Title | Nonsmooth DAEs with Applications in Modeling Phase Changes |

Publication Type | Book Chapter |

Year of Publication | 2019 |

Authors | Stechlinski P, Patrascu M, Barton PI |

Book Title | Applications of Differential-Algebraic Equations: Examples and Benchmarks |

Pagination | 243-275 |

Abstract | A variety of engineering problems involve dynamic simulation and optimization, but exhibit a mixture of continuous and discrete behavior. Such hybrid continuous/discrete behavior can cause failure in traditional methods; theoretical and numerical treatments designed for smooth models may break down. Recently it has been observed that, for a number of operational problems, such hybrid continuous/discrete behavior can be accurately modeled using a nonsmooth differential-algebraic equations (DAEs) framework, now possessing a foundational well-posedness theory and a computationally relevant sensitivity theory. Numerical implementations that scale efficiently for large-scale problems are possible for nonsmooth DAEs. Moreover, this modeling approach avoids undesirable properties typical in other frameworks (e.g., hybrid automata); in this modeling paradigm, extraneous (unphysical) variables are often avoided, unphysical behaviors (e.g., Zeno phenomena) from modeling abstractions are not prevalent, and |

URL | https://link.springer.com/chapter/10.1007/11221_2018_7 |

DOI | 10.1007/11221_2018_7 |

# Nonsmooth DAEs with Applications in Modeling Phase Changes

Submitted by suzane on