figure is equivalent to Figure 4-2 in every way, except that the
bounds were calculated using the enlarged set ℛ = {0, −2, −6}, giving tighter bounds.
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Figure 4-4: This figure is equivalent to Figure 4-2 in every way, except that the
bounds were calculated using the enlarged set ℛ = {0, −2, −6, −12}, giving tighter
bounds.

If we enlarge the set ℛ further by adding in 𝜌 = −12, the final eigenvalue of G, we

obtain the bounds shown in Figure 4-4. The bounds on the mean molecular counts

are not noticeably tighter, but the upper bound on the variance is.

In summary, the more values of the eigenspectrum of G that we use in the set ℛ,

the better the bounds become. However, even if we use the full eigenspectrum, the

bounds are not perfect.
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4.5 A Bit More Complexity

In this section, we apply SDPs (4.41) and (4.50) to a slightly more complex reaction

system, where we’ve added a reversible reaction:

A + B
𝑐1

GGGGGAC
𝑐2

GGGGGBFGGGGG

𝑐3
D (4.53)

The rate constants for this system are 𝑐1 = 1 s−1, 𝑐2 = 2.1 s−1, and 𝑐3 = 0.3 s−1

The initial molecular counts of A = 3, B = 4, C = 0, and D = 0. As with the

previous example, this reaction system exhibits the closure problem when subjected

to a moment analysis.

4.5.1 Mean and Variance Bounds

If we repeatedly solve SDP (4.41) and its minimization counterpart for this system,

taking ℛ = {0, −2, −2.4} and 𝑚 = 3, we obtain time-varying bounds on the mean

molecular counts of each species. Similarly, if we repeatedly solve SDP (4.50) for

this system, with the same ℛ and 𝑚, we can obtain time-varying upper bounds on

variance for each molecular count. These bounds are shown in the top and bottom

panels, respectively, of Figure 4-5.

Again, this system is small enough that it is plausible to obtain the true mean and

variance trajectories by numerically integrating the CME. These true trajectories are

shown as dashed lines in Figure 4-5.

4.5.2 Using more values of 𝜌

As with the previous example, we now add a value of 𝜌 to our set ℛ, repeat the

bounding calculation, and see an improvement in the bounds. In particular, adding

𝜌 = −4.4 to our ℛ, we obtain the bounds shown in Figure 4-6. Comparing with

Figure 4-5, we see substantial improvement in the lower bound of the mean molecular

count for species C. We also see that the limiting value of the variance upper bound

for species C and D is about half of its previous value. Finally, for each species, the

143



0 1 2 3 4 5

0

1

2

3

4

Mean Bounds

0 1 2 3 4 5

0

0.5

1

1.5

2

Variance Bounds

Figure 4-5: Time-varying bounds on System (4.53), calculated using ℛ =
{0, −2, −2.4}. The top plot shows bounds on mean molecular counts, while he bot-
tom plot shows upper bounds on the variances in the counts. Species A is omitted
because its behavior closely follows that of species B, and adding extra curves would
only clutter the plot. The dashed lines are the true mean and variance trajectories,
obtained by direct solution of the CME.
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Figure 4-6: This figure is equivalent to Figure 4-5 in every way, except that the
bounds were calculated using the enlarged set ℛ = {0, −2, −2.4, −4.4}, giving better
results.

peak in the variance upper bound (around 0.5 s) has been reduced.

4.5.3 Sensitivity of the Values of 𝜌

As explained in Section 4.3.7, while any values of 𝜌 will result in theoretically-

guaranteed bounds, we recommend picking the values of 𝜌 to match the real parts of

the first several distinct eigenvalues of the matrix G, when these eigenvalues are listed

in order of increasing magnitude. This is exactly how we chose the values of 𝜌 for the

two foregoing examples. These two examples are small enough that we can calculate

the eigenvalues directly. However, this will not be the case in general. Usually, the

best we can hope for is some numerical approximation of the eigenvalues. This begs

the question: how robust is our bounding method to the choice of 𝜌 values? If the

values of 𝜌 are off by a little bit, do the bounds become so conservative that they are

practically useless?
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To explore this idea, we repeated the bounding calculation for Reaction System

(4.53), using a set of perturbed 𝜌 values: ℛ = {0, −1.9, −2.6, −4.7}. The resulting

bounds are shown in Figure 4-7. Comparing this plot with Figure 4-6, we see that

the perturbation of the values of 𝜌 did not substantially affect the quality of the

computed bounds. We see that the perturbed 𝜌 values create a slight long-time gap

in the mean bounds for species C and D, which is undesirable. However, mean bounds

on these species at intermediate times (e.g., 𝑡 = 1 s) actually seem a little tighter.

This demonstrates that the bounding method does not require exact knowledge of

the eigenvalues of the underlying CME to obtain reasonable results.

That being said, the choice of 𝜌 values does matter. Using a set of further per-

turbed 𝜌 values (ℛ = {0, −6, −12, −18}), we produced the bounds shown in Figure

4-8. In this Figure, we see wide gaps in the long-time mean bounds for all species.

Furthermore, the variance bounds are much less tight.

In summary, while the chosen values of 𝜌 do not have to match low-magnitude

eigenvalues G exactly, at least approximating them seems to be a good heuristic.

4.6 Complex Eigenvalues

Given our observation in Section 4.3.6 that it seems reasonable to choose the values

of 𝜌 to match the eigenvalues of the matrix G, it may seem odd that, in Section 4.3.7,

we suggested focusing on only the real parts of these eigenvalues. In fact, if we know

that some of the low-magnitude eigenvalues have nonzero imaginary parts, we can

use this information to obtain tighter bounds.

For example, consider the cyclic system

A + B
𝑐1

GGGGGAC

C
𝑐2

GGGGGAD

D
𝑐3

GGGGGAA + B

(4.54)

where the initial molecular counts are A = 2, B = 1, C = 1, and D = 0, and
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Figure 4-7: This figure is equivalent to Figure 4-6, except that the bounds were
calculated using the perturbed set ℛ = {0, −1.9, −2.6, −4.7}, giving slightly different
results. In particular, notice the long-time gap that has appeared in the mean bounds
for species C and D.
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Figure 4-8: This figure is equivalent to Figures 4-6 and 4-7, except that the bounds
were calculated using the further perturbed set ℛ = {0, −6, −12, −18}. This pertur-
bation dramatically degrades the quality of the bounds.
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the rate constants are 𝑐1 = 1 s−1, 𝑐2 = 1.1 s−1, and 𝑐3 = 0.9 s−1. The smallest-

magnitude eigenvalues of this system are 𝜆 = 0, −2.1322±0.9741𝑖, −4.1637±1.5837𝑖.

If we follow the advice given in Section 4.3.7, and calculate bounds using ℛ =

{0, −2.1322, −4.1637}, we obtain the bounds shown in the top panel of Figure 4-9.

However, by making use of the knowledge of the imaginary parts of the eigenvalues,

we can produce the slightly improved bounds shown in the bottom panel. The most

notable improvements are for early times (𝑡 < 0.5 s)

Given this potential to improve the bounds by using the imaginary parts of the

low-magnitude eigenvalues, why has this chapter been concerned almost solely with

their real parts? The fact is “making use of the knowledge of the imaginary parts of

the eigenvalues” is not trivial. One cannot simply use complex values of 𝜌 in SDPs

(4.41) and (4.50). The reason for this is that the argument for the derivation of

LMIs (4.36) - (4.38) breaks down when 𝜌 is complex-valued. It is possible to derive

an analogous set of LMIs when 𝜌 is complex-valued, but this requires introducing

entirely new classes of decision variables and constraints. The resulting augmented

versions of SDPs (4.41) and (4.50) are considerably more complicated. We felt that

this extra complication would only distract from the main idea of this chapter, and, as

demonstrated by Figure (4-9), it leads to only marginal improvement in the bounds.

Accordingly, we have deferred the discussion of how to account for complex eigenvalues

to Appendix C.
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Figure 4-9: Bounds on the mean molecular counts of species A, C, and D of Reaction

System (4.54). Bounds on species B are omitted, because they are similar to those

shown for species A. The top panel shows bounds calculated without accounting

for the imaginary components of the system’s eigenvalues, while the bottom panel

shows the slight improvement that can be achieved by accounting for these imaginary

components. Both panels show the exact means calculated by directly solving the

CME.

4.7 Perfect Bounds in the Absence of the Closure

Problem

It is interesting to note that we can also apply our bounding method to stochastic

chemical kinetic systems which do not exhibit the closure problem, and that, doing

so, it is possible to obtain perfect bounds.
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For example, consider the reaction system

A
𝑐1

GGGGGAB
𝑐2

GGGGGAC, (4.55)

where 𝑐1 = 1 s−1, 𝑐2 = 3 s−1, and there are initially 4 molecules of A and 0 molecules

of each B and C. Since every reaction in this system is unimolecular, it does not

exhibit the closure problem. The smallest-magnitude eigenvalues for this system

are 𝜆 = 0, −1, −3. Solving SDP (4.41) and its minimization counterpart with ℛ =

{0, −1, −3}, we obtain the bounds shown in Figure 4-10. The upper and lower bound-

ing curves are indistinguishable from one another because there is essentially no gap

between them; they have collapsed upon the true mean trajectories.

This collapsing behavior is not unique to Reaction System (4.55). In Appendix C,

we show that it can occur for any system which does not exhibit the closure problem,

and whose matrix A𝐿 is diagonalizable (the typical case, in our experience). This

feature supports the theoretical foundation of our bounding method. In particular, it

suggests that our choice to use exponential basis functions is the appropriate choice.

0 1 2 3 4
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1

Figure 4-10: Bounds on the mean molecular counts of species A, B, and C for Reac-

tion System (4.55), which does not exhibit the closure problem. For this example, the

bounding method calculates perfect bounds, collapsing on the true mean trajectories.
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State x = (𝑥A, 𝑥B, 𝑥C, 𝑥D)
1 (3, 4, 0, 0)
2 (2, 3, 1, 0)
3 (2, 3, 0, 1)
4 (1, 2, 2, 0)
5 (1, 2, 1, 1)
6 (1, 2, 0, 2)
7 (0, 1, 3, 0)
8 (0, 1, 2, 1)
9 (0, 1, 1, 2)
10 (0, 1, 0, 3)

Table 4.1: The set of reachable states 𝒳 of the system described in Section 4.5.

4.8 Uncertainty in the Initial State

In each of the foregoing examples, we have assumed that we knew the initial molecular

count exactly. This implies an initial probability distribution which is a Dirac distri-

bution, where all the probability is concentrated on a single reachable state. However,

as suggested in Section (4.3.2), our method can also handle the more general situation

where we don’t have exact knowledge of the initial molecular count, and the initial

probability distribution (representing our knowledge of the system) is supported on

several reachable states. We demonstrate this capability with the following example.

Again, consider Reaction System (4.53),

A + B
𝑐1

GGGGGAC
𝑐2

GGGGGBFGGGGG

𝑐3
D,

with the same rate constants given in Section 4.5. In our prior analysis of this system,

we assumed we knew the initial molecular counts A = 3, B = 4, C = 0, and D = 0.

This implies the set of reachable states 𝒳 shown in Table 4.1. Furthermore, it implies

an initial probability of zero for all states in Table 4.1, except State 1 which has an

initial probability of one.

This time, we will assume uncertainty in the initial state, and we will express

this uncertainty by assigning a nonzero initial probability to three distinct reachable

states x ∈ 𝒳 . In particular, we will assign initial probabilities of 1
4 , 1

2 , and 1
4 to States
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1, 4, and 10, respectively, with all other reachable states having an initial probability

of zero. Once we have decided on the set of species to be considered independent

(e.g., species A and C), we can easily calculate the initial low-order moments 𝜇𝐿(0)

corresponding to this initial distribution 𝑃 (·, 0) using Equation (4.9). We can then

apply SDPs (4.41) and (4.50) to calculate bounds on the means and variances for this

system over time. For the sake of comparison to Figure 4-6, we again use 𝑚 = 3 and

ℛ = {0, −2, −2.4, −4.4}. The results are shown in Figure 4-11.
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Figure 4-11: Bounds on the mean and variance for Reaction System (4.53) with an

uncertain initial state.

The first thing to notice in comparing Figures 4-6 and 4-11 is that the starting

point of each mean and variance trajectory is different between the two figures. This

is consistent with the fact that the initial distribution 𝑃 (·, 0) and thus the initial

moments y𝐿(0) are different for the two figures. The second thing to notice is that

both plots approach the same steady-state at long times. This is consistent with the

fact that Reaction System (4.53) has just one steady-state, in which species C and D
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are in equilibrium. Finally, notice that the quality of the bounds is similar between

the two plots. At least visually, the bounds in Figure 4-11 are just as tight as those

in Figure 4-6. This may seem somewhat counter-intuitive given that Figure 4-11 was

generated assuming uncertainty in the initial state. However, recall that once this

uncertainty is expressed in an initial probability distribution 𝑃 (·, 0), the means and

variances (which are expectation values based on 𝑃 (·, 0)) are precisely defined.

4.9 A Larger Example

All of the examples given in the previous sections are small, in the sense that they

contain very few reachable states. There are two reasons for this. First, the small

size of these examples allows us to integrate numerically the CME and confirm that

the true mean and variance trajectories do, in fact, lie within the bounds we have

computed. Secondly, as suggested in Section 4.3.11, moment-based SDPs often lead to

numerical difficulties, and these difficulties tend to scale with the size of the problem;

using small examples allowed us to demonstrate various conceptual aspects of the

bounding method without the distraction of numerical difficulties.

However, we do not wish the readers to be left with the impression that our

bounding method is only applicable to small toy models. In theory, it could be applied

to stochastic chemical kinetic systems of arbitrary size. Because the reachable states

are not explicitly represented in our bounding SDPs, in theory, it does not matter

whether the number of reachable states is ten, ten billion, or infinite.

To illustrate this point, we now apply our bounding method to a larger reaction

system, taken from Chapter 3 and reproduced in Figure 4-12.

We assumed initial molecular counts of A = 53, F = 53, and zero for all other

species. One can show[14] that this initial condition implies just over a billion reach-

able states (1 068 505 812, to be exact). Thus, solving the CME for this system

is impractical. We can, however, apply our dynamic bounding method. If we re-

peatedly solve SDP (4.41) and its minimization counterpart for this system, taking

ℛ = {0, −0.354, −0.651, −0.857, −1.062, −1.072, −1.374} and 𝑚 = 2, we obtain time-
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Figure 4-12: A larger reaction system

varying bounds on the mean molecular counts of species A and H. These bounds are

shown in Figure 4-13.

The reader may naturally wonder how we decided on the values to include in the

set ℛ. After all, with one billion reachable states, computing the low-magnitude eigen-

values of the infinitesimal generator matrix G is a daunting proposition. What we

did was consider a smaller instance of the reaction system, in which only 4 molecules

of A and F were present initially. This system has only 570 reachable states, so es-

timating the low-magnitude eigenvalues of the corresponding G is manageable, via

Arnoldi iteration[55]. These approximations were used in our set ℛ.

We have included this example to demonstrate that our bounding method can, in

principle, be extended to very large systems. However, a few disclaimers are necessary.

First, we are showing bounds for species A and H, because the bounds for these species

are reasonably high-quality. However, the bounds for several other species in the

reaction system are less impressive. Second, in solving the SDPs leading to the bounds

in Figure 4-13, our solver of choice (SeDuMi[66]) often reported numerical problems.

Accordingly, while our bounding method is useful for analyzing large systems in

theory, we cannot yet claim that it is useful for analyzing such large systems in

practice.
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Figure 4-13: Bounds on the mean molecular counts of species A and H for the reaction
system shown in Figure 4-12.

4.10 Comparison with SSA

To provide a comparison, Figure 4-13 also shows the averaged results of 100 runs of

Gillespie’s Stochastic Simulation Algorithm (SSA)[27], implemented in StochKit2[58].

While the sample mean trajectories apparently fall within our calculated bounds in

this case, it is important to note that this result is not theoretically guaranteed;

our bounds are for the true mean ⟨𝑋(𝑡)⟩, but the sample mean 𝑋(𝑡) is a random

variable, which can deviate substantially from the true mean. Still, since the sample

mean converges to the true mean in the limit of large sample size, it is not surprising

to see that it falls within our bounds.

The number of SSA runs was selected to provide a comparison of the capabilities

of SSA and our bounding method, given equal CPU time. Specifically, the CPU time

required to simulate the 100 SSA trajectories (130.9 s) is comparable to the CPU

time required to solve the SDPs (125.9 s) which give the upper and lower bounds on

the mean for species A at the final time point, 𝑡 = 5 s. This equal-time comparison

serves to highlight three differences between SSA and our bounding method. First,

using SSA is inefficient for this reaction system because it contains rate constants of

widely differing orders of magnitude (see Appendix B). On the other hand, while the

stiffness of the system may affect the numerical conditioning of the bounding SDPs,
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it does not affect their theoretical solution time. Second, we revisit the point made

in Section 4.3.5. To obtain information for this reaction system at 𝑡 = 𝑇 using SSA,

we must simulate the entire time interval from 𝑡 = 0 to 𝑡 = 𝑇 . On the other hand,

with our bounding method, we must solve only the upper- and lower-bounding SDPs

for 𝑡 = 𝑇 . We do not have to do any calculations concerned with intermediate time

points. Finally, while our bounds are deterministic and will have the same values

each time they are computed, the results of the SSA simulation will vary.

4.11 An Open System

For completeness, we also applied our bounding method to an open system with

infinitely many reachable states:

∅
𝑐1

GGGGGAA

2A
𝑐2

GGGGGA∅

where 𝑐1 = 1 s−1, 𝑐2 = 0.01 s−1, and the initial count of molecules is A = 2. To

obtain values of 𝜌 to use in the set ℛ, we followed the second strategy given in Section

4.3.7. Specifically we chose 𝑥𝐴 = 1, 2, 3, 4 as our representative states, evaluated the

propensity functions at these states, and then took the negatives of the resulting

values, giving ℛ = {0, −0.02, −0.06, −0.12, −1}. If we repeatedly solve SDP (4.41)

and its minimization counterpart for this system, using the ℛ specified above and

𝑚 = 4, we obtain time-varying bounds on the mean shown in Figure 4-14. For

comparison, we have also included the averaged results of 100 SSA runs.

4.12 Next Steps: Bounds on Probability

In Chapter 3, we also formulated SDPs for calculating an upper bound on the

steady-state probability that the molecular count of species 𝑖 is an arbitrary interval

[𝑥min, 𝑥max], and we saw that this led to bounding histograms. We also noted that we
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Figure 4-14: Bounds on the mean molecular counts of species A and H for the reaction
system shown in Figure 4-12.

could bound the probability that the steady-state probability distribution assigns to

an arbitrary basic semi-algebraic set, i.e., a set of the form

{x̂ ∈ R�̂� : 𝑔𝑗(x̂) ≥ 0, 𝑗 = 1, . . . , 𝐾}, (4.56)

where each 𝑔𝑗(·) for 𝑗 = 1, . . . , 𝐾 is a polynomial in x̂.

These ideas could readily be extended to the dynamic problem. For example,

we could calculate bounds on the marginal distribution of species 𝑖 at several times

𝑡. Such bounds have recently been shown to be useful in the analysis of individual

cells[21]. Furthermore, we could bound the probability that this distribution assigns

to an arbitrary basic semi-algebraic set over time. These extensions of the method

are left for future work.

4.13 Conclusion

This chapter has described a method for calculating rigorous bounds on time-varying

stochastic chemical kinetic systems. In particular, we have formulated SDPs for

calculating time-varying bounds on the mean molecular count of each species in the

system and the variances in these counts. This idea is an extension of the method
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described by several authors [13, 14, 56, 39, 24] for calculating bounds on the steady-

state (i.e., stationary) distribution of a stochastic chemical kinetic system.

As a proof of concept, we have demonstrated the bounding method for a toy

stochastic chemical system, with a single reaction. For this example, we have seen

that our bounds are, in fact, valid. Furthermore, we have seen that they can be very

tight, given the appropriate choice of the parameter set ℛ.

We also applied the bounding method to a slightly more complicated reaction

system, which reaches a dynamic equilibrium in the limit of 𝑡 → +∞. With this

example, we saw that the bounds we obtain are not dramatically sensitive to the

values of 𝜌 we select in our parameter set ℛ.

While the majority of the chapter was written assuming that the parameter set

ℛ contained strictly real values 𝜌, in Section 4.6 we saw that it is possible to obtain

improved bounds by also using values of 𝜌 with nonzero imaginary parts – though at

the expense of solving a larger, more complicated SDP.

In Section 4.7, we saw an example which does not exhibit the closure problem, for

which the bounds generated by our method collapse upon the true mean trajectories,

supporting the theory underlying our approach.

In Section 4.8, we demonstrated that our method can also handle the scenario

when the initial state of the system is not known exactly and we instead have nonzero

initial probabilities associated with several reachable states.

In theory, our bounding method could be applied to stochastic chemical kinetic

systems of arbitrary size. To demonstrate this point, in Section 4.9, we applied the

method to a reaction system with more than a billion reachable states, though with

qualified success. For our bounding method to be reliably useful in analyzing such

large systems, there are two practical issues that must be overcome: first, we need

to formalize a procedure for selecting the set ℛ; second, we need to further explore

options for mitigating the numerical issues mentioned in Sections 4.3.11 and 4.9. The

first issue is left for future research. The second issue is the subject of Chapter 7.

Despite the method’s incompleteness, it is a theoretically novel, interesting ap-

proach to the closure problem in stochastic chemical kinetics. We share it with the
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community in the hope that it might inspire further research in the area.

4.14 Implementation Details

All numerical examples in this chapter were computed on a 64-bit Dell Precision

T3610 workstation with a 3.70 GHz Intel Xeon CPU. In the example, CVX [28] was

used to model the SDP, using the default tolerance (i.e. “precision”) settings. SeDuMi

[66] was used as the underlying solver.
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Chapter 5

Improved Bounds on Stochastic

Chemical Kinetic Systems through

an Alternative Representation of

State Space

The contents of this chapter have not yet been published.

5.1 Introduction

As described in Chapter 3, one of our unique contributions to the bounding method

was to show how it could be adapted to account for reaction invariants, which con-

strain the set of reachable states. However, after publishing several papers on the

subject [13, 14, 16, 15] on the subject, we realized that we didn’t take the idea

far enough, and that our previously published methods provided unnecessarily loose

bounds for specific types of reaction systems. In the present chapter, we identify

the physical feature of reaction systems for which our previously published bounding

method is ill-suited. We then describe an alternative formulation of the bounding

method which addresses the problem. Finally, we demonstrate the advantages and

limitations of the alternative formulation with numerical examples.
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5.2 Notation

Much of the notation in this chapter is the same as in previous chapters. However,

there are some subtle but important differences, specific to this chapter. For example,

we now assign a physical interpretation to the auxiliary variables used in the definition

the set of reachable states. Furthermore, we reserve the notation 𝑃 (·, 𝑡) for the

distribution over 𝒳 .

Let N denote the natural numbers, {0, 1, 2, . . . }. Consider a reacting chemical

system with 𝑁 ∈ N distinct molecular species and 𝑅 ∈ N reactions, described by a

stoichiometry matrix S ∈ Z𝑁×𝑅. Let the state of the system at time 𝑡 be specified by

the vector X(𝑡) = (𝑋1(𝑡), . . . , 𝑋𝑁(𝑡)) ∈ N𝑁 , where 𝑋𝑖(𝑡) ≥ 0 is the count of molecules

of species 𝑖 present. Given an initial state X(0) ≡ x0, the set of all reachable states

is defined by

𝒳 ≡

⎧⎪⎨⎪⎩x ∈ N𝑁 :
x = x0 + S𝜖,

x ≥ 0, 𝜖 ∈ N𝑅

⎫⎪⎬⎪⎭ , (5.1)

where 𝜖𝑟 for 𝑟 ∈ {1, . . . , 𝑅} is the extent of the 𝑟th reaction.

The probability associated with each reachable state x ∈ 𝒳 at time 𝑡 ≥ 0 is

denoted Pr(X(𝑡) = x) ≡ 𝑃 (x, 𝑡). The function 𝑃 (·, 𝑡) is then the probability dis-

tribution over the set of reachable state 𝒳 at time 𝑡. In general, this probability

distribution changes over time, and the way it changes is described by the Chemical

Master Equation (CME):

𝑑𝑃

𝑑𝑡
(x, 𝑡) =

𝑅∑︁
𝑟=1

[𝑃 (x − s𝑟, 𝑡)𝑎𝑟(x − s𝑟) − 𝑃 (x, 𝑡)𝑎𝑟(x)] , ∀x ∈ 𝒳 , (5.2)

where s𝑟 is the 𝑟th column of the stoichiometry matrix, and 𝑎𝑟(·) is the propensity

function associated with the 𝑟th reaction. When the reaction rates are governed by

mass-action kinetics, these propensity functions are polynomials of their arguments.
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In particular, in the typical case, we have

𝑎𝑟(x) =

⎧⎪⎪⎨⎪⎪⎩
𝑐𝑟
∏︀𝑁

𝑗=1

(︁
𝑥𝑗

𝛾𝑗,𝑟

)︁
, if x ∈ 𝒳 ,

0, otherwise.

(5.3)

where 𝑐𝑟 is the rate constant associated with reaction 𝑟, and 𝛾𝑗,𝑟 = − min{𝑠𝑗,𝑟, 0} is

the (nonnegative) stoichiometric coefficient associated with species 𝑗 in reaction 𝑟.

See Gillespie [26] and Higham [31] for details.

Notice that 𝑎𝑟(x) is defined such 𝑎𝑟(x) = 0 if 𝑥𝑗 < 𝛾𝑗,𝑟 (i.e., if the number of

molecules of species 𝑗 is less than the number required for the occurrence of reaction

𝑟). This prevents the flow of probability from a state x ∈ 𝒳 to a state x′ ≡ x+s𝑟 ∈ Z𝑁

which would be outside the set of reachable states, for the reason that 𝑥′
𝑗 < 0. In

other words, for any state x ∈ 𝒳 and any reaction 𝑟 such that x + s𝑟 /∈ 𝒳 , we have

𝑎𝑟(x) = 0.

5.3 Previous Work

Again, most of what follows is review from previous chapters. This review will help us

develop the novel material of this chapter by appealing to analogy with the previous

material. Also, there are slight differences in notation. For example, we now reserve

the symbol 𝑃 (·, 𝑡) for the distribution over 𝒳 .

5.3.1 Invariants and Reduced Reachable States

In our previous work on bounding stochastic chemical kinetic systems [14, 16], we

made use of the fact that reaction invariants can lead to a lower-dimensional repre-

sentation of the state. In particular, the stoichiometry matrix S often has a nontrivial
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left null space, spanned by a set of basis vectors {b1, . . . , b𝐿} ⊂ R𝑁 . Setting

B =

⎡⎢⎢⎢⎢⎢⎣
bT

1
...

bT
𝐿

⎤⎥⎥⎥⎥⎥⎦ , (5.4)

we noted that the the state X(𝑡) must satisfy the affine equation

BX(𝑡) = Bx0 ≡ f (5.5)

for all times 𝑡 ≥ 0. We referred to the vector f as the invariant values. Concatenating

𝐿 linearly independent columns of B into a matrix B̃ ∈ R𝐿×𝐿, and collecting the

remaining 𝑁 − 𝐿 ≡ �̂� columns in a matrix B̂ ∈ R𝐿×�̂� , we saw that the above

equation could be written equivalently as

B̃X̃(𝑡) + B̂X̂(𝑡) = f (5.6)

where X̃(𝑡) ∈ R𝐿 consists of the components of X(𝑡) corresponding to the columns

of B̃, and X̂(𝑡) ∈ R�̂� is defined similarly. Rearranging (5.6), we obtained

X̃(𝑡) = B̃−1f − B̃−1B̂X̂(𝑡), (5.7)

which shows that specifying X̂(𝑡) determines the values of X̃(𝑡). Accordingly, we

labeled the species represented by X̂(𝑡) as the independent species, and those rep-

resented by X̃(𝑡) as the dependent species. Since specifying X̂(𝑡) determines X̃(𝑡),

we saw that the state of the system can be expressed entirely in terms of the lower-

dimensional X̂(𝑡). It follows that every full-dimensional reachable state x ∈ 𝒳 ⊂ N𝑁

can be expressed equivalently in terms of a reduced reachable state x̂ ∈ N�̂� , obtained

by extracting the components of the independent species from x. We denoted the set

of reduced reachable states using the symbol 𝒳 ⊂ N�̂� .
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5.3.2 A Reduced Probability Distribution

Having defined the set of reduced reachable states, 𝒳 , we then defined a probability

distribution over these reduced states, writing 𝑃 (x̂, 𝑡) ≡ Pr(X̂(𝑡) = x̂), for all x̂ ∈ 𝒳 .

The way this probability distribution changes over time is given by a slight variation

of the CME,

𝑑𝑃

𝑑𝑡
(x̂, 𝑡) =

𝑅∑︁
𝑟=1

[︁
𝑃 (x̂ − ŝ𝑟, 𝑡)�̂�𝑟(x̂ − ŝ𝑟) − 𝑃 (x̂, 𝑡)�̂�𝑟(x̂)

]︁
, ∀x̂ ∈ 𝒳 , (5.8)

in which ŝ𝑟 is the reduced form of s𝑟, containing only those components corresponding

to the independent species; and �̂�𝑟(·) is a reduced form of 𝑎𝑟(·) in the sense that

it accepts only the counts of the independent species as inputs. Assuming known

invariant values f and an initial probability distribution 𝑃 (·, 0), we defined the steady-

state or stationary distribution of the system as 𝑃ss(·) ≡ lim𝑡→+∞ 𝑃 (·, 𝑡).

5.3.3 Moments of the Reduced Distribution

We defined the moments of the distribution 𝑃 (·, 𝑡) using the equation

𝜇j(𝑡) ≡
∑︁
x̂∈𝒳

x̂j𝑃 (x̂, 𝑡), ∀j ∈ N�̂� (5.9)

where x̂j ≡ ∏︀�̂�
𝑘=1 �̂�𝑗𝑘

𝑘 is the monomial corresponding to the multi-index j ∈ N�̂� . We

used the symbol 𝜇(𝑡) to denote the infinite sequence of moments at time 𝑡. The

steady-state moments 𝜇ss were defined similarly.

We noted that several physically meaningful statistical descriptions of 𝑃 (·, 𝑡) and

𝑃ss(·) could be expressed in terms their moments. For example, the mean molecular

count of independent species 𝑖 ∈ {1, . . . , �̂�} at time 𝑡 can be written as ⟨�̂�𝑖(𝑡)⟩ =

𝜇e𝑖
(𝑡), where e𝑖 is the 𝑖th coordinate vector.
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5.3.4 The Bounding Paradigm

Next, we introduced our paradigm for obtaining rigorous bounds on statistical de-

scriptions of the distribution 𝑃 (·, 𝑡) or 𝑃ss(·) which can be expressed in terms of their

moments. For example, we suggested that we could calculate an upper bound on

the mean molecular count of independent species 𝑖 ∈ {1, . . . , �̂�} at steady state by

solving an abstract optimization problem of the form

⟨�̂�𝑖⟩𝑈
ss ≡ max

�̃�
�̃�e𝑖

s.t. �̃� satisfies necessary steady-state

moment conditions.

(5.10)

Similarly, to calculate an upper bound on ⟨�̂�𝑖(𝑡)⟩ for an arbitrary time 𝑡 ≥ 0, we had

⟨�̂�𝑖(𝑡)⟩𝑈 ≡ max
�̃�(𝑡)

�̃�e𝑖
(𝑡)

s.t. �̃�(𝑡) satisfies necessary

moment conditions at time 𝑡.

(5.11)

We label the decision variable �̃� with a “tilde” to distinguish it from the vector of true

moments 𝜇 defined in Equation (5.9). In principle, this vector of decision variables

could be infinitely long, containing the full sequence of moments. However, in what

follows, we will assume that the vector �̃� is finite and contains only as many moments

as are required to express the necessary conditions that we will enforce as constraints.

5.3.5 Necessary Conditions on the Moment Sequences

The necessary conditions appearing in Problems (5.10) and (5.11) can be divided into

three main categories, described in turn below.
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Dynamics-Based Necessary Conditions

From the reduced form of the CME (5.8), one can derive a system of equations

describing how the moments 𝜇 change over time. In particular, we can write

𝑑𝜇𝐿

𝑑𝑡
(𝑡) = A𝐿𝜇𝐿(𝑡) + A𝐻𝜇𝐻(𝑡) (5.12)

where 𝜇𝐿 is a vector containing the “low-order” moments up to some arbitrary order

𝑚 ∈ N, 𝜇𝐻 contains finitely many “higher-order” moments, and the constant matrices

A𝐿 and A𝐻 are computed using the procedure described by Smadbeck and Kaznessis

[63].

The dynamics-based necessary conditions are all derived from Equation (5.12).

For example, for the steady-state analysis, we know that the time derivatives of the

moments must be zero, leading to the equation

0 = A𝐿𝜇𝐿,ss + A𝐻𝜇𝐻,ss. (5.13)

For the transient analysis, we had linear constraints of the form

𝜇𝐿(𝑡) − 𝑒𝜌𝑡𝜇𝐿(0) = (A𝐿 − 𝜌I)z(𝜌)
𝐿 + A𝐻z(𝜌)

𝐻 (5.14)

for each value of 𝜌 in a finite set ℛ ⊂ R−, where z(𝜌) is a vector of generalized moments

defined by

𝑧
(𝜌)
j ≡

∫︁ 𝑡

0
𝑒𝜌(𝑡−𝜏)𝜇j(𝜏)𝑑𝜏, ∀j ∈ N�̂� , ∀𝜌 ∈ ℛ. (5.15)

The vectors z(𝜌) for each 𝜌 ∈ ℛ are also treated as decision variables in solving

Problem (5.11).

Probability-Based Necessary Conditions

The first group of probability-based constraints came from the simple fact that the

sum of all probabilities must always be one. For the steady-state analysis, this gave
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us

𝜇0,ss = 1. (5.16)

For the dynamic analysis, this gave us

𝜇0(𝑡) = 1 (5.17)

and

𝑧
(𝜌)
0 =

⎧⎪⎪⎨⎪⎪⎩
𝑇 if 𝜌 = 0,

𝑒𝜌𝑇 −1
𝜌

otherwise,

∀𝜌 ∈ ℛ. (5.18)

The second group of probability-based constraints was derived from the inequality

∑︁
x̂∈𝒳

𝑞2(x̂)𝑃 (x̂, 𝑡) ≥ 0, ∀𝑡 ≥ 0, (5.19)

for any polynomial 𝑞(·). For the steady-state analysis, this lead to a linear matrix

inequality (LMI)

M0
𝑛(𝜇ss) ⪰ 0, (5.20)

where the matrix M0
𝑛(·), defined in Appendix B, is a linear function of its argument.

Similarly, for the transient analysis, we had

M0
𝑛(𝜇(𝑡)) ⪰ 0 and M0

𝑛(z(𝜌)) ⪰ 0, ∀𝜌 ∈ ℛ. (5.21)

Support-Based Necessary Conditions

Since the molecular counts of both the independent and dependent species must be

nonnegative, it follows that the set of reduced reachable states 𝒳 must be contained

in the polyhedral set

𝒳 ≡

⎧⎪⎨⎪⎩x̂ ∈ R�̂� :
x̂ ≥ 0

B̃−1f − B̃−1B̂x̂ ≥ 0

⎫⎪⎬⎪⎭ , (5.22)
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Since 𝑃 (·, 𝑡) is nonzero only on 𝒳 and since 𝒳 ⊂ 𝒳 , it follows that the 𝑃 (·, 𝑡) is

supported on 𝒳 .

This led to a second group of LMIs based on the inequality

∑︁
x̂∈𝒳

𝑔(x̂)𝑞2(x̂)𝑃 (x̂, 𝑡) ≥ 0, ∀𝑡 ≥ 0, (5.23)

where, again, 𝑞(·) is an arbitrary polynomial, and 𝑔(·) is one of the several polynomials

defining 𝒳 through an inequality of the form 𝑔(x̂) ≥ 0. For example, one such 𝑔(·)

is 𝑔(x̂) = �̂�1. We had two different types of LMIs derived from inequality (5.64),

corresponding to the two different types of inequalities appearing in the definition of

𝒳 . In particular, for the steady-state analysis, we had

Me𝑗

𝑛−1(𝜇ss) ⪰ 0, ∀𝑗 ∈ {1, . . . , �̂�}, (5.24)

and

𝛼𝑘M0
𝑛−1(𝜇ss) −

�̂�∑︁
𝑗=1

𝛽𝑘,𝑗M
e𝑗

𝑛−1(𝜇ss) ⪰ 0, ∀𝑘 ∈ {1, . . . , 𝐿}. (5.25)

where 𝛼𝑘 is the 𝑘th element of the vector B̃−1f , and 𝛽𝑘,𝑗 is the entry in the 𝑘th row

and 𝑗th column of the matrix B̃−1B̂. For the transient analysis, we showed that the

same LMIs must be satisfied by the moment vectors 𝜇(𝑡) and z(𝜌) for each 𝜌 ∈ ℛ.

5.3.6 Semidefinite Programs

Using all of the necessary conditions appearing in Section 5.3.5 as constraints in the

abstract optimization problems of Section 5.3.4, we obtained two SDPs: one for the
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steady-state problem,

⟨�̂�𝑖⟩𝑈
ss ≡ max

�̃�
�̃�e𝑖

s.t. A𝐿�̃�𝐿 + A𝐻�̃�𝐻 = 0,

�̃�0 = 1,

M0
𝑛(�̃�) ⪰ 0,

Me𝑗

𝑛−1(�̃�) ⪰ 0, ∀𝑗 ∈ {1, . . . , �̂�},

𝛼𝑘M0
𝑛−1(�̃�) −

�̂�∑︁
𝑗=1

𝛽𝑘,𝑗M
e𝑗

𝑛−1(�̃�) ⪰ 0, ∀𝑘 ∈ {1, . . . , 𝐿},

(5.26)

and one for the transient problem,

⟨�̂�𝑖(𝑡)⟩𝑈 ≡ max
�̃�(𝑡)

z̃(𝜌),∀𝜌∈ℛ

�̃�e𝑖
(𝑡)

s.t. �̃�𝐿(𝑡) − 𝑒𝜌𝑡�̃�𝐿(0) = (A𝐿 − 𝜌I)z̃(𝜌)
𝐿 + A𝐻 z̃(𝜌)

𝐻 , ∀𝜌 ∈ ℛ,

�̃�0(𝑡) = 1,

𝑧
(𝜌)
0 =

⎧⎪⎪⎨⎪⎪⎩
𝑇 if 𝜌 = 0,

𝑒𝜌𝑇 −1
𝜌

otherwise,

∀𝜌 ∈ ℛ,

M0
𝑛(�̃�(𝑡)) ⪰ 0,

M0
𝑛(z̃(𝜌)) ⪰ 0, ∀𝜌 ∈ ℛ,

Me𝑗

𝑛−1(�̃�(𝑡)) ⪰ 0, ∀𝑗 ∈ {1, . . . , �̂�},

Me𝑗

𝑛−1(z̃(𝜌)) ⪰ 0, ∀𝑗 ∈ {1, . . . , �̂�}, ∀𝜌 ∈ ℛ,

𝛼𝑘M0
𝑛−1(�̃�(𝑡)) −

�̂�∑︁
𝑗=1

𝛽𝑘,𝑗M
e𝑗

𝑛−1(�̃�(𝑡)) ⪰ 0, ∀𝑘 ∈ {1, . . . , 𝐿},

𝛼𝑘M0
𝑛−1(z̃(𝜌)) −

�̂�∑︁
𝑗=1

𝛽𝑘,𝑗M
e𝑗

𝑛−1(z̃(𝜌)) ⪰ 0, ∀𝑘 ∈ {1, . . . , 𝐿},

∀𝜌 ∈ ℛ.

(5.27)
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Parameters

For the steady-state problem, there are two parameters. The first of these is 𝑚 ∈ N,

our arbitrary cut-off of what we consider a “low-order” moment. The choice of 𝑚

affects the length of the �̃�𝐿 and �̃�𝐻 vectors. Accordingly, it affects the number of

rows and columns of the A𝐿 and A𝐻 matrices. The second parameter is 𝑛 ∈ N, which

determines the size of the M0
𝑛(�̃�), M0

𝑛−1(�̃�), and Me𝑗

𝑛−1(�̃�) matrices, as described in

Appendix B. In principle, any combination of these two parameters gives an SDP

which will yield valid bounds. However, for reasons explained in Chapter 3, we

recommend linking the two parameter values through the equation 𝑛 = ⌈(𝑚 + 𝑞 −

1)/2⌉, where 𝑞 ∈ N is the maximum reaction order in the underlying chemical system

(e.g., for a system containing at most bimolecular reactions, 𝑞 = 2). With the equation

𝑛 = ⌈(𝑚 + 𝑞 − 1)/2⌉, we can treat 𝑚 as the sole parameter for the SDP. As explained

in Chapters 3 and 4, the quality of the bounds increases monotonically with the values

of 𝑚. However, larger values of 𝑚 also yield larger SDPs, which are more prone to

numerical instability. Thus, there is a trade-off in selecting 𝑚.

The transient problem also has 𝑚 ∈ N and 𝑛 ∈ N as parameters, and everything

we’ve said in the previous paragraph applies. Furthermore, the choice of 𝑚 affects the

size of the z̃(𝜌)
𝐿 and z̃(𝜌)

𝐻 for each value of 𝜌 ∈ ℛ. This set ℛ ⊂ R− is also treated as a

parameter. Any choice of ℛ leads to valid bounds. However, as we showed in Chapter

4, the quality of the bounds tends to be better when the values of ℛ approximate

the most significant time constants of the underlying chemical system. In that same

chapter, we gave some heuristics for picking ℛ. One of these heuristics was to pick

several representative states x̂ ∈ 𝒳 and then evaluate the propensity functions for

these states. Adding values to the set ℛ can only improve the quality of the resulting

bounds. However, again, there is a trade-off, because the size of SDP (5.27) increases

with the cardinality of ℛ.
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Bounds on other Statistical Descriptions

Solving SDPs (5.26) and (5.27) gives an upper bound on the mean molecular count

of independent species 𝑖 at steady state and at an arbitrary time 𝑡 ≥ 0, respectively.

However, as we showed Chapters 3 and 4, variations on this theme can be used to

bound other statistical descriptions of the unknown probability distributions 𝑃ss(·)

and 𝑃 (·, 𝑡).

5.3.7 𝒳 as an Outer-Approximation of 𝒳

As described in Chapter 3, the polyhedral superset 𝒳 is an outer-approximation of

the set of reduced reachable states 𝒳 in the sense that 𝒳 does not require molecular

counts to be integers (i.e., a point x̂ ∈ 𝒳 doesn’t necessarily satisfy x̂ ∈ N�̂� or B̃−1f −

B̃−1B̂x̂ ∈ N𝐿 while a point x̂ ∈ 𝒳 does). We noted that this outer-approximation

has potential to introduce conservatism into the bounds produced by solving the

aforementioned SDPs. While this conservatism was slight, it is still undesirable. We

described a mitigation strategy involving selectively adding LMIs to the bounding

SDPs.

5.4 A Second Type of Outer-Approximation

In fact, there is a second way in which the set 𝒳 may be an outer-approximation of

𝒳 , leading to more dramatic conservatism in the bounds.

5.4.1 A Pathological Example

This second type of outer-approximation is best illustrated through an example. Con-

sider the reaction system

A + B
𝑐1

GGGGGAC

A
𝑐2

GGGGGAD
(5.28)
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with 𝑐1 = 𝑐2 = 1 s−1. The stoichiometry matrix for this system is

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1

−1 0

1 0

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.29)

The left null space of S is spanned by the rows of

B =

⎡⎢⎣ 1 0 1 1

0 1 1 0

⎤⎥⎦ . (5.30)

It follows that the sums 𝑥A + 𝑥C + 𝑥D and 𝑥B + 𝑥C are invariants of this reaction

system. The values of these invariants depend on the initial condition x(0). Suppose

that the initial condition is x(0) = (2, 3, 3, 0). Then, the values of the invariants are

BTx(0) = (5, 6). Selecting species A and B as the independent species, Equation

(5.22) simplifies to

𝒳 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎣ 𝑥𝐴

𝑥𝐵

⎤⎥⎦ ∈ R�̂� :

⎡⎢⎣ 𝑥𝐴

𝑥𝐵

⎤⎥⎦ ≥ 0
⎡⎢⎣ 6 − 𝑥𝐵

−1 − 𝑥𝐴 + 𝑥𝐵

⎤⎥⎦ ≥ 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (5.31)

How does this 𝒳 compare with 𝒳 ? Inspecting Reaction System (5.28) and recall-

ing the initial state x(0), we see that the set of full-dimensional states is

𝒳 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2

3

3

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

2

4

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

3

3

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

2

4

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

3

3

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

1

5

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (5.32)
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from which it follows trivially that the set of reduced reachable states is

𝒳 =

⎧⎪⎨⎪⎩
⎡⎢⎣ 2

3

⎤⎥⎦ ,

⎡⎢⎣ 1

2

⎤⎥⎦ ,

⎡⎢⎣ 1

3

⎤⎥⎦ ,

⎡⎢⎣ 0

2

⎤⎥⎦
⎡⎢⎣ 0

3

⎤⎥⎦
⎡⎢⎣ 0

1

⎤⎥⎦
⎫⎪⎬⎪⎭ , (5.33)

We can easily verify that 𝒳 ⊂ 𝒳 . However, notice that there are many integer-valued

points x̂ ∈ 𝒳 that are not elements of 𝒳 . For example, each of the points in the set

𝑆 ≡

⎧⎪⎨⎪⎩
⎡⎢⎣ 1

4

⎤⎥⎦ ,

⎡⎢⎣ 0

6

⎤⎥⎦ ,

⎡⎢⎣ 4

5

⎤⎥⎦
⎫⎪⎬⎪⎭ (5.34)

is an element of 𝒳 but not 𝒳 . Inspecting Reaction System (5.28) and the initial

state x(0) = (2, 3, 3, 0), it is obvious that each of the states x̂ ∈ 𝑆 cannot be in 𝒳 ;

achieving these states would require the generation of A or B molecules, for which

there is no mechanism. Yet, clearly, 𝑆 ⊂ 𝒳 . This leads us to the conclusion that, in

this case, 𝒳 is a gross outer-approximation of 𝒳 .

5.4.2 Implications for the Bounds

As we might expect based on the discussion in Section 5.3.7, this outer-approximation

leads to undesirable conservatism in the bounds produced by solving the SDPs de-

scribed in Section 5.3.6.

Steady-State Analysis

For example, if we try to upper bound the steady-state mean molecular count of

species B by solving SDP (5.26), with any 𝑚 ∈ N, we obtain ⟨B⟩𝑈
ss = 6. This upper

bound is valid, but it is also obviously conservative, given that the stoichiometry and

initial condition of the reaction system require that 𝑥B(𝑡) ≤ 3 for all 𝑡 ≥ 0.

The explanation for this conservatism in the upper bound has two parts. First, the

LMIs appearing as constraints in SDP (5.26) are necessary conditions for a moment

sequence 𝜇 of a distribution supported on 𝒳 . As we saw in Section 5.4.1, while the

point x̂* ≡ (0, 6) is not an element of 𝒳 , it is an element of 𝒳 . Accordingly, the
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Dirac distribution 𝛿x̂* , in which all of the probability is concentrated on the point

x̂*, is supported on 𝒳 . It follows that the moments 𝜇 of this distribution satisfy the

LMIs of SDP (5.26). They also trivially satisfy the constraint 𝜇0 = 1. Second, the

point x̂* = (0, 6) implies 0 molecules of A. Inspecting Reaction System (5.28), we

see that having 0 molecules of A implies that no reaction is possible (the propensity

functions evaluate to zero). It follows that the distribution 𝛿x̂* , when subjected to

the CME for this system, is invariant with time. Furthermore, its moments 𝜇 do

not change with time. In other words, 𝜇 satisfies the first constraint of SDP (5.26).

We’ve come to the conclusion, then, that 𝜇 is a feasible point of SDP (5.26). This

implies that the optimal value of SDP (5.26) is greater than or equal to the objective

value corresponding to 𝜇:

𝜇e2 =
∑︁
x̂∈𝒳

x̂e2𝛿x̂* =
∑︁
x̂∈𝒳

�̂�2𝛿x̂* = �̂�*
2 = 6 (5.35)

Thus, the inclusion of the point x̂* in the set 𝒳 artificially pushes the upper bound

upward, degrading the quality of the bound.

Transient Analysis

What about the transient analysis? To solve SDP (5.27), we need to choose a set

ℛ. We will do so using the heuristic described in Section 5.3.6, picking (somewhat

arbitrarily) x̂ = (2, 3) and x̂ = (1, 2) as the “representative” reachable states. Eval-

uating the and summing the propensity functions for each of these states suggests

using 𝜌 values of −8 and −3. Including the standard value of 𝜌 = 0, leaves us with

ℛ = {0, −3, −8}.

Solving SDP (5.27) with this ℛ and 𝑚 = 2 for a range of 𝑡 values from 𝑡 = 0 s

to 𝑡 = 3 s, we obtain the bounds shown in Figure 5-1. This system is small enough

that directly solving the CME is also practical. Accordingly the exact CME solution

is also plotted in Figure 5-1 for comparison.
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Figure 5-1: Time-varying bounds on the mean molecular counts of species A, B,

and D for Reaction System (5.28). These bounds were calculated by solving SDP

(5.27) (and its minimization counterpart) over a range of 𝑡 values, using 𝑚 = 2 and

ℛ = {0, −3, −8}.

Inspecting Figure 5-1, we see that the computed bounds are quite tight. At least,

they are not more conservative than the bounds implied by stoichiometry, as we saw

for the bound in the steady-state analysis. However, given that many of the LMIs

appearing as constraints in SDP (5.27) are derived from 𝒳 , we might wonder if the

over-approximation built into 𝒳 is causing unnecessary conservatism in the bounds.

In what follows, we will see that this is, in fact, the case.

5.4.3 Generalization

What went wrong in the above example? We’ve seen that the immediate problem

is that the set 𝒳 is a substantial over-approximation of the true reachable set 𝒳 , in

the sense that there exist many integer-valued points x̂ ∈ N�̂� such that x̂ ∈ 𝒳 but

x̂ /∈ 𝒳 . However, the fundamental problem is that the set 𝒳 described in Equation

(5.31) does not reflect the fact that the reactions appearing in Reaction System (5.28)

are irreversible.

As the reader may guess, the problem is not specific to this example. The general

expression for 𝒳 given in Equation (5.22) implicitly assumes reversible reactions.
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Thus, if irreversible reactions are present, and this leads to 𝒳 being a substantial

over-approximation of the true reachable set 𝒳 , applying the bounding methods of

Section 5.3 may lead to the same type of undesirable conservatism we’ve seen in the

present pathological example.

5.5 An Alternative State Representation

Fortunately, there is a relatively simple way to fix the problem identified in the

previous section. The key idea is to express the state of the system not in terms

of the molecular counts X(𝑡) ∈ N𝑁 but in terms of the extents of reaction E(𝑡) ∈ N𝑅.

Then, in analogy with our definition of 𝒳 , we can redefine the set of reachable states

as

ℰ ≡
{︁
𝜖 ∈ N𝑅 : x0 + S𝜖 ≥ 0

}︁
. (5.36)

Now, as before, we’d like to construct a polyhedral superset guaranteed to contain

the set of reachable states. This superset is given by

ℰ̄ ≡

⎧⎪⎨⎪⎩𝜖 ∈ R𝑅 :
x0 + S𝜖 ≥ 0,

𝜖 ≥ 0

⎫⎪⎬⎪⎭ . (5.37)

The first inequality appearing in this definition of ℰ̄ reflects the physical fact molecular

counts must be nonnegative, and is analogous to the two inequalities appearing in

our definition of 𝒳 . However, the second equality, 𝜖 ≥ 0, has no analogue in the

definition of 𝒳 ; it expresses precisely what the definition of 𝒳 lacks – namely, that

each elementary reaction is irreversible.

5.5.1 Redundancy in the State Representation

One undesirable feature of this state representation is that it may be redundant, in

the sense that there may be multiple states 𝜖 ∈ ℰ corresponding to the same state

x ∈ 𝒳 . This will be true whenever there exists some 𝜖⊥ ∈ N𝑅 such that 𝜖⊥ ̸= 0 and

S𝜖⊥ = 0. Then, for every 𝜖 ∈ ℰ and the corresponding state x = x0 + S𝜖 ∈ 𝒳 , there
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is an infinite set of states

{𝜖 + 𝛼𝜖⊥ : 𝛼 ∈ Z, 𝜖 + 𝛼𝜖⊥ ≥ 0} ⊂ ℰ (5.38)

corresponding to x.

For example, consider the simple reversible reaction system A GGGBFGGG B. The stoi-

chiometry matrix for this system is

S =

⎡⎢⎣ −1 1

1 −1

⎤⎥⎦ . (5.39)

The vector 𝜖⊥ = (1, 1) satisfies S𝜖⊥ = 0. In words, this means that the two reactions

“cancel each other out”. If the system is in state x ∈ 𝒳 , and both reactions occur

in sequence, incrementing the values of 𝜖1 and 𝜖2, the system returns to the same x,

but has arrived at a new 𝜖 ∈ ℰ . Accordingly, for any x ∈ 𝒳 in this reaction system,

there are infinitely many corresponding states 𝜖 ∈ ℰ .

In general, we will define the set of states 𝜖 ∈ ℰ corresponding to a state x ∈ 𝒳

as

ℰ(x) ≡ {𝜖 ∈ ℰ : x = x0 + S𝜖}, ∀x ∈ 𝒳 . (5.40)

Similarly, we can define ℰ(x̂) as the set of states 𝜖 ∈ ℰ corresponding to a reduced

state x̂ ∈ 𝒳 . From Equations (5.1) and (5.36) it follows that

ℰ =
⋃︁

x∈𝒳
ℰ(x). (5.41)

Since there is a one-to-one correspondence between the elements of 𝒳 and 𝒳 , it is

also true that

ℰ =
⋃︁

x̂∈𝒳

ℰ(x̂). (5.42)

The redundancy we have described in this section will require us to exercise some

care in the derivations that follow, but it does not invalidate the representation of

the state of the system in terms of extents.
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5.6 Alternative Formulation of the Bounding Method

Having redefined the set of reachable states in terms of extents of reaction, ℰ , and

having constructed the corresponding polyhedral superset ℰ̄ , we have apparently over-

come the fundamental problem described in Section 5.4. In this section, we describe

how the bounding method described in our previous work [14, 16] can be adapted to

make use of this alternative representation of the state.

5.6.1 A New Probability Distribution

First, we can define a probability distribution over ℰ in much the same way that we

defined the probability distribution over 𝒳 and 𝒳 :

𝑃ℰ(𝜖, 𝑡) ≡ Pr(E(𝑡) = 𝜖), ∀𝜖 ∈ ℰ . (5.43)

The function can be extended to the domain Z𝑅 if we specify that 𝑃ℰ(𝜖, 𝑡) ≡ 0 for all

𝜖 ∈ Z𝑅 such that 𝜖 /∈ ℰ .

The distribution 𝑃ℰ(·, 𝑡) is related to 𝑃 (·, 𝑡) and 𝑃 (·, 𝑡) through the following

equations:

𝑃 (x, 𝑡) =
∑︁

𝜖∈ℰ(x)
𝑃ℰ(𝜖, 𝑡), ∀x ∈ 𝒳 , (5.44)

𝑃 (x̂, 𝑡) =
∑︁

𝜖∈ℰ(x̂)
𝑃ℰ(𝜖, 𝑡), ∀x̂ ∈ 𝒳 . (5.45)

5.6.2 Moments

Second, we can define moments of the distribution 𝑃ℰ(·, 𝑡), in analogy with how we

defined the moments of the distribution 𝑃 (·, 𝑡):

𝑦j(𝑡) ≡
∑︁
𝜖∈ℰ

𝜖j𝑃ℰ(𝜖, 𝑡), ∀j ∈ N𝑅. (5.46)

As before, the zeroth order moment is nothing more than the sum of probabilities

across all 𝜖 ∈ ℰ . Accordingly, we have 𝑦0(𝑡) = 1, for all 𝑡 ≥ 0.
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The moments y(𝑡) can be used to express the same statistical descriptions of the

reaction system that could be expressed in terms of the moments 𝜇(𝑡). For example,

the mean molecular count of species 𝑖 ∈ {1, . . . , 𝑁} at time 𝑡 is equal to

⟨𝑋𝑖(𝑡)⟩ =
∑︁
𝜖∈ℰ

(︃
𝑥0,𝑖 +

𝑅∑︁
𝑟=1

𝑠𝑖,𝑟𝜖𝑟

)︃
𝑃ℰ(𝜖, 𝑡),

= 𝑥0,𝑖

∑︁
𝜖∈ℰ

𝑃ℰ(𝜖, 𝑡) +
𝑅∑︁

𝑟=1
𝑠𝑖,𝑟

∑︁
𝜖∈ℰ

𝜖𝑟𝑃ℰ(𝜖, 𝑡),

= 𝑥0,𝑖𝑦0(𝑡) +
𝑅∑︁

𝑟=1
𝑠𝑖,𝑟𝑦e𝑟(𝑡),

= 𝑥0,𝑖 +
𝑅∑︁

𝑟=1
𝑠𝑖,𝑟𝑦e𝑟(𝑡).

(5.47)

Moreover, any moment 𝜇j(𝑡), j ∈ N�̂� can be expressed as a linear combination of

the moments y(𝑡). We leave the derivation to Appendix D.

5.6.3 The Bounding Paradigm

The new bounding paradigm is essentially the same that we saw in Section 5.3.4.

For example, to calculate an upper bound on the mean molecular count of species

𝑖 ∈ {1, . . . , 𝑁} at steady-state and at an arbitrary time 𝑡, we solve the abstract

optimization problems

⟨𝑋𝑖⟩𝑈
ss ≡ max

ỹ
𝑥0,𝑖 +

𝑅∑︁
𝑟=1

𝑠𝑖,𝑟𝑦e𝑟

s.t. ỹ satisfies necessary steady-state

moment conditions,

(5.48)

and
⟨𝑋𝑖(𝑡)⟩𝑈 ≡ max

ỹ(𝑡)
𝑥0,𝑖 +

𝑅∑︁
𝑟=1

𝑠𝑖,𝑟𝑦e𝑟(𝑡)

s.t. ỹ(𝑡) satisfies necessary

moment conditions at time 𝑡,

(5.49)

respectively.
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5.6.4 Necessary Conditions on the Moment Sequence

Third, we can derive necessary conditions that the moments y must satisfy. Most of

these conditions are directly analogous to the conditions appearing in Section (5.3.5).

However, there are also a few subtle but important differences.

Dynamics-Based Necessary Conditions

The dynamics-based necessary conditions that we saw in Section 5.3.5 were derived

from the CME (5.8) expressed in terms of the reduced states, x̂ ∈ 𝒳 . To derive anal-

ogous necessary conditions for the moments y, we need an analogous CME expressed

in terms of the states 𝜖 ∈ ℰ , which is

𝑑𝑃ℰ

𝑑𝑡
(𝜖, 𝑡) =

𝑅∑︁
𝑟=1

[𝑃ℰ(𝜖 − e𝑟, 𝑡)𝛼𝑟(𝜖 − e𝑟) − 𝑃ℰ(𝜖, 𝑡)𝛼𝑟(𝜖)] , ∀𝜖 ∈ ℰ , (5.50)

where

𝛼𝑟(𝜖) ≡ 𝑎𝑟(x0 + S𝜖). (5.51)

From this CME, we can derive an analogue of Equation (5.12), describing the dy-

namics of the moments y:

𝑑y𝐿

𝑑𝑡
(𝑡) = Aℰ

𝐿y𝐿(𝑡) + Aℰ
𝐻y𝐻(𝑡). (5.52)

The matrices Aℰ
𝐿 and Aℰ

𝐻 are clearly analogous to the matrices A𝐿 and A𝐻 appearing

in Equation (5.12) and can be constructed in essentially the same way. Details can

be found in Appendix D.

Now, in seeking the analogue of Necessary Condition (5.13), it is tempting to

simply set the time derivatives on the left-hand side equal to zero, giving

0 = Aℰ

⎡⎢⎣ y𝐿(𝑡)

y𝐻(𝑡)

⎤⎥⎦ , (5.53)

where [Aℰ
𝐿 Aℰ

𝐻 ] ≡ Aℰ . This is, indeed, a necessary condition for a distribution
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𝑃ℰ(·, 𝑡) which is not changing with time. However, remember that our goal is to write

a necessary condition for a time-invariant distribution 𝑃 (·, 𝑡). It turns out that the

time invariance of 𝑃 (·, 𝑡) does not imply the time invariance of 𝑃ℰ(·, 𝑡).

To see this, consider the simple reversible reaction system A GGGBFGGG B with some

nonzero initial count of A molecules and nonzero rate constants for both the forward

and reverse reactions. In the steady-state distribution 𝑃ss(·) = lim𝑡→+∞ 𝑃 (·, 𝑡), there

will be some nonzero probability associated with every x ∈ 𝒳 , and probability will be

flowing between the reachable states in a way that the flow into each state balances

the flow out. Probability can only flow from state to state if reactions are occurring.

This implies that the state of the system, represented in terms of the reaction extents,

𝜖 is constantly changing. In particular, both reaction extents are increasing with time

at a constant rate, as the reactions continually fire in the dynamic equilibrium. In

turn, this implies that the moments y based on the reaction extents 𝜖 are not constant

with time. Thus, 𝑑y𝐿

𝑑𝑡
= 0 is not a necessary condition for a stochastic chemical kinetic

system at steady state.

What do we use, then, for our necessary steady-state condition? While we cannot

insist that 𝑑y𝐿

𝑑𝑡
= 0, it is still true that we must have 𝑑𝜇𝐿

𝑑𝑡
= 0. Moreover, as we show

in Appendix D, the time derivatives of the moments 𝜇𝐿 can be related to those of y𝐿

through a linear equation:
𝑑𝜇𝐿

𝑑𝑡
(𝑡) = C

𝑑y𝐿

𝑑𝑡
(𝑡). (5.54)

Our steady-state necessary condition is then obtained by pre-multiplying both sides

of Equation (5.53) by the matrix C:

0 = CAℰ

⎡⎢⎣ y𝐿,ss(𝑡)

y𝐻,ss(𝑡)

⎤⎥⎦ . (5.55)

How about the necessary condition for the transient analysis? Fortunately, in this

case, none of the above concerns apply, and the analogy is more straight-forward. We
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simply set

y𝐿(𝑡) − 𝑒𝜌𝑡y𝐿(0) = (Aℰ
𝐿 − 𝜌I)u(𝜌)

𝐿 + Aℰ
𝐻u(𝜌)

𝐻 , ∀𝜌 ∈ ℛ, (5.56)

where u(𝜌) is a vector of generalized moments defined by

𝑢
(𝜌)
j ≡

∫︁ 𝑡

0
𝑒𝜌(𝑡−𝜏)𝑦j(𝜏)𝑑𝜏, ∀j ∈ N𝑅, ∀𝜌 ∈ ℛ. (5.57)

Probability-Based Necessary Conditions

The probability-based necessary conditions are directly analogous to those we had

before. Since the total probability must always be one, we have

𝑦ss,0 = 1 (5.58)

for the steady-state analysis and

𝑦0(𝑡) = 1 (5.59)

and

𝑢
(𝜌)
0 =

⎧⎪⎪⎨⎪⎪⎩
𝑇 if 𝜌 = 0,

𝑒𝜌𝑇 −1
𝜌

otherwise,

∀𝜌 ∈ ℛ, (5.60)

for the dynamic analysis.

Furthermore, since

∑︁
𝜖∈ℰ

𝑞2(𝜖)𝑃ℰ(𝜖, 𝑡) ≥ 0, ∀𝑡 ≥ 0, (5.61)

for an arbitrary polynomial 𝑞(·), we have the LMIs

M0
𝑛(yss) ⪰ 0, (5.62)
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for the steady-state analysis, and

M0
𝑛(y(𝑡)) ⪰ 0 and M0

𝑛(u(𝜌)) ⪰ 0, ∀𝜌 ∈ ℛ. (5.63)

for the transient analysis.

Support-Based Necessary Conditions

We’ve seen that the reachable set ℰ must be contained in the polyhedral superset ℰ̄ .

This implies that 𝑃ℰ(·, 𝑡) is supported on ℰ̄ . We then have a family of LMIs based on

the inequality ∑︁
𝜖∈ℰ

𝑔(𝜖)𝑞2(𝜖)𝑃ℰ(𝜖, 𝑡) ≥ 0, ∀𝑡 ≥ 0, (5.64)

where, again, 𝑞(·) is an arbitrary polynomial, and 𝑔(·) is one of the several polynomials

defining ℰ̄ through an inequality of the form 𝑔(𝜖) ≥ 0. In particular, polynomials 𝑔(·)

of the form 𝑔(𝜖) = 𝜖𝑟 for 𝑟 ∈ {1, . . . , 𝑅} lead to the LMIs

Me𝑟
𝑛−1(yss) ⪰ 0, ∀𝑟 ∈ {1, . . . , 𝑅}, (5.65)

while polynomials 𝑔(·) of the form 𝑔(𝜖) = 𝑥0,𝑗 +∑︀𝑅
𝑟=1 𝑠𝑗,𝑟𝜖𝑟 for 𝑗 ∈ {1, . . . , 𝑁} lead to

the LMIs

𝑥0,𝑗M0
𝑛−1(yss) +

𝑅∑︁
𝑟=1

𝑠𝑗,𝑟Me𝑟
𝑛−1(yss) ⪰ 0, ∀𝑗 ∈ {1, . . . , 𝑁}. (5.66)

Of course, the same LMIs must be satisfied by the moment vectors y(𝑡) and u(𝜌) for

all 𝜌 ∈ ℛ.

The LMIs described by Necessary Condition (5.66) reflect the fact that molecular

counts must be nonnegative and are thus analogous to the LMIs described by Neces-

sary Conditions (5.24) and (5.25) in Section 5.3.5. However, the LMIs described by

Necessary Condition (5.65) have no analogue in Section 5.3.5
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5.6.5 Semidefinite Programs

Using all of the necessary conditions appearing in Section 5.6.4 as constraints in the

abstract optimization problems of Section 5.6.3, we obtain two SDPs: one for the

steady-state problem,

⟨𝑋𝑖⟩𝑈
ss ≡ max

ỹ
𝑥0,𝑖 +

𝑅∑︁
𝑟=1

𝑠𝑖,𝑟𝑦e𝑟

s.t. CAℰ

⎡⎢⎣ ỹ𝐿(𝑡)

ỹ𝐻(𝑡)

⎤⎥⎦ = 0,

𝑦0 = 1,

M0
𝑛(ỹ) ⪰ 0,

Me𝑟
𝑛−1(ỹ) ⪰ 0, ∀𝑟 ∈ {1, . . . , 𝑅},

𝑥0,𝑗M0
𝑛−1(ỹ) +

𝑅∑︁
𝑟=1

𝑠𝑗,𝑟M
e𝑗

𝑛−1(ỹ) ⪰ 0, ∀𝑗 ∈ {1, . . . , 𝑁},

(5.67)
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and one for the transient problem,

⟨𝑋𝑖(𝑡)⟩𝑈 ≡ max
ỹ(𝑡)

ũ(𝜌),∀𝜌∈ℛ

𝑥0,𝑖𝑦0(𝑡) +
𝑅∑︁

𝑟=1
𝑠𝑖,𝑟𝑦e𝑟(𝑡)

s.t. ỹ𝐿(𝑡) − 𝑒𝜌𝑡ỹ𝐿(0) = (Aℰ
𝐿 − 𝜌I)ũ(𝜌)

𝐿 + Aℰ
𝐻ũ(𝜌)

𝐻 , ∀𝜌 ∈ ℛ,

𝑦0(𝑡) = 1,

�̃�
(𝜌)
0 =

⎧⎪⎪⎨⎪⎪⎩
𝑇 if 𝜌 = 0,

𝑒𝜌𝑇 −1
𝜌

otherwise,

∀𝜌 ∈ ℛ,

M0
𝑛(ỹ(𝑡)) ⪰ 0,

M0
𝑛(ũ(𝜌)) ⪰ 0, ∀𝜌 ∈ ℛ,

Me𝑟
𝑛−1(ỹ(𝑡)) ⪰ 0, ∀𝑟 ∈ {1, . . . , 𝑅},

Me𝑟
𝑛−1(ũ(𝜌)) ⪰ 0, ∀𝑟 ∈ {1, . . . , 𝑅}, ∀𝜌 ∈ ℛ,

𝑥0,𝑗M0
𝑛−1(ỹ(𝑡)) +

𝑅∑︁
𝑟=1

𝑠𝑗,𝑟M
e𝑗

𝑛−1(ỹ(𝑡)) ⪰ 0, ∀𝑗 ∈ {1, . . . , 𝑁},

𝑥0,𝑗M0
𝑛−1(ũ(𝜌)) +

𝑅∑︁
𝑟=1

𝑠𝑗,𝑟M
e𝑗

𝑛−1(ũ(𝜌)) ⪰ 0, ∀𝑗 ∈ {1, . . . , 𝑁},

∀𝜌 ∈ ℛ.

(5.68)

These SDPs have the same parameters as those described in Section 5.3.6.

Solving these particular SDPs gives an upper bound on the mean molecular count

of species 𝑖 at steady-state or at an arbitrary time 𝑡 ≥ 0, respectively. Of course,

variations on this theme can be used to bound other statistical descriptions of the

reaction system.

5.7 Revisiting the Pathological Example

In this section, we apply the alternative bounding method based on reaction extents

(Section 5.6) to Reaction System (5.28), which we used in Section 5.4.2 to demonstrate

a fundamental shortcoming of the bounding method based solely on independent

species (Section 5.3). We will see that the alternative bounding method gives tighter
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bounds for both the steady-state and dynamic analyses.

5.7.1 Steady-State Analysis

Solving SDP (5.67) with 𝑚 = 2 to upper bound the steady-state mean molecular

count of species B, we obtain ⟨B⟩𝑈
ss = 3. This upper bound is consistent with our

observation in Section 5.4.2 that the stoichiometry and initial condition for Reaction

System (5.28) imply that 𝑥𝐵(𝑡) ≤ 3 for all 𝑡 ≥ 0. Admittedly, it is, in some sense,

still a trivial upper bound, as it is can also be calculated by a simple analysis of

the stoichiometry. However, it is unmistakably a substantial improvement over the

bound of ⟨B⟩𝑈
ss = 6 calculated in Section 5.4.2.

5.7.2 Transient Analysis

Repeating the transient analysis of Section (5.4.2), but using SDP (5.68) in place of

SDP (5.27), we obtain the bounds shown in Figure 5-2. These bounds are tighter

than those shown in Figure 5-1. This confirms our earlier suggestion that the over-

approximation built into 𝒳 might be degrading the quality of the bounds produced

by SDP (5.27).
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Figure 5-2: Time-varying bounds on the mean molecular counts of species A, B,

and D for Reaction System (5.28). These bounds were calculated by solving SDP

(5.68) (and its minimization counterpart) over a range of 𝑡 values, using 𝑚 = 2 and

ℛ = {0, −3, −8}. Compare with Figure 5-1.

5.8 Discussion

5.8.1 Weakness of the Steady-State Bounds

The fact that the bound ⟨B⟩𝑈
ss = 3 obtained in Section 5.7.1 is equal to the stoichio-

metric bound suggests that the steady-state SDP is not incorporating information

about the relative time scales of the competing reactions. For the system to reach

a steady-state in which ⟨B⟩ = 3, all of the probability would have to flow from the

initial state x(0) = (2, 3, 3, 0) via the second reaction, with no probability flowing via

the first reaction. This could only occur if the second reaction was infinitely more

likely than the first. But, whenever 𝑥B > 0 (in particular, for the initial condition),

this is not the case. Thus, the steady-state formulation that we have presented in this

chapter seems to be missing an aspect of the dynamics inherent in the system. We will

explore augmenting the steady-state formulation to add in this dynamic information

in Chapter 6.
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5.8.2 Strictly Better Bounds Are Not Guaranteed

While the alternative formulation of the bounding method described in Section 5.6

will always produce bounds that are at least as good as those produced by the original

formulation described in Section (5.3), the bounds are not necessarily strictly better.

In particular, if the set 𝒳 does not over-approximate the set 𝒳 in the sense described

in Section 5.4.3, then the bounds produced by the two methods will be the same. An

example where this occurs is given in Appendix D.

5.9 Conclusion

In this chapter, we have seen that the bounding method described in Chapters 3 and

4 fails to account for the irreversibility of reactions, and thus can perform poorly

when irreversibility is important in defining the set of reachable states. In an effort

to mitigate this problem, we described an alternative formulation of the bounding

method which explicitly takes this irreversibility into account. We then demonstrated

with an example that this alternative formulation can yield tighter bounds than

the original formulation in both steady-state and transient analyses. Finally, we

demonstrated that while the alternative formulation yields bounds that are at least

as good as those given by the original formulation, the bounds are not necessarily

strictly better.
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Chapter 6

An Additional Steady-State

Necessary Condition

The contents of this chapter have not yet been published.

6.1 Introduction

In this chapter, we derive an additional, relatively simple necessary condition on the

low-order steady-state moments, 𝜇𝐿,ss. This necessary condition can be added as a

constraint to any of the steady-state bounding SDPs that we have derived previously,

potentially reducing the feasible set and tightening the bounds. We give a specific

example of a system where this additional constraint leads to dramatically tighter

bounds.
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6.2 Deriving the Necessary Condition

By definition of the A𝐿 and A𝐻 matrices, we have

𝑑𝜇𝐿

𝑑𝑡
(𝑡) = A𝐿𝜇𝐿(𝑡) + A𝐻𝜇𝐻(𝑡),

=
[︂

A𝐿 A𝐻

]︂ ⎡⎢⎣ 𝜇𝐿(𝑡)

𝜇𝐻(𝑡)

⎤⎥⎦ ,

= A

⎡⎢⎣ 𝜇𝐿(𝑡)

𝜇𝐻(𝑡)

⎤⎥⎦ .

(6.1)

Integrating both sides with respect to time, we obtain

∫︁ 𝑇

0

𝑑𝜇𝐿

𝑑𝑡
(𝑡)𝑑𝑡 =

∫︁ 𝑇

0

⎛⎜⎝A

⎡⎢⎣ 𝜇𝐿(𝑡)

𝜇𝐻(𝑡)

⎤⎥⎦
⎞⎟⎠ 𝑑𝑡,

𝜇𝐿(𝑇 ) − 𝜇𝐿(0) = A

⎡⎢⎣ ∫︀ 𝑇
0 𝜇𝐿(𝑡)𝑑𝑡∫︀ 𝑇
0 𝜇𝐻(𝑡)𝑑𝑡

⎤⎥⎦ .

(6.2)

It follows that

𝜇𝐿(𝑇 ) − 𝜇𝐿(0) ∈ rng(A), ∀𝑇 ≥ 0, (6.3)

where rng(A) denotes the range (i.e., column space) of the matrix A. Assuming that

the limit

lim
𝑇 →+∞

𝜇𝐿(𝑇 ) ≡ 𝜇𝐿,ss (6.4)

exists, it follows that

𝜇𝐿,ss − 𝜇𝐿(0) ∈ rng(A). (6.5)

Proof. By definition of the limit, it follows that for every 𝜖 > 0 there exists a 𝑇𝜖 > 0

such that

||𝜇𝐿(𝑇 ) − 𝜇𝐿,ss|| < 𝜖, ∀𝑇 > 𝑇𝜖. (6.6)

It follows that the sequence of points {𝜇𝐿(𝑛)}𝑛∈N converges to 𝜇𝐿,ss, because, for
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every 𝜖 > 0, there exists 𝑁𝜖 ≡ ⌈𝑇𝜖⌉ ∈ N such that

||𝜇𝐿(𝑛) − 𝜇𝐿,ss|| < 𝜖, ∀𝑛 ∈ N s.t. 𝑛 > 𝑁𝜖. (6.7)

From Statement (6.3), it follows that {𝜇𝐿(𝑛)}𝑛∈N ⊂ rng(A). Since rng(A) is a closed

set, it follows that the every limit point of {𝜇𝐿(𝑛)}𝑛∈N is an element of rng(A). In

particular, 𝜇𝐿,ss, as a limit point of {𝜇𝐿(𝑛)}𝑛∈N, is an element of rng(A).

Statement (6.5) is equivalent to the statement that there exists some w ∈ R(𝑀+�̂�
𝑀 )

such that

𝜇𝐿,ss − 𝜇𝐿(0) = Aw. (6.8)

6.3 Using the Necessary Conditions as Constraints

We may now include this Necessary Condition (6.8) as a constraint in our steady-

state SDPs, expressing it in terms of proxy decision variables. For example, adding

this constraint to the SDP for calculating an upper bound on the steady-state mean

molecular count of species 𝑖, we obtain

⟨𝑋𝑖⟩𝑈 ≡ max
�̃�,w̃

𝑣𝑖,0 +
�̂�∑︁

𝑗=1
𝑣𝑖,𝑗�̃�e𝑗

s.t. A�̃� = 0,

�̃�𝐿 − 𝜇𝐿(0) = Aw̃,

�̃�0 = 1,

M0
𝑛(�̃�) ⪰ 0,

𝑣𝑐,0M0
𝑛−1(�̃�) +

�̂�∑︁
𝑗=1

𝑣𝑐,𝑗M
e𝑗

𝑛−1(�̃�) ⪰ 0, ∀𝑐 ∈ {1, . . . , 𝑁}.

(6.9)

Interestingly, the additional constraint incorporates information about the initial

moments (and thus the initial distirbution) which does not appear explicitly in our

previous steady-state bounding SDPs. In these previous SDPs, the initial distribu-

tion was reflected in the invariant values. However, there are usually many different
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distributions (with different moments) corresponding to the same invariant values.

The additional constraint effectively specifies which of these distributions is the true

initial distribution.

6.3.1 Redundancy

Of course, the equation �̃�𝐿 − 𝜇𝐿(0) = Aw̃ is really a system of equations, with one

equation for each row of the A matrix. By it’s construction, the first row of the A

matrix is necessarily all zeros, implying the equation

�̃�0 = 𝜇0(0). (6.10)

Assuming that the initial distribution has been appropriately defined, we have 𝜇0(0) =

1. Thus, Equation (6.10) reduces to �̃�0 = 1, which we have already included as a

constraint. It follows that the first row of �̃�𝐿 − 𝜇𝐿(0) = Aw̃ is redundant and can

be eliminated.

Let Â be equal to the A matrix with the first row removed. Furthermore, let

�̃�1:𝑚 denote a vector of the elements of �̃� corresponding to multi-indices of order 1

through 𝑚, in graded descending order. Let 𝜇1:𝑚(0) be defined similarly. Then, we

can express all of the equations implied by �̃�𝐿 − 𝜇𝐿(0) = Aw̃ except the redundant

equality by writing

�̃�1:𝑚 − 𝜇1:𝑚(0) = Âw̃ (6.11)
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in its place. This gives us the equivalent SDP

⟨𝑋𝑖⟩𝑈 ≡ max
�̃�,w̃

𝑣𝑖,0 +
�̂�∑︁

𝑗=1
𝑣𝑖,𝑗�̃�e𝑗

s.t. A�̃� = 0,

�̃�1:𝑚 − 𝜇1:𝑚(0) = Âw̃,

�̃�0 = 1,

M0
𝑛(�̃�) ⪰ 0,

𝑣𝑐,0M0
𝑛−1(�̃�) +

�̂�∑︁
𝑗=1

𝑣𝑐,𝑗M
e𝑗

𝑛−1(�̃�) ⪰ 0, ∀𝑐 ∈ {1, . . . , 𝑁}.

(6.12)

6.4 When Does it Help?

6.4.1 A Rank Condition

Now, the question is: under what circumstances will the additional constraint, �̃�1:𝑚 −

𝜇1:𝑚(0) = Âw̃, improve the quality of the bound, ⟨𝑋𝑖⟩𝑈? We have added a constraint,

so SDP (6.12) is potentially a restriction of the our typical mean-bounding SDP.

However, if the columns of Â span the space R(𝑚+�̂�
𝑚 )−1 in which �̃�1:𝑚 −𝜇1:𝑚(0) exists,

then �̃�1:𝑚 − 𝜇1:𝑚(0) = Âw̃ isn’t a restriction at all. It is only a restriction when the

columns of Â do not span R(𝑚+�̂�
𝑚 )−1. It other words, �̃�1:𝑚 − 𝜇1:𝑚(0) = Âw̃ is only a

restriction when Â is not full row rank.

6.4.2 An Invariant Polynomial

What does it mean if Â is not full row rank? If Â is not full row rank, there exists

some q̂ ̸= 0 such that

q̂TÂ = 0T. (6.13)

Letting q ≡ (0, q), it follows that q ̸= 0 and

qTA = 0T. (6.14)
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Then, for moments 𝜇(𝑡) of any distribution 𝑃 (·, 𝑡), we have

qTA𝜇(𝑡) = 0, ∀𝑡 ≥ 0. (6.15)

Using the definition of the A matrix, this implies

qT 𝑑𝜇𝐿

𝑑𝑡
(𝑡) = 𝑑

𝑑𝑡
qT𝜇𝐿(𝑡) = 0, ∀𝑡 ≥ 0. (6.16)

In other words, a nontrivial linear combination of the low-order moments is constant

with time.

This is equivalent to the statement that there exists some polynomial

𝑞(x̂) =
∑︁

|j|≤𝑚

𝑞jx̂j (6.17)

such that ∑︁
x̂∈𝒳

𝑞(x̂)𝑑𝑃

𝑑𝑡
(x̂, 𝑡) = 0, ∀𝑡 ≥ 0. (6.18)

6.5 Example

Consider the reaction system

A + B
𝑐1

GGGGGAC

A + B
𝑐2

GGGGGAD
(6.19)

with initial molecular counts of A0 = 4, B0 = 3, C0 = 0, and D0 = 0, and rate

constants 𝑐1 = 1 s−1 and 𝑐2 = 3 s−1. Selecting species C and D as the independent

species, and setting 𝑚 = 2, we can solve our original SDP to calculate bounds on

⟨C⟩ss. Doing so gives the stoichiometric bounds ⟨C⟩𝐿
ss = 0 and ⟨C⟩𝑈

ss = 3. While these

bounds are valid, they are disappointingly loose.

On the other hand, if we solve SDP (6.12) for this system, we obtain ⟨C⟩𝐿
ss =

⟨C⟩𝑈
ss = 0.75, which implies that ⟨C⟩ss = 0.75. Solving the CME for this system, we

can confirm this value for ⟨C⟩ss.
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Why does the additional constraint make such a dramatic difference for this sys-

tem? If we were to examine the propensity functions for the two reactions in the

system, we would find that they have exactly the same functional form, and differ

only by a scalar, 𝑐2/𝑐1 = 3. This means that the average rate at which species D is

formed is precisely 3 times the average rate at which species C is formed. Since we

have zero molecules of both species initially, this implies that there are always, on

average, 3 times as many D molecules as there are C molecules. This can be stated

concisely as

3⟨𝐶(𝑡)⟩ = ⟨𝐷(𝑡)⟩, ∀𝑡 ≥ 0. (6.20)

Alternatively, it can be written in terms of moments:

3𝜇(1,0)(𝑡) − 1𝜇(0,1)(𝑡) = 0, ∀𝑡 ≥ 0, (6.21)

which shows that we have a nontrivial linear combination of moments that is constant

with time. This is consistent with the fact that Â matrix for this system,

Â =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12 −7 −7 1 2 1 0 0 0 0

36 −21 −21 3 6 3 0 0 0 0

12 17 −7 −13 −12 1 2 4 2 0

0 36 12 −21 −28 −7 3 7 5 1

36 −21 51 3 −36 −39 0 6 12 6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.22)

has a left null space which includes the vector q̂ = (3, −1, 0, 0, 0). Thus, this example

is consistent with our general analysis in Section 6.4.

6.6 Extensions

The primary contribution of this chapter is the derivation of the necessary condition

that there exists some w ∈ R(𝑀+�̂�
𝑀 ) such that

𝜇𝐿,ss − 𝜇𝐿(0) = Aw. (6.23)
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However, this idea can be taken further.

For example, since each 𝜇j(𝑡) ≥ 0 for all 𝑡, it is relatively easy to show that the w

must be nonnegative. The argument is essentially the same as the one given above.

The only real difference is that we use the fact that

{Aw : w ≥ 0} (6.24)

is a closed set. This implies that we can also include the constraint w̃ ≥ 0 in the

bounding SDP, with potentially dramatic consequences.

In fact, for any polyhedral set 𝒫 , the set

{Aw : w ∈ 𝒫} (6.25)

is closed. We may be able to use this fact to obtain even tighter bounds, if we can

show that ∫︁ 𝑇

0
𝜇(𝑡)𝑑𝑡 ∈ 𝒫 , ∀𝑇 ≥ 0. (6.26)

Taking the idea on step further still, since the vector
∫︀ 𝑇

0 𝜇(𝑡)𝑑𝑡 satisfies the LMIs

appearing in (6.9) for all times 𝑇 ≥ 0, we may be able to show that w must

satisfy these LMIs as well. However, the proof of this claim (if it exists) is less-

straightforward, because the image of a set defined by LMIs under a linear mapping

is not necessarily closed.

These ideas are fertile ground for future research. They have not yet been ade-

quately explored.

6.7 Conclusion

We’ve seen that inclusion of a constraint based on Equation (6.8) in the steady-state

analysis can yield significantly improved bounds. However, this constraint will only

benefit the bounds in the situation where there is some nontrivial linear combination

of the moments which is constant with time. We’ve seen one example where this is
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the case: when the propensity functions of two different reactions in the system differ

by a constant factor. There may be other structural features of a reaction system

for which the additional constraint benefits the bounds. Exploring these additional

features is left for future work. Moreover, there are clear extensions of the main idea

of this chapter, which are also left for future work.

199



200



Chapter 7

Improved Numerical Performance

Through Linear Programming

Approximations

The contents of this chapter have not yet been published. The ideas contained herein

were developed in collaboration with Tim Varelmann, as part of his Master’s Thesis.

7.1 Introduction

In the previous chapters, we noted that the SDPs we derived often cause numerical

difficulties for off-the-shelf solvers like SeDuMi and Mosek. This limits the practical

value of the SDPs we have derived. So, the aim of this chapter is to devise a strat-

egy for solving these SDPs more reliably, or at least reliably outer-bounding their

solutions.

7.2 Notation

In this section, we define some notation which is necessary to concisely express the

ideas that will developed later in this chapter.
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7.2.1 Invariants and Reduced Reachable States

In the previous chapters, we made use of the fact that reaction invariants can lead

to a lower-dimensional representation of the state. In particular, the stoichiometry

matrix S often has a nontrivial left null space, spanned by a set of basis vectors

{b1, . . . , b𝐿} ⊂ R𝑁 . Setting

B =

⎡⎢⎢⎢⎢⎢⎣
bT

1
...

bT
𝐿

⎤⎥⎥⎥⎥⎥⎦ , (7.1)

we noted that the the state X(𝑡) must satisfy the affine equation

BX(𝑡) = Bx0 ≡ f (7.2)

for all times 𝑡 ≥ 0. We referred to the vector f as the invariant values.

Since the 𝐿 rows of B are linearly independent, it follows that B has 𝐿 linearly

independent columns, corresponding to 𝐿 chemical species. Let the selection matrix

Q̃ ∈ {0, 1}𝑁×𝐿 be defined such that the product BQ̃ ≡ B̃ ∈ R𝐿×𝐿 is a nonsingular

matrix consisting of just these 𝐿 columns. The molecular counts of the corresponding

𝐿 species are given by Q̃TX(𝑡) ≡ X̃(𝑡). Let Q̂ ∈ {0, 1}𝑁×(𝑁−𝐿) be a complementary

selection matrix such that B̂ ≡ BQ̂ ∈ R𝐿×(𝑁−𝐿) contains the 𝑁 − 𝐿 ≡ �̂� columns of

B not found in B̃. It follows that Q̂TX(𝑡) ≡ X̂(𝑡) contains the molecular counts of

the chemical species not represented in X̃(𝑡), and that

Q ≡
[︂

Q̂ Q̃
]︂

∈ {0, 1}𝑁×𝑁 (7.3)

is a permutation matrix, satisfying QQT = I ∈ R𝑁×𝑁 . From this fact, it follows that

X(𝑡) = QQTX(𝑡) = Q

⎡⎢⎣ Q̂T

Q̃T

⎤⎥⎦X(𝑡) = Q

⎡⎢⎣ Q̂TX(𝑡)

Q̃TX(𝑡)

⎤⎥⎦ = Q

⎡⎢⎣ X̂(𝑡)

X̃(𝑡)

⎤⎥⎦ . (7.4)
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Furthermore, we can rewrite Equation (7.2) as

f = BX(𝑡),

= BQQTX(𝑡),

= B
[︂

Q̂ Q̃
]︂ ⎡⎢⎣ Q̂T

Q̃T

⎤⎥⎦X(𝑡),

=
[︂

B̂ B̃
]︂ ⎡⎢⎣ X̂(𝑡)

X̃(𝑡)

⎤⎥⎦ ,

= B̂X̂(𝑡) + B̃X̃(𝑡).

(7.5)

Rearranging (7.5), we obtain

X̃(𝑡) = B̃−1f − B̃−1B̂X̂(𝑡), (7.6)

which shows that specifying X̂(𝑡) determines the values of X̃(𝑡). Accordingly, we

labeled the species represented by X̂(𝑡) as the independent species, and those repre-

sented by X̃(𝑡) as the dependent species. Let 𝐼 ⊂ {1, . . . , 𝑁} denote the set of indices

corresponding to the independent species. Similarly, let its complement 𝐷 ≡ 𝐼𝐶

denote the set of indices corresponding to the dependent species. Since specifying

X̂(𝑡) determines X̃(𝑡), we saw that the full state of the system X(𝑡) can be expressed

entirely in terms of the lower-dimensional X̂(𝑡). In particular, from Equations (7.4)

and (7.6), we have

X(𝑡) = Q

⎡⎢⎣ X̂(𝑡)

B̃−1f − B̃−1B̂X̂(𝑡)

⎤⎥⎦ = Q

⎛⎜⎝
⎡⎢⎣ 0

B̃−1f

⎤⎥⎦+

⎡⎢⎣ I

−B̃−1B̂

⎤⎥⎦ X̂(𝑡)

⎞⎟⎠ . (7.7)

It follows that every full-dimensional reachable state x ∈ 𝒳 ⊂ N𝑁 can be expressed

equivalently in terms of a reduced reachable state Q̂Tx ≡ x̂ ∈ N�̂� . We denoted the

set of reduced reachable states using the symbol 𝒳 ⊂ N�̂� .
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Setting

v0 ≡ Q

⎡⎢⎣ 0

B̃−1f

⎤⎥⎦ (7.8)

and

V ≡ Q

⎡⎢⎣ I

−B̃−1B̂

⎤⎥⎦ , (7.9)

Equation (7.7) can be written concisely as

X(𝑡) = v0 + VX̂(𝑡). (7.10)

Since molecular counts must always be nonnegative, it follows that X̂(𝑡) must always

be contained in the set

𝒳 =
{︁
x̂ ∈ R�̂� : v0 + Vx̂ ≥ 0

}︁
. (7.11)

In what follows, we will let 𝑣𝑐,0 represent the 𝑐th component of the vector v0. Similarly,

we let 𝑣𝑐,𝑗 represent the element in the 𝑐th row and 𝑗th column of the matrix V.

7.3 Numerical Stability through an LP Relaxation

In this section, we describe a linear programming (LP) relaxation of a representative

moment-based SDP. This relaxation, and the refinement described in Section 7.4, are

based heavily on the work of Ahmadi et al. [1].

7.3.1 Relaxation Yields Valid Bounds

In all of our work thus far, we have been solving SDPs to calculate a bound on some

actual quantity. For example, to calculate an upper bound on the steady-state mean

molecular count of species 𝑖, we proposed solving the an SDP which can be expressed
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concisely as:

𝑝* ≡ max
�̃�

𝑣𝑖,0 +
�̂�∑︁

𝑗=1
𝑣𝑖,𝑗�̃�e𝑗

s.t. A�̃� = 0,

�̃�0 = 1,

M0
𝑛(�̃�) ⪰ 0,

𝑣𝑐,0M0
𝑛−1(�̃�) +

�̂�∑︁
𝑗=1

𝑣𝑐,𝑗M
e𝑗

𝑛−1(�̃�) ⪰ 0, ∀𝑐 ∈ {1, . . . , 𝑁},

(7.12)

where the constraints are necessary conditions on the (unknown) true steady-state

moment sequence 𝜇ss. We showed that 𝑝* provides an upper bound on ⟨𝑋𝑖⟩ss, the

essential points of the argument being:

1. Since the constraints of SDP (7.12) are necessary conditions for 𝜇ss, the point

�̃� = 𝜇ss is feasible.

2. The objective value corresponding to �̃� = 𝜇ss is

𝑣𝑖,0 +
�̂�∑︁

𝑗=1
𝑣𝑖,𝑗𝜇e𝑗

= ⟨𝑋𝑖⟩ss. (7.13)

Notice that this argument still holds if we relax any of the constraints in SDP

(7.12). Relaxing any of the constraints will give a different problem, with an optimal

value 𝑝 which may be strictly greater than 𝑝*. However, we are still guaranteed that

𝑝 ≥ ⟨𝑋𝑖⟩ss. The question then is this: can we relax SDP (7.12) in such a way that

the problem becomes easier to solve, without introducing too much conservatism into

the bound on ⟨𝑋𝑖⟩ss?

7.3.2 Relaxing the LMIs

Recall that the LMI M0
𝑛(�̃�) ⪰ 0 is equivalent to the condition

pTM0
𝑛(�̃�)p ≥ 0, ∀p ∈ R(𝑛+�̂�

𝑛 ). (7.14)
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Importantly, the inequality associated with each p ∈ R(𝑛+�̂�
𝑛 ) is linear with respect

to the vector �̃�. If we modify SDP (7.12) by replacing the LMI M0
𝑛(�̃�) ⪰ 0 with

Condition (7.14), and we replace the other 𝑁 LMIs by analogous conditions, we

obtain an equivalent optimization problem:

𝑝* = max
�̃�

𝑣𝑖,0 +
�̂�∑︁

𝑗=1
𝑣𝑖,𝑗�̃�e𝑗

s.t. A�̃� = 0,

�̃�0 = 1,

pTM0
𝑛(�̃�)p ≥ 0, ∀p ∈ R(𝑛+�̂�

𝑛 ),

nT

⎛⎝𝑣𝑐,0M0
𝑛−1(�̃�) +

�̂�∑︁
𝑗=1

𝑣𝑐,𝑗M
e𝑗

𝑛−1(�̃�)
⎞⎠n ≥ 0, ∀n ∈ R(𝑛−1+�̂�

𝑛−1 ),

∀𝑐 ∈ {1, . . . , 𝑁}.

(7.15)

This is a semi-infinite linear program – a linear program with infinitely many inequal-

ity constraints.

Suppose that we pick some finite set of vectors 𝒫 ≡ {p1, . . . , p|𝒫|} ⊂ R(𝑛+�̂�
𝑛 ) and

replace the semi-infinite constraint

pTM0
𝑛(�̃�)p ≥ 0, ∀p ∈ R(𝑛+�̂�

𝑛 ) (7.16)

with finitely many linear constraints

pTM0
𝑛(�̃�)p ≥ 0, ∀p ∈ 𝒫 . (7.17)

Suppose we similarly pick finite sets of vectors 𝒩𝑐 ⊂ R(𝑛−1+�̂�
𝑛−1 ) for 𝑐 ∈ {1, . . . , 𝑁}, and

replace the last 𝑁 semi-infinite constraints with finitely many constraints. Doing so
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results in the linear program:

𝑝 ≡ max
�̃�

𝑣𝑖,0 +
�̂�∑︁

𝑗=1
𝑣𝑖,𝑗�̃�e𝑗

s.t. A�̃� = 0,

�̃�0 = 1,

pTM0
𝑛(�̃�)p ≥ 0, ∀p ∈ 𝒫 ,

nT

⎛⎝𝑣𝑐,0M0
𝑛−1(�̃�) +

�̂�∑︁
𝑗=1

𝑣𝑐,𝑗M
e𝑗

𝑛−1(�̃�)
⎞⎠n ≥ 0, ∀n ∈ 𝒩𝑐, ∀𝑐 ∈ {1, . . . , 𝑁}.

(7.18)

Clearly, this linear program is a relaxation of the semi-infinite program (7.15). It

follows that 𝑝 ≥ 𝑝*. It may be the case that 𝑝 − 𝑝* > 0, in which case solving LP

(7.18) provides a strictly weaker upper bound on ⟨𝑋𝑖⟩ss than that provided by solving

SDP (7.12). However, if we cannot solve SDP (7.12) due to numerical difficulties,

this gap in the bounds is somewhat irrelevant.

Given that we are focused on overcoming numerical limitations, solving an LP

to obtain the bound is appealing. Linear programming is a more mature technology

than semidefinite programming. In particular, linear programming solvers such as

Gurobi and CPLEX are more numerically robust than their semidefinite programming

counterparts. This gives us hope that in situations where we cannot solve SDP (7.12)

due to numerical difficulties, we may still be able to solve LP (7.18) and obtain

nontrivial bounds on ⟨𝑋𝑖⟩ss.

7.3.3 Choosing 𝒫 and 𝒩𝑐

But the obvious question is: how do we choose the sets 𝒫 and 𝒩𝑐 for 𝑐 ∈ {1, . . . , 𝑁}?

Generally speaking, the fewer vectors that we include in each set, the greater the

relaxation and the greater the gap between 𝑝 and 𝑝*. This suggests that we should

include a large number of vectors in each set, perhaps sampling uniformly from the

unit sphere. However, there is a balance to be struck, because more parameter vectors

imply more linear inequality constraints in the LP.
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Ahmadi Vectors

In an effort to achieve this balance, Ahmadi et al. [1] suggest that an LMI featuring

an 𝑛 × 𝑛 dimensional matrix Y should be replaced with 𝑛2 linear inequalities, where

the vectors defining these inequalities have at most two nonzero components, each

equal to ±1. We will denote this set of vectors as 𝒜𝑛. For example, in the case of

𝑛 = 2, the set of vectors is,

𝒜2 =

⎧⎪⎨⎪⎩
⎡⎢⎣ 1

0

⎤⎥⎦ ,

⎡⎢⎣ 0

1

⎤⎥⎦ ,

⎡⎢⎣ 1

1

⎤⎥⎦ ,

⎡⎢⎣ 1

−1

⎤⎥⎦
⎫⎪⎬⎪⎭ . (7.19)

Similarly, in the case of 𝑛 = 3, the set of vectors is,

𝒜3 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣
1

0

0

⎤⎥⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎢⎣
0

1

0

⎤⎥⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎢⎣
0

0

1

⎤⎥⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎢⎣
1

1

0

⎤⎥⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎢⎣
1

−1

0

⎤⎥⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎢⎣
1

0

1

⎤⎥⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎢⎣
1

0

−1

⎤⎥⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎢⎣
0

1

1

⎤⎥⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎢⎣
0

1

−1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

(7.20)

Notice that for each vector a ∈ 𝒜𝑛, there is no need for the vector −a to also be in

𝒜𝑛, because the linear inequalities

aTYa ≥ 0 (7.21)

and

(−a)TY(−a) ≥ 0 (7.22)

are equivalent.

If we set

𝒫 ≡ 𝒜(𝑛+�̂�
𝑛 ) (7.23)

and

𝒩𝑐 ≡ 𝒜(𝑛−1+�̂�
𝑛−1 ), ∀𝑐 ∈ {1, . . . , 𝑁}, (7.24)

LP (7.18) is well-defined, and we can solve solve it to obtain an upper bound on ⟨𝑋𝑖⟩ss.

Of course, solving the corresponding minimization problem, we can also calculate a
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lower bound.

A Bounded LP

One of the advantages of using the Ahmadi vectors is that they ensure the LP (7.18)

is bounded, provided the set 𝒳 defined in Equation (7.11) is bounded. The reason

for this is that 𝒜(𝑛−1+�̂�
𝑛−1 ) always includes the vector e1 ∈ R(𝑛−1+�̂�

𝑛−1 ). When this vector

is included in the set 𝒩𝑐, LP (7.18) will be constrained by the corresponding linear

inequalities

eT
1

⎛⎝𝑣𝑐,0M0
𝑛−1(�̃�) +

�̂�∑︁
𝑗=1

𝑣𝑐,𝑗M
e𝑗

𝑛−1(�̃�)
⎞⎠ e1 ≥ 0, ∀𝑐 ∈ {1, . . . , 𝑁}. (7.25)

Using the definition of the M0
𝑛−1(�̃�) and Me𝑗

𝑛−1(�̃�) matrices given in Appendix B, we

can show that these are equivalent to the linear inequalities

𝑣𝑐,0 +
�̂�∑︁

𝑗=1
𝑣𝑐,𝑗�̃�e𝑗

≥ 0, ∀𝑐 ∈ {1, . . . , 𝑁}. (7.26)

Consider an LP of the form

max
x̂∈R�̂�

𝑣𝑖,0 +
�̂�∑︁

𝑗=1
𝑣𝑖,𝑗�̂�𝑗

s.t. 𝑣𝑐,0 +
�̂�∑︁

𝑗=1
𝑣𝑐,𝑗�̂�𝑗 ≥ 0, ∀𝑐 ∈ {1, . . . , 𝑁}.

(7.27)

We see that this LP maximizes the molecular count of species 𝑖 over the set 𝒳 .

Accordingly, if the set 𝒳 is bounded, then the optimal value of LP (7.27) is bounded.

Now, while the decision variables differ between LP (7.18) and LP (7.27), the

objective functions have the same form. Furthermore, the linear inequalities described

by (7.26) are the same form as the constraints in (7.27). Accordingly, LP (7.18),

with the linear inequalities described by (7.26) and other inequality and equality

constraints, can be viewed as a restriction of LP (7.27). Since the objective value of

LP (7.27) is bounded, it follows that the objective value of LP (7.18) is bounded.
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7.3.4 Small Example

To demonstrate the use of LP (7.18), we now apply it in a numerical example.

Consider a variant of the Michaelis-Menten reaction system, described by Smad-

beck and Kaznessis [64]:
S + E

𝑐1
GGGGGBFGGGGG

𝑐2
S:E

S:E
𝑐3

GGGGGAP + E

P
𝑐4

GGGGGAS

(7.28)

with initial molecular counts S = 10, E = 10, S:E = 0, and P = 0. In Chapter 3, we

showed that we could obtain very tight bounds on ⟨S⟩ss and ⟨E⟩ss for a range of rate

constant values by repeatedly solving SDP (7.12). These bounds are reproduced in

the top panel of Figure 7-1.

The bottom panel of the figure shows analogous bounds produced by repeatedly

solving LP (7.18), with the sets 𝒫 and 𝒩𝑐 for 𝑐 ∈ {1, . . . , 𝑁} defined by Equations

(7.23) and (7.24), respectively.

Clearly, for this example, the SDP-based bounds are superior. However, the LP-

based bounds aren’t terrible. In fact, for some values of the rate constant 𝑐1, the LP

bounds are just as tight as the SDP bounds.
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Figure 7-1: Bounds on the Michaelis-Menten system at steady state. Upper bounds

are shown with open circles, while lower bounds are shown with stars. The top panel

shows bounds produced by repeatedly solving SDP (7.12) for a range of values of

the rate constant 𝑐1 (the other rate constants being fixed at 𝑐2 = 𝑐3 = 𝑐4 = 1 s−1).

Similarly, the bottom panel shows bounds produced by repeatedly solving LP (7.18),

with the sets 𝒫 and 𝒩𝑐 for 𝑐 ∈ {1, . . . , 𝑁} defined by Equations (7.23) and (7.24),

respectively. To provide a reference, both panels show the true means calculated by

directly solving the CME. These CME solutions are shown as dashed lines. The solid

lines connecting the circles and stars are not theoretically guaranteed bounds; they

are included just to lead the eye.
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7.3.5 Large Example

Next we apply LP (7.18) to a larger reaction system from Chapters 3 and 4, repro-

duced in Figure 7-2.

A

H

I

JC

B

2 D

E

F

G

Figure 7-2: A larger reaction system

The rate constants are given in Appendix B. With an initial state consisting of 100

molecules of species A and F and 0 molecules of all other species, this system has over

74 billion reachable states. Thus, solving the CME for this system is impractical. In

Chapter ??, we calculated bounds on ⟨𝐴⟩ss for a range of rate constants by repeatedly

solving SDP (7.12). These bounds are reproduced in the top panel of Figure 7-3.
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Figure 7-3: A larger reaction system

The bottom panel of the figure shows analogous bounds produced by repeatedly

solving LP (7.18), with the sets 𝒫 and 𝒩𝑐 for 𝑐 ∈ {1, . . . , 𝑁} defined by Equations

(7.23) and (7.24), respectively.

As in the Michaelis-Menten example, the SDP-based bounds are clearly superior.

The LP-based bounds, while nontrivial, are much looser, with very wide gaps in the

bounds for some rate constant values.

7.3.6 Summary

The LP-based bounds that we have described in Section 7.3 are robust in the sense

that they can be obtained without excessive numerical issues. However, as demon-
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strated by the example in Section 7.3.5, these LP-based bounds are sometimes unac-

ceptably loose.

7.4 Iterative Refinement of LP Bounds

In this section, we describe an algorithm for iteratively refining the bounds produced

by solving LP (7.18). This is essentially a cutting plane algorithm, inspired by the

work of Krishnan and Mitchell [38] and Ahmadi et al. [1].

7.4.1 Calculation of Cutting Planes

Suppose that we have solved LP (7.18), with the sets 𝒫 and 𝒩𝑐 for 𝑐 ∈ {1, . . . , 𝑁}

defined by Equations (7.23) and (7.24), respectively, and obtained an optimal solution

�̃�*. Suppose we then calculate the eigenvalues of the matrix M0
𝑛(�̃�*) and find that

one of these eigenvalues, 𝜆, is strictly negative. This implies that �̃�* is infeasible for

SDP (7.12). Accordingly, we’d like to exclude it from the feasible set of LP (7.18).

Let p𝜆 ∈ R(𝑛+�̂�
𝑛 ) be the normalized eigenvector corresponding to the eigenvalue 𝜆. If

we add the vector p𝜆 to the set 𝒫 , we add the constraint

pT
𝜆 M0

𝑛(�̃�)p𝜆 ≥ 0 (7.29)

to LP (7.18). This constraint renders the vector �̃�* infeasible, because

pT
𝜆 M0

𝑛(�̃�*)p𝜆 = pT
𝜆 𝜆p𝜆 = 𝜆pT

𝜆 p𝜆 = 𝜆 < 0. (7.30)

The constraint pT
𝜆 M0

𝑛(�̃�)p𝜆 ≥ 0 is a cutting plane in the sense that it is guaranteed

to exclude �̃�* from the feasible set of LP (7.18). At the same time, by the inequality’s

structure, we are guaranteed that it does not exclude any point in the feasible set of

SDP (7.12).

Of course, if any of the matrices 𝑣𝑐,0M0
𝑛−1(�̃�)+∑︀�̂�

𝑗=1 𝑣𝑐,𝑗M
e𝑗

𝑛−1(�̃�) for 𝑐 ∈ {1, . . . , 𝑁}

has a strictly negative eigenvalue, we could generate another cutting plane in much
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the same way.

Having added the cutting planes to LP (7.18), we could again solve the problem,

obtain a new optimal solution, add new cutting planes – and repeat the cycle indefi-

nitely. As we add cutting planes, we systematically refine the feasible set of LP (7.18)

so that it better and better approximates the feasible set of SDP (7.12). If we could

refine the feasible set of LP (7.18) to the point where it was the same as the feasible

set of SDP (7.12), the optimal values would also be the same.

7.4.2 A Cutting Plane Algorithm

The observations of the foregoing section suggest a procedure for iteratively refining

the bounds produced by solving LP (7.18), which we formalize in Algorithm 4.
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Algorithm 4 Iterative Refinement of LP Bounds through Cutting Planes
Input:

1. The index 𝑖 ∈ {1, . . . , 𝑁} corresponding to the species whose mean you’d like

to bound.

2. The matrix A.

3. The vectors {v0, v1, . . . , v�̂�}

4. The maximum number of cutting plane iterations, 𝑘max.

Output: An upper bound ⟨𝑋𝑖⟩𝑈
ss on the steady-state mean molecular count of

species 𝑖.

Algorithm:

Set 𝒫 := 𝒜(𝑛+�̂�
𝑛 ) and 𝒩𝑐 := 𝒜(𝑛−1+�̂�

𝑛−1 ) for all 𝑐 ∈ {1, . . . , 𝑁}.

Solve LP (7.18) and extract the optimal solution �̃�*
0 and the optimal value 𝑝0.

for 𝑘 = 1, . . . , 𝑘max do

Calculate 𝜆 := 𝜆min(M0
𝑛(�̃�*

𝑘−1)) and the corresponding normalized eigenvector

p𝜆.

if 𝜆 < 0 then

Set 𝒫 := 𝒫 ∪ {p𝜆}.

end if

for 𝑐 = 1, . . . , 𝑁 do

Calculate 𝜆 := 𝜆min
(︁
𝑣𝑐,0M0

𝑛−1(�̃�𝑘−1) +∑︀�̂�
𝑗=1 𝑣𝑐,𝑗M

e𝑗

𝑛−1(�̃�𝑘−1)
)︁

and the

corresponding normalized eigenvector n𝜆.

if 𝜆 < 0 then

Set 𝒩𝑐 := 𝒩𝑐 ∪ {n𝜆}.

end if

end for

Solve LP (7.18) and extract the optimal solution �̃�*
𝑘 and the optimal value 𝑝𝑘.

end for

return ⟨𝑋𝑖⟩𝑈
ss := 𝑝𝑘max .
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For brevity, in what follows, we will refer to LP (7.18) with 𝒫 ≡ 𝒜(𝑛+�̂�
𝑛 ) and

𝒩𝑐 ≡ 𝒜(𝑛−1+�̂�
𝑛−1 ) for all 𝑐 ∈ {1, . . . , 𝑁} simply as the “initial LP”.

This algorithm requires the computation of several eigenpairs consisting of a min-

imal eigenvalue and the corresponding eigenvector. To this end, we recommend the

Hermitian Lanczos algorithm with filtering [55]. It is important to realize that the

computated eigenpairs do not have to be exact. We say this for several reasons: First,

only the sign of the eigenvalue is used Algorithm 4, never the actual value. Second,

suppose M0
𝑛(�̃�*) has a strictly negative eigenvalue 𝜆 < 0 with a corresponding eigen-

vector p𝜆. Suppose further that our computed eigenvector p̃𝜆 has some error Δp𝜆

such that p̃𝜆 = p𝜆 + Δp𝜆. Since pT
𝜆 M0

𝑛(�̃�)p𝜆 is continuous with respect to p𝜆, the

constraint p̃T
𝜆 M0

𝑛(�̃�)p̃𝜆 ≥ 0 will still exclude �̃�* from the feasible set of LP (7.18)

provided that the error ||Δp𝜆|| is sufficiently small. Third, every point in the feasible

set of SDP (7.12) satisfies the linear inequality p̃T
𝜆 M0

𝑛(�̃�)p̃𝜆 ≥ 0 for any vector p̃𝜆,

no matter how inaccurate. So no point will ever be “accidentally” excluded from the

feasible set of LP (7.18) as a result of inaccurate eigenvalue computation.

7.4.3 Convergence

As we iterate over the values of 𝑘 in Algorithm 4, each LP we solve is a restriction of

the previous problem, in the sense that it has a smaller feasible set. Accordingly, the

sequence of bounds (𝑝𝑘) is guaranteed to be monotonically improving, in the sense

that 𝑝𝑘 ≤ 𝑝𝑘−1, for all 𝑘 ≥ 1. It is important to note, though, that strict improvement

(i.e., 𝑝𝑘 < 𝑝𝑘−1) is not guaranteed in each iteration.

In the ideal scenario, the sequence of optimal values (𝑝𝑘) generated by Algorithm 4

would converge to 𝑝*, the optimal value of SDP (7.12). However, it is not immediately

obvious that this convergence is guaranteed. In what follows, we describe a technical

condition under which convergence is guaranteed. This result and its proof is based

heavily on a closely related result given by Blankenship and Falk [4, Theorem 2.1].

Claim 3. If the sequence of optimal solutions (�̃�*
𝑘) produced by Algorithm 4 contains

a convergent subsequence, then the corresponding sequence of bounds (𝑝𝑘) converges
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to 𝑝*, the optimal value of SDP (7.12).

Proof. Let (�̃�*
𝑘′) be the convergent subsequence of (�̃�*

𝑘), converging to the point 𝜇*.

First, we aim to show that 𝜇* is feasible for SDP (7.12).

By definition, each optimal solution �̃�*
𝑘′ is feasible for LP (7.18), and thus satisfies

A�̃�𝑘′ = 0 and �̃�0,𝑘′ = 1. Since A�̃� and �̃�0 are continuous functions of �̃� it follows

that

lim
𝑘′→∞

A�̃�𝑘′ = A𝜇* = 0, and lim
𝑘′→∞

= �̃�0,𝑘′ = 𝜇*
0 = 1. (7.31)

So, 𝜇* satisfies the linear equalities of SDP (7.12). To prove feasibility, we must show

that 𝜇* also satisfies the LMIs. We will do so through a proof by contradiction.

Assume that 𝜇* violates the first LMI in the sense that M0
𝑛(�̃�*) � 0 It follows

that there exists some vector p̂ ∈ R(𝑛+�̂�
𝑛 ) such that

p̂TM0
𝑛(�̃�*)p̂ < 0. (7.32)

Now, the convergent subsequence of optimal solutions (�̃�*
𝑘′) is associated with

a corresponding sequence of normalized eigenvectors (p𝜆,𝑘′) ⊂ R(𝑛+�̂�
𝑛 ). Since each

vector in this sequence is normalized, the (p𝜆,𝑘′) is contained in the unit sphere – a

compact set. It follows that there exists a convergent subsequence (p𝜆,𝑘′
𝑗
) whose limit

we will denote as p̂𝜆. The corresponding subsequence of (�̃�*
𝑘′) will be denoted (�̃�*

𝑘′
𝑗
).

Since p̂TM0
𝑛(�̃�)p̂ is continuous with respect to �̃�, and since �̃�𝑘′

𝑗
→ �̃�*, it follows

from Inequality (7.32) that

p̂TM0
𝑛(�̃�𝑘′

𝑗
)p̂ < 0 (7.33)

for 𝑘′
𝑗 sufficiently large.

Since p𝜆,𝑘′
𝑗

is the normalized eigenvector corresponding to the minimum eigenvalue

of M0
𝑛(�̃�𝑘′

𝑗
), it follows that

pT
𝜆,𝑘′

𝑗
M0

𝑛(�̃�𝑘′
𝑗
)p𝜆,𝑘′

𝑗
≤ p̂TM0

𝑛(�̃�𝑘′
𝑗
)p̂. (7.34)
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Taking the limit as 𝑘′
𝑗 → ∞, we obtain

p̂T
𝜆 M0

𝑛(�̃�*)p̂𝜆 ≤ p̂TM0
𝑛(�̃�*)p̂. (7.35)

With Inequality (7.32), this implies

p̂T
𝜆 M0

𝑛(�̃�*)p̂𝜆 < 0. (7.36)

Now, the constraint

pT
𝜆,𝑘′

𝑗
M0

𝑛(�̃�)p𝜆,𝑘′
𝑗

≥ 0 (7.37)

is enforced in the (𝑘′
𝑗 + 1)st LP that is solved and in every LP thereafter. Since

𝑘′
𝑗+1 ≥ 𝑘′

𝑗 + 1, and since �̃�*
𝑘′

𝑗+1
is feasible for the (𝑘′

𝑗+1)st LP that is solved, it

follows that

pT
𝜆,𝑘′

𝑗
M0

𝑛(�̃�*
𝑘′

𝑗+1
)p𝜆,𝑘′

𝑗
≥ 0. (7.38)

Taking the limit as 𝑘′
𝑗 → ∞, we obtain

p̂T
𝜆 M0

𝑛(�̃�*)p̂𝜆 ≥ 0. (7.39)

This directly contradicts Inequality (7.36). Thus, we know that our original assump-

tion, M0
𝑛(�̃�*) � 0, was false. It follows that M0

𝑛(�̃�*) ⪰ 0.

In much the same way, we could prove that �̃�* also satisfies the other LMIs

appearing in SDP (7.12).

We have shown that �̃�* satisfies all of the constraints appearing in SDP (7.12). It

follows that �̃�* is feasible for SDP (7.12).

We now show that �̃�* is optimal for SDP (7.12). Let 𝑝* be the objective value

corresponding to �̃�*. From the feasibility of �̃�*, it follows that

𝑝* ≤ 𝑝*. (7.40)

Since each LP solved in the execution of Algorithm 4 is a relaxation of SDP
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(7.12), it follows that 𝑝𝑘′ ≥ 𝑝* for each 𝑘′. Furthermore, since �̃�*
𝑘′ → �̃�* and since

the objective function is a continuous function of �̃�, it follows that

𝑝* ≥ 𝑝*. (7.41)

With Inequality (7.40), this implies 𝑝* = 𝑝*.

Thus, (�̃�*
𝑘′) converges to the optimal solution of SDP (7.12), and the corresponding

sequence of optimal values (𝑝𝑘′) converges to the optimal value of SDP (7.12). Since

(𝑝𝑘′) is a subsequence of (𝑝𝑘) and the latter sequence is monotonically decreasing, it

follows that (𝑝𝑘) converges to the optimal value of SDP (7.12) as well.

Corollary 4. If the feasible set of any LP solved in the execution of Algorithm 4 is

bounded, then the sequence of bounds (𝑝𝑘) converges to 𝑝*, the optimal value of SDP

(7.12).

Proof. Let 𝑆𝑘 denote the feasible set of the 𝑘th LP solved in executing Algorithm 4.

By construction, the feasible sets of successive LPs satisfy the relation 𝑆𝑘+1 ⊂ 𝑆𝑘. It

follows that 𝑆𝑗 ⊂ 𝑆𝑘 for all 𝑗 ≥ 𝑘. Each 𝑆𝑘 is polyhedral, and is thus closed.

Suppose that the 𝑆𝑘 is bounded. Since 𝑆𝑘 is also closed, it is compact. Since

𝑆𝑘 ⊂ 𝑆𝑘 for all 𝑘 ≥ 𝑘, the sequence of optimal points (�̃�*
𝑘)∞

𝑘=𝑘
is contained in the

compact set 𝑆𝑘. Every sequence contained in a compact set in Euclidean space has a

convergent subsequence. In particular, (�̃�*
𝑘)∞

𝑘=𝑘
has a convergent subsequence. This

is still true if we prepend the finite sequence (�̃�0, . . . , �̃�𝑘*−1) to (�̃�*
𝑘)∞

𝑘=𝑘
, giving the

full sequence (�̃�*
𝑘). Then, (�̃�*

𝑘) satisfies the condition of Claim 3. The conclusion

follows.

7.4.4 Small Example

We now demonstrate the use of Algorithm 4 by applying it to the Michaelis-Menten

system from Section 7.3.4. The results are shown in Figure 7-4. Inspecting this

figure, we see that the bounds are substantially improved after just one cutting plane

iteration. Applying a second iteration, they become even tighter, approaching the

SDP-based bounds given in the top panel of Figure 7-1.
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Figure 7-4: Bounds on the Michaelis-Menten system at steady state obtained by ap-

plying Algorithm 4. The top panel shows the bounds obtained using 𝑘max = 1 cutting

plane iterations, while the lower panel shows the bounds obtained using 𝑘max = 2.

7.4.5 Large Example

Next, we apply Algorithm 4 by applying it to the reaction system shown in Figure

7-2, using as many as 10 cutting plane iterations. The results are shown in Figure

7-5. Comparing these bounds with those shown in Figure (7-3), it is apparent that

the cutting plane iterations do, in fact, tighten the initial LP-based bounds. However,

even after 10 cutting plane iterations, the gap between the LP-based bounds is still

much wider than the gap between the SDP-based bounds.
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Figure 7-5: Bounds on the reaction system shown in Figure 7-2 at steady state

obtained by applying Algorithm 4. The top panel shows the bounds obtained using

𝑘max = 5 cutting plane iterations, while the lower panel shows the bounds obtained

using 𝑘max = 10. Compare with the bounds shown in Figure 7-3.

7.4.6 Summary

We’ve seen that we can iteratively improve the bounds produced by LP (7.18), by

adding vectors to the sets 𝒫 and 𝒩𝑐 as specified by Algorithm 4. This iterative

refinement retains the numerical robustness of the original LP. Moreover, the bounds

are theoretically guaranteed to monotonically improve. Unfortunately, as we saw in

Section (7.4.5), the rate of improvement can be unfortunately slow.
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7.5 Warm-Starting 𝒫 and 𝒩𝑐

We’ve seen that we can improve the quality of the bounds by choosing the sets 𝒫 and

𝒩𝑐 appropriately. Also, while

𝒫 ≡ 𝒜(𝑛+�̂�
𝑛 ) (7.42)

and

𝒩𝑐 ≡ 𝒜(𝑛−1+�̂�
𝑛−1 ), ∀𝑐 ∈ {1, . . . , 𝑁}, (7.43)

seem to be reasonable initializations of these sets based on their successful use in

related literature [1], there is admittedly some arbitrariness in this choice. These two

observations together suggest that it might be worth pursuing initializations of 𝒫 and

𝒩𝑐 which are somehow tailored for the problem at hand.

To see how this can be done, it is helpful to first understand what the LP relaxation

described Section (7.3.2) means for the dual of SDP (7.12). In what follows, we will

refer to SDP (7.12) as the primal SDP. We will now derive the corresponding dual

SDP.

7.5.1 Derivation of the Dual SDP

This process will be made easier if we first express SDP (7.12) in terms of sums over

all moments �̃�j that make up the vector �̃�. Let 𝐽 be the set of all multi-indices j ∈ N�̂�

for which there is a corresponding component �̃�j in �̃�. If Aj represents the column

of the matrix A corresponding to the multi-index j ∈ 𝐽 , then the first constraint can

be written equivalently as ∑︁
j∈𝐽

Aj�̃�j = 0. (7.44)

The constraint �̃�0 = 1 can be rewritten as

∑︁
j∈𝐽

𝛿j=0�̃�j = 1. (7.45)
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Furthermore, the matrix M0
𝑛(�̃�) can be written as a linear combination of coefficient

matrices {M0
𝑛,j}j∈𝐽 ∈ S(𝑛+�̂�

𝑛 ):

M0
𝑛(�̃�) =

∑︁
j∈𝐽

M0
𝑛,,j�̃�j. (7.46)

So that the LMI M0
𝑛(�̃�) ⪰ 0 can be written equivalently as

∑︁
j∈𝐽

M0
𝑛,j�̃�j ⪰ 0. (7.47)

In much the same way, the other LMIs can be written as

𝑣𝑐,0M0
𝑛−1(�̃�)+

�̂�∑︁
𝑗=1

𝑣𝑐,𝑗M
e𝑗

𝑛−1(�̃�) = 𝑣𝑐,0

⎛⎝∑︁
j∈𝐽

M0
𝑛−1,j�̃�j

⎞⎠+
�̂�∑︁

𝑗=1
𝑣𝑐,𝑗

⎛⎝∑︁
j∈𝐽

Me𝑗

𝑛−1,j�̃�j

⎞⎠
=
∑︁
j∈𝐽

⎛⎝𝑣𝑐,0M0
𝑛−1,j +

�̂�∑︁
𝑗=1

𝑣𝑐,𝑗M
e𝑗

𝑛−1,j

⎞⎠ �̃�j ⪰ 0, ∀𝑐 ∈ {1, . . . , 𝑁}.

(7.48)

Finally, the objective function can be rewritten as

𝑣𝑖,0 +
�̂�∑︁

𝑗=1
𝑣𝑖,𝑗�̃�e𝑗

=
∑︁
j∈𝐽

⎛⎝𝑣𝑖,0𝛿j=0 +
�̂�∑︁

𝑗=1
𝑣𝑖,𝑗𝛿j=e𝑗

⎞⎠ �̃�j. (7.49)

Substituting these expressions into SDP (7.12), we obtain

𝑝* = max
�̃�

∑︁
j∈𝐽

⎛⎝𝑣𝑖,0𝛿j=0 +
�̂�∑︁

𝑗=1
𝑣𝑖,𝑗𝛿j=e𝑗

⎞⎠ �̃�j

s.t.
∑︁
j∈𝐽

Aj�̃�j = 0,

∑︁
j∈𝐽

𝛿j=0�̃�j = 1,

∑︁
j∈𝐽

M0
𝑛,j�̃�j ⪰ 0,

∑︁
j∈𝐽

⎛⎝𝑣𝑐,0M0
𝑛−1,j +

�̂�∑︁
𝑗=1

𝑣𝑐,𝑗M
e𝑗

𝑛−1,j

⎞⎠ �̃�j ⪰ 0, ∀𝑐 ∈ {1, . . . , 𝑁}.

(7.50)

The next step is to introduce a dual multiplier for each constraint, and then bring
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that constraint into the objective function. Doing so, the problem becomes

𝑈(q, 𝑢, P, (N𝑐)𝑁
𝑐=1) ≡ max

�̃�

∑︁
j∈𝐽

⎛⎝𝑣𝑖,0𝛿j=0 +
�̂�∑︁

𝑗=1
𝑣𝑖,𝑗𝛿j=e𝑗

⎞⎠ �̃�j

+ qT

⎛⎝∑︁
j∈𝐽

Aj�̃�j

⎞⎠
+ 𝑢

⎛⎝1 −
∑︁
j∈𝐽

𝛿j=0�̃�j

⎞⎠
+ P ·

⎛⎝∑︁
j∈𝐽

M0
𝑛,j�̃�j

⎞⎠
+

𝑁∑︁
𝑐=1

N𝑐 ·

⎛⎝∑︁
j∈𝐽

⎛⎝𝑣𝑐,0M0
𝑛−1,j +

�̂�∑︁
𝑗=1

𝑣𝑐,𝑗M
e𝑗

𝑛−1,j

⎞⎠ �̃�j

⎞⎠ ,

(7.51)

where the “dot” notation is the standard matrix inner product for symmetric matrices,

defined by A · B ≡ tr(AB). If the matrices P and (N𝑐)𝑁
𝑐=1 are positive semidefinite,

then

𝑈(q, 𝑢, P, (N𝑐)𝑁
𝑐=1) ≥ 𝑝*, (7.52)

by the standard duality argument. Specifically, any point �̃� which is feasible for SDP

(7.50) is also feasible for Problem (7.51). Moreover, if �̃� which is feasible for SDP

(7.50), it follows that ∑︁
j∈𝐽

Aj�̃�j = 0, (7.53)

1 −
∑︁
j∈𝐽

𝛿j=0�̃�j = 0, (7.54)

∑︁
j∈𝐽

M0
𝑛,j�̃�j ⪰ 0, (7.55)

∑︁
j∈𝐽

⎛⎝𝑣𝑐,0M0
𝑛−1,j +

�̂�∑︁
𝑗=1

𝑣𝑐,𝑗M
e𝑗

𝑛−1,j

⎞⎠ �̃�j ⪰ 0. (7.56)
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From LMI (7.55) and P ⪰ 0, we are guaranteed that

P ·

⎛⎝∑︁
j∈𝐽

M0
𝑛,j�̃�j

⎞⎠ ≥ 0. (7.57)

Similarly, from LMI (7.56) and N𝑐 ⪰ 0 for all 𝑐 ∈ {1, . . . , 𝑁}, we are guaranteed that

𝑁∑︁
𝑐=1

N𝑐 ·

⎛⎝∑︁
j∈𝐽

⎛⎝𝑣𝑐,0M0
𝑛−1,j +

�̂�∑︁
𝑗=1

𝑣𝑐,𝑗M
e𝑗

𝑛−1,j

⎞⎠ �̃�j

⎞⎠ ≥ 0. (7.58)

It follows that the objective value associated with �̃� in Problem (7.51) is greater than

or equal to the objective value associated with �̃� in SDP (7.50). Since this is true for

every �̃� which is feasible for SDP (7.50), Inequality (7.52) follows.

Algebraically manipulating the objective function, Problem (7.51) can be rewrit-

ten as

max
�̃�

∑︁
j∈𝐽

⎛⎝𝑣𝑖,0𝛿j=0 +
�̂�∑︁

𝑗=1
𝑣𝑖,𝑗𝛿j=e𝑗

⎞⎠ �̃�j

+
∑︁
j∈𝐽

(︁
qTAj

)︁
�̃�j

+ 𝑢 −
∑︁
j∈𝐽

(𝑢𝛿j=0) �̃�j

+
∑︁
j∈𝐽

(︁
P · M0

𝑛,j

)︁
�̃�j

+
∑︁
j∈𝐽

⎛⎝ 𝑁∑︁
𝑐=1

N𝑐 ·

⎛⎝𝑣𝑐,0M0
𝑛−1,j +

�̂�∑︁
𝑗=1

𝑣𝑐,𝑗M
e𝑗

𝑛−1,j

⎞⎠⎞⎠ �̃�j

= max
�̃�

𝑢 +
∑︁
j∈𝐽

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑣𝑖,0𝛿j=0 +∑︀�̂�
𝑗=1 𝑣𝑖,𝑗𝛿j=e𝑗

+qTAj

−𝑢𝛿j=0

+P · M0
𝑛,j

+∑︀𝑁
𝑐=1 N𝑐 ·

(︁
𝑣𝑐,0M0

𝑛−1,j +∑︀�̂�
𝑗=1 𝑣𝑐,𝑗M

e𝑗

𝑛−1,j

)︁

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�̃�j.

(7.59)

Let the term in the large parentheses be represented concisely as 𝑤j(q, 𝑢, P, (N𝑐)𝑁
𝑐=1)
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for each j ∈ 𝐽 . Then, Problem (7.51) can be written relatively concisely as

𝑈(q, 𝑢, P, (N𝑐)𝑁
𝑐=1) = max

�̃�

⎧⎨⎩𝑢 +
∑︁
j∈𝐽

𝑤j(q, 𝑢, P, (N𝑐)𝑁
𝑐=1)�̃�j

⎫⎬⎭ . (7.60)

Since �̃� is a free variable in the optimization problem, this last expression implies

that

𝑈(q, 𝑢, P, (N𝑐)𝑁
𝑐=1) =

⎧⎪⎪⎨⎪⎪⎩
𝑢 if 𝑤j(q, 𝑢, P, (N𝑐)𝑁

𝑐=1) = 0, ∀j ∈ 𝐽,

+∞ otherwise.
(7.61)

Collecting our results, we’ve seen

1. If the matrices P and (N𝑐)𝑁
𝑐=1 are positive semidefinite, then

𝑈(q, 𝑢, P, (N𝑐)𝑁
𝑐=1) ≥ 𝑝*. (7.62)

2. If 𝑤j(q, 𝑢, P, (N𝑐)𝑁
𝑐=1) = 0 for all j ∈ 𝐽 , then

𝑈(q, 𝑢, P, (N𝑐)𝑁
𝑐=1) = 𝑢. (7.63)

It follows that if we can find some q, 𝑢, P and (N𝑐)𝑁
𝑐=1 such that

𝑤j(q, 𝑢, P, (N𝑐)𝑁
𝑐=1) = 0, ∀j ∈ 𝐽, (7.64)

P ⪰ 0, (7.65)

and

N𝑐 ⪰ 0, ∀𝑐 ∈ {1, . . . , 𝑁}, (7.66)

then 𝑢 ≥ 𝑝* (i.e. 𝑢 is an upper bound on 𝑝*). Ideally, we want this upper bound to
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be as tight as possible, which leads us to the the following optimization problem:

𝑑* ≡ min
q,𝑢,P,

(N𝑐)𝑁
𝑐=1

𝑢

s.t. 𝑤j(q, 𝑢, P, (N𝑐)𝑁
𝑐=1) = 0, ∀j ∈ 𝐽,

P ⪰ 0,

N𝑐 ⪰ 0, ∀𝑐 ∈ {1, . . . , 𝑁}.

(7.67)

Recalling that the expression 𝑤j(·, ·, ·, ·) is affine with respect to each of its arguments,

we see that this is an SDP. More specifically, it is the dual of SDP (7.12).

By construction, we are guaranteed that 𝑑* ≥ 𝑝*. Our computational experience

suggests that there is no duality gap (i.e., that 𝑑* = 𝑝*). However, we have not

yet been able to prove this. In any case, since 𝑝* is an upper bound on ⟨𝑋𝑖⟩ss, the

steady-state mean molecular count of species 𝑖 ∈ {1, . . . , 𝑁}, it follows that 𝑑* is also

an upper bound on ⟨𝑋𝑖⟩ss.

7.5.2 Sum of Squared Polynomials Interpretation

The dual SDP (7.67) can be interpreted as a polynomial optimization problem, where

the constraints enforce the nonegativity of a polynomial on the set 𝒳 . This interpre-

tation is not essential for understanding what follows. We note it now simply because

it is interesting, and future work may benefit from this interpretation.
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7.5.3 Dual Equivalent of the LP Relaxation of the Primal

SDP

One could repeat the derivation of Section 7.5.1, but, instead of starting from SDP

(7.12), start from its LP relaxation, (7.18). The resulting dual LP is

𝑑 ≡ min
q,𝑢,P,

(N𝑐)𝑁
𝑐=1,

𝛼,𝛽

𝑢

s.t. 𝑤j(q, 𝑢, P, (N𝑐)𝑁
𝑐=1) = 0, ∀j ∈ 𝐽,

P =
∑︁
p∈𝒫

𝛼pppT,

N𝑐 =
∑︁

n∈𝒩𝑐

𝛽𝑐,nnnT, ∀𝑐 ∈ {1, . . . , 𝑁},

𝛼p ≥ 0, ∀p ∈ 𝒫 ,

𝛽𝑐,n ≥ 0, ∀n ∈ 𝒩𝑐, ∀𝑐 ∈ {1, . . . , 𝑁}.

(7.68)

An Inner Approximation

Comparing the dual LP (7.68) with the dual SDP (7.67), we see that the two are very

similar, except that dual LP (7.68) approximates each positive semidefinite matrix

appearing in dual SDP (7.67) with a conic combination of finitely many rank one,

positive semidefinite matrices. Of course, generally speaking, any positive semidefinite

matrix Y ∈ S𝑘 can be written as

Y =
𝑘∑︁

𝑖=1
𝜆𝑖y𝑖yT

𝑖 , 𝜆𝑖 ≥ 0, ∀𝑖 ∈ {1, . . . , 𝑘}, (7.69)

for some set of vectors {y𝑖}𝑘
𝑖=1 ≡ 𝒴 . However, remembering that 𝒫 and (𝒩𝑐)𝑁

𝑐=1 are

fixed, finite sets of prespecified vectors, we see that dual LP (7.68) is a restriction of

dual SDP (7.67). From any feasible point of dual LP (7.68) it is possible to construct

a feasible point for dual SDP (7.67). However, it is not necessarily possible to go the

other way – using a feasible point for dual SDP (7.67) to construct a feasible point

for dual LP (7.68). Thus, in some sense, the feasible set of dual LP (7.68) is an inner
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approximation of the feasible set of dual SDP (7.67). Given that both problems share

the same objective value, this implies that 𝑑 ≥ 𝑑*. Since 𝑑* ≥ ⟨𝑋𝑖⟩ss, it follows that

𝑑 ≥ ⟨𝑋𝑖⟩ss.

Comparison with the Primal LP

We wish to remind the reader that while dual LP (7.68) is a restriction of dual SDP

(7.67), in the primal picture, LP (7.18) is a relaxation of SDP (7.12).

By strong duality, we know that the optimal values of primal LP (7.18) and dual

LP (7.68) are equal (i.e., that 𝑝 = 𝑑). Thus, in some sense, the two problems are

equivalent.

Notice that for every inequality constraint appearing in the primal LP (7.18) we

have a corresponding rank one matrix and nonnegative decision variable in the dual

LP (7.68). Thus, every time we add a cutting plane to primal LP (7.18) in Algorithm

4, we are also adding a decision variable to dual LP (7.68). This observation is in

agreement with the general fact that, for linear programs, adding a cutting plane to

the primal problem is equivalent to “column generation” for the dual problem [1].

The two problems are also complementary. While the primal perspective can

be used to motivate the cutting plane procedure, the dual perspective can guide us

towards a set of ideal cutting planes. We will explore this idea further in the next

section.

The Perfect Choice of 𝒫 and 𝒩𝑐

Assume that dual SDP (7.67) has an optimal solution (q*, 𝑢*, P*, (N*
𝑐)𝑁

𝑐=1), with a

corresponding optimal value of 𝑑* = 𝑢*. By definition, P* must satisfy P* ⪰ 0. It

follows that P* can be written as

P* =
(𝑛+�̂�

𝑛 )∑︁
𝑘=1

𝛼*
𝑘p𝑘pT

𝑘 , (7.70)
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for some set of vectors {p𝑘}(𝑛+�̂�
𝑛 )

𝑘=1 and a corresponding set of nonnegative coefficients

𝛼*
𝑘 ≥ 0. Similarly, for each 𝑐 ∈ {1, . . . , 𝑁}, we have

N*
𝑐 =

(𝑛−1+�̂�
𝑛−1 )∑︁
𝑘=1

𝛽*
𝑐,𝑘n𝑐,𝑘nT

𝑐,𝑘, (7.71)

for some set of vectors {n𝑐,𝑘}(𝑛−1+�̂�
𝑛−1 )

𝑘=1 and a corresponding set of nonnegative coeffi-

cients 𝛽*
𝑐,𝑘 ≥ 0.

Suppose that we set

𝒫 ≡ {p𝑘}(𝑛+�̂�
𝑛 )

𝑘=1 (7.72)

and

𝒩𝑐 ≡ {n𝑐,𝑘}(𝑛−1+�̂�
𝑛−1 )

𝑘=1 (7.73)

and consider dual LP (7.68). Setting q ≡ q*, 𝑢 ≡ 𝑢*, P = P*, and N𝑐 = N*
𝑐 for

each 𝑐 ∈ {1, . . . , 𝑁}, we are guaranteed that we satisfy the first family of equality

constraints:

𝑤j(q, 𝑢, P, (N𝑐)𝑁
𝑐=1) = 0, ∀j ∈ 𝐽. (7.74)

Furthermore, setting

𝛼p𝑘
≡ 𝛼*

𝑘, ∀𝑘 ∈
{︃

1, . . . ,

(︃
𝑛 + �̂�

𝑛

)︃}︃
(7.75)

and

𝛽𝑐,n𝑐,𝑘
≡ 𝛽*

𝑐,𝑘, ∀𝑘 ∈
{︃

1, . . . ,

(︃
𝑛 − 1 + �̂�

𝑛 − 1

)︃}︃
, ∀𝑐 ∈ {1, . . . , 𝑁}, (7.76)

we are guaranteed that we satisfy the remaining constraints. We have thus con-

structed a feasible point for dual LP (7.68). Furthermore, the objective value asso-

ciated with this feasible point is 𝑢* = 𝑑*. Since 𝑑 ≥ 𝑑*, it follows that the feasible

point we have constructed is not only feasible but also optimal for LP (7.68).

Thus, for this particular choice of 𝒫 and {𝒩𝑐}𝑁
𝑐=1, the optimal value of dual LP
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(7.68) equals the optimal value of dual SDP (7.67). Given that dual LP (7.68) is a

restriction of dual SDP (7.67), this is the best possible outcome. Thus, in some sense,

the choice of 𝒫 and {𝒩𝑐}𝑁
𝑐=1 that we have described above is perfect.

Notice, also, that if we were to augment the perfect sets 𝒫 and {𝒩𝑐}𝑁
𝑐=1 with

extraneous vectors, setting the corresponding coefficients equal to zero, we would still

obtain a feasible point with an optimal value equal to 𝑑*.

Since primal LP (7.18) and dual LP (7.68) are equivalent (i.e., 𝑝 = 𝑑), it follows

from the above discussion that the perfect choice of 𝒫 and {𝒩𝑐}𝑁
𝑐=1 for dual LP

(7.68) is also the perfect choice for primal LP (7.18). Thus, the ideal cutting planes

for primal LP (7.18) can be obtained from the optimal solution of dual SDP (7.67).

An Imperfect Choice of 𝒫 and 𝒩𝑐

Suppose that instead of the perfect vectors {p𝑘}(𝑛+�̂�
𝑛 )

𝑘=1 and {n𝑐,𝑘}(𝑛−1+�̂�
𝑛−1 )

𝑘=1 , ∀𝑐 ∈ {1, . . . , 𝑁},

we have a collection of slightly perturbed vectors

{p̃𝑘}(𝑛+�̂�
𝑛 )

𝑘=1 (7.77)

and

{ñ𝑐,𝑘}(𝑛−1+�̂�
𝑛−1 )

𝑘=1 , ∀𝑐 ∈ {1, . . . , 𝑁} (7.78)

with which we define our sets 𝒫 and {𝒩𝑐}𝑁
𝑐=1. Then, we are not guaranteed that primal

LP (7.18) (or dual LP (7.68)) achieves an optimal value of 𝑑*. However, assuming

that the perturbation from perfection is not too large, we can still reasonably expect

the perturbed vectors to provide decent cutting planes in primal LP (7.18). To justify

this statement, we again appeal to the fact that all of the cutting planes are based

on quadratic forms, such as pTM0
𝑛(�̃�)p, and that this quadratic form is a continuous

function of p.

Technically, attempting to solve primal LP (7.18) with the perturbed vectors

described above, we are not guaranteed that the problem has a bounded solution.

However, as explained in Section 7.3.3, for stochastic chemical kinetic systems where

the set 𝒳 is bounded, inclusion of the Ahmadi vectors in the sets 𝒫 and {𝒩𝑐}𝑁
𝑐=1 is
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sufficient to guarantee that primal LP (7.18) is bounded1. Thus, it is reasonable to

set

𝒫 ≡ {p̃𝑘}(𝑛+�̂�
𝑛 )

𝑘=1 ∪ 𝒜(𝑛+�̂�
𝑛 ), (7.79)

and

𝒩𝑐 ≡ {ñ𝑐,𝑘}(𝑛−1+�̂�
𝑛−1 )

𝑘=1 ∪ 𝒜(𝑛−1+�̂�
𝑛−1 ), ∀𝑐 ∈ {1, . . . , 𝑁}. (7.80)

7.5.4 The Warm-Starting Algorithm

Suppose that we attempt to solve primal SDP (7.12) with an SDP solver such as

SeDuMi, and we obtain a solution with a certificate of optimality. In this case, we

are done, we can take the optimal value 𝑝* as an upper bound on ⟨𝑋𝑖⟩ss.

On the other hand, suppose that the computed solution is inaccurate in that it

does not satisfy the solver’s numerical tolerances. Then, the computed optimal value

cannot be trusted as an upper bound on ⟨𝑋𝑖⟩ss. However, the effort put into obtaining

this inaccurate solution need not be wasted. Along with the inaccurate primal opti-

mal solution, �̃�*, any SDP solver using a state-of-the-art primal-dual interior point

method will also return an approximate dual optimal solution (q*, 𝑢*, P*, (N*
𝑐)𝑁

𝑐=1).

We can perform eigenvalue decompositions for the matrices P* and {N*
𝑐}𝑁

𝑐=1 to obtain

approximations of the vectors that constitute the perfect choice of 𝒫 and {𝒩𝑐}𝑁
𝑐=1.

Supplementing these vectors with the Ahmadi vectors, we can then solve primal LP

(7.18), expecting to obtain reasonably good bounds. Of course, the bounds may not

be quite as tight as desired. In this case, we have the option of applying cutting plane

iterations to refine the already good (but not perfect) bounds.

What we have just described can be viewed as a method for warm-starting Algo-

rithm 4 with sets 𝒫 and {𝒩𝑐}𝑁
𝑐=1 that are tailored to the problem at hand. Alter-

natively, it can be viewed as using an SDP solver to obtain a quick but inaccurate

solution to primal SDP (7.12), and then using a more numerically robust LP solver

to find a “nearby” solution which provides a guaranteed bound.
1Actually, from the argument in Section 7.3.3, only the inclusion of the vector e1 in each set 𝒩𝑐

is necessary. However, we include the rest of the vectors “for good measure”. They can only improve
the quality of the bound.
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These ideas are formalized in Algorithm 5.

Algorithm 5 Sequential SDP-LP Solve
Input:

1. The index 𝑖 ∈ {1, . . . , 𝑁} corresponding to the species whose mean you’d like

to bound.

2. The matrix A.

3. The vectors {v0, v1, . . . , v�̂�}

4. The maximum number of cutting plane iterations, 𝑘max.

Output: An upper bound ⟨𝑋𝑖⟩𝑈
ss on the steady-state mean molecular count of

species 𝑖.

Algorithm:

Attempt to solve primal SDP (7.12).

if the solution is numerically accurate then

return ⟨𝑋𝑖⟩𝑈
ss := 𝑝*.

else

Extract the matrices P* and {N*
𝑐}𝑁

𝑐=1 from the inaccurate dual optimal solution.

Set 𝒫 := 𝒜(𝑛+�̂�
𝑛 ) and 𝒩𝑐 := 𝒜(𝑛−1+�̂�

𝑛−1 ) for all 𝑐 ∈ {1, . . . , 𝑁}.

Augment 𝒫 with the eigenvectors of P*.

Augment 𝒩𝑐 with the eigenvectors of N*
𝑐 , for all 𝑐 ∈ {1, . . . , 𝑁}.

Solve LP (7.18) and extract the optimal solution �̃�* and the optimal value 𝑝.

Apply cutting plane iterations, as described in Algorithm 4.

return ⟨𝑋𝑖⟩𝑈
ss := 𝑝.

end if
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7.5.5 Example

To demonstrate the utility of the sequential SDP-LP solve, we now apply it to a reac-

tion system representative of a gene network with autoregulatory negative feedback:

G
𝑐1

GGGGGAG + M

M
𝑐2

GGGGGAP + M

P + E
𝑐3

GGGGGBFGGGGG

𝑐4
EP

EP
𝑐5

GGGGGAE

M
𝑐6

GGGGGA∅

P + G
𝑐7

GGGGGBFGGGGG

𝑐8
GP

P + GP
𝑐9

GGGGGBFGGGGG

𝑐10
GP2

GP
𝑐1

GGGGGAGP + M

(7.81)

This system was first proposed and studied by Thomas et al. [68]. Species M is

intended to represent messenger RNA (mRNA), produced by transcription from a

single gene, G. The mRNA is translated into a protein, P, which is subsequently

degraded by enzyme E. The protein can also reversibly bind to the gene at two

sites. If only one site is occupied, giving the species GP, the mRNA continues to be

transcribed. If both sites are occupied, giving species GP2, no transcription can take

place.

Reaction System (7.81) has 7 distinct chemical species and 11 reactions. In this

respect, it is smaller than the reaction system described in Section 7.3.5. However,

while the previous reaction system had finitely many reachable states, Reaction Sys-

tem (7.81) has infinitely many reachable states.

Thomas et al. [68] specify the rate constants, 𝑘𝑟, for reactions 2 through 10, which

can be translated into the microscropic rate constants, 𝑐𝑟, in Table 7.1. We assume an

initial condition of 𝑥G = 1, 𝑥E = 100, and all other species zero, which is consistent
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with the total molecular counts for the gene and enzyme specified by Thomas et al.

[68].

Reaction Index, 𝑟 𝑐𝑟 (s−1)
2 1 × 10−2

3 1 × 10−6

4 1 × 10−1

5 1 × 10−2

6 1 × 10−2

7 1 × 10−9

8 1 × 10−1

9 1 × 10−2

10 1 × 10−1

Table 7.1: Microscopic rate constants for the autoregulatory gene network.

As with the previous examples, we conducted a parameter sweep, varying 𝑐1 from

1×10−4 to 1×10−3. For each value of 𝑐1, we attempted to calculate bounds on ⟨P⟩ss by

solving SDP (7.12). For several of the bounds, CVX returned an “inaccurate” warning

flag, casting doubt on the validity of the results. We then applied Algorithm 4, with

𝑘max = 5. Each LP was solved successfully. However, there was a wide gap in the

bounds for several values of 𝑐1, as shown in the top panel of Figure 7-6. In contrast,

applying Algorithm 5 gave the very tight bounds shown in the bottom panel of Figure

7-6. Notably, no cutting planes were required to generate these bounds. Only one LP

was solved after each inaccurate SDP solve. Each of these LPs was solved accurately,

to Gurobi’s default precision.
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Figure 7-6: Bounds on ⟨P⟩ss generated through Algorithm 4 (top panel) and Algo-

rithm 5 (bottom panel).

7.6 Conclusion

In this chapter, we have described an algorithm for improving the numerical relia-

bility of the bounding method. This algorithm is based on LPs which outer- and

inner-approximate the original primal and dual SDPs, respectively. We’ve shown

that the approximating LPs can be iteratively improved through the computation

of cutting planes, and intelligently initialized using the results of an inaccurate SDP

solve. Finally, we have demonstrated the efficacy of the algorithm by applying it

to a stochastic chemical kinetics system taken from the literature which models an
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autoregulatory gene network.

While we have discussed the algorithm specifically in the context of the problem

of calculating bounds on the steady-state mean molecular count of a species, it could

readily be generalized to bounds on other quantities and to the dynamic analysis.
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Chapter 8

Conclusion

8.1 Summary

This thesis demonstrates how, given a partial description of a distribution, we can use

SDPs to calculate mathematically rigorous bounds on other descriptions. We con-

sidered two distinct problems, briefly considering particle size distributions and more

extensively analyzing the problem of stochastic chemical kinetics. We demonstrated

that moment-based SDPs provide an effective means of dealing with the closure prob-

lem as it appears in stochastic chemical kinetics. We showed that the SDP bounding

method, developed in the context of the steady-state problem, could be generalized

to the dynamic problem. Furthermore, we showed that our bounding method can

be used to analyze stochastic chemical kinetic systems with features that frustrate

analysis through other methods. Several refinements of the bounding method were

presented which aim to mitigate either theoretical or numerical weaknesses of the

original method.

8.2 Future Directions

As noted throughout the preceding chapters, there are still many lingering questions,

requiring further research. We now note a few other research areas which may prove

to be fruitful.
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While we focused on solving the moment closure problem in the context of stochas-

tic chemical kinetics, it also presents itself in population balance models describing

other systems (e.g., aggregrating particles). It would be interesting to apply the SDP

bounding method to these systems as well.

In our formulation of the dynamic bounding SDP, we had a distinct set of LMIs

for each value of 𝜌 ∈ ℛ. The corresponding vectors z(𝜌) were related only indirectly

through y(𝑇 ). However, if we were to pick our values of 𝜌 so that they were equally

spaced in R−, it would be possible to construct a set of LMIs involving all values

of 𝜌 ∈ ℛ simultaneously. This would actually be a closer analogy of what is done

in the Bertsimas and Caramanis paper [3] than what we have currently proposed.

Constructing these larger LMIs would create more direct dependencies between the

z(𝜌) vectors, further restricting them, and potentially producing tighter bounds. This

suggestion contradicts our previous suggestion that the values of ℛ should be picked

to approximate eigenvalues of the matrix G. However, maybe some compromise is

possible, in which for each approximated eigenvalue 𝜌 ∈ ℛ, we also have, for example,

{1
5𝜌, 2

5𝜌, 3
5𝜌, 4

5𝜌} ⊂ ℛ.

One of the unappealing features of the extents-based reformulation of the bound-

ing SDP described in Chapter 5 is that it introduces redundancy in the sense that

there are multiple states 𝜖 ∈ ℰ corresponding to a single state x ∈ 𝒳 . This likely leads

to degeneracy in the resulting SDPs, which exacerbates an already serious numerical

problem. To eliminate this redundancy, we propose that some reactions be eliminated

and others designated as reversible (with 𝜖𝑟 values allowed to be negative) so that

each x ∈ 𝒳 corresponds to a unique 𝜖 ∈ ℰ . Our initial thoughts on this suggest that

it could be accomplished with some modified form of Gaussian Elimination.

While the LP approximations described in Chapter 6 do improve the numerical

tractability of the bounding method, so that it can be successfully applied to larger

more complex systems, numerical limitations are still a concern. We expect that some

of these numerical issues will be alleviated over time, as SDP solver algorithms and

codes become more sophisticated and robust. However, it seems that our prototypical

bounding SDP is intrinsically ill-conditioned, in which case, improvement in the SDP
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solvers will not be enough. It may be that this ill-conditioning is only alleviated by

some clever reformulation of the bounding SDP, which, up until now, has alluded

us. Our best guess is that the answer lies in the replacing the moments based on

momonials with moments based on some set of orthogonal polynomials. Of course,

orthogonal polynomials are always defined with respect to some distribution, and it is

unclear a priori which distribution and thus which orthogonal polynomials would be

the best choice. Perhaps the most appropriate distribution is that which maximizes or

minimizes the quantity of interest. In that case, the answer may involve an iterative

scheme, in which the result of an approximate SDP solve is used generate the set of

orthogonal polynomials. This is currently nothing more than speculation, but it may

be worth further exploration.
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Appendix A

Supplemental Material for Chapter

2

This is a recreation of the appendix published with the paper[12] on which Chapter

2 is based.

A.0.1 Implementation Details

All numerical examples in this paper were computed on a 64-bit Dell Precision T3610

workstation with a 3.70 GHz Intel Xeon CPU. In each example, CVX [28] was used

to model the SDP, using the default tolerance (i.e. “precision”) settings. SeDuMi [66]

was used as the underlying solver.

A.0.2 The Problem with LP-based Methods

In the introduction, we noted that LP-based methods for calculating bounds on PSDs

are “not truly rigorous”. By this, we mean that the bounds they produce are not

necessarily valid. There may exist a distribution which satisfies all the known data

(i.e., constraints) and yet violates the supposed bound.

The reason for this is that the LP-based methods optimize only over those distri-

butions supported on finitely many predetermined “grid locations”, 𝑟1, . . . , 𝑟𝑛. This

means that we are only considering distributions with particle sizes 𝑟1, . . . , 𝑟𝑛. No

243



other sizes are permitted. However, it is likely that the distribution which maxi-

mizes/minimizes the quantity we care about includes particles of size 𝑠 outside of the

predetermined set {𝑟1, . . . , 𝑟𝑛}. In this case, the bound computed by considering only

distributions on 𝑟1, . . . , 𝑟𝑛 is invalid. It is a false bound.

We will illustrate this point by applying the LP-based method to the problem

appearing in Example 2.3.1. In that example, we wished to compute an upper bound

on the number of particles with size in the range 85 𝜇m to 150 𝜇m, with the moments

given in (2.19). Following the paradigm described in [45], we formulate the following

LP:
𝑁𝑈

LP ≡ max
w

cTw

s.t.
𝑛∑︁

𝑖=1
𝑤𝑖𝑟

𝑘
𝑖 = 𝜇𝑘, for all 𝑘 ∈ {0, . . . , 3},

w ≥ 0,

(A.1)

where 𝑟1, . . . , 𝑟𝑛 is a set of 𝑛 grid locations spaced evenly over the interval [0 𝜇m,

500 𝜇m], 𝑤𝑖 is the number of particles with size equal to 𝑟𝑖, and c = (𝑐1, . . . , 𝑐𝑛) is

the cost vector whose components are defined by

𝑐𝑖 =

⎧⎪⎪⎨⎪⎪⎩
1 if 𝑟𝑖 ∈ [85 𝜇m, 150 𝜇m],

0 otherwise.
for all 𝑖 ∈ {1, . . . , 𝑛}. (A.2)

The constraints ensure that the distribution has the specified moments, and the ob-

jective function counts the number of particles in the interval [85 𝜇m, 150 𝜇m].

Solving this LP with 𝑛 = 10 grid locations gives 𝑁𝑈
LP = 1.61 × 103 cm−3 as an

“upper bound” on the number of particles in the interval. However, in Example 2.3.1,

we have already shown that there exists a three-peaked distribution which satisfies

the moment constraints and which has 1.85 × 103 cm−3 particles in the interval. This

distribution exceeds the supposed “upper bound” by 13%. Thus, we see that 𝑁𝑈
LP is

not an upper bound on the number of particles in the interval after all.

Now, one could reasonably object that we have used too few grid locations in the

above argument. That’s fair – we chose a small value of 𝑛 to stress the point. As we
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increase 𝑛 and update the value of 𝑁𝑈
LP, the percentage by which the three-peaked

distribution violates 𝑁𝑈
LP does decrease. However, even if we increase the number

of grid locations, the fundamental problem remains. Unless the set of grid locations

includes the points of support for the three-peaked distribution, there will always be

a finite violation of the “bound”.

This is true in general for the LP-based bounding method: unless the set of pre-

determined grid locations includes the (a priori unknown) points of support for the

optimal distribution, the LP-based bound will be violated by this optimal distribution,

and the violation will be finite. Intuitively, for a fine grid, the extent of the bound

violation is likely to be small. But it is unclear how large a value of 𝑛 is required

before the violation is guaranteed to be negligibly small. So the “bound” isn’t really a

bound. It is at best an approximate bound, with unknown error. This is dissatisfying

from a theoretical perspective. It is in this sense that the bounds provided by the LP

method are not truly rigorous.

In contrast, the SDP-based bounding method is immune to this criticism, as it

implicitly considers all distributions supported on R+. There is no need to assume

that the distribution is restricted to particles of particular sizes, 𝑟1, . . . , 𝑟𝑛.

A.0.3 Proof of Claim 1

Proof. Suppose we have a PSD described by a number density function 𝑓 . By as-

sumption, 𝑓 ∈ 𝑀∞(R+). Let �̃� = (𝜇0, 𝜇1, 𝜇2, ...) be the sequence of moments of the

PSD, as defined by (2.2).

Pick an arbitrary 𝑛 ∈ N and an arbitrary vector p = (𝑝0, 𝑝1, ..., 𝑝𝑛) ∈ R𝑛+1. The

vector p can be used to define a polynomial:

𝑝(𝑥) = 𝑝0 + 𝑝1𝑥 + ... + 𝑝𝑛𝑥𝑛 =
𝑛∑︁

𝑗=0
𝑝𝑗𝑥

𝑗. (A.3)

We then consider the integral
∫︀+∞

0 𝑝2(𝑥)𝑓(𝑥)𝑑𝑥. Since 𝑝2(𝑥) = (𝑝(𝑥))2 and 𝑓(𝑥) are

both nonnegative for each 𝑥 ∈ R+, it follows that this integral is nonnegative. That
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is, ∫︁ +∞

0
𝑝2(𝑥)𝑓(𝑥)𝑑𝑥 ≥ 0. (A.4)

We can also expand the integral and relate it to the matrix H𝑛(�̃�) defined in Section

2.2.1: ∫︁ +∞

0
(𝑝(𝑥))2𝑓(𝑥)𝑑𝑥 =

∫︁ +∞

0

⎛⎝ 𝑛∑︁
𝑗=0

𝑝𝑗𝑥
𝑗

⎞⎠2

𝑓(𝑥)𝑑𝑥,

=
∫︁ +∞

0

𝑛∑︁
𝑖=0

𝑛∑︁
𝑗=0

𝑝𝑖𝑝𝑗𝑥
𝑖+𝑗𝑓(𝑥)𝑑𝑥,

=
𝑛∑︁

𝑖=0

𝑛∑︁
𝑗=0

𝑝𝑖𝑝𝑗

∫︁ +∞

0
𝑥𝑖+𝑗𝑓(𝑥)𝑑𝑥,

=
𝑛∑︁

𝑖=0

𝑛∑︁
𝑗=0

𝑝𝑖𝑝𝑗𝜇𝑖+𝑗,

= pTH𝑛(�̃�)p.

(A.5)

Together, (A.4) and (A.5) imply that pTH𝑛(�̃�)p ≥ 0. Since the choice of p was

arbitrary, we can conclude that pTH𝑛(�̃�)p ≥ 0 for any p ∈ R𝑛+1. Recalling the

definition of a positive semidefinite matrix given in Section 2.2.1, we see that this

is equivalent to the statement that H𝑛(�̃�) ⪰ 0. Finally, since the choice of 𝑛 was

arbitrary, we see that we have H𝑛(�̃�) ⪰ 0 for all 𝑛 ∈ N.

By a very simiilar argument, we can show that B𝑛(�̃�) ⪰ 0 for all 𝑛 ∈ N. To reach

this conclusion, one simply has to consider a slightly modified form of the above

integral:
∫︀+∞

0 𝑥𝑝2(𝑥)𝑓(𝑥)𝑑𝑥 instead of
∫︀+∞

0 𝑝2(𝑥)𝑓(𝑥)𝑑𝑥.

Technically, the above proof does not establish Claim 1 for all PSDs – only those

PSDs which can be described by a number density function 𝑓 ∈ 𝑀∞(R+). In fact,

there are some PSDs which cannot be described by a number density function. In

particular, any PSD in which there are nonzero particles of any specific size (such

as the three-peaked distribution appearing in Section 2.3.1) can only technically be

described by a CDF or a measure. The general proof in terms of measures can be

found in [42, Chapter 3]. This general proof requires more sophisticated notions of

integration [67], which are beyond the scope of this paper. The above proof in terms

of number density functions is sufficient to get the idea across and will be accessible
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to a larger audience, so we leave it at that.

Finally, we wish to point out that the above proof is readily extended to prove

Claim 2. One simply has to consider the integral
∫︀+∞

0 (𝑥 − 𝑎)(𝑏 − 𝑥)𝑝2(𝑥)𝑓(𝑥)𝑑𝑥.

A.0.4 Condition (2.7) implies nonnegativity of the moments

Proof. Pick an arbitrary 𝑗 ∈ N such that 𝑗 is odd. Pick any 𝑛 ∈ N such that 2𝑛+1 ≥ 𝑗.

Condition (2.7) ensures that B𝑛(�̃�) ⪰ 0 for this 𝑛. Using the characterization of

positive semidefinite matrices given in (2.6), we can write

xTB𝑛(�̃�)x ≥ 0, for all x ∈ R𝑛+1. (A.6)

In particular, eT
𝑘 B𝑛(�̃�)e𝑘 ≥ 0, where 𝑘 = (𝑗 + 1)/2 and e𝑘 ∈ R𝑛+1 is the unit vector,

whose 𝑘th component is 1 and all other components are 0. Referring to the definition

of B𝑛(�̃�) given in (2.4), we see that eT
𝑘 B𝑛(�̃�)e𝑘 = 𝜇𝑗, and thus 𝜇𝑗 ≥ 0. In the case

where 𝑗 is even, the argument is much the same; we just use H𝑛(�̃�) in place of B𝑛(�̃�).

Thus, we see that Condition (2.7) implies the nonnegativity of all moments.

A.0.5 Equivalence of Problems (2.10) and (2.11)

Proof. Let 𝜌*
1 denote the optimal value of Problem (2.10); similarly, let 𝜌*

2 denote the

optimal value of Problem (2.11).

Consider an arbitrary feasible point of Problem (2.10), (𝑔, ℎ), with an associated

objective value of 𝜌. Since Problems (2.11) and (2.10) have the same feasible set,

(𝑔, ℎ) is also feasible for Problem (2.11). Decompose ℎ into two functions ℎ′ and ℎ′′

where

ℎ′(𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, if 𝑥 ∈ [0, 𝑎),

ℎ(𝑥), if 𝑥 ∈ [𝑎, 𝑏],

0, if 𝑥 ∈ (𝑏, +∞),

(A.7)
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and

ℎ′′(𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ℎ(𝑥), if 𝑥 ∈ [0, 𝑎),

0, if 𝑥 ∈ [𝑎, 𝑏],

ℎ(𝑥), if 𝑥 ∈ (𝑏, +∞).

(A.8)

By construction, ℎ = ℎ′ + ℎ′′. Define a new point as (𝑔, ℎ̂) ≡ (𝑔 + ℎ′, ℎ′′). Because

of the linearity of integration, (𝑔, ℎ̂) is also feasible for Problem (2.11). Furthermore,

its objective value is equal to

∫︁ +∞

0
𝑔(𝑥)𝑑𝑥 =

∫︁ 𝑏

𝑎
𝑔(𝑥)𝑑𝑥,

=
∫︁ 𝑏

𝑎
(𝑔(𝑥) + ℎ′(𝑥)) 𝑑𝑥,

=
∫︁ 𝑏

𝑎
(𝑔(𝑥) + ℎ′(𝑥)) 𝑑𝑥 +

∫︁ 𝑏

𝑎
ℎ′′(𝑥)𝑑𝑥,

=
∫︁ 𝑏

𝑎
𝑔(𝑥)𝑑𝑥 +

∫︁ 𝑏

𝑎
(ℎ′(𝑥) + ℎ′′(𝑥)) 𝑑𝑥,

=
∫︁ 𝑏

𝑎
𝑔(𝑥)𝑑𝑥 +

∫︁ 𝑏

𝑎
ℎ(𝑥)𝑑𝑥,

= 𝜌.

(A.9)

In this way, for any feasible point of Problem (2.10), we can construct a feasible point

for Problem (2.11) with the same objective value. This implies that 𝜌*
1 ≤ 𝜌*

2.

The argument to show that 𝜌*
1 ≥ 𝜌*

2 is very similar. In particular, given an

arbitrary feasible point of Problem (2.11), (𝑔, ℎ), with an associated objective value

of 𝜌, one can construct (𝑔, ℎ̂) which is feasible for Problem (2.10) and has an objective

value of at least 𝜌.

A.0.6 Sufficiency of the 𝑘th order LMIs

Proof. By definition, the matrix H𝑘(𝜇) is positive semidefinite if and only if xTH𝑘(𝜇)x ≥

0 for all x ∈ R𝑘+1. As a special case, this implies that xTH𝑘(𝜇)x ≥ 0 for all

vectors x ∈ R𝑘+1 such that 𝑥𝑘+1 = 0. This is equivalent to the statement that

xTH𝑘−1(𝜇)x ≥ 0 for all vectors x ∈ R𝑘. Thus, H𝑘−1(𝜇) is positive semidefinite. By

induction, H𝑛(𝜇) is positive semidefinite for all 𝑛 < 𝑘. Similar arguments can be
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applied to the more complicated LMIs such as

(𝑎 + 𝑏)B𝑘(𝜇) − C𝑘(𝜇) − 𝑎𝑏H𝑘(𝜇) ⪰ 0. (A.10)

A.0.7 Derivation of lower bounding SDP

The problem for calculating the lower bound can be derived in much the same way

as that for the upper bound. We start with an explicit statement of the quantity we

would like to calculate:

𝑁𝐿 ≡ min
𝑓

∫︁ 𝑏

𝑎
𝑓(𝑥)𝑑𝑥

s.t. 𝑓 ∈ 𝑀∞(R+),∫︁ +∞

0
𝑥𝑗𝑓(𝑥)𝑑𝑥 = 𝜇𝑗, ∀𝑗 ∈ {0, ..., 𝑚}.

(A.11)

Then, we decompose 𝑓 into three number density functions: 𝑓 = 𝑔 + ℎ1 + ℎ2, where

ℎ2 is confined to [0, 𝑎], ℎ2 is confined to [𝑏, +∞), and 𝑔, like 𝑓 , is supported on R+.

𝑁𝐿 = min
𝑔,ℎ1,ℎ2

∫︁ 𝑏

𝑎
𝑔(𝑥)𝑑𝑥 +

∫︁ 𝑏

𝑎
ℎ1(𝑥)𝑑𝑥 +

∫︁ 𝑏

𝑎
ℎ2(𝑥)𝑑𝑥

s.t. 𝑔 ∈ 𝑀∞(R+), ℎ1 ∈ 𝑀∞([0, 𝑎]), ℎ2 ∈ 𝑀∞([𝑏, +∞)),∫︁ +∞

0
𝑥𝑗𝑔(𝑥)𝑑𝑥 +

∫︁ +∞

0
𝑥𝑗ℎ1(𝑥)𝑑𝑥 +

∫︁ +∞

0
𝑥𝑗ℎ2(𝑥)𝑑𝑥 = 𝜇𝑗,

∀𝑗 ∈ {0, ..., 𝑚}.

(A.12)
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For the same reason that Problems (2.10) and (2.11) are equivalent, Problem (A.12)

is equivalent to

𝑁𝐿 = min
𝑔,ℎ1,ℎ2

∫︁ +∞

0
𝑔(𝑥)𝑑𝑥

s.t. 𝑔 ∈ 𝑀∞(R+), ℎ1 ∈ 𝑀∞([0, 𝑎]), ℎ2 ∈ 𝑀∞([𝑏, +∞)),∫︁ +∞

0
𝑥𝑗𝑔(𝑥)𝑑𝑥 +

∫︁ +∞

0
𝑥𝑗ℎ1(𝑥)𝑑𝑥 +

∫︁ +∞

0
𝑥𝑗ℎ2(𝑥)𝑑𝑥 = 𝜇𝑗,

∀𝑗 ∈ {0, ..., 𝑚}.

(A.13)

Next, we introduce the moments of 𝑔, ℎ1, and ℎ2:

𝑁𝐿 = min
𝑔,ℎ1,ℎ2,𝑧,𝑦,�̃�

𝑧0

s.t. 𝑔 ∈ 𝑀∞(R+), ℎ1 ∈ 𝑀∞([0, 𝑎]), ℎ2 ∈ 𝑀∞([𝑏, +∞)),

𝑧𝑗 + 𝑦𝑗 + 𝑤𝑗 = 𝜇𝑗, ∀𝑗 ∈ {0, ..., 𝑚},∫︁ +∞

0
𝑥𝑗𝑔(𝑥)𝑑𝑥 = 𝑧𝑗,

∫︁ +∞

0
𝑥𝑗ℎ1(𝑥)𝑑𝑥 = 𝑦𝑗,

∫︁ +∞

0
𝑥𝑗ℎ2(𝑥)𝑑𝑥 = 𝑤𝑗,

∀𝑗 ∈ N.

(A.14)

Then, we add the necessary conditions for these moments:

𝑁𝐿 = min
𝑔,ℎ1,ℎ2,𝑧,𝑦,�̃�

𝑧0

s.t. 𝑔 ∈ 𝑀∞(R+), ℎ1 ∈ 𝑀∞([0, 𝑎]), ℎ2 ∈ 𝑀∞([𝑏, +∞)),

𝑧𝑗 + 𝑦𝑗 + 𝑤𝑗 = 𝜇𝑗, ∀𝑗 ∈ {0, ..., 𝑚},∫︁ +∞

0
𝑥𝑗𝑔(𝑥)𝑑𝑥 = 𝑧𝑗,

∫︁ +∞

0
𝑥𝑗ℎ1(𝑥)𝑑𝑥 = 𝑦𝑗,

∫︁ +∞

0
𝑥𝑗ℎ2(𝑥)𝑑𝑥 = 𝑤𝑗,

∀𝑗 ∈ N,

H𝑛(𝑧) ⪰ 0, B𝑛(𝑧) ⪰ 0, ∀𝑛 ∈ N,

H𝑛(𝑦) ⪰ 0, −C𝑛(𝑦) + 𝑎B𝑛(𝑦) ⪰ 0, ∀𝑛 ∈ N,

H𝑛(�̃�) ⪰ 0, B𝑛(�̃�) − 𝑏H𝑛(�̃�) ⪰ 0, ∀𝑛 ∈ N.

(A.15)

The LMIs B𝑛(�̃�) − 𝑏H𝑛(�̃�) ⪰ 0, for all 𝑛 ∈ N can be derived in much the same

way as the LMIs appearing in Claim 1. One simply considers the integral
∫︀+∞

0 (𝑥 −
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𝑏)𝑝2(𝑥)ℎ2(𝑥)𝑑𝑥 ≥ 0.

Next, we remove the functions, leaving just the moments:

˜
𝑁𝐿 ≡ min

𝑧,𝑦,�̃�
𝑧0

s.t. 𝑧𝑗 + 𝑦𝑗 + 𝑤𝑗 = 𝜇𝑗, ∀𝑗 ∈ {0, ..., 𝑚},

H𝑛(𝑧) ⪰ 0, B𝑛(𝑧) ⪰ 0, ∀𝑛 ∈ N,

H𝑛(𝑦) ⪰ 0, −C𝑛(𝑦) + 𝑎B𝑛(𝑦) ⪰ 0, ∀𝑛 ∈ N,

H𝑛(�̃�) ⪰ 0, B𝑛(�̃�) − 𝑏H𝑛(�̃�) ⪰ 0, ∀𝑛 ∈ N.

(A.16)

Finally, we truncate the LMIs to a finite 𝑘:

𝑁𝐿 ≡ min
𝑧,𝑦,𝑤

𝑧0

s.t. 𝑧𝑗 + 𝑦𝑗 + 𝑤𝑗 = 𝜇𝑗, ∀𝑗 ∈ {0, ..., 𝑚},

H𝑘(𝑧) ⪰ 0, B𝑘−1(𝑧) ⪰ 0,

H𝑘(𝑦) ⪰ 0, −C𝑘−1(𝑦) + 𝑎B𝑘−1(𝑦) ⪰ 0,

H𝑘(𝑤) ⪰ 0, B𝑘−1(𝑤) − 𝑏H𝑘−1(𝑤) ⪰ 0.

(A.17)

A.0.8 Inconsistency of the “Dirac Delta Function”

The idea of a Dirac delta function, while it is a useful conceptual short-cut in some

contexts, is inconsistent with the rest of mathematics.

To illustrate the problem, consider the usual definition of the Dirac delta function

as the function which satisfies

𝛿𝑧(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
0, if 𝑥 ̸= 𝑧,

+∞, if 𝑥 = 𝑧,

(A.18)

and ∫︁ +∞

−∞
𝛿𝑧(𝑥)𝑑𝑥 = 1 (A.19)
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From Equation (A.18), we see that 𝛿𝑧(𝑥) = 0 almost everywhere on the real line.

In fact, the concept of a property holding almost everywhere is formally defined in

mathematics. Moreover, it is well-established that the (standard) Lebesgue integral of

a function that is zero almost everywhere is zero. This directly contradicts Equation

(A.19). This is the first argument against the Dirac delta function.

There is also a second argument. Suppose we wanted to make use of the scaled

Dirac delta function, 𝑓 = 𝑁𝛿𝑧 mentioned previously. How should it be defined? It is

clear that we want

∫︁ +∞

−∞
𝑓(𝑥)𝑑𝑥 =

∫︁ +∞

−∞
𝑁𝛿𝑧(𝑥)𝑑𝑥 = 𝑁

∫︁ +∞

−∞
𝛿𝑧(𝑥)𝑑𝑥 = 𝑁. (A.20)

However, how does 𝑓 assign values to the elements of R? We might say

𝑓(𝑥) = 𝑁𝛿𝑧(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
𝑁 · 0, if 𝑥 ̸= 𝑧,

𝑁 · +∞, if 𝑥 = 𝑧,

=

⎧⎪⎪⎨⎪⎪⎩
0, if 𝑥 ̸= 𝑧,

+∞, if 𝑥 = 𝑧,

(A.21)

but then, comparing Equations (A.20) and (A.19), we see that 𝑓(𝑥) is identical to

𝛿𝑧(𝑥) at every 𝑥 ∈ R. In other words, the functions are identical. This implies that

integrating either should yield the same value, but this contradicts Equations (A.19)

and (A.20).

While we cannot sensibly talk about Dirac delta functions, the concept of a Dirac

distribution or Dirac measure is a perfectly well-defined, useful concept. See, for

example [42].

A.0.9 Derivation of Problem (2.24)

While one can show directly how Problem (2.17) reduces to (2.24), the argument is

cumbersome. It is actually easier to derive Problem (2.24) in much the same way we

derived (2.17), starting from Problem (A.11). The only difference in the derivation

is that there is no need to introduce the function ℎ1 supported on [0, 𝑎].
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A.0.10 Proof that 𝑥2 < 𝑥1 implies 𝑁
𝑈(𝑥2) ≤ 𝑁

𝑈(𝑥1) and 𝑁𝐿(𝑥2) ≤

𝑁𝐿(𝑥1)

By assumption, both 𝑥1 and 𝑥2 are nonnegative.

We will first consider the lower bound inequality 𝑁𝐿(𝑥2) ≤ 𝑁𝐿(𝑥1), because its

proof is simpler.

Proof. Pick an arbitrary feasible point (𝑧, 𝑤) of Problem (2.24) where 𝑥 = 𝑥1. By

definition 𝑤 must satisfy

H𝑘(𝑤) ⪰ 0 and B𝑘−1(𝑤) − 𝑥1H𝑘−1(𝑤) ⪰ 0. (A.22)

As explained in Section A.0.6, the first LMI implies H𝑘−1(𝑤) ⪰ 0. Since 𝑥2 < 𝑥1,

this implies −(𝑥2 − 𝑥1)H𝑘−1(𝑤) ⪰ 0. Adding this to the second LMI, we obtain

B𝑘−1(𝑤) − 𝑥1H𝑘−1(𝑤) − (𝑥2 − 𝑥1)H𝑘−1(𝑤) = B𝑘−1(𝑤) − 𝑥2H𝑘−1(𝑤) ⪰ 0. (A.23)

Thus, (𝑧, 𝑤) is also feasible for Problem (2.24) where 𝑥 = 𝑥2. Both problems have

the same objective function, 𝑧0. Thus, we have 𝑁𝐿(𝑥2) ≤ 𝑁𝐿(𝑥1).

Next, we prove the upper bound inequality 𝑁
𝑈(𝑥2) ≤ 𝑁

𝑈(𝑥1).

Proof. Pick an arbitrary feasible point (𝑦, 𝑧) of Problem (2.23) where 𝑥 = 𝑥2. By

definition,

H𝑘(𝑧) ⪰ 0 and 𝑥2B𝑘−1(𝑧) − C𝑘−1(𝑧) ⪰ 0. (A.24)

The matrix C𝑘−1(𝑧) is nothing more than the 𝑘×𝑘 submatrix filling the bottom right

corner of H𝑘(𝑧) (i.e. the submatrix obtained by eliminating the first column and row

of H𝑘(𝑧)). Thus, H𝑘(𝑧) ⪰ 0 implies C𝑘−1(𝑧) ⪰ 0.

Suppose that B𝑘−1(𝑦) has a negative eigenvalue (i.e. that B𝑘−1(𝑦) � 0). This

implies that there exists v ∈ R𝑘 such that vTB𝑘−1(𝑦)v < 0. Since 𝑥2 > 0 and

−C𝑘−1(𝑧) ⪯ 0, this implies

vT (𝑥2B𝑘−1(𝑦) − C𝑘−1(𝑧)) v < 0. (A.25)
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But this contradicts (A.24). Thus, our assumption that B𝑘−1(𝑦) � 0 is false, and we

have B𝑘−1(𝑦) ⪰ 0.

Since 𝑥1 > 𝑥2, we have (𝑥1 − 𝑥2)B𝑘−1(𝑦) ⪰ 0. Adding this to the second LMI in

(A.24), we obtain

(𝑥1 − 𝑥2)B𝑘−1(𝑦) + 𝑥2B𝑘−1(𝑧) − C𝑘−1(𝑧) = 𝑥1B𝑘−1(𝑧) − C𝑘−1(𝑧) ⪰ 0. (A.26)

Thus, (𝑦, 𝑧) is also feasible for Problem (2.23) where 𝑥 = 𝑥1. Both problems have the

same objective function, 𝑧0. Since (𝑦, 𝑧) was an arbitrary feasible point of Problem

(2.23) for 𝑥 = 𝑥2, this implies the desired inequality: 𝑁
𝑈(𝑥2) ≤ 𝑁

𝑈(𝑥1).
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A.0.11 Algorithm for calculating a lower bound on the CDF

Algorithm 6 Generating a lower bound on the CDF
Input:

1. Moments 𝜇0, ..., 𝜇𝑚.
2. Estimate of the maximum particle size, 𝑥max.
3. Number of test points, 𝑛.

Output: A function CDF𝐿
𝑛 which provides an lower bound for the true CDF on

the interval [0, 𝑥max].

Algorithm:
Set 𝑥1 := 0. Set ℓ1 := 𝑥1.
Solve Problem (2.24) to calculate 𝑁𝐿(𝑥1).
Set 𝑥2 := 𝑥max. Set ℓ2 := 𝑥2.
Solve Problem (2.24) to calculate 𝑁𝐿(𝑥2).
Set 𝑗* := 1.
for 𝑖 = 3, ..., 𝑛 do

Set 𝑥𝑖 := 1
2(ℓ𝑗* + ℓ𝑗*+1).

Solve Problem (2.24) to calculate 𝑁𝐿(𝑥𝑖).
ℓ := sort(x).
Set 𝑗* ∈ arg max𝑗≤𝑖−1

{︁(︁
𝑁𝐿(ℓ𝑗+1) − 𝑁𝐿(ℓ𝑗)

)︁
(ℓ𝑗+1 − ℓ𝑗)

}︁
end for
Set

CDF𝐿
𝑛(𝑥) :=

⎧⎨⎩𝑁𝐿(ℓ𝑗), if 𝑥 ∈ [ℓ𝑗, ℓ𝑗+1).
𝑁𝐿(ℓ𝑛), if 𝑥 = 𝑥𝑚𝑎𝑥.

(A.27)
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A.0.12 Algorithm for calculating a lower bound on D𝛼

Algorithm 7 Generating a lower bound on D𝛼𝐿

Input:
1. Moments 𝜇0, ..., 𝜇𝑚.
2. The value of 𝛼 ∈ [0, 100] for which you want to calculate bounds on D𝛼.
3. A tolerance 𝜖 > 0.

Output: D𝛼𝐿
𝜖 , which is an 𝜖-close lower bound on D𝛼

𝑈 . That is, it satisfies

D𝛼𝐿
𝜖 ≤ D𝛼𝐿 ≤ D𝛼𝐿

𝜖 + 𝜖. (A.28)

Algorithm:
Set D𝛼𝐿

𝜖 := 0.
Set 𝑠 := 𝜇1/𝜇0.
Solve Problem (2.34) to obtain 𝛼𝑈(𝑠).
while 𝛼𝑈(𝑠) < 𝛼 do

Set D𝛼𝐿
𝜖 := 𝑠.

Set 𝑠 := 2𝑠.
Solve Problem (2.34) to obtain 𝛼𝑈(𝑠).

end while
Set D𝛼

𝐿

𝜖 := 𝑠

while D𝛼
𝐿

𝜖 − D𝛼𝐿
𝜖 > 𝜖 do

Set 𝑠 := (D𝛼
𝐿

𝜖 + D𝛼𝐿
𝜖 )/2.

Solve Problem (2.34) to obtain 𝛼𝑈(𝑠).
if 𝛼𝑈(𝑠) ≥ 𝛼 then

Set D𝛼
𝐿 := 𝑠.

else
Set D𝛼𝐿 := 𝑠

end if
end while
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Appendix B

Supplemental Material for Chapter

3

The following supplemental material is intended to accompany Chapter 3. It is a

slightly modified version of the supplemental material published along with the paper

entitled “Bounds on Stochastic Chemical Kinetic Systems at Steady State” by Garrett

R. Dowdy and Paul I. Barton.

B.0.1 A Moment Enumeration Scheme

To implement the methods described in this paper, it is necessary to be able to list

systematically all moments up to a specified order. In particular, this is necessary

for constructing the moment vectors 𝜇, the A matrix, and the matrices M0
𝑛(𝜇),

M0
𝑛−1(𝜇), and Me𝑗

𝑛−1(𝜇) (see Section 3.3.2). In the body of the paper, we took for

granted that we could perform this enumeration, so as to not distract from the main

message. However, enumerating the moments is not a trivial task. So, in this section,

we describe how it can be done in some detail.

To enumerate the moments {𝜇j : j ∈ N�̂�}, we want to associate each multi-index

j ∈ N�̂� with a single index 𝑗 ∈ {1, 2, 3, , . . . }. To do this,we must pick a specific

ordering for the multi-indices and moments.1 In principle, there are many possible
1We are well aware that we have already defined the word “order” for moments in Section 3.2.5,

and that we are now introducing a close variant of the word with an entirely different meaning. This
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orderings we could pick [10, Chapter 2]. However, so that we may take advantage of

Smadbeck and Kaznessis’s work on the efficient construction of the A matrices, we

will use the same ordering that appears in that paper [63]. According to Smadbeck

and Kaznessis, the moments should be grouped by order2, and then “within each order

the moments are simply indexed in descending order for each of the components”.

They offer the following example as the appropriate ordering of third-order moments

of a system with three components:

⟨𝑥3
1⟩, ⟨𝑥2

1𝑥2⟩, ⟨𝑥2
1𝑥3⟩, ⟨𝑥1𝑥

2
2⟩, ⟨𝑥1𝑥2𝑥3⟩, ⟨𝑥1𝑥

2
3⟩, ⟨𝑥3

2⟩, ⟨𝑥2
2𝑥3⟩, ⟨𝑥2𝑥

2
3⟩, ⟨𝑥3

3⟩.

(B.1)

Surprisingly, this ordering does not appear to have a well-established name. Tak-

ing inspiration from Smadbeck and Kaznessis’s description, and the similar idea of

“graded lexicographic order” [10, Chapter 2], we will call it graded descending order.

While Smadbeck and Kaznessis’s description and example may be sufficient to infer

the pattern of the ordering, the idea is made more precise in the following definitions:

Definition 1 (Descending Order). Consider the two multi-indices j = (𝑗1, . . . , 𝑗�̂�), i =

(𝑖1, . . . , 𝑖�̂�) ∈ N�̂� . We say that j <𝑑 i if the leftmost nonzero entry of the vector dif-

ference j − i ∈ Z�̂� is positive. Furthermore, if j <𝑑 i, we will write 𝜇j <𝑑 𝜇i.

This takes care of the “descending” idea in Smadbeck and Kaznessis’s description.

In particular, by this definition, we have

⟨𝑥3
1⟩ <𝑑 ⟨𝑥2

1𝑥2⟩ <𝑑 ⟨𝑥2
1𝑥3⟩ <𝑑 ⟨𝑥1𝑥

2
2⟩ <𝑑 ⟨𝑥1𝑥2𝑥3⟩ <𝑑 ⟨𝑥1𝑥

2
3⟩ <𝑑 ⟨𝑥3

2⟩ <𝑑 · · · <𝑑 ⟨𝑥3
3⟩,

which is consistent with Smadbeck and Kaznessis’s example.

To group the moments “by order”, we build on Definition 1:

Definition 2 (Graded Descending Order). Consider the two multi-indices j, i ∈ N�̂� .

over-loading of the word is unfortunate, but it seems that “order” really is most appropriate word
to express the present idea [10, Chapter 2], and the phrase “𝑘th order moment” is well-established.
As seen in the quote below, Smadbeck and Kaznessis encountered this difficulty too. We hope that
the type of “order” we are talking about will be clear from the context.

2in the sense of Section 3.2.5
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We say that j <𝑔𝑑 i if

|j| < |i|, (B.2)

or if

|j| = |i| and j <𝑑 i. (B.3)

Furthermore, if j <𝑔𝑑 i, we will write 𝜇j <𝑔𝑑 𝜇i, and we will say that j precedes i.

The ordering relation “<𝑔𝑑” allows us to enumerate the multi-indices {j ∈ N�̂�} in

a well-defined sequence, associating each with a single index 𝑗 ∈ {1, 2, 3, . . . }. This

association is shown in Table B.1. By construction, for each 𝑗 ∈ {1, 2, 3, . . . }, the

multi-index in row 𝑗 precedes the multi-index in row 𝑗 + 1 in the sense of the order

relation “<𝑔𝑑” .

It is easy to verify that the multi-indices of Table B.1 are listed in graded descend-

ing order. However, we have the following practical question: given a multi-index

j ∈ N�̂� , how do we construct the next multi-index in the sequence, j*? One solution

is provided by Algorithm 8, below.

Algorithm 8 NextMultiIndex
Input: The current multi-index, j ∈ N�̂� .

Output: The next multi-index in graded descending order, j* ∈ N�̂� .

Algorithm:
set j* := j.
set 𝑖 := �̂� − 1.
while 𝑖 > 0 and 𝑗*

𝑖 = 0 do
set 𝑖 := 𝑖 − 1.

end while
if 𝑖 > 0 then

set 𝑗*
𝑖 := 𝑗*

𝑖 − 1.
end if
set 𝑗*

�̂�
:= 0.

set 𝑗*
𝑖+1 := 1 + 𝑗�̂� .

It’s straightforward to see that the j* produced by Algorithm 8 satisfies j <𝑔𝑑 j*.

There are only two cases to consider. First, if the condition of the “if” statement is

not satisfied, then |j*| = |j| + 1. By Definition 2, it follows that j <𝑔𝑑 j*. Second, if
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Table B.1: Association between single indices (𝑗 ∈ {1, 2, 3, . . . }) and multi-indices
(j ∈ N�̂�)

Single Index Multi-Index
1 (0, 0, . . . , 0, 0)
2 (1, 0, . . . , 0, 0)
3 (0, 1, . . . , 0, 0)
... ...

�̂� (0, 0, . . . , 1, 0)
�̂� + 1 (0, 0, . . . , 0, 1)
�̂� + 2 (2, 0, . . . , 0, 0)
�̂� + 3 (1, 1, . . . , 0, 0)

... ...
2�̂� (1, 0, . . . , 1, 0)

2�̂� + 1 (1, 0, . . . , 0, 1)
2�̂� + 2 (0, 2, . . . , 0, 0)

... ...
3�̂� − 1 (0, 1, . . . , 1, 0)

3�̂� (0, 1, . . . , 0, 1)
... ...

1
2�̂�2 + 3

2�̂� − 1 (0, 0, . . . , 2, 0)
1
2�̂�2 + 3

2�̂� (0, 0, . . . , 1, 1)
1
2�̂�2 + 3

2�̂� + 1 (0, 0, . . . , 0, 2)
1
2�̂�2 + 3

2�̂� + 2 (3, 0, . . . , 0, 0)
... ...
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the “if” condition is satisfied, then |j*| = |j|. Comparing the sub-indices, we see

𝑗*
1 = 𝑗1,

...

𝑗*
𝑖−1 = 𝑗𝑖−1,

(B.4)

and 𝑗*
𝑖 = 𝑗𝑖 − 1 < 𝑗𝑖. So the leftmost nonzero entry of j − j* is positive, implying

j <𝑑 j*. It follows that j <𝑔𝑑 j*.

What’s less obvious is that the j* produced by Algorithm 8 is necessarily the next

multi-index in the sequence. In other words, we need to demonstrate that there can

never be some j′ ∈ N�̂� such that j <𝑔𝑑 j′ <𝑔𝑑 j*.

Claim 5. Given a multi-index j ∈ N�̂� , if we use Algorithm 8 to produce another

multi-index j* ∈ N�̂� , there there exists no j′ ∈ N�̂� such that j <𝑔𝑑 j′ <𝑔𝑑 j*.

Proof. Assume that there exists some j′ ∈ N�̂� such that j <𝑔𝑑 j′ <𝑔𝑑 j*. We will show

that this leads to contradiction. As before, there are two cases to consider:

∙ Case 1: |j*| = |j| + 1. Examining Algorithm 8, we see that this case only

ever occurs when 𝑗1 = · · · = 𝑗�̂�−1 = 0. It follows that 𝑗*
2 = · · · = 𝑗*

�̂�
= 0.

Furthermore, it follows that |j| = 𝑗�̂� and |j*| = 𝑗*
1 . If j <𝑔𝑑 j′ <𝑔𝑑 j*, then, by

Definition 2, we must have either |j′| = |j| or |j′| = |j*|. We now consider these

two sub-cases separately:

– Sub-case 1.1: |j′| = |j|. If this equality holds, then, by Definition 2, we

must have j <𝑑 j′, meaning that the leftmost nonzero entry of j − j′ is

positive. Since 𝑗1 = · · · = 𝑗�̂�−1 = 0 and j′ ∈ N�̂� , this implies that

𝑗′
1 = · · · = 𝑗′

�̂�−1 = 0 and that 𝑗′
�̂�

< 𝑗�̂� . However, this implies that

|j′| = 𝑗′
�̂�

< 𝑗�̂� = |j|, which contradicts our assumption that |j′| = |j|.

– Sub-case 1.2: |j′| = |j*|. If this equality holds, then, by Definition 2, we

must have j′ <𝑑 j*, meaning that the leftmost nonzero entry of j′ − j* is

positive. This implies that 𝑗′
1 ≥ 𝑗*

1 . If 𝑗′
1 > 𝑗*

1 , then |j′| ≥ 𝑗′
1 > 𝑗*

1 = |j*|,

which contradicts our assumption that |j′| = |j*|. On the other hand, if
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𝑗′
1 = 𝑗*

1 , then we must have 𝑗′
𝑖 > 0 for some 𝑖 ∈ {2, . . . , �̂�}, otherwise we

would not have j′ <𝑑 j*. It follows that |j′| ≥ 𝑗′
1 + 𝑗′

𝑖 = 𝑗*
1 + 𝑗′

𝑖 > 𝑗*
1 = |j*|,

which contradicts our assumption that |j′| = |j*|.

∙ Case 2: |j*| = |j|. As noted previously, by the design of Algorithm 8, when this

equality occurs, we have
𝑗*

1 = 𝑗1,

...

𝑗*
𝑖−1 = 𝑗𝑖−1,

𝑗*
𝑖 = 𝑗𝑖 − 1,

(B.5)

for some 𝑖 ∈ {1, . . . , �̂� − 1}. Also, with j <𝑔𝑑 j′ <𝑔𝑑 j*, the equality |j*| = |j|

implies that |j′| = |j*| = |j|. By Definition 2, it follows that j <𝑑 j′ <𝑑 j*. With

(B.5), this implies that
𝑗*

1 =𝑗′
1 = 𝑗1,

...

𝑗*
𝑖−1 =𝑗′

𝑖−1 = 𝑗𝑖−1,

(B.6)

and that 𝑗′
𝑖 = 𝑗𝑖 or 𝑗′

𝑖 = 𝑗*
𝑖 . We now consider these two sub-cases separately:

– Sub-case 2.1: 𝑗′
𝑖 = 𝑗𝑖. Inspecting Algorithm 8, we see that 𝑗𝑖+1 = · · · =

𝑗�̂�−1 = 0. With j <𝑑 j′ , this implies that 𝑗′
𝑖+1 = · · · = 𝑗′

�̂�−1 = 0 and that

𝑗�̂� > 𝑗′
�̂�

. However, this implies that

|j| =
�̂�∑︁

𝑘=1
𝑗𝑘 = 𝑗�̂� +

�̂�−1∑︁
𝑘=1

𝑗𝑘 = 𝑗�̂� +
�̂�−1∑︁
𝑘=1

𝑗′
𝑘 > 𝑗′

�̂�
+

�̂�−1∑︁
𝑘=1

𝑗′
𝑘 = |j′|, (B.7)

which contradicts our prior conclusion that |j′| = |j|.

– Sub-case 2.2: 𝑗′
𝑖 = 𝑗*

𝑖 . Inspecting Algorithm 8, we see that 𝑗*
𝑖+2 = · · · =

𝑗*
�̂�

= 0. With j′ <𝑑 j*, this implies that 𝑗′
𝑖+1 > 𝑗*

𝑖+1 or that 𝑗′
𝑖+1 = 𝑗*

𝑖+1 and
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that 𝑗′
𝑙 > 0 for some 𝑙 ∈ {𝑖 + 2, . . . , �̂�}. Either way, this implies

|j′| =
�̂�∑︁

𝑘=1
𝑗′

𝑘 =
𝑖∑︁

𝑘=1
𝑗′

𝑘 +
�̂�∑︁

𝑘=𝑖+1
𝑗′

𝑘 =
𝑖∑︁

𝑘=1
𝑗*

𝑘 +
�̂�∑︁

𝑘=𝑖+1
𝑗′

𝑘 >
𝑖∑︁

𝑘=1
𝑗*

𝑘 +
�̂�∑︁

𝑘=𝑖+1
𝑗*

𝑘 = |j*|,

(B.8)

which contradicts our prior conclusion that |j′| = |j*|.

Thus, no matter which case or sub-case we consider, we always arrive at a contradic-

tion. This completes the proof.

Now that we have a well-defined and proven algorithm for constructing the next

mult-index in the sequence, enumerating the multi-indices {j ∈ N�̂�} is trivial. Fur-

thermore, we can define a simple function which maps single indices to multi-indices,

given by Algorithm 9.

Algorithm 9 MapSingleToMultiIndex
Input:

1. A single index, 𝑗 ∈ {1, 2, 3, . . . }.
2. The number of independent components, �̂� ∈ {1, 2, 3, . . . }.

Output: The multi-index j ∈ N�̂� corresponding to the single index 𝑗.

Algorithm:
set j := (0, . . . , 0) ∈ N�̂� .
for 𝑖 = 2 to 𝑗 do

set j := NextMultiIndex(j).
end for

In what follows “MapSingleToMultiIndex(𝑗, �̂�)” will be abbreviated as “𝐼𝑠→𝑚(𝑗, �̂�)”,

where the “𝐼” stands for “index”, “s” stands for “single” and “m” stands for “multi”.

B.0.2 Definition of Matrices M0
𝑛(𝜇), M0

𝑛−1(𝜇), and Me𝑗

𝑛−1(𝜇)

The notation Mv
𝑘(𝜇) has three parts:

∙ 𝑘 ∈ N, which specifies the size of the matrix,

∙ v ∈ N�̂� , which specifies a multi-index “offset”;
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∙ and 𝜇, the vector from which the entries of the matrix will be drawn.

In particular, the matrix Mv
𝑘(𝜇) will have

(︁
𝑘+�̂�

𝑘

)︁
rows and columns, and the entry in

the 𝑖th row and 𝑗th column is given by

(Mv
𝑘(𝜇))𝑖,𝑗 ≡ 𝜇v+𝐼𝑠→𝑚(𝑖,�̂�)+𝐼𝑠→𝑚(𝑗,�̂�), ∀(𝑖, 𝑗) ∈

{︃
1, . . . ,

(︃
𝑘 + �̂�

𝑘

)︃}︃2

. (B.9)

The function 𝐼𝑠→𝑚(·, �̂�) converts the row and column (single) indices into multi-

indices. These two multi-indices are then added together and offset by v.

This definition of Mv
𝑘(𝜇) has the virtue of being very precise. However, it is

somewhat difficult to interpret. An equivalent way to define Mv
𝑘(𝜇) is to say that

the rows and columns are indexed by all multi-indices i, j ∈ N�̂� such that |i|, |j| ≤ 𝑘,

where the multi-indices appear in graded descending order. Then, the element of the

matrix in the row corresponding to i and the column corresponding to j is given by

(Mv
𝑘(𝜇))i,j ≡ 𝜇v+i+j, ∀i, j ∈ N�̂� s.t. |i|, |j| ≤ 𝑘. (B.10)

The number of rows and columns is equal to
(︁

𝑘+�̂�
𝑘

)︁
because this is precisely the

number of multi-indices (and moments) with order at most 𝑘. This can be shown

through the classic “bars and stars” argument from combinatorics.

The above definition of the generic matrix Mv
𝑘(𝜇) can be used to construct the

specific matrices M0
𝑛(𝜇), M0

𝑛−1(𝜇), and Me𝑗

𝑛−1(𝜇). The structure of these matrices is

closely tied to the derivation of the LMIs (3.27) - (3.29), which will be explored in

the next section.

B.0.3 Derivation of LMIs

In this section, we derive the LMIs (3.27) - (3.29). In doing so, we assume that the

reader has read and understood Sections B.0.2 and B.0.1.

We will begin with the most basic of the three: M0
𝑛(𝜇) ⪰ 0. To prove this
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inequality, consider a polynomial

𝑝(x̂) ≡
|j|≤𝑛∑︁
j∈N�̂�

𝑝jx̂j (B.11)

where the sum is over all multi-indices j ∈ N�̂� with order at most 𝑛 ≥ 1, and

the coefficients {𝑝j}|j|≤𝑛

j∈N�̂�
⊂ R are chosen arbitrarily. If we take the square of this

polynomial, 𝑝(x̂)2, the result is a function which is nonnegative for all x̂ ∈ N�̂� ,

and, in particular, for all x̂ ∈ 𝒳 (since 𝒳 is a subset of N�̂�). Furthermore, since

any steady-state distribution 𝑃ss(·) is a probability distribution over 𝒳 , we also have

𝑃ss(x̂) ≥ 0, for all x̂ ∈ 𝒳 . It follows that

∑︁
x̂∈𝒳

𝑝(x̂)2𝑃ss(x̂) ≥ 0. (B.12)

Expanding the squared polynomial, we obtain

∑︁
x̂∈𝒳

𝑝(x̂)2𝑃ss(x̂) =
∑︁
x̂∈𝒳

⎛⎜⎝ |j|≤𝑛∑︁
j∈N�̂�

𝑝jx̂j

⎞⎟⎠
2

𝑃ss(x̂),

=
∑︁
x̂∈𝒳

⎛⎜⎝ |j|≤𝑛∑︁
j∈N�̂�

|i|≤𝑛∑︁
i∈N�̂�

𝑝j𝑝ix̂jx̂i

⎞⎟⎠𝑃ss(x̂),

=
∑︁
x̂∈𝒳

⎛⎜⎝ |j|≤𝑛∑︁
j∈N�̂�

|i|≤𝑛∑︁
i∈N�̂�

𝑝j𝑝ix̂j+i

⎞⎟⎠𝑃ss(x̂),

=
|j|≤𝑛∑︁
j∈N�̂�

|i|≤𝑛∑︁
i∈N�̂�

𝑝j𝑝i

⎛⎝∑︁
x̂∈𝒳

x̂j+i𝑃ss(x̂)
⎞⎠ ,

=
|j|≤𝑛∑︁
j∈N�̂�

|i|≤𝑛∑︁
i∈N�̂�

𝑝j𝑝i𝜇j+i.

(B.13)

Combining this result with Inequality (B.12), we have

|j|≤𝑛∑︁
j∈N�̂�

|i|≤𝑛∑︁
i∈N�̂�

𝑝j𝑝i𝜇j+i ≥ 0. (B.14)
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Now, let p ∈ R(�̂�+𝑛
𝑛 ) be the vector obtained by listing the coefficients {𝑝j}|j|≤𝑛

j∈N�̂�
⊂ R so

that their subscripts are in graded descending order. Then, by design, the left-hand

side of the above inequality is equal to pTM0
𝑛(𝜇)p. (We don’t expect this to be

obvious, but it is critical; convince yourself before proceeding.) What we’re left with,

then, is

pTM0
𝑛(𝜇)p ≥ 0. (B.15)

Recall that our choice of the coefficients {𝑝j}|j|≤𝑛

j∈N�̂�
⊂ R was arbitrary. This means

that Inequality (B.15) holds for all vectors p ∈ R(�̂�+𝑛
𝑛 ). As noted in Section III B ,

this is equivalent to the statement that M0
𝑛(𝜇) ⪰ 0.3 This completes the derivation

of LMI (3.27).

The derivation of LMI (3.28) is similar, but has one novel aspect. Again, we

consider an arbitrary polynomial

𝑝(x̂) ≡
|j|≤𝑛−1∑︁
j∈N�̂�

𝑝jx̂j. (B.16)

Then, we pick an arbitrary independent species 𝑗 ∈ {1, . . . , �̂�} and consider the sum

∑︁
x̂∈𝒳

�̂�𝑗𝑝(x̂)2𝑃ss(x̂). (B.17)

As before, 𝑝(x̂)2 and 𝑃ss(x̂) are nonnegative over 𝒳 . Furthermore, since �̂�𝑗 is the

molecular count of species 𝑗, we have �̂�𝑗 ≥ 0. It follows that

∑︁
x̂∈𝒳

�̂�𝑗𝑝(x̂)2𝑃ss(x̂) ≥ 0. (B.18)

3Notice also that our choice of 𝑛 ∈ N was arbitrary, so this LMI actually holds for any 𝑛 ∈ N.
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As before, we expand the squared polynomial and obtain

∑︁
x̂∈𝒳

�̂�𝑗𝑝(x̂)2𝑃ss(x̂) =
∑︁
x̂∈𝒳

�̂�𝑗

⎛⎜⎝|j|≤𝑛−1∑︁
j∈N�̂�

𝑝jx̂j

⎞⎟⎠
2

𝑃ss(x̂),

=
∑︁
x̂∈𝒳

�̂�𝑗

⎛⎜⎝|j|≤𝑛−1∑︁
j∈N�̂�

|i|≤𝑛−1∑︁
i∈N�̂�

𝑝j𝑝ix̂jx̂i

⎞⎟⎠𝑃ss(x̂),

=
∑︁
x̂∈𝒳

⎛⎜⎝|j|≤𝑛−1∑︁
j∈N�̂�

|i|≤𝑛−1∑︁
i∈N�̂�

𝑝j𝑝ix̂j+i+e𝑗

⎞⎟⎠𝑃ss(x̂),

=
|j|≤𝑛−1∑︁
j∈N�̂�

|i|≤𝑛−1∑︁
i∈N�̂�

𝑝j𝑝i

⎛⎝∑︁
x̂∈𝒳

x̂j+i+e𝑗 𝑃ss(x̂)
⎞⎠ ,

=
|j|≤𝑛−1∑︁
j∈N�̂�

|i|≤𝑛−1∑︁
i∈N�̂�

𝑝j𝑝i𝜇j+i+e𝑗
.

(B.19)

With Inequality (B.18), it follows that

|j|≤𝑛−1∑︁
j∈N�̂�

|i|≤𝑛−1∑︁
i∈N�̂�

𝑝j𝑝i𝜇j+i+e𝑗
≥ 0. (B.20)

Now, let p ∈ R(�̂�+𝑛−1
𝑛−1 ) be the vector obtained by listing the coefficients {𝑝j}|j|≤𝑛−1

j∈N�̂�
⊂ R

so that their subscripts are in graded descending order. Then, by design, the left-

hand side of the above inequality is equal to pTMe𝑗

𝑛−1(𝜇)p. Since the vector p and

the index 𝑗 ∈ {1, . . . , �̂�} were arbitrary, it follows that

Me𝑗

𝑛−1(𝜇) ⪰ 0, ∀𝑗 ∈ {1, . . . , �̂�}. (B.21)

The derivation of LMI (3.29) is so similar we will not repeat the details. The key

difference from the preceding derivation is that the inequality for the molecular count

of dependent species 𝑘 ∈ {1, . . . , 𝐿},

�̃�0,𝑘 +
�̂�∑︁

𝑗=1
𝛽𝑘,𝑗(�̂�0,𝑗 − �̂�𝑗) ≥ 0, (B.22)

is used in place of the inequality �̂�𝑗 ≥ 0. Given the preceding derivations, the con-
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nection between (B.22) and

⎛⎝�̃�0,𝑘 +
�̂�∑︁

𝑗=1
𝛽𝑘,𝑗�̂�0,𝑗

⎞⎠M0
𝑛−1(𝜇) −

�̂�∑︁
𝑗=1

𝛽𝑘,𝑗M
e𝑗

𝑛−1(𝜇) ⪰ 0, ∀𝑘 ∈ {1, . . . , 𝐿}. (B.23)

should be reasonably clear.

Note that, in each of the above derivations, the value of the parameter 𝑛 ∈ N was

unimportant, so long as it satisfies the inequality 𝑛 ≥ 1. This means that the LMIs

we have derived are valid for any 𝑛 ∈ N such that 𝑛 ≥ 1. This naturally leads to the

question of what value of 𝑛 to choose in construction of our SDPs. In general, the

greater the value of 𝑛, the more we will restrict the feasible set of the SDPs. This

is desirable, since it may lead to tighter bounds. However, there is a trade-off, as a

larger value of 𝑛 implies larger matrices. We will explain our method of picking 𝑛 in

Section B.0.5.

B.0.4 Proof that LMIs (3.27) - (3.29) Imply (3.24) - (3.26)

It is simplest to prove that (3.28) implies (3.24), so we will start there.

Claim 6. If

Me𝑗

𝑛−1(𝜇) ⪰ 0, ∀𝑗 ∈ {1, . . . , �̂�},

for any 𝑛 ≥ 1, then

𝜇e𝑗
≥ 0, ∀𝑗 ∈ {1, . . . , �̂�}. (B.24)

Proof. Pick any 𝑗 ∈ {1, . . . , �̂�}. Recall that Me𝑗

𝑛−1(𝜇) ⪰ 0 is equivalent to the

statement that

pMe𝑗
𝑛 (𝜇)p ≥ 0, ∀p ∈ R(�̂�+𝑛−1

𝑛−1 ).

In particular,

e1Me𝑗
𝑛 (𝜇)e1 ≥ 0.

The left-hand side of this inequality is equal to the entry in the first row and first
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column of the matrix Me𝑗
𝑛 (𝜇). From Definition (B.9) , we see that this is equal to

(Me𝑗
𝑛 (𝜇))1,1 = 𝜇e𝑗+𝐼𝑠→𝑚(1,�̂�)+𝐼𝑠→𝑚(1,�̂�) = 𝜇e𝑗+0+0 = 𝜇e𝑗

(B.25)

It follows that 𝜇e𝑗
≥ 0. Since our choice of 𝑗 was arbitrary, this is true for all

𝑗 ∈ {1, . . . , �̂�}.

The proof that (3.29) implies (3.25) is similar.

Claim 7. If

⎛⎝�̃�0,𝑘 +
�̂�∑︁

𝑗=1
𝛽𝑘,𝑗�̂�0,𝑗

⎞⎠M0
𝑛−1(𝜇) −

�̂�∑︁
𝑗=1

𝛽𝑘,𝑗M
e𝑗

𝑛−1(𝜇) ⪰ 0, ∀𝑘 ∈ {1, . . . , 𝐿},

for any 𝑛 ≥ 1 and 𝜇0 = 1, then

⎛⎝�̃�0,𝑘 +
�̂�∑︁

𝑗=1
𝛽𝑘,𝑗�̂�0,𝑗

⎞⎠−
�̂�∑︁

𝑗=1
𝛽𝑘,𝑗𝜇e𝑗

≥ 0, ∀𝑘 ∈ {1, . . . , 𝐿} (B.26)

Proof. Pick any 𝑘 ∈ {1, . . . , 𝐿}. Recall that

⎛⎝�̃�0,𝑘 +
�̂�∑︁

𝑗=1
𝛽𝑘,𝑗�̂�0,𝑗

⎞⎠M0
𝑛−1(𝜇) −

�̂�∑︁
𝑗=1

𝛽𝑘,𝑗M
e𝑗

𝑛−1(𝜇) ⪰ 0 (B.27)

is equivalent to the statement that

pT

⎛⎝⎛⎝�̃�0,𝑘 +
�̂�∑︁

𝑗=1
𝛽𝑘,𝑗�̂�0,𝑗

⎞⎠M0
𝑛−1(𝜇) −

�̂�∑︁
𝑗=1

𝛽𝑘,𝑗M
e𝑗

𝑛−1(𝜇)
⎞⎠p ≥ 0 (B.28)

for all p ∈ R(�̂�+𝑛−1
𝑛−1 ). In particular,

0 ≤ eT
1

⎛⎝⎛⎝�̃�0,𝑘 +
�̂�∑︁

𝑗=1
𝛽𝑘,𝑗�̂�0,𝑗

⎞⎠M0
𝑛−1(𝜇) −

�̂�∑︁
𝑗=1

𝛽𝑘,𝑗M
e𝑗

𝑛−1(𝜇)
⎞⎠ e1

=
⎛⎝�̃�0,𝑘 +

�̂�∑︁
𝑗=1

𝛽𝑘,𝑗�̂�0,𝑗

⎞⎠ eT
1 M0

𝑛−1(𝜇)e1 −
�̂�∑︁

𝑗=1
𝛽𝑘,𝑗eT

1 Me𝑗

𝑛−1(𝜇)e1

(B.29)

We’ve already seen that eT
1 Me𝑗

𝑛−1(𝜇)e1 = 𝜇e𝑗
. Similarly, eT

1 M0
𝑛−1(𝜇)e1 = 𝜇0. Substi-
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tuting these moments into the above inequality, we obtain

⎛⎝�̃�0,𝑘 +
�̂�∑︁

𝑗=1
𝛽𝑘,𝑗�̂�0,𝑗

⎞⎠𝜇0 −
�̂�∑︁

𝑗=1
𝛽𝑘,𝑗𝜇e𝑗

≥ 0.

Finally, using 𝜇0 = 1 we obtain Inequality (B.26).

The proof that LMI (3.27) implies (3.26) has a different flavor.

Claim 8. If M0
𝑛(𝜇) ⪰ 0 for any 𝑛 ≥ 1 and 𝜇0 = 1 , then

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜇2e1 − 𝜇2
e1 𝜇e1+e2 − 𝜇e1𝜇e2 . . . 𝜇e1+e�̂�

− 𝜇e1𝜇e�̂�

𝜇e2+e1 − 𝜇e2𝜇e1 𝜇2e2 − 𝜇2
e2 . . . 𝜇e2+e�̂�

− 𝜇e2𝜇e�̂�

... ... . . . ...

𝜇e�̂� +e1 − 𝜇e�̂�
𝜇e1 𝜇e�̂� +e2 − 𝜇e�̂�

𝜇e2 . . . 𝜇2e�̂�
− 𝜇2

e�̂�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⪰ 0. (B.30)

Proof. If M0
𝑛(𝜇) ⪰ 0 for any 𝑛 ≥ 1, it follows that M0

1(𝜇) ⪰ 0. This is true because

M0
1(𝜇) is a leading principal sub-matrix of M0

𝑛(𝜇), and any principal sub-matrix of

a positive semidefinite matrix is necessarily positive semidefinite. Using Definition

(B.9) or (B.10), we can write the LMI M0
1(𝜇) ⪰ 0 explicitly as

M0
1(𝜇) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜇0 𝜇e1 . . . 𝜇e�̂�

𝜇e1 𝜇2e1 . . . 𝜇e1+e�̂�

... ... . . . ...

𝜇e�̂�
𝜇e�̂� +e1 . . . 𝜇2e�̂�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⪰ 0. (B.31)

Applying the Schur Complement Lemma, this is equivalent to

⎡⎢⎢⎢⎢⎢⎣
𝜇2e1 . . . 𝜇e1+e�̂�

... . . . ...

𝜇e�̂� +e1 . . . 𝜇2e�̂�

⎤⎥⎥⎥⎥⎥⎦−

⎡⎢⎢⎢⎢⎢⎣
𝜇e1

...

𝜇e�̂�

⎤⎥⎥⎥⎥⎥⎦
1
𝜇0

[︂
𝜇e1 . . . 𝜇e�̂�

]︂
⪰ 0. (B.32)
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Using the fact that 𝜇0 = 1 and expanding the second product, we obtain

⎡⎢⎢⎢⎢⎢⎣
𝜇2e1 . . . 𝜇e1+e�̂�

... . . . ...

𝜇e�̂� +e1 . . . 𝜇2e�̂�

⎤⎥⎥⎥⎥⎥⎦−

⎡⎢⎢⎢⎢⎢⎣
𝜇2

e1 . . . 𝜇e1𝜇e�̂�

... . . . ...

𝜇e�̂�
𝜇e1 . . . 𝜇2

e�̂�

⎤⎥⎥⎥⎥⎥⎦ ⪰ 0. (B.33)

Combining the two matrices into one, we obtain LMI (B.30).

B.0.5 Size of the SDPs

At this point, we have most of information necessary to compute the measures of

SDP size appearing in Table 3.1. The final critical piece of information is the formula

for choosing 𝑛, which determines the sizes of the matrices M0
𝑛(𝜇), M0

𝑛−1(𝜇), and

Me𝑗

𝑛−1(𝜇).

Recall that in the construction of every SDP that appears in this paper, we are

setting to zero the time derivatives of all moments up through order 𝑚 ∈ N. We

specify this condition with the equation A𝜇𝑀 = 0, where 𝜇𝑀 is the vector of all

moments up through 𝑀 ≡ 𝑚 + 𝑞 − 1, and 𝑞 is the order of the highest-order reaction

in the system. Inspecting the definition of M0
𝑛(𝜇) given in Section B.0.2, we see

that the highest-order moments appearing in this matrix are order 2𝑛. We want to

ensure that the order 𝑀 moments appear in this matrix, so that they are properly

constrained. In other words, we want to ensure that 2𝑛 ≥ 𝑀 . On the other hand,

we don’t want to choose 𝑛 to be excessively large, because (as pointed out in Section

B.0.3) this results in large matrices. Both goals are satisfied by setting 𝑛 ≡ ⌈𝑀
2 ⌉.

With this final piece of information, we can compute the various measures of size

for any of the SDPs described in the paper. For example, consider SDP (3.30) for

calculating a bound on ⟨𝑋𝑖⟩ss for the Michaelis-Menten system with 𝑚 = 2. For this

system, 𝑞 = 2. It follows that 𝑀 = 2+2−1 = 3 and that 𝑛 =
⌈︁

3
2

⌉︁
= 2. As mentioned

in the previous paragraph, the matrix M0
𝑛(𝜇) includes moments up to order 2𝑛 = 4.

Inspecting all other constructs appearing in SDP (3.30), we see that no higher-order

moments appear. Thus, for this case, the highest-order moment that appears as a

271



decision variable is order ℎ = 4. The total number of decision variables is exactly the

number of moments up to order 4, which is 𝑑 =
(︁

�̂�+4
�̂�

)︁
=
(︁

2+4
�̂�

)︁
= 15. The equation

A𝜇𝑀 = 0 sets to zero the time derivatives of all moments up to order 𝑚. So, the

number of equations implied by A𝜇𝑀 = 0 is 𝑙 =
(︁

�̂�+2
�̂�

)︁
=
(︁

2+2
2

)︁
= 6. Finally, the

largest matrix appearing in an LMI is M0
𝑛(𝜇), with the number of rows and columns

given by 𝐿 =
(︁

�̂�+𝑛
�̂�

)︁
=
(︁

2+2
2

)︁
= 6. The size of the other SDPs appearing in the paper

can be analyzed similarly.

B.0.6 Scaling

As noted in Section 3.3.5, one difficulty with using moments as decision variables in

SDPs is that the moments of a distribution often differ by orders of magnitude. This

can cause numerical difficulties for solvers which tend to treat all variables equally.

Fortunately, these difficulties can usually be alleviated by appropriately scaling the

decision variables. In this section we describe how to scale SDP (3.30). The procedure

for scaling the other SDPs that appear in the paper is similar.

The problem and scaling solution is well-illustrated by a system with two indepen-

dent molecular counts �̂�1 and �̂�2. Suppose the steady-state probability distribution

for the system 𝑃ss(·) is a Dirac distribution where all of the probability is concentrated

on the single point (�̂�1, �̂�2) = (3, 2). Then, the moments of the system are given by

𝜇j =
∑︁
x̂∈𝒳

x̂j𝑃ss(x̂) = 3𝑗12𝑗2 , ∀j = (𝑗1, 𝑗2) ∈ N2. (B.34)

The numerical values for these moments increase exponentially with the sub-indices

𝑗1 and 𝑗2, leading to moments of different orders of magnitude.

However, suppose we define the scaled variables

𝑥′
1 ≡ 1

3 �̂�1, 𝑥′
2 ≡ 1

2 �̂�2. (B.35)

Then, for every point x̂ in the set of reachable states 𝒳 , there is a corresponding
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scaled state x′ = D−1x̂, where D is the diagonal matrix

D =

⎡⎢⎣ 𝑑1

𝑑2

⎤⎥⎦ ≡

⎡⎢⎣ 3

2

⎤⎥⎦ . (B.36)

We will let 𝒳 ′ denote the set of these scaled reachable states. We can define a

probability distribution over 𝒳 ′:

𝑃 ′
ss(x′) ≡ 𝑃ss(Dx′), ∀x′ ∈ 𝒳 ′. (B.37)

Furthermore, we can define the moments of this probability distribution,

𝜇′
j ≡

∑︁
x′∈𝒳 ′

(x′)j𝑃 ′
ss(x′), ∀j ∈ N2, (B.38)

and we see that
𝜇′

j ≡
∑︁

x′∈𝒳 ′
(x′)j𝑃ss(Dx′),

=
∑︁
x̂∈𝒳

(D−1x̂)j𝑃ss(x̂),

=
(︂1

3

)︂𝑗1 (︂1
2

)︂𝑗2 ∑︁
x̂∈𝒳

x̂j𝑃ss(x̂),

=
(︂1

3

)︂𝑗1 (︂1
2

)︂𝑗2

𝜇j,

=
(︂1

3

)︂𝑗1 (︂1
2

)︂𝑗2

3𝑗12𝑗2 ,

= 1,

(B.39)

for all multi-indices j ∈ N2. That is, all the moments are equal to one. The fact

that they are all equal is attributable to the special (Dirac) structure of original

distribution 𝑃ss(·). More important than their equality is the fact that they are all of

the same order of magnitude. This similarity in order of magnitude is what we will

try to achieve for the moments appearing in SDP (3.30).

To apply the scaling idea of the previous example to SDP (3.30), we need to move

to the more general case where there are �̂� independent species. Let d ≡ (𝑑1, . . . , 𝑑�̂�)

be the diagonal elements of the matrix D ∈ R�̂�×�̂� , where 𝑑𝑖 > 0 is the scaling
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coefficient associated with independent species 𝑖. As before, we have a probability

distribution 𝑃 ′
ss(·) over a set of scaled reachable states 𝒳 ′ and the corresponding

scaled moments 𝜇′. Applying the same logic as in Equation (B.39), we can conclude

that the relationship between the scaled moments 𝜇′ and the original moments 𝜇 is

given by

𝜇j = dj𝜇′
j, ∀j ∈ N�̂� . (B.40)

We now review each part of SDP (3.30) in turn, showing how each part can be

expressed in terms of the scaled moments 𝜇′. The objective function 𝜇e𝑖
is equal to

de𝑖𝜇′
e𝑖

= 𝑑𝑖𝜇
′
e𝑖

. So that the objective function is a reasonable order of magnitude,

the factor of 𝑑𝑖 is pulled outside of the optimization, as shown in SDP (B.42) below.

To express the constraint A𝜇𝑀 = 0 in terms of 𝜇′, we need to multiply each column

of the matrix A by the appropriate scaling factor dj, where j is the multi-index

corresponding to the current column. Doing so, we obtain the scaled matrix A′ and

the equivalent equation A′𝜇′
𝑀 = 0. The equation 𝜇0 = 1 translates simply into

𝜇′
0 = 1. All that remains is the LMIs. We can derive LMIs in terms of 𝜇′ in much the

same way that we derived LMIs in terms of 𝜇 in Section B.0.3. We simply use the

scaled states x′ and the probability distribution 𝑃 ′
ss(·) instead of x̂ and 𝑃ss(·). This

derivation results in the following LMIs:

M0
𝑛(𝜇′) ⪰ 0,

Me𝑗

𝑛−1(𝜇′) ⪰ 0, ∀𝑗 ∈ {1, . . . , �̂�},

𝛼𝑘M0
𝑛−1(𝜇′) −

�̂�∑︁
𝑗=1

𝛽𝑘,𝑗𝑑𝑗M
e𝑗

𝑛−1(𝜇′) ⪰ 0, ∀𝑘 ∈ {1, . . . , 𝐿}.

(B.41)

Essentially, the only change is that the moments 𝜇′ have been substituted in place

of 𝜇, and a factor of 𝑑𝑗 has appeared in the third LMI. Bringing it all together, the
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resulting scaled SDP is

⟨𝑥𝑖⟩𝑈
ss

𝑑𝑖

= max
𝜇′

𝜇′
e𝑖

s.t. A′𝜇′
𝑀 = 0,

𝜇′
0 = 1,

M0
𝑛(𝜇′) ⪰ 0,

Me𝑗

𝑛−1(𝜇′) ⪰ 0, ∀𝑗 ∈ {1, . . . , �̂�},

𝛼𝑘M0
𝑛−1(𝜇′) −

�̂�∑︁
𝑗=1

𝛽𝑘,𝑗𝑑𝑗M
e𝑗

𝑛−1(𝜇′) ⪰ 0, ∀𝑘 ∈ {1, . . . , 𝐿}.

(B.42)

We have shown how to incorporate scaling factors d into SDP (3.30). What we

haven’t explained is how to pick the scaling factors appropriately. There is no strict

rule. However, as a heuristic we suggest that the scaling factors be picked so that

𝑑𝑖 ≈ ⟨𝑥𝑖⟩ss. Granted, we usually won’t know ⟨𝑥𝑖⟩ss for each independent species 𝑖 a

priori (if we did, we wouldn’t need to solve SDP (3.30)), but an order of magnitude

estimate will suffice. This estimate could come from a variety of sources – for example,

solution of the deterministic rate law equations, experimental data, prior literature,

or a just a few kinetic monte carlo simulations. In our experience, using an over-

estimate of ⟨𝑥𝑖⟩ss for the scaling factor 𝑑𝑖 usually leads to more numerically stable

SDPs than using an under-estimate. Accordingly, for most of the examples in the

paper, for the scaling factor 𝑑𝑖, we used a crude over-estimate of ⟨𝑥𝑖⟩ss implied by

the stoichiometry and initial condition, obtained through solving the following linear

program:

𝑑𝑖 = max
x̂

�̂�𝑖

s.t. x̂ ≥ 0,

x̃0 + B̃−1B̂(x̂0 − x̂) ≥ 0

(B.43)

The two constraints simply specify that the molecular counts of the independent and

dependent species must be nonnegative. (See Equation (4.5) and the surrounding
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discussion.) Of course, this method only works when the molecular count of species

𝑖 is bounded above. This is guaranteed to be true only for reaction systems that

are closed with respect to mass. For open systems, we could employ a state-space

analysis as proposed by Gupta et al [29] to determine which species are bounded and

which are “free”. We could then apply the above LP to the bounded species. For

the free species, we must rely on one of the aforementioned alternative methods for

estimating ⟨𝑥𝑖⟩ss.

B.0.7 LMIs to Exclude Non-integer States

In Section IV B, we stated that we could selectively add LMIs reflecting the inte-

grality requirement and thus obtain tighter bounds. We now demonstrate this idea

for the Reversible Dimerization system of Section IV B. Recall that there was a gap

in the bounds on ⟨𝐴⟩ss (see Figure 3-2, top plot). In particular, for 𝑐2 = 0, we had

⟨𝐴⟩𝐿
ss = 0 and ⟨𝐴⟩𝑈

ss = 1. We claimed that this gap was attributable to a nonphys-

ical distribution, where all of the probability is concentrated on the point 𝑥A = 1,

implying 4.5 molecules of B. The moments of this distribution 𝜇* = (1, 1, 1, . . . ) are

feasible for SDP (3.30), because they satisfy the stationarity condition A𝜇* = 0, and

they satisfy the necessary conditions for the moments of any distribution supported

on the polyhedral set 𝒳 , which for this reaction system reduces to

𝒳 =
{︂

𝑥A ∈ R : 0 ≤ 𝑥A ≤ 10
}︂

(B.44)

(see Section 3.3.4). However, from an analysis of the stoichiometry of this system, we

know that the state 𝑥A = 1 is actually not possible. Furthermore, it is not possible

that 𝑥A takes any value in the open interval (0, 2). In other words, the steady-state

probability distribution 𝑃ss(·) has no support in the interval (0, 2). This observation

implies an additional necessary condition on the true steady-state moments 𝜇:

M2e1
𝑛−2(𝜇) − 2Me1

𝑛−2(𝜇) ⪰ 0, (B.45)
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for 𝑛 ≥ 2. We can add this LMI as a constraint to SDP (3.30), further restricting the

feasible set, and, in particular, excluding the moments 𝜇*.

The derivation of LMI (B.45) follows the same pattern as the derivation of the

LMIs in Section B.0.3, though the notation is simplified somewhat because �̂� = 1.

First, we construct an arbitrary polynomial

𝑝(𝑥A) ≡
𝑛−2∑︁
𝑗=0

𝑝𝑗x̂𝑗. (B.46)

Then, because 𝑃ss(·) = 0 in the open interval (0, 2), we have

∑︁
𝑥A∈𝒳

𝑥A(𝑥A − 2)𝑝2(𝑥A)𝑃ss(𝑥A) ≥ 0. (B.47)

Expanding the squared polynomial and using the definitions of M2e1
𝑛−2(𝜇) and Me1

𝑛−2(𝜇),

this becomes

pT
(︁
M2e1

𝑛−2(𝜇) − 2Me1
𝑛−2(𝜇)

)︁
p ≥ 0, (B.48)

where p is a vector of the coefficients of the polynomial 𝑝(·). The fact that these

coefficients were arbitrary implies LMI (B.45).

Adding LMI (B.45) to SDP (3.30) we obtain

⟨𝑥𝑖⟩𝑈
ss = max

𝜇
𝜇e𝑖

s.t. A𝜇𝑀 = 0,

𝜇0 = 1,

M0
𝑛(𝜇) ⪰ 0,

Me𝑗

𝑛−1(𝜇) ⪰ 0, ∀𝑗 ∈ {1, . . . , �̂�},

𝛼𝑘M0
𝑛−1(𝜇) −

�̂�∑︁
𝑗=1

𝛽𝑘,𝑗M
e𝑗

𝑛−1(𝜇) ⪰ 0, ∀𝑘 ∈ {1, . . . , 𝐿},

M2e1
𝑛−2(𝜇) − 2Me1

𝑛−2(𝜇) ⪰ 0.

(B.49)

Repeatedly solving this SDP with 𝑚 = 2 as we did in Section IV B, we obtain the

bottom plot of Figure 3-2. Comparing the top and bottom plots of Figure 3-2, we
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Table B.2: Reaction rate constants for the Larger Example

Rate Constant Value (s−1)
𝑐1 1
𝑐2 1
𝑐3 1
𝑐4 1
𝑐5 1
𝑐6 1
𝑐7 1 × 104

𝑐8 1 × 104

𝑐9 1
𝑐10 1
𝑐11 1
𝑐12 1 × 105

𝑐13 1 × 105

𝑐14 1

see that, for low values of 𝑐2, the upper bound ⟨A⟩𝑈
ss is tighter in the bottom plot,

converging to zero as 𝑐2 → 0.

B.0.8 Rate Constants for the Larger Example

The larger reaction system example shown in Figure 3-4 can also be represented as

A
𝑐1

GGGGGBFGGGGG

𝑐2
B + C

B
𝑐3

GGGGGBFGGGGG

𝑐4
2D

C
𝑐5

GGGGGBFGGGGG

𝑐6
E

E + F
𝑐7

GGGGGBFGGGGG

𝑐8
G

A
𝑐9

GGGGGBFGGGGG

𝑐10
H

H
𝑐11

GGGGGGAI

I
𝑐12

GGGGGGBFGGGGGG

𝑐13
J

J
𝑐14

GGGGGGAA

(B.50)

The rate constants for these reactions are given in Table B.2.
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B.0.9 Relative Probabilities for the Schlögl System

In Section 3.8.3, we plotted relative probabilities for the Schlögl System (3.34). We

now explain how these relative probabilities were obtained.

As explained in Section 3.8.3, the counts of species A and B are assumed constant,

so the only variable is the molecular count of species X. Accordingly, we will denote

the molecular counts of species A and B using the symbols 𝐴 and 𝐵, respectively,

and we will denote the molecular count of X as simply 𝑥. Futhermore, for notational

simplicity, we will denote the steady-state probability distribution 𝑃ss(·) as 𝑃 (·). The

CME (3.6) for this system at steady state is

0 = 𝑃 (𝑥 − 1)𝑎1(𝑥 − 1) − 𝑃 (𝑥)𝑎1(𝑥)

+ 𝑃 (𝑥 + 1)𝑎2(𝑥 + 1) − 𝑃 (𝑥)𝑎2(𝑥)

+ 𝑃 (𝑥 − 1)𝑎3(𝑥 − 1) − 𝑃 (𝑥)𝑎3(𝑥)

+ 𝑃 (𝑥 + 1)𝑎4(𝑥 + 1) − 𝑃 (𝑥)𝑎4(𝑥), ∀𝑥 ∈ N.

(B.51)

where each row of this equation corresponds to one reaction. Rearranging to collect

the coefficients associated with 𝑃 (𝑥 − 1) , 𝑃 (𝑥), and 𝑃 (𝑥 + 1), we obtain

0 = (𝑎1(𝑥 − 1) + 𝑎3(𝑥 − 1)) 𝑃 (𝑥 − 1)

− (𝑎1(𝑥) + 𝑎2(𝑥) + 𝑎3(𝑥) + 𝑎4(𝑥)) 𝑃 (𝑥)

+ (𝑎2(𝑥 + 1) + 𝑎4(𝑥 + 1)) 𝑃 (𝑥 + 1), ∀𝑥 ∈ N.

(B.52)

The propensity functions for the four reactions of the system are

∙ Reaction 1:

𝑎1(𝑥) = 𝑐1

(︃
𝑥

2

)︃(︃
𝐴

1

)︃
= 𝑐1𝐴

(︃
𝑥

2

)︃
. (B.53)

∙ Reaction 2:

𝑎2(𝑥) = 𝑐2

(︃
𝑥

3

)︃
. (B.54)

∙ Reaction 3:

𝑎3(𝑥) = 𝑐3

(︃
𝐵

1

)︃
= 𝑐3𝐵. (B.55)
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∙ Reaction 4:

𝑎4(𝑥) = 𝑐4

(︃
𝑥

1

)︃
= 𝑐4𝑥. (B.56)

Substituting these propensity functions into the CME, we obtain

0 =
(︃

𝑐1𝐴

(︃
𝑥 − 1

2

)︃
+ 𝑐3𝐵

)︃
𝑃 (𝑥 − 1)

−
(︃

𝑐1𝐴

(︃
𝑥

2

)︃
+ 𝑐2

(︃
𝑥

3

)︃
+ 𝑐3𝐵 + 𝑐4𝑥

)︃
𝑃 (𝑥)

+
(︃

𝑐2

(︃
𝑥 + 1

3

)︃
+ 𝑐4(𝑥 + 1)

)︃
𝑃 (𝑥 + 1), ∀𝑥 ∈ N,

(B.57)

where we adopt the convention that

(︃
𝑖

𝑗

)︃
= 0 (B.58)

if 𝑖 < 𝑗.

Now, we assume (reasonably) that 𝑃 (−1) = 0. That is, there will never be −1

molecules of X. Then, we can simplify Equation (B.57) for the special case of 𝑥 = 0

to obtain

0 = −𝑐3𝐵𝑃 (0) + 𝑐4𝑃 (1). (B.59)

If we fix the value of 𝑃 (0) to some arbitrary (nonnegative) value, the above equation

fixes the value of 𝑃 (1), For the special case of 𝑥 = 1, Equation (B.57) gives

0 = 𝑐3𝐵𝑃 (0) − (𝑐3𝐵 + 𝑐4) 𝑃 (1) + 2𝑐4𝑃 (2). (B.60)

Since the values of 𝑃 (0) and 𝑃 (1) have been fixed, this equation fixes the value of

𝑃 (2). We can then use Equation (B.57) to show that 𝑃 (1) and 𝑃 (2) fix the value

of 𝑃 (3), and so on. The conclusion is this: once we fix a value of 𝑃 (0), the entire

sequence {𝑃 (𝑥)}∞
𝑥=1 is fixed by Equation (B.57). Moreover, because of the linearity of

Equation (B.57), every element of the sequence {𝑃 (𝑥)}∞
𝑥=1 is proportional to 𝑝0. This

implies that 𝑃 (0) ̸= 0, because 𝑃 (0) = 0 would imply that 𝑃 (𝑥) = 0 for all 𝑥 ∈ N,
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and ∑︀𝑥∈N 𝑃 (𝑥) = 0 ̸= 1. So 𝑃 (0) > 0. This means that the relative probability ratio

𝑃 (𝑥)
𝑃 (0) ≡ 𝑃 (𝑥) (B.61)

is well-defined for each 𝑥 ∈ N. Furthermore, if we divide Equation (B.57) by 𝑃 (0),

0 =
(︃

𝑐1𝐴

(︃
𝑥 − 1

2

)︃
+ 𝑐3𝐵

)︃
𝑃 (𝑥 − 1)

−
(︃

𝑐1𝐴

(︃
𝑥

2

)︃
+ 𝑐2

(︃
𝑥

3

)︃
+ 𝑐3𝐵 + 𝑐4𝑥

)︃
𝑃 (𝑥)

+
(︃

𝑐2

(︃
𝑥 + 1

3

)︃
+ 𝑐4(𝑥 + 1)

)︃
𝑃 (𝑥 + 1), ∀𝑥 ∈ N.

(B.62)

we obtain a system of equations that fixes the relative probability ratio 𝑃 (𝑥) for every

𝑥 ∈ N. To see this, we just have to consider the equations for 𝑥 = 0, 1, 2, . . . , in turn,

much like we did before, using the fact that 𝑃 (0) = 1. Doing so, we can calculate

the relative probability ratios 𝑃 (1), . . . , 𝑃 (𝑁) for an arbitrarily large 𝑁 ∈ N. These

probability ratios can give us an accurate picture of the shape of the steady-state

probability distribution over the set 𝑥X = 0, 1, . . . , 𝑁 . In particular, we can see how

this distribution transitions from unimodal to bimodal and back to unimodal as 𝑐4

varies from 3 s−1 to 4 s−1. See Figure B-1.
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Figure B-1: Relative probabilities for the Schlögl System over a range of parameter

values for 𝑐4. The values of the other parameters are as stated in Section3.4.3.
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B.0.10 Number of States in the Larger Example

In Section 3.4.4, we claimed that the number of states accessible to larger reaction

system shown in Figure 3-4 is 74,816,108,146. In this section, we explain how we

arrived at this number.

The calculation is easier to understand if we represent the reaction system as

shown in Figure B-2, which divides the reaction system into three subsystems. Recall

that we specified an initial condition of 100 molecules of A and 100 molecules of F.

A

H

I

JC

B

2 D

E

F

G

Subsystem 1

Subsystem 2

Subsystem 3

Figure B-2: Alternative representation of Figure 3-4

First, from Figure B-2, we see that the molecules of F essentially just enable the

conversion of E to G. Furthermore, since this reaction requires 1 molecule of F for

every molecule of E converted, and since we can have at most 100 molecules of E,

we can effectively forget about the F molecules, and treat the conversion as simply

𝐸 
 𝐺. The count of F molecules at any time is simply 𝑥𝐹 = 100 − 𝑥𝐺.

We can now focus on the 100 initial A molecules and consider how they might

distribute themselves among Subsystems 1, 2, and 3. Suppose that 𝑛 ∈ {0, . . . , 100}

molecules of A have been converted to B and C molecules. Then, the problem of

counting the number of states accessible to the whole system reduces to three simpler
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sub-problems:

∙ How many states are accessible to Subsystem 1 given an initial count of 100−𝑛

molecules of A?

∙ How many states are accessible to Subsystem 2 given an initial count of 𝑛

molecules of B?

∙ How many states are accessible to Subsystem 3 given an initial count of 𝑛

molecules of C?

To answer the first question, we just have to consider how many ways the 100 − 𝑛

molecules can distribute themselves among the four different molecular “bins”, A,

H, I, and J. Using the classic “stars and bars” argument from combinatorics, we

see that the number of states accessible to Subsystem 1 is
(︁

100−𝑛+4−1
4−1

)︁
=
(︁

100−𝑛+3
3

)︁
.

By the same argument, we can conclude that there are
(︁

𝑛+1
1

)︁
states accessible to

Subsystem 2 and
(︁

𝑛+2
2

)︁
states accessible to Subsystem 3. For a given 𝑛, the state of

each subsystem is independent of the state of the other two. So, given 𝑛, the number

of states accessible to the whole reaction system is the product of these binomial

coefficients:
(︁

100−𝑛+3
3

)︁(︁
𝑛+1

1

)︁(︁
𝑛+2

2

)︁
. To calculate the total number of states, we just

have to sum over all possible values of 𝑛:

number of states =
100∑︁
𝑛=0

(︃
100 − 𝑛 + 3

3

)︃(︃
𝑛 + 1

1

)︃(︃
𝑛 + 2

2

)︃
(B.63)

We computed this sum using a simple “for” loop in Matlab, obtaining 74,816,108,146.

B.0.11 Derivation of SDP (3.39)

In this section, we derive the SDP for the upper bound on the steady-state probability

that �̂�𝑖 ∈ [𝑥min, 𝑥max] for independent species 𝑖 ∈ {1, . . . , �̂�}. In this derivation, the

set of reachable states x̂ ∈ 𝒳 such that �̂�𝑖 lies in the interval [𝑥min, 𝑥max] plays a

special a role. We will need to refer to this set often. So, for notational convenience,
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we identify it with the following symbol:

𝒳𝑖 ≡ {x̂ ∈ 𝒳 : �̂�𝑖 ∈ [𝑥min, 𝑥max]}. (B.64)

With this definition, we can construct the following optimization problem for calcu-

lating an upper bound on the probability that �̂�𝑖 ∈ [𝑥min, 𝑥max]:

max
𝑃ss

=
∑︁

x̂∈𝒳𝑖

𝑃ss(x̂)

s.t.
𝑅∑︁

𝑟=1
[𝑃ss(x̂ − ŝ𝑟)𝑎𝑟(x̂ − ŝ𝑟) − 𝑃ss(x̂)𝑎𝑟(x̂)] = 0, ∀x̂ ∈ 𝒳 ,

∑︁
x̂∈𝒳

𝑃ss(x̂) = 1,

𝑃ss : 𝒳 → R+.

(B.65)

The variable in this optimization is a function 𝑃ss which maps each reachable state

x̂ ∈ 𝒳 to a nonnegative number. The constraint ∑︀x̂∈𝒳 𝑃ss(x̂) = 1 ensures that

these nonnegative numbers must sum to one, and thus allows them to be interpreted

as probabilities. The first constraint is simply the CME (3.6) in which the time

derivatives for all states x̂ ∈ 𝒳 have been set to zero, specifying that 𝑃ss(·) is a

steady-state distribution. The objective function is a sum over only those states

x̂ ∈ 𝒳 that satisfy �̂�𝑖 ∈ [𝑥min, 𝑥max], giving the total probability associated with the

set 𝒳𝑖. It is clear that the optimal value of this problem gives an upper bound on the

probability that �̂�𝑖 ∈ [𝑥min, 𝑥max].

The next step is to decompose 𝑃ss(·) into two distributions 𝑄 : 𝒳 → R+ and

𝑆 : 𝒳 → R+ such that

𝑃ss(x̂) = 𝑄(x̂) + 𝑆(x̂), ∀x̂ ∈ 𝒳 (B.66)

and

𝑆(x̂) = 0, ∀x̂ /∈ 𝒳𝑖. (B.67)
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This latter equation implies that the distribution 𝑆 is supported only on 𝒳𝑖. The

reason for this decomposition may not be clear yet, but will be later. Rewriting

Problem (B.65) in terms of the two distributions 𝑄(·) and 𝑆(·), we obtain

max
𝑄,𝑆

=
∑︁

x̂∈𝒳𝑖

𝑄(x̂) +
∑︁

x̂∈𝒳𝑖

𝑆(x̂)

s.t.
𝑅∑︁

𝑟=1
[𝑄(x̂ − ŝ𝑟)𝑎𝑟(x̂ − ŝ𝑟) − 𝑄(x̂)𝑎𝑟(x̂)]

+
𝑅∑︁

𝑟=1
[𝑆(x̂ − ŝ𝑟)𝑎𝑟(x̂ − ŝ𝑟) − 𝑆(x̂)𝑎𝑟(x̂)] = 0, ∀x̂ ∈ 𝒳 ,

∑︁
x̂∈𝒳

𝑄(x̂) +
∑︁
x̂∈𝒳

𝑆(x̂) = 1,

𝑄 : 𝒳 → R+, 𝑆 : 𝒳 → R+,

𝑆(x̂) = 0, ∀x̂ /∈ 𝒳𝑖.

(B.68)

Problems (B.65) and (B.68) are equivalent in the sense that starting from a feasible

solution of either, we can construct a feasible solution for the other with the same

objective value. For example, if 𝑄 and 𝑆 are feasible for Problem (B.68), then 𝑃ss ≡

𝑄 + 𝑆 is feasible for Problem (B.65) and has the same objective value. Going the

other way, if 𝑃ss is feasible for Problem (B.65), then 𝑄 ≡ 𝑃ss and 𝑆 ≡ 0 is feasible for

Problem (B.68). It follows that the two problems have the same optimal objective

value.

Taking this idea one step further, Problem (B.68) is equivalent to the following op-

timization problem, which differs from Problem (B.68) only in the objective function:
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max
𝑄,𝑆

=
∑︁
x̂∈𝒳

𝑆(x̂)

s.t.
𝑅∑︁

𝑟=1
[𝑄(x̂ − ŝ𝑟)𝑎𝑟(x̂ − ŝ𝑟) − 𝑄(x̂)𝑎𝑟(x̂)]

+
𝑅∑︁

𝑟=1
[𝑆(x̂ − ŝ𝑟)𝑎𝑟(x̂ − ŝ𝑟) − 𝑆(x̂)𝑎𝑟(x̂)] = 0, ∀x̂ ∈ 𝒳 ,

∑︁
x̂∈𝒳

𝑄(x̂) +
∑︁
x̂∈𝒳

𝑆(x̂) = 1,

𝑄 : 𝒳 → R+, 𝑆 : 𝒳 → R+,

𝑆(x̂) = 0, ∀x̂ /∈ 𝒳𝑖.

(B.69)

To see this equivalence, suppose that 𝑄 and 𝑆 are feasible for Problem (B.69). With-

out loss of generality, we may assume that 𝑄(x̂) = 0 for all x̂ ∈ 𝒳𝑖. Otherwise, we

could construct another feasible solution �̃� : 𝒳 → R+ and 𝑆 : 𝒳 → R+ which gives

a greater objective value. In particular, we would let

�̃�(x̂) ≡

⎧⎪⎪⎨⎪⎪⎩
0, if x̂ ∈ 𝒳𝑖

𝑄(x̂), otherwise.
(B.70)

𝑆(x̂) ≡

⎧⎪⎪⎨⎪⎪⎩
𝑄(x̂) + 𝑆(x̂), if x̂ ∈ 𝒳𝑖

0, otherwise.
(B.71)

Continuing with the assumption that 𝑄(x̂) = 0 for all x̂ ∈ 𝒳𝑖, and noting that

feasibility implies 𝑆(x̂) = 0 for all x̂ /∈ 𝒳𝑖, we see that the two objective functions are

equal: ∑︁
x̂∈𝒳𝑖

𝑄(x̂) +
∑︁

x̂∈𝒳𝑖

𝑆(x̂) =
∑︁

x̂∈𝒳𝑖

𝑆(x̂) =
∑︁
x̂∈𝒳

𝑆(x̂). (B.72)

This argument shows that the optimal value of Problem (B.68) is greater than or equal

to the optimal value of Problem (B.69). To show the reverse inequality, suppose

that 𝑄 and 𝑆 are feasible for Problem (B.68). Then, the functions �̃�(·) and 𝑆(·)

defined above are feasible for Problem (B.69) and have the same objective value.

This establishes the reverse inequality. The two inequalities together imply that the
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optimal values of Problems (B.68) and (B.69) are equal. Furthermore, since Problem

(B.68) is equivalent to our original problem, Problem (B.65), the optimal value of

Problem (B.69) is also an upper bound on the probability that �̂�𝑖 ∈ [𝑥min, 𝑥max].

The next step is to recast Problem (B.69) in terms of the moments of the two

distributions. Let the moments of the distribution 𝑄(·) and 𝑆(·) be given by

𝑦j ≡
∑︁
x̂∈𝒳

x̂j𝑄(x̂), 𝑧j ≡
∑︁
x̂∈𝒳

x̂j𝑆(x̂), ∀j ∈ N�̂� . (B.73)

Then, we can rewrite Problem (B.69) as

max
𝑄,𝑆,y,z

= 𝑧0

s.t. Ay𝑀 + Az𝑀 = 0,

𝑦0 + 𝑧0 = 1,

𝑄 : 𝒳 → R+, 𝑆 : 𝒳 → R+,

𝑆(x̂) = 0, ∀x̂ /∈ 𝒳𝑖,

𝑦j ≡
∑︁
x̂∈𝒳

x̂j𝑄(x̂), 𝑧j ≡
∑︁
x̂∈𝒳

x̂j𝑆(x̂), ∀j ∈ N�̂� .

(B.74)

Our list of decision variables now includes the functions 𝑄(·), 𝑆(·) and their respective

moment sequences y, z. The last line of constraints enforces the relationships between

theses variables. The two preceding lines of constraints are exactly the same as those

appearing in Problem (B.69). The second line of constraints enforces that the total

probability is one, and, given our definition of the moments, is equivalent to the second

line of constraints appearing in Problem (B.69). The first line of constraints reflects

the steady state conditions of Problem (B.69). However, the two are not equivalent.

While the equation Ay𝑀 + Az𝑀 = 0 species that the time derivatives of all moments

up through order 𝑚 ∈ N are equal to zero, the steady-state conditions in the first line

of constraints in Problem (B.69) imply that the time derivatives of all moments are

equal to zero. Thus, Ay𝑀 + Az𝑀 = 0 is a relaxation of the steady-state conditions,

with the extent of the relaxation depending on our choice of 𝑚. Lastly, the objective
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functions of Problems (B.74) and (B.69) are equivalent. Because of the relaxation

of the steady-state conditions, the optimal values of Problems (B.74) and (B.69) are

not necessarily equal. However, the former is guaranteed to be an upper bound on

the latter. This means that the optimal value of Problem (B.74) is an upper bound

on the probability that �̂�𝑖 ∈ [𝑥min, 𝑥max], just perhaps not the tightest upper bound.

The second-to-last step in the derivation of SDP (3.39) is to add necessary con-

ditions on the moment sequences y and z as constraints. The first set of these

constraints are the LMIs (3.27) - (3.29), written for both y and z:

M0
𝑛(y) ⪰ 0, M0

𝑛(z) ⪰ 0,

Me𝑗

𝑛−1(y) ⪰ 0, Me𝑗

𝑛−1(z) ⪰ 0, ∀𝑗 ∈ {1, . . . , �̂�},

𝛼𝑘M0
𝑛−1(y) −

�̂�∑︁
𝑗=1

𝛽𝑘,𝑗M
e𝑗

𝑛−1(y) ⪰ 0, ∀𝑘 ∈ {1, . . . , 𝐿},

𝛼𝑘M0
𝑛−1(z) −

�̂�∑︁
𝑗=1

𝛽𝑘,𝑗M
e𝑗

𝑛−1(z) ⪰ 0, ∀𝑘 ∈ {1, . . . , 𝐿}.

(B.75)

As explained in Section (3.3.4), these are necessary conditions for the moments of any

distribution supported on the polyhedral set 𝒳 ⊃ 𝒳 . The other necessary condition

is also an LMI and reflects the fact that 𝑆(x̂) = 0 for all x̂ /∈ 𝒳𝑖 = {x̂ ∈ 𝒳 : �̂�𝑖 ∈

[𝑥min, 𝑥max]}:

−M2e𝑖
𝑛−2(z) + (𝑥max + 𝑥min)Me𝑖

𝑛−2(z) − 𝑥min𝑥maxM0
𝑛−2(z) ⪰ 0. (B.76)

The derivation of this LMI closely parallels those of LMI (B.45) in Section B.0.7

and LMIs (3.27) - (3.29) in Section B.0.3. The key fact is that the polynomial

−(�̂�𝑖 − 𝑥min)(�̂�𝑖 − 𝑥max) is nonnegative for all x̂ ∈ 𝒳𝑖 and negative for all x̂ such
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that �̂�𝑖 /∈ [𝑥min, 𝑥max]. Adding these LMIs to Problem (B.74), we obtain

max
𝑄,𝑆,y,z

= 𝑧0

s.t. Ay𝑀 + Az𝑀 = 0,

𝑦0 + 𝑧0 = 1,

𝑄 : 𝒳 → R+, 𝑆 : 𝒳 → R+,

𝑆(x̂) = 0, ∀x̂ /∈ 𝒳𝑖,

𝑦j ≡
∑︁
x̂∈𝒳

x̂j𝑄(x̂), 𝑧j ≡
∑︁
x̂∈𝒳

x̂j𝑆(x̂), ∀j ∈ N�̂� ,

M0
𝑛(y) ⪰ 0, M0

𝑛(z) ⪰ 0

Me𝑗

𝑛−1(y) ⪰ 0, Me𝑗

𝑛−1(z) ⪰ 0, ∀𝑗 ∈ {1, . . . , �̂�},

𝛼𝑘M0
𝑛−1(y) −

�̂�∑︁
𝑗=1

𝛽𝑘,𝑗M
e𝑗

𝑛−1(y) ⪰ 0, ∀𝑘 ∈ {1, . . . , 𝐿},

𝛼𝑘M0
𝑛−1(z) −

�̂�∑︁
𝑗=1

𝛽𝑘,𝑗M
e𝑗

𝑛−1(z) ⪰ 0, ∀𝑘 ∈ {1, . . . , 𝐿},

− M2e𝑖
𝑛−2(z) + (𝑥max + 𝑥min)Me𝑖

𝑛−2(z) − 𝑥min𝑥maxM0
𝑛−2(z) ⪰ 0.

(B.77)

Since all of the LMIs we have added are necessary conditions for the moment

sequences y and z, they do not change the feasible set. This means that the optimal

value of Problem (B.77) is exactly the same as that of Problem (B.74).

The final step in the derivation of SDP (3.39) is to remove all mentions of the
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distributions 𝑄(·) and 𝑆(·) from the optimization problem

max
y,z

𝑧0

s.t. Ay𝑀 + Az𝑀 = 0, 𝑦0 + 𝑧0 = 1,

M0
𝑛(y) ⪰ 0, M0

𝑛(z) ⪰ 0

Me𝑗

𝑛−1(y) ⪰ 0, Me𝑗

𝑛−1(z) ⪰ 0, ∀𝑗 ∈ {1, . . . , �̂�},

𝛼𝑘M0
𝑛−1(y) −

�̂�∑︁
𝑗=1

𝛽𝑘,𝑗M
e𝑗

𝑛−1(y) ⪰ 0, ∀𝑘 ∈ {1, . . . , 𝐿},

𝛼𝑘M0
𝑛−1(z) −

�̂�∑︁
𝑗=1

𝛽𝑘,𝑗M
e𝑗

𝑛−1(z) ⪰ 0, ∀𝑘 ∈ {1, . . . , 𝐿},

− M2e𝑖
𝑛−2(z) + (𝑥max + 𝑥min)Me𝑖

𝑛−2(z) − 𝑥min𝑥maxM0
𝑛−2(z) ⪰ 0.

(3.39)

This is another relaxation, because the sequences y and z are no longer necessarily

moments of some distribution. This means that the optimal value of SDP (3.39) is

an upper bound on the optimal value of Problem (B.77). Since the optimal value of

Problem (B.77) was an upper bound on the probability that �̂�𝑖 ∈ [𝑥min, 𝑥max], the

optimal value of SDP (3.39) is as well.
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Appendix C

Supplemental Material for Chapter

4

C.1 Introduction

This is a condensed version of the supplementary material published to accompany

the paper entitled “Dynamic Bounds on Stochastic Chemical Kinetic Systems Using

Semidefinite Programming” by Garrett R. Dowdy and Paul I. Barton.

C.2 Complex Eigenvalues

In Section 4.6, we stated that it was possible to derive augmented forms of the bound-

ing SDPs appearing in Chapter 4 that account for the imaginary components of

eigenvalues. In this section, we explain how those augmented SDPs are constructed.

C.2.1 Linear Equations

Previously, we derived the equation

𝜇𝐿(𝑇 ) − 𝑒𝜌𝑇𝜇𝐿(0) = (A𝐿 − 𝜌I)
∫︁ 𝑇

0
𝑒𝜌(𝑇 −𝑡)𝜇𝐿(𝑡)𝑑𝑡 + A𝐻

∫︁ 𝑇

0
𝑒𝜌(𝑇 −𝑡)𝜇𝐻(𝑡)𝑑𝑡. (C.1)
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While we derived this equation assuming that 𝜌 ∈ R, it is equally valid for any 𝜌 ∈ C,

where C is the set of complex numbers. Substituting 𝜌 = 𝑎 + 𝑏𝑖 into the equation, we

obtain

𝜇𝐿(𝑇 )−𝑒(𝑎+𝑏𝑖)𝑇𝜇𝐿(0)

= (A𝐿 − (𝑎 + 𝑏𝑖)I)
∫︁ 𝑇

0
𝑒(𝑎+𝑏𝑖)(𝑇 −𝑡)𝜇𝐿(𝑡)𝑑𝑡 + A𝐻

∫︁ 𝑇

0
𝑒(𝑎+𝑏𝑖)(𝑇 −𝑡)𝜇𝐻(𝑡)𝑑𝑡

𝜇𝐿(𝑇 )−𝑒𝑎𝑇 𝑒𝑏𝑖𝑇𝜇𝐿(0)

= (A𝐿 − (𝑎 + 𝑏𝑖)I)
∫︁ 𝑇

0
𝑒𝑎(𝑇 −𝑡)𝑒𝑏𝑖(𝑇 −𝑡)𝜇𝐿(𝑡)𝑑𝑡 + A𝐻

∫︁ 𝑇

0
𝑒𝑎(𝑇 −𝑡)𝑒𝑏𝑖(𝑇 −𝑡)𝜇𝐻(𝑡)𝑑𝑡.

(C.2)

Using Euler’s formula, this becomes

𝜇𝐿(𝑇 )−𝑒𝑎𝑇 (cos(𝑏𝑇 ) + 𝑖 sin(𝑏𝑇 ))𝜇𝐿(0)

= (A𝐿 − (𝑎 + 𝑏𝑖)I)
∫︁ 𝑇

0
𝑒𝑎(𝑇 −𝑡)(cos(𝑏(𝑇 − 𝑡)) + 𝑖 sin(𝑏(𝑇 − 𝑡)))𝜇𝐿(𝑡)𝑑𝑡

+ A𝐻

∫︁ 𝑇

0
𝑒𝑎(𝑇 −𝑡)(cos(𝑏(𝑇 − 𝑡)) + 𝑖 sin(𝑏(𝑇 − 𝑡)))𝜇𝐻(𝑡)𝑑𝑡

(C.3)

Next, through simple but tedious algebraic manipulations, each side of this equation

can then be separated into the real and imaginary parts:

(𝜇𝐿(𝑇 ) − 𝑒𝑎𝑇 cos(𝑏𝑇 )𝜇𝐿(0)) − 𝑖𝑒𝑎𝑇 sin(𝑏𝑇 )𝜇𝐿(0)

= (A𝐿 − 𝑎I)
∫︁ 𝑇

0
𝑒𝑎(𝑇 −𝑡) cos(𝑏(𝑇 − 𝑡))𝜇𝐿(𝑡)𝑑𝑡

+ 𝑏
∫︁ 𝑇

0
𝑒𝑎(𝑇 −𝑡) sin(𝑏(𝑇 − 𝑡))𝜇𝐿(𝑡)𝑑𝑡

+ A𝐻

∫︁ 𝑇

0
𝑒𝑎(𝑇 −𝑡) cos(𝑏(𝑇 − 𝑡))𝜇𝐻(𝑡)𝑑𝑡

+ 𝑖(A𝐿 − 𝑎I)
∫︁ 𝑇

0
𝑒𝑎(𝑇 −𝑡) sin(𝑏(𝑇 − 𝑡))𝜇𝐿(𝑡)𝑑𝑡

− 𝑖𝑏
∫︁ 𝑇

0
𝑒𝑎(𝑇 −𝑡) cos(𝑏(𝑇 − 𝑡))𝜇𝐿(𝑡)𝑑𝑡

+ 𝑖A𝐻

∫︁ 𝑇

0
𝑒𝑎(𝑇 −𝑡) sin(𝑏(𝑇 − 𝑡))𝜇𝐻(𝑡)𝑑𝑡

(C.4)
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This equation holds if and only if the real part of the left-hand side equals the real part

of the right-hand side, and the imaginary part of the left-hand side equals the imag-

inary part of the right-hand side. So, it is equivalent to the following two equations:

𝜇𝐿(𝑇 ) − 𝑒𝑎𝑇 cos(𝑏𝑇 )𝜇𝐿(0) = (A𝐿 − 𝑎I)
∫︁ 𝑇

0
𝑒𝑎(𝑇 −𝑡) cos(𝑏(𝑇 − 𝑡))𝜇𝐿(𝑡)𝑑𝑡

+ 𝑏
∫︁ 𝑇

0
𝑒𝑎(𝑇 −𝑡) sin(𝑏(𝑇 − 𝑡))𝜇𝐿(𝑡)𝑑𝑡

+ A𝐻

∫︁ 𝑇

0
𝑒𝑎(𝑇 −𝑡) cos(𝑏(𝑇 − 𝑡))𝜇𝐻(𝑡)𝑑𝑡

(C.5)

−𝑒𝑎𝑇 sin(𝑏𝑇 )𝜇𝐿(0) = (A𝐿 − 𝑎I)
∫︁ 𝑇

0
𝑒𝑎(𝑇 −𝑡) sin(𝑏(𝑇 − 𝑡))𝜇𝐿(𝑡)𝑑𝑡

− 𝑏
∫︁ 𝑇

0
𝑒𝑎(𝑇 −𝑡) cos(𝑏(𝑇 − 𝑡))𝜇𝐿(𝑡)𝑑𝑡

+ A𝐻

∫︁ 𝑇

0
𝑒𝑎(𝑇 −𝑡) sin(𝑏(𝑇 − 𝑡))𝜇𝐻(𝑡)𝑑𝑡

(C.6)

Now, just as we defined the variables z(𝜌)
𝐿 and z(𝜌)

𝐻 as a shorthand representation

of the integrals appearing in (C.1), we will similarly define shorthand names for the

integrals appearing in (C.5) and (C.6). In particular, defining

𝑧
(𝑎 cos 𝑏)
j ≡

∫︁ 𝑇

0
𝑒𝑎(𝑇 −𝑡) cos(𝑏(𝑇 − 𝑡))𝜇j(𝑡)𝑑𝑡, ∀j ∈ N�̂� ,

𝑧
(𝑎 sin 𝑏)
j ≡

∫︁ 𝑇

0
𝑒𝑎(𝑇 −𝑡) sin(𝑏(𝑇 − 𝑡))𝜇j(𝑡)𝑑𝑡, ∀j ∈ N�̂� ,

(C.7)

we can write the Equations (C.5) and (C.6) more concisely as

𝜇𝐿(𝑇 ) − 𝑒𝑎𝑇 cos(𝑏𝑇 )𝜇𝐿(0) = (A𝐿 − 𝑎I)z(𝑎 cos 𝑏)
𝐿 + 𝑏z(𝑎 sin 𝑏)

𝐿 + A𝐻z(𝑎 cos 𝑏)
𝐻 (C.8)

−𝑒𝑎𝑇 sin(𝑏𝑇 )𝜇𝐿(0) = (A𝐿 − 𝑎I)z(𝑎 sin 𝑏)
𝐿 − 𝑏z(𝑎 cos 𝑏)

𝐿 + A𝐻z(𝑎 sin 𝑏)
𝐻 (C.9)

Now for a sanity check. Since the above equations equations were derived assuming
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any values 𝑎, 𝑏 ∈ R, they should also hold in the special case when 𝑏 = 0. In this case,

𝜌 = 𝑎 + 𝑏𝑖 = 𝑎 is just a real number, and we would expect Equations (C.8) and (C.9)

to reduce to Equation (C.1), which we derived assuming that 𝜌 was real. Indeed, this

is true. Using the definitions given in Equation (C.7), we see that Equations (C.8)

reduces to Equation (C.1) and (C.9) reduces to the vacuously true statement 0 = 0.

This result shows that Equations (C.8) and (C.9) are a consistent generalization of

our previous work.

Of course, to use these necessary conditions as constraints in an optimization

problem, we need to state them in terms of the appropriate decision variable proxies:

�̃�𝐿(𝑇 ) − 𝑒𝑎𝑇 cos(𝑏𝑇 )𝜇𝐿(0) = (A𝐿 − 𝑎I)z̃(𝑎 cos 𝑏)
𝐿 + 𝑏z̃(𝑎 sin 𝑏)

𝐿 + A𝐻 z̃(𝑎 cos 𝑏)
𝐻 (C.10)

−𝑒𝑎𝑇 sin(𝑏𝑇 )𝜇𝐿(0) = (A𝐿 − 𝑎I)z̃(𝑎 sin 𝑏)
𝐿 − 𝑏z̃(𝑎 cos 𝑏)

𝐿 + A𝐻 z̃(𝑎 sin 𝑏)
𝐻 (C.11)

C.2.2 Additional Constraints

As was the case with Equation (C.1), Equations (C.10) and (C.11) are of limited

value unless we further constrain the values of 𝑧
(𝑎 cos 𝑏)
j and 𝑧

(𝑎 cos 𝑏)
j .

Zero-Order Moments

The first set of these additional constraints is derived from the fact that 𝜇0(𝑡) = 1

throughout time. Using this fact with Equation (C.7) gives

𝑧
(𝑎 cos 𝑏)
0 =

∫︁ 𝑇

0
𝑒𝑎(𝑇 −𝑡) cos(𝑏(𝑇 − 𝑡))𝜇0(𝑡)𝑑𝑡,

=
∫︁ 𝑇

0
𝑒𝑎(𝑇 −𝑡) cos(𝑏(𝑇 − 𝑡))𝑑𝑡,

= 𝑒𝑎𝑇 (𝑏 sin(𝑏𝑇 ) + 𝑎 cos(𝑏𝑇 )) − 𝑎

𝑎2 + 𝑏2 ,

(C.12)
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and
𝑧

(𝑎 sin 𝑏)
0 =

∫︁ 𝑇

0
𝑒𝑎(𝑇 −𝑡) sin(𝑏(𝑇 − 𝑡))𝜇0(𝑡)𝑑𝑡

=
∫︁ 𝑇

0
𝑒𝑎(𝑇 −𝑡) sin(𝑏(𝑇 − 𝑡))𝑑𝑡,

= 𝑒𝑎𝑇 (𝑎 sin(𝑏𝑇 ) − 𝑏 cos(𝑏𝑇 )) + 𝑏

𝑎2 + 𝑏2 .

(C.13)

Writing these equations for the proxy variables gives:

𝑧
(𝑎 cos 𝑏)
0 = 𝑒𝑎𝑇 (𝑏 sin(𝑏𝑇 ) + 𝑎 cos(𝑏𝑇 )) − 𝑎

𝑎2 + 𝑏2 , (C.14)

and

𝑧
(𝑎 sin 𝑏)
0 = 𝑒𝑎𝑇 (𝑎 sin(𝑏𝑇 ) − 𝑏 cos(𝑏𝑇 )) + 𝑏

𝑎2 + 𝑏2 . (C.15)

LMI and Second-Order Cone Constraints

The second set of additional constraints will take the form of LMIs and second-order

cone constraints.

First, by the trigonometric identity, we have

sin2(𝑏(𝑇 − 𝑡)) + cos2(𝑏(𝑇 − 𝑡)) = 1, ∀𝑡 ∈ [0, 𝑇 ]. (C.16)

It follows trivially, that

sin2(𝑏(𝑇 − 𝑡)) + cos2(𝑏(𝑇 − 𝑡)) ≤ 1, ∀𝑡 ∈ [0, 𝑇 ]. (C.17)

Now, pick an arbitrary j ∈ N�̂� . Multiplying both sides of the above inequality by

𝜇2
j (𝑡) gives

𝜇2
j (𝑡) sin2(𝑏(𝑇 − 𝑡)) + 𝜇2

j (𝑡) cos2(𝑏(𝑇 − 𝑡)) ≤ 𝜇2
j (𝑡), ∀𝑡 ∈ [0, 𝑇 ]. (C.18)
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Taking the square root of both sides gives

√︁
𝜇2

j (𝑡) sin2(𝑏(𝑇 − 𝑡)) + 𝜇2
j (𝑡) cos2(𝑏(𝑇 − 𝑡)) =

⃒⃒⃒⃒
⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒
⎡⎢⎣ 𝜇j(𝑡) sin(𝑏(𝑇 − 𝑡))

𝜇j(𝑡) cos(𝑏(𝑇 − 𝑡))

⎤⎥⎦
⃒⃒⃒⃒
⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒
2

,

≤ |𝜇j(𝑡)|,

= 𝜇j(𝑡).

(C.19)

for all 𝑡 ∈ [0, 𝑇 ]. The last equality assumes that 𝜇j(𝑡) ≥ 0. This will be true as long as

we choose the appropriate representation of our state space. It is true, in particular,

for our chosen representation in terms of independent species.

Multiplying both sides of the above inequality by 𝑒𝑎(𝑇 −𝑡) and integrating from

𝑡 = 0 to 𝑡 = 𝑇 gives

∫︁ 𝑇

0
𝑒𝑎(𝑇 −𝑡)

⃒⃒⃒⃒
⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒
⎡⎢⎣ 𝜇j(𝑡) sin(𝑏(𝑇 − 𝑡))

𝜇j(𝑡) cos(𝑏(𝑇 − 𝑡))

⎤⎥⎦
⃒⃒⃒⃒
⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒
2

𝑑𝑡 ≤
∫︁ 𝑇

0
𝑒𝑎(𝑇 −𝑡)𝜇j(𝑡)𝑑𝑡 = 𝑧

(𝑎)
j (C.20)

Focusing on the left-hand side, we can use Jensen’s Inequality to obtain

∫︁ 𝑇

0
𝑒𝑎(𝑇 −𝑡)

⃒⃒⃒⃒
⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒
⎡⎢⎣ 𝜇j(𝑡) sin(𝑏(𝑇 − 𝑡))

𝜇j(𝑡) cos(𝑏(𝑇 − 𝑡))

⎤⎥⎦
⃒⃒⃒⃒
⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒
2

𝑑𝑡 =
∫︁ 𝑇

0

⃒⃒⃒⃒
⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒
⎡⎢⎣ 𝑒𝑎(𝑇 −𝑡)𝜇j(𝑡) sin(𝑏(𝑇 − 𝑡))

𝑒𝑎(𝑇 −𝑡)𝜇j(𝑡) cos(𝑏(𝑇 − 𝑡))

⎤⎥⎦
⃒⃒⃒⃒
⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒
2

𝑑𝑡

≥

⃒⃒⃒⃒
⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒∫︁ 𝑇

0

⎡⎢⎣ 𝑒𝑎(𝑇 −𝑡)𝜇j(𝑡) sin(𝑏(𝑇 − 𝑡))

𝑒𝑎(𝑇 −𝑡)𝜇j(𝑡) cos(𝑏(𝑇 − 𝑡))

⎤⎥⎦ 𝑑𝑡

⃒⃒⃒⃒
⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒
2

=

⃒⃒⃒⃒
⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒
⎡⎢⎣ ∫︀ 𝑇

0 𝑒𝑎(𝑇 −𝑡)𝜇j(𝑡) sin(𝑏(𝑇 − 𝑡))𝑑𝑡∫︀ 𝑇
0 𝑒𝑎(𝑇 −𝑡)𝜇j(𝑡) cos(𝑏(𝑇 − 𝑡))𝑑𝑡

⎤⎥⎦
⃒⃒⃒⃒
⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒
2

=

⃒⃒⃒⃒
⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒
⎡⎢⎣ 𝑧

(𝑎 sin 𝑏)
j

𝑧
(𝑎 cos 𝑏)
j

⎤⎥⎦
⃒⃒⃒⃒
⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒
2

(C.21)

Combining this result with Inequality (C.20), we have the following second-order cone
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constraint involving the quantities 𝑧
(𝑎 sin 𝑏)
j , 𝑧

(𝑎 cos 𝑏)
j , and 𝑧

(𝑎)
j .

⃒⃒⃒⃒
⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒
⎡⎢⎣ 𝑧

(𝑎 sin 𝑏)
j

𝑧
(𝑎 cos 𝑏)
j

⎤⎥⎦
⃒⃒⃒⃒
⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒
2

≤ 𝑧
(𝑎)
j , (C.22)

which, of course, can also be written for our proxy variables 𝑧
(𝑎 sin 𝑏)
j , 𝑧

(𝑎 cos 𝑏)
j , and 𝑧

(𝑎)
j .

Now, unless we constrain the value of 𝑧
(𝑎)
j , this inequality is of no use to us;

if 𝑧
(𝑎)
j can be made arbitrarily large, then 𝑧

(𝑎 sin 𝑏)
j and 𝑧

(𝑎 cos 𝑏)
j can take any value.

Fortunately, we already know exactly how to constrain 𝑧
(𝑎)
j . It is subject to exactly the

same constraints that we derived earlier for 𝑧
(𝜌)
j , when we were considering exclusively

real values of 𝜌. First, we have the linear equalities,

�̃�𝐿(𝑇 ) − 𝑒𝑎𝑇𝜇𝐿(0) = (A𝐿 − 𝑎I)z̃(𝑎)
𝐿 + A𝐻 z̃(𝑎)

𝐻 . (C.23)

Second, we have the LMIs implied by membership in the cone 𝐶𝑛(𝛼,𝛽),

z̃(𝑎) ∈ 𝐶𝑛(𝛼,𝛽) (C.24)

C.2.3 Bringing It All Together

To summarize, if you wish to use a complex 𝜌 = 𝑎 + 𝑏𝑖 in the bound calculation, we

need to include the following constraints in the optimization problem:

�̃�𝐿(𝑇 ) − 𝑒𝑎𝑇 cos(𝑏𝑇 )𝜇𝐿(0) = (A𝐿 − 𝑎I)z̃(𝑎 cos 𝑏)
𝐿 + 𝑏z̃(𝑎 sin 𝑏)

𝐿 + A𝐻 z̃(𝑎 cos 𝑏)
𝐻 (C.25)

−𝑒𝑎𝑇 sin(𝑏𝑇 )𝜇𝐿(0) = (A𝐿 − 𝑎I)z̃(𝑎 sin 𝑏)
𝐿 − 𝑏z̃(𝑎 cos 𝑏)

𝐿 + A𝐻 z̃(𝑎 sin 𝑏)
𝐻 (C.26)

𝑧
(𝑎 cos 𝑏)
0 = 𝑒𝑎𝑇 (𝑏 sin(𝑏𝑇 ) + 𝑎 cos(𝑏𝑇 )) − 𝑎

𝑎2 + 𝑏2 , (C.27)
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𝑧
(𝑎 sin 𝑏)
0 = 𝑒𝑎𝑇 (𝑎 sin(𝑏𝑇 ) − 𝑏 cos(𝑏𝑇 )) + 𝑏

𝑎2 + 𝑏2 . (C.28)

⃒⃒⃒⃒
⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒
⎡⎢⎣ 𝑧

(𝑎 sin 𝑏)
j

𝑧
(𝑎 cos 𝑏)
j

⎤⎥⎦
⃒⃒⃒⃒
⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒
2

≤ 𝑧
(𝑎)
j , ∀j ∈ N�̂�s.t. |j| ≤ 𝑀 (C.29)

�̃�𝐿(𝑇 ) − 𝑒𝑎𝑇𝜇𝐿(0) = (A𝐿 − 𝜌I)z̃(𝑎)
𝐿 + A𝐻 z̃(𝑎)

𝐻 (C.30)

z̃(𝑎) ∈ 𝐶𝑛(𝛼,𝛽) (C.31)

As a reminder, the 𝑀 appearing in Constraint (C.29) is the order of the highest-order

moment appearing in z̃(𝑎)
𝐻 (and 𝜇𝐻).

C.2.4 Complex Conjugates

Now, recall that the values of 𝜌 that we use are intended to estimate eigenvalues of

the infinitesimal generator matrix G. All of the elements of this matrix are real. This

implies that any complex eigenvalues occur in conjugate pairs. Thus, if we are using

𝜌 = 𝑎 + 𝑏𝑖 as an estimate of one of the eigenvalues, it seems that we should be using

𝜌 = 𝑎 − 𝑏𝑖 also. However, one can show that if we write out Conditions (C.25) -

(C.31) for 𝜌 = 𝑎 + 𝑏𝑖, it is redundant to also write out these conditions for 𝜌 = 𝑎 − 𝑏𝑖.

To see this, suppose we write out

�̃�𝐿(𝑇 ) − 𝑒𝑎𝑇 cos(𝑏𝑇 )𝜇𝐿(0) = (A𝐿 − 𝑎I)z̃(𝑎 cos −𝑏)
𝐿 − 𝑏z̃(𝑎 sin −𝑏)

𝐿 + A𝐻 z̃(𝑎 cos −𝑏)
𝐻 , (C.32)

𝑒𝑎𝑇 sin(𝑏𝑇 )𝜇𝐿(0) = (A𝐿 − 𝑎I)z̃(𝑎 sin −𝑏)
𝐿 + 𝑏z̃(𝑎 cos −𝑏)

𝐿 + A𝐻 z̃(𝑎 sin −𝑏)
𝐻 , (C.33)

𝑧
(𝑎 cos −𝑏)
0 = 𝑒𝑎𝑇 (𝑏 sin(𝑏𝑇 ) + 𝑎 cos(𝑏𝑇 )) − 𝑎

𝑎2 + 𝑏2 , (C.34)
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𝑧
(𝑎 sin −𝑏)
0 = 𝑒𝑎𝑇 (−𝑎 sin(𝑏𝑇 ) + 𝑏 cos(𝑏𝑇 )) − 𝑏

𝑎2 + 𝑏2 . (C.35)

⃒⃒⃒⃒
⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒
⎡⎢⎣ 𝑧

(𝑎 sin −𝑏)
j

𝑧
(𝑎 cos −𝑏)
j

⎤⎥⎦
⃒⃒⃒⃒
⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒
2

≤ 𝑧
(𝑎)
j , ∀j ∈ N�̂�s.t. |j| ≤ 𝑀. (C.36)

to supplement Conditions (C.25) - (C.31) as constraints in our optimization problem.

(Conditions (C.30)- (C.31) are not copied, as they have no dependence on the sign of 𝑏,

and are thus obviously redundant.) The question is: does the addition of Constraints

(C.32) - (C.36) further constrain the set of feasible vectors �̃�𝐿(𝑇 )? The answer

is “no”, because if we have vectors �̃�𝐿(𝑇 ), z̃(𝑎 cos 𝑏), z̃(𝑎 sin 𝑏), and z̃(𝑎) which satisfy

Constraints (C.25) - (C.31), we can trivially construct vectors z̃(𝑎 cos −𝑏) and z̃(𝑎 sin −𝑏)

which satisfy Constraints (C.32) - (C.36). We simply set z̃(𝑎 cos −𝑏) ≡ z̃(𝑎 cos 𝑏) and

z̃(𝑎 sin −𝑏) ≡ −z̃(𝑎 sin 𝑏). This means that the addition of Constraints (C.32) - (C.36) has

no effect on the set of feasible vectors �̃�𝐿(𝑇 ). In other words, Constraints (C.32) -

(C.36) are redundant.

From another perspective, this conclusion is not surprising. If we start with

Conditions (C.25) - (C.31), written for the true quantities 𝜇𝐿(𝑇 ), z(𝑎 cos 𝑏), z(𝑎 sin 𝑏),

and z(𝑎), and we expand the definitions of z(𝑎 cos 𝑏) and z(𝑎 sin 𝑏) into integral form, we

see that replacing 𝑏 with −𝑏 yields an exactly equivalent set of conditions.

To summarize, if we write Conditions (C.25) - (C.31) for 𝜌 = 𝑎 + 𝑏𝑖, we don’t

need to worry about also writing them for 𝜌 = 𝑎 − 𝑏𝑖 as the second set of conditions

is implied by the first.

C.2.5 An Augmented SDP

So suppose we wanted to construct an SDP for bounding a stochastic chemical kinetic

system using a set ℛ containing both real and complex values of 𝜌. What does this

look like?

Suppose that there are |ℛ| values of 𝜌, which can be written as ℛ ≡ {𝜌1, . . . , 𝜌|ℛ|} ≡

{𝑎1 + 𝑏1𝑖, . . . , 𝑎|ℛ| + 𝑏|ℛ|𝑖}. For the reasons discussed in the previous section we do
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not want this set to contain any complex conjugate pairs. Let 𝐽 ≡ {1, . . . , |ℛ|} and

let 𝐽C ≡ {𝑗 ∈ 𝐽 : 𝑏𝑗 ̸= 0}. In other words, 𝐽C is the set of indices corresponding to

the complex values of 𝜌𝑗.

Then, we can write the SDP for calculating an upper bound on the mean molecular

count of species 𝑖 as follows:

max
�̃�(𝑇 ),

z̃(𝑎𝑗 ),∀𝑗∈𝐽,

z̃(𝑎𝑗 cos 𝑏𝑗 ),∀𝑗∈𝐽C,

z̃(𝑎𝑗 sin 𝑏𝑗 ),∀𝑗∈𝐽C

�̃�e𝑖
(𝑇 )

s.t. �̃�0(𝑇 ) = 1,

�̃�(𝑇 ) ∈ 𝐶𝑛(𝛼,𝛽),

z̃(𝑎𝑗) ∈ 𝐶𝑛(𝛼,𝛽), ∀𝑗 ∈ 𝐽,

�̃�𝐿(𝑇 ) − 𝑒𝑎𝑗𝑇𝜇𝐿(0) = (A𝐿 − 𝑎𝑗I)z̃(𝑎𝑗)
𝐿 + A𝐻 z̃(𝑎𝑗)

𝐻 , ∀𝑗 ∈ 𝐽,

𝑧
(𝑎𝑗)
0 =

⎧⎪⎪⎨⎪⎪⎩
𝑇 if 𝑎𝑗 = 0,

𝑒𝑎𝑗 𝑇 −1
𝑎𝑗

otherwise,

∀𝑗 ∈ 𝐽,

�̃�𝐿(𝑇 ) − 𝑒𝑎𝑗𝑇 cos(𝑏𝑗𝑇 )𝜇𝐿(0) =

(A𝐿 − 𝑎𝑗I)z̃(𝑎𝑗 cos 𝑏𝑗)
𝐿 + 𝑏𝑗 z̃

(𝑎𝑗 sin 𝑏𝑗)
𝐿 + A𝐻 z̃(𝑎𝑗 cos 𝑏𝑗)

𝐻 , ∀𝑗 ∈ 𝐽C,

− 𝑒𝑎𝑗𝑇 sin(𝑏𝑗𝑇 )𝜇𝐿(0) =

(A𝐿 − 𝑎𝑗I)z̃(𝑎𝑗 sin 𝑏𝑗)
𝐿 − 𝑏𝑗 z̃

(𝑎𝑗 cos 𝑏𝑗)
𝐿 + A𝐻 z̃(𝑎𝑗 sin 𝑏𝑗)

𝐻 , ∀𝑗 ∈ 𝐽C,

𝑧
(𝑎 cos 𝑏)
0 = 𝑒𝑎𝑇 (𝑏 sin(𝑏𝑇 ) + 𝑎 cos(𝑏𝑇 )) − 𝑎

𝑎2 + 𝑏2 , ∀𝑗 ∈ 𝐽C,

𝑧
(𝑎 sin 𝑏)
0 = 𝑒𝑎𝑇 (𝑎 sin(𝑏𝑇 ) − 𝑏 cos(𝑏𝑇 )) + 𝑏

𝑎2 + 𝑏2 , ∀𝑗 ∈ 𝐽C,⃒⃒⃒⃒
⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒
⎡⎢⎣ 𝑧

(𝑎𝑗 sin 𝑏𝑗)
j

𝑧
(𝑎𝑗 cos 𝑏𝑗)
j

⎤⎥⎦
⃒⃒⃒⃒
⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒
2

≤ 𝑧
(𝑎𝑗)
j , ∀j ∈ N�̂�s.t. |j| ≤ 𝑀, ∀𝑗 ∈ 𝐽C.

(C.37)

Technically, this is not an SDP, because of the presence of the second order cone

constraints. However, each of these second order cone constraints can be written

equivalently as an LMI, so this technicality is of no consequence.
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C.3 The Absence of the Closure Problem

In Section 4.7, we observed that when our bounding method is applied to systems

which do not exhibit the closure problem, the bounds are often perfect. In this section,

we give some insight into why this is the case.

C.3.1 Theoretical Reasoning

When a system does not suffer from the closure problem, the A𝐻 matrix appearing

in Equation (C.1) is all zeros. This means that the associated constraint simplifies to

�̃�𝐿(𝑇 ) − 𝑒𝜌𝑇𝜇𝐿(0) = (A𝐿 − 𝜌I)z̃(𝜌)
𝐿 . (C.38)

Now, to simplify the discussion, let us assume that the matrix has A𝐿 ∈ R𝑑×𝑑 has

𝑑 distinct eigenvalues {𝜆1, . . . , 𝜆𝑑}. It follows that A𝐿 has 𝑑 linearly independent

eigenvectors {v1, . . . , v𝑑} ⊂ C𝑑. Furthermore, if we let V ≡ [v1 . . . v𝑑], then

A𝐿 = VΛV−1, (C.39)

where Λ ≡ diag(𝜆1, . . . , 𝜆𝑑). It follows that

A𝐿 − 𝜌I = VΛV−1 − 𝜌VV−1 = V(Λ − 𝜌I)V−1. (C.40)

Then, Equation (C.38) becomes

�̃�𝐿(𝑇 ) − 𝑒𝜌𝑇𝜇𝐿(0) = V(Λ − 𝜌I)V−1z̃(𝜌)
𝐿 . (C.41)

Rearranging gives

�̃�𝐿(𝑇 ) = V(Λ − 𝜌I)V−1z̃(𝜌)
𝐿 + 𝑒𝜌𝑇𝜇𝐿(0). (C.42)
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Now, suppose that we choose our values of 𝜌 to be ℛ = {𝜆1, . . . , 𝜆𝑑}. Then, enforcing

Equation (C.42) for each 𝜌 ∈ ℛ, we have

�̃�𝐿(𝑇 ) = V(Λ − 𝜆1I)V−1z̃(𝜆1)
𝐿 + 𝑒𝜆1𝑇𝜇𝐿(0),

�̃�𝐿(𝑇 ) = V(Λ − 𝜆2I)V−1z̃(𝜆2)
𝐿 + 𝑒𝜆2𝑇𝜇𝐿(0),

...

�̃�𝐿(𝑇 ) = V(Λ − 𝜆𝑑I)V−1z̃(𝜆𝑑)
𝐿 + 𝑒𝜆𝑑𝑇𝜇𝐿(0),

(C.43)

The first set of these equations specifies that �̃�𝐿(𝑇 ) is contained in an affine subspace

spanned by the vectors {v2, . . . , v𝑑}, with v1 omitted:

𝐴1 ≡
{︁
V(Λ − 𝜆1I)V−1z + 𝑒𝜆1𝑇𝜇𝐿(0) : z ∈ R𝑑

}︁
. (C.44)

Similarly, the second set of equations specifies that �̃�𝐿(𝑇 ) is contained in an affine

subspace spanned by the vectors {v1, v3 . . . , v𝑑}, with v2 omitted:

𝐴2 ≡
{︁
V(Λ − 𝜆2I)V−1z + 𝑒𝜆2𝑇𝜇𝐿(0) : z ∈ R𝑑

}︁
(C.45)

Continuing in this way, we see that �̃�𝐿(𝑇 ) is contained in all affine subspaces

𝐴𝑗 ≡
{︁
V(Λ − 𝜆𝑗I)V−1z + 𝑒𝜆𝑗𝑇𝜇𝐿(0) : z ∈ R𝑑

}︁
(C.46)

for 𝑗 ∈ {1, . . . , 𝑑}. This implies that �̃�𝐿(𝑇 ) must lie in the intersection ⋂︀𝑗∈{1,...,𝑑} 𝐴𝑗.

One can show that this intersection is nonempty and has exactly one point.

Claim 9. The set ⋂︀𝑗∈{1,...,𝑑} 𝐴𝑗 is nonempty.

Proof. The statement that ⋂︀𝑗∈{1,...,𝑑} 𝐴𝑗 is nonempty is equivalent to the statement

that there exists some (�̃�𝐿(𝑇 ), z̃(𝜆1)
𝐿 , . . . , z̃(𝜆𝑑)

𝐿 ) ∈ R𝑑+𝑑2 satisfying Equation (C.43).

304



This equation can be written equivalently in matrix-vector form:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

I −V(Λ − 𝜆1I)V−1 0 . . . 0

I 0 −V(Λ − 𝜆2I)V−1 . . . 0
... ... ... . . . ...

I 0 0 . . . −V(Λ − 𝜆𝑑I)V−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�̃�𝐿(𝑇 )

z̃(𝜆1)
𝐿

z̃(𝜆2)
𝐿

...

z̃(𝜆𝑑)
𝐿

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑒𝜆2𝑇𝜇𝐿(0)

𝑒𝜆2𝑇𝜇𝐿(0)
...

𝑒𝜆𝑑𝑇𝜇𝐿(0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(C.47)

This system of equations is guaranteed to have a solution if the leftmost matrix (call

it Q ∈ R𝑑2×(𝑑2+𝑑)) has 𝑑2 linearly independent columns (i.e., if it’s rank is 𝑑2). To

help us analyze its rank, we will pre-multiply by the invertible matrix

⎡⎢⎢⎢⎢⎢⎣
V−1

. . .

V−1

⎤⎥⎥⎥⎥⎥⎦ ∈ R𝑑2
, (C.48)

and post-multiply by the invertible matrix

⎡⎢⎢⎢⎢⎢⎣
V

. . .

V

⎤⎥⎥⎥⎥⎥⎦ ∈ R𝑑2+𝑑. (C.49)

The resulting matrix, which has the same rank as Q, is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

I −(Λ − 𝜆1I) 0 . . . 0

I 0 −(Λ − 𝜆2I) . . . 0
... ... ... . . . ...

I 0 0 . . . −(Λ − 𝜆𝑑I)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (C.50)
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From the sparsity pattern of this matrix, it follows that no row can be expressed as

a linear combination of the others. It follows that each of the 𝑑2 rows are linearly

independent. This implies that the rank of Q is 𝑑2, and we are done.

Claim 10. The set ⋂︀𝑗∈{1,...,𝑑} 𝐴𝑗 consists of a unique point.

Proof. First, some preliminaries. Let {rT
1 , . . . , rT

𝑑 } denote the rows of the matrix V−1,

so that ⎡⎢⎢⎢⎢⎢⎣
rT

1
...

rT
𝑑

⎤⎥⎥⎥⎥⎥⎦ ≡ V−1 (C.51)

Since V−1 is invertible, it follows that the vectors {r1, . . . , r𝑑} ⊂ R𝑑 are linearly

independent. Furthermore, since V−1V = I, it follows that rT
𝑗 V = eT

𝑗 for all 𝑗 ∈

{1, . . . , 𝑑}. Finally, for all 𝑗 ∈ {1, . . . , 𝑑}, and for all x(1), x(2) ∈ 𝐴𝑗, it follows that

the difference x(1) − x(2) is orthogonal to r𝑗. To see this consider

rT
𝑗 (x(1) − x(2))

= rT
𝑗

(︁(︁
V(Λ − 𝜆𝑗I)V−1z(1) + 𝑒𝜆𝑗𝑇𝜇𝐿(0)

)︁
−
(︁
V(Λ − 𝜆𝑗I)V−1z(2) + 𝑒𝜆𝑗𝑇𝜇𝐿(0)

)︁)︁
= rT

𝑗 V(Λ − 𝜆𝑗I)V−1(z(1) − z(2))

= eT
𝑗 (Λ − 𝜆𝑗I)V−1(z(1) − z(2))

= 0TV−1(z(1) − z(2))

= 0
(C.52)

Now, we have already established that ⋂︀𝑗∈{1,...,𝑑} 𝐴𝑗 contains at least one point x.

Suppose there was some x′ ∈ R𝑑 such that x′ ̸= x which was also in ⋂︀
𝑗∈{1,...,𝑑} 𝐴𝑗.

From Equation (C.52), it follows that x − x′ is orthogonal to all r𝑗, where 𝑗 ∈

{1, . . . , 𝑑}. This can equivalently be written as V−1(x − x′) = 0. Since V−1 is

invertible, this implies that x − x′ = 0 or that x = x′, which is a contradiction. It

follows that our of assumption of the distinct x′ ∈ ⋂︀
𝑗∈{1,...,𝑑} 𝐴𝑗 was false and that x

is the unique point in ⋂︀𝑗∈{1,...,𝑑} 𝐴𝑗.

Now, what does all this mean? If we include Equations (C.43) as constraints in
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SDP (4.41), we are restricting the set of feasible �̃�𝐿(𝑇 ) vectors to at most one point

�̃�𝐿(𝑇 )*. As long as the other constraints (e.g., the LMIs) do not exclude �̃�𝐿(𝑇 )*, it

will be the only feasible �̃�𝐿(𝑇 ) vector for the problem. Since the objective function

depends only on �̃�𝐿(𝑇 ), it then doesn’t matter whether we attempt to maximize

or minimize the objective function, the optimal value will simply be the objective

function evaluated at �̃�𝐿(𝑇 )*. This means that the upper and lower bounds that we

calculate, in theory, will be the same.

The astute reader might find it odd that, in the analysis above, we have chosen

our set ℛ to match the eigenvalues of the matrix A𝐿, while in Section 4.3.7 we iden-

tified the smallest-magnitude eigenvalues of the infinitesimal generator matrix G as

being important. This apparent disconnect is resolved by the observation that, in the

absence of the closure problem, there is a close connection between the eigenvalues of

the matrices G and those of A𝐿. We are not able to state this connection with math-

ematical precision at present. However, we have noticed, for several such problems,

that the smallest magnitude eigenvalues of G are equal to those of A𝐿.

C.4 Bounds on Higher-Order Moments

In this section, we provide a brief demonstration of the bounding method’s ability

to calculate bounds on higher order moments. This demonstration is based on the

reaction system from Section 4.5, namely:

A + B
𝑐1

GGGGGAC
𝑐2

GGGGGBFGGGGG

𝑐3
D

We will consider species A and C as the independent species, and we will bound

the moments 𝜇(0,3)(𝑡) = ⟨𝑥3
c(𝑡)⟩ and 𝜇(2,2)(𝑡) = ⟨𝑥2

A𝑥2
C(𝑡)⟩. This is done by solving a

minor modification of the SDP for bounding the mean molecular count of species 𝑖,

in which the objective function is changed to �̃�(0,3)(𝑇 ) and �̃�(2,2)(𝑇 ), in turn. Solving

the maximization and minimization version of this modified SDP with 𝑚 = 3 and

ℛ = {0, −2, −2.4, −4.4} gives the bounds shown in Figures C-1 and C-2 below. For
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comparison, the actual trajectories of these moments were computed by direct solution

of the CME and plotted along with the bounds.
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Moment Bounds

Figure C-1: Time-varying bounds on a third-order moment.
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Moment Bounds

Figure C-2: Time-varying bounds on a fourth-order moment.
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C.5 Proof of the Monotonicity of the Bounds with

Increasing 𝑚

In Section 4.4.2, we asserted that “increasing the value of the parameter 𝑚 leads to

monotonically tighter bounds”. We will now rigorously state and prove this claim.

Claim 11. Let ⟨�̂�𝑖(𝑇 )⟩𝑈
𝑚1 be the upper bound obtained on the mean molecular count

of independent species 𝑖 obtained by solving SDP (4.41) with a given set ℛ and 𝑚 =

𝑚1 ∈ N. Similarly, let ⟨�̂�𝑖(𝑇 )⟩𝑈
𝑚2 be the upper bound obtained on the mean molecular

count of independent species 𝑖 obtained by solving SDP (4.41) with the same set ℛ

and with 𝑚 = 𝑚2 ∈ N such that 𝑚2 = 𝑚1 + 1. Then ⟨�̂�𝑖(𝑇 )⟩𝑈
𝑚1 ≥ ⟨�̂�𝑖(𝑇 )⟩𝑈

𝑚2.

Proof. Let SDP𝑗 denote the SDP solved to obtain ⟨�̂�𝑖(𝑇 )⟩𝑈
𝑚𝑗

. The essential idea of

this proof is to show that for every feasible point of SDP2 we can construct a feasible

point of SDP1 that achieves the same objective value. This is enough to imply the

conclusion of our claim.

First, we know that SDP2 must have at least one feasible point (�̃�(𝑇 ), (z̃(𝜌))𝜌∈ℛ).

By the design of SDP2, the true moment vector (𝜇(𝑇 ), (z(𝜌))𝜌∈ℛ) associated with the

true time-varying probability distribution, 𝑃 (·, 𝑡), 𝑡 ∈ [0, 𝑇 ] satisfies all the necessary

conditions which act as constraints. Thus, this point is feasible for SDP2.

Let (�̃�(𝑇 ), (z̃(𝜌))𝜌∈ℛ) be an arbitrary feasible point for SDP2. By the definition

of feasibility, the point (�̃�(𝑇 ), (z̃(𝜌))𝜌∈ℛ) must satisfy all the constraints appearing in

SDP2. In particular, it must satisfy

�̃�0(𝑇 ) = 1 (C.53)

�̃�(𝑇 ) ∈ 𝐶𝑛2(𝛼,𝛽) (C.54)

z̃(𝜌) ∈ 𝐶𝑛2(𝛼,𝛽), ∀𝜌 ∈ ℛ (C.55)
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�̃�𝐿(𝑇 ) − 𝑒𝜌𝑇𝜇𝐿(0) = (A(2)
𝐿 − 𝜌I)z̃(𝜌)

𝐿 + A(2)
𝐻 z̃(𝜌)

𝐻 , ∀𝜌 ∈ ℛ (C.56)

𝑧
(𝜌)
0 =

⎧⎪⎪⎨⎪⎪⎩
𝑇 if 𝜌 = 0,

𝑒𝜌𝑇 −1
𝜌

otherwise
∀𝜌 ∈ ℛ, (C.57)

where the matrices A(2)
𝐿 and A(2)

𝐻 contain rows corresponding to all moments up to

order 𝑚2, and where

𝑛2 =
⌈︂

𝑀2

2

⌉︂
=
⌈︂

𝑚2 + 𝑞 − 1
2

⌉︂
, (C.58)

with 𝑞 having its usual definition as the maximum of the reaction orders in the

chemical system. As described in Section 4.3.1 and Section 4.3.4, each vector �̃�(𝑇 )

and z̃(𝜌) for 𝜌 ∈ ℛ contains only moments up to order 2𝑛2. The objective value

associated with the feasible point (�̃�(𝑇 ), (z̃(𝜌))𝜌∈ℛ) is �̃�e𝑖
(𝑇 ).

Next, we want to show that we can use (�̃�(𝑇 ), (z̃(𝜌))𝜌∈ℛ) to construct a point

(�̂�(𝑇 ), (ẑ(𝜌))𝜌∈ℛ) which is feasible for SDP1 and has the same objective value of �̃�e𝑖
(𝑇 ).

To be feasible, it must satisfy

�̂�0(𝑇 ) = 1 (C.59)

�̂�(𝑇 ) ∈ 𝐶𝑛1(𝛼,𝛽) (C.60)

ẑ(𝜌) ∈ 𝐶𝑛1(𝛼,𝛽), ∀𝜌 ∈ ℛ (C.61)

�̂�𝐿(𝑇 ) − 𝑒𝜌𝑇𝜇𝐿(0) = (A(1)
𝐿 − 𝜌I)ẑ(𝜌)

𝐿 + A(1)
𝐻 ẑ(𝜌)

𝐻 , ∀𝜌 ∈ ℛ (C.62)

𝑧
(𝜌)
0 =

⎧⎪⎪⎨⎪⎪⎩
𝑇 if 𝜌 = 0,

𝑒𝜌𝑇 −1
𝜌

otherwise
∀𝜌 ∈ ℛ, (C.63)

where the matrices A(1)
𝐿 and A(1)

𝐻 contain rows corresponding to all moments up to
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order 𝑚1, and where

𝑛1 =
⌈︂

𝑀1

2

⌉︂
=
⌈︂

𝑚1 + 𝑞 − 1
2

⌉︂
. (C.64)

We have two cases to consider:

∙ Case 1: 𝑚2 + 𝑞 − 1 is even.

In this case, 𝑚1 + 𝑞 − 1 = (𝑚2 − 1) + 𝑞 − 1 = (𝑚2 + 𝑞 − 1) − 1 is odd, and

𝑛1 =
⌈︂

𝑀1

2

⌉︂
=
⌈︂

𝑚1 + 𝑞 − 1
2

⌉︂
=
⌈︃

(𝑚2 + 𝑞 − 1) − 1
2

⌉︃
= 𝑛2 (C.65)

It follows that (�̂�(𝑇 ), (ẑ(𝜌))𝜌∈ℛ) ≡ (�̃�(𝑇 ), (z̃(𝜌))𝜌∈ℛ) has the appropriate dimen-

sion to be considered as a decision vector for SDP1. In fact, it is also feasi-

ble in that it satisfies Conditions (C.59) - (C.63). Since (�̂�(𝑇 ), (ẑ(𝜌))𝜌∈ℛ) =

(�̃�(𝑇 ), (z̃(𝜌))𝜌∈ℛ) and 𝑛1 = 𝑛2, the satisfaction of all constraints except Con-

dition (C.62) is trivial. Condition (C.62) is satisfied because Condition (C.62)

enforces only a subset of the linear equations enforced by Condition (C.56) (i.e.,

the rows of the matrix [A(1)
𝐿 A(1)

𝐻 ] are a subset of those of the matrix [A(2)
𝐿 A(2)

𝐻 ]).

Finally, since �̂�e𝑖
(𝑇 ) = �̃�e𝑖

(𝑇 ), the objective value of (�̂�(𝑇 ), (ẑ(𝜌))𝜌∈ℛ) in SDP1

is identical to the objective value of (�̃�(𝑇 ), (z̃(𝜌))𝜌∈ℛ) in SDP2.

∙ Case 2: 𝑚2 + 𝑞 − 1 is odd.

In this case, 𝑚1 + 𝑞 − 1 = (𝑚2 − 1) + 𝑞 − 1 = (𝑚2 + 𝑞 − 1) − 1 is even and

𝑛1 =
⌈︂

𝑀1

2

⌉︂
=
⌈︂

𝑚1 + 𝑞 − 1
2

⌉︂
=
⌈︃

(𝑚2 + 𝑞 − 1) − 1
2

⌉︃
= 𝑛2 − 1 (C.66)

A decision vector (�̂�(𝑇 ), (ẑ(𝜌))𝜌∈ℛ) for SDP1 can only contain those moments

up to order 2𝑛1 = 2(𝑛2 − 1) = 2𝑛2 − 2. So, let (�̂�(𝑇 ), (ẑ(𝜌))𝜌∈ℛ) be a truncation

of (�̃�(𝑇 ), (z̃(𝜌))𝜌∈ℛ), in which only those moments up to order 2𝑛1 = 2𝑛2 − 2

appear. This (�̂�(𝑇 ), (ẑ(𝜌))𝜌∈ℛ) is feasible for SDP1, though feasibility is a little

harder to show than it was for Case 1. Let us consider Conditions (C.59) - (C.63)

one at a time. First, since �̂�0(𝑇 ) = �̃�0(𝑇 ) and 𝑧
(𝜌)
0 = 𝑧

(𝜌)
0 , Conditions (C.59)

and (C.63) are satisfied trivially. To show that Condition (C.54) is satisfied, we
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recall that �̃�(𝑇 ) ∈ 𝐶𝑛2(𝛼,𝛽) is equivalent to

M0
𝑛2(�̃�(𝑇 )) ⪰ 0, (C.67)

Me𝑗

𝑛2−1(�̃�(𝑇 )) ⪰ 0, ∀𝑗 ∈ {1, . . . , �̂�}, (C.68)

𝛼𝑘M0
𝑛2−1(�̃�(𝑇 )) −

�̂�∑︁
𝑗=1

𝛽𝑘,𝑗M
e𝑗

𝑛2−1(�̃�(𝑇 )) ⪰ 0, ∀𝑘 ∈ {1, . . . , 𝐿}. (C.69)

The matrix M0
𝑛1(�̃�(𝑇 )) = M0

𝑛2−1(�̃�(𝑇 )) is a principal submatrix of M0
𝑛2(�̃�(𝑇 )).

Thus, M0
𝑛2(�̃�(𝑇 )) ⪰ 0 implies M0

𝑛1(�̃�(𝑇 )) ⪰ 0. Furthermore, since M0
𝑛1(�̃�(𝑇 ))

contains only moments up to order 2𝑛1, we have M0
𝑛1(�̃�(𝑇 )) = M0

𝑛1(�̂�(𝑇 )). It

follows that

M0
𝑛1(�̂�(𝑇 )) ⪰ 0 (C.70)

By essentially the same argument, we can conclude that

Me𝑗

𝑛1−1(�̂�(𝑇 )) ⪰ 0, ∀𝑗 ∈ {1, . . . , �̂�}, (C.71)

and

𝛼𝑘M0
𝑛1−1(�̂�(𝑇 )) −

�̂�∑︁
𝑗=1

𝛽𝑘,𝑗M
e𝑗

𝑛1−1(�̂�(𝑇 )) ⪰ 0, ∀𝑘 ∈ {1, . . . , 𝐿}, (C.72)

as well. LMIs (C.70) - (C.72) together are equivalent to the statement that

�̂�(𝑇 ) ∈ 𝐶𝑛1(𝛼,𝛽). Thus, we see that Condition (C.60) is satisfied. By the same

logic, we can show that Condition (C.61) is satisfied. All that remains, then,

is to show the Condition (C.62) is satisfied. As in our treatment of Case 1, we

again have that Condition (C.62) enforces only a subset of the linear equations

enforced by Condition (C.56) (i.e., the rows of the matrix [A(1)
𝐿 A(1)

𝐻 ] are a subset

of those of the matrix [A(2)
𝐿 A(2)

𝐻 ]). In this Case, however, we also have the

important fact that the elements of (�̃�(𝑇 ), (z̃(𝜌))𝜌∈ℛ) which don’t appear in
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(�̂�(𝑇 ), (ẑ(𝜌))𝜌∈ℛ) also do not appear in the linear equations of Conditon (C.62).

This is because the linear equations of Conditon (C.62) are derived from the

expressions for the time derivatives of the moments up to order 𝑚1, which

involve only moments up to order

𝑚1 + 𝑞 − 1 = 2
(︂

𝑚1 + 𝑞 − 1
2

)︂
≤ 2

⌈︂
𝑚1 + 𝑞 − 1

2

⌉︂
= 2𝑛1. (C.73)

Thus, Condition (C.62) is satisfied, and we have shown that (�̂�(𝑇 ), (ẑ(𝜌))𝜌∈ℛ)

is feasible for SDP1. Finally, since �̂�e𝑖
(𝑇 ) = �̃�e𝑖

(𝑇 ), the objective value of

(�̂�(𝑇 ), (ẑ(𝜌))𝜌∈ℛ) in SDP1 is identical to the objective value of (�̃�(𝑇 ), (z̃(𝜌))𝜌∈ℛ)

in SDP2.

This completes the proof.

While the above proof was concerned with the upper bound on the mean molecular

count of independent species 𝑖, specifically, these details are not essential to the

argument. The same basic argument can be used to show that

∙ lower bounds on mean molecular counts,

∙ bounds on mean molecular counts for dependent species, and

∙ upper bounds on variances

all vary monotonically with increasing 𝑚.
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Appendix D

Supplemental Material for Chapter

5

D.1 Introduction

This appendix contains material to supplement Chapter 5.

D.2 A Moment Enumeration Scheme

To implement the methods described in Chapter 5, it is necessary to be able to list

systematically all moments 𝑦j up to a specified order. In particular, this is necessary

for constructing the moment vector y, the matrices Aℰ
𝐿 and Aℰ

𝐻 , and the matrices

M0
𝑛(y), M0

𝑛−1(y), and Me𝑟
𝑛−1(y). In Appendix B, we showed how this could be done

in the context of the multi-indices j ∈ N�̂� and the moments 𝜇. The generalization of

these ideas to the multi-indices j ∈ N𝑅 and the moments y is straightforward. While

we defined the ordering relation “<gd” for multi-indices j ∈ N�̂� , the generalization

to multi-indices of arbitrary dimension is straightforward. In particular, the ordering

relation and the above algorithms can also be applied to the multi-indices j ∈ N𝑅

used to index the moments y.
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D.3 Definition of M0
𝑛(y), M0

𝑛−1(y), and Me𝑗
𝑛−1(y)

The definitions of the matrices M0
𝑛(y), M0

𝑛−1(y), and Me𝑗

𝑛−1(y) exactly parallel the

definitions of the matrices M0
𝑛(𝜇), M0

𝑛−1(𝜇), and Me𝑗

𝑛−1(𝜇) given in Appendix B.

The only difference is that each multi-index is now an element of N𝑅 instead of N�̂� .

Accordingly, a matrix whose subscript is 𝑘 ∈ N (e.g., M0
𝑘(y)) has

(︁
𝑘+𝑅

𝑘

)︁
rows and

columns, because that is the number of multi-indices j ∈ N𝑅 up to order 𝑘.

D.4 Derivation of LMIs

While we do not explicitly derive any of the LMIs involving the moment vector y,

their derivations are directly analogous to those of the LMIs involving the moment

vector 𝜇, in Appendix B. We simply use y in place of 𝜇, 𝑃ℰ(·, 𝑡) in place of 𝑃 (·, 𝑡),

and different inequalities describing the support of the distribution.

D.5 Construction of the C matrix

This section describes the construction of the C matrix, which is used to transform

the time derivatives of the vector y𝐿(𝑡) into the time derivatives of the vector 𝜇𝐿(𝑡).

D.5.1 Linear Mapping Between Moments

First, setting aside time derivatives, we show that the moments 𝜇𝐿(𝑡) can be written

as a linear function of the moments y𝐿(𝑡). Picking an arbitrary multi-index j ∈ N�̂� ,
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we have
𝜇j =

∑︁
x̂∈𝒳

x̂j𝑃 (x̂, 𝑡),

=
∑︁
x̂∈𝒳

x̂j ∑︁
𝜖∈ℰ(x̂)

𝑃ℰ(𝜖, 𝑡),

=
∑︁
x̂∈𝒳

∑︁
𝜖∈ℰ(x̂)

x̂j𝑃ℰ(𝜖, 𝑡),

=
∑︁
x̂∈𝒳

∑︁
𝜖∈ℰ(x̂)

(︁
x̂0 + Ŝ𝜖

)︁j
𝑃ℰ(𝜖, 𝑡),

=
∑︁
𝜖∈ℰ

(︁
x̂0 + Ŝ𝜖

)︁j
𝑃ℰ(𝜖, 𝑡),

=
∑︁
𝜖∈ℰ

�̂�∏︁
𝑛=1

(︃
�̂�0,𝑛 +

𝑅∑︁
𝑟=1

𝑠𝑛,𝑟𝜖𝑟

)︃𝑗𝑛

𝑃ℰ(𝜖, 𝑡).

(D.1)

Applying the multinomial formula, we have

𝜇j =
∑︁
𝜖∈ℰ

�̂�∏︁
𝑛=1

⎛⎝ ∑︁
|i|≤𝑗𝑛

(︃
𝑗𝑛

𝑗𝑛 − |i|, 𝑖1, . . . , 𝑖𝑅

)︃
�̂�

𝑗𝑛−|i|
0,𝑛

𝑅∏︁
𝑟=1

(𝑠𝑛,𝑟𝜖𝑟)𝑖𝑟

⎞⎠𝑃ℰ(𝜖, 𝑡),

=
∑︁
𝜖∈ℰ

�̂�∏︁
𝑛=1

⎛⎝ ∑︁
|i|≤𝑗𝑛

(︃
𝑗𝑛

𝑗𝑛 − |i|, 𝑖1, . . . , 𝑖𝑅

)︃
�̂�

𝑗𝑛−|i|
0,𝑛

(︃
𝑅∏︁

𝑟=1
𝑠𝑖𝑟

𝑛,𝑟

)︃
𝜖i

⎞⎠𝑃ℰ(𝜖, 𝑡).
(D.2)

The expression inside the outermost parentheses is a polynomial in 𝜖 and can thus

be written as concisely as ∑︀|i|≤𝑗𝑛
𝜑𝑛,𝑗𝑛,i𝜖

i, where

𝜑𝑛,𝑗𝑛,i ≡
∑︁

|i|≤𝑗𝑛

(︃
𝑗𝑛

𝑗𝑛 − |i|, 𝑖1, . . . , 𝑖𝑅

)︃
�̂�

𝑗𝑛−|i|
0,𝑛

(︃
𝑅∏︁

𝑟=1
𝑠𝑖𝑟

𝑛,𝑟

)︃
(D.3)

is easily computable. Substituting this expression back into Equation (D.2), and

introducing distinct multi-indices i(𝑛) ∈ N𝑅 for each 𝑛 ∈ {1, . . . , �̂�}, we obtain

𝜇j =
∑︁
𝜖∈ℰ

�̂�∏︁
𝑛=1

⎛⎝ ∑︁
|i|≤𝑗𝑛

𝜑𝑛,𝑗𝑛,i𝜖
i

⎞⎠𝑃ℰ(𝜖, 𝑡),

=
∑︁
𝜖∈ℰ

�̂�∏︁
𝑛=1

⎛⎝ ∑︁
|i(𝑛)|≤𝑗𝑛

𝜑𝑛,𝑗𝑛,i(𝑛)𝜖
i(𝑛)

⎞⎠𝑃ℰ(𝜖, 𝑡).
(D.4)
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Finally, we exchange the order of the inner sum and product and simplify:

𝜇j =
∑︁
𝜖∈ℰ

∑︁
|i(𝑖)|≤𝑗1

· · ·
∑︁

|i(�̂�)|≤𝑗�̂�

⎛⎝ �̂�∏︁
𝑛=1

𝜑𝑛,𝑗𝑛,i(𝑛)𝜖
i(𝑛)

⎞⎠𝑃ℰ(𝜖, 𝑡),

=
∑︁
𝜖∈ℰ

∑︁
|i(𝑖)|≤𝑗1

· · ·
∑︁

|i(�̂�)|≤𝑗�̂�

⎛⎝ �̂�∏︁
𝑛=1

𝜑𝑛,𝑗𝑛,i(𝑛)

⎞⎠ 𝜖i(1)+···+i(�̂�)𝑃ℰ(𝜖, 𝑡),

=
∑︁

|i(𝑖)|≤𝑗1

· · ·
∑︁

|i(�̂�)|≤𝑗�̂�

⎛⎝ �̂�∏︁
𝑛=1

𝜑𝑛,𝑗𝑛,i(𝑛)

⎞⎠∑︁
𝜖∈ℰ

𝜖i(1)+···+i(�̂�)𝑃ℰ(𝜖, 𝑡),

=
∑︁

|i(𝑖)|≤𝑗1

· · ·
∑︁

|i(�̂�)|≤𝑗�̂�

⎛⎝ �̂�∏︁
𝑛=1

𝜑𝑛,𝑗𝑛,i(𝑛)

⎞⎠ 𝑦i(1)+···+i(�̂�)(𝑡).

(D.5)

The coefficients in the last expression can be calculated using �̂� nested “for” loops.

Equation (D.5) expresses 𝜇j(𝑡) as a linear combination of moments {𝑦k}|k|≤|j|. This

implies that we can express 𝜇𝐿(𝑡), all moments up to arbitrary order 𝑚, as a linear

combination of {𝑦k}|k|≤𝑚. This linear relationship can be expressed concisely as

𝜇𝐿(𝑡) = Cy𝐿(𝑡). (D.6)

Let 𝐶j,k be the element of C in the row corresponding to j ∈ N�̂� and the column

corresponding to k ∈ N𝑅. Equation (D.5) gives us a recipe for computing 𝐶j,k for all

k ∈ N𝑅. The coefficient corresponding to the multi-indices i(1), . . . , i(�̂�) contributes

to 𝐶j, i(1)+···+i(�̂�). Note that several combinations of the multi-indices i(1), . . . , i(�̂�)

may give the same summed multi-index i(1) + · · · + i(�̂�) ≡ k. Thus, in general, it

will be necessary to add together several coefficients to compute 𝐶j,k.

D.5.2 Linear Mapping Between Time Derivatives

We can obtain an expression for 𝑑𝜇𝐿/𝑑𝑡 in terms of 𝑑y𝐿/𝑑𝑡 by simply differentiating

both sides of Equation (D.6) with respect to time:

𝑑𝜇𝐿

𝑑𝑡
(𝑡) = C

𝑑y𝐿

𝑑𝑡
(𝑡). (D.7)
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D.5.3 Generalization

Note that we could also express moments of the full-dimensional distribution 𝑃 (·, 𝑡)

in terms of the moments y(𝑡). The derivation would be essentially the same as the

one we have provided above. One would just have to remove the “hats” wherever

they appear.

D.6 Construction of the Aℰ matrix

To construct the Aℰ matrix, we need to be able to express the time derivative of an

arbitrary moment 𝑦j as a linear function of finitely many other moments. The first

step toward this goal is to expand the expression 𝑑𝑦j/𝑑𝑡 using the definition of 𝑦j

𝑑𝑦j

𝑑𝑡
(𝑡) = 𝑑

𝑑𝑡

(︃∑︁
𝜖∈ℰ

𝜖j𝑃ℰ(𝜖, 𝑡)
)︃

,

=
∑︁
𝜖∈ℰ

𝜖j
(︃

𝑑𝑃ℰ

𝑑𝑡
(𝜖, 𝑡)

)︃
.

(D.8)

The expression in parentheses can then be expanded using the alternative version of

the CME we introduced in Chapter 5.

𝑑𝑦j

𝑑𝑡
(𝑡) =

∑︁
𝜖∈ℰ

𝜖j
(︃

𝑅∑︁
𝑟=1

[𝑃ℰ(𝜖 − e𝑟, 𝑡)𝛼𝑟(𝜖 − e𝑟) − 𝑃ℰ(𝜖, 𝑡)𝛼𝑟(𝜖)]
)︃

,

=
𝑅∑︁

𝑟=1

∑︁
𝜖∈ℰ

𝜖j (𝑃ℰ(𝜖 − e𝑟, 𝑡)𝛼𝑟(𝜖 − e𝑟) − 𝑃ℰ(𝜖, 𝑡)𝛼𝑟(𝜖)) ,

=
𝑅∑︁

𝑟=1

(︃∑︁
𝜖∈ℰ

𝜖j𝑃ℰ(𝜖 − e𝑟, 𝑡)𝛼𝑟(𝜖 − e𝑟) −
∑︁
𝜖∈ℰ

𝜖j𝑃ℰ(𝜖, 𝑡)𝛼𝑟(𝜖)
)︃

.

(D.9)

Next, we would like to replace each of the sums over ℰ with sums over Z𝑅. For

the second sum, it is relatively easy to see that

∑︁
𝜖∈ℰ

𝜖j𝑃ℰ(𝜖, 𝑡)𝛼𝑟(𝜖) =
∑︁
𝜖∈Z𝑅

𝜖j𝑃ℰ(𝜖, 𝑡)𝛼𝑟(𝜖), (D.10)

because ℰ ⊂ Z𝑅, and for every 𝜖 ∈ Z𝑅 such that 𝜖 /∈ ℰ we have 𝑃ℰ(𝜖, 𝑡) = 0. The

argument for the first sum is a little more complicated, so we will formalize it as a
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claim with a proof.

Claim 12.

∑︁
𝜖∈ℰ

𝜖j𝑃ℰ(𝜖 − e𝑟, 𝑡)𝛼𝑟(𝜖 − e𝑟) =
∑︁
𝜖∈Z𝑅

𝜖j𝑃ℰ(𝜖 − e𝑟, 𝑡)𝛼𝑟(𝜖 − e𝑟), (D.11)

where the only change is in the set from which the index of summation is drawn.

Proof. First, since ℰ ⊂ Z𝑅, it follows that every term that appears on the left-hand

sum also appears in the right-hand sum.

All that remains then is to show that all of the extra terms appearing in the

right-hand sum evaluate to zero. In particular, we want to show that all the terms

corresponding to 𝜖 ∈ Z𝑅 such that 𝜖 /∈ ℰ evaluate to zero.

Pick an arbitrary 𝜖 ∈ Z𝑅 such that 𝜖 /∈ ℰ . Then, there are two cases to consider:

∙ Case 1: 𝜖 − e𝑟 /∈ ℰ .

In this case, according to the definition of 𝑃ℰ(·, 𝑡), we have 𝑃ℰ(𝜖 − e𝑟, 𝑡) = 0.

Thus, the term in the summation corresponding to 𝜖 is zero.

∙ Case 2: 𝜖 − e𝑟 ∈ ℰ .

In this case, it is quite possible that 𝑃ℰ(𝜖 − e𝑟, 𝑡) > 0, so we will instead argue

that 𝛼𝑟(𝜖 − e𝑟) = 0.

In Chapter 5, in the discussion surrounding the discussion of the propensity

functions, we observed that for any state x ∈ 𝒳 and any reaction 𝜌 ∈ {1, . . . , 𝑅}

such that x + s𝜌 /∈ 𝒳 , we have 𝑎𝜌(x) = 0. We will apply this general statement

to the particular state

x ≡ x0 + S(𝜖 − e𝑟) = x0 + S𝜖 − s𝑟. (D.12)

Since 𝜖 − e𝑟 ∈ ℰ , it follows that x ∈ 𝒳 . Furthermore, since 𝜖 /∈ ℰ , we have

that x0 + S𝜖 = x + s𝑟 /∈ 𝒳 . From the general statement above, it follows that
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𝑎𝑟(x) = 0. Moreover, from the definition of 𝛼𝑟(·), we have

𝑎𝑟(x) = 𝑎𝑟(x0 + S(𝜖 − e𝑟)) = 𝛼𝑟(𝜖 − e𝑟). (D.13)

Thus we have 𝛼𝑟(𝜖 − e𝑟) = 0. It follows that the term in the summation

corresponding to 𝜖 is zero.

We have seen, in both of the two possible cases, that the term in the summation

corresponding to 𝜖 is zero. This was true for an arbitrary 𝜖 ∈ Z𝑅 such that 𝜖 /∈ ℰ .

Thus, it must be true for all 𝜖 ∈ Z𝑅 such that 𝜖 /∈ ℰ . This completes the proof.

Using Equations (D.10) and (D.11), we can write

𝑑𝑦j

𝑑𝑡
(𝑡) =

𝑅∑︁
𝑟=1

⎛⎝∑︁
𝜖∈Z𝑅

𝜖j𝑃ℰ(𝜖 − e𝑟, 𝑡)𝛼𝑟(𝜖 − e𝑟) −
∑︁
𝜖∈Z𝑅

𝜖j𝑃ℰ(𝜖, 𝑡)𝛼𝑟(𝜖)
⎞⎠ . (D.14)

Then, shifting the index of the first sum, we can rewrite this as

𝑑𝑦j

𝑑𝑡
(𝑡) =

𝑅∑︁
𝑟=1

⎛⎝ ∑︁
𝜖−e𝑟∈Z𝑅

𝜖j𝑃ℰ(𝜖 − e𝑟, 𝑡)𝛼𝑟(𝜖 − e𝑟) −
∑︁
𝜖∈Z𝑅

𝜖j𝑃ℰ(𝜖, 𝑡)𝛼𝑟(𝜖)
⎞⎠ ,

=
𝑅∑︁

𝑟=1

⎛⎝∑︁
𝜖∈Z𝑅

(𝜖 + e𝑟)j𝑃ℰ(𝜖, 𝑡)𝛼𝑟(𝜖) −
∑︁
𝜖∈Z𝑅

𝜖j𝑃ℰ(𝜖, 𝑡)𝛼𝑟(𝜖)
⎞⎠ ,

=
𝑅∑︁

𝑟=1

∑︁
𝜖∈Z𝑅

(︁
(𝜖 + e𝑟)j − 𝜖j

)︁
𝑃ℰ(𝜖, 𝑡)𝛼𝑟(𝜖),

=
𝑅∑︁

𝑟=1

∑︁
𝜖∈ℰ

(︁
(𝜖 + e𝑟)j − 𝜖j

)︁
𝑃ℰ(𝜖, 𝑡)𝛼𝑟(𝜖).

(D.15)

Writing the monomials explicitly as products, this becomes

𝑑𝑦j

𝑑𝑡
(𝑡) =

𝑅∑︁
𝑟=1

∑︁
𝜖∈ℰ

⎛⎝ 𝑅∏︁
𝜌=1

(𝜖𝜌 + 𝛿𝑟=𝜌)𝑗𝜌 −
𝑅∏︁

𝜌=1
(𝜖𝜌)𝑗𝜌

⎞⎠𝑃ℰ(𝜖, 𝑡)𝛼𝑟(𝜖),

=
𝑅∑︁

𝑟=1

∑︁
𝜖∈ℰ

⎛⎜⎜⎝ 𝑅∏︁
𝜌=1
𝜌 ̸=𝑟

(𝜖𝜌)𝑗𝜌

⎞⎟⎟⎠(︁(𝜖𝑟 + 1)𝑗𝑟 − (𝜖𝑟)𝑗𝑟

)︁
𝑃ℰ(𝜖, 𝑡)𝛼𝑟(𝜖).

(D.16)
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Applying the binomial formula gives

𝑑𝑦j

𝑑𝑡
(𝑡) =

𝑅∑︁
𝑟=1

∑︁
𝜖∈ℰ

⎛⎜⎜⎝ 𝑅∏︁
𝜌=1
𝜌 ̸=𝑟

(𝜖𝜌)𝑗𝜌

⎞⎟⎟⎠
⎛⎝ 𝑗𝑟∑︁

𝑘=0

(︃
𝑗𝑟

𝑘

)︃
(𝜖𝑟)𝑗𝑟−𝑘 − (𝜖𝑟)𝑗𝑟

⎞⎠𝑃ℰ(𝜖, 𝑡)𝛼𝑟(𝜖),

=
𝑅∑︁

𝑟=1

∑︁
𝜖∈ℰ

⎛⎜⎜⎝ 𝑅∏︁
𝜌=1
𝜌 ̸=𝑟

(𝜖𝜌)𝑗𝜌

⎞⎟⎟⎠
⎛⎝ 𝑗𝑟∑︁

𝑘=1

(︃
𝑗𝑟

𝑘

)︃
(𝜖𝑟)𝑗𝑟−𝑘

⎞⎠𝑃ℰ(𝜖, 𝑡)𝛼𝑟(𝜖),

=
𝑅∑︁

𝑟=1

∑︁
𝜖∈ℰ

𝜖j−𝑗𝑟e𝑟

⎛⎝ 𝑗𝑟∑︁
𝑘=1

(︃
𝑗𝑟

𝑘

)︃
(𝜖𝑟)𝑗𝑟−𝑘

⎞⎠𝑃ℰ(𝜖, 𝑡)𝛼𝑟(𝜖),

=
𝑅∑︁

𝑟=1

∑︁
𝜖∈ℰ

⎛⎝ 𝑗𝑟∑︁
𝑘=1

(︃
𝑗𝑟

𝑘

)︃
𝜖j−𝑗𝑟e𝑟(𝜖𝑟)𝑗𝑟−𝑘

⎞⎠𝑃ℰ(𝜖, 𝑡)𝛼𝑟(𝜖),

=
𝑅∑︁

𝑟=1

∑︁
𝜖∈ℰ

⎛⎝ 𝑗𝑟∑︁
𝑘=1

(︃
𝑗𝑟

𝑘

)︃
𝜖j−𝑘e𝑟

⎞⎠𝑃ℰ(𝜖, 𝑡)𝛼𝑟(𝜖),

=
𝑅∑︁

𝑟=1

∑︁
𝜖∈ℰ

𝑗𝑟∑︁
𝑘=1

(︃
𝑗𝑟

𝑘

)︃
𝜖j−𝑘e𝑟𝑃ℰ(𝜖, 𝑡)𝛼𝑟(𝜖),

=
𝑅∑︁

𝑟=1

∑︁
𝜖∈ℰ

𝑗𝑟∑︁
𝑘=1

(︃
𝑗𝑟

𝑘

)︃
𝜖j−𝑘e𝑟𝛼𝑟(𝜖)𝑃ℰ(𝜖, 𝑡).

(D.17)

Now, for each 𝑟 ∈ {1, . . . , 𝑅}, the function 𝛼𝑟(𝜖) = 𝑎𝑟(x0+S𝜖) will be a polynomial

with respect to 𝜖 (see the definition of the propensity function given in Chapter

5). Moreover, if reaction 𝑟 involves a collision between 𝑞𝑟 ∈ N molecules, then the

polynomial will be order 𝑞𝑟. This polynomial can be written as

𝛼𝑟(𝜖) ≡
∑︁

|i|≤𝑞𝑟

𝑎𝑟,i𝜖
i, (D.18)

where the coefficients {𝑎𝑟,i}|i|≤𝑞𝑟 depend on x0 and S. As we explain in a later section,

these coefficients can be expressed in terms of Stirling numbers of the first kind. For

now, though, suffice it to say that they can be computed.

Substituting this Equation (D.18) into the last line of Equation (D.17), we obtain
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𝑑𝑦j

𝑑𝑡
(𝑡) =

𝑅∑︁
𝑟=1

∑︁
𝜖∈ℰ

𝑗𝑟∑︁
𝑘=1

(︃
𝑗𝑟

𝑘

)︃
𝜖j−𝑘e𝑟

⎛⎝ ∑︁
|i|≤𝑞𝑟

𝑎𝑟,i𝜖
i

⎞⎠𝑃ℰ(𝜖, 𝑡),

=
𝑅∑︁

𝑟=1

∑︁
𝜖∈ℰ

𝑗𝑟∑︁
𝑘=1

∑︁
|i|≤𝑞𝑟

𝑎𝑟,i

(︃
𝑗𝑟

𝑘

)︃
𝜖j−𝑘e𝑟𝜖i𝑃ℰ(𝜖, 𝑡),

=
𝑅∑︁

𝑟=1

∑︁
𝜖∈ℰ

𝑗𝑟∑︁
𝑘=1

∑︁
|i|≤𝑞𝑟

𝑎𝑟,i

(︃
𝑗𝑟

𝑘

)︃
𝜖j−𝑘e𝑟+i𝑃ℰ(𝜖, 𝑡).

(D.19)

Finally, rearranging, we obtain

𝑑𝑦j

𝑑𝑡
(𝑡) =

𝑅∑︁
𝑟=1

𝑗𝑟∑︁
𝑘=1

∑︁
|i|≤𝑞𝑟

𝑎𝑟,i

(︃
𝑗𝑟

𝑘

)︃∑︁
𝜖∈ℰ

𝜖j−𝑘e𝑟+i𝑃ℰ(𝜖, 𝑡),

=
𝑅∑︁

𝑟=1

𝑗𝑟∑︁
𝑘=1

∑︁
|i|≤𝑞𝑟

𝑎𝑟,i

(︃
𝑗𝑟

𝑘

)︃
𝑦j−𝑘e𝑟+i,

(D.20)

which achieves our goal of expressing 𝑑𝑦j/𝑑𝑡 as a linear combination of finitely many

elements of y.

The matrix A can be constructed one row at a time, where each row corresponds

to some j such that |j| ≤ 𝑚. (The multi-indices can be placed in “graded descending

order”, as described in Section B.0.1.) The entire matrix is initialized with zeros.

Then, for each j, we iterate over three nested “for” loops, one for each of the finite

summations in the last line of Equation (D.20). For each value of 𝑟, 𝑘, and i, we

evaluate the coefficient 𝑎𝑟,i
(︁

𝑗𝑟

𝑘

)︁
associated with the moment 𝑦j−𝑘e𝑟+i. We then add

this coefficient to the current value in the element of A whose row is indexed by j and

whose column is indexed by j − 𝑘e𝑟 + i. It is important that we add the coefficient

to the current value and not overwrite it, because different indices 𝑟, 𝑘, and i in later

iterations might lead to a sum j − 𝑘e𝑟 + i which indexes the same column.

D.6.1 Computing the 𝑎𝑟,i Coefficients

This section explains how to compute the coefficients {𝑎𝑟,i}|i|≤𝑞𝑟 in the polynomial

∑︁
|i|≤𝑞𝑟

𝑎𝑟,i𝜖
i ≡ 𝛼𝑟(𝜖) = 𝑎𝑟(x0 + S𝜖) = 𝑐𝑟

𝑁∏︁
𝑗=1

(︃
𝑥0,𝑗 +∑︀𝑅

𝜌=1 𝑠𝑗,𝜌𝜖𝜌

𝛾𝑗,𝑟

)︃
. (D.21)
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The key algebraic fact that allows us to compute these coefficients is that

(︃
𝑡

𝑛

)︃
=

𝑛∑︁
𝑖=0

𝑠(𝑛, 𝑖) 𝑡𝑖

𝑛! , (D.22)

where 𝑠(𝑛, 𝑖) is a Stirling number of the first kind, defined by the recurrence relation

𝑠(𝑛 + 1, 𝑖) = −𝑛𝑠(𝑛, 𝑖) + 𝑠(𝑛, 𝑖 − 1), (D.23)

with the initial conditions

𝑠(0, 0) = 1, (D.24)

and

𝑠(𝑛, 0) = 𝑠(0, 𝑖) = 0, (D.25)

if 𝑛 > 0. See Wikipedia’s page of “Binomial Coefficients” for details.

Applying this formula to Equation (D.21), we obtain

∑︁
|i|≤𝑞𝑟

𝑎𝑟,i𝜖
i = 𝑐𝑟

𝑁∏︁
𝑗=1

⎛⎜⎝𝛾𝑗,𝑟∑︁
𝑓=0

𝑠(𝛾𝑗,𝑟, 𝑓)
𝛾𝑗,𝑟!

⎛⎝𝑥0,𝑗 +
𝑅∑︁

𝜌=1
𝑠𝑗,𝜌𝜖𝜌

⎞⎠𝑓
⎞⎟⎠ . (D.26)

Applying the multinomial theorem we obtain

∑︁
|i|≤𝑞𝑟

𝑎𝑟,i𝜖
i = 𝑐𝑟

𝑁∏︁
𝑗=1

⎛⎝𝛾𝑗,𝑟∑︁
𝑓=0

𝑠(𝛾𝑗,𝑟, 𝑓)
𝛾𝑗,𝑟!

⎛⎝ ∑︁
|k|≤𝑓

(︃
𝑓

𝑓 − |k|, 𝑘1, . . . , 𝑘𝑅

)︃
𝑥

𝑓−|k|
0,𝑗

𝑅∏︁
𝜌=1

(𝑠𝑗,𝜌𝜖𝜌)𝑘𝜌

⎞⎠⎞⎠ ,

= 𝑐𝑟

𝑁∏︁
𝑗=1

⎛⎝𝛾𝑗,𝑟∑︁
𝑓=0

𝑠(𝛾𝑗,𝑟, 𝑓)
𝛾𝑗,𝑟!

⎛⎝ ∑︁
|k|≤𝑓

(︃
𝑓

𝑓 − |k|, 𝑘1, . . . , 𝑘𝑅

)︃
𝑥

𝑓−|k|
0,𝑗

⎛⎝ 𝑅∏︁
𝜌=1

(𝑠𝑗,𝜌)𝑘𝜌

⎞⎠ 𝜖k

⎞⎠⎞⎠ ,

= 𝑐𝑟

𝑁∏︁
𝑗=1

⎛⎝𝛾𝑗,𝑟∑︁
𝑓=0

∑︁
|k|≤𝑓

𝑠(𝛾𝑗,𝑟, 𝑓)
𝛾𝑗,𝑟!

(︃
𝑓

𝑓 − |k|, 𝑘1, . . . , 𝑘𝑅

)︃
𝑥

𝑓−|k|
0,𝑗

⎛⎝ 𝑅∏︁
𝜌=1

(𝑠𝑗,𝜌)𝑘𝜌

⎞⎠ 𝜖k

⎞⎠ .

(D.27)

Let us focus on the expression within the outermost set of parentheses. This is a

polynomial of order at most 𝛾𝑗,𝑟. Thus, there exist coefficients {𝑏𝑟,𝑗,n}|n|≤𝛾𝑗,𝑟
such

324



that

𝛾𝑗,𝑟∑︁
𝑓=0

∑︁
|k|≤𝑓

𝑠(𝛾𝑗,𝑟, 𝑓)
𝛾𝑗,𝑟!

(︃
𝑓

𝑓 − |k|, 𝑘1, . . . , 𝑘𝑅

)︃
𝑥

𝑓−|k|
0,𝑗

⎛⎝ 𝑅∏︁
𝜌=1

(𝑠𝑗,𝜌)𝑘𝜌

⎞⎠ 𝜖k ≡
∑︁

|n|≤𝛾𝑗,𝑟

𝑏𝑟,𝑗,n𝜖
n.

(D.28)

We can compute these coefficients by iterating over the finite sums on the left-hand

side of Equation (D.28). Thus, moving forward, we will assume they are known. We

can then considerably simplify Equation (D.27) by writing things in terms of the

{𝑏𝑟,𝑗,n}|n|≤𝛾𝑗,𝑟
: ∑︁

|i|≤𝑞𝑟

𝑎𝑟,i𝜖
i = 𝑐𝑟

𝑁∏︁
𝑗=1

⎛⎝ ∑︁
|n|≤𝛾𝑗,𝑟

𝑏𝑟,𝑗,n𝜖
n

⎞⎠ . (D.29)

To exchange the order of the product and sum, we introduce a distinct multi-index

n(𝑗) for each 𝑗 ∈ {1, . . . , 𝑁}. We can then write things equivalently as

∑︁
|i|≤𝑞𝑟

𝑎𝑟,i𝜖
i = 𝑐𝑟

𝑁∏︁
𝑗=1

⎛⎝ ∑︁
|n(𝑗)|≤𝛾𝑗,𝑟

𝑏𝑟,𝑗,n(𝑗)𝜖n(𝑗)

⎞⎠ ,

= 𝑐𝑟

∑︁
|n(1)|≤𝛾1,𝑟

· · ·
∑︁

|n(𝑁)|≤𝛾𝑁,𝑟

𝑁∏︁
𝑗=1

𝑏𝑟,𝑗,n(𝑗)𝜖n(𝑗)
,

= 𝑐𝑟

∑︁
|n(1)|≤𝛾1,𝑟

· · ·
∑︁

|n(𝑁)|≤𝛾𝑁,𝑟

⎛⎝ 𝑁∏︁
𝑗=1

𝑏𝑟,𝑗,n(𝑗)

⎞⎠ 𝜖n(1)+···+n(𝑁)
.

(D.30)

The coefficients {𝑎𝑟,i}|i|≤𝑞𝑟 can be computed by iterating over the finite sums in the

last line of Equation (D.30).

D.7 Revisiting a Non-Pathological Example

As pointed out in Chapter 5, the bounds produced by the alternative formulation

of the bounding method, are not guaranteed to be strictly better than the bounds

produced by the original formulation. In particular, if the set 𝒳 does not outer-

approximate the set 𝒳 in the sense described in Chapter 5, then the bounds produced

by the two methods will be the same.

To demonstrate this, we revisit an example from one of our previous papers [15,
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Section IV]:

A + B
𝑐1

GGGGGAC (D.31)

where 𝑐1 = 1 s−1 and the initial molecular counts are x0 = (𝑥𝐴0, 𝑥𝐵0, 𝑥𝐶0) = (3, 4, 0).

The stoichiometry matrix for this system is a single column:

S =

⎡⎢⎢⎢⎢⎢⎣
−1

−1

1

⎤⎥⎥⎥⎥⎥⎦ , (D.32)

whose left null space is spanned by the rows of the matrix

B =

⎡⎢⎣ 1 0 1

0 1 1

⎤⎥⎦ . (D.33)

Thus, the invariant values are f = Bx0 = (3, 4). Letting

B̃ =

⎡⎢⎣ 1 0

0 1

⎤⎥⎦ and B̂ =

⎡⎢⎣ 1

1

⎤⎥⎦ , (D.34)

and picking species C to be considered independent, the equation defining 𝒳 simplifies

to

𝒳 =

⎧⎪⎨⎪⎩𝑥𝐶 ∈ R :
𝑥𝐶 ≥ 0

3 − 𝑥𝐶 ≥ 0

⎫⎪⎬⎪⎭ . (D.35)

Now, inspecting Reaction System (D.31) and the initial condition, we see that the

full dimensional reachable states of this system are

𝒳 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣
3

4

0

⎤⎥⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎢⎣
2

3

1

⎤⎥⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎢⎣
1

2

2

⎤⎥⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎢⎣
0

1

3

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
. (D.36)
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Treating species C as independent, the reduced states are

𝒳 = {0, 1, 2, 3} . (D.37)

In this case, we see that 𝒳 is the convex hull of 𝒳 . There is no x̂ ∈ N such

that x̂ ∈ 𝒳 but x̂ /∈ 𝒳 . Accordingly, we would expect that the bounds produced by

the alternative formulation of the bounding method to match those produced by the

original formulation. This is, indeed, the case. In our previous paper [15, Section

IV C], we calculated time-varying bounds on the mean of each species using the old

dynamic bounding formulation, with 𝑚 = 3, ℛ = {0, −2, −6}, and a range of 𝑡 values

from 𝑡 = 0 to 𝑡 = 4. Repeating the analysis with the new formulation, we obtain the

time-varying mean bounds shown in Figure D-1. Comparing this figure with the top

panel of Figure 3 in our previous paper [15, Section IV C], we see that the bounds

are exactly the same.

0 1 2 3 4

t (s)

0

0.5

1

1.5

2

2.5

3

3.5

4

〈A
(t
)〉
,
〈B

(t
)〉
,
〈C

(t
)〉

〈A(t)〉U

〈A(t)〉L

〈B(t)〉U

〈B(t)〉L

〈C(t)〉U

〈C(t)〉L

〈A(t)〉
〈B(t)〉
〈C(t)〉

Figure D-1: Time-varying bounds on the mean molecular counts of species A, B, and

C for Reaction System (D.31). These bounds were calculated by solving the dynamic

bounding SDP based on reaction extents (and its minimization counterpart) over a

range of 𝑡 values, using 𝑚 = 3 and ℛ = {0, −2, −6}. Compare with the top panel of

Figure 3 in our previous paper [15, Section IV C].
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