Decomposition strategy for the global optimization of flexible energy polygeneration systems

TitleDecomposition strategy for the global optimization of flexible energy polygeneration systems
Publication TypeJournal Article
Year of Publication2012
AuthorsChen Y, Li X, , Barton PI
JournalAIChE Journal
Volume58
Pagination3080-3095
ISSN1547-5905
Keywordsdecomposition method, Flexible energy polygeneration system, global optimization, large-scale nonconvex MINLP, optimal design and operation
Abstract

The optimal design and operation of exible energy polygeneration systems using coal and biomass to coproduce power, liquid fuels, and chemicals is investigated. This problem is formulated as a multi-period optimization problem, which is a potentially large-scale nonconvex mixed-integer nonlinear program MINLP and cannot be solved to global optimality by state-of-the-art global optimization solvers, such as BARON, within a reasonable time. A duality-based decomposition method, which can exploit the special structure of this problem, is applied. In this work, the decomposition method is enhanced by the introduction of additional dual information for faster convergence. The enhanced decomposition algorithm guarantees to find an ε-optimal solution in a finite time. The case study results show that the enhanced decomposition algorithm achieves much faster convergence than both BARON and the original decomposition algorithm, and it solved the large-scale nonconvex MINLPs to ε-optimality in practical times.

URLhttp://dx.doi.org/10.1002/aic.13708
DOI10.1002/aic.13708