
DSL��S Manual

William F� Feehery

March ��� ����



ABACUSS Project Report No� ����

�



Contents

��� Obtaining DSL��S � � � � � � � � � � � � � � � � � � � � � � � � �
��� Calling DSL��S � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� Using DSL��S � � � � � � � � � � � � � � � � � � � � � � � � � � 	

����� What to do on the 
rst call to DSL��S � � � � � � � � ��
����� Output after any return by DSL��S � � � � � � � � � � ��
����� What to do to continue the integration � � � � � � � � ��
����� Error messages � � � � � � � � � � � � � � � � � � � � � � ��

��� The test�f program � � � � � � � � � � � � � � � � � � � � � � � ��

�



This document describes how to obtain and use DSL��S
 a code for
numerical solution and sensitivity analysis of large�scale sparse Di�erential
Algebraic Equations �DAEs�� The code was written by Russell Allgor and
William Feehery and is derived from the well�known DASSL code that was
created by Linda Petzold�
DSL��S provides the following unique features�

� Use of the sparse unstructured linear algebra solver MA���
� Option for e�cient calculation of sensitivities of large�scale systems�
� Dynamic bounds checking algorithm�
� Modi
cations to allow the use of the dummy derivative method for
high�index DAEs�

�



��� Obtaining DSL��S

The latest version of the DSL��S code may be licensed by contacting�

Prof� Paul I� Barton
Department of Chemical Engineering
Massachusetts Institute of Technology

Cambridge
 MA ����	
phone� ������������
email� pib�mit�edu

DSL��S is available precompiled in object code form for several UNIX
platforms� It is distributed in a compressed tar 
le with the name

dsl��s platform dist�tar�gz

where platform is
 for example
 sun
 hpux
 linux
 etc�
Upon obtaining the above 
le
 the code may be installed with the com�

mands�

gunzip dsl��s platform dist�tar�gz

tar xf dsl��s platform dist�tar

This creates a directory called dsl��s platform in which the DSL��S
code is installed� The compiled DSL��S code
 with the name

dsl��s platform�a

is in this directory� The 
le dsl��s platform�a is an archived object code
format that may be linked into your program� Also in this directory is the

le error platform�o
 which is a compiled version of the error handling
routines used by DSL��S� The source code for these error handling routines
is included in the directory error� You may replace these error routines if
you wish
 but routines that are called in the exact same way must be in�
cluded when you compile DSL��S� In most cases
 the error handling routines
provided are su�cient
 and the 
le error platform�o can be included at
link time�
Also in the dsl��s platform directory is a subdirectory called example


which contains an example 
le that can be used both to test the installation
and to gain an understanding of how to use DSL��S� The example in the

le test�f
 which is provided in the distribution� The commands�

�



cd dsl��s platform�example

make test

��test

will compile and run the example� Running test should produce the output

le test�out which should exactly match test�out�good�

�



��� Calling DSL��S

The FORTRAN call to DSL��S is�

CALL DSL��S �RES� SENRHS� NEQ� T� Y� YPRIME� TOUT� INFO�

� RTOL� ATOL� IDID� RWORK� LRW� IWORK� LIW� RPAR� IPAR�

� JAC� NEJAC� JROW� JCOL� JYDOT� NJYDOT� JDTYPE� BOUND	

In the following description of the DSL��S parameters
 EXT denotes an
external function
 IN denotes a variable that must be set on the 
rst call

OUT denotes a variable that DSL��S returns
 and WORK denotes a workspace�

RES
EXT The name of an external user�provided subroutine for calculating
the residuals of the DAE� �USER�DEFINED FUNCTION�

SENRHS
EXT The name of an external user�provided subroutine for calcu�
lating the right hand sides of the sensitivity equation� If sensitivities
are not solved
 this subroutine will not be called
 but a dummy sub�
routine must be provided� �USER�DEFINED FUNCTION�

NEQ
IN giving the number of equations in the combined DAE and sen�
sitivity system� If there are three equations in the DAE
 and two
sensitivity parameters
 NEQ � ��� � �� � 	� �INTEGER�

T
INOUT Contains the current value of the independent variable� �DOUBLE
PRECISION�

Y��	
INOUT Array of length at least NEQ which contains the values of the
state and sensitivity variables at the current value of T� On the 
rst
call
 should be set to the initial condition for the DAE and sensitivities�
�ARRAY OF DOUBLE PRECISION�

YPRIME��	
INOUT Array of length at least NEQ which contains the values
of the time derivatives of the state and sensitivity variables at the
current value of T� On the 
rst call
 should be set to the initial condition
for the DAE and sensitivities� �ARRAY OF DOUBLE PRECISION�

TOUT
IN The value of the independent variable at which the integration
should stop �DOUBLE PRECISION�

INFO�
�	
IN The basic task of the code is to solve the system from T to
TOUT and return an answer at TOUT� INFO is an integer array which
is used to communicate exactly how you want this task to be carried
out� �See below for details�� �ARRAY OF INTEGER�

�



RTOL�ATOL
INOUT These quantities represent relative and absolute error
tolerances which you provide to indicate how accurately you wish the
solution to be computed� You may choose them to be both scalars or
else both vectors� Caution� In FORTRAN ��
 a scalar is not the same
as an array of length �� Some compilers may object to using scalars
for RTOL
 ATOL� �ARRAY OF DOUBLE PRECISION�

IDID
OUT This scalar quantity is an indicator reporting what the code
did� You must monitor this integer variable to decide what action to
take next� �INTEGER�

RWORK
WORK A real work array of length LRW which provides the code with
needed storage space� �ARRAY OF DOUBLE PRECISION�

LRW
IN The length of RWORK� �See below for required length�� �INTEGER�

IWORK
WORK An integer work array of length LIW which provides the code
with needed storage space� �ARRAY OF INTEGER�

LIW
IN The length of IWORK� �See below for required length�� �INTEGER�

RPAR��	�IPAR��	
IN These are real and integer parameter arrays which
you can use for communication between your calling program and
the RES subroutine �and the JAC subroutine�
 and which may contain
information about the parameters� �ARRAY OF DOUBLE PRECISION�
�ARRAY OF INTEGER�

JAC
EXT This is the name of a subroutine which you may choose to
provide for de
ning a matrix of partial derivatives described below�
�USER�DEFINED FUNCTION�

NEJAC
IN The number of nonzeroes in the sparse jacobian� �INTEGER�

JROW��	
IN An integer array containing the row numbers of the elements
in the sparse Jacobian� �ARRAY OF INTEGER�

JCOL��	
IN An integer array containing the column numbers of the ele�
ments in the sparse Jacobian� �ARRAY OF INTEGER�

JYDOT��	
IN An integer array containing the Jacobian elements that are
with respect to time derivative variables� �ARRAY OF INTEGER�

NJYDOT
IN The number of elements in the time derivative Jacobian� �INTEGER�

�



JDTYPE
IN Vector specifying the method to be used to calculate the cor�
responding element of the Jacobian matrix� �ARRAY OF INTEGER�

BOUND��	
IN A real array containing the bounds on the state variables
�not the sensitivity variables�� �ARRAY OF INTEGER�

�



��� Using DSL��S

DSL��S solves a DAE of the form g�t� y� y�� � � and performs a sensitivity
analysis upon the problem parameters if requested�
Subroutine DSL��S uses the backward di�erentiation formulae �BDF�

of orders one through 
ve to solve a system of the above form for y�t� and
y��t�� Values for y and y� at the initial time must be given as input� These
values must be consistent
 �that is
 if to
 yo
 and y�

o are the given initial
values
 they must satisfy g�to� yo� y

�

o� � � and all of its 
rst and higher order
time derivatives�� DSL��S solves the system from T to TOUT� It is easy to
continue the solution to get results at additional TOUT� This is the interval
mode of operation� Intermediate results can also be obtained easily by using
the intermediate�output capability�
DSL��S includes an option to perform a sensitivity analysis of the prob�

lem to be solved� Given a DAE depending on a vector of parameters p

g�t� y� y�� p� � �
 where y
 y� and g are vectors of length Ny and p is a vector

of length Np
 DSL��S will compute
�y�t�
�pi

for i � � � � � Np� The sensitivities
satisfy the equations�

�g

�y

�y

�pi
�

�g

�y�

�y�

�pi
�

�g

�pi
� � i � � � � � Np

or a 
nite di�erence approximation to this equation� The sensitivity values
are stored in the Y vector following the solution of the DAE
 so that�

Y �

�
������

y
�y
�p�

�
�
�y

�pNp

�
������

YPRIME �

�
������

y�

�y�

�p�

�
�

�y�

�pNp

�
������

Initial conditions must also be speci
ed for the sensitivity variables
 and they
must be chosen so that they are consistent with the sensitivity equations
�and their 
rst and higher order time derivatives� at the initial values�
The following detailed description is divided into subsections�

� Section ������ Input required for the 
rst call to DSL��S�
� Section ����� � Output after any return from DSL��S�
� Section ����� � What to do to continue the integration�
� Section ����� � Error messages�

	



����� What to do on the �rst call to DSL��S

The 
rst call of the code is de
ned to be the start of each new problem� Read
through the descriptions of all the following items
 provide su�cient storage
space for designated arrays
 set appropriate variables for the initialization
of the problem
 and give information about how you want the problem to
be solved�

RES Provide a subroutine of the form�
SUBROUTINE RES�NY�T�Y�YPRIME�DELTA�IRES�ICHVAR�RPAR�IPAR	

where NY is the number of equations EXCLUDING sensitivities to
de
ne the system of di�erential�algebraic equations which is to be
solved� For the given values of T
 Y and YPRIME
 the subroutine should
return the residual of the DAE
 DELTA � g�T� Y� YPRIME�� �DELTA is a
vector of length NEQ which is output for RES��

Subroutine RES must not alter T
 Y or YPRIME� You must declare the
name RES in an external statement in your program that calls DSL��S�
You must dimension Y
 YPRIME and DELTA in RES�

IRES is an integer �ag which is always greater than zero on input�
Subroutine RES should alter IRES only if it encounters an illegal value
of Y or a stop condition� Set IRES � �� if an input value is illegal

and DSL��S will try to solve the problem without getting IRES � ���
If IRES � ��
 DSL��S will return control to the calling program with
IDID � ����
ICHVAR is an integer �ag that is set before the call to RES� It equals
� if the values in Y and YPRIME have changed since the last call to
RES� If ICHVAR equals �
 the values have not changed
 and it it may
be possible to save some work in the RES subroutine�

RPAR and IPAR are real and integer parameter arrays which you can
use for communication between your calling program and subroutine
RES� They are not altered by DSL��S� If you do not need RPAR or IPAR

ignore these parameters by treating them as dummy arguments� If you
are using the sensitivity analysis option �INFO���� �� �� and the sen�
sitivity equations are not de
ned analytically
 the parameters of your
problem MUST be stored in RPAR as described below and dimensioned
in your calling program and in RES as arrays of appropriate length�

SENRHS Provide a subroutine of the form�
SUBROUTINE SENRHS�NEQ�T�Y�YPRIME�DELTA�IRES�RPAR�IPAR	

which is similar to RES
 but de
nes the right hand side vector of the

��



analytic sensitivity residuals� The sensitivity equations have the form
��g��y�si � ��g��y

��s
�

i � DELTA
 si �
�y
�pi
is the vector of sensitivity

variables for parameter i
 and DELTA is the vector that must be de
ned
by the subroutine� SENRHS must not alter the 
rst NY positions of
DELTA� DSL��S sets DELTA to a vector of zeroes before the call to
SENRHS�

If analytic sensitivity equations are not being used
 SENRHS is not
called
 but a dummy external procedure must be provided to compile
the code�

NEQ The value of this constant should be set to the number of di�erential
equations
 including the sensitivity equations� Note that in the case
of sensitivity analysis
 NEQ � Ny�Np � �� where Ny is the number
of state and algebraic variables
 and Np is the number of sensitivity
parameters� �NEQ � ��

T Set to the initial value of the independent variable� T must be de
ned
as a variable�

Y Set this vector to the initial values of the state and sensitivity variables
at the initial point� You must dimension Y of length at least Ny in
your calling program for ODE�DAE solutions and of length at least
Ny�Np � �� for sensitivity analysis solutions�

YPRIME Set this vector to the initial values of the 
rst derivatives of the
state and sensitivity variables at the initial point� You must dimension
YPRIME at least Ny for ODE�DAE solutions and of length at least
Ny�Np � �� for sensitivity analysis solutions� DSL��S requires the
initial T
 Y
 and YPRIME to be consistent�

TOUT Set it to the 
rst point at which a solution is desired� You must not
set TOUT � T� Integration either forward in T �TOUT � T� or backward
in T �TOUT � T� is permitted�

The code advances the solution from T to TOUT using step sizes which
are automatically selected so as to achieve the desired accuracy� If you
wish
 the code will return with the solution and its derivative at in�
termediate steps �intermediate�output mode� so that you can monitor
them
 but you still must provide TOUT in accord with the basic aim of
the code�

The 
rst step taken by the code is a critical one because it must
re�ect how fast the solution changes near the initial point� The code

��



automatically selects an initial step size which is practically always
suitable for the problem� By using the fact that the code will not step
past TOUT in the 
rst step
 you could
 if necessary
 restrict the length
of the initial step size�

For some problems it may not be permissible to integrate past a point
TSTOP because a discontinuity occurs there or the solution or its deriva�
tive is not de
ned beyond TSTOP� When you have declared a TSTOP

point �see INFO��	 and RWORK��	�
 you have told the code not to
integrate past TSTOP� In this case any TOUT beyond TSTOP is invalid
input�

INFO Use the INFO array to give the code details about how you want your
problem solved� This array should be dimensioned of length ��
 though
DSL��S uses only the 
rst �� entries� You must respond to all of the
following items
 which are arranged as questions� The simplest use of
the code corresponds to answering all questions as yes
 i�e� setting all
entries of INFO to ��

INFO��	 This parameter enables the code to initialize itself� You
must set it to indicate the start of every new problem�

Is this the �rst call for this problem�

Yes�

� Set INFO��	 � � if you want to start the integrator�
� Set INFO��	� �� if you want to start the integrator with�
out restarting the integration statistics �number of steps

etc� ��

No� Not applicable here� See below for continuation calls�

INFO�
	 How accurate you want your solution to be is speci
ed by
the error tolerances RTOL and ATOL� The simplest use is to take
them both scalars� To obtain more �exibility
 they can both be
vectors� DSL��S must be told your choice�

Are RTOL and ATOL scalars�

Yes� Set INFO�
	���

No� Set INFO�
	�� �both are vectors��

INFO��	 The code integrates from T in the direction of TOUT by
steps� If you wish
 it will return the computed solution and
derivative at the next intermediate step �the intermediate�output

��



mode� or TOUT
 whichever comes 
rst� This is a good way to pro�
ceed if you want to see the behavior of the solution� If you must
have solutions at a great many speci
c TOUT points
 this code will
compute them e�ciently�

Do you want the solution only at TOUT �and not at the next in�
termediate step	�

Yes� Set INFO��	 � ��

No� Set INFO��	 � ��

INFO��	 To handle solutions at a great many speci
c values TOUT
e�ciently
 this code may integrate past TOUT and interpolate to
obtain the result at TOUT� Sometimes it is not possible to integrate
beyond some point TSTOP because the equation changes there or
it is not de
ned past TSTOP� Then you must tell the code not to
go past TSTOP�

Can the integration be carried out without any restrictions on the
independent variable T�

Yes� Set INFO��	���

No� Set INFO��	�� and de
ne the stopping point TSTOP by
setting RWORK��� � TSTOP�

INFO��	 To solve di�erential�algebraic problems it is necessary to
use a matrix of partial derivatives of the system of di�erential
equations� If you do not provide a subroutine to evaluate it ana�
lytically �see description of the item JAC in the call list�
 it will be
approximated by numerical di�erencing in this code� Although it
is less trouble for you to have the code compute partial derivatives
by numerical di�erencing
 the solution will be more reliable if you
provide the derivatives via JAC� Sometimes numerical di�erencing
is cheaper than evaluating derivatives in JAC and sometimes it is
not � this depends on your problem and the technique you use to
evaluate analytic derivatives�

Do you want the code to evaluate the partial derivatives automat�
ically by numerical di
erences�

Yes� Set INFO��	���

No� Set INFO��	�� and provide subroutine JAC for evaluating
the matrix of partial derivatives�

INFO��	 Not used�

��



INFO��	 You can specify a maximum �absolute value of the� step�
size hmax
 so that the code will avoid passing over very large
regions�

Do you want the code to decide on its own maximum stepsize�

Yes� Set INFO��	���

No� Set INFO��	�� and de
ne hmax by setting RWORK�
� �
hmax�

INFO��	 Di�erential�algebraic problemsmay occasionally su�er from
severe scaling di�culties on the 
rst step� If you know a great
deal about the scaling of your problem
 you can help to alleviate
this problem by specifying an initial stepsize ho�

Do you want the code to de�ne its own initial stepsize�

Yes� Set INFO��	���

No� Set INFO��	�� and de
ne ho by setting RWORK��� � ho�

INFO��	 If storage is a severe problem
 you can save some locations
by restricting the maximum order MAXORD� The default value is
�� for each order decrease below �
 DSL��S requires NEQ fewer
locations
 however
 it is likely to be slower� This option may also
be useful if you know that higher order integration methods will
experience di�culties when applied to your problem� In any case

you must have � � MAXORD � ��
Do you want the maximum order to default to ��

Yes� Set INFO��	���

No� Set INFO��	�� and de
ne MAXORD by setting IWORK��� �
MAXORD�

INFO���	 If you know that the solutions to your equations will al�
ways be nonnegative
 it may help to set this parameter� However

it is probably best to try the code without using this option 
rst

and only to use this option if that doesn�t work very well�

Do you want DSL�
S to solve the problem without invoking any
special nonnegativity constraints�

Yes� Set INFO���	���

No� Set INFO���	���

INFO���	 Not currently used�

INFO��
	 Not currently used�

��



INFO���	 Determines whether DSSL�� should detect when high�
index pivoting is necessary� Do not use this option unless your
calling code is capable of handling the high�index pivoting� DSL��S
does not do it�

Should DSL�
S detect the need for possible high�index pivoting�

Yes� Set INFO���	 � ��

No� Set INFO���	���

INFO���	 Determines whether DSSL�� has detected that high in�
dex pivoting may be necessary� This parameter is an output
parameter only
 unlike the rest of INFO� INFO���	 is not used if
INFO���	���

DSL�
S has detected that high index pivoting may be necessary�

Yes� INFO���	 is set to � on return�

No� INFO���	 is set to � on return�

INFO���	 Determines whether DSSL�� will do bounds checking If
Yes
 then BOUND must be an array of length �NY
 where the 
rst
NY positions contains the lower bounds for the unknowns
 and
the second NY positions contains the upper bounds� Unless it is
really necessary
 this option should probably not be used�

Should DSL�
S perform dynamic bounds checking�

Yes� INFO���	 � ��

No� INFO���	 � ��

INFO���	 Automatic scaling of the corrector iteration can be per�
formed when using the sparse unstructured matrix option� This
requires a small amount of extra work
 but improves accuracy
guarantees� This option should probably be used in almost all
cases�

Should DSL�
S perform automatic scaling�

Yes� Set INFO���	 � ��

No� INFO���	 � ��

INFO���	 Sensitivity toggle� Computational parameters for sensi�
tivity analysis on DSL��S are accessed through the INFO array
values ��� ���

Do you wish to have DSL�
S perform a sensitivity analysis on
the given ODE�DAE�

Yes� Set INFO���	 � Np
 where Np equals the number of pa�
rameters involved in the system to be solved�

��



No� Set INFO���	 � ��

INFO���	 Finite di�erencing options toggle for obtaining the sen�
sitivity equations� Note that if INFO���	 � �
 then the value of
this element is ignored�

Do you wish DSL�
S to use a �nite di
erence method �FDM	 for
the approximation of the sensitivity analysis residuals�

No�

� INFO���	 � �� In this case the external user�provided
SENRHS routine should compute the Ny � Np sensitivity
right hand sides� It is not necessary to give DSL��S the
values of the parameters�

� INFO���	 � �� A 
rst order FDM method is used to
calculate the Ny �Np sensitivity right hand sides�

� INFO���	� �� A centered second order FDM method is
used to calculate the Ny �Np sensitivity right hand sides�

Yes�

� INFO���	 � �� A 
rst order forward FDM is used�

� INFO���	 � �� A centered second order FDM is used�
The sensitivity parameters are stored in RPAR by the in�
dex values placed in the 
rst Np locations of IPAR� For
example
 if IPAR��	��
 then parameter��� is stored in
RPAR��	� See the de
nitions of IPAR and RPAR below for
a more detailed description� Note that LRW must now
be extended to LRW � LRW � �Ny and NEQ must be ex�
tended to NEQ � Ny�Np � �� so that Y and YPRIME have
dimension Ny�Np � ���

INFO���	 Sensitivity error control option�

Do you wish DSL�
S to include all variables �state and sensitiv�
ity	 in the error control test�

Yes� Set INFO���	 � ��

No� Set INFO���	 � � to include ONLY the state variables
in the error test for the given problem �i�e� excluding the
sensitivity variables�� Note� All variables will be included in
the convergence test� Although this option will usually make
the code execute faster
 it is not recommended because the
resulting sensitivity answer may be incorrect�

INFO�
�	 Zero sensitivity option�

��



Do you know that some sensitivity variables are identically zero
during the current time step�

Yes� Set INFO�
�	�� The sensitivities with respect to parame�
ter k are assumed to be identically zero if IPAR�Np� k� � ��
Otherwise IPAR�Np � k� should be set to �� This option is
useful in applications like control parameterization where a
large number of sensitivity varibles can be zero for much of
the integration�

No� Set INFO�
�	���

INFO�
�	 Perturbation factor option� The selection of the pertur�
bation used in the 
nite di�erence approximation to the sensitiv�
ity equations is determined by the expression

�i � Cmax�jRPAR�IPAR�i�j� jjvjj�
where jjvjj is the ��norm of the vector V �V �j� � WT �Ny �
j��WT �j� for j � � � � � Ny
 WT is a vector of weights determined
by RTOL
 ATOL and Y� and C is the pertubation factor� The default
value for C is

p
�
 where � is the machine roundo�� This option

allows the user to change this value�

Do you wish to alter the value of C�

No� Set INFO�
�	 � ��

Yes� Set INFO�
�	 � � and set RWORK���	 equal to the desired
value�

INFO�

	 IPARmarker� Used to start the sensitivity analysis at ele�
ment INFO�

	 of the IPAR vector� For example
 setting INFO�

	
� � causes DSL��S to calculate the sensitivities corresponding to
IPAR�� � i�
 for i � � to INFO�����

Do you wish DSL�
S to use an o
set within IPAR�

No� Set INFO�

	 � ��

Yes� Set INFO�

	 � to the desired o�set used in IPAR� Note
that DSL��S is incapable of performing an error check �other
than � �� upon this INFO element� Hence it is a potential
source of performance errors�

INFO�
�	 Sensitivity method option� Used to set the method to be
used for solving sensitivity equations�

NOTE� THE STAGGERED CORRECTOR METHOD IS REC�
OMMENDED� The simultaneous corrector method is included
only for comparison�

��



Do you want to use the staggered corrector method�

Yes� Set INFO���	���

No� Set INFO���	�� to use the simultaneous corrector method�

RTOL
 ATOL You must assign relative �RTOL� and absolute �ATOL� error
tolerances to tell the code how accurately you want the solution to be
computed� They must be de
ned as variables because the code may
change them� You have two choices�

� Both RTOL and ATOL are scalars� �INFO������

� Both RTOL and ATOL are vectors of length NEQ �INFO�
	����

In either case all components must be non�negative� The tolerances
are used by the code in a local error test at each step which requires
roughly that ABS�LOCAL ERROR� � RTOL�ABS�Y��ATOL for each
vector component� �More speci
cally
 a root�mean�square norm is used
to measure the size of vectors
 and the error test uses the magnitude
of the solution at the beginning of the step��

The true �global� error is the di�erence between the true solution of the
initial value problem and the computed approximation� Practically all
present day codes
 including this one
 control the local error at each
step and do not even attempt to control the global error directly�

Usually
 but not always
 the true accuracy of the computed Y is com�
parable to the error tolerances� This code will usually
 but not always

deliver a more accurate solution if you reduce the tolerances and in�
tegrate again� By comparing two such solutions you can get a fairly
reliable idea of the true error in the solution at the bigger tolerances�

Setting ATOL��� results in a pure relative error test on that compo�
nent� Setting RTOL��� results in a pure absolute error test on that
component� A mixed test with non�zero RTOL and ATOL corresponds
roughly to a relative error test when the solution component is much
bigger than ATOL and to an absolute error test when the solution com�
ponent is smaller than the threshold ATOL�

The code will not attempt to compute a solution at an accuracy un�
reasonable for the machine being used� It will advise you if you ask
for too much accuracy and inform you as to the maximum accuracy it
believes possible�

RWORK��	 � Dimension this real work array of length LRW in your calling
program�

��



LRW Set it to the declared length of the RWORK array�

Use the following if�then guide to determine the minumum value for
LRW�

IF �INFO���	�NE��	 THEN

IF �INFO���	�LE�
	 THEN

NDASSL � �MAXORD��	 � NEQ � NEQ

ELSE IF �INFO���	�EQ��	 THEN

NDASSL��MAXORD��	 � NEQ � ��NEQ��INFO���	��	 � �

ELSE IF �INFO���	�EQ��	 THEN

NDASSL��MAXORD��	 � NEQ � ��NEQ��INFO���	��	 � �

ENDIF

IF �NFD�GT��	 THEN

NSENS�NEJAC���NEQ��INFO���	��	�NFD

ELSE

NSENS�NEJAC

ENDIF

NLUDWK � � � ��NEQ��INFO���	��	

ELSE

NDASSL � �MAXORD��	 � NEQ

NSENS��

NLUDWK � � � ��NEQ

ENDIF

NLUD � ��NEJAC

NFD is the number of elements of the Jacobian that must be calculated
using 
nite di�erences�

Note that NLUD gives the amount of space that is estimated to factor
the Jacobian� In some cases
 NLUD must be up to ���NEJAC
 de�
pending on the form of the Jacobian of the problem you are trying to
solve�

IWORK��	 Dimension this integer work array of length LIW in your calling
program�

LIW Set it to the declared length of the IWORK array� Use the following
if�then guide to determine the mimimum value of LIW�

�	



IF INFO���	�EQ��	 THEN

NY�NEQ

ELSE

NY�NEQ��INFO���	��	

ENDIF

NPTRS � 
� � ��

NKEEP � ��NY � ��NY�� � �

NIIK�� � � � �
 � NKEEP

NIWK�� � � � NY

NINDX � 
�NLUD

IF �INFO���	 �NE� �	 THEN

NSCALE � �

ELSE

NSCALE � ��NY � NEJAC

ENDIF

IF �NFD �GT� �	 THEN

NFDIFF � 
�NFD � ��NY � �

ELSE

NFDIFF � �

ENDIF

LENIW � NPTRS � NINDX � NIIK�� � NIWK�� �

NSCALE � NFDIFF

RPAR
 IPAR These are parameter arrays
 of real and integer type
 respec�
tively� You can use them for communication between your program
that calls DSL��S and the RES subroutine �and the SENRHS and JAC

subroutines�� They are not altered by DSL��S� If you do not need
RPAR or IPAR
 ignore these parameters by treating them as dummy
arguments� If you do choose to use them
 dimension them in your
calling program and in RES �and in the SENRHS and JAC subroutines�
as arrays of appropriate length� Depending on the value of INFO���	

RPAR and IPAR may also be used to communicate the parameters of
the given problem�

If INFO���� �� �
 i�e�
 a sensitivity analysis of the problem has been
requested
 RPAR is used to hold parameter values and IPAR is used to
hold the location of each parameter value within RPAR� For example


��



suppose that a problem contains three parameters
 it is possible to
store them in RPAR in the following manner�

RPAR�
� � p�

RPAR��� � p�

RPAR�
� � p�

The 
rst Np � � elements of IPAR are then used to locate these pa�
rameter values within RPAR�

IPAR��� � �� p� has been stored in RPAR���

IPAR�
� � �� p� has been stored in RPAR���

IPAR��� � �� p� has been stored in RPAR���

JAC If you have set INFO��	��
 you can ignore this parameter by treating
it as a dummy argument� Otherwise
 you must provide a subroutine to
return information to compute the iteration matrix of partial deriva�
tives of the form�

P �
�f

�y
� Cj

�f

�y�

where Cj is a scalar� Note that if you are solving for sensitivities
 P
is the partial derivative matrix of the state variables only�

The subroutine should have the following form�

SUBROUTINE JAC�NY� T� Y� YPRIME� A� NJAC� JROW�

� JCOL� JYDOT� NJYDOT� ICHVAR� RPAR� IPAR�

� IRTN� JDTYPE	

where�

NY
IN The number of equations in the DAE �excluding the sensi�
tivity system�

ICHVAR
IN Equals � if the values in Y and YPRIME have changed
since the last call to JAC�

A
OUT Array of length NEJAC used to de
ne the matrix of partial
derivatives as a sequence of triples�

For example�

A�K� �
�fi
�yj

i � JROW�K� j � JCOL�K�

��



if the index K is does not appear in any of the elements of JYDOT
from � to NYJDOT� If K does appear in the array of YJDOT then
A�K	 is de
ned as follows�

A�K� �
�fi
�y�

j

i � JROW�K� j � JCOL�K�

Note that JROW
 JCOL
 and JYDOT must be set before any calls
to DSSL�� and that the subroutine JAC must not alter T
 Y��	

YPRIME��	
 JROW��	
 JCOL��	
 NEQ
 NJAC
 JYDOT��	 or NJYDOT�

NEJAC
IN The Jacobian is speci
ed in terms of four arrays� two
integer arrays indicating the row and column positions in the
iteration matrix of the values contained in the third array
 and a
fourth array that gives the o�sets of the derivatives with respect
to y�� NEJAC is the length of each of the 
rst three vectors� Note
that the derivatives of the residuals with respect to Y and YDOT

should be speci
ed as separate triples�

JROW
IN An integer array indicating the row index of the nonzero
elements of the Jacobian� The speci
cation of JROW and JCOL

de
nes the sparsity pattern of the merged Jacobian matrix�

JCOL
IN An integer array indicating the column index of the nonzero
elements of the merged Jacobian� The speci
cation of JROW and
JCOL de
nes the sparsity pattern of the merged Jacobian matrix�

For example
 if JROW����� and JCOL�����
 then the 
rst equation
has a nonzero derivative with respect to the second variable or
the time derivative of the second variable� Furthermore
 if this
derivative is to be calculated analytically
 then it will appear as
the 
rst element in the array of values speci
ed for the triples�

JYDOT
IN Gives the position of derivatives with respect to YDOT
in the array of triples� Thus
 if JYDOT�����
 then the fourth
value in the Jacobian array of triples corresponds to the value
of the derivative with respect to y�

n
 where n � JCOL���� Note
that the values of JYDOT must form an increasing sequence
 i�e�

JYDOT��� � JYDOT��� � � � � JYDOT�NJYDOT��

NJYDOT
IN The length of the vector JYDOT� This should be equal
to the number of nonzero derivatives of the with respect to y��
NJYDOT �

P
NY

j��

P
NY

i��
�gi
�y�

j

�

JDTYPE
IN Vector of length NEJAC specifying the method to be used
to calculate the corresponding element of the Jacobian matrix�

��



The value of JDTYPE�I	 speci
es the method used to calculate
the derivative of the residual equation JROW�I	 with respect to
the variable Y�JCOL�I		 or YPRIME�JCOL�I		 in the case that an
element of JYDOT � I� The values of JDTYPE have the following
meaning� Analytic and constant derivatives are calculated us�
ing the user�supplied subroutine JAC� Numerical derivatives are
calculated by by DSL��S using 
nite di�erences�

� �� � constant derivative with respect to YPRIME
� �� � analytic derivative with respect to YPRIME
� �� � numerical derivative with respect to YPRIME
� � � numerical derivative with respect to Y
� � � analytic derivative with respect to Y
� � � constant derivative with respect to Y

����� Output after any return by DSL��S

The principal aim of DSL��S is to return a computed solution at TOUT

although it is also possible to obtain intermediate results along the way�
To 
nd out whether the code achieved its goal or if the integration process
was interrupted before the task was completed
 you must check the IDID
parameter�

T The solution was successfully advanced to the output value of T�

Y��� Contains the computed solution approximation at T�

YPRIME Contains the computed derivative approximation at T�

IDID Reports what the code did� Positive values of IDID indicate that
the task was completed
 while negative values indicate that the task
was interrupted�

� IDID � � � A step was successfully taken in the intermediate�
output mode� The code has not yet reached TOUT�

� IDID � � � The integration to TSTOP was successfully completed
�T�TSTOP� by stepping exactly to TSTOP�

� IDID � � � The integration to TOUT was successfully completed
�T�TOUT� by stepping past TOUT� Y is obtained by interpolation�
YPRIME is obtained by interpolation�

��



� IDID � �� � A large amount of work has been expended� �About
��� steps�

� IDID � �� � The error tolerances are too stringent�

� IDID � �� � The local error test cannot be satis
ed because you
speci
ed a zero component in ATOL and the corresponding com�
puted solution component is zero� Thus
 a pure relative error test
is impossible for this component�

� IDID � �� � DSL��S had repeated error test failures on the last
attempted step�

� IDID � �� � The corrector could not converge�

� IDID � �� � The matrix of partial derivatives is singular�

� IDID � �	 � The corrector could not converge� There were re�
peated error test failures in this step�

� IDID ���� � The corrector could not converge because IRES was
equal to minus one�

� IDID ���� � IRES equal to �� was encountered and control is
being returned to the calling program�

� IDID ���� � DSL��S failed to compute the initial YPRIME�

� IDID � ���
 � � � 
��� � Not applicable for this code

� IDID � ��� � The code has encountered trouble from which it
cannot recover� A message is printed explaining the trouble and
control is returned to the calling program� For example
 this
occurs when invalid input is detected�

RTOL
 ATOL These quantities remain unchanged except when IDID � �
�� In this case
 the error tolerances have been increased by the code
to values which are estimated to be appropriate for continuing the
integration� However
 the reported solution at T was obtained using
the input values of RTOL and ATOL�

RWORK
 IWORK Contain information which is usually of no interest to the
user but necessary for subsequent calls� However
 you may 
nd use
for the following parts of the workspaces�

RWORK���� Contains the step size H to be attempted on the next
step�

RWORK���� Contains the current value of the independent vari�
able
 i�e�
 the farthest point integration has reached� This will

��



be di�erent from T only when interpolation has been performed
�IDID����

RWORK���� Contains the stepsize used on the last successful step�

IWORK���� Contains the order of the method to be attempted on
the next step�

IWORK���� Contains the order of the method used on the last step�

IWORK�����Contains the number of steps taken so far�

IWORK�����Contains the number of calls to RES so far�

IWORK�����Contains the number of evaluations of the matrix of
partial derivatives needed so far�

IWORK�����Contains the total number of error test failures so far�

IWORK�����Contains the total number of convergence test failures
so far �includes singular iteration matrix failures��

IWORK�����Position in RWORK of the start of the Nordsieck array�

IWORK��	��Contains the number of calls to the SENRHS routine so
far�

IWORK�����Contains the number of times that the sensitivity equa�
tion residuals were evaluated�

����� What to do to continue the integration

This code is organized so that subsequent calls to continue the integration
involve little �if any� additional e�ort on your part� You must monitor the
IDID parameter in order to determine what to do next�
Recalling that the principal task of the code is to integrate from T to

TOUT �the interval mode�
 usually all you will need to do is specify a new
TOUT upon reaching the current TOUT�
Do not alter any quantity not speci
cally permitted below
 in particular

do not alter NEQ
 T
 Y���
 YPRIME���
 RWORK���
 IWORK��� or the di�erential
equation in subroutine RES� Any such alteration constitutes a new problem
and must be treated as such
 i�e�
 you must start afresh�
You cannot change from vector to scalar error control or vice versa

�INFO����
 but you can change the size of the entries of RTOL
 ATOL� In�
creasing a tolerance makes the equation easier to integrate� Decreasing a
tolerance will make the equation harder to integrate and should generally
be avoided�
You can switch from the intermediate�output mode to the interval mode

�INFO���� or vice versa at any time�

��



If it has been necessary to prevent the integration from going past a point
TSTOP �INFO���
 RWORK����
 keep in mind that the code will not integrate
to any TOUT beyond the currently speci
ed TSTOP� Once TSTOP has been
reached you must change the value of TSTOP or set INFO������ You may
change INFO��� or TSTOP at any time but you must supply the value of TSTOP
in RWORK��� whenever you set INFO������
Do not change INFO���
 IWORK���
 or IWORK��� unless you are going to

restart the code�
W hat to do following a completed task�

� If IDID � �
 call the code again to continue the integration another
step in the direction of TOUT�

� If IDID � � or �
 de
ne a new TOUT and call the code again� TOUTmust
be di�erent from T� You cannot change the direction of integration
without restarting�

W hat to do following an interrupted task�
To show the code that you realize the task was interrupted and that you

want to continue
 you must take appropriate action and set INFO��� � �

� If IDID � ��
 The code has taken about ��� steps� If you want to
continue
 set INFO��� � � and call the code again� An additional ���
steps will be allowed�

� If IDID � ��
 The error tolerances RTOL
 ATOL have been increased to
values the code estimates appropriate for continuing� You may want
to change them yourself� If you are sure you want to continue with
relaxed error tolerances
 set INFO����� and call the code again�

� If IDID � ��
 A solution component is zero and you set the correspond�
ing component of ATOL to zero� If you are sure you want to continue

you must 
rst alter the error criterion to use positive values for those
components of ATOL corresponding to zero solution components
 then
set INFO����� and call the code again�

� IDID � ��
�� � Cannot occur with DSL��S�

� If IDID � ��
 Repeated error test failures occurred on the last at�
tempted step in DSL��S� A singularity in the solution may be present�
If you are absolutely certain you want to continue
 you should restart
the integration� �Provide initial values of Y and YPRIME which are
consistent�

��



� If IDID � ��
 Repeated convergence test failures occurred on the last
attempted step in DSL��S� An inaccurate or ill�conditioned Jacobian
may be the problem� If you are absolutely certain you want to con�
tinue
 you should restart the integration�

� If IDID� ��
 The matrix of partial derivatives is singular� Some of your
equations may be redundant� DSL��S cannot solve the problem as
stated� It is possible that the redundant equations could be removed

and then DSL��S could solve the problem� It is also possible that a
solution to your problem either does not exist or is not unique�

� If IDID� �	
 DSL��S had multiple convergence test failures
 preceeded
by multiple error test failures
 on the last attempted step� It is possible
that your problem is ill�posed
 and cannot be solved using this code�
Or
 there may be a discontinuity or a singularity in the solution� If
you are absolutely certain you want to continue
 you should restart
the integration�

� If IDID ����
 DSL��S had multiple convergence test failures because
IRES was equal to minus one� If you are absolutely certain you want
to continue
 you should restart the integration�

� If IDID ����
 IRES��� was encountered
 and control is being returned
to the calling program�

� If IDID ����
 DSL��S failed to compute the initial YPRIME� This could
happen because the initial approximation to YPRIME was not very
good
 or if a YPRIME consistent with the initial Y does not exist� The
problem could also be caused by an inaccurate or singular iteration
matrix�

� IDID � ���
��
��� � Cannot occur with this code�

� If IDID� ���
 you cannot continue the solution of this problem� An
attempt to do so will result in your run being terminated�

����� Error messages

The SLATEC error print routine XERMSG is called in the event of unsuc�
cessful completion of a task� This routine is included uncompiled in the
DSL��S distribution so that it may be replaced
 if necessary for proper inte�
gration with your program� If you want to replace XERMSG with your own

��



error routine
 see the 
le error�f for the proper form of the error handling
subroutines�
Most of these errors are treated as �recoverable errors�
 which means

that �unless the user has directed otherwise� control will be returned to the
calling program for possible action after the message has been printed�
In the event of a negative value of IDID other than ���
 an appropriate

message is printed and the �error number� printed by XERMSG is the value
of IDID� There are quite a number of illegal input errors that can lead to a
returned value IDID����� The conditions and their printed �error numbers�
are as follows�

��



Error number Condition

� Some element of INFO vector is not zero or one�

� NEQ �le� �

� MAXORD not in range�

� LRW is less than the required length for RWORK�

� LIW is less than the required length for IWORK�

� Some element of RTOL is �lt� �

� Some element of ATOL is �lt� �

� All elements of RTOL and ATOL are zero�

	 INFO����� and TSTOP is behind TOUT�

�� HMAX �lt� ���

�� TOUT is behind T�

�� INFO����� and H�����

�� Some element of WT is �le� ���

�� TOUT is too close to T to start integration�

�� INFO����� and TSTOP is behind T�

�� �� Not used in this version ��

�� ML illegal� Either � � or 	NEQ

�� MU illegal� Either �� or 	NEQ

�	 TOUT � T�

�� Some element of the DSL��S part of INFO�������
has not been speci
ed correctly�

�� Sensitivity analysis option has been enabled but
NEQ does not equal�
 of state var��� of sensitivity var� � �� as required�

�� Error test restriction is being applied to
illegal values of the Y vector�

�� IPAR contains negative values�

�� Workspace arrays too small for current problem

If DSL��S is called again without any action taken to remove the cause
of an unsuccessful return
 XERMSG will be called with a fatal error �ag

which will cause unconditional termination of the program� There are two
such fatal errors�

Error number ���
 � The last step was terminated with a negative value of
IDID other than ���
 and no appropriate action was taken�

Error number ���� � The previous call was terminated because of illegal

�	



input �IDID����� and there is illegal input in the present call
 as well�
�Suspect in
nite loop��

��



��� The test�f program

PROGRAM TEST

C This program is a test of the DSL��S code� The problem

C is from�

C

C T� Maly and L�R� Petzold� �Numerical methods and software for

C sensitivity analysis of differential�algebraic equations��

C Applied Numerical Mathematics 	
�����
 ��

��

C

C This is a two dimensional ODE with three parameters� The problem

C has the form�

C

C �X����P��P��X��	

C �X	�P��X��	 � P	�X	

C X��
���

C X	�
��


C

C where the X�s are state variables� ��� denotes time derivatives�

C and the parameters have the values�

C

C P��
�
���

C P	�
�	���

C P��
���	�

C

C The resulting ODE and sensitivity system defines an �x� system of

C equations�

DOUBLE PRECISION T� Y���� YPRIME���� TOUT� RTOL����

� ATOL���� RWORK��


�� BOUND����RPAR����TSTOP

INTEGER NEQ� IDID� LRW� LIW� IWORK��


�� INFO�	���

� IRLIST����JCLIST����IDLIST�	��IDFLAG����

� NZ�IDNZ� IPAR����I

EXTERNAL RES�JAC�SENRHS

C Number of equations� ODE and sensitivities

NEQ��

C Initial time and maximum initial time step

T�
�
D


TSTOP���
D	

TOUT��
�
D


C Info array parameters� see README for meanings

INFO����


��



INFO�	��


INFO�����

INFO����


INFO�����

INFO�����

INFO����


INFO����


INFO�
��


INFO��
��


INFO�����


INFO��	��


INFO�����


INFO�����


INFO�����


INFO�����


INFO������

INFO�����


INFO��
��


INFO�	
��


INFO�	���


INFO�		��


INFO�	���


C Relative and absolute integration tolerances

RTOL������
D
���
D�

ATOL����RTOL���

C RWORK and IWORK Lengths

LRW��




LIW��




C Set up RPAR and IPAR with the parameters

IPAR�����

RPAR����
�
���D


IPAR�	��	

RPAR�	��
�	���D


IPAR�����

RPAR����
���	�D


C Set up jacobian

NZ��

IRLIST�����

IRLIST�	���

IRLIST����	

IRLIST����	

��



IRLIST����	

JCLIST�����

JCLIST�	���

JCLIST����	

JCLIST�����

JCLIST����	

IDNZ�	

IDLIST�����

IDLIST�	���

IDFLAG���� ��

IDFLAG�	�� �

IDFLAG���� ��

IDFLAG���� �

IDFLAG���� �

C Initial Conditions

Y������
D


Y�	��
�
D


Y����
�
D


Y����
�
D


Y����
�
D


Y����
�
D


Y����
�
D


Y����
�
D


YPRIME������RPAR����RPAR�����Y�����	

YPRIME�	��RPAR����Y�����	

YPRIME�����Y�����	

YPRIME����Y�����	

YPRIME����
�
D


YPRIME����
�
D


YPRIME�����Y�����	

YPRIME����
�
D


OPEN�UNIT���FILE��test�out��

WRITE����

���TIME���Y������Y�	����S��������S�	������S���	���

� �S�	�	����S��������S�	����

WRITE����


�T��Y�I��I�����

�
 CONTINUE

CALL DSL��S�RES� SENRHS� NEQ� T� Y� YPRIME� TOUT� INFO�

� RTOL� ATOL� IDID� RWORK� LRW� IWORK�

� LIW�RPAR�IPAR�JAC�NZ�IRLIST�JCLIST�IDLIST�IDNZ�IDFLAG�BOUND�

WRITE����


�T��Y�I��I�����

��



TOUT�TSTOP

IF �T�LE��TSTOP�ATOL����� GOTO �


CLOSE���

WRITE������DSL��S integration complete�

�


 FORMAT�
E�����

�

� FORMAT�
A���

END

������������������������������������������������������������

SUBROUTINE RES�NY�T�Y�YPRIME�DELTA�IRES�ICHVAR�RPAR�IPAR�

INTEGER IRES�IPAR����NY�ICHVAR

DOUBLE PRECISION T�Y�NY��YPRIME�NY��DELTA�NY��RPAR���

C

DELTA����YPRIME�����RPAR�IPAR�����RPAR�IPAR������Y�����	

DELTA�	��YPRIME�	��RPAR�IPAR�����Y�����	�RPAR�IPAR�	���Y�	�

RETURN

END

������������������������������������������������������������

SUBROUTINE SENRHS�NEQ�T�Y�YPRIME�DELTA�IRES�RPAR�IPAR�

INTEGER IRES�IPAR����NEQ

DOUBLE PRECISION T�Y����YPRIME����DELTA����RPAR���

C

DELTA����Y�����	

DELTA�����Y�����	

DELTA����
�
D


DELTA����Y�	�

DELTA����Y�����	

DELTA����
�
D


RETURN

END

������������������������������������������������������������

SUBROUTINE JAC�NEQ�T�Y�YPRIME�AJAC�NJAC�JROW�JCOL�

� JYDOT�NJYDOT�ICHVAR�RPAR�IPAR�IRTN�

C

C Argument List Declarations

��



INTEGER IPAR���� IRTN� JCOL���� JROW���� JYDOT����

� NEQ� NJAC� NJYDOT�ICHVAR

DOUBLE PRECISION AJAC���� RPAR���� T� Y���� YPRIME���

C

C Local Variables

C

C First Excutable statement

AJAC������
D


AJAC�	��	��RPAR�IPAR�����RPAR�IPAR������Y���

AJAC������
D


AJAC�����	�RPAR�IPAR�����Y���

AJAC����RPAR�IPAR�	��

RETURN

END

��



Bibliography

��� R� Allgor
 Modeling and Computational Issues in the Development
of Batch Processes
 PhD thesis
 Department of Chemical Engineering

Massachusetts Institute of Technology
 Cambridge
 MA
 �		��

��� K� Brenan� S� Campbell� and L� Petzold
 Numerical Solution
of Initial Value Problems in Di
erential�Algebraic Equations
 SIAM

Philadelphia
 PA
 �		��

��� W� Feehery
 Dynamic Optimization with State Variable Path Con�
straints
 PhD thesis
 Department of Chemical Engineering
 Mas�
sachusetts Institute of Technology
 Cambridge
 MA
 �		��

��� W� Feehery� J� Tolsma� and P� Barton
 E�cient sensitivity anal�
ysis of large�scale di
erential�algebraic equations
 Applied Numerical
Mathematics
 �� ��		��
 pp� ������

��


