• Home
  • People
  • Courses
  • Funding
  • News
  • Positions
  • Publications
  • Reports
  • Software
  • Wiki
Process Systems Engineering Laboratory

Process Systems Engineering Laboratory

PSEL@MIT

Biblio Author: Stuart M. Harwood

  • 2018
    Paul I. Barton, Stuart M. Harwood
    2018

    Affine relaxations for the solutions of constrained parametric ordinary differential equations

    Optimal Control Applications and Methods
    39
    :
    427–448
  • 2017
    Paul I. Barton, Stuart M. Harwood
    2017

    How to solve a design centering problem

    Math Meth Oper Res
    86
    :
    215-254
  • 2016
    Paul I. Barton, Stuart M. Harwood
    2016

    Efficient polyhedral enclosures for the reachable set of nonlinear control systems

    Mathematics of Control, Signals, and Systems
    28
    :
    8
  • 2016
    Paul I. Barton, Stuart M. Harwood
    2016

    Lower level duality and the global solution of generalized semi-infinite programs

    Optimization
    65
    :
    1129-1149
  • 2016
    Kai Höffner, Paul I. Barton, Stuart M. Harwood
    2016

    Efficient solution of ordinary differential equations with a parametric lexicographic linear program embedded

    Numerische Mathematik
    133
    :
    623-653
  • 2016
    Joseph K. Scott, Paul I. Barton, Stuart M. Harwood
    2016

    Bounds on reachable sets using ordinary differential equations with linear programs embedded

    IMA Journal of Mathematical Control and Information
    33
    :
    519-541
  • 2013
    Kai Höffner, Paul I. Barton, Stuart M. Harwood
    2013

    A reliable simulator for dynamic flux balance analysis

    Biotechnology and Bioengineering
    110
    :
    792-802

Search

Recent Publications

  • •

    Level sets of nonsmooth functions, part 2: Lipschitz and piecewise-differentiable manifolds

  • •

    Evaluating Economic Feasibility of Liquid Air Energy Storage Systems in Future US Electricity Markets

  • •

    Tighter Bounds on Transient Moments of Stochastic Chemical Systems

  • •

    Generalized derivatives of optimal-value functions with parameterized convex programs embedded

More…

MIT

Accessibility