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Abstract

Optimization models in the chemical process industries often include uncertain model pa-
rameters due to uncertainties in market forces and the environment, use of reduced-order
and surrogate process models, and difficulty in measuring parameters accurately. Opti-
mal solutions to formulations that simply ignore uncertainties in the model parameters can
be economically worthless or even disastrous in safety-critical applications. Rigorously ac-
counting for uncertainties in optimization models arising out of the process industries is
usually computationally prohibitive because of their inherent nonconvex and combinatorial
nature. This thesis develops branch-and-bound (B&B) algorithms and a software frame-
work for the scalable solution of a rich class of optimization problems under parametric
uncertainty called two-stage stochastic programs, which finds several applications within
the petrochemical, pharmaceutical, and energy industries. Additionally, the convergence
rates of broad classes of B&B algorithms for constrained optimization problems are ana-
lyzed to determine favorable characteristics of such algorithms that can help mitigate the
cluster problem in constrained optimization.

Two-stage stochastic programming formulations assume that a finite number of scenarios
of the uncertain parameters may be realized, and provide a suitable framework for model-
ing applications with economic objectives. General-purpose B&B algorithms for two-stage
stochastic programs suffer from a worst-case exponential increase in solution times with the
number of scenarios, which makes the solution of practical applications impractical. This
thesis presents a decomposable B&B algorithm for the efficient solution of large-scenario in-
stances of a broad class of two-stage stochastic programs. Furthermore, this thesis details a
software framework, named GOSSIP, that was developed for solving such problems. GOSSIP,
which implements state-of-the-art decomposition techniques for the global solution of two-
stage stochastic programs, is shown to perform favorably on a diverse set of test problems
from the process systems engineering literature, and is a step towards the efficient solution
of two-stage stochastic programming applications from the chemical process industries.

Branch-and-bound algorithms that do not possess good convergence properties suffer
from the so-called cluster problem wherein a large number of boxes are visited in the vicin-
ity of global optimizers. While the convergence rates of B&B algorithms for unconstrained
problems and the cluster problem in unconstrained optimization had been well-studied prior
to this thesis, the analyses for constrained problems were lacking, and are the focus of the
second part of this thesis. This section of the thesis begins by developing a notion of conver-
gence order for bounding schemes for B&B algorithms, establishes conditions under which

3



first-order and second-order convergent bounding schemes may be sufficient to mitigate the
cluster problem, and determines sufficient conditions for widely applicable bounding schemes
to possess first-order and second-order convergence. In addition, this section analyzes the
convergence orders of some reduced-space B&B algorithms in the literature and establishes
that such algorithms may suffer from the cluster problem if domain reduction techniques
are not employed. Determining sufficient conditions on the domain reduction techniques to
be able to mitigate the above cluster problem can help identify efficient reduced-space B&B
algorithms for solving two-stage stochastic programs.

Thesis Supervisor: Paul I. Barton
Title: Lammot du Pont Professor of Chemical Engineering
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the lab and were happy to answer näıve questions in my early years. Ali and Harry were

always willing to answer any coding-related questions. Yu afforded me great flexibility in

my research by bearing the bulk of the responsibility for the BP project, was always around

to discuss my research, and provided useful feedback by testing my software. Garrett and

Peter were always happy to discuss mathematical ideas, research-related or otherwise, and

taught me the importance of working through the math in a methodical fashion. Amir,
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Chapter 1

Introduction

The broad objective of this thesis is to develop algorithms, analyses, and software to aid

in optimization under uncertainty. Specifically, we consider the development of decom-

position algorithms and a software framework for the global solution of a broad class of

scenario-based two-stage stochastic programs, and analyze the convergence orders of widely

applicable lower bounding techniques for (full-space and reduced-space) global optimization

to determine favorable characteristics of associated global optimization algorithms from the

viewpoint of the cluster effect [68]. We also present our computational experience with

the developed algorithms and software on two-stage stochastic programming instances pri-

marily from the process systems engineering literature. Finally, in Chapter 7, we list some

potential directions for future work on the software implementation, and outline some open

questions that have arisen out of our convergence-order analysis, answers to (some of) which

could help identify some reduced-space branch-and-bound algorithms in the literature with

favorable convergence properties that could be applied to solve stochastic programs (and

other structured optimization problems) of interest (efficiently).

1.1 Optimization under uncertainty

In this section, we present some motivation for our work in Chapters 3 and 4 that develops a

decomposition algorithm and a software framework for a class of optimization problems with

parametric uncertainty (two-stage stochastic programs), formally state our research goals,

provide a high-level overview of popular approaches for formulating and solving optimization

problems under uncertainty, and list the contributions of this thesis in the context of the
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research goals stated in this section.

1.1.1 Motivation

Optimization formulations encountered in the process industries often involve uncertain pro-

cess models. Even if any discrepancies in the structures of process models are ignored, there

are usually significant uncertainties in model parameters due to our imprecise knowledge of

market forces and the environment, and difficulties in estimating/measuring some model pa-

rameters accurately. Disregarding uncertainties in such models can either lead to solutions

that are quite suboptimal, or even lead to infeasible decisions in practice, which then makes

the computed solutions worthless. Over the past few decades, several approaches for formu-

lating and solving optimization problems under uncertainty have been proposed, including

stochastic programming [35, 189], chance-constrained programming [181], robust optimiza-

tion [21], and dynamic programming [29, 189]. We briefly review existing approaches for

formulating and solving optimization problems under parametric uncertainty (including the

ones mentioned above) in Section 1.1.3.

Stochastic programming and robust optimization are the two most commonly used ap-

proaches for formulating and solving optimization problems under parametric uncertainty,

especially for the optimization of chemical process systems under uncertainty. Scenario-

based stochastic programming is typically employed either for problems with economic ob-

jectives, or in applications where recourse decisions can be made to take corrective action

once the uncertain parameter values are realized1, whereas robust optimization is usually

employed in safety-critical applications in which certain constraints have to be necessarily

satisfied for all possible realizations of the uncertain parameters. Both stochastic pro-

gramming and robust optimization have found several applications in the process systems

engineering literature, including the design and operation of process networks [111, 135, 137]

and chemical plants [1, 53, 245, 249], planning and operation of offshore oil structures and

refineries [220, 241–243], scheduling of chemical plants [133, 144, 186, 244], and turnaround

planning for chemical sites [8].

1While robust optimization formulations can also be adapted to include recourse decisions, their inclusion
typically complicates the solution of such models much more significantly and one often has to resort to
simplified formulations, see [22, 248] for instance.
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1.1.2 Research goals

A major aim of this thesis (see Chapters 3 and 4) is to develop decomposition algorithms

and a software framework for the global optimization of the following class of (deterministic

equivalent) two-stage stochastic mixed-integer nonlinear programs (MINLPs):

min
x1,··· ,x𝑠,y,z

𝑠∑︁
ℎ=1

𝑝ℎ𝑓ℎ(xℎ,y, z) (SP)

s.t. gℎ(xℎ,y, z) ≤ 0, ∀ℎ ∈ {1, · · · , 𝑠},

r𝑦,𝑧(y, z) ≤ 0,

xℎ ∈ 𝑋ℎ, ∀ℎ ∈ {1, · · · , 𝑠},

y ∈ 𝑌, z ∈ 𝑍,

where 𝑋ℎ = {0, 1}𝑛𝑥𝑏 × Π𝑥,ℎ with Π𝑥,ℎ ∈ IR𝑛𝑥𝑐 , ∀ℎ ∈ {1, · · · , 𝑠}, 𝑌 = {0, 1}𝑛𝑦 , 𝑍 ∈ IR𝑛𝑧 ,

and functions 𝑓ℎ : [0, 1]𝑛𝑥𝑏 ×Π𝑥,ℎ× [0, 1]𝑛𝑦 ×𝑍 → R, gℎ : [0, 1]𝑛𝑥𝑏 ×Π𝑥,ℎ× [0, 1]𝑛𝑦 ×𝑍 → R𝑚,

∀ℎ ∈ {1, · · · , 𝑠}, and r𝑦,𝑧 : [0, 1]𝑛𝑦 ×𝑍 → R𝑚𝑦,𝑧 are assumed to be continuous. The variables

y and z in Problem (SP) denote the discrete and continuous first-stage/complicating deci-

sions, respectively, that are made before the realization of the uncertainties (these are typ-

ically design-related decisions), while, for each ℎ ∈ {1, · · · , 𝑠}, the mixed-integer variables

xℎ denote the second-stage/recourse decisions made after the uncertain model parameters

realize their ‘scenario ℎ’ values (these are typically operational decisions). The quantity

𝑝ℎ > 0 represents the probability of occurrence of scenario ℎ (with
∑︀𝑠

ℎ=1 𝑝ℎ = 1)2. Equality

constraints in the formulation are assumed to be modeled using pairs of inequalities and

bounded general integer variables are assumed to be equivalently reformulated using binary

variables in Problem (SP) purely for ease of exposition.

Although we can attempt to solve Problem (SP) directly using general-purpose off-the-

shelf deterministic global optimization solvers, the techniques implemented therein typically

face a worst-case exponential increase in solution times with a linear increase in the number

of scenarios since they do not exploit Problem (SP)’s nearly-decomposable structure, which

makes this option unattractive from a practical viewpoint. Consequently, although the

modeler would like to consider a sufficiently-large number of scenarios to account for the ef-

2While the decomposition approaches considered in this thesis can possibly be adapted to risk-averse
stochastic programs (see, for instance, [5]), we only consider the risk-neutral formulation presented in Prob-
lem (SP) in this thesis.
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fects of uncertainty accurately, the solution of such large-scenario instances of Problem (SP)

using general-purpose global optimization software is usually impractical for applications

of interest. A major goal of this thesis is to develop efficient (parallelizable) decomposi-

tion techniques for (the global optimization of) Problem (SP) whose solution times scale

linearly with an increase in the number of scenarios on a serial computer, and to develop a

decomposition software toolkit for the numerical solution of instances of Problem (SP) and

use it to solve applications of interest efficiently.

1.1.3 Existing approaches

This section briefly introduces some existing approaches for formulating optimization prob-

lems under parametric uncertainty and lists some techniques in the literature for solving

them.

1.1.3.1 Stochastic programming and chance-constrained optimization

Stochastic programming and chance-constrained optimization-based formulations take dis-

tributional information of the uncertain parameters into account, either by assuming that

the uncertain parameters can be modeled as random variables with finite support (such as

the formulation in Problem (SP)), or by using more general probabilistic descriptions of the

uncertain parameters (see Problem (CCP)). These modeling frameworks are usually appro-

priate for applications in which a small, but non-negligible, sampling/distributional error is

acceptable in practice3, particularly when recourse decisions can be taken to mitigate the

influence of uncertainty.

Dantzig [61] (originally in 1955) and Beale [14] are usually credited with being among the

first to develop the stochastic programming framework we consider in this thesis. In a two-

stage stochastic programming framework such as the one employed by Problem (SP), a set of

first-stage decisions have to be made before the realization of the uncertain parameters after

which it is assumed that the uncertain parameters take on one of a finite number of (known)

values, each with a known probability. Subsequently, a set of second-stage/recourse deci-

sions can be taken to react to the values assumed by the uncertain parameters. A schematic

3Although so-called ambiguous chance-constrained formulations can mitigate such errors (see, for in-
stance, [77]), efficient solution approaches are known only for restrictive classes of problems that employ such
formulations (a related framework is that of distributionally-robust optimization formulations, see [240] for
instance). We also refer the reader to [146] for empirical studies on sampling-based methods for stochastic
programs.
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(a) Scenario tree for a two-stage stochastic pro-
gram.

(b) Sample scenario tree for a multi-stage
stochastic program.

Figure 1-1: Schematics of two-stage and multi-stage stochastic programming frameworks.

of the above two-stage stochastic programming framework is presented in Figure 1-1a.

Two-stage stochastic programming problems are usually solved using duality-based de-

composition techniques such as Benders decomposition (BD) [25], generalized Benders de-

composition (GBD) [85], and Lagrangian relaxation/decomposition [48] depending on the

characteristics of the functions involved in their formulation. The reader is directed to

references [35, 125, 196] for an overview of algorithms and software for stochastic mixed-

integer linear programs. Few decomposition approaches exist for solving two-stage stochas-

tic MINLPs in the form of Problem (SP) to global optimality. Li et al. [138, 139] generalized

BD and GBD to a class of stochastic MINLPs that only contain bounded integer first-stage

decisions, and called the resulting method ‘nonconvex generalized Benders decomposition’

(NGBD). Lagrangian relaxation-based approaches [112, 119] can be employed to solve the

general class of Problem (SP), but are usually seen to be ineffective in solving large-scenario

instances of Problem (SP) for applications of interest (see Chapters 3 and 4). In Chapter 3,

we develop a modified Lagrangian relaxation algorithm that integrates Lagrangian relax-

ation with NGBD and scalable domain reduction techniques to solve Problem (SP).

Planning and operational problems in the process industries usually involve sequences

of decisions that are taken over time with the aid of new (market) information and updated

operational strategies as opposed to a simple two-stage decision framework such as the
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one outlined above. This leads to the concept of multi-stage stochastic programs, which

are largely thought to be intractable even for the case of linear programs with parametric

uncertainty [73]4 (this is illustrated by the sample scenario tree of a multi-stage stochastic

program in Figure 1-1b, where even considering only two independent realizations of the

uncertain parameters at each stage leads to an exponential explosion in the overall number

of scenarios with the number of stages considered). Therefore, we restrict our attention to

the two-stage stochastic programming formulation (SP) throughout this thesis.

One of the first introductions to chance-constrained programming was through the work

of Charnes, Cooper, and Symonds [50, 51]. The general chance-constrained program of

interest can be expressed as:

min
y∈𝑌

𝑓(y) (CCP)

s.t. P(y ∈ Πy(𝜔)) ≥ 1 − 𝜀,

g(y) ≤ 0,

where 𝑌 = {0, 1}𝑛𝑦𝑏 × R𝑛𝑦𝑐 , Πy : Ω → 𝒫
(︀
R𝑛𝑦𝑏

+𝑛𝑦𝑐
)︀
, 𝒫 (𝑆) denotes the power set of 𝑆, 𝜔

is a random variable from a probability space (Ω,ℱ ,P) with ‘support’ Ω ⊂ R𝑢 (ignoring

the slight abuse of the definition of support here), functions 𝑓 : [0, 1]𝑛𝑦𝑏 × R𝑛𝑦𝑐 → R and

g : [0, 1]𝑛𝑦𝑏 × R𝑛𝑦𝑐 → R𝑚 are assumed to be continuous, and 𝜀 ∈ (0, 1) is a user-defined

parameter that specifies the maximum acceptable probability of constraints violation. The

constraint P(y ∈ Πy(𝜔)) ≥ 1 − 𝜀, called a (joint) chance constraint, imposes that certain

constraints have to be satisfied (jointly) with a probability of at least 1 − 𝜀. A general

setting for Πy can be expressed as

Πy(𝜔) :=
{︀
y ∈ R𝑛𝑦𝑏

+𝑛𝑦𝑐 : h(y,x(𝜔),𝜔) ≤ 0 for some x(𝜔) ∈ {0, 1}𝑛𝑥𝑏 × R𝑛𝑥𝑐
}︀
, ∀𝜔 ∈ Ω,

where x(𝜔̄) ∈ {0, 1}𝑛𝑥𝑏 × R𝑛𝑥𝑐 denotes a vector of recourse decisions for the case when the

uncertain parameters 𝜔 assume the value 𝜔̄, and h : R𝑛𝑦𝑏
+𝑛𝑦𝑐 × [0, 1]𝑛𝑥𝑏 ×R𝑛𝑥𝑐 ×Ω → R𝑚𝑢

is a continuous function.

Few algorithms are known for solving the general chance-constrained program Prob-

4The reader is directed to stochastic dual dynamic programming-based [179, 185, 252] and decision rule-
based [128] techniques for two approaches that have been gaining increasing attention for (approximately)
solving multi-stage stochastic (mixed-integer) linear programs.
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lem (CCP) to optimality. This is partly due to the fact that: i. even linear programs with

affine chance constraints can result in nonconvex feasible regions, and ii. checking the feasi-

bility of joint chance-constrained problems involves multi-dimensional integration in general,

which is nontrivial. Prékopa [181, Chapter 10] presents some strategies for reformulating

a subclass of Problem (CCP) into equivalent convex optimization problems. Nemirovski

and Shapiro [176] present convex optimization-based approaches that could help determine

conservative feasible solutions for a subclass of Problem (CCP). Yang et al. [243] develop a

‘near-global’ optimization algorithm for solving a class of linear programs with joint chance

constraints involving normally distributed random variables with applications to terminal

blending in refineries. Luedtke and Ahmed [148] present a sample-average approximation-

based approach for finding feasible solutions and statistical bounds for Problem (CCP).

Finally, we mention that Calfa and coworkers [46] have proposed a data-driven approach to

solving chance-constrained problems with right-hand side uncertainties based on the work

of Jiang and Guan [105].

1.1.3.2 Robust optimization

Robust optimization-based formulations model the space of possible uncertain parameter

realizations using so-called ‘uncertainty sets’ (rather than relying on probabilistic descrip-

tions). These formulations are usually suitable for safety-critical applications in which

considering the worst-case situation is vital since they require guaranteed satisfaction of

the constraints for all possible realizations of the uncertain parameters (i.e., they optimize

principally with the worst case in mind). Robust optimization formulations can be viewed

as belonging to the class of semi-infinite programs (SIPs) [21, 23, 216].

Soyster [215] is usually credited with being one of the first researchers to develop a

modern robust linear programming formulation along with a tractable solution approach.

More than a couple of decades after Soyster’s article, the works of Ben-Tal and Nemirovski

(see [21, 23] and the references therein) and El-Ghaoui and coworkers [74, 75] (along with

the subsequent works of other researchers, see [31, 33, 63] and related references) spurred

a renewed interest in robust optimization-based approaches, particularly in the case of

robust convex optimization and robust mixed-integer linear programming. The (single-
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stage/static) robust optimization analogue to Problem (SP) can be written as:

min
y∈𝑌

max
𝜔∈Ω

𝑓(y,𝜔) (RP)

s.t. g(y,𝜔) ≤ 0, ∀𝜔 ∈ Ω,

h(y) ≤ 0,

where 𝑌 = {0, 1}𝑛𝑦𝑏 × Π𝑦 with Π𝑦 ∈ IR𝑛𝑦𝑐 , Ω ⊂ 𝑅𝑢 is a nonempty compact set, and

functions 𝑓 : [0, 1]𝑛𝑦𝑏 × Π𝑦 × Ω → R, g : [0, 1]𝑛𝑦𝑏 × Π𝑦 × Ω → R𝑚𝑢 , and h : [0, 1]𝑛𝑦𝑏 × Π𝑦 →

R𝑚 are assumed to be continuous. The constraint g(y,𝜔) ≤ 0, ∀𝜔 ∈ Ω, called a semi-

infinite constraint when the cardinality of Ω is (uncountably) infinite, imposes that a feasible

decision y ∈ 𝑌 should satisfy the constraint g(y,𝜔) ≤ 0 for every possible realization of

the uncertain parameters 𝜔 ∈ Ω.

Solution approaches for robust MINLPs essentially rely on general-purpose algorithms

for solving SIPs, which are broadly classified into discretization and reduction-based meth-

ods [98]. Most global optimization approaches for semi-infinite programs [34, 65, 168] em-

ploy (adaptive) discretization-based techniques [37], which, at their core, iteratively replace

each semi-infinite constraint with an increasing but finite number of constraints correspond-

ing to well-chosen samples of the uncertain parameter values to guarantee convergence. We

note that techniques for solving so-called ‘bilevel programs’ can also be used to solve SIPs,

see [167, 170] for instance. When the functions in Problem (RP) possess certain special

structures, there are a few techniques in the literature [64, 97] that can equivalently refor-

mulate Problem (RP) into an ‘ordinary’ (mixed-integer) nonlinear program. We close this

section by noting that some formulations and (conservative) solution approaches for solving

two-stage robust optimization problems, which incorporate the ability to make recourse deci-

sions, have been proposed in the literature in the past few decades [22, 32, 89, 218, 232, 248].

1.1.3.3 Other approaches

The previous two sections introduced some of the popular approaches for formulating and

solving optimization problems under uncertainty. In this section, we briefly list some other

approaches that have been explored in the literature with varying degrees of success for

problems with specific structures. Before we proceed, we mention that the formulations

considered in Sections 1.1.3.1 and 1.1.3.2 are not as mathematically dissimilar as one might
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imagine. For instance, if the uncertainty set Ω in Problem (RP) is replaced with the

support of the probability distribution in Problem (CCP) (denoted therein by Ω as well),

then the chance constraints and the robust constraints in those formulations essentially

enforce similar sets of constraints.

Another popular approach for modeling optimization problems under parametric un-

certainty that we do not adopt in this thesis is dynamic programming [15], which provides

a framework for modeling multi-stage decision problems under uncertainty (see [180] for

connections between dynamic programming and other modeling approaches). Dynamic

programming models for optimization under uncertainty typically use multi-stage, finite-

state and finite-policy formulations [180, 189] (usually with some sort of Markov decision

process structure), and solutions of these models usually proceed using Bellman’s ‘principle

of optimality’ by breaking down the problem of interest into similar but simpler subprob-

lems and storing these solutions for later (re)use. Since we do not know of techniques in

the literature by which dynamic programming-based approaches can be readily employed to

solve many of the applications of interest rigorously, we do not investigate the topic further.

Fuzzy programming provides another alternative to optimization under uncertainty us-

ing so-called fuzzy numbers and fuzzy sets that track the degree of violation of constraints

involving random variables [16, 196]. Subcategories of fuzzy programming include: flexible

programming, which deals with right-hand-side uncertainties in constraints, and possibilis-

tic programming, which considers uncertainties in constraint and objective coefficients. We

conclude this section by mentioning that several approaches, such as the framework of

‘light robustness’ [78], exist that combine the modeling frameworks discussed in the last

few sections.

1.1.4 Contributions

Chapters 3 and 4 are devoted to the development of a decomposition algorithm and software

framework for the global optimization of the two-stage stochastic program Problem (SP).

Chapter 3 presents a modified Lagrangian relaxation-based (MLR-based) B&B algorithm

for the decomposable solution of Problem (SP) by integrating Lagrangian relaxation (LR),

NGBD, and decomposable bounds tightening techniques (this chapter develops, to the best

of our knowledge, the first fully-decomposable algorithm for Problem (SP) that provably

converges to an 𝜀-optimal solution in finite time). We also establish a number of favorable
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theoretical results of our proposed algorithm in Chapter 3 such as the fact that the MLR

lower bounding problem provides tighter lower bounds than the lower bounding problem of

the conventional LR algorithm, and the result that it suffices to branch on fewer (first-stage)

variables for the MLR B&B algorithm to converge compared to the LR B&B algorithm.

Chapter 4 presents the details of our software, GOSSIP, that can be used for the decom-

posable solution of Problem (SP) (under appropriate assumptions on the functions involved

in its definition). GOSSIP includes implementations of NGBD, LR, and the MLR algorithms

in conjunction with domain reduction methods and several advanced state-of-the-art tech-

niques from the literature for preprocessing user input to solve Problem (SP). At the time

of this writing, GOSSIP involves more than a hundred thousand lines of source code written

primarily in C++. To the best of our knowledge, GOSSIP will be the first publicly available

decomposition toolkit that can handle the general form of Problem (SP). We also compile

and institute the first (soon-to-be publicly available) test library for two-stage stochastic

MINLPs in Chapter 4.

1.2 Convergence-order analysis of branch-and-bound algo-

rithms

We begin this section by motivating our work on the convergence-order analysis of B&B

algorithms for constrained optimization problems (see Chapter 6) from the purview of the

cluster problem in constrained optimization (see Chapter 5). Next, we state our research

goals and briefly review related prior analyses for unconstrained problems in the literature.

Finally, we close this section by listing the contributions of this thesis in the above areas.

1.2.1 Motivation

A key issue faced by deterministic branch-and-bound algorithms for continuous global opti-

mization is the so-called cluster problem, where a large number of small boxes may be visited

by the algorithm in neighborhoods of global optimizers (see [237, Figure 2.1] for a visual il-

lustration of the cluster problem in unconstrained optimization). Du and Kearfott [68, 116]

were the first to formally define and analyze this phenomenon in the context of interval

arithmetic-based B&B algorithms for unconstrained global optimization. Subsequent anal-

yses by Neumaier [178] and Wechsung et al. [237, 238] refined the cluster problem analysis
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of Du and Kearfott for the unconstrained case. The major conclusion of the above analyses

is that the convergence order of the bounding scheme employed by the B&B algorithm

plays a major role in determining the extent to which the cluster problem is mitigated; for

unconstrained optimization problems with twice continuously differentiable objective func-

tions, second-order (Hausdorff) convergent bounding schemes with small-enough prefactors

can avoid ‘clustering’, whereas first-order convergent bounding schemes and second-order

convergent bounding schemes with large-enough prefactors can result in an exponential

number of boxes (as a function of the termination tolerance of the B&B algorithm) being

visited in neighborhoods of global optimizers. Recent analyses on the convergence orders of

bounding schemes for unconstrained problems [38, 39] (also see the related work [203]) can

help determine sufficient conditions on bounding schemes for unconstrained optimization

to possess the requisite convergence order to mitigate the cluster problem.

While the cluster problem for the unconstrained case had been quite well-studied prior

to our work, much less was known (or at least explicitly stated in the literature) for the

case of constrained optimization from a theoretical standpoint (and, to a lesser degree,

from a computational perspective as well). Kearfott [114, 115] and Schichl et al. [201, 202]

prescribe auxiliary techniques to exclude regions of the search space near global optimizers to

mitigate the cluster problem (under suitable conditions). Goldsztejn et al. [87] also develop

rejection tests for multi-objective constrained optimization, and present some academic case

studies (some of which are particularly interesting to us because they empirically validate

our analysis of the cluster problem in Chapter 5) to demonstrate the effectiveness of their

proposed schemes. We present numerical results for two constrained optimization examples

below (see Examples 5.2.8 and 5.2.9 in Chapter 5) to illustrate how the cluster effect for

the constrained case can manifest differently compared to its unconstrained counterpart.

For both examples, we implement a basic B&B framework (without any domain reduction,

and only using basic branching and node selection rules) to compare the performance of

three different lower bounding schemes (since these case studies are academic in nature, we

assume that local optimization techniques locate a global optimal solution at the root node

of the B&B tree).
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Example 1.2.1. Consider the equality-constrained problem:

min
𝑥∈[0,2],
𝑦∈[0,3]

𝑦2 − 7𝑦 − 12𝑥

s.t. 𝑦 = 2 − 2𝑥4.

The optimal solution to the above problem is (𝑥*, 𝑦*) ≈ (0.7175, 1.4698). Figure 1-2 com-

pares the performance of three lower bounding schemes for the above problem.

Example 1.2.2. Consider the inequality-constrained problem:

min
𝑥∈[0,3],
𝑦∈[0,4]

− 𝑥− 𝑦

s.t. 𝑦 ≤ 2𝑥4 − 8𝑥3 + 8𝑥2 + 2,

𝑦 ≤ 4𝑥4 − 32𝑥3 + 88𝑥2 − 96𝑥 + 36.

The optimal solution to the above problem is (𝑥*, 𝑦*) ≈ (2.3295, 3.1785). Figure 1-3 com-

pares the performance of three lower bounding schemes for the above problem.

Figures 1-2 and 1-3 compare the performance of natural interval extensions-based [172,

Section 5.4], centered form-based [172, Section 6.4], and McCormick relaxation-based [154,

213] lower bounding schemes for the two examples. The reader can check that while the

natural interval extension and centered form-based lower bounding schemes suffer from the

cluster problem for Example 1.2.1 (as seen from the fact that the number of iterations of the

associated B&B methods grows significantly with a decrease in the termination tolerance;

note that the McCormick relaxation-based method is able to mitigate the cluster problem

for both the cases), their behavior is qualitatively different for the inequality constrained

Example 1.2.2 where the number of iterations of the associated B&B algorithms is relatively

insensitive to the termination tolerance5. We note that the cluster problem and convergence-

5At this stage, it is pertinent to note that although both the natural interval extension-based and centered
form-based lower bounding schemes exhibit the same qualitative behavior with a decrease in the termination
tolerance for Example 1.2.2, the centered form-based lower bounding scheme results in a much more efficient
B&B algorithm for this case. This highlights a key limitation of relying on the cluster problem analysis as a
primary measure of efficiency of B&B schemes in that schemes that do not suffer from the cluster problem
are not necessarily ‘efficient’/practical. We also add that the comparison plots of the number of iterations
of the B&B algorithms with the different lower bounding schemes in Figures 1-2 and 1-3 use a natural
logarithm scale.
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order analyses in Chapters 5 and 6 can qualitatively help explain the computational results

for Examples 1.2.1 and 1.2.2.

1.2.2 Research goals

A second major goal of this thesis involves: i. formulating and analyzing the cluster prob-

lem in constrained global optimization, which involves providing conservative estimates of

the number of B&B nodes visited in the vicinity of a constrained global minimizer as a

function of the termination tolerance under appropriate assumptions, to determine neces-

sary characteristics of B&B algorithms in order to mitigate clustering, and ii. developing

a notion of convergence order of B&B algorithms for constrained problems, and analyzing

the convergence orders of widely applicable full-space and reduced-space B&B schemes in

the literature.

The first step in the convergence-order analysis of lower bounding schemes for con-

strained optimization involves defining an appropriate notion of convergence order for such

schemes (see Definition 6.3.12). Thereafter, our aim is to determine conservative bounds

on the convergence orders of widely used lower bounding schemes (such as McCormick

relaxation-based schemes [76, 154, 213], interval arithmetic-based schemes [172], and La-

grangian duality-based schemes [69]), possibly by using bounds on the convergence orders

of schemes of convex and concave relaxations of the functions involved in the optimization

formulation that can be obtained from the previous analyses for unconstrained optimiza-

tion [38, 39]. Roughly, we wish to determine the rate at which lower bounds converge to

optimal objective function values on sequences of successively refined nodes converging to

feasible points, and wish to determine the efficiency with which sequences of successively

refined nodes all of which are contained within the infeasible region are detected to be

infeasible by the lower bounding scheme.

As part of our analysis of the cluster problem in constrained global optimization, we wish

to determine when first-order and second-order convergent lower bounding schemes are suf-

ficient to mitigate the cluster problem around constrained global optimizers. Additionally,

uncovering the (worst-case) dependence of the extent of clustering on the convergence order

prefactor (similar to the analysis in [237, 238]) is a desirable outcome of the analysis. By

using the cluster problem and convergence order analyses, our aim is to be able to explain,

at least in theory, disparities in the performances of various lower bounding schemes within
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28



(a) Boxes visited by the natural interval
extension-based B&B algorithm.

0 0.5 1 1.5 2 2.5 3

x

0

0.5

1

1.5

2

2.5

3

3.5

4

y

Centered Form

(b) Boxes visited by the centered form-based
B&B algorithm.

0 0.5 1 1.5 2 2.5 3

x

0

0.5

1

1.5

2

2.5

3

3.5

4

y

McCormick Relaxation

(c) Boxes visited by the McCormick relaxation-
based B&B algorithm.

-18 -16 -14 -12 -10 -8 -6 -4 -2

log(tolerance)

4

6

8

10

12

14

16

lo
g

(i
te

ra
ti

o
n

s)

Natural Interval Extensions

Centered Form

McCormick Relaxations

(d) Comparison of number of B&B iterations of
the algorithms corresponding to three different
lower bounding schemes for different termina-
tion tolerances (log denotes the natural loga-
rithm).

Figure 1-3: Summary of computational experiments for Example 1.2.2 using three different
lower bounding schemes in a basic B&B framework.
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B&B algorithms such as the relative performances of interval arithmetic-based and (non-

constant) convex relaxation-based lower bounding schemes, and the relative performances

of full-space and reduced-space lower bounding schemes.

1.2.3 Prior analyses

Previous work that deals with analyzing the convergence rates of lower bounding schemes

for unconstrained problems has mainly been presented in the context of the Hausdorff

convergence order, which determines the rate at which an estimate of the range of a function

converges to its true range as the interval over which the estimate is constructed is refined.

The works of Moore et al. [172], Ratschek and Rokne [184] and other researchers in the

interval arithmetic community [93, 127, 205] established tight bounds on the Hausdorff

convergence orders of interval arithmetic-based schemes of inclusion functions. Schöbel and

Scholz [203] develop a notion of convergence order for bounding schemes for unconstrained

optimization by considering the rate at which a scheme of lower bounds converges to the

objective value of a scheme of feasible points on successively refined nodes. Their analysis

also provides a very conservative estimate of the worst-case number of boxes explored by

B&B algorithms for unconstrained optimization.

The convergence order framework that our analysis in Chapter 6 builds on was only re-

cently introduced by Bompadre and Mitsos [38]. The authors therein introduce the notion

of pointwise convergence order of schemes of convex and concave relaxations of a function6,

develop a theory of propagation of (Hausdorff and pointwise) convergence orders of schemes

of McCormick relaxations [154], and establish tight bounds on the pointwise convergence

orders of schemes of 𝛼BB relaxations [4] and convex and concave envelopes. Subsequently,

Mitsos and coworkers [39, 174] developed the analysis in [38] further to analyze the prop-

agation of convergence orders of schemes of Taylor models [184], McCormick-Taylor mod-

els [197], and multivariate McCormick relaxations [227]. Chapter 6 reviews other relevant

analyses of the convergence rates of bounding schemes for unconstrained problems.

6The notion of pointwise convergence order will turn out to be critical in our analysis of the convergence
orders of lower bounding schemes for constrained optimization in Chapter 6 (and, consequently, in our
analysis of the cluster problem in Chapter 5). This is in contrast to the case of unconstrained optimization
where the notion of Hausdorff convergence order assumes greater significance in the analysis of the cluster
problem for this case.
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1.2.4 Contributions

Chapter 5 presents our analysis of the cluster problem in constrained global optimization,

and Chapter 6 presents our convergence-order analysis of B&B algorithms for constrained

optimization. Our analysis of the cluster problem in Chapter 5 generalizes the previous

analyses for unconstrained optimization [68, 237, 238], and establishes conditions under

which first-order and second-order convergent lower bounding schemes may be sufficient

to mitigate the cluster problem in neighborhoods of global optimizers7. Additionally, we

develop refinements of the above analysis for problems with specific structures (such as

problems with equality constraints), and establish conditions under which at least second-

order convergence of the lower bounding scheme is required to mitigate clustering.

Our analysis of the convergence rate of lower bounding schemes for constrained opti-

mization in Chapter 6 institutes a (fairly general) definition of convergence order for con-

strained optimization that also generalizes the corresponding definition for unconstrained

optimization. Additionally, we analyze the convergence orders of convex relaxation-based

and Lagrangian duality-based full-space lower bounding schemes, and show that our anal-

ysis reduces to the results for unconstrained optimization under appropriate assumptions.

We also determine that the pointwise convergence order of schemes of relaxations of the

functions involved in constrained optimization problems plays a crucial role rather than

their Hausdorff convergence orders. Along with the analysis of the cluster problem summa-

rized above, this establishes why basic implementations of interval arithmetic-based B&B

algorithms may perform quite well for certain classes of inequality-constrained problems,

but perform rather poorly for classes of equality-constrained problems. Finally, we also

determine bounds on the convergence orders of two widely applicable reduced-space B&B

algorithms in the literature [69, 76]. One significant finding of the above analysis is that

reduced-space B&B algorithms may suffer from the cluster problem if appropriate domain

reduction techniques are not employed (in fact, we show in Chapter 6 that certain reduced-

space B&B algorithms can face severe clustering even for unconstrained problems). This

insight could form the basis of future work that attempts to determine sufficient properties

of domain reduction techniques for reduced-space B&B algorithms to mitigate clustering.

7Although our analysis of the cluster problem truly generalizes previous analyses for unconstrained opti-
mization, we note that the proofs of our most important results utilize techniques from [237, 238].
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Chapter 2

Background

This chapter presents relevant background concepts along with mathematical definitions

and results that act as a common thread across this thesis. In particular, definitions and

background results concerning local optimality conditions for unconstrained and constrained

minimization, branch-and-bound algorithms for global optimization, convergence properties

of schemes of convex and concave relaxations of functions, and decomposition algorithms

for two-stage stochastic programming problems are provided. The ensuing chapters of

this thesis provide additional chapter-specific mathematical background over the material

presented in this chapter.

2.1 Notation

Throughout this thesis, we use 0 to denote a vector of zeros of appropriate dimension (it is

sometimes also used to denote a matrix of zeros, which will be clear from the context), N

to denote the set of natural numbers (starting from zero or one, depending on the context),

R+ and R− to denote the nonnegative and nonpositive reals, respectively, and I𝑍 to denote

the set of nonempty, closed and bounded interval subsets of 𝑍 ⊂ R𝑛.

Sets are denoted using uppercase letters. The closure of a set 𝑍 ⊂ R𝑛 is denoted by

cl (𝑍), and conv(𝑍) and int(𝑍) are respectively used to denote its convex hull and interior.

The difference between two sets 𝑋 and 𝑌 is denoted by 𝑋∖𝑌 .

Scalars and scalar-valued functions are denoted using lowercase letters, whereas vectors

and vector-valued functions are denoted using lowercase bold letters. Matrices are denoted

using uppercase bold letters. The transposes of a (column) vector z ∈ R𝑛 and a matrix
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M ∈ R𝑚×𝑛 are denoted by zT and MT, respectively. The expression ‖z‖ is used to denote

the Euclidean norm of z ∈ R𝑛 (unless otherwise specified), and, for any 𝑝 ∈ N, ‖z‖𝑝 is used to

denote the 𝑝-norm of z. The expression 𝑧𝑗 is used to denote the 𝑗th component of a vector

z, (𝑧1, 𝑧2, · · · , 𝑧𝑛) is used to denote a vector z ∈ R𝑛 with components 𝑧1, 𝑧2, · · · , 𝑧𝑛 ∈ R

(note that (𝑧1, 𝑧2) will be used to denote both an open interval in R and a vector in R2; the

intended use will be clear from the context), and the notation (u,v,w) is used to denote

the column vector [uT vT wT]
T

corresponding to (column) vectors u, v, and w.

The symbol ⌈·⌉ is used to denote the ceiling function, log is used to denote the natural

logarithm,

⎡⎣g
h

⎤⎦ denotes a vector-valued function with domain 𝑌 and codomain R𝑚+𝑛 cor-

responding to vector-valued functions g : 𝑌 → R𝑚 and h : 𝑌 → R𝑛, and the quantity f(𝑍)

denotes the image of 𝑍 ⊂ 𝑌 under the function f : 𝑌 → R𝑚.

Consider a function 𝑓 : 𝑍 → R with 𝑍 denoting a nonempty open subset of R𝑛. The

symbol ∇𝑓(z) ∈ R𝑛 is used to denote the gradient (vector) of 𝑓 at z ∈ 𝑍, ∇2𝑓(z) ∈ R𝑛×𝑛

denotes the Hessian (matrix) of 𝑓 at z ∈ 𝑍, 𝑓 ′(z;d) is used to denote the (scalar) directional

derivative of 𝑓 at z ∈ 𝑍 in the direction d, and the symbol 𝑓 (𝑘)(𝑧) is used to denote the

(scalar) 𝑘th derivative of 𝑓 at 𝑧 ∈ 𝑍 when 𝑛 = 1 (i.e., 𝑍 ⊂ R). The term ‘differentiable’ is

used to refer to differentiability in the Fréchet sense.

Finally, consider the optimization problem

𝑓* = inf
z∈𝑍

𝑓(z),

where 𝑍 ⊂ R𝑛 is the feasible set and 𝑓 : 𝑍 → R is the objective function. We adopt the

convention that 𝑓* = +∞ when 𝑍 = ∅. If the function 𝑓 is continuous and the set 𝑍 is

compact, we replace the infimum, ‘inf’, by a minimum, ‘min’ (even if 𝑍 could be empty).

2.2 Basic definitions and results

This section provides some basic background definitions and results, familiarity with which

is assumed throughout this thesis. Background results that are more specific to the contri-

butions of this thesis are reviewed in Section 2.3.

Definition 2.2.1. [Neighborhood of a Point] Let x ∈ 𝑋 ⊂ R𝑛. For any 𝛼 > 0, 𝑝 ∈ N, the
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set

𝒩 𝑝
𝛼(x) :=

{︁
z ∈ 𝑋 : ‖z− x‖𝑝 < 𝛼

}︁
is called the 𝛼-neighborhood of x relative to 𝑋 with respect to the 𝑝-norm.

Although the set 𝑋 is not part of the notation for a neighborhood, its definition will

either be clear from the context, or specified explicitly.

Lemma 2.2.2. [Equivalence of Norms on R𝑛] All norms on R𝑛 are equivalent. Specifically,

if ‖·‖𝑝 and ‖·‖𝑞 are two norms in R𝑛 for any 𝑝, 𝑞 ∈ N ∪ {+∞} with 𝑝 ̸= 𝑞, then there

exist constants 𝑐1, 𝑐2 ∈ R+ such that 𝑐1‖z‖𝑝 ≤ ‖z‖𝑞 ≤ 𝑐2‖z‖𝑝, ∀z ∈ R𝑛. Furthermore, for

(𝑝, 𝑞) = (1, 2), 𝑐2 = 1 provides a valid upper bound and for (𝑝, 𝑞) = (+∞, 2), 𝑐2 =
√
𝑛

provides a valid upper bound.

Proof. For the first part of the lemma, see, for instance, [200, Theorem 4.2]. The second

part of the lemma follows from the inequalities

‖z‖22 =

𝑛∑︁
𝑖=1

𝑧2𝑖 ≤
𝑛∑︁

𝑖=1

𝑧2𝑖 +

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

2|𝑧𝑖||𝑧𝑗 | = ‖z‖21

and

‖z‖22 =

𝑛∑︁
𝑖=1

𝑧2𝑖 ≤ 𝑛 max
𝑖=1,··· ,𝑛

𝑧2𝑖 = 𝑛‖z‖2∞

for any z ∈ R𝑛.

Definition 2.2.3. [Lower and Upper Semicontinuity] Let 𝑍 ⊂ R𝑛. A function 𝑓 : 𝑍 → R

is said to be lower semicontinuous at z̄ ∈ 𝑍 if for every 𝜀 > 0, there exists a neighborhood

𝒩 𝑝
𝛼(z̄) of z̄ (where the exact values of 𝛼 > 0 and 𝑝 ∈ N are immaterial) such that

𝑓(z) ≥ 𝑓(z̄) − 𝜀, ∀z ∈ 𝒩 𝑝
𝛼(z̄).

The condition for lower semicontinuity can equivalently be expressed as lim inf
z→z̄

𝑓(z) ≥ 𝑓(z̄).

Analogously, 𝑓 is said to be upper semicontinuous at z̄ if for every 𝜀 > 0, there exists a

neighborhood 𝒩 𝑝
𝛼(z̄) of z̄ such that

𝑓(z) ≤ 𝑓(z̄) + 𝜀, ∀z ∈ 𝒩 𝑝
𝛼(z̄).

The condition for upper semicontinuity can equivalently be expressed as lim sup
z→z̄

𝑓(z) ≤ 𝑓(z̄).
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Note that 𝑓 is continuous at z̄ if and only if it is both lower and upper semicontinuous at z̄.

Definition 2.2.4. [Lipschitz and Locally Lipschitz Continuous Functions] Let 𝑍 ⊂ R𝑛. A

function 𝑓 : 𝑍 → R is Lipschitz continuous on 𝑍 with Lipschitz constant 𝑀 ≥ 0 if

|𝑓(z1) − 𝑓(z2)| ≤ 𝑀‖z1 − z2‖, ∀z1, z2 ∈ 𝑍.

The function 𝑓 is locally Lipschitz continuous on 𝑍 if ∀z̄ ∈ 𝑍, there exist 𝛼,𝑀 > 0 such

that

|𝑓(z1) − 𝑓(z2)| ≤ 𝑀‖z1 − z2‖, ∀z1, z2 ∈ 𝒩 2
𝛼(z̄).

Note that locally Lipschitz continuous functions are Lipschitz continuous on compact subsets

of their domains.

Since the cluster problem and convergence order analyses in this thesis (see Chapters 5

and 6) are asymptotic in nature (see Remark 6.3.6 and Lemma 6.3.8, for instance), we will

need the following asymptotic notations.

Definition 2.2.5. [Big 𝑂 and Little 𝑜 Notations] Let 𝑌 ⊂ R, 𝑓 : 𝑌 → R, and 𝑔 : 𝑌 → R.

We say that 𝑓(𝑦) = 𝑂(𝑔(𝑦)) as 𝑦 → 𝑦 ∈ 𝑌 if and only if there exist 𝛿,𝑀 > 0 such that

|𝑓(𝑦)| ≤ 𝑀 |𝑔(𝑦)|, ∀𝑦 ∈ 𝑌 with |𝑦 − 𝑦| < 𝛿.

Similarly, we say that 𝑓(𝑦) = 𝑜(𝑔(𝑦)) as 𝑦 → 𝑦 ∈ 𝑌 if and only if for all 𝑀 ′ > 0 there exists

𝛿′ > 0 such that

|𝑓(𝑦)| ≤ 𝑀 ′|𝑔(𝑦)|, ∀𝑦 ∈ 𝑌 with |𝑦 − 𝑦| < 𝛿′.

Note that unless otherwise specified, we consider 𝑦 = 0 in this thesis.

We next state a basic, single-variable version of Taylor’s theorem for differentiable func-

tions, which provides local polynomial approximations of such functions around points of

interest. Multivariable generalizations of Taylor’s theorem also exist, and will be relied on

at various points in this thesis. Theorem 2.2.7 provides a second-order version of Taylor’s

theorem for multivariable functions.

Theorem 2.2.6. [Taylor’s Theorem] Let 𝑛 ∈ N, and suppose the function 𝑓 : R → R is

36



𝑛-times differentiable at the point 𝑧 ∈ R. Then, there exists a function ℎ : R → R such that

𝑓(𝑧) = 𝑓(𝑧) +
𝑛∑︁

𝑘=1

𝑓 (𝑘)(𝑧)

𝑘!
(𝑧 − 𝑧)𝑘 + ℎ(𝑧)(𝑧 − 𝑧)𝑛, ∀𝑧 ∈ R, and

lim
𝑧→𝑧

ℎ(𝑧) = 0.

A stronger version of the above result, which provides a semi-explicit form for the remain-

der, can be derived under additional assumptions (see [192, Theorem 5.15], for instance).

Theorem 2.2.7. [Multivariable Taylor’s Theorem] Let 𝑍 ⊂ R𝑛 be a nonempty open set,

and suppose the scalar-valued function 𝑓 : 𝑍 → R is twice differentiable at z̄ ∈ 𝑍. Then,

there exists a function ℎ : 𝑍 → R, which depends on z̄, such that

𝑓(z) = 𝑓(z̄) + ∇𝑓(z̄)T(z− z̄) +
1

2
(z− z̄)T∇2𝑓(z̄)(z− z̄) + ℎ(z)‖z− z̄‖2, ∀z ∈ int(𝑍),

lim
z→z̄

ℎ(z) = 0.

Definition 2.2.8. [Directional Derivative] Let 𝑍 ⊂ R𝑛 be an open set, and consider a

function 𝑓 : 𝑍 → R. The function 𝑓 is said to be directionally differentiable at a point

z ∈ 𝑍 in the direction d ∈ R𝑛 if the following limit exists:

𝑓 ′(z;d) := lim
𝑡→0+

𝑓(z + 𝑡d) − 𝑓(z)

𝑡
,

in which case the vector 𝑓 ′(z;d) is called the directional derivative of 𝑓 at z in the direc-

tion d. If the above limit exists in R for each d ∈ R𝑛, then 𝑓 is said to be directionally

differentiable at z.

If 𝑓 is differentiable at z ∈ 𝑍, then it is also directionally differentiable at z with the

directional derivative for any d ∈ R𝑛 given by 𝑓 ′(z;d) = ∇𝑓(z)Td. We close this section by

presenting a couple of definitions [57, 183, 204] from nonsmooth analysis that will find some

use in Chapter 5. These definitions rely on Rademacher’s theorem, which essentially states

that a locally Lipschitz continuous function defined on an open subset of R𝑛 is differentiable

almost everywhere (i.e., outside a subset of the domain of Lebesgue measure zero) on that

subset (see, for instance, [57]).

Definition 2.2.9. [B-subdifferential] Let 𝑍 ⊂ R𝑛 be an open set, and 𝑓 : 𝑍 → R be a

locally Lipschitz continuous function. Let Ω𝑓 ⊂ 𝑍 be the set of measure zero on which 𝑓
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is not differentiable. The B-subdifferential of 𝑓 at a point z ∈ 𝑍, denoted by 𝜕B𝑓(z), is

defined as the set

𝜕B𝑓(z) :=
{︁
v ∈ R1×𝑛 : v = lim

𝑚→∞
(∇𝑓(z𝑚))T, z𝑚 → z, z𝑚 ∈ 𝑍∖Ω𝑓 , ∀𝑚 ∈ N

}︁
.

Definition 2.2.10. [Clarke’s Generalized Gradient] Let 𝑍 ⊂ R𝑛 be an open set, and 𝑓 :

𝑍 → R be a locally Lipschitz continuous function. Clarke’s generalized gradient of 𝑓 at a

point z ∈ 𝑍, denoted by 𝜕𝑓(z), is defined as the set

𝜕𝑓(z) := conv
(︀{︀

v ∈ R𝑛 : vT ∈ 𝜕B𝑓(z)
}︀)︀

.

2.3 Mathematical optimization

Throughout this section, we consider the following optimization formulation unless other-

wise stated:

inf
x

𝑓(x) (P)

s.t. g(x) ≤ 0,

h(x) = 0,

x ∈ 𝑋 ⊂ {0, 1}𝑛𝑥𝑏 × R𝑛𝑥𝑐 .

We assume throughout this section that the functions 𝑓 : 𝑋 → R, g : 𝑋 → R𝑚𝐼 , and

h : 𝑋 → R𝑚𝐸 are continuous on 𝑋. We will also tacitly assume that the functions 𝑓 , g,

and h and the set 𝑋 in Problem (P) can be finitely expressed on a computer (for instance,

these functions and sets can be expressed using ‘factorable functions’, see [206, Section 2.2]

or [237, Section 3.1]). When the number of discrete variables in the formulation equals

zero (i.e., 𝑛𝑥𝑏
= 0), the formulation contains no inequality and equality constraints (i.e.,

𝑚𝐼 = 𝑚𝐸 = 0), and 𝑋 = R𝑛𝑥𝑐 (with a slight abuse of notation; more generally, 𝑋 can be

any open set), then Problem (P) is called an unconstrained optimization problem; otherwise,

we call Problem (P) a constrained optimization problem. Note that problems with bounded

general integer variables can be equivalently reformulated to the form of Problem (P). Some

special cases of the above formulation include:
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• linear programming (LP), when 𝑛𝑥𝑏
= 0, 𝑋 = R𝑛𝑥𝑐 , and 𝑓,g, and h are affine on 𝑋,

• mixed-integer linear programming (MILP), when 𝑋 = {0, 1}𝑛𝑥𝑏 × R𝑛𝑥𝑐 and 𝑓,g, and h

are affine on 𝑋,

• convex programming, when 𝑛𝑥𝑏
= 0, 𝑋 is a convex subset of R𝑛𝑥𝑐 , 𝑓 and g are convex

on 𝑋, and h is affine on 𝑋,

• (nonconvex) nonlinear programming (NLP), when 𝑛𝑥𝑏
= 0,

• convex mixed-integer nonlinear programming (convex MINLP), when 𝑋 = {0, 1}𝑛𝑥𝑏 ×

R𝑛𝑥𝑐 , 𝑓 and g are convex on conv(𝑋), and h is affine on 𝑋, and

• (nonconvex) mixed-integer nonlinear programming (MINLP), when no particular restric-

tions on the sets and functions in Problem (P) are imposed.

Heuristics and local optimization algorithms for Problem (P)1 aim to determine good or

locally-optimal feasible points with little computational effort, whereas the classes of global

optimization algorithms for Problem (P) that we are interested in (called ‘complete’ and

‘rigorous’ algorithms, see [178, Section 1.2]) aim to determine a provably (near-) optimal

solution(s). Some popular ‘local optimization’ approaches for solving nonconvex NLPs and

MINLPs include: multi-start methods [228], variable neighborhood search methods and

their variants [95, 141], and feasibility pump methods [41, 59]. Some widely applicable global

optimization approaches for solving such problems include: branch-and-bound/branch-and-

reduce approaches [101, 195, 225], generalized Benders decomposition and its variants [85,

139], and outer-approximation and its variants [40, 72, 79, 118].

In the next section, we review some local optimality conditions for unconstrained and

constrained nonlinear programming problems.

1The term ‘local optimization’ is usually used to describe algorithms for nonconvex NLPs, since the
introduction of discrete variables makes the definition of a local minimum (see Definition 2.3.2) lose some
meaning.
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2.3.1 Local optimality conditions

The definitions and results in this section will primarily be used in Chapters 5 and 6. We

consider the nonlinear programming formulation:

inf
x

𝑓(x) (NLP)

s.t. g(x) ≤ 0,

h(x) = 0,

x ∈ 𝑋 ⊂ R𝑛𝑥𝑐 .

We assume that the functions 𝑓 : 𝑋 → R, g : 𝑋 → R𝑚𝐼 , and h : 𝑋 → R𝑚𝐸 are continuous

on 𝑋. Additional assumptions on the objective function, the constraint functions, and the

set 𝑋 will be imposed as necessary.

Definition 2.3.1. [Feasible Region] The feasible region for Problem (NLP) on the ‘domain’

𝑋, denoted by ℱ(𝑋), is defined as ℱ(𝑋) := {x ∈ 𝑋 : g(x) ≤ 0,h(x) = 0} .

Any point x ∈ 𝑋 that is not feasible (or even any point that is not an element of 𝑋) is

called an infeasible point.

Definition 2.3.2. [Local Minimum] A feasible point x̄ ∈ ℱ(𝑋) is called a local minimum

for Problem (NLP) if ∃𝛼 > 0 such that 𝑓(x) ≥ 𝑓(x̄), ∀x ∈ 𝒩 2
𝛼(x̄) ∩ ℱ(𝑋).

Definition 2.3.3. [Strict Local Minimum] A feasible point x̄ ∈ ℱ(𝑋) is called a strict local

minimum for Problem (NLP) if x̄ is a local minimum, and ∃𝛼 > 0 such that 𝑓(x) > 𝑓(x̄),

∀x ∈ 𝒩 2
𝛼(x̄) ∩ ℱ(𝑋) such that x ̸= x̄.

The reader can contrast the above local conditions with the following global condition

for a minimum.

Definition 2.3.4. [Global Minimum] A feasible point x* ∈ ℱ(𝑋) is called a global mini-

mum for Problem (NLP) if 𝑓(x) ≥ 𝑓(x*), ∀x ∈ ℱ(𝑋).

The following definition of distance does not define a metric; however, it will prove useful

in defining a measure of infeasibility for points in 𝑋 for Problem (NLP).
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Definition 2.3.5. [Distance Between Two Sets] Let 𝑌, 𝑍 ⊂ R𝑛. The distance between 𝑌

and 𝑍, denoted by 𝑑(𝑌,𝑍), is defined as

𝑑(𝑌,𝑍) := inf
y∈𝑌,
z∈𝑍

‖y − z‖.

Lemma 2.3.6. Let z,v ∈ R𝑛, and let 𝐾 ⊂ R𝑛 be a (nonempty) convex cone. Then

𝑑({z},𝐾) − 𝑑({v},𝐾) ≤ 𝑑({z− v},𝐾).

Proof. See [214].

Corollary 2.3.7. Let z,v ∈ R𝑚+𝑛. Then

𝑑({z},R𝑚
− × {0}) − 𝑑({v},R𝑚

− × {0}) ≤ 𝑑({z− v},R𝑚
− × {0}).

Proof. This result is a direct consequence of Lemma 2.3.6.

The above results ensure that the quantity 𝑑
(︀
{(g(x),h(x))} ,R𝑚𝐼

− × {0}
)︀

provides a

(useful) measure of infeasibility (measure of constraint violation) for any point x ∈ 𝑋 for

Problem (NLP) (see Chapters 5 and 6); we leave the task of verifying that the above quantity

is strictly positive if and only if the corresponding point x is infeasible to the reader.

The next definition of a nonisolated feasible point will prove useful for the cluster prob-

lem analysis, see Section 5.3.1 of Chapter 5.

Definition 2.3.8. [Nonisolated Feasible Point] A feasible point x ∈ ℱ(𝑋) is said to be

nonisolated if ∀𝛼 > 0, ∃z ∈ 𝒩 2
𝛼(x) ∩ ℱ(𝑋) such that z ̸= x.

While the definitions thus far in this section can be adapted to the more general for-

mulation (P), we will, for the most part, restrict their usage to formulation (NLP) (see

Chapters 5 and 6).

2.3.1.1 Unconstrained optimization

In this section, we assume that Problem (NLP) is unconstrained (i.e., 𝑚𝐼 = 𝑚𝐸 = 0 and

𝑋 is an open set). Differentiability assumptions on the objective function 𝑓 are assumed as

necessary.
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Theorem 2.3.9. [First-order necessary optimality condition for unconstrained minimiza-

tion] Suppose 𝑓 is differentiable at a point x̄ ∈ 𝑋. If x̄ is a local minimum for Prob-

lem (NLP), then ∇𝑓(x̄) = 0.

Proof. See the corollary to Theorem 4.1.2 in [13].

Theorem 2.3.10. [First-order necessary optimality condition for nonsmooth unconstrained

minimization] Suppose 𝑓 is locally Lipschitz continuous on 𝑋. If x̄ ∈ 𝑋 is a local minimum

for Problem (NLP), then 0 ∈ 𝜕𝑓(x̄), i.e., 0 is an element of Clarke’s generalized gradient of

𝑓 at x̄.

Proof. See Proposition 2.3.2 in [57].

We close this section with a second-order necessary optimality condition and a second-

order sufficient optimality condition for local minima for Problem (NLP). The reader

is directed to Section 4.1 in Chapter 4 of [13] for higher-order optimality conditions for

unconstrained minimization, which may be used to develop the cluster problem analysis in

unconstrained optimization [68, 238] further.

Theorem 2.3.11. [Second-order necessary optimality condition for unconstrained mini-

mization] Suppose 𝑓 is twice differentiable at a point x̄ ∈ 𝑋. If x̄ is a local minimum for

Problem (NLP), then ∇2𝑓(x̄) is positive semidefinite.

Proof. See Theorem 4.1.3 in [13].

Theorem 2.3.12. [Second-order sufficient optimality condition for unconstrained mini-

mization] Suppose 𝑓 is twice differentiable at a point x̄ ∈ 𝑋. If ∇𝑓(x̄) = 0 and ∇2𝑓(x̄) is

positive definite, then x̄ is a strict local minimum for Problem (NLP).

Proof. See [13, Theorem 4.1.3].

Note that x̄ need not be a local minimum if the ‘positive definiteness’ condition on the

Hessian in Theorem 2.3.12 is relaxed to ‘positive semidefiniteness’ (a typical counterexample

would be to consider the behavior at the inflection point 𝑥̄ = 0 in the ‘minimization’ of

𝑓(𝑥) = 𝑥3 on 𝑋 = (−1, 1)).
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2.3.1.2 Constrained optimization

In this section, we assume that 𝑋 is a nonempty open set. Differentiability assumptions on

the objective and constraint functions are assumed as necessary.

The following definition of the set of active inequality constraints will play a part in

setting up local optimality conditions because the inequality constraints that are not active

at a candidate local optimal solution will not be active on some neighborhood of it (this is a

consequence of the assumption of continuity of the functions in Problem (NLP)). Therefore,

conditions for local optimality will not involve the set of inactive constraints (in an essen-

tial way). We remark that a consequence of the above observation is that the optimality

conditions detailed in this section for a local minimum of Problem (NLP) at which none of

its constraints are active essentially reduce to the conditions presented in Section 2.3.1.1.

We also note that the inactive inequality constraints do not feature (in an essential way) in

sufficient conditions for global optimality of convex programs, see Theorem 2.3.19.

Definition 2.3.13. [Set of Active Inequality Constraints] Let x ∈ ℱ(𝑋) be a feasible point

for Problem (NLP). The set of active inequality constraints at x, denoted by 𝒜(x), is given

by

𝒜(x) := {𝑗 ∈ {1, · · · ,𝑚𝐼} : 𝑔𝑗(x) = 0} .

The next definition of the cone of tangents at a reference feasible point can be thought of

as an estimate of the set of directions from the reference point that locally lead to feasible

points. Naturally, this definition will be used to formulate a first-order necessary local

optimality condition in Theorem 2.3.15.

Definition 2.3.14. [Tangent and Cone of Tangents] Let x ∈ ℱ(𝑋) ⊂ R𝑛𝑥𝑐 be a feasible

point for Problem (NLP). A vector d ∈ R𝑛𝑥𝑐 is said to be a tangent of ℱ(𝑋) at x if there

exists a sequence {𝜆𝑘} → 0 with 𝜆𝑘 > 0, and a sequence {x𝑘} → x with x𝑘 ∈ ℱ(𝑋) such

that

d = lim
𝑘→∞

x𝑘 − x

𝜆𝑘
.

The set of all tangents of ℱ(𝑋) at x, denoted by 𝑇 (x), is called the tangent cone of ℱ(𝑋)

at x.

Theorem 2.3.15. [First-Order Necessary Optimality Condition] Consider Problem (NLP),
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and suppose 𝑓 is differentiable at a local minimum x̄. Then

{︁
d : ∇𝑓(x̄)Td < 0

}︁
∩ 𝑇 (x̄) = ∅.

Proof. See Theorem 5.1.2 in [13].

A limitation of the above first-order necessary optimality condition is that it is difficult

to verify in practice; this is because the tangent cone is a geometrical object that is hard to

compute numerically/algebraically. Fritz John [106] developed (originally in circa 1948) the

following first-order optimality condition that is more amenable to numerical verification

(see [87]).

Theorem 2.3.16. [Fritz John necessary optimality conditions] Consider Problem (NLP),

and suppose x̄ ∈ ℱ(𝑋). Furthermore, suppose 𝑓 and 𝑔𝑗 , ∀𝑗 ∈ 𝒜(x̄), are differentiable at

x̄, and ℎ𝑘, ∀𝑘 ∈ {1, · · · ,𝑚𝐸}, are continuously differentiable at x̄. If x̄ is a local minimum

of Problem (NLP), then there exist scalars 𝜇0, 𝜇𝑗 , ∀𝑗 ∈ 𝒜(x̄), and 𝜆𝑘, ∀𝑘 ∈ {1, · · · ,𝑚𝐸},

such that

𝜇0∇𝑓(x̄) +
∑︁

𝑗∈𝒜(x̄)

𝜇𝑗∇𝑔𝑗(x̄) +

𝑚𝐸∑︁
𝑘=1

𝜆𝑘∇ℎ𝑘(x̄) = 0,

𝜇0, 𝜇𝑗 ≥ 0, ∀𝑗 ∈ 𝒜(x̄),

(𝜇0,𝜇x̄,𝜆) ̸= 0,

where 𝜇x̄ denotes the vector with components 𝜇𝑗 , ∀𝑗 ∈ 𝒜(x̄), and 𝜆 denotes the vector

(𝜆1, · · · , 𝜆𝑚𝐸 ). If 𝑔𝑗 , ∀𝑗 ∈ {1, · · · ,𝑚𝐼}, are differentiable at x̄, then the above conditions

can be equivalently written as:

𝜇0∇𝑓(x̄) +

𝑚𝐼∑︁
𝑗=1

𝜇𝑗∇𝑔𝑗(x̄) +

𝑚𝐸∑︁
𝑘=1

𝜆𝑘∇ℎ𝑘(x̄) = 0,

𝜇𝑗𝑔𝑗(x̄) = 0, ∀𝑗 ∈ {1, · · · ,𝑚𝐼},

𝜇0, 𝜇𝑗 ≥ 0, ∀𝑗 ∈ {1, · · · ,𝑚𝐼},

(𝜇0,𝜇,𝜆) ̸= 0,

where 𝜇 denotes the vector (𝜇1, · · · , 𝜇𝑚𝐼 ).
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Proof. See Theorem 4.3.2 in [13].

A key limitation of the above Fritz John necessary conditions is that they can be triv-

ially satisfied by points that are nowhere close to being locally optimal for Problem (NLP).

For instance, Fritz John’s conditions are trivially satisfied if any one of the objective or con-

straint function gradients vanishes at x̄. A less-than-ideal situation also occurs if equality

constraints are replaced by pairs of inequality constraints, in which case every feasible point

turns out to be a Fritz John point (see [13, p. 186]). The following necessary condition

for local optimality, credited to Karush [113], Kuhn and Tucker [129] provides a stronger

necessary condition for local optimality under an additional ‘constraint qualification’ as-

sumption. Under appropriate assumptions, the Karush-Kuhn-Tucker conditions are both

necessary and sufficient for global optimality, see Theorem 2.3.19.

Theorem 2.3.17. [KKT necessary optimality conditions] Consider Problem (NLP), and

suppose x̄ ∈ ℱ(𝑋). Furthermore, suppose 𝑓 and 𝑔𝑗 , ∀𝑗 ∈ 𝒜(x̄), are differentiable at x̄,

and ℎ𝑘, ∀𝑘 ∈ {1, · · · ,𝑚𝐸}, are continuously differentiable at x̄. Additionally, suppose

that ∇𝑔𝑗(x̄), ∀𝑗 ∈ 𝒜(x̄), and ∇ℎ𝑘(x̄), ∀𝑘 ∈ {1, · · · ,𝑚𝐸}, are linearly independent (or,

alternatively, some other constraint qualification holds, see [13, Chapter 5]). If x̄ is a

local minimum of Problem (NLP), then there exist scalars 𝜇𝑗 , ∀𝑗 ∈ 𝒜(x̄), and 𝜆𝑘, ∀𝑘 ∈

{1, · · · ,𝑚𝐸}, (these scalars are unique if linear independence of the constraint gradients is

assumed) such that

∇𝑓(x̄) +
∑︁

𝑗∈𝒜(x̄)

𝜇𝑗∇𝑔𝑗(x̄) +

𝑚𝐸∑︁
𝑘=1

𝜆𝑘∇ℎ𝑘(x̄) = 0,

𝜇𝑗 ≥ 0, ∀𝑗 ∈ 𝒜(x̄).

If 𝑔𝑗 , ∀𝑗 ∈ {1, · · · ,𝑚𝐼}, are differentiable at x̄, then the above conditions can be equivalently

written as:

∇𝑓(x̄) +

𝑚𝐼∑︁
𝑗=1

𝜇𝑗∇𝑔𝑗(x̄) +

𝑚𝐸∑︁
𝑘=1

𝜆𝑘∇ℎ𝑘(x̄) = 0,

𝜇𝑗𝑔𝑗(x̄) = 0, ∀𝑗 ∈ {1, · · · ,𝑚𝐼},

𝜇𝑗 ≥ 0, ∀𝑗 ∈ {1, · · · ,𝑚𝐼}.
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Proof. See Theorem 4.3.7 in [13].

Next, we define KKT points based on the KKT necessary conditions for local optimality.

It is worth noting that local optimization solvers [67, 86, 235] for Problem (NLP) typically

aim to determine a KKT point that satisfies the (first-order) KKT necessary optimality

conditions (while possibly imposing some second-order necessary optimality conditions).

Definition 2.3.18. [KKT Point] Consider Problem (NLP), and suppose x̄ ∈ ℱ(𝑋). Fur-

thermore, suppose 𝑓 and 𝑔𝑗 , ∀𝑗 ∈ 𝒜(x̄), and ℎ𝑘, ∀𝑘 ∈ {1, · · · ,𝑚𝐸}, are differentiable at

x̄. A point (x̄, 𝜇̄, 𝜆̄) ∈ R𝑛𝑥𝑐+𝑚𝐼+𝑚𝐸 is said to be a KKT point2 if it satisfies the following

conditions:

∇𝑓(x̄) +
∑︁

𝑗∈𝒜(x̄)

𝜇̄𝑗∇𝑔𝑗(x̄) +

𝑚𝐸∑︁
𝑘=1

𝜆̄𝑘∇ℎ𝑘(x̄) = 0,

g(x̄) ≤ 0, h(x̄) = 0, x̄ ∈ 𝑋,

𝜇̄ ≥ 0, 𝜇̄𝑗𝑔𝑗(x̄) = 0, ∀𝑗 ∈ {1, · · · ,𝑚𝐼}.

Theorem 2.3.19. [KKT sufficient optimality conditions] Consider Problem (NLP), and

suppose 𝑋 is a convex set with x̄ ∈ ℱ(𝑋). Furthermore, suppose 𝑓 and 𝑔𝑗 , ∀𝑗 ∈ 𝒜(x̄),

are convex on 𝑋 and differentiable at x̄, and ℎ𝑘, ∀𝑘 ∈ {1, · · · ,𝑚𝐸}, are affine on 𝑋.

Additionally, suppose there exist 𝜇̄ ∈ R𝑚𝐼 and 𝜆̄ ∈ R𝑚𝐸 such that (x̄, 𝜇̄, 𝜆̄) is a KKT point

for Problem (NLP). Then x̄ is a global minimum for Problem (NLP). If the convexity

and affinity (‘linearity’) assumptions only hold on a neighborhood of x̄, then x̄ is a local

minimum for Problem (NLP).

Proof. See Theorem 4.3.8 in [13].

Definition 2.3.20. [Slater Point] Consider Problem (NLP), and suppose the equality con-

straint functions ℎ𝑘, ∀𝑘 ∈ {1, · · · ,𝑚𝐸}, are affine on 𝑋. A feasible point x𝑆 ∈ 𝑋 is called

a Slater point if it satisfies:

𝑔𝑗(x
𝑆) < 0, ∀𝑗 ∈ {1, · · · ,𝑚𝐼} s.t. 𝑔𝑗 is not affine,

𝑔𝑗(x
𝑆) ≤ 0, ∀𝑗 ∈ {1, · · · ,𝑚𝐼} s.t. 𝑔𝑗 is affine.

2Occasionally, we abuse the definition of a KKT point by simply assuming that a point x̄ ∈ 𝑋 is a KKT
point, instead of assuming the existence of ‘KKT multipliers’ 𝜇̄ and 𝜆̄ such that (x̄, 𝜇̄, 𝜆̄) is a KKT point.
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If 𝑋 is convex, 𝑓 and 𝑔𝑗 , ∀𝑗 ∈ {1, · · · ,𝑚𝐼}, are convex on 𝑋 and satisfy appropriate

differentiability conditions, ℎ𝑘, ∀𝑘 ∈ {1, · · · ,𝑚𝐸}, are affine on 𝑋, and Problem (NLP) has

a Slater point and a minimum, then there exists a (global) minimum for Problem (NLP)

that is also a KKT point. The following result is from [13, Section 4.4].

Theorem 2.3.21. [Second-order sufficient optimality conditions for constrained minimiza-

tion] Consider Problem (NLP) with x̄ ∈ 𝑋, and suppose 𝑓 and 𝑔𝑗 , ∀𝑗 ∈ 𝒜(x̄), and ℎ𝑘,

∀𝑘 ∈ {1, · · · ,𝑚𝐸}, are twice differentiable at x̄. Furthermore, suppose there exist 𝜇̄ ∈ R𝑚𝐼 ,

𝜆̄ ∈ R𝑚𝐸 such that (x̄, 𝜇̄, 𝜆̄) is a KKT point for Problem (NLP). Define the restricted

Lagrangian function on 𝑋 as 𝐿(·; 𝜇̄, 𝜆̄) := 𝑓(·) + 𝜇̄Tg(·) + 𝜆̄Th(·).

1. If ∇2𝐿(x; 𝜇̄, 𝜆̄) is positive semidefinite for all x ∈ ℱ(𝑋), then x̄ is a global minimum for

Problem (NLP).

2. If there exists 𝛼 > 0 such that ∇2𝐿(x; 𝜇̄, 𝜆̄) is positive semidefinite for all x ∈ ℱ(𝑋) ∩

𝒩 2
𝛼(x̄), then x̄ is a local minimum for Problem (NLP).

3. If ∇2𝐿(x̄; 𝜇̄, 𝜆̄) is positive definite, then x̄ is a strict local minimum for Problem (NLP).

Proof. See Lemma 4.4.1 in [13].

The reader is directed to Section 4.4 in [13] (specifically, Theorems 4.4.2 and 4.4.3 in [13])

for KKT second-order necessary and sufficient conditions for constrained minimization.

2.3.2 The branch-and-bound approach to global optimization

The first few paragraphs of Section 2.3 listed some widely applicable global optimization

approaches for solving nonconvex NLPs and MINLPs. In this section, we briefly outline a

basic version of one of those approaches, branch-and-bound (B&B), that is implemented

in state-of-the-art MINLP solvers such as ANTIGONE [162], BARON [225], Couenne [19],

LINDOGlobal [145], and SCIP [233]. Throughout this section, we consider the general

formulation (P) unless otherwise specified and assume that the set 𝑋 is a compact inter-

val intersected with some integrality constraints (while it is not necessary to assume that

conv(𝑋) is an interval in general, see [101, Chapter VII.2] for instance, the applications

in this thesis will only use interval partition elements within a B&B framework). Along

with the continuing assumptions of continuity of the functions in Problem (P), the above
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Algorithm 2.1 Outline of a generic branch-and-bound algorithm for Problem (P)

Initialize:

a. Iteration counter 𝑘 = 0, bounds 𝑋0 on the variables x after the optional application of
preprocessing techniques to the input data (we assume that 𝑋0 is a compact interval
intersected with the appropriate integrality restrictions), and tolerances 𝜀 > 0, 𝜀𝑙 > 0,
and 𝜀𝑢 > 0 such that 𝜀𝑙 + 𝜀𝑢 ≤ 𝜀.

b. Domain of the root node 𝑀0 := 𝑋0, and the initial partition 𝒫0 = {𝑀0}.

c. Objective function value of the best found feasible point, 𝑈𝐵𝐷 = +∞; lower bound
on the optimal objective value on the root node, 𝐿𝐵𝐷0 = −∞; and the best found
feasible point, {x*} = ∅.

repeat

1. (Node Selection) Pick an active node 𝑛 ∈
{︀
𝑛 ∈ N ∪ {0} : 𝑀𝑛 ∈ 𝒫𝑘

}︀
using some

node selection heuristic and set 𝒫𝑘+1 = 𝒫𝑘∖{𝑀𝑛}.

2. (Optional Upper Bounding Step) Solve an upper bounding problem on 𝑀𝑛 with a
termination tolerance of 𝜀𝑢 to try and determine a feasible point. Update 𝑈𝐵𝐷,
x* if a feasible solution better than the current best solution is obtained.

3. (Optional Bounds Tightening Step) Apply finite bounds tightening techniques to
obtain 𝑀̄𝑛 ⊂ 𝑀𝑛, and set 𝑀𝑛 = 𝑀̄𝑛. If 𝑀𝑛 is empty, goto Step 6.

4. (Lower Bounding Step) Solve a lower bounding problem on 𝑀𝑛 to 𝜀𝑙-optimality to
obtain the lower bound 𝐿𝐵𝐷𝑛 (if the lower bounding problem on 𝑀𝑛 is infeasible,
set 𝐿𝐵𝐷𝑛 = +∞). If node 𝑛 can be fathomed, goto Step 6.

5. (Branching Step) Partition 𝑀𝑛 into 𝑀𝑛1 and 𝑀𝑛2 by branching one of the vari-
ables (once again, we assume that 𝑀𝑛1 and 𝑀𝑛2 are intervals intersected with
the appropriate integrality restrictions). Set 𝒫𝑘+1 = 𝒫𝑘+1 ∪ {𝑀𝑛1} ∪ {𝑀𝑛2},
𝐿𝐵𝐷𝑛1 = 𝐿𝐵𝐷𝑛2 = 𝐿𝐵𝐷𝑛.

6. Set 𝒫𝑘+1 = 𝒫𝑘+1∖
{︀
𝑀𝑝 ∈ 𝒫𝑘+1 : 𝐿𝐵𝐷𝑝 ≥ 𝑈𝐵𝐷 − 𝜀

}︀
, 𝑘 = 𝑘 + 1.

until 𝒫𝑘 = ∅
If 𝑈𝐵𝐷 < +∞, then x* provides an 𝜀-optimal solution to Problem (P).

assumption ensures that Problem (P) is either infeasible, or has an optimal solution. Algo-

rithm 2.1 outlines the basic steps involved in a B&B algorithm for Problem (P). We note

that Algorithm 2.1 merely provides the backbone of a generic B&B algorithm. In practice,

the order in which the subproblems are solved may vary and additional subproblems may

be solved to speed up the convergence of the algorithm. In the following paragraph, we

briefly describe the various steps involved in Algorithm 2.1.

At any particular iteration of the B&B algorithm, a node that has not yet been ‘fath-

omed’ (discarded) is selected for processing by the algorithm using some heuristic that tries

to minimize the overall number of nodes visited. Commonly used node selection heuristics

are ‘best-bound’ selection, which selects a node with the lowest lower bound, and ‘depth-
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first’ selection, which selects the ‘deepest node’ in the B&B tree (see [18, Section 3.1.2]).

Once an unfathomed node is selected, an upper bounding problem is solved (typically us-

ing ‘local optimization’ approaches, see [18, Section 6]) with the variables restricted to the

domain of the node to try and generate a better feasible solution than the current best

solution. The reader is directed to the excellent survey [18] and the thesis [28] for popular

upper bounding approaches for Problem (P). Next, domain reduction techniques are used

to try and eliminate parts of the domain of the node that do not contain feasible points

that are better than the current best solution [19, 182]. If the domain reduction techniques

determine, for instance, that Problem (P) does not contain any feasible points on the do-

main of the node (that have better objective value than the current upper bound 𝑈𝐵𝐷),

then the node is ‘fathomed by infeasibility’ (‘fathomed by optimality’) and a new node is

selected for consideration. While the bounds tightening steps are not necessary to guarantee

convergence, they typically play an important role in boosting the performance of global

optimization solvers since these steps not only help fathom infeasible/suboptimal regions of

the search space, but also help in the construction of tighter relaxations (and consequently,

tighter lower bounding problems). The reader is directed to the articles [19, 182] for a sur-

vey of bounds tightening techniques for Problem (P) that are employed by state-of-the-art

global optimization software. Section 2.3.2.2 presents some bounds tightening techniques

that are of particular interest to this thesis. The fourth step in the B&B algorithm involves

the generation of guaranteed lower bounds on the optimal objective value of Problem (P)

when its variables are restricted to the domain of the node under consideration. If the com-

puted lower bound on a node exceeds the objective function value of the best known feasible

point, then the node can be ‘fathomed by value dominance’ and a new node is selected for

consideration. In addition to the computational cost of generating lower bounds, both the

strength of the lower bounds generated by the lower bounding problem and the rate at

which the lower bounds converge to the optimal objective value as the node is partitioned

influence the effectiveness of the B&B scheme (see Chapters 5 and 6). Section 2.3.2.1 will

briefly review popular lower bounding techniques for Problem (P). If the node under con-

sideration has not been fathomed, the last key step of Algorithm 2.1 subdivides (the domain

of) the node into two (in general, multiple) subnodes (subdomains) on each of which all of

the previously described steps may be carried out at a later point in the course of the algo-

rithm (this step makes the B&B algorithm a divide-and-conquer algorithm). Once again,
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the choice of branching heuristic can greatly impact the number of nodes visited by the

B&B algorithm; therefore, several advanced heuristics have been proposed in the literature

to try and make effective subdivision choices [18, 19]. The B&B procedure selects a new

node using the selection rule and repeats the above steps so long as the termination criteria

of the algorithm have not been satisfied.

The next few subsections present overviews of some common approaches for the lower

bounding steps in Algorithm 2.1. These sections also introduce associated definitions and

background results that will be important for the rest of this thesis.

2.3.2.1 Lower bounding techniques

This section mentions some popular, automatable techniques for generating guaranteed

lower bounds on the optimal objective value of Problem (P) on any given node of the B&B

tree, and provides some background definitions and results that will be used in Chapters 5

and 6 to analyze their effectiveness (from a particular viewpoint). First, we discuss inter-

val arithmetic-based lower bounding procedures that can generate rigorous lower bounds.

Next, we outline convex relaxation-based lower bounding techniques that form the basis of

complete commercial global optimization solvers. Finally, we present a Lagrangian duality-

based lower bounding procedure that is of particular interest in stochastic programming

and structured optimization applications.

While some of the techniques that we mention in this section can be adapted to construct

lower bounding problems for more general classes of functions, we restrict our attention here

to the subclass of Problem (P) in which the functions 𝑓 , g, and h are ‘factorable’ (see [206,

Section 2.2] or [237, Section 3.1], for instance, for formal definitions of factorable functions).

We also note that factorable functions can be represented as a directed acyclic graph (DAG),

see Section 2.3.2.2 (also see references [237] and [239], for instance).

2.3.2.1.1 Interval-based techniques

Given two real numbers 𝑎 and 𝑏 with 𝑎 ≤ 𝑏, a one-dimensional interval [𝑎, 𝑏] is defined as the

set of all real numbers that lie between 𝑎 and 𝑏. More generally, given two vectors zL and

zU in R𝑛 with zL ≤ zU, the set
{︀
z ∈ R𝑛 : zL ≤ z ≤ zU

}︀
defines an 𝑛-dimensional interval

(also sometimes called a ‘box’) in R𝑛. One of the earliest introductions to interval analysis
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was presented by Moore as part of his thesis3 [171]. Although interval analysis provides a

computationally efficient and relatively easily implementable method for generating rigorous

bounds on the ranges of functions, key limitations of many applications of the technique

include: significant overestimation of the ranges of functions in practical problems, and slow

‘rates of convergence of the overestimation gap’ in a way that affects the performance of B&B

algorithms (see Definition 2.3.33). In this thesis, our primary use of interval analysis [172,

177] will be to bound the ranges of functions on intervals (see Definition 2.3.25). Popular

interval-based techniques for bounding the ranges of functions on intervals include [172,

177, 184]: natural interval extensions, centered forms, slope forms, and Taylor forms.

While interval analysis techniques find uses within other noninterval techniques for con-

structing lower bounding problems (for example, see [4, 154]), interval analysis-based tech-

niques can also be used as standalone methods for constructing lower bounding problems

for Problem (P) (that can be used in Algorithm 2.1) as detailed below. The ranges of each

of the inequality constraint functions in Problem (P) can be bounded on the domain, 𝑀𝑛,

of node 𝑛 in the B&B tree by bounding the ranges of these functions on an interval that

contains 𝑀𝑛 using interval arithmetic (the interval hull of 𝑀𝑛, see Definition 2.3.22, is usu-

ally easy to construct for the domains of B&B nodes and is used in practice to enclose 𝑀𝑛).

Once valid bounds on the ranges of the inequality constraint functions are obtained, we can

check if those bounds do not intersect with the interval (−∞, 0] to determine whether any

of those constraints are necessarily (individually) violated on 𝑀𝑛. Similarly, the nonsatis-

faction of any of the equality constraints on 𝑀𝑛 can potentially be detected by checking for

empty intersections between valid bounds on the ranges of the equality constraint functions

and the degenerate interval [0, 0]. If any of the equality or inequality constraints have been

proven to be violated at each point in the domain of node 𝑛 using the above techniques,

the node can be fathomed by infeasibility; otherwise, a guaranteed lower bound, 𝐿𝐵𝐷𝑛,

on the optimal objective value of Problem (P) with its variables restricted to 𝑀𝑛 can be

obtained by computing a lower bound on the range of the objective function on 𝑀𝑛 via

interval analysis.

The following definitions are adapted from [38], and will be used, in particular, by the

analyses in Chapters 5 and 6.

3A major aim of Moore’s thesis was to develop an efficient and automatable technique for constructing
rigorous bounds on the ranges of functions on intervals, with applications to automated rigorous error
analysis.
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Definition 2.3.22. [Interval Hull] Let 𝑍 ⊂ R𝑛 be a nonempty bounded set. The interval

hull of 𝑍, denoted by �𝑍, is the smallest element of IR𝑛 that encloses 𝑍, i.e., for every

interval 𝑍 ∈ IR𝑛 that encloses 𝑍 (i.e., 𝑍 ⊂ 𝑍), we have �𝑍 ⊂ 𝑍.

Definition 2.3.23. [Width of an Interval] Let 𝑍 = [𝑧L1 , 𝑧
U
1 ] × · · · × [𝑧L𝑛 , 𝑧

U
𝑛 ] be an element

of IR𝑛. The width of 𝑍, denoted by 𝑤(𝑍), is given by

𝑤(𝑍) := max
𝑖∈{1,··· ,𝑛}

(𝑧U𝑖 − 𝑧L𝑖 ).

The choice of the ∞-norm in the above definition of the interval width is not restrictive

because all norms on R𝑛 are equivalent, see Lemma 2.2.2. The next definition specializes

the notion of Hausdorff metric to one-dimensional intervals.

Definition 2.3.24. [Hausdorff Metric] Let 𝑋 = [𝑥L, 𝑥U] and 𝑌 = [𝑦L, 𝑦U] be two intervals

in IR. The Hausdorff metric between 𝑋 and 𝑌 , denoted by 𝑑𝐻(𝑋,𝑌 ), is given by

𝑑𝐻(𝑋,𝑌 ) = max{
⃒⃒
𝑥L − 𝑦L

⃒⃒
,
⃒⃒
𝑥U − 𝑦U

⃒⃒
} = max

{︂
max
𝑥∈𝑋

min
𝑦∈𝑌

|𝑥− 𝑦|,max
𝑦∈𝑌

min
𝑥∈𝑋

|𝑥− 𝑦|
}︂
.

The following definition introduces the notion of inclusion functions. Note that inter-

val arithmetic techniques can be readily used to derive inclusion functions for factorable

functions [49, 62, 193].

Definition 2.3.25. [Inclusion Function] Let 𝑉 ⊂ R𝑛, and suppose f : 𝑉 → R𝑚 is continu-

ous. For any 𝑍 ⊂ 𝑉 , let f(𝑍) denote the image of 𝑍 under f . A mapping 𝐹 : I𝑉 → IR𝑚 is

called an inclusion function for f on I𝑉 if, for every 𝑍 ∈ I𝑉 , we have f(𝑍) ⊂ 𝐹 (𝑍).

The next definitions introduce the notion of Hausdorff convergence order of an inclusion

function (cf. Definition 6.3.2 in Chapter 6) and the range order of a scalar-valued function.

Definition 2.3.26. [Hausdorff Convergence Order of an Inclusion Function] Let 𝑉 ⊂ R𝑛

be a nonempty set, ℎ : 𝑉 → R be a continuous function, and 𝐻 be an inclusion function of

ℎ on I𝑉 .

The inclusion function 𝐻 is said to have Hausdorff convergence of order 𝛽 > 0 at a point

v ∈ 𝑉 if for each bounded 𝑄 ⊂ 𝑉 with v ∈ 𝑄, there exists 𝜏 ≥ 0 such that

𝑑𝐻(ℎ(𝑍), 𝐻(𝑍)) ≤ 𝜏𝑤(𝑍)𝛽, ∀𝑍 ∈ I𝑄 with v ∈ 𝑍.
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Moreover, 𝐻 is said to have Hausdorff convergence of order 𝛽 > 0 on 𝑉 if it has Hausdorff

convergence of order (at least) 𝛽 at each v ∈ 𝑉 , with the constant 𝜏 independent of v.

Definition 2.3.27. [Range Order] Let 𝑉 ⊂ R𝑛 be a bounded set. Let 𝑓 : 𝑉 → R be

continuous, and let 𝐹 be an inclusion function for 𝑓 on I𝑉 . The inclusion function 𝐹 is

said to have range of order 𝛼 > 0 at a point v ∈ 𝑉 if there exists 𝜏 ≥ 0 such that for every

𝑍 ∈ I𝑉 with v ∈ 𝑍,

𝑤(𝐹 (𝑍)) ≤ 𝜏𝑤(𝑍)𝛼.

The function 𝑓 itself is said to have a range of order 𝛼 > 0 at v ∈ 𝑉 if its image 𝑓 has range

of order 𝛼 at v. The functions 𝐹 and 𝑓 are said to have ranges of order 𝛼 > 0 on 𝑉 if they

have ranges of order (at least) 𝛼 at each v ∈ 𝑉 , with the constant 𝜏 independent of v.

2.3.2.1.2 Convex relaxation-based techniques

A second popular approach for constructing lower bounding problems for Problem (P)

proceeds via the construction of convex underestimators/relaxations (and concave overes-

timators/relaxations) of the functions in Problem (P). The notions of convex and concave

relaxations of a function are central to the developments in this thesis, and are formally

defined below. Many of the definitions and results in this section are adapted from [38],

and will especially lay the groundwork for the analyses in Chapters 5 and 6.

Definition 2.3.28. [Convex and Concave Relaxations] Given a convex set 𝑍 ⊂ R𝑛 and a

function 𝑓 : 𝑍 → R, a convex function 𝑓 cv
𝑍 : 𝑍 → R is called a convex relaxation of 𝑓 on

𝑍 if 𝑓 cv
𝑍 (z) ≤ 𝑓(z), ∀z ∈ 𝑍. Similarly, a concave function 𝑓 cc

𝑍 : 𝑍 → R is called a concave

relaxation of 𝑓 on 𝑍 if 𝑓 cc
𝑍 (z) ≥ 𝑓(z), ∀z ∈ 𝑍.

Given a (continuous) convex relaxation 𝑓 cv of the objective function 𝑓 on conv(𝑋), (con-

tinuous) convex relaxations 𝑔cv𝑗 , for each 𝑗 ∈ {1, · · · ,𝑚𝐼}, of the corresponding inequality

constraint functions 𝑔𝑗 on conv(𝑋), and (continuous) convex and concave relaxations ℎcv𝑘

and ℎcc𝑘 , for each 𝑘 ∈ {1, · · · ,𝑚𝐸}, respectively, of the corresponding equality constraint

functions ℎ𝑘 on conv(𝑋), the following convex optimization problem provides a valid lower
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bound on the optimal objective value of Problem (P):

min
x

𝑓 cv(x) (Pcv)

s.t. 𝑔cv𝑗 (x) ≤ 0, ∀𝑗 ∈ {1, · · · ,𝑚𝐼},

ℎcv𝑘 (x) ≤ 0, ℎcc𝑘 (x) ≥ 0, ∀𝑘 ∈ {1, · · · ,𝑚𝐸},

x ∈ conv(𝑋).

Since the extent of the gap between convex and concave relaxations and the corre-

sponding functions determines, in part, the efficiency of B&B algorithms, we are typically

interested in constructing the tightest possible convex and concave relaxations of the func-

tions in Problem (P). The next definition introduces the corresponding notion of convex

and concave envelopes.

Definition 2.3.29. [Convex and Concave Envelopes] Given a convex set 𝑍 ⊂ R𝑛 and a

function 𝑓 : 𝑍 → R, a convex function 𝑓 cv,env
𝑍 : 𝑍 → R is called the convex envelope of 𝑓 on

𝑍 if 𝑓 cv,env
𝑍 is a convex relaxation of 𝑓 on 𝑍 and for every convex relaxation 𝑓 cv

𝑍 : 𝑍 → R,

we have 𝑓 cv,env
𝑍 (z) ≥ 𝑓 cv

𝑍 (z), ∀z ∈ 𝑍. Similarly, a concave function 𝑓 cc,env
𝑍 : 𝑍 → R is called

the concave envelope of 𝑓 on 𝑍 if 𝑓 cc,env
𝑍 is a concave relaxation of 𝑓 on 𝑍 and for every

concave relaxation 𝑓 cc
𝑍 : 𝑍 → R, we have 𝑓 cc,env

𝑍 (z) ≤ 𝑓 cc
𝑍 (z), ∀z ∈ 𝑍.

While the convex and concave envelopes of so-called ‘elementary functions’ are known on

interval domains [142, 154] and the library of known convex envelopes is ever-increasing [121,

122, 147, 155, 157, 187, 221, 223], computing the envelopes of most functions is usually a

nontrivial task since the envelopes of functions that are defined as compositions of other

functions are not easily calculable in general. Consequently, global optimization algorithms

and software work with popular and easily automatable techniques for the construction of

convex and concave relaxations such as the auxiliary variable method [213], McCormick’s

relaxation technique and its generalizations [124, 154, 207, 227], 𝛼BB relaxations and its

variants [3, 4, 6], and advanced relaxation strategies for problems with special structures [12,

45, 120, 161–163, 208, 209, 250].

The remainder of the results in this section are best viewed, in the context of this thesis,

as building up the framework for the cluster problem and convergence order analyses of

B&B algorithms for Problem (NLP). The following result establishes sufficient conditions
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for lower semicontinuity of the convex envelope. Note that a weaker version of this result is

presented in [188, Corollary 17.2.1], and stronger versions of this result are stated without

proof in [69, p. 349] (where the assumption that the function 𝑓 is bounded above is relaxed)

and in [222, p. 253] (where the assumptions that the function 𝑓 is bounded above and the

set 𝑊 is bounded are relaxed).

Lemma 2.3.30. Let 𝑍 ⊂ R𝑛 be a nonempty compact convex set and 𝑓 : 𝑍 → R be a lower

semicontinuous function on 𝑍 bounded above by 𝑀 ∈ R. Let 𝑓 cv,env
𝑍 denote the convex

envelope of 𝑓 on 𝑍. Then 𝑓 cv,env
𝑍 is lower semicontinuous on 𝑍.

Proof. The function 𝑓 is lower semicontinuous on the compact set 𝑍 if and only if its

epigraph {(x, 𝑟) : x ∈ 𝑍, 𝑟 ≥ 𝑓(x)} is closed. Consequently, we have that the set 𝑆 :=

{(x, 𝑟) : x ∈ 𝑍, 𝑟 ≥ 𝑓(x), 𝑟 ≤ 𝑀} is compact. Theorem 17.2 in [188] implies that conv(𝑆)

is a compact convex set. Therefore, the set conv(𝑆) ∪ {(x, 𝑟) : x ∈ 𝑍, 𝑟 ≥ 𝑓(x)} is closed,

which implies that the epigraph of the convex envelope
{︀

(x, 𝑟) : x ∈ 𝑍, 𝑟 ≥ 𝑓 cv,env
𝑍 (x)

}︀
is

closed, which in turn implies that 𝑓 cv,env
𝑍 is lower semicontinuous on 𝑍.

Because B&B algorithms involve the construction of convex and concave relaxations on

successively refined partition elements, the following notion of schemes of relaxations [38]

will prove useful in the analysis of their convergence rates.

Definition 2.3.31. [Schemes of Convex and Concave Relaxations] Let 𝑉 ⊂ R𝑛 be a

nonempty convex set, and let 𝑓 : 𝑉 → R. Assume that for every 𝑍 ∈ I𝑉 , we can con-

struct functions 𝑓 cv
𝑍 : 𝑍 → R and 𝑓 cc

𝑍 : 𝑍 → R that are convex and concave relaxations,

respectively, of 𝑓 on 𝑍. The sets of functions (𝑓 cv
𝑍 )𝑍∈I𝑉 and (𝑓 cc

𝑍 )𝑍∈I𝑉 define schemes of

convex and concave relaxations, respectively, of 𝑓 in 𝑉 , and the set of pairs of functions

(𝑓 cv
𝑍 , 𝑓 cc

𝑍 )𝑍∈I𝑉 defines a scheme of relaxations of 𝑓 in 𝑉 . The schemes of relaxations are

called continuous when 𝑓 cv
𝑍 and 𝑓 cc

𝑍 are continuous on 𝑍 for each 𝑍 ∈ I𝑉 .

The next definition specializes the definition of Hausdorff convergence order of an inclu-

sion function (see Definition 2.3.26) to schemes of relaxations.

Definition 2.3.32. [Hausdorff Convergence Order of Schemes of Relaxations] Let 𝑉 ⊂ R𝑛

be a nonempty convex set, and 𝑓 : 𝑉 → R be a continuous function. Let (𝑓 cv
𝑍 )𝑍∈I𝑉 and

(𝑓 cc
𝑍 )𝑍∈I𝑉 respectively denote schemes of convex and concave relaxations of 𝑓 in 𝑉 .

55



The scheme of relaxations (𝑓 cv
𝑍 , 𝑓 cc

𝑍 )𝑍∈I𝑉 is said to have Hausdorff convergence of order

𝛽 > 0 at v ∈ 𝑉 if for each bounded 𝑄 ⊂ 𝑉 with v ∈ 𝑄, there exists 𝜏 ≥ 0 such that

𝑑𝐻(𝑓(𝑍), 𝐻𝑓 (𝑍)) ≤ 𝜏𝑤(𝑍)𝛽, ∀𝑍 ∈ I𝑄 with v ∈ 𝑍,

where

𝐻𝑓 (𝑍) :=

[︂
inf
z∈𝑍

𝑓 cv
𝑍 (z), sup

z∈𝑍
𝑓 cc
𝑍 (z)

]︂
, ∀𝑍 ∈ I𝑄.

The scheme (𝑓 cv
𝑍 , 𝑓 cc

𝑍 )𝑍∈I𝑉 is said to have Hausdorff convergence of order 𝛽 on 𝑉 if it has

Hausdorff convergence of order (at least) 𝛽 at each v ∈ 𝑉 , with a constant 𝜏 independent

of v.

The following definition of pointwise convergence order [38] (cf. Definition 6.3.4) pro-

vides a stronger notion of convergence order than Hausdorff convergence order (as demon-

strated by Lemma 2.3.36; also see [38, Theorem 1]), and will be particularly useful in the

analysis of the convergence rates of B&B algorithms for constrained problems in Chapter 6.

Definition 2.3.33. [Pointwise Convergence Order of Schemes of Relaxations] Let 𝑉 ⊂ R𝑛

be a nonempty convex set, and 𝑓 : 𝑉 → R be a continuous function. Let (𝑓 cv
𝑍 )𝑍∈I𝑉 and

(𝑓 cc
𝑍 )𝑍∈I𝑉 respectively denote schemes of convex and concave relaxations of 𝑓 in 𝑉 . The

scheme of convex relaxations (𝑓 cv
𝑍 )𝑍∈I𝑉 is said to have pointwise convergence of order 𝛾 > 0

at v ∈ 𝑉 if for each bounded 𝑄 ⊂ 𝑉 with v ∈ 𝑄, there exists 𝜏 cv ≥ 0 such that4

sup
z∈𝑍

|𝑓(z) − 𝑓 cv
𝑍 (z)| ≤ 𝜏 cv𝑤(𝑍)𝛾 , ∀𝑍 ∈ I𝑄 with v ∈ 𝑍.

Similarly, the scheme of concave relaxations (𝑓 cc
𝑍 )𝑍∈I𝑉 is said to have pointwise convergence

of order 𝛾 > 0 at v ∈ 𝑉 if for each bounded 𝑄 ⊂ 𝑉 with v ∈ 𝑄, there exists 𝜏 cc ≥ 0 such

that

sup
z∈𝑍

|𝑓 cc
𝑍 (z) − 𝑓(z)| ≤ 𝜏 cc𝑤(𝑍)𝛾 , ∀𝑍 ∈ I𝑄 with v ∈ 𝑍.

The scheme of relaxations (𝑓 cv
𝑍 , 𝑓 cc

𝑍 )𝑍∈I𝑉 is said to have pointwise convergence of order 𝛾 > 0

at v ∈ 𝑉 if the corresponding schemes of convex and concave relaxations have pointwise

convergence of orders (at least) 𝛾 at v. Furthermore, the schemes of relaxations are said to

have pointwise convergence of order 𝛾 > 0 on 𝑉 if they have pointwise convergence of order

4While the use of the absolute value function in the following expressions is redundant, we use it instead
of parentheses anyway because it looks better...
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at least 𝛾 at each v ∈ 𝑉 , with constants 𝜏 cv and 𝜏 cc independent of v.

The next definition presents a notion of convergence order of individual schemes of

convex and concave relaxations [238] (cf. Definition 6.3.3) based on the notion of Hausdorff

convergence order of a scheme of relaxations (see Definition 2.3.32), which will prove to be

more relevant in the context of B&B algorithms for global optimization.

Definition 2.3.34. [Convergence Orders of Schemes of Convex and Concave Relaxations]

Let 𝑉 ⊂ R𝑛 be a nonempty bounded convex set, and 𝑓 : 𝑉 → R be a continuous function.

Let (𝑓 cv
𝑍 )𝑍∈I𝑉 and (𝑓 cc

𝑍 )𝑍∈I𝑉 respectively denote continuous schemes of convex and concave

relaxations of 𝑓 in 𝑉 .

The scheme of convex relaxations (𝑓 cv
𝑍 )𝑍∈I𝑉 is said to have convergence of order 𝛽 > 0

at v ∈ 𝑉 if there exists 𝜏 cv ≥ 0 such that

min
z∈𝑍

𝑓(z) − min
z∈𝑍

𝑓 cv
𝑍 (z) ≤ 𝜏 cv𝑤(𝑍)𝛽, ∀𝑍 ∈ I𝑉 with v ∈ 𝑍.

Similarly, the scheme of concave relaxations (𝑓 cc
𝑍 )𝑍∈I𝑉 is said to have convergence of order

𝛽 > 0 at v ∈ 𝑉 if there exists 𝜏 cc ≥ 0 such that

max
z∈𝑍

𝑓 cc
𝑍 (z) − max

z∈𝑍
𝑓(z) ≤ 𝜏 cc𝑤(𝑍)𝛽, ∀𝑍 ∈ I𝑉 with v ∈ 𝑍.

The schemes (𝑓 cv
𝑍 )𝑍∈I𝑉 and (𝑓 cc

𝑍 )𝑍∈I𝑉 are said to have convergence of order 𝛽 > 0 on 𝑉 if

they have convergence of order (at least) 𝛽 at each v ∈ 𝑉 , with the constants 𝜏 cv and 𝜏 cc

independent of v.

The following result from [102] will be useful in the convergence order analysis of lower

bounding schemes for B&B algorithms.

Lemma 2.3.35. Let 𝑍 ⊂ R𝑛 be nonempty, and functions 𝑓 : 𝑍 → R and 𝑔 : 𝑍 → R be

bounded on 𝑍. Then

⃒⃒⃒⃒
sup
z∈𝑍

𝑓(z) − sup
z∈𝑍

𝑔(z)

⃒⃒⃒⃒
≤ sup

z∈𝑍
|𝑓(z) − 𝑔(z)|,⃒⃒⃒⃒

inf
z∈𝑍

𝑓(z) − inf
z∈𝑍

𝑔(z)

⃒⃒⃒⃒
≤ sup

z∈𝑍
|𝑓(z) − 𝑔(z)|.

Proof. See Proposition 11.7 in [102].
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Lemma 2.3.36. Let 𝑉 ⊂ R𝑛 be a nonempty compact convex set, and (𝑓 cv
𝑍 )𝑍∈I𝑉 and

(𝑓 cc
𝑍 )𝑍∈I𝑉 respectively denote schemes of convex and concave relaxations of a bounded

function 𝑓 : 𝑉 → R in 𝑉 . If either scheme has pointwise convergence of order 𝛾 > 0, it has

convergence of order 𝛽 ≥ 𝛾.

Proof. By noting from Definition 2.3.33 that

sup
z∈𝑍

|𝑓(z) − 𝑓 cv
𝑍 (z)| ≤ 𝜏 cv𝑤(𝑉 )𝛾 , ∀𝑍 ∈ I𝑉,

sup
z∈𝑍

|𝑓 cc
𝑍 (z) − 𝑓(z)| ≤ 𝜏 cc𝑤(𝑉 )𝛾 , ∀𝑍 ∈ I𝑉,

which implies that the schemes of convex and concave relaxations are bounded, the result

follows from Lemma 2.3.35 via

inf
z∈𝑍

𝑓(z) − inf
z∈𝑍

𝑓 cv
𝑍 (z) ≤ sup

z∈𝑍
|𝑓(z) − 𝑓 cv

𝑍 (z)|, ∀𝑍 ∈ I𝑉,

and

sup
z∈𝑍

𝑓 cc
𝑍 (z) − sup

z∈𝑍
𝑓(z) ≤ sup

z∈𝑍
|𝑓 cc

𝑍 (z) − 𝑓(z)|, ∀𝑍 ∈ I𝑉.

Finally, we review a couple of key results from Bompadre and Mitsos [38] that will be

relevant to our work on convergence order analysis in Chapter 6. The following two results

together imply that the schemes of envelopes of a nonlinear twice continuously differentiable

function have exactly second-order pointwise convergence (on nondegenerate intervals).

Theorem 2.3.37. Let 𝑉 ⊂ R𝑛 be a nonempty open bounded convex set, and 𝑓 : 𝑉 → R be

a nonlinear, twice continuously differentiable function. Let (𝑓 cv
𝑍 , 𝑓 cc

𝑍 )𝑍∈I𝑉 denote a scheme

of relaxations of 𝑓 in 𝑉 . Then the scheme (𝑓 cv
𝑍 , 𝑓 cc

𝑍 )𝑍∈I𝑉 has pointwise convergence of order

at most two on 𝑉 .

Proof. See Theorem 2 in [38].

Theorem 2.3.38. Let 𝑉 ⊂ R𝑛 be a nonempty open bounded convex set, and 𝑓 : 𝑉 → R

be a twice continuously differentiable function. Let (𝑓 cv,env
𝑍 , 𝑓 cc,env

𝑍 )𝑍∈I𝑉 denote the scheme

of envelopes of 𝑓 in 𝑉 . Then the scheme (𝑓 cv,env
𝑍 , 𝑓 cc,env

𝑍 )𝑍∈I𝑉 has pointwise convergence of

order at least two on 𝑉 .

Proof. See Theorem 10 in [38].
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2.3.2.1.3 Lagrangian duality-based techniques

The last lower bounding technique that we consider in this chapter is based on Lagrangian

duality (see [13, Chapter 6] and [30, Chapter 5] for additional information, especially for ge-

ometric interpretations of the Lagrangian dual problem). Given a particular instance of the

constrained optimization problem, Problem (P), we can construct the following associated

Lagrangian dual problem5 that provides a guaranteed lower bound (see Theorem 2.3.39) on

the optimal objective value of Problem (P):

sup
𝜇≥0,𝜆

min
x∈𝑋

𝑓(x) + 𝜇Tg(x) + 𝜆Th(x). (D)

Under appropriate convexity assumptions on the functions and sets in Problem (P) (which

requires, in part, that Problem (P) contain no discrete variables in its formulation; recall the

standing assumptions of the continuity of the functions 𝑓 , g, and h and the compactness of

𝑋) and additional constraint qualification assumptions, the ‘primal problem’, Problem (P),

and the Lagrangian dual problem (hereafter simply referred to as the dual problem), Prob-

lem (D), have the same optimal objective function value (when these two values are equal,

we say that ‘strong duality’ holds). The dual function, defined as 𝑑 : R𝑚𝐼
+ × R𝑚𝐸 → R

with 𝑑 : R𝑚𝐼
+ × R𝑚𝐸 ∋ (𝜇,𝜆) ↦−→ min

x∈𝑋
𝑓(x) + 𝜇Tg(x) + 𝜆Th(x) when 𝑋 is nonempty, is a

convex function that is typically nondifferentiable6; consequently, the outer maximization in

Problem (D) is usually solved by applying a nonsmooth optimization algorithm to 𝑑 [100].

Even when conditions for strong duality are not satisfied, solving the dual problem provides

a valid lower bound as implied by the following theorem.

Theorem 2.3.39. [Weak Duality] The optimal objective value of Problem (D) provides a

lower bound on the optimal objective value of Problem (P).

Proof. See Theorem 6.2.1 in [13] or Proposition 5.1.3 in [30], for instance.

An immediate consequence of the above result is that not solving the outer maximization

in Problem (D) to optimality still yields a valid lower bound for Problem (P) (this is

particularly useful from a practical viewpoint because numerical nonsmooth optimization

5In fact, depending on which constraints are ‘dualized’, we can construct several Lagrangian dual problems
(cf. Section 2.3.3.1.2); however, we only consider one particular way of constructing the Lagrangian dual
problem in this section.

6Although the dual function is typically nondifferentiable only on a set of measure zero, it is usually
nondifferentiable at optimal solutions to Problem (D).
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algorithms are not yet as computationally efficient as their smooth counterparts). While it is

not apparent how solving Problem (D) is computationally relevant for nonconvex NLPs and

MINLPs (since the inner minimization of Problem (D) is itself a nonconvex NLP/MINLP

in these cases), Section 2.3.3.1.2 presents one application of Lagrangian duality-based lower

bounds for stochastic programming problems, where the dual lower bounding problem can

exploit the nearly-decomposable structure of stochastic programs to generate lower bounds

in a ‘computationally scalable’ manner. Another advantage of solving the Lagrangian dual

problem is that it usually provides tighter lower bounds than the convex relaxation-based

lower bounding approaches described in Section 2.3.2.1.2, as seen from the following result

(also see [71]). A formal proof of this result is deferred to Lemma 6.4.20 in Chapter 6 where

it fits in more naturally.

Lemma 2.3.40. Let 𝑓 cv and gcv denote (any) convex relaxations of 𝑓 and g, respectively,

on conv(𝑋), and let hcv and hcc denote (any) convex and concave relaxations, respectively,

of h on conv(𝑋). Assume that strong duality holds for the convex relaxation-based lower

bounding problem that uses the relaxations 𝑓 cv, gcv, hcv, and hcc in its construction (see

Problem (Pcv)). Then the lower bound obtained by solving Problem (D) is at least as strong

as that obtained by solving the above convex relaxation-based lower bounding problem.

2.3.2.2 Bounds tightening techniques

Bounds tightening/domain reduction techniques typically play a crucial role in accelerating

the convergence of B&B algorithms for Problem (P) by discarding regions of the search space

that are guaranteed to exclude optimal solutions, and can enable the solution of otherwise

challenging instances of Problem (P) in reasonable times [19, 182]. Bounds tightening

techniques not only help shrink the search space for optimization algorithms, but also play

an important role in generating tight bounds by means of generating tighter relaxations

of the nonconvex functions involved, for instance. Several bounds tightening techniques

have been proposed in the literature for nonconvex MINLPs [19, 182, 224] that are usually

either feasibility-based [17, 94], or optimality-based [194, 246]. This section reviews some

bounds tightening techniques that are relevant to this thesis. Section 2.3.3.1.1 and Chapter 3

detail additional tailored domain reduction techniques for two-stage stochastic programming

problems.

The least computationally expensive bounds tightening technique considered in this
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thesis is a feasibility-based bounds tightening (FBBT) technique called forward-backward

interval propagation [234, 239]. In this approach, interval bounds on the variables are

first propagated forward through a computational graph representation of Problem (P)

to deduce interval bounds on intermediate node and constraint expressions using interval

arithmetic [172]. Next, constraint information (such as the types of constraints and their

‘right-hand side values’) is enforced to potentially shrink the estimated ranges of the con-

straint expressions. Finally, the updated interval bounds on the constraint expressions are

propagated backward through the graph, by applying interval-based inverses of operations,

to potentially determine tighter bounds on the problem variables. Since propagating inter-

val bounds is a relatively cheap operation, the above procedure is usually repeated until

the improvement in variables’ bounds falls below a predefined threshold. We consider the

following example to illustrate an application of the forward-backward interval propagation

technique (also see Section 2.2.1 and Figure 3 in [233]).

Example 2.3.41. Consider the problem:

min
𝑥,𝑦

𝑥 + 𝑦

s.t. 𝑥𝑦 = 1,

𝑥2 + 𝑦2 ≤ 100,

𝑥 ∈ [0, 10], 𝑦 ∈ [0, 10].

Figure 2-1 depicts a computational graph representation of the above problem (with EQL

corresponding to the equality constraint, OBJ corresponding to the objective, and LEQ corre-

sponding to the inequality constraint in the above example). Figure 2-2 notes the intervals

obtained after a single round of application of the above-described forward-backward inter-

val propagation technique. The reader can verify that the resulting interval bounds on the

variables provide a tight description of the feasible set in this case.

Although tight interval bounds were obtained using the forward-backward interval prop-

agation technique for Example 2.3.41 in a computationally inexpensive manner, a key limi-

tation of the technique is that its application usually does not yield such a tight description

of the feasible region in practical applications.

A second feasibility-based bounds tightening technique that we consider in this thesis
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Figure 2-1: DAG representation of the instance of Problem (P) in Example 2.3.41.

involves the solution of auxiliary (convex) optimization problems. A lower bound on the 𝑖th

variable 𝑥𝑖 may be obtained by solving the following convex problem that uses feasibility

arguments to exclude regions of the search space (cf. Problem (Pcv)):

min
x

𝑥𝑖 (FBBT)

s.t. 𝑔cv𝑗 (x) ≤ 0, ∀𝑗 ∈ {1, · · · ,𝑚𝐼},

ℎcv𝑘 (x) ≤ 0, ℎcc𝑘 (x) ≥ 0, ∀𝑘 ∈ {1, · · · ,𝑚𝐸},

x ∈ conv(𝑋),

where gcv denotes a (continuous) convex relaxation of g on conv(𝑋), and hcv and hcc denote

(continuous) convex and concave relaxations, respectively, of h on conv(𝑋). An upper

bound on 𝑥𝑖 can be obtained by maximizing the objective in Problem (FBBT) instead

of minimizing it. We note that tighter bounds can potentially be obtained by imposing

the integrality restrictions on the discrete variables in Problem (P) and solving a convex

MINLP. Additionally, a computationally less expensive technique to obtain lower bounds

on 𝑥𝑖 is to further relax Problem (FBBT) to a linear program. In this thesis, we only

solve Problem (FBBT) (or its variants) to try and tighten the bounds on the variables that

participate in the construction of relaxations for the functions in Problem (P).
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If a valid upper bound 𝑈𝐵𝐷 on the optimal objective value of Problem (P) is available,

then tighter bounds on the problem variables can potentially be obtained by appending the

constraint 𝑓 cv(x) ≤ 𝑈𝐵𝐷 to Problem (FBBT), where 𝑓 cv denotes a (continuous) convex

relaxation of the objective function 𝑓 on conv(𝑋). We refer to the above technique (and

its variants, see Section 2.3.3.1.1) as ‘optimality-based bounds tightening’ (OBBT).

2.3.2.3 Full-space vs reduced-space branch-and-bound algorithms

As outlined in Section 2.3.2, deterministic global optimization algorithms for nonconvex

problems usually involve the concept of partitioning (‘branching on’) the domain of the

decision variables [101]. Since the worst-case running time of all known branch-and-bound

algorithms is exponential in the dimension of the variables partitioned, it may be advan-

tageous to utilize ‘reduced-space’ algorithms which only require branching on a subset of

the variables (as opposed to ‘full-space’ branch-and-bound algorithms which may branch

on all of the variables) to guarantee convergence. Despite the potential advantages of

reduced-space algorithms for nonconvex problems [20, 69, 76, 169, 217, 237], such methods

have not been widely adopted in the literature and in commercial software. One potential

reason is that widely-applicable reduced-space branch-and-bound algorithms often do not

seem to exhibit favorable convergence rates compared to their full-space counterparts (see

Chapter 6). The reader is directed to references [42, 76, 217] for a list of reduced-space

branch-and-bound algorithms in the literature.

In this section, we consider the following problem formulation:

min
x,y

𝑓(x,y) (RS)

s.t. g(x,y) ≤ 0,

h(x,y) = 0,

x ∈ 𝑋, y ∈ 𝑌,

where 𝑋 ⊂ R𝑛𝑥 and 𝑌 ⊂ R𝑛𝑦 are nonempty compact intervals, 𝑓 : 𝑋 × 𝑌 → R and

g : 𝑋 × 𝑌 → R𝑚𝐼 are partially convex with respect to x, i.e., 𝑓(·,y) and g(·,y) are convex

on 𝑋 for each y ∈ 𝑌 , and h : 𝑋 × 𝑌 → R𝑚𝐸 is affine with respect to x, i.e., h(·,y) is

affine on 𝑋 for each y ∈ 𝑌 . Additionally, we assume that the functions 𝑓 , g, and h are

continuous on 𝑋 × 𝑌 .
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When the dimension 𝑛𝑦 of the 𝑌 -space corresponding to the nonconvexities in the func-

tions in Problem (RS) is significantly smaller than the dimension 𝑛𝑥 of the 𝑋-space, it

may be computationally advantageous to partition only the 𝑌 -space during the course of a

branch-and-bound algorithm (assuming, of course, that the reduced-space algorithm is guar-

anteed to converge). However, the convergence rate of a reduced-space branch-and-bound

algorithm may be different compared to a similar full-space algorithm (see Chapter 6),

which makes it difficult to judge a priori whether using a reduced-space branch-and-bound

approach would be advantageous. Chapter 6 investigates the convergence orders of a con-

vex relaxation-based reduced-space lower bounding scheme for a subclass of Problem (RS)

[76] and a Lagrangian duality-based reduced-space lower bounding scheme [69, Section 3.3]

for Problem (RS), and determines necessary and sufficient conditions under which these

reduced-space lower bounding schemes have favorable convergence properties.

Algorithm 2.2 outlines a generic reduced-space branch-and-bound algorithm for Prob-

lem (RS). It should be noted that Algorithm 2.2 merely provides the backbone of a generic

reduced-space branch-and-bound algorithm. In practice, the order in which the subproblems

are solved may vary and additional subproblems may be solved to speed up the convergence

of the algorithm. The reader can compare and contrast Algorithm 2.2 with the full-space

branch-and-bound Algorithm 2.1. A key distinction between the two algorithms is that the

branching step in Algorithm 2.2 only partitions the domains of the y variables, whereas the

branching step in Algorithm 2.1 may partition the domains of all of the variables. We direct

the reader to references [76] and [69] for two widely-applicable instances of Algorithm 2.2,

and for examples of their application.

2.3.2.4 Convergence of branch-and-bound algorithms

In this section, we review some background definitions and results, primarily from Chap-

ter IV of Horst and Tuy [101], that form the basis of a convergence theory for a wide

class of B&B algorithms (such as Algorithm 2.1 for Problem (P) and Algorithm 2.2 for

Problem (RS)). The definitions and results in this section will be used to establish the

convergence of a (reduced-space) branch-and-bound algorithm in Chapter 3 for solving a

class of two-stage stochastic MINLPs. For ease of exposition, the results in this section

will be presented in the context of the reduced-space formulation Problem (RS). The first

definition imposes a requirement on the branching step.
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Algorithm 2.2 Outline of a generic reduced-space B&B algorithm for Problem (RS)

Initialize:

a. Iteration counter 𝑘 = 0, interval bounds 𝑋0 and 𝑌 0 on x and y, respectively, after
the optional application of reduced-space preprocessing techniques to the input data,
and tolerances 𝜀 > 0, 𝜀𝑙 > 0, and 𝜀𝑢 > 0 such that 𝜀𝑙 + 𝜀𝑢 ≤ 𝜀.

b. Domain of the root node 𝑀0 := 𝑋0 × 𝑌 0, and the initial partition 𝒫0 = {𝑀0}.

c. Objective function value of the best found feasible point, 𝑈𝐵𝐷 = +∞; lower bound
on the optimal objective value on the root node, 𝐿𝐵𝐷0 = −∞; and the best found
feasible point, {x*,y*} = ∅.

repeat

1. (Node Selection) Pick an active node 𝑛 ∈
{︀
𝑛 ∈ N ∪ {0} : 𝑀𝑛 ∈ 𝒫𝑘

}︀
using some

node selection heuristic and set 𝒫𝑘+1 = 𝒫𝑘∖{𝑀𝑛}.

2. (Optional Upper Bounding Step) Solve an upper bounding problem on 𝑀𝑛 with a
termination tolerance of 𝜀𝑢 to try and determine a feasible point. Update 𝑈𝐵𝐷,
(x*,y*) if a feasible solution better than the current best solution is obtained.

3. (Optional Bounds Tightening Step) Apply finite reduced-space bounds tightening
techniques to obtain 𝑋̄𝑛 ⊂ 𝑋𝑛 and 𝑌 𝑛 ⊂ 𝑌 𝑛, and set 𝑋𝑛 = 𝑋̄𝑛, 𝑌 𝑛 = 𝑌 𝑛. If
either 𝑋𝑛 or 𝑌 𝑛 is empty, goto Step 6. Otherwise, update 𝑀𝑛 = 𝑋𝑛 × 𝑌 𝑛.

4. (Lower Bounding Step) Solve a reduced-space lower bounding problem on 𝑀𝑛 to
𝜀𝑙-optimality to obtain the lower bound 𝐿𝐵𝐷𝑛 (if the lower bounding problem on
𝑀𝑛 is infeasible, set 𝐿𝐵𝐷𝑛 = +∞). If node 𝑛 can be fathomed, goto Step 6.

5. (Branching Step) Partition 𝑀𝑛 into 𝑀𝑛1 and 𝑀𝑛2 by branching only on the 𝑌 -
space. Set 𝒫𝑘+1 = 𝒫𝑘+1 ∪ {𝑀𝑛1} ∪ {𝑀𝑛2}, 𝐿𝐵𝐷𝑛1 = 𝐿𝐵𝐷𝑛2 = 𝐿𝐵𝐷𝑛.

6. Set 𝒫𝑘+1 = 𝒫𝑘+1∖
{︀
𝑀𝑝 ∈ 𝒫𝑘+1 : 𝐿𝐵𝐷𝑝 ≥ 𝑈𝐵𝐷 − 𝜀

}︀
, 𝑘 = 𝑘 + 1.

until 𝒫𝑘 = ∅
If 𝑈𝐵𝐷 < +∞, then (x*,y*) provides an 𝜀-optimal solution to Problem (P).

Definition 2.3.42. [Exhaustive Partitioning] Given sets 𝑋 ⊂ R𝑛𝑥 and 𝑌 ∈ IR𝑛𝑦 , a sub-

division of 𝑋 × 𝑌 is said to be exhaustive on 𝑌 if every infinite decreasing sequence

{𝑀𝑛} := {(𝑋𝑛 × 𝑌 𝑛)} of successively refined partition elements produced by the sub-

division process satisfies lim
𝑛→∞

𝑤(𝑌 𝑛) = 0.

The above definition is borrowed from [76], and is an extension of Definition IV.10

in [101]. It is clear that lim
𝑛→∞

𝑌 𝑛 =
∞
∩

𝑛=1
𝑌 𝑛 = {ȳ} for some ȳ ∈ 𝑌 when the subdivision

process is exhaustive on 𝑌 (see Theorem 3.10 in [192]). The next result follows.

Lemma 2.3.43. If the subdivision process is exhaustive on 𝑌 , then ∀𝛿 > 0,∃𝑁𝛿 ∈ N such

that 𝑛 ≥ 𝑁𝛿 =⇒ 𝑤(𝑌 𝑛) < 𝛿.

Proof. The claim follows from Definition 2.3.42 and the notion of convergence.
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The next couple of definitions introduce conditions on B&B bounding schemes that will

later be leveraged to establish convergence of B&B algorithms for Problem (RS).

Definition 2.3.44. [Consistent Bounding Operation] A bounding operation is called con-

sistent if, at every step, any unfathomed partition element can be further refined, and if

any infinite decreasing sequence {𝑀𝑛} := {(𝑋𝑛 × 𝑌 𝑛)} of successively refined partition

elements satisfies

lim
𝑛→∞

(𝑈𝐵𝐷𝑛 − 𝐿𝐵𝐷𝑛) = 0,

where 𝑈𝐵𝐷𝑛 is the overall upper bound after step 𝑛 of the B&B procedure, and 𝐿𝐵𝐷𝑛 is

the lower bound over the domain 𝑀𝑛.

We include the following remark to help unpack the above definition.

Remark 2.3.45. Any infinite decreasing sequence {𝑀𝑛} of successively refined partition

elements has to obey 𝐿𝐵𝐷𝑛 < 𝑈𝐵𝐷𝑛, ∀𝑛 ∈ N, since any partition element that does not

satisfy this condition would otherwise had to have been fathomed by value dominance.

Definition 2.3.46. [Strongly Consistent Bounding Operation] Suppose we are given an

infinite decreasing sequence of successively refined partition elements {𝑀𝑛} := {(𝑋𝑛×𝑌 𝑛)}

produced by a subdivision of 𝑌 that is exhaustive on 𝑌 with lim
𝑛→∞

𝑌 𝑛 = {ȳ}, and satisfying

𝑋𝑛+1 ⊂ 𝑋𝑛, ∀𝑛 ∈ N. Define 𝑋∞ := ∩∞
𝑛=1𝑋

𝑛. A lower bounding procedure for the sequence

of restricted optimization problems (RS)

min
(x,y)∈𝑀𝑛

𝑓(x,y)

s.t. g(x,y) ≤ 0,

h(x,y) = 0

that yields a sequence of bounds {𝐿𝐵𝐷𝑛} is said to be strongly consistent on 𝑌 if there

exists a subsequence of partition elements {𝑀𝑛𝑞} := {(𝑋𝑛𝑞 × 𝑌 𝑛𝑞)} that satisfies

lim
𝑞→∞

𝐿𝐵𝐷𝑛𝑞 = min
x∈𝑋∞

𝑓(x, ȳ)

s.t. g(x, ȳ) ≤ 0,

h(x, ȳ) = 0.
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Remark 2.3.47. If the subdivision process is exhaustive on 𝑋 as well with 𝑋∞ = {x̄} in

Definition 2.3.46, we recover, in effect, the conventional definition of a strongly consistent

bounding operation, see Definition IV.7 in [101].

Definition 2.3.48. [Bound Improving Selection] A node selection operation is said to be

bound improving if, at least each time after a finite number of steps, the partition element

selected for further partitioning at the current step 𝑘, 𝒬𝑘, corresponds to the domain of a

node on which the current overall lower bound for the B&B tree is attained, i.e.,

𝒬𝑘 ∩ arg min
𝑀𝑛∈𝒫𝑘

𝐿𝐵𝐷𝑛 ̸= ∅,

where 𝒫𝑘 denotes the unfathomed partition elements at the start of step 𝑘 of the B&B

algorithm.

The convergence proofs of the algorithms we consider in this thesis will require that every

infinite decreasing sequence of successively refined partition elements {𝑀𝑛} generated by

the algorithm should satisfy 𝑀𝑛 ∩ ℱ(𝑋 × 𝑌 ) ̸= ∅, ∀𝑛 ∈ N, where ℱ(𝑋 × 𝑌 ) denotes the

feasible set of Problem (RS) on the initial domain 𝑋×𝑌 . We call this requirement ‘deletion

by infeasibility is certain in the limit’ (see [101, Definition IV.8]).

The following two results, proofs of which can be found in [101, Chapter IV], will prove

useful towards establishing the convergence of generic B&B algorithms.

Theorem 2.3.49. Consider the sequence of optimization problems in Definition 2.3.46,

and suppose the B&B subdivision procedure is exhaustive (on 𝑌 ). Furthermore, suppose

every infinite decreasing sequence {𝑀𝑛} (= {(𝑋𝑛 × 𝑌 𝑛)}) of successively refined partition

elements satisfies 𝑀𝑛 ∩ ℱ(𝑋 × 𝑌 ) ̸= ∅, ∀𝑛 ∈ N (i.e., the deletion by infeasibility rule is

certain in the limit). Then every strongly consistent pair of lower and upper bounding

operations yields a consistent bounding operation.

Proof. See Lemma IV.5. of [101].

Theorem 2.3.50. Consider the sequence of optimization problems in Definition 2.3.46.

Suppose that for a B&B procedure, the bounding operation is consistent and the selection

operation is bound improving. Then the procedure is convergent, i.e.,

𝑈𝐵𝐷* := lim
𝑛→∞

𝑈𝐵𝐷𝑛 = min
(x,y)∈ℱ(𝑋×𝑌 )

𝑓(x,y) = lim
𝑛→∞

𝐿𝐵𝐷𝑛
overall =: 𝐿𝐵𝐷*,
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where ℱ(𝑋 × 𝑌 ) is the feasible set of the optimization problem on 𝑋 × 𝑌 , 𝑈𝐵𝐷𝑛 and

𝐿𝐵𝐷𝑛
overall are the overall upper and lower bounds after step 𝑛 of the B&B procedure, and

𝑈𝐵𝐷* and 𝐿𝐵𝐷* are the respective values to which they converge (see [192, Theorem 3.14]

for the proof of existence of 𝑈𝐵𝐷* and 𝐿𝐵𝐷*).

Proof. See Theorem IV.3. of [101].

2.3.3 Optimization under uncertainty

Real-life optimization models often contain uncertain model parameters. Optimal solutions

to models which simply consider a single realization of the uncertain parameters can be quite

sensitive to the chosen parameter values, potentially rendering these solutions economically

worthless and even disastrous in safety-critical applications. While there are apparent ad-

vantages of considering uncertainties in optimization models rigorously, accounting for their

effects using off-the-shelf global optimization software is computationally prohibitive due to

the inherent nonlinear and combinatorial nature of the associated models. This motivates

the development of efficient algorithms and software for the solution of optimization prob-

lems with parametric uncertainty for the applications of interest. We refer the interested

reader to Section 1.1.3 of Chapter 1 for popular approaches to model optimization problems

under uncertainty.

Stochastic programming [35, 181] and robust optimization [21] are two widely adopted

approaches for solving optimization problems with parametric uncertainty. The stochastic

programming framework of interest assumes that the uncertain parameters can take on one

of a finite number of values, each with a known probability (these ‘scenarios’ are obtained

in practice by sampling an estimated distribution of the uncertain parameters). Robust

optimization-based approaches, on the other hand, require guaranteed satisfaction of con-

straints for all possible realizations of the uncertain parameters. In the next section, we

present the stochastic programming formulation of interest and review prior decomposition

approaches for the scalable solution of two-stage stochastic mixed-integer nonlinear pro-

grams. The reader is directed to [65] and the references therein for solution techniques for

‘static’ robust optimization formulations (referred to therein as semi-infinite programs).
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2.3.3.1 Two-stage stochastic programming

In this section, we consider the following general class of nonconvex two-stage stochastic

mixed-integer nonlinear programs with recourse:

inf
y,z

𝑓 (1)(y, z) + E𝜔∈Ω(𝑅(y, z,𝜔)) (P)

s.t. (y, z) ∈ ℱFS,

where

𝑅(y, z,𝜔) := inf
x

𝑓 (2)(x,y, z,𝜔) (R)

s.t. g(x,y, z,𝜔) ≤ 0,

x ∈ 𝑋(𝜔),

𝑋(𝜔) := {x ∈ {0, 1}𝑛𝑥𝑏 × Π𝑥(𝜔) : r𝑥(x,𝜔) ≤ 0}, ∀𝜔 ∈ Ω, Π𝑥 : Ω → 𝒫 (R𝑛𝑥𝑐 ) is assumed

to be defined such that Π𝑥(𝜔) is convex ∀𝜔 ∈ Ω, 𝒫 (𝑆) denotes the power set of 𝑆, 𝑌 =

{y ∈ {0, 1}𝑛𝑦 : r𝑦(y) ≤ 0}, 𝑍 = {z ∈ Π𝑧 : r𝑧(z) ≤ 0}, Π𝑧 ⊂ R𝑛𝑧 is convex, 𝑓 (1) : [0, 1]𝑛𝑦 ×

Π𝑧 → R, 𝑓 (2) : [0, 1]𝑛𝑥𝑏 ×Π̄𝑥(Ω)× [0, 1]𝑛𝑦 ×Π𝑧×Ω → R, g : [0, 1]𝑛𝑥𝑏 ×Π̄𝑥(Ω)× [0, 1]𝑛𝑦 ×Π𝑧×

Ω → R𝑚, r𝑥 : [0, 1]𝑛𝑥𝑏 × Π̄𝑥(Ω) × Ω → R𝑚𝑥 , Π̄𝑥(Ω) ⊂ R𝑛𝑥𝑐 is such that Π𝑥(𝜔) ⊂ Π̄𝑥(Ω),

∀𝜔 ∈ Ω, r𝑦 : [0, 1]𝑛𝑦 → R𝑚𝑦 , r𝑧 : Π𝑧 → R𝑚𝑧 , 𝜔 is a random variable from a probability

space (Ω,ℱ𝑒,P) with Ω ⊂ R𝑢, E denotes the expected value operator,

ℱFS :=
{︀

(y, z) ∈ (𝑌 × 𝑍) : r𝑦,𝑧(y, z) ≤ 0 and, for all possible events 𝜔 ∈ Ω,

∃x(𝜔) ∈ 𝑋(𝜔) : g(x(𝜔),y, z,𝜔) ≤ 0
}︀

is the projected feasible set in the domain of the complicating variables, r𝑦,𝑧 : [0, 1]𝑛𝑦×Π𝑧 →

R𝑚𝑦,𝑧 , and the functions r𝑦, r𝑧, r𝑦,𝑧 are assumed to be continuous. The variables y and z

denote the discrete and continuous first-stage/complicating decisions, respectively, that are

made before the realization of the uncertainties, while the mixed-integer variables x denote

the second-stage/recourse decisions made after the realization of the uncertain parameters

𝜔. The term 𝑓 (1)(y, z) represents the cost associated with the first-stage decisions, and the

term 𝑅(y, z,𝜔) represents the optimal recourse cost for a given first-stage decision vector

(y, z) and a realization of the uncertain parameters 𝜔.
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As discussed previously, typical approaches to solve Problem (P) rely on a scenario

representation of the uncertainties, where a finite number, 𝑠, of possible realizations of 𝜔

are considered. We also make such an assumption in this thesis.

Assumption 2.3.51. The random variable 𝜔 has finite support, i.e., Ω = {𝜔1, · · · ,𝜔𝑠}

with P(𝜔 = 𝜔ℎ) = 𝑝ℎ > 0, ∀ℎ ∈ {1, · · · , 𝑠}.

Based on the above assumption, the two-stage stochastic program with recourse, Prob-

lem (P), can be equivalently written in extensive form as a so-called deterministic equivalent

program (DEP):

inf
x1,··· ,x𝑠,y,z

𝑠∑︁
ℎ=1

𝑝ℎ𝑓ℎ(xℎ,y, z) (DEP)

s.t. gℎ(xℎ,y, z) ≤ 0, ∀ℎ ∈ {1, · · · , 𝑠},

r𝑦,𝑧(y, z) ≤ 0,

xℎ ∈ 𝑋ℎ, ∀ℎ ∈ {1, · · · , 𝑠},

y ∈ 𝑌, z ∈ 𝑍,

where xℎ denotes x(𝜔ℎ), 𝑋ℎ = {xℎ ∈ {0, 1}𝑛𝑥𝑏 × Π𝑥,ℎ : r𝑥,ℎ(xℎ) ≤ 0} denotes 𝑋(𝜔ℎ), Π𝑥,ℎ

denotes Π𝑥(𝜔ℎ), 𝑓ℎ(xℎ,y, z) := 𝑓 (1)(y, z) + 𝑓
(2)
ℎ (xℎ,y, z), ∀(xℎ,y, z) ∈ [0, 1]𝑛𝑥𝑏 × Π𝑥,ℎ ×

[0, 1]𝑛𝑦 × Π𝑧, is defined for notational convenience, 𝑓
(2)
ℎ (xℎ,y, z), gℎ(xℎ,y, z), and r𝑥,ℎ(xℎ)

are used to denote 𝑓 (2)(x(𝜔ℎ),y, z,𝜔ℎ), g(x(𝜔ℎ),y, z,𝜔ℎ), and r𝑥(x(𝜔ℎ),𝜔ℎ), respectively,

and the functions 𝑓ℎ : [0, 1]𝑛𝑥𝑏 ×Π𝑥,ℎ×[0, 1]𝑛𝑦×Π𝑧 → R, gℎ : [0, 1]𝑛𝑥𝑏 ×Π𝑥,ℎ×[0, 1]𝑛𝑦×Π𝑧 →

R𝑚, and r𝑥,ℎ : [0, 1]𝑛𝑥𝑏 ×Π𝑥,ℎ → R𝑚𝑥 are assumed to be continuous ∀ℎ ∈ {1, · · · , 𝑠}. Equal-

ity constraints in the formulation are assumed to be modeled using a pair of inequalities

and bounded general integer variables are assumed to be equivalently reformulated using

binary variables in Problem (DEP) purely for ease of exposition. Additionally, the following

assumptions are made throughout this section.

Assumption 2.3.52. The sets 𝑌 and 𝑍 are nonempty, and the set 𝑍 is compact.

Assumption 2.3.53. The set 𝑋ℎ is nonempty and compact for each ℎ ∈ {1, · · · , 𝑠}.

Remark 2.3.54. Assumptions 2.3.52 and 2.3.53 along with the assumption of continuity

of the functions in Problem (DEP) imply, by Weierstrass’ theorem, that Problem (DEP)

either has a finite optimal objective value or is infeasible.
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Due to their special decomposable structure, two-stage stochastic programs have tra-

ditionally been solved using duality-based decomposition techniques with the advantage

that the solution time typically scales linearly with the number of scenarios. One class of

such methods, which is applicable to a class of separable stochastic programs with recourse

problems that are linear programs (i.e., Problem (DEP) reduces to a linear program (LP)

when the first-stage variables y and z are fixed; note that the above assumption necessi-

tates 𝑛𝑥𝑏
= 0), is Benders decomposition (BD) [25], also called the L-shaped method in the

stochastic programming literature [231]. Over the years, several modifications and exten-

sions to Benders’ method have been proposed, including techniques to accelerate the con-

vergence of BD by strengthening the formulation of Problem (DEP) and generating strong

cutting planes [150], a multi-cut version [36] that seeks to decrease the number of itera-

tions of the algorithm, the integer L-shaped method [132] and a reformulation-linearization

technique-based (RLT-based) procedure [211] that extend the applicability of BD to a sub-

class of problems with integer recourse variables, and combinatorial Benders’ cuts [58] that

avoid the use of ‘big M’ coefficients in problems involving logical constraints. The reader is

directed to references [35, 125, 196] for an overview of algorithms and software for stochastic

mixed-integer linear programs (MILPs).

Geoffrion [85] generalized Benders’ decomposition technique to a class of stochastic

programs with nonlinear convex recourse programs (using nonlinear duality theory) and

called the resulting method ‘generalized Benders decomposition’ (GBD). Note that the GBD

algorithm for Problem (DEP) essentially boils down to Benders’ decomposition algorithm

when the assumptions for GBD are satisfied and all of the functions in Problem (DEP)

are affine functions of the recourse variables. The above methods, however, usually rely

on strong duality for convergence, which is not guaranteed for most problems that involve

nonconvex functions in their formulation.

Another class of duality-based decomposition methods, termed Lagrangian relaxation

(LR) [48, 91] (also sometimes called Lagrangian decomposition), is based on the solution

of a Lagrangian dual problem. These methods (or variants [112, 119]) are applicable to

a more general class of stochastic programs, but typically involve the solution of expen-

sive nonsmooth convex optimization problems in a branch-and-bound setting, which may

be computationally intensive for large-scale problems. A few modifications to the con-

ventional Lagrangian relaxation method have been proposed in the literature, including
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cross-decomposition techniques that integrate Benders decomposition and Lagrangian re-

laxation approaches [166, 230] and techniques that integrate LR within branch-and-cut

approaches [112].

It is noteworthy that the solution of two-stage stochastic programs using general-purpose

state-of-the-art deterministic global optimization methods such as branch-and-reduce [224,

225] is usually not practical for problems with a large number of scenarios since these

methods do not exploit their decomposable structure. This is evidenced by the case stud-

ies in Chapter 4. When all of the first-stage decision variables in Problem (DEP) are

integer variables with finite bounds, Problem (DEP) can also be solved using nonconvex

outer-approximation [118], which is a nearly-decomposable extension of the well-known

outer-approximation algorithm for convex MINLPs [72, 79]. Other approaches that can

potentially exploit the structure of Problem (DEP) include: a B&B-based global optimiza-

tion approach [82] that exploits (weak) Lagrangian duality for a subclass of Problem (DEP)

when it only contains continuous variables, a Lagrangian dual-based reduced-space B&B

algorithm [69] for a subclass of Problem (DEP) with convex recourse programs, and a con-

vex relaxation-based reduced-space B&B algorithm [76] for a subclass of Problem (DEP)

with convex recourse programs.

Recently, an efficient decomposition algorithm termed nonconvex generalized Benders

decomposition (NGBD), which extends BD and GBD, has been proposed to solve two-stage

stochastic programs of the form (DEP) whose first-stage decisions are only bounded inte-

gers [138, 139]. This algorithm exploits the decomposable structure of stochastic programs,

resulting in a computation that typically grows linearly with the number of scenarios as

opposed to classical global optimization algorithms that are worst-case exponential. NGBD

and its variants have been shown to be effective in solving several large-scale stochastic pro-

grams including the design and operation of natural gas production networks [136], phar-

maceutical capacity planning under clinical trial uncertainty [219], the design and operation

of flexible energy polygeneration systems [54], and integrated crude selection and refinery

operation [241], where thousands of scenarios may be required to model the uncertainty

accurately.

In the next two sections, we outline the NGBD and LR algorithms for solving (a subclass

of) Problem (DEP). The developments in these sections will prove useful in Chapter 3,

where we develop the first fully decomposable procedure for solving Problem (DEP) that
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provably converges to an 𝜀-optimal solution in finite time by integrating LR, NGBD, and

scalable bounds tightening techniques.

2.3.3.1.1 Nonconvex generalized Benders decomposition

GBD [85] employs the concepts of projection, restriction, and dualization to solve Prob-

lem (DEP) when the sets 𝑋ℎ are convex (this entails 𝑛𝑥𝑏
= 0), ∀ℎ ∈ {1, · · · , 𝑠}, the

participating functions 𝑓ℎ and gℎ are partially convex with respect to the recourse variables

xℎ (on 𝑋ℎ), and the so-called Property (P) holds for Problem (DEP) (see [85, p. 251]).

NGBD is an extension of GBD that can handle nonconvexities and the nonsatisfaction of

Property (P) by the functions participating in Problem (DEP) [138]; however, NGBD can

be guaranteed to converge only when Problem (DEP) has just bounded discrete first-stage

decisions. Therefore, we consider the following more restrictive formulation in this section

that drops the continuous first-stage variables z from Problem (DEP):

min
x1,··· ,x𝑠,y

𝑠∑︁
ℎ=1

𝑝ℎ𝑓ℎ(xℎ,y) (NGBD-DEP)

s.t. gℎ(xℎ,y) ≤ 0, ∀ℎ ∈ {1, · · · , 𝑠},

xℎ ∈ 𝑋ℎ, ∀ℎ ∈ {1, · · · , 𝑠},

y ∈ 𝑌,

where 𝑋ℎ = {xℎ ∈ {0, 1}𝑛𝑥𝑏 × Π𝑥,ℎ : r𝑥,ℎ(xℎ) ≤ 0}, Π𝑥,ℎ ⊂ R𝑛𝑥𝑐 is convex for each ℎ ∈

{1, · · · , 𝑠}, 𝑋ℎ is nonempty and compact ∀ℎ ∈ {1, · · · , 𝑠}, 𝑌 = {y ∈ {0, 1}𝑛𝑦 : r𝑦(y) ≤ 0} is

nonempty, and the functions 𝑓ℎ : [0, 1]𝑛𝑥𝑏×Π𝑥,ℎ×[0, 1]𝑛𝑦 → R, gℎ : [0, 1]𝑛𝑥𝑏×Π𝑥,ℎ×[0, 1]𝑛𝑦 →

R𝑚, r𝑥,ℎ : [0, 1]𝑛𝑥𝑏 × Π𝑥,ℎ → R𝑚𝑥 , ∀ℎ ∈ {1, · · · , 𝑠}, and r𝑦 : [0, 1]𝑛𝑦 → R𝑚𝑦 are assumed to

be continuous.

NGBD considers a convexified, separable version of Problem (NGBD-DEP) that is sub-

ject to the manipulations and solution strategies employed by GBD to yield a valid lower

bound. Valid upper bounds for Problem (NGBD-DEP) are obtained by fixing the bi-

nary complicating variables in Problem (NGBD-DEP) to points visited by the convexified

problem in an efficient and systematic manner. The finiteness of the NGBD algorithm is

guaranteed by the finite number of values that the binary complicating variables, y, can

take in Problem (NGBD-DEP), as implied by Theorem 2.3.61. An outline of the NGBD
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algorithm is provided in Section 2.3.3.1.1.5. The following sections outline the subproblems

used by the NGBD algorithm to solve Problem (NGBD-DEP). The details in these sections

are adapted from references [138, 139].

2.3.3.1.1.1 Convexification

In this section, we outline techniques that can be used to construct a convex relaxation

of Problem (NGBD-DEP) such that the resulting convex relaxation can be solved in a

decomposable manner using GBD.

Definition 2.3.55. [Convex Relaxation of an Optimization Problem] Given a convex set

Π𝑥,ℎ, continuous functions 𝑓 cv
ℎ : [0, 1]𝑛𝑥𝑏 × Π𝑥,ℎ × [0, 1]𝑛𝑦 × Θℎ → R,gcv : [0, 1]𝑛𝑥𝑏 × Π𝑥,ℎ ×

[0, 1]𝑛𝑦 × Θℎ → R𝑚, rcv𝑥,ℎ : [0, 1]𝑛𝑥𝑏 × Π𝑥,ℎ × Θℎ → R𝑚𝑥 , rcv𝑦 : [0, 1]𝑛𝑦 × Γ → R𝑚𝑦 , qcv
ℎ :

[0, 1]𝑛𝑥𝑏 ×Π𝑥,ℎ × [0, 1]𝑛𝑦 ×Θℎ → R𝑚𝑞 , and vcv : [0, 1]𝑛𝑦 ×Γ → R𝑚𝑣 , whose domains involve

the auxiliary convex sets Θℎ ⊂ R𝑛𝑞 and Γ ⊂ R𝑛𝑣 , are said to constitute a convex relaxation

of Problem (NGBD-DEP), which involves the functions 𝑓ℎ,gℎ, r𝑥,ℎ, and r𝑦, if:

1. 𝑓 cv
ℎ , gcv, rcv𝑥,ℎ, rcv𝑦 , qcv

ℎ , and vcv are convex on their domains;

2. for any (xℎ,y) ∈ [0, 1]𝑛𝑥𝑏 × Π𝑥,ℎ × [0, 1]𝑛𝑦 , there exists (qℎ,v) ∈ Θℎ × Γ such that

𝑓 cv
ℎ (xℎ,y,qℎ) ≤ 𝑓ℎ(xℎ,y),

gcv(xℎ,y,qℎ) ≤ gℎ(xℎ,y),

rcv𝑥,ℎ(xℎ,qℎ) ≤ r𝑥,ℎ(xℎ),

rcv𝑦 (y,v) ≤ r𝑦(y),

qcv
ℎ (xℎ,y,qℎ) ≤ 0,

vcv(y,v) ≤ 0.

The newly defined convex functions involve additional variables (qℎ and v) and constraints

(qcv
ℎ (xℎ,y,qℎ) ≤ 0 and vcv(y,v) ≤ 0) that may be required to construct differentiable

relaxations when standard McCormick relaxations are employed [84, 213] (we remark that

the recently-developed differentiable McCormick relaxation framework [124] provides an

alternative approach that does not introduce auxiliary variables and constraints). Note

that the domains over which the relaxations are constructed are not written out explicitly

to keep the notation (relatively) simple.
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By replacing the nonconvex functions in Problem (NGBD-DEP) with the above convex

relaxations, we obtain the following problem which provides a lower bound on its optimal

objective function value (cf. Proposition 2.3.62):

min
x1,··· ,x𝑠,y,
q1,··· ,q𝑠

𝑠∑︁
ℎ=1

𝑝ℎ𝑓
cv
ℎ (xℎ,y,qℎ) (NGBD-LBP-NS)

s.t. g̃cv
ℎ (xℎ,y,qℎ) ≤ 0, ∀ℎ ∈ {1, · · · , 𝑠},

(xℎ,qℎ) ∈ 𝐷ℎ, ∀ℎ ∈ {1, · · · , 𝑠},

y ∈ 𝑌 ,

where g̃cv
ℎ : [0, 1]𝑛𝑥𝑏 × Π𝑥,ℎ × [0, 1]𝑛𝑦 × Θℎ → R𝑚̃, with 𝑚̃ := 𝑚 + 𝑚𝑞, is defined as

g̃cv
ℎ (xℎ,y,qℎ) := (gcv(xℎ,y,qℎ),qcv

ℎ (xℎ,y,qℎ)), ∀(xℎ,y,qℎ) ∈ [0, 1]𝑛𝑥𝑏×Π𝑥,ℎ×[0, 1]𝑛𝑦×Θℎ,

for ease of exposition, 𝐷ℎ :=
{︁

(xℎ,qℎ) ∈ [0, 1]𝑛𝑥𝑏 × Π𝑥,ℎ × Θℎ : rcv𝑥,ℎ(xℎ,qℎ) ≤ 0
}︁

, and 𝑌 :={︀
y ∈ {0, 1}𝑛𝑦 : ∃v ∈ Γ : rcv𝑦 (y,v) ≤ 0,vcv(y,v) ≤ 0

}︀
. Note that the binary recourse vari-

ables have been relaxed to their continuous counterparts in the definition of the sets 𝐷ℎ.

Problem (NGBD-LBP-NS) is a convex MINLP that cannot be solved using GBD (in

general) unless Property (P) can be guaranteed to hold. To ensure satisfaction of Prop-

erty (P), we further relax Problem (NGBD-LBP-NS) into the following form (if necessary):

min
x1,··· ,x𝑠,y,
q1,··· ,q𝑠

𝑠∑︁
ℎ=1

𝑝ℎ
[︀
𝑓 cv
1,ℎ(xℎ,qℎ) + 𝑓 cv

2,ℎ(y)
]︀

(NGBD-LBP)

s.t. g̃cv
1,ℎ(xℎ,qℎ) + g̃cv

2,ℎ(y) ≤ 0, ∀ℎ ∈ {1, · · · , 𝑠},

(xℎ,qℎ) ∈ 𝐷ℎ, ∀ℎ ∈ {1, · · · , 𝑠},

y ∈ 𝑌 ,

where 𝑓 cv
1,ℎ : [0, 1]𝑛𝑥𝑏 × Π𝑥,ℎ × Θℎ → R, 𝑓 cv

2,ℎ : [0, 1]𝑛𝑦 → R, we define g̃cv
1,ℎ : [0, 1]𝑛𝑥𝑏 × Π𝑥,ℎ ×

Θℎ → R𝑚̃ and g̃cv
2,ℎ : [0, 1]𝑛𝑦 → R𝑚̃ for each (xℎ,y,qℎ) ∈ [0, 1]𝑛𝑥𝑏 × Π𝑥,ℎ × [0, 1]𝑛𝑦 × Θℎ as:

g̃cv
1,ℎ(xℎ,qℎ) :=

(︀
gcv
1,ℎ(xℎ,qℎ),qcv

1,ℎ(xℎ,qℎ)
)︀
,

g̃cv
2,ℎ(y) :=

(︀
gcv
2,ℎ(y),qcv

2,ℎ(y)
)︀
,

gcv
1,ℎ : [0, 1]𝑛𝑥𝑏 × Π𝑥,ℎ × Θℎ → R𝑚, gcv

2,ℎ : [0, 1]𝑛𝑦 → R𝑚, qcv
1,ℎ : [0, 1]𝑛𝑥𝑏 × Π𝑥,ℎ × Θℎ → R𝑚𝑞 ,

qcv
2,ℎ : [0, 1]𝑛𝑦 → R𝑚𝑞 , and the functions 𝑓 cv

1,ℎ, 𝑓
cv
2,ℎ, g̃

cv
1,ℎ, and g̃cv

2,ℎ are continuous and convex
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on their domains. In addition, ∀(xℎ,y,qℎ) ∈ [0, 1]𝑛𝑥𝑏 × Π𝑥,ℎ × [0, 1]𝑛𝑦 × Θℎ, we require

the following conditions to be satisfied to ensure that Problem (NGBD-LBP) yields a valid

lower bound for Problem (NGBD-DEP):

𝑓 cv
1,ℎ(xℎ,qℎ) + 𝑓 cv

2,ℎ(y) ≤ 𝑓 cv
ℎ (xℎ,y,qℎ), and

g̃cv
1,ℎ(xℎ,qℎ) + g̃cv

2,ℎ(y) ≤ g̃cv
ℎ (xℎ,y,qℎ).

One way to obtain Problem (NGBD-LBP) from Problem (NGBD-LBP-NS) is via outer-

linearization [169]. Problem (NGBD-LBP) is a convex MINLP which can be solved in a

decomposable manner using GBD to obtain a lower bound on the optimal objective value

of Problem (NGBD-DEP). We make the following two additional assumptions.

Assumption 2.3.56. The sets 𝐷ℎ, ∀ℎ ∈ {1, · · · , 𝑠}, are compact.

Remark 2.3.57. From Assumption 2.3.56 and the assumption of continuity of the functions

in Problem (NGBD-LBP), Weierstrass’ theorem implies that Problem (NGBD-LBP) either

has a finite optimal objective value, or is infeasible.

Assumption 2.3.58. Problem (NGBD-LBP) satisfies Slater’s condition for y fixed to those

points in 𝑌 for which Problem (NGBD-LBP) is feasible.

Remark 2.3.59. A consequence of Assumption 2.3.58 is that strong duality holds for

Problem (NGBD-LBP) for y fixed to those points in 𝑌 for which Problem (NGBD-LBP) is

feasible. This validates the dualization manipulation of Problem (NGBD-LBP) to a master

problem, which is presented in the following section.

2.3.3.1.1.2 Master problem

Problem (NGBD-LBP) is potentially a large-scale convex MINLP since the number of vari-

ables in its formulation is an affine function of the number of scenarios considered. Using

the principle of projection in [85], Problem (NGBD-LBP) can be projected onto the space

of the first-stage variables and using duality theory, any subproblem with a fixed y can be

reformulated into its dual. This yields the following (semi-infinite) master problem which
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is equivalent to Problem (NGBD-LBP) as stated in Proposition 2.3.63:

min
𝜂,y

𝜂 (NGBD-MP)

s.t. 𝜂 ≥
𝑠∑︁

ℎ=1

min
(xℎ,qℎ)∈𝐷ℎ

[︀
𝑝ℎ𝑓

cv
1,ℎ(xℎ,qℎ) + 𝜆T

ℎ g̃
cv
1,ℎ(xℎ,qℎ)

]︀
+

𝑠∑︁
ℎ=1

(︀
𝑝ℎ𝑓

cv
2,ℎ(y) + 𝜆T

ℎ g̃
cv
2,ℎ(y)

)︀
, ∀(𝜆1, · · · ,𝜆𝑠) ∈ R𝑚̃×𝑠

+ ,

0 ≥
𝑠∑︁

ℎ=1

min
(xℎ,qℎ)∈𝐷ℎ

[︀
𝜇T
ℎ g̃

cv
1,ℎ(xℎ,qℎ)

]︀
+

𝑠∑︁
ℎ=1

𝜇T
ℎ g̃

cv
2,ℎ(y), ∀(𝜇1, · · · ,𝜇𝑠) ∈ R𝑚̃×𝑠

+ ,

y ∈ 𝑌 , 𝜂 ∈ R.

In Section 2.3.3.1.1.4, the above master problem will be relaxed to yield (in effect) a ‘lower

bounding problem’ for Problem (NGBD-LBP).

2.3.3.1.1.3 Restricted subproblems

The primal problem for NGBD is obtained by restricting y in Problem (NGBD-DEP) to a

point ȳ ∈ 𝑌 and, if feasible, provides an upper bound on the dual function value as stated

in Proposition 2.3.64.

𝑜𝑏𝑗NGBD-PP(ȳ) := min
x1,··· ,x𝑠

𝑠∑︁
ℎ=1

𝑝ℎ𝑓ℎ(xℎ, ȳ) (NGBD-PP)

s.t. gℎ(xℎ, ȳ) ≤ 0, ∀ℎ ∈ {1, · · · , 𝑠},

xℎ ∈ 𝑋ℎ, ∀ℎ ∈ {1, · · · , 𝑠}.

Problem (NGBD-PP) can be decomposed into 𝑠 independent scenario subproblems of the

form7:

𝑜𝑏𝑗NGBD-PPℎ
(ȳ) := min

xℎ∈𝑋ℎ

𝑝ℎ𝑓ℎ(xℎ, ȳ) (NGBD-PPℎ)

s.t. gℎ(xℎ, ȳ) ≤ 0,

7We note that the probability 𝑝ℎ is post-multiplied with the optimal objective value of the (rest of the)
minimization in Problem (NGBD-PPℎ) in numerical implementations to avoid ill-conditioned subproblems
(that may occur especially when the number of scenarios is large).
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with 𝑜𝑏𝑗NGBD-PP(ȳ) =
∑︀𝑠

ℎ=1 𝑜𝑏𝑗NGBD-PPℎ
(ȳ). Note that Problem (NGBD-PPℎ), which is

potentially a nonconvex MINLP, can be solved to 𝜀-optimality in finite time by state-of-the-

art global optimization solvers, provided it can be expressed in a form that can be handled

by those solvers.

The primal bounding problem for NGBD is obtained by restricting the binary compli-

cating variables y in Problem (NGBD-LBP) to a point ȳ ∈ 𝑌 .

𝑜𝑏𝑗NGBD-PBP(ȳ) := min
x1,··· ,x𝑠,
q1,··· ,q𝑠

𝑠∑︁
ℎ=1

𝑝ℎ
[︀
𝑓 cv
1,ℎ(xℎ,qℎ) + 𝑓 cv

2,ℎ(ȳ)
]︀

(NGBD-PBP)

s.t. g̃cv
1,ℎ(xℎ,qℎ) + g̃cv

2,ℎ(ȳ) ≤ 0, ∀ℎ ∈ {1, · · · , 𝑠},

(xℎ,qℎ) ∈ 𝐷ℎ, ∀ℎ ∈ {1, · · · , 𝑠}.

Problem (NGBD-PBP), which provides an upper bound on the optimal objective value

of Problem (NGBD-LBP), can be decomposed into 𝑠 independent scenario subproblems,

the solution of each of which provides a lower bound to the optimal objective value of the

corresponding Problem (NGBD-PPℎ) as stated in Proposition 2.3.65:

𝑜𝑏𝑗NGBD-PBPℎ
(ȳ) := min

(xℎ,qℎ)∈𝐷ℎ

𝑝ℎ
[︀
𝑓 cv
1,ℎ(xℎ,qℎ) + 𝑓 cv

2,ℎ(ȳ)
]︀

(NGBD-PBPℎ)

s.t. g̃cv
1,ℎ(xℎ,qℎ) + g̃cv

2,ℎ(ȳ) ≤ 0.

Note that 𝑜𝑏𝑗NGBD-PBP(ȳ) =
∑︀𝑠

ℎ=1 𝑜𝑏𝑗NGBD-PBPℎ
(ȳ). If Problem (NGBD-PBPℎ) is in-

feasible for any scenario ℎ ∈ {1, · · · , 𝑠}, Problem (NGBD-PBP) (and consequently, Prob-

lem (NGBD-PP)) is infeasible as well and the following feasibility problem is solved:

𝑜𝑏𝑗NGBD-FP(ȳ) := min
x1,··· ,x𝑠,
q1,··· ,q𝑠,
w1,··· ,w𝑠

𝑠∑︁
ℎ=1

𝑝ℎ‖wℎ‖ (NGBD-FP)

s.t. g̃cv
1,ℎ(xℎ,qℎ) + g̃cv

2,ℎ(ȳ) ≤ wℎ, ∀ℎ ∈ {1, · · · , 𝑠},

(xℎ,qℎ) ∈ 𝐷ℎ, wℎ ∈ 𝑊ℎ, ∀ℎ ∈ {1, · · · , 𝑠},

where ‖wℎ‖ (used here to denote an arbitrary norm of the slack variable vector wℎ) measures

the violation of the constraints in Problem (NGBD-PBPℎ), and 𝑊ℎ ⊂ R𝑚̃
+ is chosen such

that it possesses the following properties:
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1. 𝑊ℎ is a convex set;

2. 𝑊ℎ is a pointed cone, i.e., 0 ∈ 𝑊ℎ, and ∀𝛼 > 0,w ∈ 𝑊ℎ =⇒ 𝛼w ∈ 𝑊ℎ;

3. there exists w ∈ 𝑊ℎ with w > 0 (therefore, the cone 𝑊ℎ is unbounded in each dimen-

sion).

The sets 𝑊ℎ are typically simply chosen to be R𝑚̃
+ . Since any norm is convex, we have

that Problem (NGBD-FP) is convex (we usually use either the 1-norm formulation, or the

∞-norm formulation). Furthermore, Problem (NGBD-FP) can naturally be decomposed

into 𝑠 independent scenario subproblems of the form:

𝑜𝑏𝑗NGBD-FPℎ
(ȳ) := min

xℎ,qℎ,wℎ

𝑝ℎ‖wℎ‖ (NGBD-FPℎ)

s.t. g̃cv
1,ℎ(xℎ,qℎ) + g̃cv

2,ℎ(ȳ) ≤ wℎ,

(xℎ,qℎ) ∈ 𝐷ℎ, wℎ ∈ 𝑊ℎ,

with 𝑜𝑏𝑗NGBD-FP(ȳ) =
∑︀𝑠

ℎ=1 𝑜𝑏𝑗NGBD-FPℎ
(ȳ).

If the convex subproblems (NGBD-PBPℎ) and (NGBD-FPℎ) are smooth (or smooth

reformulations are possible), they can be solved by gradient-based (local optimization)

solvers. Otherwise, they could be solved using nonsmooth optimization methods such as

bundle methods [100].

2.3.3.1.1.4 Relaxed master problem

The master problem (NGBD-MP) can be difficult to solve since it is a semi-infinite program;

therefore, it is relaxed to the following relaxed master problem (see Proposition 2.3.67):

min
𝜂,y

𝜂 (NGBD-RMP)

s.t. 𝜂 ≥ 𝑜𝑏𝑗NGBD-PBP(y𝑗) +

𝑠∑︁
ℎ=1

𝑝ℎ
[︀
𝑓 cv
2,ℎ(y) − 𝑓 cv

2,ℎ(y𝑗)
]︀

+

𝑠∑︁
ℎ=1

(︁
𝜆𝑗
ℎ

)︁T [︀
g̃cv
2,ℎ(y) − g̃cv

2,ℎ(y𝑗)
]︀
, ∀𝑗 ∈ 𝑇,

0 ≥ 𝑜𝑏𝑗NGBD-FP(y𝑖) +

𝑠∑︁
ℎ=1

(︀
𝜇𝑖

ℎ

)︀T [︀
g̃cv
2,ℎ(y) − g̃cv

2,ℎ(y𝑖)
]︀
, ∀𝑖 ∈ 𝑆,

⃒⃒{︀
𝑟 ∈ {1, · · · , 𝑛𝑦} : 𝑦𝑡𝑟 = 1

}︀⃒⃒
− 1 ≥

∑︁
𝑦𝑟(𝑡)

𝑟(𝑡)∈{𝑟∈{1,··· ,𝑛𝑦}:𝑦𝑡
𝑟=1}

−
∑︁

𝑦𝑟(𝑡)
𝑟(𝑡)∈{𝑟∈{1,··· ,𝑛𝑦}:𝑦𝑡

𝑟=0}

, ∀𝑡 ∈ 𝑇 ∪ 𝑆,

y ∈ 𝑌 , 𝜂 ∈ R,
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where 𝑇 and 𝑆 are index sets that store whether the binary complicating variable values

‘visited thus far’ (see Algorithm 2.3 in Section 2.3.3.1.1.5) by the NGBD algorithm are

feasible for the primal bounding problem, i.e., at any particular iteration 𝑘 ≥ 1 of the

NGBD algorithm:

𝑇 =
{︀
𝑗 ∈ {1, · · · , 𝑘} : Problem (NGBD-PBP) is feasible for ȳ = y𝑗

}︀
,

𝑆 =
{︀
𝑖 ∈ {1, · · · , 𝑘} : Problem (NGBD-PBP) is infeasible for ȳ = y𝑖

}︀
,

y𝑖 is the binary complicating variable value visited by the NGBD algorithm during iteration

𝑖 (with 𝑦𝑖𝑟 denoting its 𝑟th component), the first set of constraints in Problem (NGBD-RMP)

correspond to optimality cuts for the iterations 𝑇 in which Problem (NGBD-PBP) is fea-

sible, the second set of constraints correspond to feasibility cuts for the iterations 𝑆 in

which the corresponding Problem (NGBD-PBP) is infeasible, the third set of constraints

correspond to a set of canonical integer cuts that exclude previously examined binary com-

plicating variable values from the feasible region [10], 𝜆𝑗
ℎ are Lagrange multipliers for Prob-

lem (NGBD-PBPℎ) with ȳ fixed to y𝑗 when 𝑗 ∈ 𝑇 , and 𝜇𝑖
ℎ are Lagrange multipliers for

Problem (NGBD-FPℎ) with ȳ fixed to y𝑖 when 𝑖 ∈ 𝑆.

When 𝑇 = ∅ (i.e., none of the binary complicating variable points visited thus far

are feasible for Problem (NGBD-PBP)), Problem (NGBD-RMP) is unbounded and the

following feasibility relaxed master problem is solved instead:

min
y

‖y‖ (NGBD-FRMP)

s.t. 0 ≥ 𝑜𝑏𝑗NGBD-FP(y𝑖) +
𝑠∑︁

ℎ=1

(︀
𝜇𝑖

ℎ

)︀T [︀
g̃cv
2,ℎ(y) − g̃cv

2,ℎ(y𝑖)
]︀
, ∀𝑖 ∈ 𝑆,

⃒⃒{︀
𝑟 ∈ {1, · · · , 𝑛𝑦} : 𝑦𝑡𝑟 = 1

}︀⃒⃒
− 1 ≥

∑︁
𝑦𝑟(𝑡)

𝑟(𝑡)∈{𝑟∈{1,··· ,𝑛𝑦}:𝑦𝑡
𝑟=1}

−
∑︁

𝑦𝑟(𝑡)
𝑟(𝑡)∈{𝑟∈{1,··· ,𝑛𝑦}:𝑦𝑡

𝑟=0}

, ∀𝑡 ∈ 𝑆,

y ∈ 𝑌 ,

where ‖y‖ is used above to denote an arbitrary norm of y. Note that the sizes of Prob-

lems (NGBD-RMP) and (NGBD-FRMP), which are convex MINLPs, are independent of

the number of scenarios in the original problem.

An overview of the subproblems used in the (basic) NGBD algorithm for solving Prob-

lem (NGBD-DEP) is presented in Figure 2-3. In the next section, we provide an informal

summary of the workings of the (basic) NGBD algorithm along with a formal algorithmic
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Figure 2-3: Overview of the reformulation and the subproblems in the basic NGBD algo-
rithm (based on [139, Fig. 1]).

description and a result stating its convergence.

2.3.3.1.1.5 The NGBD algorithm

In the inner loop of the NGBD algorithm, Problem (NGBD-LBP) is solved using GBD,

which utilizes as its subproblems Problem (NGBD-PBP), Problem (NGBD-FP), Prob-

lem (NGBD-RMP), and Problem (NGBD-FRMP) (note that the relaxed master problems,

Problem (NGBD-RMP) and Problem (NGBD-FRMP), differ from their GBD counterparts

in that they include canonical integer cuts to exclude previously visited binary complicat-

ing variable values from their feasible regions). Once the inner GBD loop has converged,

Problem (NGBD-PP) is solved at candidate binary complicating variable values (values

for which the optimal objective value of the corresponding Problem (NGBD-PBP) is no

worse than: i. the optimal objective value of Problem (NGBD-RMP) at termination of the

inner GBD loop, and ii. the objective value of the current best known feasible point for

Problem (NGBD-PP)) to try and determine feasible points for Problem (NGBD-DEP) in

the outer loop of the NGBD algorithm. If all of the candidate binary complicating variable

values have been exhausted without satisfying the termination criteria for the NGBD al-
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gorithm, the inner loop is revisited and the above steps are repeated until the termination

criteria are met.

In the previous section, we have only detailed the subproblems employed by the basic

NGBD algorithm to solve Problem (NGBD-DEP). Techniques that can potentially enhance

the performance of the basic NGBD algorithm include: feasibility and optimality-based

bounds tightening techniques [134, 241, 242] and piecewise convex relaxations [52, 137] that

could help improve the strength of the relaxations used in the subproblems and potentially

reduce the number of primal problems solved, and adding multiple cuts to the master

problem [36, 52] at each iteration in a bid to speed up the convergence of the inner GBD

loop.

Below, we present a formal algorithmic outline of the NGBD algorithm for solving

Problem (NGBD-DEP) based on [139, Section 4.1] and [138, Section 1.4.1].

Algorithm 2.3 Nonconvex Generalized Benders Decomposition

Initialize:

• Iteration counter 𝑘 = 0, and index sets 𝑇 = ∅, 𝑆 = ∅, 𝑈 = ∅.

• Upper bound on Problem (NGBD-DEP), 𝑈𝐵𝐷 = +∞; upper bound on Prob-
lem (NGBD-LBP), 𝑈𝐵𝐷𝑃𝐵 = +∞; and lower bound on Problem (NGBD-LBP),
𝐿𝐵𝐷 = −∞.

• Tolerances 𝜀ℎ > 0, ∀ℎ ∈ {1, · · · , 𝑠}, and 𝜀 > 0 such that
∑︀𝑠

ℎ=1 𝜀ℎ = 𝜀.

• Current best feasible point, {(x*
1, · · · ,x*

𝑠,y
*)} = ∅, for Problem (NGBD-DEP).

• Initial binary complicating variable realization y1.

• Candidate binary complicating variable value at which Problem (NGBD-PP) is to be
solved, ỹ = y1, and corresponding NGBD inner iteration counter, 𝑘 = 1.

repeat
if 𝑘 = 0 or (Problem (NGBD-RMP) is feasible and 𝐿𝐵𝐷 < 𝑈𝐵𝐷𝑃𝐵 and

𝐿𝐵𝐷 < 𝑈𝐵𝐷 − 𝜀) then
repeat

1. Set 𝑘 = 𝑘 + 1.

2. Solve Problem (NGBD-PBPℎ) with y fixed to y𝑘 for each ℎ ∈ {1, · · · , 𝑠}
sequentially. If Problem (NGBD-PBPℎ) is feasible for every ℎ ∈
{1, · · · , 𝑠} with Lagrange multipliers 𝜆𝑘

ℎ, add an optimality cut to Prob-
lem (NGBD-RMP) and set 𝑇 = 𝑇 ∪ {𝑘}. If 𝑜𝑏𝑗NGBD-PBP(y𝑘) < 𝑈𝐵𝐷𝑃𝐵,
update 𝑈𝐵𝐷𝑃𝐵 = 𝑜𝑏𝑗NGBD-PBP(y𝑘), ỹ = y𝑘, 𝑘 = 𝑘.
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Algorithm 2.3 Nonconvex Generalized Benders Decomposition (continued)

3. If Problem (NGBD-PBPℎ) is infeasible for any scenario ℎ̄ ∈ {1, · · · , 𝑠}, do
not solve it for scenarios ℎ̄ + 1, · · · , 𝑠. Instead, set 𝑆 = 𝑆 ∪ {𝑘}, 𝜇𝑘

ℎ = 0
for scenarios ℎ = 1, · · · , ℎ̄ − 1, and solve Problem (NGBD-FPℎ) with y
fixed to y𝑘 for scenarios ℎ = ℎ̄, · · · , 𝑠 to obtain the corresponding Lagrange
multipliers 𝜇𝑘

ℎ. Add a feasibility cut to Problem (NGBD-RMP).

4. If 𝑇 = ∅, solve Problem (NGBD-FRMP); otherwise solve Prob-
lem (NGBD-MP). In the latter case, set 𝐿𝐵𝐷 to the optimal objective
value of Problem (NGBD-RMP) if it is feasible. In both cases, set y𝑘+1 to
the y value corresponding to the solution of either problem.

until 𝐿𝐵𝐷 ≥ 𝑈𝐵𝐷𝑃𝐵 or Problem (NGBD-RMP) is infeasible or
Problem (NGBD-FRMP) is infeasible

end if
if 𝑈𝐵𝐷𝑃𝐵 < 𝑈𝐵𝐷 − 𝜀 then

1. Solve Problem (NGBD-PPℎ) with y fixed to ỹ to 𝜀ℎ-optimality for each sce-
nario ℎ ∈ {1, · · · , 𝑠} sequentially. Set 𝑈 = 𝑈 ∪ {𝑘}. If Problem (NGBD-PPℎ)
with y fixed to ỹ has an optimal solution x̃ℎ for each ℎ ∈ {1, · · · , 𝑠} and
𝑜𝑏𝑗NGBD-PP(ỹ) < 𝑈𝐵𝐷, update 𝑈𝐵𝐷 = 𝑜𝑏𝑗NGBD-PP(ỹ) and set y* = ỹ and
x*
ℎ = x̃ℎ for each ℎ ∈ {1, · · · , 𝑠}.

2. If 𝑇∖𝑈 = ∅, set 𝑈𝐵𝐷𝑃𝐵 = +∞.

3. Else if 𝑇∖𝑈 ̸= ∅, pick index 𝑖 ∈ 𝑇∖𝑈 such that 𝑜𝑏𝑗NGBD-PBP(y𝑖) =
min

𝑗∈𝑇∖𝑈
𝑜𝑏𝑗NGBD-PBP(y𝑗). Update 𝑈𝐵𝐷𝑃𝐵 = 𝑜𝑏𝑗NGBD-PBP(y𝑖), ỹ = y𝑖, 𝑘 = 𝑖.

end if
until 𝑈𝐵𝐷𝑃𝐵 ≥ 𝑈𝐵𝐷 − 𝜀 and (Problem (NGBD-RMP) is infeasible or

Problem (NGBD-FRMP) is infeasible or 𝐿𝐵𝐷 ≥ 𝑈𝐵𝐷 − 𝜀)
If 𝑈𝐵𝐷 < +∞, then (x*

1, · · · ,x*
𝑠,y

*) is an 𝜀-optimal solution to Problem (NGBD-DEP).

The following (reasonable) assumption is made to simplify the proof of convergence of

the NGBD algorithm.

Assumption 2.3.60. We can solve Problems (NGBD-PBP), (NGBD-FP), (NGBD-RMP),

and (NGBD-FRMP) to tolerances much tighter than 𝜀 in finite time.

The above assumption implies that the tolerances of the above subproblems can be ne-

glected in comparison to the tolerance to which Problem (NGBD-PP) is solved. The fol-

lowing result states that the NGBD algorithm converges finitely to an 𝜀-optimal solution

to Problem (NGBD-DEP).

Theorem 2.3.61. (Finite convergence of the NGBD algorithm) If, for each ℎ ∈ {1, · · · , 𝑠},

Problem (NGBD-PPℎ) can be solved to 𝜀
𝑠 -optimality in a finite number of steps and As-

sumption 2.3.60 holds, then the NGBD algorithm either terminates in a finite number of
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steps with an 𝜀-optimal solution to Problem (NGBD-DEP), or an indication that it is

infeasible.

Proof. See Theorem 4.1 in [139] and Theorem 1 in [138].

2.3.3.1.1.6 Bounds tightening techniques

This section describes a couple of decomposable bounds tightening techniques that can be

used to accelerate the solution of the NGBD algorithm for Problem (NGBD-DEP). The

reader is directed to Section 2.3.2.2 for details of the forward-backward interval propagation

technique that provides a computationally inexpensive and scalable method for tightening

the bounds on the variables in the NGBD subproblems using interval arithmetic. The

first approach we detail adapts the feasibility-based bounds tightening subproblem in Sec-

tion 2.3.2.2, Problem (FBBT), to tighten the bounds on the continuous recourse variables

in Problem (NGBD-DEP).

Let 𝑥𝑖ℎ denote the 𝑖th recourse variable corresponding to scenario ℎ ∈ {1, · · · , 𝑠} for

any 𝑖 ∈ {1, · · · , 𝑛𝑥𝑏
+ 𝑛𝑥𝑐}. Lower bounds on the continuous recourse variable 𝑥𝑖ℎ, ∀𝑖 ∈

{𝑛𝑥𝑏
+ 1, · · · , 𝑛𝑥𝑏

+𝑛𝑥𝑐}, can be obtained from the solution of the following convex MINLP

which uses feasibility arguments to exclude regions of the search space:

min
xℎ,y,qℎ

𝑥𝑖ℎ (FBBT𝑥)

s.t. g̃cv
1,ℎ(xℎ,qℎ) + g̃cv

2,ℎ(y) ≤ 0,

(xℎ,qℎ) ∈ 𝐷ℎ, y ∈ 𝑌 .

Note that Problem (FBBT𝑥) is a convex MINLP that can either be solved directly, or further

relaxed to a mixed-integer linear program (MILP) and solved subsequently (we note that:

i. the integrality restrictions on the binary recourse variables in Problem (FBBT𝑥) could

also be enforced to derive tighter bounds, and ii. the integrality restrictions on the binary

complicating variables in Problem (FBBT𝑥) can be relaxed to keep the computational cost

of solving Problem (FBBT𝑥) in check at the expense of weaker bounds). Problem (FBBT𝑥)

only considers the relaxations of the constraints in scenario ℎ of Problem (NGBD-DEP) to

determine the lower bound on 𝑥𝑖ℎ; therefore, bounds on the continuous recourse variables can

be determined in a decomposable manner. Furthermore, the set 𝐷ℎ is updated after each
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bound tightening solve so that subsequent iterations of Problem (FBBT𝑥) can exploit the

updated variable bounds (and the potentially tighter relaxations that can be constructed as

a result). Upper bounds on 𝑥𝑖ℎ can be determined in an analogous manner by maximizing

the objective in Problem (FBBT𝑥) instead of minimizing it. Bounds on the continuous

recourse variables qℎ can also be obtained in an analogous manner. Our implementation

of the above technique in Chapters 3 and 4 only tightens the bounds on the continuous

recourse variables that explicitly participate in the construction of the relaxations of the

functions in Problem (NGBD-DEP).

Next, we describe a nearly-decomposable optimality-based bounds tightening technique

that integrates the primal bounding and (a multi-cut version of the) relaxed master problems

of NGBD, Problems (NGBD-PBPℎ) and (NGBD-RMP), along with an optimality cut to

accelerate the convergence of the NGBD algorithm [242, Section 3.3.2]. For instance, to

tighten the lower bound on 𝑥𝑖ℎ, for any 𝑖 ∈ {𝑛𝑥𝑏
+1, · · · , 𝑛𝑥𝑏

+𝑛𝑥𝑐}, during any given iteration

of the NGBD algorithm for Problem (NGBD-DEP), we can either solve the following convex

MINLP, or relax the integrality restrictions on its y variables and solve a convex program:

min
xℎ,y,qℎ,
𝜂1,··· ,𝜂𝑠

𝑥𝑖ℎ (OBBT𝑥)

s.t. g̃cv
1,ℎ(xℎ,qℎ) + g̃cv

2,ℎ(y) ≤ 0,

𝜂ℎ̄ ≥ 𝑜𝑏𝑗NGBD-PBPℎ̄
(y𝑗) + 𝑝ℎ̄

[︁
𝑓 cv
2,ℎ̄(y) − 𝑓 cv

2,ℎ̄(y𝑗)
]︁

+(︁
𝜆𝑗

ℎ̄

)︁T [︁
gcv
2,ℎ̄(y) − gcv

2,ℎ̄(y𝑗)
]︁
, ∀ℎ̄ ∈ {1, · · · , 𝑠}∖{ℎ}, ∀𝑗 ∈ 𝑇,

0 ≥ 𝑜𝑏𝑗NGBD-FP(y𝑖) +
𝑠∑︁

ℎ̄=1

(︀
𝜇𝑖
ℎ̄

)︀T [︁
gcv
2,ℎ̄(y) − gcv

2,ℎ̄(y𝑖)
]︁
, ∀𝑖 ∈ 𝑆,

⃒⃒{︀
𝑟 ∈ {1, · · · , 𝑛𝑦} : 𝑦𝑡𝑟 = 1

}︀⃒⃒
− 1 ≥

∑︁
𝑦𝑟(𝑡)

𝑟(𝑡)∈{𝑟∈{1,··· ,𝑛𝑦}:𝑦𝑡𝑟=1}

−

∑︁
𝑦𝑟(𝑡)

𝑟(𝑡)∈{𝑟∈{1,··· ,𝑛𝑦}:𝑦𝑡𝑟=0}

, ∀𝑡 ∈ 𝑇 ∪ 𝑆,

𝑝ℎ
[︀
𝑓 cv
1,ℎ(xℎ,qℎ) + 𝑓 cv

2,ℎ(y)
]︀

+
∑︁
ℎ̸̄=ℎ

𝜂ℎ̄ ≤ 𝑈𝐵𝐷,

(xℎ,qℎ) ∈ 𝐷ℎ, y ∈ 𝑌 , (𝜂1, · · · , 𝜂𝑠) ∈ R𝑠,

where the last inequality corresponds to an optimality cut that could possibly exclude binary

complicating variable realizations that have not yet been visited by the NGBD algorithm.
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We note that upper bounds on 𝑥𝑖ℎ can be tightened in a similar fashion, and refer the

reader to [134] for related domain reduction ideas that could accelerate the convergence of

the NGBD algorithm. Since the size of Problem (OBBT𝑥) can increase significantly with

the number of iterations of the inner GBD loop of the NGBD algorithm, our implementation

in Chapter 4 adds a limit on the maximum time for its solution.

2.3.3.1.1.7 Properties of the subproblems

The following results from [138, 139] validate the workings of the NGBD algorithm.

Proposition 2.3.62. The optimal objective value of Problem (NGBD-LBP) is a lower

bound on the optimal objective value of Problem (NGBD-DEP).

Proof. See Proposition 1 in [138].

Proposition 2.3.63. Problems (NGBD-LBP) and (NGBD-MP) are equivalent in the sense

that:

1. Problem (NGBD-LBP) is feasible if and only if Problem (NGBD-MP) is feasible;

2. Problems (NGBD-LBP) and (NGBD-MP) have the same optimal objective function

values;

3. The optimal objective value of Problem (NGBD-LBP) is attained with an integer real-

ization if and only if the optimal objective value of Problem (NGBD-MP) is attained

with the same integer realization.

Proof. See Propositions 2 and 3 in [138].

Proposition 2.3.64. If Problem (NGBD-PP) is feasible for ȳ fixed to any element of

𝑌 , then its optimal objective value is no less than the optimal objective value of Prob-

lem (NGBD-DEP).

Proof. See Proposition 4 in [138].

Proposition 2.3.65. If for any ℎ ∈ {1, · · · , 𝑠}, we have that Problem (NGBD-PPℎ) is

feasible, then Problem (NGBD-PBPℎ) is feasible as well. Additionally, the optimal objec-

tive value of Problem (NGBD-PPℎ) is no less than the optimal objective value of Prob-

lem (NGBD-PBPℎ).
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Proof. See Proposition 5 in [138].

Proposition 2.3.66. For any ℎ ∈ {1, · · · , 𝑠}, Problem (NGBD-FPℎ) satisfies Slater’s con-

dition and it always has a minimum, say (x̂ℎ, q̂ℎ, ŵℎ). Furthermore, ‖ŵℎ‖ > 0 for those

scenarios in which Problem (NGBD-PBPℎ) is infeasible.

Proof. See Proposition 6 in [138].

Proposition 2.3.67. The optimal objective value of Problem (NGBD-RMP) is a valid

lower bound for Problems (NGBD-LBP) and (NGBD-DEP) augmented with the relevant

canonical integer cuts.

Proof. See Corollary 2 in [138].

Proposition 2.3.68. The optimal objective value of Problem (FBBT𝑥) is lesser than any

feasible value of 𝑥𝑖ℎ for Problem (NGBD-DEP).

Proof. Any feasible 𝑥𝑖ℎ for Problem (NGBD-DEP) satisfies g̃ℎ(xℎ,y) ≤ 0 for associated

vectors (xℎ,y) ∈ {0, 1}𝑛𝑥𝑏 × Π𝑥,ℎ × {0, 1}𝑛𝑦 . Since g̃cv
1,ℎ + g̃cv

2,ℎ provides a convex relaxation

of g̃ℎ on [0, 1]𝑛𝑥𝑏 × Π𝑥,ℎ × [0, 1]𝑛𝑦 , there exists qℎ ∈ Θℎ such that g̃cv
1,ℎ(xℎ,qℎ) + g̃cv

2,ℎ(y) ≤

g̃ℎ(xℎ,y) ≤ 0 and, therefore, 𝑥𝑖ℎ is feasible for Problem (FBBT𝑥).

2.3.3.1.2 Lagrangian relaxation

This section presents the details of a Lagrangian relaxation algorithm for solving Prob-

lem (DEP). First, Problem (DEP) is reformulated by explicitly writing out the non-

anticipativity constraints corresponding to the (binary and continuous) complicating vari-

ables and dualizing them [48, 91] to obtain the Lagrangian dual lower bounding problem

(cf. Section 2.3.2.1.3). Next, some techniques that can be used to solve the above dual

problem are noted. Finally, we close this section with a few structure-specific techniques

that can be used to try and generate feasible points for Problem (DEP).

The Lagrangian relaxation approach [48, 91] begins by creating copies of the first-stage

variables, y and z, for each of the 𝑠 scenarios, and adding the so-called non-anticipativity
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constraints that restrict these copies to take the same value across all scenarios.

min
x1,··· ,x𝑠,
y1,··· ,y𝑠,
z1,··· ,z𝑠

𝑠∑︁
ℎ=1

𝑝ℎ𝑓ℎ(xℎ,yℎ, zℎ) (RP)

s.t. gℎ(xℎ,yℎ, zℎ) ≤ 0, ∀ℎ ∈ {1, · · · , 𝑠},

r𝑦,𝑧(yℎ, zℎ) ≤ 0, ∀ℎ ∈ {1, · · · , 𝑠},

yℎ = yℎ+1, zℎ = zℎ+1, ∀ℎ ∈ {1, · · · , 𝑠− 1}, (NA)

xℎ ∈ 𝑋ℎ, yℎ ∈ 𝑌, zℎ ∈ 𝑍, ∀ℎ ∈ {1, · · · , 𝑠}.

The non-anticipativity constraints, Equations (NA), are dualized to obtain the La-

grangian dual problem, Problem (LRP), which is a valid lower bounding problem because

of the weak duality theorem (see Theorem 2.3.39).

sup
𝛽1,··· ,𝛽𝑠−1

𝛾1,··· ,𝛾𝑠−1

min
x1,··· ,x𝑠,
y1,··· ,y𝑠,
z1,··· ,z𝑠

𝑠∑︁
ℎ=1

𝑝ℎ𝑓ℎ(xℎ,yℎ, zℎ) +
𝑠−1∑︁
ℎ=1

𝛾T
ℎ (yℎ − yℎ+1) +

𝑠−1∑︁
ℎ=1

𝛽T
ℎ (zℎ − zℎ+1) (LRP)

s.t. gℎ(xℎ,yℎ, zℎ) ≤ 0, ∀ℎ ∈ {1, · · · , 𝑠},

r𝑦,𝑧(yℎ, zℎ) ≤ 0, ∀ℎ ∈ {1, · · · , 𝑠},

xℎ ∈ 𝑋ℎ, yℎ ∈ 𝑌, zℎ ∈ 𝑍, ∀ℎ ∈ {1, · · · , 𝑠}.

For each ℎ ∈ {1, · · · , 𝑠− 1}, the vectors 𝛾ℎ ∈ R𝑛𝑦 and 𝛽ℎ ∈ R𝑛𝑧 in Problem (LRP) are dual

variable/Lagrange multiplier vectors corresponding to the non-anticipativity constraints

yℎ − yℎ+1 = 0 and zℎ − zℎ+1 = 0. Therefore, even though Problem (DEP) is potentially

a large-scale nonconvex MINLP containing (𝑠𝑛𝑥 + 𝑛𝑦 + 𝑛𝑧) decision variables, the inner

minimization of the above lower bounding problem decomposes into 𝑠 independent scenario

MINLP subproblems each of which consists of (𝑛𝑥 + 𝑛𝑦 + 𝑛𝑧) variables; however, a B&B

strategy, which solves a Lagrangian dual problem at each node of the B&B tree, has to be

adopted in the (𝑌 × 𝑍)-space to converge to a solution of Problem (DEP). This approach

has the advantage that the number of variables to be subdivided in the B&B procedure

is independent of the number of scenarios. For ease of exposition, we shall define the
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(Lagrangian) dual function as:

𝑑(𝛾,𝛽) := min
x1,··· ,x𝑠,
y1,··· ,y𝑠,
z1,··· ,z𝑠

𝑠∑︁
ℎ=1

𝑝ℎ𝑓ℎ(xℎ,yℎ, zℎ) +
𝑠−1∑︁
ℎ=1

𝛾T
ℎ (yℎ − yℎ+1) +

𝑠−1∑︁
ℎ=1

𝛽T
ℎ (zℎ − zℎ+1)

(LRP-inner)

s.t. gℎ(xℎ,yℎ, zℎ) ≤ 0, ∀ℎ ∈ {1, · · · , 𝑠},

r𝑦,𝑧(yℎ, zℎ) ≤ 0, ∀ℎ ∈ {1, · · · , 𝑠},

xℎ ∈ 𝑋ℎ, yℎ ∈ 𝑌, zℎ ∈ 𝑍, ∀ℎ ∈ {1, · · · , 𝑠},

where 𝛾 := (𝛾1, · · · ,𝛾𝑠−1) and 𝛽 := (𝛽1, · · · ,𝛽𝑠−1).

Although the Lagrangian dual problem, Problem (LRP), is a convex optimization prob-

lem, the dual function is typically nondifferentiable and its solution requires the use of a

nonsmooth optimization techniques [100], making it tedious to solve to optimality in gen-

eral. Moreover, evaluation of the dual function at a point involves the solution of several

(scenario) nonconvex MINLPs which are in general NP-hard (however, they are likely to

be significantly less computationally intensive to solve than Problem (DEP) in practice,

especially when the number of scenarios is large). Consequently, typical implementations of

the conventional Lagrangian relaxation algorithm only carry out a small predefined number

of iterations of a nonsmooth optimization algorithm to obtain lower bounds [112, 119]. The

next section lists some widely used approaches for solving the outer dual problem.

2.3.3.1.2.1 Solving the Lagrangian dual problem

Obtaining tight lower bounds for Problem (DEP) using Problem (LRP) might require sev-

eral iterations of an algorithm in the space of the dual variables which, in turn, may require

several calls to a global optimization solver to evaluate the dual function for different values

of the dual variables. Note, however, that it is not necessary to maximize the dual function

precisely to guarantee a valid lower bound for Problem (DEP) since intermediate iterations

of an algorithm applied to the dual provide valid lower bounds as a consequence of the

weak duality theorem (see Theorem 2.3.39). Furthermore, the number of variables in the

dual problem increases affinely with the number of scenarios considered which might makes

precise maximization of the dual function computationally prohibitive for large-scale prob-

lems. Consequently, our implementation of the LR algorithm in this thesis (see Chapter 4)
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considers only a few iterations of an algorithm applied to the dual function to generate

lower bounds for Problem (DEP). Below, we list some algorithms that can be used to solve

the (outer) dual problem, Problem (LRP).

The dual function is typically nondifferentiable which necessitates the use of nonsmooth

convex optimization techniques to solve the (outer) dual problem. A popular technique

for solving the Lagrangian dual problem is the subgradient method [212] and its vari-

ants [126, 130, 175]. Another approach is to use the cutting plane method for convex

optimization [55, 117]; note, however, that pure cutting-plane approaches can be unstable

(see [100, Section XV.1.1]). The approach we adopt in this thesis, based on the empiri-

cal comparison of nonsmooth optimization software in [110], falls in the broad category of

bundle methods [100, 151].

Finally, we note that the solution of the dual problem can be warm started by initializing

the dual variables/Lagrange multipliers for Problem (LRP) at a child node using the dual

variables corresponding to the lower bounding solution at the parent node in the B&B tree.

Therefore, with an initialization of the Lagrange multipliers at the root node of the B&B

tree, initial Lagrange multiplier values at the subsequent nodes in the tree are automatically

determined.

2.3.3.1.2.2 Upper bounding techniques for solving Problem (DEP)

In this section, we list some structure-specific upper bounding techniques for Problem (DEP)

for the scalable generation of feasible points. The first approach that we consider fixes the

integer variables (both first- and second-stage variables) in Problem (DEP) to the lower

bounding solution obtained by (partially) solving Problem (LRP) at any particular node

of the B&B tree, and solving the resulting nonconvex NLP locally (using solvers such

as IPOPT [235, 247] or PIPS-NLP [56] that can exploit the decomposable structure of

Problem (DEP)) to try and generate feasible solutions. In our computational experience,

the above approach usually provides good feasible solutions relatively early on in the B&B

tree since the lower bounds obtained by solving Problem (LRP) are usually quite tight

(compared to the lower bounds generated using convex relaxation-based B&B approaches

for Problem (DEP), which are usually weak early on in the tree especially when the number

of scenarios is large).

An alternative and computationally more intensive approach, which guarantees the gen-
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eration of a feasible point in the limit of the B&B procedure when Problem (DEP) is feasible

(see Chapter 3), can also be used to try and generate feasible points and is described below.

This upper bounding problem on node 𝑛 is obtained by fixing the complicating variables

y and z in Problem (DEP) to the point (y𝑛
avg, z

𝑛
avg) :=

(︀
⌈1𝑠
∑︀𝑠

ℎ=1 y
𝑛
ℎ⌉,

1
𝑠

∑︀𝑠
ℎ=1 z

𝑛
ℎ

)︀
, which

roughly corresponds to the scenario average of the complicating variable solutions from

(an incomplete solution of) the lower bounding problem, Problem (LRP). The resulting

Problem (UBP𝑛) is solved (globally) in a decomposable manner using a global optimization

solver:

min
x1,··· ,x𝑠

𝑠∑︁
ℎ=1

𝑝ℎ𝑓ℎ(xℎ,y
𝑛
avg, z

𝑛
avg) (UBP𝑛)

s.t. gℎ(xℎ,y
𝑛
avg, z

𝑛
avg) ≤ 0, ∀ℎ ∈ {1, · · · , 𝑠},

r𝑦,𝑧(y
𝑛
avg, z

𝑛
avg) ≤ 0,

xℎ ∈ 𝑋𝑛
ℎ , ∀ℎ ∈ {1, · · · , 𝑠}.

Note that if the constraints r𝑦,𝑧(y
𝑛
avg, z

𝑛
avg) ≤ 0 trivially hold, they can be eliminated from

Problem (UBP𝑛); otherwise, Problem (UBP𝑛) is trivially infeasible. If Problem (UBP𝑛)

is feasible when 𝑛 = 0, a feasible point for Problem (DEP) is generated at the root node;

otherwise, if the partitioning procedure is exhaustive, either a feasible point will be obtained

from the solution of Problem (UBP𝑛) along a (possibly infinite) decreasing sequence of

successively refined partition elements of the B&B tree, or the sequence of successively

refined partition elements of the B&B tree will be deemed to be converging to an infeasible

point (deletion by infeasibility rule is certain in the limit, see Section 2.3.2.4). A formal

proof of a related result is provided in Chapter 3 (also see [47]).
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Chapter 3

A modified Lagrangian relaxation

algorithm for nonconvex two-stage

stochastic mixed-integer nonlinear

programs

Mixed-integer nonlinear programs (MINLPs) provide a powerful framework for modeling

applications in the chemical process industries. All known global optimization algorithms

for solving general classes of MINLPs, however, suffer from a worst-case exponential growth

in the runtime with the problem size, which makes the solution of large-scale two-stage

stochastic MINLPs using general-purpose software impractical for applications of interest.

This chapter develops a Lagrangian relaxation-type decomposition algorithm by integrating

two existing decomposition approaches along with efficient domain reduction techniques for

solving a broad class of two-stage stochastic MINLPs.

3.1 Introduction

Mixed-integer nonlinear programs provide a powerful framework for modeling many di-

verse applications, including airline scheduling, concrete structure design, environmental

planning, portfolio optimization, supply chain optimization, traffic planning, and process

systems engineering [18, 226]. Over the past few decades, several local and global opti-
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mization algorithms have been proposed for the solution of MINLPs [44, 80, 226]. These

techniques have been successfully implemented in the general-purpose state-of-the-art de-

terministic global optimization software ANTIGONE [162], BARON [225], Couenne [19],

LINDOGlobal [145], and SCIP [233]. With significant advancements in optimization tech-

niques and software, there has been a growing interest in rigorously accounting for un-

certainties in optimization models [21, 35, 181, 196], especially when their impact on the

decision process is significant. In this chapter, we propose a decomposition strategy for the

solution of the following class of nonconvex two-stage stochastic programs with recourse

(see Problem (DEP) in Section 2.3.3.1 of Chapter 2):

min
x1,··· ,x𝑠,y,z

𝑠∑︁
ℎ=1

𝑝ℎ𝑓ℎ(xℎ,y, z) (DEP)

s.t. gℎ(xℎ,y, z) ≤ 0, ∀ℎ ∈ {1, · · · , 𝑠},

r𝑦,𝑧(y, z) ≤ 0,

xℎ ∈ 𝑋ℎ, ∀ℎ ∈ {1, · · · , 𝑠},

y ∈ 𝑌, z ∈ 𝑍,

where 𝑋ℎ := {xℎ ∈ {0, 1}𝑛𝑥𝑏 × Π𝑥,ℎ : r𝑥,ℎ(xℎ) ≤ 0}, Π𝑥,ℎ ⊂ R𝑛𝑥𝑐 is a convex set, 𝑌 :=

{y ∈ {0, 1}𝑛𝑦 : r𝑦(y) ≤ 0}, 𝑍 := {z ∈ Π𝑧 : r𝑧(z) ≤ 0}, Π𝑧 ⊂ R𝑛𝑧 is convex, 𝑓ℎ : [0, 1]𝑛𝑥𝑏 ×

Π𝑥,ℎ × [0, 1]𝑛𝑦 × Π𝑧 → R, gℎ : [0, 1]𝑛𝑥𝑏 × Π𝑥,ℎ × [0, 1]𝑛𝑦 × Π𝑧 → R𝑚, r𝑥,ℎ : [0, 1]𝑛𝑥𝑏 ×

Π𝑥,ℎ → R𝑚𝑥 , r𝑦 : [0, 1]𝑛𝑦 → R𝑚𝑦 , r𝑧 : Π𝑧 → R𝑚𝑧 , r𝑦,𝑧 : [0, 1]𝑛𝑦 × Π𝑧 → R𝑚𝑦,𝑧 , and

𝑝ℎ > 0 denotes the probability of occurrence of scenario ℎ ∈ {1, · · · , 𝑠}. Along the lines of

Chapter 2, we assume that the set 𝑋ℎ is nonempty and compact for each ℎ ∈ {1, · · · , 𝑠},

the set 𝑌 is nonempty, the set 𝑍 is nonempty and compact, and the functions 𝑓ℎ, gℎ, and

r𝑥,ℎ, ∀ℎ ∈ {1, · · · , 𝑠}, r𝑦, r𝑧, and r𝑦,𝑧 are continuous. The above assumptions imply that

Problem (DEP) either has a finite optimal objective value, or is infeasible. The reader is

directed to Section 2.3.3.1 of Chapter 2 for an overview of decomposition algorithms for

solving (subclasses of) Problem (DEP).

This chapter is organized as follows. Section 3.2 details the lower bounding problem

for Problem (DEP) based on the Lagrangian relaxation and NGBD algorithms that were

reviewed in Section 2.3.3.1 of Chapter 2. Section 3.3 details the techniques used to determine

feasible solutions and reduce the search space of the decision variables (Section 3.4 highlights
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relevant properties of the subproblems described in Sections 3.2 and 3.3). Section 3.5 details

the modified Lagrangian relaxation algorithm along with proofs of convergence. Finally,

Section 3.6 presents two numerical case studies which demonstrate some advantages of the

proposed decomposition approach over state-of-the-art deterministic global optimization

software and the conventional Lagrangian relaxation algorithm, and Section 3.7 provides

some concluding remarks.

3.2 Reformulation and the lower bounding problem

This section presents the reformulation and relaxation procedures applied to Problem (DEP)

to derive a valid lower bounding problem. We begin by reformulating Problem (DEP) by

explicitly writing out the non-anticipativity constraints corresponding to the continuous

complicating variables. Then, these non-anticipativity constraints are dualized in a manner

similar to the conventional Lagrangian relaxation technique [48, 91] to obtain the lower

bounding problem (the inner minimization of which can be solved in a decomposable manner

using NGBD) for the modified Lagrangian relaxation algorithm.

The conventional Lagrangian relaxation approach [48, 91], see Section 2.3.3.1.2, involves

creating copies of the first-stage variables, y and z, for each of the 𝑠 scenarios, adding the so-

called non-anticipativity constraints that restrict these copies to take the same value across

all scenarios, dualizing these non-anticipativity constraints to yield a decomposable lower

bounding problem for Problem (DEP), and adopting a B&B strategy in the (𝑌 ×𝑍)-space to

converge to a solution of Problem (DEP). In this work, copies of only the continuous first-

stage variables z are created along with the corresponding non-anticipativity constraints

(Equation (NA)). This results in Problem (RP), which is equivalent to Problem (DEP)

as stated in Proposition 3.4.1. It is worth noting that the form of the non-anticipativity

constraints used in Problem (RP) is merely one of several ways in which the continuous

first-stage variables corresponding to the different scenarios can be linked together.
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min
x1,··· ,x𝑠,y,
z1,··· ,z𝑠

𝑠∑︁
ℎ=1

𝑝ℎ𝑓ℎ(xℎ,y, zℎ) (RP)

s.t. gℎ(xℎ,y, zℎ) ≤ 0, ∀ℎ ∈ {1, · · · , 𝑠},

r𝑦,𝑧(y, zℎ) ≤ 0, ∀ℎ ∈ {1, · · · , 𝑠},

zℎ = zℎ+1, ∀ℎ ∈ {1, · · · , 𝑠− 1}, (NA)

xℎ ∈ 𝑋ℎ, zℎ ∈ 𝑍, ∀ℎ ∈ {1, · · · , 𝑠},

y ∈ 𝑌.

As in the conventional Lagrangian relaxation approach, the non-anticipativity con-

straints, Equation (NA), are dualized to obtain Problem (LRP), which is a valid lower

bounding problem as stated in Proposition 3.4.2:

sup
𝛽1,··· ,𝛽𝑠−1

min
x1,··· ,x𝑠,y,
z1,··· ,z𝑠

𝑠∑︁
ℎ=1

𝑝ℎ𝑓ℎ(xℎ,y, zℎ) +

𝑠−1∑︁
ℎ=1

𝛽T
ℎ (zℎ − zℎ+1) (LRP)

s.t. gℎ(xℎ,y, zℎ) ≤ 0, ∀ℎ ∈ {1, · · · , 𝑠},

r𝑦,𝑧(y, zℎ) ≤ 0, ∀ℎ ∈ {1, · · · , 𝑠},

xℎ ∈ 𝑋ℎ, zℎ ∈ 𝑍, ∀ℎ ∈ {1, · · · , 𝑠},

y ∈ 𝑌,

where, for each ℎ ∈ {1, · · · , 𝑠− 1}, 𝛽ℎ ∈ R𝑛𝑧 is a Lagrange multiplier vector corresponding

to the constraints zℎ−zℎ+1 = 0. The above lower bounding problem provides lower bounds

that are at least as tight as the corresponding lower bounding problem in the conventional

Lagrangian relaxation algorithm (see Proposition 3.4.3). Furthermore, if the above lower

bounding problem is used in a branch-and-bound scheme, it is sufficient to branch on

the continuous complicating variables to converge. This is in contrast to the conventional

Lagrangian relaxation-based branch-and-bound procedure where it is in general necessary

to also branch on the binary complicating variables to guarantee convergence. For ease of
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exposition, we shall define the (Lagrangian) dual function as:

𝑑(𝛽1, · · · ,𝛽𝑠−1) := min
x1,··· ,x𝑠,y,
z1,··· ,z𝑠

𝑠∑︁
ℎ=1

𝑝ℎ𝑓ℎ(xℎ,y, zℎ) +
𝑠−1∑︁
ℎ=1

𝛽T
ℎ (zℎ − zℎ+1) (LRP-inner)

s.t. gℎ(xℎ,y, zℎ) ≤ 0, ∀ℎ ∈ {1, · · · , 𝑠},

r𝑦,𝑧(y, zℎ) ≤ 0, ∀ℎ ∈ {1, · · · , 𝑠},

xℎ ∈ 𝑋ℎ, zℎ ∈ 𝑍, ∀ℎ ∈ {1, · · · , 𝑠},

y ∈ 𝑌.

Problem (LRP-inner), which evaluates the dual function for given values of the Lagrange

multipliers (also referred to as dual variables), is not in a decomposable form since the

binary first-stage variables, y, couple the scenario recourse problems together; however, it

is in a form that can be solved in a decomposable manner using NGBD [138], see Sec-

tion 2.3.3.1.1 of Chapter 21. If the assumptions of Theorem 2.3.61 in Section 2.3.3.1.1.5

are satisfied, we have that the NGBD algorithm converges finitely to an 𝜀-optimal solution

to Problem (LRP-inner), i.e., to a feasible point of Problem (LRP-inner) with an objective

value that is accurate to within 𝜀 of the value of the Lagrangian dual function (for any given

value of the dual variables). We refer the reader to Section 2.3.3.1.2.1 of Chapter 2 for some

widely used approaches for solving the (outer) Lagrangian dual problem, Problem (LRP).

3.3 Upper bounding and bounds tightening techniques

The efficiency of a branch-and-bound implementation not only depends on generating a

rapidly converging sequence of tight lower bounds, but also on the effectiveness of the up-

per bounding scheme and the ability to reduce the search space using bounds tightening

techniques. In this section, we outline a few upper bounding and bounds tightening tech-

niques for Problem (DEP), most of which exploit its nearly decomposable structure. Before

we proceed, we establish some additional notation than the ones listed in Chapter 2 that

will be useful for the rest of this chapter.

1We will freely adapt the definitions and results in Section 2.3.3.1.1 to Problem (LRP-inner) in the
remainder of this chapter.
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Notation

Positive parameters 𝜀, 𝜀𝑙, and 𝜀𝑢 are chosen as termination tolerances for solving Prob-

lem (DEP), Problem (LRP-inner), and the upper bounding problems in Section 3.3.1, re-

spectively, such that 𝜀𝑙 + 𝜀𝑢 ≤ 𝜀. Each node in the B&B tree is assigned (and referred

to using) a unique index 𝑛 from the set N ∪ {0}, with the index ‘0’ assigned to the root

node of the tree. The level of node 𝑛 in the B&B tree is denoted by ℒ𝑛 with ℒ0 := 0 and

ℒ𝑛𝑐 := ℒ𝑛𝑝 + 1 if 𝑛𝑐 is a child node of 𝑛𝑝.

Sets 𝑋𝑛
ℎ ⊂ {0, 1}𝑛𝑥𝑏 × Π𝑥,ℎ, 𝑌 𝑛 ⊂ {0, 1}𝑛𝑦 , and 𝑍𝑛 ⊂ Π𝑧 (not to be confused with the

𝑛-fold Cartesian product of the 𝑍 sets; we never use this symbol to denote such a product

in this chapter) denote the domains of variables xℎ, ∀ℎ ∈ {1, · · · , 𝑠}, y, and z, respectively,

on node 𝑛. The sets 𝐷𝑛
ℎ and 𝑌 𝑛, defined by

𝐷𝑛
ℎ :=

{︀
(xℎ, zℎ,qℎ) ∈ conv(𝑋𝑛

ℎ ) × 𝑍𝑛 × Θ𝑛
ℎ : rcv𝑥,ℎ(xℎ,qℎ) ≤ 0, rcv𝑧 (zℎ,qℎ) ≤ 0

}︀
and

𝑌 𝑛 :=
{︀
y ∈ 𝑌 𝑛 : ∃v ∈ Γ𝑛 s.t. rcv𝑦 (y,v) ≤ 0,vcv(y,v) ≤ 0

}︀
,

denote the sets 𝐷ℎ and 𝑌 , respectively, in Problem (NGBD-LBP-NS) that are constructed

on node 𝑛 when the NGBD algorithm is employed to solve Problem (LRP-inner). Note

that although the B&B algorithm we propose does not branch on the variables xℎ, ∀ℎ ∈

{1, · · · , 𝑠}, and y, their corresponding domains on node 𝑛, 𝑋𝑛
ℎ and 𝑌 𝑛, may be updated

using the bounds tightening techniques described in Section 2.3.3.1.1.6 of Chapter 2 and

Section 3.3.2 and propagated to child nodes since doing so could help generate tighter

relaxations for the NGBD subproblems and tighter lower bounds for Problem (DEP). We

denote the ‘domain’ of (the variables in) node 𝑛 by the set 𝑀𝑛 := 𝑋𝑛
1 ×· · ·×𝑋𝑛

𝑠 ×𝑌 𝑛×𝑍𝑛.

For any 𝑖 ∈ {1, · · · , 𝑛𝑥𝑏
+ 𝑛𝑥𝑐}, the 𝑖th recourse variable corresponding to scenario ℎ

is denoted by 𝑥𝑖ℎ, and for any 𝑖 ∈ {1, · · · , 𝑛𝑧}, 𝑧𝑖 is used to denote the 𝑖th continuous

complicating variable. We let 𝑧𝑖,𝑛,𝐿 and 𝑧𝑖,𝑛,𝑈 denote the lower and upper bounds for 𝑧𝑖 on

node 𝑛, i.e., 𝑧𝑖 ∈ [𝑧𝑖,𝑛,𝐿, 𝑧𝑖,𝑛,𝑈 ] on node 𝑛.

We let 𝑈𝐵𝐷 ∈ R ∪ {+∞} denote the best found objective value for Problem (DEP)

in the B&B tree, and (x*
1, · · · ,x*

𝑠,y
*, z*) denote a corresponding (feasible) solution when

𝑈𝐵𝐷 < +∞. The lower bound on node 𝑛 in the B&B tree is denoted by 𝐿𝐵𝐷𝑛 ∈

R ∪ {−∞,+∞}. The initial value of the Lagrange multipliers for Problem (LRP) on node

𝑛 is denoted by (𝛽𝑛,0
1 , · · · ,𝛽𝑛,0

𝑠−1), and (𝛽𝑛,*
1 , · · · ,𝛽𝑛,*

𝑠−1) denotes the Lagrange multipliers
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corresponding to the lower bound 𝐿𝐵𝐷𝑛 with (x𝑛
1 , · · · ,x𝑛

𝑠 ,y
𝑛, z𝑛1 , · · · , z𝑛𝑠 ) denoting a 𝜀𝑙-

optimal solution of the dual function evaluated at (𝛽𝑛,*
1 , · · · ,𝛽𝑛,*

𝑠−1), i.e., 𝑑(𝛽𝑛,*
1 , · · · ,𝛽𝑛,*

𝑠−1).

Finally, we define the indicator function fathom : (R ∪ {+∞})×(R ∪ {+∞})×R+ → {0, 1}

such that fathom(𝐿𝐵𝐷,𝑈𝐵𝐷, 𝜀) evaluates to one if a node with the lower bound 𝐿𝐵𝐷 can

be fathomed based on the current best upper bound 𝑈𝐵𝐷 relative to the termination

tolerance 𝜀, and evaluates to zero otherwise.

3.3.1 Upper bounding problems

An efficient B&B algorithm for Problem (DEP) would entail the generation of good fea-

sible solutions, if they exist, that are close in objective function value to a global opti-

mal solution early on in the B&B tree. Good feasible solutions help fathom nodes of

the branch-and-bound tree by value dominance, thereby accelerating the convergence of

branch-and-bound algorithms that otherwise converge using only a combination of con-

sistent bounding operations and exhaustive partitioning [101]. While several heuristic ap-

proaches that look to generate good feasible solutions have been proposed in the literature

(see [28, 60], for instance), only a few simple (but scalable) techniques are used in this work.

The simplest heuristics that can be used to try and generate feasible solutions in-

volves solving Problem (DEP) using a convex MINLP solver (such as BONMIN [40] or

DICOPT [90]) or a nonconvex MINLP solver with a predefined limit on the solution time.

Alternatively, the integer variables in Problem (DEP) can be fixed to the lower bound-

ing solution obtained by (partially) solving Problem (LRP) at any particular node of the

B&B tree, and the resulting nonconvex NLP can be solved locally (using solvers such as

IPOPT [235, 247] or PIPS-NLP [56] that can exploit the decomposable structure of Prob-

lem (DEP)) to try and generate feasible solutions, see Section 2.3.3.1.2.2. It is empirically

observed from the computational studies (see Section 3.6 and Chapter 4) that the latter

approach provides good feasible solutions in the cases when the former approach fails, since

the lower bounds obtained by solving Problem (LRP) are usually quite tight.

A third approach, which guarantees the generation of a feasible point in the limit when

Problem (DEP) is feasible, can also be used to try and generate feasible points and is

described below (also see the related approach in Section 2.3.3.1.2.2). This upper bound-

ing problem on node 𝑛 is obtained by fixing the continuous complicating variables z in

Problem (DEP) to the point z𝑛avg := 1
𝑠

∑︀𝑠
ℎ=1 z

𝑛
ℎ, which corresponds to the scenario average
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of the continuous complicating variable solutions for the lower bounding problem2, and

the resulting Problem (UBP-NGBD𝑛) is solved (globally) in a decomposable manner using

NGBD:

min
x1,··· ,x𝑠,y

𝑠∑︁
ℎ=1

𝑝ℎ𝑓ℎ(xℎ,y, z
𝑛
avg) (UBP-NGBD𝑛)

s.t. gℎ(xℎ,y, z
𝑛
avg) ≤ 0, ∀ℎ ∈ {1, · · · , 𝑠},

r𝑦,𝑧(y, z
𝑛
avg) ≤ 0,

xℎ ∈ 𝑋𝑛
ℎ , ∀ℎ ∈ {1, · · · , 𝑠},

y ∈ 𝑌 𝑛.

Note that Problem (UBP-NGBD𝑛) only contains binary complicating variables y; there-

fore, it can be solved in a decomposable manner to 𝜀𝑢-optimality using NGBD. If Prob-

lem (UBP-NGBD𝑛) is feasible when 𝑛 = 0, a feasible point for Problem (DEP) is generated

at the root node; otherwise, if the partitioning procedure is exhaustive, either a feasible

point will be obtained from the solution of Problem (UBP-NGBD𝑛) along a (possibly infi-

nite) decreasing sequence of successively refined partition elements of the branch-and-bound

tree, or the sequence of successively refined partition elements of the branch-and-bound tree

will be deemed to be converging to an infeasible point (deletion by infeasibility rule is certain

in the limit) [101]. A formal proof of the above claim is provided in Section 3.5.2.

Finally, feasible solutions can also potentially be generated by attempting to solve Prob-

lem (DEP) using NGBD (although the NGBD algorithm does not necessarily converge to

an optimal solution of Problem (DEP) because of the presence of continuous complicating

variables in its formulation, it can potentially identify feasible points for Problem (DEP)).

In this implementation, the inner GBD-like loop of NGBD determines a solution to a re-

laxation of Problem (DEP) (one which is similar to Problem (NGBD-LBP), but without

copies of the continuous complicating variables and sans the use of Lagrangian duality) by

iteratively restricting the (binary and continuous) complicating variables to various points

in their domains. Problem (DEP) is then solved at iterates of the complicating variables

for which the above relaxation was feasible to try and generate upper bounds along with

associated feasible points in a decomposable manner.

2It will become clear from the proofs of Theorems 3.5.5 and 3.5.8 in Section 3.5.2 that the point z𝑛avg is
not the only suitable choice in this context.
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3.3.2 Bounds tightening techniques

This section lists a couple of decomposable bounds tightening subproblems in addition to

the ones listed in Section 2.3.3.1.1.6 for reducing the domains of the continuous complicating

variables in Problem (DEP).

The first bounds tightening approach that we consider is a feasibility-based approach

that involves the solution of auxiliary (scenario) optimization problems. Lower bounds on

the continuous complicating variable 𝑧𝑖, for any 𝑖 ∈ {1, · · · , 𝑛𝑧}, on node 𝑛 can be obtained

from the solution of the following set of convex MINLPs:

max
ℎ∈{1,··· ,𝑠}

min
xℎ,y,zℎ,qℎ

𝑧𝑖ℎ (FBBT𝑛
𝑧 )

s.t. g̃cv
ℎ (xℎ,y, zℎ,qℎ) ≤ 0,

(xℎ, zℎ,qℎ) ∈ 𝐷𝑛
ℎ , y ∈ 𝑌 𝑛.

Note that Problem (FBBT𝑛
𝑧 ) involves the solution of 𝑠 convex MINLPs each of which

can either be solved directly, or further relaxed to a MILP, if necessary, and solved sub-

sequently. Problem (FBBT𝑛
𝑧 ) creates copies of the continuous complicating variables for

each scenario ℎ, minimizes 𝑧𝑖 by only considering the constraints in scenario ℎ of Prob-

lem (NGBD-LBP-NS), and imposes the restriction that the lower bounds for 𝑧𝑖 have to

be the same over all scenarios ℎ = 1, · · · , 𝑠. The number of bounding problems solved to

determine lower bounds on all the continuous complicating variables is 𝑠𝑛𝑧, which is linear

in the number of scenarios. Upper bounds on 𝑧𝑖 can be determined in an analogous manner

by replacing the outer max with a min and the inner min with a max in Problem (FBBT𝑛
𝑧 ).

In what follows, we describe an optimality-based bounds tightening technique that is used

the tighten the bounds on the continuous complicating variables based on aggressive bounds

tightening (ABT) [19].

Suppose 𝑈𝐵𝐷 is the current best upper bound for Problem (DEP) and bounds on

the 𝑖th continuous complicating variable on node 𝑛 are given by 𝑧𝑖 ∈ [𝑧𝑖,𝑛,𝐿, 𝑧𝑖,𝑛,𝑈 ]. If,

for some candidate point 𝑧𝑖,𝑛 ∈ (𝑧𝑖,𝑛,𝐿, 𝑧𝑖,𝑛,𝑈 ) and candidate Lagrange multiplier vector

(𝛽𝑛
1 , · · · ,𝛽𝑛

𝑠−1) ∈ R(𝑠−1)𝑛𝑧 , either the feasibility-based bounds tightening techniques de-

scribed above determine that restricting 𝑧𝑖 to [𝑧𝑖,𝑛,𝐿, 𝑧𝑖,𝑛] makes Problem (DEP) infeasible

on node 𝑛, or the solution of the following (lower bounding) problem is greater than 𝑈𝐵𝐷,
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then 𝑧𝑖 ∈ [𝑧𝑖,𝑛, 𝑧𝑖,𝑛,𝑈 ] is a valid bound tightening for node 𝑛:

min
x1,··· ,x𝑠,y,
z1,··· ,z𝑠

𝑠∑︁
ℎ=1

𝑝ℎ𝑓ℎ(xℎ,y, zℎ) +
𝑠−1∑︁
ℎ=1

(︀
𝛽𝑛
ℎ

)︀T
(zℎ − zℎ+1) (ABT𝑛

𝑧 )

s.t. gℎ(xℎ,y, zℎ) ≤ 0, ∀ℎ ∈ {1, · · · , 𝑠},

r𝑦,𝑧(y, zℎ) ≤ 0, ∀ℎ ∈ {1, · · · , 𝑠},

xℎ ∈ 𝑋𝑛
ℎ , zℎ ∈ 𝑍𝑛 ∩

{︀
z : 𝑧𝑖 ≤ 𝑧𝑖,𝑛

}︀
, ∀ℎ ∈ {1, · · · , 𝑠},

y ∈ 𝑌 𝑛.

Problem (ABT𝑛
𝑧 ) is similar to Problem (LRP-inner) on node 𝑛 for a given value of the

Lagrange multipliers except for the domain of the continuous complicating variable 𝑧𝑖.

Moreover, it is also a nonconvex MINLP that can be solved in a decomposable manner

using NGBD. However, a key difference is that the solution of Problem (ABT𝑛
𝑧 ) need not

be carried out to completion since we only wish to determine if a valid bound tightening

can be achieved; if, during the course of the NGBD algorithm, a feasible solution for Prob-

lem (ABT𝑛
𝑧 ) is found that has a smaller objective value than 𝑈𝐵𝐷 (relative to the tolerance

𝜀), the NGBD algorithm can be terminated because the region 𝑧𝑖 ∈ [𝑧𝑖,𝑛,𝐿, 𝑧𝑖,𝑛] cannot be

fathomed based on optimality arguments. Furthermore, if, during the course of the NGBD

algorithm, the lower bound for the objective value of Problem (ABT𝑛
𝑧 ) is determined to

be larger than 𝑈𝐵𝐷, the NGBD algorithm can be terminated and 𝑧𝑖 ∈ [𝑧𝑖,𝑛, 𝑧𝑖,𝑛,𝑈 ] can be

declared a valid tightening for the domain of 𝑧𝑖 on node 𝑛. Upper bounds for the continuous

complicating variables are potentially tightened on node 𝑛 by restricting 𝑧𝑖 ∈ [𝑧𝑖,𝑛, 𝑧𝑖,𝑛,𝑈 ]

and solving a problem similar to Problem (ABT𝑛
𝑧 ). We also remark that the application of

ABT to the binary first-stage variables results in a procedure similar to probing [198] for

those variables.

Problem (ABT𝑛
𝑧 ) can be extended to involve the iterative solution of several bounding

problems for different values of Lagrange multipliers similar to Problem (LRP); however,

only one value for the Lagrange multipliers is used in this work since it is desired to minimize

computational time for bounding problems. However, several rounds of ABT may be carried

out on a per-variable basis at each node of the tree to obtain good bounds. It should be

noted that a good upper bound 𝑈𝐵𝐷 is essential for the ABT step to tighten the bounds

on the continuous complicating variables effectively.
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3.4 Properties of the subproblems

The following results, in conjunction with the results in Section 2.3.3.1.1.7 of Chapter 2,

validate the workings of the proposed modified Lagrangian relaxation algorithm.

Proposition 3.4.1. Problems (RP) and (DEP) are equivalent in the sense that:

1. Problem (RP) is feasible if and only if Problem (DEP) is feasible;

2. The optimal objective function values of Problem (RP) and Problem (DEP) are the

same.

3. The point (x1, · · · ,x𝑠,y, z) is an optimal solution to Problem (DEP) if and only if the

point (x1, · · · ,x𝑠,y, z, · · · , z) is an optimal solution to Problem (RP).

Proof. The result follows from the fact that (x1, · · · ,x𝑠,y, z) is a feasible solution to Prob-

lem (DEP) with objective value 𝑈𝐵𝐷 if and only if (x1, · · · ,x𝑠,y, z, · · · , z) is a feasible

solution to Problem (RP) with objective value 𝑈𝐵𝐷.

Proposition 3.4.2. The optimal objective value of Problem (LRP) is a lower bound

on the optimal objective value of Problem (RP). Moreover, the dual function (defined

by (LRP-inner)) evaluated at any given value of the Lagrange multipliers/dual variables

provides a valid lower bound to the optimal objective value of Problem (RP).

Proof. This follows from weak duality.

Proposition 3.4.3. Problem (LRP) provides lower bounds that are at least as strong as

those provided by the lower bounding problem of the conventional Lagrangian relaxation

algorithm.

Proof. The lower bounding problem of conventional Lagrangian relaxation is given by

sup
𝛽1,··· ,𝛽𝑠−1,
𝛾1,··· ,𝛾𝑠−1

min
x1,··· ,x𝑠,
y1,··· ,y𝑠,
z1,··· ,z𝑠

𝑠∑︁
ℎ=1

𝑝ℎ𝑓ℎ(xℎ,yℎ, zℎ) +
𝑠−1∑︁
ℎ=1

𝛽T
ℎ (zℎ − zℎ+1) +

𝑠−1∑︁
ℎ=1

𝛾T
ℎ (yℎ − yℎ+1)

(LRP-conv)

s.t. gℎ(xℎ,yℎ, zℎ) ≤ 0, ∀ℎ ∈ {1, · · · , 𝑠},

r𝑦,𝑧(yℎ, zℎ) ≤ 0, ∀ℎ ∈ {1, · · · , 𝑠},

xℎ ∈ 𝑋ℎ, yℎ ∈ 𝑌, zℎ ∈ 𝑍, ∀ℎ ∈ {1, · · · , 𝑠},
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where for each ℎ ∈ {1, · · · , 𝑠 − 1}, 𝛾ℎ ∈ R𝑛𝑦 is a Lagrange multiplier corresponding to the

relaxed constraint (yℎ − yℎ+1) = 0.

Since, for each (𝛽1, · · · ,𝛽𝑠−1) ∈ R(𝑠−1)𝑛𝑧 and (𝛾1, · · · ,𝛾𝑠−1) ∈ R(𝑠−1)𝑛𝑦 , the inner min-

imization of Problem (LRP-conv) provides a lower bound to the inner minimization of

Problem (LRP) (by weak duality), the desired result follows.

Corollary 3.4.4. Consider the solution of Problem (LRP-inner) using NGBD for a given

value of the Lagrange multipliers on node 𝑛 of the branch-and-bound tree. Suppose, at a

particular iteration of the NGBD algorithm, the optimal objective value of the adaptation

of Problem (NGBD-RMP) for solving Problem (LRP-inner) is greater than 𝑈𝐵𝐷, and

the minimum of all of the objective values of the adaptations of Problem (NGBD-PP)

with y fixed to each of the feasible integer realizations visited thus far by (adaptations

of) Problem (NGBD-PBP) are greater than 𝑈𝐵𝐷. Then, the optimal objective value of

Problem (LRP-inner) is greater than 𝑈𝐵𝐷 and node 𝑛 can be fathomed.

Proof. The result follows from Propositions 3.4.2, 2.3.62, 2.3.63, 2.3.65, and 2.3.67.

Proposition 3.4.5. The optimal objective value of Problem (FBBT𝑛
𝑧 ) is lesser than any

feasible value of 𝑧𝑖 on node 𝑛 for Problem (DEP).

Proof. Using arguments similar to the proof of Proposition 2.3.68, the inner minimization

of Problem (FBBT𝑛
𝑧 ) can be shown to provide a valid lower bound for 𝑧𝑖ℎ.

Suppose 𝑧𝑖,𝑛,𝐿1 , · · · , 𝑧𝑖,𝑛,𝐿𝑠 are the corresponding lower bounds for 𝑧𝑖1, · · · , 𝑧𝑖𝑠, respectively,

on node 𝑛 of the branch-and-bound tree, and assume not all 𝑧𝑖,𝑛,𝐿1 , · · · , 𝑧𝑖,𝑛,𝐿𝑠 are equal

(otherwise the result follows immediately). Consider any point in 𝑋𝑛
1 × · · · × 𝑋𝑛

𝑠 × 𝑌 𝑛 ×

𝑍𝑛 × · · · × 𝑍𝑛, and let (𝑧𝑖1, · · · , 𝑧𝑖𝑠) take on values at this point such that 𝑧𝑖ℎ ≥ 𝑧𝑖,𝑛,𝐿ℎ , ∀ℎ ∈

{1, · · · , 𝑠}. Suppose ∃ℎ̄ ∈ {1, · · · , 𝑠} such that 𝑧𝑖
ℎ̄
< max

ℎ
𝑧𝑖,𝑛,𝐿ℎ . Then (𝑧𝑖1, · · · , 𝑧𝑖𝑠) cannot

correspond to a feasible for Problem (RP) since it violates at least one of the constraints

zℎ′ − zℎ′+1 = 0, for some ℎ
′ ∈ {1, · · · , 𝑠− 1}. Therefore, for any ℎ ∈ {1, · · · , 𝑠}, the lower

bound 𝑧𝑖,𝑛,𝐿 on node 𝑛 can be redefined to max
ℎ

𝑧𝑖,𝑛,𝐿ℎ without excluding any feasible points

for Problem (RP). The desired result follows from Proposition 3.4.1.

Proposition 3.4.6. Given 𝑧𝑖,𝑛 ∈ (𝑧𝑖,𝑛,𝐿, 𝑧𝑖,𝑛,𝑈 ) and (𝛽𝑛
1 , · · · ,𝛽𝑛

𝑠−1) ∈ R(𝑠−1)𝑛𝑧 , if the so-

lution of Problem (ABT𝑛
𝑧 ) is greater than 𝑈𝐵𝐷, then 𝑧𝑖 ∈ [𝑧𝑖,𝑛,𝐿, 𝑧𝑖,𝑛] does not contain
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a feasible solution with objective value lower than 𝑈𝐵𝐷, i.e., 𝑧𝑖 ∈ [𝑧𝑖,𝑛, 𝑧𝑖,𝑛,𝑈 ] is a valid

bound tightening.

Proof. This follows from Propositions 3.4.1 and 3.4.2, and the fact that Problem (ABT𝑛
𝑧 )

is a restriction of Problem (LRP-inner).

Corollary 3.4.7. If, at any point during the solution of Problem (ABT𝑛
𝑧 ) using NGBD, the

optimal objective value of the relaxed master problem of NGBD becomes greater than 𝑈𝐵𝐷

and the inner GBD-like loop of NGBD has not converged, then the optimal objective value

of Problem (ABT𝑛
𝑧 ) is greater than 𝑈𝐵𝐷 and 𝑧𝑖 ∈ [𝑧𝑖,𝑛, 𝑧𝑖,𝑛,𝑈 ] is a valid bound tightening.

Moreover, if a feasible solution to the primal problem of NGBD with an objective value

less than 𝑈𝐵𝐷 is determined for Problem (ABT𝑛
𝑧 ), then the optimal objective value of

Problem (ABT𝑛
𝑧 ) is less than 𝑈𝐵𝐷 and Problem (ABT𝑛

𝑧 ) cannot be used to show 𝑧𝑖 ∈

[𝑧𝑖,𝑛, 𝑧𝑖,𝑛,𝑈 ] is a valid bound tightening.

Proof. The first part follows from Corollary 3.4.4 and Proposition 3.4.6. The second part

follows from Proposition 2.3.64.

Proposition 3.4.8. Let 𝑛𝑝 and 𝑛𝑐 be a parent-child node pair in the branch-and-bound

tree. Suppose (𝛽
𝑛𝑝,*
1 , · · · ,𝛽𝑛𝑝,*

𝑠−1 ) are Lagrange multipliers corresponding to the lower bound

𝐿𝐵𝐷𝑛𝑝 obtained by (partially) solving Problem (LRP) on node 𝑛𝑝. Then, the optimal

objective value of Problem (LRP-inner) on node 𝑛𝑐 with the Lagrange multipliers fixed to

(𝛽
𝑛𝑝,*
1 , · · · ,𝛽𝑛𝑝,*

𝑠−1 ) is greater than or equal to the lower bound on node 𝑛𝑝.

Proof. This follows from the fact that for (𝛽1, · · · ,𝛽𝑠−1) fixed to (𝛽
𝑛𝑝,*
1 , · · · ,𝛽𝑛𝑝,*

𝑠−1 ), Prob-

lem (LRP-inner) on node 𝑛𝑐 is a restriction of Problem (LRP-inner) on node 𝑛𝑝 with the

same objective function.

3.5 A modified Lagrangian relaxation algorithm

In this section, an outline of a modified Lagrangian relaxation (hereafter abbreviated to

MLR) algorithm for Problem (DEP) is provided based on the general algorithmic structure

of branch-and-bound algorithms [101] and an application of the Lagrangian relaxation tech-

nique [48, 91] for Problem (DEP). In addition, proofs of convergence of the algorithm to

an 𝜀-optimal solution of Problem (DEP) are provided. Before we present a formal outline
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of the algorithm, we first provide an informal description of the workings of the algorithm

below.

The MLR algorithm is a reduced-space branch-and-bound algorithm in which only the

domains of the continuous complicating variables z are partitioned during the course of

the algorithm. On any particular node of the branch-and-bound tree, the feasibility-based

bounds tightening techniques described in Section 2.3.3.1.1.6 and Section 3.3.2 are first ap-

plied to tighten the bounds on the variables in Problem (DEP). Next, Problem (DEP) is

solved (locally) using the upper bounding problems described in Section 3.3.1 to try and

determine a better upper bound and associated feasible point (while this step is listed as

optional in Algorithm 3.1, a finite upper bound is necessary to be able to apply the ag-

gressive bounds tightening technique; hence, we carry out this step at the root node of

the branch-and-bound tree). If a good upper bound has been determined, the expensive

aggressive bounds tightening technique detailed in Section 3.3.2 is employed to try and

reduce the domains of the continuous complicating variables. Next, a few iterations of an

algorithm applied to the Lagrangian dual problem, Problem (LRP), are employed to de-

termine a lower bound on the node under consideration. As an aside, we note that Cao

and Zavala [47] essentially prescribe using a ‘single iteration’ of a conventional Lagrangian

relaxation algorithm for Problem (LRP) (for the case when it does not contain any binary

variables in its formulation) with all of the Lagrange multipliers fixed to zero, which may

not work well for applications in which the (samples of the) uncertain parameters affect the

optimal objective value of Problem (DEP) significantly (see the integrated crude selection

and refinery operation case study in Section 3.6). Problem (DEP) is then solved (locally)

using those upper bounding techniques in Section 3.3.1 that utilize the lower bounding

solution to either fix the binary variables or the continuous complicating variables in Prob-

lem (DEP), or as a suitable initial guess for ‘local optimization approaches’. Finally, if the

node has not yet been fathomed, we branch on one of the continuous complicating variables

and continue with the branch-and-bound procedure by selecting an unfathomed node from

the tree.

Throughout this section, we assume, without loss of generality, that the domain of

the continuous complicating variables, z, is an interval subset 𝑍 of R𝑛𝑧 , i.e., 𝑍 ∈ IR𝑛𝑧 .

Additionally, it will be implicitly assumed, without loss of generality, that the sets 𝑋ℎ,

∀ℎ ∈ {1, · · · , 𝑠}, and 𝑌 satisfy: 𝑋ℎ = {0, 1}𝑛𝑥𝑏 × Π𝑥,ℎ with Π𝑥,ℎ ∈ IR𝑛𝑥𝑐 , ∀ℎ ∈ {1, · · · , 𝑠},
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and 𝑌 = {0, 1}𝑛𝑥𝑏 .

3.5.1 Outline of the algorithm

Algorithm 3.1 Modified Lagrangian relaxation algorithm

Initialize:

• Iteration counter 𝑘 = 0 and tolerances 𝜀, 𝜀𝑙, 𝜀𝑢 > 0 such that 𝜀𝑙 + 𝜀𝑢 ≤ 𝜀.

• Bounds 𝑋0
1 , · · · , 𝑋0

𝑠 , 𝑌
0, and 𝑍0 :=

∏︀𝑛𝑧
𝑖=1 [𝑧𝑖,0,𝐿, 𝑧𝑖,0,𝑈 ] on x1, · · · ,x𝑠,y, z, respectively,

on the root node (after the optional application of preprocessing techniques to the

input data); domain of the root node 𝑀0 := 𝑋0
1 × · · · ×𝑋0

𝑠 × 𝑌 0 × 𝑍0, and the initial

partition 𝒫0 = {𝑀0}.

• The maximum number of iterations of an algorithm applied to the Lagrangian dual

function, 𝐷max ≥ 1, and the maximum number of ABT iterations (for each variable)

on any node, 𝐵max ≥ 0.

• Boolean indicator variables 𝑏𝑖,𝐿ABT = 1, 𝑏𝑖,𝑈ABT = 1, ∀𝑖 ∈ {1, · · · , 𝑛𝑧}, which indicate

whether the ABT technique should be employed to try and tighten the lower and

upper bounds, respectively, for variable 𝑧𝑖 on any given node.

• An integer 1 ≤ 𝑁 < ∞ and a fraction 0 < 𝜆 < 1 to be used in determining the

branching strategy.

• Initial values for the Lagrange multipliers, corresponding to the nonanticipativity con-

straints in Problem (RP), at the root node, 𝛽0,0
1 , · · · ,𝛽0,0

𝑠−1.

• Upper bound 𝑈𝐵𝐷 = +∞, lower bound at the root node 𝐿𝐵𝐷0 = −∞, and the

current best feasible point for Problem (DEP), {(x*
1, · · · ,x*

𝑠,y
*, z*)} = ∅.

repeat

1. (Node Selection) Pick 𝑛 ∈ arg min
{𝑛∈N∪{0}:𝑀𝑛∈𝒫𝑘}

𝐿𝐵𝐷𝑛 and set 𝒫𝑘+1 = 𝒫𝑘∖{𝑀𝑛}.

2. (Optional FBBT Step) Apply the feasibility-based bounds tightening techniques

described in Section 3.3.2 to update the sets 𝑋𝑛
1 , · · · , 𝑋𝑛

𝑠 , 𝑍𝑛. If all sets

𝑋𝑛
1 , · · · , 𝑋𝑛

𝑠 , and 𝑍𝑛 are nonempty, update 𝑀𝑛 and goto Step 3. Otherwise,

goto Step 9.
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Algorithm 3.1 Modified Lagrangian relaxation algorithm (continued)

3. (Optional Upper Bounding Step) Solve the upper bounding problem with a ter-

mination tolerance of 𝜀𝑢 using any of the techniques described in Section 3.3.1.

Update 𝑈𝐵𝐷 and (x*
1, · · · ,x*

𝑠,y
*, z*) if a feasible solution better than the current

best solution is found.

4. (Optional ABT Step) If {(x*
1, · · · ,x*

𝑠,y
*, z*)} = ∅, goto Step 5. Otherwise, set

𝑏𝑖,𝐿ABT = 𝑏𝑖,𝑈ABT = 1, ∀𝑖 ∈ {1, · · · , 𝑛𝑧}, and solve Problem (ABT𝑛
𝑧 ) as follows:

for 𝑚 = 1 to 𝐵max do

for 𝑖 ∈
{︁
𝑗 ∈ {1, · · · , 𝑛𝑧} : 𝑏𝑗,𝐿ABT = 1

}︁
do

i. Pick 𝑧𝑖,𝑛,𝑚 ∈ (𝑧𝑖,𝑛,𝐿, 𝑧𝑖,𝑛,𝑈 ) and solve Problem (ABT𝑛
𝑧 ), with the Lagrange

multipliers (𝛽1, · · · ,𝛽𝑠−1) fixed to (𝛽𝑛,0
1 , · · · ,𝛽𝑛,0

𝑠−1), to 𝜀𝑙-optimality using

NGBD to determine if the lower bound 𝑧𝑖,𝑛,𝐿 can be tightened.

ii. If the solution of Problem (ABT𝑛
𝑧 ) is terminated because the lower bound

𝑧𝑖,𝑛,𝐿 cannot be tightened, set 𝑏𝑖,𝐿ABT = 0. Else, if 𝑧𝑖,𝑛,𝐿 can be tightened, set

𝑧𝑖,𝑛,𝐿 = 𝑧𝑖,𝑛,𝑚 and update 𝑀𝑛.

end for

for 𝑖 ∈
{︁
𝑗 ∈ {1, · · · , 𝑛𝑧} : 𝑏𝑗,𝑈ABT = 1

}︁
do

i. Pick 𝑧𝑖,𝑛,𝑚 ∈ (𝑧𝑖,𝑛,𝐿, 𝑧𝑖,𝑛,𝑈 ) and solve Problem (ABT𝑛
𝑧 ), with the Lagrange

multipliers (𝛽1, · · · ,𝛽𝑠−1) fixed to (𝛽𝑛,0
1 , · · · ,𝛽𝑛,0

𝑠−1), to 𝜀𝑙-optimality using

NGBD to determine if the upper bound 𝑧𝑖,𝑛,𝑈 can be tightened.

ii. If the solution of Problem (ABT𝑛
𝑧 ) is terminated because the upper bound

𝑧𝑖,𝑛,𝑈 cannot be tightened, set 𝑏𝑖,𝑈ABT = 0. Else, if 𝑧𝑖,𝑛,𝑈 can be tightened, set

𝑧𝑖,𝑛,𝑈 = 𝑧𝑖,𝑛,𝑚 and update 𝑀𝑛.

end for

end for

5. (Lower Bounding Step) Set (𝛽𝑛,*
1 , · · · ,𝛽𝑛,*

𝑠−1) = (𝛽𝑛,0
1 , · · · ,𝛽𝑛,0

𝑠−1), and solve the

lower bounding problem on node 𝑛 as follows:
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Algorithm 3.1 Modified Lagrangian relaxation algorithm (continued)

for 𝑙 = 0 to (𝐷max − 1) do

i. Solve Problem (LRP-inner), with the Lagrange multipliers (𝛽1, · · · ,𝛽𝑠−1)

fixed to (𝛽𝑛,𝑙
1 , · · · ,𝛽𝑛,𝑙

𝑠−1), over 𝑀𝑛 to 𝜀𝑙-optimality using NGBD (see Sec-

tion 2.3.3.1.1) to obtain a lower bound, say 𝐿𝐵𝐷𝑛,𝑙, and corresponding solution,

say (x𝑛,𝑙
1 , · · · ,x𝑛,𝑙

𝑠 ,y𝑛,𝑙, z𝑛,𝑙1 , · · · , z𝑛,𝑙𝑠 ).

ii. If the solution of Problem (LRP-inner) is terminated because all of the

conditions in Corollary 3.4.4 are satisfied (i.e., we detect that the node

can be fathomed either by infeasibility, or by value dominance while

solving Problem (LRP-inner) using NGBD), goto Step 9. Else, if

𝐿𝐵𝐷𝑛,𝑙 > 𝐿𝐵𝐷𝑛, set 𝐿𝐵𝐷𝑛 = 𝐿𝐵𝐷𝑛,𝑙, (x𝑛
1 , · · · ,x𝑛

𝑠 ,y
𝑛, z𝑛1 , · · · , z𝑛𝑠 ) =

(x𝑛,𝑙
1 , · · · ,x𝑛,𝑙

𝑠 ,y𝑛,𝑙, z𝑛,𝑙1 , · · · , z𝑛,𝑙𝑠 ), and (𝛽𝑛,*
1 , · · · ,𝛽𝑛,*

𝑠−1) = (𝛽𝑛,𝑙
1 , · · · ,𝛽𝑛,𝑙

𝑠−1).

iii. If 𝑙 < 𝐷max − 1, determine the Lagrange multipliers for the next iteration,

𝛽𝑛,𝑙+1
1 , · · · ,𝛽𝑛,𝑙+1

𝑠−1 , using an algorithm applied to the Lagrangian dual function.

end for

6. (Optional Upper Bounding Step) Solve Problem (DEP) to 𝜀𝑢-optimality either by

restricting z to the point z𝑛avg, where 𝑧𝑖,𝑛avg denotes the average of 𝑧𝑖,𝑛1 , · · · , 𝑧𝑖,𝑛𝑠 ,

using NGBD, or by restricting the binary variables in Problem (DEP) to their

lower bounding solutions and solving the resulting problem using a local solver

(see Section 3.3.1). Update 𝑈𝐵𝐷 and (x*
1, · · · ,x*

𝑠,y
*, z*) if a feasible solution

better than the current best solution is found.

7. (Branching)

if fathom(𝐿𝐵𝐷𝑛, 𝑈𝐵𝐷, 𝜀) = 0 then

Partition the domain 𝑀𝑛 as follows:

if ℒ𝑛 ≡ 0 mod 𝑁 then

Determine the continuous complicating variable with the largest relative

diameter (relative to the root node)

𝑖* ∈ arg max
{𝑖∈{1,··· ,𝑛𝑧}:𝑧𝑖,0,𝑈 ̸=𝑧𝑖,0,𝐿}

(︀
𝑧𝑖,𝑛,𝑈 − 𝑧𝑖,𝑛,𝐿

)︀
𝑧𝑖,0,𝑈 − 𝑧𝑖,0,𝐿

,
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Algorithm 3.1 Modified Lagrangian relaxation algorithm (continued)

and bisect the domain of that variable to determine the domains of the

child nodes 𝑛1 and 𝑛2:

𝑧𝑖,𝑛𝑗 ,𝐿 = 𝑧𝑖,𝑛,𝐿, 𝑧𝑖,𝑛𝑗 ,𝑈 = 𝑧𝑖,𝑛,𝑈 , ∀𝑗 ∈ {1, 2}, 𝑖 ̸= 𝑖*,

𝑧𝑖
*,𝑛1,𝐿 = 𝑧𝑖

*,𝑛,𝐿, 𝑧𝑖
*,𝑛1,𝑈 =

1

2

(︁
𝑧𝑖

*,𝑛,𝐿 + 𝑧𝑖
*,𝑛,𝑈

)︁
,

𝑧𝑖
*,𝑛2,𝐿 =

1

2

(︁
𝑧𝑖

*,𝑛,𝐿 + 𝑧𝑖
*,𝑛,𝑈

)︁
, 𝑧𝑖

*,𝑛2,𝑈 = 𝑧𝑖
*,𝑛,𝑈 .

else

Determine the continuous complicating variable with the largest ‘dispersion’

𝑖* ∈ arg max{︂
𝑖∈{1,··· ,𝑛𝑧}:max

ℎ
𝑧𝑖,𝑛ℎ ̸=min

ℎ
𝑧𝑖,𝑛ℎ

}︂
𝑠∑︁

ℎ=1

⃒⃒⃒
𝑧𝑖,𝑛ℎ − 𝑧𝑖,𝑛avg

⃒⃒⃒
max
ℎ

𝑧𝑖,𝑛ℎ − min
ℎ

𝑧𝑖,𝑛ℎ
,

and branch on the domain of that variable (using a convex combination

of the scenario-averaged lower bounding solution & the midpoint of that

variable’s domain) to determine the domains of the child nodes 𝑛1 and 𝑛2:

𝑧𝑖,𝑛𝑗 ,𝐿 = 𝑧𝑖,𝑛,𝐿, 𝑧𝑖,𝑛𝑗 ,𝑈 = 𝑧𝑖,𝑛,𝑈 , ∀𝑗 ∈ {1, 2}, 𝑖 ̸= 𝑖*,

𝑧𝑖
*,𝑛1,𝐿 = 𝑧𝑖

*,𝑛,𝐿, 𝑧𝑖
*,𝑛1,𝑈 = 𝜆𝑧𝑖

*,𝑛
avg + (1 − 𝜆)

(︂
𝑧𝑖

*,𝑛,𝐿 + 𝑧𝑖
*,𝑛,𝑈

2

)︂
,

𝑧𝑖
*,𝑛2,𝐿 = 𝜆𝑧𝑖

*,𝑛
avg + (1 − 𝜆)

(︂
𝑧𝑖

*,𝑛,𝐿 + 𝑧𝑖
*,𝑛,𝑈

2

)︂
, 𝑧𝑖

*,𝑛2,𝑈 = 𝑧𝑖
*,𝑛,𝑈 .

end if

else

goto Step 9.

end if

8. Set 𝑋𝑛1
ℎ = 𝑋𝑛2

ℎ = 𝑋𝑛
ℎ , ∀ℎ ∈ {1, · · · , 𝑠}, 𝑌 𝑛1 = 𝑌 𝑛2 = 𝑌 𝑛, 𝒫𝑘+1 = 𝒫𝑘+1 ∪

𝑀𝑛1 ∪𝑀𝑛2 , 𝛽𝑛1,0
ℎ = 𝛽𝑛2,0

ℎ = 𝛽𝑛,*
ℎ , ∀ℎ ∈ {1, · · · , 𝑠 − 1}, ℒ𝑛1 = ℒ𝑛2 = ℒ𝑛 + 1, and

𝐿𝐵𝐷𝑛1 = 𝐿𝐵𝐷𝑛2 = 𝐿𝐵𝐷𝑛.
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Algorithm 3.1 Modified Lagrangian relaxation algorithm (continued)

9. Set 𝒫𝑘+1 = 𝒫𝑘+1∖
{︀
𝑛 ∈ N ∪ {0} : 𝑀𝑛 ∈ 𝒫𝑘+1, fathom(𝐿𝐵𝐷𝑛, 𝑈𝐵𝐷, 𝜀) = 1

}︀
and

𝑘 = 𝑘 + 1.

until 𝒫𝑘+1 = ∅

If 𝑈𝐵𝐷 < +∞, then (x*
1, · · · ,x*

𝑠,y
*, z*) is an 𝜀-optimal solution to Problem (DEP).

A flowchart of the MLR algorithm is presented in Figure 3-1.
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Figure 3-1: Flowchart of the modified Lagrangian relaxation algorithm.

3.5.2 Proof of convergence

In this section, we establish convergence of the above modified Lagrangian relaxation al-

gorithm using the convergence machinery for B&B algorithms reviewed in Section 2.3.2.4

of Chapter 2. Finite convergence of the algorithm is also established under additional

assumptions on the set of near-optimal global minimizers for Problem (DEP).

We begin by verifying the requisite conditions of Theorems 2.3.49 and 2.3.50 for the

proposed algorithm in a bid to establish its convergence.

Lemma 3.5.1. The subdivision process employed by the MLR algorithm is exhaustive on

𝑍0.
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Proof. This follows from the fact that the branching rule (see Step 7 of Algorithm 3.1)

bisects the longest (relative) edge of a partition element if it lies on a level that is a multiple

of the user-defined integer parameter 𝑁 . Therefore, if the longest (relative) edge of 𝑍0 is of

(relative) length Δ0, the longest (relative) edge of 𝑍𝑛𝑁𝑛𝑧 , which corresponds to the domain

of the z variables at iteration 𝑛𝑁𝑛𝑧 of the MLR branch-and-bound algorithm, is at most

equal to
Δ0

2𝑛
.

Lemma 3.5.2. The branch-and-bound selection procedure employed by the MLR algo-

rithm is bound improving.

Proof. This is seen to be true upon comparing the node selection procedure in Step 1 of

Algorithm 3.1 with Definition 2.3.48.

Infeasibility of a partition element is detected either using the bounds tightening tech-

niques described in Section 3.3.2, or from the infeasbility of Problem (LRP-inner) while

computing lower bounds.

Lemma 3.5.3. Deletion by infeasibility is certain in the limit in the MLR algorithm.

Proof. It suffices to show that every infinite decreasing sequence of successively refined

partition elements {𝑀𝑛} := {(𝑋𝑛
1× · · · ×𝑋𝑛

𝑠 × 𝑌 𝑛 × 𝑍𝑛)} satisfies 𝑀𝑛 ∩ ℱ ̸= ∅, where

ℱ :=

{︃
(x1, · · · ,x𝑠,y, z) ∈

(︃
𝑠∏︁

ℎ=1

𝑋0
ℎ

)︃
× 𝑌 0 × 𝑍0 : r𝑦,𝑧(y, z) ≤ 0,gℎ(xℎ,y, z) ≤ 0, ∀ℎ

}︃
,

to show that the lower and upper bounding operations result in a consistent bounding

operation. Since any sequence in a compact set has a convergent subsequence, it is suf-

ficient to show that any point (x̃1, · · · , x̃𝑠, ỹ, z̃) corresponding to an accumulation point

(x̃1, · · · , x̃𝑠, ỹ, z̃, · · · , z̃) of the sequence {(x𝑛
1 , · · · ,x𝑛

𝑠 ,y
𝑛, z𝑛1 , · · · , z𝑛𝑠 )} of lower bounding

solutions over {𝑀𝑛} is an element of ℱ . Note that (z̃, · · · , z̃), where {z̃} = lim
𝑛→∞

𝑍𝑛, is the

unique accumulation point of the sequence {(z𝑛1 , · · · , z𝑛𝑠 )} since the subdivision process is

exhaustive on 𝑍. Additionally, the sequence of lower bounding solutions {(x𝑛
1 , · · · ,x𝑛

𝑠 ,y
𝑛,

z𝑛1 , · · · , z𝑛𝑠 )} over {𝑀𝑛} corresponds to a sequence of lower bounds {𝐿𝐵𝐷𝑛} with 𝐿𝐵𝐷𝑛 <

+∞, ∀𝑛 ∈ N, since the corresponding partition elements have not been fathomed. Since

∀𝑛 ∈ N, 𝑋𝑛
1 , · · · , 𝑋𝑛

𝑠 , 𝑌
𝑛, 𝑍𝑛 are closed sets, we have that (x̃1, · · · , x̃𝑠, ỹ, z̃) ∈ 𝑋𝑛

1 × · · · ×

𝑋𝑛
𝑠 × 𝑌 𝑛 × 𝑍𝑛 for each 𝑛 ∈ N.
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Suppose, by way of contradiction, (x̃1, · · · , x̃𝑠, ỹ, z̃) ̸∈ ℱ . Then the maximum constraint

violation at (x̃1, · · · , x̃𝑠, ỹ, z̃) is strictly positive, i.e., there exists 𝛿 > 0 such that

max

{︂
max

ℎ∈{1,··· ,𝑠}
max

𝑖∈{1,··· ,𝑚}
𝑔𝑖ℎ(x̃ℎ, ỹ, z̃), max

𝑗∈{1,··· ,𝑚𝑦,𝑧}
𝑟𝑗𝑦,𝑧(ỹ, z̃)

}︂
= 𝛿 > 0,

where 𝑔𝑖ℎ and 𝑟𝑗𝑦,𝑧 denote the 𝑖th and 𝑗th components of gℎ and r𝑦,𝑧, respectively. Suppose

the above maximum is attained for the pair of indices (ℎ*, 𝑖*) with 𝑔𝑖
*
ℎ*(x̃ℎ* , ỹ, z̃) = 𝛿 (a

similar proof holds if the maximum is attained for some index 𝑗* with 𝑟𝑗
*

𝑦,𝑧(ỹ, z̃) = 𝛿).

Since the constraint functions are all assumed to be continuous, there exists a subse-

quence {𝑀𝑛𝑞} of {𝑀𝑛}, and a corresponding subsequence of lower bounding solutions

{(x
𝑛𝑞

1 , · · · ,x𝑛𝑞
𝑠 ,y𝑛𝑞 , z

𝑛𝑞

1 , · · · , z𝑛𝑞
𝑠 )} such that (x

𝑛𝑞

1 , · · · ,x𝑛𝑞
𝑠 ) ∈ 𝑋

𝑛𝑞

1 × · · · × 𝑋
𝑛𝑞
𝑠 with the

limit lim
𝑞→∞

(x
𝑛𝑞

1 , · · · ,x𝑛𝑞
𝑠 ) = (x̃1, · · · , x̃𝑠), y

𝑛𝑞 ∈ 𝑌 𝑛𝑞 and lim
𝑞→∞

y𝑛𝑞 = ỹ, z
𝑛𝑞

ℎ ∈ 𝑍𝑛𝑞 , ∀ℎ, and

lim
𝑞→∞

(z
𝑛𝑞

1 , · · · , z𝑛𝑞
𝑠 ) = (z̃, · · · , z̃), over which the constraint 𝑔𝑖

*
ℎ* in Problem (LRP) converges

to its limiting value

lim
𝑞→∞

𝑔𝑖
*
ℎ*(x

𝑛𝑞

ℎ* ,y
𝑛𝑞 , z

𝑛𝑞

ℎ*) = 𝑔𝑖
*
ℎ*(x̃ℎ* , ỹ, z̃).

Thus, ∃𝑞𝛿 ∈ N such that ∀𝑞 ≥ 𝑞𝛿,

⃒⃒⃒
𝑔𝑖

*
ℎ*(x

𝑛𝑞

ℎ* ,y
𝑛𝑞 , z

𝑛𝑞

ℎ*) − 𝑔𝑖
*
ℎ*(x̃ℎ* , ỹ, z̃)

⃒⃒⃒
< 𝛿.

Therefore for 𝑞 ≥ 𝑞𝛿, 𝑔
𝑖*
ℎ*(x

𝑛𝑞

ℎ* ,y𝑛𝑞 , z
𝑛𝑞

ℎ*) > 0 implying that the lower bounding problem is

infeasible for partition elements in the sequence {𝑀𝑛𝑞} beyond 𝑀𝑛𝑞𝛿 , a contradiction.

Since the choice of the accumulation point (x̃1, · · · , x̃𝑠, ỹ, z̃, · · · , z̃) was arbitrary, the

desired result follows.

Lemma 3.5.4. The lower bounding problem employed by the MLR algorithm is strongly

consistent.

Proof. Let {𝑀𝑛} = {(𝑋𝑛
1 ×· · ·×𝑋𝑛

𝑠 ×𝑌 𝑛×𝑍𝑛)} be an infinite nested sequence of successively

refined partition elements produced by a subdivision of 𝑋1 × · · · × 𝑋𝑠 × 𝑌 × 𝑍 that is

exhaustive on 𝑍 with lim
𝑛→∞

𝑍𝑛 = {ż}. We can assume that Problem (DEP) is feasible

for z restricted to ż, and consequently, for each 𝑛 ∈ N, there exists (x1, · · · ,x𝑠,y) ∈

𝑋𝑛
1×· · ·×𝑋𝑛

𝑠 ×𝑌 𝑛 such that gℎ(xℎ,y, ż) ≤ 0, r𝑦,𝑧(y, ż) ≤ 0 since otherwise, by Lemma 3.5.3,

the sequence of partitions {𝑀𝑛} would have been deemed to converge to an infeasible point.
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Let 𝑋∞
ℎ := ∩∞

𝑛=1𝑋
𝑛
ℎ ̸= ∅, ∀ℎ ∈ {1, · · · , 𝑠}, 𝑌 ∞ := ∩∞

𝑛=1𝑌
𝑛 ̸= ∅, and note that these sets are

closed.

Let (ẋ1, · · · , ẋ𝑠, ẏ, ż, · · · , ż) be any accumulation point of the sequence {(x𝑛
1 , · · · ,x𝑛

𝑠 ,

y𝑛, z𝑛1 , · · · , z𝑛𝑠 )} of lower bounding solutions over {𝑀𝑛}. Then (ẋ1, · · · , ẋ𝑠, ẏ) ∈ (𝑋∞
1 ×

· · · × 𝑋∞
𝑠 × 𝑌 ∞) and from Lemma 3.5.3, (ẋ1, · · · , ẋ𝑠, ẏ, ż) is feasible for Problem (DEP).

Let {(𝛽𝑛,*
1 , · · · ,𝛽𝑛,*

𝑠−1)} be a corresponding sequence of Lagrange multipliers at which the

sequence of lower bounds {𝐿𝐵𝐷𝑛} is achieved over {𝑀𝑛} via a (partial) solution of Prob-

lem (LRP). We assume without loss of generality that the sequence {(𝛽𝑛,*
1 , · · · ,𝛽𝑛,*

𝑠−1)}

is bounded in norm (with a bound that is chosen, for instance, by looking at the first

few terms of the sequence); if this assumption were violated for some term of the sequence

(𝛽𝑗,*
1 , · · · ,𝛽𝑗,*

𝑠−1), 𝑗 ≥ 1, we can (recursively) replace (𝛽𝑗,*
1 , · · · ,𝛽𝑗,*

𝑠−1) with (𝛽𝑗−1,*
1 , · · · ,𝛽𝑗−1,*

𝑠−1 )

and proceed with the proof (the proof for the original sequence of Lagrange multipliers would

follow by sandwich arguments). It suffices to show that there exists a subsequence {𝑀𝑛𝑞}

over which

lim
𝑞→∞

min
(x1,··· ,x𝑠,y)∈(𝑋

𝑛𝑞
1 ×···×𝑋

𝑛𝑞
𝑠 ×𝑌 𝑛𝑞 )

z1,··· ,z𝑠

[︃
𝑠∑︁

ℎ=1

𝑝ℎ𝑓ℎ(xℎ,y, zℎ) +

𝑠−1∑︁
ℎ=1

(︀
𝛽
𝑛𝑞 ,*
ℎ

)︀T
(zℎ − zℎ+1)

]︃

s.t. gℎ(xℎ,y, zℎ) ≤ 0, ∀ℎ ∈ {1, · · · , 𝑠},

r𝑦,𝑧(y, zℎ) ≤ 0, ∀ℎ ∈ {1, · · · , 𝑠},

zℎ ∈ 𝑍𝑛𝑞 , ∀ℎ ∈ {1, · · · , 𝑠}

= min
(x1,··· ,x𝑠,y)∈(𝑋∞

1 ×···×𝑋∞
𝑠 ×𝑌 ∞)

𝑠∑︁
ℎ=1

𝑝ℎ𝑓ℎ(xℎ,y, ż)

s.t. gℎ(xℎ,y, ż) ≤ 0, ∀ℎ ∈ {1, · · · , 𝑠},

r𝑦,𝑧(y, ż) ≤ 0, (L)

to prove that the lower bounding problem is strongly consistent. Let

ℱ𝑛
LRP :=

{︀
(x1, · · · ,x𝑠,y, z1, · · · , z𝑠) ∈ (𝑋𝑛

1 × · · · ×𝑋𝑛
𝑠 × 𝑌 𝑛 × 𝑍𝑛 × · · · × 𝑍𝑛) :

r𝑦,𝑧(y, zℎ) ≤ 0, gℎ(xℎ,y, zℎ) ≤ 0,∀ℎ ∈ {1, · · · , 𝑠}
}︀

denote the feasible set of Problem (LRP-inner) on the partition element 𝑀𝑛. Clearly

ℱ𝑛+1
LRP ⊂ ℱ𝑛

LRP,∀𝑛 ∈ N, and ℱ∞
LRP = ∩∞

𝑛=1ℱ𝑛
LRP ̸= ∅. By virtue of the definition of

114



{(𝛽𝑛,*
1 , · · · ,𝛽𝑛,*

𝑠−1)} and because of the way in which the Lagrange multipliers are propagated

from a parent node to a child node (see the discussion at the end of Section 2.3.3.1.2.1 and

Proposition 3.4.8), we have

min
(x1,··· ,x𝑠,y,z1,··· ,z𝑠)∈ℱ𝑛+1

LRP

[︃
𝑠∑︁

ℎ=1

𝑝ℎ𝑓ℎ(xℎ,y, zℎ) +
𝑠−1∑︁
ℎ=1

(︁
𝛽𝑛+1,*
ℎ

)︁T
(zℎ − zℎ+1)

]︃

≥ min
(x1,··· ,x𝑠,y,z1,··· ,z𝑠)∈ℱ𝑛

LRP

[︃
𝑠∑︁

ℎ=1

𝑝ℎ𝑓ℎ(xℎ,y, zℎ) +

𝑠−1∑︁
ℎ=1

(︀
𝛽𝑛,*
ℎ

)︀T
(zℎ − zℎ+1)

]︃
,∀𝑛 ∈ N.

Furthermore, since Problem (DEP) is assumed to be feasible for z restricted to ż, we have

by weak duality

min
(x1,··· ,x𝑠,y,z1,··· ,z𝑠)∈ℱ𝑛

LRP

[︃
𝑠∑︁

ℎ=1

𝑝ℎ𝑓ℎ(xℎ,y, zℎ) +
𝑠−1∑︁
ℎ=1

(︀
𝛽𝑛,*
ℎ

)︀T
(zℎ − zℎ+1)

]︃

≤ min
(x1,··· ,x𝑠,y)∈(𝑋∞

1 ×···×𝑋∞
𝑠 ×𝑌 ∞)

𝑠∑︁
ℎ=1

𝑝ℎ𝑓ℎ(xℎ,y, ż)

s.t. gℎ(xℎ,y, ż) ≤ 0, ∀ℎ ∈ {1, · · · , 𝑠},

r𝑦,𝑧(y, ż) ≤ 0,

∀𝑛 ∈ N. Therefore, the limit defined in the left hand side of Equation (L) exists. Choose

{𝑀𝑛𝑞} to be a subsequence of {𝑀𝑛} such that (ẋ1, · · · , ẋ𝑠, ẏ, ż, · · · , ż), which is a feasi-

ble point for Problem (DEP), is the limit of {(x
𝑛𝑞

1 , · · · ,x𝑛𝑞
𝑠 ,y𝑛𝑞 , z

𝑛𝑞

1 , · · · , z𝑛𝑞
𝑠 )}. From the

continuity of 𝑓 and the boundedness of {(𝛽𝑛,*
1 , · · · ,𝛽𝑛,*

𝑠−1)}, we have

lim
𝑞→∞

[︃
𝑠∑︁

ℎ=1

𝑝ℎ𝑓ℎ(x
𝑛𝑞

ℎ ,y𝑛𝑞 , z
𝑛𝑞

ℎ ) +

𝑠−1∑︁
ℎ=1

(︀
𝛽
𝑛𝑞 ,*
ℎ

)︀T
(z

𝑛𝑞

ℎ − z
𝑛𝑞

ℎ+1)

]︃
=

𝑠∑︁
ℎ=1

𝑝ℎ𝑓ℎ(ẋℎ, ẏ, ż).

Putting all of the above together, we obtain

𝑠∑︁
ℎ=1

𝑝ℎ𝑓ℎ(x
𝑛𝑞

ℎ ,y𝑛𝑞 , z
𝑛𝑞

ℎ ) +
𝑠−1∑︁
ℎ=1

(︀
𝛽
𝑛𝑞 ,*
ℎ

)︀T
(z

𝑛𝑞

ℎ − z
𝑛𝑞

ℎ+1)

≤ min
(x1,··· ,x𝑠,y)∈(𝑋∞

1 ×···×𝑋∞
𝑠 ×𝑌 ∞)

𝑠∑︁
ℎ=1

𝑝ℎ𝑓ℎ(xℎ,y, ż)

s.t. gℎ(xℎ,y, ż) ≤ 0, ∀ℎ ∈ {1, · · · , 𝑠},

r𝑦,𝑧(y, ż) ≤ 0
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≤
𝑠∑︁

ℎ=1

𝑝ℎ𝑓ℎ(ẋℎ, ẏ, ż).

Since the choice of the accumulation point was arbitrary, letting 𝑞 → ∞ gives us (L).

Therefore, the lower bounding problem, which corresponds to a (partial) solution of

Problem (LRP), is strongly consistent.

Theorem 3.5.5. [Convergence] Let 𝜀𝑙 > 0, 𝜀𝑢 > 0, and 𝜀 > 0 be termination tolerances for

the solution of Problem (LRP-inner), the upper bounding problem, and Problem (DEP), re-

spectively, such that 𝜀 ≥ 𝜀𝑙 + 𝜀𝑢. If Problem (LRP-inner) (respectively, the upper bounding

problem) can be solved to 𝜀𝑙-optimality (respectively, 𝜀𝑢-optimality) in a finite number of

steps, then the algorithm either terminates in a finite number of steps with an 𝜀-optimal so-

lution of Problem (DEP), or an indication that Problem (DEP) is infeasible, or, if a feasible

point is not found finitely, any accumulation point of the sequence {x𝑛
1 , · · · ,x𝑛

𝑠 ,y
𝑛, z𝑛avg},

where z𝑛avg := 1
𝑠

∑︀𝑠
ℎ=1 z

𝑛
ℎ, corresponding to an infinite decreasing sequence of successively

refined partition elements of the branch-and-bound tree solves Problem (DEP).

Proof. From Lemmata 3.5.1 and 3.5.4, we know that the subdivision process is exhaustive

and the lower bounding operation is strongly consistent. Furthermore, from Lemma 3.5.3,

we know that every infinite decreasing sequence {𝑀𝑛} of successively refined partition ele-

ments satisfies 𝑀𝑛 ∩ℱ ≠ ∅, ∀𝑛 (deletion by infeasibility is certain in the limit). Therefore,

from Theorem 2.3.49, we have that the lower bounding technique results in a consistent

bounding operation. From Lemma 3.5.2 and Theorem 2.3.50, we have that the B&B pro-

cedure is convergent for 𝜀 = 0 (assuming that all the subproblems involved can be solved

to optimality in finite time (cf. Theorem 2.3.61) and the sequence of upper bounds, deter-

mined using a corresponding sequence of feasible points, converges to the optimal objective

value).

Consider the case when a feasible point has not been found in finite time by the upper

bounding problem(s). Let {𝑀𝑛} be an infinite decreasing sequence of successively refined

partition elements generated by the B&B procedure with {𝐿𝐵𝐷𝑛} denoting a correspond-

ing sequence of lower bounds. Since the lower bounding problem is strongly consistent

and the subdivision procedure is exhaustive on 𝑍, the sequence {𝐿𝐵𝐷𝑛} (and the over-

all lower bound) will approach to within (𝜀𝑙 + 𝜀) tolerance of the optimal objective value

finitely, where 𝜀 > 0 is any positive offset tolerance. Note that the inner minimization
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of the lower bounding problem, Problem (LRP-inner), can be solved to 𝜀𝑙-optimality in

finite time (see Theorem 2.3.61), and at most a finite number of iterations of an algorithm

applied to the dual are carried out. Because the selection procedure is bound improving,

any subsequence of the sequence of partition elements {𝑀𝑛} explored by the B&B proce-

dure will contain an infinite number of partition elements which correspond to the lowest

lower bound. Consider any accumulation point (x̃1, · · · , x̃𝑠, ỹ, z̃, · · · , z̃) of the sequence

{(x𝑛
1 , · · · ,x𝑛

𝑠 ,y
𝑛, z𝑛1 , · · · , z𝑛𝑠 )} of lower bounding solutions over {𝑀𝑛}. Lemma 3.5.3 guar-

antees the feasibility of (x̃1, · · · , x̃𝑠, ỹ, z̃, · · · , z̃). Moreover, the sequence {z𝑛avg} of points

to which the z variables in Problem (UBP-NGBD𝑛) is restricted converges to z̃. Strong

consistency of the lower bounding problem therefore implies that the solution of Prob-

lem (UBP-NGBD𝑛) with z restricted to z̃ will yield an optimal solution to Problem (DEP).

The desired result follows for given tolerances 𝜀𝑙, 𝜀𝑢, 𝜀 > 0 such that 𝜀 ≥ 𝜀𝑙 + 𝜀𝑢.

The following result shows that under relatively mild additional assumptions, finite

convergence of the MLR algorithm (relative to a given tolerance) can be guaranteed. To

establish this result, we assume that node 𝑛 is fathomed only if its lower bound 𝐿𝐵𝐷𝑛 ≥

𝑈𝐵𝐷, where UBD is the overall upper bound of the branch-and-bound tree.

Assumption 3.5.6. There exists an 𝜀𝑆-optimal ideal Slater point in 𝑋1×· · ·×𝑋𝑠×𝑌 ×𝑍

for Problem (DEP), i.e., there exists an 𝜀𝑆-optimal point (x𝑆
1 , · · · ,x𝑆

𝑠 ,y
𝑆 , z𝑆) ∈ 𝑋1 × · · · ×

𝑋𝑠 × 𝑌 × 𝑍 such that gℎ(x𝑆
ℎ ,y

𝑆 , z𝑆) < 0, ∀ℎ ∈ {1, · · · , 𝑠}, and r𝑦,𝑧(y
𝑆 , z𝑆) < 0.

Remark 3.5.7. Assumption 3.5.6 along with the assumptions of compactness of the sets

and the continuity of the functions in Problem (DEP) imply, by Weierstrass’ theorem,

that Problem (DEP) has a finite optimal objective value. The inspiration for the above

assumption arose from reading [168]. Note that Assumption 3.5.6 is slightly weaker than [47,

Assumption 3], which the authors therein use to prove convergence of the sequence of upper

bounds (for a subclass of Problem (DEP) that does not contain any discrete variables).

Theorem 3.5.8. [Finite-𝜀 convergence] Let 𝜀𝑙 > 0, 𝜀𝑢 > 0, and 𝜀 > 0 be termination

tolerances for the solution of Problem (LRP-inner), the upper bounding problem (Prob-

lem (UBP-NGBD𝑛)), and Problem (DEP), respectively. If Problem (LRP-inner) (respec-

tively, the upper bounding problem) used by the modified Lagrangian relaxation algorithm

can be solved to 𝜀𝑙-optimality (respectively, 𝜀𝑢-optimality) in a finite number of steps, As-

sumption 3.5.6 holds with 𝜀𝑆 ≥ 0, and the termination tolerance 𝜀 > 𝜀𝑙 + 𝜀𝑢 + 𝜀𝑆 , the
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modified Lagrangian relaxation algorithm terminates in a finite number of steps with an

𝜀-optimal solution of Problem (DEP).

Proof. We first provide the intuition behind the proof before formally stating it.

We know from Theorem 3.5.5 that the overall lower bound of the branch-and-bound

algorithm is guaranteed to approach to within 𝜀𝑙 of the optimal objective value (from

below) in the limit. Because we assume the existence of an 𝜀𝑆-optimal Slater point, say

(x𝑆
1 , · · · ,x𝑆

𝑠 ,y
𝑆 , z𝑆), for Problem (DEP), there exists a neighborhood of z𝑆 (relative to 𝑍)

such that restricting z to any point in this neighborhood in Problem (UBP-NGBD𝑛) is

guaranteed to result in the generation of a near-optimal feasible point and a corresponding

upper bound. This leads to two possibilities: either this neighborhood of z𝑆 was part of a

node that had been fathomed early on by value dominance, or, because the partitioning of 𝑍

is exhaustive and the node selection procedure is bound improving, the z-component of the

domain of some branch-and-bound node that is visited finitely is guaranteed to lie within

this neighborhood. The former case can only happen if the branch-and-bound algorithm

has already found a good enough upper bound, in which case the algorithm terminates

finitely anyway. If the latter scenario occurs, then solving Problem (UBP-NGBD𝑛) with z

restricted to any point in this neighborhood (for instance, z𝑛avg) will yield a good enough

upper bound that will eventually guarantee finite convergence. In what follows, we state

the above arguments formally.

From Assumption 3.5.6, there exists (x𝑆
1 , · · · ,x𝑆

𝑠 ,y
𝑆 , z𝑆) ∈ 𝑋1 × · · · ×𝑋𝑠 × 𝑌 ×𝑍 such

that

gℎ(x𝑆
ℎ ,y

𝑆 , z𝑆) < 0, ∀ℎ ∈ {1, · · · , 𝑠}, r𝑦,𝑧(y
𝑆 , z𝑆) < 0,

and
𝑠∑︁

ℎ=1

𝑝ℎ𝑓ℎ(x𝑆
ℎ ,y

𝑆 , z𝑆) ≤
𝑠∑︁

ℎ=1

𝑝ℎ𝑓ℎ(x*
ℎ,y

*, z*) + 𝜀𝑆 ,

where (x*
1, · · · ,x*

𝑠,y
*, z*) is an optimal solution to Problem (DEP).

From the continuity of the associated functions, there exists 𝛿 > 0 such that for all

points (x𝐵
1 , · · · ,x𝐵

𝑠 ,y
𝐵, z𝐵) ∈ 𝒩∞

𝛿 ((x𝑆
1 , · · · ,x𝑆

𝑠 ,y
𝑆 , z𝑆)), where 𝒩∞

𝛿 ((x1, · · · ,x𝑠,y, z)) is

the 𝛿-neighborhood of (x1, · · · ,x𝑠,y, z) relative to 𝑋1 × · · · ×𝑋𝑠 × 𝑌 × 𝑍 with respect to
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the ∞-norm,⃒⃒⃒⃒
⃒

𝑠∑︁
ℎ=1

𝑝ℎ𝑓ℎ(x𝐵
ℎ ,y

𝐵, z𝐵) −
𝑠∑︁

ℎ=1

𝑝ℎ𝑓ℎ(x𝑆
ℎ ,y

𝑆 , z𝑆)

⃒⃒⃒⃒
⃒ < (𝜀− 𝜀𝑙 − 𝜀𝑢 − 𝜀𝑆)

and

gℎ(x𝐵
ℎ ,y

𝐵, z𝐵) < 0, ∀ℎ ∈ {1, · · · , 𝑠}, r𝑦,𝑧(y
𝐵, z𝐵) < 0.

For any such z𝐵, we have that Problem (DEP) is feasible when z is restricted to z𝐵.

Moreover, it can be easily seen that solving the corresponding Problem (UBP-NGBD𝑛) to

a termination tolerance of 𝜀𝑢 provides an (𝜀− 𝜀𝑙)-optimal solution to Problem (DEP).

Thus, if there exists a node 𝑀𝑛𝛿 in the B&B tree such that ∀z ∈ 𝑍𝑛𝛿 , ∃(x1, · · · ,x𝑠,y)

∈ 𝑋𝑛𝛿
1 × · · · ×𝑋𝑛𝛿

𝑠 × 𝑌 𝑛𝛿 such that (x1, · · · ,x𝑠,y, z) ∈ 𝒩∞
𝛿 ((x𝑆

1 , · · · ,x𝑆
𝑠 ,y

𝑆 , z𝑆)), we have

that z restricted to any point in 𝑍𝑛𝛿 in Problem (UBP-NGBD𝑛) generates an (𝜀−𝜀𝑙)-optimal

solution to Problem (DEP).

Suppose, by way of contradiction, the B&B procedure does not converge finitely. Let

{𝑀𝑛} be the sequence of successively refined partitioned elements generated by the B&B

subdivision process that is exhaustive on 𝑍. From Lemmata 2.3.43 and 3.5.1, ∃𝑁𝛿 ∈ N

such that for all partition elements 𝑀𝑛 with 𝑛 ≥ 𝑁𝛿, 𝑤(𝑍𝑛) < 𝛿
2 . One such parti-

tion, say 𝑀𝑛𝛿 , has to contain (x𝑆
1 , · · · ,x𝑆

𝑠 ,y
𝑆 , z𝑆) (otherwise, a feasible point that is

𝜀𝑆-optimal has already been found by the B&B algorithm). By the definition of 𝛿, we

have ∀z ∈ 𝑍𝑛𝛿 , ∃(x1, · · · ,x𝑠,y) ∈ 𝑋𝑛𝛿
1 × · · · × 𝑋𝑛𝛿

𝑠 × 𝑌 𝑛𝛿 such that (x1, · · · ,x𝑠,y, z) ∈

𝒩∞
𝛿
2

((x𝑆
1 , · · · ,x𝑆

𝑠 ,y
𝑆 , z𝑆)). Lemma 2.3.43, Theorems 2.3.61 and 3.5.5, and the B&B selec-

tion procedure guarantee that the node 𝑀𝑛𝛿 is visited finitely, resulting in a finite generation

of an (𝜀− 𝜀𝑙)-optimal point for Problem (DEP).

Since, from Theorem 3.5.5, the branch-and-bound algorithm is convergent with the

sequence of lower bounds {𝐿𝐵𝐷𝑛} converging to within an 𝜀𝑙 tolerance of the optimal

objective value and, by the above argument, an (𝜀 − 𝜀𝑙)-optimal point has been generated

finitely, we have that the branch-and-bound procedure is finitely convergent for the given

tolerance 𝜀, a contradiction.

The above result, as presented, does not apply to problems with equality constraints

that are reformulated to the form of Problem (DEP) using pairs of inequality constraints

(since the proof roughly assumes that the feasible set has a nonempty interior). We note
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that Theorem 3.5.8 can be easily extended to the case when Problem (DEP) contains affine

equality constraints if the upper bounding problem, Problem (UBP-NGBD𝑛), is solved at

each node of the branch-and-bound tree by fixing the continuous complicating variables z

to the scenario-averaged lower bounding continuous complicating variable solution z𝑛avg.

Furthermore, Theorem 3.5.8 can also be extended to the case when (some) affine inequality

constraints are active at the 𝜀𝑆-optimal Slater point.

3.6 Computational studies

In this section, we compare the performance of the modified Lagrangian relaxation (MLR)

algorithm with the performance of the conventional Lagrangian relaxation (LR) algorithm

and four general-purpose state-of-the-art global optimization solvers ANTIGONE 1.1 [162],

BARON 16.3.4 [225], Couenne 0.5 [19], and SCIP 3.2 [233], which are accessed via GAMS

24.7.1 [83], on two case studies from the literature (also see Section 4.4 of Chapter 4). The

LR and MLR algorithms used for comparison are implemented as part of our software GOS-

SIP (see Chapter 4), which we plan on making available to the academic community soon

on our lab’s website http://yoric.mit.edu/software. Our case studies include: a tank

sizing and scheduling model for a multi-product plant with uncertainties in the product de-

mands developed by Rebennack, Kallrath, and Pardalos [186], and a model for integrated

crude selection and refinery operation with uncertainties in the crude qualities and yields,

developed by Yang and Barton [241], that is modified to include continuous first-stage vari-

ables. Multiple instances of each of the above models, with a different number of scenarios in

each instance, were solved using the six different algorithms/solvers. Sections 3.6.1 to 3.6.2

briefly present details of these models and instances. We redirect the interested reader to

Sections 4.2.4 and 4.4 of Chapter 4 for the implementation details for these computational

studies.

3.6.1 Tank sizing and scheduling for a multi-product plant

This case study considers a chemical plant with a single reactor that is used to produce

three products, which are then stored in three distinct tanks. The objective of this model

is to: i. determine the optimal sizes of the tanks for each product, ii. determine an optimal

production schedule that satisfies the uncertain demands for each of the products, and iii.
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determine the optimal campaign lengths and production sizes for the three products. This

model includes bilinear and univariate signomial terms and binary recourse variables that

make it challenging to solve. We consider one uncertain product demand with instances

ranging from one to twenty five scenarios as part of our case study in Section 3.6.3. The

details of the deterministic and two-stage stochastic programming models can be found

in [186]. The authors of [186] observe that general-purpose state-of-the-art global opti-

mization solvers are unable to prove optimality of their best found solutions even for the

stochastic programming models with a relatively small number of scenarios, which is in line

with our observations in Section 3.6.3

3.6.2 Integrated crude selection and refinery operation

This case study integrates a simplified refinery model with a pooling model while consid-

ering uncertainties in the crude oil qualities and yields. The purpose of this model is to

determine the optimal crude purchase while taking the above uncertainties into account so

that the expected revenue of the refinery can be maximized while satisfying key refinery

product quality constraints. This model includes a choice of ten crudes, a fixed-yield crude

distillation unit model, mass balances, market demands, quality constraints, and capacity

and supply restrictions. Similar to previous work [241], we assume that the vacuum residue

yields and the sulfur fractions of gas oil from the CDU for each crude are uncertain pa-

rameters; however, in a departure from previous work [241], which assumes that crudes can

be purchased in certain predefined discrete amounts, we assume that the crude purchase

quantities are ‘semi-continuous’ variables, i.e., the crude purchase quantity can either be

zero if the decision maker decides not to purchase that particular crude, or it must lie be-

tween prespecified positive lower and upper bounds. This update to the model implies that

the NGBD algorithm employed by Yang and Barton can no longer be applied to solve the

resulting two-stage stochastic program to guaranteed global optimality, which necessitates

the use of alternative decomposition techniques such as LR and MLR. We generate case

studies with one, five, ten, twenty, forty, and one hundred and twenty scenarios of the un-

certain parameters as part of our case study in Section 3.6.3. The essential details of the

two-stage stochastic programming model can be found in [241].
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3.6.3 Results and discussion

This section presents computational results for the tank sizing and integrated crude selec-

tion problems under uncertainty. For each of these case studies, we list the solution time

in seconds (rounded to the nearest 0.1 second) and percentage relative termination gap

separated by ‘/’, with the gap defined as

gap = min

{︂
100, 100 × upperbound− lowerbound

max {|lowerbound|, |upperbound|} + 𝛿

}︂
[%],

where 𝛿 ∈ (0, 1) such that 𝛿 ≪ 1, for each tested solver for varying numbers of scenarios.

We note that the reported percentage termination gap is rounded to the nearest 0.1 percent

if the instance was not solved within the time limit, and set to be equal to 0.1 percent

(which is the desired optimality level) otherwise. A blank entry (‘-’) for the solution time

indicates that the solution reached the time limit of 10,000 seconds. The entry ‘t’ for the

solution time indicates that the solver terminated prematurely due to failure (likely due

to insufficient memory to continue). The entry ‘i’ for the solution time indicated that the

solver wrongly concluded that the model is infeasible. A blank entry (‘-’) for the termination

gap either indicates that a feasible point wasn’t found within the time limit, or that the

termination gap is not relevant for this entry. Empty entries for both the solution time and

termination gap indicates that the computational experiment was not carried out.

The results for the tank sizing and scheduling problem are presented in Tables 3.1

and 3.2, and Figure 3-2 compares the performance of the different solvers for instances

with varying numbers of scenarios for this case study. Couenne wrongly concludes that

the single scenario problem is infeasible, and is unable to solve multiple scenario instances

of this problem with 10,000 seconds. ANTIGONE and BARON fail to solve problems

with more than one scenario within the time limit of 10,000 seconds, whereas SCIP can

only solve the one and two-scenario instances within the time limit. The solution times

of both LR and MLR appear to scale affinely with the number of scenarios as expected;

however, MLR can be seen to be more effective for solving large-scenario instances and can

solve instances with up to 21 scenarios within the prescribed time limit. Since this case

study does not include any binary complicating variables, the lower bounding problem of

the MLR algorithm effectively reduces to the lower bounding problem of the conventional

Lagrangian relaxation algorithm. Consequently, the significant computational advantage
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Figure 3-2: Comparison of the different solvers on the tank sizing and scheduling prob-
lem [186] (see Tables 3.1 and 3.2). The general-purpose global optimization solvers are gen-
erally ineffective in solving multiple scenario instances of this problem. The LR and MLR
algorithms, on the other hand, perform favorably compared to the general-purpose solvers.
The implementation of the aggressive bounds tightening technique within the MLR algo-
rithm improves its performance significantly compared to the conventional LR algorithm.

Table 3.1: Comparison of the different solvers on the tank sizing and scheduling problem.
This case study includes 3 continuous complicating variables, 9 binary recourse variables
per scenario, 44 continuous recourse variables per scenario, 76 second-stage constraints per
scenario, 32 bilinear terms per scenario, and 3 univariate signomial terms per scenario.

# Scenarios 1 2 3 4 5

ANTIGONE 1.1 24.4/0.1 -/13.9 -/7.4 -/14.3 -/14.3
BARON 16.3.4 3.6/0.1 t/23.1 -/10.6 -/59.8 -/49.8
COUENNE 0.5 i/- -/12.8 -/25.6 -/35.4 -/39.9
SCIP 3.2 2.0/0.1 1201.7/0.1 -/0.2 t/16.6 t/10.5
MLR 39.7/0.1 1265.2/0.1 1340.7/0.1 2416.3/0.1 2451.2/0.1
LR 39.9/0.1 -/0.14 2696.6/0.1 3477.1/0.1 4354.8/0.1

of MLR towards solving larger scenario instances can be attributed to the effectiveness of

the aggressive bounds tightening (ABT) technique (detailed in Section 3.3.2) in eliminating

suboptimal regions of the search space early on in the B&B tree.

Table 3.3 provides detailed computational results for the integrated crude selection and

refinery operation case study, and Figure 3-3 compares the performance of the different

solvers on various instances of this problem. This case study provides the opportunity to

test all of the modifications of the LR algorithm that are incorporated as part of the MLR

algorithm since it includes binary and continuous first-stage decisions. Both the LR and

MLR algorithms, however, face difficulties in converging to within 0.1% tolerance for in-

stances with more than one scenario, whereas the solvers ANTIGONE and BARON can
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Table 3.2: Extended results for the decomposition methods for continuous tank sizing prob-
lem.

# Scenarios 7 9 13 17 21 25

MLR 3228.9/0.1 4274.4/0.1 6256.9/0.1 8289.2/0.1 8230.6/0.1 -/0.12
LR -/0.11 -/0.12 -/0.12 -/0.14 -/0.14 -/0.14
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Figure 3-3: Comparison of the different solvers on the integrated crude selection and refinery
operation model (see Table 3.3). Both LR and MLR are unable to solve instances with
more than one scenario, whereas the commercial solvers ANTIGONE and BARON can
solve instances with more than ten scenarios within 10,000 seconds.

solve instances with more than ten scenarios for this case study within the time limit (these

solvers, however, do not scale favorably with the number of scenarios). In our experience,

a major contributing factor towards the lackluster performances of both the decomposition

algorithms is the ineffectiveness of nonsmooth optimization techniques in solving the re-

spective dual problems. As a validation of the theory, we note that the MLR algorithm can

indeed provide tighter bounds than the conventional LR algorithm. This is evidenced, for

example, by the fact that the initial root node bound of the MLR algorithm corresponds

to a relative gap of 14.7% for the instance with ten scenarios, whereas the corresponding

root node relative gap of the conventional LR algorithm is 16.2%. We also note that the

upper bounding techniques detailed in Section 3.3.1 are able to determine a global optimal

solution for instances with up to forty scenarios at the root node of the B&B tree for the

LR and MLR implementations.
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Table 3.3: Comparison of the different solvers on the integrated crude selection and refinery
operation model. This case study includes 10 binary complicating variables, 10 continu-
ous complicating variables, 122 continuous recourse variables per scenario, 21 first-stage
constraints, 111 second-stage constraints per scenario, and 26 bilinear terms per scenario.

# Scenarios 1 5 10 20 40 120

ANTIGONE 1.1 0.1/0.1 3.0/0.1 14.2/0.1 166.3/0.1 -/0.2 -/0.7
BARON 16.3.4 0.5/0.1 30.5/0.1 -/0.4 -/0.4 5448.2/0.1 -/0.7
COUENNE 0.5 2.6/0.1 53.4/0.1 785.3/0.1 -/0.2 -/0.7 -/-
SCIP 3.2 0.5/0.1 1.1/0.1 7.0/0.1 -/0.2 -/0.2 -/36.0
MLR 0.4/0.1 -/9.3 -/9.5 -/10.4 -/11.2 -/-
LR 0.4/0.1 -/9.6 -/9.6 -/11.1 -/12.0 -/-

3.7 Conclusion

This chapter presented a modified Lagrangian relaxation algorithm for solving two-stage

stochastic MINLPs with mixed-integer variables in both stages by combining NGBD, La-

grangian relaxation, and scalable bounds tightening techniques. To the best of our knowl-

edge, this chapter details the first fully decomposable algorithm for solving this class of

problems that provably converges to an 𝜀-optimal solution in finite time. The theoretical

basis of the algorithm was established by building on the framework of the NGBD and La-

grangian relaxation algorithms and a general convergence theory of B&B algorithms, and

the performance of the algorithm was tested on two case studies from the literature. While

the proposed algorithm is able to mitigate some of the issues faced by the conventional

Lagrangian relaxation algorithm via the use of decomposable bounds tightening techniques,

it appears to still suffer from the following major (numerical) limitation of the conventional

LR algorithm: although the (outer) Lagrangian dual problem is convex, the Lagrangian

dual function is generally nonsmooth, and there seems to be a divide between theory and

practice in solving nonsmooth (convex) optimization problems. Future work on Lagrangian

relaxation-type algorithms must therefore seek to mitigate this limitation if one wishes to

solve practical applications using such techniques in reasonable times.
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Chapter 4

GOSSIP: decomposition software

for the Global Optimization of

nonconvex two-Stage Stochastic

mixed-Integer nonlinear Programs

Stochastic programming provides a natural way of incorporating uncertainty in model pa-

rameters, and has been receiving increasing attention in the process systems engineering

literature. Despite rapid advances in decomposition techniques for solving nonconvex two-

stage stochastic mixed-integer nonlinear programs (MINLPs), there is no publicly available

software framework which implements these techniques. Motivated by the above, this chap-

ter presents GOSSIP, a decomposition framework for the global optimization of two-stage

stochastic MINLPs. GOSSIP includes implementations of nonconvex generalized Benders

decomposition, Lagrangian relaxation, and a modified Lagrangian relaxation algorithm for

solving a broad class of two-stage stochastic MINLPs.
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4.1 Introduction

This chapter introduces GOSSIP, decomposition software for the global solution of the follow-

ing class of scenario-based two-stage stochastic MINLPs (see Problem (SP) in Chapter 1):

min
x1,··· ,x𝑠,y,z

𝑠∑︁
ℎ=1

𝑝ℎ𝑓ℎ(xℎ,y, z) (SP)

s.t. gℎ(xℎ,y, z) ≤ 0, ∀ℎ ∈ {1, · · · , 𝑠},

r𝑦,𝑧(y, z) ≤ 0,

xℎ ∈ 𝑋ℎ, ∀ℎ ∈ {1, · · · , 𝑠},

y ∈ 𝑌, z ∈ 𝑍,

where 𝑋ℎ = {0, 1}𝑛𝑥𝑏 × Π𝑥,ℎ with Π𝑥,ℎ ∈ IR𝑛𝑥𝑐 , ∀ℎ ∈ {1, · · · , 𝑠}, 𝑌 = {0, 1}𝑛𝑦 , 𝑍 ∈ IR𝑛𝑧 ,

and functions 𝑓ℎ : [0, 1]𝑛𝑥𝑏 ×Π𝑥,ℎ× [0, 1]𝑛𝑦 ×𝑍 → R, gℎ : [0, 1]𝑛𝑥𝑏 ×Π𝑥,ℎ× [0, 1]𝑛𝑦 ×𝑍 → R𝑚,

∀ℎ ∈ {1, · · · , 𝑠}, and r𝑦,𝑧 : [0, 1]𝑛𝑦 ×𝑍 → R𝑚𝑦,𝑧 are assumed to be continuous. The variables

y and z in Problem (SP) denote the discrete and continuous first-stage/complicating deci-

sions, respectively, that are made before the realization of the uncertainties, while, for each

ℎ ∈ {1, · · · , 𝑠}, the mixed-integer variables xℎ denote the second-stage/recourse decisions

made after the uncertain model parameters realize their ‘scenario ℎ’ values. The quantity

𝑝ℎ > 0 represents the probability of occurrence of scenario ℎ with
∑︀𝑠

ℎ=1 𝑝ℎ = 1. Equality

constraints in the formulation are assumed to be modeled using pairs of inequalities purely

for ease of exposition. Additionally, bounded general integer variables are assumed to be

equivalently reformulated using binary variables in Problem (SP) mainly for ease of ex-

position (GOSSIP automatically reformulates only the first-stage bounded integer variables

using binary variables and, if necessary, auxiliary constraints).

We assume that all of the functions in Problem (SP) are factorable, i.e., they can be

expressed as finite compositions of binary and unary operations, from predefined libraries

of binary (for example, +, −, ×, /, and ^) and unary functions (for example, univariate

powers, |·|, exp, and log), respectively, applied to the variables in Problem (SP). Addition-

ally, we will implicitly assume that the functional forms of the subproblems we formulate

can be handled by (one of) the solvers linked to by GOSSIP. Further details on the func-

tional forms supported by GOSSIP will be provided in the ensuing sections. The solution
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techniques in GOSSIP also roughly assume the existence of global optimization software that

can solve, in reasonable times to desired termination tolerances, the single-scenario versions

of Problem (SP) corresponding to each possible realization of the uncertain parameters; if

this assumption does not hold, we (reasonably) do not expect GOSSIP to be able to solve

multiple scenarios instances (possibly even a single scenario instance) of such problems in

practical solution times (see Section 4.4).

Decomposition algorithms for Problem (SP) try to exploit its near-decomposable struc-

ture so that their solution times scale reasonably with an increase in the number of scenarios.

General-purpose deterministic global optimization methods [224, 225] for Problem (SP), on

the other hand, face a worst-case exponential increase in solution times with the number

of scenarios since they do not exploit its structure, which typically makes the solution of

large-scenario instances of Problem (SP) using such techniques impractical for applications

of interest. We refer the reader to Section 2.3.3.1 of Chapter 2 for an overview of techniques

for solving various subclasses of Problem (SP).

While there are a few commercial and open-source software packages for solving two-

stage stochastic MILPs (see [125] for details), there are hardly any software implementations

for the scalable solution of nonlinear and mixed-integer nonlinear stochastic programming

problems. When Problem (SP) only contains continuous variables, Schur-IPOPT [247] can

exploit its block-angular structure to obtain a ‘local optimal solution’ using structured linear

algebra techniques (also see [107, 131]). PIPS-NLP [56] is another C-based library that

also implements a structured linear algebra-based filter line-search interior point method

that can solve such problems locally. The progessive hedging algorithm of Rockafellar and

Wets [190] has been implemented within PySP [236], a Python-based software package for

stochastic programming, and can potentially be used to solve Problem (SP), albeit without

any convergence guarantees. Finally, SNGO [47] provides a Julia-based implementation

of a Lagrangian relaxation-type algorithm for the global solution of Problem (SP), along

with bounds tightening and tailored branching & upper bounding techniques, when it only

contains continuous variables. Among all of the software listed in this section, SNGO is the

most relevant to our work since the other implementations usually cannot guarantee finding

a global solution to Problem (SP) when it involves nonconvex functions in its formulation.

GOSSIP includes efficient implementations of NGBD (see Section 2.3.3.1.1 of Chapter 2),

Lagrangian relaxation (see Section 2.3.3.1.2 of Chapter 2), and a modified Lagrangian relax-
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ation algorithm (see Chapter 3) for solving Problem (SP). GOSSIP includes several advanced

techniques for reformulating and preprocessing user input, automatically constructs and co-

ordinates the solution of the subproblems used by the decomposition algorithms, and inte-

grates state-of-the-art decomposition methods with scalable bounds tightening techniques.

To the best of our knowledge, GOSSIP will be the first publicly available decomposition soft-

ware for the global solution of Problem (SP) (we plan to make GOSSIP available for download

to academics without charge soon on our lab website http://yoric.mit.edu/software).

This chapter demonstrates the capabilities of GOSSIP on a diverse set of test cases from the

literature.

This chapter is organized as follows. Section 4.2 discusses the implementation details

pertaining to some of GOSSIP’s main features, including reformulating user input, detecting

special structures, relaxation techniques, and bounds tightening techniques. Section 4.3

briefly outlines, to the best of our knowledge, the first test library for two-stage stochastic

MINLPs1. Section 4.4 presents the results of our computational experiments with GOSSIP

and demonstrates the advantage of our software implementation in comparison to state-

of-the-art deterministic global optimization software. Finally, Section 4.5 concludes the

chapter, and Section 4.6 includes detailed results for the computational experiments in

Section 4.4.

4.2 Implementing GOSSIP

This section outlines the key components of the GOSSIP codebase for solving Problem (SP),

and closes with a wish list for future implementation work. GOSSIP consists of more

than a hundred thousand lines of source code2, written primarily in C++ (with a few

links to C and FORTRAN-based libraries), and includes subroutines for: reformulating

user input and detecting special structures, automatic construction of the subproblems

required by the decomposition techniques (which includes construction of convex relax-

ations, see Section 2.3.3.1.1), domain reduction, linking to state-of-the-art MILP, NLP, and

1We do, however, note that http://minlp.org/ includes some instances of stochastic programs.
2Dr. Achim Wechsung, a former member of our group at MIT, contributed about 5000 lines of C++ code

to GOSSIP from his previous work [237, 239], including subroutines for constructing (and parsing) computa-
tional graphs based on user-defined models, an interval-based bounds tightening method that leverages the
computational graph representation, and a framework for implementing B&B algorithms (part of Dr. Wech-
sung’s work that provides a flexible computational graph framework is available to academics for download
at no charge via our group’s website: http://yoric.mit.edu/software/compgraph). All of the remaining
code in GOSSIP was written by the author.
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MINLP solvers, and a generic B&B framework. The following sections describe the major

implementation-related aspects of GOSSIP.

4.2.1 Reformulating user input and detecting special structures

The reformulation strategies in GOSSIP aim to eliminate redundant variables, terms, and

constraints in the user-defined model, reformulate it into a form that can be handled by the

implemented methods, and elucidate any structure within the resulting (simplified) model

in order to construct tight relaxations for use within the subproblems of the implemented

decomposition techniques. Many of the reformulation strategies in GOSSIP are based on

similar implementations in the commercial software ANTIGONE and BARON that are

described in the articles [11, 161–163].

In the first step, the user defines their two-stage stochastic programming model using

GOSSIP’s modeling language in C++ and sets the relevant solution options, including the

solution method and termination tolerances, to be used by GOSSIP. Once the user-defined

model is converted to a computational graph format [239], GOSSIP stores the problem vari-

ables and constraints within an InputProblem object using variable and constraint classes,

respectively. The model stored in the InputProblem object is then subject to various prepro-

cessing techniques, including the ‘elimination’ of redundant variables and constraints, refor-

mulating bounded integer complicating variables using binary complicating variables (and

adding auxiliary constraints, if necessary), distributing/disaggregating products of linear

and nonlinear terms (see [223, Chapter 3]), simplifying/flattening the computational graph

(see [163, Section 3.1.1]), and extracting (and storing) the coefficients of linear constraints

in the formulation. Next, the deterministic equivalent/extensive form of the user-defined

two-stage stochastic program is constructed either if the user wishes to solve the extensive

form directly using a supported solver, or if the chosen solution approach requires the so-

lution of the (restricted) deterministic equivalent form using local optimization techniques

for generating feasible points.

Once the initial reformulations on the user-defined model are carried out, the above

InputProblem object is then decomposed into individual scenario PrimalProblem objects,

which are used either to generate feasible points for the NGBD algorithm, or to gener-

ate lower bounds for the LR and MLR algorithms (note that each PrimalProblem object

model, by way of its definition, is usually solved using a global solver irrespective of whether
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the solution method is NGBD, LR, or MLR). Each of the scenario models stored in the

PrimalProblem objects are then temporarily reformulated using the auxiliary variable tech-

nique [213] in order to detect simple common nonlinear subexpressions in those models (we

do not permanently reformulate the PrimalProblem object models because we wish to leave

the choice of reformulation steps to the global solvers that are used to solve these models).

GOSSIP tracks a few well-studied nonlinear functional forms of (auxiliary) variables, in-

cluding: products, quotients, univariate and multivariate signomial terms, trilinear and

quadrilinear terms, exponentials, logarithms, composite exponential and logarithmic terms,

and absolute value terms. The above temporarily-reformulated PrimalProblem object mod-

els are relaxed using the techniques listed in Section 4.2.2 to construct the corresponding

PrimalBoundingProblem object models, which are either used within the GBD loop of the

NGBD algorithm, or are used to construct the subproblems employed by the bounds tight-

ening techniques listed in Section 4.2.3, or both. Next, depending on the choice of the so-

lution method, FeasibilityProblem and RelaxedMasterProblem objects are constructed

based on the definitions of Problems (NGBD-FP) and (NGBD-RMP), respectively. Finally,

we construct feasibility-based bounds tightening and optimality-based bounds tightening

model objects based on the subproblems listed in Section 4.2.3.

4.2.2 Relaxation strategies

Table 4.1 lists the various term-specific relaxation strategies employed by GOSSIP for the

construction of its subproblems. We note that the convexity/concavity of univariate and

multivariate signomial terms (see [163, Appendix B]), and logarithmic, exponential, and

composite logarithmic and exponential terms are (potentially) detected by GOSSIP and uti-

lized during the construction of relaxations. The dependence of the relaxations on the

(relevant) variable bounds are stored so that the relaxations can be efficiently updated if

and when the domains of the variables are reduced using bounds tightening techniques.

Unlike the outer-linearization approaches used by state-of-the-art global optimization soft-

ware [224, 225], GOSSIP currently employs nonlinear convex relaxations wherever relevant,

since generating tighter relaxations could dramatically improve the performance of the im-

plemented algorithms. Once additional advanced relaxation strategies, similar to those used

by state-of-the-art global optimization software [162, 225], are implemented within GOSSIP,

we plan on switching to a polyhedral relaxation strategy to leverage the robustness of com-
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Table 4.1: Summary of the relaxation strategies for the different ‘simple terms’ detected by
GOSSIP.

Term Relaxation strategies

𝑥𝑦 McCormick envelope [7, 154]
𝑥

𝑦
Bilinear reformulation, Zamora & Grossmann [246] envelope

𝑥𝑐 Secant, Liberti & Pantelides [142] linearization

log(𝑥) Secant

exp(𝑥) Secant

𝑥𝑦 Reformulate as exp(𝑦 log(𝑥))

|𝑥| MILP reformulation (see [163, Section 3.2.3])

min(𝑥, 𝑦) Reformulate as 1
2 (𝑥 + 𝑦 − |𝑥− 𝑦|)

max(𝑥, 𝑦) Reformulate as 1
2 (𝑥 + 𝑦 + |𝑥− 𝑦|)

𝑥 log(𝑥) Secant

𝑥 exp(𝑥) Bilinear reformulation, Secant

𝑥𝑦𝑧 Meyer & Floudas [155, 156] envelope

𝑥𝑦𝑧𝑤 Facets of the convex hull (see [163, Section 3.3.1])

𝑥1
𝑐1 · 𝑥2𝑐2 · · ·𝑥𝑛𝑐𝑛 Bilinear reformulation, Secant, Transformation-based [149, 152]

mercial LP solvers and the warm-start capabilities of such a framework. Future work with

regards to relaxation strategies also involves the incorporation of advanced reformulation-

linearization technique (RLT) cuts [143, 161, 163, 164, 209, 210] and a piecewise convex

relaxation framework [27, 52, 137, 158] within GOSSIP to improve the strength of con-

structed relaxations (we currently manually incorporate some relevant RLT cuts as part of

our models for the computational studies in Section 4.4).

4.2.3 Bounds tightening techniques

While several bounds tightening techniques have been proposed in the literature [19, 182,

224], based on feasibility [17, 94] and optimality [194, 246] arguments, that are directly ap-

plicable to nonconvex MINLPs in the form of Problem (SP), we chose to implement tailored

bounds tightening techniques within GOSSIP so that the computational effort expended in

the bounds tightening steps scales linearly with the number of scenarios while still pro-

viding tight bounds. The domain reduction techniques that are part of GOSSIP include:

forward-backward interval propagation (see Section 2.3.2.2 of Chapter 2), optimization-
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based FBBT techniques (see Section 2.3.3.1.1.6 of Chapter 2 and Section 3.3.2 of Chapter 3),

and OBBT techniques (see Problem (OBBT𝑥) in Section 2.3.3.1.1.6 and Problem (ABT𝑛
𝑧 )

in Section 3.3.2).

4.2.4 Implementing the decomposition techniques within GOSSIP

This section briefly summarizes the implementation aspects of the three decomposition

algorithms (NGBD, LR, and MLR; see Chapters 2 and 3) implemented within GOSSIP and

lists the default settings for key solver options for those algorithms.

All of the implemented decomposition techniques use the forward-backward interval

propagation technique at various stages in their solution process with the termination crite-

rion requiring that the improvement in each of the variables’ bounds fall below 0.1% (with

respect to their bounds during the previous iteration of the technique). GOSSIP interfaces

with a few state-of-the-art software for the solution of subproblems, including a C++ in-

terface to ANTIGONE 1.1 [162], a C++ interface to IPOPT 3.12.8 [235], a C++ interface

to SNOPT 7.2-4 [86], a C interface to CPLEX 12.6.1 [103], and FORTRAN interfaces to

MPBNGC 2.0 [151] and Solvopt 1.1 [130]. The default solver choices are: ANTIGONE 1.1

for the global optimization of convex MINLPs, nonconvex NLPs and nonconvex MINLPs,

IPOPT 3.12.8 for solving convex NLPs and for generating feasible points for LR and MLR

(for the case of nonconvex NLPs and MINLPs), CPLEX 12.6.1 for solving LPs and MILPs,

and MPBNGC 2.0 for solving the dual problems. The subproblems used by the decomposi-

tion techniques are solved using interfaces to the above solvers via a Solver class. GOSSIP

also interfaces with the BOOST C++ interval arithmetic library [62] to calculate interval

bounds on factorable expressions for bounds tightening techniques and during the construc-

tion of relaxations, and interfaces with the FADBAD++ C++ library [26] for computing

first- and second-derivative information.

The relative termination tolerances 𝜀ℎ, for each ℎ ∈ {1, · · · , 𝑠}, for the NGBD primal

problems (see Algorithm 2.3 in Chapter 2) are all set to be equal to 𝜀
𝑠 . The default choice

for the initial binary complicating variable realization y1 in Algorithm 2.3 is an optimal

solution to Problem (NGBD-FRMP) with the initialization 𝑆 = ∅; in practice, y1 is set to

the best found feasible solution to Problem (NGBD-FRMP) if the time limit of five seconds

is reached. The NGBD algorithm uses five initial iterations of the optimization-based FBBT

techniques described in Section 2.3.3.1.1.6 that are solved either using a supported LP solver,
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or using a supported convex NLP solver depending on the type of formulation used for

Problem (NGBD-PBP) (we relax the integrality restrictions on the integer variables in the

FBBT subproblems by default). The default choice of norm for Problem (NGBD-FP) is the

∞-norm, whereas the default choice for Problem (NGBD-FRMP) is the 1-norm. We note

that the solution of the primal problems for NGBD, Problems (NGBD-PPℎ), are potentially

accelerated by providing ‘cutoff objective values’ that the global solvers can use to fathom

nodes of their B&B trees (see Proposition 3.6 and Remark 3.2 in [139]). If the upper bound

in the NGBD algorithm is updated after a sequence of primal problems is solved, we use a

single pass of the OBBT technique described in Problem (OBBT𝑥) of Chapter 2 to try and

tighten the variables’ bounds using optimality arguments (once again, the default setting

is to relax the integrality restrictions on the integer variables). Since the size of the OBBT

subproblems can increase significantly with the number of iterations of the inner (GBD)

loop of the NGBD algorithm, we limit the solution time for each OBBT subproblem (for

each considered variable) to 1
𝑠 seconds to ensure that the total OBBT solution time scales

well with the number of scenarios. The current implementation within GOSSIP only employs

the OBBT step when the OBBT subproblems reduce to LPs after the integrality restrictions

are relaxed; if Problem (FBBT𝑥) is not a MILP, then Problem (OBBT𝑥) is not employed.

The termination tolerances for the (overall) upper and lower bounding problems for LR

and MLR (see Algorithm 3.1 in Chapter 3) are set to be 𝜀
10 and 𝜀

1.2 , respectively. The de-

fault maximum number of ‘dual iterations’ for these algorithms is 𝐷max = 5, and the default

branching strategies for these algorithms employs the parameter values 𝑁 = 2 and 𝜆 = 0.75.

The Lagrange multipliers for the non-anticipativity constraints in LR and MLR are all ini-

tially set to zero. At each node of the B&B tree, two rounds of the optimization-based

FBBT techniques described in Sections 2.3.3.1.1.6 and 3.3.2 are solved using a supported

LP/NLP solver depending on the type of formulation used. Both the LR and MLR algo-

rithms use ANTIGONE and IPOPT with a maximum time limit of five seconds to try and

generate feasible points at each node of the B&B tree (see Section 2.3.3.1.2.2 of Chapter 2

and Section 3.3.1 of Chapter 3). The default setting for the modified Lagrangian relaxation

algorithm is to use at most three rounds of ABT per variable per lower/upper bound at

each node with the Lagrange multipliers fixed to the initial values at those nodes; on the

other hand, the default setting for the conventional Lagrangian relaxation algorithm is to

not use the ABT steps.
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4.2.5 Future work

We list some important avenues for future implementation work within GOSSIP, organized

into a few categories, below:

• Algorithms: nonconvex outer-approximation [118].

• Relaxation techniques: polyhedral relaxation framework [224, 225], piecewise linear re-

laxations [160, 165], reformulation-linearization cuts [143, 161, 163, 164, 209, 210], and

other specialized relaxation strategies [11, 12, 120, 121, 161–164, 227, 250, 251].

• Finding feasible points: multi-start methods [228], variable neighborhood search methods

and their variants [95, 141], and the use of software for two-stage stochastic NLPs [56, 247]

for the efficient generation of feasible points.

• Software links: GUROBI [92], BONMIN [40], SCIP [233].

• Miscellaneous: exploiting parallelizability.

4.3 The GOSSIP test library

The GOSSIP test library currently consists of twenty test cases from eight different appli-

cations, including the stochastic pooling problem [136], continuous and discrete-versions

of a tank sizing problem [186], a trim loss minimization problem [96], and continuous and

discrete-versions of a refinery model [241]. Multiple instances of each of these test cases

involving different numbers of scenarios are generated. Out of the twenty test cases, two

involve continuous complicating variables and require the use of the MLR algorithm in

place of the NGBD algorithm. Additionally, we attempt to solve all twenty test cases using

ANTIGONE 1.1, BARON 16.3.4, Couenne 0.5, SCIP 3.2, and the LR algorithm. A sum-

mary of the contents of the GOSSIP test library is provided in Table 4.2. We plan to make the

test library available for download on the group website http://yoric.mit.edu/software.

4.4 Computational experiments

To test the capabilities of GOSSIP, we compare the performance of the decomposition

techniques (NGBD/MLR and LR) in GOSSIP against performance of four general-purpose
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Table 4.2: The GOSSIP test library. Check marks in the columns for 𝑛𝑦, 𝑛𝑧, 𝑛𝑥𝑏
, and 𝑛𝑥𝑐

indicate the presence of binary complicating variables, continuous complicating variables,
binary recourse variables, and continuous recourse variables, respectively. The entries in the
last column indicate the types of nonlinear terms present in each model, with BLIN denoting
bilinear terms, TRILIN denoting trilinear terms, USIG denoting univariate signomial terms,
MSIG denoting multivariate signomial terms, and LOG denoting logarithmic terms.

Problem Type # Cases ny nz nxb
nxc Nonlinear term types

Pooling [2, 136, 159] 5 X X BLIN

Sarawak [136, 139, 140] 3 X X BLIN

Pump network [137] 2 X X BLIN, USIG

Software reliability [139] 2 X X BLIN, TRILIN, MSIG, LOG

Continuous tank sizing [186] 1 X X X BLIN, USIG

Discrete tank sizing [186] 2 X X X BLIN

Discrete refinery model [241] 1 X X BLIN

Continuous refinery model [241] 1 X X X BLIN

Trim loss [96] 2 X X BLIN

Knapsack [9] 1 X X

state-of-the-art deterministic global optimization software ANTIGONE 1.1, BARON 16.3.4,

Couenne 0.5, and SCIP 3.2, accessed through GAMS 24.7.1 [83], on the GOSSIP test library

summarized in Table 4.2 (in the last knapsack case study, we test the performance of NGBD

and LR against SCIP 3.2 and MILP software CBC 2.9 and CPLEX 12.6.3.0). We note that

SNGO [47] cannot be used to solve any of the problems in Table 4.2 since all of the problems

therein involve discrete variables in their formulation. We constructed multiple instances of

each of the test cases in Table 4.2 with a varying number of scenarios to analyze the rates

at which the solution times of these techniques increases with an increase in the number of

scenarios. The maximum number of scenarios considered in each case study is determined

by the best-performing global solver.

All of the case study instances were solved using a Dell Precision T5810 workstation

with a 3.5 GHz Intel Xeon E5-1650 v3 processor on a VMWare 11.0 Workstation running a

Ubuntu 14.04 virtual machine with 6 GB of memory. An absolute tolerance of 10−9, a rel-

ative tolerance of 10−3, and a time limit of 10,000 seconds (about 2.8 hours) were imposed

for all solvers for each problem instance. A maximum iteration limit of 109 was set for each

global solver, with the remaining parameter values set to their defaults. To minimize the

effect of fluctuating machine load, each of the four global solvers was successively used to
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solve each problem instance (see [66, Section 3]); the decomposition techniques in GOSSIP

were used to solve the case studies at a later time. The detailed results of the computa-

tional experiments are presented as part of the supplementary information in Section 4.6.

In the rest of this section, we will present graphical comparisons of the performance of the

six different solution techniques as the number of scenarios is varied for the problems in

the test library. This is in contrast to conventional comparison plots made among global

optimization software (see, for instance, [162, Section 5]), where performance profiles of the

CPU time and the final relative termination gap are compared across solvers. Plots that

provide insights on the empirical scaling of the solution times of the implemented decom-

position algorithms (and considered general-purpose software) as a function of the number

of scenarios are also provided wherever relevant. Plots in which data points corresponding

to any one of the solvers is missing indicates that the corresponding solver(s) was unable

to solve any of the scenario problems for that test case.

Stochastic pooling problems

Figures 4-1 to 4-4 compare the performance of the different solvers on the first four stochas-

tic pooling problem instances. Since only ANTIGONE was able to solve even the single

scenario problem of stochastic pooling problem #5 (in 1879 seconds), we do not plot a

comparison plot for that case. The advantages of NGBD and LR over the four general-

purpose global optimization software for the first three instances of the stochastic pooling

problem are evident from Figures 4-1 to 4-3. The solution times of both the NGBD and LR

implementations appear to scale affinely with the number of scenarios for these instances,

whereas the solution time of even the best-performing general-purpose solver appears to

scale exponentially. Only ANTIGONE and BARON are able to solve even the single sce-

nario problem for the fourth instance, and ANTIGONE is the only solver that is able to

solve the single scenario case for the fifth instance (see Tables 4.9 and 4.10). Although

the Lagrangian relaxation algorithm uses ANTIGONE to generate its lower (and upper)

bounds, it is unable to converge within the time limit for the single scenario instances of

stochastic pooling problems #4 and #5. This suggests that the version of ANTIGONE

within GAMS 24.7.1 works differently than the version linked within GOSSIP. Tables 4.3

to 4.10 present detailed computational results for the five stochastic pooling problems.
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Figure 4-1: Comparison of the different solvers on stochastic pooling problem #1 [136]
(see Tables 4.3 and 4.4). The solution times of NGBD and LR seem to scale affinely with
the number of scenarios, whereas the solution time of the best-performing general-purpose
solver for this instance, BARON, appears to scale less favorably.
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Figure 4-2: Comparison of the different solvers on stochastic pooling problem #2 based
on [2] (see Tables 4.5 and 4.6). The solution times of NGBD and LR seem to scale affinely
with the number of scenarios, whereas the solution time of the best-performing general-
purpose solver for this instance, SCIP, increases significantly with the number of scenarios.
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Figure 4-3: Comparison of the different solvers on stochastic pooling problem #3 based
on [2] (see Tables 4.7 and 4.8). The solution times of NGBD and LR appear to scale
affinely with the number of scenarios.
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Figure 4-4: Comparison of the different solvers on stochastic pooling problem #4 based
on [159] (see Table 4.9). Only ANTIGONE and BARON manage to solve even the single
scenario instance within 10,000 seconds.
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Sarawak gas production network problems

Figures 4-5 to 4-7 compare the performance of the different solvers on the Sarawak gas

production system problem instances. Once again, these case studies demonstrate the

advantages of the implemented decomposition techniques over general-purpose state-of-

the-art global optimization software for large-scenario instances of Problem (SP). While

both NGBD and LR outperform the general-purpose software for large-scenario instances

of the first Sarawak case study, we observe from Figure 4-5 that their solution times grows

faster than affinely with the number of scenarios. This decline in the performance of these

decomposition algorithms for large-scenario instances is due to the difficulty faced by the

version of ANTIGONE within GOSSIP for solving the corresponding problems to near

global optimality. In particular, this undesirable scaling may be a consequence of the fact

that both of these algorithms attempt to solve subproblems of the larger scenario instances

of the gas network problem to increasingly tighter termination tolerances using ANTIGONE

(see Section 4.2.4 for the details of the default termination tolerances for the subproblems).

For the remaining two instances of the Sarawak gas network problem, the solution times

of both NGBD and LR exhibit the expected affine scaling behavior with the number of

scenarios. Tables 4.11 to 4.16 present detailed computational results for the three Sarawak

gas production system-based case studies.

Pump network problems

Figures 4-8 and 4-9 compare the performance of the different solvers on the pump network

problem instances. The nonaffine scaling of the solution time of NGBD and LR with the

number of scenarios for the first pump network problem (see Figure 4-8) is once again

due to the nonaffine scaling of the time taken to solve the primal problems in NGBD using

ANTIGONE. While the general-purpose global solvers seem to be scaling better than worst-

case exponential for the above example (as seen from Figure 4-8), they are unable to solve

problems with more than 27 scenarios within 10,000 seconds of solver time. Tables 4.17

to 4.20 present detailed computational results for the two pump network problems.
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Figure 4-5: Comparison of the different solvers on the Sarawak gas production prob-
lem #1 [136] (see Tables 4.11 and 4.12). The solution times of NGBD and LR appear
to scale worse than affinely with the number of scenarios; however, these decomposition
algorithms perform better than the general-purpose solvers for instances with more than
eight scenarios.
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Figure 4-6: Comparison of the different solvers on the Sarawak gas production prob-
lem #2 [136] (see Tables 4.13 and 4.14). The solution times of NGBD and LR scale
favorably with the number of scenarios, whereas the solution time of the best-performing
general-purpose solver for this instance, SCIP, increases significantly with the number of
scenarios.
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Figure 4-7: Comparison of the different solvers on the Sarawak gas production prob-
lem #3 [140] (see Tables 4.15 and 4.16). The solution times of NGBD and LR scale
favorably with the number of scenarios, whereas the solution time of the best-performing
general-purpose solver for this instance, ANTIGONE, seems to increase asymptotically ex-
ponentially with the number of scenarios.
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Figure 4-8: Comparison of the different solvers on pump network problem #1 [137] (see
Tables 4.17 and 4.18). Although the solution times of NGBD and LR appear to scale worse
than affinely with the number of scenarios, they can solve problems with larger number of
scenarios within the time limit.
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Figure 4-9: Comparison of the different solvers on pump network problem #2 [137] (see
Tables 4.19 and 4.20). The solution times of NGBD and LR scale favorably with the number
of scenarios, whereas the solution time of the best-performing general-purpose solver for this
instance, SCIP, seems to increase significantly with the number of scenarios.
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Software reliability problems

Figures 4-10 to 4-11 compare the performance of the different solvers on the software relia-

bility problem instances. Despite the fact that the solvers BARON and SCIP appear to be

scaling sub-exponentially with the number of scenarios for the first software reliability case

study, the reader can verify that the decomposition techniques outperform these general-

purpose software for this example (we note that LR does not converge for the instances

with more than 729 scenarios because of a memory-related bug within the GOSSIP inter-

face to IPOPT that will hopefully be fixed in the future). For the second instance of the

software reliability problem, the solvers BARON and SCIP once again seem to be scaling

sub-exponentially with the number of scenarios and perform better than NGBD and LR

within the time limit; however, NGBD seems to enjoy a favorable affine scaling for this

example, and could be expected to perform better than the general-purpose software for

larger-scenario instances. Tables 4.21 and 4.22 present detailed computational results for

the two software reliability case studies.

Tank sizing Problems

Continuous tank sizing

Figure 4-12 compares the performance of the different solvers on a continuous tank sizing

problem instance. Tables 4.23 and 4.24 provides detailed computational results for the

continuous tank sizing problem (also see Section 3.6.3 of Chapter 3). While all of the

general-purpose solvers struggle to solve the cases with more than two scenarios to within

the termination tolerance in 10,000 seconds, the two applicable decomposition techniques

fare better for this example. LR is able to solve instances with up to five scenarios for

this case, whereas MLR improves upon the performance of LR by virtue of the aggressive

bounds tightening technique (see Section 3.3.2 of Chapter 3) and solves problems with up

to 21 scenarios within the time limit.

Discrete tank sizing

Figures 4-13 and 4-14 compares the performance of the different solvers on two discrete

tank sizing problem instances. Tables 4.25 to 4.27 present detailed computational results

for the discrete tank sizing instances. NGBD fails to converge for instances with more
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Figure 4-10: Comparison of the different solvers on software reliability problem #1 [139]
(see Table 4.21). NGBD outperforms all the other solution techniques for large-scenario in-
stances. Interestingly, BARON, Couenne, and SCIP appear to be scaling sub-exponentially
with the number of scenarios.
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Figure 4-11: Comparison of the different solvers on software reliability problem #2 (see
Table 4.22). BARON, Couenne, and SCIP (which is the best-performing solver for this
case study) appear to be scaling sub-exponentially with the number of scenarios, whereas
NGBD empirically scales affinely with the number of scenarios.
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Figure 4-12: Comparison of the different solvers on the continuous tank sizing problem [186]
(see Tables 4.23 and 4.24). The decomposition algorithms perform favorably compared to
the general-purpose solvers for this case study. The implementation of the aggressive bounds
tightening technique within the MLR algorithm improves its performance significantly com-
pared to the LR algorithm.
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Figure 4-13: Comparison of the different solvers on the discrete tank sizing problem #1 [186]
(see Tables 4.25 and 4.26). Only the LR algorithm, which empirically scales affinely with
the number of scenarios, is able to solve large-scenario problems for this case study.

 10

100

1000

10000

  0   1   2   3   4   5

S
ol

ve
r 

T
im

e 
(s

)

scenarios

ANTIGONE 1.1
BARON 16.3.4

SCIP 3.2

Figure 4-14: Comparison of the different solvers on discrete tank sizing problem #2 [186]
(see Table 4.27). None of the tested solvers can solve instances with more than one scenario,
with the decomposition methods unable to even solve the single scenario instance within
the time limit.

than one scenario for the first case study (and even for the single scenario instance of the

second case study) within the time limit because of the large number of binary variable

realizations explored during the course of the algorithm due to the significant underesti-

mation/relaxation gap. Lagrangian relaxation, on the other hand, outperforms all of the

tested solution techniques for the first case study, and its solution time scales linearly with

the number of scenarios for this case. Both NGBD and LR fail to solve even the single

scenario instance of the second case study, and the state-of-the-art global solvers struggle

to solve multi-scenario instances of this case study within the time limit.

151



  1

 10

100

1000

10000

  0  20  40  60  80 100 120

S
ol

ve
r 

T
im

e 
(s

)

scenarios

NGBD
LR

ANTIGONE 1.1
BARON 16.3.4
COUENNE 0.5

SCIP 3.2
  0

500

1000

1500

2000

2500

3000

  0 100 200 300 400 500

N
G

B
D

 S
o

lv
e

r 
T

im
e

 (
s
)

scenarios

  0

1000

2000

3000

4000

5000

6000

7000

  0   8  16  24  32  40

A
N

T
IG

O
N

E
 S

ol
ve

r 
T

im
e 

(s
)

scenarios

Figure 4-15: Comparison of the different solvers on the discrete refinery model [241, Example
2] (see Table 4.28). NGBD is the best-performing algorithm for this case study with its
solution time scaling affinely with the number of scenarios. The best-performing general
purpose solver, ANTIGONE, on the other hand, appears to scale unfavorably with the
number of scenarios.

Refinery model problems

Discrete refinery model

Figure 4-15 compares the performance of the different solvers on the refinery model instance,

and Table 4.28 provides detailed computational results for the discrete refinery model case

study. ANTIGONE is the best-performing general-purpose solver for this case study; how-

ever, its solution time appears to grow significantly with the number of scenarios. The

solution time of NGBD, on the other hand, empirically grows affinely with the number of

scenarios, and it is able to solve instances with up to 500 scenarios in less than one hour.
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Figure 4-16: Comparison of the different solvers on the continuous refinery model (see
Table 4.29). Both LR and MLR are unable to solve multi-scenario instances, whereas
the commercial solvers ANTIGONE and BARON can solve instances with more than ten
scenarios within 10,000 seconds.

Continuous refinery model

Figure 4-16 compares the performance of the different solvers on the continuous refinery

model instance (also see Section 3.6.3 of Chapter 3). Both the MLR and LR algorithms face

difficulties in converging to an optimal solution for multi-scenario instances. The solvers

ANTIGONE and BARON, on the other hand, can solve instances with more than ten

scenarios for this case study within the time limit despite not scaling favorably with the

number of scenarios. Table 4.29 provides detailed computational results for the continuous

refinery model case study.

Trim loss minimization problems

Figures 4-17 and 4-18 compare the performance of the different solvers on the two (chal-

lenging) trim loss minimization problem instances. NGBD fails to converge for even the

single scenario instances of these case studies within the time limit because of the significant

underestimation/relaxation gap induced by the challenging discrete nature of the problem.

SCIP outperforms all of the tested solution techniques for the first case study by virtue

of its strengths in handling integer programs. None of the solution techniques can solve

instances with more than one scenario for the second example. Tables 4.30 and 4.31 present

detailed computational results for these instances.
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Figure 4-17: Comparison of the different solvers on trim loss model #1 (see Table 4.30).
NGBD fails to solve even the single scenario instance for this case, while SCIP outperforms
all of the tested solvers and can solve problems with up to 15 scenarios within 10,000
seconds.
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Figure 4-18: Comparison of the different solvers on trim loss model #2 (see Table 4.31).
None of the tested solvers can solve multi-scenario instances of this problem, and NGBD
once again fails to solve even the single scenario instance within the time limit.
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Figure 4-19: Comparison of the different solvers on a knapsack problem (see Tables 4.32
and 4.33). NGBD outperforms all of the general-purpose MILP solvers and the LR al-
gorithm for this case study. Note that the horizontal axis of the plot on the right is in
logarithmic scale.

Knapsack problem

Figure 4-19 compares the performance of the different solvers on instances of a knapsack

problem. The solution time of NGBD seems to be quite independent of the number of

scenarios for this problem, as seen from Figure 4-19 (note that the horizontal axis is in

logarithmic scale), while sophisticated MILP software such as CPLEX fail to solve instances

with five or more scenarios within 10,000 seconds. Tables 4.32 and 4.33 provide detailed

computational results for this case study.

4.5 Conclusion

This chapter introduces GOSSIP, decomposition software for the global optimization of a

broad class of two-stage stochastic MINLPs. GOSSIP includes implementations of state-

of-the-art decomposition techniques such as nonconvex generalized Benders decomposition

(NGBD), Lagrangian relaxation (LR), and a modified Lagrangian relaxation (MLR) algo-

rithm, and will be the first publicly available decomposition software for the global solution

of two-stage stochastic MINLPs. This chapter also instituted the first soon-to-be publicly

available test library for the above challenging class of problems.

Computational experiments demonstrated that the decomposition techniques imple-

mented within GOSSIP generally outperformed four state-of-the-art software for MINLPs.

Additionally, the decomposition techniques typically exhibited a favorable affine scaling

155



with the number of scenarios (on a serial computer) compared to general-purpose software

whose solution times usually increased significantly with the number of scenarios. In par-

ticular, at least one of the decomposition techniques exhibited the best performance on

large-scenario instances of thirteen of the twenty case studies. On four of the seven of

the case studies in which all of the decomposition techniques were not the best-performing

‘solver’, none of the solvers could solve instances with more than two scenarios, highlighting

the challenging nature of these problems. GOSSIP can therefore (justifiably) be viewed as a

decomposition toolkit that provides a framework for the scalable solution of a challenging

class of two-stage stochastic MINLPs.

4.6 Detailed results of the computational experiments

This section tabulates the detailed computational results for the computational studies

summarized in Section 4.4. For each case study, we list the solution time in seconds (rounded

to the nearest 0.1 second) and percentage relative termination gap separated by ‘/’, defined

as

gap = min

{︂
100, 100 × upperbound− lowerbound

max {|lowerbound|, |upperbound|} + 𝛿

}︂
[%],

where 𝛿 ∈ (0, 1) such that 𝛿 ≪ 1, for each tested solver for varying numbers of scenarios.

We note that the reported percentage termination gap is rounded to the nearest 0.1 percent

if the instance was not solved within the time limit, and set to be equal to 0.1 percent

(which is the desired solution accuracy) otherwise. A blank entry (‘-’) for the solution time

indicates that the solution reached the time limit of 10,000 seconds. The entry ‘t’ for the

solution time indicates that the solver terminated prematurely due to failure (likely due to

insufficient memory to continue). The entry ‘wd’ for the solution time indicates that the

solver returned an incorrect solution as optimal because of an incorrect dual (lower bound)

value. The entry ‘i’ for the solution time indicated that the solver wrongly concluded that

the model is infeasible. A blank entry (‘-’) for the termination gap either indicates that a

feasible point wasn’t found within the time limit, or that the termination gap is not relevant

for this entry. An entry of ‘100’ for the termination gap indicates that a feasible solution

was found, but the relative termination gap is large (nearly 100%). Empty entries for both

the solution time and termination gap indicates that the computational experiment was not

carried out.
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Stochastic pooling problems

Table 4.3: Comparison of the different solvers on stochastic pooling problem #1. This
case study includes 16 binary complicating variables, 21 continuous recourse variables per
scenario, 26 first-stage constraints, 55 second-stage constraints per scenario, and 8 bilinear
terms per scenario.

# Scenarios 1 9 25 49 81 121 169

ANTIGONE 1.1 0.1/0.1 3.9/0.1 64.7/0.1 -/28.9 -/33.3 -/34.0 -/34.2

BARON 16.3.4 0.1/0.1 1.2/0.1 15.3/0.1 182.4/0.1 1769.6/0.1 -/27.0 -/22.3

COUENNE 0.5 1.5/0.1 62.3/0.1 -/32.0 -/33.9 -/37.8 -/37.7 -/100

SCIP 3.2 0.3/0.1 0.9/0.1 t,wd/- -,wd/- -,wd/- -/10.9 -/28.4

NGBD 0.3/0.1 0.8/0.1 1.5/0.1 2.4/0.1 3.7/0.1 6.4/0.1 6.6/0.1

LR 0.2/0.1 20.6/0.1 78.5/0.1 160.8/0.1 171.5/0.1 382.8/0.1 521.4/0.1

Table 4.4: Extended results for the decomposition methods for stochastic pooling prob-
lem #1.

# Scenarios 289 441 625 841 1089

NGBD 10.7/0.1 14.6/0.1 22.1/0.1 26.9/0.1 34.4/0.1

LR 369.8/0.1 525.4/0.1 804.9/0.1 1024.4/0.1 1290.2/0.1

Table 4.5: Comparison of the different solvers on stochastic pooling problem #2. This
case study includes 24 binary complicating variables, 89 continuous recourse variables per
scenario, 39 first-stage constraints, 134 second-stage constraints per scenario, and 20 bilinear
terms per scenario.

# Scenarios 1 4 8 9 16 25 27 36 49

ANTIGONE 1.1 0.6/0.1 52.0/0.1 683.6/0.1 442.3/0.1 -/4.7 -/3.3 -/3.0 -/3.6 -/3.6

BARON 16.3.4 0.7/0.1 7.5/0.1 396.2/0.1 362.0/0.1 -/5.6 -/4.6 -/6.4 -/5.0 -/12.0

COUENNE 0.5 8.8/0.1 230.4/0.1 -/2.4 -/4.5 -/12.3 -/6.1 -/4.8 -/100 -/100

SCIP 3.2 1.6/0.1 4.8/0.1 121.1/0.1 28.2/0.1 -,wd/- 4881.2/0.1 2014.7/0.1 -/100 -,wd/-

NGBD 46.2/0.1 108.1/0.1 54.6/0.1 42.6/0.1 51.1/0.1 54.4/0.1 59.7/0.1 121.0/0.1 76.9/0.1

LR 1.3/0.1 12.5/0.1 15.4/0.1 15.5/0.1 20.1/0.1 25.6/0.1 28.4/0.1 33.7/0.1 42.7/0.1
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Table 4.6: Extended results for the decomposition methods for stochastic pooling prob-
lem #2.

# Scenarios 81 169 289 441 625 841 1089

NGBD 85.0/0.1 146.7/0.1 217.2/0.1 275.4/0.1 423.6/0.1 530.2/0.1 695.3/0.1

LR 64.2/0.1 120.7/0.1 196.5/0.1 282.4/0.1 400.7/0.1 531.2/0.1 697.8/0.1

Table 4.7: Comparison of the different solvers on stochastic pooling problem #3. This
case study includes 33 binary complicating variables, 108 continuous recourse variables per
scenario, 53 first-stage constraints, 212 second-stage constraints per scenario, and 40 bilinear
terms per scenario.

# Scenarios 1 4 9 16 25

ANTIGONE 1.1 0.5/0.1 56.8/0.1 953.8/0.1 -/2.7 -/5.1

BARON 16.3.4 1.4/0.1 21.2/0.1 429.0/0.1 -/0.7 -/1.7

COUENNE 0.5 17.1/0.1 200.0/0.1 -/1.4 -/3.2 -/7.2

SCIP 3.2 0.6/0.1 wd/- 160.5/0.1 -/0.2 -/0.7

NGBD 51.4/0.1 321.0/0.1 54.9/0.1 154.8/0.1 226.9/0.1

LR 1.2/0.1 14.0/0.1 56.1/0.1 199.1/0.1 231.5/0.1

Table 4.8: Extended results for the decomposition methods for stochastic pooling prob-
lem #3.

# Scenarios 49 81 121 169 289 441 625 841 1089

NGBD 316.1/0.1 397.1/0.1 607.2/0.1 686.6/0.1 1013.9/0.1 1570.0/0.1 2121.1/0.1 2773.6/0.1 3417.9/0.1

LR 1032.8/0.1 1194.1/0.1 1807.3/0.1 2541.2/0.1 4210.3/0.1 6480.4/0.1 9534.9/0.1 / /
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Table 4.9: Comparison of the different solvers on stochastic pooling problem #4. This case
study includes 55 binary complicating variables, 63 continuous recourse variables per sce-
nario, 100 first-stage constraints, 138 second-stage constraints per scenario, and 48 bilinear
terms per scenario.

# Scenarios 1 2 4 8 9

ANTIGONE 1.1 79.7/0.1 -/3.5 -/10.4 -/21.2 -/21.5

BARON 16.3.4 306.7/0.1 2763.7/0.1 -/25.6 -/33.3 -/22.6

COUENNE 0.5 -/21.6 -/28.4 -/32.7 -/42.0 -/39.0

SCIP 3.2 t/50.3 t/55.9 t/58.3 t/58.3 t/-

NGBD -/45.4 -/45.4 -/45.4 -/43.2 -/45.4

LR -/7.7 -/27.6 -/100 -/100 -/100

Table 4.10: Comparison of the different solvers on stochastic pooling problem #5. This
case study includes 187 binary complicating variables, 207 continuous recourse variables
per scenario, 1090 first-stage constraints, 426 second-stage constraints per scenario, and
300 bilinear terms per scenario.

# Scenarios 1 2 4 9

ANTIGONE 1.1 1879.3/0.1 -/8.8 -/34.7 -/54.4

BARON 16.3.4 -/32.6 -/37.1 -/37.7 -/53.6

COUENNE 0.5 -/40.3 -/47.0 -/52.6 -/-

SCIP 3.2 t/69.5 t/71.9 t/67.1 t/61.8

NGBD -/- -/- -/- -/-

LR -/32.4 -/100 -/100 -/-
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Sarawak gas production network problems

Table 4.11: Comparison of the different solvers on Sarawak gas production problem #1.
This case study includes 38 binary complicating variables, 93 continuous recourse variables
per scenario, 76 first-stage constraints, 205 second-stage constraints per scenario, and 34
bilinear terms per scenario.

# Scenarios 1 2 4 9 16

ANTIGONE 1.1 0.3/0.1 3.1/0.1 -/0.2 -/1.5 -/2.1

BARON 16.3.4 0.6/0.1 241.3/0.1 3043.1/0.1 1158.9/0.1 -/2.0

COUENNE 0.5 2.0/0.1 12.5/0.1 -/0.2 -/1.8 -/3.2

SCIP 3.2 0.2/0.1 wd/- 3.7/0.1 -/0.5 -/1.4

NGBD 0.4/0.1 1.0/0.1 16.9/0.1 2.3/0.1 121.2/0.1

LR 0.5/0.1 16.2/0.1 261.1/0.1 638.6/0.1 2407.1/0.1

Table 4.12: Extended results for the decomposition methods for Sarawak gas production
problem #1.

# Scenarios 25 49 81 121 169 225

NGBD 6.2/0.1 813.5/0.1 2274.3/0.1 3839.0/0.1 8254.4/0.1 -/0.2

LR 2407.9/0.1 -/0.7 -/100 / / /

Table 4.13: Comparison of the different solvers on Sarawak gas production problem #2.
This case study includes 38 binary complicating variables, 93 continuous recourse variables
per scenario, 76 first-stage constraints, 205 second-stage constraints per scenario, and 34
bilinear terms per scenario.

# Scenarios 1 2 4 8 9 16 25 27 36

ANTIGONE 1.1 0.4/0.1 3.2/0.1 3.9/0.1 -/0.7 -/0.6 -/0.6 -/0.5 -/1.2 -/0.4

BARON 16.3.4 1.1/0.1 722.5/0.1 6093.1/0.1 -/2.7 -/1.1 -/0.9 -/1.1 -/1.4 -/0.4

COUENNE 0.5 37.7/0.1 -/2.5 -/1.8 -/2.3 -/0.6 -/1.1 -/0.7 -/2.9 -/0.4

SCIP 3.2 0.4/0.1 11.7/0.1 14.4/0.1 -/0.2 2198.7/0.1 -/0.3 3734.5/0.1 -/0.8 -/1.2

NGBD 1.3/0.1 2.5/0.1 3.0/0.1 9.0/0.1 7.4/0.1 13.3/0.1 17.0/0.1 22.5/0.1 27.7/0.1

LR 0.8/0.1 15.9/0.1 100.0/0.1 812.6/0.1 254.7/0.1 379.8/0.1 2018.3/0.1 999.5/0.1 3694.5/0.1
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Table 4.14: Extended results for the decomposition methods for Sarawak gas production
problem #2.

# Scenarios 49 81 169 289 441 625 841 1089

NGBD 43.6/0.1 72.9/0.1 171.5/0.1 330.7/0.1 538.5/0.1 843.9/0.1 1255.1/0.1 1677.1/0.1

LR 1543.2/0.1 3583.4/0.1 t/29.7 / / / / /

Table 4.15: Comparison of the different solvers on Sarawak gas production problem #3.
This case study includes 38 binary complicating variables, 93 continuous recourse variables
per scenario, 76 first-stage constraints, 205 second-stage constraints per scenario, and 34
bilinear terms per scenario.

# Scenarios 1 4 9 16 25 36 49

ANTIGONE 1.1 0.4/0.1 3.2/0.1 13.5/0.1 62.1/0.1 313.5/0.1 -/0.5 -/0.9

BARON 16.3.4 1.4/0.1 -/2.5 -/1.7 t/1.3 -/1.1 -/1.0 -/0.9

COUENNE 0.5 3.4/0.1 -/2.5 -/1.8 -/1.3 -/4.1 -/1.0 -/0.9

SCIP 3.2 0.9/0.1 10.9/0.1 -/0.3 -/0.4 -/0.4 -/0.6 -/0.7

NGBD 1.0/0.1 2.0/0.1 3.7/0.1 5.6/0.1 8.5/0.1 10.4/0.1 14.7/0.1

LR 0.9/0.1 278.2/0.1 815.5/0.1 1459.1/0.1 2828.1/0.1 2026.1/0.1 3283.3/0.1

Table 4.16: Extended results for the decomposition methods for the Sarawak gas production
problem #3.

# Scenarios 81 169 289 441 625 841 1089

NGBD 22.5/0.1 45.8/0.1 75.7/0.1 119.9/0.1 161.8/0.1 219.5/0.1 289.2/0.1

LR -/100 / / / / / /
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Pump network problems

Table 4.17: Comparison of the different solvers on pump network problem #1. This case
study includes 18 binary complicating variables, 38 continuous recourse variables per sce-
nario, 33 first-stage constraints, 95 second-stage constraints per scenario, 6 bilinear terms
per scenario, and 6 univariate signomial terms per scenario.

# Scenarios 1 4 8 9 16 25 27 36 49

ANTIGONE 1.1 0.6/0.1 6.8/0.1 32.4/0.1 75.4/0.1 129.5/0.1 307.6/0.1 273.1/0.1 -/1.7 -/9.8

BARON 16.3.4 0.5/0.1 2.8/0.1 9.3/0.1 7.5/0.1 22.3/0.1 61.0/0.1 57.8/0.1 -/1.3 -/1.8

COUENNE 0.5 0.9/0.1 6.4/0.1 23.7/0.1 47.4/0.1 83.5/0.1 -,wd/- -/2.1 -/1.3 -/1.5

SCIP 3.2 0.2/0.1 0.3/0.1 0.9/0.1 1.1/0.1 1.6/0.1 2.8/0.1 5.2/0.1 -/0.7 -/1.0

NGBD 5.7/0.1 15.6/0.1 32.2/0.1 36.8/0.1 58.1/0.1 61.8/0.1 89.6/0.1 97.3/0.1 131.4/0.1

LR 1.0/0.1 28.1/0.1 65.0/0.1 83.5/0.1 95.1/0.1 221.9/0.1 204.8/0.1 841.4/0.1 1397.6/0.1

Table 4.18: Extended results for the decomposition methods for pump network problem #1.

# Scenarios 64 81 121 169 289 441 625

NGBD 161.6/0.1 202.5/0.1 306.1/0.1 430.2/0.1 996.0/0.1 2998.7/0.1 6934.3/0.1

LR 1287.1/0.1 2288.2/0.1 4338.6/0.1 4959.4/0.1 8624.4/0.1 / /

Table 4.19: Comparison of the different solvers on pump network problem #2. This case
study includes 27 binary complicating variables, 57 continuous recourse variables per sce-
nario, 49 first-stage constraints, 142 second-stage constraints per scenario, 9 bilinear terms
per scenario, and 9 univariate signomial terms per scenario.

# Scenarios 1 2 4 8 9 16 25

ANTIGONE 1.1 4.2/0.1 31.2/0.1 3637.5/0.1 -/18.7 -/20.3 -/57.0 -/52.7

BARON 16.3.4 3.8/0.1 20.2/0.1 386.0/0.1 -/9.0 -/30.9 -/47.0 -/50.7

COUENNE 0.5 7.0/0.1 411.7/0.1 10000/0.1 10000/0.1 10000/0.1 -/26.0 -/30.5

SCIP 3.2 2.3/0.1 7.2/0.1 29.4/0.1 1075.1/0.1 286.2/0.1 -/0.4 -/6.4

NGBD 609.5/0.1 790.0/0.1 1020.6/0.1 1810.9/0.1 1685.1/0.1 2430.3/0.1 3351.0/0.1

LR 8.2/0.1 139.2/0.1 294.4/0.1 935.0/0.1 1104.4/0.1 2430.4/0.1 -/2.5
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Table 4.20: Extended results for the decomposition methods for pump network problem #2.

# Scenarios 36 49 64 81

NGBD 4668.9/0.1 6274.9/0.1 7830.7/0.1 9469.8/0.1

LR 6373.3/0.1 -/2.4 -/10.0 -/-

Software reliability problems

Table 4.21: Comparison of the different solvers on software reliability problem #1. This
case study includes 8 binary complicating variables, 3 continuous recourse variables per
scenario, 4 first-stage constraints, 3 second-stage constraints per scenario, 1 trilinear term
per scenario, and 3 logarithmic terms per scenario.

# Scenarios 1 27 125 343 729 1331 2197 3375

ANTIGONE 1.1 0.1/0.1 30.1/0.1 -/1.9 -/3.4 -/0.2 -/2.0 -/2.6 -/-

BARON 16.3.4 0.1/0.1 0.3/0.1 9.9/0.1 68.0/0.1 274.2/0.1 1046.8/0.1 2593.7/0.1 8615.8/0.1

COUENNE 0.5 0.1/0.1 wd/- 35.2/0.1 394.1/0.1 2456.7/0.1 -/7.6 -/11.2 -/11.2

SCIP 3.2 0.1/0.1 0.4/0.1 16.6/0.1 334.4/0.1 931.0/0.1 1062.9/0.1 977.4/0.1 8691.2/0.1

NGBD 0.2/0.1 2.4/0.1 10.0/0.1 27.1/0.1 61.5/0.1 119.4/0.1 228.4/0.1 325.9/0.1

LR 0.1/0.1 16.2/0.1 15.1/0.1 24.3/0.1 40.4/0.1 t/- t/- t/-

Table 4.22: Comparison of the different solvers on software reliability problem #2. This
case study includes 18 binary complicating variables, 5 continuous recourse variables per
scenario, 6 first-stage constraints, 5 second-stage constraints per scenario, 1 multivariate
signomial term per scenario, and 5 logarithmic terms per scenario.

# Scenarios 1 27 125 343 729 1331 2197

ANTIGONE 1.1 5.4/0.1 -/26.0 -/35.9 -/37.3 -/37.3 -/37.4 -/-

BARON 16.3.4 0.4/0.1 14.5/0.1 102.0/0.1 625.7/0.1 4162.0/0.1 -/5.2 -/32.4

COUENNE 0.5 0.5/0.1 14.4/0.1 352.0/0.1 3762.4/0.1 -/38.1 -/50.0 -/50.0

SCIP 3.2 0.2/0.1 5.7/0.1 64.1/0.1 170.7/0.1 451.2/0.1 1322.6/0.1 t/8.0

NGBD 1242.3/0.1 1661.0/0.1 3339.9/0.1 7177.5/0.1 -/5.3 -/7.3 -/13.3

LR 10.4/0.1 t/0.9 -/8.2 -/10.3 t/- t/- t/-
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Tank sizing Problems

Continuous tank sizing

Table 4.23: Comparison of the different solvers on the continuous tank sizing problem.
This case study includes 3 continuous complicating variables, 9 binary recourse variables
per scenario, 44 continuous recourse variables per scenario, 76 second-stage constraints per
scenario, 32 bilinear terms per scenario, and 3 univariate signomial terms per scenario.

# Scenarios 1 2 3 4 5

ANTIGONE 1.1 24.4/0.1 -/13.9 -/7.4 -/14.3 -/14.3

BARON 16.3.4 3.6/0.1 t/23.1 -/10.6 -/59.8 -/49.8

COUENNE 0.5 i/- -/12.8 -/25.6 -/35.4 -/39.9

SCIP 3.2 2.0/0.1 1201.7/0.1 -/0.2 t/16.6 t/10.5

MLR 39.7/0.1 1265.2/0.1 1340.7/0.1 2416.3/0.1 2451.2/0.1

LR 39.9/0.1 -/0.14 2696.6/0.1 3477.1/0.1 4354.8/0.1

Table 4.24: Extended results for the decomposition methods for the continuous tank sizing
problem.

# Scenarios 7 9 13 17 21 25

MLR 3228.9/0.1 4274.4/0.1 6256.9/0.1 8289.2/0.1 8230.6/0.1 -/0.12

LR -/0.11 -/0.12 -/0.12 -/0.14 -/0.14 -/0.14
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Discrete tank sizing

Table 4.25: Comparison of the different solvers on discrete tank sizing problem #1. This case
study includes 48 binary complicating variables, 9 binary recourse variables per scenario,
44 continuous recourse variables per scenario, 3 first-stage constraints, 76 second-stage
constraints per scenario, and 32 bilinear terms per scenario.

# Scenarios 1 2 3 4 5

ANTIGONE 1.1 37.7/0.1 -/9.0 -/6.4 -/15.2 -/14.0

BARON 16.3.4 12.0/0.1 -/32.0 -/38.4 -/64.5 -/66.0

COUENNE 0.5 1351.5/0.1 -/44.7 i/- -/65.7 -/65.1

SCIP 3.2 4.6/0.1 286.4/0.1 1401.3/0.1 t/10.0 t/19.2

NGBD 1106.4/0.1 -/80.4 -/84.3 -/86.9 -/87.3

LR 58.9/0.1 75.1/0.1 140.5/0.1 175.7/0.1 233.6/0.1

Table 4.26: Extended results for the decomposition methods for discrete tank sizing prob-
lem #1.

# Scenarios 10 20 30 40 50

NGBD / / / / /

LR 413.2/0.1 984.8/0.1 1421.2/0.1 1890.7/0.1 2308.6/0.1

Table 4.27: Comparison of the different solvers on discrete tank sizing problem #2. This case
study includes 64 binary complicating variables, 16 binary recourse variables per scenario,
73 continuous recourse variables per scenario, 4 first-stage constraints, 128 second-stage
constraints per scenario, and 74 bilinear terms per scenario.

# Scenarios 1 2 3 4 5

ANTIGONE 1.1 1700.0/0.1 -/20.9 -/24.1 -/59.9 -/79.4

BARON 16.3.4 93.0/0.1 -/65.8 -/86.4 -/91.6 -/91.9

COUENNE 0.5 i/- -/62.9 i/- i/- i/-

SCIP 3.2 85.4/0.1 t/3.6 t/17.7 t/60.4 t/78.8

NGBD -/86.0 -/88.0 -/90.9 -/91.5 -/91.7

LR -/0.13 -/100 -/100 -/100 -/100
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Refinery model problems

Discrete refinery model

Table 4.28: Comparison of the different solvers on the discrete refinery model. This case
study includes 100 binary complicating variables, 122 continuous recourse variables per sce-
nario, 101 first-stage constraints, 111 second-stage constraints per scenario, and 26 bilinear
terms per scenario.

# Scenarios 1 5 10 20 40 120 500

ANTIGONE 1.1 1.6/0.1 24.0/0.1 151.4/0.1 853.1/0.1 6590.6/0.1 -/0.9 /

BARON 16.3.4 1.8/0.1 567.2/0.1 1830.0/0.1 -/0.5 -/0.8 -/0.9 /

COUENNE 0.5 3770.0/0.1 -/1.4 -/0.8 -/1.1 -/- -/- /

SCIP 3.2 4.2/0.1 4998.2/0.1 2752.8/0.1 -/0.2 -/0.4 -/0.4 /

NGBD 2.8/0.1 18.1/0.1 30.9/0.1 138.2/0.1 161.4/0.1 661.5/0.1 2574.2/0.1

LR 2.3/0.1 -/15.4 -/13.4 -/17.3 -/18.1 -/- /

Continuous refinery model

Table 4.29: Comparison of the different solvers on the continuous refinery model. This
case study includes 10 binary complicating variables, 10 continuous complicating variables,
122 continuous recourse variables per scenario, 21 first-stage constraints, 111 second-stage
constraints per scenario, and 26 bilinear terms per scenario.

# Scenarios 1 5 10 20 40 120

ANTIGONE 1.1 0.1/0.1 3.0/0.1 14.2/0.1 166.3/0.1 -/0.2 -/0.7

BARON 16.3.4 0.5/0.1 30.5/0.1 -/0.4 -/0.4 5448.2/0.1 -/0.7

COUENNE 0.5 2.6/0.1 53.4/0.1 785.3/0.1 -/0.2 -/0.7 -/-

SCIP 3.2 0.5/0.1 1.1/0.1 7.0/0.1 -/0.2 -/0.2 -/36.0

MLR 0.4/0.1 -/9.3 -/9.5 -/10.4 -/11.2 -/-

LR 0.4/0.1 -/9.6 -/9.6 -/11.1 -/12.0 -/-
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Trim loss minimization problems

Table 4.30: Comparison of the different solvers on trim loss minimization problem #1. This
case study includes 4 binary complicating variables, 16 integer complicating variables, 20
integer recourse variables per scenario, 12 first-stage constraints, 40 second-stage constraints
per scenario, and 48 bilinear terms per scenario.

# Scenarios 1 5 10 15 20

ANTIGONE 1.1 0.1/0.1 -/1.1 -/7.9 -/17.9 -/9.2

BARON 16.3.4 1.7/0.1 -/1.1 -/13.0 -/12.4 -/15.8

COUENNE 0.5 -/4.4 -/13.2 -/13.0 -/13.3 -/14.0

SCIP 3.2 0.1/0.1 37.4/0.1 307.1/0.1 881.3/0.1 t/2.1

NGBD -/- -/- -/- -/- -/-

LR 0.8/0.1 -/2.3 -/2.0 -/3.4 -/2.6

Table 4.31: Comparison of the different solvers on trim loss minimization problem #2. This
case study includes 6 binary complicating variables, 36 integer complicating variables, 42
integer recourse variables per scenario, 18 first-stage constraints, 72 second-stage constraints
per scenario, and 108 bilinear terms per scenario.

# Scenarios 1 3 5 7 9

ANTIGONE 1.1 0.9/0.1 -/4.8 -/5.9 -/2.6 -/4.4

BARON 16.3.4 14.2/0.1 -/6.0 -/8.2 -/7.2 -/29.7

COUENNE 0.5 -/3.3 -/11.2 -/11.4 -/9.0 -/19.8

SCIP 3.2 0.3/0.1 t/2.9 t/3.6 t/1.1 -/5.4

NGBD -/- -/- -/- -/- -/-

LR 3.2/0.1 -/7.0 -/7.4 -/6.1 -/9.0
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Knapsack problem

Table 4.32: Comparison of the different solvers on the knapsack problem. This case study
includes 240 binary complicating variables, 120 binary recourse variables per scenario, 50
first-stage constraints, and 5 second-stage constraints per scenario.

# Scenarios 1 2 3 4 5 10 15 20

CBC 2.9 343.6/0.1 782.0/0.1 -/0.3 -/0.2 -/0.4 -/0.6 -/1.0 -/0.6

CPLEX 12.6.3.0 134.6/0.1 280.5/0.1 1968.7/0.1 1718.3/0.1 t/0.12 t/0.14 t/0.2 t/0.2

SCIP 3.2 276.8/0.1 268.3/0.1 8661.7/0.1 4974.5/0.1 t/0.2 t/0.2 t/0.2 t/0.2

NGBD 271.2/0.1 179.1/0.1 1166.5/0.1 753.6/0.1 1087.1/0.1 607.1/0.1 405.1/0.1 115.4/0.1

LR 181.6/0.1 -/0.2 -/0.6 -/0.4 -/0.6 -/0.7 -/0.8 -/0.6

Table 4.33: Extended results for the decomposition methods for the knapsack problem.

# Scenarios 40 80 120 200 400 800

NGBD 1152.4/0.1 694.0/0.1 706.2/0.1 697.9/0.1 87.1/0.1 180.3/0.1
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Chapter 5

The cluster problem in constrained

global optimization

Deterministic branch-and-bound algorithms for continuous global optimization often visit

a large number of boxes in the neighborhood of a global minimizer, resulting in the so-

called cluster problem [68]. This chapter extends previous analyses of the cluster problem

in unconstrained global optimization [68, 238] to the constrained setting based on the no-

tion of convergence order for convex relaxation-based lower bounding schemes developed in

Chapter 6 (while the only external material that this chapter significantly relies on is the

background provided in Chapter 2, we feel that the results of this chapter will be most ap-

preciated by the reader, if at all, when they are read while keeping the results of Chapter 6

in mind and vice versa). The material in this chapter has been published as the article [108].

5.1 Introduction

One of the key issues faced by deterministic branch-and-bound algorithms for continuous

global optimization [101] is the so-called cluster problem, where a large number of boxes

may be visited by the algorithm in the vicinity of a global minimizer [68, 178, 238]. Du

and Kearfott [68, 116] were the first to analyze this phenomenon in the context of interval

branch-and-bound algorithms for unconstrained global optimization. They established that

the accuracy with which the bounding scheme estimates the range of the objective function,

as determined by the notion of convergence order in Definition 2.3.34, dictates the extent of

the cluster problem. Furthermore, they determined that, in the worst case, at least second-
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order convergence of the bounding scheme is required to mitigate ‘clustering’ [68]. Next,

Neumaier [178, Section 15] provided a similar analysis and concluded that even second-

order convergence of the bounding scheme might, in the worst case, result in an exponential

number of boxes in the vicinity of an unconstrained global minimizer. In addition, Neumaier

claimed that a similar situation holds in a reduced manifold for the constrained case [178,

Section 15].

Recently, Wechsung et al. [238] provided a refined analysis of Neumaier’s argument for

unconstrained global optimization which corroborated the previous analyses. In addition,

they showed that the number of boxes visited in the vicinity of a global minimizer may

scale differently depending on the convergence order prefactor. As a result, second-order

convergent bounding schemes with small-enough prefactors may altogether eliminate the

cluster problem, while second-order convergent bounding schemes with large-enough pref-

actors may result in an exponential number of boxes being visited. Also note the analysis

by Wechsung [237, Section 2.3] that shows first-order convergence of the bounding scheme

may be sufficient to mitigate the cluster problem in unconstrained optimization when the

optimizer sits at a point of nondifferentiability of the objective function.

As highlighted above, the convergence order of the bounding scheme plays a key role

in the analysis of the cluster problem. This concept, which is based on the rate at which

the notion of excess width from interval extensions [172] shrinks to zero, compares the rate

of convergence of an estimated range of a function to its true range. Bompadre and Mit-

sos [38] developed the notions of Hausdorff and pointwise convergence rates of bounding

schemes, and established sharp rules for the propagation of convergence orders of bounding

schemes constructed using McCormick’s composition rules [154]. In addition, Bompadre

and Mitsos [38] demonstrated second-order pointwise convergence of schemes of convex

and concave envelopes of twice continuously differentiable functions, second-order point-

wise convergence of schemes of 𝛼BB relaxations [4], and provided a conservative estimate

of the prefactor of 𝛼BB relaxation schemes for the case of constant 𝛼. Scholz [205] demon-

strated second-order convergence of centered forms (also see, for instance, the article by

Krawczyk and Nickel [127]). Bompadre and coworkers [39] established sharp rules for the

propagation of convergence orders of Taylor and McCormick-Taylor models. Najman and

Mitsos [174] established sharp rules for the propagation of convergence orders of the multi-

variate McCormick relaxations developed in [173, 227]. Finally, Khan and coworkers [124]
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developed a continuously differentiable variant of McCormick relaxations [154, 173, 227],

and established second-order pointwise convergence of schemes of the differentiable Mc-

Cormick relaxations for twice continuously differentiable functions. The above literature

not only helps develop bounding schemes for unconstrained optimization with the requisite

convergence order, but also provides conservative estimates for the convergence order pref-

actor (see Definition 2.3.34). Also note the related definition for the rate of convergence of

(lower) bounding schemes for geometric branch-and-bound methods provided by Schöbel

and Scholz [203].

This chapter provides an analysis of the cluster problem for constrained global optimiza-

tion. It is shown that clustering can occur both on feasible and infeasible regions in the

neighborhood of a global minimizer. Akin to the case of unconstrained optimization, both

the convergence order of a lower bounding scheme and its corresponding prefactor (see Def-

inition 5.2.3) may be crucial towards tackling the cluster problem; however, in contrast to

the case of unconstrained optimization, where at least second-order convergent schemes of

relaxations are required to mitigate the cluster problem when the minimizer sits at a point

of differentiability of the objective function, it is shown that first-order convergent lower

bounding schemes with small-enough prefactors may eliminate the cluster problem under

certain conditions. Additionally, conditions under which second-order convergence of the

lower bounding scheme may be sufficient to mitigate clustering are developed. The anal-

ysis in this chapter reduces to previous analyses of the cluster problem for unconstrained

optimization under suitable assumptions.

This chapter assumes that boxes can be placed such that global minimizers are always

in their relative interior; otherwise, an exponential number of boxes can contain global min-

imizers. Techniques such as epsilon-inflation [153] or back-boxing [178, 229] can potentially

be used to place boxes with global minimizers in their relative interior.

This chapter is organized as follows. Section 5.2 provides the problem formulation,

describes the notions of convergence used in this chapter, and sets up the framework for

analyzing the cluster problem in Section 5.3. Section 5.3.1 analyzes the cluster problem on

the set of nearly-optimal feasible points in a neighborhood of a global minimizer and de-

termines conditions under which first-order and second-order convergent bounding schemes

may be sufficient to mitigate clustering in such neighborhoods. Section 5.3.2 analyzes the

cluster problem on the set of nearly-feasible points in a neighborhood of a global minimizer
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that have a ‘good-enough’ objective function value, and develops conditions under which

first-order and second-order convergent bounding schemes may be sufficient to mitigate

clustering in such neighborhoods. Finally, Section 5.4 lists the conclusions of this chapter.

5.2 Problem formulation and background

In this chapter, we consider the nonlinear programming formulation

min
x

𝑓(x) (P)

s.t. g(x) ≤ 0,

h(x) = 0,

x ∈ 𝑋,

where 𝑋 ⊂ R𝑛𝑥 is a nonempty open bounded convex set, and the functions 𝑓 : 𝑋 → R,

g : 𝑋 → R𝑚𝐼 , and h : 𝑋 → R𝑚𝐸 are continuous on 𝑋. The following assumptions are

enforced throughout this chapter.

Assumption 5.2.1. The constraints define a nonempty compact set

{x ∈ 𝑋 : g(x) ≤ 0, h(x) = 0} ⊂ 𝑋.

Assumption 5.2.2. Let x* ∈ 𝑋 be a global minimum for Problem (P), and assume that

the branch-and-bound algorithm has found the upper bound 𝑈𝐵𝐷 = 𝑓(x*) sufficiently early

on. Let 𝜀 be the termination tolerance for the branch-and-bound algorithm, and suppose

the algorithm fathoms node 𝑘 when 𝑈𝐵𝐷 − 𝐿𝐵𝐷𝑘 ≤ 𝜀, where 𝐿𝐵𝐷𝑘 is the lower bound

on node 𝑘.

When Assumption 5.2.1 is enforced, Problem (P) attains its optimal solution on 𝑋

by virtue of the assumption that 𝑓 is continuous on 𝑋. Note that the assumption that

𝑋 is an open set is made purely for ease of exposition, particularly when differentiability

assumptions on the functions in Problem (P) are made, and is not practically implementable

in general. As a result, we implicitly assume throughout this chapter that finite bounds

on the variables (which define an interval in the interior of 𝑋) are available for use in a

branch-and-bound setting.
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Assumption 5.2.2 essentially assumes that the convergence of the overall lower bound is

the limiting factor for the convergence of the branch-and-bound algorithm. This is usually a

reasonable assumption in the context of branch-and-bound algorithms for global optimiza-

tion where most of the effort is typically spent in proving 𝜀-optimality of feasible solutions

found using (heuristic) local optimization-based techniques. The cluster problem analy-

sis in this chapter is asymptotic in 𝜀 in general; we provide conservative estimates of the

worst-case number of boxes visited by the branch-and-bound algorithm in nearly-optimal

and nearly-feasible neighborhoods of global minimizers for some sufficiently small 𝜀 > 0.

The conservatism of the above estimates decreases as 𝜀 → 0. The asymptotic nature

of our analysis with respect to 𝜀 is not only a result of considering the local behavior of

the objective function in the vicinity of a global minimizer (which is also a limitation of

the analyses of the cluster problem in unconstrained optimization [68, 178, 237, 238]), but

is also a consequence of considering the local behavior of the constraints (and, therefore,

the feasible region) in the vicinity of a global minimizer. In practice, values of 𝜀 for which

the analysis of the cluster problem provides a reasonable overestimate of the number of

boxes visited can be much larger than the machine precision (on the order of 10−1). This

is evidenced by the examples in Section 5.3. Also note that the fathoming criterion for the

branch-and-bound algorithm in this chapter is different from the one considered by Wech-

sung et al. [238], who assume that node 𝑘 is fathomed only when 𝐿𝐵𝐷𝑘 > 𝑈𝐵𝐷; however,

the worst-case estimates of the number of boxes visited by the branch-and-bound algorithm

are not affected by this difference in our assumptions.

Throughout this chapter, we will use x* to denote a global minimizer of Problem (P),

and 𝑍C to denote the relative complement of a set 𝑍 ⊂ R𝑛𝑥 with respect to 𝑋. The

reader is directed to Chapter 2 for other notational definitions, and for the background

definitions used in this chapter (in particular, we will use Definitions 2.2.1, 2.2.4, 2.2.5,

2.3.3, 2.3.5, 2.3.8, 2.3.13, 2.3.14, 2.3.23, 2.3.28, 2.3.31, and 2.3.34). The following definition

seeks to extend the notion of convergence order of a bounding scheme [38, 39, 238] to

constrained problems (also see Definition 6.3.12). Conditions under which specific lower

bounding schemes are guaranteed to exhibit a certain convergence order are presented in

Chapter 6.

Definition 5.2.3. [Convergence Order of a Lower Bounding Scheme] Consider Problem (P).

For any 𝑍 ∈ I𝑋, let ℱ(𝑍) = {x ∈ 𝑍 : g(x) ≤ 0,h(x) = 0} denote the feasible set of Prob-
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lem (P) with x restricted to 𝑍.

Let (𝑓 cv
𝑍 )𝑍∈I𝑋 and (gcv

𝑍 )𝑍∈I𝑋 denote continuous schemes of convex relaxations of 𝑓 and

g, respectively, in 𝑋, and let (hcv
𝑍 ,hcc

𝑍 )𝑍∈I𝑋 denote a continuous scheme of relaxations

of h in 𝑋. For any 𝑍 ∈ I𝑋, let ℱcv(𝑍) = {x ∈ 𝑍 : gcv
𝑍 (x) ≤ 0,hcv

𝑍 (x) ≤ 0,hcc
𝑍 (x) ≥ 0}

denote the feasible set of the convex relaxation-based lower bounding scheme. The convex

relaxation-based lower bounding scheme is said to have convergence of order 𝛽 > 0 at

1. a feasible point x ∈ 𝑋 if there exists 𝜏 ≥ 0 such that for every 𝑍 ∈ I𝑋 with x ∈ 𝑍,

min
z∈ℱ(𝑍)

𝑓(z) − min
z∈ℱcv(𝑍)

𝑓 cv
𝑍 (z) ≤ 𝜏𝑤(𝑍)𝛽.

2. an infeasible point x ∈ 𝑋 if there exists 𝜏 ≥ 0 such that for every 𝑍 ∈ I𝑋 with x ∈ 𝑍,

𝑑

⎛⎜⎝
⎡⎣g
h

⎤⎦(𝑍),R𝑚𝐼
− × {0}

⎞⎟⎠− 𝑑
(︀
ℐ𝐶(𝑍),R𝑚𝐼

− × {0}
)︀
≤ 𝜏𝑤(𝑍)𝛽,

where

⎡⎣g
h

⎤⎦(𝑍) denotes the image of 𝑍 under the vector-valued function

⎡⎣g
h

⎤⎦, and ℐ𝐶(𝑍)

is defined by

(ℐ𝐶(𝑍))𝑍∈I𝑋 :=
(︀{︀

(v,w) ∈ R𝑚𝐼 × R𝑚𝐸 : v = gcv
𝑍 (z),hcv

𝑍 (z) ≤ w ≤ hcc
𝑍 (z)

for some z ∈ 𝑍
}︀)︀

𝑍∈I𝑋 .

The scheme of lower bounding problems is said to have convergence of order 𝛽 > 0 on

𝑋 if it has convergence of order (at least) 𝛽 at each x ∈ 𝑋, with the constants 𝜏 and 𝜏

independent of x.

Definition 5.2.3 is motivated by the requirements of a lower bounding scheme to fathom

feasible and infeasible regions in a branch-and-bound procedure [101]. On nested sequences

of intervals converging to a feasible point of Problem (P), we require that the correspond-

ing sequences of lower bounds converge rapidly to the corresponding sequences of minimum

objective values. On the other hand, on nested sequences of intervals converging to an infea-

sible point of Problem (P), we require that the corresponding sequences of lower bounding

problems rapidly detect the (eventual) infeasibility of the corresponding sequences of inter-
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vals for Problem (P). The latter requirement is enforced by requiring that the measures of

infeasibility of the corresponding lower bounding problems, as determined by the distance

function 𝑑 (see Definition 2.3.5), converge rapidly to the measures of infeasibility of the cor-

responding restricted Problems (P). Note that some intervals that only contain infeasible

points may also potentially be fathomed by value dominance if the lower bounds on those

intervals obtained by solving the corresponding relaxation-based lower bounding problems

is greater than or equal to 𝑈𝐵𝐷−𝜀. This possibility in considered later in this section (see,

for instance, Lemma 5.2.6) and in Section 5.3.2.

The following lemmata detail worst-case conditions under which nodes containing a

global minimum and infeasible points are fathomed.

Lemma 5.2.4. [Fathoming Nodes Containing Global Minimizers] Let 𝑋* ∈ I𝑋, with x* ∈

𝑋*, correspond to the domain of node 𝑘* in the branch-and-bound tree. Suppose the

convex relaxation-based lower bounding scheme has convergence of order 𝛽* > 0 at x* with

a prefactor 𝜏* > 0 (see Definition 5.2.3). For node 𝑘* to be fathomed, we require, in that

worst case, that

𝑤(𝑋*) ≤
(︁ 𝜀

𝜏*

)︁ 1
𝛽*

.

Proof. The condition for node 𝑘* to be fathomed by value dominance is 𝑈𝐵𝐷− 𝐿𝐵𝐷𝑘* =

𝑓(x*)−𝐿𝐵𝐷𝑘* ≤ 𝜀. Since we are concerned about convergence at the feasible point x* ∈ 𝑋,

we have from Definition 5.2.3 that

min
z∈ℱ(𝑋*)

𝑓(z) − min
z∈ℱcv(𝑋*)

𝑓 cv
𝑋*(z) ≤ 𝜏*𝑤(𝑋*)𝛽

*

=⇒ 𝐿𝐵𝐷𝑘* = min
z∈ℱcv(𝑋*)

𝑓 cv
𝑋*(z) ≥ 𝑓(x*) − 𝜏*𝑤(𝑋*)𝛽

*
.

Therefore, in the worst case, node 𝑘* is fathomed only when

𝐿𝐵𝐷𝑘* ≥ 𝑓(x*) − 𝜏*𝑤(𝑋*)𝛽
*
≥ 𝑓(x*) − 𝜀 ⇐⇒ 𝑤(𝑋*) ≤

(︁ 𝜀

𝜏*

)︁ 1
𝛽*

.

Lemma 5.2.5. [Fathoming Infeasible Nodes by Infeasibility] Let 𝑋𝐼 ∈ I𝑋, with

𝑋𝐼 ⊂

⎧⎨⎩x ∈ 𝑋 : 𝑑

⎛⎝⎡⎣g
h

⎤⎦ (x),R𝑚𝐼
− × {0}

⎞⎠ > 𝜀𝑓

⎫⎬⎭
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for some 𝜀𝑓 > 0, correspond to the domain of node 𝑘𝐼 in the branch-and-bound tree.

Suppose the convex relaxation-based lower bounding scheme has convergence of order 𝛽𝐼 > 0

at each x ∈ 𝑋𝐼 with a prefactor 𝜏 𝐼 > 0 that is independent of x (see Definition 5.2.3). For

node 𝑘𝐼 to be fathomed by infeasibility, we require, in the worst case, that

𝑤(𝑋𝐼) ≤
(︂
𝜀𝑓

𝜏 𝐼

)︂ 1

𝛽𝐼

.

Proof. For node 𝑘𝐼 to be fathomed by infeasibility, we require that the convex relaxation-

based lower bounding problem is infeasible on 𝑋𝐼 , i.e., 𝑑
(︀
ℐ𝐶(𝑋𝐼),R𝑚𝐼

− × {0}
)︀
> 0. Since

we are concerned about convergence at infeasible points, we have from Definition 5.2.3 that

𝑑

⎛⎜⎝
⎡⎣g
h

⎤⎦(𝑋𝐼),R𝑚𝐼
− × {0}

⎞⎟⎠− 𝑑
(︀
ℐ𝐶(𝑋𝐼),R𝑚𝐼

− × {0}
)︀
≤ 𝜏 𝐼𝑤(𝑋𝐼)

𝛽𝐼

=⇒ 𝑑
(︀
ℐ𝐶(𝑋𝐼),R𝑚𝐼

− × {0}
)︀
≥ 𝑑

⎛⎜⎝
⎡⎣g
h

⎤⎦(𝑋𝐼),R𝑚𝐼
− × {0}

⎞⎟⎠− 𝜏 𝐼𝑤(𝑋𝐼)
𝛽𝐼

.

Therefore, node 𝑘𝐼 is fathomed, in the worst case, only when

𝑑
(︀
ℐ𝐶(𝑋𝐼),R𝑚𝐼

− × {0}
)︀
≥ 𝑑

⎛⎜⎝
⎡⎣g
h

⎤⎦(𝑋𝐼),R𝑚𝐼
− × {0}

⎞⎟⎠− 𝜏 𝐼𝑤(𝑋𝐼)
𝛽𝐼

> 0

⇐⇒ 𝜀𝑓 − 𝜏 𝐼𝑤(𝑋𝐼)
𝛽𝐼

≥ 0

⇐⇒ 𝑤(𝑋𝐼) ≤
(︂
𝜀𝑓

𝜏 𝐼

)︂ 1

𝛽𝐼

.

Lemma 5.2.6. [Fathoming Infeasible Nodes by Value Dominance] Let 𝑋𝐼 ∈ I𝑋, with

𝑋𝐼 ⊂

⎧⎨⎩x ∈ 𝑋 : 𝑑

⎛⎝⎡⎣g
h

⎤⎦ (x),R𝑚𝐼
− × {0}

⎞⎠ > 0

⎫⎬⎭ ,

correspond to the domain of node 𝑘𝐼 in the branch-and-bound tree. Suppose ∀x ∈ 𝑋𝐼 ,

𝑓(x) ≥ 𝑓(x*). Furthermore, suppose the scheme (𝑓 cv
𝑍 )𝑍∈I𝑋 has convergence of order 𝛽𝑓 > 0
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at each x ∈ 𝑋𝐼 with a prefactor 𝜏 𝑓 > 0 that is independent of x (see Definition 2.3.34). If

𝑤(𝑋𝐼) ≤
(︁ 𝜀

𝜏 𝑓

)︁ 1

𝛽𝑓 ,

then node 𝑘𝐼 will be fathomed.

Proof. A sufficient condition for node 𝑘𝐼 to be fathomed is

min
z∈ℱcv(𝑋𝐼)

𝑓 cv
𝑋𝐼 (z) ≥ 𝑓(x*) − 𝜀.

Since (𝑓 cv
𝑍 )𝑍∈I𝑋 has convergence of order 𝛽𝑓 , we have from Definition 2.3.34 that

min
z∈𝑋𝐼

𝑓 cv
𝑋𝐼 (z) ≥ min

z∈𝑋𝐼
𝑓(z) − 𝜏 𝑓𝑤(𝑋𝐼)𝛽

𝑓

≥ min
z∈𝑋𝐼

𝑓(z) − 𝜀

≥ 𝑓(x*) − 𝜀,

where Step 2 uses 𝑤(𝑋𝐼) ≤
(︁ 𝜀

𝜏 𝑓

)︁ 1

𝛽𝑓 , and Step 3 uses 𝑓(x) ≥ 𝑓(x*), ∀x ∈ 𝑋𝐼 . Therefore,

min
z∈ℱcv(𝑋𝐼)

𝑓 cv
𝑋𝐼 (z) ≥ min

z∈𝑋𝐼
𝑓 cv
𝑋𝐼 (z) ≥ 𝑓(x*) − 𝜀.

The desired result follows.

In what follows, we shall partition the set 𝑋 into distinct regions with the aim of

constructing regions that are either relatively easy to fathom (based on Lemmata 5.2.4

to 5.2.6), or are relatively hard to fathom. Suppose the convex relaxation-based lower

bounding scheme has convergence of order 𝛽* > 0 on ℱ(𝑋) with prefactor 𝜏* > 0, and

convergence of order 𝛽𝐼 > 0 on (ℱ(𝑋))C with prefactor 𝜏 𝐼 > 0 (note that it is sufficient for

the lower bounding scheme to have the requisite convergence orders on some neighborhood

of the global minimizers of Problem (P) for our analysis to hold, as will become clear in

Section 5.3). Furthermore, suppose the scheme (𝑓 cv
𝑍 )𝑍∈I𝑋 has convergence of order 𝛽𝑓 > 0

on 𝑋 with prefactor 𝜏 𝑓 > 0. Pick a feasibility tolerance 𝜀𝑓 and an optimality tolerance 𝜀𝑜
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such that

(︂
𝜀𝑓

𝜏 𝐼

)︂ 1

𝛽𝐼

=

(︂
𝜀𝑜

𝜏 𝑓

)︂ 1

𝛽𝑓

=
(︁ 𝜀

𝜏*

)︁ 1
𝛽*

, (TOL)

and consider the following partition of 𝑋:

𝑋1 :=

⎧⎨⎩x ∈ 𝑋 : 𝑑

⎛⎝⎡⎣g
h

⎤⎦ (x),R𝑚𝐼
− × {0}

⎞⎠ > 𝜀𝑓

⎫⎬⎭ ,

𝑋2 :=

⎧⎨⎩x ∈ 𝑋 : 𝑑

⎛⎝⎡⎣g
h

⎤⎦ (x),R𝑚𝐼
− × {0}

⎞⎠ ∈ (0, 𝜀𝑓 ] and 𝑓(x) − 𝑓(x*) > 𝜀𝑜

⎫⎬⎭ ,

𝑋3 :=

⎧⎨⎩x ∈ 𝑋 : 𝑑

⎛⎝⎡⎣g
h

⎤⎦ (x),R𝑚𝐼
− × {0}

⎞⎠ ∈ (0, 𝜀𝑓 ] and 𝑓(x) − 𝑓(x*) ≤ 𝜀𝑜

⎫⎬⎭ ,

𝑋4 :=

⎧⎨⎩x ∈ 𝑋 : 𝑑

⎛⎝⎡⎣g
h

⎤⎦ (x),R𝑚𝐼
− × {0}

⎞⎠ = 0 and 𝑓(x) − 𝑓(x*) > 𝜀

⎫⎬⎭ , and

𝑋5 :=

⎧⎨⎩x ∈ 𝑋 : 𝑑

⎛⎝⎡⎣g
h

⎤⎦ (x),R𝑚𝐼
− × {0}

⎞⎠ = 0 and 𝑓(x) − 𝑓(x*) ≤ 𝜀

⎫⎬⎭ .

The set 𝑋1 corresponds to the set of infeasible points for Problem (P) with the measure

of infeasibility greater than 𝜀𝑓 . The set 𝑋2 corresponds to the set of infeasible points for

Problem (P) with the measure of infeasibility less than or equal to 𝜀𝑓 and with the objective

function value greater than 𝑓(x*) + 𝜀𝑜, while the set 𝑋3 corresponds to the set of infeasible

points for Problem (P) with the measure of infeasibility less than or equal to 𝜀𝑓 and the

objective function value less than or equal to 𝑓(x*) + 𝜀𝑜. The set 𝑋4 corresponds to the set

of feasible points for Problem (P) with objective value greater than 𝑓(x*) + 𝜀, while the set

𝑋5 corresponds to the set of feasible points for Problem (P) with objective value less than

or equal to 𝑓(x*) + 𝜀. The sets 𝑋1 through 𝑋5 are illustrated in Figure 5-1 for the three

two-dimensional problems presented in Examples 5.2.7 to 5.2.9.

Intuitively, we expect that nodes with domains contained in the sets 𝑋1 and 𝑋2 can be

fathomed relatively easily (by infeasibility and value dominance, respectively) compared to

nodes with domains contained in the set 𝑋3. Similarly, we expect that nodes with domains

contained in the set 𝑋4 can be fathomed relatively easily (by value dominance) compared to

nodes with domains contained in the set 𝑋5. This intuition is formalized in Corollary 5.2.10.
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(c) Example 5.2.9 (equality-constrained)

Figure 5-1: Plots of the sets 𝑋1 through 𝑋5 for an unconstrained, an inequality-constrained,
and an equality-constrained problem. The dashed lines define the sets 𝑋, and the filled-
in triangles denote the unique global minimizers of the problems on 𝑋. All plots use
𝜀 = 𝜀𝑜 = 𝜀𝑓 = 0.1 for illustration.

Consequently, the extent of clustering is dictated primarily by the number of boxes required

to cover the regions 𝑋3 and 𝑋5. Section 5.3 provides conservative estimates of the number

of boxes of certain widths that are required to cover 𝑋3 and 𝑋5 under suitable assumptions.

As an aside, note that the condition specified by Equation (TOL) is used to roughly enforce

that nodes with domains contained in the sets 𝑋1, 𝑋2, and 𝑋4 can, in the worst case, be

fathomed using a similar level of effort.

Example 5.2.7. Let 𝑋 = (0, 1)× (0, 1), 𝑚𝐼 = 𝑚𝐸 = 0, and 𝑓(x) = 𝑥41 + 𝑥42 − 𝑥21 − 𝑥22 with

x* =
(︁

1√
2
, 1√

2

)︁
. We have:

𝑋1 = 𝑋2 = 𝑋3 = ∅,

𝑋4 =
{︀
x ∈ 𝑋 : 𝑥41 + 𝑥42 − 𝑥21 − 𝑥22 > 𝑓(x*) + 𝜀

}︀
, and
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𝑋5 =
{︀
x ∈ 𝑋 : 𝑥41 + 𝑥42 − 𝑥21 − 𝑥22 ≤ 𝑓(x*) + 𝜀

}︀
.

The sets 𝑋1 through 𝑋5 are depicted in Figure 5-1a for 𝜀 = 0.1.

Example 5.2.8. Let 𝑋 = (2.2, 2.5) × (2.9, 3.3), 𝑚𝐼 = 3, 𝑚𝐸 = 0, 𝑓(x) = −𝑥1 − 𝑥2,

𝑔1(x) = 𝑥2 − 2𝑥41 + 8𝑥31 − 8𝑥21 − 2, 𝑔2(x) = 𝑥2 − 4𝑥41 + 32𝑥31 − 88𝑥21 + 96𝑥1 − 36, and

𝑔3(x) = 3 − 𝑥2 with x* ≈ (2.33, 3.18) (based on Example 4.10 in [81]). We have:

𝑋1 =

⎧⎨⎩x ∈ 𝑋 :

⎯⎸⎸⎷ 3∑︁
𝑗=1

(max{0, 𝑔𝑗(x)})2 > 𝜀𝑓

⎫⎬⎭ ,

𝑋2 =

⎧⎨⎩x ∈ 𝑋 :

⎯⎸⎸⎷ 3∑︁
𝑗=1

(max{0, 𝑔𝑗(x)})2 ∈ (0, 𝜀𝑓 ], −𝑥1 − 𝑥2 > 𝑓(x*) + 𝜀𝑜

⎫⎬⎭ ,

𝑋3 =

⎧⎨⎩x ∈ 𝑋 :

⎯⎸⎸⎷ 3∑︁
𝑗=1

(max{0, 𝑔𝑗(x)})2 ∈ (0, 𝜀𝑓 ], −𝑥1 − 𝑥2 ≤ 𝑓(x*) + 𝜀𝑜

⎫⎬⎭ ,

𝑋4 = {x ∈ 𝑋 : g(x) ≤ 0, −𝑥1 − 𝑥2 > 𝑓(x*) + 𝜀} , and

𝑋5 = {x ∈ 𝑋 : g(x) ≤ 0, −𝑥1 − 𝑥2 ≤ 𝑓(x*) + 𝜀} .

The sets 𝑋1 through 𝑋5 are depicted in Figure 5-1b for 𝜀 = 𝜀𝑜 = 𝜀𝑓 = 0.1.

Example 5.2.9. Let 𝑋 = (0.4, 1.0)× (0.5, 2.0), 𝑚𝐼 = 2, 𝑚𝐸 = 1, 𝑓(x) = −12𝑥1−7𝑥2 +𝑥22,

𝑔1(x) = 𝑥1 − 0.9, 𝑔2(x) = 0.5 − 𝑥1, and ℎ(x) = 𝑥2 + 2𝑥41 − 2 with x* ≈ (0.72, 1.47) (based

on Example 4.9 in [81]). We have:

𝑋1 =

⎧⎨⎩x ∈ 𝑋 :

⎯⎸⎸⎷ 2∑︁
𝑗=1

(max{0, 𝑔𝑗(x)})
2

+ |ℎ(x)|2 > 𝜀𝑓

⎫⎬⎭ ,

𝑋2 =

⎧⎨⎩x ∈ 𝑋 :

⎯⎸⎸⎷ 2∑︁
𝑗=1

(max{0, 𝑔𝑗(x)})
2

+ |ℎ(x)|2 ∈ (0, 𝜀𝑓 ], −12𝑥1 − 7𝑥2 + 𝑥2
2 > 𝑓(x*) + 𝜀𝑜

⎫⎬⎭ ,

𝑋3 =

⎧⎨⎩x ∈ 𝑋 :

⎯⎸⎸⎷ 2∑︁
𝑗=1

(max{0, 𝑔𝑗(x)})
2

+ |ℎ(x)|2 ∈ (0, 𝜀𝑓 ], −12𝑥1 − 7𝑥2 + 𝑥2
2 ≤ 𝑓(x*) + 𝜀𝑜

⎫⎬⎭ ,

𝑋4 =
{︀
x ∈ 𝑋 : g(x) ≤ 0, ℎ(x) = 0, −12𝑥1 − 7𝑥2 + 𝑥2

2 > 𝑓(x*) + 𝜀
}︀
, and

𝑋5 =
{︀
x ∈ 𝑋 : g(x) ≤ 0, ℎ(x) = 0, −12𝑥1 − 7𝑥2 + 𝑥2

2 ≤ 𝑓(x*) + 𝜀
}︀
.

The sets 𝑋1 through 𝑋5 are depicted in Figure 5-1c for 𝜀 = 𝜀𝑜 = 𝜀𝑓 = 0.1.

The following corollary of Lemmata 5.2.4, 5.2.5, and 5.2.6, similar to Lemma 2 in [238],
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provides sufficient conditions under which nodes with domains contained in 𝑋1, 𝑋2, and

𝑋4 can be fathomed.

Corollary 5.2.10. [Fathoming Nodes Contained in 𝑋1, 𝑋2, and 𝑋4] Let 𝛿 =
(︁ 𝜀

𝜏*

)︁ 1
𝛽*

.

1. Suppose the convex relaxation-based lower bounding scheme has convergence of order

𝛽𝐼 > 0 at each x ∈ 𝑋1 with a prefactor 𝜏 𝐼 > 0 that is independent of x. Consider

𝑋̄1 ∈ I𝑋1 corresponding to the domain of node 𝑘1 in the branch-and-bound tree. If

𝑤(𝑋̄1) ≤ 𝛿, then node 𝑘1 will be fathomed by infeasibility.

2. Suppose the scheme of convex relaxations (𝑓 cv
𝑍 )𝑍∈I𝑋 has convergence of order 𝛽𝑓 > 0

at each x ∈ 𝑋2 with a prefactor 𝜏 𝑓 > 0 that is independent of x. Consider 𝑋̄2 ∈ I𝑋2

corresponding to the domain of node 𝑘2 in the branch-and-bound tree. If 𝑤(𝑋̄2) ≤ 𝛿,

then node 𝑘2 will be fathomed by value dominance.

3. Suppose the convex relaxation-based lower bounding scheme has convergence of order

𝛽* > 0 at each x ∈ 𝑋4 with a prefactor 𝜏* > 0 that is independent of x. Consider

𝑋̄4 ∈ I𝑋4 corresponding to the domain of node 𝑘4 in the branch-and-bound tree. If

𝑤(𝑋̄4) ≤ 𝛿, then node 𝑘4 will be fathomed by value dominance.

Corollary 5.2.10 implies that nodes with domains 𝑋̄1, 𝑋̄2, and 𝑋̄4 such that 𝑋̄1 ∈ I𝑋1,

𝑋̄2 ∈ I𝑋2, and 𝑋̄4 ∈ I𝑋4 can be fathomed when or before their widths are 𝛿 (in fact, nodes

with domains in I𝑋2 and I𝑋4 can be fathomed when or before their widths are
(︀
𝜀𝑜+𝜀
𝜏𝑓

)︀ 1

𝛽𝑓 and(︀
2𝜀
𝜏*

)︀ 1
𝛽* , respectively). However, nodes 𝑋̄5 ∈ I𝑋5 may, in the worst case, need to be covered

by boxes of width 𝛿 before they are fathomed. Furthermore, nodes 𝑋̄3 ∈ I𝑋3 may need

to be covered by a large number of boxes depending on the convergence properties of the

lower bounding scheme on 𝑋3. The following example presents a case in which clustering

may occur on 𝑋3 because the lower bounding scheme does not have a sufficiently-large

convergence order at infeasible points.

Example 5.2.11. Let 𝑋 = (−2, 2), 𝑚𝐼 = 3, and 𝑚𝐸 = 0 with 𝑓(𝑥) = 𝑥, 𝑔1(𝑥) = 𝑥2,

𝑔2(𝑥) = 𝑥− 1, and 𝑔3(𝑥) = −1 − 𝑥. We have 𝑥* = 0 (which is the only feasible point). For
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any [𝑥L, 𝑥U] =: 𝑍 ∈ I𝑋, let

𝑓 cv
𝑍 (𝑥) = 𝑥,

𝑔cv1,𝑍(𝑥) =

⎧⎪⎨⎪⎩
−(𝑥U − 𝑥L), if 0 ∈ [𝑥L, 𝑥U]

min
(︁(︀

𝑥L
)︀2

,
(︀
𝑥U
)︀2)︁− (𝑥U − 𝑥L), otherwise

,

𝑔cv2,𝑍(𝑥) = 𝑥− 1,

𝑔cv3,𝑍(𝑥) = −1 − 𝑥.

We have 𝛽* = 𝛽𝐼 = 1 and 𝛽𝑓 arbitarily-large with prefactors 𝜏*, 𝜏 𝐼 , and 𝜏 𝑓 , respectively,

greater than zero.

Suppose 𝜀, 𝜀𝑓 ≪ 1. Pick 𝛾 > 0 and 𝛼 ∈ (0, 𝛾) such that (𝛾 + 𝛼)2 = 𝜀𝑓 . Let 𝑥L :=

−𝛾 − 𝛼 = −
√
𝜀𝑓 and 𝑥U := −𝛾 + 𝛼 < 0. The width of 𝑍 is 𝑤(𝑍) = 2𝛼. Note that 𝑔2 and

𝑔3 are feasible on 𝑍; therefore, we need only be concerned with the feasibility of 𝑔1.

We have 𝑔1(𝑍) = [(𝛾 − 𝛼)2, (𝛾 + 𝛼)2] and 𝑑(g(𝑍),R𝑚𝐼
− ) = (𝛾 − 𝛼)2. This implies 𝑔1

is infeasible at each 𝑥 ∈ 𝑍. Note that 𝑋3 = [𝑥L, 0)∪
(︁

0,min{𝜀𝑜,
√
𝜀𝑓}
]︁

(which follows, in

part, from each 𝑥 ∈ [𝑥L, 0) being infeasible with 𝑓(𝑥) ≤ 𝑓(𝑥*) and 𝑑({g(𝑥)},R𝑚𝐼
− ) ≤ 𝜀𝑓 ).

We have 𝑔cv1,𝑍(𝑍) = [(𝛾 − 𝛼)2 − 2𝛼, (𝛾 − 𝛼)2 − 2𝛼] and 𝑑(gcv
𝑍 (𝑍),R𝑚𝐼

− ) = max{0, (𝛾 −

𝛼)2 − 2𝛼}. The optimal objective value of the lower bounding problem on 𝑍 is −𝛾 − 𝛼

when 𝑑(gcv
𝑍 (𝑍),R𝑚𝐼

− ) = 0, and is +∞ otherwise. Note that the lower bounding problem

is infeasible on 𝑍 when (𝛾 − 𝛼)2 − 2𝛼 > 0, which can be achieved by choosing 𝛼 to be

sufficiently-small (and increasing 𝛾 accordingly).

The maximum width of the interval 𝑍 for which it can be fathomed by infeasibility can

be shown to be 𝑤(𝑍) = 2𝛼* := 2(1 + 𝛾) − 2
√︀

1 + 2𝛾 = 𝑂(𝛾2) = 𝑂(𝜀𝑓 ) (note that 𝛾 ≪ 1

because 𝜀𝑓 ≪ 1). For 𝛼 > 𝛼*, the interval 𝑍 cannot be fathomed by infeasibility and the

optimal objective value of the lower bounding problem on 𝑍 is −𝛾 − 𝛼 = −
√
𝜀𝑓 = 𝑂(

√
𝜀).

Such an interval 𝑍 cannot be fathomed by value dominance either since 𝜀 ≪ 1.

Therefore, in the worst case, the interval 𝑍 can be fathomed only when 𝑤(𝑍) = 𝑂(𝛾2) =

𝑂(𝜀𝑓 ). This causes clustering in the worst case since 𝑤([𝑥L, 0)) = 𝑂(
√
𝜀𝑓 ) and [𝑥L, 0) ⊂ 𝑋3.
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5.3 Analysis of the cluster problem

In this section, conservative estimates for the number of boxes required to cover 𝑋3 and

𝑋5 are provided based on assumptions on Problem (P) (in particular, on its set of global

minimizers), and characteristics of the branch-and-bound algorithm.

5.3.1 Estimates for the number of boxes required to cover 𝑋5

This section assumes that Problem (P) has a finite number of global minimizers (which

implies each global minimum is a strict local minimum), and 𝜀 is small enough that 𝑋5 is

guaranteed to be contained in neighborhoods of global minimizers under additional assump-

tions. An estimate for the number of boxes of width 𝛿 required to cover some neighborhood

of a minimum x* that contains the subset of 𝑋5 around x* is provided under suitable as-

sumptions. An estimate for the number of boxes required to cover 𝑋5 can be obtained by

summing the above estimates over the set of global minimizers. Throughout this section,

we assume that x* is a nonisolated feasible point (see Definition 2.3.8); otherwise, ∃𝛼 > 0

such that 𝒩 2
𝛼(x*) ∩𝑋5 = {x*}, which can be covered using a single box.

Lemma 5.3.1. Consider Problem (P). Suppose x* is nonisolated and 𝑓 is differentiable at

x*. Then ∀𝜃 > 0, ∃𝛼 > 0 such that

inf
{d:‖d‖1=1, ∃𝑡>0 : (x*+𝑡d)∈𝒩 1

𝛼(x
*)∩ℱ(𝑋)}

∇𝑓(x*)Td > min
{d:‖d‖1=1,d∈𝑇 (x*)}

∇𝑓(x*)Td− 𝜃.

Proof. We proceed by contradiction. Define

𝐿(𝛼) := inf
{d:‖d‖1=1, ∃𝑡>0 : (x*+𝑡d)∈𝒩 1

𝛼(x
*)∩ℱ(𝑋)}

∇𝑓(x*)Td,

𝐿* := min
{d:‖d‖1=1,d∈𝑇 (x*)}

∇𝑓(x*)Td,

and note that 𝐿(𝛼) is monotonically nonincreasing on (0,+∞). Suppose ∃𝜃 > 0 such that

∀𝛼 > 0, we have 𝐿(𝛼) ≤ 𝐿* − 𝜃. Consider a sequence {𝛼𝑘} → 0 with 𝛼𝑘 > 0, and a

corresponding sequence {d𝑘} such that

d𝑘 ∈
{︂
d : ‖d‖1 = 1, ∃𝑡𝑘 > 0 : (x* + 𝑡𝑘d) ∈ 𝒩 1

𝛼𝑘
(x*) ∩ ℱ(𝑋),∇𝑓(x*)Td ≤ 𝐿* − 𝜃

2

}︂
.
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The existence of d𝑘 follows from the assumption that 𝐿(𝛼) ≤ 𝐿* − 𝜃, ∀𝛼 > 0. Since

‖d𝑘‖1 = 1, ∀𝑘, we have the existence of d* ∈ R𝑛𝑥 with d* = lim
𝑘𝑞→∞

d𝑘𝑞 and ‖d*‖1 = 1 for

some convergent subsequence {d𝑘𝑞}. Furthermore, d* ∈ 𝑇 (x*) and ∇𝑓(x*)Td* ≤ 𝐿* − 𝜃

2
,

since ∀𝑘𝑞 we have ∇𝑓(x*)Td𝑘𝑞 ≤ 𝐿* − 𝜃

2
, which contradicts the definition of 𝐿*.

The following result, inspired by Lemma 2.4 in [237], provides a conservative estimate of

the subset of 𝑋5 around a nonisolated x* under the assumption that the objective function

grows linearly on the feasible region in some neighborhood of x*. The reader can compare

the assumptions of Lemma 5.3.2 with what follows from Lemma 5.3.1 and the necessary

optimality conditions in Theorem 2.3.15 (see Remark 5.3.3 for details).

Lemma 5.3.2. Consider Problem (P). Suppose x* is nonisolated, 𝑓 is differentiable at x*,

and ∃𝛼 > 0 such that

𝐿 := inf
{d:‖d‖1=1, ∃𝑡>0 : (x*+𝑡d)∈𝒩 1

𝛼(x
*)∩ℱ(𝑋)}

∇𝑓(x*)Td > 0.

Then, ∃𝛼̂ ∈ (0, 𝛼] such that the region 𝒩 1
𝛼̂(x*)∩𝑋5 can be conservatively approximated by

𝑋̂5 =
{︀
x ∈ 𝒩 1

𝛼̂(x*) : 𝐿‖x− x*‖1 ≤ 2𝜀
}︀
.

Proof. Let x = x* + 𝑡d ∈ 𝒩 1
𝛼(x*) ∩ ℱ(𝑋) with ‖d‖1 = 1 and 𝑡 = ‖x− x*‖1 > 0. We have

𝑓(x) = 𝑓(x* + 𝑡d)

= 𝑓(x*) + ∇𝑓(x*)T(x− x*) + 𝑜(‖x− x*‖1)

= 𝑓(x*) + 𝑡∇𝑓(x*)Td + 𝑜(𝑡)

≥ 𝑓(x*) + 𝐿𝑡 + 𝑜(𝑡),

where Step 2 follows from the differentiability of 𝑓 at x*. Consequently, there exists 𝛼̂ ∈

(0, 𝛼] such that for all x = x* + 𝑡d ∈ ℱ(𝑋) with ‖d‖1 = 1 and 𝑡 ∈ [0, 𝛼̂):

𝑓(x) ≥ 𝑓(x*) + 𝐿𝑡 + 𝑜(𝑡) ≥ 𝑓(x*) +
𝐿

2
𝑡.

Therefore, ∀x ∈ 𝒩 1
𝛼̂(x*) ∩ 𝑋5 we have x = x* + 𝑡d ∈ ℱ(𝑋) with ‖d‖1 = 1 and 𝑡 =
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‖x− x*‖1 < 𝛼̂, and

𝜀 ≥ 𝑓(x) − 𝑓(x*) ≥ 𝐿

2
𝑡 =⇒ 𝐿𝑡 = 𝐿‖x− x*‖1 ≤ 2𝜀.

A conservative estimate of the number of boxes of width 𝛿 required to cover 𝒩 1
𝛼̂(x*)∩𝑋5

can be obtained by estimating the number of boxes of width 𝛿 required to cover 𝑋̂5 (see

Theorem 5.3.11). The following remark is in order.

Remark 5.3.3.

1. Lemma 5.3.2 is not applicable when 𝐿 = 0. This can occur, for instance, when x* is an

unconstrained minimum, in which case other techniques have to be employed to analyze

the cluster problem [68, 178, 237, 238] under alternative assumptions. This is because

when 𝑓 is differentiable at an unconstrained minimizer x*, it grows slower than linearly

around x* as a result of the first-order necessary optimality condition ∇𝑓(x*) = 0 (note

that if 𝑓 is twice-differentiable at x* and ∇2𝑓(x*) is positive definite, then 𝑓 grows

quadratically around x*, see Theorems 2.3.9, 2.3.11, and 2.3.12). The assumptions of

Lemma 5.3.2 may be satisfied for a constrained problem, however, because they only

require that the objective function grow linearly in the set of directions that lead to

feasible points in some neighborhood of x*. An example of 𝐿 = 0 when x* is not an

unconstrained minimum is: 𝑋 = (−2, 2), 𝑚𝐼 = 2, 𝑚𝐸 = 0, 𝑓(𝑥) = 𝑥3, 𝑔1(𝑥) = 𝑥−1, and

𝑔2(𝑥) = −𝑥 with 𝑥* = 0. In this example, the objective function only grows cubically

around 𝑥* in the direction from 𝑥* that leads to feasible points.

From Lemma 5.3.1, we have that a sufficient condition for the key assumption of

Lemma 5.3.2 to be satisfied is min
{d:‖d‖1=1,d∈𝑇 (x*)}

∇𝑓(x*)Td > 0. It is not hard to show

that this condition is also necessary when 𝑓 is differentiable at x*. Proposition 5.3.7

shows that the assumptions of Lemma 5.3.2 will not be satisfied when Problem (P) does

not contain any active inequality constraints and the minimizer corresponds to a KKT

point (see Definition 2.3.18) for Problem (P).

2. The constant 𝛼̂ depends on the local behavior of 𝑓 around x*, but is independent of

𝜀 since it is determined by the subset of 𝒩 1
𝛼(x*) ∩ ℱ(𝑋) on which the affine func-

tion 𝑓(x*) + 𝐿
2 𝑡 underestimates 𝑓(x). Consequently, for sufficiently small 𝜀, 𝑋̂5 =

{x ∈ 𝑋 : 𝐿‖x− x*‖1 ≤ 2𝜀} since {x ∈ 𝑋 : 𝐿‖x− x*‖1 ≤ 2𝜀} will then be a subset of
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𝒩 1
𝛼̂(x*). Note that the factor ‘2’ in the denominator of

‘𝐿
2 𝑡

’
is arbitrarily chosen; any

factor > 1 can instead be chosen with a corresponding 𝛼̂. Furthermore, x* is necessarily

the unique global minimizer of Problem (P) on 𝒩 1
𝛼̂(x*) since 𝐿 > 0.

3. If, in addition to the assumptions of Lemma 5.3.2, 𝑓 is assumed to be convex on 𝒩 1
𝛼(x*),

then we can choose 𝛼̂ = 𝛼. Additionally, 𝒩 1
𝛼̂(x*)∩𝑋5 can be conservatively approximated

by {x ∈ 𝑋 : 𝐿‖x− x*‖1 ≤ 𝜀} when 𝜀 is small enough.

4. The estimate 𝑋̂5 becomes less conservative as 𝜀 is decreased since the higher order term

𝑜(𝑡) → 0 as 𝜀 → 0. Simply put, this is because the affine approximation 𝑓(x*) + 𝐿𝑡

provides a better description of 𝑓 as 𝜀 → 0.

In fact, under the assumptions of Lemma 5.3.2, a less conservative estimate of 𝑋5 can be

obtained by accounting for the fact that not all points x ∈
{︀
x ∈ 𝒩 1

𝛼̂(x*) : 𝐿‖x− x*‖1 ≤ 2𝜀
}︀

satisfy ∇𝑓(x*)T(x− x*) ≥ 𝐿‖x− x*‖1.

Proposition 5.3.4. Consider Problem (P), and suppose the assumptions of Lemma 5.3.2

are satisfied. Then, ∃𝛼̂ ∈ (0, 𝛼] such that the region 𝒩 1
𝛼̂(x*) ∩ 𝑋5 can be conservatively

approximated by

𝑋̂5 =
{︁
x ∈ 𝒩 1

𝛼̂(x*) : 𝐿‖x− x*‖1 ≤ 2𝜀, 𝐿‖x− x*‖1 ≤ ∇𝑓(x*)T(x− x*)
}︁
.

Proof. The desired result follows from Lemma 5.3.2 and the fact that

∇𝑓(x*)T(x− x*) ≥ 𝐿‖x− x*‖1, ∀x ∈ 𝒩 1
𝛼(x*) ∩ ℱ(𝑋),

from the assumptions of Lemma 5.3.2.

As an illustration of the application of Lemma 5.3.2, let us reconsider Example 5.2.8.

Recall that 𝑋 = (2.2, 2.5) × (2.9, 3.3), 𝑚𝐼 = 3, 𝑚𝐸 = 0, 𝑓(x) = −𝑥1 − 𝑥2, 𝑔1(x) =

𝑥2−2𝑥41+8𝑥31−8𝑥21−2, 𝑔2(x) = 𝑥2−4𝑥41+32𝑥31−88𝑥21+96𝑥1−36, and 𝑔3(x) = 3−𝑥2 with x* ≈

(2.33, 3.18). Let 𝜀 ≤ 0.07. We have ℱ(𝑋) = {x ∈ 𝑋 : g(x) ≤ 0}, ∇𝑓(x*) = (−1,−1), 𝛼 =

+∞, 𝐿 ≈ 0.649, and 𝑋5 = {x ∈ 𝑋 : g(x) ≤ 0,−𝑥1 − 𝑥2 ≤ 𝑓(x*) + 𝜀}. Choose 𝛼̂ = +∞ in

Lemma 5.3.2. From Lemma 5.3.2 and Remark 5.3.3, we have 𝑋̂5 = {x : 0.649‖x− x*‖1 ≤ 𝜀}

(since 𝑓 is convex).
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(a) 𝑋5 and estimate 𝑋̂5 from Lemma 5.3.2
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(b) 𝑋5 and estimate 𝑋̂5 from Proposition 5.3.4

Figure 5-2: Plots of 𝑋5 (solid regions) and 𝑋̂5 (the areas between the dotted lines) for
Example 5.2.8 for 𝜀 = 0.07 (note that we do not use 𝜀 = 0.1 as in Figure 5-1b because
the corresponding 𝑋̂5 are not contained in 𝑋). The dashed lines define the set 𝑋, the
filled-in triangles correspond to the minimizer x*, and the dash-dotted lines represent the
axes translated to x*.

Figure 5-2a plots 𝑋5 and 𝑋̂5 for 𝜀 = 0.07, and Figure 5-2b shows the improvement

in the estimate when Proposition 5.3.4 is used, in which case we obtain the estimate

𝑋̂5 = {x : 0.649‖x− x*‖1 ≤ 𝜀, 0.649‖x− x*‖1 ≤ −(𝑥1 − 𝑥*1) − (𝑥2 − 𝑥*2)}. Note that an

even better estimate of 𝑋5 may be obtained by using knowledge of the local feasible set

𝒩 1
𝛼(x*) ∩ ℱ(𝑋). However, other than in some special cases (see Lemma 5.3.13), we shall

stick with the estimate 𝑋̂5 from Lemma 5.3.2 since we are mainly concerned with the de-

pendence of the extent of clustering on the convergence rate of the lower bounding scheme.

Before we provide an estimate of the number of boxes of width 𝛿 required to cover

𝒩 1
𝛼̂(x*)∩𝑋5, we provide a few more examples that satisfy the assumptions of Lemma 5.3.2

and present an approach that could help determine if its assumptions are satisfied. Ex-

ample 5.3.5 illustrates another inequality-constrained case which satisfies the assumptions

of Lemma 5.3.2. Note that the minimizer x* does not satisfy the KKT conditions (see

Theorem 2.3.17) in this case.

Example 5.3.5. Let 𝜀 ≤ 1, 𝑋 = (−2, 2), 𝑚𝐼 = 3, and 𝑚𝐸 = 0 with 𝑓(𝑥) = −𝑥, 𝑔1(𝑥) = 𝑥3,

𝑔2(𝑥) = 𝑥 − 1, 𝑔3(𝑥) = −1 − 𝑥, and 𝑥* = 0. We have ℱ(𝑋) = [−1, 0], ∇𝑓(𝑥*) = −1,

𝛼 = +∞, 𝐿 = 1, and 𝑋5 = [−𝜀, 0]. Choose 𝛼̂ = +∞ in Lemma 5.3.2. From Lemma 5.3.2

and Remark 5.3.3, we have 𝑋̂5 = [−𝜀,+𝜀] (since 𝑓 is convex).

The reader may conjecture, based on Example 5.3.5 and other examples of low di-
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mension, that every nonisolated minimizer x* which does not satisfy the KKT conditions

will automatically satisfy the main assumption of Lemma 5.3.2. Example 5.3.6, inspired

by [99, Section 4.1], however illustrates a case when the assumptions of Lemma 5.3.2 are

not satisfied even though x* does not satisfy the KKT conditions.

Example 5.3.6. Let 𝑋 = (−2, 2)3, 𝑚𝐼 = 5, and 𝑚𝐸 = 0 with 𝑓(x) = 𝑥1 + 𝑥23, 𝑔1(x) =

𝑥1 − 1, 𝑔2(x) = 𝑥2 − 𝑥1, 𝑔3(x) = 𝑥22, 𝑔4(x) = −𝑥3, 𝑔5(x) = 𝑥3 − 1, and x* = (0, 0, 0). We

have ℱ(𝑋) =
{︀
x ∈ [0, 1]3 : 𝑥2 = 0

}︀
, ∇𝑓(x*) = (1, 0, 0), and 𝐿 = 0 for every 𝛼 > 0 since

(0, 0, 1) ∈ 𝑇 (x*) and ∇𝑓(x*)T(0, 0, 1) = 0.

The next result provides conditions under which the assumptions of Lemma 5.3.2 will

not be satisfied. In particular, it is shown that the assumptions of Lemma 5.3.2 will not be

satisfied if Problem (P) is purely equality-constrained and all the functions in Problem (P)

are differentiable at a nonisolated x*.

Proposition 5.3.7. Consider Problem (P) with 𝑚𝐸 ≥ 1. Suppose x* is nonisolated, 𝑓

is differentiable at x*, functions ℎ𝑘, 𝑘 = 1, · · · ,𝑚𝐸 , are differentiable at x*, and 𝒜(x*) =

∅. Furthermore, suppose there exist multipliers 𝜆* ∈ R𝑚𝐸 corresponding to the equality

constraints such that (x*,0,𝜆*) is a KKT point. Then

min
{d:‖d‖1=1,d∈𝑇 (x*)}

∇𝑓(x*)Td = 0.

Proof. Since (x*,0,𝜆*) is a KKT point, we have (see Definition 2.3.18):

∇𝑓(x*) +

𝑚𝐸∑︁
𝑘=1

𝜆*
𝑘∇ℎ𝑘(x*) = 0.

From the assumption that x* is a nonisolated feasible point, we have that the set of unit-

norm directions {d : ‖d‖1 = 1,d ∈ 𝑇 (x*)} is nonempty. Additionally, we have

𝑇 (x*) ⊂ ℒ(x*) :=
{︁
d ∈ R𝑛𝑥 : ∇ℎ𝑘(x*)Td = 0,∀𝑘 ∈ {1, · · · ,𝑚𝐸}

}︁
,

where ℒ(x*) denotes the linearized cone at x* (see, for instance, [13]). Consequently, for

each d ∈ 𝑇 (x*) with ‖d‖1 = 1, we have ∇𝑓(x*)Td = 0.

Note that the above result can naturally be extended to accommodate weakly active

inequality constraints (see [13, Section 4.4]). The ensuing examples illustrate that the as-
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(a) 𝑋5 and estimate 𝑋̂5 from Lemma 5.3.2
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(b) 𝑋5 and estimate 𝑋̂5 from Lemma 5.3.13

Figure 5-3: Plots of 𝑋5 (solid curves) and 𝑋̂5 (left figure: area between the dotted lines,
right figure: curve depicted by the circles) for Example 5.3.9 for 𝜀 = 0.5. The filled-in
triangles correspond to the minimizer x*, and the dash-dotted lines represent the axes
translated to x*.

sumptions of Lemma 5.3.2 may be satisfied when individual assumptions of Proposition 5.3.7

do not hold.

Example 5.3.8. Let 𝜀 ≤ 0.5, 𝑋 = (−2, 2) × (−2, 2), 𝑚𝐼 = 1, and 𝑚𝐸 = 1 with

𝑓(x) = 𝑥1 + 10𝑥22, 𝑔(x) = 𝑥1 − 1, ℎ(x) = 𝑥1 − |𝑥2|, and x* = (0, 0). We have ℱ(𝑋) =

{x ∈ 𝑋 : 𝑥1 = |𝑥2|, 𝑥1 ≤ 1}, ∇𝑓(x*) = (1, 0), 𝛼 = +∞, 𝐿 = 0.5, and the set 𝑋5 ={︀
x ∈ [0, 𝜀] × [−𝜀, 𝜀] : 𝑥1 = |𝑥2|, 𝑥1 + 10𝑥22 ≤ 𝜀

}︀
. Choose 𝛼̂ = +∞ in Lemma 5.3.2. From

Lemma 5.3.2 and Remark 5.3.3, we have 𝑋̂5 = {x ∈ 𝑋 : ‖x‖1 ≤ 2𝜀} (since 𝑓 is convex).

Example 5.3.9. Let 𝜀 ≤ 0.5, 𝑋 = (−2, 2) × (−2, 2), 𝑚𝐼 = 4, and 𝑚𝐸 = 1 with 𝑓(x) =

𝑥1 + 𝑥2, 𝑔1(x) = −𝑥1, 𝑔2(x) = −𝑥2, 𝑔3(x) = 𝑥1 − 1, 𝑔4(x) = 𝑥2 − 1, ℎ(x) = 𝑥2 − 𝑥31, and

x* = (0, 0). We have ℱ(𝑋) =
{︀
x ∈ [0, 1]2 : 𝑥2 = 𝑥31

}︀
, ∇𝑓(x*) = (1, 1), 𝛼 = +∞, 𝐿 = 1, and

𝑋5 =
{︀
x ∈ [0, 𝜀] × [0, 𝜀] : 𝑥2 = 𝑥31, 𝑥1 + 𝑥2 ≤ 𝜀

}︀
. Choose 𝛼̂ = +∞ in Lemma 5.3.2. From

Lemma 5.3.2 and Remark 5.3.3, we have 𝑋̂5 = {x ∈ 𝑋 : ‖x‖1 ≤ 𝜀} (since 𝑓 is convex).

Figure 5-3a plots 𝑋5 and 𝑋̂5 for Example 5.3.9 for 𝜀 = 0.5. It is seen that the estimate

𝑋̂5 does not capture the ‘one-dimensional nature’ of 𝑋5 (which is a consequence of the

equality constraint in Example 5.3.9). This issue is addressed in Lemma 5.3.13. Note that

𝑋5 for Example 5.3.8 also resides in a reduced-dimensional manifold, but Lemma 5.3.13 does

not apply in this case since ℎ is not differentiable at x* (the discussion after Lemma 5.3.13

proposes a modification of the assumptions of Lemma 5.3.13 that addresses this issue).
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While Lemma 5.3.2 provides a conservative estimate of 𝒩 1
𝛼̂(x*) ∩𝑋5 under suitable as-

sumptions, verifying the satisfaction of its assumptions is not straightforward. The following

proposition provides a conservative approach for determining whether the assumptions of

Lemma 5.3.2 are satisfied.

Proposition 5.3.10. Let 𝐿(𝛼) denote the constant 𝐿 in Lemma 5.3.2 for a given 𝛼 > 0.

When the active constraints are differentiable at x*, a lower bound on 𝐿0 := lim
𝛼→0+

𝐿(𝛼) can

be obtained by solving

min
d

∇𝑓(x*)Td

s.t. ‖d‖1 = 1,

d ∈ ℒ(x*),

where

ℒ(x*) :=
{︁
d ∈ R𝑛𝑥 : ∇𝑔𝑗(x

*)Td ≤ 0,∀𝑗 ∈ 𝒜(x*),∇ℎ𝑘(x*)Td = 0,∀𝑘 ∈ {1, · · · ,𝑚𝐸}
}︁

denotes the linearized cone at x*. If x* corresponds to a KKT point, the above formulation

provides the exact value of 𝐿0.

So far in this section, we have established conditions under which a conservative estimate

of the subset of 𝑋5 around a minimizer x* can be obtained, presented examples for which

the above conditions hold, and isolated a class of problems for which the above conditions

are not satisfied. The following theorem follows from Corollary 2.1 in [237], the proof of

which is rederived for completeness. It provides a conservative estimate of the number of

boxes of width 𝛿 required to cover 𝑋̂5 from Lemma 5.3.2. Therefore, from Lemma 5.2.4 and

the result below, we can get an upper bound on the worst-case number of boxes required to

cover 𝒩 1
𝛼̂(x*)∩𝑋5 and estimate the extent of the cluster problem on that region (recall from

Remark 5.3.3 that the subset of 𝑋5 around x* will be contained in 𝒩 1
𝛼̂(x*) for sufficiently

small 𝜀).

Theorem 5.3.11. Suppose the assumptions of Lemma 5.3.2 hold. Let 𝛿 =
(︁ 𝜀

𝜏*

)︁ 1
𝛽*

, 𝑟 =
2𝜀

𝐿
.

1. If 𝛿 ≥ 2𝑟, let 𝑁 = 1.
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2. If
2𝑟

𝑚− 1
> 𝛿 ≥ 2𝑟

𝑚
for some 𝑚 ∈ N with 𝑚 ≤ 𝑛𝑥 and 2 ≤ 𝑚 ≤ 5, then let

𝑁 =

𝑚−1∑︁
𝑖=0

2𝑖
(︂
𝑛𝑥

𝑖

)︂
+ 2𝑛𝑥

⌈︂
𝑚− 3

3

⌉︂
.

3. Otherwise, let

𝑁 =
⌈︁
2 (𝜏*)

1
𝛽* 𝜀(1−

1
𝛽* )𝐿−1

⌉︁𝑛𝑥−1 (︁⌈︁
2 (𝜏*)

1
𝛽* 𝜀(1−

1
𝛽* )𝐿−1

⌉︁
+ 2𝑛𝑥

⌈︁
(𝜏*)

1
𝛽* 𝜀(1−

1
𝛽* )𝐿−1

⌉︁)︁
.

Then, 𝑁 is an upper bound on the number of boxes of width 𝛿 required to cover 𝑋̂5.

Proof. This proof is rederived based on Corollary 2.1 in [237] and the proof of Lemma 3

in [238]. Note that the condition in the second case is corrected to ‘2 ≤ 𝑚 ≤ 5’ as opposed

to ‘2 ≤ 𝑚 ≤ 6’ in [237].

From Lemma 5.3.2, we have

𝑋̂5 =
{︀
x ∈ 𝒩 1

𝛼̂(x*) : 𝐿‖x− x*‖1 ≤ 2𝜀
}︀
⊂
{︂
x : ‖x− x*‖1 ≤

2𝜀

𝐿

}︂
=: 𝐵̃.

Therefore, an upper bound on the number of boxes of width 𝛿 required to cover 𝑋̂5 can be

obtained by conservatively estimating the number of boxes of width 𝛿 required to cover 𝐵̃.

In what follows, we will assume without loss of generality that x* = 0.

1. Suppose 𝛿 ≥ 2𝑟. Consider the box 𝐵𝛿 of width 𝛿 centered at x* = 0. We have

x ∈ 𝐵̃ =⇒ ‖x‖1 ≤
2𝜀

𝐿
=⇒ ‖x‖∞ ≤ 2𝜀

𝐿
= 𝑟 ≤ 𝛿

2
=⇒ x ∈ 𝐵𝛿,

where we have used the fact that ‖x‖∞ ≤ ‖x‖1, ∀x ∈ R𝑛𝑥 . Therefore, 𝐵𝛿 is sufficient to

cover 𝐵̃.

2. Suppose 𝑚 ≤ 𝑛𝑥 with 𝑚 ∈ {2, · · · , 5} and 𝛿 ≥ 2𝑟
𝑚 . Place a box 𝐵𝛿 of width 𝛿 centered

at x* = 0 (the condition on 𝛿 ensures that 𝐵𝛿 intersects the boundary of 𝐵̃). Let

𝐸𝑖 :=

⎧⎨⎩e ∈ R𝑛𝑥 : 𝑒𝑗 ∈
{︂
−𝛿

2
, 0,

𝛿

2

}︂
, ∀𝑗 ∈ {1, · · · , 𝑛𝑥},

𝑛𝑥∑︁
𝑗=1

𝐼0(𝑒𝑗) = 𝑖

⎫⎬⎭ ,

191



where 𝐼0 : R → {0, 1} is defined as 𝐼0(𝑥) :=

⎧⎪⎨⎪⎩
0, if 𝑥 = 0

1, otherwise

, denote the set of midpoints

of the (𝑛𝑥 − 𝑖)-dimensional faces of 𝐵𝛿 (each element of 𝐸𝑖 has exactly 𝑖 nonzero com-

ponents, each of which is ± 𝛿
2). Note that |𝐸𝑖| = 2𝑖

(︀
𝑛𝑥

𝑖

)︀
, ∀𝑖 ∈ {1, · · · , 𝑛𝑥}. Under the

assumption 𝛿 ≥ 2𝑟
𝑚 , we will show that, in addition to 𝐵𝛿, it is sufficient to place one

box beside 𝐵𝛿 along the directions in 𝐸1, · · · , 𝐸𝑚−1 when 𝑚 = 2 or 𝑚 = 3, and two

boxes beside 𝐵𝛿 along the directions in 𝐸1 and one box beside 𝐵𝛿 along the directions

in 𝐸2, · · · , 𝐸𝑚−1 when 𝑚 = 4 or 𝑚 = 5 in order to cover 𝐵̃.

First, we show that we need not place any boxes beside 𝐵𝛿 along the directions in

𝐸𝑚, · · · , 𝐸𝑛𝑥 . Let e ∈ 𝐸𝑖 with 𝑖 ∈ {𝑚, · · · , 𝑛𝑥}. We have ‖e‖1 = 𝛿
2 𝑖 ≥

𝑖
𝑚𝑟 ≥ 𝑟, which

implies e ∈ 𝜕𝐵̃∪𝐵̃C (where 𝜕𝐵̃ denotes the boundary of 𝐵̃). Consequently, boxes placed

beside 𝐵𝛿 along the directions in 𝐸𝑚, · · · , 𝐸𝑛𝑥 do not intersect the interior of 𝐵̃ and are

not required to cover 𝐵̃.

Suppose 𝛿 ≥ 2𝑟
𝑚 , and let e ∈ 𝐸𝑖 for some 𝑖 ∈ {1, · · · ,𝑚 − 1}. The distance from e,

which is the midpoint of an (𝑛 − 𝑖)-dimensional face of 𝐵𝛿, to 2𝑟
𝛿𝑖 e, which is a point on

the boundary of 𝐵̃ in the direction e, in the ∞-norm is 𝑟
𝑖 −

𝛿
2 ≤ 𝑟

𝑖 −
𝑟
𝑚 . If this distance

is less than 𝛿 for each 𝑖 ∈ {1, · · · ,𝑚− 1}, then one box beside 𝐵𝛿 along the directions in

𝐸1, · · · , 𝐸𝑚−1 is sufficient to cover 𝐵̃. This amounts to requiring

𝑟

𝑖
− 𝑟

𝑚
≤ 2𝑟

𝑚
, ∀𝑖 ∈ {1, · · · ,𝑚− 1}

⇐⇒ 𝑚 ≤ 3𝑖, ∀𝑖 ∈ {1, · · · ,𝑚− 1}

⇐⇒ 𝑚 = 2 or 𝑚 = 3.

Note that if 𝑚 = 4 or 𝑚 = 5, we still have 𝑚 ≤ 3𝑖, ∀𝑖 ∈ {2, · · · ,𝑚 − 1}. Additionally,

𝑟
1 − 𝑟

𝑚 ≤ 4𝑟
𝑚 ≤ 2𝛿 in such cases. Therefore, when 𝑚 = 4 or 𝑚 = 5, two boxes along the

directions in 𝐸1 and one box along the directions in 𝐸2, · · · , 𝐸𝑚−1 are sufficient to cover

𝐵̃.

3. If the previous assumptions on 𝛿 are not satisfied, a box of width 𝛿 centered at x* may

not intersect 𝜕𝐵̃. To estimate the number of boxes of width 𝛿 required to cover 𝐵̃, we

first estimate the number of boxes, 𝑁𝑟, of width 𝑟 = 2𝜀
𝐿 required to cover 𝐵̃ using the

previous analysis, and then estimate the number of boxes of width 𝛿 required to cover
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the intersection of these 𝑁𝑟 boxes with 𝐵̃.

The number of boxes of width 𝑟 required to cover 𝐵̃ is 𝑁𝑟 := 1 + 2𝑛𝑥, where ‘1’

corresponds to the box centered at x* = 0, and ‘2𝑛𝑥’ corresponds to the boxes along the

directions in 𝐸1. Note that 𝐸1 is now defined as

𝐸1 :=

⎧⎨⎩e ∈ R𝑛𝑥 : 𝑒𝑗 ∈
{︁
−𝑟

2
, 0,

𝑟

2

}︁
, ∀𝑗 ∈ {1, · · · , 𝑛𝑥},

𝑛𝑥∑︁
𝑗=1

𝐼0(𝑒𝑗) = 1

⎫⎬⎭
since 𝐵̃ is first covered using boxes of width 𝑟. The box of width 𝑟 centered at x* can

be covered using
⌈︀
𝑟
𝛿

⌉︀𝑛𝑥 boxes of width 𝛿. Note that the entire volume of the 2𝑛𝑥 boxes

along the directions in 𝐸1 need not be covered using boxes of width 𝛿 since parts of

those boxes have no intersection with 𝐵̃. To estimate the extent to which each of the

2𝑛𝑥 boxes need to be covered with boxes of width 𝛿, we compute the distance between

any e ∈ 𝐸1 (which is a midpoint of a one-dimensional face of the box of width 𝑟 centered

at x*) and 2𝑟
𝑟×1e = 2e (which is a point on the boundary of 𝐵̃ in the direction e) in the

∞-norm. This distance turns out to be equal to 𝑟
2 . This implies at most half the volumes

of the 2𝑛𝑥 boxes need to be covered using boxes of width 𝛿, which yields the estimate

of 2𝑛𝑥

⌈︀
𝑟
𝛿

⌉︀𝑛𝑥−1⌈︀ 𝑟
2𝛿

⌉︀
boxes of width 𝛿 that are required to cover the 2𝑛𝑥 boxes of width 𝑟

along the directions in 𝐸1.

Remark 5.3.12. Under the assumptions of Lemma 5.3.2, the dependence of 𝑁 on 𝜀 dis-

appears when the lower bounding scheme has first-order convergence on 𝒩 1
𝛼̂(x*) ∩ ℱ(𝑋),

i.e., 𝛽* = 1. Therefore, the cluster problem on 𝑋5 may be eliminated even using first-order

convergent lower bounding schemes with sufficiently small prefactors. This is in contrast to

unconstrained global optimization where at least second-order convergent lower bounding

schemes are required to eliminate the cluster problem (see Remark 5.3.3 for an intuitive

explanation for this qualitative difference in behavior). Note that the dependence of 𝑁 on

the prefactor 𝜏* can be detailed in a manner similar to Table 1 in [238].

The above scaling has also been empirically observed by Goldsztejn et al. [87], who

reason “· · · removes the tangency between the feasible set and the objective level set, and

therefore should prevent the cluster effect.”

The next result refines the analysis of Lemma 5.3.2 when Problem (P) contains equality

constraints that can locally be eliminated using the implicit function theorem [192].
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Lemma 5.3.13. Consider Problem (P) with 1 ≤ 𝑚𝐸 < 𝑛𝑥. Suppose x* is nonisolated, 𝑓

is differentiable at x*, and ∃𝛼 > 0 such that h is continuously differentiable on 𝒩 1
𝛼(x*) and

𝐿 := inf
{d:‖d‖1=1, ∃𝑡>0 : (x*+𝑡d)∈𝒩 1

𝛼(x
*)∩ℱ(𝑋)}

∇𝑓(x*)Td > 0.

Furthermore, suppose the variables x can be reordered and partitioned into dependent

variables z ∈ R𝑚𝐸 and independent variables p ∈ R𝑛𝑥−𝑚𝐸 , with x ≡ (z,p), such that

∇zh((z,p)) is nonsingular on 𝒩 1
𝛼((z*,p*)), where x* ≡ (z*,p*). Then, ∃𝛼p, 𝛼z ∈ (0, 𝛼], a

continuously differentiable function 𝜑 : 𝒩 1
𝛼p

(p*) → 𝒩 1
𝛼z

(z*), and 𝛼̂ ∈ (0, 𝛼p) such that the

region
(︀
𝒩 1

𝛼z
(z*) ×𝒩 1

𝛼̂(p*)
)︀
∩𝑋5 can be conservatively approximated by

𝑋̂5 =
{︀

(z,p) ∈ 𝒩 1
𝛼z

(z*) ×𝒩 1
𝛼̂(p*) : z = 𝜑(p), 𝐿‖p− p*‖1 ≤ 2𝜀

}︀
.

Proof. The result follows from the proof of Lemma 5.3.2 and the implicit function theo-

rem [192, Chapter 9].

Lemma 5.3.13 effectively states that, under suitable conditions, the subset of 𝑋5 around

x* resides in a reduced-dimensional manifold. Figure 5-3b compares the estimate 𝑋̂5 ob-

tained from Lemma 5.3.13 (when we assume precise knowledge of the implicit function)

with the one obtained from Lemma 5.3.2 for Example 5.3.9. The reason for distinguishing

between 𝛼p and 𝛼̂ is so that we can have 𝜑 to be continuously differentiable on cl
(︀
𝒩 1

𝛼̂(p*)
)︀
;

this fact will be used shortly. Note that the assumptions that h is continuously differen-

tiable on 𝒩 1
𝛼(x*) and ∇zh((z,p)) is nonsingular on 𝒩 1

𝛼((z*,p*)) can be relaxed based on a

nonsmooth variant of the implicit function theorem [57, Chapter 7] (which can be used to

derive a less conservative estimate of 𝑋5 for Example 5.3.8, for instance).

The following corollary of Theorem 5.3.11 refines the estimate of the number of boxes

of width 𝛿 required to cover 𝑋̂5 under the assumptions of Lemma 5.3.13. It provides

an upper bound on the number of boxes of width 𝛿 required to cover 𝑋5 that scales as

𝑂

(︂
𝜀
(𝑛𝑥−𝑚𝐸)

(︁
1− 1

𝛽*

)︁)︂
in contrast to the scaling 𝑂

(︂
𝜀
𝑛𝑥

(︁
1− 1

𝛽*

)︁)︂
from Theorem 5.3.11.

Corollary 5.3.14. Suppose the assumptions of Lemma 5.3.13 hold. Let 𝛿 =
(︁ 𝜀

𝜏*

)︁ 1
𝛽*

,
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𝑟 =
2𝜀

𝐿
. Define

𝑀𝑘 :=

(︃
max

p∈cl(𝒩 1
𝛼̂(p

*))
‖∇𝜑𝑘(p)‖

)︃
√
𝑛𝑥 −𝑚𝐸 , ∀𝑘 ∈ {1, · · · ,𝑚𝐸},

𝐾 := {𝑘 ∈ {1, · · · ,𝑚𝐸} : 𝑀𝑘 > 1} .

1. If 𝛿 ≥ 2𝑟, let 𝑁 =
∏︁
𝑘∈𝐾

𝑀𝑘.

2. If
2𝑟

𝑚− 1
> 𝛿 ≥ 2𝑟

𝑚
for some 𝑚 ∈ N with 𝑚 ≤ 𝑛𝑥 −𝑚𝐸 and 2 ≤ 𝑚 ≤ 5, then let

𝑁 =

(︃
𝑚−1∑︁
𝑖=0

2𝑖
(︂
𝑛𝑥 −𝑚𝐸

𝑖

)︂
+ 2 (𝑛𝑥 −𝑚𝐸)

⌈︂
𝑚− 3

3

⌉︂)︃ ∏︁
𝑘∈𝐾

𝑀𝑘.

3. Otherwise, let

𝑁 =

⌈︂
2 (𝜏*)

1
𝛽* 𝜀

(︁
1− 1

𝛽*

)︁
𝐿−1

⌉︂𝑛𝑥−𝑚𝐸−1
(︃⌈︂

2 (𝜏*)
1
𝛽* 𝜀

(︁
1− 1

𝛽*

)︁
𝐿−1

⌉︂
+

2 (𝑛𝑥 −𝑚𝐸)

⌈︂
(𝜏*)

1
𝛽* 𝜀

(︁
1− 1

𝛽*

)︁
𝐿−1

⌉︂)︃ ∏︁
𝑘∈𝐾

𝑀𝑘.

Then, 𝑁 is an upper bound on the number of boxes of width 𝛿 required to cover 𝑋̂5.

Proof. Theorem 5.3.11 can be used to obtain an overestimate of the number of boxes of

width 𝛿 required to cover the projection of 𝑋̂5, as defined by Lemma 5.3.13, on p, i.e.,{︀
p ∈ 𝒩 1

𝛼̂(p*) : 𝐿‖p− p*‖1 ≤ 2𝜀
}︀

, by replacing 𝑛𝑥 with 𝑛𝑥 −𝑚𝐸 in the expressions for 𝑁 .

This estimate can be extended to obtain a conservative estimate of the number of boxes of

width 𝛿 required to cover 𝑋̂5 as follows.

Note that 𝜑𝑘 is Lipschitz continuous on cl
(︀
𝒩 1

𝛼̂(p*)
)︀

with Lipschitz constant 𝑀𝑘√
𝑛𝑥−𝑚𝐸

,

∀𝑘 ∈ {1, · · · ,𝑚𝐸}. Consider any box 𝐵 of width 𝛿 that is used to cover the projection of

𝑋̂5 on p. We have

𝑤
(︀
𝜑𝑘

(︀
𝐵 ∩ cl

(︀
𝒩 1

𝛼̂(p*)
)︀)︀)︀

≤ 𝑀𝑘𝛿, ∀𝑘 ∈ {1, · · · ,𝑚𝐸},

from the Lipschitz continuity of 𝜑𝑘. Therefore, we can replace the box 𝐵 using
∏︁
𝑘∈𝐾

𝑀𝑘 such
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boxes and translate them appropriately to cover the region

{︀
(z,p) ∈ 𝒩 1

𝛼z
(z*) ×

(︀
𝐵 ∩𝒩 1

𝛼̂(p*)
)︀

: 𝐿‖p− p*‖1 ≤ 2𝜀, z = 𝜑(p)
}︀
.

Since
⋃︀

𝐵

{︀
𝐵 ∩𝒩 1

𝛼̂(p*)
}︀

covers the projection of 𝑋̂5 on p, the desired result follows by

multiplying the estimate obtained from Theorem 5.3.11 (with 𝑛𝑥 replaced by 𝑛𝑥 −𝑚𝐸) by∏︁
𝑘∈𝐾

𝑀𝑘.

The next result provides a natural extension of Lemma 5.3.2 to the case when the

objective function is not differentiable at the minimizer x* [237]. Note that a similar result

was derived for the case of unconstrained optimization in [237, Section 2.3] under alternative

assumptions.

Lemma 5.3.15. Consider Problem (P). Suppose x* is nonisolated, 𝑓 is locally Lipschitz

continuous on 𝑋 and directionally differentiable at x*, and ∃𝛼 > 0 such that

𝐿 := inf
{d:‖d‖1=1, ∃𝑡>0 : (x*+𝑡d)∈𝒩 1

𝛼(x
*)∩ℱ(𝑋)}

𝑓 ′(x*;d) > 0.

Then, ∃𝛼̂ ∈ (0, 𝛼] such that the region 𝒩 1
𝛼̂(x*)∩𝑋5 can be conservatively approximated by

𝑋̂5 =
{︀
x ∈ 𝒩 1

𝛼̂(x*) : 𝐿‖x− x*‖1 ≤ 2𝜀
}︀
.

Proof. Let x = x* + 𝑡d ∈ 𝒩 1
𝛼(x*) ∩ ℱ(𝑋) with ‖d‖1 = 1 and 𝑡 = ‖x− x*‖1 > 0. We have

(see Theorem 3.1.2 in [204])

𝑓(x) = 𝑓(x* + 𝑡d)

= 𝑓(x*) + 𝑓 ′(x*; (x− x*)) + 𝑜(‖x− x*‖1)

= 𝑓(x*) + 𝑡𝑓 ′(x*;d) + 𝑜(𝑡)

≥ 𝑓(x*) + 𝐿𝑡 + 𝑜(𝑡),

where Step 2 follows from the directional differentiability of 𝑓 at x*. Consequently, there

exists 𝛼̂ ∈ (0, 𝛼] such that for all x = x* + 𝑡d ∈ ℱ(𝑋) with ‖d‖1 = 1 and 𝑡 ∈ [0, 𝛼̂):

𝑓(x) ≥ 𝑓(x*) + 𝐿𝑡 + 𝑜(𝑡) ≥ 𝑓(x*) +
𝐿

2
𝑡.
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Therefore, ∀x ∈ 𝒩 1
𝛼̂(x*) ∩ 𝑋5 we have x = x* + 𝑡d ∈ ℱ(𝑋) with ‖d‖1 = 1 and 𝑡 =

‖x− x*‖1 < 𝛼̂, and

𝜀 ≥ 𝑓(x) − 𝑓(x*) ≥ 𝐿

2
𝑡 =⇒ 𝐿𝑡 = 𝐿‖x− x*‖1 ≤ 2𝜀.

Remark 5.3.16. Theorem 5.3.11 can be extended to the case when the assumption that the

function 𝑓 is differentiable at x* is relaxed by using Lemmata 5.2.4 and 5.3.15 and Corollary

2.1 in [237] (also see Theorem 5.3.11). Similar to the differentiable case, the dependence of

𝑁 on 𝜀 disappears when the lower bounding scheme has first-order convergence on 𝒩 1
𝛼̂(x*)∩

ℱ(𝑋), i.e., 𝛽* = 1. Additionally, Lemma 5.3.13 and Corollary 5.3.14 can also be extended

to the case when 𝑓 is not differentiable at x* under suitable assumptions.

Thus far, we have established conditions under which first-order convergence of the

lower bounding scheme at feasible points is sufficient to mitigate the cluster problem on

𝑋5. In the remainder of this section, we will present conditions under which second-order

convergence of the lower bounding scheme is sufficient to mitigate clustering on 𝑋5. The

first result in this regard provides a conservative estimate of the subset of 𝑋5 around a

nonisolated x* under the assumption that the objective function grows quadratically (or

faster) on the feasible region in some neighborhood of x*.

Lemma 5.3.17. Consider Problem (P), and suppose 𝑓 is twice-differentiable at x*. Sup-

pose ∃𝛼 > 0, 𝛾 > 0 such that

∇𝑓(x*)Td +
1

2
dT∇2𝑓(x*)d ≥ 𝛾dTd, ∀d ∈

{︀
d : (x* + d) ∈ 𝒩 2

𝛼(x*) ∩ ℱ(𝑋)
}︀
.

Then ∃𝛼̂ ∈ (0, 𝛼] such that the region 𝒩 2
𝛼̂(x*) ∩𝑋5 can be conservatively approximated by

𝑋̂5 =
{︁
x ∈ 𝒩 2

𝛼̂(x*) : 𝛾‖x− x*‖2 ≤ 2𝜀
}︁
.

Furthermore, x* is the unique global minimizer for Problem (P) on 𝒩 2
𝛼̂(x*).
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Proof. Let x = x* + d ∈ 𝒩 2
𝛼(x*) ∩ ℱ(𝑋). We have

𝑓(x) = 𝑓(x* + d)

= 𝑓(x*) + ∇𝑓(x*)Td +
1

2
dT∇2𝑓(x*)d + 𝑜(‖d‖2)

≥ 𝑓(x*) + 𝛾dTd + 𝑜(‖d‖2).

Consequently, there exists 𝛼̂ ∈ (0, 𝛼] such that for all x = x* +d ∈ ℱ(𝑋) with ‖d‖ ∈ [0, 𝛼̂):

𝑓(x) ≥ 𝑓(x*) + 𝛾dTd + 𝑜(‖d‖2) ≥ 𝑓(x*) +
𝛾

2
dTd. (5.1)

Therefore, ∀x ∈ 𝒩 2
𝛼̂(x*) ∩𝑋5 we have x = x* + d ∈ ℱ(𝑋) with ‖d‖ < 𝛼̂, and

𝜀 ≥ 𝑓(x) − 𝑓(x*) ≥ 𝛾

2
dTd =⇒ 𝛾‖d‖2 = 𝛾‖x− x*‖2 ≤ 2𝜀.

The conclusion that x* is the unique global minimizer for Problem (P) on 𝒩 2
𝛼̂(x*) follows

from Equation (5.1).

Remark 5.3.18.

1. Lemma 5.3.17 is not applicable when @𝛼 > 0 and 𝛾 > 0, for example 𝑋 = (−2, 2) ×

(−2, 2), 𝑚𝐼 = 2, 𝑚𝐸 = 0, 𝑓(x) = 𝑥2, 𝑔1(x) = 𝑥41 − 𝑥2, 𝑔2(x) = 𝑥2 − 1, and x* = (0, 0).

In this case, for any 𝛼 > 0, there exist directions from x* to feasible points in which 𝑓

grows slower than quadratically near x*.

2. For the case of unconstrained global optimization, the assumption of Lemma 5.3.17

reduces to the assumption that ∇2𝑓(x*) is positive definite, and 𝛾 can be taken to be

equal to half the smallest eigenvalue of ∇2𝑓(x*) (see Theorem 1 in [238]). When the

minimum is constrained, 𝛾 may potentially be estimated as follows. The first possibility

is to directly estimate 𝛾 using a quadratic underestimator of 𝑓 on 𝒩 2
𝛼(x*) ∩ ℱ(𝑋). If

such an underestimator cannot be constructed easily, 𝛾 may still be estimated relatively

easily when additional assumptions are satisfied.

Suppose (x*,𝜇*,𝜆*) is a KKT point, where 𝜇* and 𝜆* correspond to Lagrange mul-

tipliers for g and h, respectively, at x*. Consider the restricted Lagrangian 𝐿(x;𝜇*,𝜆*),

and suppose it is positive definite for all x ∈ cl(𝒩 2
𝛼(x*) ∩ ℱ(𝑋)) (cf. [13, Section 4.4]
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and Theorem 2.3.21). Then 𝛾 may be estimated from the eigenvalues of ∇2𝐿(x;𝜇*,𝜆*)

on cl(𝒩 2
𝛼(x*) ∩ ℱ(𝑋)). This is a consequence of the fact that 𝑓(x) ≥ 𝐿(x;𝜇*,𝜆*),

∀x ∈ ℱ(𝑋), by weak duality, 𝑓(x*) = 𝐿(x*;𝜇*,𝜆*), and the stationarity condition

∇x𝐿(x;𝜇*,𝜆*) = 0. Otherwise, if (x*,𝜇*,𝜆*) is a KKT point and some convex combi-

nation of 𝑓 and 𝐿(·;𝜇*,𝜆*) grows quadratically or faster on 𝒩 2
𝛼(x*)∩ℱ(𝑋), then 𝛾 can

be estimated using one of its quadratic underestimators on 𝒩 2
𝛼(x*) ∩ ℱ(𝑋).

3. The key assumption of Lemma 5.3.17, which assumes that 𝑓 grows quadratically or

faster on the feasible region in some neighborhood of x*, is a relaxation of the key

assumption of Lemma 5.3.2, which assumes that 𝑓 grows linearly on the feasible region

in some neighborhood of x*. While it was shown in Theorem 5.3.11 that first-order

convergence of the lower bounding scheme at feasible points may be sufficient to mitigate

clustering on 𝑋5 under the assumptions of Lemma 5.3.2, Theorem 5.3.21, which will be

presented shortly, shows that second-order convergence of the lower bounding scheme

at feasible points may be sufficient to mitigate clustering on 𝑋5 under the assumptions

of Lemma 5.3.17. Consequently, the assumptions of Lemmata 5.3.2 and 5.3.17 can be

viewed as belonging to a hierarchy of conditions for certain convergence orders of the

lower bounding scheme at feasible points being sufficient to mitigate clustering on 𝑋5,

with the condition for third-order convergence of the lower bounding scheme at feasible

points to be sufficient to mitigate clustering on 𝑋5 amounting to the third-order Taylor

expansion of 𝑓 growing faster than cubically on the feasible region in some neighborhood

of x*, and so on.

4. Along the line of discussion in Remark 5.3.3, 𝛼̂ depends on the local behavior of 𝑓

around x*, but is independent of 𝜀. Consequently, for sufficiently small 𝜀 we can con-

servatively approximate the set 𝒩 2
𝛼̂(x*) ∩ 𝑋5 by

{︁
x ∈ 𝑋 : 𝛾‖x− x*‖2 ≤ 2𝜀

}︁
. Addi-

tionally, if the objective function 𝑓 is either an affine or a quadratic function of x,

then its second-order Taylor expansion around x* equals 𝑓 itself and we can choose

𝛼̂ = 𝛼. Furthermore, 𝒩 2
𝛼̂(x*) ∩ 𝑋5 can be conservatively approximated by the set

𝑋̂5 =
{︁
x ∈ 𝑋 : 𝛾‖x− x*‖2 ≤ 𝜀

}︁
.

5. Similar to Proposition 5.3.4, a less conservative estimate of 𝒩 2
𝛼̂(x*)∩𝑋5 can be obtained
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as

𝑋̂5 =

{︂
x ∈ 𝒩 2

𝛼̂(x*) : 𝛾‖x− x*‖2 ≤ 2𝜀,

∇𝑓(x*)T (x− x*) +
1

2
(x− x*)T∇2𝑓(x*) (x− x*) ≥ 𝛾‖x− x*‖2

}︂
.

As an illustration of the application of Lemma 5.3.17, let us reconsider Example 5.2.9.

Recall that 𝑋 = (0.4, 1.0) × (0.5, 2.0), 𝑚𝐼 = 2, 𝑚𝐸 = 1, 𝑓(x) = −12𝑥1 − 7𝑥2 + 𝑥22,

𝑔1(x) = 𝑥1−0.9, 𝑔2(x) = 0.5−𝑥1, and ℎ(x) = 𝑥2+2𝑥41−2 with x* ≈ (0.72, 1.47). Let 𝜀 ≤ 0.1.

We have ℱ(𝑋) = {x ∈ 𝑋 : g(x) ≤ 0, ℎ(x) = 0}. Choose 𝛼 = 0.1, 𝛾 = 2, and 𝛼̂ = 0.1 in

Lemma 5.3.17. We have 𝑋5 =
{︀
x : 𝑥2 = 2 − 2𝑥41, −12𝑥1 − 7𝑥2 + 𝑥22 ≤ 𝑓(x*) + 𝜀

}︀
. From

Lemma 5.3.17 and Remark 5.3.18, we have 𝑋̂5 =
{︁
x ∈ 𝒩 2

0.1(x
*) : ‖x− x*‖2 ≤ 0.5𝜀

}︁
(since 𝑓

is quadratic). Note that an even better estimate of 𝑋5 may be obtained using Lemma 5.3.23

by accounting for the fact that 𝑋5 resides in a reduced-dimensional manifold.

The following examples illustrate two additional cases for which the assumptions of

Lemma 5.3.17 hold.

Example 5.3.19. Let 𝜀 ≤ 0.5, 𝑋 = (−2, 2) × (−2, 2), 𝑚𝐼 = 2, and 𝑚𝐸 = 0 with

𝑓(x) = 𝑥2, 𝑔1(x) = 𝑥21 − 𝑥2, 𝑔2(x) = 𝑥2 − 1, and x* = (0, 0). We have ℱ(𝑋) ={︀
x : 𝑥2 ≥ 𝑥21, 𝑥2 ≤ 1

}︀
. Choose 𝛼 = 1, 𝛾 = 0.5, and 𝛼̂ = 1. From Remark 5.3.18, we

have 𝑋5 =
{︀
x ∈ [−

√
𝜀,+

√
𝜀] × [0, 𝜀] : 𝑥2 ≥ 𝑥21

}︀
⊂
{︁
x : ‖x‖2 ≤ 2𝜀

}︁
= 𝑋̂5.

Example 5.3.20. Let 𝜀 ≤ 0.5, 𝑋 = (−2, 2) × (−2, 2), 𝑚𝐼 = 3, and 𝑚𝐸 = 0 with 𝑓(x) =

2𝑥21 + 𝑥2, 𝑔1(x) = −𝑥21 − 𝑥2, 𝑔2(x) = −𝑥1, 𝑔3(x) = 𝑥21 + 𝑥22 − 1, and x* = (0, 0). We

have ℱ(𝑋) =
{︀
x : 𝑥2 ≥ −𝑥21, 𝑥1 ≥ 0, 𝑥21 + 𝑥22 ≤ 1

}︀
with 𝛼 = 1, 𝛾 = 0.5, 𝛼̂ = 1, and

𝑋5 =
{︀
x : 𝑥2 + 2𝑥21 ≤ 𝜀, 𝑥2 ≥ −𝑥21, 𝑥1 ≥ 0

}︀
⊂
{︁
x : ‖x‖2 ≤ 2𝜀

}︁
= 𝑋̂5 (see Remark 5.3.18).

The overconservatism of the estimate 𝑋̂5 in the above two examples (with regards to

its dependence on 𝜀) is primarily due to the fact that the linear growth of the objective

function in the direction of its gradient is not taken into account. This observation is

formalized and taken advantage of in Lemma 5.3.25 to obtain a less conservative estimate.

Figure 5-4 plots 𝑋5 and 𝑋̂5, obtained using different estimation techniques, for 𝜀 = 0.5 and

𝜀 = 0.1 in Example 5.3.20. The benefit of using the estimate in Remark 5.3.18 over that of

Lemma 5.3.17 is seen from Figures 5-4a and 5-4b, and the benefit of using the estimate from

Lemma 5.3.25 (using 𝜌1 = 3, 𝜌2 = 1.5) over that of Lemma 5.3.17 is seen from Figures 5-4a
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(a) 𝑋5 & 𝑋̂5 from Lemma 5.3.17 for 𝜀 = 0.5
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(b) 𝑋5 & 𝑋̂5 from Remark 5.3.18 for 𝜀 = 0.5
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(c) 𝑋5 & 𝑋̂5 from Lemma 5.3.25 for 𝜀 = 0.5
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(d) 𝑋5 & 𝑋̂5 from Remark 5.3.18 for 𝜀 = 0.1
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(e) 𝑋5 & 𝑋̂5 from Lemma 5.3.25 for 𝜀 = 0.1
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(f) 𝑋5 & 𝑋̂5 from Lemma 5.3.25 and Re-
mark 5.3.18 for 𝜀 = 0.1

Figure 5-4: Plots of 𝑋5 (solid regions) and 𝑋̂5 (area between the dotted lines) for Exam-
ple 5.3.20. The filled-in triangles correspond to the minimizer x*, and the dash-dotted lines
represent the axes translated to x*.
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and 5-4c. It can be observed from Figure 5-4c that the constraint −𝜌1𝜀 ≤ ∇𝑓(x*)T (x− x*)

in Lemma 5.3.25 is not active on the region
{︁
x : 𝛾‖x− x*‖2 ≤ 𝜀

}︁
for 𝜀 = 0.5. To illustrate

the benefit of this constraint in Lemma 5.3.25, we consider 𝜀 = 0.1. Figures 5-4d and 5-4e

demonstrate the advantages of using the estimates in Remark 5.3.18 and Lemma 5.3.25,

respectively, over the estimate in Lemma 5.3.17, and Figure 5-4f combines the benefits of

the estimates from Lemma 5.3.25 and Remark 5.3.18 by using the estimate

𝑋̂5 =
{︁
x ∈ 𝒩 2

𝛼̂(x*) : 𝛾‖x− x*‖2 ≤ 2𝜀, −𝜌1𝜀 ≤ ∇𝑓(x*)T (x− x*) ≤ 𝜌2𝜀,

∇𝑓(x*)T (x− x*) +
1

2
(x− x*)T∇2𝑓(x*) (x− x*) ≥ 𝛾‖x− x*‖2

}︁
.

The following theorem follows from Lemma 3 in [238], and provides a conservative esti-

mate of the number of boxes of width 𝛿 required to cover the estimate 𝑋̂5 from Lemma 5.3.17.

Consequently, from Lemma 5.2.4 and the theorem below, we can get a conservative estimate

of the number of boxes required to cover 𝒩 2
𝛼̂(x*)∩𝑋5 and estimate the extent of the cluster

problem on that region.

Theorem 5.3.21. Consider Problem (P), and suppose the assumptions of Lemma 5.3.17

hold. Let 𝛿 =
(︁ 𝜀

𝜏*

)︁ 1
𝛽*

and 𝑟 =

√︂
2𝜀

𝛾
.

1. If 𝛿 ≥ 2𝑟, let 𝑁 = 1.

2. If
2𝑟√
𝑚− 1

> 𝛿 ≥ 2𝑟√
𝑚

for some 𝑚 ∈ N with 𝑚 ≤ 𝑛𝑥 and 2 ≤ 𝑚 ≤ 18, then let

𝑁 =

𝑚−1∑︁
𝑖=0

2𝑖
(︂
𝑛𝑥

𝑖

)︂
+ 2𝑛𝑥

⌈︂
𝑚− 9

9

⌉︂
.

3. Otherwise, let

𝑁 =

⌈︂
2 (𝜏*)

1
𝛽* 𝜀

(︁
1
2
− 1

𝛽*

)︁
𝛾−

1
2

⌉︂𝑛𝑥−1(︂⌈︂
2 (𝜏*)

1
𝛽* 𝜀

(︁
1
2
− 1

𝛽*

)︁
𝛾−

1
2

⌉︂
+

2𝑛𝑥

⌈︂
(
√

2 − 1) (𝜏*)
1
𝛽* 𝜀

(︁
1
2
− 1

𝛽*

)︁
𝛾−

1
2

⌉︂)︂
.

Then, 𝑁 is an upper bound on the number of boxes of width 𝛿 required to cover 𝒩 2
𝛼̂(x*)∩𝑋5.

Proof. From Lemma 5.3.17, we have that the set 𝑋̂5 =
{︁
x ∈ 𝒩 2

𝛼̂(x*) : 𝛾‖x− x*‖2 ≤ 2𝜀
}︁

provides a conservative estimate of 𝒩 2
𝛼̂(x*)∩𝑋5. The desired result follows from Lemma 3
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in [238].

For the case of unconstrained global optimization, Theorem 5.3.21 effectively reduces to

Theorem 1 in [238] with 𝛾 equal to half the smallest eigenvalue of ∇2𝑓(x*)
(︀
note that there

is a ‘factor of two difference’ from the analysis in [238] because we consider an appropriate

𝛼̂ ∈ (0, 𝛼]
)︀
.

Remark 5.3.22. Under the assumptions of Theorem 5.3.21, the dependence of 𝑁 on 𝜀

disappears when the lower bounding scheme has second-order convergence on 𝒩 2
𝛼̂(x*) ∩

ℱ(𝑋). This is similar to the case of unconstrained global optimization where at least second-

order convergent lower bounding schemes are required to eliminate the cluster problem.

Finally, we present two sets of additional assumptions over those of Lemma 5.3.17 under

which less conservative estimates of the cluster problem on 𝑋5 can be obtained. The first

result in this regard, similar to Lemma 5.3.13, refines the analysis of Lemma 5.3.17 when

Problem (P) contains equality constraints that can locally be eliminated using the implicit

function theorem [192].

Lemma 5.3.23. Consider Problem (P) with 1 ≤ 𝑚𝐸 < 𝑛𝑥. Suppose 𝑓 is twice-differentiable

at x*, and ∃𝛼 > 0, 𝛾 > 0 such that h is continuously differentiable on 𝒩 2
𝛼(x*) and

∇𝑓(x*)Td +
1

2
dT∇2𝑓(x*)d ≥ 𝛾dTd, ∀d ∈

{︀
d : (x* + d) ∈ 𝒩 2

𝛼(x*) ∩ ℱ(𝑋)
}︀
.

Furthermore, suppose the variables x can be reordered and partitioned into dependent

variables z ∈ R𝑚𝐸 and independent variables p ∈ R𝑛𝑥−𝑚𝐸 , with x ≡ (z,p), such that

∇zh((z,p)) is nonsingular on 𝒩 2
𝛼((z*,p*)), where x* ≡ (z*,p*). Then, ∃𝛼p, 𝛼z ∈ (0, 𝛼], a

continuously differentiable function 𝜑 : 𝒩 2
𝛼p

(p*) → 𝒩 2
𝛼z

(z*), and 𝛼̂ ∈ (0, 𝛼p) such that the

region
(︀
𝒩 2

𝛼z
(z*) ×𝒩 2

𝛼̂(p*)
)︀
∩𝑋5 can be conservatively approximated by

𝑋̂5 =
{︁

(z,p) ∈ 𝒩 2
𝛼z

(z*) ×𝒩 2
𝛼̂(p*) : z = 𝜑(p), 𝛾‖p− p*‖2 ≤ 2𝜀

}︁
.

Proof. The result follows from the proof of Lemma 5.3.17 and the implicit function theo-

rem [192, Chapter 9].

Lemma 5.3.23 can be used to obtain a less conservative estimate of the number of boxes

of width 𝛿 required to cover 𝑋̂5 as shown in the following corollary of Theorem 5.3.21. It
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provides an upper bound on the number of boxes of width 𝛿 required to cover 𝑋5 that scales

as 𝑂

(︂
𝜀
(𝑛𝑥−𝑚𝐸)

(︁
1
2
− 1

𝛽*

)︁)︂
in contrast to the scaling 𝑂

(︂
𝜀
𝑛𝑥

(︁
1
2
− 1

𝛽*

)︁)︂
from Theorem 5.3.21.

Corollary 5.3.24. Suppose the assumptions of Lemma 5.3.23 hold. Let 𝛿 =
(︁ 𝜀

𝜏*

)︁ 1
𝛽*

and

𝑟 =

√︂
2𝜀

𝛾
. Define

𝑀𝑘 :=

(︃
max

p∈cl(𝒩 2
𝛼̂(p

*))
‖∇𝜑𝑘(p)‖

)︃
√
𝑛𝑥 −𝑚𝐸 , ∀𝑘 ∈ {1, · · · ,𝑚𝐸},

𝐾 := {𝑘 ∈ {1, · · · ,𝑚𝐸} : 𝑀𝑘 > 1} .

1. If 𝛿 ≥ 2𝑟, let 𝑁 =
∏︁
𝑘∈𝐾

𝑀𝑘.

2. If
2𝑟√
𝑚− 1

> 𝛿 ≥ 2𝑟√
𝑚

for some 𝑚 ∈ N with 𝑚 ≤ 𝑛𝑥 −𝑚𝐸 and 2 ≤ 𝑚 ≤ 18, then let

𝑁 =

(︃
𝑚−1∑︁
𝑖=0

2𝑖
(︂
𝑛𝑥 −𝑚𝐸

𝑖

)︂
+ 2 (𝑛𝑥 −𝑚𝐸)

⌈︂
𝑚− 9

9

⌉︂)︃ ∏︁
𝑘∈𝐾

𝑀𝑘.

3. Otherwise, let

𝑁 =

⌈︂
2 (𝜏*)

1
𝛽* 𝜀

(︁
1
2
− 1

𝛽*

)︁
𝛾−

1
2

⌉︂𝑛𝑥−𝑚𝐸−1
(︃⌈︂

2 (𝜏*)
1
𝛽* 𝜀

(︁
1
2
− 1

𝛽*

)︁
𝛾−

1
2

⌉︂
+

2 (𝑛𝑥 −𝑚𝐸)

⌈︂
(
√

2 − 1) (𝜏*)
1
𝛽* 𝜀

(︁
1
2
− 1

𝛽*

)︁
𝛾−

1
2

⌉︂)︃ ∏︁
𝑘∈𝐾

𝑀𝑘.

Then, 𝑁 is an upper bound on the number of boxes of width 𝛿 required to cover 𝑋̂5.

Proof. The proof is similar to the proof of Corollary 5.3.14, and is therefore omitted.

The next result refines the analysis of Lemma 5.3.17 further, in part by accounting for

the fact that 𝑓 grows linearly around x* in the direction of its gradient.

Lemma 5.3.25. Consider Problem (P), and suppose the assumptions of Lemma 5.3.17

hold. Then ∃𝛼̂ ∈ (0, 𝛼] and constants 𝜌1, 𝜌2 ≥ 0 such that the region 𝒩 2
𝛼̂(x*) ∩𝑋5 can be

conservatively approximated by

𝑋̂5 =
{︁
x ∈ 𝒩 2

𝛼̂(x*) : 𝛾‖x− x*‖2 ≤ 2𝜀, −𝜌1𝜀 ≤ ∇𝑓(x*)T (x− x*) ≤ 𝜌2𝜀
}︁
.
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Proof. The result trivially follows from Lemma 5.3.17 when ∇𝑓(x*) = 0.

Suppose ∇𝑓(x*) ̸= 0. From Lemma 5.3.17, we have

𝒩 2
𝛼̂(x*) ∩𝑋5 ⊂

{︁
x ∈ 𝒩 2

𝛼̂(x*) : 𝛾‖x− x*‖2 ≤ 2𝜀
}︁
. (5.2)

Suppose we represent each x ∈ 𝒩 2
𝛼̂(x*) ∩ ℱ(𝑋) by x := x* + 𝛽1∇𝑓(x*) + 𝛽2d, where

𝛽1, 𝛽2 ∈ R and d ⊥ ∇𝑓(x*) with ‖d‖ = 1. Consider the case when 𝛽1 ≥ 0. We have

𝑓(x) − 𝑓(x*) = ∇𝑓(x*)T(x− x*) +
1

2
(x− x*)T∇2𝑓(x*)(x− x*) + 𝑜

(︁
‖x− x*‖2

)︁
= ∇𝑓(x*)T (𝛽1∇𝑓(x*) + 𝛽2d) +

1

2
(𝛽1∇𝑓(x*) + 𝛽2d)T∇2𝑓(x*) (𝛽1∇𝑓(x*) + 𝛽2d) + 𝑜

(︀
𝛽2
1 + 𝛽2

2

)︀
= 𝛽1‖∇𝑓(x*)‖2 +

1

2
(𝛽1∇𝑓(x*) + 𝛽2d)T∇2𝑓(x*) (𝛽1∇𝑓(x*) + 𝛽2d) +

𝑜
(︀
𝛽2
1 + 𝛽2

2

)︀
.

Therefore, ∀x ∈ 𝒩 2
𝛼̂(x*)∩𝑋5 with x = x*+𝛽1∇𝑓(x*)+𝛽2d, 𝛽1 ≥ 0, 𝛽2 ∈ R and d ⊥ ∇𝑓(x*)

with ‖d‖ = 1, we have

𝛽1‖∇𝑓(x*)‖2 +
1

2
(𝛽1∇𝑓(x*) + 𝛽2d)T∇2𝑓(x*) (𝛽1∇𝑓(x*) + 𝛽2d) + 𝑜

(︀
𝛽2
1 + 𝛽2

2

)︀
≤ 𝜀

=⇒ 𝛽1‖∇𝑓(x*)‖2 ≤ 𝜀− 1

2
(𝛽1∇𝑓(x*) + 𝛽2d)T∇2𝑓(x*) (𝛽1∇𝑓(x*) + 𝛽2d) − 𝑜

(︀
𝛽2
1 + 𝛽2

2

)︀
=⇒ 𝛽1‖∇𝑓(x*)‖2 ≤ 𝜀− 1

2
(𝛽1∇𝑓(x*) + 𝛽2d)T∇2𝑓(x*) (𝛽1∇𝑓(x*) + 𝛽2d) +

𝛾

2

(︁
𝛽2
1‖∇𝑓(x*)‖2 + 𝛽2

2

)︁
, (5.3)

where the last step uses the fact that 𝛼̂ is chosen such that (see Equation (5.1))

𝑜
(︀
𝛽2
1 + 𝛽2

2

)︀
≥ −𝛾

2

(︁
𝛽2
1‖∇𝑓(x*)‖2 + 𝛽2

2

)︁
.

Note that 𝛽1 ≤
√︃

2𝜀

𝛾‖∇𝑓(x*)‖2
and |𝛽2| ≤

√︂
2𝜀

𝛾
follow from Equation (5.2). The right hand

side of Equation (5.3) is 𝑂(𝜀) since 𝛽1 = 𝛽2 = 𝑂(
√
𝜀), thereby establishing the existence of

𝜌2 ≥ 0.

Next, suppose 𝛽1 ≤ 0. From the assumptions of Lemma 5.3.17, we have for each

x ∈ 𝒩 2
𝛼̂(x*) ∩ 𝑋5 with x = x* + 𝛽1∇𝑓(x*) + 𝛽2d, 𝛽1 ≤ 0, 𝛽2 ∈ R and d ⊥ ∇𝑓(x*) with
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‖d‖ = 1:

∇𝑓(x*)T(x− x*) +
1

2
(x− x*)T∇2𝑓(x*)(x− x*) ≥ 𝛾‖x− x*‖2

=⇒ ∇𝑓(x*)T (𝛽1∇𝑓(x*) + 𝛽2d) +
1

2
(𝛽1∇𝑓(x*) + 𝛽2d)T∇2𝑓(x*) (𝛽1∇𝑓(x*) + 𝛽2d)

≥ 𝛾
(︁
𝛽2
1‖∇𝑓(x*)‖2 + 𝛽2

2

)︁
=⇒ 𝛽1‖∇𝑓(x*)‖2 +

1

2
(𝛽1∇𝑓(x*) + 𝛽2d)T∇2𝑓(x*) (𝛽1∇𝑓(x*) + 𝛽2d)

≥ 𝛾
(︁
𝛽2
1‖∇𝑓(x*)‖2 + 𝛽2

2

)︁
=⇒ 1

2
(𝛽1∇𝑓(x*) + 𝛽2d)T∇2𝑓(x*) (𝛽1∇𝑓(x*) + 𝛽2d) − 𝛾

(︁
𝛽2
1‖∇𝑓(x*)‖2 + 𝛽2

2

)︁
≥ −𝛽1‖∇𝑓(x*)‖2, (5.4)

and 𝛽1 ≥ −
√︃

2𝜀

𝛾‖∇𝑓(x*)‖2
, |𝛽2| ≤

√︂
2𝜀

𝛾
from Equation (5.2). The left hand side of Equa-

tion (5.4) is 𝑂(𝜀) since 𝛽1 = 𝛽2 = 𝑂(
√
𝜀), thereby establishing the existence of 𝜌1 ≥ 0.

The previous lemma can be used to obtain a less conservative estimate of the number

of boxes of width 𝛿 required to cover 𝑋̂5 when 𝜀 is sufficiently-small and the convergence

order 𝛽* > 1. This is presented in the following corollary of Theorem 5.3.21, which provides

an upper bound on the number of boxes of width 𝛿 required to cover 𝑋5 that scales as

𝑂

(︂
𝜀
(𝑛𝑥−1)

(︁
1
2
− 1

𝛽*

)︁)︂
in contrast to the scaling 𝑂

(︂
𝜀
𝑛𝑥

(︁
1
2
− 1

𝛽*

)︁)︂
from Theorem 5.3.21.

Corollary 5.3.26. Suppose the assumptions of Lemma 5.3.25 hold. Let 𝛿 =
(︁ 𝜀

𝜏*

)︁ 1
𝛽*

and

𝑟 =

√︂
2𝜀

𝛾
. Suppose 𝛽* > 1, 𝜀 is sufficiently-small that (𝜌1 + 𝜌2)𝜀 ≪ 𝛿, and ∇𝑓(x*) ̸= 0.

1. If 𝛿 ≥ 2𝑟, let 𝑁 = 1.

2. If
2𝑟√
𝑚− 1

> 𝛿 ≥ 2𝑟√
𝑚

for some 𝑚 ∈ N with 𝑚 ≤ 𝑛𝑥 − 1 and 2 ≤ 𝑚 ≤ 18, then let

𝑁 =

𝑚−1∑︁
𝑖=0

2𝑖
(︂
𝑛𝑥 − 1

𝑖

)︂
+ 2 (𝑛𝑥 − 1)

⌈︂
𝑚− 9

9

⌉︂
.
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3. Otherwise, let

𝑁 =

⌈︂
2 (𝜏*)

1
𝛽* 𝜀

(︁
1
2
− 1

𝛽*

)︁
𝛾−

1
2

⌉︂𝑛𝑥−2
(︃⌈︂

2 (𝜏*)
1
𝛽* 𝜀

(︁
1
2
− 1

𝛽*

)︁
𝛾−

1
2

⌉︂
+

2 (𝑛𝑥 − 1)

⌈︂
(
√

2 − 1) (𝜏*)
1
𝛽* 𝜀

(︁
1
2
− 1

𝛽*

)︁
𝛾−

1
2

⌉︂)︃
.

Then, 𝑁 is an upper bound on the number of boxes of width 𝛿 required to cover 𝑋̂5.

Proof. We have from Lemma 5.3.25 that the region 𝒩 2
𝛼̂(x*)∩𝑋5 is conservatively estimated

by a sphere with radius = 𝑂(
√
𝜀) truncated by the hyperplanes ∇𝑓(x*)T (x− x*) ≤ 𝜌2𝜀 and

∇𝑓(x*)T (x− x*) ≥ −𝜌1𝜀. Therefore, when 𝜀 is chosen to be small enough that (𝜌1+𝜌2)𝜀 ≪

𝛿, the desired result follows from Theorem 5.3.21 and the fact that any covering of the

projection of 𝑋̂5 on to the subspace perpendicular to ∇𝑓(x*) with boxes of width 𝛿 can be

directly extended to cover 𝑋̂5 without using additional boxes.

Note that Corollary 5.3.26 can also be extended to the case when 0 < 𝛽* ≤ 1, in which

case the estimate 𝑁 may additionally depend on the values of 𝜌1 and 𝜌2.

5.3.2 Estimates for the number of boxes required to cover 𝑋3∖𝐵𝛿

This section assumes that Problem (P) has a finite number of global minimizers, and 𝜀 is

small enough that 𝑋3 is guaranteed to be contained in neighborhoods of constrained global

minimizers under additional assumptions. An estimate for the number of boxes of certain

widths required to cover some neighborhood of a constrained minimum x* that contains

the subset of 𝑋3 around x* is provided under suitable assumptions. An estimate for the

number of boxes required to cover 𝑋3 can be obtained by summing the above estimates over

the set of constrained global minimizers. Throughout this section, we assume that x* is a

constrained global minimizer; otherwise ∃𝛼 > 0 such that 𝒩 2
𝛼(x*) ∩𝑋3 = ∅. Furthermore,

we assume that x* is at the center of a single box 𝐵𝛿 of width 𝛿 =
(︁ 𝜀

𝜏*

)︁ 1
𝛽*

placed while

covering 𝑋̂5 (see Remark 5.3.28 for the reason for this assumption).

The first result in this section provides a conservative estimate of the subset of 𝑋3

around a constrained minimizer x* under the following assumption: the infeasible region in

some neighborhood of x* can be split into two subregions such that the objective function

grows linearly in the first subregion and the measure of infeasibility grows linearly in the
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second subregion.

Lemma 5.3.27. Consider Problem (P). Suppose x* is a constrained minimizer, and the

functions 𝑓 , 𝑔𝑗 , ∀𝑗 ∈ 𝒜(x*), and ℎ𝑘, ∀𝑘 ∈ {1, · · · ,𝑚𝐸}, are locally Lipschitz continuous on

𝑋 and directionally differentiable at x*. Furthermore, suppose ∃𝛼 > 0 and a set 𝒟0 such

that

𝐿𝑓 = inf
d∈𝒟0∩𝒟𝐼

𝑓 ′(x*;d) > 0,

𝐿𝐼 = inf
d∈𝒟𝐼∖𝒟0

max

{︂
max

𝑗∈𝒜(x*)
𝑔′𝑗(x

*;d), max
𝑘∈{1,··· ,𝑚𝐸}

⃒⃒
ℎ′𝑘(x*;d)

⃒⃒}︂
> 0,

where 𝒟𝐼 is defined as

𝒟𝐼 =
{︁
d : ‖d‖1 = 1, ∃𝑡 > 0 : (x* + 𝑡d) ∈ 𝒩 1

𝛼(x*) ∩ (ℱ(𝑋))C
}︁
.

Then, ∃𝛼̂ ∈ (0, 𝛼] such that the region

𝑋1
3 := 𝒩 1

𝛼̂(x*) ∩𝑋3 ∩
{︁
x = (x* + 𝑡d) ∈ 𝒩 1

𝛼̂(x*) ∩ (ℱ(𝑋))C : d ∈ 𝒟0 ∩ 𝒟𝐼 , 𝑡 > 0
}︁

can be conservatively approximated as 𝑋̂1
3 =

{︀
x ∈ 𝒩 1

𝛼̂(x*) : 𝐿𝑓‖x− x*‖1 ≤ 2𝜀𝑜
}︀
, and the

region

𝑋2
3 := 𝒩 1

𝛼̂(x*) ∩𝑋3 ∩
{︁
x = (x* + 𝑡d) ∈ 𝒩 1

𝛼̂(x*) ∩ (ℱ(𝑋))C : d ∈ 𝒟𝐼∖𝒟0, 𝑡 > 0
}︁

can be conservatively approximated as 𝑋̂2
3 =

{︀
x ∈ 𝒩 1

𝛼̂(x*) : 𝐿𝐼‖x− x*‖1 ≤ 2𝜀𝑓
}︀
. Further-

more, suppose x* is at the center of a box, 𝐵𝛿, of width 𝛿 =
(︁ 𝜀

𝜏*

)︁ 1
𝛽*

placed while covering

𝑋̂5. Then, the region

𝑋2
3∖𝐵𝛿 = 𝒩 1

𝛼̂(x*) ∩𝑋3 ∩
{︁
x = (x* + 𝑡d) ∈ 𝒩 1

𝛼̂(x*) ∩ (ℱ(𝑋))C : d ∈ 𝒟𝐼∖𝒟0, 𝑡 > 0
}︁⃥︁

𝐵𝛿

is conservatively characterized by⎧⎨⎩x ∈ 𝒩 1
𝛼̂(x*) : 𝑑

⎛⎝⎡⎣g
h

⎤⎦ (x),R𝑚𝐼
− × {0}

⎞⎠ ∈
(︂
𝐿𝐼

4
𝛿, 𝜀𝑓

]︂⎫⎬⎭
whenever 𝐿𝐼𝛿 < 4𝜀𝑓 .
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Proof. Let x = x*+𝑡d ∈ 𝒩 1
𝛼(x*)∩(ℱ(𝑋))C with ‖d‖1 = 1, d ∈ 𝒟0, and 𝑡 = ‖x− x*‖1 > 0.

We have (see Theorem 3.1.2 in [204])

𝑓(x) = 𝑓(x* + 𝑡d)

= 𝑓(x*) + 𝑓 ′(x*; (x− x*)) + 𝑜(‖x− x*‖1)

= 𝑓(x*) + 𝑡𝑓 ′(x*;d) + 𝑜(𝑡)

≥ 𝑓(x*) + 𝐿𝑓 𝑡 + 𝑜(𝑡).

Consequently, there exists 𝛼̂0 ∈ (0, 𝛼] such that for all x = x* + 𝑡d ∈ (ℱ(𝑋))C with

‖d‖1 = 1, d ∈ 𝒟0 and 𝑡 ∈ [0, 𝛼̂0):

𝑓(x) ≥ 𝑓(x*) + 𝐿𝑓 𝑡 + 𝑜(𝑡) ≥ 𝑓(x*) +
𝐿𝑓

2
𝑡.

Next, consider x = x* + 𝑡d ∈ 𝒩 1
𝛼(x*) ∩ (ℱ(𝑋))C with ‖d‖1 = 1, d ̸∈ 𝒟0, and 𝑡 =

‖x− x*‖1 > 0. We have

max

{︂
max

𝑗∈𝒜(x*)
{𝑔𝑗(x)} , max

𝑘∈{1,··· ,𝑚𝐸}
{|ℎ𝑘(x)|}

}︂
= max

{︂
max

𝑗∈𝒜(x*)
{𝑔𝑗(x* + 𝑡d)} , max

𝑘∈{1,··· ,𝑚𝐸}
{|ℎ𝑘(x* + 𝑡d)|}

}︂
= max

{︂
max

𝑗∈𝒜(x*)

{︀
𝑡𝑔′𝑗(x

*;d) + 𝑜(𝑡)
}︀
, max
𝑘∈{1,··· ,𝑚𝐸}

{︀⃒⃒
𝑡ℎ′𝑘(x*;d) + 𝑜(𝑡)

⃒⃒}︀}︂
.

Consequently, there exists 𝛼̂1 ∈ (0, 𝛼] such that for all x = x* + 𝑡d ∈ (ℱ(𝑋))C with

‖d‖1 = 1, d ̸∈ 𝒟0 and 𝑡 ∈ [0, 𝛼̂1):

𝑑

⎛⎝⎡⎣g
h

⎤⎦ (x),R𝑚𝐼
− × {0}

⎞⎠
≥max

{︂
max

𝑗∈𝒜(x*)
{𝑔𝑗(x)} , max

𝑘∈{1,··· ,𝑚𝐸}
{|ℎ𝑘(x)|}

}︂
= max

{︂
max

𝑗∈𝒜(x*)

{︀
𝑡𝑔′𝑗(x

*;d) + 𝑜(𝑡)
}︀
, max
𝑘∈{1,··· ,𝑚𝐸}

{︀⃒⃒
𝑡ℎ′𝑘(x*;d) + 𝑜(𝑡)

⃒⃒}︀}︂
≥𝐿𝐼

2
𝑡,

where Step 1 follows from the fact that ‖z‖ ≥ ‖z‖∞, ∀z ∈ R𝑚𝐼 × R𝑚𝐸 .
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Set 𝛼̂ = min {𝛼̂0, 𝛼̂1}. Then

∀x ∈ 𝑋1
3 := 𝒩 1

𝛼̂(x*) ∩𝑋3 ∩
{︁
x = (x* + 𝑡d) ∈ 𝒩 1

𝛼̂(x*) ∩ (ℱ(𝑋))C : d ∈ 𝒟0 ∩ 𝒟𝐼 , 𝑡 > 0
}︁
,

we have x = x* + 𝑡d ∈ (ℱ(𝑋))C with ‖d‖1 = 1, d ∈ 𝒟0 and 𝑡 = ‖x− x*‖1 < 𝛼̂, and

𝜀𝑜 ≥ 𝑓(x) − 𝑓(x*) ≥
𝐿𝑓

2
𝑡 =⇒ 𝐿𝑓 𝑡 = 𝐿𝑓‖x− x*‖1 ≤ 2𝜀𝑜.

Furthermore,

∀x ∈ 𝑋2
3 := 𝒩 1

𝛼̂(x*) ∩𝑋3 ∩
{︁
x = (x* + 𝑡d) ∈ 𝒩 1

𝛼̂(x*) ∩ (ℱ(𝑋))C : d ∈ 𝒟𝐼∖𝒟0, 𝑡 > 0
}︁
,

we have x = x* + 𝑡d ∈ (ℱ(𝑋))C with ‖d‖1 = 1, d ̸∈ 𝒟0 and 𝑡 = ‖x− x*‖1 < 𝛼̂, and

𝜀𝑓 ≥ 𝑑

⎛⎝⎡⎣g
h

⎤⎦ (x),R𝑚𝐼
− × {0}

⎞⎠ ≥ 𝐿𝐼

2
𝑡 =⇒ 𝐿𝐼𝑡 = 𝐿𝐼‖x− x*‖1 ≤ 2𝜀𝑓 .

Finally, for every

x ∈ 𝒩 1
𝛼̂(x*) ∩𝑋3 ∩

{︁
x = (x* + 𝑡d) ∈ 𝒩 1

𝛼̂(x*) ∩ (ℱ(𝑋))C : d ∈ 𝒟𝐼∖𝒟0, 𝑡 > 0
}︁

with 𝑡 ≤ 𝛿

2
, we have x ∈ 𝐵𝛿. Consequently, for each

x ∈ 𝒩 1
𝛼̂(x*) ∩𝑋3 ∩

{︁
x = (x* + 𝑡d) ∈ 𝒩 1

𝛼̂(x*) ∩ (ℱ(𝑋))C : d ∈ 𝒟𝐼∖𝒟0, 𝑡 > 0
}︁⃥︁

𝐵𝛿,

we have 𝑡 >
𝛿

2
and therefore,

𝑑

⎛⎝⎡⎣g
h

⎤⎦ (x),R𝑚𝐼
− × {0}

⎞⎠ ≥ 𝐿𝐼

2
𝑡 >

𝐿𝐼

4
𝛿.

The desired result follows when 𝐿𝐼𝛿 < 4𝜀𝑓 ; otherwise, if 𝐿𝐼𝛿 ≥ 4𝜀𝑓 , then

𝒩 1
𝛼̂(x*) ∩𝑋3 ∩

{︁
x = (x* + 𝑡d) ∈ 𝒩 1

𝛼̂(x*) ∩ (ℱ(𝑋))C : d ∈ 𝒟𝐼∖𝒟0, 𝑡 > 0
}︁
⊂ 𝐵𝛿.

A conservative estimate of the number of boxes of certain widths required to cover
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(︀
𝒩 1

𝛼̂(x*) ∩𝑋3

)︀
∖𝐵𝛿 can be obtained by estimating the number of boxes of certain widths

required to cover 𝑋̂1
3 and 𝑋̂2

3∖𝐵𝛿 (see Theorem 5.3.31). The following remark is in order.

Remark 5.3.28.

1. Lemma 5.3.27 does not hold when @𝛼 > 0, 𝒟0 such that both 𝐿𝑓 and 𝐿𝐼 are positive.

Example 5.2.11 illustrates a case when no valid partition of 𝒟𝐼 exists (since [𝑥L, 0), which

is a subset of 𝑋3, corresponds to 𝑑 = −1 which has an empty intersection with every

valid choice of 𝒟0, and ∇𝑔1(𝑥
*) = 0). Note that 𝒟0 may be chosen to be ∅, but it cannot

be chosen to be 𝒟𝐼 when the objective function is differentiable at x*. This is because

when ∇𝑓(x*) ̸= 0, the direction −∇𝑓(x*) leads to infeasible points around x*. One

potential choice of 𝒟0 is

𝒟0 =
{︁
d : ‖d‖1 = 1, ∃𝑡 > 0 : (x* + 𝑡d) ∈ 𝒩 1

𝛼(x*) ∩ (ℱ(𝑋))C ,

max

{︂
max

𝑗∈𝒜(x*)

{︀
𝑔′𝑗(x

*;d)
}︀
, max
𝑘∈{1,··· ,𝑚𝐸}

{︀⃒⃒
ℎ′𝑘(x*;d)

⃒⃒}︀}︂
≤ 𝜃
}︁

for some choice of 𝜃 > 0, so long as inf
d∈𝒟0

𝑓 ′(x*;d) > 0. Proposition 5.3.29 shows that the

assumptions of Lemma 5.3.27 will not be satisfied when Problem (P) does not contain

any active inequality constraints and the minimizer corresponds to a KKT point for

Problem (P).

2. The inequality 𝐿𝐼𝛿 < 4𝜀𝑓 is equivalent to

𝐿𝐼𝛿 = 𝐿𝐼

(︂
𝜀𝑓

𝜏 𝐼

)︂ 1

𝛽𝐼

< 4𝜀𝑓 .

Since 𝜀𝑓 can be taken to be sufficiently-small, the above inequality holds only when

(𝜀𝑓 )
1

𝛽𝐼 ≤ 𝜀𝑓 ⇐⇒ 𝛽𝐼 ≤ 1, i.e., if 𝛽𝐼 > 1, we can choose 𝜀𝑓 to be small-enough so that

𝐿𝐼𝛿 ≥ 4𝜀𝑓 . Note that if 𝐿𝐼𝛿 ≥ 4𝜀𝑓 , the region

𝒩 1
𝛼̂(x*) ∩𝑋3 ∩

{︁
x = (x* + 𝑡d) ∈ 𝒩 1

𝛼̂(x*) ∩ (ℱ(𝑋))C : d ∈ 𝒟𝐼∖𝒟0, 𝑡 > 0
}︁

has already been covered while covering 𝑋̂5 since

𝐿𝐼𝛿

4
≥ 𝜀𝑓 ≥ 𝐿𝐼

2
𝑡 =⇒ 𝑡 ≤ 𝛿

2
,
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which implies x = x* + 𝑡d ∈ 𝐵𝛿.

The motivation for excluding the region 𝐵𝛿 from 𝑋3 is as follows. Lemma 5.2.5 shows

that if the measure of infeasibility, as determined by the distance function 𝑑, is strictly

greater than 𝜀𝑓 at each point in the domain of a node, the node can be fathomed by a

box of width 𝛿. However, if x* is a constrained minimizer, we will have points in 𝑋3

which are arbitrarily close to x* and have a measure of infeasibility that is arbitrarily

close to 0. Such points will then have to be fathomed by boxes of width much smaller

than 𝛿 (and arbitrarily close to 0). To avoid this issue, such points are assumed to be

eliminated when 𝑋5 is covered by boxes of width 𝛿.

3. 𝛼̂ depends on the local behavior of 𝑓 , 𝑔𝑗 , ∀𝑗 ∈ 𝒜(x*), and ℎ𝑘, ∀𝑘 ∈ {1, · · · ,𝑚𝐸},

around x*, but is independent of 𝜀. Consequently, for sufficiently small 𝜀 we have 𝑋̂1
3 =

{x ∈ 𝑋 : 𝐿𝑓‖x− x*‖1 ≤ 2𝜀𝑜} and 𝑋̂2
3 =

{︀
x ∈ 𝑋 : 𝐿𝐼‖x− x*‖1 ≤ 2𝜀𝑓

}︀
. Additionally, if

𝑓 and 𝑔𝑗 , ∀𝑗 ∈ 𝒜(x*), are convex on 𝒩 1
𝛼(x*) and ℎ𝑘, ∀𝑘 ∈ {1, · · · ,𝑚𝐸}, are affine on

𝒩 1
𝛼(x*), we can choose 𝛼̂ = 𝛼. Furthermore,

𝑋1
3 := 𝒩 1

𝛼̂(x*) ∩𝑋3 ∩
{︁
x = (x* + 𝑡d) ∈ 𝒩 1

𝛼̂(x*) ∩ (ℱ(𝑋))C : d ∈ 𝒟0 ∩ 𝒟𝐼 , 𝑡 > 0
}︁

can be conservatively approximated as 𝑋̂1
3 = {x ∈ 𝑋 : 𝐿𝑓‖x− x*‖1 ≤ 𝜀𝑜},

𝑋2
3 := 𝒩 1

𝛼̂(x*) ∩𝑋3 ∩
{︁
x = (x* + 𝑡d) ∈ 𝒩 1

𝛼̂(x*) ∩ (ℱ(𝑋))C : d ∈ 𝒟𝐼∖𝒟0, 𝑡 > 0
}︁

can be conservatively approximated as 𝑋̂2
3 =

{︀
x ∈ 𝑋 : 𝐿𝐼‖x− x*‖1 ≤ 𝜀𝑓

}︀
, and the re-

gion

𝒩 1
𝛼̂(x*) ∩𝑋3 ∩

{︁
x = (x* + 𝑡d) ∈ 𝒩 1

𝛼̂(x*) ∩ (ℱ(𝑋))C : d ∈ 𝒟𝐼∖𝒟0, 𝑡 > 0
}︁⃥︁

𝐵𝛿

is conservatively characterized by⎧⎨⎩x ∈ 𝒩 1
𝛼̂(x*) : 𝑑

⎛⎝⎡⎣g
h

⎤⎦ (x),R𝑚𝐼
− × {0}

⎞⎠ ∈
(︂
𝐿𝐼

2
𝛿, 𝜀𝑓

]︂⎫⎬⎭
whenever 𝐿𝐼𝛿 < 2𝜀𝑓 .

4. Similar to Proposition 5.3.4, the following less conservative estimates of 𝑋1
3 and 𝑋2

3 can
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be obtained:

𝑋̂1
3 =

{︀
x ∈ 𝒩 1

𝛼̂(x*) : 𝐿𝑓‖x− x*‖1 ≤ 2𝜀𝑜, 𝑓 ′(x*;x− x*) ≥ 𝐿𝑓‖x− x*‖1
}︀
,

𝑋̂2
3 =

{︂
x ∈ 𝒩 1

𝛼̂(x*) : 𝐿𝐼‖x− x*‖1 ≤ 2𝜀𝑓 ,

max

{︂
max

𝑗∈𝒜(x*)
𝑔′𝑗(x

*;x− x*), max
𝑘∈{1,··· ,𝑚𝐸}

⃒⃒
ℎ′𝑘(x*;x− x*)

⃒⃒}︂
≥ 𝐿𝐼‖x− x*‖1

}︂
.

As an illustration of the application of Lemma 5.3.27, let us reconsider Example 5.2.8.

Recall that 𝑋 = (2.2, 2.5) × (2.9, 3.3), 𝑚𝐼 = 3, 𝑚𝐸 = 0, 𝑓(x) = −𝑥1 − 𝑥2, 𝑔1(x) =

𝑥2 − 2𝑥41 + 8𝑥31 − 8𝑥21 − 2, 𝑔2(x) = 𝑥2 − 4𝑥41 + 32𝑥31 − 88𝑥21 + 96𝑥1 − 36, and 𝑔3(x) = 3 − 𝑥2

with x* ≈ (2.33, 3.18). Let 𝜀𝑜 ≤ 0.03 and 𝜀𝑓 ≤ 0.05. We have ℱ(𝑋) = {x ∈ 𝑋 : g(x) ≤ 0},

∇𝑓(x*) = (−1,−1), ∇𝑔1(x
*) ≈ (−8.164, 1), and ∇𝑔2(x

*) ≈ (4.700, 1). Choose 𝛼 = +∞.

𝒟𝐼 =
{︁
d : ‖d‖1 = 1, ∃𝑡 > 0 : (x* + 𝑡d) ∈ (ℱ(𝑋))C

}︁
. Choose the set of unit-norm direc-

tions 𝒟0 =
{︁
d : ‖d‖1 = 1, ∇𝑓(x*)Td ≥ 0.298

}︁
and 𝛼̂ = +∞ in Lemma 5.3.27. From

Lemma 5.3.27 and Remark 5.3.28, we have 𝐿𝑓 = 0.298 and 𝐿𝐼 = 1 with the estimates

𝑋̂1
3 = {x : 0.298‖x− x*‖1 ≤ 𝜀𝑜} (since 𝑓 is convex), and 𝑋̂2

3 =
{︀
x : ‖x− x*‖1 ≤ 2𝜀𝑓

}︀
. Fig-

ure 5-5 illustrates the set 𝒟0, and plots the sets 𝑋1
3 and 𝑋2

3 along with their estimates 𝑋̂1
3

and 𝑋̂2
3 for 𝜀𝑜 = 0.03 and 𝜀𝑓 = 0.05.

The next result provides conditions under which the assumptions of Lemma 5.3.27 will

not be satisfied. In particular, it is shown that the assumptions of Lemma 5.3.27 will not be

satisfied if Problem (P) is purely equality-constrained and all the functions in Problem (P)

are differentiable at a nonisolated constrained minimizer x*.

Proposition 5.3.29. Consider Problem (P) with 𝑚𝐸 ≥ 1. Suppose x* is a nonisolated con-

strained minimizer, 𝑓 is differentiable at x*, functions ℎ𝑘, 𝑘 = 1, · · · ,𝑚𝐸 , are differentiable

at x*, and 𝒜(x*) = ∅. Furthermore, suppose there exist multipliers 𝜆* ∈ R𝑚𝐸 correspond-

ing to the equality constraints such that (x*,0,𝜆*) is a KKT point. Then ̸ ∃𝛼 > 0, 𝒟0 such

that the assumptions of Lemma 5.3.27 are satisfied.

Proof. Since (x*,0,𝜆*) is a KKT point, we have

∇𝑓(x*) +

𝑚𝐸∑︁
𝑘=1

𝜆*
𝑘∇ℎ𝑘(x*) = 0.

From the assumption that x* is a nonisolated feasible point, we have that the set of unit-
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Figure 5-5: Illustration of the sets 𝒟0 and 𝒟𝐼∖𝒟0, the sets 𝑋1
3 and 𝑋2

3 , and their estimates 𝑋̂1
3 and

𝑋̂2
3 for Example 5.2.8. The dashed lines represent the set 𝑋, and the filled-in triangles represent

the minimum x*. (Top Plot) The solid region represents the feasible region and the solid vectors
represent the gradients of the objective and the constraints. The set of directions between the dot-
dashed lines (the part in which the feasible region resides) defines the set 𝒟0, and the remaining
directions define the set 𝒟𝐼∖𝒟0. The dotted line represents the direction in 𝒟𝐼∖𝒟0 in which both
constraints grow equally quickly in a first-order sense. (Other Plots) The solid regions represent
the set 𝑋1

3 or 𝑋2
3 , the area between the dotted lines represent the estimate 𝑋̂1

3 or 𝑋̂2
3 , and the

dash-dotted lines represent the axes translated to x*. All plots use 𝜀𝑜 = 0.03 and 𝜀𝑓 = 0.05.
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norm directions {d : ‖d‖1 = 1,d ∈ 𝑇 (x*)} is nonempty. Additionally, we have from the

proof of Proposition 5.3.7 that for each d ∈ 𝑇 (x*) with ‖d‖1 = 1, ∇𝑓(x*)Td = 0 and

∇ℎ𝑘(x*)Td = 0, ∀𝑘 ∈ {1, · · · ,𝑚𝐸}.

Assume, by way of contradiction that ∃𝛼 > 0 and a set 𝒟0 satisfying the assumptions

of Lemma 5.3.27. Consequently, ∃𝐿𝑓 , 𝐿𝐼 > 0 such that

𝐿𝑓 = inf
d∈𝒟0∩𝒟𝐼

∇𝑓(x*)Td

and

𝐿𝐼 = inf
d∈𝒟𝐼∖𝒟0

max
𝑘∈{1,··· ,𝑚𝐸}

⃒⃒⃒
∇ℎ𝑘(x*)Td

⃒⃒⃒
.

Since ∃d ∈ 𝑇 (x*) with ‖d‖1 = 1 such that ∇𝑓(x*)Td = 0 and ∇ℎ𝑘(x*)Td = 0, ∀𝑘 ∈

{1, · · · ,𝑚𝐸}, we have that the set

𝑆 :=
{︁
d ∈ R𝑛𝑥 : ‖d‖1 = 1, |∇𝑓(x*)Td| < 𝐿𝑓 , |∇ℎ𝑘(x*)Td| < 𝐿𝐼 ,∀𝑘 ∈ {1, · · · ,𝑚𝐸}

}︁
is nonempty. All that remains to reach a contradiction is to show that ∃d̄ ∈ 𝑆 ∩ 𝒟𝐼 .

From the above arguments, we have the existence of d̄ ∈ 𝑆, 𝑘 ∈ {1, · · · ,𝑚𝐸} such that

|∇ℎ𝑘(x*)Td̄| ∈ (0, 𝐿𝐼), since the assumption 𝐿𝐼 > 0 implies all of the equality constraint

gradients ∇ℎ𝑘(x*), 𝑘 ∈ {1, · · · ,𝑚𝐸}, cannot simultaneously be 0. Since ∇ℎ𝑘(x*)Td̄ ̸= 0,

we have d̄ ̸∈ 𝑇 (x*) (this follows from the arguments made in the proof of Proposition 5.3.7).

Consequently, ∃𝑡 ∈ (0, 𝛼) such that (x* + 𝑡d̄) ∈ 𝒩 1
𝛼(x*) ∩ (ℱ(𝑋))C =⇒ d̄ ∈ 𝒟𝐼 . This

implies that either d̄ ∈ 𝒟0, or d̄ ∈ 𝒟𝐼∖𝒟0, which contradicts the definition of 𝐿𝑓 or 𝐿𝐼 since

∇𝑓(x*)Td̄ < 𝐿𝑓 and |∇ℎ𝑘(x*)Td̄| < 𝐿𝐼 , ∀𝑘 ∈ {1, · · · ,𝑚𝐸}.

The above result can be extended to the case when there exist active inequality con-

straints if all such constraints are strongly active at x* (see [13, Section 4.4]) and there

exists d ∈ 𝑇 (x*) such that ∇𝑓(x*)Td = 0.

Next, we revisit two equality-constrained examples from Section 5.3.1 for which the as-

sumptions of Lemma 5.3.27 hold, and which do not satisfy individual assumptions of Propo-

sition 5.3.29. Consider Example 5.3.8, and recall that 𝑋 = (−2, 2) × (−2, 2), 𝑚𝐼 = 1, and

𝑚𝐸 = 1 with 𝑓(x) = 𝑥1+10𝑥22, 𝑔1(x) = 𝑥1−1, ℎ(x) = 𝑥1−|𝑥2|, and x* = (0, 0). Let 𝜀𝑜, 𝜀𝑓 ≤

0.25. We have ℱ(𝑋) = {x ∈ 𝑋 : 𝑥1 = |𝑥2|, 𝑥1 ≤ 1}, ∇𝑓(x*) = (1, 0), and ℎ′(x*;d) =

𝑑1 − |𝑑2|. Choose 𝛼 = +∞. We have 𝒟𝐼 =
{︁
d : ‖d‖1 = 1, ∃𝑡 > 0 : (x* + 𝑡d) ∈ (ℱ(𝑋))C

}︁
.
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Choose 𝒟0 =
{︁
d : ‖d‖1 = 1, ∇𝑓(x*)Td ≥ 0.25

}︁
and 𝛼̂ = +∞ in Lemma 5.3.27. From

Lemma 5.3.27 and Remark 5.3.28, we have 𝐿𝑓 = 0.25 and 𝐿𝐼 = 0.5 with the estimates

𝑋̂1
3 = {x : 0.25‖x− x*‖1 ≤ 𝜀𝑜} (since 𝑓 is convex), and 𝑋̂2

3 =
{︀
x : 0.5‖x− x*‖1 ≤ 2𝜀𝑓

}︀
.

Consider Example 5.3.9, and recall that 𝑋 = (−2, 2) × (−2, 2), 𝑚𝐼 = 4, and 𝑚𝐸 = 1

with 𝑓(x) = 𝑥1 + 𝑥2, 𝑔1(x) = −𝑥1, 𝑔2(x) = −𝑥2, 𝑔3(x) = 𝑥1 − 1, 𝑔4(x) = 𝑥2 − 1,

ℎ(x) = 𝑥2 − 𝑥31, and x* = (0, 0). Let 𝜀𝑜, 𝜀𝑓 ≤ 1
3 . ℱ(𝑋) =

{︀
x ∈ [0, 1]2 : 𝑥2 = 𝑥31

}︀
,

∇𝑓(x*) = (1, 1), ∇𝑔1(x
*) = (−1, 0), ∇𝑔2(x

*) = (0,−1), and ∇ℎ(x*) = (0, 1). Choose

𝛼 = +∞. 𝒟𝐼 =
{︁
d : ‖d‖1 = 1, ∃𝑡 > 0 : (x* + 𝑡d) ∈ (ℱ(𝑋))C

}︁
. Choose the set of unit-

norm directions 𝒟0 =
{︁
d : ‖d‖1 = 1, ∇𝑓(x*)Td ≥ 1

3

}︁
and 𝛼̂ = +∞ in Lemma 5.3.27.

From Lemma 5.3.27 and Remark 5.3.28, we have 𝐿𝑓 = 1
3 and 𝐿𝐼 = 1

3 with the estimates

𝑋̂1
3 = {x : ‖x− x*‖1 ≤ 3𝜀𝑜} (since 𝑓 is convex), and 𝑋̂2

3 =
{︀
x : ‖x− x*‖1 ≤ 3𝜀𝑓

}︀
(since 𝑔1

and 𝑔2 are convex).

The next example illustrates a simple one-dimensional case which satisfies the assump-

tions of Lemma 5.3.27 with 𝒟0 = ∅.

Example 5.3.30. Let 𝜀𝑓 ≤ 0.5, 𝑋 = (−2, 2), 𝑚𝐼 = 2, and 𝑚𝐸 = 0 with 𝑓(𝑥) = 𝑥3,

𝑔1(𝑥) = 𝑥 − 1, 𝑔2(𝑥) = −𝑥, and 𝑥* = 0. We have ℱ(𝑋) = [0, 1], ∇𝑓(𝑥*) = 0, ∇𝑔2(𝑥
*) =

−1, and 𝑋3 = [−𝜀𝑓 , 0). Choose 𝛼 = +∞. We have 𝒟𝐼 = {−1}. Choose 𝒟0 = ∅ and

𝛼̂ = +∞ in Lemma 5.3.27. From Lemma 5.3.27 and Remark 5.3.28, we have 𝐿𝐼 = 1 and

𝑋̂2
3 = [−𝜀𝑓 ,+𝜀𝑓 ] (since 𝑔2 is convex).

The following result follows from Corollary 2.1 in [237] (also see the proof of Theo-

rem 5.3.11). It provides a conservative estimate of the number of boxes of certain widths

required to cover 𝑋̂1
3 and 𝑋̂2

3∖𝐵𝛿 from Lemma 5.3.27. Therefore, from Lemmata 5.2.5

and 5.2.6 and the result below, we can get an upper bound on the worst-case number of

boxes required to cover 𝒩 1
𝛼̂(x*)∩𝑋3 and estimate the extent of the cluster problem on that

region.

Theorem 5.3.31. Suppose the assumptions of Lemma 5.3.27 hold. Let 𝛿 = 𝛿𝑓 =
(︁ 𝜀

𝜏*

)︁ 1
𝛽*

=(︂
𝜀𝑜

𝜏 𝑓

)︂ 1

𝛽𝑓

=

(︂
𝜀𝑓

𝜏 𝐼

)︂ 1

𝛽𝐼

, 𝛿𝐼 =

(︂
𝐿𝐼𝛿

4𝜏 𝐼

)︂ 1

𝛽𝐼

=

(︂
𝐿𝐼

4𝜏 𝐼

)︂ 1

𝛽𝐼
(︂
𝜀𝑓

𝜏 𝐼

)︂ 1

(𝛽𝐼 )2

, 𝑟𝐼 =
2𝜀𝑓

𝐿𝐼
, 𝑟𝑓 =

2𝜀𝑜

𝐿𝑓
.

1. If 𝛿𝐼 ≥ 2𝑟𝐼 , let 𝑁𝐼 = 1.
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2. If
2𝑟𝐼

𝑚̄𝐼 − 1
> 𝛿𝐼 ≥ 2𝑟𝐼

𝑚̄𝐼
for some 𝑚̄𝐼 ∈ N with 𝑚̄𝐼 ≤ 𝑛𝑥 and 2 ≤ 𝑚̄𝐼 ≤ 5, then let

𝑁𝐼 =

𝑚̄𝐼−1∑︁
𝑖=0

2𝑖
(︂
𝑛𝑥

𝑖

)︂
+ 2𝑛𝑥

⌈︂
𝑚̄𝐼 − 3

3

⌉︂
.

3. Otherwise, let

𝑁𝐼 =
⌈︁
2𝐵𝐼(𝜀𝑓 ;𝛽𝐼 , 𝐿𝐼 , 𝜏𝐼)

⌉︁𝑛𝑥−1 (︁⌈︁
2𝐵𝐼(𝜀𝑓 ;𝛽𝐼 , 𝐿𝐼 , 𝜏𝐼)

⌉︁
+ 2𝑛𝑥

⌈︁
𝐵𝐼(𝜀𝑓 ;𝛽𝐼 , 𝐿𝐼 , 𝜏𝐼)

⌉︁)︁
,

where

𝐵𝐼(𝜀𝑓 ;𝛽𝐼 , 𝐿𝐼 , 𝜏𝐼) := 4
1

𝛽𝐼
(︀
𝜏 𝐼
)︀(︂ 1

𝛽𝐼
+ 1

(𝛽𝐼)2

)︂ (︁
𝜀𝑓
)︁(︂1− 1

(𝛽𝐼)2

)︂
𝐿
−
(︁
1+ 1

𝛽𝐼

)︁
𝐼 .

4. If 𝛿𝑓 ≥ 2𝑟𝑓 , let 𝑁𝑓 = 1.

5. If
2𝑟𝑓

𝑚𝑓 − 1
> 𝛿𝑓 ≥

2𝑟𝑓
𝑚𝑓

for some 𝑚𝑓 ∈ N with 𝑚𝑓 ≤ 𝑛𝑥 and 2 ≤ 𝑚𝑓 ≤ 5, then let

𝑁𝑓 =

𝑚𝑓−1∑︁
𝑖=0

2𝑖
(︂
𝑛𝑥

𝑖

)︂
+ 2𝑛𝑥

⌈︂
𝑚𝑓 − 3

3

⌉︂
.

6. Otherwise, let

𝑁𝑓 =

⌈︂
2
(︁
𝜏 𝑓
)︁ 1

𝛽𝑓 (𝜀𝑜)

(︁
1− 1

𝛽𝑓

)︁
𝐿−1
𝑓

⌉︂𝑛𝑥−1
(︃⌈︂

2
(︁
𝜏 𝑓
)︁ 1

𝛽𝑓 (𝜀𝑜)

(︁
1− 1

𝛽𝑓

)︁
𝐿−1
𝑓

⌉︂
+

2𝑛𝑥

⌈︂(︁
𝜏 𝑓
)︁ 1

𝛽𝑓 (𝜀𝑜)

(︁
1− 1

𝛽𝑓

)︁
𝐿−1
𝑓

⌉︂)︃
.

Then, 𝑁𝐼 is an upper bound on the number of boxes of width 𝛿𝐼 required to cover 𝑋̂2
3∖𝐵𝛿,

and 𝑁𝑓 is an upper bound on the number of boxes of width 𝛿𝑓 required to cover 𝑋̂1
3 .

Proof. The result on 𝑁𝑓 follows from Lemmata 5.2.6 and 5.3.27 and Corollary 2.1 in [237]

(also see the proof of Theorem 5.3.11). To deduce the result on 𝑁𝐼 , note that we cover

𝑋̂2
3∖𝐵𝛿 with boxes of width 𝛿𝐼 =

(︂
𝐿𝐼𝛿

4𝜏 𝐼

)︂ 1

𝛽𝐼

since, from Lemma 5.3.27, we have

𝑋̂2
3∖𝐵𝛿 ⊂

⎧⎨⎩x ∈ 𝒩 1
𝛼̂(x*) : 𝑑

⎛⎝⎡⎣g
h

⎤⎦ (x),R𝑚𝐼
− × {0}

⎞⎠ ∈
(︂
𝐿𝐼

4
𝛿, 𝜀𝑓

]︂⎫⎬⎭
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and, from Lemma 5.2.5, we have that a box 𝐵𝛿𝐼 of width 𝛿𝐼 with each x ∈ 𝐵𝛿𝐼 satisfying

𝑑

⎛⎝⎡⎣g
h

⎤⎦ (x),R𝑚𝐼
− × {0}

⎞⎠ >
𝐿𝐼

4
𝛿 can be fathomed by infeasibility. The desired result then

follows from Corollary 2.1 in [237].

Remark 5.3.32. Under the assumptions of Lemma 5.3.27, the dependence of 𝑁𝐼 on 𝜀𝑓 dis-

appears when the lower bounding scheme has first-order convergence on 𝒩 1
𝛼̂(x*)∩(ℱ(𝑋))C,

i.e., 𝛽𝐼 = 1, and the dependence of 𝑁𝑓 on 𝜀𝑜 disappears when the scheme (𝑓 cv
𝑍 )𝑍∈I𝑋 has

first-order convergence on 𝑋, i.e., 𝛽𝑓 = 1. Therefore, the cluster problem on 𝑋3 can be

eliminated even using first-order convergent schemes with sufficiently small prefactors. Note

that the dependence of 𝑁𝑓 and 𝑁𝐼 on the prefactors 𝜏 𝑓 and 𝜏 𝐼 , respectively, can be detailed

in a manner similar to Table 1 in [238].

The following results illustrate one set of assumptions under which second-order con-

vergence of the lower bounding scheme at infeasible points is sufficient to eliminate the

cluster problem on 𝑋3∖𝐵𝛿. First, we provide a conservative estimate of the subset of 𝑋3

around a constrained minimizer x* under the following assumption: the infeasible region in

some neighborhood of x* can be split into two subregions such that the objective function

grows quadratically (or faster) in the first subregion and the measure of infeasibility grows

quadratically (or faster) in the second subregion. Note that better estimates of 𝑋3 may be

derived either under the (stronger) assumption that the objective function grows linearly in

the directions 𝒟0 ∩𝒟𝐼 , or under the (stronger) assumption that the measure of infeasibility

grows linearly in the directions 𝒟𝐼∖𝒟0.

Lemma 5.3.33. Consider Problem (P). Suppose x* is a constrained minimizer, functions

𝑓 , 𝑔𝑗 , ∀𝑗 ∈ 𝒜(x*), and ℎ𝑘, ∀𝑘 ∈ {1, · · · ,𝑚𝐸}, are twice-differentiable at x*, and ∃𝛼 >

0, 𝛾1 > 0, 𝛾2 > 0 and a set 𝒟0 such that

∇𝑓(x*)
T
d +

1

2
dT∇2𝑓(x*)d ≥ 𝛾1d

Td, ∀d ∈ 𝒟0 ∩ 𝒟𝐼 ,

max

{︂
max

𝑗∈𝒜(x*)

{︂
∇𝑔𝑗(x

*)
T
d +

1

2
dT∇2𝑔𝑗(x

*)d

}︂
, max
𝑘∈{1,··· ,𝑚𝐸}

{︂⃒⃒⃒⃒
∇ℎ𝑘(x*)

T
d +

1

2
dT∇2ℎ𝑘(x*)d

⃒⃒⃒⃒}︂}︂
≥ 𝛾2d

Td, ∀d ∈ 𝒟𝐼∖𝒟0,

where 𝒟𝐼 is defined as 𝒟𝐼 =
{︁
d : (x* + d) ∈ 𝒩 2

𝛼(x*) ∩ (ℱ(𝑋))C
}︁
. Then, ∃𝛼̂ ∈ (0, 𝛼] such
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that the region

𝑋1
3 := 𝒩 2

𝛼̂(x*) ∩𝑋3 ∩
{︁
x = (x* + d) ∈ 𝒩 2

𝛼̂(x*) ∩ (ℱ(𝑋))C : d ∈ 𝒟0 ∩ 𝒟𝐼

}︁
can be conservatively approximated as 𝑋̂1

3 =
{︁
x ∈ 𝒩 2

𝛼̂(x*) : 𝛾1‖x− x*‖2 ≤ 2𝜀𝑜
}︁
, and the

region

𝑋2
3 := 𝒩 2

𝛼̂(x*) ∩𝑋3 ∩
{︁
x = (x* + d) ∈ 𝒩 2

𝛼̂(x*) ∩ (ℱ(𝑋))C : d ∈ 𝒟𝐼∖𝒟0

}︁
can be conservatively approximated as 𝑋̂2

3 =
{︁
x ∈ 𝒩 2

𝛼̂(x*) : 𝛾2‖x− x*‖2 ≤ 2𝜀𝑓
}︁
. Further-

more, suppose x* is at the center of a box, 𝐵𝛿, of width 𝛿 =
(︁ 𝜀

𝜏*

)︁ 1
𝛽*

placed while covering

𝑋̂5. Then, the region

𝑋2
3∖𝐵𝛿 = 𝒩 2

𝛼̂(x*) ∩𝑋3 ∩
{︁
x = (x* + d) ∈ 𝒩 2

𝛼̂(x*) ∩ (ℱ(𝑋))C : d ∈ 𝒟𝐼∖𝒟0

}︁⃥︁
𝐵𝛿

is conservatively characterized by⎧⎨⎩x ∈ 𝒩 2
𝛼̂(x*) : 𝑑

⎛⎝⎡⎣g
h

⎤⎦ (x),R𝑚𝐼
− × {0}

⎞⎠ ∈
(︁𝛾2

8
𝛿2, 𝜀𝑓

]︁⎫⎬⎭ ,

whenever 𝛾2𝛿
2 < 8𝜀𝑓 .

Proof. From Lemma 5.3.17, we have the existence of 𝛼̂0 > 0 such that

𝒩 2
𝛼̂0

(x*) ∩𝑋3 ∩
{︁
x = (x* + d) ∈ 𝒩 2

𝛼̂0
(x*) ∩ (ℱ(𝑋))C : d ∈ 𝒟0 ∩ 𝒟𝐼

}︁
can be conservatively approximated as

{︁
x ∈ 𝒩 2

𝛼̂0
(x*) : 𝛾1‖x− x*‖2 ≤ 2𝜀𝑜

}︁
.

Consider x = x* + d ∈ 𝒩 2
𝛼(x*) ∩ (ℱ(𝑋))C with d ∈ 𝒟𝐼∖𝒟0. We have

max

{︂
max

𝑗∈𝒜(x*)
{𝑔𝑗(x)} , max

𝑘∈{1,··· ,𝑚𝐸}
{|ℎ𝑘(x)|}

}︂
= max

{︂
max

𝑗∈𝒜(x*)
{𝑔𝑗(x* + d)} , max

𝑘∈{1,··· ,𝑚𝐸}
{|ℎ𝑘(x* + d)|}

}︂
= max

{︂
max

𝑗∈𝒜(x*)

{︂
∇𝑔𝑗(x

*)Td +
1

2
dT∇2𝑔𝑗(x

*)d + 𝑜(‖d‖2)
}︂
,

max
𝑘∈{1,··· ,𝑚𝐸}

{︂⃒⃒⃒⃒
∇ℎ𝑘(x*)Td +

1

2
dT∇2ℎ𝑘(x*)d + 𝑜(‖d‖2)

⃒⃒⃒⃒}︂}︂
.
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Consequently, there exists 𝛼̂1 ∈ (0, 𝛼] such that for all x = x* + d ∈ (ℱ(𝑋))C with

‖d‖ ∈ [0, 𝛼̂1), d ̸∈ 𝒟0:

𝑑

⎛⎝⎡⎣g
h

⎤⎦ (x),R𝑚𝐼
− × {0}

⎞⎠ ≥max

{︂
max

𝑗∈𝒜(x*)
{𝑔𝑗(x)} , max

𝑘∈{1,··· ,𝑚𝐸}
{|ℎ𝑘(x)|}

}︂

= max

{︂
max

𝑗∈𝒜(x*)

{︂
∇𝑔𝑗(x

*)Td +
1

2
dT∇2𝑔𝑗(x

*)d + 𝑜(‖d‖2)
}︂
,

max
𝑘∈{1,··· ,𝑚𝐸}

{︂⃒⃒⃒⃒
∇ℎ𝑘(x*)Td +

1

2
dT∇2ℎ𝑘(x*)d + 𝑜(‖d‖2)

⃒⃒⃒⃒}︂}︂
≥𝛾2

2
‖d‖2,

where Step 1 follows from the fact that ‖z‖ ≥ ‖z‖∞, ∀z ∈ R𝑚𝐼 × R𝑚𝐸 .

Choose 𝛼̂ = min {𝛼̂0, 𝛼̂1}. The region

𝑋1
3 := 𝒩 2

𝛼̂(x*) ∩𝑋3 ∩
{︁
x = (x* + d) ∈ 𝒩 2

𝛼̂(x*) ∩ (ℱ(𝑋))C : d ∈ 𝒟0 ∩ 𝒟𝐼

}︁
can be conservatively approximated as 𝑋̂1

3 =
{︁
x ∈ 𝒩 2

𝛼̂(x*) : 𝛾1‖x− x*‖2 ≤ 2𝜀𝑜
}︁
, and

∀x ∈ 𝑋2
3 := 𝒩 2

𝛼̂(x*) ∩𝑋3 ∩
{︁
x = (x* + d) ∈ 𝒩 2

𝛼̂(x*) ∩ (ℱ(𝑋))C : d ∈ 𝒟𝐼∖𝒟0

}︁
,

we have x = x* + d ∈ (ℱ(𝑋))C with d ̸∈ 𝒟0, ‖d‖ < 𝛼̂, and

𝜀𝑓 ≥ 𝑑

⎛⎝⎡⎣g
h

⎤⎦ (x),R𝑚𝐼
− × {0}

⎞⎠ ≥ 𝛾2
2
‖x− x*‖2 =⇒ 𝛾2‖x− x*‖2 ≤ 2𝜀𝑓 .

Finally, for every x ∈ 𝒩 2
𝛼̂(x*)∩𝑋3∩

{︁
x = (x* + d) ∈ 𝒩 2

𝛼̂(x*) ∩ (ℱ(𝑋))C : d ∈ 𝒟𝐼∖𝒟0

}︁
with

‖d‖ ≤ 𝛿

2
, we have x ∈ 𝐵𝛿. Consequently, for each

x ∈ 𝒩 2
𝛼̂(x*) ∩𝑋3 ∩

{︁
x = (x* + d) ∈ 𝒩 2

𝛼̂(x*) ∩ (ℱ(𝑋))C : d ∈ 𝒟𝐼∖𝒟0

}︁⃥︁
𝐵𝛿,

we have ‖d‖ >
𝛿

2
and therefore,

𝑑

⎛⎝⎡⎣g
h

⎤⎦ (x),R𝑚𝐼
− × {0}

⎞⎠ >
𝛾2
8
𝛿2.
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The desired result follows when 𝛾2𝛿
2 < 8𝜀𝑓 ; otherwise, if 𝛾2𝛿

2 ≥ 8𝜀𝑓 , then

𝒩 2
𝛼̂(x*) ∩𝑋3 ∩

{︁
x = (x* + d) ∈ 𝒩 2

𝛼̂(x*) ∩ (ℱ(𝑋))C : d ∈ 𝒟𝐼∖𝒟0

}︁
⊂ 𝐵𝛿.

A conservative estimate of the number of boxes of certain widths required to cover(︀
𝒩 2

𝛼̂(x*) ∩𝑋3

)︀
∖𝐵𝛿 can be obtained by estimating the number of boxes of certain widths

required to cover 𝑋̂1
3 and 𝑋̂2

3∖𝐵𝛿 (see Theorem 5.3.35). The following remark is in order.

Remark 5.3.34.

1. Lemma 5.3.33 does not hold when @𝛼, 𝛾1, 𝛾2 > 0, and 𝒟0, for example 𝑋 = (0, 2)×(0, 2),

𝑚𝐼 = 0, 𝑚𝐸 = 2, 𝑓(x) = −𝑥1, ℎ1(x) = 𝑥2 − (1 − 𝑥1)
3, ℎ2(x) = −𝑥2 − (1 − 𝑥1)

3, and

x* = (1, 0) (see [13, Example 4.3.5]). Note that 𝒟0 may be chosen to be ∅, but it cannot

be chosen to be 𝒟𝐼 (see Remark 5.3.28 for an explanation).

2. The inequality 𝛾2𝛿
2 < 8𝜀𝑓 is equivalent to

𝛾2𝛿
2 = 𝛾2

(︂
𝜀𝑓

𝜏 𝐼

)︂ 2

𝛽𝐼

< 8𝜀𝑓 .

Since 𝜀𝑓 can be taken to be sufficiently-small, the above inequality holds only when

(𝜀𝑓 )
2

𝛽𝐼 ≤ 𝜀𝑓 ⇐⇒ 𝛽𝐼 ≤ 2, i.e., if 𝛽𝐼 > 2, we can choose 𝜀𝑓 to be small-enough so that

𝛾2𝛿
2 ≥ 8𝜀𝑓 . Note that if 𝛾2𝛿

2 ≥ 8𝜀𝑓 , the region

𝒩 2
𝛼̂(x*) ∩𝑋3 ∩

{︁
x = (x* + d) ∈ 𝒩 2

𝛼̂(x*) ∩ (ℱ(𝑋))C : d ∈ 𝒟𝐼∖𝒟0

}︁
has already been covered while covering 𝑋̂5 since

𝛾2𝛿
2

8
≥ 𝜀𝑓 ≥ 𝛾2‖d‖2

2
=⇒ ‖d‖ ≤ 𝛿

2
,

which implies x = x* + d ∈ 𝐵𝛿.

3. 𝛼̂ depends on the local behavior of 𝑓 , 𝑔𝑗 , ∀𝑗 ∈ 𝒜(x*), and ℎ𝑘, ∀𝑘 ∈ {1, · · · ,𝑚𝐸},

around x*, but is independent of 𝜀. Consequently, for sufficiently small 𝜀 we have 𝑋̂1
3 ={︁

x ∈ 𝑋 : 𝛾1‖x− x*‖2 ≤ 2𝜀𝑜
}︁

and 𝑋̂2
3 =

{︁
x ∈ 𝑋 : 𝛾2‖x− x*‖2 ≤ 2𝜀𝑓

}︁
. Additionally,

if the objective function and the active constraints are all either affine or quadratic

functions of x, then their second-order Taylor expansions around x* equal themselves
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and we can choose 𝛼̂ = 𝛼. Furthermore,

𝑋1
3 := 𝒩 2

𝛼̂(x*) ∩𝑋3 ∩
{︁
x = (x* + d) ∈ 𝒩 2

𝛼̂(x*) ∩ (ℱ(𝑋))C : d ∈ 𝒟0 ∩ 𝒟𝐼

}︁
can be conservatively approximated as 𝑋̂1

3 =
{︁
x ∈ 𝑋 : 𝛾1‖x− x*‖2 ≤ 𝜀𝑜

}︁
, the region

𝑋2
3 := 𝒩 2

𝛼̂(x*) ∩𝑋3 ∩
{︁
x = (x* + d) ∈ 𝒩 2

𝛼̂(x*) ∩ (ℱ(𝑋))C : d ∈ 𝒟𝐼∖𝒟0

}︁
can be conservatively approximated as 𝑋̂2

3 =
{︁
x ∈ 𝑋 : 𝛾2‖x− x*‖2 ≤ 𝜀𝑓

}︁
, and the re-

gion

𝒩 2
𝛼̂(x*) ∩𝑋3 ∩

{︁
x = (x* + d) ∈ 𝒩 2

𝛼̂(x*) ∩ (ℱ(𝑋))C : d ∈ 𝒟𝐼∖𝒟0

}︁⃥︁
𝐵𝛿

is conservatively characterized by⎧⎨⎩x ∈ 𝒩 2
𝛼̂(x*) : 𝑑

⎛⎝⎡⎣g
h

⎤⎦ (x),R𝑚𝐼
− × {0}

⎞⎠ ∈
(︁𝛾2

4
𝛿2, 𝜀𝑓

]︁⎫⎬⎭
whenever 𝛾2𝛿

2 ≥ 4𝜀𝑓 .

4. Similar to Proposition 5.3.4, the following less conservative estimates of 𝑋1
3 and 𝑋2

3 can

be obtained:

𝑋̂1
3 =

{︁
x ∈ 𝒩 2

𝛼̂(x*) : 𝛾1‖x− x*‖2 ≤ 2𝜀𝑜,

∇𝑓(x*)
T

(x− x*) +
1

2
(x− x*)

T∇2𝑓(x*)(x− x*) ≥ 𝛾1‖x− x*‖2
}︁
,

𝑋̂2
3 =

{︂
x ∈ 𝒩 2

𝛼̂(x*) : 𝛾2‖x− x*‖2 ≤ 2𝜀𝑓 ,

max

{︂
max

𝑗∈𝒜(x*)

{︂
∇𝑔𝑗(x

*)
T

(x− x*) +
1

2
(x− x*)

T∇2𝑔𝑗(x
*)(x− x*)

}︂
,

max
𝑘∈{1,··· ,𝑚𝐸}

{︂⃒⃒⃒⃒
∇ℎ𝑘(x*)

T
(x− x*) +

1

2
(x− x*)

T∇2ℎ𝑘(x*)(x− x*)

⃒⃒⃒⃒}︂}︂
≥ 𝛾2‖x− x*‖2

}︂
.

To illustrate the application of Lemma 5.3.33, let us reconsider Example 5.2.11 with

𝜀𝑜, 𝜀𝑓 ≤ 1. Recall that 𝑋 = (−2, 2), 𝑚𝐼 = 3, 𝑚𝐸 = 0, 𝑓(𝑥) = 𝑥, 𝑔1(𝑥) = 𝑥2, 𝑔2(𝑥) =

𝑥 − 1, and 𝑔3(𝑥) = −1 − 𝑥 with 𝑥* = 0. We have ℱ(𝑋) = {0} and 𝑋3 = [−
√
𝜀𝑓 , 0) ∪(︁

0,min{𝜀𝑜,
√
𝜀𝑓}
]︁
. Choose 𝛼 = 1. We have 𝒟𝐼 = (−1, 1)∖{0}. Choose the set of directions

𝒟0 = {𝑑 ∈ 𝒟𝐼 : 𝑑 > 0}, 𝛾1 = 1, 𝛾2 = 1, and 𝛼̂ = 1 in Lemma 5.3.33. From Lemma 5.3.33
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and Remark 5.3.34, we have 𝑋̂1
3 =

{︀
𝑥 : 𝑥2 ≤ 𝜀𝑜

}︀
and 𝑋̂2

3 =
{︀
𝑥 : 𝑥2 ≤ 𝜀𝑓

}︀
(since 𝑓 is linear

and 𝑔1 is quadratic). In fact, for this example, we can get a better estimate of 𝑋1
3 by taking

into account the fact that 𝑓 grows linearly on 𝒟0 ∩ 𝒟𝐼 .

Next, we revisit a couple of examples from Section 5.3.1 for which the assumptions of

Lemma 5.3.33 hold. First, consider Example 5.3.19 with 𝜀𝑜 ≤ 0.6, 𝜀𝑓 ≤ 0.5, and recall

that 𝑋 = (−2, 2) × (−2, 2), 𝑚𝐼 = 2, and 𝑚𝐸 = 0 with 𝑓(x) = 𝑥2, 𝑔1(x) = 𝑥21 − 𝑥2,

𝑔2(x) = 𝑥2 − 1, and x* = (0, 0). We have ℱ(𝑋) =
{︀
x : 𝑥2 ≥ 𝑥21, 𝑥2 ≤ 1

}︀
and 𝑋3 ={︀

x : 𝑥21 − 𝜀𝑓 ≤ 𝑥2 < 𝑥21, 𝑥2 ≤ 𝜀𝑜
}︀

. Choose 𝛼 = 1. We have 𝒟𝐼 =
{︀
d ∈ 𝒩 2

1 (0) : 𝑑2 < 𝑑21
}︀

.

Choose 𝒟0 =
{︀
d ∈ 𝒟𝐼 : 𝑑2 ≥ 0.5𝑑21

}︀
, 𝛾1 = 0.3, 𝛾2 = 0.25 and 𝛼̂ = 1 in Lemma 5.3.33.

From Lemma 5.3.33 and Remark 5.3.34, we have 𝑋̂1
3 =

{︁
x ∈ 𝒩 2

1 (x*) : 0.3‖x‖2 ≤ 𝜀𝑜
}︁

and

𝑋̂2
3 =

{︁
x ∈ 𝒩 2

1 (x*) : ‖x‖2 ≤ 4𝜀𝑓
}︁

(since 𝑓 is linear and 𝑔1 is quadratic).

Finally, consider Example 5.3.20 with 𝜀𝑜, 𝜀𝑓 ≤ 0.1, and recall that 𝑋 = (−2, 2)×(−2, 2),

𝑚𝐼 = 3, and 𝑚𝐸 = 0 with 𝑓(x) = 2𝑥21 + 𝑥2, 𝑔1(x) = −𝑥21 − 𝑥2, 𝑔2(x) = −𝑥1, 𝑔3(x) =

𝑥21 + 𝑥22 − 1, and x* = (0, 0). We have ℱ(𝑋) =
{︀
x : 𝑥2 ≥ −𝑥21, 𝑥1 ≥ 0, 𝑥21 + 𝑥22 ≤ 1

}︀
and

𝑋3 =

{︃
x ∈ 𝑋 :

√︁
(max{0,−𝑥2

1 − 𝑥2})
2

+ (max{0,−𝑥1})
2

+ (max{0, 𝑥2
1 + 𝑥2

2 − 1})
2 ∈ (0, 𝜀𝑓 ],

2𝑥2
1 + 𝑥2 ≤ 𝜀𝑜

}︃
.

Choose 𝛼 = 2
3 . We have 𝒟𝐼 =

{︁
d ∈ 𝒩 2

2
3

(0) : (x* + d) ∈ (ℱ(𝑋))C
}︁

. Choose 𝒟0 ={︀
d ∈ 𝒟𝐼 : 𝑑2 ≥ −1.5𝑑21

}︀
, 𝛾1 = 0.25, 𝛾2 = 0.25 and 𝛼̂ = 2

3 in Lemma 5.3.33. We have from

Lemma 5.3.33 and Remark 5.3.34 that 𝑋̂1
3 =

{︁
x : ‖x‖2 ≤ 4𝜀𝑜

}︁
and 𝑋̂2

3 =
{︁
x : ‖x‖2 ≤ 4𝜀𝑓

}︁
(since 𝑓 and 𝑔2 are quadratic, and 𝑔1 is linear). Figure 5-6 plots the sets 𝑋1

3 and 𝑋2
3 along

with their estimates 𝑋̂1
3 and 𝑋̂2

3 for 𝜀𝑜 = 𝜀𝑓 = 0.1. The benefit of using the estimates in

Remark 5.3.34 over that of Lemma 5.3.33 is seen from Figure 5-6.

The following result follows from Lemma 3 in [238]. It provides a conservative estimate of

the number of boxes of certain widths required to cover 𝑋̂1
3 and 𝑋̂2

3∖𝐵𝛿 from Lemma 5.3.33.

Therefore, from Lemmata 5.2.5 and 5.2.6 and the result below, we can get an upper bound

on the worst-case number of boxes required to cover 𝒩 2
𝛼̂(x*) ∩𝑋3 and estimate the extent

of the cluster problem on that region.

Theorem 5.3.35. Suppose the assumptions of Lemma 5.3.33 hold. Let 𝛿 =
(︁ 𝜀

𝜏*

)︁ 1
𝛽*

= 𝛿𝑓 =(︂
𝜀𝑜

𝜏 𝑓

)︂ 1

𝛽𝑓

=

(︂
𝜀𝑓

𝜏 𝐼

)︂ 1

𝛽𝐼

, 𝛿𝐼 =

(︂
𝛾2𝛿

2

8𝜏 𝐼

)︂ 1

𝛽𝐼

=
(︁ 𝛾2

8𝜏 𝐼

)︁ 1

𝛽𝐼

(︂
𝜀𝑓

𝜏 𝐼

)︂ 2

(𝛽𝐼 )2

, 𝑟𝐼 =

√︃
2𝜀𝑓

𝛾2
, 𝑟𝑓 =

√︃
2𝜀𝑜

𝛾1
.
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Figure 5-6: Plots of 𝑋1
3 and 𝑋2

3 (solid regions) and their estimates 𝑋̂1
3 and 𝑋̂2

3 (area between
the dotted lines) for Example 5.3.20. The filled-in triangles correspond to the minimizer
x*, and the dash-dotted lines represent the axes translated to x*. All plots use 𝜀𝑜, 𝜀𝑓 = 0.1.
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1. If 𝛿𝐼 ≥ 2𝑟𝐼 , let 𝑁𝐼 = 1.

2. If
2𝑟𝐼√
𝑚̄𝐼 − 1

> 𝛿𝐼 ≥ 2𝑟𝐼√
𝑚̄𝐼

for some 𝑚̄𝐼 ∈ N with 𝑚̄𝐼 ≤ 𝑛𝑥 and 2 ≤ 𝑚̄𝐼 ≤ 18, then let

𝑁𝐼 =

𝑚̄𝐼−1∑︁
𝑖=0

2𝑖
(︂
𝑛𝑥

𝑖

)︂
+ 2𝑛𝑥

⌈︂
𝑚̄𝐼 − 9

9

⌉︂
.

3. Otherwise, let

𝑁𝐼 =
⌈︀
2𝐵𝐼(𝜀𝑓 ;𝛽𝐼 , 𝛾2, 𝜏𝐼)

⌉︀𝑛𝑥−1
(︁⌈︀

2𝐵𝐼(𝜀𝑓 ;𝛽𝐼 , 𝛾2, 𝜏𝐼)
⌉︀

+ 2𝑛𝑥

⌈︁
(
√

2 − 1)𝐵𝐼(𝜀𝑓 ;𝛽𝐼 , 𝛾2, 𝜏𝐼)
⌉︁)︁

,

where

𝐵𝐼(𝜀𝑓 ;𝛽𝐼 , 𝛾2, 𝜏𝐼) := 8
1

𝛽𝐼
(︀
𝜏 𝐼
)︀(︂ 1

𝛽𝐼
+ 2

(𝛽𝐼)2

)︂ (︁
𝜀𝑓
)︁(︂ 1

2
− 2

(𝛽𝐼)2

)︂
𝛾
−
(︁

1
2
+ 1

𝛽𝐼

)︁
2 .

4. If 𝛿𝑓 ≥ 2𝑟𝑓 , let 𝑁𝑓 = 1.

5. If
2𝑟𝑓√︀
𝑚𝑓 − 1

> 𝛿𝑓 ≥
2𝑟𝑓√
𝑚𝑓

for some 𝑚𝑓 ∈ N with 𝑚𝑓 ≤ 𝑛𝑥 and 2 ≤ 𝑚𝑓 ≤ 18, then let

𝑁𝑓 =

𝑚𝑓−1∑︁
𝑖=0

2𝑖
(︂
𝑛𝑥

𝑖

)︂
+ 2𝑛𝑥

⌈︂
𝑚𝑓 − 9

9

⌉︂
.

6. Otherwise, let

𝑁𝑓 =

⌈︂
2
(︁
𝜏 𝑓
)︁ 1

𝛽𝑓 (𝜀𝑜)

(︁
1
2
− 1

𝛽𝑓

)︁
𝛾
− 1

2
1

⌉︂𝑛𝑥−1
(︃⌈︂

2
(︁
𝜏 𝑓
)︁ 1

𝛽𝑓 (𝜀𝑜)

(︁
1
2
− 1

𝛽𝑓

)︁
𝛾
− 1

2
1

⌉︂
+

2𝑛𝑥

⌈︂
(
√

2 − 1)
(︁
𝜏 𝑓
)︁ 1

𝛽𝑓 (𝜀𝑜)

(︁
1
2
− 1

𝛽𝑓

)︁
𝛾
− 1

2
1

⌉︂)︃
.

Then, 𝑁𝐼 is an upper bound on the number of boxes of width 𝛿𝐼 required to cover 𝑋̂2
3∖𝐵𝛿,

and 𝑁𝑓 is an upper bound on the number of boxes of width 𝛿𝑓 required to cover 𝑋̂1
3 .

Proof. The result on 𝑁𝑓 follows from Lemmata 5.2.6 and 5.3.33, and Lemma 3 in [238]. To

deduce the result on 𝑁𝐼 , note that we cover 𝑋̂2
3∖𝐵𝛿 with boxes of width 𝛿𝐼 =

(︂
𝛾2𝛿

2

8𝜏 𝐼

)︂ 1

𝛽𝐼
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since, from Lemma 5.3.33, we have

𝑋̂2
3∖𝐵𝛿 ⊂

⎧⎨⎩x ∈ 𝒩 2
𝛼̂(x*) : 𝑑

⎛⎝⎡⎣g
h

⎤⎦ (x),R𝑚𝐼
− × {0}

⎞⎠ ∈
(︁𝛾2

8
𝛿2, 𝜀𝑓

]︁⎫⎬⎭
and, from Lemma 5.2.5, we have that a box 𝐵𝛿𝐼 of width 𝛿𝐼 with each x ∈ 𝐵𝛿𝐼 satisfying

𝑑

⎛⎝⎡⎣g
h

⎤⎦ (x),R𝑚𝐼
− × {0}

⎞⎠ >
𝛾2
8
𝛿2 can be fathomed by infeasibility. The desired result then

follows from Lemma 3 in [238].

Remark 5.3.36.

1. Under the assumptions of Lemma 5.3.33, the dependence of 𝑁𝐼 on 𝜀𝑓 disappears when

the lower bounding scheme has second-order convergence on 𝒩 2
𝛼̂(x*) ∩ (ℱ(𝑋))C, i.e.,

𝛽𝐼 = 2, and the dependence of 𝑁𝑓 on 𝜀𝑜 disappears when the scheme (𝑓 cv
𝑍 )𝑍∈I𝑋 has

second-order convergence on 𝑋, i.e., 𝛽𝑓 = 2. Therefore, the cluster problem on 𝑋3 can

be eliminated using second-order convergent schemes with sufficiently small prefactors.

2. The dependence of 𝑁𝐼 on 𝜀𝑓 for 𝛽𝐼 = 1, i.e., 𝑁𝐼 ∝
(︀
𝜀𝑓
)︀−1.5𝑛𝑥 , scales worse than the

corresponding dependence of 𝑁 on 𝜀 for 𝛽* = 1 when second-order convergence on 𝑋5 is

required to mitigate clustering, i.e., 𝑁 ∝ 𝜀−0.5𝑛𝑥 (see Theorem 5.3.21). Note, however,

that this worse scaling may be an artifact of the conservative requirement that all of

𝑋̂2
3∖𝐵𝛿 has to be covered using boxes of size 𝛿𝐼 instead of simply requiring that the

subset of 𝑋̂2
3 that is not fathomed by value dominance (the rest of 𝑋̂2

3 , including 𝐵𝛿,

would have already been accounted for while covering 𝑋̂5 and 𝑋̂1
3 ) be covered using boxes

of appropriate size.

3. Similar to Lemma 5.3.25, less conservative estimates (with respect to the dependence

on 𝜀𝑜 and 𝜀𝑓 ) may be obtained for 𝑋1
3 and 𝑋2

3 by taking into account the fact that the

objective function and the measure of infeasibility grow linearly in certain directions.

Remark 5.3.37. The main assumptions of Lemmata 5.3.2 and 5.3.27, which assume that

the objective function and the measure of infeasibility grow linearly on certain regions in

some neighborhood of x*, are similar to the linear growth condition in [104], and the main

assumptions of Lemmata 5.3.17 and 5.3.33, which assume that the objective function and the

measure of infeasibility grow quadratically on certain regions in some neighborhood of x*,
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are similar to the quadratic growth condition in [43, 104]. Furthermore, the assumptions

of Lemmata 5.3.2, 5.3.17, 5.3.27, and 5.3.33 may be weakened based on the linear and

quadratic growth conditions in [43, 104] to account for cases in which x* is not a strict local

minimum.

5.4 Conclusion

This chapter provides an analysis of the cluster problem for constrained problems. The

analysis indicates different scaling of the number of boxes required to cover regions close

to a global minimizer based on the convergence order and corresponding prefactor of the

lower bounding scheme on nearly-optimal and nearly-feasible regions in the vicinity of the

global minimizer.

It is shown that lower bounding schemes with first-order convergence may eliminate the

cluster problem at a constrained minimizer if: i. the objective function grows linearly in

directions leading to feasible points in some neighborhood of the minimizer, ii. either the

objective function, or a measure of constraint violation grows linearly in directions lead-

ing to infeasible points in some neighborhood of the minimizer, and iii. the corresponding

convergence order prefactors are sufficiently-small. This is shown to be possible because

nodes containing nearly-optimal and nearly-feasible points may be fathomed relatively eas-

ily, by value dominance or by infeasibility, even using first-order convergent lower bounding

schemes when the objective function or the measure of constraint violation grows linearly

in directions around the minimizer. The above result is in contrast to the case of uncon-

strained minimization where at least second-order convergence is required to eliminate the

cluster problem at a point of differentiability of the objective function. When the objective

function is twice-differentiable at an unconstrained minimizer, this is a consequence of the

fact that the objective function grows quadratically or slower around the minimizer.

It is also shown that at least second-order convergence is required to mitigate the cluster

problem at a nonisolated constrained minimizer that satisfies certain regularity conditions

when the problem is purely equality-constrained. Conditions under which second-order con-

vergence of bounding schemes is sufficient to mitigate clustering are presented. This analysis

reduces to previous analyses for unconstrained problems under suitable assumptions.
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Chapter 6

Convergence-order analysis of

branch-and-bound algorithms for

constrained problems

The performance of branch-and-bound algorithms for deterministic global optimization is

strongly dependent on the ability to construct tight and rapidly convergent schemes of lower

bounds. One metric of the efficiency of a branch-and-bound algorithm is the convergence

order of its bounding scheme. This chapter develops a notion of convergence order for lower

bounding schemes for constrained problems, and defines (and analyzes) the convergence

order of convex relaxation-based and Lagrangian dual-based lower bounding schemes (see

Chapter 5 for the motivation behind the analysis in this chapter). The material in this

chapter has been published as the article [109].

6.1 Introduction

Global optimization has found widespread applications in various areas of engineering and

the sciences [80]. Deterministic global optimization algorithms attempt to determine an

approximate optimal solution within a specified tolerance and terminate with a certificate of

its optimality in finite time [101]. While efficient algorithms are known for classes of convex

optimization problems [24], no such algorithms are currently known for most classes of

nonconvex problems. Deterministic global optimization algorithms for nonconvex problems
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usually involve the concept of partitioning the domain of (‘branching on’) the decision

variables [101]. The performance of branch-and-bound algorithms for deterministic global

optimization is strongly dependent on the ability to construct tight and rapidly convergent

schemes of relaxations of nonconvex functions.

Since the worst-case running time of all known branch-and-bound algorithms is expo-

nential in the dimension of the variables partitioned, it may be advantageous to utilize

‘reduced-space’ algorithms which only require branching on a subset of the variables (as op-

posed to ‘full-space’ branch-and-bound algorithms which may branch on all of the variables,

see Section 2.3.2.3 of Chapter 2) to guarantee convergence. Despite the potential advan-

tages of reduced-space algorithms for nonconvex problems [20, 69, 76, 237], such methods

have not been widely adopted in the literature and in commercial software. One potential

reason is that most widely-applicable reduced-space branch-and-bound algorithms often do

not seem to exhibit favorable convergence rates compared to their full-space counterparts.

The convergence properties of reduced-space branch-and-bound algorithms have not been

thoroughly investigated, although some progress has been made in this direction [70, 237].

The reader is directed to the work of Epperly and Pistikopoulos [76] for a survey of reduced-

space branch-and-bound algorithms.

One metric of the efficiency of a deterministic branch-and-bound algorithm is the order

of convergence of its bounding scheme, which, for the case of unconstrained optimization,

compares the rate of convergence of an estimated range of a function to its true range [172].

Recently, Bompadre and coworkers [38, 39] developed the notions of Hausdorff and pointwise

convergence orders of bounding schemes and established sharp rules for the propagation of

convergence orders of bounding schemes constructed using McCormick [154], Taylor [184],

and McCormick-Taylor [197] models. In addition, they showed that if a function is twice

continuously differentiable, the scheme of relaxations corresponding to its envelopes is at

least second-order pointwise convergent which, in turn, implies Hausdorff convergence of

at least second-order (see Theorem 2.3.38 and Lemma 2.3.36). Najman and Mitsos [174]

used the framework developed in [38, 39] to establish sharp rules for the propagation of

convergence orders of multivariate McCormick relaxations [227]. Khan and coworkers [124]

developed a continuously differentiable variant of McCormick relaxations [154, 227], and

established second-order pointwise convergence of schemes of the differentiable McCormick

relaxations for twice continuously differentiable functions. Also note the definition of rate
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of convergence of bounding schemes for geometric branch-and-bound methods proposed by

Schöbel and Scholz [203], and the proof of second-order Hausdorff convergence of centered

forms in [127, 205]. Establishing that a scheme of relaxations is at least second-order

Hausdorff convergent is important from many viewpoints, notably in mitigating the so-

called cluster effect in unconstrained global optimization [68, 238]. Chapter 5 analyzed the

cluster problem for constrained global optimization where it was shown that, under certain

conditions, first-order convergence of the lower bounding scheme may be sufficient to avoid

the cluster problem at constrained minima (see Theorems 5.3.11 and 5.3.31). However, an

analysis of convergence order for constrained problems is lacking.

In this chapter, we investigate the convergence orders of some full-space and reduced-

space deterministic branch-and-bound algorithms by extending the convergence analysis

of Bompadre and coworkers to constrained problems. This chapter develops a notion of

convergence order for lower bounding schemes for constrained problems, and defines the

convergence order of convex relaxation-based and Lagrangian dual-based lower bounding

schemes. It is shown that full-space convex relaxation-based lower bounding schemes can

achieve first-order convergence under mild assumptions. Furthermore, such schemes can

achieve second-order convergence at KKT points, at Slater points, and at infeasible points

when second-order pointwise convergent schemes of relaxations are used. Lagrangian dual-

based full-space lower bounding schemes are shown to have at least as high a convergence

order as convex relaxation-based full-space lower bounding schemes. Additionally, it is

shown that Lagrangian dual-based full-space lower bounding schemes achieve first-order

convergence even when the dual problem is not solved to optimality. The convergence order

of some widely-applicable reduced-space lower bounding schemes is also analyzed, and it is

shown that such schemes can achieve first-order convergence under suitable assumptions.

Furthermore, such schemes can achieve second-order convergence at KKT points, at uncon-

strained points in the reduced-space, and at infeasible points under suitable assumptions

when the problem exhibits a specific separable structure. The importance of constraint

propagation techniques in boosting the convergence order of reduced-space lower bounding

schemes (and helping mitigate clustering in the process) for problems which do not pos-

sess such a structure is demonstrated. Throughout this chapter, we tacitly assume that

a branch-and-bound algorithm utilizes efficient heuristics for finding feasible points which

determine a global optimal solution early on in the branch-and-bound tree (if one exists).
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This chapter is organized as follows. Section 6.2 formulates the problem of interest,

and provides some background definitions. Section 6.3 develops the notion of convergence

order of a lower bounding scheme, and Section 6.4 provides some results on the convergence

orders of commonly-used full-space lower bounding schemes. Section 6.5 lists some widely-

applicable reduced-space lower bounding schemes in the literature, provides some results

on their convergence orders, and highlights the importance of constraint propagation in

reduced-space branch-and-bound algorithms. Finally, Section 6.6 lists the conclusions and

some avenues for future work.

6.2 Problem formulation and background

In this chapter, we consider the formulation

min
x,y

𝑓(x,y) (P)

s.t. g(x,y) ≤ 0,

h(x,y) = 0,

x ∈ 𝑋, y ∈ 𝑌,

where 𝑋 ⊂ R𝑛𝑥 and 𝑌 ⊂ R𝑛𝑦 are nonempty convex sets, 𝑓 : 𝑋 × 𝑌 → R and g : 𝑋 × 𝑌 →

R𝑚𝐼 are partially convex with respect to x, i.e., 𝑓(·,y) and g(·,y) are convex on 𝑋 for each

y ∈ 𝑌 , and h : 𝑋 ×𝑌 → R𝑚𝐸 is affine with respect to x, i.e., h(·,y) is affine on 𝑋 for each

y ∈ 𝑌 . The following assumption will be made throughout this chapter.

Assumption 6.2.1. The sets 𝑋 and 𝑌 are compact, and the functions 𝑓 , g, and h are

continuous on 𝑋 × 𝑌 .

When the dimension 𝑛𝑦 of the 𝑌 -space corresponding to the nonconvexities in the func-

tions in Problem (P) is significantly smaller than the dimension 𝑛𝑥 of the 𝑋-space, it

may be computationally advantageous to partition only the 𝑌 -space during the course of

a branch-and-bound algorithm (assuming, of course, that the reduced-space algorithm is

guaranteed to converge). However, the convergence rate of a reduced-space branch-and-

bound algorithm may be different compared to a similar full-space algorithm, which makes

it difficult to judge a priori whether using a reduced-space branch-and-bound approach

232



would be advantageous. Before we analyze the convergence orders of some full-space and

reduced-space lower bounding schemes in the literature, we need to define formally the no-

tion of convergence order for constrained problems. For this purpose, we assume that the

reader is familiar with the notation and the background definitions introduced in Chapter 2

(in particular, we will use Definitions 2.2.4, 2.2.5, 2.3.5, 2.3.23, 2.3.24, 2.3.25, 2.3.27, 2.3.28,

2.3.29, 2.3.31, and 2.3.34, Lemmata 2.2.2, 2.3.6, 2.3.30, and 2.3.35, and Corollary 2.3.7).

We restate the definition of convex and concave relaxations from Chapter 2 because it is

central to the analysis in this chapter.

Definition 2.3.28. [Convex and Concave Relaxations] Given a convex set 𝑍 ⊂ R𝑛 and a

function 𝑓 : 𝑍 → R, a convex function 𝑓 cv
𝑍 : 𝑍 → R is called a convex relaxation of 𝑓 on

𝑍 if 𝑓 cv
𝑍 (z) ≤ 𝑓(z), ∀z ∈ 𝑍. Similarly, a concave function 𝑓 cc

𝑍 : 𝑍 → R is called a concave

relaxation of 𝑓 on 𝑍 if 𝑓 cc
𝑍 (z) ≥ 𝑓(z), ∀z ∈ 𝑍.

Remark 6.2.2. Although convex and concave relaxations of classes of functions can be

constructed on general convex sets, the typical application requires construction of relax-

ations on bounded intervals. Therefore, we will implicitly assume that the sets 𝑋 and 𝑌

are intervals and that relaxations are constructed on intervals in subsequent sections. The

assumption that 𝑋 and 𝑌 are intervals is not restrictive since general convex constraints

defining 𝑋 and 𝑌 that are available in factorable form can be equivalently reformulated

to appear as part of the constraints g and h. The proposed definitions of convergence

order in the next section will be based on schemes of relaxations constructed on intervals.

Note that similar notions of convergence order can be developed for schemes of relaxations

constructed, for instance, on simplices.

6.3 Definitions of convergence order

This section reviews the definitions of convergence orders of (reduced-space) schemes of

relaxations [38, 39] and defines the convergence order of a (reduced-space) lower bounding

scheme (cf. the related full-space definitions in Section 2.3.2.1.2 of Chapter 2). It is also

shown that the convergence order of a convergent scheme of relaxations at a point is governed

by the tiny intervals around that point. We begin with the following definition, adapted

from [38, Definition 6], that defines schemes of relaxations in a reduced-space.
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Definition 6.3.1. [Schemes of Convex and Concave Relaxations] Let 𝑉 ⊂ R𝑛𝑣 and 𝑊 ⊂

R𝑛𝑤 be nonempty convex sets, and let 𝑓 : 𝑉 × 𝑊 → R. Suppose, for every 𝑍 ∈ I𝑊 , we

can construct functions 𝑓 cv
𝑉×𝑍 : 𝑉 × 𝑍 → R and 𝑓 cc

𝑉×𝑍 : 𝑉 × 𝑍 → R that are convex and

concave relaxations, respectively, of 𝑓 on 𝑉 × 𝑍. The sets of functions (𝑓 cv
𝑉×𝑍)𝑍∈I𝑊 and

(𝑓 cc
𝑉×𝑍)𝑍∈I𝑊 define schemes of convex and concave relaxations of 𝑓 in 𝑊 , respectively, and

the set of pairs of functions (𝑓 cv
𝑉×𝑍 , 𝑓

cc
𝑉×𝑍)𝑍∈I𝑊 defines a scheme of relaxations of 𝑓 in 𝑊 .

The schemes of relaxations are said to be continuous when 𝑓 cv
𝑉×𝑍 and 𝑓 cc

𝑉×𝑍 are continuous

on 𝑉 × 𝑍 for each 𝑍 ∈ I𝑊 .

Bompadre and coworkers [38, 39] define Hausdorff convergence of inclusion functions.

Note that an inclusion function can be associated with schemes of relaxations in a natural

way (see [38, Definition 7]).

Definition 6.3.2. [Hausdorff Convergence Order of an Inclusion Function] Let 𝑉 ∈ IR𝑛𝑣

and 𝑊 ⊂ R𝑛𝑤 be nonempty sets, ℎ : 𝑉 ×𝑊 → R be a continuous function, and 𝐻 be an

inclusion function of ℎ on I(𝑉 ×𝑊 ).

The inclusion function 𝐻 is said to have Hausdorff convergence of order 𝛽 > 0 at a point

w ∈ 𝑊 if for each bounded 𝑄 ⊂ 𝑊 with w ∈ 𝑄, there exists 𝜏 ≥ 0 such that

𝑑𝐻(ℎ(𝑉 × 𝑍), 𝐻(𝑉 × 𝑍)) ≤ 𝜏𝑤(𝑍)𝛽, ∀𝑍 ∈ I𝑄 with w ∈ 𝑍.

Moreover, 𝐻 is said to have Hausdorff convergence of order 𝛽 > 0 on 𝑊 if it has Hausdorff

convergence of order (at least) 𝛽 at each w ∈ 𝑊 , with the constant 𝜏 independent of w.

In the context of (constrained) global optimization, the following definition of conver-

gence of schemes of convex and concave relaxations is more pertinent.

Definition 6.3.3. [Convergence Order of Schemes of Convex and Concave Relaxations]

Let 𝑉 ⊂ R𝑛𝑣 , 𝑊 ⊂ R𝑛𝑤 be nonempty convex sets, and 𝑓 : 𝑉 × 𝑊 → R be a continuous

function. Let (𝑓 cv
𝑉×𝑍)𝑍∈I𝑊 and (𝑓 cc

𝑉×𝑍)𝑍∈I𝑊 respectively denote schemes of convex and

concave relaxations of 𝑓 in 𝑊 .

The scheme of convex relaxations (𝑓 cv
𝑉×𝑍)𝑍∈I𝑊 is said to have convergence of order 𝛽 > 0

at w ∈ 𝑊 if for each bounded 𝑄 ⊂ 𝑊 with w ∈ 𝑄, there exists 𝜏 cv ≥ 0 such that

inf
(v,z)∈𝑉×𝑍

𝑓(v, z) − inf
(v,z)∈𝑉×𝑍

𝑓 cv
𝑉×𝑍(v, z) ≤ 𝜏 cv𝑤(𝑍)𝛽, ∀𝑍 ∈ I𝑄 with w ∈ 𝑍.
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Similarly, the scheme of concave relaxations (𝑓 cc
𝑉×𝑍)𝑍∈I𝑊 is said to have convergence of

order 𝛽 > 0 at w ∈ 𝑊 if for each bounded 𝑄 ⊂ 𝑊 with w ∈ 𝑄, there exists 𝜏 cc ≥ 0 such

that

sup
(v,z)∈𝑉×𝑍

𝑓 cc
𝑉×𝑍(v, z) − sup

(v,z)∈𝑉×𝑍
𝑓(v, z) ≤ 𝜏 cc𝑤(𝑍)𝛽, ∀𝑍 ∈ I𝑄 with w ∈ 𝑍.

The scheme of relaxations (𝑓 cv
𝑉×𝑍 , 𝑓

cc
𝑉×𝑍)𝑍∈I𝑊 is said to have (Hausdorff) convergence of

order 𝛽 > 0 at w ∈ 𝑊 if the corresponding schemes of convex and concave relaxations have

convergence of orders (at least) 𝛽 at w. The schemes (𝑓 cv
𝑉×𝑍)𝑍∈I𝑊 and (𝑓 cc

𝑉×𝑍)𝑍∈I𝑊 are

said to have convergence of order 𝛽 > 0 on 𝑊 if they have convergence of order (at least)

𝛽 at each w ∈ 𝑊 , with constants 𝜏 cv and 𝜏 cc independent of w.

Definition 6.3.4. [Pointwise Convergence Order of Schemes of Convex and Concave Re-

laxations] Let 𝑉 ⊂ R𝑛𝑣 , 𝑊 ⊂ R𝑛𝑤 be nonempty convex sets, and 𝑓 : 𝑉 × 𝑊 → R be

a continuous function. Let (𝑓 cv
𝑉×𝑍)𝑍∈I𝑊 and (𝑓 cc

𝑉×𝑍)𝑍∈I𝑊 respectively denote schemes of

convex and concave relaxations of 𝑓 in 𝑊 . The scheme of convex relaxations (𝑓 cv
𝑉×𝑍)𝑍∈I𝑊

is said to have pointwise convergence of order 𝛾 > 0 at w ∈ 𝑊 if for each bounded 𝑄 ⊂ 𝑊

with w ∈ 𝑄, there exists 𝜏 cv ≥ 0 such that

sup
(v,z)∈𝑉×𝑍

⃒⃒
𝑓(v, z) − 𝑓 cv

𝑉×𝑍(v, z)
⃒⃒
≤ 𝜏 cv𝑤(𝑍)𝛾 , ∀𝑍 ∈ I𝑄 with w ∈ 𝑍.

Similarly, the scheme of concave relaxations (𝑓 cc
𝑉×𝑍)𝑍∈I𝑊 is said to have pointwise conver-

gence of order 𝛾 > 0 at w ∈ 𝑊 if for each bounded 𝑄 ⊂ 𝑊 with w ∈ 𝑄, there exists 𝜏 cc ≥ 0

such that

sup
(v,z)∈𝑉×𝑍

⃒⃒
𝑓 cc
𝑉×𝑍(v, z) − 𝑓(v, z)

⃒⃒
≤ 𝜏 cc𝑤(𝑍)𝛾 , ∀𝑍 ∈ I𝑄 with w ∈ 𝑍.

The scheme of relaxations (𝑓 cv
𝑉×𝑍 , 𝑓

cc
𝑉×𝑍)𝑍∈I𝑊 is said to have pointwise convergence of order

𝛾 > 0 at w ∈ 𝑊 if the corresponding schemes of convex and concave relaxations have point-

wise convergence of orders (at least) 𝛾 at w. Furthermore, the schemes of relaxations are

said to have pointwise convergence of order 𝛾 > 0 on 𝑊 if they have pointwise convergence

of order at least 𝛾 at each w ∈ 𝑊 , with constants 𝜏 cv and 𝜏 cc independent of w.

Note that we simply say that a scheme of relaxations, (𝑓 cv
𝑉×𝑍 , 𝑓

cc
𝑉×𝑍)𝑍∈I𝑊 , of a function
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𝑓 : 𝑉 × 𝑊 → R in 𝑊 has (pointwise) convergence order of 𝛾 > 0 if it has (pointwise)

convergence of order 𝛾 on 𝑊 .

Remark 6.3.5. Definitions 6.3.2, 6.3.3, and 6.3.4 are based on a modification (see [123,

Definition 9.2.35]) of the definitions of convergence order proposed in [38, 39], which in-

corporates the set 𝑄. Note that the use of the set 𝑄 is necessary when the schemes of

relaxations are constructed on unbounded sets, but may be omitted (set to 𝑊 ) when the

schemes of relaxations are constructed over bounded sets (which is the typical application).

Henceforth, the use of 𝑄 shall be omitted for brevity since we are only interested in compact

sets 𝑉 and 𝑊 (see Assumption 6.2.1).

Remark 6.3.6. The pointwise convergence order of a convergent scheme of convex and

concave relaxations on 𝑊 is governed by the strength of the relaxations over small intervals

in 𝑊 . This observation is made precise in Lemma 6.3.8. Also note that the pointwise con-

vergence order of schemes of either convex, or concave relaxations (as per Definition 6.3.4)

can be arbitrarily high for nonlinear functions in contrast to the pointwise convergence or-

der of schemes of convex and concave relaxations (see Theorem 2 in [38]). For instance,

consider the function 𝑓 : [0, 1] × [0, 1] =: 𝑉 × 𝑊 → R with 𝑓(𝑣, 𝑤) = 𝑣2 −
√
𝑤 and a

corresponding scheme of convex relaxations (𝑓 cv
𝑉×𝑍)𝑍∈I𝑊 defined by 𝑓 cv

𝑉×𝑍(𝑣, 𝑧) = 𝑣2 −
√
𝑤

on [𝑤L, 𝑤U] ⊂ [0, 1]. The scheme of convex relaxations (𝑓 cv
𝑉×𝑍)𝑍∈I𝑊 has arbitrarily high

pointwise convergence order on 𝑊 .

Remark 6.3.7. Unlike the pointwise convergence order of a scheme of relaxations, the con-

vergence order of a scheme of convex and concave relaxations can be arbitrarily high for any

function. For instance, consider the scheme of constant relaxations of the function 𝑓 : [0, 1]×

[0, 1] =: 𝑉 ×𝑊 → R with 𝑓(𝑣, 𝑤) = 𝑤−
√
𝑣 defined by 𝑓 cv

𝑉×𝑍(𝑣, 𝑧) = 𝑤L−1, 𝑓 cc
𝑉×𝑍(𝑣, 𝑧) = 𝑤U

on [𝑤L, 𝑤U] ⊂ [0, 1]. The scheme of constant relaxations (𝑓 cv
𝑉×𝑍 , 𝑓

cc
𝑉×𝑍)𝑍∈I𝑊 has arbitrarily

high convergence order on 𝑊 , but is not pointwise convergent of any order on 𝑊 .

Lemma 6.3.8. Let 𝑉 ⊂ R𝑛𝑣 ,𝑊 ⊂ R𝑛𝑤 be nonempty compact convex sets and 𝑓 : 𝑉 ×𝑊 →

R. Let (𝑓 cv
𝑉×𝑍)𝑍∈I𝑊 denote a scheme of convex relaxations of 𝑓 in 𝑊 with pointwise

convergence order 𝛾cv > 0 and corresponding prefactor 𝜏 cv ≥ 0 (on 𝑊 ). If there exist

constants 𝛾 ≥ 𝛾cv, 𝜏 ≥ 0, and 𝛿 > 0 such that for every 𝑍 ∈ I𝑊 with 𝑤(𝑍) ≤ 𝛿,

sup
(v,z)∈𝑉×𝑍

⃒⃒
𝑓(v, z) − 𝑓 cv

𝑉×𝑍(v, z)
⃒⃒
≤ 𝜏𝑤(𝑍)𝛾 ,
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then (𝑓 cv
𝑉×𝑍)𝑍∈I𝑊 converges pointwise with order 𝛾 to 𝑓 on 𝑊 .

Proof. Since (𝑓 cv
𝑉×𝑍)𝑍∈I𝑊 converges pointwise with order 𝛾cv to 𝑓 on 𝑊 which is compact,

there exists 𝑀 ≥ 0 such that

sup
(v,z)∈𝑉×𝑍

⃒⃒
𝑓(v, z) − 𝑓 cv

𝑉×𝑍(v, z)
⃒⃒
≤ 𝜏 cv𝑤(𝑍)𝛾

cv

≤ 𝑀, ∀𝑍 ∈ I𝑊.

The desired result then follows from the fact that for every 𝑍 ∈ I𝑊 ,

sup
(v,z)∈𝑉×𝑍

⃒⃒
𝑓(v, z) − 𝑓 cv

𝑉×𝑍(v, z)
⃒⃒
≤
(︂
𝜏 +

𝑀

𝛿𝛾

)︂
𝑤(𝑍)𝛾 .

Results similar to Lemma 6.3.8 are applicable to other notions of convergence order

presented in this chapter and will be used freely. Note that if the constant 𝛿 in Lemma 6.3.8

is relatively small, then the bound on the prefactor obtained can be relatively large making

the result weak on intervals with 𝑤(𝑍) ≫ 𝛿.

The next result shows that for schemes of relaxations, the notion of pointwise conver-

gence is stronger than the notion of convergence in Definition 6.3.3 (also see [38, Theorem 1]).

Lemma 6.3.9. Let 𝑉 ⊂ R𝑛𝑣 , 𝑊 ⊂ R𝑛𝑤 be nonempty compact convex sets, and (𝑓 cv
𝑉×𝑍)𝑍∈I𝑊

and (𝑓 cc
𝑉×𝑍)𝑍∈I𝑊 respectively denote schemes of convex and concave relaxations of a bounded

function 𝑓 : 𝑉 ×𝑊 → R in 𝑊 . If either scheme has pointwise convergence of order 𝛾 > 0,

it has convergence of order 𝛽 ≥ 𝛾.

Proof. The proof is similar to that of Lemma 2.3.36, and is therefore omitted.

The following lemma establishes mild sufficient conditions under which the scheme of

envelopes of a function is first-order pointwise convergent.

Lemma 6.3.10. Let 𝑊 ⊂ R𝑛𝑤 be a nonempty compact convex set and 𝑓 : 𝑊 → R be

Lipschitz continuous on 𝑊 . Let (𝑓 cv,env
𝑍 , 𝑓 cc,env

𝑍 )𝑍∈I𝑊 denote the scheme of envelopes of 𝑓

in 𝑊 . Then the scheme (𝑓 cv,env
𝑍 , 𝑓 cc,env

𝑍 )𝑍∈I𝑊 is at least first-order pointwise convergent on

𝑊 .
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Proof. We wish to show that there exists 𝜏 ≥ 0 such that for every 𝑍 ∈ I𝑊 ,

sup
z∈𝑍

⃒⃒
𝑓(z) − 𝑓 cv,env

𝑍 (z)
⃒⃒
≤ 𝜏𝑤(𝑍),

sup
z∈𝑍

⃒⃒
𝑓(z) − 𝑓 cc,env

𝑍 (z)
⃒⃒
≤ 𝜏𝑤(𝑍).

Consider the scheme of relaxations (𝑓 cv
𝑍 , 𝑓 cc

𝑍 )𝑍∈I𝑊 defined by

𝑓 cv
𝑍 (z) = min

w∈𝑍
𝑓(w), 𝑓 cc

𝑍 (z) = max
w∈𝑍

𝑓(w), ∀𝑍 ∈ I𝑊.

From the fact that 𝑓 cv
𝑍 and 𝑓 cc

𝑍 are convex and concave relaxations of 𝑓 in 𝑍 and the

assumption that 𝑓 is Lipschitz continuous, we have that (𝑓 cv
𝑍 , 𝑓 cc

𝑍 )𝑍∈I𝑊 is at least first-

order pointwise convergent on 𝑊 . The desired result then follows from the definition of

(𝑓 cv,env
𝑍 , 𝑓 cc,env

𝑍 )𝑍∈I𝑊 .

Remark 6.3.11. Locally Lipschitz continuous functions are Lipschitz continuous on com-

pact subsets of their domains (see Definition 2.2.4). Therefore, the assumption that the

functions 𝑓 , g, and h in Problem (P) are Lipschitz continuous on 𝑋 ×𝑌 is not particularly

strong when Assumption 6.2.1 is made.

The definitions provided thus far facilitate a theoretical analysis of the (reduced-space)

convergence order of a scheme of relaxations to a corresponding scalar function, or, in the

context of global optimization, provide a way to analyze theoretically the (reduced-space)

convergence order of a (lower) bounding scheme for an unconstrained problem. The subse-

quent definitions seek to extend naturally the analysis of convergence order to constrained

problems.

Definition 6.3.12. [Convergence Order of a Lower Bounding Scheme] Consider Prob-

lem (P) (satisfying Assumption 6.2.1). For any 𝑍 ∈ I𝑌 , let

ℱ(𝑍) = {(x,y) ∈ 𝑋 × 𝑍 : g(x,y) ≤ 0,h(x,y) = 0}

denote the feasible set of Problem (P) with y restricted to 𝑍.

Consider a scheme of lower bounding problems (ℒ(𝑍))𝑍∈I𝑌 for Problem (P). We asso-

ciate with the scheme (ℒ(𝑍))𝑍∈I𝑌 a scheme of pairs (𝒪(𝑍), ℐ𝐶(𝑍))𝑍∈I𝑌 , where (𝒪(𝑍))𝑍∈I𝑌
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is a scheme of lower bounds on the scheme of problems

(︂
min

(x,y)∈ℱ(𝑍)
𝑓(x,y)

)︂
𝑍∈I𝑌

and the

scheme (ℐ𝐶(𝑍))𝑍∈I𝑌 is a scheme of subsets of R𝑚𝐼+𝑚𝐸 that indicate the feasibility of the

lower bounding scheme (ℒ(𝑍))𝑍∈I𝑌 . The schemes (𝒪(𝑍))𝑍∈I𝑌 and (ℐ𝐶(𝑍))𝑍∈I𝑌 (are re-

quired to) satisfy

𝒪(𝑍) ≤ min
(x,z)∈ℱ(𝑍)

𝑓(x, z), ∀𝑍 ∈ I𝑌,

𝑑(ℐ𝐶(𝑍),R𝑚𝐼
− × {0}) ≤ 𝑑

⎛⎜⎝
⎡⎣g
h

⎤⎦(𝑋 × 𝑍),R𝑚𝐼
− × {0}

⎞⎟⎠ , ∀𝑍 ∈ I𝑌,

𝒪(𝑍) = +∞ ⇐⇒ 𝑑(ℐ𝐶(𝑍),R𝑚𝐼
− × {0}) > 0, ∀𝑍 ∈ I𝑌,

where

⎡⎣g
h

⎤⎦(𝑋×𝑍) denotes the image of 𝑋×𝑍 under the vector-valued function

⎡⎣g
h

⎤⎦. The

scheme of lower bounding problems (ℒ(𝑍))𝑍∈I𝑌 is said to have convergence of order 𝛽 > 0

at

1. a feasible point y ∈ 𝑌 if there exists 𝜏 ≥ 0 such that for every 𝑍 ∈ I𝑌 with y ∈ 𝑍,

min
(x,z)∈ℱ(𝑍)

𝑓(x, z) −𝒪(𝑍) ≤ 𝜏𝑤(𝑍)𝛽.

2. an infeasible point y ∈ 𝑌 if there exists 𝜏 ≥ 0 such that for every 𝑍 ∈ I𝑌 with y ∈ 𝑍,

𝑑

⎛⎜⎝
⎡⎣g
h

⎤⎦(𝑋 × 𝑍),R𝑚𝐼
− × {0}

⎞⎟⎠− 𝑑
(︀
ℐ𝐶(𝑍),R𝑚𝐼

− × {0}
)︀
≤ 𝜏𝑤(𝑍)𝛽.

The scheme of lower bounding problems is said to have convergence of order 𝛽 > 0 on 𝑌 if

it has convergence of order (at least) 𝛽 at each y ∈ 𝑌 , with constants 𝜏 and 𝜏 independent

of y.

Remark 6.3.13. Definition 6.3.12 is motivated by the requirements of a lower bounding

scheme to fathom feasible and infeasible regions in a branch-and-bound procedure [101]

(also see Definition 5.2.3). The first condition requires that the sequence of lower bounds

converges rapidly to the corresponding sequence of minimum objective values on nested

sequences of intervals converging to a feasible point of Problem (P). On nested sequences of
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intervals converging to an infeasible point of Problem (P), the second condition requires that

the sequence of lower bounding problems rapidly detect the (eventual) infeasibility of the

corresponding sequences of intervals for Problem (P). In simple terms, the first condition

can be used to require that feasible points with ‘good objective values’ are fathomed rather

easily, while the second condition can be used to require that infeasible points that are

‘close to the feasible region’, as determined by the distance function 𝑑, are fathomed with

relatively less effort (see Section 5.3 of Chapter 5). Note that Definition 6.3.12 reduces to

the definition of convergence order for unconstrained minimization in [238, Definition 1]

when 𝑛𝑥, 𝑚𝐼 , and 𝑚𝐸 are all set to zero.

Definition 6.3.12 can be readily applied to analyze the convergence order of a convex

relaxation-based lower bounding scheme as follows.

Suppose, for each 𝑍 ∈ I𝑌 , we associate a convex set 𝑋(𝑍) ⊂ R𝑛𝑥 such that 𝑋 ⊃

𝑋(𝑍) ⊃ ℱ𝑋(𝑍), where ℱ𝑋(𝑍) := {x ∈ 𝑋 : ∃y ∈ 𝑍 s.t. g(x,y) ≤ 0,h(x,y) = 0} denotes

the projection of ℱ(𝑍) on 𝑋. The set 𝑋(𝑍) could, for instance, correspond to an interval

subset of 𝑋 that is obtained using bounds tightening techniques [19] when y is restricted

to 𝑍 (the motivation for considering the set 𝑋(𝑍) in the definition of convergence order

below will become clear in Section 6.5). Note that the restriction 𝑋(𝑍) ⊃ ℱ𝑋(𝑍) can be

relaxed when optimality-based bounds tightening techniques are employed. Also note that

unless otherwise specified, we simply use 𝑋(𝑍) = 𝑋, ∀𝑍 ∈ I𝑌 .

By an abuse of Definition 6.3.1, let (𝑓 cv
𝑋(𝑍)×𝑍)𝑍∈I𝑌 and (gcv

𝑋(𝑍)×𝑍)𝑍∈I𝑌 denote continuous

schemes of convex relaxations of 𝑓 and g, respectively, in 𝑌 , and let (hcv
𝑋(𝑍)×𝑍 ,h

cc
𝑋(𝑍)×𝑍)𝑍∈I𝑌

denote a continuous scheme of relaxations of h in 𝑌 . For any 𝑍 ∈ I𝑌 , let

ℱcv(𝑍) =
{︁

(x,y) ∈ 𝑋(𝑍) × 𝑍 : gcv
𝑋(𝑍)×𝑍(x,y) ≤ 0,hcv

𝑋(𝑍)×𝑍(x,y) ≤ 0,hcc
𝑋(𝑍)×𝑍(x,y) ≥ 0

}︁
denote the feasible set of the convex relaxation-based lower bounding scheme. The lower

bounding scheme (ℒ(𝑍))𝑍∈I𝑌 with

(𝒪(𝑍))𝑍∈I𝑌 :=

(︂
min

(x,z)∈ℱcv(𝑍)
𝑓 cv
𝑋(𝑍)×𝑍(x, z)

)︂
𝑍∈I𝑌

,

(ℐ𝐶(𝑍))𝑍∈I𝑌 :=
(︁{︁

(v,w) ∈ R𝑚𝐼 × R𝑚𝐸 : v = gcv
𝑋(𝑍)×𝑍(x, z),hcv

𝑋(𝑍)×𝑍(x, z) ≤ w ≤ hcc
𝑋(𝑍)×𝑍(x, z)

for some (x, z) ∈ 𝑋(𝑍) × 𝑍
}︁)︁

𝑍∈I𝑌

(6.1)
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is said to have convergence of order 𝛽 > 0 at

1. a feasible point y ∈ 𝑌 if there exists 𝜏 ≥ 0 such that for every 𝑍 ∈ I𝑌 with y ∈ 𝑍,

min
(x,z)∈ℱ(𝑍)

𝑓(x, z) − min
(x,z)∈ℱcv(𝑍)

𝑓 cv
𝑋(𝑍)×𝑍(x, z) ≤ 𝜏𝑤(𝑍)𝛽.

2. an infeasible point y ∈ 𝑌 if there exists 𝜏 ≥ 0 such that for every 𝑍 ∈ I𝑌 with y ∈ 𝑍,

𝑑

⎛⎜⎝
⎡⎣g
h

⎤⎦(𝑋(𝑍) × 𝑍),R𝑚𝐼
− × {0}

⎞⎟⎠− 𝑑
(︀
ℐ𝐶(𝑍),R𝑚𝐼

− × {0}
)︀
≤ 𝜏𝑤(𝑍)𝛽,

where ℐ𝐶(𝑍) is defined by Equation (6.1).

Definition 6.3.12 can also be used to analyze the convergence orders of alternative lower

bounding schemes such as those based on Lagrangian duality (see Section 6.4.2).

6.4 Full-space branch-and-bound algorithms

In this section, we present some results on the convergence order of lower bounding schemes

for Problem (P) when both the 𝑋 and 𝑌 sets may be partitioned during the course of

the branch-and-bound algorithm (we consider schemes of relaxations in 𝑋 × 𝑌 instead of

schemes of relaxations in 𝑌 as was considered in Section 6.3). This section is divided into

two parts. First, we look at the convergence order of lower bounding schemes which utilize

convex and concave relaxations (see, for instance, [4, 124, 154, 225, 227] for techniques

to construct relaxations) of the objective and the constraints in their construction. Next,

the convergence order of duality-based lower bounding schemes (see, for instance, [69]) is

investigated.

6.4.1 Convex relaxation-based branch-and-bound

This section derives bounds on the convergence order of convex relaxation-based lower

bounding schemes by making assumptions on the convergence orders of the schemes of

relaxations used by the lower bounding schemes. The reader is directed to [38], [39], [174],

and [124] for details on how to construct schemes of (convex) relaxations that have the

requisite convergence orders.
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The following result establishes a lower bound on the convergence order of the lower

bounding scheme at infeasible points based on the convergence orders of schemes of convex

relaxations of the inequality constraints and schemes of relaxations of the equality con-

straints. Note that this is the primary result that is used to derive a lower bound on the

convergence order of such relaxation-based lower bounding schemes at infeasible points.

Lemma 6.4.1. Let (𝑔cv𝑗,𝑍)𝑍∈I(𝑋×𝑌 ), 𝑗 = 1, · · · , 𝑚𝐼 , denote continuous schemes of convex

relaxations of 𝑔1, · · · , 𝑔𝑚𝐼 , respectively, in 𝑋 × 𝑌 with pointwise convergence orders 𝛾cv𝑔,1 >

0, · · · , 𝛾cv𝑔,𝑚𝐼
> 0 and corresponding constants 𝜏 cv𝑔,1, · · · , 𝜏 cv𝑔,𝑚𝐼

, and (ℎcv𝑘,𝑍 , ℎ
cc
𝑘,𝑍)𝑍∈I(𝑋×𝑌 ), 𝑘 =

1, · · · ,𝑚𝐸 , denote continuous schemes of relaxations of ℎ1, · · · , ℎ𝑚𝐸 , respectively, in 𝑋×𝑌

with pointwise convergence orders 𝛾ℎ,1 > 0, · · · , 𝛾ℎ,𝑚𝐸
> 0 and corresponding constants

𝜏ℎ,1, · · · , 𝜏ℎ,𝑚𝐸
. Then, there exists 𝜏 ≥ 0 such that for every 𝑍 ∈ I(𝑋 × 𝑌 )

𝑑

⎛⎜⎝
⎡⎣g
h

⎤⎦(𝑍),R𝑚𝐼
− × {0}

⎞⎟⎠− 𝑑
(︀
ℐ𝐶(𝑍),R𝑚𝐼

− × {0}
)︀
≤ 𝜏𝑤(𝑍)𝛽,

where ℐ𝐶(𝑍) is defined as

ℐ𝐶(𝑍) := {(v,w) ∈ R𝑚𝐼 × R𝑚𝐸 : v = gcv
𝑍 (x,y),hcv

𝑍 (x,y) ≤ w ≤ hcc
𝑍 (x,y) for some (x,y) ∈ 𝑍} ,

and 𝛽 is defined as

𝛽 := min

{︂
min

𝑗∈{1,··· ,𝑚𝐼}
𝛾cv𝑔,𝑗 , min

𝑘∈{1,··· ,𝑚𝐸}
𝛾ℎ,𝑘

}︂
.

Proof. Suppose 𝑍 ∈ I(𝑋 × 𝑌 ). Then for each 𝑗 ∈ {1, · · · ,𝑚𝐼}, 𝑘 ∈ {1, · · · ,𝑚𝐸}, we have

from Definition 6.3.4 that

max
(x,y)∈𝑍

⃒⃒
𝑔𝑗(x,y) − 𝑔cv𝑗,𝑍(x,y)

⃒⃒
≤ 𝜏 cv𝑔,𝑗𝑤(𝑍)𝛾

cv
𝑔,𝑗 ,

max
(x,y)∈𝑍

⃒⃒
ℎ𝑘(x,y) − ℎcv𝑘,𝑍(x,y)

⃒⃒
≤ 𝜏ℎ,𝑘𝑤(𝑍)𝛾ℎ,𝑘 ,

max
(x,y)∈𝑍

⃒⃒
ℎ𝑘(x,y) − ℎcc𝑘,𝑍(x,y)

⃒⃒
≤ 𝜏ℎ,𝑘𝑤(𝑍)𝛾ℎ,𝑘 ,

since (𝑔cv𝑗,𝑍)𝑍∈I(𝑋×𝑌 ) and (ℎcv𝑘,𝑍 , ℎ
cc
𝑘,𝑍)𝑍∈I(𝑋×𝑌 ) converge pointwise to 𝑔𝑗 and ℎ𝑘, respectively,

on 𝑋 × 𝑌 with orders 𝛾cv𝑔,𝑗 and 𝛾ℎ,𝑘. Let (xcv
𝑍 ,ycv

𝑍 ) ∈ 𝑍 and (vcv
𝑍 ,wcv

𝑍 ) ∈ ℐ𝐶(𝑍) such that

vcv
𝑍 = gcv

𝑍 (xcv
𝑍 ,ycv

𝑍 ),hcv
𝑍 (xcv

𝑍 ,ycv
𝑍 ) ≤ wcv

𝑍 ≤ hcc
𝑍 (xcv

𝑍 ,ycv
𝑍 ), and 𝑑({(vcv

𝑍 ,wcv
𝑍 )} ,R𝑚𝐼

− × {0}) =
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𝑑
(︀
ℐ𝐶(𝑍),R𝑚𝐼

− × {0}
)︀
. The existence of (xcv

𝑍 ,ycv
𝑍 ) and (vcv

𝑍 ,wcv
𝑍 ) follows from the continuity

of gcv
𝑍 , hcv

𝑍 , and hcc
𝑍 and the compactness of 𝑍. We have

𝑑

⎛⎜⎝
⎡⎣g
h

⎤⎦(𝑍),R𝑚𝐼
− × {0}

⎞⎟⎠− 𝑑
(︀
ℐ𝐶(𝑍),R𝑚𝐼

− × {0}
)︀

≤ 𝑑

⎛⎝⎧⎨⎩
⎡⎣g
h

⎤⎦ (xcv
𝑍 ,ycv

𝑍 )

⎫⎬⎭ ,R𝑚𝐼
− × {0}

⎞⎠− 𝑑
(︀
{(vcv

𝑍 ,wcv
𝑍 )} ,R𝑚𝐼

− × {0}
)︀

≤ 𝑑

⎛⎝⎧⎨⎩
⎡⎣g
h

⎤⎦ (xcv
𝑍 ,ycv

𝑍 ) − (vcv
𝑍 ,wcv

𝑍 )

⎫⎬⎭ ,R𝑚𝐼
− × {0}

⎞⎠
≤ ‖g(xcv

𝑍 ,ycv
𝑍 ) − vcv

𝑍 ‖ + ‖h(xcv
𝑍 ,ycv

𝑍 ) −wcv
𝑍 ‖

≤ ‖g(xcv
𝑍 ,ycv

𝑍 ) − gcv
𝑍 (xcv

𝑍 ,ycv
𝑍 )‖+

max {‖h(xcv
𝑍 ,ycv

𝑍 ) − hcv
𝑍 (xcv

𝑍 ,ycv
𝑍 )‖, ‖h(xcv

𝑍 ,ycv
𝑍 ) − hcc

𝑍 (xcv
𝑍 ,ycv

𝑍 )‖}

≤ max
(x,y)∈𝑍

‖g(x,y) − gcv
𝑍 (x,y)‖+

max

{︂
max

(x,y)∈𝑍
‖h(x,y) − hcv

𝑍 (x,y)‖, max
(x,y)∈𝑍

‖h(x,y) − hcc
𝑍 (x,y)‖

}︂
≤

𝑚𝐼∑︁
𝑗=1

max
(x,y)∈𝑍

⃒⃒
𝑔𝑗(x,y) − 𝑔cv𝑗,𝑍(x,y)

⃒⃒
+

max

{︃
𝑚𝐸∑︁
𝑘=1

max
(x,y)∈𝑍

⃒⃒
ℎ𝑘(x,y) − ℎcv𝑘,𝑍(x,y)

⃒⃒
,

𝑚𝐸∑︁
𝑘=1

max
(x,y)∈𝑍

⃒⃒
ℎ𝑘(x,y) − ℎcc𝑘,𝑍(x,y)

⃒⃒}︃

≤
𝑚𝐼∑︁
𝑗=1

𝜏 cv𝑔,𝑗𝑤(𝑍)𝛾
cv
𝑔,𝑗 +

𝑚𝐸∑︁
𝑘=1

𝜏ℎ,𝑘𝑤(𝑍)𝛾ℎ,𝑘

≤

⎛⎝𝑚𝐼∑︁
𝑗=1

𝜏 cv𝑔,𝑗𝑤(𝑋 × 𝑌 )𝛾
cv
𝑔,𝑗−𝛽 +

𝑚𝐸∑︁
𝑘=1

𝜏ℎ,𝑘𝑤(𝑋 × 𝑌 )𝛾ℎ,𝑘−𝛽

⎞⎠𝑤(𝑍)𝛽,

where Corollary 2.3.7 is used to derive Step 2, Step 3 follows from the triangle inequality,

and Lemma 2.2.2 is used to derive Step 6. The desired result follows by choosing 𝜏 as

𝜏 =

⎛⎝𝑚𝐼∑︁
𝑗=1

𝜏 cv𝑔,𝑗𝑤(𝑋 × 𝑌 )𝛾
cv
𝑔,𝑗−𝛽 +

𝑚𝐸∑︁
𝑘=1

𝜏ℎ,𝑘𝑤(𝑋 × 𝑌 )𝛾ℎ,𝑘−𝛽

⎞⎠ .

Note that the conclusions of Lemma 6.4.1 hold even when the schemes of convex

relaxations (𝑔cv𝑗,𝑍)𝑍∈I(𝑋×𝑌 ), ∀𝑗 ∈ {1, · · · ,𝑚𝐼}, and (ℎcv𝑘,𝑍)𝑍∈I(𝑋×𝑌 ), ∀𝑘 ∈ {1, · · · ,𝑚𝐸},

are merely lower semicontinuous, and the schemes of concave relaxations (ℎcc𝑘,𝑍)𝑍∈I(𝑋×𝑌 ),
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∀𝑘 ∈ {1, · · · ,𝑚𝐸}, are merely upper semicontinuous.

Remark 6.4.2. The analysis in Lemma 6.4.1 can be refined under the following as-

sumptions. Let (𝑔cv𝑗,𝑍)𝑍∈I(𝑋×𝑌 ), 𝑗 = 1, · · · , 𝑚𝐼 , denote schemes of convex relaxations of

𝑔1, · · · , 𝑔𝑚𝐼 , respectively, in 𝑋 × 𝑌 with convergence orders 𝛽cv
𝑔,1 > 0, · · · , 𝛽cv

𝑔,𝑚𝐼
> 0 and

corresponding constants 𝜏 cv𝑔,1, · · · , 𝜏 cv𝑔,𝑚𝐼
, and let (ℎcv𝑘,𝑍 , ℎ

cc
𝑘,𝑍)𝑍∈I(𝑋×𝑌 ), 𝑘 = 1, · · · ,𝑚𝐸 , de-

note schemes of relaxations of ℎ1, · · · , ℎ𝑚𝐸 , respectively, in 𝑋 × 𝑌 with convergence orders

𝛽ℎ,1 > 0, · · · , 𝛽ℎ,𝑚𝐸
> 0 and corresponding constants 𝜏ℎ,1, · · · , 𝜏ℎ,𝑚𝐸

. Suppose for each

interval 𝑍 ∈ I(𝑋 × 𝑌 ), there exists (x𝑍 ,y𝑍) ∈ 𝑍 such that:

𝑑
(︀
{(x𝑍 ,y𝑍)} ,R𝑚𝐼

− × {0}
)︀

= 𝑑

⎛⎜⎝
⎡⎣g
h

⎤⎦(𝑍),R𝑚𝐼
− × {0}

⎞⎟⎠ ,

(x𝑍 ,y𝑍) ∈ arg min
(x,y)∈𝑍

𝑔𝑗(x,y), ∀𝑗 ∈ {1, · · · ,𝑚𝐼}, and

either (x𝑍 ,y𝑍) ∈ arg min
(x,y)∈𝑍

ℎ𝑘(x,y), or (x𝑍 ,y𝑍) ∈ arg max
(x,y)∈𝑍

ℎ𝑘(x,y), ∀𝑘 ∈ {1, · · · ,𝑚𝐸}.

Then, there exists 𝜏 ≥ 0 such that for every 𝑍 ∈ I(𝑋 × 𝑌 )

𝑑

⎛⎜⎝
⎡⎣g
h

⎤⎦(𝑍),R𝑚𝐼
− × {0}

⎞⎟⎠− 𝑑
(︀
ℐ𝐶(𝑍),R𝑚𝐼

− × {0}
)︀
≤ 𝜏𝑤(𝑍)𝛽,

where 𝛽 is defined as 𝛽 := min

{︂
min

𝑗∈{1,··· ,𝑚𝐼}
𝛽cv
𝑔,𝑗 , min

𝑘∈{1,··· ,𝑚𝐸}
𝛽ℎ,𝑘

}︂
. Note that the above as-

sumptions are trivially satisfied when Problem (P) only has one inequality constraint (cf.

Example 6.4.3).

The following example demonstrates the importance of a sufficiently high convergence

order at nearly-feasible points (also see [108, Example 4]).

Example 6.4.3. Let 𝑋 = [0, 0], 𝑌 = [−1, 1], 𝑚𝐼 = 1, and 𝑚𝐸 = 0 with 𝑓(𝑥, 𝑦) = 𝑦 and

𝑔(𝑥, 𝑦) = −𝑦. For any [0, 0] × [𝑦L, 𝑦U] =: 𝑍 ∈ I(𝑋 × 𝑌 ), let 𝑓 cv
𝑍 (𝑥, 𝑦) = 𝑦, 𝑔cv𝑍 (𝑥, 𝑦) =

−𝑦U − (𝑦U − 𝑦L)𝛼 for some constant 𝛼 > 0. Note that (𝑓 cv
𝑍 )𝑍∈I(𝑋×𝑌 ) has arbitrarily

high pointwise convergence order and arbitrarily high convergence order on 𝑋×𝑌 , whereas

(𝑔cv𝑍 )𝑍∈I(𝑋×𝑌 ) has min{𝛼, 1}-order pointwise convergence and 𝛼-order convergence on 𝑋×𝑌 .

Pick 𝛿 ∈ (0, 1) and let 𝜀 ∈ (0, 𝛿). Let 𝑦L = −𝛿 − 𝜀, 𝑦U = −𝛿 + 𝜀. The width of 𝑍 is

𝑤(𝑍) = 2𝜀. We have 𝑔(𝑍) = [𝛿 − 𝜀, 𝛿 + 𝜀], which yields 𝑑(𝑔(𝑍),R𝑚𝐼
− ) = 𝛿 − 𝜀 (this confirms
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that 𝑔 is infeasible at each (𝑥, 𝑦) ∈ 𝑍). Furthermore, 𝑔cv𝑍 (𝑍) = [𝛿− 𝜀− (2𝜀)𝛼, 𝛿− 𝜀− (2𝜀)𝛼],

which yields 𝑑(𝑔cv𝑍 (𝑍),R𝑚𝐼
− ) = max{0, 𝛿 − 𝜀 − (2𝜀)𝛼}. Therefore, for 𝜀 sufficiently small,

the lower bounding problem detects the infeasibility of 𝑍 and we have 𝑑(𝑔(𝑍),R𝑚𝐼
− ) −

𝑑(𝑔cv𝑍 (𝑍),R𝑚𝐼
− ) = (2𝜀)𝛼, which implies that convergence of the lower bounding scheme at

the infeasible point (0,−𝛿) is at most of order 𝛼.

For 𝛼 = 1, the maximum value of 𝜀 for which the interval 𝑍 can be fathomed by

infeasibility by the lower bounding scheme is 𝜀 = 𝛿
3 , whereas for 𝛼 = 0.5, the maximum

value of 𝜀 for which the interval 𝑍 can be fathomed by infeasibility by the lower bounding

scheme is 𝜀 =
(︁
−
√
2+

√
2
√
1+2𝛿

2

)︁2
, which is 𝑂(𝛿2) for 𝛿 ≪ 1.

Therefore, a lower bounding scheme with a low convergence order at infeasible points

may result in a large number of partitions on nearly-feasible points before they are fathomed,

thereby resulting in the cluster problem.

The next result shows that under mild assumptions on the objective, the constraints,

and the schemes of relaxations, first-order convergence to a global minimum is guaranteed.

Theorem 6.4.4. Consider Problem (P). Suppose 𝑓 , 𝑔𝑗 , 𝑗 = 1, · · · ,𝑚𝐼 , and ℎ𝑘, 𝑘 =

1, · · · ,𝑚𝐸 , are Lipschitz continuous on 𝑋×𝑌 with Lipschitz constants 𝑀𝑓 , 𝑀𝑔,1, · · · ,𝑀𝑔,𝑚𝐼 ,

𝑀ℎ,1, · · · ,𝑀ℎ,𝑚𝐸
, respectively. Let (𝑓 cv

𝑍 )𝑍∈I(𝑋×𝑌 ), (𝑔cv𝑗,𝑍)𝑍∈I(𝑋×𝑌 ), 𝑗 = 1, · · · ,𝑚𝐼 , denote

continuous schemes of convex relaxations of 𝑓 , 𝑔1, · · · , 𝑔𝑚𝐼 , respectively, in 𝑋 × 𝑌 with

pointwise convergence orders 𝛾cv𝑓 ≥ 1, 𝛾cv𝑔,1 ≥ 1, · · · , 𝛾cv𝑔,𝑚𝐼
≥ 1 and corresponding constants

𝜏 cv𝑓 , 𝜏 cv𝑔,1, · · · , 𝜏 cv𝑔,𝑚𝐼
. Let (ℎcv𝑘,𝑍 , ℎ

cc
𝑘,𝑍)𝑍∈I(𝑋×𝑌 ), 𝑘 = 1, · · · ,𝑚𝐸 , denote continuous schemes

of relaxations of ℎ1, · · · , ℎ𝑚𝐸 , respectively, in 𝑋 × 𝑌 with pointwise convergence orders

𝛾ℎ,1 ≥ 1, · · · , 𝛾ℎ,𝑚𝐸
≥ 1 and corresponding constants 𝜏ℎ,1, · · · , 𝜏ℎ,𝑚𝐸

. The scheme of lower

bounding problems (ℒ(𝑍))𝑍∈I(𝑋×𝑌 ) with

(𝒪(𝑍))𝑍∈I(𝑋×𝑌 ) :=

(︂
min

(x,y)∈ℱcv(𝑍)
𝑓 cv
𝑍 (x,y)

)︂
𝑍∈I(𝑋×𝑌 )

,

(ℐ𝐶(𝑍))𝑍∈I(𝑋×𝑌 ) :=
(︀{︀

(v,w) ∈ R𝑚𝐼 × R𝑚𝐸 : v = gcv
𝑍 (x,y),hcv

𝑍 (x,y) ≤ w ≤ hcc
𝑍 (x,y)

for some (x,y) ∈ 𝑍
}︀)︀

𝑍∈I(𝑋×𝑌 )

is at least first-order convergent on 𝑋 × 𝑌 .

Proof. Lemma 6.4.1 establishes first-order convergence at infeasible points (x,y) ∈ 𝑋 × 𝑌
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with the prefactor 𝜏 independent of (x,y); therefore, it suffices to prove first-order conver-

gence at feasible points (x,y) ∈ 𝑋 × 𝑌 with a prefactor independent of (x,y).

In order to do so, suppose ℱ(𝑋 × 𝑌 ) ̸= ∅ and consider 𝑍 ∈ I(𝑋 × 𝑌 ) such that

𝑍 ∩ℱ(𝑋×𝑌 ) ̸= ∅. Let ℱcv(𝑍) := {(x,y) ∈ 𝑍 : gcv
𝑍 (x,y) ≤ 0,hcv

𝑍 (x,y) ≤ 0,hcc
𝑍 (x,y) ≥ 0}

denote the feasible set of the convex relaxation-based lower bounding scheme. Then

min
(x,y)∈ℱ(𝑍)

𝑓(x,y) − min
(x,y)∈ℱcv(𝑍)

𝑓 cv
𝑍 (x,y)

=

(︂
min

(x,y)∈ℱ(𝑍)
𝑓(x,y) − min

(x,y)∈ℱcv(𝑍)
𝑓(x,y)

)︂
+

(︂
min

(x,y)∈ℱcv(𝑍)
𝑓(x,y) − min

(x,y)∈ℱcv(𝑍)
𝑓 cv
𝑍 (x,y)

)︂
≤
(︂

min
(x,y)∈ℱ(𝑍)

𝑓(x,y) − min
(x,y)∈ℱcv(𝑍)

𝑓(x,y)

)︂
+ max

(x,y)∈ℱcv(𝑍)
|𝑓(x,y) − 𝑓 cv

𝑍 (x,y)| , (6.2)

where the above inequality follows from Lemma 2.3.35. The second term in Equation (6.2)

can be bounded from above as

max
(x,y)∈ℱcv(𝑍)

|𝑓(x,y) − 𝑓 cv
𝑍 (x,y)| ≤ 𝜏 cv𝑓 𝑤(𝑍)𝛾

cv
𝑓 ,

since (𝑓 cv
𝑍 )𝑍∈I(𝑋×𝑌 ) converges pointwise to 𝑓 on 𝑋 × 𝑌 with order 𝛾cv𝑓 ≥ 1.

Let (x*
𝑍 ,y

*
𝑍) ∈ arg min

(x,y)∈ℱ(𝑍)
𝑓(x,y) and (xcv

𝑍 ,ycv
𝑍 ) ∈ arg min

(x,y)∈ℱcv(𝑍)
𝑓(x,y). The first term in

Equation (6.2) can be bounded from above as

(︂
min

(x,y)∈ℱ(𝑍)
𝑓(x,y) − min

(x,y)∈ℱcv(𝑍)
𝑓(x,y)

)︂
= 𝑓(x*

𝑍 ,y
*
𝑍) − 𝑓(xcv

𝑍 ,ycv
𝑍 )

≤ 𝑀𝑓

√︀
𝑛𝑥 + 𝑛𝑦 𝑤(𝑍),

where the last step follows from the Lipschitz continuity of 𝑓 on 𝑋 × 𝑌 and Lemma 2.2.2.

Plugging in the above bounds in Equation (6.2), we get

min
(x,y)∈ℱ(𝑍)

𝑓(x,y) − min
(x,y)∈ℱcv(𝑍)

𝑓 cv
𝑍 (x,y) ≤

(︁
𝑀𝑓

√︀
𝑛𝑥 + 𝑛𝑦 + 𝜏 cv𝑓 𝑤(𝑋 × 𝑌 )𝛾

cv
𝑓 −1

)︁
𝑤(𝑍),

which establishes first-order convergence of (ℒ(𝑍))𝑍∈I(𝑋×𝑌 ) at feasible points (x,y) ∈ 𝑋×𝑌

with the prefactor independent of (x,y).

The following examples show that the convergence order of the lower bounding scheme

may be as low as one under the assumptions of Theorem 6.4.4.

Example 6.4.5. Let 𝑋 = [−1, 1], 𝑌 = [−1, 1], 𝑚𝐼 = 1, and 𝑚𝐸 = 0 with 𝑓(𝑥, 𝑦) = 2𝑥+ 2𝑦
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and 𝑔(𝑥, 𝑦) = −𝑥−𝑦. For any [𝑥L, 𝑥U]×[𝑦L, 𝑦U] =: 𝑍 ∈ I(𝑋×𝑌 ), let 𝑓 cv
𝑍 (𝑥, 𝑦) = 2𝑥+2𝑦 and

𝑔cv𝑍 (𝑥, 𝑦) = −𝑥U−𝑦U. The scheme (𝑓 cv
𝑍 )𝑍∈I(𝑋×𝑌 ) has arbitrarily high pointwise convergence

order on 𝑋×𝑌 and the scheme (𝑔cv𝑍 )𝑍∈I(𝑋×𝑌 ) has first-order pointwise convergence on 𝑋×𝑌 .

Note that (𝑔cv𝑍 )𝑍∈I(𝑋×𝑌 ) has arbitrarily high convergence order on 𝑋 × 𝑌 .

Let 𝑥L = 𝑦L = −𝜀, 𝑥U = 𝑦U = 𝜀 with 0 < 𝜀 ≤ 1. The width of 𝑍 is 𝑤(𝑍) = 2𝜀.

The optimal objective value of Problem (P) on 𝑍 is 0, while the optimal objective of the

lower bounding problem on 𝑍 is −4𝜀. Convergence at the point (0, 0) is, therefore, at most

first-order.

Example 6.4.6. Let 𝑋 = [−1, 1], 𝑌 = [−1, 1], 𝑚𝐼 = 1, and 𝑚𝐸 = 0 with 𝑓(𝑥, 𝑦) = 2𝑥+ 2𝑦

and 𝑔(𝑥, 𝑦) = −𝑥−𝑦. For any [𝑥L, 𝑥U]× [𝑦L, 𝑦U] =: 𝑍 ∈ I(𝑋×𝑌 ), let 𝑓 cv
𝑍 (𝑥, 𝑦) = 2𝑥L +2𝑦L

and 𝑔cv𝑍 (𝑥, 𝑦) = −𝑥 − 𝑦. The scheme (𝑓 cv
𝑍 )𝑍∈I(𝑋×𝑌 ) has first-order pointwise convergence

on 𝑋 × 𝑌 and the scheme (𝑔cv𝑍 )𝑍∈I(𝑋×𝑌 ) has arbitrarily high pointwise convergence order

on 𝑋 × 𝑌 . Note that (𝑓 cv
𝑍 )𝑍∈I(𝑋×𝑌 ) has arbitrarily high convergence order on 𝑋 × 𝑌 .

Let 𝑥L = 𝑦L = −𝜀, 𝑥U = 𝑦U = 𝜀 with 0 < 𝜀 ≤ 1. The width of 𝑍 is 𝑤(𝑍) = 2𝜀.

The optimal objective value of Problem (P) on 𝑍 is 0, while the optimal objective of the

lower bounding problem on 𝑍 is −4𝜀. Convergence at the point (0, 0) is, therefore, at most

first-order.

Example 6.4.7. Let 𝑋 = [0, 0], 𝑌 = [−1, 1], 𝑚𝐼 = 1, and 𝑚𝐸 = 0 with 𝑓(𝑥, 𝑦) = 𝑦 and

𝑔(𝑥, 𝑦) = min{−0.5𝑦,−𝑦}. For any [0, 0] × [𝑦L, 𝑦U] =: 𝑍 ∈ I(𝑋 × 𝑌 ) with 𝑦L < 0 < 𝑦U, let

𝑓 cv
𝑍 (𝑥, 𝑦) = 𝑦, 𝑔cv𝑍 (𝑥, 𝑦) = −𝑦U − 0.5𝑦L

𝑦U − 𝑦L
𝑦 +

0.5𝑦L𝑦U

𝑦U − 𝑦L
.

Note that 𝑔cv𝑍 corresponds to the convex envelope of 𝑔 on 𝑍. The scheme (𝑓 cv
𝑍 )𝑍∈I(𝑋×𝑌 ) has

arbitrarily high pointwise convergence order on 𝑋 × 𝑌 and the scheme (𝑔cv𝑍 )𝑍∈I(𝑋×𝑌 ) has

first-order pointwise convergence on 𝑋 × 𝑌 . Note that (𝑔cv𝑍 )𝑍∈I(𝑋×𝑌 ) has arbitrarily high

convergence order on 𝑋 × 𝑌 .

Let 𝑦L = −𝜀, 𝑦U = 𝜀 with 0 < 𝜀 ≤ 1. The width of 𝑍 is 𝑤(𝑍) = 2𝜀. The optimal

objective value of Problem (P) on 𝑍 is 0, while the optimal objective of the lower bounding

problem on 𝑍 is − 𝜀
3 . Convergence at the point (0, 0) is, therefore, at most first-order.

Example 6.4.8. Let 𝑋 = [0, 0], 𝑌 = [−1, 1], 𝑚𝐼 = 0, and 𝑚𝐸 = 1 with 𝑓(𝑥, 𝑦) = 𝑦 and
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ℎ(𝑥, 𝑦) = min{−0.5𝑦,−𝑦}. For any [0, 0] × [𝑦L, 𝑦U] =: 𝑍 ∈ I(𝑋 × 𝑌 ) with 𝑦L < 0 < 𝑦U, let

𝑓 cv
𝑍 (𝑥, 𝑦) = 𝑦, ℎcv𝑍 (𝑥, 𝑦) = −𝑦U − 0.5𝑦L

𝑦U − 𝑦L
𝑦 +

0.5𝑦L𝑦U

𝑦U − 𝑦L
, ℎcc𝑍 (𝑥, 𝑦) = min{−0.5𝑦,−𝑦}.

Note that ℎcv𝑍 and ℎcc𝑍 correspond to the convex and concave envelopes of ℎ on 𝑍, respec-

tively. The scheme (𝑓 cv
𝑍 )𝑍∈I(𝑋×𝑌 ) has arbitrarily high pointwise convergence order on 𝑋×𝑌

and the scheme (ℎcv𝑍 , ℎcc𝑍 )𝑍∈I(𝑋×𝑌 ) has first-order pointwise convergence on 𝑋 × 𝑌 . Note

that (ℎcv𝑍 , ℎcc𝑍 )𝑍∈I(𝑋×𝑌 ) has arbitrarily high convergence order on 𝑋 × 𝑌 .

Let 𝑦L = −𝜀, 𝑦U = 𝜀 with 0 < 𝜀 ≤ 1. The width of 𝑍 is 𝑤(𝑍) = 2𝜀. The optimal

objective value of Problem (P) on 𝑍 is 0, while the optimal objective of the lower bounding

problem on 𝑍 is − 𝜀
3 . Convergence at the point (0, 0) is, therefore, at most first-order.

Despite the fact that the schemes of relaxations used in Examples 6.4.7 and 6.4.8 cor-

respond to the envelopes of the functions involved (unlike those used in Examples 6.4.5

and 6.4.6), we only have first-order convergence at the global minimizer (0, 0). However,

the reader can verify that first-order convergent lower bounding schemes may be sufficient

to mitigate the cluster problem in Examples 6.4.7 and 6.4.8, whereas at least second-order

convergent lower bounding schemes are required to mitigate the cluster problem in Exam-

ples 6.4.5 and 6.4.6 (see Chapter 5). Furthermore, Examples 6.4.5 to 6.4.8 illustrate that

high convergence orders of schemes of relaxations of the objective and constraints do not

guarantee a high convergence order of the lower bounding scheme (cf. Remark 6.4.2) at

constrained minima (which may be required to mitigate clustering). This is because a high

convergence order of a scheme of relaxations of the objective function may only place a

restriction on the gap between the minimum value of the relaxation and the minimum value

of the objective function without taking the feasible region into account; this restriction

may not be sufficient in a constrained setting because the gap between the minimum value

of the relaxed problem and the minimum value of the original problem may be relatively

large when their respective feasible regions are taken into consideration (see Example 6.4.6

for an extreme case). Similarly, a high convergence order of a scheme of relaxations of the

constraints may not exclude infeasible regions of the search space in which the objective

function value is less than the optimal (constrained) objective value (Example 6.4.5 provides

an extreme case), potentially leading to relatively large underestimation gaps.

The following result proves second-order convergence at certain points in 𝑋 × 𝑌 .
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Theorem 6.4.9. Consider Problem (P). Suppose 𝑓 is Lipschitz continuous on 𝑋×𝑌 with

Lipschitz constant 𝑀𝑓 . Let (𝑓 cv
𝑍 )𝑍∈I(𝑋×𝑌 ) denote a continuous scheme of convex relaxations

of 𝑓 with pointwise convergence order 𝛾cv𝑓 ≥ 2 and corresponding constant 𝜏 cv𝑓 .

Suppose there exists a feasible point (xf,yf) ∈ ℱ(𝑋 ×𝑌 ), continuous schemes of convex

relaxations (𝑔cv𝑗,𝑍)𝑍∈I(𝑋×𝑌 ), 𝑗 = 1, · · · ,𝑚𝐼 , of 𝑔1, · · · , 𝑔𝑚𝐼 , respectively, in 𝑋×𝑌 , continuous

schemes of relaxations (ℎcv𝑘,𝑍 , ℎ
cc
𝑘,𝑍)𝑍∈I(𝑋×𝑌 ), 𝑘 = 1, · · · ,𝑚𝐸 , of ℎ1, · · · , ℎ𝑚𝐸 , respectively,

in 𝑋 × 𝑌 , and a constant 𝛿 > 0 such that for each 𝑍 ∈ I(𝑋 × 𝑌 ) with (xf,yf) ∈ 𝑍 and

𝑤(𝑍) ≤ 𝛿, we have

𝑑

(︃
ℱ(𝑍), arg min

(x,y)∈ℱcv(𝑍)
𝑓(x,y)

)︃
≤ 𝜏𝑤(𝑍)𝛾 (6.3)

for constants 𝛾 ≥ 2 and 𝜏 ≥ 0. Then, the lower bounding scheme (ℒ(𝑍))𝑍∈I(𝑋×𝑌 ) with

(𝒪(𝑍))𝑍∈I(𝑋×𝑌 ) :=

(︂
min

(x,y)∈ℱcv(𝑍)
𝑓 cv
𝑍 (x,y)

)︂
𝑍∈I(𝑋×𝑌 )

,

(ℐ𝐶(𝑍))𝑍∈I(𝑋×𝑌 ) :=
(︀{︀

(v,w) ∈ R𝑚𝐼 × R𝑚𝐸 : v = gcv
𝑍 (x,y),hcv

𝑍 (x,y) ≤ w ≤ hcc
𝑍 (x,y)

for some (x,y) ∈ 𝑍
}︀)︀

𝑍∈I(𝑋×𝑌 )

is at least min{𝛾cv𝑓 , 𝛾}-order convergent at (xf,yf).

Proof. Suppose 𝑍 ∈ I(𝑋 × 𝑌 ) such that (xf,yf) ∈ 𝑍 and 𝑤(𝑍) ≤ 𝛿. From the proof of

Theorem 6.4.4, we have

min
(x,y)∈ℱ(𝑍)

𝑓(x,y) − min
(x,y)∈ℱcv(𝑍)

𝑓 cv
𝑍 (x,y)

≤
(︂

min
(x,y)∈ℱ(𝑍)

𝑓(x,y) − min
(x,y)∈ℱcv(𝑍)

𝑓(x,y)

)︂
+

(︂
min

(x,y)∈ℱcv(𝑍)
𝑓(x,y) − min

(x,y)∈ℱcv(𝑍)
𝑓 cv
𝑍 (x,y)

)︂
≤
(︂

min
(x,y)∈ℱ(𝑍)

𝑓(x,y) − min
(x,y)∈ℱcv(𝑍)

𝑓(x,y)

)︂
+ 𝜏 cv𝑓 𝑤(𝑍)𝛾

cv
𝑓 . (6.4)

Consider (x*
𝑍 ,y

*
𝑍) ∈ arg min

(x,y)∈ℱ(𝑍)
𝑓(x,y). Choose a feasible point (x̂𝑍 , ŷ𝑍) ∈ ℱ(𝑍) and

(xcv
𝑍 ,ycv

𝑍 ) ∈ arg min
(x,y)∈ℱcv(𝑍)

𝑓(x,y) such that 𝑑 ({(x̂𝑍 , ŷ𝑍)}, {(xcv
𝑍 ,ycv

𝑍 )}) ≤ 𝜏𝑤(𝑍)𝛾 (note that

(x̂𝑍 , ŷ𝑍) and (xcv
𝑍 ,ycv

𝑍 ) exist by assumption). The first term in Equation (6.4) can be

249



bounded from above as

min
(x,y)∈ℱ(𝑍)

𝑓(x,y) − min
(x,y)∈ℱcv(𝑍)

𝑓(x,y) = 𝑓(x*
𝑍 ,y

*
𝑍) − 𝑓(xcv

𝑍 ,ycv
𝑍 )

≤ 𝑓(x̂𝑍 , ŷ𝑍) − 𝑓(xcv
𝑍 ,ycv

𝑍 )

≤ 𝑀𝑓 𝑑 ({(x̂𝑍 , ŷ𝑍)}, {(xcv
𝑍 ,ycv

𝑍 )})

≤ 𝑀𝑓𝜏𝑤(𝑍)𝛾 ,

where Step 3 above follows from the Lipschitz continuity of 𝑓 . Therefore, from Equa-

tion (6.4),

min
(x,y)∈ℱ(𝑍)

𝑓(x,y) − min
(x,y)∈ℱcv(𝑍)

𝑓 cv
𝑍 (x,y)

≤
(︁
𝑀𝑓𝜏𝑤(𝑋 × 𝑌 )𝛾−min{𝛾cv

𝑓 ,𝛾} + 𝜏 cv𝑓 𝑤(𝑋 × 𝑌 )𝛾
cv
𝑓 −min{𝛾cv

𝑓 ,𝛾}
)︁
𝑤(𝑍)min{𝛾cv

𝑓 ,𝛾}.

The desired result follows by analogy to Lemma 6.3.8 by noting that the lower bounding

scheme (ℒ(𝑍))𝑍∈I(𝑋×𝑌 ) has convergence of order at least one at (xf,yf) from Theorem 6.4.4.

The key assumption of Theorem 6.4.9, Equation (6.3), is rather unwieldy since verifying

it involves the solution of the optimization problem min
(x,y)∈ℱcv(𝑍)

𝑓(x,y) for each 𝑍 ∈ I(𝑋×𝑌 )

with (xf,yf) ∈ 𝑍 and 𝑤(𝑍) ≤ 𝛿. The following more restrictive (but potentially more easily

verifiable) condition implies Equation (6.3):

∃𝛿 > 0, 𝜏 ≥ 0, 𝛾 ≥ 2 : 𝑑𝐻(ℱ(𝑍),ℱcv(𝑍)) ≤ 𝜏𝑤(𝑍)𝛾 , ∀𝑍 ∈ I(𝑋 × 𝑌 ) with

(xf,yf) ∈ 𝑍 and 𝑤(𝑍) ≤ 𝛿.

The following example shows that the convergence order may be as low as two under the

assumptions of Theorem 6.4.9.

Example 6.4.10. Let 𝑋 = [−1, 1], 𝑌 = [−1, 1], 𝑚𝐼 = 1, and 𝑚𝐸 = 0 with 𝑓(𝑥, 𝑦) = −𝑥𝑦

and 𝑔(𝑥, 𝑦) = 𝑥 + 𝑦 − 1. For any [𝑥L, 𝑥U] × [𝑦L, 𝑦U] =: 𝑍 ∈ I(𝑋 × 𝑌 ), let

𝑓 cv
𝑍 (𝑥, 𝑦) = max{−𝑥U𝑦 + (−𝑥)𝑦L − (−𝑥U)𝑦L,−𝑥L𝑦 + (−𝑥)𝑦U − (−𝑥L)𝑦U},

𝑔cv𝑍 (𝑥, 𝑦) = 𝑥 + 𝑦 − 1.
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The scheme (𝑓 cv
𝑍 )𝑍∈I(𝑋×𝑌 ), which corresponds to the scheme of convex envelopes of 𝑓 on

𝑋 × 𝑌 , has (at least) second-order pointwise convergence on 𝑋 × 𝑌 (see [38, Theorem 10])

and the scheme (𝑔cv𝑍 )𝑍∈I(𝑋×𝑌 ) has arbitrarily high pointwise convergence order on 𝑋 × 𝑌 .

Note that (𝑓 cv
𝑍 )𝑍∈I(𝑋×𝑌 ) has arbitrarily high convergence order on 𝑋 × 𝑌 .

Let 𝑥L = 𝑦L = 0.5−𝜀, 𝑥U = 𝑦U = 0.5+𝜀 with 0 < 𝜀 ≤ 0.5. The width of 𝑍 is 𝑤(𝑍) = 2𝜀.

The optimal objective value of Problem (P) on 𝑍 is −0.25, while 𝑓 cv
𝑍 (0.5, 0.5) = −0.25− 𝜀2

and 𝑔cv𝑍 (0.5, 0.5) = 0. Convergence at the point (0.5, 0.5) is, therefore, at most second-order.

Note that the use of feasibility-based bounds tightening techniques is ineffective in boost-

ing the convergence order for the above example. This is in contrast to the similar Exam-

ple 6.5.19 where the use of constraint propagation techniques improves the convergence

order of reduced-space branch-and-bound algorithms (also see Examples 6.5.21 and 6.5.22

in Section 6.5.2).

Remark 6.4.11. Theorem 6.4.9 requires, at a minimum, second-order pointwise conver-

gence of the scheme of convex relaxations (𝑓 cv
𝑍 )𝑍∈I(𝑋×𝑌 ), which cannot be achieved in gen-

eral by relaxations constructed purely using interval arithmetic [172]. Consequently, lower

bounding schemes constructed using interval arithmetic can, in general, only be expected

to possess first-order convergence (see Theorem 6.4.4). When the functions 𝑓 , g, and h

are twice continuously differentiable, references [191] and [224] imply that polyhedral outer-

approximation schemes of second-order pointwise convergent schemes of relaxations, that

are employed by most state-of-the-art software for nonconvex problems (P) [19, 162, 225],

also produce second-order pointwise convergent schemes of relaxations.

The following corollary of Theorem 6.4.9 shows that second-order convergence is guar-

anteed at points (x,y) ∈ 𝑋 × 𝑌 such that g(x,y) < 0, assuming Problem (P) contains no

equality constraints (note the weaker assumption on the pointwise convergence order of the

scheme (𝑓 cv
𝑍 )𝑍∈I(𝑋×𝑌 ), and the slight abuse of notation in the description of ℐ𝐶(𝑍) where

we simply discard the components corresponding to h since 𝑚𝐸 = 0). A consequence of

the corollary is that second-order convergence to unconstrained minima is guaranteed.

Corollary 6.4.12. Consider Problem (P) with 𝑚𝐸 = 0. Suppose 𝑓 is Lipschitz continuous

on 𝑋 × 𝑌 . Let (𝑓 cv
𝑍 )𝑍∈I(𝑋×𝑌 ) denote a continuous scheme of convex relaxations of 𝑓 in

𝑋 × 𝑌 with pointwise convergence order 𝛾cv𝑓 ≥ 1, and convergence order 𝛽cv
𝑓 ≥ 2 with
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corresponding constant 𝜏 cv𝑓 . Furthermore, let (𝑔cv𝑗,𝑍)𝑍∈I(𝑋×𝑌 ), 𝑗 = 1, · · · ,𝑚𝐼 , denote con-

tinuous schemes of convex relaxations of 𝑔1, · · · , 𝑔𝑚𝐼 , respectively, in 𝑋 ×𝑌 with pointwise

convergence orders 𝛾cv𝑔,1 > 0, · · · , 𝛾cv𝑔,𝑚𝐼
> 0 and corresponding constants 𝜏 cv𝑔,1, · · · , 𝜏 cv𝑔,𝑚𝐼

.

Suppose (xS,yS) ∈ 𝑋 × 𝑌 is such that g(xS,yS) < 0 (i.e., (xS,yS) is a Slater point, cf.

Definition 2.3.20). Then, the scheme of lower bounding problems (ℒ(𝑍))𝑍∈I(𝑋×𝑌 ) with

(𝒪(𝑍))𝑍∈I(𝑋×𝑌 ) :=

(︂
min

(x,y)∈ℱcv(𝑍)
𝑓 cv
𝑍 (x,y)

)︂
𝑍∈I(𝑋×𝑌 )

,

(ℐ𝐶(𝑍))𝑍∈I(𝑋×𝑌 ) := (gcv
𝑍 (𝑍))𝑍∈I(𝑋×𝑌 )

is at least 𝛽cv
𝑓 -order convergent at (xS,yS).

Proof. Since we are interested in the convergence order at the feasible point (xS,yS), it

suffices to show that the assumptions of Theorem 6.4.9 hold.

Let 𝑔𝑗(x
S,yS) = −𝜀𝑗 < 0, 𝑗 = 1, · · · ,𝑚𝐼 . Since 𝑔𝑗 is continuous for each 𝑗 ∈

{1, · · · ,𝑚𝐼} by virtue of Assumption 6.2.1, there exists 𝛿𝑗 > 0, ∀𝑗 ∈ {1, · · · ,𝑚𝐼}, such

that
⃦⃦

(x,y) − (xS,yS)
⃦⃦
∞ < 𝛿𝑗 implies

⃒⃒
𝑔𝑗(x,y) − 𝑔𝑗(x

S,yS)
⃒⃒
<

𝜀𝑗
2 (see Lemma 2.2.2).

Define 𝛿 := min
𝑗∈{1,··· ,𝑚𝐼}

𝛿𝑗 , and note that 𝛿 > 0. Consider 𝑍 ∈ I(𝑋 × 𝑌 ) such that

(xS,yS) ∈ 𝑍 and 𝑤(𝑍) ≤ 𝛿. For each (x,y) ∈ 𝑍 and 𝑗 ∈ {1, · · · ,𝑚𝐼} we have that⃒⃒
𝑔𝑗(x,y) − 𝑔𝑗(x

S,yS)
⃒⃒
<

𝜀𝑗
2 . Consequently, ∀𝑗 ∈ {1, · · · ,𝑚𝐼}, 𝑔𝑗(x,y) < − 𝜀𝑗

2 , ∀(x,y) ∈ 𝑍.

Since gcv
𝑍 (x,y) ≤ g(x,y) < − 𝜀𝑗

2 , ∀(x,y) ∈ 𝑍, we have gcv
𝑍 (x,y) < − 𝜀𝑗

2 , ∀(x,y) ∈ 𝑍, i.e.,

every point in 𝑍 is feasible for Problem (P) and the lower bounding problem ℒ(𝑍).

Therefore, 𝛿 := min
𝑗∈{1,··· ,𝑚𝐼}

𝛿𝑗 , any (x̂𝑍 , ŷ𝑍) ∈ arg min
(x,y)∈ℱcv(𝑍)

𝑓(x,y), 𝛾 = 𝛽cv
𝑓 + 1, and 𝜏 = 0

satisfies the (necessary) assumptions of Theorem 6.4.9 which yield an upper bound on the

first term in Equation (6.4). The second term in Equation (6.4) can be bounded from above

as

min
(x,y)∈ℱcv(𝑍)

𝑓(x,y) − min
(x,y)∈ℱcv(𝑍)

𝑓 cv
𝑍 (x,y) = min

(x,y)∈𝑍
𝑓(x,y) − min

(x,y)∈𝑍
𝑓 cv
𝑍 (x,y)

≤ 𝜏 cv𝑓 𝑤(𝑍)𝛽
cv
𝑓

since 𝑓 cv
𝑍 converges with order 𝛽cv

𝑓 to 𝑓 on 𝑋×𝑌 , and ℱcv(𝑍) = 𝑍. Substituting the above

252



bounds in Equation (6.4), we obtain

min
(x,y)∈ℱ(𝑍)

𝑓(x,y) − min
(x,y)∈ℱcv(𝑍)

𝑓 cv
𝑍 (x,y) ≤ 𝜏 cv𝑓 𝑤(𝑍)𝛽

cv
𝑓 .

The desired result follows by analogy to Lemma 6.3.8 by noting that the lower bounding

scheme (ℒ(𝑍))𝑍∈I(𝑋×𝑌 ) is at least first-order convergent at (xS,yS) from Theorem 6.4.4.

Note that the bound on the prefactor obtained from Corollary 6.4.12 for convergence

at points where a constraint is ‘nearly active’ can be relatively large (also see the comment

after Lemma 6.3.8).

Remark 6.4.13. Corollary 6.4.12 does not apply to Problem (P) with active constraints;

however, Theorem 6.4.9 can be used to demonstrate second-order convergence when Prob-

lem (P) contains active convex constraints (note that this includes affine equality con-

straints) if the schemes of relaxations of the active constraints are the (convex) functions

themselves and the scheme of convex relaxations of the objective function is second-order

pointwise convergent. Examples 6.4.15 and 6.4.16 illustrate cases where the above modifi-

cation of Corollary 6.4.12 does not apply when the schemes of relaxations of active convex

constraints are not the constraints themselves (note that if the schemes of relaxations of

active convex constraints used are the constraints themselves, then the convergence orders

of the lower bounding schemes in these examples would be arbitrarily high at their minimiz-

ers), thereby highlighting the importance of convexity detection in boosting the convergence

order.

The following example shows that the convergence order of the lower bounding scheme is

dictated by the convergence order, 𝛽cv
𝑓 , of the scheme (𝑓 cv

𝑍 )𝑍∈I(𝑋×𝑌 ) when the assumptions

of Corollary 6.4.12 are satisfied.

Example 6.4.14. Let 𝑋 = [0, 0], 𝑌 = [0, 1], 𝑚𝐼 = 1, and 𝑚𝐸 = 0 with 𝑓(𝑥, 𝑦) = 𝑦4 − 𝑦2

and 𝑔(𝑥, 𝑦) = 1 − 2𝑦. For any [0, 0] × [𝑦L, 𝑦U] =: 𝑍 ∈ I(𝑋 × 𝑌 ), let 𝑓 cv
𝑍 (𝑥, 𝑦) = 𝑦4 − (𝑦L +

𝑦U)𝑦 + 𝑦L𝑦U, 𝑔cv𝑍 (𝑥, 𝑦) = 1 − 2𝑦. The scheme (𝑓 cv
𝑍 )𝑍∈I(𝑋×𝑌 ) has second-order pointwise

convergence and second-order convergence on 𝑋 × 𝑌 , while the scheme (𝑔cv𝑍 )𝑍∈I(𝑋×𝑌 ) has

arbitrarily high pointwise convergence order on 𝑋 × 𝑌 .

Let 𝑦L = 1√
2
− 𝜀, 𝑦U = 1√

2
+ 𝜀 with 0 < 𝜀 ≤ 0.25. The width of 𝑍 is 𝑤(𝑍) = 2𝜀. The

optimal objective value of Problem (P) on 𝑍 is −0.25, while the optimal objective of the
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lower bounding problem on 𝑍 is −0.25−𝜀2. Convergence at the point
(︁

0, 1√
2

)︁
is, therefore,

at most second-order.

Example 6.4.15. Let 𝑋 = [−3, 3], 𝑌 = [−3, 3], 𝑚𝐼 = 1, and 𝑚𝐸 = 0 with 𝑓(𝑥, 𝑦) = 𝑥 + 𝑦

and 𝑔(𝑥, 𝑦) = 𝑥2 +𝑦2−8. For any [𝑥L, 𝑥U]× [𝑦L, 𝑦U] =: 𝑍 ∈ I(𝑋×𝑌 ), let 𝑓 cv
𝑍 (𝑥, 𝑦) = 𝑥+𝑦,

𝑔cv𝑍 (𝑥, 𝑦) = 𝑥2 + 𝑦2− 8− (𝑤(𝑍))2. The scheme (𝑓 cv
𝑍 )𝑍∈I(𝑋×𝑌 ) has arbitrarily high pointwise

convergence order on 𝑋 × 𝑌 , while the scheme (𝑔cv𝑍 )𝑍∈I(𝑋×𝑌 ) has second-order pointwise

convergence on 𝑋 × 𝑌 .

Let 𝑥L = 𝑦L = −2− 𝜀, 𝑥U = 𝑦U = −2 + 𝜀 with 0 < 𝜀 ≤ 1. The width of 𝑍 is 𝑤(𝑍) = 2𝜀.

The optimal objective value of Problem (P) on 𝑍 is −4, while the optimal objective of the

lower bounding problem on 𝑍 is −
√

16 + 8𝜀2 = −4− 𝜀2 +𝑂(𝜀4) for 𝜀 ≪ 1. Convergence at

the point (−2,−2) is, therefore, at most second-order.

Example 6.4.16. Let 𝑋 = [0, 1], 𝑌 = [0, 1], 𝑚𝐼 = 1, and 𝑚𝐸 = 0 with 𝑓(𝑥, 𝑦) = −𝑥 − 𝑦

and 𝑔(𝑥, 𝑦) = 𝑥2 + 2𝑥𝑦 + 𝑦2 − 1. For any [𝑥L, 𝑥U] × [𝑦L, 𝑦U] =: 𝑍 ∈ I(𝑋 × 𝑌 ), let

𝑓 cv
𝑍 (𝑥, 𝑦) = −𝑥−𝑦, 𝑔cv𝑍 (𝑥, 𝑦) = 𝑥2+2 max

{︀
𝑥L𝑦 + 𝑦L𝑥− 𝑥L𝑦L, 𝑥U𝑦 + 𝑦U𝑥− 𝑥U𝑦U

}︀
+𝑦2−1.

The scheme (𝑓 cv
𝑍 )𝑍∈I(𝑋×𝑌 ) has arbitrarily high pointwise convergence order on 𝑋×𝑌 , while

the scheme (𝑔cv𝑍 )𝑍∈I(𝑋×𝑌 ) has second-order pointwise convergence on 𝑋 × 𝑌 .

Let 𝑥L = 𝑦L = 0.5 − 𝜀, 𝑥U = 𝑦U = 0.5 + 𝜀 with 0 < 𝜀 ≤ 0.5. The width of 𝑍

is 𝑤(𝑍) = 2𝜀. The optimal objective value of Problem (P) on 𝑍 is −1, while the point(︀
0.5 − 0.25𝜀2, 0.5 + 0.5𝜀2

)︀
is feasible for the lower bounding problem on 𝑍 with objective

value −1 − 0.25𝜀2. Convergence at the point (0.5, 0.5) is, therefore, at most second-order.

The next result provides a slight generalization of Corollary 6.4.12 by showing that

under the assumptions of Corollary 6.4.12, the lower bounding scheme (ℒ(𝑍))𝑍∈I(𝑋×𝑌 ) in

fact exhibits (at least) second-order convergence on a neighborhood of (xS,yS) (this result

is motivated by the assumptions on the convergence order of the lower bounding scheme in

the analysis of the cluster problem in Chapter 5).

Corollary 6.4.17. Consider Problem (P) with 𝑚𝐸 = 0. Suppose 𝑓 is Lipschitz continuous

on 𝑋 × 𝑌 . Let (𝑓 cv
𝑍 )𝑍∈I(𝑋×𝑌 ) denote a continuous scheme of convex relaxations of 𝑓 in

𝑋 × 𝑌 with pointwise convergence order 𝛾cv𝑓 ≥ 1, and convergence order 𝛽cv
𝑓 ≥ 1 with

corresponding constant 𝜏 cv𝑓 . Furthermore, let (𝑔cv𝑗,𝑍)𝑍∈I(𝑋×𝑌 ), 𝑗 = 1, · · · ,𝑚𝐼 , denote con-
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tinuous schemes of convex relaxations of 𝑔1, · · · , 𝑔𝑚𝐼 , respectively, in 𝑋 ×𝑌 with pointwise

convergence orders 𝛾cv𝑔,1 > 0, · · · , 𝛾cv𝑔,𝑚𝐼
> 0 and corresponding constants 𝜏 cv𝑔,1, · · · , 𝜏 cv𝑔,𝑚𝐼

.

Suppose (xS,yS) ∈ 𝑋 × 𝑌 such that g(xS,yS) < 0 (i.e., (xS,yS) is a Slater point).

Then, ∃𝛿 > 0 such that the scheme of lower bounding problems (ℒ(𝑍))𝑍∈I(𝑋×𝑌 ) with

(𝒪(𝑍))𝑍∈I(𝑋×𝑌 ) :=

(︂
min

(x,y)∈ℱcv(𝑍)
𝑓 cv
𝑍 (x,y)

)︂
𝑍∈I(𝑋×𝑌 )

,

(ℐ𝐶(𝑍))𝑍∈I(𝑋×𝑌 ) := (gcv
𝑍 (𝑍))𝑍∈I(𝑋×𝑌 )

is at least 𝛽cv
𝑓 -order convergent on

{︀
(x,y) :

⃦⃦
(x,y) − (xS,yS)

⃦⃦
∞ < 𝛿

}︀
.

Proof. Let 𝑔𝑗(x
S,yS) = −𝜀𝑗 < 0, 𝑗 = 1, · · · ,𝑚𝐼 . Since 𝑔𝑗 is continuous for each 𝑗 ∈

{1, · · · ,𝑚𝐼}, there exists 𝛿𝑗 > 0, ∀𝑗 ∈ {1, · · · ,𝑚𝐼}, such that
⃦⃦

(x,y) − (xS,yS)
⃦⃦
∞ < 𝛿𝑗

implies
⃒⃒
𝑔𝑗(x,y) − 𝑔𝑗(x

S,yS)
⃒⃒
< 𝜀𝑗 (see Lemma 2.2.2). Define 𝛿 := min

𝑗∈{1,··· ,𝑚𝐼}
𝛿𝑗 , note that

𝛿 > 0, and let 𝛿 := 𝛿
2 .

Consider 𝑍 ∈ I(𝑋×𝑌 ) with 𝑍 ∩
{︀

(x,y) :
⃦⃦

(x,y) − (xS,yS)
⃦⃦
∞ < 𝛿

}︀
̸= ∅ and 𝑤(𝑍) ≤ 𝛿.

Similar to the proof of Corollary 6.4.12, it can be shown that

min
(x,y)∈ℱ(𝑍)

𝑓(x,y) − min
(x,y)∈ℱcv(𝑍)

𝑓 cv
𝑍 (x,y) ≤ 𝜏 cv𝑓 𝑤(𝑍)𝛽

cv
𝑓 .

The desired result follows by analogy to Lemma 6.3.8 by noting from Theorem 6.4.4 that the

lower bounding scheme (ℒ(𝑍))𝑍∈I(𝑋×𝑌 ) has at least first-order convergence on the feasible

set
{︀

(x,y) :
⃦⃦

(x,y) − (xS,yS)
⃦⃦
∞ < 𝛿

}︀
.

While it may appear that the neighborhood of a Slater point on which second-order

convergence of the lower bounding scheme is guaranteed by Corollary 6.4.17 can be un-

necessarily small, Example 6.4.18 shows that a stronger result cannot be deduced without

additional assumptions.

A natural question is whether second-order convergence is guaranteed on 𝑋 × 𝑌 when

second-order pointwise convergent schemes of (convex) relaxations of the objective function

𝑓 , the inequality constraint functions 𝑔1, · · · , 𝑔𝑚𝐼 , and the equality constraint functions

ℎ1, · · · , ℎ𝑚𝐸 are used by the lower bounding scheme. The following example shows that

even when schemes of (convex) envelopes are used to underestimate smooth functions 𝑓 , g,

and h, at most first-order convergence can be guaranteed at certain points in 𝑋 × 𝑌 .
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Example 6.4.18. Let 𝑋 = [0, 0], 𝑌 = [−1, 1], 𝑚𝐼 = 1, and 𝑚𝐸 = 0 with 𝑓(𝑥, 𝑦) = −𝑦 and

𝑔(𝑥, 𝑦) = 𝑦3. For any [0, 0] × [−𝜀, 𝜀] =: 𝑍 ∈ I(𝑋 × 𝑌 ) with 𝜀 > 0, let

𝑓 cv
𝑍 (𝑥, 𝑦) = −𝑦, 𝑔cv𝑍 (𝑥, 𝑦) =

⎧⎪⎨⎪⎩
−0.25𝜀3 + 0.75𝜀2𝑦, if 𝑦 < 0.5𝜀

𝑦3, if 𝑦 ≥ 0.5𝜀

.

Note that the scheme (𝑓 cv
𝑍 )𝑍∈I(𝑋×𝑌 ) has arbitrarily high pointwise convergence order on

𝑋 × 𝑌 and the scheme (𝑔cv𝑍 )𝑍∈I(𝑋×𝑌 ), which is the scheme of convex envelopes of 𝑔 on

𝑋 × 𝑌 [142], has (at least) second-order pointwise convergence on 𝑋 × 𝑌 . Also note that

(𝑔cv𝑍 )𝑍∈I(𝑋×𝑌 ) has arbitrarily high convergence order on 𝑋 × 𝑌 .

The width of 𝑍 is 𝑤(𝑍) = 2𝜀. The optimal objective value of Problem (P) on 𝑍 is 0,

while the optimal objective of the lower bounding problem on 𝑍 is − 𝜀
3 . Convergence at the

point (0, 0) is, therefore, at most first-order.

Despite the fact that we only have first-order convergence at the global minimizer in

Example 6.4.18, the reader can verify that the natural interval extension-based lower bound-

ing scheme along with the interval bisection branching rule and lowest lower bound node

selection rule is sufficient to mitigate the cluster problem for this case [108].

The following result establishes second-order convergence of a convex relaxation-based

lower bounding scheme at a feasible point (xf,yf) ∈ 𝑋 × 𝑌 when second-order pointwise

convergent schemes of relaxations are used and the dual lower bounding scheme (see Sec-

tion 6.4.2) is second-order convergent at (xf,yf). This result will be used to prove second-

order convergence of such convex relaxation-based lower bounding schemes at KKT points

(see Definition 2.3.18) in Corollary 6.4.28.

Theorem 6.4.19. Consider Problem (P), and let (xf,yf) ∈ 𝑋 × 𝑌 be a feasible point.

Suppose the dual lower bounding scheme has convergence of order 𝛽𝑑 > 0 at (xf,yf) with a

corresponding scheme of bounded dual variables
(︁(︁

𝜇
(xf,yf)
𝑍 ,𝜆

(xf,yf)
𝑍

)︁)︁
𝑍∈I(𝑋×𝑌 )

(not neces-

sarily optimal, but which yield 𝛽𝑑-order convergence at (xf,yf)) with
(︁
𝜇
(xf,yf)
𝑍 ,𝜆

(xf,yf)
𝑍

)︁
∈

R𝑚𝐼
+ × R𝑚𝐸 ,

⃦⃦⃦
𝜇
(xf,yf)
𝑍

⃦⃦⃦
∞

≤ 𝜇̄ and
⃦⃦⃦
𝜆
(xf,yf)
𝑍

⃦⃦⃦
∞

≤ 𝜆̄, ∀𝑍 ∈ I(𝑋 × 𝑌 ), for some constants

𝜇̄, 𝜆̄ ≥ 0 (see Section 6.4.2). Let (𝑓 cv
𝑍 )𝑍∈I(𝑋×𝑌 ), (𝑔cv𝑗,𝑍)𝑍∈I(𝑋×𝑌 ), 𝑗 = 1, · · · ,𝑚𝐼 , denote

continuous schemes of convex relaxations of 𝑓 , 𝑔1, · · · , 𝑔𝑚𝐼 , respectively, in 𝑋 × 𝑌 with

pointwise convergence orders 𝛾cv𝑓 ≥ 1, 𝛾cv𝑔,1 ≥ 1, · · · , 𝛾cv𝑔,𝑚𝐼
≥ 1 and corresponding constants

𝜏 cv𝑓 , 𝜏 cv𝑔,1, · · · , 𝜏 cv𝑔,𝑚𝐼
. Let (ℎcv𝑘,𝑍 , ℎ

cc
𝑘,𝑍)𝑍∈I(𝑋×𝑌 ), 𝑘 = 1, · · · ,𝑚𝐸 , denote continuous schemes
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of relaxations of ℎ1, · · · , ℎ𝑚𝐸 , respectively, in 𝑋 × 𝑌 with pointwise convergence orders

𝛾ℎ,1 ≥ 1, · · · , 𝛾ℎ,𝑚𝐸
≥ 1 and corresponding constants 𝜏ℎ,1, · · · , 𝜏ℎ,𝑚𝐸

. Then, the scheme of

lower bounding problems (ℒ(𝑍))𝑍∈I(𝑋×𝑌 ) with

(𝒪(𝑍))𝑍∈I(𝑋×𝑌 ) :=

(︂
min

(x,y)∈ℱcv(𝑍)
𝑓 cv
𝑍 (x,y)

)︂
𝑍∈I(𝑋×𝑌 )

,

(ℐ𝐶(𝑍))𝑍∈I(𝑋×𝑌 ) :=
(︀{︀

(v,w) ∈ R𝑚𝐼 × R𝑚𝐸 : v = gcv
𝑍 (x,y),hcv

𝑍 (x,y) ≤ w ≤ hcc
𝑍 (x,y)

for some (x,y) ∈ 𝑍
}︀)︀

𝑍∈I(𝑋×𝑌 )

is at least min

{︂
min

{︂
𝛾cv𝑓 , min

𝑗∈{1,··· ,𝑚𝐼}
𝛾cv𝑔,𝑗 , min

𝑘∈{1,··· ,𝑚𝐸}
𝛾ℎ,𝑘

}︂
, 𝛽𝑑

}︂
-order convergent at (xf,yf).

Proof. Let 𝛽 := min

{︂
min

{︂
𝛾cv𝑓 , min

𝑗∈{1,··· ,𝑚𝐼}
𝛾cv𝑔,𝑗 , min

𝑘∈{1,··· ,𝑚𝐸}
𝛾ℎ,𝑘

}︂
, 𝛽𝑑

}︂
, and let 𝜇𝑍 := 𝜇

(xf,yf)
𝑍 ,

𝜆𝑍 := 𝜆
(xf,yf)
𝑍 , ∀𝑍 ∈ I(𝑋 × 𝑌 ), denote the scheme of dual variables corresponding to the

dual lower bounding scheme (we omit the dependence of the dual variables on (xf,yf) for

ease of exposition). Since we are concerned about the convergence order at the feasible

point (xf,yf), it suffices to show the existence of 𝜏 ≥ 0 such that for every 𝑍 ∈ I(𝑋 × 𝑌 )

with (xf,yf) ∈ 𝑍,

min
(x,y)∈ℱ(𝑍)

𝑓(x,y) − min
(x,y)∈ℱcv(𝑍)

𝑓 cv
𝑍 (x,y) ≤ 𝜏𝑤(𝑍)𝛽.

Consider 𝑍 ∈ I(𝑋 × 𝑌 ) with (xf,yf) ∈ 𝑍. By virtue of the assumption that the dual lower

bounding scheme, with the dual variables fixed to ((𝜇𝑍 ,𝜆𝑍))𝑍∈I(𝑋×𝑌 ), has convergence of

order 𝛽𝑑 at (xf,yf), we have

min
(x,y)∈ℱ(𝑍)

𝑓(x,y) − min
(x,y)∈𝑍

[︀
𝑓(x,y) + 𝜇T

𝑍g(x,y) + 𝜆T
𝑍h(x,y)

]︀
≤ 𝜏𝑑𝑤(𝑍)𝛽𝑑 . (6.5)

Choose 𝜆𝑍,+,𝜆𝑍,− ∈ R𝑚𝐸
+ such that 𝜆𝑍 = 𝜆𝑍,+ − 𝜆𝑍,−, ‖𝜆𝑍,+‖∞ ≤ 𝜆̄, and ‖𝜆𝑍,−‖∞ ≤ 𝜆̄.

Let 𝛾 := min

{︂
𝛾cv𝑓 , min

𝑗∈{1,··· ,𝑚𝐼}
𝛾cv𝑔,𝑗 , min

𝑘∈{1,··· ,𝑚𝐸}
𝛾ℎ,𝑘

}︂
. We have

min
(x,y)∈𝑍

[︀
𝑓(x,y) + 𝜇T

𝑍g(x,y) + 𝜆T
𝑍h(x,y)

]︀
− min

ℱcv(𝑍)
𝑓 cv
𝑍 (x,y)

≤ min
(x,y)∈𝑍

[︀
𝑓(x,y) + 𝜇T

𝑍g(x,y) + 𝜆T
𝑍h(x,y)

]︀
−

sup
𝜇≥0,𝜆1≥0,𝜆2≤0

min
(x,y)∈𝑍

[︀
𝑓 cv
𝑍 (x,y) + 𝜇Tgcv

𝑍 (x,y) + 𝜆T
1 h

cv
𝑍 (x,y) + 𝜆T

2 h
cc
𝑍 (x,y)

]︀
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≤ min
(x,y)∈𝑍

[︀
𝑓(x,y) + 𝜇T

𝑍g(x,y) + 𝜆T
𝑍,+h(x,y) − 𝜆T

𝑍,−h(x,y)
]︀
−

min
(x,y)∈𝑍

[︀
𝑓 cv
𝑍 (x,y) + 𝜇T

𝑍g
cv
𝑍 (x,y) + 𝜆T

𝑍,+h
cv
𝑍 (x,y) − 𝜆T

𝑍,−h
cc
𝑍 (x,y)

]︀
≤ max

(x,y)∈𝑍

[︁
(𝑓(x,y) − 𝑓 cv

𝑍 (x,y)) + 𝜇T
𝑍 (g(x,y) − gcv

𝑍 (x,y)) +

𝜆T
𝑍,+ (h(x,y) − hcv

𝑍 (x,y)) + 𝜆T
𝑍,− (hcc

𝑍 (x,y) − h(x,y))
]︁

≤ max
(x,y)∈𝑍

(𝑓(x,y) − 𝑓 cv
𝑍 (x,y)) + max

(x,y)∈𝑍
𝜇T
𝑍 (g(x,y) − gcv

𝑍 (x,y)) +

max
(x,y)∈𝑍

𝜆T
𝑍,+ (h(x,y) − hcv

𝑍 (x,y)) + max
(x,y)∈𝑍

𝜆T
𝑍,− (hcc

𝑍 (x,y) − h(x,y))

≤𝜏 cv𝑓 𝑤(𝑍)𝛾
cv
𝑓 +

𝑚𝐼∑︁
𝑗=1

𝜇̄𝜏 cv𝑔,𝑗𝑤(𝑍)𝛾
cv
𝑔,𝑗 + 2

𝑚𝐸∑︁
𝑘=1

𝜆̄𝜏ℎ,𝑘𝑤(𝑍)𝛾ℎ,𝑘

≤

(︃
𝜏 cv𝑓 𝑤(𝑋 × 𝑌 )𝛾

cv
𝑓 −𝛾 +

𝑚𝐼∑︁
𝑗=1

𝜇̄𝜏 cv𝑔,𝑗𝑤(𝑋 × 𝑌 )𝛾
cv
𝑔,𝑗−𝛾 + 2

𝑚𝐸∑︁
𝑘=1

𝜆̄𝜏ℎ,𝑘𝑤(𝑋 × 𝑌 )𝛾ℎ,𝑘−𝛾

)︃
𝑤(𝑍)𝛾 ,

(6.6)

where Step 1 follows from weak duality and Step 3 follows from Lemma 2.3.35.

Therefore, from Equations (6.5) and (6.6), we have

min
(x,y)∈ℱ(𝑍)

𝑓(x,y) − min
(x,y)∈ℱcv(𝑍)

𝑓 cv
𝑍 (x,y)

=

(︂
min

(x,y)∈ℱ(𝑍)
𝑓(x,y) − min

(x,y)∈𝑍

[︀
𝑓(x,y) + 𝜇T

𝑍g(x,y) + 𝜆T
𝑍h(x,y)

]︀)︂
+(︂

min
(x,y)∈𝑍

[︀
𝑓(x,y) + 𝜇T

𝑍g(x,y) + 𝜆T
𝑍h(x,y)

]︀
− min

(x,y)∈ℱcv(𝑍)
𝑓 cv
𝑍 (x,y)

)︂
≤𝜏𝑤(𝑍)𝛽,

where the prefactor 𝜏 is defined as

𝜏 :=

(︃
𝜏 cv𝑓 𝑤(𝑋×𝑌 )𝛾

cv
𝑓 −𝛽+

𝑚𝐼∑︁
𝑗=1

𝜇̄𝜏 cv𝑔,𝑗𝑤(𝑋 × 𝑌 )𝛾
cv
𝑔,𝑗−𝛽+2

𝑚𝐸∑︁
𝑘=1

𝜆̄𝜏ℎ,𝑘𝑤(𝑋 × 𝑌 )𝛾ℎ,𝑘−𝛽+𝜏𝑑𝑤(𝑋×𝑌 )𝛽𝑑−𝛽

)︃
.

6.4.2 Duality-based branch-and-bound

In this section, we investigate the convergence order of a Lagrangian dual-based lower

bounding scheme. Before we define the convergence order of the scheme, the Lagrangian
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dual problem is introduced (cf. Section 2.3.2.1.3) and some of its properties are outlined.

The dual problem of Problem (P) that is obtained by dualizing all of the constraints

g(x,y) ≤ 0 and h(x,y) = 0 is given by

sup
𝜇,𝜆

𝑞(𝜇,𝜆) (D)

s.t.𝜇 ∈ R𝑚𝐼
+ ,𝜆 ∈ R𝑚𝐸 ,

where 𝑞 : R𝑚𝐼
+ × R𝑚𝐸 → R, defined by

𝑞(𝜇,𝜆) := min
(x,y)∈𝑋×𝑌

𝑓(x,y) + 𝜇Tg(x,y) + 𝜆Th(x,y), ∀(𝜇,𝜆) ∈ R𝑚𝐼
+ × R𝑚𝐸 ,

is the Lagrangian dual function. Let min (P) and sup (D) respectively denote the opti-

mal objective values of Problem (P) and Problem (D). From weak duality, we know that

min (P) ≥ sup (D), which validates the use of Problem (D) as a lower bounding problem.

The following result shows that the lower bounds obtained by solving the Lagrangian

dual Problem (D) are stronger than those obtained by solving any convex relaxation-based

lower bounding problem.

Lemma 6.4.20. Consider Problem (P), and suppose 𝑍 ∈ I(𝑋 × 𝑌 ). Let 𝑓 cv
𝑍 and gcv

𝑍

denote convex relaxations of 𝑓 and g, respectively, on 𝑍, and let hcv
𝑍 and hcc

𝑍 denote convex

and concave relaxations, respectively, of h on 𝑍. Furthermore, assume that strong duality

holds for the convex relaxation-based lower bounding problem min
(x,y)∈ℱcv(𝑍)

𝑓 cv
𝑍 (x,y). Then

the lower bound obtained by solving the Lagrangian dual problem is at least as strong as

that obtained by solving the above convex relaxation-based lower bounding problem, i.e.,

sup
𝜇≥0,𝜆

min
(x,y)∈𝑍

[︀
𝑓(x,y) + 𝜇Tg(x,y) + 𝜆Th(x,y)

]︀
− min

ℱcv(𝑍)
𝑓 cv
𝑍 (x,y) ≥ 0.

Proof. Since strong duality holds for the convex relaxation-based lower bounding problem,

the difference between the lower bounds can be rewritten as

sup
𝜇≥0,𝜆

min
(x,y)∈𝑍

[︀
𝑓(x,y) + 𝜇Tg(x,y) + 𝜆Th(x,y)

]︀
−

sup
𝜇≥0,𝜆1≥0,𝜆2≤0

min
(x,y)∈𝑍

[︀
𝑓 cv
𝑍 (x,y) + 𝜇Tgcv

𝑍 (x,y) + 𝜆T
1 h

cv
𝑍 (x,y) + 𝜆T

2 h
cc
𝑍 (x,y)

]︀
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= sup
𝜇≥0,𝜆1≥0,𝜆2≤0

min
(x,y)∈𝑍

[︀
𝑓(x,y) + 𝜇Tg(x,y) + 𝜆T

1 h(x,y) + 𝜆T
2 h(x,y)

]︀
−

sup
𝜇≥0,𝜆1≥0,𝜆2≤0

min
(x,y)∈𝑍

[︀
𝑓 cv
𝑍 (x,y) + 𝜇Tgcv

𝑍 (x,y) + 𝜆T
1 h

cv
𝑍 (x,y) + 𝜆T

2 h
cc
𝑍 (x,y)

]︀
≥ 0,

where the last step follows from the fact that ∀(x,y) ∈ 𝑍,𝜇 ≥ 0,𝜆1 ≥ 0,𝜆2 ≤ 0,

𝑓(x,y) + 𝜇Tg(x,y) + 𝜆T
1 h(x,y) + 𝜆T

2 h(x,y)

≥ 𝑓 cv
𝑍 (x,y) + 𝜇Tgcv

𝑍 (x,y) + 𝜆T
1 h

cv
𝑍 (x,y) + 𝜆T

2 h
cc
𝑍 (x,y).

The following result due to Dür [70] establishes the condition under which the dual lower

bounding problem detects infeasibility.

Lemma 6.4.21. Consider Problem (P) (satisfying Assumption 6.2.1). We have

sup (D) = +∞ ⇐⇒ conv

⎛⎜⎝
⎡⎣g
h

⎤⎦(𝑋 × 𝑌 )

⎞⎟⎠ ∩
(︀
R𝑚𝐼
− × {0}

)︀
= ∅.

Proof. The result follows, in part, by replacing h(x,y) = 0 with h(x,y) ≤ 0 and −h(x,y) ≤

0 and using Theorem 2 in [70].

Definition 6.3.12 can be applied to analyze the convergence order of the above duality-

based lower bounding scheme as follows.

The scheme of dual lower bounding problems (ℒ(𝑍))𝑍∈I(𝑋×𝑌 ) with

(𝒪(𝑍))𝑍∈I(𝑋×𝑌 ) :=

(︃
sup

𝜇≥0,𝜆
min

(x,y)∈𝑍

[︀
𝑓(x,y) + 𝜇Tg(x,y) + 𝜆Th(x,y)

]︀)︃
𝑍∈I(𝑋×𝑌 )

,

(ℐ𝐶(𝑍))𝑍∈I(𝑋×𝑌 ) :=

⎛⎜⎝conv

⎛⎜⎝
⎡⎣g
h

⎤⎦(𝑍)

⎞⎟⎠
⎞⎟⎠

𝑍∈I(𝑋×𝑌 )

is thus said to have convergence of order 𝛽 > 0 at

1. a feasible point (x,y) ∈ 𝑋 × 𝑌 if there exists 𝜏 ≥ 0 such that for every 𝑍 ∈ I(𝑋 × 𝑌 )
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with (x,y) ∈ 𝑍,

min
(v,w)∈ℱ(𝑍)

𝑓(v,w) − sup
𝜇≥0,𝜆

min
(v,w)∈𝑍

[︀
𝑓(v,w) + 𝜇Tg(v,w) + 𝜆Th(v,w)

]︀
≤ 𝜏𝑤(𝑍)𝛽.

2. an infeasible point (x,y) ∈ 𝑋 ×𝑌 if there exists 𝜏 ≥ 0 such that for every 𝑍 ∈ I(𝑋 ×𝑌 )

with (x,y) ∈ 𝑍,

𝑑

⎛⎜⎝
⎡⎣g
h

⎤⎦(𝑍),R𝑚𝐼
− × {0}

⎞⎟⎠− 𝑑

⎛⎜⎝conv

⎛⎜⎝
⎡⎣g
h

⎤⎦(𝑍)

⎞⎟⎠ ,R𝑚𝐼
− × {0}

⎞⎟⎠ ≤ 𝜏𝑤(𝑍)𝛽.

We associate with the dual lower bounding scheme, (ℒ(𝑍))𝑍∈I(𝑋×𝑌 ), at a feasible point

(x,y), a scheme of dual variables ((𝜇
(x,y)
𝑍 ,𝜆

(x,y)
𝑍 ))𝑍∈I(𝑋×𝑌 ) corresponding to the solution

of the scheme of dual lower bounding problems (𝒪(𝑍))𝑍∈I(𝑋×𝑌 ) with (x,y) ∈ 𝑍 (note that

sup (D) may not be attained, in which case we assume that dual variables that yield a

dual function value arbitrarily close to the supremum are available). Using Lemma 6.4.21,

we next show that if the convex relaxation-based lower bounding problem corresponding to

Problem (P) that is obtained by replacing the functions in Problem (P) with their envelopes

is infeasible, then sup (D) = +∞.

Lemma 6.4.22. Let (𝑔cv𝑗,𝑍)𝑍∈I(𝑋×𝑌 ), 𝑗 = 1, · · · ,𝑚𝐼 , denote (any) schemes of convex re-

laxations of 𝑔1, · · · , 𝑔𝑚𝐼 in 𝑋 × 𝑌 and (ℎcv𝑘,𝑍 , ℎ
cc
𝑘,𝑍)𝑍∈I(𝑋×𝑌 ), 𝑘 = 1, · · · ,𝑚𝐸 , denote (any)

schemes of relaxations of ℎ1, · · · , ℎ𝑚𝐸 in 𝑋 × 𝑌 . Then for each 𝑍 ∈ I(𝑋 × 𝑌 ), we have

𝑑

⎛⎜⎝
⎡⎣g
h

⎤⎦(𝑍),R𝑚𝐼
− × {0}

⎞⎟⎠ ≥ 𝑑

⎛⎜⎝conv

⎛⎜⎝
⎡⎣g
h

⎤⎦(𝑍)

⎞⎟⎠ ,R𝑚𝐼
− × {0}

⎞⎟⎠ ≥ 𝑑
(︀
ℐ𝐶(𝑍),R𝑚𝐼

− × {0}
)︀
,

where ℐ𝐶(𝑍) is defined as

ℐ𝐶(𝑍) := {(v,w) ∈ R𝑚𝐼 × R𝑚𝐸 : v = gcv
𝑍 (x,y),hcv

𝑍 (x,y) ≤ w ≤ hcc
𝑍 (x,y) for some (x,y) ∈ 𝑍} .

Proof. The first inequality trivially holds. To prove the second inequality, we first notice

that

𝑑
(︀
ℐ𝐶(𝑍),R𝑚𝐼

− × {0}
)︀

= 𝑑
(︀
ℐ̄𝐶(𝑍),R𝑚𝐼

− × {0}
)︀
,
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where ℐ̄𝐶(𝑍) is defined as

ℐ̄𝐶(𝑍) := {(v,w) ∈ R𝑚𝐼 × R𝑚𝐸 : v ≥ gcv
𝑍 (x,y),hcv

𝑍 (x,y) ≤ w ≤ hcc
𝑍 (x,y) for some (x,y) ∈ 𝑍} .

Note that ℐ̄𝐶(𝑍) is a convex set since it can be represented as the direct sum of two convex

sets.

Since conv

⎛⎜⎝
⎡⎣g
h

⎤⎦(𝑍)

⎞⎟⎠ is the smallest convex set that encloses

⎡⎣g
h

⎤⎦(𝑍), the desired

result follows.

Theorem 6.4.23. Consider Problem (P). Suppose strong duality holds for the scheme of

convex relaxation-based lower bounding problems for Problem (P) obtained by using the

schemes of (convex) envelopes of 𝑓 , g, and h. If the assumptions of Theorem 6.4.4 hold

for the functions 𝑓 , g, h, and the schemes of (convex) envelopes of 𝑓 , g, and h, the dual

lower bounding scheme is (at least) first-order convergent on 𝑋 × 𝑌 . Furthermore, if the

assumptions of Theorem 6.4.9 hold for the schemes of (convex) envelopes of 𝑓 , g, and h

and (xf,yf) ∈ 𝑋 ×𝑌 , the dual lower bounding scheme is (at least) second-order convergent

at (xf,yf).

Proof. From Lemma 6.4.22, we have that the convergence order of the dual lower bounding

scheme at an infeasible point (x,y) ∈ 𝑋 × 𝑌 is at least as high as the convergence order at

(x,y) of the convex relaxation-based lower bounding scheme obtained by using the schemes

of (convex) envelopes of 𝑓 , g, and h. Lemma 6.4.20 implies that the lower bounds obtained

using the dual lower bounding scheme are at least as tight as the lower bounds obtained

using the schemes of (convex) envelopes of 𝑓 , g, and h. The desired result follows from

Definition 6.3.12.

Note that the conclusions of Theorem 6.4.23 hold even if the schemes of relaxations of

𝑓 , g, and h do not correspond to their envelopes, so long as the (remaining) assumptions

of Theorem 6.4.23 are satisfied.

Remark 6.4.24. The assumption of strong duality is in fact not required to show first-

order convergence of the dual lower bounding scheme when all functions in Problem (P) are

Lipschitz continuous. For this case, the proof of first-order convergence at infeasible points

follows from Lemmata 6.3.10, 6.4.1, and 6.4.22, and the proof of first-order convergence at

feasible points follows from Proposition 1 in [70].
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Theorem 6.4.23 makes no assumptions on the boundedness of schemes of dual variables.

This is reflected in the application of the dual lower bounding scheme to Example 6.4.18

where the optimal scheme of dual variables can be unbounded (note, however, that first-

order convergence of the dual lower bounding scheme at the global minimizer of Exam-

ple 6.4.18 can be achieved using bounded schemes of dual variables when the dual problem

is not solved to optimality). Furthermore, Example 6.4.10 shows that the convergence order

of the dual lower bounding scheme can be as low as two at (xf,yf) when the assumptions

of Theorem 6.4.9 are satisfied for the schemes of (convex) envelopes of 𝑓 , g, and h (see

Lemma 6.5.12). The following result shows that in the absence of equality constraints, the

dual lower bounding scheme has arbitrarily high convergence order at unconstrained points.

Proposition 6.4.25. Consider Problem (P) with 𝑚𝐸 = 0. Suppose 𝑓 and 𝑔𝑗 , ∀𝑗 ∈

{1, · · · ,𝑚𝐼}, are Lipschitz continuous on 𝑋 × 𝑌 . Furthermore, suppose (xS,yS) ∈ 𝑋 × 𝑌

such that g(xS,yS) < 0 (i.e., (xS,yS) is a Slater point). The dual lower bounding scheme

has arbitrarily high convergence order at (xS,yS).

Proof. The arguments below are closely related to the proof of Corollary 6.4.12.

Since we wish to prove that the dual lower bounding scheme has arbitrarily high con-

vergence order at the feasible point (xS,yS), it suffices to show that for each 𝛽 > 0, there

exists 𝜏 ≥ 0, 𝛿 > 0 such that for every 𝑍 ∈ I(𝑋 × 𝑌 ) with (xS,yS) ∈ 𝑍 and 𝑤(𝑍) ≤ 𝛿,

min
(x,y)∈ℱ(𝑍)

𝑓(x,y) − sup
𝜇≥0

min
(x,y)∈𝑍

[︀
𝑓(x,y) + 𝜇Tg(x,y)

]︀
≤ 𝜏𝑤(𝑍)𝛽,

and the desired result follows by analogy to Lemma 6.3.8 by observing that the dual lower

bounding scheme is at least first-order convergent at (xS,yS).

Let 𝑔𝑗(x
S,yS) = −𝜀𝑗 < 0, ∀𝑗 ∈ {1, · · · ,𝑚𝐼}. Since 𝑔𝑗 is continuous for each 𝑗 ∈

{1, · · · ,𝑚𝐼}, there exists 𝛿𝑗 > 0, ∀𝑗 ∈ {1, · · · ,𝑚𝐼}, such that
⃦⃦

(x,y) − (xS,yS)
⃦⃦
∞ < 𝛿𝑗

implies
⃒⃒
𝑔𝑗(x,y) − 𝑔𝑗(x

S,yS)
⃒⃒
<

𝜀𝑗
2 (see Lemma 2.2.2).

Define 𝛿 := min
𝑗∈{1,··· ,𝑚𝐼}

𝛿𝑗 , and note that 𝛿 > 0. Consider 𝑍 ∈ I(𝑋 × 𝑌 ) such that

(xS,yS) ∈ 𝑍 and 𝑤(𝑍) ≤ 𝛿. For each (x,y) ∈ 𝑍 and 𝑗 ∈ {1, · · · ,𝑚𝐼} we have that⃒⃒
𝑔𝑗(x,y) − 𝑔𝑗(x

S,yS)
⃒⃒
<

𝜀𝑗
2 . Therefore, for each 𝑗 ∈ {1, · · · ,𝑚𝐼}, 𝑔𝑗(x,y) < − 𝜀𝑗

2 <
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0, ∀(x,y) ∈ 𝑍. Consequently,

sup
𝜇≥0

min
(x,y)∈𝑍

[︀
𝑓(x,y) + 𝜇Tg(x,y)

]︀
≥ min

(x,y)∈𝑍
𝑓(x,y)

= min
(x,y)∈ℱ(𝑍)

𝑓(x,y)

since Problem (P) is effectively unconstrained over the small intervals 𝑍 around (xS,yS),

which implies 𝜏 = 0 and 𝛿 = min
𝑗∈{1,··· ,𝑚𝐼}

𝛿𝑗 satisfy the requirements.

Remark 6.4.26. Proposition 6.4.25 as stated does not apply to Problem (P) with active

constraints; however, it can be modified to demonstrate second-order convergence when

Problem (P) contains active convex constraints (note that this includes affine equality con-

straints) if 𝑓 is twice continuously differentiable, and strong duality holds for the scheme of

relaxations of Problem (P) in which only the active (convex) constraints are included and

𝑓 is replaced by its scheme of convex envelopes (see Remark 6.4.13). Proposition 6.4.25

can also be extended to demonstrate arbitrarily high convergence order of the dual lower

bounding scheme on a neighborhood of (xS,yS) in a manner similar to Corollary 6.4.17.

The next result shows that the dual lower bounding scheme is second-order convergent

at KKT points (see Definition 2.3.18) when the functions 𝑓 , g, and h in Problem (P) are

twice continuously differentiable.

Theorem 6.4.27. Consider Problem (P). Suppose int(𝑋 ×𝑌 ) is nonempty, and 𝑓 , g, and

h are twice continuously differentiable on int(𝑋 × 𝑌 ). Furthermore, suppose there exists

(x*,y*) ∈ int(𝑋 × 𝑌 ), 𝜇* ∈ R𝑚𝐼
+ , and 𝜆* ∈ R𝑚𝐸 such that (x*,y*,𝜇*,𝜆*) is a KKT point

for Problem (P). The dual lower bounding scheme is at least second-order convergent at

(x*,y*).

Proof. Let 𝐿(x,y,𝜇,𝜆) := 𝑓(x,y)+𝜇Tg(x,y)+𝜆Th(x,y) denote the Lagrangian of Prob-

lem (P). Since we are concerned about the convergence order at the feasible point (x*,y*),

it suffices to show the existence of 𝜏 ≥ 0 such that for every 𝑍 ∈ I(𝑋×𝑌 ) with (x*,y*) ∈ 𝑍,

min
(x,y)∈ℱ(𝑍)

𝑓(x,y) − sup
𝜇≥0,𝜆

min
(x,y)∈𝑍

𝐿(x,y,𝜇,𝜆) ≤ 𝜏𝑤(𝑍)2.
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We have

sup
𝜇≥0,𝜆

min
(x,y)∈𝑍

𝐿(x,y,𝜇,𝜆) ≥ min
(x,y)∈𝑍

𝐿(x,y,𝜇*,𝜆*)

= min
(x,y)∈𝑍

[︁
𝐿(x*,y*,𝜇*,𝜆*) + ∇x𝐿(x*,y*,𝜇*,𝜆*)T(x− x*)

+∇y𝐿(x*,y*,𝜇*,𝜆*)T(y − y*) −𝑂(𝑤(𝑍)2)
]︁

= min
(x,y)∈𝑍

[︀
𝑓(x*,y*) −𝑂(𝑤(𝑍)2)

]︀
≥ 𝑓(x*,y*) −𝑂(𝑤(𝑍)2).

Note that Step 3 above uses 𝐿(x*,y*,𝜇*,𝜆*) = 𝑓(x*,y*), ∇x𝐿(x*,y*,𝜇*,𝜆*) = 0, and

∇y𝐿(x*,y*,𝜇*,𝜆*) = 0 by virtue of the assumption that (x*,y*,𝜇*,𝜆*) is a KKT point

for Problem (P). Therefore,

min
(x,y)∈ℱ(𝑍)

𝑓(x,y) − sup
𝜇≥0,𝜆

min
(x,y)∈𝑍

𝐿(x,y,𝜇,𝜆) ≤ 𝑂(𝑤(𝑍)2),

which establishes the existence of 𝜏 for all 𝑍 ∈ I(𝑋 × 𝑌 ) with (x*,y*) ∈ 𝑍 by analogy

to Lemma 6.3.8 since the dual lower bounding scheme is at least first-order convergent at

(x*,y*).

A corollary of Theorems 6.4.19 and 6.4.27 is that second-order convergence at KKT

points is guaranteed for convex relaxation-based lower bounding schemes in which second-

order pointwise convergent schemes of relaxations are used.

Corollary 6.4.28. Consider Problem (P). Suppose int(𝑋 × 𝑌 ) is nonempty and 𝑓 , g,

and h are twice continuously differentiable on int(𝑋 × 𝑌 ). Furthermore, suppose there

exists (x*,y*) ∈ int(𝑋 × 𝑌 ), 𝜇* ∈ R𝑚𝐼
+ , and 𝜆* ∈ R𝑚𝐸 such that (x*,y*,𝜇*,𝜆*) is a

KKT point for Problem (P). Let (𝑓 cv
𝑍 )𝑍∈I(𝑋×𝑌 ), (𝑔cv𝑗,𝑍)𝑍∈I(𝑋×𝑌 ), 𝑗 = 1, · · · ,𝑚𝐼 , denote

continuous schemes of convex relaxations of 𝑓 , 𝑔1, · · · , 𝑔𝑚𝐼 , respectively, in 𝑋 × 𝑌 with

pointwise convergence orders 𝛾cv𝑓 ≥ 2, 𝛾cv𝑔,1 ≥ 2, · · · , 𝛾cv𝑔,𝑚𝐼
≥ 2 and corresponding constants

𝜏 cv𝑓 , 𝜏 cv𝑔,1, · · · , 𝜏 cv𝑔,𝑚𝐼
. Let (ℎcv𝑘,𝑍 , ℎ

cc
𝑘,𝑍)𝑍∈I(𝑋×𝑌 ), 𝑘 = 1, · · · ,𝑚𝐸 , denote continuous schemes

of relaxations of ℎ1, · · · , ℎ𝑚𝐸 , respectively, in 𝑋 × 𝑌 with pointwise convergence orders

𝛾ℎ,1 ≥ 2, · · · , 𝛾ℎ,𝑚𝐸
≥ 2 and corresponding constants 𝜏ℎ,1, · · · , 𝜏ℎ,𝑚𝐸

. Then, the resulting

scheme of convex relaxation-based lower bounding problems for Problem (P) is at least
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second-order convergent at (x*,y*).

Proof. The result holds as a consequence of Theorems 6.4.19 and 6.4.27, by using 𝜇𝑍 = 𝜇*,

𝜆𝑍 = 𝜆*, 𝜇̄ = ‖𝜇*‖∞, 𝜆̄ = ‖𝜆*‖∞ in Theorem 6.4.19.

The following example shows that the convergence order may be as low as two under

the assumptions of Theorem 6.4.27.

Example 6.4.29. Let 𝑋 = [−2, 2], 𝑌 = [0, 3], 𝑚𝐼 = 1, and 𝑚𝐸 = 1 with 𝑓(𝑥, 𝑦) = 𝑥 + 𝑦,

𝑔(𝑥, 𝑦) = −𝑦2+𝑦+2, and ℎ(𝑥, 𝑦) = 𝑥. Consider intervals [0, 0]×[2−𝜀, 2+𝜀] =: 𝑍 ∈ I(𝑋×𝑌 )

with 0 < 𝜀 ≤ 1. Note that 𝑤(𝑍) = 2𝜀, and that
(︀
0, 2, 13 ,−1

)︀
is a KKT point for Problem (P).

The optimal objective value of Problem (P) on 𝑍 is 2, while the optimal objective value of

the Lagrangian dual-based lower bounding problem on 𝑍 can be derived as

𝒪(𝑍) = sup
𝜇≥0,𝜆

min
(𝑥,𝑦)∈𝑍

𝑥 + 𝑦 + 𝜇
(︀
−𝑦2 + 𝑦 + 2

)︀
+ 𝜆𝑥

= sup
𝜇≥0

min
{︀

(2 − 𝜀) + 𝜇
(︀
2 + (2 − 𝜀) − (2 − 𝜀)2

)︀
, (2 + 𝜀) + 𝜇

(︀
2 + (2 + 𝜀) − (2 + 𝜀)2

)︀}︀
= sup

𝜇≥0
min

{︀
(2 − 𝜀) + 𝜇

(︀
3𝜀− 𝜀2

)︀
, (2 + 𝜀) + 𝜇

(︀
−3𝜀− 𝜀2

)︀}︀
= (2 − 𝜀) +

1

3

(︀
3𝜀− 𝜀2

)︀
= 2 − 𝜀2

3
,

where Step 2 follows from the fact that the minimum of a concave function on an interval

is attained at one of its endpoints, and the value of 𝜇 in Step 4 is obtained by equating the

two arguments of the inner min function in Step 3. Convergence of the dual lower bounding

scheme at the point (0, 2) is, therefore, at most second-order.

Finally, we show that the dual lower bounding scheme is (at least) first-order convergent

even when the dual problem is not solved to optimality.

Theorem 6.4.30. Consider Problem (P). Suppose 𝑓 , 𝑔𝑗 , 𝑗 = 1, · · · ,𝑚𝐼 , and ℎ𝑘, 𝑘 =

1, · · · ,𝑚𝐸 , are Lipschitz continuous on 𝑋×𝑌 with Lipschitz constants 𝑀𝑓 , 𝑀𝑔,1, · · · ,𝑀𝑔,𝑚𝐼 ,

𝑀ℎ,1, · · · ,𝑀ℎ,𝑚𝐸
, respectively. Furthermore, suppose the dual lower bounding scheme in-

volves at most 𝑛𝑑 ≥ 1 iterations of an algorithm applied to the dual at each node of

the branch-and-bound tree. In addition, suppose the branch-and-bound algorithm uses

first-order (Hausdorff) convergent schemes of constant relaxations
(︁
𝑔L𝑗,𝑍 , 𝑔

U
𝑗,𝑍

)︁
𝑍∈I(𝑋×𝑌 )

,
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𝑗 = 1, · · · ,𝑚𝐼 , on 𝑋 × 𝑌 to overestimate
(︀
𝑔𝑗(𝑍)

)︀
𝑍∈I(𝑋×𝑌 )

and first-order (Hausdorff)

convergent schemes of constant relaxations
(︁
ℎL𝑘,𝑍 , ℎ

U
𝑘,𝑍

)︁
𝑍∈I(𝑋×𝑌 )

, 𝑘 = 1, · · · ,𝑚𝐸 , on 𝑋×𝑌

to overestimate
(︀
ℎ𝑘(𝑍)

)︀
𝑍∈I(𝑋×𝑌 )

(such schemes of constant relaxations can be obtained,

for example, using interval arithmetic [172]), sets 𝜇𝑗 = 0 at each iteration of the algorithm

applied to the dual on 𝑍 if 𝑔U𝑗,𝑍 < 0 (i.e., when inequality constraint 𝑗 is determined to be in-

active on 𝑍 by 𝑔U𝑗,𝑍), and determines the dual lower bounding problem on 𝑍 to be infeasible

either when 𝑔L𝑗,𝑍 > 0 for any 𝑗 ∈ {1, · · · ,𝑚𝐼} (i.e., when inequality constraint 𝑗 is deter-

mined to be unsatisfiable on 𝑍 by 𝑔L𝑗,𝑍), or when 0 ̸∈
[︁
ℎL𝑘,𝑍 , ℎ

U
𝑘,𝑍

]︁
for any 𝑘 ∈ {1, · · · ,𝑚𝐸}

(i.e., when equality constraint 𝑘 is determined to be unsatisfiable on 𝑍 by (ℎL𝑘,𝑍 , ℎ
U
𝑘,𝑍)).

Assume that the absolute values of the schemes of dual variables generated by the dual

lower bounding scheme are bounded from above by 𝑀∞. Then the dual lower bounding

scheme is at least first-order convergent on 𝑋 × 𝑌 .

Proof. From the assumption that the schemes
(︁
𝑔L𝑗,𝑍 , 𝑔

U
𝑗,𝑍

)︁
𝑍∈I(𝑋×𝑌 )

, 𝑗 = 1, · · · ,𝑚𝐼 , and(︁
ℎL𝑘,𝑍 , ℎ

U
𝑘,𝑍

)︁
𝑍∈I(𝑋×𝑌 )

, 𝑘 = 1, · · · ,𝑚𝐸 , are first-order convergent on 𝑋 × 𝑌 , the deter-

mination of infeasibility of the dual lower bounding problem on 𝑍 if 𝑔L𝑗,𝑍 > 0 for any

𝑗 ∈ {1, · · · ,𝑚𝐼}, or if 0 ̸∈
[︁
ℎL𝑘,𝑍 , ℎ

U
𝑘,𝑍

]︁
for any 𝑘 ∈ {1, · · · ,𝑚𝐸}, Proposition 1 in [39], and

Lemma 6.4.1, we conclude that the dual lower bounding scheme has at least first-order

convergence at infeasible points (although the dual lower bounding scheme detects infeasi-

bility of infeasible points in 𝑋 × 𝑌 at least as quickly as any convex relaxation-based lower

bounding scheme (see Lemma 6.4.22), we assume that the schemes
(︁
𝑔L𝑗,𝑍 , 𝑔

U
𝑗,𝑍

)︁
𝑍∈I(𝑋×𝑌 )

,

𝑗 = 1, · · · ,𝑚𝐼 , and
(︁
ℎL𝑘,𝑍 , ℎ

U
𝑘,𝑍

)︁
𝑍∈I(𝑋×𝑌 )

, 𝑘 = 1, · · · ,𝑚𝐸 , are available to detect infeasibil-

ity since we are only allowed to use at most 𝑛𝑑 iterations of an algorithm applied to the

dual).

Next, suppose ℱ(𝑋×𝑌 ) ̸= ∅ and 𝑍 ∈ I(𝑋×𝑌 ) with 𝑍 ∩ℱ(𝑋×𝑌 ) ̸= ∅. Let 𝐽𝑍 denote

the set of inequality constraints that are potentially active at some point in 𝑍 as determined

by
(︁
𝑔L𝑗,𝑍 , 𝑔

U
𝑗,𝑍

)︁
, i.e., 𝐽𝑍 :=

{︁
𝑗 ∈ {1, · · · ,𝑚𝐼} : 𝑔U𝑗,𝑍 ≥ 0

}︁
. Let (𝜇̄𝑍 , 𝜆̄𝑍) ∈ R𝑚𝐼

+ ×R𝑚𝐸 denote

the pair of dual variables corresponding to the dual lower bound on 𝑍 after at most 𝑛𝑑

iterations of an algorithm applied to the dual with 𝜇̄𝑗,𝑍 = 0, ∀𝑗 ∈ {1, · · · ,𝑚𝐼}∖𝐽𝑍 , and

let (x̄𝑍 , ȳ𝑍) ∈ arg min
(x,y)∈𝑍

𝑓(x,y) + 𝜇̄T
𝑍g(x,y) + 𝜆̄T

𝑍h(x,y). Note that the condition 𝜇̄𝑗,𝑍 = 0,

∀𝑗 ∈ {1, · · · ,𝑚𝐼}∖𝐽𝑍 can be guaranteed by a suitable initialization of the dual variables

and by suitably modifying the dual variables generated by the algorithm applied to the
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dual (this modification of the dual lower bounding scheme is once again necessitated by the

assumption that at most 𝑛𝑑 iterations of an algorithm applied to the dual are used). For

each 𝑗 ∈ 𝐽𝑍 , we have

𝑔U𝑗,𝑍 − max
(x,y)∈𝑍

𝑔𝑗(x,y) ≤ 𝜏𝑗𝑤(𝑍)

for some constant 𝜏𝑗 ≥ 0 by virtue of the fact that the scheme of constant concave relaxations(︁
𝑔U𝑗,𝑍

)︁
𝑍∈I(𝑋×𝑌 )

has first-order convergence on 𝑋 × 𝑌 . Since 𝑔U𝑗,𝑍 ≥ 0, ∀𝑗 ∈ 𝐽𝑍 , and 𝑔𝑗 is

Lipschitz continuous on 𝑋 × 𝑌 , this implies

𝑔𝑗(x,y) ≥ −
(︀
𝜏𝑗 + 𝑀𝑔,𝑗

√︀
𝑛𝑥 + 𝑛𝑦

)︀
𝑤(𝑍), ∀(x,y) ∈ 𝑍, ∀𝑗 ∈ 𝐽𝑍 .

Let (x*
𝑍 ,y

*
𝑍) ∈ arg min

(x,y)∈ℱ(𝑍)
𝑓(x,y). We have

min
(x,y)∈ℱ(𝑍)

𝑓(x,y) − min
(x,y)∈𝑍

[︀
𝑓(x,y) + 𝜇̄T

𝑍g(x,y) + 𝜆̄T
𝑍h(x,y)

]︀
= 𝑓(x*

𝑍 ,y
*
𝑍) −

[︀
𝑓(x̄𝑍 , ȳ𝑍) + 𝜇̄T

𝑍g(x̄𝑍 , ȳ𝑍) + 𝜆̄T
𝑍h(x̄𝑍 , ȳ𝑍)

]︀
= (𝑓(x*

𝑍 ,y
*
𝑍) − 𝑓(x̄𝑍 , ȳ𝑍)) −

∑︁
𝑗∈𝐽𝑍

𝜇̄𝑗,𝑍 𝑔𝑗(x̄𝑍 , ȳ𝑍) + 𝜆̄T
𝑍 (h(x*

𝑍 ,y
*
𝑍) − h(x̄𝑍 , ȳ𝑍))

≤𝑀𝑓‖(x*
𝑍 ,y

*
𝑍) − (x̄𝑍 , ȳ𝑍)‖ +

∑︁
𝑗∈𝐽𝑍

𝜇̄𝑗,𝑍

(︀
𝜏𝑗 + 𝑀𝑔,𝑗

√︀
𝑛𝑥 + 𝑛𝑦

)︀
𝑤(𝑍)+

𝑚𝐸∑︁
𝑘=1

|𝜆̄𝑘,𝑍 |𝑀ℎ,𝑘‖(x*
𝑍 ,y

*
𝑍) − (x̄𝑍 , ȳ𝑍)‖

≤

⎛⎝𝑀𝑓

√︀
𝑛𝑥 + 𝑛𝑦 +

∑︁
𝑗∈𝐽𝑍

𝑀∞
(︀
𝜏𝑗 + 𝑀𝑔,𝑗

√︀
𝑛𝑥 + 𝑛𝑦

)︀
+

𝑚𝐸∑︁
𝑘=1

𝑀∞𝑀ℎ,𝑘

√︀
𝑛𝑥 + 𝑛𝑦

⎞⎠𝑤(𝑍)

≤

⎛⎝𝑀𝑓

√︀
𝑛𝑥 + 𝑛𝑦 +

𝑚𝐼∑︁
𝑗=1

𝑀∞
(︀
𝜏𝑗 + 𝑀𝑔,𝑗

√︀
𝑛𝑥 + 𝑛𝑦

)︀
+

𝑚𝐸∑︁
𝑘=1

𝑀∞𝑀ℎ,𝑘

√︀
𝑛𝑥 + 𝑛𝑦

⎞⎠𝑤(𝑍),

which establishes the desired result.

6.5 Reduced-space branch-and-bound algorithms

In this section, we present some results on the convergence orders of some widely-applicable

reduced-space lower bounding schemes in the literature [69, 76] for Problem (P) when only

the set 𝑌 may be partitioned during the course of the algorithm. This section is divided

into two parts. First, we consider a convex relaxation-based reduced-space lower bounding
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scheme for a subclass of Problem (P) [76] and investigate its convergence order. Next, we

look at the convergence order of a duality-based reduced-space lower bounding scheme [69,

Section 3.3] for Problem (P).

Algorithm 2.2 in Chapter 2 outlined a generic reduced-space branch-and-bound algo-

rithm for Problem (P). The reader is directed to references [76] and [69] for two widely-

applicable instances of Algorithm 2.2, and for examples of their application. In the re-

mainder of this section, we investigate the convergence orders of the reduced-space lower

bounding schemes described in [76] and [69].

6.5.1 Convex relaxation-based branch-and-bound for problems with spe-

cial structure

Epperly and Pistikopoulos [76] proposed a reduced-space branch-and-bound algorithm for

Problem (P) when 𝑚𝐸 = 0 (note that this condition can be relaxed as detailed below), and

the functions 𝑓 and 𝑔𝑗 , ∀𝑗 ∈ {1, · · · ,𝑚𝐼}, in Problem (P) are each of the form

𝑤(x,y) = 𝑤𝐴(x) +
∑︁
𝑖∈𝑄

𝑤𝐵
𝑖 (x)𝑤𝐶

𝑖 (y) + 𝑤𝐷(y), (W)

where 𝑄 is a finite set of indices, and the functions 𝑤𝐴,w𝐵,w𝐶 , and 𝑤𝐷 satisfy:

1. 𝑤𝐴 and w𝐵 are convex on 𝑋.

2. w𝐶 and 𝑤𝐷 are continuous on 𝑌 .

3. Strongly consistent convex and concave relaxations are available for w𝐶 and 𝑤𝐷 on 𝑌 .

4. w𝐵 and w𝐶 have continuous tight bounds.

5. For each 𝑖 ∈ 𝑄, at least one of the following two conditions must hold:

a. 𝑤𝐵
𝑖 (x) = cT𝑖 x for some constant c𝑖 ∈ R𝑛𝑥 ,

b. 𝑤𝐶
𝑖 (y) ≥ 0 for all y ∈ 𝑌 .

Epperly and Pistikopoulos [76] state that equality constraints can be equivalently refor-

mulated using pairs of inequalities; however, the above assumptions restrict the functional
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forms of the equality constraints ℎ𝑘, 𝑘 = 1, · · · ,𝑚𝐸 , to

ℎ𝑘(x,y) =
∑︁
𝑖∈𝑄

(︀
cT𝑖 x

)︀
𝑤𝐶
𝑖 (y) + 𝑤𝐷(y). (Weq)

Suppose for each 𝑍 ∈ I𝑌 , we associate an interval 𝑋(𝑍) such that �𝑋 ⊃ 𝑋(𝑍) ⊃ ℱ𝑋(𝑍),

where �𝑋 denotes the interval hull of 𝑋 (note that we make the implicit assumption (see

Remark 6.2.2) that 𝑋 is an interval in this section). Assumption 3 can be restated as

follows: there exists a continuous scheme, (𝑤𝐶,cv
𝑖,𝑍 , 𝑤𝐶,cc

𝑖,𝑍 )𝑍∈I𝑌 , of relaxations of 𝑤𝐶
𝑖 , 𝑖 ∈ 𝑄,

in 𝑌 with pointwise convergence order 𝛾𝐶𝑖 > 0, and there exists a continuous scheme of

convex relaxations, (𝑤𝐷,cv
𝑍 )𝑍∈I𝑌 , of 𝑤𝐷 in 𝑌 with pointwise convergence order 𝛾𝐷,cv > 0.

Assumption 4 can be replaced by the following: there exist schemes of constant relaxations

(𝑤𝐵,L
𝑖,𝑍 , 𝑤𝐵,U

𝑖,𝑍 )𝑍∈I�𝑋 and (𝑤𝐶,L
𝑖,𝑍 , 𝑤𝐶,U

𝑖,𝑍 )𝑍∈I𝑌 , 𝑖 ∈ 𝑄, of 𝑤𝐵
𝑖 and 𝑤𝐶

𝑖 in 𝑋 and 𝑌 , respectively,

with (Hausdorff) convergence orders 𝛽𝐵,c
𝑖 > 0 and 𝛽𝐶,c

𝑖 > 0. In addition, we assume that

the range order of 𝑤𝐶
𝑖 , ∀𝑖 ∈ 𝑄, is greater than zero on 𝑌 (cf. Lemma 6.5.1).

Under the above assumptions, Epperly and Pistikopoulos [76] show that underestimating

each function 𝑤(x,y) of the form (W) using the scheme (𝑤cv
𝑋(𝑍)×𝑍)𝑍∈I𝑌 of convex relaxations

defined by

𝑤cv
𝑋(𝑍)×𝑍(x,y) = 𝑤𝐴(x) +

∑︁
𝑖∈𝑄

𝑤𝐵𝐶,cv
𝑖,𝑋(𝑍)×𝑍(x,y) + 𝑤𝐷,cv

𝑍 (y), (Wcv)

where, for each 𝑖 ∈ 𝑄, the scheme of convex relaxations (𝑤𝐵𝐶,cv
𝑖,𝑋(𝑍)×𝑍)𝑍∈I𝑌 is obtained using

McCormick’s product rule [154] as

𝑤𝐵𝐶,cv
𝑖,𝑋(𝑍)×𝑍(x,y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max

⎧⎪⎪⎨⎪⎪⎩
𝑤𝐵,U

𝑖,𝑋(𝑍)𝑤
𝐶,cv
𝑖,𝑍 (y) + 𝑤𝐵

𝑖 (x)𝑤𝐶,U
𝑖,𝑍 − 𝑤𝐵,U

𝑖,𝑋(𝑍)𝑤
𝐶,U
𝑖,𝑍 ,

𝑤𝐵,L
𝑖,𝑋(𝑍)𝑤

𝐶,cv
𝑖,𝑍 (y) + 𝑤𝐵

𝑖 (x)𝑤𝐶,L
𝑖,𝑍 − 𝑤𝐵,L

𝑖,𝑋(𝑍)𝑤
𝐶,L
𝑖,𝑍

}︃
, if 𝑤𝐵,L

𝑖,𝑋(𝑍) ≥ 0

max

⎧⎪⎪⎨⎪⎪⎩
𝑤𝐵,U

𝑖,𝑋(𝑍)𝑤
𝐶,cc
𝑖,𝑍 (y) + 𝑤𝐵

𝑖 (x)𝑤𝐶,U
𝑖,𝑍 − 𝑤𝐵,U

𝑖,𝑋(𝑍)𝑤
𝐶,U
𝑖,𝑍 ,

𝑤𝐵,L
𝑖,𝑋(𝑍)𝑤

𝐶,cc
𝑖,𝑍 (y) + 𝑤𝐵

𝑖 (x)𝑤𝐶,L
𝑖,𝑍 − 𝑤𝐵,L

𝑖,𝑋(𝑍)𝑤
𝐶,L
𝑖,𝑍

}︃
, if 𝑤𝐵,U

𝑖,𝑋(𝑍) < 0

max

⎧⎪⎪⎨⎪⎪⎩
𝑤𝐵,U

𝑖,𝑋(𝑍)𝑤
𝐶,cv
𝑖,𝑍 (y) + 𝑤𝐵

𝑖 (x)𝑤𝐶,U
𝑖,𝑍 − 𝑤𝐵,U

𝑖,𝑋(𝑍)𝑤
𝐶,U
𝑖,𝑍 ,

𝑤𝐵,L
𝑖,𝑋(𝑍)𝑤

𝐶,cc
𝑖,𝑍 (y) + 𝑤𝐵

𝑖 (x)𝑤𝐶,L
𝑖,𝑍 − 𝑤𝐵,L

𝑖,𝑋(𝑍)𝑤
𝐶,L
𝑖,𝑍

}︃
, otherwise

,
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yields a convergent reduced-space lower bounding scheme with any accumulation point of

the sequence of lower bounding solutions solving Problem (P) when the subdivision process

is exhaustive on 𝑌 and the selection procedure is bound improving.

Before we investigate the convergence order of the reduced-space lower bounding scheme

in [76], we look at the propagation of the convergence orders of the relaxation schemes

(𝑤𝐵,L
𝑖,𝑍 , 𝑤𝐵,U

𝑖,𝑍 )𝑍∈I�𝑋 , (𝑤𝐶,cv
𝑖,𝑍 , 𝑤𝐶,cc

𝑖,𝑍 )𝑍∈I𝑌 , (𝑤𝐶,L
𝑖,𝑍 , 𝑤𝐶,U

𝑖,𝑍 )𝑍∈I𝑌 , ∀𝑖 ∈ 𝑄, and (𝑤𝐷,cv
𝑍 )𝑍∈I𝑌 to the

convergence order of the reduced-space scheme of convex relaxations (𝑤cv
𝑋(𝑍)×𝑍)𝑍∈I𝑌 . Note

that unless otherwise specified, we simply use 𝑋(𝑍) = �𝑋(= 𝑋), ∀𝑍 ∈ I𝑌 . The following

result provides sufficient conditions for the scheme of convex relaxations defined by (Wcv)

to have pointwise convergence of a given order on 𝑌 .

Lemma 6.5.1. Let 𝑋 ⊂ R𝑛𝑥 , 𝑌 ⊂ R𝑛𝑦 be nonempty compact convex sets and 𝑓 : 𝑋×𝑌 →

R be a function of the form (W) such that

𝑓 : 𝑋 × 𝑌 ∋ (x,y) ↦−→ 𝑤𝐴(x) +
∑︁
𝑖∈𝑄

𝑤𝐵
𝑖 (x)𝑤𝐶

𝑖 (y) + 𝑤𝐷(y).

Assume that 𝑤𝐴, 𝑤𝐵
𝑖 , ∀𝑖 ∈ 𝑄, and 𝑤𝐷 are continuous, and for each 𝑖 ∈ 𝑄, 𝑤𝐶

𝑖 has

range of order 𝛼𝐶
𝑖 ≥ 1 on 𝑌 with corresponding constant 𝜏𝐶,r

𝑖 . Let (𝑤𝐶,cv
𝑖,𝑍 , 𝑤𝐶,cc

𝑖,𝑍 )𝑍∈I𝑌

and (𝑤𝐷,cv
𝑍 )𝑍∈I𝑌 respectively denote continuous schemes of relaxations of 𝑤𝐶

𝑖 , 𝑖 ∈ 𝑄, and

𝑤𝐷 in 𝑌 with pointwise convergence orders 𝛾𝐶𝑖 ≥ 1 and 𝛾𝐷,cv ≥ 1 and corresponding

constants 𝜏𝐶𝑖 and 𝜏𝐷,cv. Let (𝑤𝐵,L
𝑖,𝑍 , 𝑤𝐵,U

𝑖,𝑍 )𝑍∈I�𝑋 and (𝑤𝐶,L
𝑖,𝑍 , 𝑤𝐶,U

𝑖,𝑍 )𝑍∈I𝑌 respectively denote

schemes of constant relaxations of 𝑤𝐵
𝑖 in �𝑋 and 𝑤𝐶

𝑖 in 𝑌 , ∀𝑖 ∈ 𝑄, with (Hausdorff)

convergence orders 𝛽𝐵,c
𝑖 > 0 and 𝛽𝐶,c

𝑖 ≥ 1 and corresponding constants 𝜏𝐵,c
𝑖 and 𝜏𝐶,c

𝑖 . Then

the continuous scheme of convex relaxations (𝑓 cv
𝑋(𝑍)×𝑍)𝑍∈I𝑌 of the form (Wcv) defined by

𝑓 cv
𝑋(𝑍)×𝑍(x,y) := 𝑤𝐴(x) +

∑︁
𝑖∈𝑄

𝑤𝐵𝐶,cv
𝑖,𝑋(𝑍)×𝑍(x,y) + 𝑤𝐷,cv

𝑍 (y), ∀(x,y) ∈ 𝑋(𝑍) × 𝑍,

has pointwise convergence of order at least min

{︂
min
𝑖∈𝑄

{︁
min

{︁
𝛼𝐶
𝑖 , 𝛽

𝐶,c
𝑖 , 𝛾𝐶𝑖

}︁}︁
, 𝛾𝐷,cv

}︂
on 𝑌 .
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Proof. From Equation (Wcv), we have for each (x,y) ∈ 𝑋(𝑍) × 𝑍:

𝑓(x,y) − 𝑓 cv
𝑋(𝑍)×𝑍(x,y)

=

⎛⎝𝑤𝐴(x) +
∑︁
𝑖∈𝑄

𝑤𝐵
𝑖 (x)𝑤𝐶

𝑖 (y) + 𝑤𝐷(y)

⎞⎠−

⎛⎝𝑤𝐴(x) +
∑︁
𝑖∈𝑄

𝑤𝐵𝐶,cv
𝑖,𝑋(𝑍)×𝑍(x,y) + 𝑤𝐷,cv

𝑍 (y)

⎞⎠
=
∑︁
𝑖∈𝑄

(︁
𝑤𝐵
𝑖 (x)𝑤𝐶

𝑖 (y) − 𝑤𝐵𝐶,cv
𝑖,𝑋(𝑍)×𝑍(x,y)

)︁
+
(︁
𝑤𝐷(y) − 𝑤𝐷,cv

𝑍 (y)
)︁
.

Depending on whether 𝑤𝐵,L
𝑖,𝑋(𝑍) ≥ 0, 𝑤𝐵,U

𝑖,𝑋(𝑍) < 0, or 0 ∈
(︁
𝑤𝐵,L
𝑖,𝑋(𝑍), 𝑤

𝐵,U
𝑖,𝑋(𝑍)

]︁
for each 𝑖 ∈ 𝑄,

we have that
(︁
𝑤𝐵
𝑖 (x)𝑤𝐶

𝑖 (y) − 𝑤𝐵𝐶,cv
𝑖,𝑋(𝑍)×𝑍(x,y)

)︁
is bounded from above either by

[︁
𝑤𝐵
𝑖 (x)𝑤𝐶

𝑖 (y) −
(︁
𝑤𝐵,U
𝑖,𝑋(𝑍)𝑤

𝐶,cv
𝑖,𝑍 (y) + 𝑤𝐵

𝑖 (x)𝑤𝐶,U
𝑖,𝑍 − 𝑤𝐵,U

𝑖,𝑋(𝑍)𝑤
𝐶,U
𝑖,𝑍

)︁]︁
,

or by [︁
𝑤𝐵
𝑖 (x)𝑤𝐶

𝑖 (y) −
(︁
𝑤𝐵,U
𝑖,𝑋(𝑍)𝑤

𝐶,cc
𝑖,𝑍 (y) + 𝑤𝐵

𝑖 (x)𝑤𝐶,U
𝑖,𝑍 − 𝑤𝐵,U

𝑖,𝑋(𝑍)𝑤
𝐶,U
𝑖,𝑍

)︁]︁
for each (x,y) ∈ 𝑋(𝑍)×𝑍. Consequently, it is sufficient to show the existence of constants

𝜏1, 𝜏2 ≥ 0 such that

max
(x,y)∈𝑋(𝑍)×𝑍

⃒⃒⃒⃒
⃒⃒
⎛⎝𝑤𝐴(x) +

∑︁
𝑖∈𝑄

𝑤𝐵
𝑖 (x)𝑤𝐶

𝑖 (y) + 𝑤𝐷(y)

⎞⎠−

⎛⎝𝑤𝐴(x) +
∑︁
𝑖∈𝑄

(︁
𝑤𝐵,U

𝑖,𝑋(𝑍)𝑤
𝐶,cv
𝑖,𝑍 (y) + 𝑤𝐵

𝑖 (x)𝑤𝐶,U
𝑖,𝑍 − 𝑤𝐵,U

𝑖,𝑋(𝑍)𝑤
𝐶,U
𝑖,𝑍

)︁
+ 𝑤𝐷,cv

𝑍 (y)

⎞⎠⃒⃒⃒⃒⃒⃒ ≤ 𝜏1𝑤(𝑍)𝛾

and

max
(x,y)∈𝑋(𝑍)×𝑍

⃒⃒⃒⃒
⃒⃒
⎛⎝𝑤𝐴(x) +

∑︁
𝑖∈𝑄

𝑤𝐵
𝑖 (x)𝑤𝐶

𝑖 (y) + 𝑤𝐷(y)

⎞⎠−

⎛⎝𝑤𝐴(x) +
∑︁
𝑖∈𝑄

(︁
𝑤𝐵,U

𝑖,𝑋(𝑍)𝑤
𝐶,cc
𝑖,𝑍 (y) + 𝑤𝐵

𝑖 (x)𝑤𝐶,U
𝑖,𝑍 − 𝑤𝐵,U

𝑖,𝑋(𝑍)𝑤
𝐶,U
𝑖,𝑍

)︁
+ 𝑤𝐷,cv

𝑍 (y)

⎞⎠⃒⃒⃒⃒⃒⃒ ≤ 𝜏2𝑤(𝑍)𝛾 ,

where 𝛾 := min

{︂
min
𝑖∈𝑄

{︁
min

{︁
𝛼𝐶
𝑖 , 𝛽

𝐶,c
𝑖 , 𝛾𝐶𝑖

}︁}︁
, 𝛾𝐷,cv

}︂
, to prove that (𝑓 cv

𝑋(𝑍)×𝑍)𝑍∈I𝑌 con-

verges pointwise to 𝑓 with order 𝛾 on 𝑌 . The ensuing arguments prove the existence of 𝜏1;

the existence of 𝜏2 can be proven analogously.
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We have ∀(x,y) ∈ 𝑋(𝑍) × 𝑍:

⎛⎝⎛⎝𝑤𝐴(x) +
∑︁
𝑖∈𝑄

𝑤𝐵
𝑖 (x)𝑤𝐶

𝑖 (y) + 𝑤𝐷(y)

⎞⎠−

⎛⎝𝑤𝐴(x) +
∑︁
𝑖∈𝑄

(︁
𝑤𝐵,U
𝑖,𝑋(𝑍)𝑤

𝐶,cv
𝑖,𝑍 (y) + 𝑤𝐵

𝑖 (x)𝑤𝐶,U
𝑖,𝑍 − 𝑤𝐵,U

𝑖,𝑋(𝑍)𝑤
𝐶,U
𝑖,𝑍

)︁
+ 𝑤𝐷,cv

𝑍 (y)

⎞⎠⎞⎠
=

⎛⎝∑︁
𝑖∈𝑄

𝑤𝐵
𝑖 (x)𝑤𝐶

𝑖 (y) −
(︁
𝑤𝐵,U
𝑖,𝑋(𝑍)𝑤

𝐶,cv
𝑖,𝑍 (y) + 𝑤𝐵

𝑖 (x)𝑤𝐶,U
𝑖,𝑍 − 𝑤𝐵,U

𝑖,𝑋(𝑍)𝑤
𝐶,U
𝑖,𝑍

)︁⎞⎠+

(︁
𝑤𝐷(y) − 𝑤𝐷,cv

𝑍 (y)
)︁
. (6.7)

Note that
⃒⃒⃒
𝑤𝐶
𝑖 (y) − 𝑤𝐶,U

𝑖,𝑍

⃒⃒⃒
can be bounded from above as

⃒⃒⃒
𝑤𝐶
𝑖 (y) − 𝑤𝐶,U

𝑖,𝑍

⃒⃒⃒
=

⃒⃒⃒⃒(︂
𝑤𝐶
𝑖 (y) − max

y∈𝑍
𝑤𝐶
𝑖 (y)

)︂
+

(︂
max
y∈𝑍

𝑤𝐶
𝑖 (y) − 𝑤𝐶,U

𝑖,𝑍

)︂⃒⃒⃒⃒
≤
⃒⃒⃒⃒
𝑤𝐶
𝑖 (y) − max

y∈𝑍
𝑤𝐶
𝑖 (y)

⃒⃒⃒⃒
+

⃒⃒⃒⃒
max
y∈𝑍

𝑤𝐶
𝑖 (y) − 𝑤𝐶,U

𝑖,𝑍

⃒⃒⃒⃒
≤
(︁
𝜏𝐶,r
𝑖 𝑤(𝑍)𝛼

𝐶
𝑖 −min{𝛼𝐶

𝑖 ,𝛽𝐶,c
𝑖 } + 𝜏𝐶,c

𝑖 𝑤(𝑍)𝛽
𝐶,c
𝑖 −min{𝛼𝐶

𝑖 ,𝛽𝐶,c
𝑖 }

)︁
𝑤(𝑍)min{𝛼𝐶

𝑖 ,𝛽𝐶,c
𝑖 }

≤𝑀𝐶
𝑖 𝑤(𝑍)𝛽

𝐶,r
𝑖 , ∀y ∈ 𝑍,

with 𝑀𝐶
𝑖 := 𝜏𝐶,r

𝑖 𝑤(𝑌 )𝛼
𝐶
𝑖 −𝛽𝐶,r

𝑖 + 𝜏𝐶,c
𝑖 𝑤(𝑌 )𝛽

𝐶,c
𝑖 −𝛽𝐶,r

𝑖 and 𝛽𝐶,r
𝑖 := min

{︁
𝛼𝐶
𝑖 , 𝛽

𝐶,c
𝑖

}︁
.

The first term in Equation (6.7) can be bounded as

∑︁
𝑖∈𝑄

(︁
𝑤𝐵
𝑖 (x)𝑤𝐶

𝑖 (y) −
(︁
𝑤𝐵,U
𝑖,𝑋(𝑍)𝑤

𝐶,cv
𝑖,𝑍 (y) + 𝑤𝐵

𝑖 (x)𝑤𝐶,U
𝑖,𝑍 − 𝑤𝐵,U

𝑖,𝑋(𝑍)𝑤
𝐶,U
𝑖,𝑍

)︁)︁
=
∑︁
𝑖∈𝑄

[︁(︁
𝑤𝐵
𝑖 (x) − 𝑤𝐵,U

𝑖,𝑋(𝑍)

)︁(︁
𝑤𝐶
𝑖 (y) − 𝑤𝐶,U

𝑖,𝑍

)︁
+ 𝑤𝐵,U

𝑖,𝑋(𝑍)

(︁
𝑤𝐶
𝑖 (y) − 𝑤𝐶,cv

𝑖,𝑍 (y)
)︁]︁

≤
∑︁
𝑖∈𝑄

⃒⃒⃒
𝑤𝐵
𝑖 (x) − 𝑤𝐵,U

𝑖,𝑋(𝑍)

⃒⃒⃒⃒⃒⃒
𝑤𝐶
𝑖 (y) − 𝑤𝐶,U

𝑖,𝑍

⃒⃒⃒
+
⃒⃒⃒
𝑤𝐵,U
𝑖,𝑋(𝑍)

(︁
𝑤𝐶
𝑖 (y) − 𝑤𝐶,cv

𝑖,𝑍 (y)
)︁⃒⃒⃒

≤
∑︁
𝑖∈𝑄

𝑀𝐵𝐶
𝑖 𝑤(𝑍)𝛾

𝐵𝐶
𝑖

≤𝑀𝐵𝐶𝑤(𝑍)𝛾
𝐵𝐶

, ∀(x,y) ∈ 𝑋(𝑍) × 𝑍, (6.8)
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where the constants 𝑀𝐵𝐶 , 𝛾𝐵𝐶 , and 𝑀𝐵𝐶
𝑖 , 𝛾𝐵𝐶

𝑖 , ∀𝑖 ∈ 𝑄, can be computed as

𝑀𝐵𝐶 :=
∑︁
𝑖∈𝑄

𝑀𝐵𝐶
𝑖 𝑤(𝑌 )𝛾

𝐵𝐶
𝑖 −𝛾𝐵𝐶

, 𝛾𝐵𝐶 := min
𝑖∈𝑄

𝛾𝐵𝐶
𝑖 , 𝛾𝐵𝐶

𝑖 := min
{︁
𝛽𝐶,r
𝑖 , 𝛾𝐶𝑖

}︁
,

𝑀𝐵𝐶
𝑖 :=

[︁
𝑀𝐵,1

𝑖 𝑀𝐶
𝑖 𝑤(𝑌 )𝛽

𝐶,r
𝑖 −𝛾𝐵𝐶

𝑖 + 𝑀𝐵,2
𝑖 𝜏𝐶𝑖 𝑤(𝑌 )𝛾

𝐶
𝑖 −𝛾𝐵𝐶

𝑖

]︁
,

𝑀𝐵,1
𝑖 := max

x∈𝑋
𝑤𝐵
𝑖 (x) − min

x∈𝑋
𝑤𝐵
𝑖 (x) + 𝜏𝐵,c

𝑖 𝑤(𝑋)𝛽
𝐵,c
𝑖 , 𝑀𝐵,2

𝑖 := max
x∈𝑋

𝑤𝐵
𝑖 (x) + 𝜏𝐵,c

𝑖 𝑤(𝑋)𝛽
𝐵,c
𝑖 .

The second term in Equation (6.7) is simply bounded as

𝑤𝐷(y) − 𝑤𝐷,cv
𝑍 (y) ≤ 𝜏𝐷,cv𝑤(𝑍)𝛾

𝐷,cv
, ∀y ∈ 𝑍. (6.9)

From Equations (6.8) and (6.9), we have

max
(x,y)∈𝑋(𝑍)×𝑍

⃒⃒⃒⃒
⃒⃒
⎛⎝𝑤𝐴(x) +

∑︁
𝑖∈𝑄

𝑤𝐵
𝑖 (x)𝑤𝐶

𝑖 (y) + 𝑤𝐷(y)

⎞⎠−

⎛⎝𝑤𝐴(x) +
∑︁
𝑖∈𝑄

(︁
𝑤𝐵,U
𝑖,𝑋(𝑍)𝑤

𝐶,cv
𝑖,𝑍 (y) + 𝑤𝐵

𝑖 (x)𝑤𝐶,U
𝑖,𝑍 − 𝑤𝐵,U

𝑖,𝑋(𝑍)𝑤
𝐶,U
𝑖,𝑍

)︁
+ 𝑤𝐷,cv

𝑍 (y)

⎞⎠⃒⃒⃒⃒⃒⃒
≤
(︁
𝑀𝐵𝐶𝑤(𝑌 )𝛾

𝐵𝐶−𝛾 + 𝜏𝐷,cv𝑤(𝑌 )𝛾
𝐷,cv−𝛾

)︁
𝑤(𝑍)𝛾 ,

which proves the existence of 𝜏1.

The following remark is in order.

Remark 6.5.2.

1. Suppose 𝑤𝐶
𝑖 is Lipschitz continuous on 𝑌 for each 𝑖 ∈ 𝑄. We then have 𝛼𝐶

𝑖 ≥ 1, ∀𝑖 ∈ 𝑄.

If 𝛾𝐶𝑖 ≥ 1 and 𝛽𝐶,c
𝑖 ≥ 1, ∀𝑖 ∈ 𝑄, and 𝛾𝐷,cv ≥ 1, we have from Lemma 6.5.1 that

(𝑓 cv
𝑋(𝑍)×𝑍)𝑍∈I𝑌 has at least first-order convergence on 𝑌 .

2. Let 𝑋 = [1, 2], 𝑌 = [−1, 1], and 𝑓(𝑥, 𝑦) = 𝑥𝑦. For any [−𝜀, 𝜀] =: 𝑍 ∈ I𝑌 with 𝜀 > 0,

consider the scheme of convex relaxations (𝑓 cv
𝑋(𝑍)×𝑍)𝑍∈I𝑌 of 𝑓 in 𝑌 with

𝑓 cv
𝑋(𝑍)×𝑍(𝑥, 𝑦) = max{𝑦 − 𝜀𝑥 + 𝜀, 2𝑦 + 𝜀𝑥− 2𝜀}.

The above scheme corresponds to the tightest possible scheme of convex relaxations in the

reduced-space, but has at most first-order pointwise convergence on 𝑌 . This is in contrast
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to Theorem 10 in [38] where the scheme of convex envelopes of any twice continuously

differentiable function was shown to have pointwise convergence order of at least two on

𝑋 × 𝑌 . Note that if 𝑄 = ∅, the pointwise convergence order of the scheme of convex

relaxations (𝑓 cv
𝑋(𝑍)×𝑍)𝑍∈I𝑌 is dictated by the pointwise convergence order of the scheme

(𝑤𝐷,cv
𝑍 )𝑍∈I𝑌 , and second-order pointwise convergence of (𝑓 cv

𝑋(𝑍)×𝑍)𝑍∈I𝑌 can be achieved

by using the scheme of convex envelopes of 𝑤𝐷 if 𝑤𝐷 is twice continuously differentiable.

Also note that Theorem 2 in [38], which states that the pointwise convergence order of

a scheme of relaxations of a nonlinear twice continuously differentiable function can be

at most two on 𝑋 × 𝑌 , naturally holds over 𝑌 as well.

The following result establishes a lower bound on the convergence order of the reduced-

space lower bounding scheme proposed in [76] at infeasible points.

Lemma 6.5.3. Consider Problem (P), and suppose functions 𝑔𝑗 , 𝑗 = 1, · · · ,𝑚𝐼 , are

each of the form (W) and functions ℎ𝑘, 𝑘 = 1, · · · ,𝑚𝐸 , are each of the form (Weq).

Let (𝑔cv𝑗,𝑋(𝑍)×𝑍)𝑍∈I𝑌 , 𝑗 = 1, · · · ,𝑚𝐼 , denote continuous schemes of convex relaxations of

𝑔1, · · · , 𝑔𝑚𝐼 , respectively, in 𝑌 with pointwise convergence orders 𝛾cv𝑔,1 > 0, · · · , 𝛾cv𝑔,𝑚𝐼
> 0 and

corresponding constants 𝜏 cv𝑔,1, · · · , 𝜏 cv𝑔,𝑚𝐼
, and let (ℎcv𝑘,𝑋(𝑍)×𝑍 , ℎ

cc
𝑘,𝑋(𝑍)×𝑍)𝑍∈I𝑌 , 𝑘 = 1, · · · ,𝑚𝐸 ,

denote continuous schemes of relaxations of ℎ1, · · · , ℎ𝑚𝐸 , respectively, in 𝑌 with pointwise

convergence orders 𝛾ℎ,1 > 0, · · · , 𝛾ℎ,𝑚𝐸
> 0 and corresponding constants 𝜏ℎ,1, · · · , 𝜏ℎ,𝑚𝐸

.

Then, there exists 𝜏 ≥ 0 such that for every 𝑍 ∈ I𝑌

𝑑

⎛⎜⎝
⎡⎣g
h

⎤⎦(𝑋(𝑍) × 𝑍),R𝑚𝐼
− × {0}

⎞⎟⎠− 𝑑
(︀
ℐ𝐶(𝑍),R𝑚𝐼

− × {0}
)︀
≤ 𝜏𝑤(𝑍)𝛽,

where ℐ𝐶(𝑍) is defined as

ℐ𝐶(𝑍) :=
{︁

(v,w) ∈ R𝑚𝐼 × R𝑚𝐸 : v = gcv
𝑋(𝑍)×𝑍(x,y),hcv

𝑋(𝑍)×𝑍(x,y) ≤ w ≤ hcc
𝑋(𝑍)×𝑍(x,y)

for some (x,y) ∈ 𝑋(𝑍) × 𝑍
}︁

and 𝛽 is defined as

𝛽 := min

{︂
min

𝑗∈{1,··· ,𝑚𝐼}
𝛾cv𝑔,𝑗 , min

𝑘∈{1,··· ,𝑚𝐸}
𝛾ℎ,𝑘

}︂
.

Proof. The proof is similar to that of Lemma 6.4.1 and is therefore omitted.
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Definition 6.5.4. [Feasible Point in the Reduced-Space] Consider Problem (P). A point

y ∈ 𝑌 is said to be feasible (in the reduced-space) if there exists x ∈ 𝑋 such that (x,y) is

feasible for Problem (P).

The following result establishes first-order convergence of the reduced-space lower bound-

ing scheme proposed in [76] at a feasible point in the reduced-space when first-order point-

wise convergent schemes of relaxations are used and the reduced-space dual lower bounding

scheme (see Section 6.5.2) is first-order convergent.

Theorem 6.5.5. Consider Problem (P). Suppose the functions 𝑓 and 𝑔𝑗 , 𝑗 = 1, · · · ,𝑚𝐼 ,

are each of the form (W) and functions ℎ𝑘, 𝑘 = 1, · · · ,𝑚𝐸 , are each of the form (Weq).

Let yf ∈ 𝑌 be a feasible point in the reduced-space for Problem (P). Suppose the reduced-

space dual lower bounding scheme (see Section 6.5.2) has convergence of order 𝛽𝑑 at yf and

a corresponding scheme of dual variables
(︁(︁

𝜇yf

𝑍 ,𝜆yf

𝑍

)︁)︁
𝑍∈I𝑌

(not necessarily optimal, but

which yield 𝛽𝑑-order convergence at yf) with
(︁
𝜇yf

𝑍 ,𝜆yf

𝑍

)︁
∈ R𝑚𝐼

+ × R𝑚𝐸 ,
⃦⃦⃦
𝜇yf

𝑍

⃦⃦⃦
∞

≤ 𝜇̄ and⃦⃦⃦
𝜆yf

𝑍

⃦⃦⃦
∞

≤ 𝜆̄, ∀𝑍 ∈ I𝑌 , for some constants 𝜇̄, 𝜆̄ ≥ 0. Let (𝑓 cv
𝑋(𝑍)×𝑍)𝑍∈I𝑌 , (𝑔cv𝑗,𝑋(𝑍)×𝑍)𝑍∈I𝑌 ,

𝑗 = 1, · · · ,𝑚𝐼 , denote continuous schemes of convex relaxations of 𝑓 , 𝑔1, · · · , 𝑔𝑚𝐼 , respec-

tively, in 𝑌 with pointwise convergence orders 𝛾cv𝑓 ≥ 1, 𝛾cv𝑔,1 ≥ 1, · · · , 𝛾cv𝑔,𝑚𝐼
≥ 1 and cor-

responding constants 𝜏 cv𝑓 , 𝜏 cv𝑔,1, · · · , 𝜏 cv𝑔,𝑚𝐼
. Let (ℎcv𝑘,𝑋(𝑍)×𝑍 , ℎ

cc
𝑘,𝑋(𝑍)×𝑍)𝑍∈I𝑌 , 𝑘 = 1, · · · ,𝑚𝐸 ,

denote continuous schemes of relaxations of ℎ1, · · · , ℎ𝑚𝐸 , respectively, in 𝑌 with pointwise

convergence orders 𝛾ℎ,1 ≥ 1, · · · , 𝛾ℎ,𝑚𝐸
≥ 1 and corresponding constants 𝜏ℎ,1, · · · , 𝜏ℎ,𝑚𝐸

.

Then, the scheme of lower bounding problems (ℒ(𝑍))𝑍∈I𝑌 with

(𝒪(𝑍))𝑍∈I𝑌 :=

(︂
min

(x,y)∈ℱcv(𝑍)
𝑓 cv
𝑋(𝑍)×𝑍(x,y)

)︂
𝑍∈I𝑌

,

(ℐ𝐶(𝑍))𝑍∈I𝑌 :=
(︁{︁

(v,w) ∈ R𝑚𝐼 × R𝑚𝐸 : v = gcv
𝑋(𝑍)×𝑍(x,y),hcv

𝑋(𝑍)×𝑍(x,y) ≤ w ≤ hcc
𝑋(𝑍)×𝑍(x,y)

for some (x, z) ∈ 𝑋(𝑍) × 𝑍
}︁)︁

𝑍∈I𝑌

is at least min

{︂
min

{︂
𝛾cv𝑓 , min

𝑗∈{1,··· ,𝑚𝐼}
𝛾cv𝑔,𝑗 , min

𝑘∈{1,··· ,𝑚𝐸}
𝛾ℎ,𝑘

}︂
, 𝛽𝑑

}︂
-order convergent at yf.

Proof. The proof is similar to that of Theorem 6.4.19 and is therefore omitted.

Definition 6.5.6. [Unconstrained Point in the Reduced-Space] Consider Problem (P) with

𝑚𝐸 = 0. A point y ∈ 𝑌 is said to be unconstrained (in the reduced-space) if there exists

𝛿 > 0 such that ∀z ∈ 𝑌 with ‖z− y‖ < 𝛿, we have g(x, z) < 0, ∀x ∈ 𝑋.

The next result establishes first-order convergence of the reduced-space lower bounding

scheme proposed in [76] at unconstrained points in the reduced-space when a first-order
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convergent scheme of relaxations of the objective is used by the (convergent) lower bounding

scheme.

Proposition 6.5.7. Consider Problem (P) with 𝑚𝐸 = 0. Suppose the functions 𝑓 and 𝑔𝑗 ,

𝑗 = 1, · · · ,𝑚𝐼 , are each of the form (W). Let (𝑓 cv
𝑋(𝑍)×𝑍)𝑍∈I𝑌 denote a continuous scheme

of convex relaxations of 𝑓 in 𝑌 with convergence order 𝛽cv
𝑓 > 0 and corresponding constant

𝜏 cv𝑓 , (𝑔cv𝑗,𝑋(𝑍)×𝑍)𝑍∈I𝑌 , 𝑗 = 1, · · · ,𝑚𝐼 , denote continuous schemes of convex relaxations of

𝑔1, · · · , 𝑔𝑚𝐼 , respectively, in 𝑌 with pointwise convergence orders 𝛾cv𝑔,1 > 0, · · · , 𝛾cv𝑔,𝑚𝐼
> 0

and corresponding constants 𝜏 cv𝑔,1, · · · , 𝜏 cv𝑔,𝑚𝐼
.

Suppose yS ∈ 𝑌 is an unconstrained point in the reduced-space, and the scheme of lower

bounding problems (ℒ(𝑍))𝑍∈I𝑌 with

(𝒪(𝑍))𝑍∈I𝑌 :=

(︂
min

(x,y)∈ℱcv(𝑍)
𝑓 cv
𝑋(𝑍)×𝑍(x,y)

)︂
𝑍∈I𝑌

,

(ℐ𝐶(𝑍))𝑍∈I𝑌 :=
(︁
gcv
𝑋(𝑍)×𝑍(𝑋(𝑍) × 𝑍)

)︁
𝑍∈I𝑌

has convergence of order 𝛽 ∈ (0, 𝛽cv
𝑓 ] at yS. Then the scheme of lower bounding problems

(ℒ(𝑍))𝑍∈I𝑌 is at least 𝛽cv
𝑓 -order convergent at yS.

Proof. The proof is similar to the proof of Corollary 6.4.12.

Since yS is an unconstrained point in the reduced-space and 𝑔𝑗 is continuous for each

𝑗 ∈ {1, · · · ,𝑚𝐼} by virtue of Assumption 6.2.1, ∃𝛿 > 0 such that ∀z ∈ 𝑌 with
⃦⃦
z− yS

⃦⃦
∞ ≤ 𝛿

(see Lemma 2.2.2), we have g(x, z) < 0, ∀x ∈ 𝑋.

Consider 𝑍 ∈ I𝑌 with yS ∈ 𝑍 and 𝑤(𝑍) ≤ 𝛿. We have g(𝑋(𝑍) × 𝑍) ⊂ R𝑚𝐼
− and

gcv
𝑋(𝑍)×𝑍(𝑋(𝑍) × 𝑍) ⊂ R𝑚𝐼

− . Consequently,

min
(x,y)∈ℱ(𝑍)

𝑓(x,y) − min
(x,y)∈ℱcv(𝑍)

𝑓 cv
𝑋(𝑍)×𝑍(x,y)

= min
(x,y)∈𝑋(𝑍)×𝑍

𝑓(x,y) − min
(x,y)∈𝑋(𝑍)×𝑍

𝑓 cv
𝑋(𝑍)×𝑍(x,y)

≤𝜏 cv𝑓 𝑤(𝑍)𝛽
cv
𝑓 .

The desired result follows by analogy to Lemma 6.3.8 based on the assumption that the

reduced-space lower bounding scheme (ℒ(𝑍))𝑍∈I𝑌 is at least 𝛽-order convergent at yS.
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Note that Proposition 6.5.7 can be generalized in a manner similar to Corollary 6.4.17 to

show that the above lower bounding scheme has 𝛽cv
𝑓 -order convergence on a neighborhood

of yS.

The following example shows that the convergence order of the reduced-space lower

bounding scheme is dictated by the convergence order, 𝛽cv
𝑓 , of the scheme (𝑓 cv

𝑋(𝑍)×𝑍)𝑍∈I𝑌

under the assumptions of Proposition 6.5.7.

Example 6.5.8. Let 𝑋 = [−1, 0.1], 𝑌 = [−1, 1], 𝑚𝐼 = 1, and 𝑚𝐸 = 0 with 𝑓(𝑥, 𝑦) = 𝑥2+𝑦2

and 𝑔(𝑥, 𝑦) = 𝑥 + 𝑦 − 0.5. For any [𝑦L, 𝑦U] =: 𝑍 ∈ I𝑌 , let

𝑓 cv
𝑋(𝑍)×𝑍(𝑥, 𝑦) =

⎧⎪⎨⎪⎩
𝑥2 − (𝑦U − 𝑦L)3, if 0 ∈ [𝑦L, 𝑦U]

𝑥2 + min
{︀

(𝑦L)2, (𝑦U)2
}︀
− (𝑦U − 𝑦L)3, otherwise

,

𝑔cv𝑋(𝑍)×𝑍(𝑥, 𝑦) = 𝑥 + 𝑦 − 0.5.

The scheme (𝑓 cv
𝑋(𝑍)×𝑍)𝑍∈I𝑌 has first-order pointwise convergence on 𝑌 and third-order con-

vergence on 𝑌 , while the scheme (𝑔cv𝑋(𝑍)×𝑍)𝑍∈I𝑌 has arbitrarily high pointwise convergence

order on 𝑌 .

Let 𝑦L = −𝜀, 𝑦U = 𝜀 with 0 < 𝜀 ≤ 0.1. The width of 𝑍 is 𝑤(𝑍) = 2𝜀. The optimal

objective value of Problem (P) on 𝑍 is 0, while the optimal objective of the lower bounding

problem on 𝑍 is −8𝜀3. Convergence at the point 𝑦 = 0 is, therefore, at most third-order.

It is natural to wonder at this stage whether the reduced-space lower bounding scheme

in [76] has ‘similar convergence properties’ to the full-space lower bounding scheme that

was analyzed in Section 6.4.1. Example 6.5.19 presents a case where the reduced-space

lower bounding scheme in [76] only has first-order convergence at a constrained minimizer

that is a KKT point (cf. Example 6.4.10, Theorem 6.4.9 and Corollary 6.4.28). The

following example shows that the reduced-space lower bounding scheme in [76] may have

a convergence order as low as one even for unconstrained problems with smooth objective

functions.

Example 6.5.9. Consider the following instance of Problem (P):

min
𝑥,𝑦

2𝑥2 + 𝑥2𝑦 − 𝑥𝑦2 + (𝑦 − 0.5)2

s.t. 𝑥 ∈ [−1, 1], 𝑦 ∈ [0, 1].
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The global minimum, (𝑥*, 𝑦*), of the above ‘unconstrained problem’ is 𝑥* = 2
√
21
3 − 3,

𝑦* =
√
21
3 − 1 with optimal objective value 𝜈* = 2(𝑥*)2 + (𝑥*)2𝑦* − 𝑥*(𝑦*)2 + (𝑦* − 0.5)2.

Consider [𝑦*−𝜀, 𝑦* +𝜀] =: 𝑍 ∈ I𝑌 with 𝜀 ∈ (0, 0.25]. The reduced-space lower bounding

scheme in [76] yields

𝒪(𝑍) = min
𝑥,𝑦,𝑤1,𝑤2

2𝑥2 + 𝑤1 + 𝑤2 + (𝑦 − 0.5)2

s.t. 𝑤1 ≥ 𝑥2(𝑦* − 𝜀),

𝑤1 ≥ 𝑦 + 𝑥2(𝑦* + 𝜀) − (𝑦* + 𝜀),

𝑤2 ≥ 𝑦2 − 𝑥(𝑦* + 𝜀)2 − (𝑦* + 𝜀)2,

𝑤2 ≥ (𝑦*)2 − 2𝑦*𝑦 − 𝜀2 − 𝑥(𝑦* − 𝜀)2 + (𝑦* − 𝜀)2,

𝑥 ∈ [−1, 1], 𝑦 ∈ [𝑦* − 𝜀, 𝑦* + 𝜀].

Note that the point (𝑥f𝑍 , 𝑦
f
𝑍 , 𝑤

f
1,𝑍 , 𝑤

f
2,𝑍) = (𝑥*, 𝑦*, (𝑥*)2(𝑦* − 𝜀),−(𝑦*)2 − 𝜀2 − 𝑥*(𝑦* − 𝜀)2 +

(𝑦* − 𝜀)2) is feasible for the lower bounding scheme with objective value 2(𝑥*)2 + 𝑤f
1,𝑍 +

𝑤f
2,𝑍 + (𝑦* − 0.5)2 = 𝜈* + 2𝑥*𝑦*𝜀− (𝑥*)2𝜀− 𝑥*𝜀2 − 2𝑦*𝜀. Therefore, we have

min
(𝑥,𝑦)∈ℱ(𝑍)

𝑓(𝑥, 𝑦) − min
(𝑥,𝑦)∈ℱcv(𝑍)

𝑓 cv
𝑋(𝑍)×𝑍(𝑥, 𝑦) ≥ (𝑥*)2𝜀 + 𝑥*𝜀2 + 2𝑦*𝜀− 2𝑥*𝑦*𝜀

=
(︀
0.5(𝑥*)2 + 0.5𝑥*𝜀 + 𝑦* − 𝑥*𝑦*

)︀
𝑤(𝑍)

= 0.5 (1 + 𝜀𝑥*)𝑤(𝑍)

≥ 0.5𝑤(𝑍),

which establishes that the reduced-space lower bounding scheme in [76] has at most first-

order convergence at (the reduced-space minimizer) 𝑦*.

Remark 6.5.10. Example 6.5.9 provides an instance of Problem (P) for which the mini-

mum is unconstrained but the reduced-space lower bounding scheme in [76] is only first-order

convergent at the reduced-space minimizer. Therefore, the lower bounding scheme in [76]

could face severe clustering for this example [68, 238]. Note that this is in contrast to the

full-space lower bounding schemes in Section 6.4 which can achieve at least second-order

convergence at the above minimizer and thereby mitigate clustering.

The presence of the terms 𝑥2𝑦 and −𝑥𝑦2 in the objective function in Example 6.5.9 plays

a crucial role in limiting the convergence order of the reduced-space lower bounding scheme
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in [76] (see Remark 6.5.2). Additionally, the analysis in Example 6.5.9 implies that the

scheme of relaxations of its objective function has at most first-order Hausdorff convergence

on 𝑌 . Theorem 6.5.23 in Section 6.5.2 implies that the reduced-space lower bounding

scheme in [76] has second-order convergence at KKT points when all of the functions in

Problem (P) are twice continuously differentiable and separable in x and y.

6.5.2 Duality-based branch-and-bound

Dür and Horst [69, Section 3.3] outlined a reduced-space branch-and-bound algorithm in

which they used Lagrangian duality to obtain lower bounds (also see [20, 70]). Dür and

Horst [69] prove that when a constraint qualification holds for the reduced-space convex

relaxation-based lower bounding scheme with each function in Problem (P) replaced by its

(convex) envelope on 𝑋 × 𝑍 (for each 𝑍 ∈ I𝑌 ), the subdivision process is exhaustive on

𝑌 , and the selection procedure is bound improving, then any accumulation point of the

sequence of reduced-space dual lower bounding solutions solves Problem (P).

The reduced-space Lagrangian dual lower bounding problem is in essence the same as

its full-space counterpart Problem (D), with the major difference being that we only branch

on the 𝑌 -space in the reduced-space dual lower bounding scheme to converge. We associate

with the reduced-space dual lower bounding scheme, (ℒ(𝑍))𝑍∈I𝑌 , at a feasible point in the

reduced-space y, a scheme of dual variables ((𝜇y
𝑍 ,𝜆

y
𝑍))𝑍∈I𝑌 corresponding to the solution

of the scheme of dual lower bounding problems (𝒪(𝑍))𝑍∈I𝑌 with y ∈ 𝑍. Dür and Horst [69,

Section 4] also outlined classes of problems for which the reduced-space dual lower bounding

problem can be solved to optimality. The following result, analogous to Theorem 6.4.23,

holds.

Theorem 6.5.11. Consider Problem (P). Suppose strong duality holds for the reduced-

space convex relaxation-based lower bounding scheme for Problem (P) obtained by using

the schemes of (convex) envelopes of 𝑓 , g, and h. Then, the reduced-space dual lower

bounding scheme has at least as high a convergence order as the reduced-space convex

relaxation-based lower bounding scheme obtained by using schemes of (convex) envelopes.

Proof. The proof is similar to that of Theorem 6.4.23 and is therefore omitted.

The following result from [69] states that when the constraints in Problem (P) are affine

on 𝑋 × 𝑌 , the lower bounding scheme corresponding to schemes of (convex) envelopes
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provides the same scheme of lower bounds as that obtained using the dual lower bounding

scheme.

Lemma 6.5.12. Consider Problem (P), and suppose the constraints in Problem (P) are

affine in x and y, i.e., g : 𝑋 × 𝑌 ∋ (x,y) ↦→ A𝑔x + B𝑔y − c𝑔 and h : 𝑋 × 𝑌 ∋ (x,y) ↦→

Aℎx + Bℎy− cℎ. In addition, suppose Problem (P) is feasible and strong duality holds for

Problem (P) for y restricted to any feasible point in 𝑌 . Then the lower bound obtained by

solving the dual problem on 𝑍 ∈ I𝑌 is the same as the lower bound obtained by solving

the relaxation of the original problem on 𝑍 with the objective function 𝑓 replaced by its

convex envelope on 𝑋 × 𝑍.

Proof. See Proposition 2.1 in [69].

Lemma 6.5.3 (in conjunction with Lemma 6.4.22) guarantees that the reduced-space

dual lower bounding scheme has at least first-order convergence at infeasible points for the

subclass of Problem (P) for which the algorithm of Epperly and Pistikopoulos is applicable

when the functions 𝑤𝐶
𝑖 , ∀𝑖 ∈ 𝑄, and 𝑤𝐷 corresponding to each of the constraints are

Lipschitz continuous. The following result shows that first-order convergence at infeasible

points is guaranteed for a more general class of problems in the form of Problem (P) even

when constraint propagation techniques are not used.

Lemma 6.5.13. Let 𝑋 ⊂ R𝑛𝑥 , 𝑌 ⊂ R𝑛𝑦 be nonempty compact convex sets, 𝑓 : 𝑋×𝑌 → R

be Lipschitz continuous on 𝑋 × 𝑌 with Lipschitz constant 𝑀𝑓 . Suppose 𝑓 is partially

convex with respect to x, i.e., 𝑓(·,y) is convex on 𝑋 for each y ∈ 𝑌 . For any 𝑍 ∈ I𝑌 , let

𝑓 cv,env
𝑋×𝑍 : 𝑋×𝑍 → R denote the convex envelope of 𝑓 on 𝑋×𝑍. Assume that for each x̄ ∈ 𝑋,

there exists a subgradient s(y; x̄) ∈ 𝜕x𝑓(x,y)|x=x̄ such that each 𝑠𝑖(y; x̄), 𝑖 = 1, · · · , 𝑛𝑥, is

Lipschitz continuous on 𝑌 with Lipschitz constant 𝑀𝑠. Then, the reduced-space scheme of

convex envelopes
(︀
𝑓 cv,env
𝑋×𝑍

)︀
𝑍∈I𝑌 has pointwise convergence of order at least one on 𝑌 .

Proof. We wish to prove the existence of a constant 𝜏 ≥ 0 such that

max
(x,y)∈𝑋×𝑍

⃒⃒
𝑓(x,y) − 𝑓 cv,env

𝑋×𝑍 (x,y)
⃒⃒
≤ 𝜏𝑤(𝑍), ∀𝑍 ∈ I𝑌.

Note that the existence of the maximum in the above expression follows from the (Lipschitz)

continuity of 𝑓 , Lemma 2.3.30, and the compactness of 𝑋 × 𝑌 . Consider 𝑍 ∈ I𝑌 , and let
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(x*
𝑍 ,y

*
𝑍) ∈ arg max

(x,y)∈𝑋×𝑍

⃒⃒
𝑓(x,y) − 𝑓 cv,env

𝑋×𝑍 (x,y)
⃒⃒
. We have

max
(x,y)∈𝑋×𝑍

⃒⃒
𝑓(x,y) − 𝑓 cv,env

𝑋×𝑍 (x,y)
⃒⃒

= 𝑓(x*
𝑍 ,y

*
𝑍) − 𝑓 cv,env

𝑋×𝑍 (x*
𝑍 ,y

*
𝑍)

= max
y∈𝑍

⃒⃒
𝑓(x*

𝑍 ,y) − 𝑓 cv,env
𝑋×𝑍 (x*

𝑍 ,y)
⃒⃒
. (6.10)

Since 𝑓(·,y) is convex on 𝑋 for each y ∈ 𝑌 , we have

𝑓(x,y) ≥ 𝑓(x*
𝑍 ,y) + s(y;x*

𝑍)T(x− x*
𝑍)

= 𝑓(x*
𝑍 ,y) + 𝑤𝑍(x,y)

≥ 𝑓 cv,env
𝑍 (x*

𝑍 ,y) + 𝑤cv
𝑋×𝑍(x,y), ∀(x,y) ∈ 𝑋 × 𝑍,

where s(y;x*
𝑍) ∈ 𝜕x𝑓(x,y)|x=x*

𝑍
is a subgradient of 𝑓(·,y) at x*

𝑍 such that 𝑠𝑖(y;x*
𝑍),

∀𝑖 ∈ {1, · · · , 𝑛𝑥}, is Lipschitz continuous on 𝑍 with Lipschitz constant 𝑀𝑠, 𝑓 cv,env
𝑍 (x*

𝑍 , ·)

denotes the convex envelope of 𝑓(x*
𝑍 , ·) on 𝑍, 𝑤𝑍(x,y) := s(y;x*

𝑍)T(x− x*
𝑍) is a function

of the form (W), and 𝑤cv
𝑋×𝑍 is a convex relaxation of 𝑤𝑍 on 𝑋 ×𝑍 of the form (Wcv) with

first-order (pointwise) convergent schemes of estimators of s(y;x*
𝑍) used in its construction.

Since 𝑓 is Lipschitz continuous on 𝑋 × 𝑌 and 𝑓 cv,env
𝑍 (x*

𝑍 , ·) is the convex envelope of

𝑓(x*
𝑍 , ·) on 𝑍, we have from Lemma 6.3.10 that

max
y∈𝑍

⃒⃒
𝑓(x*

𝑍 ,y) − 𝑓 cv,env
𝑍 (x*

𝑍 ,y)
⃒⃒
≤ 𝑀𝑓𝑤(𝑍).

Using Lemma 6.5.1 with 𝑤𝐵
𝑖 (x) = (𝑥𝑖 − 𝑥*𝑖,𝑍), 𝑤𝐶

𝑖 (y) = 𝑠𝑖(y;x*
𝑍), 𝑤𝐵,L

𝑖,𝑋 = min
x∈𝑋

(𝑥𝑖 −

𝑥*𝑖,𝑍), 𝑤𝐵,U
𝑖,𝑋 = max

x∈𝑋
(𝑥𝑖 − 𝑥*𝑖,𝑍), 𝑤𝐶,cv

𝑖,𝑍 (y) = 𝑤𝐶,L
𝑖,𝑍 = min

y∈𝑍
𝑠𝑖(y;x*

𝑍), and 𝑤𝐶,cc
𝑖,𝑍 (y) = 𝑤𝐶,U

𝑖,𝑍 =

max
y∈𝑍

𝑠𝑖(y;x*
𝑍), we can show the existence of a constant 𝜏 ≥ 0 such that

max
(x,y)∈𝑋×𝑍

⃒⃒
𝑤𝑍(x,y) − 𝑤cv

𝑋×𝑍(x,y)
⃒⃒
≤ 𝜏𝑤(𝑍).

From the above two inequalities, we have

max
(x,y)∈𝑋×𝑍

⃒⃒
(𝑓(x*

𝑍 ,y) + 𝑤𝑍(x,y)) −
(︀
𝑓 cv,env
𝑍 (x*

𝑍 ,y) + 𝑤cv
𝑋×𝑍(x,y)

)︀⃒⃒
≤ (𝑀𝑓 + 𝜏)𝑤(𝑍).
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Using 𝑤𝑍(x*
𝑍 ,y) = 0, we obtain

max
y∈𝑍

⃒⃒
𝑓(x*

𝑍 ,y) −
(︀
𝑓 cv,env
𝑍 (x*

𝑍 ,y) + 𝑤cv
𝑋×𝑍(x*

𝑍 ,y)
)︀⃒⃒

≤ (𝑀𝑓 + 𝜏)𝑤(𝑍).

Since the convex envelope of 𝑓 on 𝑋×𝑍, 𝑓 cv,env
𝑋×𝑍 , is, by definition, tighter than the convex re-

laxation

𝑓 cv,env
𝑍 (x*

𝑍 , ·) + 𝑤cv
𝑋×𝑍 at x*

𝑍 , we have from Equation (6.10) that

max
y∈𝑍

⃒⃒
𝑓(x*

𝑍 ,y) − 𝑓 cv,env
𝑋×𝑍 (x*

𝑍 ,y)
⃒⃒
≤ (𝑀𝑓 + 𝜏)𝑤(𝑍),

which proves the existence of 𝜏 .

Note that the assumptions of Lemma 6.5.13 are readily satisfied if 𝑓 is a Lipschitz

continuous function of the form (W) that is composed of continuous functions 𝑤𝐴, 𝑤𝐵
𝑖 ,

∀𝑖 ∈ 𝑄, and 𝑤𝐷 and Lipschitz continuous functions 𝑤𝐶
𝑖 , ∀𝑖 ∈ 𝑄. An instance for which the

assumptions of Lemma 6.5.13 are not satisfied is 𝑓(𝑥, 𝑦) = |𝑦||𝑥 + 𝑦 + 1| with 𝑋 = [−1, 1]

and 𝑌 = [−1, 1]. The following examples provide instances for which the assumptions of

Lemma 6.5.13 are satisfied, but where the functions involved are not in the form (W).

Example 6.5.14. Let 𝑋 = [−1, 1], 𝑌 = [−1, 1], and 𝑓(𝑥, 𝑦) = exp(𝑥𝑦). We have

𝑀𝑓 =
√

2 exp(1), 𝑠(𝑦;𝑥) = 𝑦 exp(𝑥𝑦), and 𝑀𝑠 = 2 exp(1) satisfying the assumptions of

Lemma 6.5.13.

Example 6.5.15. Let 𝑋 = [−1, 1], 𝑌 = [−1, 1], and 𝑓(𝑥, 𝑦) = −|𝑦|
√
𝑥 + 𝑦 + 3. We have

𝑀𝑓 = 4, 𝑠(𝑦;𝑥) = − |𝑦|
2
√
𝑥+𝑦+3

, and 𝑀𝑠 = 1 satisfying the assumptions of Lemma 6.5.13.

The next result shows that the reduced-space dual lower bounding scheme has arbitrarily

high convergence order at unconstrained points in the reduced-space.

Proposition 6.5.16. Consider Problem (P) with 𝑚𝐸 = 0. Suppose yS ∈ 𝑌 is an uncon-

strained point in the reduced-space. Furthermore, suppose the reduced-space dual lower

bounding scheme has convergence of order 𝛽 > 0 at yS. Then the reduced-space dual lower

bounding scheme has arbitrarily high convergence order at yS.

Proof. The proof is closely related to the proof of Proposition 6.4.25.
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Since yS is an unconstrained point in the reduced-space and 𝑔𝑗 is continuous for each

𝑗 ∈ {1, · · · ,𝑚𝐼} by virtue of Assumption 6.2.1, there exists 𝛿 > 0 such that ∀z ∈ 𝑌

satisfying
⃦⃦
z− yS

⃦⃦
∞ ≤ 𝛿 (see Lemma 2.2.2), we have g(x, z) < 0, ∀x ∈ 𝑋.

Consider 𝑍 ∈ I𝑌 with 𝑤(𝑍) ≤ 𝛿. Since g(𝑋(𝑍) × 𝑍) ⊂ R𝑚𝐼
− , Problem (P) can be

reformulated as

min
(x,y)∈ℱ(𝑍)

𝑓(x,y) = min
(x,y)∈𝑋(𝑍)×𝑍

𝑓(x,y).

The dual lower bound can be bounded from below as

sup
𝜇≥0

min
(x,y)∈𝑋(𝑍)×𝑍

[︀
𝑓(x,y) + 𝜇Tg(x,y)

]︀
≥ min

(x,y)∈𝑋(𝑍)×𝑍
𝑓(x,y).

The desired result follows by analogy to Lemma 6.3.8 and the assumption that the dual

lower bounding scheme is at least 𝛽-order convergent at yS.

The following result establishes first-order convergence of the reduced-space dual lower

bounding scheme even in the absence of constraint propagation.

Theorem 6.5.17. Consider Problem (P). Suppose 𝑓 , 𝑔𝑗 , 𝑗 = 1, · · · ,𝑚𝐼 , and ℎ𝑘, 𝑘 =

1, · · · ,𝑚𝐸 , are Lipschitz continuous on 𝑋×𝑌 with Lipschitz constants 𝑀𝑓 ,𝑀𝑔,1, · · · ,𝑀𝑔,𝑚𝐼 ,

𝑀ℎ,1, · · · ,𝑀ℎ,𝑚𝐸
, respectively, and assume that the assumptions of Lemma 6.5.13 hold for

g and h. Assume, in addition, that Problem (P) is feasible, and that strong duality holds

for Problem (P) for y restricted to any feasible point in 𝑌 . Furthermore, suppose the set

of optimal dual variables for Problem (P) restricted to any feasible y ∈ 𝑌 is bounded (with

the bound independent of y). Then the reduced-space dual lower bounding scheme is at

least first-order convergent on 𝑌 .

Proof. Lemmata 6.4.22, 6.5.3, and 6.5.13 imply that the dual lower bounding scheme is at

least first-order convergent at any infeasible point y ∈ 𝑌 with the prefactor independent of

y (note that the conclusion of Lemma 6.5.3 does not depend on the schemes of relaxations

of the constraints being in the form (Wcv)).

Define 𝐹 (y,𝜇,𝜆) := min
x∈𝑋

𝑓(x,y) +𝜇Tg(x,y) +𝜆Th(x,y). We first show that 𝐹 (·,𝜇,𝜆)

is Lipschitz continuous on 𝑌 for any (𝜇,𝜆) ∈ R𝑚𝐼
+ × R𝑚𝐸 . Consider (𝜇,𝜆) ∈ R𝑚𝐼

+ × R𝑚𝐸
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and y1,y2 ∈ 𝑌 . We have

|𝐹 (y1,𝜇,𝜆) − 𝐹 (y2,𝜇,𝜆)|

=

⃒⃒⃒⃒(︂
min
x∈𝑋

𝑓(x,y1) + 𝜇Tg(x,y1) + 𝜆Th(x,y1)

)︂
−
(︂

min
x∈𝑋

𝑓(x,y2) + 𝜇Tg(x,y2) + 𝜆Th(x,y2)

)︂⃒⃒⃒⃒
≤ max

x∈𝑋

⃒⃒
(𝑓(x,y1) − 𝑓(x,y2)) + 𝜇T (g(x,y1) − g(x,y2)) + 𝜆T (h(x,y1) − h(x,y2))

⃒⃒
≤ max

x∈𝑋
|𝑓(x,y1) − 𝑓(x,y2)| + max

x∈𝑋

⃒⃒
𝜇T(g(x,y1) − g(x,y2))

⃒⃒
+ max

x∈𝑋

⃒⃒
𝜆T(h(x,y1) − h(x,y2))

⃒⃒
≤

⎛⎝𝑀𝑓 +

𝑚𝐼∑︁
𝑗=1

|𝜇𝑗 |𝑀𝑔,𝑗 +

𝑚𝐸∑︁
𝑘=1

|𝜆𝑘|𝑀ℎ,𝑘

⎞⎠ ‖y1 − y2‖,

where Step 2 follows from Lemma 2.3.35, and Step 4 follows from the Lipschitz continuity

of the functions involved.

Suppose ℱ(𝑌 ) ̸= ∅ and 𝑍 ∈ I𝑌 such that 𝑍 ∩ ℱ(𝑌 ) ̸= ∅. Since strong duality holds for

Problem (P) with y restricted to any feasible point in 𝑌 , Problem (P) can be equivalently

expressed on 𝑍 as

min
(x,y)∈ℱ(𝑍)

𝑓(x,y) = min
y∈𝑍

sup
(𝜇,𝜆)∈R𝑚𝐼

+ ×R𝑚𝐸

𝐹 (y,𝜇,𝜆).

By strong duality and 𝑍 ∩ ℱ(𝑌 ) ̸= ∅, there exists a minimizer (y*
𝑍 ,𝜇

*
𝑍 ,𝜆

*
𝑍) of the above

‘dual form’ of Problem (P) when y is restricted to 𝑍. We have⃒⃒⃒⃒
⃒⃒ min
(x,y)∈ℱ(𝑍)

𝑓(x,y) − sup
(𝜇,𝜆)∈R𝑚𝐼

+ ×R𝑚𝐸

min
(x,y)∈𝑋×𝑍

[︀
𝑓(x,y) + 𝜇Tg(x,y) + 𝜆Th(x,y)

]︀⃒⃒⃒⃒⃒⃒
=

⃒⃒⃒⃒
⃒⃒𝐹 (y*

𝑍 ,𝜇
*
𝑍 ,𝜆

*
𝑍) − sup

(𝜇,𝜆)∈R𝑚𝐼
+ ×R𝑚𝐸

min
y∈𝑍

𝐹 (y,𝜇,𝜆)

⃒⃒⃒⃒
⃒⃒

≤
⃒⃒⃒⃒
𝐹 (y*

𝑍 ,𝜇
*
𝑍 ,𝜆

*
𝑍) − min

y∈𝑍
𝐹 (y,𝜇*

𝑍 ,𝜆
*
𝑍)

⃒⃒⃒⃒
= |𝐹 (y*

𝑍 ,𝜇
*
𝑍 ,𝜆

*
𝑍) − 𝐹 (ȳ𝑍 ,𝜇

*
𝑍 ,𝜆

*
𝑍)|

≤

⎛⎝𝑀𝑓 +

𝑚𝐼∑︁
𝑗=1

⃒⃒
𝜇*
𝑗,𝑍

⃒⃒
𝑀𝑔,𝑗 +

𝑚𝐸∑︁
𝑘=1

⃒⃒
𝜆*
𝑘,𝑍

⃒⃒
𝑀ℎ,𝑘

⎞⎠ ‖y*
𝑍 − ȳ𝑍‖

≤

⎛⎝𝑀𝑓 +

𝑚𝐼∑︁
𝑗=1

𝑀∞𝑀𝑔,𝑗 +

𝑚𝐸∑︁
𝑘=1

𝑀∞𝑀ℎ,𝑘

⎞⎠√
𝑛𝑦𝑤(𝑍),

where ȳ𝑍 ∈ arg min
y∈𝑍

𝐹 (y,𝜇*
𝑍 ,𝜆

*
𝑍), 𝑀∞ := sup

y∈𝑌
max {‖𝜇*(y)‖∞, ‖𝜆*(y)‖∞} is an upper
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bound on the norm of pairs of optimal dual variables (𝜇*(y),𝜆*(y)) ∈ arg max
𝜇≥0,𝜆

𝐹 (y,𝜇,𝜆),

and the penultimate step follows from the Lipschitz continuity of 𝐹 (·,𝜇,𝜆) on 𝑌 .

The assumption that the set of optimal dual variables for Problem (P) restricted to any

feasible y ∈ 𝑌 is bounded can be replaced with the less restrictive assumption that there

exists an optimal dual variable pair (𝜇*(y),𝜆*(y)) ∈ arg max
𝜇≥0,𝜆

𝐹 (y,𝜇,𝜆) for each y ∈ 𝑌

such that sup
y∈𝑌

max {‖𝜇*(y)‖∞, ‖𝜆*(y)‖∞} ≤ 𝑀∞.

A corollary of Theorems 6.5.5 and 6.5.17 is that first-order convergence is guaranteed for

the convex relaxation-based reduced-space lower bounding scheme in [76] when first-order

pointwise convergent schemes of relaxations on 𝑌 are used in its construction. Instead of

proving first-order convergence of the lower bounding scheme in [76] at feasible points under

the assumption that schemes of bounded optimal dual variables exist, we show that the

reduced-space lower bounding scheme in [76] enjoys first-order convergence at any feasible

point in the reduced-space under the (less restrictive) assumption that strong duality holds

for Problem (P) with y fixed to the feasible point.

Corollary 6.5.18. Consider Problem (P). Suppose the functions 𝑓 and 𝑔𝑗 , for each

𝑗 ∈ {1, · · · ,𝑚𝐼}, are Lipschitz continuous on 𝑋×𝑌 with Lipschitz constants 𝑀𝑓 , 𝑀𝑔,1, · · · ,

𝑀𝑔,𝑚𝐼 , respectively, and are each of the form (W). Furthermore, suppose functions ℎ𝑘, 𝑘 =

1, · · · ,𝑚𝐸 , are Lipschitz continuous on 𝑋 × 𝑌 with Lipschitz constants 𝑀ℎ,1, · · · ,𝑀ℎ,𝑚𝐸
,

respectively, and are each of the form (Weq). Suppose yf ∈ 𝑌 is a feasible point in

the reduced-space and strong duality holds for Problem (P) when y is fixed to yf. Let

(𝑓 cv
𝑋(𝑍)×𝑍)𝑍∈I𝑌 and (𝑔cv𝑗,𝑋(𝑍)×𝑍)𝑍∈I𝑌 , 𝑗 = 1, · · · ,𝑚𝐼 , denote continuous schemes of con-

vex relaxations of 𝑓 , 𝑔1, · · · , 𝑔𝑚𝐼 , respectively, in 𝑌 with pointwise convergence orders

𝛾cv𝑓 ≥ 1, 𝛾cv𝑔,1 ≥ 1, · · · , 𝛾cv𝑔,𝑚𝐼
≥ 1 and corresponding constants 𝜏 cv𝑓 , 𝜏 cv𝑔,1, · · · , 𝜏 cv𝑔,𝑚𝐼

. Let

(ℎcv𝑘,𝑋(𝑍)×𝑍 , ℎ
cc
𝑘,𝑋(𝑍)×𝑍)𝑍∈I𝑌 , 𝑘 = 1, · · · ,𝑚𝐸 , denote continuous schemes of relaxations of

ℎ1, · · · , ℎ𝑚𝐸 , respectively, in 𝑌 with pointwise convergence orders 𝛾ℎ,1 ≥ 1, · · · , 𝛾ℎ,𝑚𝐸
≥ 1

and corresponding constants 𝜏ℎ,1, · · · , 𝜏ℎ,𝑚𝐸
. Then, the scheme of lower bounding problems

(ℒ(𝑍))𝑍∈I𝑌 proposed in [76] is at least first-order convergent at yf.

Proof. Let
(︁
𝜇yf

,𝜆yf
)︁
∈ arg max

𝜇≥0,𝜆
𝐹 (yf,𝜇,𝜆) be an optimal pair of dual variables for y fixed

to yf in Problem (P). Suppose 𝑍 ∈ I𝑌 with yf ∈ 𝑍. Similar to the proof of Theorem 6.5.17,
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we have⃒⃒⃒⃒
⃒⃒ min
(x,y)∈ℱ(𝑍)

𝑓(x,y) − sup
(𝜇,𝜆)∈R𝑚𝐼

+ ×R𝑚𝐸

min
(x,y)∈𝑋×𝑍

[︀
𝑓(x,y) + 𝜇Tg(x,y) + 𝜆Th(x,y)

]︀⃒⃒⃒⃒⃒⃒
≤

⃒⃒⃒⃒
⃒⃒𝐹 (︁yf,𝜇yf

,𝜆yf
)︁
− sup

(𝜇,𝜆)∈R𝑚𝐼
+ ×R𝑚𝐸

min
y∈𝑍

𝐹 (y,𝜇,𝜆)

⃒⃒⃒⃒
⃒⃒

≤
⃒⃒⃒⃒
𝐹
(︁
yf,𝜇yf

,𝜆yf
)︁
− min

y∈𝑍
𝐹
(︁
y,𝜇yf

,𝜆yf
)︁⃒⃒⃒⃒

≤ 𝜏 f𝑤(𝑍),

for some constant 𝜏 f ≥ 0. The result then holds as a consequence of Theorem 6.5.5 by using

𝜇yf

𝑍 = 𝜇yf
, 𝜆yf

𝑍 = 𝜆yf
, 𝜇̄ =

⃦⃦⃦
𝜇yf
⃦⃦⃦
∞

, and 𝜆̄ =
⃦⃦⃦
𝜆yf
⃦⃦⃦
∞

in Theorem 6.5.5.

The following example shows that the convergence order of the reduced-space dual lower

bounding scheme may be as low as one at constrained minima.

Example 6.5.19. Consider the following instance of Problem (P):

min
𝑥,𝑦

− 𝑥𝑦

s.t. 𝑥 + 𝑦 ≤ 1,

𝑥 ∈ [−1, 1], 𝑦 ∈ [0, 1].

The optimal solution is (𝑥*, 𝑦*) = (0.5, 0.5) with optimal objective value −0.25. When the

inequality constraint is dualized, the following dual function is obtained:

𝑞(𝜇) = min
𝑥,𝑦

− 𝑥𝑦 + 𝜇 (𝑥 + 𝑦 − 1)

s.t. 𝑥 ∈ [−1, 1], 𝑦 ∈ [0, 1].

Consider [𝑦L, 𝑦U] = [0.5− 𝜀, 0.5 + 𝜀] =: 𝑍 ∈ I𝑌 with 𝜀 ∈ (0, 0.5]. In order to derive the dual

function

𝑞(𝜇) = min
𝑥∈[−1,1]

𝑦∈[𝑦L,𝑦U]

− 𝑥𝑦 + 𝜇(𝑥 + 𝑦 − 1)
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as an explicit function of 𝜇, we partition the domain of 𝜇 to obtain

𝑞(𝜇) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(𝜇− 1)𝑦U, if 𝜇 ≤ 𝑦L

min{(𝜇− 1)𝑦U, (𝜇 + 1)𝑦L − 2𝜇}, if 𝑦L ≤ 𝜇 ≤ 𝑦U

(𝜇 + 1)𝑦L − 2𝜇, if 𝜇 ≥ 𝑦U

when the bounds on 𝑥 are taken to be [−1, 1] irrespective of the bounds on 𝑦. The dual

lower bound can therefore be derived as:

sup
𝜇≥0

𝑞(𝜇) =
(𝑦L − 1)𝑦U

1 + 0.5(𝑦U − 𝑦L)
.

Therefore, for [𝑦L, 𝑦U] = [0.5 − 𝜀, 0.5 + 𝜀], the dual lower bound can be derived as

sup
𝜇≥0

𝑞(𝜇) =
(−0.5 − 𝜀)(0.5 + 𝜀)

1 + 𝜀
= −(0.5 + 𝜀)2

1 + 𝜀
.

Consequently,

min
(𝑥,𝑦)∈ℱ(𝑍)

− 𝑥𝑦 − sup
𝜇≥0

𝑞(𝜇) = −0.25 +
(0.5 + 𝜀)2

1 + 𝜀
=

0.75𝜀 + 𝜀2

1 + 𝜀
≥ 0.75𝜀,

which implies that the dual lower bounding scheme is at most first-order convergent at 𝑦*.

Remark 6.5.20. Example 6.5.19 provides an instance of Problem (P) for which both

the reduced-space dual lower bounding scheme [69] and the reduced-space lower bounding

scheme in [76] (this follows from Lemma 6.5.12) are only first-order convergent at the

minimizer. Furthermore, for each 𝑦 ∈ [0, 1], the reduced-space objective function 𝑣 : [0, 1] →

R can be derived as

𝑣(𝑦) = min
𝑥

− 𝑥𝑦

s.t. 𝑥 + 𝑦 ≤ 1,

𝑥 ∈ [−1, 1],

which reduces to 𝑣(𝑦) = 𝑦2−𝑦. It can be seen that 𝑦* = 0.5 is an unconstrained minimum of

the reduced-space objective 𝑣(𝑦), which implies that at least second-order convergence of the

reduced-space lower bounding scheme is typically required at 𝑦* to mitigate clustering [68,
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238].

Therefore, neither reduced-space lower bounding scheme can be expected to avoid clus-

tering for this example. Note that this is in contrast to the full-space lower bounding

schemes in Section 6.4 which can achieve at least second-order convergence at (𝑥*, 𝑦*) and

thereby mitigate clustering (see Chapter 5).

Note, however, that the use of constraint propagation techniques by reduced-space lower

bounding schemes can potentially increase their convergence order as demonstrated by

Examples 6.5.21 and 6.5.22. This demonstrates the importance of constraint propagation

techniques in reduced-space lower bounding schemes, which has not been emphasized in

references [69, 76].

Example 6.5.21. Consider the instance of Problem (P) in Example 6.5.19 with 𝑍 =

[𝑦L, 𝑦U] ⊂ [0, 1], 𝑦L ≤ 0.5, 𝑦U ≥ 0.5. Suppose we use constraint propagation to derive

𝑋(𝑍) = [−1, 1 − 𝑦L]. The dual function can be derived as

𝑞(𝜇) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝜇(𝑦U − 𝑦L) + 𝑦U(𝑦L − 1), if 𝜇 ≤ 𝑦L

min{𝜇(𝑦U − 𝑦L) + 𝑦U(𝑦L − 1), (𝜇 + 1)𝑦L − 2𝜇}, if 𝑦L ≤ 𝜇 ≤ 𝑦U

(𝜇 + 1)𝑦L − 2𝜇, if 𝜇 ≥ 𝑦U

,

which yields the dual lower bound

sup
𝜇≥0

𝑞(𝜇) =
(𝑦L + 𝑦U − 𝑦L𝑦U)(𝑦L − 2)

2 + 𝑦U − 2𝑦L
+ 𝑦L.

Consider 𝑦L = 0.5 − 𝜀, 𝑦U = 0.5 + 𝜀 for some 𝜀 ∈ (0, 0.5). The dual lower bound reduces to

sup
𝜇≥0

𝑞(𝜇) =
−𝜀3 − 4.5𝜀2 − 0.75𝜀− 0.375

1.5 + 3𝜀
.

Consequently,

min
(𝑥,𝑦)∈ℱ(𝑍)

− 𝑥𝑦 − sup
𝜇≥0

𝑞(𝜇)

= − 0.25 +
𝜀3 + 4.5𝜀2 + 0.75𝜀 + 0.375

1.5 + 3𝜀

= − 0.25 +
1

1.5

(︀
𝜀3 + 4.5𝜀2 + 0.75𝜀 + 0.375

)︀
(1 + 2𝜀)−1

289



= − 0.25 +
1

1.5

(︀
𝜀3 + 4.5𝜀2 + 0.75𝜀 + 0.375

)︀ (︀
1 − 2𝜀 + 4𝜀2 + 𝑂(𝜀3)

)︀
= 3𝜀2 + 𝑂(𝜀3)

≤ 𝜏𝜀2,

for some constant 𝜏 > 0 (where we may assume that the above inequality holds for 𝜀 = 0.5

as well).

Consider any nondegenerate interval 𝑍 = [𝑦L, 𝑦U] ⊂ [0, 1] with 0.5 ∈ 𝑍 and construct

𝑍 ⊃ 𝑍 such that 𝑍 = [𝑦* − 𝜀, 𝑦* + 𝜀] with 𝜀 = max{𝑦U − 𝑦*, 𝑦* − 𝑦L}. We have

min
(𝑥,𝑦)∈ℱ(𝑍)

− 𝑥𝑦 − sup
𝜇≥0

min
(𝑥,𝑦)∈𝑋(𝑍)×𝑍

[−𝑥𝑦 + 𝜇𝑔(𝑥, 𝑦)]

≤ min
(𝑥,𝑦)∈ℱ(𝑍)

− 𝑥𝑦 − sup
𝜇≥0

min
(𝑥,𝑦)∈𝑋(𝑍)×𝑍

[−𝑥𝑦 + 𝜇𝑔(𝑥, 𝑦)]

≤ 𝜏𝜀2

≤ 𝜏𝑤(𝑍)2,

which implies that the reduced-space dual lower bounding scheme with constraint propa-

gation is second-order convergent at 𝑦*.

Figure 6-1 illustrates the performance of the lower bounding schemes considered in this

chapter in a bare-bones branch-and-bound framework for Examples 6.5.19 and 6.5.21. The

branch-and-bound framework was implemented in MATLAB®, and the (convex) lower

bounding problems were solved using the CVX [88] package. The lowest lower bound node

selection rule and the interval bisection branching rule (which bisects the domain of the

variable whose interval has the largest width) were used by the branch-and-bound algorithm.

Since Example 6.5.19 is not particularly challenging, it is assumed that a local solver finds

its global solution at the root node of the branch-and-bound tree (i.e., the upper bound

is set to the optimal objective value at the root node). In addition, the bounds on 𝑥 and

𝑦 were modified to
[︁
−1, 1 −

√
3

100

]︁
and

[︁√
2

100 , 1
]︁
, respectively, to prevent the full-space lower

bounding schemes from branching at the optimal solution and (fortuitously) converging

early (this modification enables a truer characterization of the convergence rates of the

lower bounding schemes).

Figure 6-1a plots the number of iterations of the branch-and-bound algorithm versus

the (absolute) termination tolerance for the full-space lower bounding schemes, the reduced-
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(a) Comparison of the number of branch-and-
bound iterations versus the termination tolerance
between the different lower bounding schemes
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(b) Comparison of the number of branch-and-
bound iterations of the reduced-space lower
bounding schemes without constraint propaga-
tion with the predictions from the cluster prob-
lem model for different termination tolerances

Figure 6-1: (Left Plot) Plots of the number of iterations of the branch-and-bound algorithm
versus the absolute termination tolerance for the lower bounding schemes considered in
this chapter for Example 6.5.19. The solid line indicates the number of iterations of the
full-space lower bounding schemes, the dashed line indicates the number of iterations of the
reduced-space lower bounding schemes without constraint propagation, and the dash-dotted
line indicates the number of iterations of the reduced-space lower bounding schemes with
constraint propagation. (Right Plot) Comparison of the number of iterations of the reduced-
space branch-and-bound algorithms without constraint propagation for Example 6.5.19 with
the corresponding cluster problem model. The dashed line indicates the number of iterations
of the reduced-space lower bounding schemes without constraint propagation, and the dash-
dotted line indicates the predicted number of iterations from the cluster problem model.

space lower bounding schemes without constraint propagation (see Example 6.5.19), and the

reduced-space lower bounding schemes with constraint propagation (see Example 6.5.21).

Note that both full-space (reduced-space) lower bounding schemes considered in this chap-

ter result in the same lower bound for this problem (see Lemma 6.5.12). It can be seen that

the full-space lower bounding schemes and the reduced-space lower bounding schemes with

constraint propagation perform significantly better than the reduced-space lower bounding

schemes without constraint propagation for small tolerances, and that they exhibit a much

more favorable scaling with a decrease in the termination tolerance as well. Furthermore,

the advantage of using constraint propagation techniques in the reduced-space lower bound-

ing schemes is evident, and its use puts the reduced-space lower bounding schemes at an

advantage compared to the full-space lower bounding schemes. Figure 6-1b illustrates that

the dependence of the number of iterations on the termination tolerance for the reduced-
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space lower bounding schemes without constraint propagation is in good agreement with

their associated cluster problem models (see [108, Theorem 3] for the details of the cluster

problem model). Note that the prediction of the number of iterations from the cluster

problem model in Figure 6-1b is obtained by fitting the prefactor in the cluster model (i.e.,

intercept of the line in the plot; the slope of the line is determined by the cluster model us-

ing the estimate of the convergence order of the lower bounding scheme obtained from this

chapter) against the number of iterations obtained from the computational experiments. It

is worth mentioning at this stage that only basic versions of the lower bounding schemes

considered in this chapter have been used to generate Figure 6-1; the performance of the

lower bounding schemes may be significantly different if they are implemented within a

state-of-the-art branch-and-bound framework that solves additional subproblems to speed

up their convergence.

The following example illustrates another instance of Problem (P) for which constraint

propagation plays a crucial rule in boosting the convergence order of the convex relaxation-

based reduced-space lower bounding scheme in [76].

Example 6.5.22. Consider the following instance of Problem (P):

min
𝑥,𝑦

exp(𝑥) − 4𝑥 + 𝑦

s.t. 𝑥2 + 𝑥 exp(3 − 𝑦) ≤ 10,

𝑥 ∈ [0.5, 2], 𝑦 ∈ [−1, 1].

The optimal solution of the above problem, which is a constrained minimum, is (𝑥*, 𝑦*) ≈

(1.029, 0.838)
(︁

the ‘exact’ optimal solution can be determined as follows: 𝑥* is the (unique

real) root of the function (4 − exp(𝑥))(10𝑥 − 𝑥3) − 𝑥2 − 10 in [0.5, 2], and 𝑦* := 3 −

ln
(︁
10−(𝑥*)2

𝑥*

)︁)︁
with optimal objective value approximately equal to −0.480. The reader

can verify that (𝑥*, 𝑦*, 𝜇*) is a KKT point for Problem (P), where 𝜇* := 1
𝑥* exp(3−𝑦*) .

This implies, in particular, that the full-space lower bounding schemes in Section 6.4 can

be designed to be at least second-order convergent at (𝑥*, 𝑦*) (see Theorem 6.4.27 and

Corollary 6.4.28). The reader can also verify that second-order convergence of the lower

bounding scheme may be sufficient to mitigate the cluster problem around (𝑥*, 𝑦*) (see

Chapter 5).

Since all of the functions in the above instance of Problem (P) are in the form (W), both
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the reduced-space lower bounding schemes considered in this section can be employed to

solve it. The ensuing arguments show that the convex relaxation-based reduced-space lower

bounding scheme in [76] is only first-order convergent at 𝑦* when constraint propagation

techniques are not used.

Consider [𝑦L, 𝑦U] := [𝑦* − 𝜀, 𝑦* + 𝜀] =: 𝑍 ∈ I𝑌 with 0 < 𝜀 ≤ 0.1. The reduced-space

lower bounding scheme in [76] yields

𝒪(𝑍) = min
𝑥,𝑦

exp(𝑥) − 4𝑥 + 𝑦

s.t. 𝑥2 + 2 exp(3 − 𝑦) + 𝑥 exp(3 − 𝑦L) − 2 exp(3 − 𝑦L) ≤ 10,

𝑥2 + 0.5 exp(3 − 𝑦) + 𝑥 exp(3 − 𝑦U) − 0.5 exp(3 − 𝑦U) ≤ 10,

𝑥 ∈ [0.5, 2], 𝑦 ∈ [𝑦L, 𝑦U].

Note that the point

(𝑥f𝑍 , 𝑦
f
𝑍) :=

⎛⎝
√︁

(exp(3 − 𝑦U))2 + 40 + 2 (exp(3 − 𝑦U) − exp(3 − 𝑦*)) − exp(3 − 𝑦U)

2
, 𝑦*

⎞⎠
is feasible for the above lower bounding scheme with objective value exp(𝑥f𝑍) − 4𝑥f𝑍 + 𝑦f𝑍 .

Furthermore,

𝑥f
𝑍 − 𝑥*

=

(︃√︁
(exp(3 − 𝑦U))

2
+ 40 + 2 (exp(3 − 𝑦U) − exp(3 − 𝑦*)) − exp(3 − 𝑦U)

2
−√︁

(exp(3 − 𝑦*))
2

+ 40 − exp(3 − 𝑦*)

2

)︃

=

(︁(︀
exp(3 − 𝑦U)

)︀2 − (exp(3 − 𝑦*))
2
)︁

+ 2
(︀
exp(3 − 𝑦U) − exp(3 − 𝑦*)

)︀
2

(︂√︁
(exp(3 − 𝑦U))

2
+ 40 + 2 (exp(3 − 𝑦U) − exp(3 − 𝑦*)) +

√︁
(exp(3 − 𝑦*))

2
+ 40

)︂+

(︀
exp(3 − 𝑦*) − exp(3 − 𝑦U)

)︀
2

=

(︀
exp(3 − 𝑦U) + exp(3 − 𝑦*) + 2

)︀ (︀
exp(3 − 𝑦U) − exp(3 − 𝑦*)

)︀
2

(︂√︁
(exp(3 − 𝑦U))

2
+ 40 + 2 (exp(3 − 𝑦U) − exp(3 − 𝑦*)) +

√︁
(exp(3 − 𝑦*))

2
+ 40

)︂+

(︀
exp(3 − 𝑦*) − exp(3 − 𝑦U)

)︀
2
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≥
(exp(3 − 𝑦*) + exp(3 − 𝑦*) + 2)

(︀
exp(3 − 𝑦U) − exp(3 − 𝑦*)

)︀
2

(︂√︁
(exp(3 − 𝑦* − 0.1))

2
+ 40 + 2 (exp(3 − 𝑦* − 0.1) − exp(3 − 𝑦*)) +

√︁
(exp(3 − 𝑦*))

2
+ 40

)︂+

(︀
exp(3 − 𝑦*) − exp(3 − 𝑦U)

)︀
2

≥ 0.025
(︀
exp(3 − 𝑦*) − exp(3 − 𝑦U)

)︀
= 0.025 exp(3 − 𝑦*)𝜀 + 𝑜 (𝜀)

≥ 0.2𝜀 + 𝑜 (𝜀) .

Therefore, we have

min
(𝑥,𝑦)∈ℱ(𝑍)

𝑓(𝑥, 𝑦) − min
(𝑥,𝑦)∈ℱcv(𝑍)

𝑓 cv
𝑋(𝑍)×𝑍(𝑥, 𝑦)

≥ (exp(𝑥*) − 4𝑥* + 𝑦*) −
(︁

exp(𝑥f𝑍) − 4𝑥f𝑍 + 𝑦f𝑍

)︁
=
(︁

exp(𝑥*) − exp(𝑥f𝑍)
)︁

+ 4
(︁
𝑥f𝑍 − 𝑥*

)︁
= (4 − exp(𝑥*))

(︁
𝑥f𝑍 − 𝑥*

)︁
+ 𝑜

(︁⃒⃒⃒
𝑥f𝑍 − 𝑥*

⃒⃒⃒)︁
≥
(︁
𝑥f𝑍 − 𝑥*

)︁
+ 𝑜

(︁⃒⃒⃒
𝑥f𝑍 − 𝑥*

⃒⃒⃒)︁
≥ 0.2𝜀 + 𝑜 (𝜀)

≥ 0.05𝑤(𝑍)

for 𝜀 ≪ 1, which establishes that the reduced-space lower bounding scheme in [76] has at

most first-order convergence at 𝑦* (note that first-order convergence of the scheme follows

from Corollary 6.5.18). This is rather unfortunate because 𝑦* can be seen to be an uncon-

strained minimizer of the reduced-space objective function 𝑣 : [−1, 1] → R, which can be

derived (around 𝑦 = 𝑦*) to be

𝑣(𝑦) = exp (𝑥*(𝑦)) − 4𝑥*(𝑦) + 𝑦, ∀𝑦 ∈ [0.5, 1],

where 𝑥* : [0.5, 1] ∋ 𝑦 ↦−→ [0.5, 2] is given by

𝑥*(𝑦) :=

√︁
(exp(3 − 𝑦))2 + 40 − exp(3 − 𝑦)

2
,

which implies that at least second-order convergence of the reduced-space lower bounding

scheme at 𝑦* is typically required to mitigate clustering [68, 238].
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We next show that when constraint propagation is used to infer (exact) bounds for 𝑥

on 𝑍, second-order convergence of the reduced-space lower bounding scheme in [76] can be

achieved. Note that for [𝑦L, 𝑦U] := [𝑦* − 𝜀, 𝑦* + 𝜀] =: 𝑍 ∈ I𝑌 with 0 < 𝜀 ≤ 0.1, the best

possible (interval) bounds that can be obtained for 𝑥 are 𝑥 ∈ 𝑋(𝑍) := [𝑥L𝑍 , 𝑥
U
𝑍 ] with

𝑥L𝑍 = 0.5, 𝑥U𝑍 =

√︁
(exp(3 − 𝑦U))2 + 40 − exp(3 − 𝑦U)

2
.

The reduced-space lower bounding scheme in [76] with constraint propagation yields

𝒪(𝑍) = min
𝑥,𝑦

exp(𝑥) − 4𝑥 + 𝑦

s.t. 𝑥2 + 𝑥U𝑍 exp(3 − 𝑦) + 𝑥 exp(3 − 𝑦L) − 𝑥U𝑍 exp(3 − 𝑦L) ≤ 10,

𝑥2 + 0.5 exp(3 − 𝑦) + 𝑥 exp(3 − 𝑦U) − 0.5 exp(3 − 𝑦U) ≤ 10,

𝑥 ∈ [0.5, 𝑥U𝑍 ], 𝑦 ∈ [𝑦L, 𝑦U].

By noticing that the first constraint in the above relaxation of Problem (P) is always active

at the solution of the relaxed problem, we can reformulate the reduced-space lower bounding

problem as

𝒪(𝑍) = min
𝑦∈[𝑦L,𝑦U]

exp (𝑥̄𝑍(𝑦)) − 4 (𝑥̄𝑍(𝑦)) + 𝑦,

where 𝑥̄𝑍 : 𝑍 ∋ 𝑦 ↦−→ [0.5, 𝑥U𝑍 ] is given by

𝑥̄𝑍(𝑦) :=

√︁
(exp(3 − 𝑦L))2 + 40 + 4𝑥U𝑍 (exp(3 − 𝑦L) − exp(3 − 𝑦)) − exp(3 − 𝑦L)

2
.

We have

𝑥̄𝑍(𝑦) − 𝑥*(𝑦)

=

(︃√︁
(exp(3 − 𝑦L))

2
+ 40 + 4𝑥U

𝑍 (exp(3 − 𝑦L) − exp(3 − 𝑦)) − exp(3 − 𝑦L)

2
− (6.11)√︁

(exp(3 − 𝑦))
2

+ 40 − exp(3 − 𝑦)

2

)︃
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=

(︁(︀
exp(3 − 𝑦L)

)︀2 − (exp(3 − 𝑦))
2
)︁

+ 4𝑥U
𝑍

(︀
exp(3 − 𝑦L) − exp(3 − 𝑦)

)︀
2

(︂√︁
(exp(3 − 𝑦L))

2
+ 40 + 4𝑥U

𝑍 (exp(3 − 𝑦L) − exp(3 − 𝑦)) +

√︁
(exp(3 − 𝑦))

2
+ 40

)︂+

(︀
exp(3 − 𝑦) − exp(3 − 𝑦L)

)︀
2

=

(︀
exp(3 − 𝑦L) + exp(3 − 𝑦) + 4𝑥U

𝑍

)︀ (︀
exp(3 − 𝑦L) − exp(3 − 𝑦)

)︀
2

(︂√︁
(exp(3 − 𝑦L))

2
+ 40 + 4𝑥U

𝑍 (exp(3 − 𝑦L) − exp(3 − 𝑦)) +

√︁
(exp(3 − 𝑦))

2
+ 40

)︂−

(︀
exp(3 − 𝑦L) − exp(3 − 𝑦)

)︀
2

. (6.12)

We next establish the dependence of the different terms in Equation (6.11) on 𝜀. We first

derive an expression for exp(3 − 𝑦L) + exp(3 − 𝑦) + 4𝑥U𝑍 .

exp(3 − 𝑦L) + exp(3 − 𝑦) + 4𝑥U
𝑍

= exp(3 − 𝑦* + 𝜀) + exp(3 − 𝑦) + 2

√︁
(exp(3 − 𝑦* − 𝜀)

2
+ 40 − 2 exp(3 − 𝑦* − 𝜀)

= exp(3 − 𝑦*) + exp(3 − 𝑦) + 𝜀 exp(3 − 𝑦*) + 𝑂(𝜀2) + 2

√︁
(exp(3 − 𝑦*))

2
[1 − 2𝜀 + 𝑂(𝜀2)] + 40

− 2 exp(3 − 𝑦*)
[︀
1 − 𝜀 + 𝑂(𝜀2)

]︀
= 2

√︁
(exp(3 − 𝑦*))

2
+ 40 + exp(3 − 𝑦) − exp(3 − 𝑦*) + 3 exp(3 − 𝑦*)𝜀− 2 (exp(3 − 𝑦*))

2
𝜀√︁

(exp(3 − 𝑦*))
2

+ 40

+ 𝑂(𝜀2).

Next, we derive an expression for 4𝑥U𝑍
(︀
exp(3 − 𝑦L) − exp(3 − 𝑦)

)︀
.

4𝑥U
𝑍

(︀
exp(3 − 𝑦L) − exp(3 − 𝑦)

)︀
=

(︂
2

√︁
(exp(3 − 𝑦* − 𝜀)

2
+ 40 − 2 exp(3 − 𝑦* − 𝜀)

)︂
(exp(3 − 𝑦* + 𝜀) − exp(3 − 𝑦))

=

(︂
2

√︁
(exp(3 − 𝑦*))

2
+ 40 − 2 exp(3 − 𝑦*)

)︂
(exp(3 − 𝑦* + 𝜀) − exp(3 − 𝑦)) + 𝑂(𝜀2)

=

(︂
2

√︁
(exp(3 − 𝑦*))

2
+ 40 − 2 exp(3 − 𝑦*)

)︂
(exp(3 − 𝑦*) − exp(3 − 𝑦) + exp(3 − 𝑦*)𝜀) + 𝑂(𝜀2).

Finally, we consider the expression
√︁

(exp(3 − 𝑦L))
2

+ 40 + 4𝑥U
𝑍 (exp(3 − 𝑦L) − exp(3 − 𝑦)) +√︁

(exp(3 − 𝑦))
2

+ 40.

√︁
(exp(3 − 𝑦L))

2
+ 40 + 4𝑥U

𝑍 (exp(3 − 𝑦L) − exp(3 − 𝑦)) +

√︁
(exp(3 − 𝑦))

2
+ 40

=

√︁
(exp(3 − 𝑦* + 𝜀))

2
+ 40 + 4𝑥U

𝑍 (exp(3 − 𝑦L) − exp(3 − 𝑦)) +

√︁
(exp(3 − 𝑦))

2
+ 40

=

√︁
(exp(3 − 𝑦*))

2
+ 40

√︃
1 +

4𝑥U
𝑍

(︀
exp(3 − 𝑦L) − exp(3 − 𝑦)

)︀
+ 2 (exp(3 − 𝑦*))

2
𝜀 + 𝑂(𝜀2)

(exp(3 − 𝑦*))
2

+ 40
+
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√︁
(exp(3 − 𝑦))

2
+ 40

=

√︁
(exp(3 − 𝑦*))

2
+ 40 +

√︁
(exp(3 − 𝑦))

2
+ 40 +

(exp(3 − 𝑦*))
2
𝜀√︁

(exp(3 − 𝑦*))
2

+ 40

+

(︂√︁
(exp(3 − 𝑦*))

2
+ 40 − exp(3 − 𝑦*)

)︂
(exp(3 − 𝑦*) − exp(3 − 𝑦) + exp(3 − 𝑦*)𝜀)√︁

(exp(3 − 𝑦*))
2

+ 40

+ 𝑂(𝜀2).

Substituting the above expressions in Equation (6.11), we get

𝑥̄𝑍(𝑦) − 𝑥*(𝑦)

=
𝛼
(︀
exp(3 − 𝑦L) − exp(3 − 𝑦)

)︀
2

(︂√︁
(exp(3 − 𝑦L))2 + 40 + 4𝑥U𝑍 (exp(3 − 𝑦L) − exp(3 − 𝑦)) +

√︁
(exp(3 − 𝑦))2 + 40

)︂ ,

with

𝛼 :=

√︁
(exp(3 − 𝑦*))

2
+ 40 −

√︁
(exp(3 − 𝑦))

2
+ 40 + exp(3 − 𝑦) − exp(3 − 𝑦*)−(︂√︁

(exp(3 − 𝑦*))
2

+ 40 − exp(3 − 𝑦*)

)︂
(exp(3 − 𝑦*) − exp(3 − 𝑦))√︁

(exp(3 − 𝑦*))
2

+ 40

+ 3 exp(3 − 𝑦*)𝜀−

3 (exp(3 − 𝑦*))
2
𝜀√︁

(exp(3 − 𝑦*))
2

+ 40

−

(︂√︁
(exp(3 − 𝑦*))

2
+ 40 − exp(3 − 𝑦*)

)︂
exp(3 − 𝑦*)𝜀√︁

(exp(3 − 𝑦*))
2

+ 40

+ 𝑂(𝜀2)

=

⎛⎝ exp(3 − 𝑦*) + exp(3 − 𝑦)√︁
(exp(3 − 𝑦*))

2
+ 40 +

√︁
(exp(3 − 𝑦))

2
+ 40

− 1

⎞⎠ (exp(3 − 𝑦*) − exp(3 − 𝑦))−

(︂√︁
(exp(3 − 𝑦*))

2
+ 40 − exp(3 − 𝑦*)

)︂
(exp(3 − 𝑦*) − exp(3 − 𝑦))√︁

(exp(3 − 𝑦*))
2

+ 40

+ 3 exp(3 − 𝑦*)𝜀−

3 (exp(3 − 𝑦*))
2
𝜀√︁

(exp(3 − 𝑦*))
2

+ 40

−

(︂√︁
(exp(3 − 𝑦*))

2
+ 40 − exp(3 − 𝑦*)

)︂
exp(3 − 𝑦*)𝜀√︁

(exp(3 − 𝑦*))
2

+ 40

+ 𝑂(𝜀2)

≤ 𝜏𝜀 + 𝑂(𝜀2)

for some 𝜏 ≥ 0 since 𝑦 ∈ 𝑍 = [𝑦L, 𝑦U] with 𝑤(𝑍) = 𝑂(𝜀) and each term in the expression

for 𝛼 is 𝑂(𝜀). Note that 𝛼 ≥ 0 (since 𝑥̄𝑍(𝑦) ≥ 𝑥*(𝑦)).
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Consequently, we have ∀𝑦 ∈ 𝑍 that

𝑥̄𝑍(𝑦) − 𝑥*(𝑦)

≤
(︀
𝜏𝜀 + 𝑂(𝜀2)

)︀ (︀
exp(3 − 𝑦L) − exp(3 − 𝑦)

)︀
2

(︂√︁
(exp(3 − 𝑦L))2 + 40 + 4𝑥U𝑍 (exp(3 − 𝑦L) − exp(3 − 𝑦)) +

√︁
(exp(3 − 𝑦))2 + 40

)︂
≤ 𝜏𝜀2 + 𝑂(𝜀3)

for some 𝜏 ≥ 0, since exp(3 − 𝑦L) − exp(3 − 𝑦) is 𝑂(𝜀). Note that 𝑥̄𝑍(𝑦) ≥ 𝑥*(𝑦), ∀𝑍.

Therefore, on intervals [𝑦* − 𝜀, 𝑦* + 𝜀] =: 𝑍 ∈ I𝑌 with 0 < 𝜀 ≤ 0.1, we have

min
(𝑥,𝑦)∈ℱ(𝑍)

𝑓(𝑥, 𝑦) − min
(𝑥,𝑦)∈ℱcv(𝑍)

𝑓 cv
𝑋(𝑍)×𝑍(𝑥, 𝑦)

= min
𝑦∈𝑍

𝑓(𝑥*(𝑦), 𝑦) − min
𝑦∈𝑍

𝑓(𝑥̄𝑍(𝑦), 𝑦)

≤ max
𝑦∈𝑍

|𝑓(𝑥*(𝑦), 𝑦) − 𝑓(𝑥̄𝑍(𝑦), 𝑦)|

= max
𝑦∈𝑍

|exp(𝑥*(𝑦)) − exp(𝑥̄𝑍(𝑦)) + 4𝑥̄𝑍(𝑦) − 4𝑥*(𝑦)|

= max
𝑦∈𝑍

|(4 − exp(𝑥*(𝑦))) (𝑥̄𝑍(𝑦) − 𝑥*(𝑦)) + 𝑜 (𝑥̄𝑍(𝑦) − 𝑥*(𝑦))|

≤ max
𝑦∈𝑍

|2 (𝑥̄𝑍(𝑦) − 𝑥*(𝑦)) + 𝑜 (𝑥̄𝑍(𝑦) − 𝑥*(𝑦))|

≤ 2𝜏𝜀2 + 𝑜
(︀
𝜀2
)︀

≤ 𝜏𝑤(𝑍)2

for 𝜀 ≪ 1, which establishes second-order convergence of the scheme at 𝑦* when restricted

to symmetric intervals around 𝑦*.

Consider any nondegenerate interval 𝑍 = [𝑦L, 𝑦U] ∈ I𝑌 with 𝑦* ∈ 𝑍 and 𝑤(𝑍) ≤ 0.1,

and construct 𝑍 ⊃ 𝑍 such that 𝑍 = [𝑦* − 𝜀, 𝑦* + 𝜀] with 𝜀 = max{𝑦U − 𝑦*, 𝑦* − 𝑦L}. We

have

min
(𝑥,𝑦)∈ℱ(𝑍)

𝑓(𝑥, 𝑦) − min
(𝑥,𝑦)∈ℱcv(𝑍)

𝑓 cv
𝑋(𝑍)×𝑍(𝑥, 𝑦) ≤ min

(𝑥,𝑦)∈ℱ(𝑍)
𝑓(𝑥, 𝑦) − min

(𝑥,𝑦)∈ℱcv(𝑍)
𝑓 cv
𝑋(𝑍)×𝑍(𝑥, 𝑦)

≤ 𝜏𝑤(𝑍)2

≤ 4𝜏𝑤(𝑍)2,

which implies that the convex relaxation-based reduced-space dual lower bounding scheme
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with constraint propagation is second-order convergent at 𝑦*.

Finally, we show that the reduced-space dual lower bounding scheme in [69] has at

least second-order convergence at 𝑦* even when constraint propagation is not used to infer

bounds on 𝑥. Consider [𝑦L, 𝑦U] =: 𝑍 ∈ I𝑌 with 𝑤(𝑍) ≤ 0.1. The feasible region of the

original problem on 𝑍 is given by

ℱ(𝑍) =
{︀

(𝑥, 𝑦) ∈ [0.5, 2] × [𝑦L, 𝑦U] : 𝑥 ≤ 𝑥*(𝑦)
}︀
.

The convex hull of the feasible region on 𝑍 is given by

conv(ℱ(𝑍)) =
{︀

(𝑥, 𝑦) ∈ [0.5, 2] × [𝑦L, 𝑦U] : 𝑥 ≤ 𝑥*,cc𝑍 (𝑦)
}︀
,

where 𝑥*,cc𝑍 denotes the concave envelope of 𝑥* on 𝑍. It is not hard to see that we have

𝑑𝐻 (ℱ(𝑍), conv(ℱ(𝑍))) ≤ 𝜏𝑤(𝑍)2 for some 𝜏 ≥ 0 (this partly follows from the fact that

𝑥* is twice continuously differentiable on [𝑦* − 0.1, 𝑦* + 0.1] and the fact that
(︀
𝑥*,cc𝑍

)︀
𝑍∈I𝑌

converges pointwise to 𝑥* with order at least two on [𝑦* − 0.1, 𝑦* + 0.1]). Since the dual

lower bounding scheme produces a lower bound that is at least as tight as any convex

relaxation-based scheme, we have

min
(𝑥,𝑦)∈ℱ(𝑍)

𝑓(𝑥, 𝑦) − sup
𝜇≥0

min
(𝑥,𝑦)∈𝑋(𝑍)×𝑍

[𝑓(𝑥, 𝑦) + 𝜇𝑔(𝑥, 𝑦)]

≤ min
(𝑥,𝑦)∈ℱ(𝑍)

𝑓(𝑥, 𝑦) − min
(𝑥,𝑦)∈conv(ℱ(𝑍))

𝑓(𝑥, 𝑦)

= 𝑓(𝑥*, 𝑦*) − 𝑓(𝑥̃𝑍 , 𝑦𝑍)

≤ 𝑓(𝑥̂𝑍 , 𝑦𝑍) − 𝑓(𝑥̃𝑍 , 𝑦𝑍)

≤𝑀𝑓‖(𝑥̂𝑍 , 𝑦𝑍) − (𝑥̃𝑍 , 𝑦𝑍)‖

≤𝑀𝑓𝜏𝑤(𝑍)2,

where (𝑥̃𝑍 , 𝑦𝑍) ∈ arg min
(𝑥,𝑦)∈conv(ℱ(𝑍))

𝑓(𝑥, 𝑦), the point (𝑥̂𝑍 , 𝑦𝑍) ∈ ℱ(𝑍) is chosen such that

‖(𝑥̂𝑍 , 𝑦𝑍) − (𝑥̃𝑍 , 𝑦𝑍)‖ ≤ 𝜏𝑤(𝑍)2, and 𝑀𝑓 denotes the Lipschitz constant of 𝑓 on [0.5, 2] ×

[−1, 1]. Since the Lagrangian dual-based reduced-space lower bounding scheme is at least

first-order convergent at 𝑦* from Theorem 6.5.17, it is at least second-order convergent at

𝑦* by analogy to Lemma 6.3.8.
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(a) Comparison of the number of branch-and-
bound iterations versus the termination toler-
ance between the convex relaxation-based lower
bounding schemes
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(b) Comparison of the number of branch-and-
bound iterations of the convex relaxation-based
reduced-space lower bounding scheme without
constraint propagation with the predictions from
the cluster problem model for different termina-
tion tolerances

Figure 6-2: (Left Plot) Plots of the number of iterations of the branch-and-bound algo-
rithm versus the absolute termination tolerance for the full-space and reduced-space convex
relaxation-based lower bounding schemes considered in this chapter for Example 6.5.22.
The solid line indicates the number of iterations of the convex relaxation-based full-space
lower bounding scheme, the dashed line indicates the number of iterations of the con-
vex relaxation-based reduced-space lower bounding scheme without constraint propagation,
and the dash-dotted line indicates the number of iterations of the convex relaxation-based
reduced-space lower bounding scheme with constraint propagation. (Right Plot) Compar-
ison of the number of iterations of the convex relaxation-based reduced-space branch-and-
bound algorithm without constraint propagation with the corresponding cluster problem
model. The dashed line indicates the number of iterations of the convex relaxation-based
reduced-space lower bounding scheme without constraint propagation, and the dash-dotted
line indicates the predicted number of iterations from the cluster problem model.

Figure 6-2 illustrates the performance of the convex relaxation-based full-space and

reduced-space lower bounding schemes in the bare-bones branch-and-bound implementation

for Example 6.5.22 (note that we do not consider the Lagrangian dual-based full-space

and reduced-space lower bounding schemes for the numerical experiments for this example

because we do not have closed-form expressions for the lower bounds obtained using those

schemes). Once again, the convex lower bounding problems were solved using the CVX [88]

package, and the lowest lower bound node selection rule and the interval bisection branching

rule were used by the branch-and-bound algorithm. Since Example 6.5.22 is not particularly

challenging, we assume that a local solver finds its global solution at the root node of the

branch-and-bound tree (i.e., the upper bound is set to the optimal objective value of the
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problem at the root node).

Figure 6-2a plots the number of iterations of the branch-and-bound algorithm versus the

(absolute) termination tolerance for the full-space convex relaxation-based lower bounding

scheme, the reduced-space convex relaxation-based lower bounding scheme without con-

straint propagation, and the reduced-space convex relaxation-based lower bounding scheme

with constraint propagation. It can be seen that the full-space lower bounding scheme and

the reduced-space lower bounding scheme with constraint propagation perform significantly

better (for small tolerances) and exhibit a much more favorable scaling with a decrease in

the termination tolerance compared to the reduced-space lower bounding scheme without

constraint propagation. Furthermore, there is a clear advantage in using constraint prop-

agation techniques in the reduced-space lower bounding scheme, and its use makes the

performance of the reduced-space lower bounding scheme superior to that of the full-space

lower bounding scheme for this example. Figure 6-2b shows that the number of iterations

versus the termination tolerance for the reduced-space lower bounding scheme without con-

straint propagation closely follows the prediction from its associated cluster problem model

(see Chapter 5 for the details of the cluster problem model). Note, once again, that the

prediction of the number of iterations from the cluster problem model in Figure 6-2b is

obtained by fitting the prefactor in the cluster model against the number of iterations ob-

tained from the computational experiments. We wish to reiterate that only basic versions of

the convex relaxation-based lower bounding schemes have been used to generate Figure 6-2;

the performance of the lower bounding schemes may be significantly different if they are

implemented within a state-of-the-art branch-and-bound framework that solves additional

subproblems to speed up their convergence.

The following result shows that the reduced-space dual lower bounding scheme is second-

order convergent at KKT points even in the absence of constraint propagation when all of

the functions in Problem (P) are twice continuously differentiable and separable in x and

y.

Theorem 6.5.23. Consider Problem (P), and suppose 𝑓 , 𝑔𝑗 , 𝑗 = 1, · · · ,𝑚𝐼 , and ℎ𝑘,

𝑘 = 1, · · · ,𝑚𝐸 , are separable in x and y. Suppose int(𝑋 × 𝑌 ) is nonempty, and 𝑓 , g, and

h are twice continuously differentiable on int(𝑋 × 𝑌 ). Furthermore, suppose there exists

(x*,y*) ∈ int(𝑋 × 𝑌 ), 𝜇* ∈ R𝑚𝐼
+ , 𝜆* ∈ R𝑚𝐸 such that (x*,y*,𝜇*,𝜆*) is a KKT point

for Problem (P). The reduced-space dual lower bounding scheme is at least second-order
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convergent at y*.

Proof. Let 𝐿(x,y,𝜇,𝜆) := 𝑓(x,y)+𝜇Tg(x,y)+𝜆Th(x,y) denote the Lagrangian of Prob-

lem (P). Since we are concerned about the convergence order at the reduced-space feasible

point y*, it suffices to show the existence of 𝜏 ≥ 0 such that for every 𝑍 ∈ I𝑌 with y* ∈ 𝑍,

min
(x,y)∈ℱ(𝑍)

𝑓(x,y) − sup
𝜇≥0,𝜆

min
(x,y)∈𝑋×𝑍

𝐿(x,y,𝜇,𝜆) ≤ 𝜏𝑤(𝑍)2.

We have

sup
𝜇≥0,𝜆

min
(x,y)∈𝑋×𝑍

𝐿(x,y,𝜇,𝜆)

≥ min
(x,y)∈𝑋×𝑍

𝐿(x,y,𝜇*,𝜆*)

≥ min
(x,y)∈𝑋×𝑍

[︁
𝐿(x*,y,𝜇*,𝜆*) + ∇x𝐿(x*,y,𝜇*,𝜆*)T(x− x*)

]︁
= min

(x,y)∈𝑋×𝑍

[︁
𝐿(x*,y*,𝜇*,𝜆*) + ∇x𝐿(x*,y*,𝜇*,𝜆*)T(x− x*)

+
(︁
∇y

(︁
∇x𝐿(x*,y*,𝜇*,𝜆*)T(x− x*)

)︁)︁T
(y − y*)

+∇y𝐿(x*,y*,𝜇*,𝜆*)T(y − y*) −𝑂(𝑤(𝑍)2)
]︁

= min
(x,y)∈𝑋×𝑍

[︀
𝑓(x*,y*) −𝑂(𝑤(𝑍)2)

]︀
≥ 𝑓(x*,y*) −𝑂(𝑤(𝑍)2).

Note that we have used the fact that 𝐿 is partly convex with respect to x in Step 2,

that 𝐿(x*,y*,𝜇*,𝜆*) = 𝑓(x*,y*), ∇x𝐿(x*,y*,𝜇*,𝜆*) = 0, ∇y𝐿(x*,y*,𝜇*,𝜆*) = 0 in

Step 4 since it is assumed that (x*,y*,𝜇*,𝜆*) is a KKT point for Problem (P), and that

∇y

(︁
∇x𝐿(x*,y*,𝜇*,𝜆*)T(x − x*)

)︁
= 0 in Step 4 by virtue of the assumption that the

Lagrangian is separable in x and y. Therefore,

min
(x,y)∈ℱ(𝑍)

𝑓(x,y) − sup
𝜇≥0,𝜆

min
(x,y)∈𝑋×𝑍

𝐿(x,y,𝜇,𝜆) ≤ 𝑂(𝑤(𝑍)2),

which establishes the existence of 𝜏 for all 𝑍 ∈ I𝑌 with y* ∈ 𝑍 by analogy to Lemma 6.3.8.

Note that the assumption of separability in Theorem 6.5.23 can be replaced with the

weaker assumption that ∇2
xy𝐿(x*,y*,𝜇*,𝜆*) = 0 (equals the zero matrix).

302



Remark 6.5.24. Similar to Corollary 6.5.18, it can be shown that the reduced-space lower

bounding scheme in [76] has second-order convergence at KKT points even in the absence

of constraint propagation when all of the functions in Problem (P) are separable in x and

y and second-order pointwise convergent schemes of relaxations are used. Furthermore,

under the above assumption of separability, the reduced-space lower bounding schemes

in [76] and [69] can be shown to possess second-order convergence at infeasible points and

unconstrained points in the reduced-space under suitable assumptions on the lower bounding

schemes (see Remark 6.5.2). Consequently, the convergence properties of the reduced-space

lower bounding schemes considered in this section are similar to their counterpart full-space

lower bounding schemes in Section 6.4 when all of the functions in Problem (P) are twice

continuously differentiable and separable in x and y. Example 6.4.29 provides an instance

wherein the convergence order is exactly two at y* under the assumptions of Theorem 6.5.23.

6.6 Conclusion

A definition of convergence order for constrained problems has been introduced. The defi-

nition reduces to previously developed notions of convergence order for the case of uncon-

strained problems. An analysis of the convergence order of some full-space and reduced-

space branch-and-bound algorithms has been performed.

It has been shown that convex relaxation-based full-space lower bounding schemes en-

joy first-order convergence under mild assumptions and second-order convergence at KKT

points when second-order pointwise convergent schemes of relaxations of the objective and

the constraints are used. Furthermore, the importance of a sufficiently high convergence or-

der at nearly-feasible points has been demonstrated. Lagrangian dual-based full-space lower

bounding schemes have been shown to have at least as large a convergence order as convex

relaxation-based lower bounding schemes. In addition, it has been shown that Lagrangian

dual-based lower bounding schemes where the dual function is not exactly optimized still

enjoy first-order convergence.

The convergence order of the reduced-space convex relaxation-based lower bounding

scheme of Epperly and Pistikopoulos has been investigated, and it has been shown that the

scheme enjoys first-order convergence under certain assumptions. However, their scheme

can have as low as first-order convergence even at unconstrained points which can lead
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to clustering. It has also been shown that the reduced-space dual lower bounding scheme

enjoys first-order convergence and that its convergence order may be as low as one for con-

strained problems. In that regard, the importance of constraint propagation in boosting

the convergence order of reduced-space lower bounding schemes has been demonstrated.

Furthermore, it has been shown that when all of the functions in Problem (P) are twice

continuously differentiable and separable in x and y, the above reduced-space lower bound-

ing schemes can achieve second-order convergence at KKT points, at unconstrained points

in the reduced-space, and at infeasible points.

Future work involves determining whether full-space lower bounding schemes can achieve

second-order convergence on a neighborhood of constrained minima that are KKT points

(such a result may be required to mitigate the cluster problem at such constrained minima

- see Proposition 5.3.7 in Chapter 5, for instance), analyzing the convergence orders of

some other widely-applicable reduced-space lower bounding schemes in the literature (see,

for example, [217]), and determining sufficient conditions on the constraint propagation

scheme to ensure second-order convergence of reduced-space lower bounding schemes at

constrained minima that satisfy certain regularity conditions.
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Chapter 7

Conclusion

This thesis has addressed two problems of topical interest in the field of mathematical

optimization. The first problem addressed was on the development of algorithms and soft-

ware for optimization problems under uncertainty that are modeled as two-stage stochastic

programs, which has several diverse applications such as the design and operation of chem-

ical process systems, planning and scheduling of energy generation systems, environmental

management, supply chain optimization, and portfolio optimization. The prevalence of

nonconvexities in chemical process models, in particular, precludes the use of most existing

decomposition algorithms and associated software implementations for stochastic programs,

thereby acting as a major motivating factor for our work that aimed at developing an effi-

cient and accessible numerical implementation for solving such problems. The second prob-

lem tackled was on the development of a theory of convergence order for B&B algorithms for

constrained optimization problems in conjunction with an analysis of the cluster problem

in constrained global optimization to determine whether candidate B&B algorithms have

favorable asymptotic convergence properties. Such an analysis can help explain disparities

in the empirical performances of classes of B&B algorithms in the literature, help identify

any deficiencies in such algorithms, and possibly provide guidelines for their improvement.

7.1 Summary of contributions

The most tangible results of this thesis are the algorithms and software developed for solving

a broad class of two-stage stochastic MINLPs. In Chapter 3, a modified Lagrangian relax-

ation (MLR) algorithm was developed in which only the nonanticipativity constraints for
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the continuous complicating variables were dualized, and the resulting dual lower bound-

ing problem was solved in a decomposable manner using NGBD. In addition, tailored,

decomposable bounds tightening techniques were developed by building on previous work

to accelerate potentially the convergence of the MLR algorithm. From a theoretical stand-

point, we proved that the lower bounding problem of the MLR algorithm provides tighter

lower bounds than the lower bounding problem of the conventional Lagrangian relaxation

(LR) algorithm, and established finite-𝜀 convergence of the MLR algorithm for the case

when all of its subproblems are solved in a decomposable manner1. Finally, we showed that

the MLR algorithm performs favorably compared to the LR algorithm and four commercial

general-purpose global optimization software on a tank sizing and scheduling case study

from the literature.

In Chapter 4, we detailed our development of the first (known) decomposition software,

named GOSSIP, for solving two-stage stochastic MINLPs. GOSSIP includes implementations

of NGBD, LR, and MLR algorithms along with adaptations of advanced techniques from

the literature for reformulating and preprocessing user input, constructing relaxations, and

domain reduction. GOSSIP has been benchmarked on a test library comprising a diverse set

of problems that were compiled primarily from the process systems engineering literature.

We plan on making GOSSIP available, without charge, for academic research soon, and will

also make the GOSSIP test library accessible to the public.

Chapters 5 and 6 developed a theory of convergence order for B&B algorithms for

constrained problems, and analyzed the consequences of a B&B scheme enjoying a particular

convergence order on its asymptotic efficiency. In Chapter 6, we developed a notion of

convergence order for lower bounding schemes for constrained problems that generalizes

the definition for the unconstrained setting. A consequence of a lower bounding scheme

possessing a certain convergence order was studied in Chapter 5, where we generalized

previous analyses of the cluster problem in unconstrained optimization to the constrained

case by conservatively estimating the number of boxes visited by B&B algorithms that use

such schemes in vicinities of global minimizers. As a conclusion of this analysis, we showed

that first-order convergent lower bounding schemes may be sufficient to mitigate the cluster

problem at constrained minima under suitable conditions. This result is in contrast to the

1We note that our analysis of the convergence of the MLR algorithm in Chapter 3 can be naturally
extended to analyze the convergence of the conventional LR algorithm as well.

306



unconstrained case where it is known that second-order convergence of the bounding scheme

is required to mitigate clustering. For problems with equality constraints, our analysis in

Chapter 5 has determined that second-order convergence of the lower bounding scheme is

typically required to mitigate clustering at nonisolated minima. We also developed sufficient

conditions under which second-order convergence of the lower bounding scheme mitigates

the cluster problem.

Our analysis of the convergence orders of lower bounding schemes in Chapter 6 estab-

lished lower bounds on the convergence orders of convex relaxation-based and Lagrangian

duality-based lower bounding schemes in the literature. In particular, we developed suffi-

cient conditions for the convergence order of such schemes at infeasible points to be of a

certain order, and established sufficient conditions for such schemes to have first or second-

order convergence at feasible points. We determined that the pointwise convergence orders

of the schemes of relaxations employed by convex relaxation-based lower bounding schemes

plays a crucial role for such lower bounding schemes to achieve a high convergence order.

This is a departure from the analysis for the unconstrained case where the Hausdorff con-

vergence order of the schemes of relaxations employed dictates the convergence order of

the bounding scheme, and has resulted in some misconceptions in the convergence order

literature in the past (see Chapters 5 and 8 of [237], for instance). Chapter 6 also ana-

lyzed the convergence orders of some widely applicable reduced-space B&B algorithms in

the literature and determined that such methods may suffer from the cluster problem if

domain reduction techniques are not employed for the variables whose domains are not

partitioned by those algorithms. This analysis emphasizes the importance of domain re-

duction techniques for reduced-space B&B algorithms to mitigate clustering, whereas such

techniques are usually thought to be optional for favorable convergence rates of B&B al-

gorithms in general2. We note that our analyses of the cluster problem and convergence

order for constrained problems can help explain differences in the performances of interval

arithmetic-based full-space B&B algorithms and convex relaxation-based full-space B&B

algorithms; this is because interval arithmetic-based full-space B&B algorithms typically

possess first-order convergence at constrained minima, whereas convex relaxation-based

full-space B&B algorithms employed by state-of-the-art global optimization software usu-

2While our analysis indicates that domain reduction techniques are not necessary for full-space B&B
algorithms to mitigate clustering, such techniques usually empirically boost the convergence rates of full-
space B&B algorithms.
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ally enjoy second-order convergence at such points.

7.2 Avenues for future work

There are several questions and topics related to the contributions of this thesis that

merit future investigation. On the topic of algorithm development for two-stage stochastic

MINLPs, the development of alternative decomposition techniques that do not rely on La-

grangian duality (and, consequently, on nonsmooth optimization codes for solving the dual

problem) seems a worthwhile endeavor since Lagrangian duality-based approaches appear

to suffer from a few shortcomings, especially when we wish to solve problems to tight ter-

mination tolerances. In particular, future work could look to develop global optimization

approaches like NGBD for general two-stage stochastic MINLPs that do not involve (ex-

plicit) branching on the (complicating) variables to guarantee convergence. It is anticipated,

however, that such approaches do not exist for general stochastic programming formulations

with continuous complicating variables.

The potential directions along which the development of GOSSIP can be continued are

virtually endless. Perhaps the most pressing feature that needs to be developed within

GOSSIP is the option to use a polyhedral relaxation framework when the relaxations con-

structed by GOSSIP are nonlinear. Not only will this feature help improve GOSSIP’s robust-

ness while solving practical stochastic programs, but this development will also enable imple-

mentations of outer-approximation-based algorithms [72, 79, 118] for solving such problems.

A close second is the need to exploit the parallelization capabilities of the algorithms im-

plemented within GOSSIP to enable the efficient solution of large-scenario problems. Other

features that could greatly enhance GOSSIP’s ability to solve stochastic programming appli-

cations of interest include: implementation of advanced relaxation strategies (such as the

use of reformulation-linearization cuts [209], piecewise linear relaxations [160], and other

specialized strategies [11, 120, 162, 164]), incorporating an array of scalable techniques for

the generation of feasible points [107, 247], and diversifying GOSSIP’s portfolio of software

links in a bid to leverage the advantages of multiple state-of-the-art software depending on

the application. Of course, the ideal approach to future software development for stochastic

programs would involve building on the framework of existing global optimization software

so that the advanced strategies that are part of those software can be leveraged to push
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the envelope on the scale of optimization problems under uncertainty that can be solved to

global optimality in practical solution times.

The convergence order analysis in Chapter 6 suggests some immediate avenues for future

work. While it was determined therein that the use of domain reduction techniques is crucial

towards mitigating the cluster problem faced by reduced-space B&B algorithms, establishing

sufficient conditions on the domain reduction techniques so that the resulting reduced-space

B&B algorithms can mitigate clustering remains an open problem. On a related note,

convergence order analyses of some other widely applicable reduced-space B&B algorithms

in the literature (for example, see [217]) is lacking, and remains an important topic for future

work, especially considering that such algorithms have great potential in solving challenging

process systems engineering applications. Since some of the hypotheses in the statements of

the results for the cluster problem and convergence order analyses can be difficult to verify,

the development of testable hypotheses for those results merits further work from a practical

viewpoint (one approach to resolving this would be to develop particular convergence order

results for classes of problems with specific structures). Another open problem arising out

of practical considerations (that has also been posed by other researchers; see [38, Section

8], for instance) is the development of a non-asymptotic analysis of the performance of

B&B algorithms. As detailed in Chapters 1 and 6, the cluster problem and convergence

order analyses in this thesis only reflect on the asymptotic performance of B&B algorithms;

therefore, a lower bounding scheme with a high convergence order may not necessarily be

efficient/practical. This necessitates the development of theory that can not only capture

the performance of lower bounding schemes on small interval subsets of the problem domain,

but can also discern the behavior of their bounding error on larger intervals.
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Appendix A

A note on the convergence order

analysis of a class of reduced-space

branch-and-bound algorithms

In this note, we consider the following nonlinear programming formulation (cf. Problem (P)

in Chapter 6):

min
x,y

𝑓(x,y) (P)

s.t. g(x,y) ≤ 0,

h(x,y) = 0,

x ∈ 𝑋, y ∈ 𝑌,

where 𝑋 ∈ IR𝑛𝑥 and 𝑌 ∈ IR𝑛𝑦 are nonempty intervals, functions 𝑓 : 𝑋̄ × 𝑌 → R, g :

𝑋̄ × 𝑌 → R𝑚𝐼 , and h : 𝑋̄ × 𝑌 → R𝑛𝑥 are continuous, 𝑋̄ ⊂ R𝑛𝑥 and 𝑌 ⊂ R𝑛𝑦 are open

sets, and 𝑋 ⊂ 𝑋̄ and 𝑌 ⊂ 𝑌 . Note that the dimension of the codomain of the equality

constraint functions h equals the dimension of 𝑋.

When the dimension 𝑛𝑦 of the 𝑌 -space is significantly less than the dimension 𝑛𝑥 of

the 𝑋-space (as is often the case in chemical process systems-related applications), we may

wish to eliminate the equality constraints h(x,y) = 0 by ‘solving for the x variables in

terms of the y variables, and substitute the resulting solution in Problem (P)’ to mitigate

the worst-case exponential nature of B&B algorithms for global optimization. However,
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this is easier said than done for a few reasons: i. there may not exist a unique solution

for x (in 𝑋) for each y ∈ 𝑌 , ii. even when a unique solution for x exists in 𝑋 for every

y ∈ 𝑌 , it may be tedious (or even impossible) to derive a closed-form expression that

can be readily substituted in Problem (P), and iii. widely applicable deterministic global

optimization frameworks such as branch-and-bound (see Section 2.3.2 of Chapter 2) require

(global) relaxation information, and cannot make do with just a numerical solution for x

at each y ∈ 𝑌 .

Assume that for each y ∈ 𝑌 , there exists a unique x ∈ 𝑋 that satisfies the equality con-

straints h(x,y) = 0. By an abuse of notation, we can formally express the aforementioned

idea as replacing the variables x with a closed-form expression of the implicit function

x : 𝑌 → 𝑋 defined by the equality constraints and solving the resulting reduced-space

problem:

min
y∈𝑌

𝑓(x(y),y) (RS)

s.t. g(x(y),y) ≤ 0.

If a scheme of relaxations, (xcv
𝑍 ,xcc

𝑍 )𝑍∈I𝑌 , of the implicit function x in 𝑌 is available, where

xcv
𝑍 : 𝑍 → 𝑋 and xcc

𝑍 : 𝑍 → 𝑋 are convex and concave relaxations of x on 𝑍, respectively,

then schemes of relaxations of the ‘reduced-space functions’ 𝑓(x(·), ·) and g(x(·), ·) can

be constructed using schemes of relaxations of the functions 𝑓 and g in 𝑋 × 𝑌 and the

generalized McCormick relaxation framework [206, 207]. The above developments can then

enable global optimization of the reduced-space Problem (RS) using a reduced-space B&B

approach (cf. Section 2.3.2.3 of Chapter 2).

Stuber et al. [217] proposed an approach to construct schemes of relaxations of im-

plicit functions using the framework of generalized McCormick relaxations and the use of

a parametric extension of the mean-value theorem in conjunction with parametric interval-

Newton methods. Wechsung [237, Chapter 5] proposed a different sensitivities-based inter-

val bounding approach for computing second-order Hausdorff convergent interval bounds

on the implicit function. Preliminary computational experiments performed by members

of the lab indicate that using the method for constructing schemes of relaxations proposed

by Stuber et al. within a reduced-space B&B framework seems to mitigate the cluster

problem, whereas employing the interval-based relaxations of implicit functions proposed
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by Wechsung within such a framework appears to suffer from the cluster problem. Our

analysis of the convergence-order of lower bounding schemes for constrained problems in

Chapter 6 indicates that the pointwise convergence orders of schemes of relaxations involved

in the construction of the lower bounding scheme play a more important role than the cor-

responding Hausdorff convergence orders in determining the overall convergence order of

the lower bounding scheme at constrained minima (which, in turn, determines whether the

lower bounding scheme can mitigate the cluster problem). The fact that interval-based

schemes of relaxations can have at most first-order pointwise convergence can, along with

the analysis by Bompadre and Mitsos [38], therefore potentially help explain the observed

unfavorable behavior of the interval-based technique proposed by Wechsung [237, Chap-

ter 5] for relaxing implicit functions within a reduced-space B&B framework. An analysis

of the convergence order of the method proposed by Stuber and coworkers [217] is currently

lacking.

In the remainder of this note, we consider the case when h is defined by the parametric

linear system of equations A(y)x = b(y), with A : 𝑌 → R𝑛𝑥×𝑛𝑥 and b : 𝑌 → R𝑛𝑥 as-

sumed to be defined by factorable functions. Mitsos et al. [169] proposed an automatable

technique to compute schemes of convex and concave relaxations of the implicit function

x for this case that applies McCormick’s relaxation technique [154] to a factorable repre-

sentation of the implicit function obtained via Gaussian elimination (or any other direct

solution approach for linear systems of equations). An analysis of the convergence order of

their proposed approach follows directly from previous analyses of the convergence order of

McCormick relaxations [38, 39] and the analysis in Chapter 6. In particular, it can be shown

that the approach of Mitsos and coworkers for this (restrictive) subclass of Problem (P) can

mitigate the cluster problem when employed within a reduced-space B&B framework while

still enjoying the advantages of dimensionality reduction. Stuber et al. [217, Section 3.3]

proposed a Gauss-Seidel-type semi-explicit representation of the implicit function for the

parametric linear case, and constructed relaxations of the implicit function using a para-

metric interval linear solver and the generalized McCormick relaxation technique. While it

appears that the theory of convergence order for generalized McCormick relaxations in [199,

Chapter 3] might be useful in analyzing the convergence order of the scheme of relaxations

of the implicit function that is constructed for this special class of problems, the analysis

of the convergence order of the above Gauss-Seidel-type method for constructing schemes
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of relaxations is nontrivial because the number of iterations of this iterative technique for

constructing relaxations is not fixed a priori. It is anticipated that the analysis of the

convergence order of the above relaxation method for the special case of parametric linear

systems will provide insights into the analysis for the general case of parametric nonlinear

systems of equations, since (some of) the techniques employed in [217] for this more general

case effectively reduce the problem of constructing schemes of relaxations for the implicit

function to a corresponding problem for linear parametric systems.
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[151] Marko M Mäkelä. Multiobjective proximal bundle method for nonconvex nonsmooth
optimization: Fortran subroutine MPBNGC 2.0. Reports of the Department of Math-
ematical Information Technology, Series B. Scientific Computing, B, 13, 2003.

[152] Costas D Maranas and Christodoulos A Floudas. Global optimization in generalized
geometric programming. Computers & Chemical Engineering, 21(4):351–369, 1997.

[153] Günter Mayer. Epsilon-inflation in verification algorithms. Journal of Computational
and Applied Mathematics, 60(1):147–169, 1995.

[154] Garth P McCormick. Computability of global solutions to factorable nonconvex
programs: Part I - Convex underestimating problems. Mathematical Programming,
10(1):147–175, 1976.

[155] Clifford A Meyer and Christodoulos A Floudas. Trilinear monomials with mixed sign
domains: Facets of the convex and concave envelopes. Journal of Global Optimization,
29(2):125–155, 2004.

[156] Clifford A Meyer and Christodoulos A Floudas. Trilinear monomials with positive or
negative domains: Facets of the convex and concave envelopes. In Frontiers in Global
Optimization, pages 327–352. Springer, 2004.

[157] Clifford A Meyer and Christodoulos A Floudas. Convex envelopes for edge-concave
functions. Mathematical Programming, 103(2):207–224, 2005.

[158] Clifford A Meyer and Christodoulos A Floudas. Global optimization of a combinato-
rially complex generalized pooling problem. AIChE Journal, 52(3):1027–1037, 2006.

[159] Ruth Misener and Christodoulos A Floudas. Global optimization of large-scale gen-
eralized pooling problems: quadratically constrained MINLP models. Industrial &
Engineering Chemistry Research, 49(11):5424–5438, 2010.

[160] Ruth Misener and Christodoulos A Floudas. Global optimization of mixed-integer
quadratically-constrained quadratic programs (MIQCQP) through piecewise-linear
and edge-concave relaxations. Mathematical Programming, pages 1–28, 2012.

[161] Ruth Misener and Christodoulos A Floudas. GloMIQO: Global mixed-integer
quadratic optimizer. Journal of Global Optimization, 57(1):3–50, 2013.

[162] Ruth Misener and Christodoulos A Floudas. ANTIGONE: Algorithms for coNTin-
uous/Integer Global Optimization of Nonlinear Equations. Journal of Global Opti-
mization, 59(2-3):503–526, 2014.

[163] Ruth Misener and Christodoulos A Floudas. A framework for globally optimizing
mixed-integer signomial programs. Journal of Optimization Theory and Applications,
161(3):905–932, 2014.

325



[164] Ruth Misener, James B Smadbeck, and Christodoulos A Floudas. Dynamically
generated cutting planes for mixed-integer quadratically constrained quadratic pro-
grams and their incorporation into GloMIQO 2. Optimization Methods and Software,
30(1):215–249, 2015.

[165] Ruth Misener, Jeffrey P Thompson, and Christodoulos A Floudas. APOGEE: Global
optimization of standard, generalized, and extended pooling problems via linear and
logarithmic partitioning schemes. Computers & Chemical Engineering, 35(5):876–892,
2011.

[166] Sumit Mitra, Pablo Garcia-Herreros, and Ignacio E Grossmann. A cross-
decomposition scheme with integrated primal–dual multi-cuts for two-stage stochastic
programming investment planning problems. Mathematical Programming, 157(1):95–
119, 2016.

[167] Alexander Mitsos. Global solution of nonlinear mixed-integer bilevel programs. Jour-
nal of Global Optimization, 47(4):557–582, 2010.

[168] Alexander Mitsos. Global optimization of semi-infinite programs via restriction of the
right-hand side. Optimization, 60(10-11):1291–1308, 2011.
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