Bibliography

  1. Tolsma, J. E., J. A. Clabaugh, and P. I. Barton.
    Symbolic Incorporation of External Procedures into Process Modeling Environments.
    Industrial & Engineeering Chemistry Research, 41(16):3867-3876, 2002.
    http://pubs.acs.org/doi/abs/10.1021/ie0107946
  2. Gatzke, E. P., J. E. Tolsma, and P. I. Barton.
    Construction of Convex Relaxations Using Automated Code Generation Techniques.
    Optimization and Engineering, 3(3):305-326, 2002.
    http://www.springerlink.com/content/w3t7xl587661r461
  3. Schwer, D. A., J. E. Tolsma, W. H. Green, and P. I. Barton.
    On upgrading the numerics in combustion chemistry codes.
    Combustion and Flame, 128(3):270-291, 2002.
    http://www.sciencedirect.com/science/article/B6V2B-4538CKJ-7/2/6289140c2…
  4. Tolsma, J. E. and P. I. Barton.
    Hidden Discontinuities and Parametric Sensitivity Calculations. SIAM Journal on Scientific Computing, 23(6):1861-1874, 2002.
    http://link.aip.org/link/?SCE/23/1861/1
  5. Barton, P. I. and S. Galan.
    Linear DAEs with Nonsmooth Forcing.
    Submitted to SIAM Journal on Scientific Computing, January 2000.
    PDF
  6. Tolsma, J. E. and P. I. Barton.
    DAEPACK: An Open Modeling Environment for Legacy Models.
    Industrial & Engineering Chemistry Research, 39(6):1826-1839, 2000.
    http://dx.doi.org/10.1021/ie990734o
  7. Tolsma, J. E. and P. I. Barton.
    Efficient Calculation of Sparse Jacobians.
    SIAM Journal on Scientific Computing, 20, (6):2282-2296, 1999.
    http://link.aip.org/link/?SCE/20/2282/1
  8. Kesavan, P. and P. I. Barton.
    Decomposition Algorithms for Nonconvex Mixed-Integer Nonlinear Programs.
    AIChE Symposium Series, 96(323):458-461, 2000.
  9. Galán, S., W. F. Feehery, and P. I. Barton.
    Parametric sensitivity functions for hybrid discrete/continuous systems.
    Applied Numerical Mathematics, 31(1):17-47, 1999.
    http://www.sciencedirect.com/science/article/B6TYD-3X8GM0R-2/2/d679ce5f8…
  10. Tolsma, J. E. and P. I. Barton.
    On computational differentiation.
    Computers & Chemical Engineering, 22(4-5):475-490, 1998.
    http://www.sciencedirect.com/science/article/B6TFT-3TGSGMN-1/2/45ca7a6bc…
  11. Feehery, W. F., J. E. Tolsma, and P. I. Barton.
    Efficient sensitivity analysis of large-scale differential-algebraic systems.
    Applied Numerical Mathematics, 25(1):41-54, 1997.
    http://www.sciencedirect.com/science/article/B6TYD-3SP2BC8-B/2/6a0039b0a…
  12. Feehery, W. F. and P. I. Barton.
    A Differentiation-Based Approach to Dynamic Simulation and Optimization with High-Index Differential-Algebraic Equations.
    In: Computational Differentiation, M. Berz, C. Bischof, G. Corliss, and A. Griewank (editors), SIAM, (1996).
  13. Park, T. and P. I. Barton.
    State event location in differential-algebraic models.
    ACM Transactions on Modeling and Computer Simulation, 6(2):137–165, 1996.