McCormick-Based Relaxations of Algorithms

Title

McCormick-Based Relaxations of Algorithms

Publication Type
Journal Article
Year of Publication
2009
Journal
SIAM Journal on Optimization
Number
2
Volume
20
Pagination
573-601
Publisher
SIAM
Abstract
Theory and implementation for the global optimization of a wide class of algorithms is presented via convex/affine relaxations. The basis for the proposed relaxations is the systematic construction of subgradients for the convex relaxations of factorable functions by McCormick [Math. Prog., 10 (1976), pp. 147–175]. Similar to the convex relaxation, the subgradient propagation relies on the recursive application of a few rules, namely, the calculation of subgradients for addition, multiplication, and composition operations. Subgradients at interior points can be calculated for any factorable function for which a McCormick relaxation exists, provided that subgradients are known for the relaxations of the univariate intrinsic functions. For boundary points, additional assumptions are necessary. An automated implementation based on operator overloading is presented, and the calculation of bounds based on affine relaxation is demonstrated for illustrative examples. Two numerical examples for the global optimization of algorithms are presented. In both examples a parameter estimation problem with embedded differential equations is considered. The solution of the differential equations is approximated by algorithms with a fixed number of iterations.